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Abstract— In this paper the problem of computing a rigid
object trajectory in an environment populated with deformable
objects is addressed. The problem arises in Minimally Invasive
Robotic Surgery (MIRS) from the needs of reaching a point of
interest inside the anatomy with rigid laparoscopic instruments.
We address the case of abdominal surgery. The abdomen is
a densely populated soft environment and it is not possible
to apply classical techniques for obstacle avoidance because
a collision free solution is, most of the time, not feasible. In
order to have a convergent algorithm with, at least, one possible
solution we have to relax the constraints and allow collision
under a specific contact threshold to avoid tissue damaging. In
this work a new approach for trajectory planning under these
peculiar conditions is implemented. The method computes off-
line the path which is then tested in a surgical simulator as
part of a pre-operative surgical plan.

I. I NTRODUCTION

A common robotic task is to plan a robot trajectory from
an initial configuration to a desired configuration. In its
standard form, the solution of the motion planning problem
requires the computation of a collision free path for a moving
body between start and goal positions.

Depending on the nature of the problem, we may be
interested in any collision-free trajectory, or one that provides
the minimum (or close to minimum) overall cost, where the
cost of a trajectory may be a function of several factors. The
most common factor to be minimized are time for traversal,
traversal risk and visibility. Several approaches exist for
generating such trajectories, and in the following some of
them are reviewed. In recent years motion planning has
been increasingly used in virtual environments and games
[1], where contacts and deformations need to be taken into
account.

In this paper, we are interested in computing a path for
a rigid body moving in an environment densely populated
by soft objects that can deform and that can be damaged
by an excessive penetration. This requires that environment
objects to be constrained and their reaction forces to be
always balanced by the forces exerted by the moving body
during its contacts with the objects.

Our research is motivated by the possible application of
motion planning to surgery, where the environment is the
patient’s anatomy and the robot is a surgical instrument.

In particular, our scenario is Minimally Invasive Robotic
Surgery (MIRS), where small incisions are used to introduce
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Fig. 1. Trajectory between deformable objects in a very populated
environment.

special instruments at the distal end of a long rod through a
cannula into the body of the patient. The operation area is
small and sometimes difficult to reach, and the freedom to
move the instruments is limited. Moreover the visibility is
restricted to the small field of view of the endoscopic camera.
Tactile and contact sensations is totally different from open
surgery. This makes very hard to choose and perform a
proper trajectory without planning and motion indication.

In this paper we present a framework to compute the most
comfortable trajectory for a surgeon that has to move a probe.
Such a path has collisions and penetrations, because the
obstacles are unavoidable in this environment, but it should
damage the organs as little as possible. In our approach
we represent the obstacles with a geometric model and
we compute a trajectory that minimizes the collisions by
considering both the geometric shape and the stiffness of
each deformable object. We use a planning algorithm based
on the minimization of the tool penetration (a rigid object)
into the soft obstacles, while it is moving. The method
computes off-line the path which is then tested in a virtual
environment by using a surgical simulator developed in
our laboratory (Fig. 6). The surgical simulator shows the
feasibility of the trajectory to the surgeon.

After the introduction of the previous work done in the
field of planning and modeling with deformable objects
(Section II) we present in Section III the computation of the



penalty function used in Section IV to find the trajectory.
Section V describes the experimental results and tests we
have carried out. Finally, Section VI presents the conclusions
and an outlook of a possible continuation of this work.

II. RELATED WORK

A. Planning with deformable objects

Although research on motion planning for rigid bodies
has produced many practical results, there is not an equiv-
alent body of work in the area of motion planning among
deformable objects. One difficulty facing motion planning
with deformable objects is having a (deformation) model that
accurately represents the object physical properties, while
preserving the efficiency of the planner. In fact, a planner
that uses a physically correct deformation model can be very
slow [2] and a planner that uses only geometric deformations
can compute unnatural motions [3].

Workspaces studied in most standard planning algorithms,
generally include only static and rigid obstacles.

