
Noname manuscript No.
(will be inserted by the editor)

Interval-Based Temporal Functional Dependencies:
Specification and Verification

Carlo Combi · Pietro Sala

Received: date / Accepted: date

Abstract In the temporal database literature, every fact stored in a database
may be equipped with two temporal dimensions: the valid time, which describes
the time when the fact is true in the modeled reality, and the transaction time,
which describes the time when the fact is current in the database and can be
retrieved. Temporal functional dependencies (TFDs) add valid time to classical
functional dependencies (FDs) in order to express database integrity constraints
over the flow of time. Currently, proposals dealing with TFDs adopt a point-
based approach, where tuples hold at specific time points, to express integrity
constraints such as “for each month, the salary of an employee depends only on his
role”. To the best of our knowledge, there are no proposals dealing with interval-
based temporal functional dependencies (ITFDs), where the associated valid time
is represented by an interval and there is the need of representing both point-based
and interval-based data dependencies. In this paper, we propose ITFDs based on
Allen’s interval relations and discuss their expressive power with respect to other
TFDs proposed in the literature: ITFDs allow us to express interval-based data
dependencies, which cannot be expressed through the existing point-based TFDs.
ITFDs allow one to express constraints such as “employees starting to work the
same day with the same role get the same salary” or “employees with a given role
working on a project cannot start to work with the same role on another project
that will end before the first one”. Furthermore, we propose new algorithms based
on B-trees to efficiently verify the satisfaction of ITFDs in a temporal database.
These algorithms guarantee that, starting from a relation satisfying a set of ITFDs,
the updated relation still satisfies the given ITFDs.

C. Combi
Department of Computer Science,
University of Verona, Italy
E-mail: carlo.combi@univr.it

P. Sala
Department of Public Health and Community Medicine,
Department of Computer Science,
University of Verona, Italy
E-mail: pietro.sala@univr.it

Keywords Temporal Functional Dependencies · Temporal Databases · Interval-
based Functional Dependencies · Compass Structures · B-trees · Allen’s Relations

1 Introduction

Many computer applications, such as accounting systems, geographical, health,
and multimedia information systems, process control systems, and reservation
systems, require the ability to represent and manage data changing over time.
Temporal databases allow one to describe the temporal evolution of information
by associating one or more temporal dimensions with the stored data [17]. The
fundamental temporal dimensions associated with any fact stored in a temporal
database are valid time, which describes the time when the fact is true in the
modeled reality, and transaction time, which describes the time when the fact is
current in the database and can be retrieved.

The association of temporal concepts with their temporal dimension may be
point-based and interval-based. When it is point-based, a temporal concept is true
at each associated time point. On the other hand, when the association is interval-
based, the given temporal concept is true only on the overall associated interval
and its truth over single time points (or sub-intervals) of the given interval cannot
be asserted [5]. In temporal databases, most research focused on such a point-based
kind of association and on the related issues in querying and managing point-based
temporal data [16, 19, 20]. Nevertheless, some limitations of point-based temporal
databases have been highlighted and some proposals have been done, allowing one
to deal with both interval-based and point-based facts [26]. A further taxonomy
for temporal query languages distinguish between sequenced and non-sequenced
semantics [3, 4]. Through sequenced semantics, a temporal database is viewed
as a sequence of atemporal database states holding at specific time points. On
the other hand, in a non-sequenced temporal query, the user considers temporal
dimensions as regular attributes and has to explicitly include in the query the
required temporal conditions.

Specifying integrity constraints (such as keys, foreign keys, cardinalities, and
so on) is an important part of modeling data: in this regard, temporal integrity
constraints are (possibly) dynamic constraints for temporal databases [37]. Tem-
poral constraints are usually expressed through languages based on first-order
logic [37]. From among the various temporal integrity constraints for temporal
data [7, 12, 13, 28], in this paper we focus on a special kind of temporal integrity
constraints, called temporal functional dependencies [36]. Temporal functional de-
pendencies (TFDs) add a temporal dimension to classical functional dependencies
(FDs) in order to deal with temporal data [2, 32, 34–36]. As a matter of fact, the
temporal dimension mostly considered is valid time. As an example, while FDs
model constraints such as “employees with the same role get the same salary”,
TFDs can represent constraints like “for any given month, employees with the
same role have the same salary, but their salary may change from one month to
the next one” [2, 35] or “current salaries of employees uniquely depend on their
current and previous roles” [9, 32].

To the best of our knowledge, TFDs proposed in the literature rely on some
kind of point-based semantics, possibly extended to consider a fixed point-based
temporal grouping when different temporal granularities, i.e., time partitions, are

considered [2,9,36]. However, as already pointed out in the literature, sometimes
an interval-based semantics of temporal data is needed to represent them in a
meaningful way. For example, when modeling clinical data, therapies need to be
represented as inherently interval-based as their effect is not merely related to
single-drug administrations but derives from the overall drug-based, therapeutic
treatment during the given interval. Such an interval-based semantics has to be
considered even when we need to specify integrity constraints and, in particular,
temporal functional dependencies. In the case of therapies, we could have the
requirement, for example, that a therapy for a patient can be extended only by
the same physician who prescribed the original therapy. It is easy to see in this case
that point-based temporal functional dependencies do not help, as the constraint
does not restrict point-by-point the presence of therapies prescribed by different
physicians but only constrains similar therapies having intervals that meet (i.e.,
the first one ends when the second interval starts).

According to the sketched scenario, in this paper we specifically focus on
interval-based temporal constraints expressed through interval-based temporal
functional dependencies (ITFDs): we extend and complete a first proposal deal-
ing with interval-based temporal functional dependencies [11]. More precisely, we
propose new ITFDs based on Allen’s interval relations [1] and analyze their ex-
pressiveness by means of some simple examples extracted from a clinical domain,
showing that ITFDs are able to capture some dependencies that cannot be repre-
sented through point-based TFDs, which have been recently considered within a
unifying framework [9]. ITFDs may be used to express non point-based temporal
constraints such as “employees starting to work the same day with the same role
in the same project get the same salary” or “employees with a given role work-
ing on a project cannot start to work with the same role on another project that
will end before the first one”. As a completely new contribution, we then pro-
pose several algorithms for verifying whether a temporal database satisfies a given
ITFD: we focus on algorithms for incremental verification of ITFDs on a tem-
poral database. Incremental verification consists of checking that, starting from
a temporal database satisfying a given ITFD, the considered update results in a
temporal database still satisfying the given ITFD. All the proposed algorithms
are based on auxiliary data structures that are essentially B-trees. Moreover, we
consider the issue of maintaining such B-trees when new tuples are added to the
database.

The paper is organized as follows. In Sect. 2, we introduce the main concepts re-
lated to point- vs. interval-based data models and to sequenced vs. non-sequenced
semantics in temporal queries. Then we discuss there some main issues in the area
of temporal integrity constraints for temporal databases. Finally, we focus there
on the specific kind of temporal integrity constraints we consider in this paper,
namely that of temporal functional dependencies, and consider the main related
contributions. In Sect. 3, we introduce an example based on a real-world scenario,
the management of medical data, that will be useful through the following sections
to give an idea of how TFDs and ITFDs work. In Sect. 4, we introduce syntax
and semantics of Interval-based Temporal Functional Dependencies and analyze
their expressiveness by discussing several examples that cannot be captured by
point-based TFDs. Sect. 5 introduces and exemplifies new algorithms based on
B-trees for the incremental verification of ITFDs and describes how such B-trees
have to be updated according to updates of the temporal database. Finally, Sect. 6

provides some concluding remarks and discusses further extensions of the current
work.

2 Related work

In this section, we first present various concepts that have relevance to a temporal
semantics for temporal databases and to the broad topic of temporal integrity
constraints. Subsequently, we move to the specific kind of temporal integrity con-
straints we consider in this paper, namely that of temporal functional dependen-
cies.

2.1 Interval-based vs. point-based, and sequenced vs. non-sequenced semantics in
databases

Both in the area of temporal databases and in AI, several approaches for tem-
poral data modeling and for temporal reasoning have been proposed, where the
emphasis is on how to associate temporal concepts (facts, objects, entities, and so
on) with their temporal dimension. A first attempt to classify different proposals
distinguishes between point-based and interval-based approaches. In a point-based
approach, a temporal concept is considered true at each time point associated with
it. In an interval-based approach a temporal concept is considered true only on
the overall interval associated with it and nothing can be said in general about
its truth over single time points (or sub-intervals) of the given interval [5]. Among
the several proposals in AI dealing with either point-based or interval-based ap-
proaches, we mention here the work of Shoham, who tried, in some sense, to
overcome the duality of the two approaches: Shoham proposes a first-order logic
for dealing with the truth of propositions over intervals [24]. In particular, the
author observes that the truth of a proposition over an interval is related to its
truth over other intervals. The author classifies propositions depending on relations
that have to be considered in order to determine their truth. Just to exemplify
Shoham’s approach, let us consider some kind of propositions. A proposition type x
is downward-hereditary (written ↓ x) if whenever it holds over an interval it holds
over all of its sub-intervals, possibly excluding the two endpoints. For instance,
“John played less than forty minutes” is downward-hereditary. Analogously by
symmetry, a proposition type x is upward-hereditary (written ↑ x) if whenever it
holds over all the sub-intervals of a given interval, possibly excluding the two end-
points, it also holds over the given interval itself. For instance, “The airplane flies
at 35000 feet” is upward-hereditary. A proposition type x is solid if it never holds
over two properly overlapping intervals. For instance, the proposition “The plane
executed the LANDING procedure (from start to finish)” is solid. As we will see in
the following, some interesting properties that can be expressed using Shoham’s
proposition types cannot be captured by a point-based formalism.

Moving to the area of temporal databases, most approaches have been in-
herently point-based, and several research efforts have been devoted to querying
and managing temporal databases according to a point-based semantics. As an
example, if two or more tuples are timestamped through intervals but with a
point-based semantics, they need to be coalesced to produce a single tuple if they

have the same values for all the atemporal attributes and overlapping valid time
intervals, respectively [16,19,20]. Focusing on the expressiveness of temporal data
models with an interval-based semantics, Terenziani and Snodgrass analyze the
inadequacy of point-based semantics concerning models of natural language [26].
They propose a dichotomy between two types of fact. Facts are either telic (from
the Greek “telos” meaning goal) or atelic (the Greek ’a’ as a prefix indicates nega-
tion). Telic events are characterized by the fact that they reach a culmination
(e.g., “John won the lottery”), while atelic facts do not have an intrinsic culmina-
tion (e.g., “John is building a house”). Moreover, Terenziani and Snodgrass [26]
propose an algebraic framework which deals with combinations of telic and atelic
facts and they show how to add these concepts to a temporal query language
(SQL/Temporal [25]). Terenziani et al. show that current point-based database
approaches have some limitations that do not allow the representation of an im-
portant class of temporal medical data (i.e., telic data) [27]. They propose a new
three-sorted model and a query language that overcome such limitations by sup-
porting both telic, atelic, and atemporal relations, and some coercion functions to
move from telic to atelic interpretations and vice versa. In the context of multime-
dia temporal object databases, Combi [6] shows how to deal with different types of
interval-based textual observations associated with a range of frames of a movie,
by extending and adapting the proposition types introduced by Shoham [24] to
distinguish different interval-based semantics for multimedia data.

A further distinction for temporal query language constructs is between se-
quenced and non-sequenced semantics [3, 4]. A temporal query with a sequenced
semantics considers the temporal database as a sequence of atemporal database
states, each of them holding at a given time point. On the other hand, a temporal
query with a non-sequenced semantics considers temporal dimensions of a tempo-
ral database as regular attribute values without enforcing any temporal semantics.
It is then responsibility of the user to possibly enforce some temporal semantics
in the query by explicitly specifying conditions involving attributes representing
temporal dimensions. The distinction of sequenced and non-sequenced semantics
for temporal queries is intertwined with the distinction between point-based and
interval-based temporal data in a nontrivial way. In general we could say that the
sequenced semantics reflects in a strict sense the point-based semantics of tempo-
ral data. This is because temporal data are considered point by point in a sequence
of states and only data holding at the same state are considered for join, selec-
tion, grouping, and so on. On the other hand, non-sequenced semantics considers
temporal queries on both point-based and interval-based temporal data, as the
temporal meaning of data is completely and explicitly managed by the user.

2.2 Temporal integrity constraints

Integrity constraints, both temporal and atemporal, are an important part of a
database schema; indeed, they express properties that have to be satisfied by any
database (instance) of that schema. A database satisfying all the integrity con-
straints is called consistent. Integrity constraints are commonly expressed in a
declarative way using logic. Usually, such integrity constraints do not provide any
hint on how to keep the database consistent when data are inserted, deleted and
modified. Thus, as we will see in the following for our proposal, it is extremely

important to propose efficient procedures for checking and enforcing such con-
straints. Integrity constraints are thus relevant at different levels and in various
database-related tasks: from the conceptual and logical design, to reasoning on
data, to the support of efficient data storage and retrieval [29].

Temporal integrity constraints express integrity constraints that can be dy-
namic (i.e., constraining data holding at different time points/intervals) and are
checked over temporal databases [37]. They allow the user to represent constraints
such as “a patient who had an adverse reaction to a given drug, cannot receive
that drug later on”. Languages for expressing such temporal constraints are usu-
ally based on first-order logic with explicit timestamps or with temporal modal
operators [37]. Certain classes of temporal constraints (for specific data models)
have been explicitly considered for their practical importance and general applica-
bility. From among them, we mention here temporal integrity constraints for con-
ceptual data models [7, 13, 28], temporal integrity constraints for XML data [12],
and temporal functional dependencies [36]. As for temporal integrity constraints in
conceptual modeling, one of the issues considered is related to the representation
of temporal constraints in temporally-extended Entity-Relationship (ER) mod-
els [28]. For example, Combi et al. propose the temporal conceptual data model
TimeER, supporting the specification of advanced temporal constraints like tem-
poral keys, time-invariant keys, and temporal superclass/subclass relationships [7].
TimeER allows one to represent constraints such as “the SSN of a person cannot
be reassigned” or “a tracking code for a package identifies the given package, but it
can be reused after the first package ends its validity”. Another aspect considered
is how to extend existing conceptual models to express (even temporal) cardinal-
ity constraints. For example, Currim et al. analyse spatio-temporal semantics for
cardinality constraints by introducing the concept of evaluation window to ex-
press constraints such as “over the course of a month, an employee may choose
to participate in no more than 3 projects” [13]. Recently, the problem of tem-
poral constraints in semi-structured and XML data has been considered [10, 12]:
Combi et al. propose a graph-based generic model able to uniformly represent
semi-structured data and their temporal aspects [10]. In particular, they consider
in a formal and systematic way both valid and transaction times, together with
the set of temporal constraints needed to correctly manage the semantics of the
represented time dimension. The authors discuss operations which allow the in-
cremental management of the proposed model satisfying the introduced temporal
constraints. For example, it is possible to represent temporal constraints such as
“relation Organizes between a Person node and a Conference (child) node cannot
be established before that Person node is valid in the considered domain”. Currim
et al. consider the case for XML documents where past versions of documents are
retained [12]. The authors describe how to interpret temporal constraints both
as sequenced constraints, applicable at each point in time, and as non-sequenced
constraints, i.e., across time. Different types of constraints are considered (e.g.,
key constraints, cardinality constraints). As an example, it is possible to express
(non-sequenced) constraints such as “there are between 0 and 4 supplier URLs in
the temporal document over a period of any calendar month”.

2.3 Temporal functional dependencies

We now move closer to the main kind of temporal constraints considered in this
paper. Some classes of temporal constraints, expressible through a restricted syn-
tax, have been specifically studied because of their (even practical) importance. In
particular, several kinds of temporal functional dependencies (TFDs) have been
proposed in the literature, usually as temporal extensions of the widely known
(atemporal) functional dependencies [36]. A (atemporal) functional dependency
(FD) over a set of attributes U is an expression X → Y where X,Y ⊆ U . A rela-
tion r over U satisfies the FD X → Y if for all tuples t1, t2 ∈ r, if t1[X] = t2[X],
then t1[Y] = t2[Y].

In the following, we provide a short overview of the main formalisms for TFDs
proposed in the literature. Jensen et al. propose a bitemporal data model that
allows one to associate both valid and transaction times with data [18]. They define
TFDs as FDs that must be satisfied at any bitemporal point (i.e., representing
both valid and transaction times: chronon in the authors’ terminology). More
formally, TFDs are defined as follows [18]: Let X and Y be sets of non-timestamp
attributes of a temporal relation schema RB = R(U |T). A database instance rB of
RB satisfies a TFD X→TY iff for each bitemporal time point the FD X→Y holds,
i.e., ∀t1, t2 ∈ r(t1[X] = t2[X]⇒ t1[Y] = t2[Y]), where r is the atemporal relation
containing all tuples of rB holding (valid and current) at the considered bitemporal
time point. As an example, let Emp be a temporal relation schema with the set
of atemporal attributes U = {empId , salary , role, project}. The condition “at any
time, the salary of an employee uniquely depends on his role” can be expressed by
TFD role →T salary .

