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Abstract

REGISTRATION OF MEDICAL IMAGES FOR APPLICATIONS IN

MINIMALLY INVASIVE PROCEDURES

The registration of medical images is necessary to establish spatial correspon-
dences across two or more images. Registration is rarely the end-goal, but instead,
the results of image registration are used in other tasks.

The starting point of this thesis is to analyze which methods at the state of the art
of image registration are suitable to be used in assisting a physician during a mini-
mally invasive procedure, such as a percutaneous procedure performed manually or a
teleoperated intervention performed by the means of a robot.

The �rst conclusion is that, even if much previous work has be en devoted to de-
velop registration algorithms to be applied in the medical context, most of them are
not designed to be used in the operating room scenario (OR) because, compared to
other applications, the OR requires also a strong validation, real-time performance and
the presence of other instruments. Almost all of these algorithms are based on a three
phase iteration: optimize-transform-evaluate similarity. In this thesis, we study the fea-
sibility of this three steps approach in the OR, showing the limits that such approach
encounter in the applications we are considering. We investigate how could a sim-
ple method be realizable and what are the assumptions for such a method to work. We
then develop a theory that is suitable to register large sets of unstructured data extracted
from medical images keeping into account the constraints of the OR.

The use of the whole radiologic information is not feasible in the OR context,
therefore the method we are introducing registers processed dataset extracted from the
original medical images.

The framework we propose is designed to �nd the spatial corre spondence in closed
form keeping into account the type of the data, the real-time constraint and the presence
of noise and/or small deformations. The theory and algorithms we have developed are
in the framework of the shape theory proposed by Kendall in [58] and uses a global de-
scriptor of the shape to compute the correspondences and the distance between shapes.

Since the registration is only a component of a medical application, the last part of

the thesis is dedicated to some practical applications in the OR that can bene�t from

the registration procedure.
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Chapter 1

Introduction

Wir müssen wissen, wir werden

wissen.

David Hilbert

1.1 What is image registration?

Image registration is a method to align two or more images.Most of the times images

of the same scene are obtained at different times, from different perspectives or using

different modalities. Image registration is required to �n d the correspondences be-

tween the imaged objects and to recover the geometrical transformation that aligns the

images, so that the aligned images can be directly compared, combined and analyzed.

Main applications of image registration include medical imaging, remote sensing and

computer vision .

The simplest example of image registration is the rigid alignment where images

need to be rotated and shifted with respect to each other to achieve correspondence.

Another class of methods for image registration is the non-rigid transformation,

where two images are related through a non-rigid geometric transformation. This need

often arises in medical imaging, where an imaged body organ undergoes soft-tissue

type deformation. Non-rigid image registration is one of the key technologies in med-

ical image analysis together with image segmentation.
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1.2 Image registration in the OR: challenges and appli-

cations in minimally invasive procedures

The image registration in the OR is part of a larger system that comprises also other

key technologies:

• Medical imaging and low level image processing not comprising registration and

segmentation.

• Data visualization.

• Segmentation.

• Tracking systems.

• Medical robots.

• Human Computer Interaction (HCI).

This framework is needed to support minimally invasive techniques by replacing

direct visual feedback in the open surgery with indirect, image-based, feedback.

These systems are also designed to mitigate the learning curve for minimally inva-

sive procedures, to reduce the variability of the outcome and to enable the development

of new procedures, allowing the physicians to perform procedures that were previously

considered too dangerous or not feasible before.

The two fundamental image techniques are the identi�cation of anatomical struc-

tures in the images (segmentation) and establishment of the spatial relationship be-

tween the imagery and the patient (registration).

The registration is necessary to integrate real anatomical structures with patient

medical images for planning and execution, substituting the error prone mental work

of the physician.

In order to ensure the speci�cations of a framework for minim ally invasive tech-

niques, we must consider the following constraints in the design of a registration

method:

1. accuracy, measured as target registration error (TRE), which indicates how far

the predicted position of the anatomical target is from its actual position.

2. speed, or how long does the algorithm takes to produce the solution.
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3. robustness, or how well the algorithm deals with noise and outliers.

These constraints depend on the medical task. The accepted accuracy for most of

the tasks is of several millimeters, while the speed can range from several seconds to a

couple of minutes.

1.3 Contribution of this work

1. A comparative study of the state of the art of registration algorithms in medical

image processing as possible solution to the registration problem in the OR: since

most of the work in the �eld of medical image registration is b ased on the three

stages iterative algorithms, we have analyzed the feasibility of this approach

in our case study and we have underlined the limits of the current algorithms

through a testing process.

2. The development of a theory for point-set registration to be used in the OR ap-

plications: we have developed the theoretical basis and implemented algorithms

to register dense binary images. This approach is conceived to satisfy the con-

straints of the OR applications and to substitute the currently used approaches

based on iterative algorithms where the correspondences and the transformation

are two unrelated stages and may produce arbitrary results.

3. Development of tools to perform minimally invasive procedures in the OR: we

have designed a tool to assist the manual insertion of a needle or a probe for

diagnostic (biopsy) or therapeutic (ablation) procedures.

1.4 Thesis outline

Chapter 2 presents the classical solution to the registration problem as an optimiza-

tion of the similarity measure in the parameters space or over the regularization con-

straint of the physical model adopted. We have tested both the parametric and the

non-parametric solutions on images obtained from an anatomical phantom.

In chapter 3, we discuss some of the solutions of the registration currently used in

commercial systems for OR interventions and we conduct a phantom study of a simple

registration method in order to have the complete control over the registration results

both in term of accuracy, robustness and speed of execution.
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In chapter 4, we introduce a novel method to solve the point-set registration in

closed form. We derive the method, analyze its properties and validate it against other

popular methods. We also demonstrate the application to the non-rigid registration of

images, that is in the presence of noise or in the case of pulmonary landmark point-sets

affected by the breathing motion.

In chapter 5, we present an innovative tool composed of a small screen, a tracking

device, a communication board attached to a standard needle or probe to be used in

minimally invasive procedures.



Chapter 2

Medical image registration framework

Les mathématiciens n' étudient pas

des objets, mais des relations entre

les objets.

Henri Poincaré

In this chapter we give a brief overview of the state of the art of registration meth-

ods in medical image processing and we introduce the classical approaches for the

solution of this problem. After the introduction of the registration framework and of

the components involved, we study whether these algorithms can be used in the OR or

not. The study we have performed employs, as input to the algorithms, multi-modal

medical images obtained from an anatomical phantom with some basic structures vis-

ible under the ultrasound (US) and computed tomography (CT) scanning.

2.1 Introduction in medical image registration

Image registration is the procedure of aligning two or more images of the same scene

taken from different viewpoints, at different time, and/or by different sensors, so that

corresponding features can be easily related. Image registration has application to

many �elds but the one addressed here is medical imaging and m edical applications.

Lately, medical image registration evolved from an application of medical imaging to

a discipline in itself. Image registration has also become one of the more successful

areas of image processing, with fully automated algorithms available in a number of

applications.

20
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In the case of a surgical procedure, the images to be registered are acquired in two

steps: the �rst one takes place before the procedure and we ca ll such dataset the pre-

operative image, the second one is during the procedure and is called intra-operative

dataset. By registering the two dataset, a spatial relationship between the anatomical

structures in the two images and with the body of the patient is established and it is also

possible to integrate spatial information about physiological functions and pathologies

or other abnormalities.

Deriving the correspondence of spatial information in medical images and equiva-

lent structures in the body is fundamental to image interpretation and analysis.

In the classical clinical scenario, the diagnosticians's t ask is to mentally combine

the images from several modalities acquired at different times to draw useful clinical

conclusions or to plan a surgical intervention. This generally requires mental compen-

sation for changes in subject position. In image guided interventions, image registra-

tion establishes correspondence between images and physical space.

Nowadays it is common to obtain images from patients multiple times, either by

repeated single modality imaging, or by imaging with different modalities. It is also

standard procedure to use sequences of images obtained dynamically from the same

patient, often at many frames per second, as in the case of the ultrasound (US) image

acquisition. This image data acquired make it necessary to relate one image to another

in order to assist in extracting relevant clinical information. Image registration can

help this task by combining complementary information from different modalities in

the multimodal case and by enabling accurate comparisons between images from the

same modality.

Important applications of the registration in clinical practice include: the monitor-

ing of changes due to disease progression or treatment, integration of dynamic acquisi-

tion for functional studies (e.g. perfusion images) with the anatomical images, image-

guided interventions or diagnosis such as tumor ablation or image guided biopsy, in

which images acquired before the procedure where the target is identi�ed are integrat-

ed/registered with the images acquired during the intervention or with the instruments

used during the procedure, enabling the surgeon to guide his or her work.

The images to be registered are in digital form. This means that the medical images

are made up of a rectangular array of small elements called pixels; each pixel has

an associated image intensity value. This array provides the reference system of the

image. In the case of computed tomography (CT) images a typical slice is composed

of 512×512 pixels, and each will correspond to a small planar cut of about 0.5×0.5
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mm2. The pixel dimension determines the spatial resolution of the image. In the case

of CT or magnetic resonance image (MRI) the images are stacked together to form a

3D volume, therefore each pixel will correspond to a small volume of tissue, or voxel.

According to the slice spacing, i.e. the distance between two adjacent slices, the voxel

volume is completely determined. For instance, in the case of 1.5 mm spacing and

considering the pixel dimension of 0.5×0.5 mm2, the tissue volume covered by each

voxel in the image will be of 0.5×0.5×1.5 mm3. As in the pixel case, the number

stored in each voxel represents the image intensity and corresponds to the integral of

some physical attribute measured over this volume.

During an image-guided intervention, the registration is needed to establish the

correspondence between the image and the physical space of the patient. This cor-

respondence allows the image to provide a map for the navigation with the goal of

making the intervention more accurate, safer and less invasive for the patient. The im-

age registration techniques are already present in the clinical set-up for image-guided

neurosurgery systems and in orthopedic surgery.

Considering the nature of the problem in medical image registration, that is the

deformability of the tissue encountered in most of the medical images, except the im-

ages where the main interest is on rigid structures such as bones, most of the current

registration algorithms try to �nd a solution that involves deformation.

Then, the challenge of this thesis is �rst to �nd or design ima ge registration tech-

niques to be included in an image-guided system that involves structures subject to

deformations.

In the following we present some of the state of the art solutions and we analyze

whether these solutions have or have not the desired characteristics so that they can be

employed in an image-guided system.

The stereotactic method, one of the �rst registration metho d used in brain surgery,

was developed at the beginning of the 20-th century and is still in use but the mod-

ern systems involve high resolution pre-operative 3D dataset integrated with real-time

intra-operative images and sometimes also with the surgical tools by the mean of track-

ing devices.

The pioneer works for the introduction of fully automated algorithms for both

multi-modality [127], [43] and inter-modality [128], [119], [26], [109], [110] were

presented in the �rst half of the 1990s. A signi�cant breakth rough for the multi-modal

registration was achieved with the introduction of image alignment measures and algo-

rithms based on entropy and, in particular, with the introduction of mutual information
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measure derived from the information theory developed by Shannon in 1948 [104].

The modern medical image analysis is focused on algorithms that handle more and

more complicated transformations needed to model soft tissue deformation. General

reviews of the �eld may be found in [17], [118], [72], [44], [1 32], [77], [38], [113],

[79], [78], [37], [108].

2.2 Medical image registration components and method-

ology

Even if there is no general solution, most of the registration algorithms in medical

imaging �eld are based on three components:

1. A distance measure between images to be registered.

2. A transformation model which could be parametric and nonparametric.

3. An optimization method.

In general, registration can be performed on two or more images. Without loss of

generality, we may assume that the registration involve only two images. One of the

images is referred to as the template image, denoted in the following by the calligraphic

character T , and the other is referred to as the target or reference image, denoted by

R .

Images are considered as mappings form a domain into the real numbers. The

domain is denoted by W ⊂R
d , where d denotes the spatial dimensionality of the given

data.

T : W → R,W ⊂ R
d. (2.1)

Typically d=2 or d=3. To each point in the domain, a gray value is assigned.

The goal of the registration is to estimate the transformation f that minimizes an

energy of the form

D(T ◦ f ,R )+S( f ), (2.2)

where T ◦ f is the transformed template image, D measures the distance between

images or the image similarity, and S measures the smoothness of the transform aiming

also to favor any speci�c property in the solution that the us er requires.
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Figure 2.1: A counterclockwise rotation will move clockwise the template image when
the transformation is done using the (2.3) equation

The transformation f applied to the template image T is a vector-valued function

f : Rd → R
d and

(T ◦ f )(x) = T ( f (x)) (2.3)

This approach, called Eulerian, is important from a practical point of view, since

when the locations of the pixels/voxels in the template image are mapped to positions

that do not correspond to pixels/voxels in the template image, their intensities can be

calculated by interpolating the intensity values of the neighboring pixels/voxels. As

a result, the corresponding transformation of the template image is counterintuitive:

when the grid is rotated counterclockwise, the image is rotated clockwise (Figure 2.1).

The transformation at every position x ∈ W may be given in a vector space as the

addition of an identity transformation with the displacement �eld u:

f (x) = x+u(x), (2.4)

or as a group structure, where the group operation is the function composition and the

identity is given by the identity transformation.

2.2.1 Distance measures

The objective function (see equation (2.2)) is the sum of a measure of distance between

the transformed template image and the reference image and the smoothing functional

S over the mapping f . We focus here on the distance measure, the smoothing func-

tional will be discussed in the next subsection.

In the case where the same anatomical structures are assumed to correspond to

similar intensity values, correlation based matching produces dense depth maps by
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calculating the disparity at each pixel/voxel within a neighborhood.

The simplest distance measures in this case are given by the Lp-norms of the in-

tensity differences. The most used norms in image registration are the L1 norm or sum

of absolute differences SAD (2.5) and the L2 norm or sum of squared differences SSD

(2.6). If we denote the images to be compared I1,I2 we have:

DSAD(I1,I2) =
1
N ∑

(i, j)∈W

|I1(i, j)− I2(i, j)| (2.5)

DSSD(I1,I2) =
1
N ∑

(i, j)∈W

‖I1(i, j)− I2(i, j)‖2 , (2.6)

where N represents the number of pixels/voxels in the domain W .

SAD measure works better when the number of pixels/voxels is small and the inten-

sities differences between images I1,I2 are large. Both measures can handle Gaussian

noise.

In case the intensity values of one of the images is linearly shifted by different

settings on the image acquisition scanner, or is affected by non-Gaussian noise dis-

tributions the normalized cross correlation coef�cient (NCC) is introduced. NCC is

given by:

DNCC(I1,I2) =
∑(i, j)∈W I1(i, j)I2(i, j)

‖I1‖‖I2‖
(2.7)

In order for this measure to be effective in the registration process it must be com-

puted on zero-mean images. The distance measure is called zero-mean NCC (ZNCC)

and is expressed by:

DZNCC(I1,I2) = DNCC(I1 − Ī1,I2 − Ī2), (2.8)

where Īi = E[Ii] is the expectation value of Ii, for i = 1,2.

From a statistical point of view, SSD represents the mean squared error of the

difference between the predictions I1 and the true values I2

While SAD and SSD are dissimilarity measures that should be minimized, NCC

and ZNCC are measure of similarity between images, therefore they should be maxi-

mized. In fact, if we compute the SSD (or equivalently the mean squared error of the

difference) on the normalized images Ĩ1 =
I1−E[I1]

σ(I1)
and Ĩ2 =

I2−E[I2]
σ(I2)

we have:
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E[(Ĩ1 − Ĩ2)
2] = E[Ĩ1

2
+ Ĩ2

2
−2Ĩ1Ĩ2]

= E[Ĩ1
2
]+E[Ĩ2

2
]−2E[Ĩ1Ĩ2]

= 1+1−2E[
(I1 −E[I1])((I2 −E[I2])

σ(I1)σ(I2)
]

= 2−2DZNCC(I1,I2)

From a geometric point of view, SAD and SSD may be understood as the norm

of the vector that has as components the differences between images intensities, there-

fore is a measure to be minimized, meanwhile NCC and ZNCC can be seen as the

cosine of the angle between the two vectors that have as components the intensities

of each image, therefore is a measure to be maximized in order to achieve the perfect

alignment.

Applications of these measures of distance in medical image registration may be

found in [60] or [3].

A more recent distance measure for inter-modal images is the residual complexity

(RC), proposed by Myronenko et al. [83]. This measure was conceived to register

images corrupted by multiplicative non-stationary intensity distortions.

The choice of an appropriate distance measure is a harder task in the case of multi-

modal imaging. There are two main approaches: the reduction of the multi-modal

problem to a single-modal problem and the use of information theory to de�ne the

distance measure.

The �rst choice can be realized by deriving one modality from another, or by map-

ping both images in a common domain. Roche et al. [94] transformed a MRI image

into a US image by exploiting the MRI intensities and MRI magnitude of the gradient

in order to predict the US value. By exploring the physical properties of US, Wein et

al. [123] simulated an US image from a CT image. To map the images in the same

domain Maintz et al. [73] used morphological tools to create new gray-value inten-

sity images. This method applied morphological opening and closing to extract edge

information and then cross-correlation to align the images.

A compromise between SSD and mutual information, based on normalized image

intensity gradients is introduced by Haber and Modersitzki in [41]. This distance mea-

sure is based on the observation that even for images of different modalities, intensity

changes appear at corresponding positions. However, the gradient also measures the
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strength of the change which is an unwanted information for multi-modal information,

therefore the gradient is normalized by its norm. This normalized gradient �eld of an

image I is de�ned by:

NGF [I ] =
∇I

√

|∇I |2 +η2
, (2.9)

where η is an edge parameter.

From here the distance measure is derived:

DNGF(I1,I2) =
∫

W
1− (NGF [I1]

⊤NGF [I2])
2dx (2.10)

More recently, Heinrich et al. [48] introduced a new descriptor for multi-modal

registration. The idea is the use of similarities between neighboring patches to de�ne

the descriptor. Once the descriptor is constructed the matching criterion is computed

as a vector-difference.

The most important distance measure for multi-modal registration revolves around

the so called mutual information (MI), and was popularized in image registration by

two different groups: [124], [119] in US and [26], [69] in Europe. The MI is given by:

DMI(I1,I2) = H(I1)+H(I2)−H(I1,I2), (2.11)

where H(·) is a measure of the uncertainty in a random variable and was �r st in-

troduced by Shannon in [104]:

H[p(x)] = Ex[log
1

p(x)
] =−∑

x
p(x)logp(x), (2.12)

H(·, ·) is the joint entropy of I1 and I2 and measures the amount of information

we have in the combined images. If the images are totally unrelated, then the joint

entropy will be the sum of the entropies of the individual images, therefore DMI will

be zero. The more similar (i.e., less independent) the images are, the lower the joint

entropy compared to the sum of the individual entropies, therefore DMI will reach its

maximum when the images are aligned.

The mutual information is the basis of further developments, starting from the work

of Studholm et al. [111], where the normalized version of MI is introduced in order

to overcome the dependence on the overlapping area of MI, or in [112] where regional

mutual information (RMI) is de�ned, to Zhuang et al. which use d locally evaluated
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MI in combination with global MI [131], Pluim et al. [91] which used intensity image

gradient as an additional cue and so on.

2.2.2 Parametric and non parametric solutions

The solution of the registration process, or the registration transformation, may be

generated from a physical model that constrains the registration by the smoothness S

term in (2.2), or by a parametrization of the transformation.

The type of the mapping is of paramount importance for the registration as it re-

�ects the class of transformations that are desirable or acc eptable, and therefore limits

the solution to a large extent. The registration parameters estimated through the op-

timization step correspond to the degrees of freedom of the transformation involved.

Their number varies greatly, from six in the case of global rigid transformations in the

three dimensional space, to a number equal to the number of pixels/voxels of the image

in the case of a dense transformation.

In the following, we shall call the transformations constrained to belong to a cer-

tain class of functions such as rigid, linear or af�ne, polyn omial, radial basis functions,

free form deformations, B-splines, thin plate spline, that have a relatively low num-

ber of parameters, parametric transformations and the transformations given as the

discretized numerical solution of the (2.2), constrained by the chosen regularizer, non

parametric transformation.

In the case of parametric transformations the models are derived from linear or non-

linear interpolation or approximation theories. The non linear methods range from

polynomial to spline-based transformations that are piecewise polynomial functions

with a prede�ned degree of regularity (see [117] for details ).

The most known models are the radial basis functions (RBF), where the value of

an interpolation point x is given as a function of its distance r from the known sample

pi:

u(x) =
n

∑
i=1

βiφ(‖x− pi‖) (2.13)

A comparative study for non rigid registration using RBF was published by Zagorchev

et. al in [129].

Another popular parametric method is based on the thin-plate splines (TPS) func-

tions, �rst introduced in image registration by Bookstein in [11].
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The free-form deformations (FFD) use a rectangular grid G = Kx ×Ky ×Kz super-

imposed to the image of the size Nx ×Ny ×Nz that gets deformed under the in�uence

of the control points. This approach comes from the computer graphics community

[102], [51] and became popular in the medical image registration when coupled with

cubic B-splines [30], [96], [63], [101].

FFD based on B-splines can be expressed as a three dimensional tensor product of

one dimensional B-splines:

u(p) =
3

∑
l=0

3

∑
m=0

2

∑
n=0

Bl(µx)Bm(µy)Bn(µz)di+l, j+m,k+n (2.14)

where i = ⌊x/Nx⌋−1, j =
⌊

y/Ny
⌋

−1, k = ⌊z/Nz⌋−1, µx = x/Nx −⌊x/Nx⌋, µy =

y/Ny −
⌊

y/Ny
⌋

and µz = z/Nz −⌊z/Nz⌋ and Bl correspond to the B-spline basis func-

tions. The number of parameters varies with the number of control points of the grid

G.

When the transformation is derived from physical models, the displacement is

given as the reaction of the model to a force. The force is generated by the similarity

between the images. The linear models or the elastic body deformation, �rst intro-

duced by Broit [15] in medical image registration, is described by the Navier-Caucy

partial differential equation:

µ▽2 u+(µ+λ)▽ (▽·u)+F = 0, (2.15)

where F is the force �eld that drives the registration based on the ma tching criterion,

µ refers to the rigidity and λ is Lams �rst coef�cient.