A very good study and implementation of motion planning
in medical interventions is done in [4]. In this book the
problem of computing deformation to compensate for errors
caused by soft tissue displacement during needle insertionis
addressed. Their planner uses 2D images of the organs and
the physical simulation of the deformations is done by using
the finite elements method (FEM). The same book describes
also the computation of a path for a steerable needle in
deformable environments using again the FEM modeling on
2D images.

Frameworks such as Probabilistic Roadmap Planner and
Rapidly-Exploring Random Tree (RRT), [3], [5], describe
path computation in totally dynamic and deformable envi-
ronments. [2], [6] deal with planning and compute phys-
ically correct deformations models. These approaches are
not suitable to our problem because the main goal of those
algorithms is to completely avoid collisions, and mainly
they consider a deformable robot [7] that deforms to avoid
compenetration. Moreover such expensive computations for
solving mechanical models and generating collision detection
data structures are too time consuming and are not needed
for our goal. Generally they are applied to simple objects,
such as a sheet of metal or a pipe-like robot. In [8] deformed
distance fields are used to control the amount of deformation
between non-penetrating simple flexible bodies.

A combination of probabilistic roadmaps with physical
simulation of object deformations to determine a path that
optimizes the trade-off between the deformation cost and
the distance to be traveled using finite element theory for
calculating the deformation cost is described in [9].

B. Surfaces modeling and the surgical simulator

The environment of our planner is based on a virtual model
of the abdomen, implemented in a surgical simulator built in
our laboratory.

The surgical simulator uses data from a computed tomog-
raphy process to create the organs as clouds of points linked
by linear springs. Applying a displacement to one or more

points of the model results in changes in the length of the
model springs, and this generates internal forces that deform
the model. Mass spring models (MSM) have been used in
medical simulations to simulate skin, fat or muscle [10]
[11] [12]: their reduced computational complexity makes
them a good choice for interactive simulation with haptic
feedback. The main limitation of mass spring models is
their lack of physical background that makes them difficult
to calibrate. Another issue that arises using MSM is the
realism of the simulation: it is known that mass spring
formulation leads to correct simulations when the magnitude
of deformations stays below 10% of the model size. Using
the graphic processing unit present on recent graphic cards,
we are able to provide to the user a virtual environment in
which he/she can use a haptic device to move a probe along
a given trajectory and feel the force exerted by the virtual
tissue on the probe. Particular attention has been paid to the
implementation to obtain update frequencies that are suitable
to realistic visual and haptic feedback.

The MSM model is described by a mesh of springs
connecting a set of surface points, called surflets, and a set
of internal points, called phyxels, where every point has a
mass. The surflets and the phyxels describe the geometry of
the objects.

Since the surgical simulator could be used to test a trajec-
tory (once the trajectory is computed) and, while computing
the trajectory it is difficult to simulate the deformation, we
chose to use a meshless model instead of the finite elements
method, considering only the set of surflets points.

In the computation of the trajectory, we will consider only
statical deformations, quantified by the penetration depth,
therefore, in our approximation, the contacts are local. Each
state of the problem consists of the position of the tool
and the penetration depth function at that point. The path
is feasible when a collision does not damage the obstacle
and providing that the obstacle deforms of an appropriate
amount.

The point based representation of the objects (the meshless
model) allows us reconstructing the scene in a more auto-
matic and straightforward way, to do fast model resampling,
and to easily compute collisions and penetration depth.

Following the method described in [13] point clouds can
be easily generated from different 3D representations (CAD
models, triangular surfaces, segmented medical images, im-
plicit functions) thus our method can be generalized to many
scenarios represented by real data sets. Fig. 2 shows a
screenshot of the meshless model we have considered.

III. C OLLISION DETECTION AND RESPONSE

This section describes the collision detection module used
by the planning algorithm to compute the penetration depth
function,PD(p) : R3 → R. PD is the objective function to
be minimized in the optimization process.

The detection of collisions in a virtual environment has
been studied in different fields (among others: planning,
computer animation) with the goal of making it as fast and
accurate as possible [14]. The main task of these algorithms



Fig. 2. The meshless representation of the environment.

is to detect a collision and define the penetration depth (PD)
among two objects.

