
Davide Zerbato

Frictional Contact in Interactive

Deformable Environments

Ph.D. Thesis

June 30, 2010

Università degli Studi di Verona

Dipartimento di Informatica

Advisor:
prof. Paolo Fiorini

Series N◦: TD-11-10

Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy

No bird soars too high, if he soars with his own wings

W. Blake

Summary

The use of simulations provides great advantages in term of economy, realism,
and adaptability to user requirements in many research and technological fields.
For this reason simulations are currently exploited, for example, in prototyping
of machinery parts, in assembly-disassembly test or training and, recently, sim-
ulations have also allowed the development of many useful and promising tools
for the assistance and learning of surgical procedures. This is particularly true for
laparoscopic intervention.

Laparoscopy, in fact, represents the gold standard for many surgical procedures.
The principal difference from standard surgery is the reduction of the surgeon
ability to perceive the surgical scenario, both from visual and tactile point of
view. This represents a great limitation for surgeons who undergo long training
before being able to perform laparoscopic intervention with proficiency. This, on
the other hand, makes laparoscopy an excellent candidate for the use of simulations
for training.

Some commercial training softwares are already available on the market, but
they are usually based on rigid body models that completely lack the physical
realism. The introduction of deformable models may leads to a great increment
in terms of realism and accuracy. And, in the case of laparoscopy trainer it may
allow the user to learn not only basic motor skills, but also higher level capa-
bilities and knowledge. Rigid bodies, in fact, represents a good approximation of
reality only in some situations and in very restricted ranges of solicitations. In
particular, when non engineering materials are involved, as happens in surgical
simulations, deformations cannot be neglected without completely loosing the re-
alism of the environment. The use of deformable models, however, is limited for
the high computational costs involved in the computation of the physics under-
going the deformations and because of the reduction in pre computable data in
particular for collision detection between bodies. This represents a very limiting
factor in interactive environments where, to allow the user to interactively control
the virtual bodies, the simulation should be performed in real time.

In this thesis we address the simulation of interactive environment populated
with deformable models that interact with frictional contacts. This includes the
analysis and the development of different techniques which implement the various
parts of the simulation: mainly the methods for the simulation of deformable mod-

II Summary

els, the collision detection and collision solution techniques but also the modeling
and the integration of suitable friction models in the simulation.

In particular we evaluated the principal methods that represent the state of the
art in soft tissue modeling. Our analysis is based on the physical background of
each method and thus on its realism in terms of deformations that the method can
mimic and on the ease of use (i.e. method understanding, calibration and ability to
adapt to different scenarios) but we also compared the computational complexity
of different models, as it represents an extremely important factor in the choice
and in the use of models in simulations.

The comparison of different features in analyzed methods motivated us to the
development of an innovative method to wrap in a common representation frame-
work different methodologies of soft tissue simulation. This framework has the
advantage of providing a unified interface for all the deformable models and thus
it provides the ability to switch between deformable model keeping unchanged all
other data structures and methods of the simulation.

The use of this unique interface allows us to use one single method to perform
the collision detection phase for all the analyzed deformable models, this greatly
helped during the identification of requirements and features of such software
module. Collision detection phase, when applied to rigid bodies, usually takes
advantage of pre computation to subdivide body shapes in convex elements or to
construct partitions of the space in which the body is defined to speed up the
computation. When handling deformable models this is not possible because of
the continuous changes in bodies shape. The collision detection method used in
this work takes into account this problem and regularly adapt the data structures
to the body configuration.

After collisions have been detected and contact points have been identified
on colliding bodies, it is necessary to solve the collision in a physics based way.
To this extent we have to ensure that objects never compenetrate during the
simulation and that, when solving collisions, all the physical phenomena involved
in the contact of real bodies are taken into account: this include the elastic response
of bodies during the contact and the frictional force exerted between each pair of
colliding bodies. The innovative method for solving collision that we describe in
this thesis ensures the realism of the simulation and the seamless interaction with
the common framework used to integrate deformable models.

One important feature of biologic tissues is their anisotropic behavior that
usually comes from the fibrous structure of these tissues. In this thesis we propose
a new method to introduce anisotropy in mass spring model. The method has
the advantages of preserving the speed and ease of implementation of the model
and it effectively introduces differentiation of the model behavior along the chosen
directions.

The described techniques have been integrated in two applications that allows
the physical simulation of environments populated with deformable models. The
first application implements all the described methods to simulate deformable
models, it performs precise collision detection and solution with the possibility
to chose the most suitable friction model for the simulation. It demonstrates the
effectiveness of the proposed framework. The main limitation of this simulator,
i.e. its high computation time, is tackled and solved in a second application that

Summary III

exploits the intrinsic parallelism of physical simulations to optimize the imple-
mentation and to exploit parallel architecture computational power. To obtain the
performances required for an interactive environment the simulation is based on
a simplified collision detection algorithm, but it features all the other techniques
described in this thesis. The parallel implementation exploits graphic cards proces-
sor, a highly parallel architecture that update the scene every milliseconds. This
allows the rendering of smooth haptic feedback to the user and ensures the realism
of the physics simulation.

The implemented applications prove the feasibility of the simulation of complex
interactions between deformable models with physics realism. In addition, the
parallel implementation of the simulator represents a promising starting point for
the development of interactive simulations that can be used in different fields of
research, such as surgeon training or fast prototyping.

Acknowledgments

Paolo thanks for the assistance and the guidance during the whole thesis. I really
like your approach to research and how the laboratory is organized. Discussions
with you have always been source of inspiration (and additional work...).
Debora and Gianni, you convinced me to start this PhD, thanks for having put
your trust in me and for the brilliant idea.
Vincent Hayward and Cristian Secchi, thanks for the useful reviews of my
thesis and thanks for having been part of my thesis committee together with
Herman Bruyninckx and Luigi Palopoli: your comments have been very useful
for the final version of this thesis.
Past and present Altair laboratory people, thanks for making the lab such
a nice place to work and thanks for all the useful (and funny) discussions and
projects - I am still waiting for the Mojito machine...
Stefano: it’s been a privilege working with you.
Paola, Cesco and Vero probably you do not even know each other, but thanks
for the unexpected and significant help you gave me in this last period.
Ivan and Max thanks for the continuous support you gave me in all the situations
I faced during this Phd.
Anna thanks for your help and patience in the first years of this adventure.
My family gave me all the means to achieve this important result, thank you
for the trust you put in me even in bad patches and for having been my ultimate
support in every situation.

Contents

1 Introduction . 1
1.1 Simulation Components . 2

1.1.1 User Input . 3
1.1.2 Physical Modeling . 3
1.1.3 Temporal Integration . 4
1.1.4 Interference Detection . 5
1.1.5 Collision Solution . 5
1.1.6 Scene Rendering . 6

1.2 Contributions . 6
1.3 Structure Of The Thesis . 8

2 Soft Tissue Simulation Techniques . 11
2.1 Finite Elements . 13

2.1.1 Condensation . 16
2.1.2 Boundary Element Method . 17
2.1.3 Modal Analysis . 18

2.2 Mass Spring Models . 19
2.2.1 Damping in Mass Spring Models . 20
2.2.2 Volume Preservation . 21

2.3 Meshless Models . 22
2.3.1 Physically Based Meshless . 23
2.3.2 Shape Matching Based Meshless . 26

2.4 Conclusions . 26

3 Common Representation Framework . 29
3.1 Adaptive Models . 29

3.1.1 Multi Resolution Models . 30
3.1.2 Hybrid Models . 34

3.2 Common representation . 36
3.2.1 Point Based Approach . 36
3.2.2 Geometric Analysis . 37
3.2.3 Dynamic Analysis . 39

3.3 Conclusions . 42

VIII Contents

4 Collision Handling . 43
4.1 Collision Detection . 43

4.1.1 General Approach . 44
4.1.2 Collision Detection for Deformable Models 45
4.1.3 Collision Detection Library . 48

4.2 Collision Solution . 50
4.2.1 Problem Statement . 51
4.2.2 Method . 53

4.3 Results . 55
4.3.1 Structure Update . 56
4.3.2 Collision Detection . 57
4.3.3 Collision Solution . 58

4.4 Conclusions . 59

5 Friction Models . 63
5.1 Dynamic Components of Friction . 64
5.2 Friction Models . 65

5.2.1 Static Models . 66
5.2.2 Dynamic Models . 68

5.3 Model Comparison . 71
5.3.1 Coulomb Model . 72
5.3.2 Karnopp Model . 73
5.3.3 Dahl Model . 73
5.3.4 LuGre Model . 73
5.3.5 Elasto Plastic Model . 74

5.4 Integration . 75
5.4.1 Velocity Approximation . 76
5.4.2 Force Approximation . 77
5.4.3 Force Distribution . 78
5.4.4 Examples . 78

5.5 Conclusions . 81

6 Anisotropic Mass Spring Models . 83
6.1 Related work . 84
6.2 Method Description . 87

6.2.1 Analytical Description . 87
6.2.2 Geometrical Interpretation . 89

6.3 Results . 91
6.4 Conclusions . 95

7 Implementation . 97
7.1 GPU Implementation . 98
7.2 Physics Simulation . 101

7.2.1 Physical Model Representation . 101
7.2.2 Elastic Force Computation . 103
7.2.3 Volume Preservation . 104
7.2.4 Temporal Integration . 105

7.3 Deformable Model Interaction . 106

Contents IX

7.3.1 Collision Detection With Fixed Structures 106
7.3.2 Probing . 107
7.3.3 Grabbing . 108
7.3.4 Cutting . 108
7.3.5 Interaction Forces Computation . 109

7.4 Results . 110
7.5 Optimized Graphical Rendering . 114

7.5.1 Remote Rendering Overview . 114
7.6 Integration in the Simulation . 117

7.6.1 Deformable Models Rendering . 117
7.6.2 Architecture Scalability Test . 119
7.6.3 Network Performance Test . 121
7.6.4 Model Complexity Test . 121

7.7 Conclusions . 122

8 Conclusions and Future Work . 125

References . 129

1

Introduction

The simulation of deformable bodies is an active research topic since the last years
of the ’80s [102]. Several methods have been developed to simulate the deforma-
tions of soft materials undergoing external forces and many research areas take
advantage from the progress made in this field. Simulations based on deformable
models suffer for the high computational time required by the update of soft bod-
ies state and thus physically based simulations are often limited to non interactive
applications.