To implement (2.15) in medical image registration the image grid is considered as

an elastic membrane.

The viscous �uid �ow approach in [22] models the image as a viscous �uid and the

transformation is governed by the Navier-Stokes equation. These transformations are

able to recover large deformations .

The diffusion model [28] is governed by the diffusion equation:

∆u+F = 0, (2.16)

while in the curvature registration scheme, the deformation is modeled by the fol-

lowing equilibrium equation:
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∆2u+F = 0. (2.17)

This approach does not penalize af�ne linear transformatio ns.

The optical �ow techniques model the image as a function in space and time, T :

W ×R+ → R and assume that a particle located at x(t) at time t does not change

intensity. Thus, T (x(t), t) = const, and considering the velocity v = �x, we have:

∂tT +∇xT v = 0, (2.18)

which is the optical �ow constraint [50], [6]. If we consider ∂tT ≈ T −R and we

relax the condition in (2.18) to a minimization we may derive a similar formulation to

the equation (2.2):

DOF [v] =
1
2
‖∂tT +∇xT v‖2 +S[v]. (2.19)

The optical �ow leads the deformable template toward the ref erence. Example of

algorithms for medical image registration based on the optical �ow are the original for-

mulation of Thirion's demons algorithm [115], [116] and Chri stensen's �uid approach

[21].

2.2.3 Optimization

The last step of the classical approach to image registration is the optimization. The

aim of this step is to derive the optimal transformation that best aligns the two images

according to the objective function given by the equation (2.2).

In this work we focus on the continuous optimization since most of the registra-

tion algorithms use this approach, even if there are approaches based on the discrete

optimization.

The reasons for using a continuous model are because it is more practical, since the

transformed object does not always align with the pixel/grid and because of its compu-

tational ef�ciency. To derive a continuous model from the di screte data, interpolation

has to be used.

The major dif�culties in image registration, from the optim ization point of view, is

the handling of a variety of local and even global minimum. Multilevel methods are

thus essential and it is not recommended to solve a problem using one �xed level.

Except Powell's conjugate direction method [92], all the commonly used methods
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are based on the computation of the gradient: gradient descent, conjugate gradient,

quasi Newton, Gauss-Newton, stochastic gradient descent. A more detailed descrip-

tion of these and other methods of optimization may be found in [86].

When using an MI-based distance measure, one must pay particular attention to

the optimization schemes that require the computation of the Hessian matrix due to its

high computational cost. One of the most successful approach is the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method which estimates the Hessian by an update from an

initial approximation and a sequence of differences of search directions and gradients.

A comparative study of optimization strategies in image registration using mutual

information is reported by Klein et al. in [61].

2.3 Experimental set-up for testing

To test some of the registration algorithms presented so far, we have used medical im-

ages obtained from a triple modality 3D abdominal phantom, developed by Comput-

erized Imaging Reference Systems Inc (CIRS, Norwalk, VA). The model 057 (Figure

2.2) interventional 3D abdominal phantom, is designed to address minimally invasive

procedures and to be used in different abdominal scan techniques such as CT, MRI and

US (Figure 2.3), developing imaging protocol and system testing and validation .

Figure 2.2: CIRS 057 interventional 3D abdominal phantom.
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Figure 2.3: Different scannings of the phantom. From left to right: MRI, CT, US.

The reasons for the choice of this set-up, beside the multi-modal capability, is

due also to the complete control over the physical position of the scanned sections.

We wanted to obtain two completely aligned 2D slices in two different modalities,

therefore to create the ideal framework for the registration algorithms, considering the

nature of our problem which is the registration of real-time acquired images with ac-

curate pre-operative scans. The dif�culties encountered b y the registration algorithms

are due on one hand to the different physical process that generates the images and,

on the other hand, by the deformation of the phantom generated by the pressure of

the US probe and by the different covering of the US convex probe with respect to

the CT slice which is a condition often encountered in practice (see Figure 2.4, the

deformation takes place in the upper part of the US image).

Figure 2.4: The images used in the registration process. On the left hand side the US
template image; on the right hand side the CT reference (�xed) image.

The Model 057 simulates the abdomen from approximately the thorax vertebra

T9/T10 to the lumbar vertebra L2/L3 using simpli�ed anthrop omorphic geometry.
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The primary organs included are the liver, a portion of the lung that surrounds the

liver, portions of the portal vein, abdominal aorta and inferior vena cava, and partial

kidneys (Figure 2.5). Embedded within the liver are simulated lesions. The simple

transverse ribbing, simulated spine, urethane membrane and ABS end-caps provide

framing and protection, making the Model 057 durable enough for extended scanning

sessions yet enabling insertion of various surgical instruments as needed.

Figure 2.5: Internal anatomy of the anatomical phantom.

In minimally invasive procedures the main interest of the medical community is to

register pre-operative accurate images with intra-operative real-time acquired images,

therefore the modalities of acquisition we have used here are CT for the pre-operative

stage and US for the intra-operative stage (Figure 2.4).

The phantom was equipped with 4 markers in order to register it with the CT dataset

(Figure 2.6). The global coordinate system is given by an optical tracking system

composed by infrared light emitting cameras.

The US images were acquired with a 2D probe equipped with markers in order to

map its position to the global coordinate system. The calibration process of the US

probe converts the point (ui,vi) in image plane coordinates (pixels) in 3D homoge-

neous coordinates de�ned with respect to the global referen ce system by the following

formula:
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Figure 2.6: From left to right: the 3D image of the phantom with 4 markers that identify
its position in space; a CT slice of the phantom; the same CT slice with the outline of
the phantom in transparency.
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where Tp is the pose matrix that encodes the pose of the markers and is given by

the tracking system, while Tpi is the transform estimated by the calibration procedure

together with the scale factors su and sv that we assume isotropic, therefore su = sv = suv

(Figure 2.7).

Figure 2.7: (a) The optical tracking system de�nes the globa l reference system. (b)
The US probe and the transformations involved in the calibration process. (c) The
calibration of the US probe is based on the identi�cation of a �xed point in different
poses of the probe.
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We have used methods for multi-modal registration with transformation ranging

from parametric (af�ne, spline) to non-parametric (based o n curvature or elastic) and

different optimization methods. In the case of non-parametric registration the multi-

level approach was necessary.

Appendix A reports the visual and numerical results of the registration algorithm

we have tested.

Even in this controlled set-up with a strong prior given by the initial registration,

the quality of the results we have obtained is very bad, making the application of these

methods in the OR scenario completely useless.

It is well known that there is no best algorithm for registration but it seems to us

that each algorithm was designed to solve the registration of a certain dataset and it

makes no sense to use it on different datasets. This may be the reason of the existence

of such a large number of registration algorithms.

The next section reports the drawbacks we found during the tests.

2.4 Why the medical image registration framework can-

not work for OR applications?

The major issues we have identi�ed that makes this approach u nfeasible in OR appli-

cations are:

• The distance measure MI: this measure is very sensible at noise, incomplete data,

no completely overlapping domains.

• The distance measure NGF: in our tests this measure has not produced the results

we expected.

• The optimization: since the objective function is highly non convex, all the opti-

mization methods fails in �nding the global minimum or maxim um.

• The multilevel approach: even though the multilevel approach is vital when us-

ing the non-parametric approach, in the case of multi-modal images the low

level approximation of the registration transformation is not accurate at all and

generates wrong results at higher levels.

• The computation time is very high even when only a couple of 2D images is

involved.
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Hadamard [42] de�ned a problem well-posed if it has a solutio n, this solution is

unique and depends continuously on the data. In this sense, the registration problem

is ill-posed since for every spatial location x ∈W ⊂R
d , we search a vector f (x) ∈R

d ,

but usually only a scalar information T (y(x)) is given.

[95] gives a simple example of how ill-posedness may give arbitrary results that

seem very good from an optimization point of view but are completely useless in prac-

tice. The authors called this approach CURT (completely useless registration tool),

which is a very simple registration algorithm based on correspondence of pixels sorted

by increasing intensities, and showed that this method outperform other registration

methods in the following cases: SSD difference, NCC image correlation and NMI

(normalized MI) image similarity.

Except the well established and accepted solutions for image registration, some

newer solution were introduced and most of them address new distance measures such

as a locally evaluation of MI in combination with standard global MI [131], the residual

complexity to account for complex spatially varying intensity distortions [83], learning

based multi-modal registration using Kullback-Leibler divergence for non-rigid reg-

istration [39] and rigid registration using learning based Jensen-Shannon divergence

[65].

These new methods tend to ulteriorly complicate the already complex registration

framework and most of them follow the three steps approach.

It would be dif�cult to test all of them but we intuit that our c ase study cannot be

solved by the classical approach of medical registration framework and we shall need

additional information to solve the registration in the OR.

Except for the rigid transformation most of the solutions yield a transformation

that has no physical meaning, therefore even if one of the solution would function, it

become dif�cult to validate the results for OR applications .

The next chapter introduces the landmark-based approach, which is a simpli�ed

method for image registration based on very sparse data. After the introduction of the

approach, a simple 3D registration algorithm for the OR set-up is described.



Chapter 3

Registration of binary images

Always try the problem that matters

most to you.

Andrew Wiles

In chapter 2 we have analyzed and tested the most signi�cant a lgorithms for medi-

cal image registration and we have underlined that none of them would be suitable for

an application in the OR that requires the integration of images coming from different

modalities. The only advantages of such algorithms are that they are automatic, once

some parameters are �xed, and they do not need prior constrai nts or further interactions

with the users.

A different approach in image registration, that we investigate here, is the so called

feature-based or landmark-based registration. These methods rely on the identi�cation

and matching of corresponding points. The points or landmarks are usually placed in

salient image locations, which are considered to correspond to meaningful anatomi-

cal regions. The solution of the registration is obtained in a straightforward manner

once the landmarks are individuated. The bottleneck in this case is the location of the

landmarks and the establishment of the correspondences among them.

3.1 Introduction

In the case of landmark registration the input of the algorithm is represented by two

sets of landmarks. The �rst set of landmarks include points b elonging to the template

image and the second set is compose by landmarks from the reference image (see

Figure 3.1).

37
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Figure 3.1: The template and the reference images with corresponding landmarks.

The algorithm must solve the correspondences and the transformation. Even if

there are approaches that solve only the correspondences, they are used together with

interpolation to �nd dense correspondences between the ima ges.

3.1.1 Extraction of landmarks and binary images

The main limitation of the medical images is that they are not as rich in details as for

instance the digital photographs. The extraction of landmarks has been studied more

in the case of 2D images and less in the case of 3D images.

In the computer vision literature there is a huge amount of work dealing with point

of interest extraction. Harris et al. [47] proposed a combined corner and edge detector

based on the local auto-correlation function and many other works extended this ap-

proach.For instance, Shi and Tomasi [107] used the minimal eigenvalue of the structure

tensor in order to track point of interest.

Another signi�cant work by Lowe [67] introduced the scale in variant feature trans-

form (SIFT) algorithm to extract signi�cant points by using difference of Gaussians

function applied in scale space to a series of smoothed and resampled images. Many

variants of SIFT have been proposed such as PCA-SIFT [56], af� ne SIFT [81] or SIFT

in higher dimensions [20] used also in the context of medical imaging by matching

landmarks between 3D MRI images and 3D CT images changing over the time (4D

CT images). The speeded up robust features (SURF) algorithm [8] is partially inspired

from SIFT but with an increased ef�ciency.

A method used most in medical image registration is based on � ducial markers

and one of the main points of interest regards the correlation of the errors between the



CHAPTER 3. Registration of binary images 39

�ducial localization error (FLE) and the target registrati on error (TRE), especially in

image guided interventions, [34], [126], [80].

In medical images, boundaries or surfaces are frequently more distinct than land-

marks, and various segmentation algorithms can successfully locate high contrast sur-

faces. This is especially true for skin surface. If equivalent surfaces can be automat-

ically segmented from two images to be combined, then registration can be achieved

by �tting the surfaces together.

In this case, the image to be registered is a processed version of the original data

de�ned by (2.1), that we call it binary image, since its codomain is the set {0,1}:

T : W →{0,1} ,W ⊂ R
d, (3.1)

where T (x) = 1 if the pixel/voxel x from the image domain W represents a point

on the extracted surface, and T (x) = 0 otherwise.

By introducing this de�nition, some of the notions from chapt er 2 can be reused.

3.1.2 Correspondences and transformation

When the correspondences between landmarks are given, Procrustes analysis is a pop-

ular method for shape analysis, see for instance [27]. This technique is the departing

point of our generalized shape theory given in the chapter 4, and the previous solutions

will be discussed there.

The transformation can be estimated using interpolation strategies when the corre-

spondences are known (see 2.2.2). Some results using this approach will be presented

in the section 3.2.

The most well-known method that infer both the correspondences and the trans-

formation is the iterative closest point (ICP) method, proposed by Besl and McKay

[10]. This algorithm is designed to work with different representations of surface data:

point sets, line segment sets (polylines), implicit surface, parametric curves, triangle

sets, implicit surfaces and parametric surfaces. For medical image registration the most

relevant representations are likely to be point sets and triangle sets, as algorithms for

delineating these features from medical images are widely available.

The algorithm is able to register a data shape P with Np points to a model shape

X with Nx primitives. For each element of P, the algorithm �rst identify the closest

point on X shape, then �nds the least square rigid-body transformatio n relating these

pairs of point sets. The algorithm then redetermines the closest point set and continues
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until �nds the local minimum match between the two surfaces, as determined by some

tolerance threshold.

If the original representation of the binary data surface P is converted to a set of

points {pi}, the �rst stage identi�es, for each point pi the closest point on the model

surface X . This is the point x ∈ X for which the distance d between pi and x is mini-

mum.

d(pi,X) = min
x∈X

||x− pi| | (3.2)

The resulting set of closest points (one for each pi) is {qi}. For a triangulated

surface, which is the most likely model representation from medical image date as for

instance CT, the model X comprises a set of triangles ti. The closest model point to

each data point is found by linearly interpolating across the facets. If triangle ti has

vertices r1,r2,r3, then the smallest distance between the point pi and the triangle ti is

d(pi, ti) = min
u+v+w=1

||ur1 + vr2 +wr3 − pi| | (3.3)

where u,v,w ∈ [0,1]. The closest model point to the data point pi is, therefore,

qi = (ur1,vr2,wr3).

A least squares registration between the points {pi} and {qi} is then carried out

using the solution to the Procrustes problem [31]. The set of data points {pi} is then

transformed to {p′i} using the calculated transformation, and then the closest points are

once again identi�ed. The algorithm terminates when the cha nge in mean square error

between iterations falls below a de�ned threshold.

The optimization can be accelerated by keeping track of the solutions at each iter-

ation. As the algorithm iterates to the local minimum closest to the starting position, it

may not �nd the correct match. The solution proposed in [10] i s to start the algorithm

multiple times, each with a different estimate of the rotation alignment, and choose the

minimum of the minimum obtained.

In most applications not every point has a corresponding match, so a simple dis-

tance threshold can be used to discard correspondences in order to deal with partially

overlapping scenes. Additionally, to further improve the quality of correspondences,

a lot of efforts have gone into the area of feature selection [106], as well as including

extra information such as colors [54] or normals [4] that could improve the correspon-

dence problem. Since ICP requires an exhaustive search through the correspondence

space, several variants that address the problem of its computational complexity have
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been proposed [87], [97].

The main limitation of the ICP algorithm is due to the fact that it can handle only

small movements of the two point clouds to be registered, therefore is a local method.

To avoid this limitation, Gelfand [35] proposed the use of an integral descriptor [74]

based on local geometry invariant to rotations, translations and robust to noise. Only a

small number of feature points are picked from the data shape according to the unique-

ness of the descriptor at the point. For each feature point of the data, the corresponding

point of the model is chosen using the descriptor values. A similar approach, but with

the use of different signatures for each point, is presented by Rusu et al. in [98].

A new approach, proposed by Mitra et. al in [76], for the local registration of

point clouds, uses the time coordinate for each acquisition and pose the problem of

computing the motion of each frame as an estimation of certain kinematic properties

of the resulting space-time surface.

The so called 'boot-strapping' or the initialization of the ICP algorithm with the

use of high dimensional feature descriptors such as SIFT and SURF is introduced by

Pandey et al. in [89]. In [33] the initial rigid body transformation is computed after

the identi�cation of the correspondences in the high dimens ional feature space in a

random sample consensus (RANSAC).

A generalized-ICP algorithm that combines ICP with 'point to p lane ICP' into a

probabilistic framework is presented in [103].

3.2 Test on phantom data

We compare here the landmark-based algorithms performances with the intensity-

based algorithms, that we have seen in the previous chapter. It is obvious that, in

the case of landmark-based algorithms. only sparse information is used, while in the

case analyzed in the previous chapter all the radiometric information is used.

We assumed that the correspondences are known a priori and the landmark-based

registration techniques we test are linear, polynomial and quadratic.

If we denote {Ti} the set of landmarks in the template image and {Ri} the set of

landmarks in the reference image, the goal is to �nd a transfo rmation f such that

f (Ti) = Ri,∀i. (3.4)

Observe that this approach, called Lagrangian, is the opposite of the Eulerian ap-

proach presented in the chapter 2, equation (2.3). The same framework used in chapter
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2 may be implemented by simply substitute f with f−1, when feasible.

More generally, the interpolation conditions (3.4) are replaced with approximation

conditions:

DLM( f (T ),R ) = ∑
i
‖ f (Ti)−Ri‖

2 = min. (3.5)

If we consider the images to be registered given in the binary form (3.1), this is

nothing more than the SSD measure.

The linear solution, when the image domain is a subset of Rd , looks for a d × d

matrix A and a d-dimensional vector v such that f (Ti) = ATi + v and the minimization

in the equation (3.5) takes place. Given n landmarks, the number of conditions is nd,

while the number of parameters is d(d+1). Considering the low dimensionality of the

data and a relatively high number of landmarks, the match is not perfect, except in the

case when nd = d(d +1) (see appendix B).

Enlarging the transformation space, for example by choosing polynomial transfor-

mation, the number of parameters increases with the polynomial degree. If we write

the transformation f in vectorial form f = ( f1, ..., fd) and Ti = (T 1
i , ...T

d
i ) and we con-

sider the quadratic transformation, we have:

f j(Ti) = a j +
d

∑
k=1

b j
kT k

i + ∑
m6=n

c j
m,nT m

i T n
i +

d

∑
k=1

(T k
i )

2 (3.6)

From (3.6) it follows that the number of parameters of the quadratic transformation

is d2

2 + 3
2d +1.

If we want to solve (3.4) and �nd a function whose bending ener gy is minimum,

we obtain the thin-plate-spline (TPS) transformation [121]. The bending energy is the

integral of the square of the second derivative:

S( f ) =
d

∑
j=1

∫ d

∑
m,n=1

(

∂2 f j

∂xm∂xn

)2

dx1...dxd, (3.7)

where f = ( f1, ..., fd) : Rd → R
d .

Therefore the equation we want to solve is

S( f ) = min, (3.8)

subject to (3.4).

The solution of this equation belong to a space that is spanned by shifts of a known
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radial basis function ρ by a linear term:

f j(x) = ∑
i

ci
jρ(‖x−Ti‖)+Ax, (3.9)

where A is a d×d matrix representing the af�ne transformation, c = {ci
j} is a n×d

warping coef�cient matrix representing the non-af�ne defo rmation and ρ(r)= r2log(r)

represent the kernel function.

The interpolation condition (3.4) can be relaxed and replaced by an approximation

condition if we solve for both (3.5) and (3.8):

DLM( f (T ),R )+αS( f ) = min, (3.10)

where α ≥ 0 is a parameter that balances the interpolation and the approximation

scheme. This equation is nothing more then the registration formula we have already

introduced in chapter 2 (see equation (2.2)). The solution is again given by (3.9) [78].

A nice property of the TPS is that it can always be decomposed into a global af�ne

and a local non-af�ne component. Consequently, the TPS smoot hness term in (3.10) is

solely dependent on the non-af�ne components. This is a desi rable property, especially

when compared to other splines, since the global pose parameters included in the af�ne

transformation are not penalized.

Appendix B reports the registration results. The set-up and the images are the same

ones used in the previous chapter.

3.3 Discussion

3.3.1 Why the binary (landmark) registration works better than

the intensity-based registration for an OR application?

The �rst observation is that, in both cases, the transformat ions we are interested in have

no physical meaning. Except in the rigid case, they are just mathematical tools that help

to solve the registration. Following this observation, the intensity based completely

automatic algorithms fail and give arbitrary results if no prior information is given.

In the case of binary registration, even with a small number of landmarks and the

rigid/linear constraint the results are much better. Extracting corresponding landmarks

in multi-modality images excludes the computation of a multi-modal distance measure.

As we have seen in the previous chapter, the computation of MI and NGF generates
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misleading results and the computational time is very high, even in the 2D case. On the

other hand, the binary registration will always yield a decent result and the computation

time is very low.

3.3.2 What are the limitations of the binary registration for an OR

application?

Even if the registration results in the binary case are preferable, the bottleneck of this

method is not only the detection of landmarks, but also the computation of the cor-

respondences. Having the correspondences, we can choose a mathematic model and,

based on the number of landmarks, the registration is solved as some form of interpo-

lation (section 3.2). This solution is simple and intuitive and it may always isolate a

linear transformation, even with the TPS solution, which is an advantage since in the

OR scenario a rigid motion is always required.

3.3.3 What is the direction in which we should proceed?

We may consider the input data as given in a binary form. There is a large amount of

work in the segmentation of medical images and the scope of this thesis is not about

it. The binary images allow us to keep all the relevant information and the number

of extracted features can range from some sparse data to dense information. Most

of the radiologic information will disappear but, as we have seen, we don't need all

the radiologic information. In fact, the radiologic information should be used only to

detect the relevant features.

The rigid transformation is always needed as a global alignment and, when re-

quired, a non-rigid transformation should be derived as a local re�nement.

3.4 A real-time 3D set-up in the OR

After these considerations, we searched for a registration algorithm that does not

need the correspondences to �nd even a simple transform and t he transform we shall

Some parts of 3.4 are based upon: B. Maris, D.Dall'Alba, P. Fi orini, A. Ristolainen, L. Li, Y.
Gavshin, A. Barsi, V. K. Adhikarla A phantom study for the validation of a surgical navigation system
based on real-time segmentation and registration methods , International Journal of Computer Assisted
Radiology and Surgery, IJCARS (submitted).



