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Abstract
We introduce a model for mixed syntactic/semantic approximation
of programs based on symbolic finite automata (SFA). The edges
of SFA are labeled by predicates whose semantics specifies the de-
notations that are allowed by the edge. We introduce the notion of
abstract symbolic finite automaton (ASFA) where approximation
is made by abstract interpretation of symbolic finite automata, act-
ing both at syntactic (predicate) and semantic (denotation) level.
We investigate in the details how the syntactic and semantic ab-
stractions of SFA relate to each other and contribute to the deter-
mination of the recognized language. Then we introduce a family
of transformations for simplifying ASFA. We apply this model to
prove properties of commonly used tools for similarity analysis of
binary executables. Following the structure of their control flow
graphs, disassembled binary executables are represented as (con-
crete) SFA, where states are program points and predicates repre-
sent the (possibly infinite) I/O semantics of each basic block in a
constraint form. Known tools for binary code analysis are viewed
as specific choices of symbolic and semantic abstractions in our
framework, making symbolic finite automata and their abstract in-
terpretations a unifying model for comparing and reasoning about
soundness and completeness of analyses of low-level code.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—pro-
gram analysis

General Terms Languages.

Keywords Symbolic automata, abstract interpretation.

1. Introduction
The problem. Similarity analysis is a key component in mining and
understanding huge software enclaves, including code, e,g., com-
ing from malware repositories, specifications, analyses and other
heterogeneous meta-data. This is particularly relevant when deal-
ing with binary executables, which, besides representing a large
portion of existing malware, also represent a highly malleable of-
ten hard to analyze carrier. This is due to its unstructured nature,
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allowing self-modification, overlapping instructions, and untyped
computations where data and code coexist without any predefined
(static) boundary.

In order to mine both semantic meanings and syntactic patterns
from programs, existing tools for similarity analysis of binary ex-
ecutables always employ mixed syntactic/symbolic and semantic
representations of programs. At syntactic level properties concern-
ing the control flow graph, such as in BinHunt [15] and BinDiff
[12, 25], or feature vectors concerning sequences of instructions,
are used together with graph-isomorphism, sequence comparison
algorithms, and hash functions for extracting structural similari-
ties in code. At semantic level, more advanced semantic properties
such as those extracted from symbolic executions, dynamic anal-
ysis and emulation, such as those used in BinJuice [18] and Bin-
Hunt [15], are employed for bypassing semantic preserving code
transformations for code obfuscation, e.g., for similarity analysis
in malware detection. The use of mixed syntactic/semantic repre-
sentation of code in similarity analysis is becoming a good practice
because pure semantic similarity is too complex and often undecid-
able while pure syntactic similarities is too imprecise and prone to
false negatives due to code obfuscation techniques. This is precisely
what happens in most known tools and methods for dissecting and
comparing programs in order to extract semantic similarities from
syntactically different code. However, none of these tools have a
formal semantic model in which relative precision and soundness
can be formally proved. This paper is intended to fill this gap.

Our contribution. We attack this problem by observing that most
known methods employed in similarity analysis of disassembled
binaries can be seen as peculiar abstract interpretations of symbolic
finite state automata (SFA). Symbolic finite automata, introduced
in [23] and further developed in [8, 9], provide the ideal formal set-
ting in order to treat within the same model the abstraction of both
the syntactic structure of programs and their intended semantics.

SFA have been introduced as an extension of traditional finite
state automata for modeling languages with a potential infinite
alphabet. Transitions in SFA are therefore modeled as constraints
interpreted in a given Boolean algebra, providing the semantic
interpretation of constraints, and therefore the (potentially infinite)
structural components of the language recognized (see [9, 23]).

Our main contribution is the introduction of the notion of ab-
stract symbolic finite automaton, where approximation is made by
abstract interpretation of standard SFA. Abstract interpretation here
acts both at syntactic (predicate), topological (graph), and seman-
tic (denotation) level. We investigate in details how the syntactic,
topological, and semantic abstractions of SFA relate to each other
and interfere when automata, at different levels of abstractions, are
compared with respect to their recognized language.

The abstraction respectively on syntactic predicates and seman-
tic structures corresponds precisely to the abstract interpretation of
the underlying Boolean algebra of a concrete SFAM , resulting in a



different SFA A whose language recognized is an over approxima-
tion of the language ofM . The key aspect here is to maintain a rela-
tive compatibility between syntactic abstractions on predicates and
constraint formulae and the abstractions of their semantics. This in-
tuitively means that the approximate predicates and their interpre-
tation provide, one over the others, coherent partitions of objects
(respectively interpretations and predicates).

Topological abstraction means instead changing the graph struc-
ture of SFA, yet keeping correctness, namely providing an over ap-
proximation of the recognized language of M . This is achieved by
generalizing a minimization algorithm proposed in [9] with respect
to a family of equivalence relations on SFA states. The result is a
simplification of M which is still correct in the sense of abstract
interpretation with respect to M .

Abstract SFA provide a general enough model for representing
syntactic and semantic properties of arbitrary programming lan-
guages. We apply our model in the attempt to formalize and prove
properties of two commonly used tools for similarity analysis of bi-
nary executables, notably BinJuice [18] and BinDiff. Following the
structure of their control flow graphs, disassembled binary executa-
bles are represented as (concrete) SFA, where states are program
points between basic blocks and predicates represent the (possibly
infinite) I/O semantics of each basic block in a constraint form.
Tools for binary-level similarity analysis are then formalized as ab-
stract interpretations of these concrete SFA. By studying the prop-
erties of the corresponding abstractions we can provide a first uni-
fying model for formally proving properties for these tools. More-
over, our model suggests potential refinements of similarity analy-
ses for disassembled binaries such as the possibility of extracting
minimal SFA from binaries as canonical signatures for code frag-
ments.

2. Preliminaries
Mathematical Notation. Given two sets S and T , we denote with
℘(S) the powerset of S, ℘re(S) the set of recursive enumerable
(r.e.) subsets of S, with S r T the set-difference between S and
T , with S ⊂ T strict inclusion and with S ⊆ T inclusion. S∗

denotes the set of all finite sequences of elements in S. A set L
with ordering relation ≤ is a poset and it is denoted as 〈L,≤〉.
A poset 〈L,≤〉 is a lattice if ∀x.y ∈ L we have that x ∨ y and
x ∧ y belong to L. A lattice 〈L,≤〉 is complete when for every
X ⊆ L we have that

∨
X,
∧
X ∈ L. As usual a complete lattice

L, with ordering≤, least upper bound (lub)∨, greatest lower bound
(glb) ∧, greatest element (top) >, and least element (bottom) ⊥ is
denoted by 〈L,≤,∨,∧,>,⊥〉. Given f : S−→T and g : T −→Q
we denote with g ◦ f : S−→Q their composition, i.e., g ◦ f =

λx.g(f(x)). f : L−→D on complete lattices is additive (co-
additive) if for any Y ⊆ L, f(∨LY ) = ∨Df(Y ) (f(∧LY ) =
∧Df(Y )). Continuity holds when f preserves lubs’s of chains. Co-
continuity is dually defined. For a continuous function f : lfp(f) =∧{

x
∣∣ x = f(x)

}
=
∨
n∈N f

n(⊥) where f0(⊥) = ⊥ and
fn+1(⊥) = f(fn(⊥)).

Abstract Interpretation. Abstract domains can be equivalently
formalized either as Galois connections or closure operators on
a given concrete domain which is a complete lattice C (cf. [4]).
Let C and A be complete lattices, a pair of monotone functions
α : C−→A and γ : A−→C forms a Galois connection (GC)
between C and A if for every x ∈ C and y ∈ A we have
α(x) ≤A y ⇔ x ≤C γ(y). α (resp. γ) is the left-adjoint (resp.
right-adjoint) to γ (resp. α) and it is additive (resp. co-additive).
If 〈α, γ〉 is a GC between C and A then γ ◦ α ∈ uco(C). If
ρ ∈ uco(C) then 〈ρ, id〉 is a CG between C and ρ(C). Given
an additive (resp. co-additive) function α (resp. γ) we have a GC
〈α, α+〉 (resp. 〈γ−, γ〉) by considering its right (resp. left) adjoint

α+ = λx.
∨
{y | α(y) ≤ x} (resp. γ− = λx.

∧
{y | x ≤ γ(y)}).

An upper closure operator (or simply a closure) on a poset 〈L,≤〉
is an operator ρ : L−→L which is monotone, idempotent, and
extensive (i.e., x ≤ ρ(x)). We denote with uco(L) the set of all
closure operators on the poset L. If C is a complete lattice, then
〈uco(C),v,t,u, λx. C, id〉 forms a complete lattice [24], which
is the set of all possible abstractions of C, where the bottom is
id = λx.x and for every ρ, η ∈ uco(C), ρ is more concrete
than η iff ρ v η iff ∀y ∈ C. ρ(y) ≤ η(y) iff η(C) ⊆ ρ(C),
(ui∈Iρi)(x) = ∧i∈Iρi(x); (ti∈Iρi)(x) = x iff ∀i ∈ I. ρi(x) =
x. ρ ∈ uco(C) is disjunctive when ρ(C) is a join-sublattice of C
which holds iff ρ is additive (cf. [4]). ρ ∈ uco(℘(C)) is partitioning
(or induces a partition) if it is additive and {ρ({c})}c∈C is a
partition of C [17]. If ρ ∈ uco(℘(C)) then the most abstract
partitioning closure containing ρ:

Π(ρ)
def
=
⊔{

β ∈ uco(℘(C))
∣∣ β v ρ ∧ β is partitioning

}
.