Bettini, Jajodia, and Wang’s notion of TFD takes advantage of time granular-
ity [33]: time granularity is a partition of a time domain in groups of indivisible
units called granules. Examples of granularities are Day, Month, and WorkingDay.
A time granularity is associated with each relation schema. Informally, a TFD
X →H Y is satisfied by a temporal relation associated with a granularity G if and
only if for all tuples t1, t2, if (i) t1[X] = t2[X], (ii) t1 and t2 hold at time granules
of G contained in a single granule of H, then t1[Y] = t2[Y]. Bettini, Jajodia, and
Wang’s TFDs allow one to specify conditions on tuples associated with granules of
a given granularity and grouped according to a coarser granularity. As an example,
if we consider the temporal relation schema Emp with attributes {empId , salary ,
role, project} and associated with granularity Month, the constraint “for any given
year, employees with the same role cannot have different salaries the same year;
however, their salary may change from one year to the next one” is captured by
TFD role →Year salary.

A general formalism for TFDs on complex (temporal) objects has been pro-
posed by Wijsen [35]. It is based on a data model that extends the relational
model with the notion of object identity, which is preserved through updates, and
with the ability of dealing with complex objects, that is, objects that may have
other objects as components. The meaning of TFD c : X →α Y can be intuitively
explained as follows: Let t1 and t2 be two objects of class c at time points i and j,
respectively, where (i, j) belongs to the time relation α, which is a binary relation
on the time domain. If t1 and t2 agree on X, then they must agree on Y as well.
It has been shown that the class of Wijsen’s TFDs subsumes the class of Bettini
et al.’s TFDs [35]. More precisely, Bettini et al.’s TFDs are exactly the TFDs on

chronologies (i.e., time relations representing granularities). In earlier work, Wijsen
introduces a special notation for some relevant subclasses of TDFs [34]. In partic-
ular, he abbreviates X →Next Y as X N Y and for X →Forever Y as X G Y .
Wijsen’s TFDs allow one to specify conditions on tuples grouped according to any
given time relation. As an example, it is possible to express the condition “em-
ployees cannot have different salaries over two consecutive time points if their role
does not change” by means of TFD Emp : empId , role N salary .

Vianu proposes a simple extension to the relational model in order to describe
the evolution of a database over time [32]. According to it, a temporal database is
viewed as a sequence of instances (states) over time. A change in the state of the
database is produced by the execution of an update, an insertion or a deletion. A
database sequence is a sequence of consecutive instances of the database, together
with “update mappings” from one instance (the “old” one) to the next instance
(the “new” one). Tuples are viewed as representations of domain objects. Since
a tuple and its updated version represent the same object, tuples preserve their
identity through updates. According to Vianu’s notation, for each attribute A,
∨
A represents its old value and

∧
A its new value. For each set U of attributes, let

∨
U= {

∨
A |A ∈ U} and

∧
U= {

∧
A |A ∈ U}. Constraints on the evolution of attribute

values of tuples (objects) over time are expressed by means of dynamic functional

dependencies (DFDs): A DFD over U is an FD X → Y over
∨
U
∧
U such that,

for each A ∈ Y , both XA ∩
∨
U 6= ∅ and XA ∩

∧
U 6= ∅. The above condition on

DFDs ensures that X → Y does not imply any nontrivial FD over
∨
U or

∧
U . As

an example, the condition: “new salaries of employees depend uniquely on their

current and previous roles” is captured by the DFD
∨

role
∧

role →
∧

salary over the
set of attributes U = {empId , salary , role}.

Combi et al. propose a framework for TFDs that subsumes and extends the
above proposals [9]. This framework uses a simple temporal relational data model
based on the notion of temporal relation, i.e., a relation extended with a times-
tamping temporal attribute V T .

Two temporal views, respectively called next and nexttuple, have been intro-
duced. They allow one to join tuples that satisfy a specific temporal relation in
order to represent relevant cases of (temporal) evolution. Such views may be con-
sidered as a more powerful relational counterpart of the “update mappings” intro-
duced by Vianu. For example, given a temporal distance k, with k ≥ 1, the view
next allows one to join pairs of corresponding tuples at temporal distance k. More
precisely, given a temporal relation schema R, with attributes U ∪{V T}, a tempo-
ral relation r on R, and a pair of tuples t, t′ ∈ r, the application of the view next to
r, denoted χr,kZ , with Z ⊆ U and k ≥ 1, joins t, t′ if (and only if) t[Z] = t′[Z] and
t′[V T] = t[V T] + k. The schema of the resulting relation is ZWW ∪ {V T, V T},
where W = U − Z.

With the introduced data model, and leveraging temporal views, TFDs may
be expressed by the syntax [E-Exp(R), t-Group]X → Y , where E-Exp(R) is a
relational expression on R, called evolution expression, t-Group is a mapping N→
2N, called temporal grouping, and X → Y is a functional dependency.

As for the semantics, similarly to the case of standard FDs, a TFD is a
statement about admissible temporal relations on a temporal relation schema
R. A temporal relation r on the temporal relation schema R satisfies a TFD

[E-Exp(R), t-Group]X → Y if it is not possible that the relation obtained from r
by applying the expression E-Exp(R) features two tuples t1, t2 such that:

(i) t1[X] = t2[X],
(ii) t1[V T] and t2[V T] (the same for t1[V T] and t2[V T], if present) belong to the

same temporal group, according to the mapping t-Group, and
(iii) t1[Y] 6= t2[Y].

In other words, FD X → Y must be satisfied by each relation obtained from
the evolution relation by selecting those tuples whose valid times belong to the
same temporal group.

Consider, for example, the requirement “for any given year, employees with
the same role cannot have different salaries the same year; however, their salary
may change from one year to the next one”. We previously represented this using
a TFD of Bettini, Jajodia, and Wang. Within the proposed framework, it can
be represented as [Emp,Year(i)]role → salary . The constraint “new salaries of
employees depend uniquely on their current and previous roles”, previously repre-
sented by a DFD a la Vianu over the set of attributes U = {empId , salary , role},
is now represented by the TFD1 [χEmp

empId,Top(i)]role, role → salary . It is also pos-
sible to express some TFDs having both a grouping a la Wijsen and a dynamic
constraint a la Vianu. For example, the requirement “year by year, salaries of
employees depend uniquely on their current and previous roles” is formalized as
[χEmp
empId,Year(i)]role, role → salary . Further constraints such as “every year, em-

ployees with the same role, who will not change it from the current month to the
next one, will get the same (unchanged) salary” may be expressed. Existing TFD
systems propose alternative extensions to the relational model, often introducing
non-relational features (this is the case with Wijsen’s objects [35] and Vianu’s
update mappings [32]), thus making it difficult to precisely evaluate their relative
strength and their limitations. These differences complicate identifying the frame-
works’ distinctive features and to systematically compare them. Combi et al. [9]
show how their proposed point-based framework subsumes the other TFDs previ-
ously described in the literature. In the following, we establish that interval-based
temporal functional dependencies extend the possible temporal constraints we may
specify for a given database with respect to the unifying framework proposed by
Combi et al. for point-based temporal functional dependencies.

3 A motivating example

We now consider a simple clinical example for point-based TFDs described in
Sect. 2 and then discuss some constraints that cannot be expressed with point-
based TFDs.

Most health care institutions collect a large quantity of clinical information
about patient and physician actions, such as therapies and surgeries, as well as
about health care processes, such as admissions, discharges, and exam requests.
All these pieces of information are temporal in nature and the associated temporal
dimension needs to be carefully considered in order to be able to properly represent

1 The simplified notation χrZ instead of χr,kZ is used in the following, when k = 1.

TherType PatId Phys DrugCode Qty B E
1 antiviral 1 Dorian 0458 300 1 16
2 analgesics 1 Cox 0976 200 2 10
3 cardiovascular 1 Turk 0118 100 3 8
4 antipyretics 1 Cox 0976 100 9 11
5 sedative 1 Turk 0345 10 13 15
6 anxiolytic 1 Dorian 0345 10 17 19
7 antiviral 2 Kelso 0458 200 1 10
8 cardiovascular 2 Quinlan 0118 100 4 7
9 analgesics 2 Reid 0976 150 5 9
10 antiviral 2 Reid 0458 300 8 14
11 antiviral 1 Dorian 0789 200 1 18

Dorian

Dorian

Dorian

Cox

CoxTurk Turk

Kelso

Quinlan

Reid

Reid

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig. 1 An instance of relation PatTherapies, storing data about patient therapies and its
representation on the time line with values for attribute Phys

clinical data and to reason about them [8]. In this section, we briefly introduce a
real-world example taken from clinical medicine, namely that of patient therapies.

Suppose we have patients who undergo several different therapies: each ther-
apy can be supervised by a physician, and consists of the administration of some
drug to the patient. Information about patients and therapies is stored in a re-
lation according to the schema PatTherapies(TherType, PatId ,DrugCode,Qty ,
Phys,B ,E), where TherType identifies a type of pharmacological therapy, PatId
represents a patient ID, DrugCode and Qty the prescribed drug and its quantity,
respectively, and Phys the physician who made the prescription (and is responsible
for the therapy). Finally, attributes B and E represent the beginning and end time
points of the tuple valid interval, respectively: they represent the bounds of the
interval specified by the physician for each therapy. An instance of PatTherapies
is provided in Fig. 1.

As an example, for the given relation schema, the requirement “at any time,
the quantity of the prescribed drug depends on the drug and on the type of ther-
apy” can be expressed by Jensen’s TFD TherType,DrugCode →T Qty , while
the requirement “every month, the physician who prescribes a given drug de-
pends on the therapy” may be captured by Bettini, Jajodia, and Wang’s TFD
TherType →Month Phys. Moreover, it is possible to express by Wijsen’s TFD
PatTherapies : PatId ,DrugCode →16days Qty the requirement “for every patient,
the quantity of a drug cannot change within 16 days”: this means that we have
to wait 16 days without prescribing a drug to a patient if we want to change
the quantity of this drug for that patient. It is worth noticing that this kind
of constraint cannot be expressed by Bettini, Jajodia, and Wang’s TFDs since
no granule can overlap another one. Finally, the requirement:“the new quantity
for a drug depends only on the old quantity” may be captured by Vianu’s DFD

∨
DrugCode,

∨
Qty →

∧
Qty . As we already noticed, all these TFDs may be expressed

in a homogeneous way in the framework recently proposed by Combi et al. [9].
Moreover, new TFDs may be expressed in the proposed framework. For example,
the TFD [χPatTherapies

PatId,TherType ,Month(i)]PatId ,Qty → Qty specifies that therapies of
the same type for a given patient administered in consecutive time points require
that the drug quantity of the second administration depends only on the drug
quantity of the first administration.

Let us now move to further, more complex constraints and suppose that our
database has to satisfy the following new ones:

Example 1 Some policies of the hospital may be described as in the following:

1. Every patient may receive several therapies at the same time from different
physicians, but overlapping therapies for the same patient must be prescribed
by the same physician. In other words, if a patient during a therapy needs
another therapy which lasts beyond the end of the current therapy, then this
therapy must be prescribed by the same physician who prescribed the other
one;

2. Every day, there is a single individual responsible (i.e., a physician) for all the
ending therapies with the same drug;

3. A patient cannot start on the same day two therapies of the same type with
different drugs;

4. Therapies of a given drug for a patient must have the same quantity when the
period of a therapy immediately follows after another one for the same drug. In
other words, if a patient’s therapy with a given drug starts when the previous
therapy with the same drug ends, the administered drug quantities must be
the same.

It is easy to see that in order to verify these policies through the acquired
data, both the start points and the end points of every pair of tuples come into
play. Thus, the point-based TFDs proposed in Sect. 2.3 cannot be used to specify
the above requirements related to the hospital policy, as they do not allow one to
distinguish start/end points when facts begin/finish to hold from time points when
facts (continue to) hold. Moreover, we might be interested in expressing even for
interval-based tuples some constraints such as, for example, that a patient cannot
have two different therapies with the same drug on the same day. This constraint
is inherently point-based so we need a way to represent it even when tuples are
interval timestamped.

4 Interval-based functional dependencies

In this section we first recall interval relations and the related notation we will use
throughout the paper. Then we introduce the temporal relational data model we
adopt. Finally, we propose a new type of temporal functional dependency based
on Allen’s interval relations and provide some meaningful examples.

I0

I4

I5

I6

I3

I2

I1

I1 finishes I0 (I1 F I0)

I2 during I0 (I2 D I0)

I3 starts I0 (I3 S I0)

I4 overlaps I0 (I4 O I0)

I5 meets I0 (I5 M I0)

I6 before I0 (I6 B I0)

I0 equals I0 (I0 = I0)

I0 finished by I1 (I0 F̄ I1)

I0 contains I2 (I0 D̄ I2)

I0 started by I3 (I0 S̄ I3)

I0 overlapped by I4 (I0 Ō I4)

I0 met by I5 (I0 M̄ I5)

I0 after I6 (I0 B̄ I6)

Fig. 2 The thirteen Allen relations between intervals

4.1 Interval relations

Given a totally ordered set O = 〈O,≤〉, an interval I over O is a pair I = [b, e]
where b, e ∈ O and b ≤ e. For any interval I = [b, e] over O let points(I) denote
the set of points in O between b and e: points(I) = {p | p ∈ O and b ≤ p ≤ e}.
While the possible distinct relations between two points considering only the linear
order are reduced to three (equality, successor, and predecessor), considering the
order among the two endpoints of two intervals leads us to have thirteen possible
relations. These relations are depicted in Fig. 2 according to the notation proposed
by Allen in [1]. It is worth noting that every relation has its dual obtained by
switching the position of the two intervals. Consider, for example, two intervals
I1 = [b1, e1] and I2 = [b2, e2]: we have that I1 D I2 (I1 during I2), if and only if
b2 < b1 < e1 < e2. By reverting the arguments, we have that I2 D I1 (I2 contains
I1), if and only if b2 < b1 < e1 < e2, which is equivalent to I1 D I2. More precisely,
given two intervals I = [b, e] and I ′ = [b′, e′] we say that:

(1) I = I ′ iff b = b′ and e = e′;
(2) I M I ′ iff e = b′;
(3) I S I ′ iff b = b′ and e < e′;
(4) I F I ′ iff b > b′ and e = e′;
(5) I O I ′ iff b < b′ and b′ < e < e′;
(6) I D I ′ iff b′ < b and e < e′;
(7) I B I ′ iff e < b′.

4.2 The interval-based temporal relational data model

In discussing our new functional dependencies based on intervals within a relational
framework, we use a simple temporal (relational) data model based on the concept
of temporal relation. A temporal relation r is a relation on a temporal relation
schema R defined on attributes U ∪{B,E}, where U represents a set of atemporal

attributes and B,E are the temporal attributes describing the valid interval of a
tuple. We assume that the domain of both attributes B and E is a totally ordered
set O. Clearly, a tuple t ∈ r satisfies t[B] ≤ t[E]. We recall that, assuming the
underlying domain for attributes A1 and A2 has a total order, atomic formulas
for comparing tuples are either of the form t[A1] θ t′[A2] or of the form t[A1] θ c,
with θ ∈ {=, 6=, <,≤, >,≥}, A1, A2 being attribute names, c a constant value
and t, t′ tuples of relation r. To avoid ambiguities in the terminology employed,
in the following we will use (temporal) instance for “(temporal) relation” and will
let relation refer to Allen’s interval relations.

4.3 Interval-based temporal functional dependencies

Let us now consider the basic definition of an Interval-based Temporal Functional
Dependency (ITFD). In the following, we will only deal with interval relations in
the set A = {S, F,B,M,D,O, =}. Indeed, in this case it is not meaningful to
distinguish between a relation and its dual, as it will be clear from the following
definition of interval-based temporal functional dependency.

Definition 1 Let X and Y be sets of atemporal attributes of a temporal rela-
tion schema R = R(U,B,E) and ∼ an Allen’s interval relation. An instance r
of R satisfies an ITFD X →∼ Y if for each pair of tuples t1 and t2 such that
[t1[B], t1[E]] ∼ [t2[B], t2[E]] and t1[X] = t2[X], it is also true that t1[Y] = t2[Y].