CHAPTER 3. Registration of binary images 45

always need in the OR is the rigid transform. In some cases a small deformation may

be allowed.

The motivation for the implementation of a rigid solution, beside the computational

cost, is that most of the (successful) systems employed currently in the OR , using the

registration as a component, are based on the rigid solution. We recall here some of

these devices:

• Artemis is a 3D ultrasound-guided prostate biopsy platform produced by Eigen

(Grass Valley, CA, US) that uses the fusion of MRI for in-bore biopsies. Dur-

ing biopsy in the urology suite, Artemis with ProFuse Box helps target the sus-

pected lesions (identi�ed in ProFuse) using its real-time u ltrasound guidance.

This device integrates a registration module based on the manual identi�cation

of landmarks followed by TPS interpolation (see [40]) and is validated using a

custom-built phantom.

• The Explorer navigation system from Path�nder Technologies (Nashville , TN,

US) designed to increase precision and physician con�dence by providing ad-

vanced 3D visualization of anatomic structures and real-time tracking of thera-

peutic delivery tools in liver interventions: partial hepatectomy, extended hepa-

tectomy, liver tumor ablation, living donor liver transplantation. The registration

module uses as input the CT scan of the liver and a range scanner of the liver

surface acquired during the intervention. The physician acquire manually some

prede�ned landmarks using a tracked tool for the initial reg istration, then the in-

put data together with the ICP algorithm are used to further re�ne the registration

(see [25]).

• Cas-One, produced by Cascination (Bern, Swiss), is a stereotactic accessory for

instrument guidance in open liver surgery. It visualizes in real-time the position

and pose of surgical instruments relative to a three-dimensional model of the

patients liver. The registration is done by the manual selection of landmarks, as-

suming a locally rigid and temporarily static scenario [90]. After deformations

occurring during the procedure, ef�cient means for registr ation updates are pro-

vided. The assumption of locally rigid patient registration was validated with

nine clinical cases.

Some of these algorithms require the correspondences of landmarks and some of

them are based on ICP algorithm, or variants of it, to perform the global alignment
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rigidly. The main limitations in the OR is the dif�culty to ob tain correspondences

on one hand, and the need of initialization of the transformation to avoid local mini-

mum and the fact that the error threshold and the number of iterations must be limited

beforehand, when using the ICP algorithm, on the other hand.

The algorithm we are proposing to solve the registration problem uses the binary

representation (segmentation) of the images as given by the equation (3.1). The inten-

sity information serves, in this case, only on the pre-processing (segmentation) phase.

The binary image may be considered as a density function or mass distribution. From

this distribution we derive the principal-axes or the principal moments of the image.

The principal-axes algorithm allows fast registration of large amount of segmented

data. As we shall see later on, the problem may be reduced to the eigen-decomposition

of two 3×3 matrices and there are very few registration parameters making it suitable

for the real-time registration of 3D datasets. The intra-operative segmentation process

produces binary images given by their characteristic function (equation (3.1)).

3.4.1 Realistic phantom set-up

We have evaluated the registration in an in-vitro set-up especially designed for our

purposes. A plastic phantom with realistic shape and radiological properties was built

(Figure 3.2).

Figure 3.2: The CAD model for the realization of the phantom (left) and the pancreas

phantom (right) with the internal duct.

The design of a patient speci�c organ phantom begins by segme nting the CT scans

of the patient abdomen. The segmentation is realized with 3D Slicer software, which
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also gives the possibility to create a 3D representation of the organs surface. From this

surface the model of the negative mold for model casting was created.

In the phantom development gelatin gels were used as they are self-supportive

solids with a proper range of achievable elasticity, US characteristics and a relatively

simple manufacturing process. The gel consists of food gelatin and distilled water

mixed with formaldehyde and graphite �akes. The material fa brication has been well

reported in different works, e.g. [68], [18], [45]. To mimic the internal structure a

pipe was added as the pancreatic duct with a diameter of 4 mm and two cysts with

a diameter of 20mm (Figure 3.2). In the preparation of the cysts no graphite was

added to the gelatin mixture (to achieve low US attenuation). Five similar US capable

pancreas phantom were built with pathology by using the same technique. The casted

and hardened pancreas phantom was later inserted into a gelatin medium to make the

phantom usable for US imaging with a linear probe. The pipe was removed after the

surrounding gelatin hardened and the empty space left from the pipe was �lled with

water. The Houns�eld units and US attenuation values of the p hantoms were in the

same range of real tissue. The physical properties were not � ne-tuned in this study

while the phantom was used to study the real-time registration algorithm.
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3.4.2 Real-time US 3D acquisition and image segmentation

Figure 3.3: Top: A US slice before (left) and after the segmentation process (right),

where the blue line is the organ surface, the green line is cyst's edge and the red line is

edge of a duct. Bottom: 3D reconstruction of the segmented surface (blue) with duct

(red) and cyst (green).

For the US acquisition and calibration processes please refer to 2.3.

Thanks to the calibration step we could process single 2D images (Figure 3.3),

and the results of the segmentation could be reconstructed in 3D. These synthetic US

images allow us to use simple segmentation methods.
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Figure 3.4: Real time US image segmentation pipeline.

Although the region growing approach [46] can be considered for segmentation,

we might need a seed pixel location that must be provided as an input parameter. On

the other hand, the region based approaches often need the output information from

the previous processed pixel in order to process the current pixel. This may not be

favorable in case of the process parallelization, which is very much required for real-

time performance.

The main idea is to cut-off unwanted pixels by thresholding and then extract the

cyst contour by calculating the gradient information. The proposed method �rst aims

to isolate the organ region from the background noise and then tries to extract required

contour areas of the cyst. The �rst step in this process is cut -off the unwanted noisy

pixels form the ultrasound image. This can be done by using Otsu's method [88], which

is an automatic thresholding method able to �nd the threshol d value that minimizes the

intra-class variance while maximizes the inter-class variance. When using continuous

sequences of incoming images in the OR it may not be possible to provide the required

threshold value manually, and then the automatic method used solve this problem.

A morphological dilation was used to �ll the small holes insi de the US image

and to ensure an edge preserving expansion. A diamond shaped structuring element

is used with a dimension of 7× 7 pixels. The same structuring element is used for

the subsequent double erosion step, followed by a second dilation step. All these

morphological operation are necessary to retain the original contour (both external

organ surface and internal structures) while removing false identi�ed edges. Although

the edge noise from the image is limited by using Otsu method, the output image still

contains some speckles, which needs to be processed to get the �nal segmented US

image. This is done in the contour extraction step. As we are working on the binary

image, a simple gradient based contour extraction gives us all the possible contours on

it. The extracted contours are then analyzed to measure how circular is the shape of

a region by calculating the ratio of furthest to closest distance of each contour point

to the contour's centre of gravity. As in an US image, the orga n appears to be the

largest object and the largest among the available contours can be directly considered

to be the organ contour. The extracted contour of the organ is �lled and a simple
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bitwise AND operation is performed on the resulting image using the image obtained

from morphological operations. This leaves us an image that has ones, just in the area

where we have the cyst or a blood vessel (Figure 3.3 ). We can then follow the same

gradient based contour extraction and this time, the output is directly the cyst contour.

The overall process chain of the proposed US segmentation algorithm is shown in

Figure 3.4.

3.4.3 Real-time surface registration

Figure 3.5: Left: CAD extracted surface. Right: US segmented image (blue) registered

with the CAD surface (white).

The principal-axes registration was �rst introduced by Alp ert et. al in [1]. We follow

here the description of the algorithm given by Modersitzki in [77] with the difference

that we use three-dimensional binary images as input.

The pre-operative binary images can be extracted from the original CT scan or from

the CAD surface used in the phantom construction (Figure 3.2 and 3.5).

Having the real-time segmentation, we may impose the constraint that the defor-

mations are small because the model is updated continuously. In this case, the binary

images have the same distribution along the principal-axes and the deformations will

be computed after the alignment along the principal-axes.

We de�ne, for a binary image I : W ∈R
d →R , the expectation value of a function

f with respect to I , by:

EI [ f ] =

∫
Rd f (x)I (x)dx∫

Rd I (x)dx
=

∫
W f (x)dx∫
W I (x)dx

(3.11)
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The center of an image I is de�ned by cI = EI [x] ∈ R
d and the covariance by

CovI = EI

[

(x− cI )(x− cI )
⊤
]

∈ R
d×d .

The center and an eigen-decomposition of the covariance matrix are used as fea-

tures for the image. The resulting registration is named principal axes transformation.

Given two 3D binary images T and R with centers cT and cR and non-singular

covariance matrices CovT and CovR , after the transformation T (x) := T̃ (Rx+ t) we

have:

c
T̃
= cR ,Cov

T̃
=CovR , (3.12)

where R = DT ΣT UΣ−1
R

is a 3×3 orthonormal matrix, t = cT −RcR ∈ R
3, U is a

3×3 unitary matrix, and the eigendecompositions

CovR = DR Σ2
R D⊤

R ,CovT = DT Σ2
T D⊤

T

are used.

The solution is given again following the Eulerian approach (equation (2.3)), as op-

posite to the direct transformation of the tissue points, as in the case of the Lagrangian

approach (equation (3.4)).

For normalization purposes we arrange the columns of DR and DT sorting the

eigenvectors according to the magnitude of their eigenvalues. It is also possible that

two or even three eigenvalues will be equal. These cases occur when the images A and

B contains symmetries. In this case it is dif�cult to choose t he axes. However, this

situation almost never occurs for the images in real-life application, as in our tests.
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3.4.4 Experimental test and results

Figure 3.6: Block diagram of the proposed framework

We have evaluated the navigation system on 5 different phantoms and, for each of

them, 10 acquisition tests were performed. The US device used in our setup is a Sonix

MDP (Ultrasonix, Richmond, CA, US) that supports digital data acquisition. The pose

of the probe is measured with an Optitrack (Natural Point, Corvallis, OR, US) passive

IR optical tracking system. The calibration of the probe is performed with a single

cross wire phantom, as described in the previous chapter (see section 2.3).

Figure 3.6 presents all the elements composing our system.

The US segmentation algorithm is implemented using OpenCV 2.4.1 with CUDA

4.0 and runs on a computer with Intel i7-920 CPU and NVIDIA Geforce GTX260

GPU. We tested the proposed algorithm on US images of the pancreas phantom with

two cysts and a duct inside. Figure 3.4 shows the result of the proposed algorithm, the

blue line is the organ surface, the green line is cyst's edge a nd the red line is edge of a

duct. Each edge point is reconstructed in 3D thanks to the calibration transformation

described before.

To evaluate the navigation system we have �rst computed the g lobal registration

error (GRE) as the RMS of the closest point distances of the segmented points on the
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organ surface and the reference surface which is the CAD model used in the phan-

tom manufacturing. The global error is given by the sum of the tracking, calibration,

segmentation, registration errors, as well as the phantom construction error.

Along with the global registration error, we have computed the target registration

error (TRE), which is given by distance between the centroid of the tumor in the CAD

image and the same centroid in the segmented image. The TRE is the true measure

of registration accuracy of importance to the success of a therapeutic procedures, and

should be the only measure to be considered for the registration quality.

For the real time performance we have tested separately the segmentation algorithm

on acquired images (size 408× 408), and the time for the whole algorithm is 0.019

seconds. Thus, the algorithm supports real-time image segmentation at around 53

frames per second.

Phantom GRE (mean/STD) mm TRE (mean/STD) mm Time (mean) sec

1 5.5207/1.8812 3.8707/1.5435 0.9654
2 6.0236/1.9212 3.8703/1.2371 0.9543
3 6.0045/2.0425 4.0030/1.8422 1.0104
4 5.9842/2.1203 4.0012/1.5809 0.9901
5 6.0103/1.9032 4.1302/1.7680 0.9882

Table 3.1: Accuracy and the precision of the system, both for the GRE and TRE, as
the average and the standard deviation of the error. The last column gives the average
time taken by the entire system to accomplish the registration.

The error obtained in the GRE and TRE shows that the accuracy and the precision

of the whole system may be suitable in interventions where the tolerance on the target

is around 5 mm (Table 3.1). The time required for the segmentation and registration

is around one second. The navigation system adds also the visual component, that is

the possibility to show in real time other structures segmented together with the target

structures, such as vessels or ducts.

3.5 Comments

There are many methods for the so-called registration problem but, going toward the

OR applications, the noose is tightening. In fact, while the extended theoretical works

on the subject is very re�ned and sometimes complex, as we hav e seen, the systems that

are used nowadays in the OR are based on very simple registration methods that were
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not developed specially for this purpose. On the other hand, the registration algorithms

seen in the previous chapter, cannot handle the registration in the OR.

As we have seen in the current chapter, the landmark based solution gives good

results and has a very low complexity. The approach based on landmarks can be ex-

tended to handle even dense surface data, but it is very likely , in this case, to loose

the correspondences. In this case, the only known technique is the ICP algorithm. In

effect, most of the solutions on the market employ this technique. In our opinion this

solution can not achieve the desired results as it is an iterative method and the local

minima are still an issue.

We tried to use an alternative method, the principal-axes registration, that does

not run the same risk of the local minima, and that can be portable to the OR. The

intention was to go in the direction of �nding appropriate al gorithms for designing a

navigation system in the OR, based on registration. Toward an in-vivo test, we have

validated the method on realistic phantoms with shape similar to the human organs and

radiological properties that mimic the human tissue. The algorithms for processing the

radiological data were oriented toward the real-time performance. The large amount

of data induced us to use parallelized computation for the segmentation process and to

ignore the radiologic information in the registration process.

The registration algorithm shall handle not only the rigid component, such as the

principal axes algorithm but, after the global rigid alignment, it should handle also the

local deformations. The current state of the art algorithms use mathematical models to

handle deformations such as thin plate spline or other radial basis functions, therefore

they should be adapted and validated for the real-time intra-operative application.

Even if the principal-axes method can work well in an in-vitro set-up, its imple-

mentation in an in-vivo set-up would require further re�nem ents.



Chapter 4

Generalized Shape Spaces

We can only see a short distance

ahead, but we can see plenty there

that needs to be done.

Alan Turing

The studies we have performed in the chapter 2 and in the chapter 3 showed that

the automatic solution, such as the three-steps algorithms, is not feasible in the OR,

meanwhile the solution based on landmarks and/or processing of the data requires the

manual interaction.

We have seen that the second solution is the preferred one, but it is still troublesome

especially when the correspondences are not known. In fact, when there are only a few

landmarks, the solution may be not as accurate as we expect and, increasing the number

of landmarks, as for instance in the case of binary images, the correspondence between

landmarks is lost.

In medical image registration, if we consider the images as functions of intensi-

ties (equation (2.1)), there is no information about the geometric structures we want

to register. On the other hand, if we extract the geometric structures by means of

segmentation algorithms (equation (3.1)) we loose information about the intensity or

about other structures that were not identi�ed by the segmen tation process. On both

approaches we have to make a compromise. Considering the fact that the datasets

we are dealing with are very large and a registration algorithm suitable for the oper-

ating room must be executed in real-time we exclude the use of the whole radiologic

Parts of this chapter are based upon: B. Maris, P. Fiorini. Procrustes method without correspon-
dences for registration of unstructured data ,2014, (submitted).
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information of the dataset as input to the registration algorithm. The extraction of ge-

ometric features is still a research argument but, at least for the pre-operative data, we

have the possibility of good segmentation since the dataset is available beforehand and

an automatic segmentation may be validated by means of the intervention of an expert

person.

What is left after the pre-processing step will be a set of points that represents sim-

ilar structures in two or more images and our task is to �nd cor respondences between

pair of points.

The ICP algorithm is the only well accepted technique to recover correspondences

and transformation but is limited by the presence of many local minimum solutions.

In this chapter we try to see how much we have to simplify the problem in order to

have a valid solution for the operating room. Once we de�ne th e problem, we give a

robust solution in both theoretical and practical form.

Another contribution that we present in this chapter is the introduction of the gen-

eralized shape space framework, which is a method that extend the Procrustes analysis

to cases when the homologies are not known a prori.

4.1 Correspondences, registration and the Procrustes

method

Each set of points that we want to register is called shape and the registration task is to

�nd a way to align two or more shapes. The Procrustes method of shape comparison

arose as a way of superimposing point-sets with known correspondence. A modern

and complete study of the Procrustean metric and shape manifolds was presented by

Kendall in [57] and was further extended by the author in [58].

A variety of objects can be represented as point sets in R
d , where d is usually 2

or 3. One is often presented with the problem of deciding whether two of these point

sets, and/or the corresponding underlying objects or manifolds, represent the same

geometric structure or not. In the case of correspondence, we are interested in the

transformation that relates one form to another. A connected fundamental question is:

what conditions must a set of points verify in order to faithfully represent an object?

Another question is: what kind of similarity we want to achieve between the objects,

i.e. rigid or non rigid? The easiest hypothesis is when the correspondences are known,

there is a small amount of noise in the point cloud representation and the transformation

is rigid. The closed form solution was given by Shonemann in [99].
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The mathematical aspects of the theory of shapes are most of the times not practical

in the implementation of algorithms for object recognition and matching. Point-based

methods to register surfaces which brings relatively dense point sets into correspon-

dence have become popular, as we have seen, with the introduction of the iterative

closest point (ICP) method [10], [130].

In the context of the determination of correspondences and transformation in suc-

cessive steps several authors built extensions or generalizations of this approach.

While retaining the basic iterative principle of ICP, Rangarajan et. al in [93] formu-

lated a variant of the Procrustes distance between two discrete sets of points in which

the correspondence maps are unknown a priori. Their algorithm alternates between cal-

culating optimal rotations and determining correspondence maps. For every �xed ro-

tation R, it computes the association matrix M between the two sets of points A = {Ai}

and B =
{

B j
}

, minimizing the average of the square residuals ∑i, j Mi j
∥

∥RAi −B j
∥

∥,

under the soft constraint that M is indeed a measure of coupling, i.e the values of M

elements are between 0 and 1, each row sums to 1, and the 1 value of an element Mi j

means the perfect correspondence between Ai and B j. As is the case of the original

ICP, this algorithm can also converge to a local rather than a global minimum, and the

correspondence maps can still be discontinuous and distorting. Memoli [75] provides

theoretical exposition of a similar functional in the context of Gromov-Hausdorff dis-

tances between shapes. Ghosh et. al [36] used a similar framework with a smooth

surface deformation mechanism together with closest-point maps to determine both

correspondence maps and the transformations in an alternating iterative procedure.

Their algorithm requires user initialization which may in� uence the outcome; the way

correspondences are assigned can lead to a deformation mechanism that produces a

distorting and/or discontinuous map between the two surfaces.

Shapiro and Brady [105] match feature points on the basis of consistent same-space

distances by an eigen-analysis technique, following the inter-image distance-based

matching technique of Scott and Longuett-Higgins [100]. The solution presented in

[100] has a very elegant implementation founded on a well-conditioned eigen-vector

solution which involved no iteration, but does not handle large rotations and may be-

come unstable for some value of the parameters. Conversely, Shapiro et al. in [105]

introduce a modal shape description to handle also the rotations and the instability, but

their solution lacks of the formal proof and, in our tests, does not always provide the

results we would have expected.

Boyer et al. [14] introduced the concept of continuous Procrustes distance and
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proved that it provides a true metric for two-dimensional surfaces derived from anatom-

ical structures embedded in a three-dimensional space.

Jian and Vemuri in [53] reformulate the task of point set registration as the problem

of aligning two Gaussian mixture models (GMM) such that a statistical discrepancy

measure between the two corresponding mixtures is minimized. Another probabilistic

approach that uses GMM and a closed form solution to establish the correspondences

using the expectation maximization algorithm was given by Myronenko and Song in

[82].

It is worth to mention the paper of Belongie et al. [9] that introduces the shape

context concept used to measure the similarity between shapes in two steps: 1) solving

for correspondences, 2) using the correspondences to estimate an aligning transform.

These are only a few of the works dealing with the transformation-correspondence

problem and, from the �rst to the last citation, they are all f acing the same 'egg-

chicken' dilemma: �nd the correspondences to get the transf ormation or �nd the trans-

formation to get the correspondences. The best solutions are of course those where the

transformation allowed is non-rigid. In this case we may �nd perfect correspondences

using a mathematical transformation, but one question arises: is it not true that if we

allow for non-rigid correspondence we may align any two given objects, such as an

apple and a pear or a mouse and an elephant?

It is important to consider the applications and the input-output of the algorithms

dealing with the correspondence-registration combination. The input of such algo-

rithms may represent different pose of the same object or views of an object subject

to a set of changes such as deformations. The data describing the input can be images

or geometric features such as points or triangle meshes. The correspondence could be

global in the case of an image dataset or local in the case of geometric features match-

ing. The output of such algorithms gives the transformation that register the datasets

on one hand and the correspondence or the measure of match on the other hand.

In the OR applications the rigid transformation is a fundamental output even if

we are comparing deformable objects because the intervention requires the presence

of other objects whose position is known with respect to the intra-operative imaging

system through a calibration process.

If the input is given as a set of geometric features to be matched with another set of

features, for instance in the point-set registration, once non-rigidity is allowed, there is

an in�nite number of ways to map one set onto another. The smoo thness constraint is

necessary because it discourages mapping that are too arbitrary. As we saw in chapter
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3 one of the simplest and most used measures is the space integral of the square of

the second order derivatives of the mapping function (see equation (3.7)). This leads

to the thin-plate-spline (TPS) function. Introduced by Bookstein in [11] for surface

registration in medical imaging and morphometry, and formally described by Wahba

in [121] these functions are currently used by most non-rigid registration algorithms of

point sets (see also [9], [24], [53], [82]).

The TPS function is easy to compute and implement and it has the advantage to

decouple the transformation into an af�ne part and a non-lin ear deformable part. In

situations where there is no shearing and scaling we can constrain the af�ne transfor-

mation to a rigid one.