The key aspect of partitioning closures is that they preserve the
structure of Boolean algebras.
If f : C−→C is a continuous function and ρ ∈ uco(C) is an
abstraction, then f always has a best correct approximation in ρ(C)
which is fρ def

= ρ ◦ f ◦ ρ. Any approximation f ] : ρ(C)−→ρ(C)

of f in ρ(C) is sound if fρ v f ]. In this case we have the fixpoint
soundness ρ(lfpf) ≤ lfp(fρ) ≤ lfp(f ])(cf. [3]). f ] is complete
when ρ ◦ f = f ] ◦ ρ which holds iff ρ ◦ f = ρ ◦ f ◦ ρ (cf. [16]).
Therefore the possibility of defining a complete approximation f ]

of f on some abstract domain ρ only depends on f and ρ. In this
case we have: ρ(lfpf) = lfp(fρ) = lfp(f ]). In the following, for
any semantics J·K : S−→D mapping syntactic objects in S into
denotations in D such that J·K is an element in the set of fixpoint
semantics S ⊆ S−→D inductively defined as follows

S ::= f : S−→D | lfp(S) | S ◦S

and if ρ ∈ uco(D), we denote by J·Kρ ∈ Sρ ⊆ S−→ρ(D) the cor-
responding best correct approximation which is defined inductively
on the structure of S as follows:

Sρ ::= ρ ◦ f ◦ ρ | lfp(Sρ) | Sρ ◦Sρ

It is known that J·Kρ is sound and, whenever ρ is complete for the
basic semantic operators f defining J·K ∈ S, then J·Kρ is complete,
i.e. for any s ∈ S: ρ(JsK) = JsKρ (cf. [4, 16]).

Symbolic Finite Automata. Symbolic automata and finite state
transducers have been introduced to deal with specifications in-
volving a potentially infinite alphabet of symbols [8, 9, 23].
We follow [9] in specifying symbolic automata in terms of ef-
fective Boolean algebra. Consider an effective Boolean algebra
A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉, with domain elements in a r.e.
set DA, a r.e. set of predicates ΨA closed under boolean connec-
tives ∧, ∨ and ¬. The semantic function J·K : ΨA−→℘(DA) is
a partial recursive function such that J⊥K = ∅, J>K = DA, and
∀ϕ, φ ∈ ΨA we have that Jϕ∨φK = JϕK∪JφK, Jϕ∧φK = JϕK∩JφK,
and J¬ϕK = DA r JϕK. In the following we abuse notation
by denoting with J·K also its additive lift to ℘(ΨA), i.e., for any
Φ ∈ ℘(ΨA): JΦK =

{
JϕK

∣∣ ϕ ∈ Φ
}

. For ϕ ∈ ΨA we write
IsSat(ϕ) when JϕK 6= ∅ and say that ϕ is satisfiable. A is decid-
able if IsSat is decidable.

DEFINITION 2.1. A symbolic automaton (SFA) is 〈A, Q, q0, F,∆〉
where A is an effective Boolean algebra, Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states and
∆ ⊆ Q×ΨA ×Q is a finite set of transitions.

A transition in M = 〈A, Q, q0, F,∆〉 labeled ϕ from state p to
state q, (p, ϕ, q) ∈ ∆ is often denoted p ϕ−→q. ϕ is called the guard



of the transition. An a-move of a SFAM is a transition p ϕ−→q such
that a ∈ JϕK, also denoted p a−→q. The language recognized by a
state q ∈ Q in M is defined as:

Lq(M) =

{
a1, . . . , an ∈ DA

∣∣∣∣ ∀1 ≤ i ≤ n. pi−1
ai−→pi

p0 = q, pn ∈ F

}
in this case, L (M) = Lq0(M). We assume complete SFA,
namely where all states hold an out-going a-move, for any charac-
ter a ∈ D. This can be simply achieved by adding a shaft-state
q⊥ ∈ Q such that q⊥ >−→q⊥ ∈ ∆ and for all states q lack-
ing an out-going a-move, for a ∈ D, then q

¬β−→q⊥ ∈ ∆ with
β =

∨{
ϕ
∣∣ q ϕ−→p ∧ p ∈ Q

}
.

The following terminology holds for SFA: M is deterministic
whenever p ϕ−→q, p

β−→q′ ∈ ∆: if IsSat(ϕ∧β) then q = q′.M is
clean if for all p ϕ−→q ∈ ∆: p is reachable from q0 and IsSat(ϕ).
M is normalized if for all p, q ∈ Q: there is at most one move from
p to q. M is minimal if M is deterministic, clean, normalized and
for all p, q ∈ Q:

p = q ⇔ Lq(M) = Lp(M)

Given a SFA M = 〈A, Q, q0, F,∆〉 and ≡⊆ Q × Q, we
define the quotient SFA M/≡

def
= 〈A, Q′, q′0, F ′,∆′〉 as follows:

Q′ =
{

[q]≡
∣∣ q ∈ Q }

, ∆′ ⊆ Q′ × ΨA ×Q′ is such that ∆′ ={
([q]≡,Φ, [q

′]≡)
∣∣ (p,Φ, q′) ∈ ∆, p ∈ [q]≡

}
, q′0 = [q0]≡, and

F ′ =
{

[q]≡
∣∣ q ∈ F }

.

3. Abstracting Symbolic Automata
Approximating symbolic automata means building different au-
tomata recognizing an upper approximation of the original recog-
nized language. This can be achieved by abstract interpretation of
the underlying effective Boolean algebra A and by approximating
the automaton’s structure. When acting on the Boolean algebra we
may either approximate the domain of denotations DA where for-
mulae and predicates are interpreted, or approximate the predicates
in ΨA where formulae are built. In both cases we need to obtain as
result an abstract effective Boolean algebra.

3.1 Abstract effective Boolean algebras
The duality of syntax and semantics is perfectly encoded in SFA
by the underlying algebraic structure of effective Boolean alge-
bras. They represent the universe of predicates and formulae (later
called syntax) as well as the domain for their interpretation and se-
mantics, providing the structure for expressing the language rec-
ognized by the given SFA. The abstraction of syntactic and se-
mantic structures applies on sets of predicates and semantic struc-
tures representing, as usual in abstract interpretation, properties
respectively of predicates and semantics. In the following A =
〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 is an effective Boolean Algebra.

DEFINITION 3.1 (Semantic abstraction). Let A be an effective
Boolean Algebra and ρ ∈ uco(℘(DA)) be a partitioning abstrac-
tion of its domain of denotations. The semantic abstraction of A
w.r.t. ρ, denoted 〈|ρ|〉-abstraction, is the effective Boolean algebra

Aρ = 〈Dρ
A,ΨA, J·K

ρ, ρ(⊥),>,∧,∨ρ,¬ρ〉
where:

Dρ
A =

⋃{
ρ(d)

∣∣ d ∈ DA
}

J·Kρ : ΨA−→℘(Dρ
A) such that

JϕKρ = ρ(JϕK) =
⋃{

ρ(d)
∣∣ d ∈ JϕK

}
ϕ1, ϕ2 ∈ ΨA : Jϕ1 ∨ρ ϕ2Kρ = Jϕ1Kρ ∪ Jϕ2Kρ

ϕ ∈ ΨA : J¬ρϕKρ = Dρ
A r JϕKρ

Before abstracting predicates, i.e., syntax, we have to guarantee
the effectiveness of symbolic computation in the SFA. Next lemma
proves that if S is a set, whenever η ∈ uco(℘(S)) is additive η
maps any r.e. subset X of S into a r.e. (abstract) subset η(X) of S.

LEMMA 3.2. If X ⊆ S is r.e. and η ∈ uco(℘(S)) is additive, then
η(X) is r.e., namely η ∈ uco(℘re(S)).

By Lemma 3.2, because η is a recursive function, and by Kleene’s
characterization of recursive enumerable sets, the range of η over
r.e. sets is itself r.e. (see [21]).

THEOREM 3.3. If S is a set and η ∈ uco(℘re(S)) is additive then{
η(X)

∣∣ X ⊆ S ∧ X is r.e.
}

is r.e.

DEFINITION 3.4 (Syntactic abstraction). Let A be an effective
Boolean Algebra and let η ∈ uco(℘re(ΨA)) be an additive ab-
straction of predicates. The syntactic abstraction of A w.r.t. η, de-
noted 〈η〉-abstraction, is the effective Boolean algebra

Aη = 〈DA, η(℘re(ΨA)), J·K,⊥,>,∧,∨,¬〉
where J·K : η(℘re(ΨA))−→℘(DA) is defined as in SFA.

If we have both a 〈|ρ|〉-abstraction and a 〈η〉-abstraction of an
effective Boolean algebra A, then we define the combined abstrac-
tion 〈|ρ|〉〈η〉-abstraction of A by combining them as follows. Let
ρ ∈ uco(℘(DA)) and η ∈ uco(℘re(ΨA)). The abstraction of A
w.r.t. ρ and η is the effective Boolean algebra

Aρη = 〈Dρ
A, η(℘re(ΨA)), J·Kρ, ρ(⊥),>,∧,∨ρ,¬ρ〉

It is clear that Aη = Aid
η and Aρ = Aρid. In the following of

the paper we assume that 〈|ρ|〉- and 〈η〉-abstractions satisfy the
hypothesis in Definition 3.1 and 3.4 respectively.

