
The Grand Challenge in Metamorphic Analysis

Mila Dalla Preda

Department of Computer Science/INRIA, University of Bologna, Italy.
E-mail: dallapre@cs.unibo.it

Abstract. Malware detection is a crucial aspect of software security.
Malware typically recur to a variety of disguise and concealing tech-
niques in order to avoid detection. Metamorphism is the ability of a
program to mutate its form yet keeping unchanged its functionality and
therefore its danger in case of malware. A major challenge in this field is
the development of general automatic/systematic detection techniques
that are able to catch the possible variants of a metamorphic malware.
We take the position that the key for handling metamorphism relies in
a deeper understanding of the semantics of the metamorphic malware.
By applying standard formal methods we aim at proving that metamor-
phic analysis is a special case of program analysis, where the object of
computation is code interpreted as a mutational data structure.

1 Metamorphic Malware Analysis

Detecting and neutralizing malware is a major challenge in computer security in-
volving both sophisticated intrusion detection strategies and code manipulation
tools and methods. Traditional misuse (or signature-based) malware detectors
are syntactic in nature: They use pattern matching to compare the byte se-
quence comprising the body of the malware against a signature database [23].
Metamorphism emerged in the last decade as an effective strategy to foil misuse
malware detectors. Metamorphic malware apply semantics preserving transfor-
mations (e.g. code obfuscation techniques) to modify their own code so that one
instance of the malware bears very little resemblance to another instance even
though semantically their functionality is the same. Thus, a metamorphic mal-
ware is a malware equipped with a metamorphic engine that takes the malware,
or parts of it, as input and morphs it at run-time to a syntactically different but
semantically equivalent variant, in order to foil signature matching. The quan-
tity of metamorphic variants possible for a particular piece of malware makes
it impractical to maintain a signature set that is large enough to cover most or
all of these variants, making standard signature-based detection ineffective [5].
The reason for this vulnerability to metamorphism lies upon the purely syntactic
nature of most exiting and commercial detectors that ignore program functionali-
ties. Following this observation researchers began to develop detection techniques
that take into account properties of the malware behavior instead of properties
of its syntax. This naturally needs sophisticated program and behavioral anal-
ysis techniques, that rely upon known and new formal methods for reasoning
about programs that mutate their code during execution.



Code Variants

Malware detection
(behavioral analysis)

Mutation insensitive analysis 

Standard analysis 

Kno
wled

ge
 ab

ou
t co

de
 

tra
nsf

orm
atio

n s
tra

teg
ies

0

Best

Worse

As far as data/control flow analy-
sis is concerned, program and be-
havioral analysis are standard in
programming languages and system
[20]. The situation changes when
metamorphism is considered. The
main difficulties in applying these
techniques to metamorphic code
analysis relies upon the fact that
code mutation and data/control be-
havior are interleaved. This makes
the first interfering with the sec-
ond making the analysis impossible
or imprecise enough to let malware
be indistinguishable from good soft-
ware.

The reason of this difficulty is twofold: (1) The code of the malware is not
fixed, it mutates during execution or may take on extremely different shapes
when caught in the wild or executed in an emulator or debugger. An adequate
semantics, on which any sound analysis has to be based, has to cope with this
aspect of metamorphic code, either by keeping track of code mutations in order to
model similarities or being insensitive to these mutations in order to understand
malware attacks; (2) It is extremely difficult to isolate the code portions devoted
to code mutations, the so called metamorphic engine, being this code hardly
obfuscated and interleaved into the malware payload. The analysis has therefore
to cope with mixed (hybrid) computations involving standard data structures
(the payload) as well as the code itself as a data structure.