Usually, all the non-rigid algorithms �rst �nd a common refe rence system of the

two datasets, then proceed with the deformation of one dataset in order to �t the sec-

ond dataset. Our main concern is that, once we introduce a non-rigid deformation,

even if the initial alignment is not satisfactory, the algorithm will yield a very good

alignment because of the freedom of the deformation. By keeping trace of the rigid

alignment, as in the TPS case, we may assert the goodness of the alignment and the

usefulness of the registration. For instance, Chui and Rangarajan in [24], implemented

the registration with a deterministic annealing scheme to optimize the correspondence

matrix by updating the transformation parameters. The algorithm is clearly attempting

to solve the matching problem using a coarse to �ne approach. Global structures such

as the center of mass and principal axis are �rst matched, fol lowed by the non-rigid

matching of local structures. This means that the rigid alignment will be given by the

alignment of the geometric moments of the two data sets considered. This solution,

already encountered in chapter 3 has a number of drawbacks such as the sensibility to

outliers, noise, occlusions but also to the deformation which is our main concern.

Lipman and Funkhouser in [66] used a different approach for the computation of

correspondences of approximately and/or partially isometric surfaces. They employed

the Mobius transformation and random sampling to vote for the best correspondences

for each triplets of points extracted from each of the two datasets to be registered. In

their approach, the datasets given as 3D meshes, which are genus-0 surfaces, were

conformally mapped to a sphere.

All of these approaches work well on synthetic models but our preoccupation is

how useful are they in practical applications. For instance, in medical image appli-

cations, where there are multiple acquisitions of the same anatomical area, if we use
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different sensors (e.g. computed tomography CT and ultrasound US) how can an algo-

rithm distinguish between noise and deformation, or how can a deformable algorithm

take into account the outliers? Since the deformation is modeled by a mathematical

model, such as TPS, we need to be sure of the correct rigid alignment, which is, in

most of the cases, not guaranteed.

There is also a concern about the computational cost of these algorithm and the

numerous parameters that must be solved/known in advance.

In the following, we propose a simpli�cation of the hypothes is of the problem in

order to have a solution that is completely controllable by the theoretical development.

The simpli�ed hypothesis is when we have two sets of points re presented in differ-

ent coordinate systems without knowing the homologies; the theoretical part consider

the ideal case when no noise is present, while in the practical implementation we study

how robust is this assumption in the presence of noise.

4.2 Shape-spaces and shape-manifolds: intro

The departing point of our generalized shape space method is the the work of Kendall

[57] who introduces the theory of shapes. The theory of shapes is concerned about of

k labelled points x1, ...,xk or k−ad in an Euclidean space Rd , where k ≥ 2. Normally,

the centroid of the k points will serve as the origin, and the scale will be such that

the sum of the squared distance of the points from that origin will be equal to unity.

Informally, the shape is 'what is left when the differences which can be attributed to

translations, rotations and dilatations have been quotiented out' .

By ignoring the translation, scaling and rotation, it has been proven (see [58]) that

the shape space denoted by the symbol Σk
d has the dimension:

dk
d = d(k−1)−

1
2

d(d −1)−1. (4.1)

This is because of the constraints on the total number of degrees of freedom (DOF)

which is reduced accordingly by the DOF of the translations d, rotations 1
2d(d−1) and

scaling. Equation (4.1) holds provided that k ≥ d +1.

The author introduces a norm and a metric topology on the shape space deriving

the shape-manifolds. The distance between two k− ad on the shape manifold Σk
d is

called the procrustes distance.

Starting from the description of the shape by using a set of points, a natural exten-

sion of this theory is to quotient out also the effect of the labeling of the points. In
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our approach we keep the signi�cance of the scaling. Accordi ngly, the de�nition of

the shape or generalized shape becomes: 'a generalized shape is what is left when the

differences which can be attributed to translations, rotations and permutations have

been quotiented out'.

In this chapter we study the implications of such an assumption, we build the theo-

retical basis and we give some practical results. The invariance of a point set under the

action of rotations, translations and permutations will be studied in accordance with

the set of distances between each possible pair of points in the set.

4.3 Theoretical foundations

Let us �x a coordinate system in R
d .

De�nition 1. If we denote by O(d) the group of the d×d orthogonal matrices, and by

Sk the group of all permutations of {1, ...,k}, a set of k points X = {x1, ...,xk} ,⊂ R
d

is equivalent to Y = {y1, ...,yk} ⊂R
d , in the sense of generalized shape, if and only if

there exists R ∈ O(d), a vector t ∈ R
d and a permutation π ∈ Sk such that:

Rxi + t = yπ(i)∀i = 1, ...,k. (4.2)

Notice that the introduced notion is an equivalence relation.

De�nition 2. We write [X ] the equivalence class of X and we call it generalized shape.

For any two vectors x = (x1, ...,xd) and y = (y1, ...,yd) in R
d we denote by 〈x,y〉=

∑d
i=1 xiyi their scalar product and by ‖x−y‖= 〈x−y,x−y〉1/2 the Euclidean distance

between them. The Euclidean distance de�nes a metric space c alled the Euclidean

space.

De�nition 3. For any set X = {x1, ...,xk} of vectors in R
d , the center of mass is given

by the vector x̄= 1
k (x1+ ...+xk). The set X̄ = {x1 − x̄, ...,xk − x̄} is called the centered

coordinates.

In the following we shall use the notation X to represent a set of k points x1, ...,xk ∈

R
d describing a generalized shape and, in the same time, a d × k matrix with columns

x1, ...,xk.

If we sum over i and divide by k (4.2) we have:
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R
1
k

k

∑
i=1

xi + t =
1
k

k

∑
i=1

yi,

therefore we can express t as:

t = ȳ−Rx̄, (4.3)

so we can rewrite (4.2) as:

RX̄ = Ȳπ, (4.4)

where Ȳπ =
{

yπ(1)− ȳ, ...,yπ(k)− ȳ
}

.

This formula shows that the only important transformations in the generalized

shape de�nition are the orthogonal transformation, or the r otation, R and the permuta-

tion π.

De�nition 4. Given X = {x1, ...,xk} ⊂ R
d and Y = {y1, ...,yk} ⊂ R

d , we de�ne the

distance between them as:

d(X ,Y )p := min
π∈Sk

∥

∥d(xi,xj)−d(yπ(i),yπ(j)
∥

∥

p
, (4.5)

that is the minimum of the Lp norm over all the permutations of elements in Y .

This distance ranges from the L1 norm

d(X ,Y )∞ := min
π∈Sk

∑
1≤i, j≤k

∣

∣d(xi,xj)−d(yπ(i),yπ(j))
∣

∣ (4.6)

to L∞ norm

d(X ,Y )1 := min
π∈Sk

max
1≤i, j≤k

∣

∣d(xi,xj)−d(yπ(i),yπ(j)
∣

∣ (4.7)

Observe that, since Sk is �nite, it makes sense to de�ne (4.5) as a minimum rather

than as an in�mum.

We use this de�nition when the correspondences between the p oints are not known

and the computation of the registration transformation is not required.

In the case the correspondences are known but the registration transformation be-

tween shapes is not known, the distance between them is given by the following de�-

nition:
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De�nition 5. If x̄= 1
k ∑k

i=1 xi and ȳ= 1
k ∑k

i=1 yi are the centroids of the point-sets X and

Y , and the centroid sizes are given by SX = [1
k ∑k

i=1(xi − x̄)2]
1
2 and SY = [1

k ∑k
i=1(yi −

ȳ)2]
1
2 , respectively, the classical Procrustes distance dP(X ,Y ) between X and Y is

de�ned by

dP(X ,Y ) = inf
M∈SE(d)

(

k

∑
i=1

∥

∥

∥

∥

xiM
SX

−
yi

SY

∥

∥

∥

∥

2
) 1

2

, (4.8)

where SE(d) is the special euclidean group of translation and rotations in R
d .

If we embed the shapes in the Euclidean space Rd we can imagine the shape as the

orbit of all isometric subspaces with the given shape.

De�nition 6. We say that two shapes X and Y , embedded in the Euclidean space R
d ,

are isometric when there exists a bijective mapping Φ : X → Y such that d(xi,xj) =

d(Φ(yi),Φ(yj). Such Φ is an isometry between X and Y .

We are interested on whether this isometry exists and how to � nd it. As the gen-

eralized shapes are given as an equivalence class modulo rotations, translation and

permutations, the isometry, in the case exists, is given by the composition of the three

functions. Since it is clear that rotations and translations are always isometries we are

wandering in which case the permutations still lead to isometry. To do this we will

work directly with the distance distributions between pairwise points in each set.

De�nition 7. Given a set of points x1, ...,xk ∈R
d , we call distance distribution matrix

the k× k matrix whose entries are given by the pairwise distances DX
i, j =

∥

∥xi −xj
∥

∥

A reduced form of the distance distribution matrix is the distance distribution vec-

tor.

De�nition 8. Given a set of points x1, ...,xk ∈R
d , we call distance distribution vector

the R
(k

2) vector whose entries are given by the pairwise distances:

V X = (V1,2, ...,V1,k,V2,1, ...,Vk−1,k) (4.9)

where V X
i, j =

∥

∥xi −xj
∥

∥ with 1 ≤ i < j ≤ k

De�nition 9.
{

V1,2, ...,V1,k,V2,1, ...,Vk−1,k
}

is called distance distribution set.

Note that the distance distributions are invariant under rigid motions. The permuta-

tion of k indices will yield a permutation of the distance distributions. The next sections
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will analyze when the distance distributions suf�ce to char acterize the orbit of a gener-

alized shape and how we can recover the rigid transformation and the correspondences

between two generalized shapes.

De�nition 10. Given a set of points X = {x1, ...,xk} ⊂ R
d , we call Gram matrix the

k× k matrix whose entries are given by the inner products Gi j =
〈

xi,xj
〉

. The Gram

matrix may also be given as the matrix product XT X.

De�nition 11. A n×n matrix M is called symmetric if Mi j = M ji for all i, j = 1, ...,n.

A n×n matrix M is called positive semide�nite if for all x ∈ R
n,xT Mx ≥ 0,

The Gram matrix is positive semide�nite and symmetric, and e very positive semidef-

inite matrix is the Gram matrix for some set of vectors. Further, in �nite-dimensions it

determines the vectors up to isomorphism, i.e. any two sets of vectors with the same

Gram matrix must be related by a single unitary matrix as we shall state in the next

lemma.

Lemma 1. For any two X and Y d × k matrices, if their Gram matrices are equal, i.e.

XT X = Y TY , then there is a matrix A ∈ O(d) such that AX = Y .

Proof. XT X is positive semide�nite therefore can be written as QΛQT for Q ∈ O(k)

and a non-negative diagonal matrix Λ. Using the singular value decomposition of X

we can write X =UX ΣQT , where UX ∈ O(d) and ΣT Σ = Λ.

Considering XT X = Y TY we may write also Y = UY ΣQT , where UY ∈ O(d) and

ΣT Σ = Λ.

Then, we can write AX = Y for orthogonal A =UYUT
X .

The next lemma gives useful hints to connect the distance distribution with the

Gramian derived from two sets.

Lemma 2. Given the sets X = {x1, ...,xk} and Y = {y1, ...,yk}, the following state-

ments are equivalent:

(i)
∥

∥xi −xj
∥

∥=
∥

∥yi −yj
∥

∥, ∀1 ≤ i, j ≤ k.

(ii) ∀n = 1, ...,k �xed
〈

xi −xn,xj −xn
〉

=
〈

yi −yn,yj −yn
〉

, ∀1 ≤ i, j ≤ k.

(iii)
〈

xi − x̄,xj − x̄
〉

=
〈

yi − ȳ,yj − ȳ
〉

, ∀1 ≤ i, j ≤ k.

Proof. For p,q ∈ R
d we have:

‖p−q‖2 = 〈p−q,p−q〉= 〈p,p〉+ 〈q,q〉−2〈p,q〉= (4.10)

= ‖p‖2 +‖q‖2 −2〈p,q〉 (4.11)



CHAPTER 4. Generalized Shape Spaces 65

For p = xi −xn and q = yi −yn we derive;

∥

∥xi −xj
∥

∥

2
= ‖xi −xn‖

2 +
∥

∥xj −xn
∥

∥

2
−2

〈

xi −xn,xj −xn
〉∥

∥yi −yj
∥

∥

2
=

= ‖yi −yn‖
2 +

∥

∥yj −yn
∥

∥

2
−2

〈

yi −yn,yj −yn
〉

The last equation and (i) implies (ii). If we have (ii) and we choose i = j in the last

equation we obtain ∀i,n‖xi −xn‖= ‖yi −yn‖, therefore (i).

If (ii) holds ∀i we sum and average over i and obtain:
〈

x̄−xn,xj −xn
〉

=
〈

ȳ−yn,yj −yn
〉

∀1 ≤ j ≤ k

Averaging over j this equation we obtain:

‖x̄−xn‖= ‖ȳ−yn‖ (4.12)

For p = xi −xn and q = yi −yn we derive:

∥

∥xi −xj
∥

∥

2
= ‖xi − x̄‖2 +

∥

∥xj − x̄
∥

∥

2
−2

〈

xi − x̄,xj − x̄
〉∥

∥yi −yj
∥

∥

2
=

= ‖yi − ȳ‖2 +
∥

∥yj − ȳ
∥

∥

2
−2

〈

yi − ȳ,yj − ȳ
〉

The last equation, the equation (4.12) and the equivalence between (i) and (ii) im-

plies (iii).

If we have (iii), then, for i = j = n we obtain ‖x̄−xn‖= ‖ȳ−yn‖.

This result, together with the last equation in the (iii) hypothesis, gives (i), therefore

(ii) and the proof is complete.

The main question is if the distance distribution matrix characterizes in a unique

way the generalized shapes.

In the case of labeled points (i.e. in the sense of Kendall's s hapes) the answer is

yes and it is illustrated by the next theorem.

Theorem 1. If X = {x1, ...,xk} and Y = {y1, ...,yk} are sets of points in R
d and

∥

∥xi −xj
∥

∥ =
∥

∥yi −yj
∥

∥ , ∀1 ≤ i, j ≤ k, then there exist a rigid transformation given

by R ∈ O(d) and t ∈ R
d such that Rxi + t = yi for all i.

Proof. From Lemma 2 ((i)⇔ (iii)), the Gram matrix of the centered coordinates are

the same, i.e. X̄T X̄ = Ȳ T Ȳ .

It follows from Lemma 1 that ∃R ∈ O(d) such that RX̄ = Ȳ therefore we have:

R(xi − x̄) = yi − ȳ, ∀i or
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yi = Rxi + ȳ−Rx̄.

Let t = ȳ−Rx̄ and the proof is complete.

So, in the case of labeled points, i.e. when the correspondences are known, the

distance distribution matrix is an invariant that completely characterize the equivalence

class of a shape. We are interested if the same holds in the case of generalized shapes.

The following examples will show that the answer is no, i.e. even if the distribution

of distances is the same, there are different con�gurations yield the distributions that

are not related by a rigid transformation. Before giving these examples we note that the

distance distribution of a point-set X = {x1, ...,xk} may be given also as a monotone

increasing sequence
(

d1,d2, ...,d(k
2)

)

, where
{

d1,d2, ...,d(k
2)

}

=
{∥

∥xi −xj
∥

∥

}

with 1≤

i < j ≤ k. This sequence is the same as the distance distribution vector up to a per-

mutation and it will be used when we derive the correspondences of points as we will

later see (section 4.6).

Consider the two sets of points X = {0,1,4,10,12,17} and Y = {0,1,8,11,13,17}

in R. Their distance distribution sequence is given by the ordered vector

(1,2,3,4,5,6,7,8,9,10,11,12,13,16,17) but it is obvious that the point set does not

represent the same shape even if we consider the possibility of re�ection.

Figure 4.1: The point sets {A,B,C,D}, {A,B,C,E}, and {A,B,C,F} have the same

distribution of distances.

We insert here a more general example in R
d,d ≥ 2 taken from [64] and shown in

�g. 4.1. Given a triangle ABC, let a be the midpoint of BC and b be the midpoint of AC.
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Let K be the line through a perpendicular to the line Aa. Let L be the line through b

perpendicular to the line Bb. If D is the intersection of L and K, E is the point of L such

that dist(E,b) = dist(D,b) , and F is the point of K such that dist(F,a) = dist(D,a)

then the shapes {A,B,C,D}, {A,B,C,E}, and {A,B,C,F} have the same distribution

distance matrix up to a permutation but they are not isometric. In fact, it is easy to see

from the fact that the triangles BDE and ADF are isosceles and DAEC and DBFC are

parallelograms that DA = FA = EC, DB = FC = EB and DC = FB = EA, therefore the

6 distances that form the distance distribution vector of each of the shapes are identical

up to a permutation. The point sets given by {A,B,C,D}, {A,B,C,E}, and {A,B,C,F}

do not represent the same generalized shape and we will formally prove in section 4.4.

There are in�nite ways to construct shapes with the same dist ribution of distances

as we have seen but having different shapes, therefore we want to know which distance

distributions de�ne in a unique way a shape. In the next secti on we see that most

distribution of distances de�ne uniquely a generalized sha pe.

4.4 Distance distribution and generalized shapes:

existence

In this section we analyze some properties about the existence of the generalized

shapes using the distribution of distances. Boutin and Kemper [13], [12] character-

ized the point sets in Rd that can be determined from their distance distribution. Their

results hold in the case when the distribution of pairwise distance are exactly the same.

Some of these results will be presented here and they will be integrated in the context

of generalized shapes. The section 4.5 will analyze a method to recover the isometric

transformation between generalized shapes in the ideal case, when the distribution of

distances are exactly the same, and a theoretical study of robustness will be introduced.

Finally, the section 4.6 will present a method to compute correspondences between the

points of two generalized shapes in the presence of noise.

With the previous result in mind (Theorem 1), our approach now is to show which

point sets with the same distribution of distances are the same modulo rotations, trans-

lations and permutations. More precisely we are interested in the relation between the

permutation of the distances as elements of the symmetric group S(k
2)

and the permu-

tations between the point sets.

Denote by C the set of
(k

2

)

distinct pairs.

C = {(i, j)|i 6= j, i, j = 1, ...k}. This means that ∀(i, j) and (i′, j′) ∈ C distinct, the
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sets {i, j} and {i′, j′} are also distinct.

Two point sets X = {x1, ...,xk} and Y = {y1, ...,yk} have the same distance distri-

bution vector if there exists a permutation θ ∈ S(k
2)

such that:

V X
(i, j) = VY

θ(i, j), ∀(i, j) ∈ C, where V X
(i, j) =

∥

∥xi −xj
∥

∥ and VY
(i′, j′) =

∥

∥yi −yj
∥

∥ and

θ(i, j) = (i′, j′) are the components of the distance distribution vector.

De�nition 12. θ is a labeling of the points if there exists a permutation π ∈ Sk of the

indices such that:

θ(i, j) = (π(i),π( j)),∀(i, j) ∈C. (4.13)

The previous de�nition links the correspondences between p airs of each sets given

by two indices (i, j) ∈ C for X , θ(i, j) ∈ C for Y and point correspondences between

X and Y given by π(i) and π( j). The next result shows the immediate correspondence

with the generalized shapes.

Corollary 1. Given X = {x1, ...,xk} and Y = {y1, ...,yk} with the same distribution of

distances up to a permutation θ ∈ S(k
2)

which is a labeling of points, then Y ∈ [X ] in

the sense of generalized shape.

Proof. Consider π from (4.13). From hypothesis V X
(i, j) =VY

θ(i, j) but VY
θ(i, j) =VY

(π(i),π( j))

therefore V X
(i, j) =VY

(π(i),π( j)).

The sets of points X and Yπ =
{

yπ(1), ...,yπ(k)
}

have the same distance distribution

vector, therefore by Theorem 1 there exists R∈O(d) and t∈R
d such that Rxi+t= yπ(i)

for all i. This implies Y ∈ [X ].

This connection between the permutation of
(k

2

)

distances and the permutation of

k points gives the generalized shape equivalence class. We need to know which S(k
2)

permutations are good permutations in the sense of equation (4.13).

The next theorem, which is fundamental for our argument, prove that a permutation

over C is a labeling if it preserves adjacency.

Theorem 2. ( [13]) For k 6= 4, θ ∈ S(k
2)

is a labeling (i.e. induces equivalent shapes

modulo rotations, translations and permutations) if and only if ∀i, j, l pairwise distinct

indices we have

θ(i, j)∩θ(i, l) 6= /0 (4.14)

Proof. The 'only if' part of the statement is clear from (4.13), so we will show the 'if'

direction.
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For k = 3 the set of 3 distances may yield a unique triangle, therefore every θ∈ S(3
2)

is a good permutation. Same for k = 2.

Assume k ≥ 5 and θ ∈ S(k
2)

satis�es (4.14).

Suppose, by contradiction, for pairwise distinct i, j, l,m ∈ {1, ...,k}:

θ(i, j)∩θ(i, l)∩θ(i,m) = /0.

Then, by (4.14) we can write θ(i, j)= (a,b), θ(i, l)= (a,c) and θ(i,m)= (b,c),with

a,b,c ∈ {1, ...,k} pairwise distinct. Now, since we have more than 4 points, we can

choose n distinct from i, j, l,m, θ(i,n) must intersect (a,b),(a,c) and (b,c). Since

θ(i,n) only has two elements, it must be one of the sets (a,b),(a,c),(b,c), contradict-

ing the injectivity of θ. Therefore, θ(i, j)∩θ(i, l)∩θ(i,m) 6= /0.

Then if we �x an i and choose any distinct j, l, θ(i, j)∩θ(i, l) must contain a distinct

element a and the above shows that a belongs to any θ(i,m), where m is distinct from

i, j, l. Therefore ∩m6=iθ(i,m) = a and we can de�ne the map π : {1, ...,k} → {1, ...,k}

such that π(i) = a. To show that π ∈ Sn we simply need to show that it is injective.

To do this, let Mi be the set of all pairs containing i. Then θ(Mi) ⊆ Mπ(i). But θ is a

bijective and |Mi|=
∣

∣Mπ(i)
∣

∣ therefore θ(Mi) = Mπ(i).

Let i 6= j with π(i) = π( j). Then, Mπ(i) = Mπ( j) so θ(Mi) = θ(M j). But θ is a

permutation so Mi = M j therefore i = j so π is injective.