THEOREM 3.5. If A is decidable then for any ρ ∈ uco(℘(DA))
and η ∈ uco(℘re(ΨA)), Aρη is decidable.

Note that, in the definition of symbolic automata there is a
strong relation in the underlying effective Boolean algebra A be-
tween the domain of denotations DA and the set of predicates ΨA
used to symbolically represent them. This means that, if we abstract
the domain of denotations by considering ρ ∈ uco(℘(DA)), leav-
ing unchanged ΨA we are implicitly changing the interpretation
of predicates in DA. On the other hand, if we abstract the pred-
icates by considering η ∈ uco(℘re(ΨA)) we explicitly describe
how symbols are abstracted and the semantics is simply the col-
lection of all the semantics denoting the same abstracted predicate.
This leads to the following notion of compatible abstractions.

3.2 Compatible syntactic and semantic abstractions
Let us consider a 〈|ρ|〉-abstraction of A, we aim at characterizing
the syntactic abstractions that produce abstract predicates which
may have semantics in Dρ

A. This is captured by the notion of
〈|ρ|〉-compatibility of a syntactic abstraction. Any semantic 〈|ρ|〉-
abstraction naturally induces a corresponding syntactic 〈Ω(ρ)〉-
abstraction with Ω(ρ) ∈ uco(℘(ΨA)) defined as follows:

Ω(ρ)
def
= λΦ.

⋃{
Φ′
∣∣ JΦ′K ⊆ JΦKρ

}
Analogously, any syntactic 〈η〉-abstraction naturally induces a cor-
responding semantic 〈|f(η)|〉-abstraction with f(η) ∈ uco(℘(Dρ

A)).
In order to characterize when and how a syntactic abstraction in-
duces a semantic abstraction, we need to characterize the syntactic
abstraction that precisely corresponds to the semantics J·K, namely
the abstraction collecting all the predicates having the same se-
mantics J·K. This is precisely Ω(id), which can be rewritten as
λΦ. JJΦKK+. Here J·K+ is the adjoint semantic function defined as
follows:

J·K+ def
= λX ∈ ℘(DA).

⋃{
Φ
∣∣ JΦK ⊆ X

}



Then we can define the induced 〈|f(η)|〉-abstraction:

f(η)
def
= λX.

⋃{
Y
∣∣ JY K+ ⊆ η(JXK+)

}
Observe that, when J·K : ΨA → ℘(DA) is surjective, namely when
there exists at least one predicate for each possible semantics in
℘(DA) we have that f(id) = id. Indeed, id ∈ uco(℘re(ΨA))
considers every single predicate and we have a predicate for each
semantic object so in this case we have no effects on the semantics
and f(id) return precisely the identity on the semantics.

Compatibility of a 〈η〉-abstraction w.r.t. 〈|ρ|〉-abstraction can
therefore be defined in terms of relative abstraction of η and Ω(ρ),
or analogously, in terms of relative abstraction of ρ and f(η).

DEFINITION 3.6 (Semantic compatibility). Given a 〈|ρ|〉-abstracted
effective Boolean algebra Aρ and a syntactic abstraction η ∈
uco(℘re(ΨA)), η is 〈|ρ|〉-compatible if:

η v Ω(ρ) (1)

Intuitively we have semantic compatibility when the syntactic
abstraction is more concrete than the semantic abstraction, when
they are compared on the domain of abstractions of predicates. In-
deed, semantic compatibility means that the way a syntactic ab-
straction η partitions the set of predicates of A is a refinement of
the partition induced by the syntactic abstraction Ω(ρ) that corre-
sponds to the semantic abstraction ρ. We can say that when we have
semantic compatibility the abstraction of the syntax distinguishes
programs with the same abstract semantics, namely the abstract
program provides an under-approximation of the abstract program
behavior.

THEOREM 3.7. Let ρ ∈ uco(℘(DA)), then Ω(ρ) is the most
abstract syntactic abstraction 〈|ρ|〉-compatible.

Note that AΩ(ρ) may not be an effective Boolean algebra be-
cause Ω(ρ)(℘re(ΨA)) may not be a r.e. set.

EXAMPLE 3.8. Consider the domains depicted in Fig. 1 (the miss-
ing point labels are the set union of smaller elements). The first
three domains on the left represent possible syntactic abstractions
of ℘(ΨA), where

ΨA
def
= {x+ y > 3, x ≥ 3, y ≥ 0, x+ y > 3 ∧ x ≥ 3 ∧ y ≥ 0}.

The last domain on the right represents possible semantic abstrac-
tions of ℘(DA), where

DA
def
= {Jx+ y > 3K, Jx ≥ 3K, Jy ≥ 0K}.

Consider for instance the semantic abstraction ρ of ℘(DA), de-
picted with circles on the last domain on the right. The correspond-
ing syntactic abstraction Ω(ρ) is depicted on the three syntactic
domain on the left. Considering the closures depicted on the first
domain on the left we observe that the closure η1 ∈ ℘(ΨA) is 〈|ρ|〉-
compatible being more concrete that Ω(ρ). This means that the syn-
tactic abstraction can distinguish predicates with the same abstract
semantics. In particular, while ρ(Jx + y > 3K) = ρ(Jx ≥ 3K)
we have that η1(x + y > 3) = {x + y > 3, x ≥ 3} while
η1(x ≥ 3) = {x ≥ 3}.

Now consider a 〈η〉-compatible abstraction of A. We introduce
the notion of 〈η〉-compatibility of a semantic abstraction.

DEFINITION 3.9 (Syntactic compatibility). A semantic abstraction
ρ ∈ uco(℘(DA)) is 〈η〉-compatible for a syntactic 〈η〉-abstraction
Aη if:

η w Ω(ρ) (2)

Intuitively we have syntactic compatibility when the syntactic
abstraction is more abstract than the semantic abstraction when
they are compared on the domain of abstractions of predicates.

Figure 2. Relation between compatibilities.

Indeed, syntactic compatibility means that the semantic abstraction
ρ corresponds to a syntactic abstraction Ω(ρ) and that the partition
on the set of predicates of A induced by Ω(ρ) is a refinement of
the partition induced by η. In other words, when we have syntactic
compatibility the abstraction η of the syntax collapses programs
with different abstract semantics ρ, hence capturing behaviors that,
according to ρ, are not related with the program to analyze, yet
providing an over-approximation of the abstract program behavior.

THEOREM 3.10. Let η ∈ uco(℘re(ΨA)), then f(η) is the most
concrete semantic abstraction 〈η〉-compatible.

EXAMPLE 3.11. Consider again the example in Fig. 1 introduced
in Example 3.8. Consider in this case the syntactic abstraction η3

depicted on the third domain . We observe that ρ is 〈η3〉-compatible
since η3 is more abstract than Ω(ρ). This means that η3 induces a
further semantic abstraction collapsing elements with different ρ
abstract semantics. In particular, ρ(Jx + y > 3 ∧ x ≥ 3 ∧ x ≥
3K) 6= ρ(Jx ≥ 3K) while η3(x + y > 3 ∧ x ≥ 3 ∧ y ≥ 0) =
η3(x ≥ 3) = >. In this example we can also observe a syntactic
abstraction η2 (depicted on the second domain) which fails both
the compatibilities since it not comparable with Ω(ρ).

Finally, we show when a syntactic abstraction does induce an
abstraction of the semantic denotations and vice versa.

LEMMA 3.12. Let η ∈ uco(℘re(ΨA)):

1. η w Ω(id) iff ∀Φ ∈ ℘re(ΨA). JJη(Φ)KK+ = η(Φ)

2. η v Ω(id) iff ∀Φ ∈ ℘re(ΨA). η(JJΦKK+) = JJΦKK+

THEOREM 3.13. Let η ∈ uco(℘re(ΨA)), then

η v Ω(id) ⇒ f(η) = id

This result tells us that when we have a syntactic abstraction dis-
tinguishing predicates with the same semantics, then we cannot ab-
stract the semantics.

We prove that we can characterize compatibilities both in the
domain of semantic abstractions and in the domain of syntactic
abstractions.

THEOREM 3.14. Let η ∈ uco(℘re(ΨA)) be such that η w Ω(id),
and ρ ∈ uco(℘(DA)):

Ω(ρ) v η iff ρ v f(η)

In Fig. 2 we can see the relation between the two compatibili-
ties. In particular we observe that the two transformers, form syntax
to semantics and viceversa, show a relation similar to an adjunction,
as observed in the following result.

PROPOSITION 3.15. Let η ∈ uco(℘re(ΨA)) and ρ ∈ uco(℘(DA))
the following conditions holds:

(1) f(Ω(ρ)) w ρ (2) Ω(f(η)) v η.



Figure 1. Compatible abstractions.

EXAMPLE 3.16. Consider again the example in Fig. 1. For η3

which satisfies the hypotheses of Th. 3.14, we have a corresponding
semantic abstraction f(η3) (depicted on the right) which is indeed
more abstract than ρ.

As a corollary of the previous results we show when a 〈|ρ|〉〈η〉-
abstraction of A satisfies both the compatibilities. The computa-
tional cost of making analyses compatible is still to be explored.

PROPOSITION 3.17. Let η ∈ uco(℘re(ΨA)) and ρ ∈ uco(℘(DA))
such that Ω(ρ) ∈ uco(℘re(ΨA)), the following facts are equiva-
lent:

1. η is 〈|ρ|〉-compatible and ρ is 〈η〉-compatible;
2. η = Ω(ρ);
3. ρ = f(η).