For interactive applications many simplifications are introduced into the physics
of the environment, in particular in the modelization of soft tissues and in the sim-
ulation of contacts between bodies. For example, it is common to discard physically
based deformable models to use, instead, simpler and faster models even if they
cannot guarantee the realism of the results. These kind of simulation are usu-
ally referred to as physically plausible and proved to be very useful in computer
animations or computer games.

Some applications, on the other hand, cannot tolerate the errors introduced by
physically plausible simulations. This is the case, in particular, of surgical simula-
tions. The use of computer assistance during the different phases of the diagnosis,
intervention and patient follow up, spreads in the last years thanks to the possibil-
ities provided by automatic image analysis tools. One important goal of research
in computer assisted intervention is the development of surgical simulators that
are capable to provide realistic environment, both for the training of surgeons and
for the planning and the analysis of actual interventions [6, 12].

In this work we define as “physically based” the simulation of physical phe-
nomena that does not differ too much from the reality. This definition is clearly
subjective and it greatly depends on the aspects of the simulation that the user
considers important. In surgical training, for example, it is important to have
deformable models whose behavior resembles the real tissue behavior whereas in
surgical planning the realism of the deformation should be ensured also quantita-
tively but, usually, they involve smaller ranges of deformations and forces.

Physically based simulations of deformable environments thus represent a ma-
jor achievement in the development of computer assistance tool in surgery. These
simulations should provide realistic behavior for the soft anatomical tissues un-
dergoing deformations and should accurately model the interactions of contact-

2 1 Introduction

ing tissues or organs and between surgical tools and organs. Some research gave
promising results in this directions. In particular, effort at INRIA (Institut national
de recherche en informatique et en automatique, the French national institute for
research in computer science and control) resulted in the development of many
methods and algorithms for the simulation of deformable models that converged
into SOFA: a framework targeted at real-time simulation, with an emphasis on
medical simulation [52].

The framework implements and integrates different techniques to obtain real
time simulations of environments composed of rigid or deformable bodies. In par-
ticular it provides different deformable bodies for the simulation of solid tissues:
principally mass spring models but also linear finite element models and rotation-
ally invariant finite element models (see Chapter 2). In addition it provides point
based models to mimic the behavior of fluids (see Chapter 2). Collision between
rigid bodies are solved exactly whereas soft bodies are handled as collection of
rigid bodies connected through soft constraints or are approximated by a set of
spheres. One big limitation of this framework is its inability in simulating frictional
contacts.

Another approach have been followed in the development of ODE an open
source, high performance library for simulating rigid body dynamics [94]. This
library can simulate deformable models by treating them as sets of rigid bodies
linked by soft constraints. It provides collision detection algorithms and simulates
friction in the contacts. The big drawback in using this library is the difficulty in
modeling soft bodies with articulated rigid bodies. Moreover it is not targeted to
real time simulations, thus it may be not suitable for interactive environments.

Along with the benefits introduced by a realistic simulation in the graphic
rendering of the environment, the physical model of the scene can be exploited to
increase the sense of immersion of the user by adding force feedback to his/her
actions. This is of particular importance in the medical field, where surgeons learn
to discriminate tissues by palpating them and where the application of excessive
forces can seriously damage living tissues.

The goal of the work described in this thesis is the analysis and implementation
of different components of an interactive simulator that provides force feedback
to the user with advanced physical simulation based on deformable models and
realistic friction computation.

1.1 Simulation Components

Interactive, physically based simulation of deformable environments with force
feedback represents a great challenge for computer science today. Due to the com-
plexity of the problem it involves different areas of research: i.e. computer science,
physics but also human machine interaction. A simulator, in fact, can be decom-
posed in many different parts that cooperate to provide the needed realism. The
building blocks of a simulator can be roughly summarized as follows:

• user input acquisition;
• physical modeling of deformable models;
• temporal integration;

1.1 Simulation Components 3

• collision detection;
• collision solution;
• rendering of the scene to the user.

These phases are repeated during the simulation to provide a constant up-
date of the scene physics and the scene rendering. The different parts can easily
be identified in the structure of simulators. The final use of a simulator defines
the characteristics of each part, as they should adapt to the requirements of the
application. A brief description of each part is presented in the following.

1.1.1 User Input

This part represents essentially the interface that allows the user to interact with
the scene. Interaction is usually obtained by moving objects or applying constraint
or forces to some parts or points of simulated bodies. The actual input can came
from standard peripherals, such as keyboard or mouse, but it can also involve
more complex devices that allow a more direct manipulation of the environment.
The use of proper devices that allow the user to freely move in a tridimensional
space usually helps the interactions. In fact it is generally difficult for a human
to interact with a 3D environment by using a two dimensional device such as a
mouse or with a keyboard.

Different approaches have been developed to increase the dexterity of the user.
Basically they monitor the movements of the user by using optical tracking instru-
ments, or by using hardware devices. Some hardware devices provide the possibility
to render forces (haptic rendering) to the user, this increases the virtual environ-
ment perception. This class of device is called haptic devices. The introduction of
haptic rendering greatly improves the immersivity sense, but, as we will discuss
in Section 1.1.6 it also introduces some tight constraints to the simulation. An
example of an haptic device, the one used during the development and test of
this work, can be seen in Figure 1.1. This devices provide six actuated degrees of
freedom, i.e. it allows the user to define point and orientation in a tridimensional
space and to experience forces and torques with his/her hand.

1.1.2 Physical Modeling

The modeling of the physics of the bodies in the scene is a key aspect of the
simulation. The objective of this phase is the computation of soft bodies internal
forces that are due to deformations or to external constraints (see Figure 1.2). To
this extent the body is usually discretized in parts that contribute locally to the
overall model behavior. Many different models have been proposed in the literature
to mimic the deformation of soft tissues. They can be split in two categories on the
base of their theoretical background. In fact it is possible to distinguish between
physically based models and non physically based models (see Chapter 2 for more
details).

We restrict our attention to physically based models because the parameters
that control their behavior can be related to physical measures of soft tissue char-
acteristics, such as stiffness or compressibility. This also guarantees the minimum
level of realism that is needed in surgical applications. The main drawback in the

4 1 Introduction

Fig. 1.1. The Freedom 7s haptic device.

use of physically base models is their computational complexity. Thus we analyzed
some of the most common methods and identified their advantages and limitations.

1.1.3 Temporal Integration

Temporal integration evolves the scene in accordance with the user input and
with the internal forces computed by the physical model. Forces acting on each
body of the scene are summed up, and the whole scene is updated by a numerical
integration technique. This moves the configuration of the bodies toward a status
of equilibrium.

The introduction of physically based model into the simulation imposes very
tight constraint on the temporal step used in the integration. As it will be detailed
in Chapter 2, in fact, the maximum temporal step used in the simulation is related
to the characteristics of the simulated tissues. Furthermore the interactivity of
the application requires that the computation of each time step completes in an
amount of time that is less than the simulated time. In addition, as we explain
later in this chapter, the introduction of haptic rendering imposes that the scene
is updated every millisecond, at least. These two aspects limit the choice of the

Fig. 1.2. A soft model undergoing deformations.

1.1 Simulation Components 5

numerical integration technique: explicit techniques are a very common choice for
interactive applications as they provide a good trade off between computation
complexity and stability.

The characteristics of numerical integration techniques are well known, and
an analysis of their application in simulation is beyond the scope of this thesis.
For this reason we will only present the technique used, i.e. Verlet integration
technique in Section 7.2.4.

1.1.4 Interference Detection

The goal of this phase is the identification of intersections between objects surfaces.
A naive approach to collision detection will test all the triangles of each model with
all the triangles of other bodies in the scene. The computational complexity of this
approach makes it not suitable for complex scenes or for interactive simulations.
For this reason many techniques have been developed to speed up the computation
of collisions. They basically work by exploiting spatial partitioning or on mesh
decomposition.

When applied to deformable model simulations these techniques suffer for the
difficulty of precomputing data and/or to update data structures to maintain the
consistency with object configurations. Some of the principal libraries targeted to
collision detection between deformable models have been reviewed and compared
to the requirements of our scenario. This led to the identification of the most
suitable one and to the integration of this library into the implemented simulator.

1.1.5 Collision Solution

Collision solution aims at restoring the scene in a consistent state after one or
more collisions have been detected. In our scenario the collision solution should
not only respect the basic requirements of avoiding inter penetrations between solid
objects, but it should also provide realistic behaviors for the colliding surfaces. To
this extent, when solving a collision between contacting bodies, the physics of the
contact, composed of interaction and friction force, should be simulated (Figure
1.3).

The introduction of realistic behavior into the computation of interaction re-
quires an extension to standard collision solution techniques. In fact, most of the
methods proposed in literature to handle collisions in interactive simulations intro-
duce many simplifications to the problem. They usually compute the penetration
depth of the colliding bodies and use it to obtain a penalty force (an approximation
of the contact force) that moves the bodies apart. Although this method works
well in video games or rigid bodies simulations, it does not model the physics of
the contact nor it considers the friction during the computation of reaction forces.