2 Behavioral Approaches to Metamorphism

Nowadays, in the literature we can find a variety of detection algorithms that
use standard formal methods and program analysis tools to model the malicious
behavior in order to detect malware. Most of these tools and methods are based
on the idea that a model of the behavior of a malware may be a valid signature
for catching it. This is indeed in the tradition of intrusion detection systems
(IDS), where an attack is essentially captured by understanding the attacker be-
havior in terms of which and how data are manipulated. Christodorescu et al. [6]
put forward a very first semantics-aware malware detector that is able to handle
some of the metamorphic transformations commonly used by hackers. Singh and
Lakhotia specify malicious behaviors through a formula in linear temporal logic
(LTL), expressing temporal properties of malware behavior relatively to some
state properties, and then use the model checker SPIN to check if this prop-
erty is satisfied by the control flow graph of a suspicious program [22]. Kinder et
al. [15] introduce an extension of the CTL temporal logic, which is able to express
some malicious properties that can be used to detect malware through standard



model checking algorithms. Christodorescu and Jha [4] describe a malware de-
tection system based on language containment and unification. The malicious
code and the possibly infected program are modeled here as automata. In this
setting, a program presents a malicious behavior if the intersection between the
language of the malware automaton and the one of the program automaton is
not empty. Beaucamps et al. [2] approximate the set of possible execution traces
of a program with a regular language. They define an abstraction of this regu-
lar language with respect to some predefined behavioral patterns that express
a certain property of the malware behavior (an invariant of the metamorphic
transformations used by the malware). This leads to a description of a program
as a regular language of abstract symbols that can be compared to the one of
known malware to detect infection. A similar approach has been considered more
recently in [1], where a tree automata is derived from system call data-flow de-
pendency graphs, which is insensitive on code mutation. Lo et al. [18] develop a
programmable static analysis tool, called MCF (Malicious Code Filter), that uses
program slicing and flow analysis to detect malicious code. Lakhotia et al. [17]
propose a methodology based on program semantics and abstract interpretation
for making context-sensitive analysis of assembly programs even when the call
and ret instructions are obfuscated. Jacob et al. [14] propose a model of mal-
ware based on the Join Calculus and they identify a fragment of the Join calculus
where the malware detection problem becomes decidable. All these approaches
share a common pattern: They consider a set T of metamorphic transformations
commonly used by malware (e.g. variable renaming, code permutation, junk in-
sertion) and then they develop an abstract behavioral model for programs that
ideally captures the maliciousness of a program while abstracting form those
details that are susceptible to metamorphism, namely that can be changed by
the transformations in T (for example symbolic names can be used to handle
variable/location renaming). Thus, the design of the abstract model is driven
by the considered set T of code transformation. Of course, researchers can recur
to any existing tool for the static analysis of programs in order to define the
abstract behavioral model of the malware (e.g. model checking, program seman-
tics, abstract interpretation, language theory, data mining). In this context, the
process of detecting a malware based on some given behavioral model can be
viewed as the process of abstracting its semantics. It is known that abstract
interpretation [7, 8] can be used to characterize the obfuscating behavior of any
metamorphic transformation in terms of the most concrete semantic property it
preserves [11]. Moreover, any abstract behavioral model of programs obtained
through static analysis can be expressed as an abstract interpretation of stan-
dard trace semantics [7]. This observation lead us to the definition of a general
purpose framework based on a formal model of program semantics (trace se-
mantics) and abstract interpretation for proving soundness (no false positives)
and completeness (no false negatives) of malware detectors in the presence of
metamorphism [10]. This means that the detection strategy and the metamor-
phic transformation can both be characterized as proper abstractions of program
trace semantics. The idea is to use standard trace semantics to describe the con-



crete behavior of programs and malware, and abstract interpretation to model
both the semantic properties preserved by the metamorphic transformation and
the behavioral model employed by the detection strategy. Related works that
address the analysis of self-modifying code with respect to a different semantics
model based on Hoare Logic are the ones of Cai et al. [3] and Myreen [19].