Basically, ITFDs group tuples whose B and E attribute values satisfy the interval
relation ∼. In the above definition, all the possible tuples having as valid interval
either [b, e] or [b′, e′], where [b, e] ∼ [b′, e′] are considered together. If there exist
two tuples having their valid intervals related through the considered relation ∼,
respectively, and both tuples agree on (the tuple of) values of atemporal attributes
X, then the ITFD imposes that both tuples must agree on (the tuple of) values of
atemporal attributes Y . In the following, we will use notation X →{∼1,∼2,...∼n} Y

with ∼1,∼2, . . . ∼n∈ A, as a shorthand for {X →∼1 Y,X →∼2 Y, . . .X →∼n Y }.
As already mentioned, we focus only on (sub) set A of Allen’s interval relations,

without considering the dual ones. Indeed, dual relations are not needed for the
specification and verification of ITFDs, because ITFDs are based on the equality
of the considered (atemporal) values. Thus, each (ordered) pair of tuples satisfying
an interval relation will satisfy also the dual one, where tuples will be considered in
the pair with the opposite order. In other words, any ITFD with a given interval
relation implies also the corresponding ITFD with the dual relation (and vice
versa).

Let us now consider the first requirement expressed in Example 1 of Sect. 3:
it can be rephrased as “overlapping drug administrations for a given patient must
have the same physician”. This constraint can be expressed by the ITFD

PatId →O Phys.

A time-oriented graphical account of tuples of relation PatTherapies is pro-
vided in the lower part of Fig. 1. As we may notice, the instance satisfies ITFD
PatId →O Phys only for tuples related to the patient with PatId = 1. Dr. Cox
added a therapy antipyretics, but the related valid interval is contained in the

interval of therapy antiviral prescribed by Dr. Dorian. Tuples related to thera-
pies of patient with PatId = 2 instead do not satisfy ITFD PatId →O Phys, as
both intervals of therapies prescribed by Dr. Reid overlap a therapy prescribed
by another physician. This kind of property cannot be expressed with point-based
TFDs. Basically the lack of expressiveness depends on the fact that point-based
TFDs refer only to database snapshots which are either evaluated in isolation or
grouped together according to some granularity or joined to the next snapshot to
consider some kind of tuple evolution. In our example, intervals of patient thera-
pies are considered in a holistic way and the considered temporal dependency is
not checked against all the database snapshots, as it has to consider the specified
interval relation(s) and thus, in general, both start and end points of intervals. In
our example, Dorian starts a therapy on the patient with PatId = 1, and Cox
starts therapy analgesics for the same patient during this therapy. After that, Cox
adds another therapy (antipyretics). Suppose that this last therapy of Cox would
last until time 14: then, either this tuple or the tuple related to therapy by Turk
having valid time [13, 15] violates the ITFD. Moreover, suppose that tuples are
inserted according to the start of their valid time: in this case, the insertion of
tuple #5 would be blocked.

Let us consider the schema PatTherapies and suppose that we want to express
the second constraint specified in Example 1 of Sect. 3 “every day, there is a single
responsible (i.e., physician) for all the ending therapies with the same drug”: such
requirement is expressed by the ITFD

DrugCode →F Phys.

The following constraint “a patient cannot start on a single day two therapies
of the same type with different drugs” may be expressed as

PatId ,TherType →S DrugCode.

The last constraint in Example 1 “(temporally) meeting therapies of a given
drug for a patient must have the same quantity” is expressed as

PatId ,DrugCode →M Qty .

Finally, let us consider the point-based constraint considered in Sect. 3 “a
patient cannot have two different therapies with the same drug the same day”. It
is easy to see that the ITFDs

PatId ,DrugCode →{S,F,O,D,M,=} TherType,Qty ,Phys

capture this property: they correspond to that of snapshot key (i.e., a key con-
straint on each database snapshot in isolation), similarly to the point-based func-
tional dependencies by Jensen, Snodgrass, and Soo [18]. Indeed, all these ITFDs
together prevent any instance of PatTherapies from having two tuples with inter-
secting valid times, the same corresponding attribute values for PatId ,DrugCode
and different values for (even only one of) attributes TherType,Qty ,Phys. Tuples
with the same corresponding attribute values for PatId ,DrugCode and different
values for (even only one of) attributes TherType,Qty ,Phys may exist in any in-
stance only if their valid times occur one before the other (i.e., they are disjoint).

This property can be simply proved by observing that the set of interval relations
{S, F,O,D,M,=} considered by the above ITFDs covers all the possible cases of
intersection between two given intervals. Indeed, any relation of this set requires
that the two intervals have some common time points (at least one, as in the meet
relation M) and only the relation before B is not considered by the given ITFDs,
as it is the sole one requiring the considered intervals to be disjoint.

To conclude this section, let us consider the example in Sect. 2 about em-
ployees. It is represented in our interval-based context by the temporal schema
Emp(U,B,E), where U = {empId , salary , role, project}. The two constraints “em-
ployees starting to work the same day with the same role in the same project get the
same salary” and “employees with a given role working in a project cannot start
to work with the same role on another project that will end before the first one”
previously introduced may be expressed, respectively, by the two ITFDs below:

project , role →S salary empId , role →D project.

5 Efficiently verifying the satisfaction of ITFDs

In this section we present a set of algorithms (and discuss their complexity) for
checking the satisfaction of a given ITFD X →∼ Y over a temporal instance r
with schema R(U,B,E) where X,Y ⊆ U . In the following, we mainly consider the
(sub) set {S, F,B,M,D,O} of Allen’s interval relations without considering the
equality relation. Indeed, the equality relation does not appear to be of particular
interest since the expression of ITFDs with the equality relation may be reduced
to consider point-based TFDs on start and end time points.

Verifying the satisfaction of X →∼ Y may be considered in two different but
intertwined ways: i) given an instance r of R, check whether or not r satisfiesX →∼
Y , ii) given an instance r of R satisfying X →∼ Y and a tuple t, verify whether
r∪{t} still satisfies X →∼ Y . We call the first problem checking ITFD satisfaction,
while the second one is called incremental ITFD verification. It is not difficult to
see that these two problems are closely related. In fact, checking ITFD satisfaction
reduces to the incremental ITFD verification by adopting the algorithm developed
for this problem and, starting from i = 0 with instance r0 = ∅ with schema R,
incrementally verifying whether ri ∪ {ti} with ti ∈ r \ ri satisfies ITFD X →∼ Y .
If the update of ri with ti still verifies X →∼ Y , then ri+1 = ri ∪ {ti}, i = i + 1
and the algorithm is applied again. If r satisfies X →∼ Y , after |r| iterations we
can determine ITFD satisfaction. Some complexity improvements to this naive
approach can be done. This is because when checking ITFD satisfaction we know
the whole instance r in advance, while in the update problem tuples are only given
one after each other and must be immediately checked for X →∼ Y -satisfaction
with the current r.

If r∪{t} satisfies the given ITFD, t is inserted and then our instance becomes
r′ = r ∪ {t}. In the case of incremental verification of ITFDs, we have to take
into account that all the auxiliary (i.e., indexing) data structures, possibly used to
efficiently verify the ITFD satisfaction, need to be properly updated. According
to this view, the overall problem of incremental ITFD verification has to deal

with two aspects: (i) efficiently verifying the ITFD satisfaction, and (ii) efficiently
updating the indexing structures used for the verification.

The ideas behind algorithms for the incremental ITFD verification apply with
few modifications to obtain algorithms for checking ITFD satisfaction. Therefore,
we describe and discuss in detail algorithms for the incremental ITFD verification
problem and then in some relevant cases we point out minor differences with
algorithms for checking ITFD satisfaction.

In our algorithms proposed here, we adopt an approach commonly found in the
database area: we consider the so-called disk complexity. Basically, we assume a
main memory of size M and an input of size T �M . The input (i.e., the instance)
is stored in the secondary storage system (a disk). As usual, we assume that each
disk read/write operation is able to load in the main memory a large amount of
contiguous bytes named block. Let P be the size of each block; then we have that
the main memory can keep only k = bM : P c blocks. Standard disk read/write
operations have a cost (i.e., time) which is of the order of 105 higher than the
cost of the corresponding main memory operation. Thus, in the incremental ITFD
verification we consider how to minimize the number of disk operations and evalu-
ate our algorithms with respect to disk complexity (i.e., the number of read/write
disk accesses). According to this perspective, we consider ad-hoc, suitable B-trees
as index structures [30]. B-trees are balanced tree data structures that keep data
sorted and allow data access operations in logarithmic time. They are optimized
for (database) systems that read and write large blocks of data, as each node of
a B-tree corresponds to a block. The structure of any B-tree node may be rep-
resented as 〈P1, (k1, v1), P2, (k2, v2), P3, (k3, v3), . . . , Pq−1, (kq−1, vq−1), Pq〉, where
Pi for i = 1, 2, ...q stands for a pointer to a B-tree node (such pointers are null in
leaf nodes), ki, for i = 1, 2, . . . q−1, stands for the key used for sorting data, while
vi for i = 1, 2, . . . q − 1 is either the data value associated with the corresponding
key or a pointer to such data. Informally, the number q − 1 of key-value pairs is
managed to guarantee that nodes (except the root) are at least half-full. Within
each node it holds k1 < k2 < . . . < kq−1, and for all search key values K in the
subtree pointed at by Pi, it holds ki−1 < K < ki for 1 < i < q, where K < ki
for i = 1 and ki−1 < K for i = q. In the following, we use such data structure to
efficiently manage the incremental evaluation of different ITFDs. As we will see,
keys and data values are suitably defined according to the considered ITFD2.

In the following part of this section, we first define and describe a suitable
spatial representation for interval-based tuples and briefly recall the definition
and some useful properties of the standard data structures we use for the proposed
algorithms. Then, for each interval relation ∼ ∈ {S, F,B,M,D,O}, we describe
the proposed algorithm for solving the incremental ITFD verification problem and
discuss for the most important cases how to update the index structures used.

2 In Fig. 9 and in the following ones, B-tree nodes are represented as rounded boxes, pointers
are represented as small circles with pointing arrows, while key components are represented by
suitable labels separated by commas, and value components are represented by suitable labels
within round brackets.

I1

I2

I3

S-relation

I1I2I3

F-relation

I2

I1

I3

B-relation

I2

I3

I1

M-relation

I2

I3

I1

D-relation

I2
I1

I3

O-relation

Fig. 3 Compass structures and translation of interval relations into relations between points:
for each relation areas/lines are highlighted where points are in the considered relation (or its
dual one) with point representing interval I2. The figure represents only an initial and finite
triangular region of the (infinite) octant

5.1 Representing sets of interval-based tuples

Let us start by proposing a geometric representation of intervals (called a com-
pass structure) and the corresponding interpretation of interval relations. We will
then use them in what follows to build indexing structures and algorithms for
incremental ITFD verification.

Definition 2 Given a totally ordered set D, the interval set I(D) is the set I(D) =
{(x, y) ∈ D2 | x ≤ y}.

Definition 3 Given a finite set of points P ⊆ I(R) and a finite set of elements
called colors C = {c1, . . . , cn}, a compass structure is a function G(P,C) : P→ C.

There exists a natural spatial representation of compass structures in the second
“octant” of the Euclidean plane, i.e., the sector of the plane delimited by the y
positive half-axis and by the bisector of the first quadrant. Indeed, as depicted
in Fig. 3, any interval [x, y] corresponds to a point (x, y) on the Euclidean plane
and any such point (x, y) must be in the second octant of the plane as x, y ≥ 0
and x ≤ y. In the following figures, we represent the (infinite) octant as a (finite)
triangle, i.e., its first part, moving up from the origin of axes. Intuitively, as we will
detail in the following, the color associated with a time point in this representation
corresponds to some relevant information. This representation is a variation of
the original compass structure introduced by Venema [31] for axiomatizing and
proving undecidability for a powerful interval temporal logic: recently, it has been
successfully used to obtain decidability results for other interval temporal logics
[22, 23].

There is a correspondence between positions of any two time points of the
compass structure and the interval relation between the corresponding intervals.
Fig. 3 gives a representation of each interval relation. Relations S and F are true

for intervals corresponding to points vertically and horizontally aligned, respec-
tively. To understand whether an interval is before or after another interval I2,
we have to project its corresponding point (x, y) both horizontally and vertically
on the bisector of the first quadrant, as depicted in Fig. 3. Indeed, its projections
correspond to points (y, y) and (x, x), respectively, and help to delimit two trian-
gular areas of the octant containing points representing intervals that are before
and after I2. For example, intervals corresponding to points I1 and I3 in Fig. 3 are
before and after the interval corresponding to point I2, respectively. The same ap-
proach may be applied to understand the other relations. For relation meets (M),
the projection (x, x) of point (x, y), representing interval I2, identifies the horizon-
tal line of all points (having the same ordinate y) representing intervals finishing
when I2 starts. Fig. 3 depicts three points corresponding to intervals I1, I2, and
I3, where I1 M I2 and I2 M I3. The same projections are used when we consider
relation D. Indeed, points (x, y), (x, x), and (y, y) identify the triangle containing
all points corresponding to intervals that are during I2, corresponding to (x, y).
On the other hand, the rectangular region of the octant in the up-left position
with respect to (x, y) contains all points corresponding to intervals containing I2.
Fig. 3 represents points corresponding to intervals I1, I2, and I3, where I1 D I2
and I2 D I3. Finally, for relation overlaps O and the projection (x, x) for the point
(x, y), we may identify the region contained between the horizontal line having y-
coordinate x, the upper horizontal line having y-coordinate y, the y-axis, and the
vertical line having x-coordinate x. This region contains all points corresponding
to intervals overlapping interval I2, represented by point (x, y). Similarly, we may
identify the region of all points corresponding to intervals overlapped by interval
I2. Fig. 3 represents points corresponding to intervals I1, I2, and I3, where I1 O I2
and I2 O I3.

Let us now consider how interval relations induce clusters in the compass struc-
ture. We start by defining relation→∼ ⊆ P×P as the relation {(p, p′) | p ∼ p′∨p′ ∼
p} and let →∗∼ be its reflexive-transitive closure. We define the ∼-clusters as fol-
lows:

Definition 4 Given a compass structure G(P,C) and an interval relation ∼ ∈ {S, F,
B,M,D,O}, we say that a subset Cl∼ ⊆ P is a ∼-cluster if and only if the following
conditions hold:

1. (non-emptiness) Cl∼ 6= ∅;
2. (transitive-closure) For every pair p, p′ ∈ Cl∼ we have p→∗∼ p′;
3. (maximality) For every p ∈ P, if there exists p′ ∈ Cl∼ such that p′ →∗∼ p, then
p ∈ Cl∼.

It is easy to see that for any interval relation ∼, the set of all ∼-clusters induces
a partition over P.

Definition 5 Given a compass structure G(P,C), an interval relation ∼ ∈ {S, F,B,
M,D,O}, and a cluster Cl∼ of G(P,C), we say that Cl∼ is consistent if and only if
for every pair p, p′ ∈ Cl∼, we have G(P,C)(p) = G(P,C)(p′).

If a cluster Cl∼ is ∼-consistent, let color(Cl∼) denote its color. Moreover, we say
that a compass structure G(P,C) is ∼-consistent if all the ∼-clusters associated with
G(P,C) are ∼-consistent.

Let us now use compass structures to represent tuples involving two different
sets of attributes X and Y . Given sets X,Y of attributes, we define a suitable
compass structure for each tuple of values for X, representing all tuples of an
instance having the given tuple of values for X. Colors of this compass structure
are related to different (tuples of) values for set Y of attributes.

Definition 6 Given an instance r of a schema R(U,B,E), two subsets X,Y ⊆ U ,
and a tuple v of values such that there exists t ∈ r with t[X] = v, we define the
compass translation of r on X with value v colored on Y T r(r,X, v, Y) as the
compass structure G(P,C) with the following:

– P = {(x, y) ∈ R2 | ∃t ∈ r(t[X] = v ∧ t[B] = x ∧ t[E] = y)},
– C = {v′ | ∃t ∈ r(t[X] = v ∧ t[Y] = v′)},
– and for every (x, y) ∈ P we have G(P,C)(x, y) = v′, if there exists t ∈ r with
t[X] = v, t[B] = x, t[E] = y, and t[Y] = v′.

Let us now consider ITFD X →∼ Y . We have a suitable compass structure for
each tuple of values for attributes X: the associated compass structure has colors
corresponding to different (tuples of) values for attributes Y . The verification that
all tuples having the same values for X have also the same values for Y , when a
given interval relation holds for these tuples, is reduced to verify that all clusters
of all the related compass structures are consistent, i.e., correspond to a single
color.
The following theorem links the ∼-consistency of a set of compass structures to
the satisfaction of an ITFD X →∼ Y on an instance r.

Theorem 1 Given an instance r of schema R(U,B,E) and two attribute sets X
and Y with X,Y ⊆ U , ITFD X →∼ Y holds for r if and only if for each v such
that there exists t ∈ r with t[X] = v, T r(r,X, v, Y) is ∼-consistent.