Now consider θ(i, j). By the above, it contains both π(i) and π( j), so θ(i, j) =

(π(i),π( j)) that is (4.13).

For k = 4, Theorem 2 is not true. In fact, observe that the relation θ(i, j)∩θ(i, l)∩
θ(i,m) = /0 cannot be contradicted because we cannot choose n distinct from i, j, l,m.

The theorem becomes true in all cases if we impose the additional condition that, for

each pairwise distinct i, j, l,m ∈ {1, ...,k}, θ(i, j)∩θ(i, l)∩θ(i,m) 6= /0.

A simple counterexample for the k = 4 case is given by the point-sets from the

previous section 4.3, �gure 4.1, where the sets of distances {AB,BC,AC,AD,BD,CD}

and {AB,BC,AC,CE,BE,AE} are the same and the condition (ii) from Theorem 2

holds, but the point sets are not isometric.

In the case of the example X = {0,1,4,10,12,17} and Y = {0,1,8,11,13,17} in

R, k = 6, the distributions of the ordered vectors of distances of X and Y are the

same:(1,2,3,4,5,6,7,8,9,10,11,12,13,16,17) so we can check Theorem 2. If we

denote the points of each set with numbers from 1 to 6, following the natural order, we

have:

V X
(2,3) =VY

θ(3,4) and V X
(1,3) =VY

θ(5,6) so, from Theorem 2 the two sets do not represent

the same generalized shape.
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Equipped with this result that allows us to identify good permutations, we show

next that if two point sets are suf�ciently close and have the same distribution of dis-

tances, then they represent the same generalized shape. This result is weaker than

desired but gives some intuition on why point sets might be determined by their pair-

wise distance.

Theorem 3. ( [12] ) If X = {x1, ...,xk} ⊂ R
d is a set of k points there exists a neigh-

borhood V (X) ∈ (Rd)k of (x1, ...,xk) such that if (y1, ...,yk) ∈V (X) is a con�guration

with the same distribution of distances vector of X, then the two point con�gurations

belong to the orbit of the same generalized shape.

Proof. Suppose, by contradiction, that exists a sequence (Yn)
∞
n=1 converging to X such

that none of Yn can be mapped to X through a rigid transformation and permutation, but

exists a sequence of permutations (θn)
∞
n=1 ∈ S(k

2)
such that V X

(i, j) = VYn
θn(i, j)

. Since the

symmetric group S(k
2)

has a �nite number of elements, we can chose θ1 and construct

(Zl)
∞
l=1 a subsequence of (Yn)

∞
n=1 where θn = θ1.

Taking the limit l → ∞, we have V X
θ−1

1 (i, j)
= lim

l→∞
V Zl
(i, j). Since (Zl)

∞
l=1 converges to

X , we have V X
θ−1

1 (i, j)
=V X

(i, j) or:

V X
(i, j) =V X

θ1(i, j)
(4.15)

From the construction of Zl we have:

V Zl
θ1(i, j)

=V X
(i, j),∀i, j, l (4.16)

(4.15) and(4.16) imply that V X
(i, j) =V Zl

(i, j)∀i, j, l.

By Theorem 1, X and Zl are the same up to a rigid motion, for every l, so we have

a contradiction.

4.5 Distance distribution and generalized shapes:

isometric transformation

In this section we are in the hypothesis of the Theorem 2, i.e. if there is a correspon-

dence θ between the distance distributions of two sets, then θ is a labeling. We are in-

terested here to compute the rigid part of the transformation without knowing the point
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to point correspondence. This solution to the computation of the correspondences will

be given in the next section.

We begin this section with some known general results from linear algebra that we

shall use.

Recall that if π ∈ Sn is a permutation of {1,2, ...,n}, then the n×n matrix Pπ:

Pπ =
(

eπ(1)eπ(2)...eπ(n)
)

(4.17)

is the permutation matrix associated to π, where e j denotes a column vector of

length n with 1 in the jth position and 0 in every other position.

Lemma 3. Let Pπ be the permutation matrix associated to π. Then the following holds:

(i) Pπ is orthogonal and P−1
π = PT

π = Pπ−1

(ii) detPπ =±1

(iii) Multiplying a d ×n matrix X on the right by Pπ permutes the columns of X by

Pπ.

This lemma is well known and its proof is ignored.

The eigenvalues of a n×n matrix A are the solutions λ of the determinant equation

det(A−λIn) = 0 associated to the characteristic polynomial pA := det(A−λIn), where

In is the n×n identity matrix.

Associated with each eigenvalue λ of A, there will be non-trivial solutions of the

equation (A − λIn)x = 0. These are called eigenvectors of A corresponding to the

eigenvalue λ. Thus, if λ is an eigenvalue of A, then there will exist a corresponding

eigenvector v 6= 0, which is a non-trivial solution of (A−λIn)v = 0.

If λ is an eigenvalue of A, then the dimension dg of the linear space Null(A−

λIn) := {x|Ax−λx = 0} is called geometric multiplicity of λ, while the multiplicity

dm of λ as root of the characteristic polynomial is called algebraic multiplicity.

It is well known that the dg ≤ dm.

Lemma 4. If Pπ is the permutation matrix associated to π ∈ Sn and X and Y are two

n×n positive symmetric semide�nite matrices such that Y = PπXP−1
π then:

(i) X and Y have the same set of eigenvalues

(ii) There exist eigenvalue decompositions of X = UX DU−1
X and Y = UY DUY−1,

such that Pπ =UYU−1
X

Proof. pY (λ) = det(Y −λI)

Since I = PπP−1
π we can write:
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pY (λ = det(Pπ(X −λI)P−1
π ) = det(Pπ)det(X −λI)det(P−1

π )

= det(X −λI) = PX(λ)
which shows that the eigenvalues of X and Y and their algebraic multiplicity are

the same.

Let X = UX DUT
X be the eigenvalue decomposition of X . X is symmetric, positive

semide�nite therefore D consisting of all eigenvalues of X is real and diagonal.

Y = PπXP−1
π = PπUX DUT

X P−1
π

UY = PπUX is orthonormal (UT
Y =UT

X PT
π =UT

X P−1
π and thus

Y =UY DUT
Y

D is the diagonal matrix of all eigenvalues of X , therefore by (i) of all eigenvalues

of Y .

Observe that not all the eigen decompositions of X and Y lead to Pπ since the

decompositions are not unique. The previous lemma ensure only the existence.

We are ready to give a strong result about the connection between the permutations

of the distance distribution matrix and the generalized shapes.

Theorem 4. Given X = {x1, ...,xk} and Y = {y1, ...,yk} two point sets in R
d , the

following statements are equivalent:

(i) Y ∈ [X ]

(ii) ∃Pπ a permutation matrix, such that DX = PT
π DY Pπ. Moreover, Pπ = UYUT

X ,

where UY and UX are orthogonal matrices from an eigenvalue decomposition of Ȳ T Ȳ

and X̄T X̄ .

(iii) ∃Pπ a permutation matrix and R ∈ O(d), such that RX̄ = Ȳ Pπ. Moreover, Pπ =

UYUT
X , where UY and UX are orthogonal matrices from an eigenvalue decomposition

of Ȳ T Ȳ and X̄T X̄ .

Proof. Lemma 2 says that the correspondences between the elements of the distance

distribution matrix are the same as the correspondences between the Gram matrix of

the centered coordinates ((i) ⇔ (iii)), therefore if we show that there exists Pπ ∈ Sk

such that X̄T X̄ = PT
π X̄T X̄Pπ, the same relationship will hold between DX and DY .

Y ∈ [X ]⇔ exists R ∈ O(d), a vector t ∈ R
d and a permutation π ∈ Sk such that:

Rxi + t = yπ(i) for all i = 1, ...,k.

Let Pπ be the permutation matrix associated with π.

If we denote Yπ =
{

yπ(1), ...,yπ(k)
}

, we have

Yπ = Y Pπ and

Ȳπ = Ȳ Pπ. (4.18)
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From hypothesis
∥

∥xi −xj
∥

∥=
∥

∥yπ(i)−yπ(j)
∥

∥∀i, j = 1, ...,k, if and only if, by Lemma 2,
〈

xi − x̄,xj − x̄
〉

=
〈

yπ(i)− ȳ,yπ(j)− ȳ
〉

, ∀1 ≤ i, j ≤ k.

This is equivalent to X̄T X̄ = Ȳ T
π Ȳπ or, using (4.18) X̄T X̄ = PT

π Ȳ T Ȳ Pπ.

The formula of Pπ follows from Lemma 4.

We can rewrite (ii) as X̄T X̄ = (Ȳ Pπ)
T Ȳ Pπ, therefore by Lemma 1 this is true if and

only if there exists an orthogonal matrix R such that RX̄ = Ȳ Pπ.

We have so far a relation between centered coordinates X̄ and Ȳ together with the

matrix R ∈ O(d) and π ∈ Sk.

The equivalence as generalized shapes between X and Y follows the same reason-

ing as in Theorem 1, putting t = ȳ−Rx̄.

Notice again that the eigenvalue decomposition is not unique therefore the previous

result ensures only the existence of the matrix Pπ and does not help in �nding the

permutation or the orthogonal matrix that relates the two point sets.

In our assumption, the permutation that realizes the correspondence between the

point sets is not known, so we want to �nd the orthogonal matri x that relates the two

point sets without knowing the correspondences. The next theorem will introduce a

way to �nd this matrix. The complete solution of this problem will be given as an

algorithmic method.

The d × d matrix ȲȲ T does not depend on the permutation of the elements of Y ,

since for all π∈ Sk, ȲπȲ T
π = Ȳ PπPT

π Ȳ T = ȲȲ T . This allows us to establish the next result

that will be the base of the algorithm that �nds the rigid tran sformation between two

sets representing the same generalized shape without knowing the correspondences

between the point sets.

Theorem 5. Given X = {x1, ...,xk} and Y = {y1, ...,yk} two point sets in R
d with

Y ∈ [X ], then the matrices X̄X̄T and ȲȲ T have the same eigenvalues, including their

algebraic multiplicities. If the eigenvalues are all distinct we denote by S the d × d

matrix of the si eigenvectors of X̄X̄T written as columns, T the d × d matrix of the ti

eigenvectors of ȲȲ T written as columns and π ∈ Sk the permutation determined from

Ȳπ = RX̄. Then we have:

〈

xj − x̄,si
〉

= δi
〈

yπ(j)− ȳ, ti
〉

, (4.19)

for all j = 1, ...,k, i = 1, ...,d and δi =±1.
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Moreover, if
〈

xj − x̄,si
〉

6= 0 and we denote ∆ = Diag(δ1, ...,δd), where

δi =

〈

xj − x̄,si
〉

〈

yπ(j)− ȳ, ti
〉 (4.20)

than R = T ∆ST .

Proof. From Theorem 4 it follows that if Y ∈ [X ] then ∃R ∈ O(d) such that Ȳπ = RX̄ .

We have ȲȲ T = RX̄PT
π PπX̄T RT = R(X̄ X̄T )RT .

If we decompose the real, symmetric matrix X̄ X̄T using the eigendecomposition

X̄ X̄T = SΛST then:

ȲȲ T = (RS)Λ(RS)T . (4.21)

RS is orthogonal as product of orthogonal matrices so (4.21) shows that X̄ X̄T and ȲȲ T

have the same eigenvalues, including their algebraic multiplicities and RS is a matrix

of eigenvectors for ȲȲ T .

Since the eigenvalues are distinct and knowing that the geometric multiplicity is

less than the algebraic multiplicity, the dimension of Null
(

X̄ X̄T −λiId
)

is one there-

fore, for all i = 1, ...,d if ti is an eigenvector of ȲȲ T then ti =±Rsi.

In the case
〈

xj − x̄,si
〉

6= 0 denoting δi =
〈xi−x̄,si〉

〈yπ(j)−ȳ,ti〉
and ∆ = Diag(δ1, ...,δd), we

can write R = T ∆ST .

Since the inner product is invariant to isometries and Ȳπ = RX̄ , with R orthogonal

we can write:
〈

xj − x̄,si
〉

=
〈

R(xj − x̄),Rsi
〉

=±
〈

yπ(j)− ȳ, ti
〉

,

and the proof is completed.

Remark that if
〈

xj − x̄,si
〉

= 0 for all j = 1, ...,k , δi cannot be determined from

(4.20). In this case X̄T si = 0, therefore X̄ X̄T si = 0. This means si is the eigenvec-

tor corresponding to the eigenvalue 0. This remark allows us to give the following

corollary.

Corollary 2. If the eigenvalues are all distinct and non-zero, then ∃ j = 1, ...,k such

that
〈

xj − x̄,si
〉

6= 0, and therefore:

δi =

〈

xj − x̄,si
〉

〈

yπ(j)− ȳ, ti
〉
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Following this corrolary, the matrix ∆ = Diag(δ1, ...,δd) is completely determined

only when π is known, while we set out to achieve the computation of R without

knowing π. The next corollary will solve this problem by giving a way to compute ∆.

Let's �rst denote, for each i = 1, ...,d, A−
i the sets:

AX
i− =

{∣

∣

〈

xj − x̄,si
〉∣

∣ :
〈

xj − x̄,si
〉

< 0, j = 1, ...,k
}

, i = 1, ...,d.

AX
i+ =

{∣

∣

〈

xj − x̄,si
〉∣

∣ :
〈

xj − x̄,si
〉

> 0, j = 1, ...,k
}

, i = 1, ...,d.

In a similar way we de�ne AY
i− and AY

i+ .

Corollary 3. If Y ∈ [X ] and none of the eigenvalues of the matrix X̄X̄T is zero, then,

for each i = 1, ...,d one of the two cases happens:

(i) AX
i− = AY

i− and AX
i+ = AY

i+ and thus δi = 1

(ii) AX
i− = AY

i+ and AX
i+ = AY

i− and thus δi =−1

In this way the matrix ∆ = Diag(δ1, ...,δd) is determined without knowing the per-

mutation π.

We conclude this section with the following algorithm that, in most cases, solves

the rigid transformation between two elements of the same generalized shape, in the

case where the point to point correspondences are not known.

Algorithm 1 Orthogonal transformation between two generalized shapes

1: Input X and Y two k point sets in R
d

2: Compute X̄ X̄T and ȲȲ T and their eigenvalues λ1, ...λd and µ1, ...,µd

3: If the eigenvalues are not all distinct in each set then the algorithm is inconclusive

4: If the set {λ1, ...λd} is different from the set {µ1, ...,µd} then Y /∈ [X ]

5: Compute si and ti, i = 1, ...,d the sets of eigenvectors of X̄ X̄T and ȲȲ T

6: If ∃i such that the sets
{∣

∣

〈

xj − x̄,si
〉∣

∣ : j = 1, ...k
}

and
{∣

∣

〈

yj − ȳ, ti
〉∣

∣ : j = 1, ...k
}

do not coincide then Y /∈ [X ]

7: Compute AX
i−,A

X
i+,A

Y
i−,A

Y
i+

8: If ∃i = 1, ...d such that AX
i− 6= AY

i− ∨ AX
i+ 6= AY

i+ and AX
i+ 6= AY

i− ∨ AX
i− 6= AY

i+ then

Y /∈ [X ]

9: For all i = 1, ...,d de�ne δi = 1 when AX
i− = AY

i− ∧AX
i+ = AY

i+ and δi = −1 when

AX
i− = AY

i+ ∧AX
i+ = AY

i−

10: Build the matrix R = T ∆ST , where ∆ = Diag(δ1, ...,δd)



76

In general, the eigenvalues of a matrix cannot be computed exactly, as they are

roots of a polynomial, this making our algorithm impractical. The next section will

introduce, along with a method to �nd the point to point corre spondences, a robust so-

lution of the computation of the transformation matrix between two shapes. However,

if the distribution of distances of two point sets is the same up to a threshold, we can

compare the eigenvalues of the Gramian matrices of the centered coordinates by using

a very small threshold ε. We have done the same to compare the sets AX
i− ,A

X
i+,A

Y
i−,A

Y
i+ .

Complexity

The Algorithm 1 requires the computation of X̄ X̄T (complexity at most O(d2k),

its eigenvalue decomposition (complexity O(d3), the computation of δi (complexity

O(dk)), the computation of R (complexity at most O(d3)). Since d << k the resulting

complexity is at most O(dk2).

Robustness

The next lemma will show the equivalence between the distribution of distances in

the presence of noise and the correspondent values of the elements in the Gram matrix

of the centered coordinates.

Proposition 1. Let X = {x1, ...,xk} and Y = {y1, ...,yk} two point sets in R
d . Then

the following are equivalent:

(i) ∃ε > 0 such that ∀i, j = 1, ...,k
∣

∣

∣

∥

∥xi −xj
∥

∥

2
−
∥

∥yi −yj
∥

∥

2
∣

∣

∣≤ ε.
(ii) ∃δ > 0 ∀i, j = 1, ...,k

∣

∣

〈

xi − x̄,x j − x̄
〉

−
〈

yi − ȳ,y j − ȳ
〉 ∣

∣≤ δ

Proof. (i) ⇒ (ii)

As in Lemma 2 we substitute in (4.10) p with xi −xn, q with x j −xn and the same

for yi −yn, y j −yn to derive:

〈

xi −xn,x j −xn
〉

=
1
2

(

‖xi −xn‖
2 +

∥

∥x j −xn
∥

∥

2
−
∥

∥xi −x j
∥

∥

2
)

,

〈

yi −yn,y j −yn
〉

=
1
2

(

‖yi −yn‖
2 +

∥

∥y j −yn
∥

∥

2
−
∥

∥yi −y j
∥

∥

2
)

,

If we average both identities over i, subtract them and use (ii) we obtain:

∣

∣

〈

x̄−xn,x j −xn
〉

−
〈

ȳ−yn,y j −yn
〉∣

∣≤
3
2

ε.

Now, we average the last inequality over j and we derive:

∣

∣

∣
‖xn − x̄‖2 −‖yn − ȳ‖2

∣

∣

∣≤
3
2

ε,n = 1, ...,k. (4.22)
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We apply again (4.10) for p = xi − x̄, q = x j − x̄ and for p = yi − ȳ, q = y j − ȳ:

〈

xi − x̄,x j − x̄
〉

=
1
2

(

‖xi − x̄‖2 +
∥

∥x j − x̄
∥

∥

2
−
∥

∥xi −x j
∥

∥

2
)

(4.23)

〈

yi − ȳ,y j − ȳ
〉

=
1
2

(

‖yi − ȳ‖2 +
∥

∥y j − ȳ
∥

∥

2
−
∥

∥yi −y j
∥

∥

2
)

(4.24)

We subtract (4.23) and (4.24) and we put δ = ε/2 to get:
∣

∣

〈

xi − x̄,x j − x̄
〉

−
〈

yi − ȳ,y j − ȳ
〉 ∣

∣≤ δ
(ii) ⇒ (i)

We substitute in (ii) j with i we have:
∣

∣

∣
‖xi − x̄‖2 −‖yi − ȳ‖2

∣

∣

∣
≤ δ

If we subtract (4.23) and (4.24) and use this last inequality we obtain, for ε = 4δ:
∣

∣

∣

∥

∥xi −xj
∥

∥

2
−
∥

∥yi −yj
∥

∥

2
∣

∣

∣≤ ε

4.6 Distance distribution and generalized shapes:

correspondences and registration

4.6.1 Distance distribution permutation

So far, we have seen how to verify the existence of the generalized shape when we

know the distance distribution matrix or the distance distribution vector and how to

�nd the rigid transformation between two elements of the sam e generalized shape,

without knowing the correspondences.

Algorithm 1 shows how to �nd the registration matrix when we k now the point sets

and the fact that they belong to the same generalized shape. This result is not guar-

anteed in the presence of a high level of noise making it not usable for most practical

applications.

In this section we give a method to compute the correspondences between two

point sets belonging to the same generalized shape in the presence of noise and a

method to derive the rigid transformation that relates the two point sets using the cor-

respondences.

The problem to solve is, given X = {x1, ...,xk} and Y = {y1, ...,yk} two point sets

in R
d with Y ∈ [X ], to �nd the permutation π ∈ Sk such that:
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RX + t = Y Pπ, (4.25)

where R ∈ O(d), t ∈ R
d and Pπ is the permutation matrix associated to π.

Since O(k!) different correspondence permutations are possible amongst the two

point sets, brute force search is intractable.

As before, the invariant we chose, to �nd the right correspon dences, is given by the

distance distribution vector as de�ned in section 4.3.

Theorem 2 proved in what cases the distance distribution vector de�n es a general-

ized shape in a unique way.

We shall derive the permutation π from the permutation γ ∈ S(k
2)

that 'align' the

two distribution distance vectors V X = (V X
1,2, ...,V

X
k−1,k) and

VY = (VY
1,2, ...,V

Y
k−1,k).

V X Pγ =VY . (4.26)

Equation (4.26) holds in the ideal case, when no noise is present. In the practical

application we may relax the exact correspondence and search for a permutation matrix

Pγ of dimension k(k−1)/2 such that:

Pγ = argmin
Pϕ

∥

∥V X Pϕ −VY
∥

∥

1 (4.27)

The use of the Manhattan distance or L1 norm in (4.27) is coherent with the de�ni-

tion of the distance between generalized shapes given in the section 4.3 by the equation

4.6. Through the rest of this chapter, when there are no ambiguities, we shall use the

notation ‖·‖1 = |·|.

The L1 norm works better in the presence of noise and is equivalent with L2 norm,

in the sense of equivalence between norms. Considering ‖·‖2 ≤ ‖·‖1, the equation

(4.27) gives an upper bound also for the L2 norm.

Since there are (k(k−1)/2)! ways to arrange a shape vector, we need an ef�cient

mode to solve (4.27). We shall further see that this process takes O(NlogN), where

N = k(k−1)/2, by ordering each of the shape vectors.

Lemma 5. If a1 ≤ a2 ≤ ...≤ aN , b1 ≤ b2 ≤ ...≤ bN and π : {1, ...,N}→ {1, ...,N} is

a permutation of the indices, then we have:
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|a1 −b1|+ ...+ |aN −bN | ≤
∣

∣a1 −bπ(1)
∣

∣+ ...+
∣

∣aN −bπ(N)

∣

∣ ,
(4.28)

Proof. We use a proof by induction on N.

The proposition P(N) is given by (4.28).