To overcome this limitations we introduce a framework that provides a common
representation of different class of deformable models. This framework allows the
correct solution of collisions and, in addition, it allows the introduction of realistic
friction models into the simulation that seamlessly integrates with the physics of
the bodies.

6 1 Introduction

Fig. 1.3. Two deformable models interacting with collision detection and solution com-
putation.

1.1.6 Scene Rendering

The last step of the simulation is the rendering of the scene to the user. Along with
the classic graphical rendering we consider also force feedback. The force feedback
(or more generically haptic feedback) allows the user to actually feel the forces that
are generated during the interaction with the environment. This is very useful in
simulations where the dynamic component of gestures is important, as in the case
of surgical simulations, where fast movements can cause damages to tissues.

Tests show that to provide realistic force sensations the update of interaction
forces should be faster than 1KHz. If the force rendering frequency drops under
this threshold the perceived realism of the environment decreases. In addition,
delay or jitter in force rendering can cause instabilities to the simulation that
degrade the realism and the correctness of the simulation.

For this reason it is very important to optimize the implementation and to
guarantee a refresh of the physics of the scene at least every millisecond. To ob-
tain this we implemented a simulator that exploits the graphics card processing
unit and that is capable of ensuring the frequency requirement in the simulation of
complex scenes. In addition we propose a method to perform graphical rendering
remotely. This increases physics simulation performance and allows the introduc-
tion of advanced graphical rendering techniques without affecting the speed of the
simulation (see Figure 1.4).

1.2 Contributions

This work introduces many novel methods to enhance the physics in interactive
simulations of deformable models with force feedback. In particular, we describe a
framework that unifies the handling of different techniques for soft tissue modeling.
This framework wraps the physics of deformable models with a surface that is used
to graphically represent the body and to exchange forces and displacements with
the surrounding environment.

This approach provides great advantages to the definition of environments
with multiple deformable models. In fact each deformable body can be modeled
with the most appropriate physical model: the wrapping surface provides a unified
interface to handle interactions. This means that the collision detection library

1.2 Contributions 7

Fig. 1.4. A screenshot of the simulation of deformable environment with haptic feedback
and advanced graphical rendering.

or the frictional model does not need to be tailored to the different features of
physical models, instead one single algorithm will be suitable for all the different
modelization techniques, since it will always interact with the wrapping surface.

The development of this approach requires some attention to the propagation
of interactions between the two parts: surface and physics of the model. We address
this problem by developing methods to guarantee the coherence between the two
parts of the model and that extend methods used for point based model rendering
(see Chapter 3). These methods define how forces applied to the model surface are
propagated to the internal element of the model representing its physics and how
forces computed on internal elements are rendered on the surface of the model.
Similarly, the displacement of surface nodes is translated into displacement of
physical elements that, in turn, determines the configuration of the surface after
the temporal integration.

This approach is based on some precomputation that defines the interdepen-
dence between the physics and the surface, and thus reduces the overhead intro-
duced to the computation of the scene.

The introduction of frictional contacts into the physics of the scene takes advan-
tage of the mentioned framework. In fact, the unification of different deformable
simulation techniques allows us to simplify the introduction of friction models
into the simulator. We thus developed a single method that seamlessly integrates
friction models into the physics of the environment.

This approach provides the ability to choose the most suitable friction model
depending on the requirements of the simulation, thus it gives the user the ability
to adapt the simulation to his/her needs. The method computes the different
variables that are needed by friction models: tangential and normal forces and
tangential velocity. It makes them available to the chosen friction model and then

8 1 Introduction

receives back the computed friction force that is distributed to the points involved
in the contact as explained in Chapter 5.

This work also propose an innovative method to introduce anisotropic behav-
ior in mass spring model simulations. Anisotropy is a key feature of many real
materials. Its contribution to the behavior of biological tissues is very important,
as many biological materials are composed of fibers and thus their response to
solicitations is strictly dependent on the direction of fibers and stimuli [37].

The basic idea of the approach described in Chapter 6 is to associate a value to
each spring of the body. This value is used during the computation of the physics
to determine the anisotropic contribution of the element. The major achievement
of our method is the simulation of anisotropic behavior with a very small compu-
tational overhead. In fact, it increases the dimensions of the space in which the
model is defined and evolves the model in this augmented space. The model is
then projected back to its original space to obtain the result of the simulation.

Another important contribution of this thesis is the development of a parallel
implementation of a physical simulator that handles deformable models and allows
the user to freely interact with them and to perceive the environment through
graphic and haptic rendering. The parallel implementation makes the simulator
suitable to exploit the graphics card processing unit, which is composed of many
basic processors that work in parallel.

The obtained simulator provides the user with the ability to grab and probe
deformable models, but also to change model topology, principally by cutting it
with appropriate virtual tools. Our approach minimizes the data exchange between
CPU and graphic card that represents the main bottleneck of graphic cards pro-
gramming. The whole computation is thus carried out at a frequency that is above
1KHz also when the environment is populated with complex models as shown in
Figure 1.4.

To further improve the performance of this simulator, we extended it with an
innovative remote rendering technique. This relieves the graphic card used for the
physics simulation from the graphic rendering job and entrusts a remote machine
with it. The data encoding and transmission is optimized to reduce the delay
in the process and to proceed in parallel with the physics update. The resulting
architecture provides excellent results in physical simulation of complex scenes and
in rendering them to the user.

1.3 Structure Of The Thesis

In the following we present the different parts that composes this work. The struc-
ture of this thesis follows the structures of simulation components as described in
Section 1.1.

In particular, Chapter 2 introduces the problems related to the simulation
of deformable models and reviews the most diffused techniques that have been
developed to mimic the behavior of soft tissues in numerical simulations. Three
main classes of deformable models are recognized, finite element, mass spring and
point based models. Methods used in this thesis are described in details, moreover
advantages and limitations of each class of models are highlighted keeping into
account their computational complexity.

1.3 Structure Of The Thesis 9

In Chapter 3 we describe the approach we developed to uniform the handling
of different simulation methods. We present the theoretical background, drawn
on techniques coming from graphical rendering. Then we detail the extensions
we added to adapt the underlying concepts to the needs of our scenario. The
definition of a wrapping surface based on point based rendering techniques requires
the introduction of methods to adapt the surface of the model to the underlying
physical representation and to distribute forces and displacements between the
two entities.

Chapter 4 identifies the requirements of interactive, physically based simula-
tions for the collision detection phase. Then it provides a comparison of the princi-
pal methods and libraries developed to perform collision detection. This compari-
son allows us to determine the most suitable library for our needs. In particular we
identified V-collide as the one that offers the best trade off between computational
time and performances when applied to deformable models.

Then, in Chapter 5, we analyze the principal aspects of frictional contacts to
identify the features that are required to provide realistic results in simulations.
Some of the friction models provided in the literature are analyzed and their be-
haviors compared. An important aspect of this analysis is model computational
complexity, as deformable model simulations require the solution of many contacts
at each time step. In this chapter we also detail the integration of deformable mod-
els into the physical simulation, in particular we describe the method we developed
to compute required variables from the framework presented in Chapter 3 and to
distribute forces computed by friction models to body surface points.

Chapter 6 proposes the enhancement to mass spring models that allows to
simulate anisotropic materials with a simple extension to the basic model. We
detail the theoretical background that supports our method and then we provide
an intuitive, graphical representation of the method. The method is then compared
with the state of the art for modeling anisotropic models. Graphical simulations
are provided to show the realism of the obtained models.

The implementation of the simulator demonstrating all the methods developed
is described in Chapter 7. The chapter describes in depth the data structures we
developed to store the physical models in the graphic card memory. Then it de-
tails the algorithms that simulate the physics of the model and that handle the
interaction with the user. The combination of “ad hoc” data structures and algo-
rithms allows the simulation to run completely on the graphic card and to reach
the frame rate needed to provide realistic haptic feedback. Along with the details
of the physics implementation we provide also the description of a method we de-
veloped to perform the graphical rendering remotely. This method asynchronously
download data required for rendering from the graphics card carrying out the
physical simulation and then send them to the remote machine. The remote ma-
chine decodes the data, reconstructs the scene and perform the actual graphical
rendering.

Finally, in Chapter 8 we summarize the results of the work presented in the
previous chapters and we outline some possible extensions to this work.

2

Soft Tissue Simulation Techniques

In this chapter we introduce the most important techniques that have been de-
veloped to model and simulate soft tissue deformations. We will briefly describe
the linear approximation that is usually adopted in interactive simulations and
then the three main classes of deformable models will be introduced with their
variants. The comparison of different models properties leads to the choice of the
right modeling technique for each specific application.

Deformable models are abstractions that allow to approximate the behavior
of soft tissues undergoing deformations. They provide accurate results in load
simulations and stress/strain analysis for engineering structures as in the rendering
of deformable materials in computer graphics. Recently the use of deformable
models in haptic rendering has been investigated, showing the possibility to obtain
the required, high frame rate and plausible results also in interactive simulation
with force reflection.

A deformable object is usually defined by its rest, or undeformed, shape and
by a set of material parameters that define how the material deforms under ex-
ternal forces. Several methods for computing the response of a deformable object
have been developed, starting from different considerations: the main feature that
distinguishes the various methods is whether the material is considered as a con-
tinuum medium or as made of a discrete set of elements. The physical background
that guides the development of models and the identification of model parameters
is based on the laws used for the computation of the internal stress tensor (usually
labeled σ ∈ R

3×3). For an in depth description of deformable tissue modeling the
reader can refer to [37]. Most works in simulation use Hookean linear material law
that relates the stress tensor and the strain tensor (ε ∈ R

3×3).
In fact, the stress of a linear elastic material can be derived from the stored

energy potential function of the strain (also called strain energy density function).
Therefore it is possible to define an elastic material to be one that satisfies:

σ = ∂w(ε)
∂ε or σij = ∂w

∂εij
(2.1)

where e is the strain energy density function. If the material in addition to being
elastic has a linear stress-strain relation it is possible to write:

σ = Eε or σij = Eijklεkl (2.2)

12 2 Soft Tissue Simulation Techniques

The quantity E is called the stiffness tensor, or the elasticity tensor.
Deformable models usually require a discretization of the object volume. This

discretization is obtained by defining a cloud of point internal to the object’s
volume and by defining on them a structure such as a tetrahedral mesh or a lattice.
The structure is then used to compute interactions between different points of the
model. As we will explain in the following sections, meshless models do not require
this structure and use support functions to define and weight the interactions
among points.