Proof (⇒) Suppose by contradiction that there exists a value v for which there is
an inconsistent cluster Cl∼ in the compass structure T r(r,X, v, Y) = G(P,C). Then,
there exists a pair of points (x, y) and (x′, y′) in Cl∼, for which G(P,C)(x, y) 6=
G(P,C)(x′, y′). By Definition 6, we have that there exists a pair of tuples t, t′ in r
with t[X] = t′[X], t[B] = x, t[E] = y, t′[B] = x′, t′[E] = y′, and t[Y] 6= t′[Y] (with
t[Y] = G(P,C)(x, y), t′[Y] = G(P,C)(x′, y′)). Moreover, we have by definition that
either [t[B], t[E]] ∼ [t′[B], t′[E]] or [t′[B], t′[E]] ∼ [t[B], t[E]]. Both cases violate
X →∼ Y .
(⇐) We reverse the proof for (⇒) and assume by contradiction that X →∼ Y
does not hold on r.

The last concepts we need to introduce are related to the identification of
sets of intervals that can be only associated with tuples having specific values for
attributes X and Y . For points representing intervals in compass structure, the
following definition allows one to refer, for a given Cl∼, to the subsets of points p
in I(R) that are “forced” to have color color(Cl∼) if they eventually will be added
to the compass structure.

Definition 7 Given a set of points P ⊆ I(R) and an interval relation ∼ ∈ {S, F,
B,M,D,O}, the closure of P according to relation ∼ is the set closure∼(P) =
{p ∈ I(R) | ∃p′ ∈ P (p′ →∼ p)}.

Given a compass structure G(P,C) and a point p′ /∈ P, we define the c′-extension
of G(P,C) with p′ as the compass structure GP∪{p′},C′ with

GP∪{p′},C′(p) =

{
G(P,C)(p) p ∈ P;

c′ otherwise.

Given a ∼-consistent compass structure G(P,C), a point p′, and a color c′, we say
that G(P,C) can be consistently extended if and only if the c′-extension of G(P,C)
with p′ is a ∼-consistent compass structure. The following lemma points out which
points cannot be inserted in a ∼-consistent compass structure.

Lemma 1 Given a ∼-consistent compass structure G(P,C) and clusters Cl∼, Cl′∼
in G(P,C) with color(Cl∼) 6= color(Cl′∼), for every c and every p, if the c-extension
of G(P,C) with p is ∼-consistent, then p /∈ closure∼(Cl∼) ∩ closure∼(Cl′∼).

Proof Let GP∪{p},C′ be the c-extension of G(P,C) with p for some color c and
some point p. Suppose by contradiction that GP∪{p},C′ is ∼-consistent and p ∈
closure∼(Cl∼) ∩ closure∼(Cl′∼). By Definition 5, we have that in GP∪{p},C′ both
{p} ∪ Cl∼ and {p} ∪ Cl′∼ are ∼-clusters, but they are not ∼-consistent because we
would have c = color(Cl∼) and c = color(Cl′∼). By the hypothesis, however, we
have color(Cl∼) 6= color(Cl′∼) (contradiction).

This lemma constrains the position of a cluster with respect to the closure of
other clusters. Basically it says that for every pair of different clusters Cl∼, Cl′∼
we have Cl′∼ ∩ closure∼(Cl∼) = Cl∼ ∩ closure∼(Cl′∼) = ∅. It is easy to observe
that closures may intersect (and they usually do) and if colors of the respective
clusters are different, then a point and a color do not exist that can be inserted in
the intersection.

5.2 An overview of algorithms

In this section we provide a short example for each ITFD related to an interval
relation. Moreover, we give an intuitive idea of how the corresponding compass
structures are stored in a B-tree together with some informal operational behavior
of both operations of insertion and deletion in presence of an ITFD X →∼ Y with
∼ ∈ {S, F,B,M,D,O}.

In the following examples, we assume that all the considered intervals are
associated with tuples sharing the same corresponding values for attributes X.
We also assume that a tuple tj is visually represented by an interval Ij and its Y
values t[Y] are represented by the color (blue/red or dark/bright) of the interval;
thus, we have for every i, j that ti[Y] = tj [Y] if and only if Ii and Ij share the
same color. Any picture associated with an example shows a sequence of operations
on the instance; every snapshot of the current instance is enclosed in a box with
rounded corners and the operation is described either above or below it. Tuples
that are inserted (i.e., after their insertion, the instance still satisfies the considered
ITFD) have the corresponding interval represented with a solid line. On the other
hand, if the insertion of a tuple is forbidden, the interval associated with that tuple
is represented by a dashed line.

I0

I1

starting scenario,
the instance satisfies
ITFD X →S Y

I0

I2

I1

insertion of I2
is forbidden

I0

I3

I1

insertion of I3 is allowed

I0

I3

I1 is deleted

I3

I0 is deleted

I4 I3

insertion of I4 is allowed

Fig. 4 An example of how tuple insertion is constrained when the instance has to satisfy
ITFD X →S Y (all the depicted tuples share the same corresponding values for attributes X
and they have the same corresponding values for attributes Y if and only if they agree on the
color of their intervals)

Checking X →S Y : Let us start with a simple instance r, depicted in Fig. 4,
consisting of two tuples with associated intervals I0 and I1 and which satisfies an
ITFD X →S Y . Both tuples agree on the value of attribute B (and of attributes
X), so they must share the same value for attributes Y . If we try to insert tuple t2,
we have that I2 S I1 but t2 has different values for attributes Y (t1[Y] 6= t2[Y]).
Therefore, the insertion of tuple t2 is forbidden. We then try to insert a tuple
t3 with t3[Y] 6= t1[Y] but in a way that I3 does not start and is not started
by I0: such insertion is allowed. After both tuples t0 and t1 are deleted, it is
possible to insert tuple t4 with associated interval I4 with t4[Y] 6= t1[Y]. This
is possible because both t1 and t2 have been deleted before the operation. We
may conclude by observing that it suffices to keep a count of tuples starting at
the same time point together with values for their Y attributes. Values for Y
attributes must be the same for all these tuples. Thus, the corresponding compass
structure is supposed to be S-consistent with respect to the ITFD X →S Y . For
the incremental verification of ITFD X →S Y on an instance r, we build a B-tree
BTS for every tuple of values c such that there exists t ∈ r with t[X] = c. BTS
is indexed on the first coordinate t[B] of tuple t ∈ r. For each such key t[B], a
B-tree node contains values t[Y] and the number of tuples t′ with t′[Y] = t[Y]
and t[B] = t′[B]. Since we build one B-tree for each tuple of values of attributes
X in r, and we assume that r satisfies X →S Y , we can conclude that the tuple
of values t[Y] associated with any coordinate t[B] inside a B-tree BTS is unique.
Every tuple t is checked against the B-tree BTS associated with the tuple of values
t[X] using values t[B] and t[Y]. If t can be inserted, the counter for the pair (t[B],
t[Y]) is incremented. The approach for checking ITFD X →F Y is similar but
uses t[E] as the key value.

Checking X →B Y : Let us now consider the example depicted in Fig. 5. We start
with an instance r, with two tuples t0 and t1, which satisfies ITFD X →B Y ,
since t0[Y] = t1[Y] and I0 B I1. If we try to insert tuple t2, we have that I1 B I2

I0 I1

starting scenario,
the instance satisfies
ITFD X →B Y

I0 I1

I2

insertion of I2 is forbidden

I0 I1

I3

insertion of I3 is allowed

I0 I1

I3

I4

insertion of I4 is forbidden

I0 I1

I3

I5

insertion of I5 is allowed

Fig. 5 An example of how tuple insertion is constrained when the instance has to satisfy
ITFD X →B Y

and t1[Y] 6= t2[Y]. Then the insertion of t2 into r is refused. It is worth noticing
that a tuple t, for which t[Y] 6= t1[Y], may be inserted if and only if its associated
interval intersects all the intervals associated with tuples having the same t[X] in
r, namely t0 and t1: this is so for tuple t3. However, after the insertion of t3 it is
forbidden to insert any tuple t with associated interval I such that I B I0 and
I B I3, because values for t[Y] would be required to be equal to t0[Y] and t3[Y]
at the same time (and this is impossible as t0[Y] 6= t3[Y]). That happens when
we try to insert t4, which shares the same values for Y attributes with tuples t0
and t1. The presence of tuple t3 forbids the insertion of any tuple t having the
associated interval before I3, no matter what the values of t[Y] are. Tuple t5, on
the other hand, may be inserted afterwards because t5[Y] = t0[Y] = t1[Y] and I5
is after I1 but not after I3.

For the incremental verification of ITFD X →B Y , we make use of four B-trees
BTS , BTF , BTI(S), and BTI(F) for each tuple of values which attributesX have in r.
BTS and BTF are nearly the same B-trees used for ITFDs X →S Y and X →F Y ,
respectively. They serve as auxiliary structures for efficiently updating BTI(S) and
BTI(F), respectively. Let us focus on BTI(S): its keys consist of ranges [b, e] and
its values are colours corresponding to some t[Y]. Each key [b, e] is associated
with the same color (corresponding to t[Y]) of all tuples starting within the given
range, i.e., b ≤ t[B] ≤ e. This B-tree helps keep the verification time logarithmic,
while BTS is used to keep the time for updating BTI(S) logarithmic. Any tuple t
intended for insertion is verified against BTI(S) by checking if there exist two keys
[b, e] and [b′, e′] in BTI(S) with different Y -values c and c′ and with t[E] < b < b′

(the symmetric check is performed with BTI(F) using t[E] in place of t[B] and vice
versa). If such a pair of keys exists, then the insertion is refused. If there exist
only one key [b, e] with t[E] < b and different Y values with respect to t, then the
insertion is also refused.

Checking X →M Y : Let us consider instance r, consisting of two tuples t0 and
t1, which satisfies ITFD X →M Y , as depicted in Fig. 6. If we try to insert tuple
t2 with t2[Y] 6= t1[Y] and I0 M I2, then the insertion of t2 is forbidden. On the

I0

I1

starting scenario,
the instance satisfies
ITFD X →M Y

I0

I1

I2

insertion of I2
is forbidden

I0

I1

I3

insertion of I3 is allowed

I0

I1

I3
I4

insertion of I4 is forbidden

I0

I1

I3

I5

insertion of I5 is allowed

Fig. 6 An example of how tuple insertion is constrained when the instance has to satisfy
ITFD X →M Y

contrary, tuple t3, with t3[Y] 6= t1[Y], is allowed for insertion in r since even if I3
shares its right endpoint with I1, it is not in relation meets/met by with I1. In
fact, we have I3 F I1. However, the new instance, which includes t3, does not allow
the insertion of any tuple t with an associated interval I which starts at the end
time point of I1 and I3 (t[B] = t1[E] = t3[E]), no matter what the value of t[Y] is
(the new tuple should agree on Y values with both t1 and t2, which is impossible).
This is so for tuple t4, which is refused for insertion in the next step, while the
insertion of tuple t5 is allowed because t5[Y] = t0[Y], I5 M I0, and there are no
tuples t with associated interval I which are met by I5 and having t[Y] 6= t5[Y].

For the incremental verification of ITFD X →M Y , we make use of one B-tree
BTM for each tuple of values of attributes X in r. The key of BTM ranges over
the set of all values t[B] and t[E], collected into a single set S, for all tuples t ∈ r
having the same t[X] associated with the given BTM . BTM has a three-valued key:

– the first and most significant value is v ∈ S,
– the second one is the orientation (it may be L for left or R for right, with
L < R) that determines if the element is containing information about tuples
that have t[B] = v (left) or t[E] = v (right),

– the third value is tuple c of attribute values for Y of tuple(s) ending/starting
in v.

Finally, the value associated with a key consists of the number of tuples t with
t[Y] = c and t[B] = v if the orientation is L (t[E] = v if the orientation is R).
Coordinate t[B] of a tuple t considered for insertion is checked against BTM by
looking for a key (t[B], R, c). If such a key exists and c is not equal to t[Y], the
insertion of tuple t is refused (a symmetric check is done for t[E]). On the other
hand, if the tuple is accepted, at most two key-value pairs are inserted (in case of
both t[B] /∈ S and t[E] /∈ S) and the counters are updated accordingly.

Checking X →D Y : In the example shown in Fig. 7, we begin with an instance
r consisting of four tuples (the instance satisfies ITFD X →D Y). The inter-
vals associated with such tuples are arranged in order to form a D-cluster. It is

I0

I1

I3

I4

starting scenario,
the instance satisfies ITFD X →D Y

I0

I1

I3

I4

I5

insertion of I5 is forbidden

I0

I1

I3

I4

I6

insertion of I6 is forbidden

I0

I1

I3

I4

I7

insertion of I7 is allowed

Fig. 7 An example of how tuple insertion is constrained when the instance has to satisfy
ITFD X →D Y

worth observing that inside the cluster every tuple tj represents either a maxi-
mum or a minimum for exactly one of the two attributes t[B] and t[E] that are
the endpoints of interval Ij . In the case depicted in Fig. 7, we have that t0 and t3
represent the minimum and the maximum left endpoints, respectively, as relations
t0[B] < t1[B] < t4[B] < t3[B] hold. Also, t1 and t4 represent the minimum and
the maximum right endpoints, respectively, as t1[E] < t3[E] < t0[E] < t4[E] hold.
For that particular arrangement of intervals inside the cluster it turns out that
the insertion of tuple t5, with t5[X] = t0[X] and t5[Y] 6= t0[Y], is refused since
its left endpoint satisfies t0[B] < t5[B] < t3[B]. By similar argument, it turns
out that the insertion of tuple t6, with t6[X] = t0[X], t6[Y] 6= t0[Y], is refused
since t1[E] < t6[E] < t4[E]. The last crucial insight highlighted by this example
is that these two ranges [t0[B], t3[B]] and [t1[E], t4[E]] are sufficient to determine
whether a tuple may be inserted in the cluster by checking when one of its end-
points happens to occur in the ranges considered, no matter how many tuples are
contained in the cluster. Indeed, if we add a new tuple t7 with t7[X] = t0[X] and
t7[Y] = t0[Y], it turns out that t7 is inserted and becomes part of the cluster.
Moreover, since t7[E] < t1[E] < t3[E] < t0[E] < t4[E] hold, we have that t7
substitutes t1 as the representative of the minimum right endpoint. Hence, tuples
that will be inserted afterwards will be checked against t7 instead of t1.

For the incremental verification of ITFD X →D Y , we exploit two properties
of D-clusters (see Definition 4) now discussed. It is easy to see that in every D-
consistent (we work under this assumption) compass structure G(P,C), it is possible
to give a total order < relation over D-clusters. For every pair of D-clusters Cl1 6=
Cl2 in G(P,C), we are able to verify whether Cl1 < Cl2 or Cl2 < Cl1, considering
at most four tuples per cluster (called cluster generators), without any concern

I0

I1

starting scenario,
the instance satisfies ITFD X →O Y

I0

I1

I2

insertion of I2 is forbidden

I0

I1

I3

insertion of I3 is allowed

I0

I1

I3
I4

insertion of I4 is forbidden

I0

I1

I3I5

insertion of I5 is allowed

Fig. 8 An example of how tuple insertion is constrained when the instance has to satisfy
ITFD X →O Y

for the number of tuples that a cluster contains. By restricting ourselves only to
cluster generators in order to represent clusters, we can determine:

(i) the ordering relation among D-clusters,
(ii) whether a point is in or out a given D-cluster,
(iii) whether a point outside a given D-cluster belongs to a greater/lesser D-

cluster or it originates a new D-cluster.

Thus, we build a B-tree BTD, where keys are the set of cluster generators and the
value is the tuple of attribute values t[Y] of tuples t in the cluster, which is unique
under the assumption that G(P,C) is D-consistent. Every tuple t to be inserted is
checked against BTD to verify if it belongs to a cluster: If so, when t[Y] agrees
with the value c of the cluster found, then t is inserted; otherwise it is refused. If
t represents a new stand-alone cluster, then we do not need any further checking,
and t is inserted in r together with a new key-value element in BTD representing
the D-cluster originated by t.

Checking X →O Y : Fig. 8 depicts instance r, which satisfies ITFD X →O Y .
Tuples t0 and t1 with t0[X] = t1[X] differ for the values of the Y attributes (i.e.,
t0[Y] 6= t1[Y]), but ITFD X →O Y is still satisfied since I0 does not overlap I1 and
vice versa. If tuple t2 with t2[Y] = t0[Y] is inserted and both I0 O I2 and I1 O I2
hold, then such an insertion is refused. A similar tuple t3 with t3[Y] = t0[Y] and
I0 O I3, but neither overlapping nor overlapped by t1, is allowed for insertion (and
thus inserted) in r. Let us now consider tuple t4 with t4[Y] = t1[Y]. If we plan to
insert it at this point, we have that the insertion of t4 would not be refused by the
presence of t0, as I4 does not overlap and is not overlapped by I0. However, it would

be refused by the presence of the newly inserted tuple t3. Indeed, t3[Y] 6= t4[Y]
holds and the associated interval I3 is overlapped by I4. This suggests that a tuple
t whose interval is overlapped by t1 must have t[Y] = t1[Y] and t[E] ≤ t3[B]. That
is so for t5, which is successfully inserted since its associated interval I5 does not
overlap (and is not overlapped by) I3.