3.3 Abstracting symbolic automata
Consider a SFA M = 〈A, Q, q0, F,∆〉 and the 〈|ρ|〉〈η〉-abstraction
of the effective Boolean algebra A, denoted as Aρη . We define
the symbolic finite automaton corresponding to M on the abstract
effective Boolean algebraAρη as Mρ

η
def
= 〈Aρη, Q, q0, F,∆η〉 where:

∆η
def
=
{

(q, η(ϕ), q′)
∣∣ (q, ϕ, q′) ∈ ∆

}
Note that Mη = M id

η and Mρ = Mρ
id. In the following we prove

that when abstracting the underling effective Boolean algebra of
an SFA we over-approximate the recognized language, providing a
sound approximation in the sense of abstract interpretation.

THEOREM 3.18. Given a SFA M = 〈A, Q, q0, F,∆〉, two clo-
sures η ∈ uco(℘re(ΨA)) and ρ ∈ uco(℘(DA)), the abstract
effective Boolean algebra Aρη and the corresponding SFA Mρ

η =
〈Aρη, Q, q0, F,∆η〉. Then: L (M) ⊆ L (Mρ

η ).

For this reason is the following we abuse terminology and re-
fer to the SFA whose underlying Boolean algebra is an 〈|ρ|〉〈η〉-
abstraction of a Boolean algebra A as an 〈|ρ|〉〈η〉-abstract SFA.
Moreover, we can observe that given two abstract Boolean alge-
bra Aρ1η1 and Aρ2η2 and an SFA M on A, then the relation between
the languages recognized respectively by Mρ1

η1 and by Mρ2
η2 cor-

responds to the relation existing between the best correct approxi-
mation of the semantics J·K with respect to the pair of abstractions
ρ1, η1 and ρ2, η2. This is formally stated in the following Proposi-
tion.

PROPOSITION 3.19. Consider a SFA M = 〈A, Q, q0, F,∆〉, the
closures η1, η2 ∈ uco(℘re(ΨA)) and ρ1, ρ2 ∈ uco(℘(DA)), then:

L (Mρ1
η1 ) ⊆ L (Mρ2

η2 ) ⇔ ρ1 ◦J·K ◦η1 v ρ2 ◦J·K ◦η2

⇐ ρ1 v ρ2 ∧ η1 v η2

4. Minterms
A notion which plays a central role in our transformations of SFA
is the notion of minterm. This notion has been introduced in [9] for

1.MINTERMSA(Φ)
def
=

2. tree := new Tree(>A, null, null);
3. foreach ϕ in Φ tree.Refine(ϕ);
4. return Leaves(tree);

//The minterms are the leaf predicates
5.class Tree
6. Predicate ψ; Tree left; Tree right;
7. Refine(ϕ)

def
=

8. if (IsSatA(ψ ∧ ϕ) and IsSatA(ψ ∧ ¬ϕ))
9. if (left = null) // If the tree is a leaf then split ψ
10. left := new Tree(ψ ∧ ϕ, null, null);
11. right := new Tree(ψ ∧ ¬ϕ, null, null);
12. else left.Refine(ϕ); right.Refine(ϕ);

Figure 3. Minterm generation algorithm.

providing a minimal and univocal representation of the predicates
in a given set of predicates, e.g., the guards of a given program.
In this context we observe some peculiar properties of minterms
which make them powerful tools for reasoning on semantics in a
syntactic way. A minterm is a minimal satisfiable boolean combi-
nation of all predicates occurring in a given SFA. Minterms can be
generated from a set of predicates by the algorithm proposed in [9]
and reported in Fig. 3. As observed in [9] the set of minterms of
an SFA may be expensive to compute, indeed in the worst case the
complexity of the algorithm that computes the minterms is expo-
nential in the number of guards of the SFA.

4.1 Basic properties of Minterms
The minterm generation for a formula ϕ produces a tree Tϕ that
satisfies the following basic properties.

PROPOSITION 4.1. Let tree be the tree built during the minterm
generation, starting from a set Φ ∈ ℘re(ΨA) of predicates. Given
ϕ ∈ ΨA, let us denote by Tϕ the subtree of tree having ϕ as root.
Then the following properties hold:

1. Let Leaves(Tϕ) = {ϕ1, . . . , ϕk}, then ϕ ⇔
∨
i∈{1..k} ϕi;

2. Any ϕ ∈ MINTERMS(Φ) ϕ satisfiable implies that for all
ϕ′ ∈ MINTERMS(Φ) r {ϕ} is not satisfiable.

3. For all ϕ1, ϕ2 ∈ Φ we have that ϕ1 ∧ ϕ2 is satisfiable iff
Leaves(Tϕ1) ∩ Leaves(Tϕ2) 6= ∅;

4. For any ϕ1, ϕ2 ∈ Φ we have that ϕ1 ⇒ ϕ2 is satisfiable with
ϕ1 satisfiable iff Leaves(Tϕ1)SAT ⊆ Leaves(Tϕ2)1;

The following proposition shows that the semantics of minterms
is a partition of the domain DA of denotations.

1 where Leaves(Tϕ1 )SAT
def
=

{
ϕ ∈ Leaves(Tϕ1 )

∣∣ ϕ is satisfiable
}

.



PROPOSITION 4.2. Let A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 be an
effective Boolean algebra, then

{
JϕK

∣∣ ϕ ∈ MINTERMS(ΨA)
}

is a partition of DA.

4.2 Approximated Minterms
Minterms change their structure when the underlying Boolean al-
gebra is approximated by abstract interpretation. We consider an ef-
fective Boolean algebra A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉, where
the semantic function J·K : ΨA → ℘(DA) is surjective. Consider
a subset Ψ ⊆ ΨA of such predicates, for example the set of pred-
icates that label a given SFA. We define the syntactic abstraction
ηΨ ∈ uco(℘re(ΨA)) as that abstraction of predicates that observes
precisely only the predicates in Ψ and abstract in> any other pred-
icate. Let ϕ ∈ ΨA, then ηΨ is formally defined as additive lift of:

ηΨ({ϕ}) def
=

{
{ϕ} if ϕ ∈ Ψ
> otherwise

Note that the fixpoints of ηΨ is ηΨ(℘re(ΨA)) = ℘(Ψ) ∪ {>}. Of
course ηΨ corresponds to an abstraction f(ηΨ) on the semantics
that precisely observes only the semantics of the predicates in Ψ,
as stated by the following result.

LEMMA 4.3. Let A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 be an effec-
tive Boolean algebra and consider ηΨ ∈ uco(℘re(ΨA)) which is
〈|id|〉-compatible, then:

f(ηΨ)(℘(DA)) =
{

JΦK
∣∣ Φ ∈ ℘re(ΨA)

}
Observe that ηΨ is 〈|id|〉-compatible if whenever there is a

predicate in Ψ then Ψ contains also all the predicates with the
same semantics. The closure f(ηΨ) ∈ uco(℘(DA)) may not be
partitioning in general, so we consider Π(f(ηΨ)) and we observe
that the equivalence classes of the partition induced by Π(f(ηΨ))
on DA are precisely the semantics of the minterms of Ψ.

PROPOSITION 4.4. Let A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 be an
effective Boolean algebra, and consider Ψ ⊆ ΨA such that the
abstraction ηΨ ∈ uco(℘re(ΨA)) is 〈|id|〉-compatible, then:{

JϕK
∣∣ ϕ ∈ MINTERMS(Ψ)

}
=
{

Π(f(ηΨ))(d)
∣∣ d ∈ DA

}
It is now interesting to observe what happens when we con-

sider a generic syntactic abstraction η ∈ uco(℘re(ΨA)) such that
ηΨ v η, namely that further abstracts the set of predicates Ψ that
we are considering. In this case, the semantics of the minterms of
the approximated predicates η(Ψ) are precisely given by the ab-
straction Π(f(η)) of the semantics of the minterms of Ψ.

THEOREM 4.5. Let A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 be an ef-
fective Boolean algebra, and consider Ψ ⊆ ΨA such that the
abstraction ηΨ ∈ uco(℘re(ΨA)) is 〈|id|〉-compatible, and an ab-
straction η ∈ uco(℘re(ΨA)) such that ηΨ v η. Then:{

JϕK
∣∣ ϕ ∈ MINTERMS(η(Ψ))

}
={

Π(f(η))(JϕK)
∣∣ ϕ ∈ MINTERMS(Ψ)

}
This means that the semantics of the minterms of a set of

abstract predicates is precisely the abstraction of the semantics of
the original predicates.