A key aspect of deformable models simulation that comes from the temporal
integration performed, is the dependency of results on simulated temporal step:
big temporal integration steps applied to a high resolution model causes errors in
the results that can lead to instability of the simulated environment. Typically
the time step in simulation is defined empirically, by starting from a small inter-
val and increasing it until the simulation becomes instable. This method cannot
guarantee the stability of the simulation under all circumstances, as the errors
in the temporal integration depend on the point velocities and thus on the forces
applied by the user. Some works, e.g. [85] discussed in Chapter 3, provide an adap-
tive time step whose choice is based on theoretical considerations. In particular,
Courant-Friedrich-Lewy condition [78] relates the time step t to the velocity of a
sound wave in the simulated tissue vsound and to the spatial discretization step
(the minimum distance between two points) dmin:

t <
dmin

vsound
(2.3)

One interpretation of Equation 2.3 is related to Shannon theorem: in fact the
maximum allowed temporal step guarantees that the sampling of a sound wave
traveling in the tissue at the nodes of the model does not introduce aliasing. Since
the velocity of sound waves in tissues depends on tissue stiffness and density,
Equation 2.3 imposes tight constraints on the spatial resolution of the model given
the desired temporal step and the stiffness of the simulated tissue.

Some methods for the simulation of deformable models are based on the off
line computation of a set of interactions [5, 53]. Thee interactions are used as a
sort of base of deformation space: at run time the actual response of the body to
user interaction are computed as a weighted combination of pre computed con-
tributions. These methods are particularly fast but they are less generic than on
line methods, in addition, it usually difficult to allow topology changes (such as
cuts or tears) during the simulation or they can be modeled only along predefined
surfaces as in [70].

In the following sections we will present the principal on line methods that
represent the state of the art in deformable model simulations for interactive ap-
plications. The described methods are based on both continuous and discrete rep-
resentations, most of them rely on the linear approximation of the stress-strain
equation 2.2 for its simplicity and ease of implementation.

2.1 Finite Elements 13

2.1 Finite Elements

Finite element models can give the most accurate results in simulations of de-
formable tissues, their strong theoretical background make them realistic and easy
to calibrate, thus their use is widespread in engineering and in those fields where
accuracy is the most important goal [11] [61] and where they are used for static
and dynamic simulations. We focused our work on linear isotropic FEM , so in
the following only this class of method will be described, additional information
regarding FEM analysis can be found in [7] and [20]. The finite element method
for a homogeneous elastic material is based on the generalized Hooke’s law in
Equation 2.2 where E is the elasticity tensor. Since E is a rank four tensor it has
81 coefficients, but due to the symmetry of the stress tensor, strain tensor, and
stiffness tensor, only 21 elastic coefficients are independent in a generic material.
For a linear isotropic tissue the elasticity matrix can be expressed as:

E =

λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

(2.4)

and Equation 2.2 can be rewritten as:

σ = λtr(ε)I + 2µε (2.5)

showing that in this case only two variables are independent. λ and µ are Lamé
coefficients: the first parameter λ has no physical interpretation, but it serves to
simplify the stiffness tensor in Hooke’s law. The two parameters together con-
stitute a parametrization of the elastic moduli for homogeneous isotropic media,
and are thus related to the other elastic moduli. In fact, there are different ways

Fig. 2.1. Analysis of deformation for a sport car wing structure undergoing airflow
pressure, from Comsol Multiphysics

to express this elasticity matrix. The most common and direct method is using
Young’s modulus (usually labeled as E) and Poisson’s ratio (usually ν). Young’s
modulus represents a measure of stiffness of the tissue, and can be determined ex-
perimentally from the slope of a stress/strain curve. Poisson’s ratio describes the

14 2 Soft Tissue Simulation Techniques

compressibility of the material and ranges from 0, for a completely compressible
material, to 0.5 which represents incompressible materials. From Equation 2.2 the
strain energy of a linear elastic body Ω can be obtained as:

Estrain =
1

2

∫

Ω

εTσdx (2.6)

Static equilibrium between deformation energy and external force is achieved when
the first variation of E(u)strain vanishes, introducing the Cauchy strain tensor B
(or linear strain tensor, since it considers only small deformations and strains so
that higher terms can be neglected) the equilibrium condition can be written as:

δE(u)strain = 0 =

∫

Ω

BTDBu dx− f (2.7)

and since everything inside the integral is constant it can be reduced to a constant
matrix KE called the stiffness matrix and the whole system can be expressed as:

f = Keu (2.8)

For complex models, composed by many tetrahedra, the contribution of each single
element can be summed up into a unique matrix K. In three dimensions the
resulting matrix is a square matrix of size 3n× 3n (with n the number of nodes of
the model). The resulting matrix is symmetric, as a consequence of the symmetry
of the Ke matrices, moreover the block of elements in position [3i, 3i+2], [3j, 3j+2]
describes how the i-th and j-th elements interacts and is obtained as the sum of
the contributions of all tetrahedra that shares nodes i and j. Equation 2.8 provides
the force acting on the model nodes, given the node displacements. In some case
deformable bodies are controlled “in force” i.e. applying forces to their nodes and
obtaining a displacement as a result (this is the case, for example, of structural
analysis). In these cases the matrix has to be inverted, but it is necessary to impose
some constraints to the model to obtain a non singular matrix . In particular, in
a 3D space 6 degrees of freedom of the model should be constrained. This is
equivalent to fix at least three points of the model. To fix the points of a FEM

one needs to put zeros on the three columns and rows related to that point and
to put ones corresponding to the diagonal elements of the matrix relative to those
points. In the case of a 1D system, composed by two truss elements as shown in
Figure 2.2, the system stiffness matrix K is:

K =

k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

 (2.9)

where ki is the stiffness or the i-th truss element. K is singular because column
two is a linear combination of columns one and three. As result, there is no unique
solution to the system unless one of the nodes is constrained. The first node of the
system can be fixed by modifying the equation describing the system in:

1 0 0
0 k1 + k2 −k2

0 −k2 k2

0
u2

u3

 =

0
f2
f3

 (2.10)

2.1 Finite Elements 15

p p p
1 2 3

1 2 3u u u

Fig. 2.2. A simple 1D truss system

where fi represents the force acting on the i-th node of the system.
One of the main limitations of linear finite element method is their rotational

variance: when a linear finite element model undergoes large rotations its volume
increases in an unrealistic manner. To overcome this problem Green’s nonlinear
strain tensor can be used [26], loosing the linearity property for small deformations,
or forcing the rotational invariance for each single element of the model, as done in
corotational finite elements [80]. In this paper it is showed how to obtain rotation-
ally invariant finite element using the Green’s strain tensor instead of Cauchy’s.
The Green tensor is non linear and rotationally invariant but it leads to heavier
computations and it is not able to linearly relate deformations to displacements
except asymptotically for small displacements. An alternative approach has been
proposed in [80] by Müller and improved in [46] and [83]. The common idea is to
identify the local rotation applied to the elements of the model and to remove the
rotational component from the estimated force (see Figure 2.3). Müller proposed
to extract a rotation matrix for each node of the model as a mean of the rota-
tions of its incident edges. As stated in [46] to be consistent with finite elements
is better to identify a rotation matrix per tetrahedron thus keeping the Jacobian
of the system symmetric, whereas using a rotation per node breaks symmetry. To

Fig. 2.3. An initial tetrahedron a is deformed into c by the transformation J composed
of a rigid motion R and a local deformation contained in E. In b the deformed element
is rotated back into the original coordinate frame.

obtain the requested rotation matrix two steps should be performed: the first is the
construction of a matrix J that encodes the transformation between the deformed
frame of reference and the original frame, the second is the decomposition of J
into a rotation matrix R and a strain component matrix E. A suitable approxima-

16 2 Soft Tissue Simulation Techniques

tion of the matrix J can be constructed choosing deterministically three edges of
each tetrahedron in the initial frame and three in the deformed frame of reference
(respectively un and vn where n ∈ 1, 2, 3) and define J as:

J = [u1u2u3][v1v2v3]
−1 (2.11)

The rotation matrix Re to be extracted from J is usually not unique since the
tetrahedra undergo deformation during simulation. To obtain Re it is possible to
use the SVD decomposition:

J = USV T Re = V UT . (2.12)

or to use a Gram-Schmidt QR factorization, that allows computing the needed
matrix directly:

J = QR, Re = Q. (2.13)

Once the Re matrix is known the B matrix used in Equation 2.7 should be recom-
puted, as changes in the topology of the tetrahedra lead to changes in the inter-
polation matrix. Rotational invariant FEM s or corotational FEM s solve some of
the problems of linear FEM at the cost of a higher computational complexity and
a reduced stability.

Many techniques have been developed to speed up the computation of FEM ,
based on the assumption that the user cannot interact with model internal points
or by observing that some deformations (modes) of the system can not be “seen”
by the user. In the rest of this Section we will present the two most important
methods: condensation and modal analysis.