The penetration depth function gives a measure of the
amount of the collisions along a given discrete trajectory.
To have the total amount of collision we added the value
of the collision of the probe with every single object of the
environment.

The first step of our approach was to compute the collision
between the probe and only one organ for a given position
of the tool.

To detect the collision and to compute the penetra-
tion depth function we used an algorithm derived from
expanding-polytope algorithm(EPA) [15] and from [16].

The metric used by EPA algorithm to compute the penetra-
tion depth is in terms of Minkowski difference of two objects
(or the translational configuration space obstacle TCSO). The
Minkowski difference (Fig. 3 and 4) between two setsA and
B is defined as:

AªB = {a− b : a ∈ A,b ∈ B} (1)

wherea− b is the vector difference of the position vectors
a andb.

Without loss of generality, let us assume that polytopes
A and B are defined with respect to the global origin
O. Thus, if the two polytopes intersect, then the origin
O is inside ofA ª B and PD(A,B) corresponds to the
minimum distance fromO to the surface of the Minkowski
differenceA ª B [17]. Also we notice that ifA andB do
not intersect thenO is outside ofA ª B and the distance
betweenA andB corresponds to the minimum distance from
O to the surface ofA and B [16]. Therefore the unified
computational framework based on Minkowski difference
provides a continuum of the distance measure between the

Fig. 3. The Minkowski difference of two disjoint convex objects in the two-
dimensional Euclidean space. The norm of the vectort gives the Euclidean
distance between the objects.

two objects as they alternate between separation and inter-
penetration configuration. This characteristics will be very
useful in the minimization process (next section).

The penetration depth of two inter-penetrating objectsA

andB is defined as the minimum translation distance that one
objects undergoes to make the interiors of A and B disjoint.
Formally,PD(A,B) is defined as:

PD(A,B) = min{‖t‖ : interior(A− t)
⋂

B = φ} (2)

Both algorithms we have cited and used do not need
to compute explicitly the Minkowski difference of the two
objects, but they iterate on convex sets formed with vertices
from the Minkowski difference sampling through asupport
mappingfunction on demand. Thesupport mappingfunction
returns the farthest point of the Minkowski difference in a
given direction. The support mapping function is defined for
objects made of points or for some classes of nonpolytopal
convex sets (see [18]). This types of objects gives the applica-
bility of our algorithm to polytopes and more general convex
sets. The first algorithm detects collisions by searching a
separating plane between the Minkowski difference and the
origin and the second algorithm computes the minimum
norm point of the boundary of the Minkowski difference
(see [15] for more details). The objects are approximated by
their convex hull and this approximation suits very well our
planner since we are interested in touching the objects as
little as possible.

In our environment we have represented the organs as
unions of convex meshless models given only by the points
on their surfaces (surfels) and the probe as decagonal right
prism (it approximates well enough, for our purposes, a
cylindric probe, which is normally used).



Fig. 4. The Minkowski difference of two intersecting convexobjects in
the two-dimensional Euclidean space. The vectort norm is the penetration
depth between the objects.

A parametereo models the stiffness of each objecto or
may be used to implement constraints such as objects that
must be avoided along the path.

With this set-up,PD(p) (the value of the penetration
depth in a given positionp ) is the sum of all contributions
PDo to the penetration depth:

PD(p) =
∑

o∈O

eoPDo(p) (3)

whereO is the set of all the objects of the scene. Therefore
PD(p) represents a penalty function which depends on the
global collision relations, once the probe is placed at position
p.

IV. PLANNING THE TRAJECTORY

A. The trajectory

We can formulate the problem of computing the minimum
penetration trajectory among deformable obstacles as a min-
imization problem, where the optimization variables are the
trajectory parameters and the performance index is a measure
of how much the probe collides with the objects on its path.

The mobile probe is constrained to move inside the
abdominal environment and it has only four degrees of
freedom, since it passes always through a fixed point (Fig.
5).

In our work we decided to focus on trajectories described
by polynomialsC of degreed, computed from an initial
point P0 to a final pointPf , C : [0, 1] → R

3, with C(0) =
P0 andC(1) = Pf .