For the incremental verification of ITFD X →O Y , we make use of two B-trees
BTH and BTV for each tuple of values of X attributes in r. These two B-trees
operate in a symmetrical way. When a new tuple t has to be inserted in r, B-tree
BTV allows us to efficiently check whether intervals (if any) that are overlapped
by [t[B], t[E]] share the same values for Y attributes. B-tree BTH operates in a
symmetric way to deal with intervals that possibly overlap [t[B], t[E]]. Such a
dichotomy allows us to have a more efficient and simple representation for the O-
consistent compass structures. For example, let us consider the case of B-tree BTV ,
which deals only with intervals that are overlapped by the interval associated with
tuple t candidate for insertion. If we focus only on the overlapped-by relation, the
compass structure is partitioned into vertical “stripes” identified by ranges [lb, ub]
over the set of endpoints of tuples in r (all tuples have the same attribute values
for X associated with BTV). Each vertical stripe is represented in the B-tree BTV
by using its range [lb, ub] as key (stripes are non-overlapping and so a trivial total
order is given by the total order on their first endpoint). The corresponding value
is composed by tuple c of values for Y attributes, and by two limit coordinates f
and l (horizontal stripes are stored in BTH in the very same way). Based on how
relation O partitions the compass space, coordinate f identifies an upper limit for
t[E] of a (possibly inserted) tuple t with lb ≤ t[B] ≤ ub: if t[E] ≤ f , any values
are allowed for t[Y]. Coordinate l identifies a further limit for t[E]: a tuple t with
lb ≤ t[B] ≤ ub and f < t[E] ≤ l must have t[Y] equal to c to be considered for
insertion. Finally, the insertion of a tuple t such that lb ≤ t[B] ≤ ub and t[E] > l
is refused (constraints provided by BTH are symmetric). Intuitively, if the tuple t
considered has t[E] below or equal to f , there are no tuples overlapped by t and,
thus, no constraints are given for t[Y]. If t[E] is between f and l, t has to share the
same tuple of values c for t[Y] with the other tuples already in r and overlapped
by t. If t[E] is above l, then there are two groups of tuples with different values
for Y overlapped by t and, thus, t cannot be considered for insertion as the given
ITFD would be violated. A tuple t can be inserted in r without violating ITFD
X →O Y if and only if t, checked against both BTV and BTH , does not generate
any contradiction with respect to the constraints considered.

The correctness of the algorithms we will discuss in detail in the following
sections is grounded on the fact that we

– adopt the widely known and sound B-trees as index structures (with the related
search/update algorithms) [30],

– use a representation of relation instances based on compass structures, and
– for such structures we formally proved the equivalence between a ∼-consistent

compass structure and the ITFD satisfaction for the corresponding instance.

In the following algorithms, B-trees are used for storing sets of tuples in their
nodes. Usually, the key of the node represents some total linear order given over
the tuples, depending on the interval relation ∼ in the considered ITFD X →∼ Y .
For instance, we will see in the case of starts interval relation how such key is
the attribute B. Partitioning r into sets that share the same value for attribute B

ITFD tuple insertion tuple deletion ITFD satisfaction checking
X →S Y O(log(|r|)) O(log(|r|)) O(|r| · log(|r|))
X →F Y O(log(|r|)) O(log(|r|)) O(|r| · log(|r|))
X →B Y O(log(|r|)) O(log(|r|)) O(|r| · log(|r|))
X →M Y O(log(|r|)) O(log(|r|)) O(|r| · log(|r|))
X →D Y O(log(|r|)) O(|r|) O(|r| · log(|r|))
X →O Y O(log(|r|)) O(|r|) O(|r| · log(|r|))

Table 1 The complexities for the tuple insertion, deletion, and ITFD satisfaction checking,
by the proposed index-based incremental verification of ITFDs

provides us a natural total order for the set of such partitions, which is the linear
order on the values of B. The value stored in the node is the pair represented
by the value t[Y] for some t ∈ r, which is unique since all the tuples that share
the same value for the attributes X and B must share the same value for Y to
satisfy ITFD X →S Y . Moreover the value of the node also stores the number of
tuples that share the same value for the attribute B to deal efficiently with the
deletion operation. In some other cases, we use additional B-trees for performing
fast search on such representations of grouped and totally ordered sets of tuples.
Let us, for example, consider the case of the during interval relation: we have
that tuples are grouped into clusters, which may be seen as monochromatic (all
the points inside a cluster have the same color) hourglass-shaped regions in the
compass representation of intervals. Such clusters are totally linearly ordered and
each cluster can be uniquely identified by two points in the compass structure
and by its color. Therefore, the linear order among clusters may be stored in a
B-tree with key-value pairs where the key consists of the two points that identify
the cluster and the value is the color of all points of the cluster. At runtime, the
insertion of a tuple may cause consecutive clusters to be merged into a single
one. In such a case, the considered tuple belongs to multiple consecutive clusters
and we have to verify that the color of each of them agrees with the color of the
tuple. Such an operation is expensive and may lead to a linear complexity in the
size |r|. We take advantage of the main property that the clusters to consider are
consecutive in the order. To keep the insertion time logarithmic, we make use of
an additional B-tree where each node contains the first and the last element of a
maximal sequence of consecutive clusters which share the same color. A tuple is
allowed for insertion if it belongs to at most one of such sequences; otherwise, its
insertion would merge clusters with different colors. Once we have verified that
the tuple can be inserted, we have to modify the two B-trees and, in the case the
tuple causes the merging of some cluster, it may happen that we have to merge
a linear number of nodes in the B-tree for clusters (in the B-tree for sequences of
clusters at most one node is modified or inserted). We exploit again the fact that
affected clusters are consecutive and thus in the B-tree we can tailor a subtree that
represents such a set of clusters which leads to a merging operation in logarithmic
time. The fact that we consider only consecutive nodes in a B-tree is intensively
used also in the case of relation overlaps where we slightly modify the B-tree
structure by adding labels on some edges of the B-tree to represent a constraint
that holds on all the nodes of the subtree rooted in the target node of the edge.

Let us conclude this section by overviewing algorithmic complexity for ITFD
incremental verification. As we already noted, we will have a forest of B-trees, one

for each distinct tuple of values for attributes X (each B-tree in its turn could be
referenced by an overall indexing structure on X values). The introduced B-trees
are organized in order to guarantee that both checking whether or not r ∪ {t}
satisfies X →∼ Y and (hopefully) updating B-trees to represent r ∪ {t} will be
executed in logarithmic time with respect to |r|. These two operations correspond
to tuple insertion, for which the complexity is logarithmic in |r| for every ITFD
X →∼ Y with ∼ ∈ {S, F,B,M,D,O}, as summarized in Table 1. The other
operation on instances is tuple deletion3. Such an operation may appear simpler
than tuple insertion by observing that if r satisfies X →∼ Y then r \ {t} for
every t ∈ r still satisfies X →∼ Y . Some complications may arise in updating
the suitable B-trees owing to the particular data structures adopted for making
tuple insertion logarithmic. Considering Table 1, we can easily notice that ITFDs
X →D Y and X →O Y present a linear worst-case complexity for tuple deletion.
Therefore, removing a tuple t may affect a linear portion of the B-tree storing
the compass structure for ITFD X →∼ Y and attribute values t[X]. It is easy to
observe that the consistent maintenance of data structures allowing faster tuple
insertion produces slower tuple deletion, when the overall instance must satisfy
ITFD X →∼ Y . We plan to deal with these complexity issues in the future. Here,
we focus on keeping tuple insertion logarithmic.

The incremental ITFD verification may be used also for checking ITFD satis-
faction of the full relation instance. To this end, one can trivially build an algorithm
to check whether an instance r satisfies some ITFD X →∼ Y by simply starting
with an empty relation r′ and incrementally performing tuple insertion in r′ for
every tuple t ∈ r. If there exists a tuple t which is refused, then we can conclude
that r does not satisfy X →∼ Y . Otherwise, if the procedure terminates with
r′ = r, we can conclude that r satisfies X →∼ Y . Since this algorithm iterates |r|
times tuple insertion, we can conclude that its complexity is O(|r| · log(|r|)) for
every ITFD X →∼ Y with ∼ ∈ {S, F,B,M,D,O}, as summarized in Table 1.

5.3 Verifying satisfaction of X →S Y and X →F Y

Verifying ITFD X →S Y is straightforward because of the particular shape of the
corresponding compass structures. In fact, given a S-consistent compass structure
G(P,C), the closures of clusters in it represent vertical lines. Thus, it suffices to keep
track, for every cluster of points (x, y) in G(P,C), of the starting point x and its color
G(P,C)(x, y) (both of them are common by definition to all the points of the cluster),
and the number of points corresponding to intervals starting at x. Fig. 9 depicts
an example on how this information is represented in a B-tree BTS4. Basically, a
key of the B-tree is the first coordinate x of the corresponding cluster, while the
value associated with the key is the pair (color , counter) consisting of the color of
the cluster and of the number of points which share both the same color and the
same x-coordinate x (i.e., are in the represented cluster): color = G(P,C)(x′, y′) for
any (x′, y′) ∈ P with x′ = x and counter = |{(x′, y′) | x′ = x∧ (x′, y′) ∈ P}|. When
a tuple is inserted, we have to consider the B-tree corresponding to the compass

3 Here we assume that the update of a tuple t to a tuple t′ in instance r simply consists of
the execution of the deletion of t in r immediately followed by insertion of t′ in r \ {t}.

4 In the following figures, to simplify the representation, each node (i.e., block) may contain
up to 2 key-value pairs and 3 pointers to child nodes.

(, 10)

1

(, 5)

2

(, 5)

3

(, 4)

4

(, 3)

5

(, 3)

6

3, (, 5) 6, (, 3)

1,(, 10) 2, (, 5)

4, (, 4) 5, (, 3)

Fig. 9 A B-tree representing the needed information for keeping a compass structure G(P,C)
S-consistent

structure for values of attributes X corresponding to the X values of the given
tuple. On this B-tree, the coordinate x corresponding to the starting time of the
tuple is checked against the keys of the B-tree. If a pair (x, (color, counter)) is
found, we may have two different situations. If the color of the tuple (i.e., values
of attributes Y) is equal to color, then counter is incremented and the tuple is
allowed to be inserted into the current database instance. Otherwise, the insertion
is refused as the tuple violates ITFD X →S Y . If x is not found as a key of the B-
tree, then the pair (x, (color, 1)) is suitably inserted in the B-tree and the tuple is
allowed to be inserted into the current instance. As with the tuple deletion/update,
it suffices to search for the coordinate x in the right B-tree BTS and consider the
key-value pair (x, (c, counter)). If counter is equal to 1, then such a pair is removed
from BTS ; otherwise it is updated to (x, (c, counter − 1)).
The same technique may be applied to verify ITFD X →F Y . In this case, B-
tree keys and values represent clusters of points on a horizontal line. That is, a
key of the B-tree is the coordinate y of the corresponding cluster, while the value
associated with the key is the pair (color, counter) with color = G(P,C)(x′, y′) for
any (x′, y′) ∈ P with y′ = y and counter = |{(x′, y′) | y′ = y ∧ (x′, y′) ∈ P}|.

5.4 Verifying satisfaction of X →B Y

Checking satisfaction of X →B Y is less easy than the previous case. First of all,
we make use of four B-trees BTS , BTF , BTI(S), BTI(F) for each needed compass
structure. For all these B-trees, the order for the whole key is lexicographic, given

4

1

5

2

7

3

6

3, , (1)

1, , (1)

2, , (1) 3, , (1)

BTS

6, , (1)

4, , (1) 5, , (1) 7, , (1)

BTF

[6, 6],

[4, 4],

[5, 5],

[7, 7],

BTI(F)

[3, 3],

[1, 2], [3, 3],

BTI(S)

Fig. 10 An example of B-trees, needed for representing the necessary information for keeping
a compass structure G(P,C) B-consistent

an arbitrary fixed-a-priori order over colors. Fig. 10 depicts an example of com-
pass structure for 4 nodes (i.e., tuples) and the related B-trees. B-trees BTI(S) and
BTI(F) primarily serve to keep verification time logarithmic. They store the max-
imal ranges for x-coordinates (i.e., starting time points) and y-coordinates (i.e.,
ending time points) corresponding to intervals sharing (without any “interrupting”
interval) the same color, respectively. B-trees BTS and BTF are auxiliary structures
used to efficiently update main indexes BTI(S) and BTI(F). B-trees BTS and BTF
store in their key-value pairs the information about the number of points with the
same color starting and finishing at a given time, respectively. The key-value pair
for BTS is a pair ((x̄, c), counter) with counter = |{(x, y) | x = x̄ ∧ G(P,C)(x, y) =
c}|. In a symmetric way, the key-value pair for BTF is a pair ((ȳ, c), counter) with
counter = |{(x, y) | y = ȳ ∧ G(P,C)(x, y) = c}|. The key of BTI(S) is a range-color
pair ([lb, ub], c) and no values need to be associated with keys for this B-tree:

– All points (x, y) with lb < x < ub, for every y, are colored with c;
– There exists y for which G(P,C)(lb, y) = c, and there exists y for which G(P,C)(ub,
y) = c;

– lb is the x-coordinate for which there exists (lb, y) ∈ P such that either lb is
the minimum x-coordinate of the compass structure, or there exists x′, x′ < lb,
that is the maximum point for which there exists (x′, y′) ∈ P for some y′ with
color c′ 6= c;

– ub is the x-coordinate for which there exists (ub, y) ∈ P such that either ub
is the maximum x-coordinate of the compass structure, or there exists x′′,

x′′ > ub, that is the minimum point for which there exists (x′′, y′′) ∈ P for
some y′′ with color c′ 6= c.

From the definition, it turns out that ranges in the B-tree are non-intersecting
(they could possibly share one endpoint). Thus, we can order them totally by
looking at their start endpoints.

The definition of the key-value pair for the tree BTI(F) is a symmetric variant
of the one for BTI(S) simply obtained using the y-coordinate. The key-value pair

for BTI(F) is a pair range-color ([lb, ub], c)5 (without any associated value):

– All points (x, y), with lb < y < ub and for every x, are colored with c;
– There exists x for which G(P,C)(x, lb) = c, and there exists x for which G(P,C)(x,
ub) = c;

– lb is the y-coordinate for which there exists (x, lb) ∈ P such that either lb is
the minimum y-coordinate of the compass structure, or there exists y′, y′ < lb,
that is the maximum point for which there exists (x′, y′) ∈ P for some x′ with
color c′ 6= c;

– ub is the y-coordinate for which there exists (x, ub) ∈ P such that either ub
is the maximum y-coordinate of the compass structure, or there exists y′′,
y′′ > ub, that is the minimum point for which there exists (x′′, y′′) ∈ P for
some x′′ with color c′ 6= c.

The algorithm is quite straightforward. Suppose that we want to update the
database with a tuple and that it corresponds to updating the suitable compass
structure G(P,C) with a point p = (x, y) with color c:

1. We check y against BTI(S) and we refuse the tuple if one of two cases arises: (i)
there exist at least two keys ([lb′, ub′], c′) and ([lb′′, ub′′], c′′) with y < lb′ ≤ lb′′,
so that c′ 6= c′′; (ii) there exists a key ([lb′, ub′], c′) in BTI(S) with y < lb′ and
c′ 6= c;

2. We check x against BTI(F) and we refuse the tuple if one of two cases arises: (i)
there exists at least two keys ([lb′, ub′], c′) and ([lb′′, y′′], c′′) with ub′′ ≤ ub′ < x,
so that c′ 6= c′′; (ii) there exists one key ([lb′, ub′], c′) in BTI(S) with ub′ < x
and c′ 6= c;

3. If the tuple passes the two previous checks, it has to be inserted into the
compass structure and the four B-trees must be updated accordingly. If there
exists a node with key-value pair ((x, c), n) in BTS , then we update such a
pair to ((x, c), n + 1); otherwise we insert ((x, c), 1) in BTS . If there exists
a node with key-value pair ((y, c), n) in BTF , then we update such a pair
to ((y, c), n + 1); otherwise we insert ((y, c), 1) in BTF . If there exists a key
([lb′, ub′], c) in BTI(S) with lb′ ≤ x ≤ ub′, the B-tree does not need updates.
If there exists a key ([lb′, ub′], c′) in BTI(S) with lb′ ≤ x ≤ ub′ and c′ 6= c, let
xn and xp be the coordinates in BTS such that xp is the maximum point with
lb′ ≤ xp ≤ x (i.e., no points in between xp and x) and xn is the minimum
point with x ≤ xn ≤ ub′ (i.e., no points in between x and xn). We remove
node ([lb′, ub′], c′) and insert nodes ([x, x], c), ([lb′, xp], c′). If lb′ < ub′, we also
insert ([xn, ub

′], c′). BTI(F) is updated in a symmetric way using BTF .