EXAMPLE 4.6. Let A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 be an ef-
fective Boolean algebra where ΨA =

{
x ∈ N

∣∣ N ⊆ Z
}

, and
the semantic function J·K : ΨA → ℘(Z) is naturally defined as
Jx ∈ NK = N .
Let us consider the following subset of ΨA:

Ψ =
{
x ∈ {4, 6}, x ∈ {5, 6}, x ∈ {−5}, x ∈ {−8}

}

the corresponding set of minterms is MINTERMS(Ψ):

{ (x ∈ {4, 6} ∧ x ∈ {5, 6}),
(x ∈ {4, 6} ∧ ¬x ∈ {5, 6}),
(¬x ∈ {4, 6} ∧ x ∈ {5, 6}),
(¬x ∈ {4, 6} ∧ ¬x ∈ {5, 6} ∧ x ∈ {−5}),
(¬x ∈ {4, 6} ∧ ¬x ∈ {5, 6} ∧ ¬x ∈ {−5} ∧ x ∈ {−8}),
(¬x ∈ {4, 6} ∧ ¬x ∈ {5, 6} ∧ ¬x ∈ {−5} ∧ ¬x ∈ {−8})}

observe that:{
JϕK

∣∣ ϕ ∈ MINTERMS(Ψ)
}

={
{4}, {6}, {5}, {−5}, {−8},Z r {4, 6, 5,−5,−8}

}
the closure ηΨ ∈ uco(℘re(ΨA)) is defined as the additive lift of:

ηΨ({x ∈ N}) def
=

{
{x ∈ N} if {x ∈ N} ∈ Ψ
> otherwise

and, as states in Proposition 4.4 we have that:{
Π(f(ηΨ))(d)

∣∣ d ∈ Z
}

={
{4}, {6}, {5}, {−5}, {−8},Z r {4, 6, 5,−5,−8}

}
Let Z+ def

=
{
v
∣∣ v ≥ 0

}
and Z− def

=
{
v
∣∣ v < 0

}
and let the

closure ηSign ∈ uco(℘re(ΨA)) defined as the additive lift of:

ηSign({x ∈ N}) def
=

 {x ∈ Z+} if N ⊆ Z+

{x ∈ Z−} if N ⊆ Z−
> otherwise

Observe that the MINTERMS(ηSign(Ψ)) is the set{
{x ∈ Z+}, {x ∈ Z−}

}
and the semantics of the minterms of ηSign(Ψ) is:{

JϕK
∣∣ ϕ ∈ MINTERMS(ηSign(Ψ))

}
= {Z+,Z−}

Moreover, as shown in Theorem 4.5:{
Π(f(ηSign))(JϕK)

∣∣ ϕ ∈ MINTERMS(Ψ)
}

= {Z+,Z−}

5. Topological SFA abstraction
In Section 3 we have seen how an SFA can be abstracted by ab-
stracting its underlying Boolean algebra. This abstraction does not
influence directly the topological structure of SFA. When dealing
with automata, the natural way of thinking about automata simpli-
fication (or abstraction) is the merge of states. In general, we can
define a simplification operation on automata that collapses states
wrt a given equivalence relation over states. Namely, the equiva-
lence relation establish the criteria that the simplification uses for
merging states.

DEFINITION 5.1. Consider a SFA M = 〈A, Q, q0, F,∆〉 and an
equivalence relation R ⊆ Q × Q over its states. We denote with
SimR(M) the SFA obtained by simplifying M wrt R, namely the
SFA computed as the quotient ofM wrtR, i.e., SimR(M) = M/R.

Thus, SFA simplification is the operation of quotient made
parametric on the equivalence relation used to merge states. It is
easy to observe that for every equivalence relation R, the SFA
SimR(M) resulting from SFA simplification recognizes at least
the language recognized by M . Indeed when we merge states we
keep all the transitions of the original SFA and we may add some
new spurious ones.

PROPOSITION 5.2. Consider a SFA M = 〈A, Q, q0, F,∆〉. For
any equivalence relation R ⊆ Q × Q we have that L (M) ⊆
L (SimR(M)).



Given two equivalence relations R and R′, we write R �
R′ when R is a refinement of R′. Of course the coarser is the
equivalence relation the wider is the language recognized by the
corresponding simplified SFA.

PROPOSITION 5.3. Consider a SFA M = 〈A, Q, q0, F,∆〉 and
two equivalence relations R,R′ ⊆ Q×Q such that R � R′. Then
L (SimR(M)) ⊆ L (SimR′(M)).

Another important property of topological abstractions is that
they do not change the set of minterms, since they do not change
the predicates. In the following we report a simplification algorithm
where the predicates of the SFA to simplify are first rewritten as
disjunction of minterms (line 3-7). Thus, whenever the equivalence
relation R deals with properties of the languages of strings that
reaches or starts from a state, it may be easier to check these
properties on minterms instead of checking them on the language
of denotations. (Examples will be provided in the following).

Simplify(M,R)

1. Input: M = 〈A, Q, q0, F,∆〉, R ⊆ Q×Q,
2. A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉

3. Mt(M)
def
= MINTERMS

({
ψ

∣∣∣∣ ∃p, q ∈ Q.p
ψ−→q ∈ ∆

})
4. M ′ = 〈A′, Q, q0, F,∆′〉:
5. A′ def

= 〈DA,Mt(M), J·K,⊥,>,∧,∨,¬〉
6. µ(ψ)

def
=
∨{

ϕ ∈Mt(M)
∣∣ ϕ ∈ Leaves(Tψ)

}
7. ∆′

def
=
{
p
µ(ψ)−→q

∣∣ ∃ψ. p ψ−→q
}

8. Output: M ′′ = M ′/R

5.1 Examples of SFA Simplifications
Minimization. D’Antoni and Veanes in [9] have extended the
standard algorithm of Hopcroft for finite state automata minimiza-
tion to SFA. This operation is based on the idea of refining an initial
partition by checking all the possible moves depending on the con-
sidered alphabet symbol. In FSA this is feasible because they have a
finite alphabet. In SFA the alphabet is r.e., hence in general infinite.
For this reason the algorithm proposed iterates this check on predi-
cates/symbols in a way that makes the number of possible iteration
finite: instead of checking transitions for each alphabet symbol, the
check is made for each minterm (see [9] for details).

Observe that this SFA minimization algorithm can be seen as
a simplification wrt. the equivalence relation that relates all and
only the states that are reached exactly by the same language of
minterms. Consider a SFA M = 〈A, Q, q0, F,∆〉, and for every
q

ψ−→p ∈ ∆ let µ(ψ) be the predicate ψ written as a disjunction
of minterms (namely as the disjunction of the leaves of the subtree
Tψ with root ψ of the tree generated during the construction of the
minterms of the considered SFA). We define the language of strings
of minterms that reaches a state q as:

L̇ (q)
def
=

 µ(ψ1) . . . µ(ψn−1)

∣∣∣∣∣∣
∃n ∈ N : ∃q1 . . . qn ∈ Q :
∀i ∈ [1, n[.qi

µ(ψi)−→qi+1 ∈ ∆
qn = q


Let ≡̇ ⊆ Q×Q be such that q ≡̇ p iff L̇ (q) = L̇ (p). Observe that
for the properties of minterms proved in the previous section, we
have that checking the language of minterms or checking the lan-
guage of denotations is equivalent, since minterms provide a min-
imal and unequivocal representation of predicates. Let Min(M)
denote the minimization of M .

PROPOSITION 5.4. Min(M) = Sim≡̇(M).

k-Minimization. According to the above formalization of SFA
minimization, we can weaken minimization by defining a relation
over states that observes the language of stings of minterms of a
fixed length k that reaches a given state. To this end, given an SFA
M = 〈A, Q, q0, F,∆〉, and for every q ψ−→p ∈ ∆ let µ(ψ) be
the predicate ψ written as a disjuction of minterms, we define the
language L̇k(q), which is the language of strings of length k that
can reach the state q:

L̇k(q)
def
=

 µ(ψ1) . . . µ(ψk−1)

∣∣∣∣∣∣
∃q1 . . . qk ∈ Q :

∀i ∈ [1, .k[.qi
µ(ψi)−→qi+1 ∈ ∆

qk = q


Let ≡̇k ⊆ Q × Q be such that q ≡̇k p iff L̇k(q) = L̇k(p). Let
Mink(M) denote the simplification of M wrt ≡̇k. The following
examples illustrate the difference between minimization and k-
minimization.

EXAMPLE 5.5. Consider the SFA M in Fig. 4 on the left. It is
clear that the predicates x odd and (x + 1) even are equivalent,
as well as predicates y even and (y + 1) odd. This is captured by
the minimization algorithm of D’Antoni and Veanes that correctly
collapses state q4 with q5 and q7 with q8. The minimized algorithm
Min(M) is shown in Fig. 4 at the top on the right. Observe that
the edge between q2 and {q4, q5}, as well as the edge between
{q7, q8} and q9, is labeled by one of the two equivalent predicates.
Of course, the SFA M and Min(M) recognize the same language.
In order to clarify the difference between minimization and k-
minimization at the bottom right of Fig. 4 we report the result
obtained by applying the simplification algorithm wrt ≡̇k where
k = 1 at the SFA M . Observe that the simplification algorithm
with k = 1 merges the state q6 with the states q7 and q8, as
shown in the resulting SFA Min1(M). Indeed, the states q6, q7
and q8 are reached by the same language of strings of length 1
(in this simple case all the denotations with y positive). The edge
between {q6, q7, q8} and q9 is labeled by true since it corresponds
to y odd ∨ y even. We can observe that the language recognized by
Min1(M) is greater than the one recognized byM . Let us consider
the pairs (n1, n2) with n1, n2 ∈ Z where the first number denotes
the values of x and the second the values of y. For example we have
that the string of pairs (1, 2)(2, 4)(4, 8)(8, 16) ∈ L (Min1(M))
while it does not belong to L (M) = L (Min(M)).

Of course when the value of k increases it increases also
the precision of the simplification wrt ≡̇k by collapsing states
that are equivalent, namely at the limit with k increasing the k-
minimization becomes minimization.