For the polynomial functionC we have choosen the Bèzier
curve of degree d. The control pointsP0, P1, ..., Pd−1, Pf ∈
R

3 represent, excluding the initial and the final point, our
parameters.

Fig. 5. Three positions of the tool along a computed trajectory. The red
point represents the entering point and is always aligned with the tool. The
red-white points are the starting position and the end position of the tool
along the trajectory (yellow).

The B̀ezier curve lies within the convex hull of the control
points, this providing a simple way of bounding the trajectory
by just imposing constraints on the control points.

The minimization problem can be stated as follows:

min G(x1, x2, ..., x3d−3), G : R3(d−3) → R (4)

wherex1, x2, ..., x3d−3 ∈ R
3d−3 are the coordinates of the

interior control pointsP1, P2, ...Pd−1,

Pi(xi, xi+d−1, xi+2d−2) ∈ R
3, i = 1, ..., d− 1 (5)

C(u) =

d
∑

i=0

Bd
i (u)Pi (6)

, u ∈ [0, 1]

Bd
i (u) =

(

d

i

)

(1− u)dud−i (7)

Equation (7) describes the Bernstein polynomials of de-
gree d and

G(x1, ..., x3d−3) =

s
∑

j=1

PD(C(ui)), (8)

is the objective function to be minimized, where
PD(C(ui)) is the function described by equation (3) and

ui ∈ {0,
1

s− 1
,

2

s− 1
, ..., 1},



Fig. 6. A simulation of the trajectory with the MSM surgical simulator. The organs are moved and deformed while the probe is moving along the
trajectory.

s represents the number of discrete time steps that we use
to sample the movement of the probe. For each parameter
ui, C(ui) ∈ R

3 represents a position of the probe along the
trajectory.

Note that we try to minimize the global collisions so we
are looking for an optimum choice of thed−1 control points,
which are our variables. At every step of the iteration we
will compute the penetration depth along the entire trajectory
described by the pointsP1, .., Pd−1.

B. The minimization algorithm

To minimize the objective function given by (8) we need
a minimization algorithm that can find the minimum of
a function when the computation of the derivative is not
feasible. The dimension of the problem depends on the

number of the interior control points along the trajectory,
therefore it depends on the polynomial degree it was chosen.
For instance a 4 degree polynomial trajectory has two control
points so the objective function will have the dimension 6
(each point has 3 coordinates).

We have chosen and implemented the downhill simplex
method [19] to minimize our function, since it requires
only function evaluation and matches very well with our
geometric model.

The dimension of the Euclidean space where the downhill
simplex algorithm operates is given by the dimension of the
domain of the objective function. Ad degree polynomial
trajectory yields3d − 3 coordinates of the interior control
points; to construct a simplex in this space we need3d− 2
points.



A simplex is the convex hull of a set of (n + 1) affinely
independent points in some Euclidean space of dimension n
or higher.

The downhill simplex method iterates on simplices. On
every step the algorithm uses an+ 1 dimensional simplex,
wheren is the dimension of the problem , reflecting, expand-
ing or contracting this simplex by moving just one point, in
order to find a nearest position to the local minimum. The
termination criteria must be imposed using a threshold on
the magnitude of the distance vector that moves the point of
the simplex.

Every point of the downhill simplex method represents
a trajectory in our case. The algorithm starts with an + 1
arbitrary points. The initialn + 1 points must be affinely
independents to form a simplex. A method to chose these
points, once we have a starting pointT0 (or an initial
trajectory), is to take othern points to be

Ti = T0 + λei (9)

whereei aren unit vectors andλ is a constant according
to the problem’s characteristic length scale (or it may be
different for each vector direction).

The main advantage of this method is that we can decide
to continue our search when we find a local minimumTmin

by just reinitializating the simplex usingTmin and othern
values from the domain of our objective function as in (9).

We have used for our tests, as the initial trajectory, a
random configuration of the control points inside a bounding
box containing the environment. Some better initial guess
could be chosen with the help of a physician.

This method moves the interior control points toward a
configuration where the objective function is minimal.