5 It is worth noting that the range [lb, ub] is related in this case to the y-coordinate. Thus,
BTI(F) characterizes points (x, y) similarly to BTI(S), but considering the y-coordinate instead
of the x-one, as it is highlighted in the corresponding items.

Consider now the deletion/update operation and suppose that we want to delete
a tuple corresponding to a point (x, y) with color c. First, x is checked on B-tree
BTS and once we have found the key-value pair ((x, c), counter), two cases may
arise:

– If counter > 1, then it is updated to ((x, c), counter − 1);
– If counter is equal to 1, then the pair is removed from BTS . In such a case, if

a key ([x, ub′], c) is found in BTI(S) and x = ub′, then ([x, ub′], c) is removed
from BTI(S). On the other hand, if x < ub′ for key ([x, ub′], c) found in BTI(S),
let ((x′, c), counter′) be the key-value pair in BTS such that x < x′ and there
is no node ((x′′, c), counter′′) with x < x′′ < x′ (i.e., x′ is the minimum x-
coordinate greater than x). Key ([x, ub′], c) in BTI(S) is updated to ([x′, ub′], c).
Similarly, if key ([lb′, x], c) is found in BTI(S) and x = lb′, then key ([lb′, x], c) is
removed from BTI(S). If key ([lb′, x], c) is found in BTI(S) and lb′ < x, then let
((x′, c), counter′) be the key-value pair in BTS such that x′ < x and there is no
node ((x′′, c), counter′′) with x′ < x′′ < x (i.e., x′ is the maximum x-coordinate
less than x). Key ([lb′, x], c) is updated to ([lb′, x′], c).

The symmetric procedure is applied to BTF and BTI(F) using y.

5.5 Verifying satisfaction of X →M Y

Verifying the satisfaction of ITFD X →M Y is similar to that of X →S Y (,
though a little bit more complex.) Given an M-consistent compass structure G(P,C),
we associate with every coordinate w having a point (w, y) or (x,w) in P a pair
of sets [CwL , CwR], where CwL = {(c, n) | (x, y) ∈ P ∧ x = w ∧ G(P,C)(x, y) = c ∧
n = |{(x, y) | x = w ∧ G(P,C)(x, y) = c}|} and CwR = {(c, n) | (x, y) ∈ P ∧ y =
w ∧ G(P,C)(x, y) = c ∧ n = |{(x, y) | y = w ∧ G(P,C)(x, y) = c}|}. They keep the
information for each color about the number of points with w as x-coordinate and
as y-coordinate, respectively. It is easy to prove for every M-consistent compass
structure that the following property holds:

Property 1 Given an M-consistent compass structure G(P,C), for every coordinate
w for which there exists a point (w, y) or a point (x,w) in P, we have that sets
CwL 6= ∅ and CwR 6= ∅ are both singleton sets CwR = {(c, n)}, CwL = {(c,m)}, and
their elements share the same color.

Thus, we represent our compass structure as a B-tree BTM , where the key is
composed by the triple (w, direction, color) and the value is n, where direction ∈
{L,R} and (color, n) ∈ Cwdirection. The key values are lexicographically ordered
(we assume that L < R and that there is an arbitrary a-priori fixed linear or-
der on colors). Suppose that we want to insert a point p = (x, y) with color c,
corresponding to a given tuple, in a M-consistent compass structure.

Then we have to look for four nodes in BTM and apply the following procedure:

1. If there exist nodes ((x,R, c′),m) or ((y, L, c′),m) for some m and some c′ 6= c
in BTM , then we refuse the insertion of the tuple corresponding to p = (x, y)
with color c;

2. If nodes considered in the previous step do not exist, then if there exists node
((x, L, c),m) in BTM , we update it to ((x, L, c),m + 1); otherwise we insert

[∅, {(1,),(1,)}]1

1

[{(2,)},{(1,)}]3

3

[{(1,)},{(1,)}]3.5

3.5

[∅, {(1,)}]1.5

1.5

[{(1,), {(2,)}]4

4

[{(1,)}, ∅]5.5

5.5

[{(1,), (1,)}, ∅]7

7

[{(1,)}, ∅]5

5

[∅, {(1,)}]2

2

[{(1,)}, {(1,)}]6

6

[{(1,)}, {(1,)}]2.5

2.5

3, L, , (2) 5.5, L, ,(1)

1.5, R, , (1) 2.5, R, ,(1) 3.5, R, , (1) 5, L, , (1) 7, L, , (1)

1, R, , (1)

1, R, , (1)

2, R, , (1)

2.5, L, , (1)

3, R, , (1)

3.5, L, , (1)

4, L, , (1)

4, R, , (2)

6, L, , (1)

6, R, , (1)

7, L, , (1)

Fig. 11 A B-tree representing the needed information for keeping a compass structure G(P,C)
M-consistent

node ((x, L, c), 1) in BTM . Moreover, if there exists node ((y,R, c),m) in BTM ,
we update it to ((y,R, c),m+1); otherwise we insert node ((x,R, c), 1) in BTM .

Consider now the deletion/update operation and suppose that we want to delete
a tuple corresponding to a point (x, y) with color c: we have to consider nodes
((x, L, c), n) and ((y,R, c),m). If n = 1, we delete node ((x, L, c), n); otherwise we
update it to ((x, L, c), n− 1). If m = 1, we delete node ((y,R, c),m); otherwise we
update it to ((y,R, c),m− 1).

Fig. 11 represents a compass structure with 10 nodes, the related sets CwL and
CwR , and the corresponding B-tree for verifying M-consistency.

5.6 Verifying satisfaction of X →D Y

We now focus on the more complex cases of D-consistency and O-consistency and
the corresponding compass structures and B-trees. For D-consistency, the shape

CL1
D

CL2
D

CL3
D

CL4
D

yb

xb

xt

yt

CL5
D

CL6
D

CL7
D

Cl3D, () Cl6D, ()

Cl1D, () Cl2D, ()

Cl4D,() Cl5D, ()

Cl7D, ()

[Cl5D, Cl
6
D], ()

[Cl1D, Cl
1
D], () [Cl2D, Cl

4
D], () [Cl7D, Cl

7
D], ()

Fig. 12 B-trees representing the needed information for keeping a compass structure G(P,C)
D-consistent

CLD

yb

xb

xt

yt

Fig. 13 An example on how delete operation may be expensive in our compass representation
of clusters. If we delete the point on the top-left of the cluster we generate a number of clusters
which is linear in the number of points in it

of the closure of a D-cluster ClD can be expressed as

closure(ClD) = closureD({(xb, yb)}) ∪ closureD({(xt, yt)})∪
(closureO({(xb, yb)}) ∩ closureO({(xt, yt)})),

where xb = min{x|(x, y) ∈ ClD}, yb = min{y|(x, y) ∈ ClD}, xt = max{x|(x, y) ∈
ClD}, and yt = max{y|(x, y) ∈ ClD}.

Intuitively, to know the closure of a D-cluster, it is enough to derive the closures
of two singletons, i.e., the one containing only the “synthetic” interval correspond-
ing to (xb, yb), which is built using the minimum start and end of cluster intervals,
and the other one corresponding to (xt, yt), which built using the maximum start
and end of cluster intervals, respectively. We call the pair of points gen(ClD) =
((xb, yb), (xt, yt)) the generation pair for ClD. The shape of D-clusters is hourglass-
like, as depicted in Figs. 12 and 13, where the neck corresponds to the position of
the generation pair. Fig. 12 depicts the closures of 7 D-clusters. For cluster CL4

D

the generation pair is explicitly represented together with points of the cluster.

The following property holds for generation pairs of D-clusters of a D-consistent
compass structure:

Property 2 Given a D-consistent compass structure G(P,C) and two D-clusters ClD,
Cl′D of the structure with their generation pairs gen(ClD) = ((xb, yb), (xt, yt)) and
gen(Cl′D) = ((x′b, y

′
b), (x

′
t, y
′
t)), one of the following conditions holds:

– gen(ClD) = gen(Cl′D);
– (xt, yt)B(x′b, y

′
b) or (x′t, y

′
t)B(xb, yb);

– (xt, yt)O(x′b, y
′
b) or (x′t, y

′
t)O(xb, yb).

This property provides us with a natural total linear order ≤D between D-clusters.
Formally, given a D-consistent compass structure G(P,C) and two D-clusters ClD,
Cl′D with generation pairs gen(ClD) = ((xb, yb), (xt, yt)) and gen(Cl′D) = ((x′b, y

′
b),

(x′t, y
′
t)), we have that ClD <D Cl′D if and only if (xt, yt) B (x′b, y

′
b) or (xt, yt)

O (x′b, y
′
b). Checking if a point p = (x, y) belongs to closureD(ClD) of some clus-

ter ClD can be done in constant time having the generation pair gen(ClD) =
((xb, yb), (xt, yt)) for ClD. Indeed, it is enough to check whether (x < xt ∧ y >
yb) ∨ (x > xb ∧ y < yt). Given a generation pair gen(ClD) = ((xb, yb), (xt, yt)) for
a cluster ClD, we denote the point (xb, yb) by ⊥(ClD) and the point (xt, yt) by
>(ClD).

To consistently maintain a compass structure D-consistent, we make use of
B-trees BTD and BTI(D). BTD is a B-tree where the keys are generation pairs
representing clusters ClD of G(P,C). Thus, they are of fixed size regardless of how
many points are contained in clusters. The order between clusters is the given total
order ≤D. Values of both BTD and BTI(D) are the colours of clusters. BTI(D)

is a simple compact version of BTD. It simply stores “chunks” of consecutive
clusters in G(P,C) which share the same color. A key of such a B-tree is a range
[ClD, Cl′D] of generation pairs for two clusters with ClD ≤D Cl′D, while a value
is a color, i.e., the one shared by all clusters between ClD and Cl′D. Since these
chunks consist of consecutive clusters, the total order ≤D can be trivially adapted
to them. Moreover, we want to keep these chunks maximal, that is, for every key-
value pair ([ClD, Cl′D], c) in BTI(D), if there exists a key-value pair ([Cl′′D, Cl′′′D], c′)
where Cl′′D is the immediate successor of Cl′D in ≤D, then c 6= c′.

The main steps of the algorithm for checking whether a point p = (x, y) with
color c, representing the tuple to be inserted, may be inserted in a D-consistent
compass structure G(P,C), and for updating the corresponding B-trees BTD and
BTI(D) when the insertion is allowed, are as follows:

1. We check the coordinates of p against clusters in BTD. More precisely, we do
four search and obtain (if they exists) the following clusters:

(i) ClprevD , which is the maximum (in the order≤D) cluster such that>(ClprevD)
B p or >(ClprevD) O p,

(ii) ClnextD , which is the minimum (in the order ≤D) cluster such that p B
⊥(ClnextD) or p O ⊥(ClnextD),

(iii) ClminD , which is the minimum (in the order ≤D) cluster such that p ∈
closureD(ClminD),

(iv) ClmaxD , which is the maximum (in the order ≤D) cluster such that p ∈
closureD(ClmaxD).

The complexity of these operations corresponds to that of four simple search
operations in a B-tree (i.e., logarithmic in the number of blocks).

2. If ClminD and ClmaxD are undefined after the previous step, then p has occurred
in one of the free regions (e.g., the white rectangles in Fig. 12): thus, p can
be inserted and the key-value pair (((x, y), (x, y)), c) is inserted into BTD, rep-
resenting a new cluster ClpD. Now we have to consistently update BTI(D). We
check ClpD against BTI(D) and have the following cases:

(i) There exists two consecutive chunks ([ClD, Cl′D], c′) and ([Cl′′D, Cl′′′D], c′′)
with Cl′D <D ClpD <D Cl′′D. In this case, if c′ = c, then we substitute
([ClD, Cl′D], c′) with ([ClD, ClpD], c′) in BTI(D) (a symmetric operation ap-
plies if c′′ = c), while if c′ 6= c 6= c′′, then we insert a new chunk
([ClpD, Cl

p
D], c) in BTI(D) between ([ClD, Cl′D], c′) and ([Cl′′D, Cl′′′D], c′′);

(ii) There exists ([ClD, Cl′D], c′) with ClD <D ClpD <D Cl′D. In this case, if c′ =
c, we leave BTI(D) as it is. Otherwise, we replace ([ClD, Cl′D], c′) in BTI(D)

with three consecutive key-value pairs ([ClD, ClprevD], c′), ([ClpD, Cl
p
D], c),

and ([ClnextD , Cl′D], c′).

3. If ClminD and ClmaxD are defined, then p occurs almost in a cluster. If the color
of ClminD and the color of ClmaxD are both equal to c, we proceed; otherwise, we
refuse the insertion of the corresponding tuple. We then check [ClminD , ClmaxD]
against BTI(D): if there exists a chunk ([ClD, Cl′D], c) with ClD ≤D ClminD ≤D
ClmaxD ≤D Cl′D, then we proceed; otherwise, we refuse the insertion of the cor-
responding tuple. Suppose that such a chunk does exist and let ([ClD, Cl

′
D], c′)

and ([Cl′′D, Cl
′′′
D], c′′) be its immediate predecessor and successor, respectively:

if (>(Cl′D) B p ∨ >(Cl′D) O p) ∧ (p B ⊥(Cl′′D) ∨ p O ⊥(Cl′′D)), then the tuple
can be inserted; otherwise, it is refused. Moreover, let ⊥(ClminD) be the point
(xmin, ymin) and >(ClmaxD) be the point (xmax, ymax): if p is inserted, we have
to merge all clusters from ClminD to ClmaxD into a single node we name ClnewD .
It causes the merging of consecutive key-value pairs in BTD. Indeed, all the
key-value pairs between ClminD and ClmaxD are deleted and the new key-value
pair (((min(x, xmin),min(y, ymin)), (max(x, xmax), max(y, ymax))), c) is in-
serted in their place6. Finally, we update the chunk ([ClD, Cl′D], c) in BTI(D)

by replacing ClD with ClnewD , if and only if ClD = ClminD , and by replacing Cl′D
with ClnewD , if and only if Cl′D = ClmaxD .

For the deletion of a point (corresponding to a tuple), it is worth noting that
in the worst case this operation could lead to the creation of a linear number of

6 The operation of merging D-clusters implies the classic range deletion in a B-tree which
can be done in an efficient (logarithmic) way [14,15].

c3

c1

c1

c2

c3

c3

0.5 1 1.5 2 2.5 3 3.5 4 5 5.5 6 7

[0.5, 1](
limit: +∞
free: 7

color: c1

) [1, 1.5](
limit: 7

free: 6

color: c2

)

[1.5, 2](
limit: 6

free: 5

color: c3

)

[2, 2.5](
limit: 6

free: 5

color: c3

) [2.5, 3](
limit: 6

free: 5

color: c3

)

[3, 3.5](
limit: 5

free: 3.5

color: c1

)

[3.5, 4](
limit: 6

free: 5

color: c3

) [5, 5.5](
limit: 6

free: 5.5

color: c3

)

[6, 7](
limit: +∞
free: 7

color: c1

)

[4, 5](
limit: 6

free: 5

color: c3

) [5.5, 6](
limit: 7

free: 6

color: c2

)

Fig. 14 A B-tree representing the needed information for (partially) keeping a compass struc-
ture G(P,C) O-consistent: only BTV is depicted and the corresponding slices in the corresponding
compass structure are highlighted

clusters. As an example, Fig. 13 depicts a D-consistent compass structure and
the induced D-cluster. If the tuple corresponding to the top-left point needs to
be deleted, we have to represent in the suitable B-trees a cluster for each of the
remaining points as highlighted in the figure.

5.7 Verifying satisfaction of X →O Y

To check whether an O-consistent compass structure G(P,C) may be updated with
a point p = (x, y) having color c and representing a given tuple, we make use of
two B-trees BTV and BTH . Informally, when a new tuple p = (x, y) with color c is
inserted, BTV contains the needed data to check whether the tuple is consistent
with the tuples that overlap it. More precisely, we check that, for every (x′, y′) ∈ P
with x′ < x < y′ < y, condition G(P,C)(x′, y′) = c holds. An example of BTV
is depicted in Fig. 14. There we have to check the rectangles that contain the
new point and correspond to intervals overlapping the interval represented by this
point.