One of the main limits of all the these formal behavioral approaches to meta-
morphic malware detection resides in the fact that they all assume to know the
metamorphic transformations used by the malware. In fact, the design of the
abstract model that specifies the behavior of programs is always driven by the
obfuscating transformations used by the metamorphic engine. This makes the
analysis mutation insensitive. Of course, a malware writer who has access to the
detection algorithm, or who is aware of the set of basic transformations T used
for deriving the abstract semantics, can exploit this knowledge in order to design
new and ad-hoc obfuscation technique to bypass detection, even by simple mod-
ifications of the existing ones. As the malware detection problem is in general
undecidable, for any given malware detector it is always possible to design an
obfuscation that defeats that detector. We believe that a deeper understanding
of the semantics of metamorphic malware, involving both the payload and the
metamorphic engine could lead to a more robust detection system that is not
based on the knowledge of the metamorphic techniques used by the malware
and is mutation insensitive. The idea is to consider the metamorphic malware as
a unique program, acting both as a standard program which modifies memory,
and as a program modifying the code structure, which is also a data-structure.

3 Semantics-Based Learning Metamorphism

The grand challenge in metamorphic malware detection is to make behavioral
analysis mutation insensitive. This means catching a signature which is durable
and specific for a wide range of mutations of the malware. In [9] we propose a
different approach to metamorphic malware detection based on the idea that ex-
tracting metamorphic signatures is approximating malware semantics, where the
term metamorphic signature refers to any (possibly decidable) approximation of
the properties of code evolution. The code is therefore viewed as a mutational
data-structure, and approximating its shape consists in approximating the pos-
sible mutations of the malware. We face the problem of determining how code
mutates, yet catching properties of this mutation, without any a priori knowledge
about the implementation of the metamorphic transformations. We use a formal
semantics to model the execution behavior of self-modifying code commonly en-
countered in malware. Using this as the basis, we developed a theoretical model
for statically deriving, by abstract interpretation, an abstract specification of all
possible code variants that can be generated during the execution of a meta-
morphic malware. The mixed computations on code and data are represented,
and separated, in the so called phase semantics. The idea is to partition each
possible execution trace of a metamorphic program into phases, each collecting
the computations performed by a particular code variant. Thus, the sequence of



phases (once disassembled) represents the sequence of possible code mutations.
This means that the phase semantics of a program provides a precise descrip-
tion of the evolution of its code during execution. Indeed, phase semantics can
be graphically represented as a set of traces of program representations, e.g.,
program control-flow graphs, such that two programs P ad P ′ are consecutive
along the trace τ if during the execution, the program P can evolve to pro-
gram P ′. The phase semantics is a sound abstract interpretation of standard
program trace semantics. The main advantage of the phase semantics is in mod-
eling code mutations without isolating the metamorphic engine from the rest
of the viral code. The phase semantics provides here the basis in order to let
standard program analysis methods and algorithms to extract invariant prop-
erties of code mutations. Decidable approximations of phases allow to extract
an approximate semantics of the metamorphic engine, without knowing a priori
any features of the metamorphic engine itself, providing the adequate knowl-
edge in order to make behavioral analysis mutation insensitive. The information
extracted by approximating the phase semantics is indeed precisely the infor-
mation which is necessary in behavioral analysis for designing the appropriate
abstractions making the analysis mutation insensitive. At the same time, the
information extracted from the phase semantics may provide a signature (the
metamorphic signature) of the possible evolution of the code. Observe that in
this setting abstract domains approximating semantics objects represent prop-
erties of the code shape in phases, namely the abstractions capture properties
of the evolution of the code rather than of the evolution of program states (e.g.,
memory or stack), as usual in abstract interpretation. Indeed, the design of such
abstract domains for the analysis of code properties (rather than semantic prop-
erties) where the code is the object of abstraction and the way it is generated is
the object of abstract interpretation, represents a new and interesting research
field. This is an aspect of a semantics based learning technique acting at the
metamorphic engine level, which is unknown. Indeed, abstract phase semantics
expresses both the set of possible code variants generated during execution and
the mechanisms of generation of such variants. For example, in [9] we introduce
the notion of regular metamorphism that approximates phase semantics of a
metamorphic malwareM with an automata on the language of abstract instruc-
tions Q whose recognized language represents all possible (regular) sequence of
instructions in the program evolutions of M . In this case the language recog-
nized by the automata Q represents the regular metamorphic signature for the
metamorphic malware M , while the automata Q represents the mechanism of
generation of the metamorphic variants and therefore it provides a model of the
metamorphic engine of M . Other learning strategies can be used. Metamorphic
engines can be modeled as grammars or term rewriting systems. In this case ex-
isting algorithms for learning grammars, inductive logic programming, and term
rewriting systems from positive examples [21, 12, 13, 16] can be used for imple-
menting more expressive abstarct phase semantics. In this case the idea is that
positive examples can be derived from the possible code evolutions expressed
by the program evolution graph, i.e., the phase semantics, of the metamorphic



program, while the metamorphic transformations are modeled as productions,
or rewriting rules.