2.1.1 Condensation

If some points of the model can not be manipulated during the simulation (usually
because they are internal) then the system degrees of freedom can be reduced
through condensation: calling us and ui the displacement of external and internal
points respectively and fs and fi the force acting on external and internal points
respectively, we rewrite the system equations by reordering the row and columns
of the matrix K:

[

fs

fi

]

=

[

Kss Ksi

Kis Kii

] [

us

ui

]

(2.14)

where Kss collects the entries of the matrix K related only to surface points.
From Equation 2.14 a condensed system, containing only the surface nodes of the
original system can be obtained:

K ′
ss = Kss −KsiK

−1
ii Kis (2.15)

f ′s = fs −KsiKii
−1fi (2.16)

K ′
ssus = f ′s (2.17)

The matrix K ′
ss is, usually, not sparse as the original matrix K is and, therefore,

it can not take advantage of optimizations related to sparse systems. Since its
size depends on the nodes that can be manipulated, this optimization gives good

2.1 Finite Elements 17

results if the number of “hidden” nodes is large compared to the number of surface
node. The drawback of condensation is the limitation of the interaction that can
be simulated: in fact internal points do not explicitly appear in the computation
and their position can not be computed. This is not a limitation when the topology
of the model remains constant during the whole simulation, but when topological
changes (e.g. cuts) may happen the interior part of the model should be considered.
This implies the computation of a new K ′

ss matrix with a consequent increment
of the computational time. Thus condensation can not be used (or hybrid models
should be considered [112]). Moreover using the matrix K to linearly relate forces
to displacements allows obtaining the static equilibrium solution of the system,
i.e. the configuration of the deformed body after an infinite time and without
any damping. For interactive simulations, when the user need to perceive the
deformations of the model, the dynamic behavior of the soft tissue is required. To
obtain it Equation 2.8 has to be extended as:

M
d2u

dt2
+D

du

dt
+Ku = f (2.18)

where M and D are, respectively, the mass and damping matrices of the system.
The computation of the two matrices is not straightforward, and for simplicity
they are usually computed as lumped (diagonal) matrices. The solution of the
system is approximated using numerical methods.

2.1.2 Boundary Element Method

Boundary element method (BEM) are similar, in the approach, to condensed
FEM . BEM , in fact, consider only the boundary of the modeled body and com-
pute the equilibrium of forces and displacement by discretizing body surface. This
method is only suitable for linear homogeneous tissues, as it does not take into
account inclusions or variations in the composition of bulk materials of the body.

The domain of the deformable model is denoted by Ω ∈ R
3 and its boundary

is Γ . BEM shares with FEM the law that governs the deformation (Equation
2.8). In the remainder of this section we consider f = 0 (i.e. no external forces are
present) to simplify the notation.

The boundary is separated in two parts: the first one, denoted Γu, allows to
define displacement boundary conditions, i.e. areas where the body is in contact
with external structures. The second one, denoted Γp, defines areas where it is
possible to specify the acting force, or the traction p defined as the force over the
unit area. Γp is useful to define which parts of the body surface are free to move
(p = 0).

It is possible to rewrite Equation 2.8 in boundary integral formulation:

cu+

∫

Γ

p∗u dΓ =

∫

Γ

u∗p fΓ (2.19)

Where c is a known function that depends only on the geometry of the boundary
and u∗ and p∗ are fundamental solutions which depend only on known elasticity
properties.

18 2 Soft Tissue Simulation Techniques

To solve Equation 2.19 numerically it is discretized by approximating u, u∗,
etc. in finite dimensional function spaces. This requires the discretization of the
boundary Γ into a set of N noon-overlapping elements which represent the dis-
placement and traction by functions which are piecewise interpolated between the
element’s nodal points. Then the integral equation is applied to each of the n
boundary nodes, and the resulting integrals are computed over each boundary ele-
ment to generate an undetermined system of 3n equations involving the 3n nodal
displacements and the 3n nodal tractions. The boundary conditions are then ap-
plied, fixing n nodal values (either displacement or traction) per direction. The
resulting linear system of 3n equations is determined and may be solved to obtain
the unknown nodal boundary values.

The resulting system, before the application of boundary conditions, has the
form:

Hu = Gp, (2.20)

after the boundary conditions have been applied, it is possible to bring the un-
knowns to the left-hand side and the knowns to the right side and obtain a linear
system:

Av = z (2.21)

which may be solved for the unknown nodal quantities v. A key advantage of BEM

is that all the unknowns are on the boundary Γ of the body whereas FEM also
includes unknowns of the interior. This reduces the computational time required to
solve BEM but, on the other hand, limits their field of application to homogeneous
bodies.

2.1.3 Modal Analysis

An approach that share some concepts with FEM condensation is modal analysis.
It works by decomposing the single modes of vibration of a model and synthesizing
model deformation as a linear composition of those modes. An in depth discussion
of modal analysis and its use with finite element method can be found in [20].
A more detailed presentation of modal analysis mathematical background can be
found in [71]. The technique was firstly proposed by Pentland and Williams in [86].
They used linear and quadratic deformation fields defined over a rectilinear vol-
ume instead of the object’s actual modes and they deformed the model embedding
it the region and using a method similar to free form deformation. The method
allows to efficiently simulate deformations only for compact objects that can be
approximated by a rectilinear solid. More recently modal analysis have been ex-
tended to handle geometrically complex, real-time deformation models, [45] also
exploiting the computational power of hardware architectures [54] and [117]. As
modal analysis is based on the linear Cauchy tensor introduced in Equation 2.7, it
shares a drawback with linear FEM , i.e. the lack of rotational invariance. In [18]
modal analysis is extended to accommodate rotations. Although the approach is
not guaranteed to perform well for large deformations, these results are visually
better than standard modal analysis.

The modal decomposition of a physical system starts from Equation 2.18 and
diagonalizes it. One approximation introduced to simplify the diagonalization con-
cerns the D matrix: it is supposed to be a linear combination of matrix K and

2.2 Mass Spring Models 19

M . This restriction is known as Rayleigh damping and it gives better results of
the simple mass damping commonly used (mass damping assumes D = αM where
alpha is a positive scalar). Using the proposed approximation Equation 2.18 can
be expressed as:

K

(

d+ α1
du

dt

)

+M

(

α2
du

dt
+
d2u

dt2

)

= f (2.22)

where α1 and α2 are the Rayleigh coefficients. If we define W as the ma-
trix whose columns are the solutions of the generalized symmetric eigenproblem
Kx+ λMx = 0 and call Λ the diagonal matrix of eigenvalues, then the system can
be rewritten as

Λ

(

z + α1
dz

dt

)

+M

(

α2
du

dt
+
d2z

dt2

)

= g (2.23)

where z = W−1d is the vector of modal coordinates and g = WT f is the external
force vector in the modal coordinate system. Each row of this system corresponds
to a decoupled second order differential equation and represents one mode of the
original system. Each of the modes can be obtained analytically solving the differ-
ential equation, moreover a consideration about the mode can be made: the square
of the eigenvalue associated with a mode is the mode natural frequency (in radians
per second).

The decoupled system is not an approximation of the original system, it repre-
sent the same behavior of the original one, but it can be solved analytically without
using a numerical integration method. The great advantage of modal analysis is
that it allows to discard unwanted or unimportant modes. In fact if ωi is the solu-
tion of the i-th second order differential equation in Equation 2.23, its imaginary
part determines the frequency that a model will vibrate at. Modes that vibrate at
more than half the simulation frame rate will cause temporal aliasing and can be
neglected. Moreover if the eigenvalue λi associated to a mode is large, then the
force required to cause a noticeable displacement of that mode will be large. As it
is usually possible to make assumptions on the forces that will be handled during
a simulation, modes that require too high of a force can be discarded.

2.2 Mass Spring Models

Mass spring models are the simplest of all deformable models. They are not based
on continuum equations, as finite element method and, as we will describe later,
meshless models are, instead they discretize the body in a set of point masses that
are connected to each other by a network of ideal springs [41] [40] [2].

The state of the system at a given time t is defined by the positions xi and the
velocities vi of the masses i = 1...N . Each mass is subject to a force fi computed
as the sum of the forces due to all springs that the mass is connected to, and to
external forces such as gravity, friction, etc. The motion of each particle is governed
by Newton’s second law fi = miẍi, where mi is the mass associated to the i-th
point. The entire system can then be expressed as:

Mẍ = f(x,v) (2.24)

20 2 Soft Tissue Simulation Techniques

where M is a 3n× 3n diagonal mass matrix.

Fig. 2.4. The construction of a simple mass spring model: starting from a mesh (a)
masses are placed at mesh nodes (b) and springs are added along mesh edges (c).

The main characteristic that differentiate mass spring models is the topology
of the spring net. There are many possibilities to arrange springs: points can be
regularly spaced in the body volume and springs can connect them to form a regu-
lar lattice, or points can be unevenly positioned to satisfy some criteria depending
on the model surface curvature or on the local density. Moreover springs can be
arranged to compose cubes, tetrahedra or other regular or irregular elements. As
stated in the introduction, the model assume linear spring behavior: the force
exerted by a spring connecting mass i to mass j depends only on its elongation:

fi = ks(‖xj − xi‖ − lij)
(xj − xi)

‖xj − xi‖
(2.25)

where ks is the spring stiffness and lij is its rest length. Mass spring models are
simple to understand and implement, moreover they are computationally efficient
and can easily handle large deformations. However, since they are not built upon
elastic theory, mass spring systems are not always accurate. They are, generally,
not convergent: i.e. refining the mesh does not produce more realistic results.
Another difficulty related to the use of those models is the identification of model
parameters: mass values and spring stiffness [119]. Several extensions to MSM

have been proposed in the literature to enrich their behavior and make them more
realistic. In particular two necessary properties to ensure the realism are internal
damping and volume preservation, as described in the next section.