•P(2):

|a1 −b1|+ |a2 −b2| ≤ |a1 −b2|+ |a2 −b1| , (4.29)

with a1 ≤ a2 and b1 ≤ b2.

Suppose b1 ≤ a1, the other case is symmetric.

Then (4.29) becomes

a1 −b1 + |a2 −b2| ≤ |a1 −b2|+a2 −b1

⇔ |a2 −b2| ≤ |a2 −a1|+ |a1 −b2|

that is the triangle inequality.

•P(N −1)⇒ P(N)

If π(1) = 1, the �rst and the last term in (4.28) are identical so we are i n the P(N−

1) case and the proof is completed.

If π(1) = i, i ∈ {2, ...,N}=⇒∃ j ∈ {2, ...,N} such that π( j) = 1.

We are in the hypothesis of P(2): a1 ≤ a j(a j 6= 1) and b1 ≤ b j(b j 6= 1)

=⇒ |a1 −b1|+
∣

∣a j −bi
∣

∣≤ |a1 −bi|+
∣

∣a j −b1
∣

∣

From the right side of (4.28):
∣

∣a1 −bπ(1)
∣

∣

p
+ ...+

∣

∣aN −bπ(N)

∣

∣

= |a1 −bi|+ ...+
∣

∣a j −b1
∣

∣+ ...+
∣

∣aN −bπ(N)

∣

∣

≥ |a1 −b1|+ ...+
∣

∣a j −bi
∣

∣+ ...+
∣

∣aN −bπ(N)

∣

∣

We de�ne the function π′
: {2, ...,k} 7−→ {2, ...,N} as π′

(l) = π(l), for l 6= j and

π′
( j) = i.

It is easy to see that π′
is a bijective mapping, therefore a permutation of N − 1

elements. From P(N −1), it follows:

⇒ |a1 −b1|+ |a2 −b2|+ ...+ |aN −bN |

≤ |a1 −b1|+
∣

∣

∣a2 −bπ′
(2)

∣

∣

∣+ ...+
∣

∣a j −bi
∣

∣+ ...+
∣

∣

∣aN −bπ′
(N)

∣

∣

∣

= |a1 −b1|+ ...+
∣

∣a j −bi
∣

∣+ ...+
∣

∣aN −bπ(N)

∣

∣ (qed).
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Corollary 4. For any πA and πB permutation of N indices and a1 ≤ a2 ≤ ... ≤ aN ,

b1 ≤ b2 ≤ ...≤ bN it holds:

N

∑
i=1

|ai −bi| ≤
N

∑
i=1

∣

∣aπA(i)−bπB(i)

∣

∣ (4.30)

Theorem 6. The solution of (4.27) is given by:

Pγ = PπX PT
πY
, (4.31)

where PπY ,PπX are the permutations matrices that order the vectors VY and V X

respectively.

Proof. From the hypothesis that vectors V X PπX and VY PπY are ordered, it follows the

Corollary 4 holds:
∣

∣V X PπX −VY PπY

∣

∣≤
∣

∣

∣V X P
′

πX
−VY P

′

πY

∣

∣

∣

for every and all permutations P
′

πX
,P

′

πY
.

Multiplying on the right with PT
πY

the expression V X PπX −VY PπY we have:

∣

∣V X PπX −VY PπY

∣

∣=
∣

∣V X PπX PT
πY

−VY
∣

∣

from which the conclusion follows.

We are now able to �nd the minimum distance between two shape v ectors that

represent in an unique mode two point-sets given in two different coordinate systems

regardless of the point ordering.

Once we have the correspondence between the shape vectors the next step is to �nd

the correspondences between the points. This will be described in an algorithmic form

in the next section.

4.6.2 Determining correspondences

Point-set correspondences in a closed form solution

The correspondences between the indices of the point-sets X and Y , when Y ∈ [X ]

will be given again as a permutation matrix. To do this we have to associate the two

indices i, j that give the distance DX
i, j =

∥

∥xi −x j
∥

∥ in the distance distribution matrix (or

alternatively DY
i, j) to a unique index l in the distance distribution vector and vice versa,

to each of the indexes of the distance distribution vector two indexes in the point-set.



CHAPTER 4. Generalized Shape Spaces 81

In this second case we have two solutions considering the order of the two vectors that

compose the distance.

From equation (4.9), considering that i represents the index of a row and j rep-

resents the offset inside the i-th row in the distance distribution matrix, the mapping

(i, j) 7−→ l is given by:

(i, j) 7−→ (i−1)(2k− i)/2+ j− i (4.32)

Conversely, if we denote the distance distribution vector index l, the problem is to

�nd the correspondent (i, j) couple of indexes, where again i represents the row and j

represents the off-set in the distance distribution matrix.

In this case, i is given by the smallest positive number that satis�es:

l ≤ ik− i(i+1)/2 (4.33)

Transforming (4.33) in a second order inequality:

i2 − (2k−1)i+2l ≤ 0 (4.34)

we observe that the sum and the product of the roots are positive, therefore the

solution for the i− th index is given by the smallest integer bigger than the smallest

root of the associated second order equation:

i =

⌈

k−1/2−
√

(2k−1)2 −8l/2

⌉

(4.35)

From (4.35) and (4.32) it follows:

j = l + i− (i−1)(2k−1)/2 (4.36)

We are now able to write the algorithm that �nds the correspon dences of two point-

sets having the same cardinality, regardless of the coordinate system where each of the

sets are represented and of their ordering.
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Algorithm 2 Correspondences Algorithm

1: Input X ,Y two k point sets in R
d , Y ∈ [X ]

2: Compute the distance distribution vectors V X ,VY

3: Compute the permutations πY ,πX that orders V X ,VY

4: Pγ ← PπX PT
πY

5: For iX := 1tok−1

6: (4.32) gives the indexes l1
X , l

2
X in V X corresponding to (iX , iX +1),(iX , iX +2)

7: Compute l1
Y = Pγ(l1

Y ) and l2
Y = Pγ(l2

Y )

8: Use (4.35) and (4.36) and �nd (i1Y , j1
Y ) and (i2Y , j2

Y ) corresponding to l1
Y , l

2
Y

9: The correspondence of Xi is Yic ,

where ic =
{

i1Y , j1
Y

}

∩
{

i2Y , j2
Y

}

10: End For

11: Find the last correspondence

Observe that the line 9 of algorithm 2 is guaranteed by the Theorem 2.

Point-set correspondences with noise

The algorithm 2 gives the closed form solution of the correspondence of the two point

sets X and Y representing the same generalized shape.

This solution holds in the ideal case, when no noise is present. In the case of noisy

data there is no guarantee to �nd a common index ic in the row 9-th of the algorithm

2. To solve this we use a technique of voting, associating to each couple (xi,y j) an

increasing vote for each possible correspondence, therefore we build an association

matrix. To �nd the correspondence matrix M we simply extract the maximum value in

each row of the association matrix.

The detailed algorithm is as following:
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Algorithm 3 Correspondence Algorithm with noise

1: Input X ,Y two k point sets in R
d , Y ∈ [X ]

2: Initialize a k× k matrix M to zero

3: Compute the vectors V X ,VY

4: Compute the permutations πY ,πX that orders V X ,VY

5: Pγ ← PπX PT
πY

6: For lA := 1tok(k−1)/2

7: Compute (iX , jX) corresponding to lX and (iY , jY ) corresponding to γ(lX)
8: Increase of 1 M(iX , iY ),M(iX , jY ),M( jX , iY ),M( jX , jY )

9: End For

10: Set the largest element of each row of M to 1 and the others to 0
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4.6.3 Correspondence test and results

Figure 4.2: Testing 2D data for empirical robustness evaluation. On each of the im-

ages the points marked with blue '*' represent the model (joi ned by a continuous line

obtained through interpolation) meanwhile the points marked with red ' ◦' represent

the model transformed by a random permutation and different levels of noise. The �sh

model on the left column follows [53], [82].
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In this section we present the results of the correspondence algorithm. We run tests

with different levels of noise and we compute, for each of the tests, the percentage of

good correspondences.

The point sets used for testing are depicted in the �gures 4.2 and 4.3.

Figure 4.3: Two 3D datasets with different noise levels. The points marked with blue

'*' represent the model and the points marked with red ' ◦' represents the model trans-

formed by a random permutation and different levels of noise.

Figure 4.2 shows the original point-set aligned along a continuous line obtained by

interpolation, while the ' ◦' points are obtained by adding random noise to a permuta-

tion of the original dataset. Figure 4.3 depicts the 3D model dataset denoted by the

'*' blue points. The dataset was permuted and random noise wa s added (red circles)

before the correspondence algorithm was launched.

In both 2D and 3D tests, since we compute the correspondences relying only on

the shape vector, which is invariant to isometries, the permutations of the noisy dataset

suf�ce to test the robustness of our algorithm.

Even if the tests done are very simple and synthetic, we reiterate here that we are

addressing applications where there is noise and small deformations without a clear

distinction between the two (considered that data usually represent the surface or the

border of an object in the real world and is acquired as unstructured point cloud). Our

main interest in recovering correspondences is to get the best rigid alignment between

the data sets.

The noise we added for the purposes of this work is composed by pseudorandom
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Test no-points no Noise level Good corresp.
1-34 1% 88%
1-34 2% 76%
1-34 3% 65%
1-34 4% 56%
1-34 5% 41%
2-38 1% 89%
2-38 2% 70%
2-38 3% 62%
2-38 4% 53%
2-38 5% 44%
�sh-91 1% 72%
�sh-91 2% 65%
�sh-91 3% 58%
�sh-91 4% 37%
�sh-91 5% 34%
face 3D-392 1% 65%
face 3D-392 2% 48%
face 3D-392 3% 37%
face 3D-392 4% 35%
face 3D-392 5% 24%

Table 4.1: Correspondences test

values drawn from the standard normal distribution with mean 1 and different standard

deviations (see Table 4.1). The noise level is given by the standard deviation σi, i ∈

{1, ..,5} and represents a percentage fraction of the maximum extension of the point

set X , that is σi = i max
xi,x j∈X

∥

∥xi −x j
∥

∥/100.

The computation of the rigid transformation in the case of noisy data will be ad-

dressed in the next section. In this section we compute the correspondences between

two point sets X and Y = XPπ +N(µ,σ2), where Pπ is a random permutation of |X |

elements, N is the normal distribution of mean µ = 0 and variance σ2 (see �gures 4.2

and 4.3).

As we can see from the results (Table 4.1), the number of wrong correspondences

increases with the amount of noise. This is an obvious observation but we are more

concerned weather we are able to recover the right registration transformation from

the correspondences we found. The answer is yes as we see in the next section and,

in this case, we can update the correspondences after the registration using the nearest

neighbor technique. Another observation is that good correspondences are strongly

related to the highest value in the correspondences matrix M from the algorithm 3.
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Keeping in mind that we only need 3 correspondences to �nd the parameters for the

rigid alignment we may keep only a part of the good correspondences to �nd the best

rigid alignment. The selection order of this correspondence will be given by the highest

value in the correspondences matrix.

4.6.4 Registration tests and results

Recovering the rigid transformation from the correspondences and the distance

between the shapes

The main reason of our work is not only to �nd the corresponden ces but to �nd the best

rigid alignment between two point-sets X = {x1, ...,xk} ,Y = {y1, ...,yk} ,X ,Y ⊂ R
d

that describe a shape in different coordinate systems. In the ideal case the correspon-

dences are guaranteed under the form of a permutation matrix Π (section 4.6.2) and the

translation vector t ∈R
d and the d×d rotation matrix R are completely determined in

2D or 3D by a closed form solution using the SVD (singular value) decomposition [2].

For the completeness of presentation we brie�y give here the solution in our con-

text, for a detailed explanation see also [55].

The problem is to �nd R and t such that:

ΠY = RX + t, (4.37)

In (4.37) and the following X and Y are given as d × k matrices.

If we use the de�nition of the Procrustes distance (de�nitio n 5), we may reformu-

late (4.37) as a minimization problem:

dP(X ,Y ) = min
R,t

k

∑
i=1

‖ΠiY −Rxi − t‖2 , (4.38)

where Πi is the i-th row of the matrix Π.

Using the centered coordinates (de�nition 3, section 4.3), the translation vector is

given by (4.3) and ((4.37) becomes:

ΠȲ = RX̄ , (4.39)

We denote by ‖A‖F =
√

trace(AT A) =
√

∑i, j a2
i, j the Frobenius norm and we ob-

tain an instance of the original Procrustes problem:
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dP(X ,Y ) = min
R

‖ΠȲ −RB̄‖2
F (4.40)

The solution of this instance is given in closed form by:

R =V







1 0 0

0 1 0

0 0 det(VUT )






UT (4.41)

where ΠȲ X̄T =UDV T is the SVD of the matrix ΠȲ X̄T .

When no scaling is present, this solution holds for point-sets of cardinality k ≥ 3.

In the second case, when noise is present, there is no guarantee, as shown in section

4.6.3, that all the correspondences are good. We need a method to �lter out the bad

correspondences and to recover the registration transformation from the good corre-

spondences.

Even if the percentage of good correspondences lowers with the increase of the

noise level, the minimum number of the good correspondences we need to �nd the

rigid transformation parameters is only 3. To accelerate the computation, when we

know a priori about the presence of noise, we may use the results obtained in section

4.6.3 and keep only the best percentage of correspondences. For each correspondences

of 3 points we compute the transformation parameters. Since we do not have all the

correspondences, the use of the Procrustes distance is not feasible, therefore we have

chosen to compute the Hausdorff distance between the two registered shapes:

dH(X ,Y ′) = max{sup
x∈X

inf
y∈Y ′

d(x,y), sup
y∈Y ′

inf
x∈X

d(x,y)}, (4.42)

where Y ′ is the point set ΠY after the application of the rigid transformation (�gure

4.4).
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Figure 4.4: The Hausdorff distance

In case no outliers are present (as in our hypothesis), the Hausdorff distance is

a good measure of the distance between shapes, while is rarely used in the opposite

case: difference in a single sample can make dH arbitrarily large. In this case an

approximation of the Hausdorff distance is given by the ICP distance [10]:

d(X ,Y ′) = ∑
x∈X

d2(x,Y ′), (4.43)

where d2(x,Y ′) = maxy∈Y ′ ‖x− y‖2
2 = ‖x− y∗‖2

2.

The 3 point correspondences that minimize the Hausdorff distance yield the trans-

formation we are looking for. The computation time is polynomial O(K), where

K = p∗ k and p ∈ (0,1) is the percentage of the correspondences we are considering.

The best value for p considering the percentage of good correspondences we have

obtained in Table 4.1 is between 0.2 and 0.3. When the noise level is low we may

decrease this value because of the high percentage of good correspondences, while

when the level of noise is higher we must keep at least 30% of the best correspondences

we found, that means p = 0.3.
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Comparative tests

Figure 4.5: The datasets used in the comparison between different algorithms for the

registration. (a) The �sh �gure rotated by 20 degrees and tra nslated by a random vector.

The level of noise increases from top (1%) to bottom (5%). (b) The �sh �gure rotated

by 40 degrees and translated by a random vector. The level of noise increases from

top (1%) to bottom (5%). (c) The �sh �gure rotated by 60 degree s and translated by

a random vector. The level of noise increases from top (1%) to bottom (5%). (d) The

�sh �gure rotated by 80 degrees and translated by a random vec tor. The level of noise

increases from top (1%) to bottom (5%)



CHAPTER 4. Generalized Shape Spaces 91

We evaluated the performance of our algorithm in comparison with [53] and [82], that

we have already cited before. These algorithms are able to recover the correspondences

and a non-rigid transformation.

The �xed and moving point sets used as input to the registrati on algorithms are

represented in �gure 4.5. In this set of images the �xed shape is given by the blue

stars, while the red circles represent the moving point-set. The scope of the tests is

to align the moving point-set with the �xed point set and to ev aluate the goodness of

the alignment. On each row of the �gure 4.5 a different level o f noise is added to the

moving image. The columns of this image represent the rotation angles between the

�xed and the moving image ranging from 20 to 80 degrees with st eps of 20 degrees.

The translation vector was chosen randomly. It can be seen that, while in the �rst row

the shapes are very similar and distinguishable, in the last row the comparability of

the two shapes is dif�cult even for the human eye. The points o f one of the datasets

undergone a random permutation.

The results of the registration/correspondence tests are presented in �gures 4.6 to

4.10 at the end of this section.

Figure 4.6 gives the results of our algorithm at 3 different noise level. On each of

the images the two shapes are registered and the correspondent points are connected

by a segment. The Hausdorff distance is given by the length of the segment between

the black squares.

Figures 4.7 and 4.8 present the result of the registration/correspondences tests using

the coherent point drift (CPD) algorithm ([82]). As before, we give the results of the

algorithm at 3 different noise level but, in this case, under each image representing the

registered data we have put the unregistered pair with the correspondences to illustrate

the situation when the algorithm yields good registration but the correspondences are

completely wrong.

In the last �gure (�gure 4.10) the results of the point set reg istration using mixture

of Gaussians of Jian and Vemuri (JM) algorithm ([53]) are similar to the CPD algo-

rithm, therefore we chose to give only the correspondences of the unregistered images.

The numerical results of the tests we have performed are given in table 4.2. At

each level of noise and at each rotation angle we have computed the Hausdorff distance

between the registered shapes.

It is easy to see that the accuracy of our algorithm depends on the noise level, while

the other algorithms give better results when the level of noise is low and the rigid

transformation involves a rotation angle up to 40 degrees but their results are unusable
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when the rotation angles goes toward 60 degrees and the noise level increases.

Since our registration algorithm uses only the inter-point distances on each of the

datasets, the results are independent of the rotation angle. For low noise level value the

registration results are very good, while increasing the noise level there is still a good

alignment but the Hausdorff distance increases much already at 3% of noise. This is

due to the method for computing the rigid registration from the point correspondences

which is dependent on the noise level. We prefered to have a low number of corre-

sponding points to get the rigid transformation in order to mantain low the complexity

of the algorithm but increasing the number of corresponding points the registration can

be re�ned.

By moving the points coherently, the CPD algorithm does not modify too much the

shape of the �gure when applying the deformation, but is unab le to yield good results

when the rotation angle is 60 degrees or greater (�gures 4.7, 4.8 and 4.9 and table

4.2)). We have tested the rigid variant of this algorithm and it performs very well at 60

degrees on all the noise levels ((d) column in the �gures 4.7, 4.8 and 4.9, see also the

5-th column of the table 4.2) but it fails to register in all the cases when the rotation

angle is 80 degrees ((f) column in the �gure 4.7 and �gure 4.8 a nd table 4.2).

On the other hand, the JM algorithm is inclined to deform completely the �gure

when the rotation angle is bigger than 40 degrees. The distance between the registered

shapes is always in line with the level of noise (see table 4.2), but the registration

reduces to morphing in all the cases when the rotation angle is greater than 40 degrees

(�gure 4.10). In these cases one shape is transformed to matc h the other shape but the

point to point correspondences do non re�ect the original sh ape. Figure 4.10 shows

this behavior using the line connections between the corresponding registered points.

Considering our application target, the OR, where the position, therefore the ro-

tation, of the shapes to be registered is arbitrary, the CPD and JM algorithms cannot

ensure the goodness of the results.
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Hausdorff distance
Noise Rot. Our Non rigid Rigid Non rigid
level angle algorithm CPD CPD JM

1

20 0.1400 0.0683 0.0711
40 0.1132 0.0683 0.0768
60 0.1093 1.5139 0.0678 0.1844
80 0.1292 1.3939 1.5405 0.1902

2

20 0.2430 0.1465 0.2212
40 0.2032 0.1464 0.1969
60 0.2183 1.4244 0.13241 0.2131
80 0.2430 1.0996 1.5346 0.2524

3

20 0.2935 0.2222 0.2352
40 0.2829 0.1705 0.4680
60 0.5427 1.3518 0.1954 0.2575
80 0.4001 1.3727 1.5145 0.1880

4

20 0.6086 0.2934 0.3112
40 0.4228 0.3387 0.3232
60 0.4283 1.2371 0.2724 0.2855
80 0.5509 1.2439 1.4601 0.2891

5

20 0.7021 0.3157 0.4692
40 0.6809 0.3184 0.4681
60 0.6420 1.4163 0.3257 0.3982
80 0.7417 1.1655 1.3645 0.2176

Table 4.2: Comparison of Error Values after the registration using our algorithm and
the other two approaches.
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Figure 4.6: The registration using our registration algorithm. On each of the �gure the

blue stars are the �xed points, meanwhile the red circles rep resent the moving point-

set after the registration took place. The Hausdorff distance is represented by the line

between the black squares and its value is given in the table 4.2
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Figure 4.7: The algorithm [82] applied to the �sh shape datas et at noise level 1. (a),

(b), (c), (e) represent the registration using the non rigid algorithm, (d), (f) the results

using the rigid algorithm. Top row: the Hausdorff distance between the two shapes

after the registration (black line between the black squares), also reported in the table

4.2. Bottom row: the �xed dataset is given by the blue stars, me anwhile the red circles

represent the moving dataset. The lines gives the correspondences between the �xed

and the moving points. Observe that the correspondences in (c), (e), (f) are wrong

(bottom row) and so is the registration in these cases (top row).
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Figure 4.8: The algorithm [82] applied to the �sh shape datas et at noise level 3. (a),

(b), (c), (e) represent the registration using the non rigid algorithm, (d), (f) the results

using the rigid algorithm. Top row: the Hausdorff distance between the two shapes

after the registration (black line between the black squares), also reported in the table

4.2. Bottom row: the �xed dataset is given by the blue stars, me anwhile the red circles

represent the moving dataset. The lines gives the correspondences between the �xed

and the moving points. Observe that the correspondences in (c), (e), (f) are wrong

(bottom row) and so is the registration in these cases (top row).
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Figure 4.9: The algorithm [82] applied to the �sh shape datas et at noise level 5. (a),

(b), (c), (e) represent the registration using the non rigid algorithm, (d), (f) the results

using the rigid algorithm. Top row: the Hausdorff distance between the two shapes

after the registration (black line between the black squares), also reported in the table

4.2. Bottom row: the �xed dataset is given by the blue stars, me anwhile the red circles

represent the moving dataset. The lines gives the correspondences between the �xed

and the moving points. Observe that the correspondences in (c), (e), (f) are wrong

(bottom row) and so is the registration in these cases (top row).
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Figure 4.10: Tests applying the algorithm [53]. The �xed poi nt are represented by blue

stars, the moving points by thin red circles before the registration and by bold red cir-

cles after the non rigid registration. The lines give the movement of the correspondent

red circles. The numerical values of the Hausdorff distance are given in the table 4.2.
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4.6.5 Correspondences and registration evaluation using pulmonary

landmark points derived from 4D CT image data

Figure 4.11: A 3D rendering of thoracic image with the pulmonary area and the ex-

tracted landmarks overlying a grayscale CT slice.