Since the domain of our function is spatially limited inside
the abdomen (we do not want to have a trajectory passing
outside the abdomen), we had to limit the search inside a
bounding box containing the organs.

V. EXPERIMENTAL RESULTS AND SIMULATIONS

We developed our test code in C++ and compiled with
gcc (GNU Compiler Collection).

As the trajectory function, we used polynomials of degree
from 3 to 7 in order to assure smoothness but also the
capability to overcome more than one obstacle.

In our scenario each of the organs has about 3000 vertices.
FunctionPD is null outside the objects and because of

this, the algorithm pushes the computed trajectory to the
border of the obstacles, but not farther.

Table I shows a comparison of the performance results
of different degree polynomial functions, using different
numbers of discrete steps. We have used the same entering
point (red in Fig. 5) and the same initial and final points (red
and white) to compare the performance. The comparison is
based on the minimal cost function and the computation time.
According to the number of steps considered, the initial and
the final values of the penetration depth function was scaled.

The initial PD value (4-th column ) is the minimum value
of the PD function when the initial trajectoryT0 is as a
random set of control points and the othern values compose
an affinely independent set of points, as described by the
equation (9).

As we expected, increasing the polynomial degree we
increase the computation time but, in most of the cases, we
achieve better results. There are no problems in handling
an increasing number of objects, because the tests are only
between the probe and single objects; of course, depending
on the complexity of the environment, the optimization
process may need more time to find a good solution, but
the algorithm should scale well to bigger environments.
However, we can decide a priori the degree, considering the
total number of the objects and the computational time we
want to achieve.

The feasibility of each trajectory was then checked manu-
ally with the surgical simulator (Fig. 6). Since the penetration
depth values were small, the amount of the deformations
perceived by the user was also small and, in this case, the ge-
ometric model fits well with the physical model implemented
by the simulator. By having the force feed-back implemented
in the simulator, the tests could be done by virtually guiding
the user along the precomputed trajectory.

VI. CONCLUSIONS

In this paper we presented an approach to path planning
in environments densely filled with non-rigid objects.

Using point based representation of the environment we
are able to detect collision and rapidly compute the pene-
tration depth and an associated penalty value, used by the
minimization algorithm as a measure when searching for the
best path.

An optimization method to obtain trajectories that mini-
mizes the sum of the penalties is used. The planner developed
computes collision free trajectories or trajectories withsoft
object interaction if the free trajectory is not feasible.

In our simulation we imposed constraints regarding the
movement of the mobile probe (it passes always through a
fixed point) and constraints on the domain of the objective
function (the interior control points move only inside the
bounding box surrounding the organs), together with con-
straints on the objects themselves (each penetration depth
value is multiplied with a parameter representing the stiffness
of an organ).

The main contribution of this work is the use of a
geometric description of the environment that goes straight to
the penetration function used by the optimization algorithm
to compute a feasible path.

Optimization is a powerful framework for formulating and
computing motion plans that maximizes the probability of
successfully achieving clinical goals while minimizing tissue
damage and other negative side effects.

Our results encourage the use of such method for the spe-
cial problem class we are addressing, i.e. MIRS (Minimally
Invasive Robotic Surgery) scenario.



TABLE I

PERFORMANCE COMPARISON BETWEEN TRAJECTORIES OF DIFFERENT POLYNOMIAL DEGREES.

num polynomial discrete initial PD PD value after number of function time(msec)
degree steps value minimization evaluation

1 3 50 290.702 165.344 326 160312
2 4 50 282.760 153.460 257 130047
3 5 50 252.268 135.461 363 175454
4 6 50 243.555 105.708 591 214266
5 7 50 229.885 107.961 755 242125
6 3 100 280.403 163.300 246 349328
7 4 100 288.315 140.787 436 419657
8 5 100 255.329 120.066 520 516609
9 6 100 285.796 92.348 681 670547
10 7 100 280.060 80.218 719 783171
11 3 150 291.246 169.687 340 523031
12 4 150 283.398 137.283 466 639047
13 5 150 275.463 128.130 329 392094
14 6 150 249.794 97.001 444 756500
15 7 150 236.260 86.485 558 980313
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