2.2.1 Damping in Mass Spring Models

To enrich the behavior of the model and make it more realistic, energy dissipation
is introduced. To account for this, while preserving the simplicity of the model,
viscoelastic springs are introduced. Thus, in addition to the force computed with
Equation 2.25 each spring exerts a viscous force that can be computed as the
difference of velocities at its ends weighted by a damping factor kd. Different

2.2 Mass Spring Models 21

and more complex configurations can be taken into account, as showed in Figure
2.5, and each model leads to a different behavior, described in Figure 2.6. In the
following we will describe mass spring models based on the Voigt model (Figure
2.5.b). It is the most commonly used in literature as it provides better results in
interactive simulations.

Fig. 2.5. Different viscoelastic models: in (a) a Maxwell body, in (b) a Voigt model and
in (c) a Kelvin, or standard linear, model.

Fig. 2.6. Viscoelastic model responses for an applied force: in (a) for a Maxwell body,
in (b) for a Voigt model and in (c) for a Kelvin model.

This simple approach leads to unrealistic simulation since rigid rotations or
motions of the model result damped. A more realistic behavior can be obtained
by projecting the velocities along each spring direction:

fi = kd

(

(vj − vi)
T (xj − xi)

(xj − xi)T (xj − xi)

)

(2.26)

With this approach any rigid movement of the model in the space is not damped as
the relative velocity of any couple of its nodes (vj − vi) is zero. The identification
of the damping coefficient to associate to each spring of the model requires suitable
calibration methods.

2.2.2 Volume Preservation

Volume preservation is a property that can not be neglected in tissue modeling.
Mass spring models do not guarantee that model volume remains constant during
the simulation since the acting forces counterbalance the compression of linear and

22 2 Soft Tissue Simulation Techniques

not volumetric elements. It is then useful to introduce radial forces (that can not
be modeled with springs positioned along the edges of tetrahedra) that oppose
the variations of the tetrahedron volume. To obtain the desired radial forces, they
can be computed as pointing from the vertices of the tetrahedron to its center of
mass [76]. The modulus of the force can be computed as suggested in [9]

Fit =

4
∑

j=1

‖rj − rb‖ −
4
∑

j=1

‖r0
j − r0

b‖

ri − rb

‖ri − rb‖
(2.27)

where the sums range over the 4 vertices of the tetrahedron. Each vertex has cur-
rent and rest coordinates ri and r0

i , where rb and r0
b are the current and original

coordinates of the center of mass of the tetrahedron. The volume conservation
forces that act on vertex i should be summed up over tetrahedra that share the
vertex to obtain the whole volume force. The obtained volume force is usually
weighted by a constant kV (that can be seen as the stiffness coefficient of a volu-
metric spring) that weights the contribution of the volume preservation over the
contribution of other forces (elastic and damping).

2.3 Meshless Models

Meshless (or mesh-free) methods have been widely used for solving partial differ-
ential equations (PDEs) numerically [99] based on a set of scattered nodes without
connectivity properties thus without the mesh structure that comes from model
volume discretization and that must be used for finite element methods. Their use
have been recently extended to interactive simulations [92] [69] [68]. The advan-
tages of meshless methods for computer animations are manifold: there is non need
to generate a mesh of nodes for simulation, the nodes only need to be scattered
within the solid object, which is much easier to handle in principle. Properties such
as spatial adaptivity (node addition or elimination) and shape function polynomial
order adaptivity (approximation or interpolation types) are naturally provided.
Data management overhead can be minimized during the simulation. There are
many variants of the meshless method, the most common use the Moving Least
Square (or MLS) [1] shape functions which has been first employed in the Element
Free Galerkin (EFG) method [100] [115] because of its high rate of convergence
and high efficiency.

Mesh free method are an approximation technique that only requires a set of
nodes (sampling nodes) distributed across the entire analysis domain. The value
of the investigated or field function is approximated at those nodes by using shape
or weight functions. One shape function is associated to each node and it controls
the contribution of that node to the surrounding ones. For simplicity in model
definition and computation, shape functions differs, in a single model, only for some
parameters that are tuned considering local node density and model topology. It
is possible to express a finite element model as a meshless model where the shape
functions are constructed utilizing the mesh of the elements. In sharp contrast
with FEM and MSM , the shape functions in mesh free methods are constructed
using only the sampling nodes without any connectivity.

2.3 Meshless Models 23

2.3.1 Physically Based Meshless

One of the most common methods used to obtain the weights needed for meshless
approximation is Moving Least Squares or MLS [115]

We associate each node I of the model with a positive shape function wI of
compact support. The support of the shape function defines the domain of influence
of the node ΩI :

ΩI =
{

x ∈ R
3wI(x) = w(x,xI) > 0

}

(2.28)

where w(x,xI) is the shape function associated with node I evaluated at po-
sition x and is used to weight the contribution of the node I to the field function.

The approximation of the field function f at a position x̂ is only affected by
those nodes whose weights are non-zero at x̂ (the active set A(x)).

If f(x) is the field function defined on the analysis domain Ω its approximation
at position x, indicated with fh(x) can be computed using MLS . With MLS it is
possible to obtain the proper shape function for each node of the model. In fact
we can define fh(x) as the sum of some polynomial basis functions Pi(x) weighted
for proper coefficients ai(x) and express in in vector form:

fh(x) =

m
∑

i=i

pi(x)ai(x) = pT (x)a(x) (2.29)

where m is the number of polynomial basis functions in the column vector p(x)
and ai(x) and their coefficients, which are functions of the spatial coordinates x.
Even though higher order function are possible, linear basis functions are usually
chosen (for 3D case: pT

(m=4) = {1, x, y, z}.
From the previous equation it is possible to derive a(x) minimizing a weighted L2

norm:
J =

∑

I∈A(x)

w(x − xI) [p(xI)a(x) − fI]
2

(2.30)

where fI is the nodal value associated with node I. Equation 2.30 can be rewritten
in matrix form:

J = (Pa − f)T W(x)(Pa − f) (2.31)

where:
fT = (f1, f2, ..., fn)

P =

p1(x1) p2(x1) ... pm(x1)
p1(x2) p2(x2) ... pm(x2)
...

p1(xn) p2(xn) ... pm(xn)

W(x) =

w(x − x1) 0 ... 0
0 w(x − x2) ... 0
...
0 0 0 w(x − xn)

To find the coefficients a(x), we obtain the minimum of J by setting:

∂J

∂a
= PT W(x)Pa(x) − PT W(x)f = A(x)a(x) − B(x)f = 0 (2.32)

24 2 Soft Tissue Simulation Techniques

So we can obtain:
a(x) = A−1(x)B(x)f (2.33)

And the shape functions are given by:

φ(x) = [φ1(x), φ2(x), ..., φn(x)] = pT (x)A−1(x)B(x) (2.34)

To obtain a certain consistency of any desirable order of approximation, it is
necessary to have a complete basis. The basis functions p(x) may include some
special terms such as singularity functions, i.e. special functions that ensure the
consistency of the approximation and improve the accuracy of results in case of
discontinuities in the modeled body (like cracks or difference or cuts).

The weight functions w(x,xi) play an important role in constructing the shape
functions: they should be positive to guarantee a unique solution for a(x), they
should decrease in magnitude as the distance to the node increases to enforce
local neighbor influence and they should have compact support which ensure the
sparsity of the global matrices (for computational efficiency) [84].

One key attractive property of MLS approximations is that their continuity is
directly related to the continuity of the weighting functions. Thus a lower-order
polynomial basis p(x) such as the linear basis can still be used to generate highly
continuous approximations by choosing appropriate weight functions with certain
smoothness requirements.

When applied to deformable model simulation MLS allows to reconstruct the
displacement field u in the body volume and to compute its spatial derivative
∇u. Those computations are then used to obtain the strains and stresses of the
material and to update the model configuration.

In particular, given the displacement vector field u = (u, v, w)
T

represented by
the scalar displacements u = u(x, y, z), v = v(x, y, z), w = w(x, y, z) the deformed
position of a point originally located at x is x + u. The Jacobian of the mapping
is given by:

J = I + ∇uT =

u,x + 1 u,y u,z

v,x v,y + 1 v,z

v,x w,y w,z + 1

 (2.35)

Then the strain can be expressed, using the quadratic Green - Saint-Venant strain
tensor:

ε = JT J − I = ∇u + ∇uT + ∇u∇uT (2.36)

Assuming a Hookean material, i.e. σ = Eε , the elastic body force U is obtained
with:

U =
1

2
(εσ) =

1

2

3
∑

i=1

3
∑

j=1

εijσij

 (2.37)

and the elastic force per unit of volume at a point xi is the negative gradient of
the strain energy density with respect to this point displacement ui (that is, the
directional derivative ∇ui

and can be expressed as:

fi = −∇ui
U = −1

2
∇ui

(ε · Eε) = −σ∇ui
ε (2.38)

2.3 Meshless Models 25

The described MLS method is then used to obtain the approximation of ∇u

from the model point displacements. We will describe the method for the x-
component u of the displacement field, a similar approach can be applied to obtain
the y and z-components. In fact the continuous scalar field u(x) can be approxi-
mated, in a neighborhood of xi using the Taylor expansion:

u(xi +∆x) = ui + ∇u|xi
·∆x +O(‖∆x‖2) (2.39)

where ∇u|xi
is (u,x, u,y, u,z) computed at point i. Given ui and its spatial derivative

at point i we can approximate it at point j with:

ũj = ui + ∇u|xi
· (xj − xi) = ui + (xj − xi)

T∇u|xi
(2.40)

where xij = xj − xi. The error e of this approximation is defined as the square
difference between the approximated values ũj and the known values uj , weighted
by the weight function:

e =
∑

j

(ũj − uj)
2 − w(xj ,xi) (2.41)

Composing equations 2.40 and 2.41 yields to:

e =
∑

j

(ui + u,xxij + u,yyij + u,zzij − uj)
2 (2.42)

where xij , yij and zij are the x, y and z components of xij respectively. Given
the positions of the sampling points xi and the sampled values ui we want to find
the values for u,x, u,y and u,z that minimize the error e. Setting the derivatives
of e with respect to u,x, u,y and u,z to zero yields three equations in the three
unknown:

∑

j

xijx
T
ijw(xj ,xi)

∇u|xi
=
∑

j

(uj − ui)xijw(xj ,xi) (2.43)

The 3 × 3 moment matrix A =
∑

j xijx
T
ijw(xj ,xi) can be precomputed and in-

verted, and then used during the computation of v and w. If the matrix A is
non-singular the derivatives can be computed as:

∇|xi
= A−1

∑

j

(uj − ui)xijw(xj ,xi)

 (2.44)

Some issue arises when the number of point in the neighborhood of sampling point
i is less than 4 (including point i) or if points are co-planar or collinear the matrix
A is singular and cannot be inverted. This can be avoided using a proper sampling
step in the body volume. The matrix is inverted using SVD to reduce problems
related to matrix ill-conditioning [79].