References
1. D. Babic, D. Reynaud, D. Song Malware Analysis with Tree Automata Inference.

Proc. CAV 2011, LNCS 6806, pp. 116-131, 2011
2. P. Beaucamps, I. Gnaedig and J. Y. Marion. Behavior Abstraction in Malware

Analysis. RV’10, LNCS 6418, pp. 168-182, 2010.
3. H. Cai, Z. Shao and A. Vaynberg. Certified self-modifying code. ACM PLDI, pp.

66-77, 2007.
4. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious

patterns. USENIX Security Symp. USENIX Association, pp. 169-186. 2003.
5. M. Christodorescu and S. Jha. Testing malware detectors. ISSTA’04, pp. 34-44.

2004.
6. M. Christodorescu, S. Jha, S. A. Seshia, D. Song and R. E. Bryant. Semantics-aware

malware detection. Proc. of the IEEE Security and Privacy. pp. 32-46. 2005
7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. ACM POPL,
pp. 238-252. 1977.

8. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. ACM
POPL, pp. 269-282. 1979.

9. M. Dalla Preda, R. Giacobazzi, S. Debray, K. Coogan and G. Townsedn. Modelling
Metamorphism by Abstract Interpretation. SAS, LNCS 6337, pp. 218-235. 2010.

10. M. Dalla Preda, M. Christodorescu, S. Jha and S. Debray. A semantics-based
approach to malware detection. ACM POPL, pp. 377-388. 2007.

11. M. Dalla Preda and R. Giacobazzi. Semantics-based Code Obfuscation by Abstract
Interpretation. J. of Computer Security, 17(6):855-908, 2009.

12. C. de la Higuera. Grammatical Inference Learning Automata and Grammars. Cam-
bridge University Press, 2010.

13. R. Eyraud, C. de la Higuera and J. C. Janodet. LARS: A Learning Algorithm for
Rewriting Systems Machine Learning, 66(1):7-31, 2007.

14. G. Jacob, E. Filiol and H. Debar. Formalization of Viruses and Malware Through
Process Algebras, ARES’10, pp. 597-602, IEEE Computer Society, 2010.

15. J. Kinder, S. Katzenbeisser, C. Schallart and H. Veith. Detecting malicious code
by model checking. Proc. of the 2nd DIMVA, LNCS 3548, pp. 174 - 187. 2005.

16. M. R. K. Krishna Rao. Some classes of term rewriting systems inferable from
positive data. Theoretical Computer Science, 397(1-3):129–149, 2008

17. A. Lakhotia, D. R. Boccardo, A. Singh and A. Manacero. Context-sensitive analysis
of obfuscated x86 executables. Proc. of ACM PEPM 2010, pp. 131-140. 2010.

18. R. W. Lo, K. N, Levitt and R. A. Olsson. MCF: A malicious code filter. Computers
& Security 14:541-566. 1995.

19. M. O. Myreen. Verified just-in-time compiler on x86. Proc. of the 37th ACM
POPL 2010, pp. 107-118, 2010.

20. F. Nielson, H. Nielson and C. Hankin, “Principles of Program Analysis”, 2004.
21. G. Plotkin. A note on inductive generalization. Machine Intell., 5:153-163, 1970.
22. P. Singh and A. Lakhotia. Static verification of worm and virus behaviour in binary

executables using model checking. Proc. of the 4th IEEE Information Assurance
Workshop. IEEE Computer Society, Los Alamitos, CA, USA.

23. P. Ször. The Art of Computer Virus Research and Defense. Addison-Wesley Pro-
fessional, 2005.