Given an O-consistent compass structure G(P,C), we define a (vertical) compass-
slice to be a pair of points [lb, ub] with lb < ub, such that there exist two points

(x′, y′), (x′′, y′′) ∈ P where (x′ = lb ∨ y′ = lb) ∧ (x′′ = ub ∨ y′′ = ub) and, for
each point (x, y) ∈ P, it holds x ≤ lb < ub ≤ y. Basically, a compass slice is a
pair of consecutive coordinates (i.e., no other point coordinates in between) in the
set collecting both the first and the second coordinates for all points in P. Each
vertical compass-slice may be characterized by three parts:

– the first one where a point can be added, no matter what its color is,
– the second one where a point can be added only if it shares the same color of

already existing points,
– and the third one where no points can be added, as they would be in an area

where points with different colours have to be considered.

These three parts correspond to three different situations:

(i) The tuple corresponding to the new point is not overlapped by any other
tuple, i.e., point of the structure.

(ii) The tuple corresponding to the new point is overlapped by other tuples cor-
responding to points with same color (i.e., the same values for attributes
Y).

(iii) The tuple corresponding to the new point is overlapped by other tuples cor-
responding to points with different colours (i.e., different values for attributes
Y), respectively.

A similar approach has to be taken for tuples that the new tuple overlaps.
This is done by using a the B-tree BTH which concerns horizontal compass-slices.
In the following, we will focus only on how to efficiently check consistency with
respect to BTV for points overlapped by the new point. The same operations can
be translated in a symmetric way to deal with BTH .

Given a compass slice [lb, ub], we define its color c, its free bound f and its
limit l as follows:

– f = min{y′|(x′, y′) ∈ P ∧ x′ ≤ lb ∧ y′ ≥ ub};

– l = min{y′|(x′, y′) ∈ P ∧ x′ ≤ lb ∧ y′ > ub ∧ ∃(x′′, y′′) ∈ P(x′′ ≤ lb ∧ ub ≤ y′′ <
y′ ∧ G(P,C)(x′′, y′′) 6= G(P,C)(x′, y′))}

– c = G(P,C)(x′, y′) where (x′, y′) ∈ P∧x′ ≤ lb∧y′ ≥ ub∧y′ = min{y′′|(x′′, y′′) ∈
P ∧ x′′ ≤ lb ∧ y′′ ≥ ub}.

When a point (x, y) is inserted, we look for the (unique) vertical slice [lb′, ub′],
which contains it (lb′ ≤ x ≤ ub′): the value of f for such slice determines the
maximum value that y may have in order to be consistent even if its color c is
different from the color c′ of the slice. If y > f , it must be c = c′. In any case,
y ≤ l because above l every insertion violates the consistency with respect to
the given ITFD since the point occurs in the intersection of two rectangles with
different colours. It would mean that there were two tuples of different colours both
overlapping the new tuple. We note that c and f always exist for every compass
slice [lb, ub], but l might not be defined (as in the case of slices [0.5, 1] and [6, 7]
in Fig. 14). In such cases we put l = +∞. We store the compass slices in BTV .
Each key is the corresponding slice itself [lb, ub] (the order is the underlying linear
order, since compass slices by definition do not intersect), and the value is the
triple (l, f, c).

Now consider the following property:

Property 3 Given an O-consistent compass structure G(P,C), if a tuple correspond-
ing to point (x, y) with color c is allowed to be inserted in G(P,C), then (i) either
there is no vertical compass slice [lb′, ub′] with lb′ < x < ub′, (ii) or there exists
a vertical compass slice [lb′, ub′] with color c′, free bound f and limit l, where
lb′ < x < ub′ and either y < f or c′ = c ∧ y < l.

This property gives the necessary but not sufficient condition to allow a tuple
to be inserted in an O-consistent compass structure. Indeed, we can define the
symmetric condition for horizontal slices (stored in BTH):

Property 4 Given an O-consistent compass structure G(P,C), if a tuple correspond-
ing to point (x, y) with color c is allowed to be inserted in G(P,C), then (i) either
there is no horizontal compass slice [lb′, ub′] with lb′ < y < ub′, (ii) or there exists
a horizontal compass slice [lb′, ub′] with color c′, free bound f and limit l, where
lb′ < y < ub′ and either x > f or c′ = c ∧ x > l.

Only with both these properties we do have a necessary and sufficient condition
to establish whether a tuple may be inserted in an O-consistent compass structure.

The insertion of a new tuple corresponding to point (x, y) with color c may
affect more than just the slice (if any) [lb′, ub′] with lb′ < x < ub′. Consider, for
example, the compass structure depicted in Fig. 14 and suppose we have all points
in BTV but the c1-coloured point (0.5, 7). What happens if we want to insert the
tuple corresponding to such point? Since it does not violate any constraint, we
can insert it. Such an insertion is critical from the point of view of the complexity.
Indeed, it may modify the limit l and the free bound f of all nodes in the tree.
In a naive way, one may be tempted to update the whole tree. However, it turns
out that slices that may be affected by the update are all contiguous, i.e., without
“holes” between them. In order to deal efficiently with such cases, we simply allow
pointers to have an (eventually empty) label consisting of a color c, a limit l, and a
free bound f , exactly like nodes in B-Tree BTV 7. If we have a pointer to a subtree
of BTV whose nodes are all affected by the new insertion, it suffices to label this
pointer with the triple relative to the newly inserted tuple and to take it into
account when verifying subsequent insertions (we shortly show how this is done).
In the following we will see how this modified B-tree works.

5.7.1 Searching through a BTV and updating it

Since the standard machinery of B-trees has been slightly modified, we show first
how to search through a BTV , taking into account labels on edges. We then ex-
plain how to consistently update labels for edges involved in the standard splitting
operation of a B-tree. Search through BTV for a suitable tuple insertion is straight-
forward and the modified algorithm is shown in Fig. 15. It is the standard B-tree
search enhanced with an additional check on edge labels. If the tuple satisfies all
conditions on key-value pairs and edge labels, the slice (if any) is returned and the
tuple is accepted for insertion; otherwise, the tuple is refused.

When a node must be split due to the excessive number of its key-value pairs,
then its median key-value pair is lifted to the parent node and the node is split.
Basically, the two pointers that surrounded the median node before the splitting

7 For sake of simplicity in Fig. 14 we represent a BTV without specifying labels for pointers.

remain unchanged in their labels and become the two extremes (one the smallest
and one the biggest) of the new nodes. The pointer to the old node is duplicated
and the two copies are the surrounding pointers for the lifted key-value pair in
the father node, as depicted in Fig. 16. Suppose that we have checked a tuple,
corresponding to a point (x, y) with color c, against both B-trees BTV and BTH
and no constraints are violated. We describe how to insert it in BTV (the insertion
in BTH is symmetric). The procedure is done in two phases.

– In the first one, we insert the new slices and modify slices [lb′, ub′] and [lb′′, ub′′],
if any, for which lb′ < x < ub′ and lb′′ < y < ub′′.

– In the second phase, after these insertions, we update the constraints on edges
and slices affected by the presence of the new point.

For the first phase we consider only the case in which both [lb′, ub′] and [lb′′, ub′′]
exist with values (l′, f ′, c′) and (l′′, f ′′, c′′), respectively (the remaining cases are
simpler and straightforward). Two cases may arise:

– [lb′, ub′] = [lb′′, ub′′]: in this case, we have that only one slice is “broken”. We
update [lb′, ub′] to [x, y], c′ to c, l′ to f ′ if c 6= c′ (otherwise unchanged), and f ′

to y. Then we insert two pairs with keys [lb′, x] and [y, ub′], respectively, with
the same value (l′, f ′, c′);

– [lb′, ub′] 6= [lb′′, ub′′]: in this case, we have ub′ ≤ lb′′. We update [lb′, ub′] to
[x, ub′], c′ to c, and l′ to f ′ if c 6= c′ (otherwise unchanged). Moreover, we update
[lb′′, ub′′] to [lb′′, y], c′′ to c, and l′′ to f ′′ if c 6= c′′ (unchanged otherwise).
Finally, we insert two new key-value pairs [lb′, x], with value (l′, f ′, c′), and
[y, ub′′], with value (l′′, f ′′, c′′).

Now the slices are updated and we then update the constraints on edges by
executing the algorithm shown in Fig. 17. It exploits labeled pointers to avoid
the exploration of the whole tree, as discussed for the example of Fig. 14. Note
that in the worst case there will be at most two descents in the B-tree affected
by constraint updates. Thus the cost remains logarithmic in the number of disk-
access operations. Deletion presents the same (worst case) difficulties we discussed
for the ITFD with relation D.

The goal of this algorithm is to update the key-value pairs of both nodes and
edge labels of B-tree BTV to guarantee that the next tuple insertions can consider,
if needed, the further constraint required by the tuple just inserted, which corre-
sponds to point (x, y) with color c. Let n be the current node. The algorithm starts
by exploring the tree from the root r (n = r). Let [lb1, ub1], . . . , [lbsize(n), ubsize(n)]
be the sequence of keys of n according to the order used by BTV (ubi ≤ lbi+1 for
each i = 1, . . . , size(n) − 1). Let P1, . . . , Psize(n)+1 be the sequence of the cor-
responding pointers to subtrees (Pi refers to a subtree with keys [lbj , ubj], where
ubi−1 ≤ lbj ≤ ubj ≤ lbi). If y ≤ lb1, the algorithm considers the subtree with slices
where both bounds are less than lb1 (first if instruction) using the correspond-
ing pointer P1 (pointing to the root of the considered subtree). By symmetry, if
ubsize(n) ≤ x, the algorithm considers the subtree with slices where both bounds
are greater than ubsize(n) (last if instruction), using the corresponding pointer
Psize(n)+1. If the two preceding conditions are false, pointers and key-value pairs
are considered according to the given order.

When the algorithm is running, slices have been already updated with values
x and y and so there does not exist an index i, i = 1, . . . , size(n) − 1, for which

Algorithm 5.1: OB-TREE-SEARCH(n, [x, y], c)

i← 1

while i ≤ size(n) ∧ ubi < x

do i← i+ 1

if i ≤ size(n) ∧ lbi < x < ubi

then


if (y < fi ∨ (c = ci ∧ y < li))

then return ([lbi, ubi], (li, fi, ci))

else return (false)
if leaf(n)

then return (null)

else if y < free(Pi) ∨ (c = color(Pi) ∧ y < limit(Pi))

then

do

{
n← DISK −READ(Pi)

return (OB-TREE-SEARCH(n, [x, y], c))

. . .

[lbi, ubi](
limit: li
free: fi
color: ci

)
. . .

. . .

(
limit: limit(Pi)

free: free(Pi)

color: color(Pi)

)

Fig. 15 The procedure for searching through a BTV

...

[lbi−1, ubi−1](
limit: li−1

free: fi−1

color: ci−1

) [lbi, ubi](
limit: li
free: fi
color: ci

)
...

...

[lbt−1, ubt−1](
limit: lt−1

free: ft−1

color: ct−1

) [lbt, ubt](
limit: lt
free: ft
color: ct

) [lbt+1, ubt+1](
limit: lt+1

free: ft+1

color: ct+1

)
...

(
limit: li
free: fi
color: ci

)

. . .

(
limit: limit(Pt)

free: free(Pt)

color: color(Pt)

)

. . .

(
limit: limit(Pt+1)

free: free(Pt+1)

color: color(Pt+1)

)

Before

...

[lbi−1, ubi−1](
limit: li−1

free: fi−1

color: ci−1

) [lbt, ubt](
limit: lt
free: ft
color: ct

) [lbi, ubi](
limit: li
free: fi
color: ci

)
...

...

[lbt−1, ubt−1](
limit: lt−1

free: ft−1

color: ct−1

) [lbt+1, ubt+1](
limit: lt+1

free: ft+1

color: ct+1

)
...

(
limit: li
free: fi
color: ci

) (
limit: li
free: fi
color: ci

)

. . .

(
limit: limit(Pt)

free: free(Pt)

color: color(Pt)

)

. . .

(
limit: limit(Pt+1)

free: free(Pt+1)

color: color(Pt+1)

)

After

Fig. 16 An example of splitting a BTV

lbi < x < ubi or lbi < y < ubi. This reduces the possible cases to consider. Turning
our focus on the for-cycle of the algorithm, if lbi is greater than or equal to x and
ubi is less than or equal to y, then slice [lbi, ubi] may be modified by the constraint
introduced by the last inserted tuple. In this case, we have to locally verify it as
in the following:

– If y < li and c 6= ci, the new limit li for the current slice becomes the greatest
value between y and fi.

Algorithm 5.2: OB-TREE-CONSTRAIN(n, [x, y], c)

if y ≤ lb1 ∧ ¬leaf(n)

then

{
n′ ← DISK-READ(P1)

OB-TREE-CONSTRAIN(n′, [x, y], c)

for i← 1 to size(n)

do



if x ≤ lbi ∧ y ≥ ubi

then



if y < li ∧ c 6= ci

then li = max(y, fi)

if (y < fi)

then

{
ci = c

fi = y

if x ≤ ubi ∧ y ≥ lbi+1

then



if y < limit(Pi+1) ∧ c 6= color(Pi+1)

then limit(Pi+1) = max(y, free(Pi+1))

if (y < free(Pi+1))

then

{
color(Pi+1) = c

free(Pi+1) = y

if (ubi < y < lbi+1 ∨ ubi < x < lbi+1)

then

{
n′ ← DISK-READ(Pi+1)

OB-TREE-CONSTRAIN(n′, [x, y], c)

if ubsize(n) < x ∧ ¬leaf(n)

then

{
n′ ← DISK-READ(Psize(n)+1)

OB-TREE-CONSTRAIN(n′, [x, y], c)

Fig. 17 The procedure for updating a BTV

– If y is less than fi, slice color ci is updated to the color associated with (x, y)
and fi takes value y.

If x ≤ ubi and y ≥ lbi+1, then the subtree referenced by Pi+1 contains slices
with keys [lb′, ub′] for which x ≤ lb′ ≤ ub′ ≤ y. Therefore, we should consider all
nodes of the subtree, as we did for the slices of the current node. Instead of this
expensive (in the number disk accesses) operation, we modify the label of pointer
Pi+1 as we did with the suitable key-value pairs of the current node. Modifying the
pointer label does not require any further disk access and is enough to guarantee
that the new constraint will be considered in the next tuple insertions, until a new
stronger constraint ultimately supersedes it.

The last if nested in the for-cycle represents the case where x and/or y are
between slices [lbi, ubi] and [lbi+1, ubi+1]. It happens only if ubi < lbi+1, so we
are in an internal node since slices in any leaf node are contiguous. In this case,
we recursively call the algorithm on the node pointed by Pi+1. To evaluate the
computational complexity of the algorithm, we have to take into account that
the three recursive calls are mutually exclusive. That is, for a given node n, the
algorithm is either called in the first if or in the last one or (possibly several times)
in the for-cycle. The recursive call in the for-cycle may occur at most two times for
the same node: a first time for x satisfying the condition and with a corresponding
pointer Px, and a second time for y satisfying the condition and with pointer Py,

x y

Px Py

Fig. 18 Nodes and pointers (highlighted in red) whose value may be affected by the propa-
gation of the constraint introduced by the insertion of a new point (x, y) with color c

and x < y. In this case, two different paths in the B-tree would be considered by
the algorithm. That may happen only for one (internal) node (the upper partially
filled node in the tree depicted in Fig. 18). In the nodes considered in Fig. 18,
y will be always greater that any bound of a slice in the subtree pointed by Px,
while x will be always less than any bound of any slice in the subtree pointed by
Py. Thus, in the worst case the number of accessed nodes will be twice as much
as the height of the B-tree (which is logarithmic with respect to the number of
nodes).

5.7.2 Dealing with the motivating example from clinical medicine

Let us now consider how to deal with insertion of tuples in the instance of Path-
Therapies depicted in Fig. 1. We will consider ITFD PatId →O Phys, we already
introduced and motivated in Sect. 3 and Sect. 4. Figs. 19, 20, 21, and 22 depict
B-trees corresponding to the instance in Fig. 1, assuming that tuples are inserted
according to the order induced by column #. For the patient with PatId = 1,
Figs. 19 and 20 depict B-tree BTV before and after the insertion of tuple #11,
where PatId = 1, Phys = Dorian, B = 1 and E = 18, respectively.