THEOREM 5.6. Given two states p and q we have that p≡̇q iff
∀k ∈ N. p≡̇kq.

EXAMPLE 5.7. Observe that if we compute the simplification of
the SFA M in the example in Fig. 4 wrt ≡̇k and k = 2 we obtain
the minimized SFA, namely Min(M) = Min2(M). Indeed, if we
consider the language of words of length 2 that reach a given state
we can no longer merge q6 with q7 and q8.

k-Invariant. Minterms provide a systematic simplification of
SFA based on the extraction of invariant properties that hold for
the language of strings that reach (or start) from a given state. Con-
sider an SFAM = 〈A, Q, q0, F,∆〉, and for every q ψ−→p ∈ ∆ let
µ(ψ) be the predicate ψ written as a disjunction of minterms. Con-
sider a state q ∈ Q. For every string µ(ψ1) . . . µ(ψk) ∈ L̇k(q) of
length k that reaches the state q we have that IsSat(

∧
i∈[1,k] µ(ψi))

is true iff all the disjunctions µ(ψi) of minterms share at least one
minterm. This because, thanks to the properties of minterms, only



Figure 4. Minimization and k-Minimization

one minterm at the time can be true. Let
Inv{µ(ψi)}i∈[1,k]

def
={

ϕ ∈ MINTERMS
∣∣ ∀i ∈ [1, k]. IsSat(ϕ ∧ µ(ψi))

}
It is the set of all the minterms shared by all the µ(ψi), which
provides the invariant property of the corresponding string. Indeed,
thanks to minterms this satisfiability can be checked syntactically.
We can therefore define the following equivalence relation

inv≡k ⊆
Q×Q such that q

inv≡k p iff =k(q) = =k(p) where

=k(q) =
{
Inv{µ(ψi)}i∈[1,k]

∣∣ µ(ψ1) . . . µ(ψk) ∈ L̇k(q)
}

Thus,
inv≡k collapses states reached by paths that have the same k-

invariant property. We can observe that, if two states share the same
k-language then they surely share the same k-invariant, while the
opposite may not be true since the language fixes an order in the
constraints that the commutativity of the conjunction relaxes.

THEOREM 5.8. Given two states p and q, and k ∈ N, we have that
p≡̇kq implies ∀k′ ≤ k. p inv≡k′q.

EXAMPLE 5.9. Consider again the automaton M in Fig. 4. The
minterms generated by its predicates are given in the table in
Fig. 5: each i denotes the minterm Mi obtained as the conjunction
between the constraint on x and on y, for instance 3 stays for
the minterm M3 = (x even ∧ x ≥ 0 ∧ y even ∧ y < 0). In
Fig. 5 we rewriteM where on each edge the predicates are denoted
as the set of the minterms specifying it. For instance x ≥ 0 ≡∨
i∈[1,8] Mi. Note that on this automaton the k-invariant generates

the same transformation as the k-minimization as showed in Fig. 4.
Consider instead the automaton M1 on the right. In this case,
the languages recognized by q7 and q8 are different, for instance
the trace (−1, 3)(3,−4)(3, 5) ∈ L̇3(q7) is not in L̇3(q8) since
(3,−4) does not satisfy the predicate between q2 and q5 in M1,
i.e., y ≥ 0. If we consider 3-invariant then we observe that the
invariant on the path q0q2q4q7 is M13 ∧M14 and the same is for
the path q0q2q5q8, hence we can collapse the states q7 and q8.

5.2 Topological abstraction of abstract SFA
It is worth noting that abstraction in SFA may influence the
automata simplification. In this section we prove that the effi-
cacy of simplification, and in particular of minimization and k-
minimization, in SFA is strictly related with the degree of abstrac-
tion of their semantics or syntax.

EXAMPLE 5.10. Consider the SFA M in Fig. 4 and assume that
we want to abstract from the parity of y. Hence we define abstrac-
tion η1 on the predicates of M as η1(y odd) = η1(y even) =
η1((y + 1) odd) = true and as the identity on the other predi-
cates. In this example we do not abstract the semantics and we con-
sider ρ = id. Let Mη1 be the SFA wrt the considered abstraction
(where the predicates of M are substituted with their abstraction

according to η1). By applying minimization to this SFA we obtain
the SFA Min(Mη1) depicted at the top left of Fig. 6. We can ob-
serve that, due to the predicate abstraction η1, the minimization of
Mη1 collapses more states than the minimization of M and there-
fore: L (Min(M)) ⊆ L (Min(Mη1)). For example the string of
pairs (1, 2)(2, 4)(4, 8)(8, 16) ∈ L (Min(Mη1)) while it does not
belong to L (Min(M)).

We have an analogous situation in the case of k-minimization.
Consider the predicate abstraction η2 such that η1(x odd) =
η1(x even) = η1((x + 1) even) = true and as the identity on
the other predicates, and let ρ = id. By applying the simplification
algorithm wrt. ≡̇k with k = 1 to the SFA Mη2 we obtain the SFA
at the top right of Fig. 6. Also in this case, due to the abstraction η2

the simplification algorithm collapses more states and therefore:
L (Min1(M)) ⊆ L (Min1(Mη2)). For example the string of
pairs (1, 2)(3, 6)(5, 10)(7, 14) ∈ L (Min1(Mη2)) while it does
not belong to L (Min1(M)).

Let S denote the set of SFA and let us define the following
ordering relation ≤̇ on S modeling precisely the relative preci-
sion of SFA with respect to language containment and size of the
automaton, where given M1 = 〈A, Q1, q

1
0 , F1,∆1〉 and M2 =

〈A, Q2, q
2
0 , F2,∆2〉 ∈ S we have that:

M1≤̇M2 ⇔ L (M1) ⊆ L (M2)∨
L (M1) = L (M2) ∧ |Q2| ≤ |Q1|

It is immediate to observe that 〈S, ≤̇〉 is a possibly non-complete
lattice. Given the SFA simplification SimR : S → S, a SFA
M = 〈A, Q, q0, F,∆〉 and a 〈|ρ|〉〈η〉-abstraction of the effective
Boolean algebra A we wonder when the diagram in Fig. 7 com-
mutes. In general we have that when we simplify the SFA after the
abstraction of the underlying algebra we obtain an SFA that is more
abstract than the one obtained by applying simplification before
the abstraction. The intuition beyond this is that the abstraction of
the underlying Boolean algebra could make equivalent edges of the
original SFA that are not equivalent and this may cause the merge
of states that would not be merged when simplifying original SFA.

PROPOSITION 5.11. Given M = 〈A, Q, q0, F,∆〉 ∈ S, the
closures η ∈ uco(℘(ΨA)) and ρ ∈ uco(℘(DA)) and a relation
R, we have that: SimR(M)ρη ≤̇SimR(Mρ

η ).

EXAMPLE 5.12. At the bottom left of Fig. 6 we show the result
of abstracting the Boolean algebra after the SFA minimization.
We observe that even if Min(Mη1) and Min(M)η1 recognize
the same language the automata obtained by minimizing after the
abstraction of the underlying Boolean algebra has less states than
the one computed by abstracting the Boolean algebra after the
minimization. We have a similar result for k-minimization as we
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Figure 5. k-Invariant transformation

Figure 6. Minimization and k-Minimization in presence of Abstraction

Figure 7. Completeness of SFA simplification

can see by comparing the SFA at the bottom right and top right of
Fig. 6.

6. Programs as SFA
In this section we specify the approximate semantics of a program
as the language recognized by a SFA. We consider programs in im-
perative computational model and assume to have access their cor-
rect control flow graph (CFG). The CFG of a program is a graph
where nodes are given by sequences of non branching instructions.
More formally, let I be the instruction set containing both branch-
ing and non-branching instructions. We denote with I ⊆ I the set
of non-branching instructions and with C the set of boolean ex-
pressions over program states that are guards of the branching in-
structions. Let c range over C and b range over I∗. The CFG of
a program P ∈ I∗ is a graph GP = (NP , EP ) where the set
NP ⊆ I∗ of nodes specifies the basic blocks of P , namely the
maximal sequences of sequential instructions of P , while the set of
edgesEP ⊆ NP×C×NP denotes the guarded transitions of P . In
particular, a labeled edge (b, c, b′) ∈ EP means that the execution
of P flows from b to b′ when the execution of b leads to a program
state that satisfies condition c. When a basic block b has no outgo-

ing edges inEP we say that it is final, denoted b ∈ Final [GP ]. We
denote with in[b] and out [b] respectively the entry and exit point
of the basic block b, and with PP[GP ] the block delimiters of GP ,
namely the set of all the entry and exit points of the basic blocks of
GP , namely:

PP[GP ]
def
=
{
in[b]

∣∣ b ∈ NP
}
∪
{
out [b]

∣∣ b ∈ NP
}

Let Σ, ranged over by s, be the set of possible program states. Let
exec : I∗−→℘re(Σ×Σ) be the function that defines the semantics
of basic blocks, namely the pairs of input/output states that model
the execution of sequences of instructions. When (s, s′) ∈ exec(b)
it means that the execution of the sequence of instructions b trans-
forms state s into state s′. Let us denote with s |= c the fact that
the boolean condition c is satisfied by state s ∈ Σ.