Thoracic 4D CT image data abound of high-contrast, anatomical landmarks such as

vessel and bronchial bifurcations. Castillo et al. in [19] extracted a large number

of landmark point pairs for the evaluation of deformable image registration spatial

accuracy (�gure 4.11 and 4.12). We use this dataset to test th e performance of our

correspondence algorithm, then we register the landmarks using the rigid and non-

rigid transformations.

The dataset from [19] includes 4D CT images from �ve patients f ree of pulmonary

disease who were treated for esophageal cancer. Each patient uderwent treatment plan-

ning in which 4D CT images of the entire thorax and upper abdomen were acquired at

2.5 mm spacing. In this study a high number of landmarks were manually extracted

by an expert in thoracic imaging in 5 different breathing phases for each of the patient.

The localization error of these landmarks is around 1mm.

For the purpose of our study we compared for each patient the initial breathing

phase against the other 4 breathing phases by registering the landmarks without prior
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Figure 4.12: The 2D grayscale CT slice with 3D landmarks.

knowledge of the correspondences. After the computation of the landmarks correspon-

dences, we registered the landmarks and we computed the Hausdorff distance, as in the

previous section.

Table 4.3 summarizes the results of the correspondences expressed as a percent-

ages.

Case Breathing phase
number 2 3 4 5

1 86% 80% 75% 60%
2 82% 79% 73% 59%
3 81% 76% 71% 58%
4 85% 80% 74% 59%
5 84% 78% 73% 57%

Table 4.3: Percentage of good correspondences for each patient and different breathing
phases.

Estimates of the Hausdorff distance between the registered set of landmarks are

summarized in table 4.4. The rigid registration is based on the correspondences found

before. Since the number of good correspondences is greater than 50% of the total

number of points, we have used an extraction of p = 0.3 of the best correspondences.

For the non-rigid registration, we used the TPS interpolation as in the chapter 3, section
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3.2. The input for the TPS interpolation is given by the same percentage of correspon-

dences.

Case Breathing Hausdorff distance (mm)
number phase rigid non-rigid

1

2 2.862 1.874
3 3.583 2.936
4 4.812 4.021
5 6.104 5,513

2

2 2.729 1.908
3 3.485 2.901
4 4.764 4.177
5 6.091 5.498

3

2 2.922 1.957
3 3.579 2.990
4 4.970 4.323
5 6.245 5.556

4

2 2.820 2.015
3 3.828 3.104
4 5.057 4.238
5 6.302 5.647

5

2 2.730 1.826
3 3.749 2.857
4 4.807 4.113
5 5.970 5.324

Table 4.4: The Hausdorff distance after the rigid and the non rigid registration.

4.6.6 Conclusions and future work

The solution of the absolute orientation (Procrustes problem) is given by ef�cient meth-

ods in closed form, but to solve the registration of arbitrary point sets that represent the

same shape acquired with different sensors and/or in different moments, there is no

closed form solution. As summarized in the introduction, the solutions known so far

range from iterative methods, where the optimization take place on each step toward

a local minimum (as the ICP algorithm), capable to handle a certain amount of noise,

to very complex methods that can handle also outliers and deformations, where the

solution is given after a complicate process of optimization and using a large set of

parameters.

In this chapter, we built the basis for a closed form solution, robust to a small
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amount of noise, of the Procrustes problem in the case when no matching correspon-

dences are given a priori.

The solution we have proposed makes use of the distribution of the distances. We

have �rst analyzed, from a theoretical point of view, when th e distribution of distances

completely characterizes the shape of a point set and how to recover the isometric

transformation between two sets of points, when the distribution of distances is given

but the correspondences are not.

Beside this theoretical contribution, we have developed algorithms to �nd the cor-

rect alignment of shapes given as unstructured point sets. The registration took place

after the correspondences were found and the iteration is used only to re�ne the dis-

tance between the aligned shapes.

We have seen in the beginning of this chapter that there are no ef�cient methods

that can handle the variability of the data (i.e. noise, outliers, deformation) that can

guarantee the goodness of the result and, in the same time, the possibility of the vali-

dation.

The methods to which we have compared our algorithm were registration algo-

rithms that can theoretically handle deformations and outliers. We have shown that

such algorithms fail even in recovering the global alignment transformation. The de-

formation model, used by these algorithms, allows to register by morphing, regardless

of the fact that the shape may differ by noise or heavy rotations. These algorithms

should be initialized with a good global registration algorithm, such as the algorithm

presented here, to work properly.

Some of the research areas, where the registration requires a completely validated

method, range from the medical applications (registration in the OR of surfaces ex-

tracted from the 3D reconstruction of organs) to robotic applications, where the accu-

racy and the real-time response are fundamental.

In the case of the medical applications the registration rely on datasets representing

most of the time deformed surfaces but in order to map the instruments in the imaging

space (e.g. biopsy needle, endoscopic camera, laparoscope etc.) we still need to isolate

the rigid component of the registration.

With the solution we propose in this chapter, we are able to register noisy data

represented by sets of points.

The test on medical data we have performed in this chapter employed a thoracic

dataset from which a set of landmarks was extracted on different breathing phases.
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The algorithm we have introduced was able to recover a high number of correspon-

dences and to extract the rigid transformation between the point sets without having

the homologies between the landmarks before. A further re�n ement was obtained by

applying a non-rigid transformation to the result.

The next step will be to extend the method to handle incomplete data and outliers.

To replace the ICP algorithm with a closed form variant, in the case of dense point

sets we may subsample to provide the candidates for potential correspondences. The

main question is to subsample the points in a way that such that subsample points are

still matchable. The joint clustering-matching algorithm presented by Chui in [23] can

be a valid alternative for this extension.

If we replace the Euclidean distances in the shape matrix with geodesics we may

handle also a larger class of isometries that include also the so called inelastic defor-

mations, i.e. deformations that do not stretch or tear the object (see also [16]).

The results we have presented may be used also to extend the theory of shapes as

de�ned by [58]. The equivalence class of k-ad points in R
d will handle in this case

also the permutations. It will be interesting to study how the topological properties of

the new formed equivalence classes will change.



Chapter 5

A needle guidance system for

percutaneous procedures

The progressive development of man

is vitally dependent on invention.

Nikola Tesla

As stated in the beginning, the registration is not the end goal of our work, but

we are interested to develop technologies to assist minimally invasive surgery. An

example of a simple intervention is given in this chapter, together with the solution we

have proposed. The imaging system is integrated in the procedure by the means of the

registration. In this way the outcome of the procedure improves in terms of accuracy

and time of execution, increasing the recovery time and the wellness of the patient.

In this chapter we introduce the design of a new navigation system for interven-

tional radiology, implemented in a light and compact device. The system attached to

the needle is composed by a small screen that gives indications about the position and

the orientation of the needle, a controller that commands the screen and interfaces to

the computer, and a marker that is identi�ed by a tracking sys tem (�gure 5.1). By

using a real time software the user is guided to move the needle along the desired posi-

tion and orientation. To the best of our knowledges, this is the �rst system to have the

navigation display integrated directly on the tool. Our in-vitro tests, show how such a

Based upon: D.Dall'Alba, B. Maris, P. Fiorini. A compact navigation system for free hand needle
placement in percutaneous procedures , 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vilamoura, Portugal.
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system yields a higher precision in the execution of the task than a free hand needle

insertion and a reduction of the time required to complete the procedure.

5.1 Introduction

Clinical practice is increasingly replacing traditional open surgical procedures with

minimally invasive techniques. This development results in a transition from direct vi-

sual feedback to image-based feedback. Many diagnostic and therapeutic procedures

require high accuracy in placing an elongated instrument inside the target structure

(e.g., biopsy, or ablative approaches) and they require great skills in operating the tools.

Image-guided percutaneous procedures are used for both diagnosis and treatment. Di-

agnostic procedures include percutaneous biopsy (e.g. liver, kidney, pancreas, prostate

biopsy) of tissues usually presumed to be tumoral. Therapeutic procedures include tu-

mor ablation by different techniques such as radiofrequency ablation (RFA), where the

dysfunctional tissues are ablated using high frequency alternate current, cryoablation

(CA) where the treatment of the tumor is done by the insertion of a cryoprobe that

freezes the surrounding tissues from the tip, or tumor embolization by the introduction

of speci�c substances into the circulation to occlude vesse ls.

These procedures typically require precise insertion of an elongate instrument into

the target organ. Image guided (IG) percutaneous ablation refers to the use of an imag-

ing device (computed tomography or CT, magnetic resonance or MR, ultrasound or

US) during the intervention to precisely place the ablation probes directly through the

skin in order to destroy the tumor. The success of the ablation is constrained by the

precise positioning of the needle. One of the techniques used to overcome this problem

is to put a ”targeting template” (paper with markers that can be seen with the CT or

MRI) on the patient's back before imaging [7]. The needle base d procedures could be

subdivided in 3 main steps: the localization of the entry point on the skin of the patient,

the orientation toward the target point and the needle insertion.

During a percutaneous procedure the mapping of the different information derived

from the images acquired in the operating room is done mentally by the radiologist.

While the radiologist inserts the needle, repeated series of CT (or MRI) scans are

acquired to verify the correct insertion of the needle. When CT or MRI are used, the

operation of needle insertion is performed blind, without any real time feedback.

As reported in [49], one of the most underestimated challenges of surgical guidance

is the intraoperative display of surgical position and orientation during the case. The
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Figure 5.1: A standard 18 gauge biopsy needle equipped with the compact navigation
system.

display is attempting to provide seven-dimensional information (X, Y, Z, Yaw, Pitch,

Roll, and Time) on a two-dimensional, temporally active display. As the exact infor-

mation needed cannot be displayed, the image-guided surgical displays are assistive

and complement surgical knowledge and intuition.

5.2 Background

Numerous types of surgical navigation systems have been developed to aid the opera-

tor when tracking the surgical tool. The tracking is done by dynamically referencing

�ducials (skin markers, bone screws, a head frame, etc.) att ached to the patient body.

The work done in [5] proposes a real-time electromagnetic position sensing of the

needle tip to help the precision guidance into a liver for the radiofrequency ablation

of metastatic tumors. A cross-hair targeting window on the computer screen allows

the user to keep the needle's orientation correct during the puncture. A 2D image

overlay device to assist needle placement on CT scanners is presented in [32]. The

system demonstrated strong potential for reducing faulty needle insertion attempts,
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thereby reducing X-ray dose and patient discomfort. In [59] the authors presented an-

other augmented overlay imaging system integrated with an electromagnetic tracking

system, which allows tracking of instruments, and of the radiologist's head position.

The information is provided to the users through a transparent display. Electromag-

netic tracking and the integration of CT and US images for needle placing in ablation

procedures is described in [62]. A navigation system developed for minimally per-

cutaneous interventions in the �eld of interventional radi ology that can be connected

to a CT scanner but also to C-arm systems is explored [84]. In [85] two jointly cal-

ibrated cameras are viewing the skin of the patient who is lying on the CT-table. A

3D model of the patient (including skin, liver and tumors) is automatically obtained

from the CT scan, and is rigidly registered in the camera frame thanks to radio-opaque

markers previously attached to the patients skin. The needle tracked by the cameras is

displayed on a screen together with its position relative to the patient model. In [122]

a magnetic-�eld-based navigation system is presented, whi ch is an effective adjunct

tool for accurate and safe biopsy of lesions that require an out-of-plane CT approach.

In [120] the authors evaluate an augmented reality (AR) system in combination with

a 1.5-T closed-bore magnetic resonance (MR) scanner as a navigation tool for needle

biopsies. Tekbas [114] estimates the position of an abdominal target from a set of op-

tically tracked �ducial needles. Prior to the intervention , the needles are inserted in the

vicinity of the target, and a planning CT scan is acquired.

To overcome the dif�culties of precise insertion of the need le, once the data ac-

quired are in the same reference system, different approaches were proposed, for in-

stance the use of a robotic arm [71].

All these works prove that the introduction of a navigation system during the proce-

dure improve the performance in the needle insertion task. Anyway, no work addresses

the speci�c problem of providing the navigation informatio n to the user in an intuitive

and ergonomic way.

The positioning of the needle is still a key issue and most of the time the percuta-

neous procedure is human based, therefore we propose here an integrated navigation

system that provides information directly on the tool. The system helps the user to

execute the procedure with high accuracy and precision.
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5.3 System Work�ow

Figure 5.2: The needle navigation scheme. The plane π is perpendicular on the needle

axis. The vector p ∈ π is the direction toward the entry point. The vector o ∈ π is the

direction toward the correct orientation.

The proposed navigation system (�gure 5.1) is designed to be attached to any type of

needle (the �rst prototype is designed for biopsy needles). This characteristic requires

the precise identi�cation of the needle geometry (calibrat ion phase) together with a

method to map the navigation information on a display attached to the tool (navigation

phase).

The purpose of the calibration is to identify the needle reference system, where the

needle axis represents the Oy-axis of this reference system, and to identify a direction

in a plane π perpendicular to this axis (see �gure 5.2). This direction w ill be used as

a reference, when mapping vectors on this plane. Once the calibration is performed,

during the navigation we project the planned position and orientation onto the plane π.

The whole process is modeled as a state machine, where the initial state is the

calibration, and the navigation is divided into entry point localization, �nding the ori-

entation and insertion (see �gure 5.3).
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Figure 5.3: State machine diagram. The threshold error depends on the state: ε1 <

1mm,ε2 < 3mm,ε3 < 4mm. The value of the εθ depends on the accuracy of the orien-

tation we want to reach. The value of ε3 depends on the accuracy we want to reach and

should consider the calibration and the tracking errors.

5.3.1 Hardware Setup

The position and the orientation of the needle is tracked with an optical tracking system

from NaturalPoint (Corvallis, OR, US) composed by 12 USB infrared (IR) cameras.

The system uses IR re�ecting markers and the software provid ed by the manufacturer

to measure position and orientation of objects. The precision of the tracking system

with object moving at speeds comparable with those of hand-held surgical tool is less

than one millimeter. The 12 cameras are arranged in a truss like structure located over

the operating table. This con�guration ensures the line of s ight between at least 2

cameras and each of the markers applied on the tool and does not interfere with the

normal operations in the operating room.

To track the position of the needle is necessary to attach a rigid body to it. The rigid

body is designed to guarantee that the display is orthogonal to the needle direction,

therefore the navigation information are easily to be followed and to be visualized

(�gure 5.1). On this rigid body 4 infrared re�ecting spheres were mounted in a unique

geometric pattern to allow pose measurement from the tracking system. On the same

structure we have also mounted the hardware components of the system, such as the

display and the interface with the navigation workstation. A 2D Cartesian reference

system of the display was de�ned with origin in the center of t he display, and the axis

parallel to the display sides. The x-axis is aligned also with the markers placed on

the rigid body adjacent to it (see �gure 5.4). This choice was selected to simplify the

visualization of the navigation information through the display.

Once the needle is placed in the planned position, the marker structure can be

removed to ease the sample withdrawal or the connection with the ablation device.
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The display used in this �rst prototype is a 1.4” graphical mo no-chrome display

with a resolution of 84x48 pixel and a led back-lighting. This choice was done to

reduce the power consumption of the hardware components in the design and also to

increase the visibility of the display. In fact all the system is powered from a single

USB port, the same used for communication.

5.3.2 Needle Calibration

Figure 5.4: The coordinate systems rigid transformations. The matrix Marker
Needle T is the

calibration matrix. The origin of the needle coordinate system is translated in the

needle tip.

The pose of the needle is computed from the positions of the markers attached to it.

In the �rst step of the calibration procedure, we identify th e position of the needle tip

relative to the markers by using the pivoting technique [125]. The orientation will be

represented by the Oy-axis of the needle coordinate system and the tip position will

give the origin of the reference frame (see Figure 5.4).

To compute the orientation of the needle, some systems use the insertion of markers

along the needle axis [114]. The main drawback of these systems is the dependence

on the accuracy of the tool design. The accuracy claimed in [70] for such a system

is between 1 and 2 mm summed with a construction error of about 0.8 mm. Another
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drawback of a tool that uses only marker along its axis, usually 2, is the loss of a degree

of freedom (DoF).

To calibrate a needle without the application of markers to it, we should precisely

identify two points along the needle axis. With this information we can align one axis

of the needle reference frame along the axis of the needle.

Figure 5.5: Cross calibration system.

We have designed and tested a cross-calibration system that helps to fully identify

the position and the orientation of the needle. Our requirements were to keep the

needle clean of markers and to have 6 DoF tracking. The calibration system consists

of two rectangular plates, with 4 markers each, that precisely localize a point de�ned as

the diagonals intersection. The system allows the needle to pass through these points

(�gure 5.5). The automatic acquisition of the diagonal inte rsection was tested also by
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pivoting and the results were essentially the same, the error is close to the error of the

tracking system. In the operating room such a system allows a fast, easy and automatic

procedure for the needle calibration. A �rst prototype was b uilt with LEGO pieces, and

the accuracy was lowered by this setup, but a steel model will be provided to ensure

better robustness and the possibility of sterilization.

Once the needle is placed in the cross calibration system, a series of poses are ac-

quired. To interpolate the rotation matrix we used quaternions and the SLERP method

[29]. The interpolation of the translation vector is done by averaging the values of each

translation vector. The two diagonal intersection P1,P2 represent one of the needle co-

ordinate system axis (�gure 5.5), where P1 is the origin and P2 is a point along one

of the axis (e.g the y axis). The other axis of the needle coordinate system (Ox in the

�gure 5.4) is given by the projection of two markers on a plane perpendicular to the

Oy-axis computed in the �rst step, therefore, after the calibr ation process, we have 6

DoF.

5.3.3 Needle Navigation

Figure 5.6: State machine display a) positioning state. b)orientation state. c) insertion

step. d) calibration step.

For navigation purposes, once the needle is calibrated, we de�ne a vector p as the

projection of the entry point to a plane perpendicular to the axis of the needle and the

vector o as the intersection of the direction between the line described by the entry

point and the target point and the same plane (see Figure 5.2).

The �rst step of the navigation is the positioning of the need le at the entry point.

The direction to be followed is the direction of the vector p (�gure 5.2). It is advanta-

geous to perform the aligning step after �nding the entry poi nt, because the instrument
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can be pivoted around the contact point between its tip portion and the surface with-

out losing the entry point, which has already been located. During the second step of

the navigation the needle is guided by the direction o (�gure 5.2). When the accurate

orientation is found the insertion will take place. To pass from one state to another a

threshold is de�ned depending on the accuracy we want to reac h (see �gure 5.3).

The control of the transitions between different steps of the procedure is imple-

mented via software and the display is programmed to show the navigation information

of each step of the state machine.

The 3D visualization shown on the PC monitor gives in real-time the position of

the entry point, target point, the planned direction of the needle insertion and the actual

needle position.

During the �rst step, i.e. the entry point position localiza tion, the display attached

to the needle provides the direction of the vector p with an arrow and a bar chart that

shows the distance to the entry point. The user has to move the tip of the needle parallel

to the surface until the correct position is reached and the display shows the next phase

(see �gure 5.6 a).

In the orientation phase the user should keep the tip of the needle �xed until the

desired direction is achieved. When the alignment is reached, the arrow indication is

substituted with a small circle around the origin of the display that represents the target

orientation, and a small point has to be moved inside this circle (see �gure 5.6 b). The

orientation angle error is computed as the cross product of the difference vector of the

entry point and the target point and the vector along the needle axis. Once this value

arrives below a threshold previously de�ned, the display sh ows the next step.

When the accurate orientation is found, the insertion step begins. In the �rst part

of the insertion step the display shows the orientation information together with a bar

chart that maps the distance from the target point. In fact, in a real percutaneous needle

insertion, it is possible to change the needle orientation only during the �rst 20 mm of

the insertion, therefore the necessity of having information on the orientation. In the

last insertion part the display shows a distance indication in percentage (see �gure 5.6

c).
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Needle ID 1 2 3 All
Needle diameter 16G 18G 18G

Position Analysis
Accuracy 0.6561 0.7117 0.8002 0.7226

RMS error (mean)
Accuracy 0.1674 0.3125 0.215 0.2316

RMS error (STD)
Precision 0.3254 0.8613 0.9361 0.7076

STD of recorded postions
Angular Analysis
Accuracy [degree] 0.3876 0.5372 0.8702 0.5983
(mean of dot angle)

Accuracy 0.2518 0.1872 0.3542 0.2644
RMS error (STD)

Table 5.1: Results for the needle position and orientation calibration.

5.4 Validation and Results

5.4.1 Calibration Accuracy and Precision

An experimental study is conducted by using a grid matching approach as in [52], to

assess the needle tracking accuracy and precision for both position and orientation. To

evaluate the positioning accuracy a set of n = 20 points on the grid were identi�ed

�rst by pivoting in the tracker coordinate system P1
T , ..,P

n
T and then the same points

were mapped to the tracking coordinate system using the calibration matrix and the

positions in the needle coordinate system P1
N , ..,P

n
N .

Pi =
T
M Ti

M
N T Pi

N (5.1)

where T
MTi is the tracking matrix of the markers on the needle and M

N T is the cali-

bration matrix.

The orientation accuracy is given by:

εθ = dot(Pk −Pl/‖Pk −Pl|‖ ,OyT ) (5.2)

where Pk and Pl are two points crossed by the needle expressed in the tracker ref-

erence frame and

OyT =T
M Ti

M
N T [0100]t (5.3)
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is the vector corresponding to the alignment of the needle Oy axis expressed in the

tracker reference frame.