For the compass structure associated with the patient with PatId = 1 repre-
sented through B-trees BTH and BTV , when we insert tuple #11 we need to verify
whether it is possible to insert point (1, 18) with color Dorian and still maintain
an O-consistent compass structure (i.e., the corresponding instance satisfies ITFD
PatId →O Phys). The verification is performed by looking for the key [lbi, ubi]
in BTV with lbi ≤ 1 ≤ ubi and comparing the corresponding values fi, li with
18 and ci with Dorian. In our case, the considered slice has key [1, 2] and val-
ues l = +∞, f = 16, and c = Dorian. Thus, the insertion is fine with BTV . A
symmetric approach must be followed by looking for key [lbj , ubj] in BTH with
lbj ≤ 18 ≤ ubj and comparing the corresponding values fj , lj with 1 and cj with
Dorian. Even in this case, the insertion is fine with BTH . Thus, the tuple can
be inserted as it does not violate ITFD PatId →O Phys. The updated BTV and
BTH are depicted in Fig. 20 and Fig. 21, respectively. It is interesting to observe
that the x-coordinate 1 of the new tuple belongs to the leftmost slice [1, 2] in BTV ,
while the y-coordinate 18 of the new tuple belongs to slice [18, 19] in the rightmost
node of BTV . Thus, in a naive approach we should update each node of the B-tree

with the new induced constraint. Instead, we only modify nodes in the path from
the root to the node containing the slice related to the x-coordinate and nodes in
the path from the root to the node containing the slice related to the y-coordinate.
Indeed, as depicted in Fig. 20, nodes related to slices [8, 9], [10, 11], and [13, 15] are
not modified. Only labels of edges pointing to these nodes are modified as this is
does not require any further disk access since these labels are stored in the father
node.

We finish our discussion of O-consistent compass structures and related B-
trees BTH and BTV by showing for the instance of PathTherapies why both B-
trees BTH and BTV are needed to verify the satisfaction of the corresponding
O-based ITFD. Let us assume that point (17, 19) is coloured by c 6= Dorian. In
other words, suppose that tuple #6 in Fig. 1 has a value different from Dorian
for attribute Phys. It is easy to observe in Fig. 21 that if we changed the color
of point (17, 19), then the compass structure after the insertion of tuple #11
would not be O-consistent. From the standpoint of the checking algorithm, the
verification on B-tree BTV of Fig. 20 is still successful. In contrast, checking B-
tree BTH would highlight a constraint violation. Indeed, the compass structure
BTH would contain a slice [17, 19] with l = 0, f = 16, and c 6= Dorian, and so we
would have 17 < 18 < 19, 1 < f , and c = Dorian, inducing a constraint violation
on the BTH (cf. Property 4). Intuitively, BTV is used to verify the consistency of all
tuples holding on intervals that overlap with the interval of the inserted tuple. In
our case, there are no such tuples overlapping with the inserted one and thus there
is no constraint violation for BTV . Similarly, BTH is used to verify the consistency
of all tuples holding on intervals the interval of the inserted tuple overlaps with.
In our case, tuples corresponding to points (1, 18) and (17, 19) overlap and have
different colors and thus there is a constraint violation for BTH . Let us now consider
tuples related to patient with PatId = 2, depicted in Fig. 1. Now PatId is in the
antecedent of ITFD PatId →O Phys, so we have a different compass structure for
verifying O-consistency with respect to the given ITFD. The compass structure
considered and the corresponding B-tree BTV are shown in Fig. 22, before the
insertion of tuple #10, with PatId = 2, Phys = Reid , B = 8 and E = 14. Such
an insertion would produce an instance violating ITFD PatId →O Phys. Indeed,
slice [7, 9] has the same color c = Reid , but would not produce a consistent BTV
because E, which corresponds to the y-coordinate of the point we are considering,
is greater than the limit of slice [7, 9], being E = 14 and limit = 10. Indeed, the
inserted tuple corresponds to an interval overlapped by the interval corresponding
to a tuple with attribute Phys = Kelso, thus violating ITFD PatId →O Phys.

6 Discussion and conclusions

In this paper we have proposed a set of interval-based temporal functional de-
pendencies to express interval-based integrity constraints on temporal relational
data. We have discussed its expressiveness by means of some examples taken from
the clinical domain. Moreover, for each interval relation ∼ we have proposed suit-
able data structures, based on the widely known B-trees and an original spatial
representation of tuples through compass structures, with associated algorithms
to efficiently verify both in a static and in an incremental way whether a tem-
poral database instance r satisfies an ITFD based on ∼. We have shown that

Dorian

Cox

Turk

Cox

Turk

Dorian

1 2 3 8 9 1011 13 151617 19

[1, 2](
limit: +∞
free: 16

color: Dorian

) [2, 3](
limit: 16

free: 10

color: Cox

)
[8, 9](

limit: 16

free: 10

color: Cox

)

[3, 8](
limit: 10

free: 8

color: Turk

)

[9, 10](
limit: 16

free: 10

color: Cox

)

[10, 11](
limit: 16

free: 11

color: Cox

)

[11, 13](
limit: +∞
free: 16

color: Dorian

) [15, 16](
limit: +∞
free: 16

color: Dorian

)

[13, 15](
limit: 16

free: 15

color: Turk

)

[17, 19](
limit: +∞
free: 16

color: Dorian

)

Fig. 19 The compass structure and the corresponding BTV for managing ITFD PatId →O

Phys with PatId = 1 for the relation in Fig. 1 and before the insertion of tuple #11

the proposed ITFDs can express temporal FDs not expressible by point-based
TFDs [2,9,32,36]. Even though some normalizations have been proposed based on
(point-based) TFDs, TFDs have been mainly used as a way of expressing temporal
constraints on temporal relational databases [36]. Therefore, we have focused here
on the specification of (new) interval-based temporal constraints and on new algo-
rithms for the efficient verification of ITFD satisfaction. Thus, both the derivation
of all dependencies from a given initial set of TFDs, and the use of such TFDs for
normalization of temporal database schemata need further research.

A further planned step towards interval-based temporal functional dependen-
cies will be devoted to extending the proposed ITFDs and algorithms to deal
with multiple temporal granularities and with interval-based tuple evolutions,
similar to the Vianu’s (point-based) approach. For example, for multiple gran-
ularities as defined by Bettini et al. [2], we have to consider that intervals come
into play even to represent granules. By interpreting granules as intervals, we can
express granularity-based ITFDs in a coherent way with the proposed temporal

data model. That is, a database instance r of R satisfies an ITFD X →∼
1

G,∼2 Y

if for each pair of tuples t1 and t2 such that [t1[B], t1[E]] ∼1 [t2[B], t2[E]], there
exist a granule g of granularity G where [t1[B], t1[E]] ∼2 g ∧ [t2[B], t2[E]] ∼2 g
holds, and t1[X] = t2[X], then it is also true that t1[Y] = t2[Y]. For example, the
constraint “overlapping drug therapies within the same month for a given patient
must have the same physician” on our schema PatTherapies could be expressed
by ITFD PatId →O

Month,D Phys. Using the approach sketched here, we plan to

Dorian

Cox

Turk

Cox

Turk

Dorian
Dorian

1 2 3 8 9 1011 13 1516171819

[9, 10](
limit: 16

free: 10

color: Cox

)

[3, 8](
limit: 10

free: 8

color: Turk

) [11, 13](
limit: +∞
free: 16

color: Dorian

) [15, 16](
limit: +∞
free: 16

color: Dorian

)

[1, 2](
limit: +∞
free: 16

color: Dorian

) [2, 3](
limit: 16

free: 10

color: Cox

)

[8, 9](
limit: 16

free: 10

color: Cox

)

[10, 11](
limit: 16

free: 11

color: Cox

)

[13, 15](
limit: 16

free: 15

color: Turk

)

[17, 18](
limit: +∞
free: 18

color: Dorian

) [18, 19](
limit: +∞
free: 19

color: Dorian

)

(
limit: +∞
free: 18

color: Dorian

)
(
limit: +∞
free: 18

color: Dorian

)
(
limit: +∞
free: 18

color: Dorian

)

Fig. 20 The compass structure and the corresponding BTV for managing ITFD PatId →O

Phys with PatId = 1 for the relation in Fig. 1 after the insertion of tuple #11 with PatId =
1,Phys = Dorian and interval [1, 18]

extend the proposed ITFDs to even more general granularities. Algorithms need
to be suitably extended to support this.

For the clinical domain, we plan to implement the proposed algorithms and
evaluate them in different real-world clinical scenarios. Moreover, we plan to adapt
and extend the proposed techniques to data mining. Indeed, in the clinical domain
there is the need of mining temporal association rules among temporal data, which
is often characterized by intervals of validity. An ITFD may be regarded as a kind
of interval-based temporal association rule.

Acknowledgments

We would like to thank the anonymous reviewers who helped us with their con-
structive comments to reach this final version of our paper. We would also thank
guest editor Ben Moszkowski for his great care following the review phase by
offering many important and appreciated suggestions.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11),
832–843 (1983)

Dorian

Cox

Turk

Cox

Turk

Dorian
Dorian

1
2
3

8
9
10
11

13

15
16
17
18
19

[10, 11](
limit: 1

free: 9

color: Cox

)

[3, 8](
limit: 2

free: 3

color: Turk

) [13, 15](
limit: 1

free: 13

color: Turk

) [16, 17](
limit: 0

free: 1

color: Dorian

)

[1, 2](
limit: 0

free: 1

color: Dorian

) [2, 3](
limit: 1

free: 2

color: Cox

)

[8, 9](
limit: 1

free: 2

color: Cox

) [9, 10](
limit: 1

free: 9

color: Cox

) [11, 13](
limit: 0

free: 1

color: Dorian

) [15, 16](
limit: 0

free: 1

color: Dorian

)

[17, 18](
limit: 0

free: 17

color: Dorian

) [18, 19](
limit: 0

free: 17

color: Dorian

)

(
limit: −∞
free: 1

color: Dorian

) (
limit: −∞
free: 1

color: Dorian

) (
limit: −∞
free: 1

color: Dorian

)

Fig. 21 The compass structure and the corresponding BTH for managing ITFD PatId →O

Phys with PatId = 1 for the relation in Fig. 1 after the insertion of tuple #11 with PatId =
1,Phys = Dorian and interval [1, 18]

Kelso

Quinlan

Reid

1 4 5 7 9 10

Reid (8, 14)
NOT ALLOWED

[1, 4](
limit: +∞
free: 10

color: Kelso

) [4, 5](
limit: 10

free: 7

color: Quinlan

) [7, 9](
limit: 10

free: 9

color: Reid

) [9, 10](
limit: +∞
free: 10

color: Kelso

)

[5, 7](
limit: 9

free: 7

color: Quinlan

)

Fig. 22 An example of how insertion fails in the case of PatId = 2 of Fig. 1: a tuple with
color Reid is searched into the B-tree BTV using the first coordinate 9 and then the second
coordinate 14 is compared with the retrieved node n. As it exceeds the limit freen with a
different color for n (Kelso in this case), the tuple violates ITFD PatId →O Phy

2. Bettini, C., Jajodia, S.G., Wang, S.X.: Time Granularities in Databases, Data Mining and
Temporal Reasoning. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2000)

3. Böhlen, M.H., Jensen, C.S.: Sequenced semantics. In: Liu and Özsu [21], pp. 2619–2621

4. Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Nonsequenced semantics. In: Liu and Özsu
[21], pp. 1913–1915

5. Chittaro, L., Montanari, A.: Temporal representation and reasoning in artificial intelli-
gence: Issues and approaches. Ann. Math. Artif. Intell. 28(1-4), 47–106 (2000)

6. Combi, C.: Modeling temporal aspects of visual and textual objects in multimedia
databases. In: TIME, pp. 59–68. IEEE Computer Society (2000)

7. Combi, C., Degani, S., Jensen, C.S.: Capturing temporal constraints in temporal ER mod-
els. In: Q. Li, S. Spaccapietra, E.S.K. Yu, A. Olivé (eds.) ER, Lecture Notes in Computer
Science, vol. 5231, pp. 397–411. Springer (2008)

8. Combi, C., Keravnou-Papailiou, E., Shahar, Y.: Temporal Information Systems in
Medicine. Springer-Verlag New York, Inc., New York, NY, USA (2010)

9. Combi, C., Montanari, A., Sala, P.: A uniform framework for temporal functional depen-
dencies with multiple granularities. In: D. Pfoser, Y. Tao, K. Mouratidis, M.A. Nascimento,
M.F. Mokbel, S. Shekhar, Y. Huang (eds.) SSTD, Lecture Notes in Computer Science,
vol. 6849, pp. 404–421. Springer (2011)

10. Combi, C., Oliboni, B., Quintarelli, E.: Modeling temporal dimensions of semistructured
data. J. Intell. Inf. Syst. 38(3), 601–644 (2012)

11. Combi, C., Sala, P.: Temporal functional dependencies based on interval relations. In:
C. Combi, M. Leucker, F. Wolter (eds.) TIME, pp. 23–30. IEEE (2011)

12. Currim, F., Currim, S., Dyreson, C.E., Snodgrass, R.T., Thomas, S.W., Zhang, R.: Adding
temporal constraints to XML Schema. IEEE Trans. Knowl. Data Eng. 24(8), 1361–1377
(2012)

13. Currim, F., Ram, S.: Conceptually modeling windows and bounds for space and time in
database constraints. Commun. ACM 51(11), 125–129 (2008)

14. Hoffman, K., Mehlhorn, K., Rosenstiehl, P., Tarjan, R.E.: Sorting Jordan sequences in
linear time using level-linked search trees. Information and Control 68(1-3), 170–184
(1986)

15. Huddleston, S., Mehlhorn, K.: Robust balancing in B-trees. In: P. Deussen (ed.) Theoreti-
cal Computer Science, Lecture Notes in Computer Science, vol. 104, pp. 234–244. Springer
(1981)

16. Jensen, C.S., Snodgrass, R.T.: Temporal data models. In: Liu and Özsu [21], pp. 2952–2957

17. Jensen, C.S., Snodgrass, R.T.: Temporal database. In: Liu and Özsu [21], pp. 2957–2960
18. Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Extending existing dependency theory to tem-

poral databases. IEEE Trans. Knowl. Data Eng. 8(4), 563–582 (1996)

19. Khatri, V., Snodgrass, R.T., Terenziani, P.: Atelic data. In: Liu and Özsu [21], pp. 142–143
20. Khatri, V., Snodgrass, R.T., Terenziani, P.: Telic distinction in temporal databases. In:

Liu and Özsu [21], pp. 2911–2914

21. Liu, L., Özsu, M.T. (eds.): Encyclopedia of Database Systems. Springer US (2009)
22. Montanari, A., Puppis, G., Sala, P.: A decidable spatial logic with cone-shaped cardinal

directions. In: E. Grädel, R. Kahle (eds.) CSL, Lecture Notes in Computer Science, vol.
5771, pp. 394–408. Springer (2009)

23. Montanari, A., Puppis, G., Sala, P.: Maximal decidable fragments of Halpern and Shoham’s
modal logic of intervals. In: S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide,
P.G. Spirakis (eds.) ICALP (2), Lecture Notes in Computer Science, vol. 6199, pp. 345–
356. Springer (2010)

24. Shoham, Y.: Temporal logics in AI: Semantical and ontological considerations. Artif. Intell.
33(1), 89–104 (1987)

25. Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer (1995)
26. Terenziani, P., Snodgrass, R.T.: Reconciling point-based and interval-based semantics in

temporal relational databases: A treatment of the telic/atelic distinction. IEEE Trans.
Knowl. Data Eng. 16(5), 540–551 (2004)

27. Terenziani, P., Snodgrass, R.T., Bottrighi, A., Torchio, M., Molino, G.: Extending tem-
poral databases to deal with telic/atelic medical data. Artificial Intelligence in Medicine
39(2), 113–126 (2007)

28. Thalheim, B.: Entity-Relationship Modeling - Foundations of Database Technology.
Springer (2000)

29. Thalheim, B.: Integrity constraints in (conceptual) database models. In: R. Kaschek,
L. Delcambre (eds.) The Evolution of Conceptual Modeling, Lecture Notes in Computer
Science, vol. 6520, pp. 42–67. Springer Berlin / Heidelberg (2011)

30. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume II. Computer
Science Press (1989)

31. Venema, Y.: A modal logic for chopping intervals. J. Log. Comput. 1(4), 453–476 (1991)
32. Vianu, V.: Dynamic functional dependencies and database aging. J. ACM 34(1), 28–59

(1987)
33. Wang, X.S., Bettini, C., Brodsky, A., Jajodia, S.: Logical design for temporal databases

with multiple granularities. ACM Trans. Database Syst. 22(2), 115–170 (1997)
34. Wijsen, J.: Design of temporal relational databases based on dynamic and temporal func-

tional dependencies. In: Temporal Databases, pp. 61–76 (1995)
35. Wijsen, J.: Temporal FDs on complex objects. ACM Trans. Database Syst. 24(1), 127–176

(1999)

36. Wijsen, J.: Temporal dependencies. In: Liu and Özsu [21], pp. 2960–2966

37. Wijsen, J.: Temporal integrity constraints. In: Liu and Özsu [21], pp. 2976–2982