We define the set of executions of the CFG of a program P the
sequences of basic blocks and guards that can be encountered along
a path of GP = (NP , EP ). Formally:

Exe[GP ]
def
=

{
b0c1b1c2 . . . ckbk

∣∣∣∣ ∀0 ≤ i < k :
(bi, ci+1, bi+1) ∈ EP

}
(3)

We consider a safety semantics, namely the semantics of all pre-
fixes of execution traces of a given program P [19]. The execution
trace semantics of a program P , denoted JP K, is therefore the set
of all finite executions starting from the entry point of the starting
basic block b0 in the CFG GP of P . Let InitP ⊆ Σ be the set of
possible initial states of program P . Formally, for each s0 ∈ InitP :

JP K(s0)
def
= {(s0, s1)(s1, s1)(s1, s2) . . . (sk, sk)(sk, sk+1) |

b0c1b1 . . . ckbk ∈ Exe[GP ],

∀0 < i ≤ k : si |= ci, (si−1, si) ∈ exec(bi−1)}

JP K def
=
⋃{

JP K(s0)
∣∣ s0 ∈ InitP

}



In order to define the SFA that corresponds to the CFG semantics
of a given program we need to define an effective Boolean alge-
bra that it is suitable for the representation of program execution.
For this reason we define the following effective Boolean algebra
where predicates are either basic blocks of instructions or guards of
branching instructions, representing the syntactic structure of the
program, and the denotations are pairs of input/output states:

P
def
= 〈Σ× Σ, I∗ ∪ C, {| · |},⊥,>,∧,∨,¬〉

where the semantic function {|·|} : I∗∪C−→℘re(Σ×Σ) is defined
as follows for ϕ ∈ I∗ ∪ C:

{|ϕ|} def
=

{ {
(s, s′)

∣∣ (s, s′) ∈ exec(b)
}

if ϕ = b ∈ I∗{
(s, s)

∣∣ s |= c
}

if ϕ = c ∈ C

we denote with {| · |} also its point-wise extension to ℘re(I∗ ∪ C).

DEFINITION 6.1. Let P be a program with CFG GP . The SFA
associated with P is

M(P )
def
= 〈P,PP[GP ], in[b0], {out [b] | b ∈ Final [GP ]},∆P 〉

where b0 is the starting basic block of GP and ∆P is defined as:

∆P
def
=
{

(in[b], b, out [b])
∣∣ b ∈ NP }

∪{
(out [b], c, in[b′])

∣∣ (b, c, b′) ∈ EP
}

PROPOSITION 6.2. If P is a program thenM(P ) is a deterministic
SFA. M(P ) is clean if no dead-block is included in GP .

The language L (M(P )) ∈ ℘re((Σ × Σ)∗) recognized by the
SFA M(P ) approximates the concrete program semantics JP K in
a language of sequences of infinitely many possible input/output
relations associated with each basic block. This is formally stated
by the following theorem.

THEOREM 6.3. If P is a program then for any s0 ∈ InitP :
JP K(s0) ∈ L (M(P )).

Given the SFA M(P ) that represents the CFG of a program P
then it is possible to approximate the semantics of P by abstracting
either the predicates, namely the syntax, or the semantics of the
effective Boolean algebra underlying M(P ).

Let us consider the minimization simplifications. Given com-
patible abstractions ρ ∈ uco(℘(Σ×Σ)) and η ∈ uco(℘re(I∗∪C))
and k ∈ N we have that

M(P ) ≤̇Min(Mρ
η (P )) ≤̇Mink(Mρ

η (P ))

This provides a reduction of the original SFA, and therefore CFG,
providing at the same time a unique approximate representation of
the abstract semantics of P . This is possible thanks to the combined
syntactic and semantic approximation, acting both on the code and
on its interpretation. Two programsP andQ can then be considered
similar if they have the same reduced abstract SFA up to k ∈ N:

P uk Q iff k = max
{
n
∣∣ Minn(Mρ

η (P )) = Minn(Mρ
η (Q))

}
This weaker notion of similarity can be improved by considering
minimal SFA as canonical representation of the approximate syntax
and semantics of programs:

P u Q iff Min(Mρ
η (P )) = Min(Mρ

η (Q))

The following theorem is therefore immediate by construction.

THEOREM 6.4. Let P and Q be programs, then P u Q iff
∀k ∈ N : P uk Q.

It is clear that, for decidable 〈|ρ|〉〈η〉-abstractions, there exists
k ∈ N such that P uk Q =⇒ P u Q.

7. Formal similarity analysis of executables
The idea of BinJuice [18] is that the juice of a binary forms a tem-
plate that is expected to be identical regardless of code variations
due to register renaming, memory address allocation, and constant
replacement. Similar ideas have been employed in BinDiff [12]
where executables are treated as graphs of graphs: a control flow
graph where each block is itself represented as a graph, which is
the sequence of its instructions. While the subset of BinDiff consid-
ered here is sound and semantic compatible, it is computationally
expensive. For large size executables, this problem has been tack-
led in BinJuice which adds a further level of abstraction to make
the resulting abstract SFA more compact. In contrast to other simi-
lar tools for similarity analysis such as DarunGrim2, Rdiff, Patchd-
iff, and Radar2, all designed to find differences in variants of the
same program for the purpose of creating patches, BinJuice and
BinDiff are motivated by a different problem: Find similar code in
binaries that are not known to be related. This necessitates more
advanced abstractions acting on both code and semantics, therefore
better showing the potential of abstract SFA.

7.1 BinJuice
BinJuice performs symbolic transformations on the source disas-
sembled binary in order to transform each basic block of assem-
bly code into a corresponding symbolic representation. The idea of
symbolic execution is that the operations encoded by the assembly
instructions are immediately performed when the arguments are in-
tegers, in a sort of partial evaluation local to each basic block, oth-
erwise the same operation keeps its symbolic structure. Consider
for example the following fragment of binary code and the result of
its disassembly:

Binary Assembly
401290: b8 05 00 00 00 mov eax,0x5
401295: c3 04 00 00 00 add ebx,0x4
40129b: 6b c3

BinJuice performs algebraic manipulation of instructions in order
to reach a canonical form. Thus, the result of symbolic execution
with algebraic simplification of the previous example is:

Normalized State Updates Constraints
eax=5
ebx=def(ebx)×5 + 20 20 = 4 × 5

where def(ebx) denotes the value of ebx before the execution of
the basic block, namely at the entry of the basic block. The syn-
tactic information lost during symbolic execution is actually added
back by the constraints on numerical values. In other words, the
symbolic execution of basic blocks augmented with numerical con-
straints is actually an isomorphism. The key abstraction in BinJuice
is generalization, whose idea is to use typed logical variables in
order to be independent from register names. The generalization
is performed by consistently replacing register names with logical
variables. The replacement is consistent in that two occurrences
of the same register name are always replaced by the same vari-
able. Observe that this replacement is a purely syntactic operation.
In addition to abstracting the registers used, also constants are ab-
stracted. BinJuice associates a type with each logical variable to
keep track of type of the original register. In the example considered
before the generalization phase of BinJuice produces the following
juice:

Juice
A = V1

B = def(B)×N1 +N2

constraints: N2 = N1 ×N3

types: type(A) = type(B) = reg32



Let us consider the function G that generalizes a single basic
block.

G : I∗−→℘re(SUpd)× ℘re(Ĉ)× ℘re(T )

where ℘re(SUpd) is the domain of normalized symbolic updates
while ℘re(Ĉ) is the set of constraints where register names and
numerical values have been replaces by symbolic variables, and
℘re(T ) denotes the domain of type declarations.

We say that G(b) is the juice of the basic block b. Observe that G
acts as an abstraction since there may be more than one basic block
sharing the same juice. In particular, G can be associated with an
upper closure G ∈ uco(℘re(I∗)) as follows:

G (B)
def
=
{
b
′ ∣∣ ∃b ∈ B. G(b) = G(b′)

}
approximating in one single symbolic representation all basic
blocks that have the same juice. We can therefore model the gen-
eralization process that BinJuice operates on the CFG of the dis-
assembled binaries as an 〈G 〉-abstraction of the predicates of the
effective Boolean algebra P introduced in Section 6 for represent-
ing the CFG of programs as SFA. Here, we consider the extension
of G to branching conditions on which it behaves like identity,
G ∈ uco(℘re(I∗ ∪ C)). The resulting BinJuice symbolic automa-
ton on the Boolean algebra PG associated with a disassembled
program P is:

MG (P ) = 〈PG ,PP[GP ], in[b0], {out [b] | b ∈ Final [GP ]},∆G 〉
where PG = 〈Σ× Σ,G (℘re(I∗ ∪ C)), {| · |},⊥,>,∧,∨,¬〉,

∆G =
{

(in[b],G (b), out [b])
∣∣ (in[b], b, out [b]) ∈ ∆P

}
∪
{

(out [b], c, in[b′])
∣∣ (out [b], c, in[b′]) ∈ ∆P

}
and the semantic function {| · |} is the same as defined in Section 6
but now with a reduced abstracted domain:

{| · |} : G (℘re(I∗ ∪ C))−→℘re(Σ× Σ)

We observe that, G is neither syntactic nor semantic compatible
(Def. 3.6, Def. 3.9) since:

(1) it collapses simplified updates with different semantics by ab-
stracting values and variables, for example G (eax = 5) =
G (eax = 7) = (X = N);

(2) it still distinguishes between different simplified updates shar-
ing the same semantics, as for example G (eax = ebx ∗ 2) 6=
G (eax = ebx+ ebx). But also

G (eax = 2 ∗ ebx+ 10, constraint: 10 = 5 ∗ 2) =

X = N1 ∗ Y +N2, constraint: N2 = N3 ∗N4

and

G (eax = 2 ∗ ebx+ 10, constraint: 10 = 5 + 5) =

X = N1 ∗ Y +N2, constraint: N2 = N3 +N4

Indeed, G is not comparable with Ω(id).