26 2 Soft Tissue Simulation Techniques

2.3.2 Shape Matching Based Meshless

A completely different approach that is worth considering for its simplicity, per-
formance and results, is shape based meshless modeling, that has been presented
in [81] and extended in [91]. The method is not based on a physical background,
instead it matches the current configuration of the model with the original one, it
constructs a transformation matrix from which a rigid motion and a strain compo-
nent can be extracted. Discarding the effect due to the rigid motion it is possible
to simulate a deformation on the model that is stable and efficient. Given a cloud
of points that represents the model at the rest position x0

i and at the deformed
position xi the problem is to find the rotation matrix R and translation vectors t0
and t that minimize

∑

i

wi(R(x0
i − t0) + t− xi)

2 (2.45)

where the wi are the weights of individual points. The natural choice of these
weights is the mass associated to the point in the simulation. Moreover the optimal
translation vectors are the center of mass of the model in the initial end in the
deformed state respectively (t0 = x0

cm and t = xcm). To find the optimal rotation
it is useful to define qi = x0

i − x0
cm and pi = xi − xcm so that the term to be

minimized became
∑

imi(Aqi − pi). The matrix A can be computed as:

A =

(

∑

i

wipiqi
T

)(

∑

i

miqiqi
T

)−1

= ApqAqq (2.46)

The rotation matrix can be found considering that Aqq contains only scaling and

not rotation, and rewriting Apq = RS where S =
√

AT
pqApq. Finally the goal

position for the current configuration can be obtained as:

gi = R(x0
i − x0

cm) + xcm (2.47)

At each step of the simulation, points are attracted towards their goal position,
the more they are moved toward the goal position the stiffer the body will appear.
As stated in [81] the method is stable i.e. it does not require smaller temporal
steps as the body became stiffer. Moreover it can handle quadratic deformations
and plasticity.

2.4 Conclusions

The choice of the proper method to simulate soft body deformations highly de-
pends on the requirements of the simulation. In fields were the computational
time can be sacrificed to precision, i.e. mechanical engineering or brain surgery
planning, nonlinear dynamic finite elements are used, whereas in interactive appli-
cations, such as laparoscopic surgery trainers, linear approximation usually offers a
good trade off between realism and speed. When complex models are needed even
linear models result computationally too heavy for standard PC architectures. In
these cases parallel implementations help in reducing the computational time. One

2.4 Conclusions 27

of the most common approaches exploits graphics card hardware (Graphics Pro-
cessing Unit or GPU) stream processors as a highly parallel architecture. This
implementation method is well suited for interactive simulations, where temporal
requirements are more important than realism. In fact the high number of proces-
sors embedded in a modern graphics card allows to obtain very high frame rate
in the simulation of complex models. Moreover they proved to be suitable also for
haptic rendering. In Section 7 we will present and discuss a GPU -based method
that improves and extends MSM for interactive simulations with haptic feedback.

3

Common Representation Framework

As can be observed from Chapter 2 many methods have been developed to simu-
late deformations in virtual environments. They present many differences in both
their implementation and in the “interface” they provide to other components of
the simulation (such as, for example, collision detection algorithm, constraints im-
position, ...). In this section we will address the problem of providing one single
approach to handle different classes of deformable models. This approach is based
on, and extends, previous works developed to handle meshless models in graphical
rendering.

Very few works address the problem of representing the same tissue with dif-
ferent models but this ability can provide great advantages in simulations from
the point of view of realism and computational speed up. In fact, it is not easy
to define a priori the most appropriate model for a simulation. The model choice
depends on many factors such as the required realism, the actions that the user
perform on the model and even the rendering provided to the user. Thus a linear
FEM can be appropriate for small deformations, when a good level of realism is
required, but can fail in the simulation of cuts as the time required to update
the data structures can be too high to ensure smooth rendering. Similarly MSM s
are better in handling big deformations and changes in topology, but they are
not suitable in handling volume variations. Meshless models can provide a good
realism and the ability to simulate changes in topology, but their computational
complexity makes them unsuitable for high resolution models. By developing a
standard interface between the external world, represented by the force applied to
the surface and visual rendering as well, we ensure that the best modeling can be
used to simulate specific tasks and deformable objects. In the rest of this chapter
we provide a brief survey of multi resolution and hybrid methods and we detail
the proposed approach.

3.1 Adaptive Models

Methods that adapt the model to the simulation needs can be categorized in two
main classes: multi resolution methods, that refine the model in the area where
a higher realism is required, and hybrid methods, that combine different mod-

30 3 Common Representation Framework

elization techniques in a single model and use their different features to balance
the realism and the computational requirements of the simulation. Both methods
introduce additional computations in the simulation, to adapt the number of ele-
ments (tetrahedra, points, ...) to the simulation needs or to create and handle the
proper data structures.

3.1.1 Multi Resolution Models

One approach that can be followed to enhance the realism of the simulation is the
use of multi resolution models. The ability to adapt the level of detail of the model
in accordance to simulation needs can both speed up the computation and improve
the realism of the simulation. Basically there are two approaches to multi resolution
modeling. The first one is based on the off line definition of different meshes with
increasing resolutions and on the pre computation of their physical parameters.
The second approach consists in refining the model during the simulation. This
approach requires on line remeshing methods and a proper algorithm to update
the physical parameters of the structures involved in the simulation.

The inherent higher complexity of this second approach is justified by its ver-
satility. In fact the use of precomputed data does not always allow to correctly
adapt the model to the user needs. For example, in the case of a cutting action,
the remeshed elements should follow the direction of the cut, but it is difficult
to know a priori this direction and thus to pre compute the proper data. One
limitation of the use of adaptive remeshing is the update of physical parameters.
When FEM s are used it is usually straightforward to update finite element phys-
ical parameters due to the continuous nature of the approximation. In the case
of meshless models the update of the shape functions introduced in Section 2.3.1
introduces some delays in the computation and, in the case of MSM s, the update
of springs coefficients requires non trivial methods.

In particular, in [105] the author proposes a method to ensure a homogeneous
behavior for MSM s at different resolutions. The methods is based on the observa-
tion that assigning a unique stiffness to all springs in a model does not lead to a
homogeneous behavior. The author noticed that, under the previous assumption,
higher point density leads to higher stiffness and developed a method to compute
spring stiffness that is function of both the spring length and the volume associated
to tetrahedra incident on the spring.

This approach has been used in some works where multi resolution is applied
to MSM . In [19] the authors propose a multi resolution surface deformable model
that can be dynamically adapted to user input. The described method is based on
mass spring model whose topology is simplified and or detailed to match simulation
needs. Three criteria of subdivision are used in mesh refinement: vertices (and
springs) are added where points are subject to force higher than a threshold,
where their velocity is too high or if the surface curvature exceeds a threshold.
The model is refined using a modified butterfly method [30], extended to handle
irregular cases. Butterfly method is defined on meshes where all vertices has valence
six, i.e. each vertex has six neighbors. The proposed scheme defines the new vertex
in the case it lies on an edge that connects two vertices whose valence is not six.

3.1 Adaptive Models 31

(a) (b)

Fig. 3.1. Modified butterfly subdivision scheme: (a) regular cases, (b) irregular cases

Edges to be subdivided can be classified depending on the valence (i.e. number of
neighbors) of connected vertices. The added point coordinates (qk+1) are obtained
as a function of the surrounding points (pk).

• The edge connects two vertices of valence six. In this regular case, the position
of the new vertex is determined from the following equation (refer to Figure
3.1(a):

qk+1 =
1

2
(pk

1 + pk
2) +

1

8
(pk

3 + pk
4) − 1

16
(pk

5 + pk
6 + pk

7 + pk
8) (3.1)

• The edge connects a K-vertex (its valence is not six) and a 6-vertex. The
neighbors of the K-vertex are used as indicated in Figure 3.1(b). In this case
the following formula is used:

qk+1 =

N−a
∑

i=0

Sip
k
i (3.2)

where

Si =
1
4 + cos

(

2πi
N

)

+ 1
2cos

(

4πi
N

)

N
, 0 ≤ i ≤ N − 1 (3.3)

.
• The edge connects two K-vertices. If both of the vertices are irregular, the

above formula is applied to both vertices and the results are averaged.