The root mean square (RMS) needle tip tracking error was de�ne d as the RMS

distance between the reference positions computed with the linear least square closed

method and the transformed measured points:

εaccuracy
RMS =

√

1
n

n

∑
i=1

∥

∥Pi
T −Pi

∥

∥

2
2 (5.4)

The tracking precision for the needle tip Pj at the position j was de�ned as the RMS

distance between the measured tip position and the mean tip position Pmean =
1
n ∑n

i=1 Pi:

εprecision
RMS =

√

1
n

n

∑
i=1

‖Pi −Pmean‖
2
2 (5.5)

where Pi are computed by eq. (5.1).

Table 5.1 reports the accuracy and the precision in positioning and orientation. The

estimation was computed over 20 trials with 3 needles of different thickness expressed

in gauge. The larger error was obtained with the thinner needles (18G) due to their

�exion.

5.4.2 In-vitro evaluation of the navigation system

The performance of the developed device was tested in-vitro. A phantom similar to

human skin was used, where the needle orientation is constrained by the skin and the

muscular strip after a penetration of 1-2 cm. A simple polypropylene phantom with a

thickness of 2 cm is well suited for this experiment since it allows the needle to keep

the same orientation after insertion.

To localize a point inside the phantom we used a calibrated needle (target needle).

The error in the localization of the target point is given therefore by the calibration

error of the target needle. In the real case scenario the localization error is given by

the error of the localization of the target. We �x 5 entry posi tions on the surface of

the phantom. The precise computation of the coordinates of the entry points is done

as before, with the pivoting technique. Each of the entry point together with the target

point de�nes an orientation.

For each of the 5 entry point positions we repeat a needle insertion 5 times, there-

fore we have a total of 25 insertions for each user.
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Figure 5.7: Experimental setup no. 2 with both the PC monitor and the display attached
to the needle.

In the experimental setup no. 1 the needle insertion was performed with the use

of a PC monitor placed in front of the user on the same table of the phantom. The

3D information about the tool and the points (entry and target) are represented on the

monitor, as in a standard image guided procedure.

The experimental setup no. 2 was performed as the setup no. 1 but with the use of

the new system that integrates the display applied on the needle (see Figure 5.7).

An important measure was the deviation from the desired orientation, once we have

reached the target point. Since the planning phase de�nes th e safe orientation, we have

computed the angle between the planned orientation and the � nal orientation. The po-

sitioning error was measured as the Euclidean distance between the needle tip position

and the entry or the target point position, while the orientation error is measured as the

dot product between the normalized vector represented by the entry point and target

point and the vector representing the orientation of the needle given by the rotation

matrix, since the needle axis is oriented with the coordinate system axis (see �gure

5.4).

Six subjects without previous experience tested the system after the oral explana-

tion of the task. All the users are male and right hand dominant. We compared the

results in terms of time taken to reach the goal and in terms of accuracy in entry and
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target point localization.

Setup 1 with PC monitor
ELE TLE AOE
[mm] [mm] [degree]

User Mean STD Mean STD Mean STD
U1 5.114 1.453 4.50 2.542 5.839 1.667
U2 4.006 2.187 5.464 1.410 5.758 1.146
U3 5.081 2.321 4.506 2.187 6.259 2.869
U4 4.136 3.194 5.614 2.739 5.727 2.778
U5 5.147 1.492 4.497 1.665 5.420 1.726
U6 3.876 4.261 5.315 1.765 5.790 1.955
All 4.56 2.485 4.983 2.051 5.799 2.007
Setup 2 with PC monitor and display on the needle
User Mean STD Mean STD Mean STD
U1 2.79 1.091 3.637 1.121 1.734 1.309
U2 2.703 1.114 3.079 1.677 2.456 1.856
U3 2.697 1.462 2.467 1.578 2.902 1.068
U4 2.727 1.257 3.916 1.988 1.833 1.576
U5 2.916 1.725 2.991 2.091 2.52 1.848
U6 2.627 2.111 3.043 1.26 4.036 0.918
All 2.746 1.46 3.196 1.619 2.58 1.429

Table 5.2: Comparison of Error Values in the two experimental setups.

Experimental Setup 1 Experimental Setup 2
Time [s] Time [s]

User Mean STD Mean STD
U1 127.11 22.35 90.2 10.65
U2 137.23 19.43 73.64 26.83
U3 128.31 35.23 77.11 18.23
U4 144.94 11.82 94.58 16.73
U5 135.97 14.4 82.48 15.33
U6 129.29 29.33 70.81 15.95
All 133.78 22.09 81.47 17.29

Table 5.3: Comparison of Timing in the two experimental setups.

In table 5.2 we report the accuracy and precision results of the experiment. We

show the entry point localization error (ELE), the target point localization error (TLE)

and angular orientation error (AOE). The results of experimental setup 2 show that the

mean and STD of the error is lower than in setup 1 for all the errors considered.
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When using the proposed approach, the entry position and the orientation of the

needle must be below the threshold imposed by the system to pass from a state to

another (see �gure 5.3). The error in the target positioning will then be constrained by

the errors accumulated in the system and by the calibration errors.

The use of the proposed system reduces the error (both in the position and in the

orientation) and also reduces the in�uence of the users expe rience in needle insertion

execution. In fact the standard deviation of the data is lower and more stable than in

the case without display on the needle.

The needle insertion time, measured from the beginning of the localization of the

entry point position, with the display mounted on the needle is about 40% lower than

without the display (see table 5.3). The strong improvement in the performance is

probably due to the lack of experience of the subjects and in some limitations of the

design of the experimental setup.

5.5 Conclusions and Future Work

This chapter proposed a new system for accurate needle placement. We have designed,

tested and evaluated the system in an in-vitro experiment that was not directly related

to a clinical scenario. The experiments we have done validate the utility of the tool that

can be used in a more complex procedure.

The main advantages of the navigation system we have presented are:

• gives the information directly on the tool.

• there is no need for the user to move the eyes from the interventional area.

• is fast and simple to calibrate, therefore easy to be integrated in the operating

room scenario.

• improves the accuracy and the precision to reach the desired position and orien-

tation.

• reduces the time needed to complete the procedure, gives the possibility to map

the needle in an environment where other tools are present by the mean of the

tracking system.(e.g. US scanner, 3D surface scanner).

In the future works the electronic components will be miniaturized, and also the

display should have a higher resolution and a higher refresh rate. The rigid body
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design will provide more protection to the electronic components. Both the calibration

phantom and the needle device are being redesigned to take into account cleaning and

sterilization requirements imposed by the operation room environment.

The performance of the navigation system should be evaluated with users that have

previous background in percutaneous procedures.

The navigation system will be included in a percutaneous image-guided procedure,

where pre-operative images are available and intra-operative real-time images will be

acquired and registered to the same reference system.



Chapter 6

Final words and future works

... mathematics may be de�ned as the

subject in which we never know what

we are talking about, nor whether

what we are saying is true.

Bertrand Russell

In this thesis an analysis of the registration algorithms to be applied in the OR was

performed. Since there is a lot of work in this area, we have identi�ed the direction

to proceed in order to �nd a solution for our applications. We have seen that the main

theory in the �eld of medical image registration is not usabl e in the OR (chapter 2). On

the other hand, the techniques already in use in the OR suffer from many limitations.

They are based on the manual extraction of landmark followed by a rigid registration

(chapter 3).

The only well accepted and employed algorithm, ICP, has the same limitations of

the other algorithms that use optimization and distance measures: the impossibility to

avoid local minima and the lack of control over the iteration limit.

We have performed an in-vitro test of the principal-axes registration in order to

�nd alternative approaches to the existing ones (chapter 3) . The solution we have used

worked well but the assumptions we have made were strong. The requirements of a

registration algorithm for the OR were therefore identi�ed :

• complete integration in a larger system that comprises imaging devices both for

acquisition and visualization, tracking tools, medical instruments.

• accuracy and precision.

120
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• validation of the results, i.e. the possibility to have control over the registration

results in order to estimate beforhand the precision of the overall system.

• real-time performance.

The algorithms we proposed in chapter 4 are oriented toward these goals.

We developed our approach starting from the closed form solution of the Procrustes

method. The �rst solution we gave, algorithm 1, holds in the i deal case, when no noise

or little noise is present, and yields the transformation that registers one set of points to

another, without knowing the correspondences. The second solution, algorithms 2 and

3, solves the correspondences in the ideal case and in the noisy case respectively, and

derives the transformation that register one set of point to another from the computed

correspondences (section 4.6.4).

Finally, in the chapter 5, a system for needle navigation to perform minimally inva-

sive manual technique was introduced. The registration in the OR is not a process on its

own but is part of larger systems where the integration of different data is of paramount

importance for the precision of the intervention and the safety of the patient. The min-

imally invasive techniques are sometimes guided blindly (e.g. in the prostate biopsy

the tumor cannot be seen with US real-time imaging) and the design of new tools to-

gether with the integration of registration can lead to substantial improvements of the

interventions.

Most of the results we have presented here were obtained on synthetic data acquired

from anatomical phantoms. This choice was motivated on the one hand by the need

to have a controlled environment, in order to measure the errors introduced by the

system and, on the other hand, by the fact that most of the work in this thesis derives

from the interaction of the individual contribution with international research projects

that deals with minimally invasive procedures and surgical robotic procedures that are

still ongoing research and must be validated before entering the OR. Nevertheless, our

work was guided by the feed-back of many physicians and some of the techniques

were developed after attending real-life interventions.

The next step will be the effective introduction of the technologies we developed so

far in the clinical practice by a strong collaboration of both researchers and physicians.

Nowadays the technology is evolving and we have the conviction that there will be

a large use of it in the very near future also in the clinical context, in spite of the fact

that the validation and the bureaucratic processes are not easy.

As far as the registration of medical images in the OR concerns, even though there

is a very high demand in the OR, we think we are still at the beginning and this thesis
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gave a contribution not only to �nd the solution to this probl em but also to point the

research to the right direction.

We plan to extend the theory we have developed in chapter 4 to handle inelastic

deformations in order to have not only the rigid correspondence but also the corre-

spondence generated by this type of deformation. This step is not dif�cult to achieve,

the only important issue to address is the ef�cient computat ion of the geodesics for the

real-time acquired data. Once the correspondences are de�n ed, a non-rigid model, e.g.

given by spline functions, will yield the desired transformation.

Another line of research in which we are interested in the future is the integration

of the registration in larger systems that assist OR interventions. This will be achieved

by the introduction of new imaging systems in the OR and by the development of new

tools.
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Appendix A

Image registration results

We report here the results of the registration algorithm that we have described in chap-

ter 2. The tests were performed using MATLAB environment and FAIR toolbox [78].

A.1 Parametric registration using mutual information

R, [ 129 108], length(w)=6
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Figure A.1: Af�ne registration using MI. Top row, from left t o right: the reference

image, the target image before the �rst iteration, the targe t image after 44 iterations.

Bottom row, from left to right: the target image after the registration with the defor-

mation grid superimposed, target and reference difference image before registration,

target and reference difference image after registration.
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Figure A.2: Af�ne registration using MI. The graphical tren d of the objective function

J during 44 iterations (the black line). The green line gives the graph of |∇J|, while the

red shows line the graph of the difference between the previous J value and the current

value.
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Figure A.3: Spline registration using MI. Top row, from left to right: the reference

image, the target image before the �rst iteration, the targe t image after 100 iterations.

Bottom row, from left to right: the target image after the registration with the defor-

mation grid superimposed, target and reference difference image before registration,

target and reference difference image after registration.
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Figure A.4: Spline registration using MI. The graphical trend of the objective function

J during 100 iterations (the black line). The green line gives the graph of |∇J|, while

the red shows line the graph of the difference between the previous J value and the

current value.

The results obtained using MI as distance measure are not satisfactory in both af�ne

and spline cases (�gures A.1 and A.3). The optimization proc ess tends very quick to

a local minimum, and the transformation leaves the image almost unchanged, in the

case of af�ne transformation (�gure A.1) or applies a very sm all local deformation, in

the case of the spline deformation (�gure A.3).

The iterations can stop when the error is less than a threshold, as in the af�ne case,

or, in the case that this threshold is not reached, we imposed a limit of 100 iterations.

The trend of the MI measure is to quickly reach a stable position (�gures A.2 and

A.4) at around 66% in the af�ne case, and 87% in the spline case , of the of the initial

value.

The computation time is very long.

The minimization scheme used was Gauss-Newton.
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A.2 Parametric registration using normalized gradient

�eld

Figure A.5: Af�ne registration using NGF. The results are ob tained after 228 iterations.

The scheme is the same as in �gure A.2

Figure A.6: Af�ne registration using NGF. The graphical tre nd of the objective func-

tion J during 228 iterations (the black line). The green line gives the graph of |∇J|,

while the red line shows the graph of the difference between the previous J value and

the current value.
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R, [ 124 111], length(w)=40

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

T(0)

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

T(xc), |dY|= 0.46853

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

|J(0)/Jstop|=100%

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

T(100)

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

|J(100)/Jstop|=99.9999%

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

Figure A.7: Spline registration using NGF. Top row, from left to right: the reference

image, the target image before the �rst iteration, the targe t image after 100 iterations.

Bottom row, from left to right: the target image after the registration with the defor-

mation grid superimposed, target and reference difference image before registration,

target and reference difference image after registration.
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Figure A.8: Spline registration using NGF. The graphical trend of the objective func-

tion J during 100 iterations (the black line). The green line gives the graph of |∇J|,

while the red shows line the graph of the difference between the previous J value and

the current value.
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After our tests, it turned out that the NGF distance measure is not a good choice, at least

for the images we have chosen. As it can be seen in �gures A.6 an d A.8, the values

of the objective function do not change over the iterations, they are indistinguishable

in the graphic. In fact, they remain always very near to the initial value 1. Visually,

the �gures A.5 and A.7 show that in both cases the results are m eaningless and the

deformation applied is arbitrary.

The only advantage over the previous approach was the computation time.

Also in this case we have used Gauss-Newton for the minimization.

A.3 Multilevel parametric and non parametric regis-

tration

A.3.1 Input

Figure A.9: The target (top row) and the reference (bottom row) images represented

using 6 different levels.

The multilevel representation of the input data is required �rst of all in order to reduce

the risk of being trapped by local minimum. The target and the reference images are

depicted in the �gure A.9. At the same time, a solution of a coa rse representation of the

problem serves as a starting point for a representation with more details. Starting with

a very coarse representation, the procedure is repeated on each level, until all details

provided by the initial data are resolved.
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From an optimization point of view, the multilevel representation yield a smoother

representation of the objective function. A smooth problem may be easier to resolve

and, based on a good starting point, the more detailed problem can be solved quicker.

At the same time, the multilevel representation is useful to reduce the computa-

tional time. The complexity of the registration algorithms increase exponentially with

the dimension of the input data.

A.3.2 Parametric multilevel spline registration

Figure ?? reports the results of the multilevel spline registration using the MI distance

measure. After 10 iteration on each level, the result is passed to the �rst iteration of

the next level.

The transformations also in these cases are not natural, after a strong bending ob-

tained at the �rst level, the other levels tend to bend less th e image.

The computation time is very high and an ulterior re�nement a t each level through

the other iterations does not improve the results.

The tests using the af�ne transformation are not reported he re but the results are

similar to the non-level approach, the transformation blocks quickly into a local mini-

mum.

The tests done using NGF distance measure give again arbitrary deformations.
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A.3.3 Non parametric multilevel registration

Elastic

Figure A.10: The initialization of the algorithm at the �rst level considered uses the

af�ne transformation.

Figure A.11: First level of registration using the af�ne tra nsformation as initialization

and elastic registration to re�ne.
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Figure A.12: Second level of registration: the initialization uses the previous obtained

transformation.

Figure A.13: Third level of registration: the initialization uses the previous obtained

transformation.
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Figure A.14: Fourth level of registration: the initialization uses the previous obtained

transformation.

Figure A.15: Last level of registration: the initialization uses the previous obtained

transformation.
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Figure A.16: Iteration history of multilevel non-parametric elastic registration: vertical

lines separate different levels. The squares represent the initial value of MI, while the

crosses show the value on each iteration.

Figures A.10 to A.16 show the results of the non-parametric elastic multi-level regis-

tration. The algorithm starts at the coarser level using an af�ne transformation, then

the registration at each level starts using the previous obtained result. After the initial-

ization, there is not much interaction of the algorithm with the data, the images remain

almost unchanged and the number of iterations is very low on each level. Even so, the

computation time is very high.
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Curvature

Figure A.17: The result of the registration using the curvature.

Figure A.18: Iteration history of multilevel non-parametric curvature registration: ver-

tical lines separate different levels. The squares represents the initial value of MI, while

the crosses show the value on each iteration.

The results obtained using the curvature registration are very similar with those ob-

tained using the elastic registration therefore we report here only the registration on

the last level (�gure A.17) and the graphic of the iterations (�gure A.18).
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A.4 Computation time

Even if in the implementation of the registration algorithms we used Matlab software,

we report in the table A.1 the time taken for each of the test we have presented in the

previous sections.

Registration Transformation Time

type type (sec.)

Parametric MI
Af�ne 15

Spline 87

Parametric NGF
Af�ne 6

Spline 18

Multilevel Af�ne 29

parametric Spline 143

Multilevel Elastic 214

non-parametric Curvature 168

Table A.1: Computation time of the principal registration algorithm tested.



Appendix B

Landmark-based registration results

We report here the results of the registration algorithms that we have described in

chapter 3.

Figure B.1: Overlapped images before registration: target image (US) is represented

by the red layer, source image (CT) by the green layer.

B.1 Landmark-based registration: linear

The linear registration in 2D involves the computation of 6 parameters, 2 for transla-

tion, 1 for rotation and 2 for scaling therefore a minimum number of 3 landmarks is

required (Figure B.2).

149



150

1

2
3

dataT&LM

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

1

2
3

dataR&LM

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

Figure B.2: The template and the reference images with 3 corresponding pair of land-

marks.

Even if the solution with 3 landmarks is in closed form, the registration works well

only in the region where the landmarks are placed (Figure B.3 and B.4, left). The

closed form solution applied to the entire image is not satisfactory (B.4).
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Figure B.3: The template image before and after the linear registration with the regis-

tered landmarks highlighted.
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Figure B.4: From left to right: a close-up of the linearly registered landmarks, the

target (red) and reference (green) images superimposed after the linear registration and

a close-up of the same image.

Increasing the number of landmarks (Figure B.5), the registration problem becomes

overdetermined and the solution is given by minimizing the sum of the distances be-

tween every pair of corresponding landmarks.

Figure B.5: The template and the reference images with 12 corresponding landmarks.

Even though not all the landmarks are aligned (Figure B.6 and B.7 left), the result

improve a lot compared to the closed form solution (Figure B.7, middle and right).
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Figure B.6: The template image before and after the registration with the registered

landmarks highlighted.

Figure B.7: From left to right: a close-up of the registered landmarks, the target and

reference images superimposed after the registration, a close-up of the superimposed

images.

B.2 Landmark-based registration: non-linear

B.2.1 Quadratic registration

The results of the linear registration may be improved by using a non-linear approach.

The quadratic solution in 2D has a number of 12 parameters and is completely given

by 6 landmarks (Figure B.8). In this case the error in the alignment of the landmarks

is negligible because depends only on the computational precision (Figure B.8).
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Figure B.8: The target and reference image with 6 selected landmarks. On the right the

target image registered and the 6 landmarks perfectly aligned by the quadratic model.

The registration result applied to the entire image, even in the 6 landmarks case, is

acceptable (Figure B.9).

Figure B.9: The two images overlapped after the quadratic registration with 6 land-

marks in the middle and a close-up on the right. On the left a close-up of some regis-

tered landmarks.

As in the linear case, increasing the number of landmarks, the solution is overde-

termined but the overall result is better (Figure B.10). By using the quadratic term, the

alignment of 15 landmarks gives a minor error compared with the use of 12 landmarks

in the linear case (Figure B.11).
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Figure B.10: The two images overlapped after the quadratic registration with 15 land-

marks in the middle and a close-up on the right. On the left a close-up of some regis-

tered landmarks.

Figure B.11: The target and reference image with 15 selected landmarks. On the right

the target image registered and the 15 landmarks aligned by the quadratic model.

B.2.2 Thin-plate-spline registration

The polynomial solution may produce arbitrary deformations especially when the num-

ber of landmarks is low.

The approach based on the thin-plate-spline (TPS) functions further re�nes the

previous results. The spline functions may yield the perfect matching of the land-

marks (interpolation) or an approximation, when the landmarks are not completely

overlapped. These two conditions are realized by varying a smoothing parameter α.

The solutions range from a low degree of bending when α is large to a high degree

of bending in the case of small α. However, considering a number of landmarks from

6 to 15 and α ranging from 0 to 1000, this phenomenon is barely visible and the dis-

tance between the two sets of registered landmarks increases visibly only in the case

of α = 1000.
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The �gures B.12 to B.29 report the results for different values of α and different

number of landmarks.

Figure B.12: The target (left) and reference (right) image with 6 selected landmarks.

Figure B.13: The target image from �g.B.12 registered for α = 0
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Figure B.14: The two images from �g.B.12 overlapped after the T PS registration for

α = 0

Figure B.15: The target image from �g.B.12 registered for α = 10
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Figure B.16: The two images from �g.B.12 overlapped after the T PS registration for

α = 10

Figure B.17: The target image from �g.B.12 registered for α = 100
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Figure B.18: The two images from �g.B.12 overlapped after the T PS registration for

α = 100

Figure B.19: The target image from �g.B.12 registered for α = 1000
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Figure B.20: The two images from �g.B.12 overlapped after the T PS registration for

α = 1000

Figure B.21: The target (left) and reference (right) image with 15 selected landmarks.
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Figure B.22: The target image from �g.B.21 registered for α = 0

Figure B.23: The two images from �g.B.21 overlapped after the T PS registration for

α = 0
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Figure B.24: The target image from �g.B.21 registered for α = 10

Figure B.25: The two images from �g.B.21 overlapped after the T PS registration for

α = 100
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Figure B.26: The target image from �g.B.21 registered for α = 100

Figure B.27: The two images from �g.B.21 overlapped after the T PS registration for

α = 100
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Figure B.28: The target image from �g.B.21 registered for α = 1000

Figure B.29: The two images from �g.B.21 overlapped after the T PS registration for

α = 1000