PROPOSITION 7.1. G is is neither syntactic nor semantic compat-
ible.

This observation is also related to the incorrectness of BinJuice in
detecting similar basic blocks indeed BinJuice can lead to both false
positives (blocks miss-classified as equivalent) and false negatives
(blocks that are erroneously classified as different).

As observed before there are two causes of semantic incompat-
ibility: (1) merging updates with different semantics and (2) dis-
tinguishing updates with the same semantics. We are interested in
over-approximating Ω(id), namely obtaining a closure η such that
Ω(id) v η, therefore avoiding (2) yet keeping (1).

A possible way for making G semantic compatible is to erase
from the domain ℘re(I∗ ∪ C) all the elements that have the same
generalized symbolic updates but different constraints. Namely by
erasing all syntactic constraints. In the example above, it means
for instance to restrict to the blocks that have generalized update
X = N1 ∗Y +N2 while abstracting from the constraints onN2. It
is possible to prove that BinJuice is semantic compatible when con-
sidering this restricted domain of blocks. This highlights the fact
that BinJuice is sensible to the structure of the constraints. Indeed,
the constraints keep track of how the numerical values present in
the update have been computed and is therefore tight to the partic-
ular way in which the basic block has computed them. This means
that BinJuice can be foiled by an attacker that changes the structure
of the constraints.

Define π1 : ℘re(SUpd) × ℘re(Ĉ) × ℘re(T ) → ℘re(SUpd)
as the projection on the first element of the tuple of the juice.
Based on this, given b ∈ I∗ we define the predicate abstraction
U [b] ∈ uco(℘(I∗)) that keeps only the blocks that have the same
generalized update of b and abstract in > every other block:

U [b](b′)

{
b′ if π1(G (b)) = π1(G (b′))
> otherwise

As expected, for every basic block b we have that the predicate
abstraction G ◦U [b], that extracts the juice of blocks that have the
same generalized updates of b, is such that f(U [b]) is syntactic
〈G ◦U [b]〉-compatible, as stated by the following result.

THEOREM 7.2. ∀b ∈ I∗ we have that Ω(f(U [b])) v G ◦U [b]

This result is a direct consequence of the definitions of U [b]
and of G , and by Prop. 3.15-(2). Once again, this formally proves
that BinJuice over-approximates the set of blocks with the same
semantics when we restrict to blocks that have the same symbolic
update.

7.2 BinDiff
We consider a subset of BinDiff, employing instruction permuta-
tion and same string reference (i.e., instructions and nodes can be
matched by common string references, e.g., indicating functions
that all contain code referring to the same string). All these equiva-
lences correspond straightforwardly to abstractions of the SFA act-
ing at syntactic and topological level. Consider the SFAM(P ) and
the following abstractions:

Permutation. Let τ : I−→T be a function associating the
mnemonic op-code in T at each instruction in I. Consider
the lift of τ to multi-sets. Define an equivalence relation on
basic blocks, viz., predicates in M(P ), such that for any
b, b′ ∈ I∗ ∪ C: b ≡ b′ if τ(b) = τ(b′). This clearly induces
a partition which is a (partitioning) closure operator, denoted
ητ on predicates in I∗ ∪ C. In other words, τ forgets the or-
der and the arguments of instructions. It is therefore clear that
ητ (b) = ητ (b′) 6⇒ {|b|} = {|b′|}, namely ητ may collapse
blocks with different semantics meaning that it is not seman-
tic compatible, i.e., ητ 6v Ω(id). On the other hand, since ητ
observes precisely the multi-set of instructions, we could have
blocks with the same semantics but written with different sets
of instructions, i.e., {|b|} = {|b′|} 6⇒ ητ (b) = ητ (b′) meaning
that ητ fails also the syntactic compatibility.

Same reference. Let N be a set of strings and ξ : I−→℘(N ) the
function associating with each basic block b the set of strings of
N appearing in b. This is clearly the left-adjoint of a GC, there-
fore inducing a closure ηξ on predicates which is also a parti-
tion. This abstraction forgets any instruction considering only a
set of string manipulated in the block. Again, it is quite straight-
forward to observe that this abstraction can both collapse blocks



with different semantics and distinguish blocks with the same
semantics, for instance a string may be computed without writ-
ing it explicitly. Hence also ηξ fails both the compatibilities.

In order to make permutations syntactic compatible, we can in-
deed restrict the domain of the permutation abstraction similarly to
what we have done on BinJuice and forcing syntactic compatibility.
Let Instr(B)

def
=
{
b′
∣∣ ∃b ∈ B. ητ (b′) = ητ (b)

}
and

S[b](b′) =

{
b′ if Instr(b) = Instr(b′)
> otherwise

As expected, for every basic block b we have that the predicate ab-
straction Instr ◦S[b], that collects blocks that have the same set of
instructions of b, is such that f(S[b]) is syntactic 〈Instr ◦S[b]〉-
compatible, as stated by the following result which is a conse-
quence of the definitions of S[b] and of Instr, and by Prop. 3.15-(2).

THEOREM 7.3. ∀b ∈ I∗ we have that Ω(f(S[b])) v Instr ◦S[b].

8. Related Works
To the best of our knowledge, this is the first application of abstract
interpretation to symbolic finite automata and of abstract symbolic
automata to similarity analysis of binary executables. The most re-
lated work is [14], where the authors introduced the notion of lattice
automata. Lattice automata, like SFA, allow languages over an in-
finite alphabet. In contrast to abstract SFA, lattice automata do not
distinguish between symbolic/syntactic abstractions and semantic
ones. Indeed transitions in lattice automata are constrained by ele-
ments in an atomic lattice L, which provide precisely the allowed
alphabet-set along that transition. SFA are in this context strictly
more general as they separate the symbolic constraints and their
semantics, allowing in principle separate approximations for them.

The idea of approximating the program’s data in a so called
predicate abstraction is nowadays common practice in static pro-
gram analysis. The roots of this idea are in automatic software ver-
ification (see [1, 13]). Observe that, given a program P , predicate
abstraction abstracts the semantics (states) of P into a set of predi-
cates E and then it derives an abstract program P -bool that models
how the execution of P affects E. Thus, predicate abstraction cor-
responds to a semantic abstraction ρ that groups states w.r.t. to E,
and P -bool is a possible way of representing the syntactic compati-
ble abstraction Ω(ρ) of P . As observed in [2] predicate abstraction
considers only finite abstractions, while the semantic abstraction of
denotations in abstract SFA can be an infinite domain. Moreover,
predicate abstraction does not allow to change the CFG of the pro-
gram.

The relation between the approximation of symbolic/syntactic
structures and their semantics is well known in the literature (see
[6] and [11] for a recent account). In particular in [22] the authors
study this relation for the systematic synthesis of optimal sym-
bolic predicate transformers, as introduced in [20]. None of these
consider the case of abstract interpretation of SFA. In [7] the au-
thors model disassembled binaries as finite state automata (FSA).
A widening of FSA is introduced for extracting syntactic code in-
variants in self-modifying metamorphic programs. This construc-
tion lacks of abstractions concerning the semantics of sequences of
instructions.

9. Conclusion
We have studied how to weaken symbolic finite automata by ab-
stract interpretation. The results is a general theory of approximated
SFA which is parametric on the chosen abstraction. The purpose is
to provide a compact and effective representation of code approx-
imations acting both at syntactic and semantic level. Interestingly,
for a Turing complete programming language, there is no syntactic

abstraction which induces a compatible semantic abstraction. This
follows from a simple padding argument, and it is indeed a common
underlying problem in most known methods for program similarity
analysis, such as BinDiff and BinJuice. Observe that the existing
tools either abstract the syntax independently from the semantics,
like in BinDiff, or represent into the syntax the abstraction of the
semantics, like in predicate abstraction. In the first case we risk to
fall far away form the meaning of the program to analyze, in the
second case the analysis may be too much bound to the semantics
without having the possibility of exploiting better syntax proper-
ties necessary in similarity analysis (e.g. in BinDiff and BinJuice).
Compatibility bridges these two aspects. By semantic compatibility
the abstraction of the syntax distinguishes programs with the same
abstract semantics, namely the abstract program provides an under-
approximation of the program behavior. By syntactic compatibil-
ity the abstraction of the syntax collapses programs with different
semantics, hence capturing behaviors that are not related with the
program to analyze, therefore providing an over-approximation of
the program behavior. Interestingly, in our model we can restrict
the form of predicates in order to have compatibility. This is what
we proved in BinJuice and BinDiff, thus showing the limits of ex-
isting tools for code similarity and the possibility of systematically
deriving conditions for making them syntactic compatible.

Another direction of future research is in the use of topologi-
cal abstractions of SFA for extracting signatures of self-modifying
code as recently studied in [7]. This requires the extension of
widening operations, such as those introduced in [5, 10, 14], to ab-
stract SFA. In this case approximate SFA provide advanced signa-
tures in metamorphic malware analysis, incorporating both proper-
ties of way code changes during program execution (the invariant of
the metamorphic engine) and additional semantic information, such
as the values passed in system-calls. This may reduce the false pos-
itives occurring in [7] in signature-based detection of metamorphic
malware.
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