The obtained model solves the problem of adapting spring stiffness to the
changes in topology with an approach based on the method proposed by Van
Gelder in [105] and thus ensures the integrity of dynamical behavior at different
resolutions. Results are shown in Figure 3.2

Another approach that adapts at run time the topology of the model is de-
scribed in [85]. The work applies to both FEM s and MSM s, in fact it describes
a method to refine and simplify tetrahedral meshes ensuring quality of the mod-
ified mesh. The quality of the mesh is preserved by applying a flip operation to

32 3 Common Representation Framework

Fig. 3.2. Comparison of low resolution mesh on the left, high resolution model in the
center and adaptive mesh obtained with method proposed in [19].

tetrahedra: by flipping the edges of adjacent tetrahedron to maximize the mini-
mum corner measure the algorithm always produce the optimal mesh (in terms
of simulation stability). An important aspect that is considered in this work is
the adaptation of the temporal step used in the simulation. In fact, as described
in Chapter 2 temporal integration step is closely related to mesh resolution. The
authors propose a higher bound to temporal step that ensures the stability of the
simulation and the bounding of simulation errors. The complete method is applied
to both MSM and nonlinear FEM , dynamic parameters are adapted at run time
to maintain the dynamic behavior (see Figure 3.3). One great advantage of the
obtained models is their ability of simulate changes in topology.

Fig. 3.3. Liver model used in [85] undergoing deformation modeled with FEM .

A different approach is detailed in [74] where a regular lattice is used to sample
the body volume. This regular grid is adapted by two operators of reduction and

3.1 Adaptive Models 33

reconstruction. The model includes an elastic force approximation that is similar
to shape matching based meshless models discussed in Section 2.3. Furthermore it
does not require two adjacent elements to share nodes on the common face. The
force acting on each element node is computed by equating to zero the resultant
internal forces and the moment of internal forces:

∑

i

ri × k(Ri − ri) = k
∑

i

ri × Ri = 0. (3.4)

Where Ri and ri are the original and deformed positions of vertex i with respect to
element center of gravity and k represent the element stiffness. The model handles
changes in topology, e.g. a cut, with a two steps approach. First, elements on cut
surface are split and internal elements are recursively split to adapt to neighbors
size, then elements are recombined to locally preserve the element density. Results
of the work are presented for bi-dimensional models only.

In [114] another adaptive FEM -based method is described. The underlying
deformable model is a non linear FEM computed through the mass lumping tech-
nique, that allows obtaining diagonal matrices and thus, real time computation.
The mass lumping technique adopted by the authors is column summation. Given
the model mass symmetric matrix (introduced in Equation 2.18) M the correspon-
dent lumped matrix M :

M(i, j) = δ(i, j)
N
∑

k=1

M(i, k) (3.5)

where N is the number of rows of the matrix N and δ(i, j) is the Kronecker
delta (δ(i, j) = 1 if i = j and equals 0 otherwise). The appropriate level of detail
is ensured by an adaptive meshing techniques that exploits off line computed data
to speed up the computation during the simulation. In fact the diagonalization of
the matrix cannot be performed at run time, thus a hierarchy of meshes and the
relative matrices are precomputed and used to obtain element parameters during
the simulation. The main limitation of the method is its inability to fast adapt the
mesh to the situation. In fact, since the refinements are precomputed, they can
be not suitable in some situations: points cannot be placed at wish, instead new
points must lie in one of the precomputed positions. This causes many steps of
refinement to be performed to obtain the optimal mesh resolution.

Another method, proposed in [26], combines spatial and temporal multi resolu-
tion. The underlying model is a finite element model based on the Green elasticity
tensor [102]. The body is partitioned in a non-nested multi resolution hierarchy
of tetrahedral meshes. A quality criterion handles the changes in resolution of the
model. The criterion is based on the error due to the linearization of the displace-
ment field, that can be expressed as ∆dh2 where h is the minimum distance of the
considered node to its neighbors and ∆d is the Laplacian of the displacement d.
The force f per volume V is directly linked to the Laplacian of the displacement
field for almost incompressible objects [25]: f ≈ V µ∆d, where µ indicates the first
Lamé coefficient. The quality criterion γ measures the adequacy of a node in the
simulation using the simple approximation:

γ = ∆dh2 ≈ fh2

µV
=

f

µh
(3.6)

34 3 Common Representation Framework

If γ exceeds a threshold γmax or if it drops under γmin the node is merged or split,
respectively. Unlike the method discussed in [85] the temporal adaptation is defined
on each particle of the model and it is not a unique simulation parameter. This
greatly reduces the computational cost of the simulation but it must be correctly
handled to interpolate computed values.

3.1.2 Hybrid Models

Research has also been made on the use of hybrid models. The most common
approach to hybrid modeling consists in combining pre computation and on line
computation to improve results or simulation time, but some work has been done
in integrating different modelization techniques. The use of different models ensure
the possibility to use the proper method in each part of the simulation and to adapt
the realism to the simulation needs.

In [36] the realism of the contact with a deformable model is increased by the
use of a hybrid model. The proposed method uses a standard MSM model to
compute the overall deformation of the body and uses a FEM local precomputed
model to simulate the area of the contact. The contribution coming from the FEM

is weighted by the distance from the contact point and summed to the deformation
provided by the coarse MSM .

Conversely, in [27] a quasi-static FEM (a FEM that neglects the dynamics of
the model) is used to simulate the global deformation, whereas a local tensor mass
model (an extension of MSM s) is used to simulate the region where the interaction
takes place, allowing the simulation of topological changes (see Figure 3.4). In
this approach the forces coming from the two models are not combined but each
tetrahedron is assigned to one model. In this way no ghost forces appear when the
topology changes. The main limitation of this method resides in the tensor mass
model, in fact it is not invariant to rigid transformations: i.e. a translation or a
rotation induce forces into the model. This makes the model valid only for small
displacements.

(a) (b)

Fig. 3.4. A model obtained with the method described in [27]. In (a) the hybrid liver
model seen in wire frame. The upper mesh corresponds to the precomputed, quasistatic,
elastic model, whereas the bottom mesh corresponds to the tensor mass model; in (b)
the hybrid liver model seen in flat shading.

3.1 Adaptive Models 35

Another hybrid approach to deformable model simulation is proposed in [72]
and [73]. The method described in these works couples a FEM and a meshless
model to model human heart. The FEM is based on Green’s strain tensor and
the material is considered isotropic. Internal damping is introduced in the FEM

to increase the realism of the simulation and is computed from the strain rate
tensor µ that measures the rate at which the strain is changing and it is the time
derivative of ε:

vij =

(

∂x

∂ui
· ∂ẋ
∂uj

)

+

(

∂ẋ

∂ui
· ∂x
∂uj

)

, (3.7)

where x indicates the FEM point velocity and ui with i ∈ [1, 2, 3] is one of the
directions along the frame of reference. The viscous stress σv is then:

σv
ij =

3
∑

k=1

φvkk + 2ψvij (3.8)

where φ and ψ control how fast the material looses or dissipates kinetic energy.
Along with the FEM in areas where external forces will be applied during the sim-
ulation, sampling points will be added and used to create the meshless model. The
complete model will handle global deformations with the FEM and will improve
local accuracy by using the meshless model. The method allows the two models
to overlap in some regions. Preliminary results of the method have been obtained
in the modelization of left ventricle of human heart.

Heart modeling is also addressed in [75] but the proposed approach exploits
MSM s and a continuum mechanical model. One important feature of cardiac tissue
considered in the work is anisotropy. To correctly simulate anisotropic behavior
MSM is defined over a regular cubic grid, and springs are placed on edges, faces
and interior part of the cube. The continuum mechanical model is based on a
strain energy function that, similarly to FEM based methods, allows to compute
the material stress starting from its strain. The overall model is discretized in a
regular volumetric lattice composed by voxels. Each voxel is associated to only
one model and thus the two models only shares faces and edges of elements. The
integration of the two models is then straightforward as it is simply performed
by the summation of the contributions coming from the two different models on
shared points.

In the work described in [112] a hybrid model is proposed and implemented ex-
ploiting graphic card processing unit. The approach splits the model in two areas,
the first one, the non operational area is the part of the model where interactions
happen only on the surface of the model and is modeled with condensed FEM .
The second one, the operational area, models the zones where the user can ap-
ply topological changes to the model and exploits standard FEM . This approach
requires a priori knowledge of the area where the user will interact during the
simulation and thus greatly reduce the field of application of the method.

36 3 Common Representation Framework

3.2 Common representation

In this section we describe the approach we propose to overcome the limitations of
current adaptive methods. Multi resolution and hybrid approaches present some
difficulties in ensuring a constant computational time when the complexity of the
model, in terms of details or realism, changes. In fact when models are refined
and new elements added, the computational time increases accordingly and it is
usually not possible to know a priori how many new elements are needed to provide
the required realism. We propose to construct different models of the same object,
using different resolution and modeling techniques. The use of different models
can better fit the requirements of the simulation. To ensure that the user does not
perceive the difference between different models used, we separate the physical
modeling from the graphical rendering. One unique graphical representation is
used for all different models. This guarantee the ability to switch models without
affecting user visual perception but requires a method to link the surface of the
model to its physics element.

The approach we propose is based on the introduction of a new entity in the
simulation, i.e. a “skin” wrapping the deformable object structure that hides model
features and that is simulated separately from the object itself. This surface is en-
coded as a triangular mesh, defined on a set of points, called surfels (for surface
elements). Surfels are the nodes of this representation, those nodes collect forces
form the extern of deformable model (e.g. friction or constraints) and distribute
them to the physics element of the model. They also control how internal forces
are propagated to the external environment. At the same time they handle de-
formations of the model, in fact the displacement defined on the physics element
is interpolated on surfels to control surface deformation and displacement due to
collisions are imposed, by surfels, to internal elements. As we will discuss in Chap-
ter 5, frictional contact depends on contact normal forces, and contacting surface
velocities and properties. Thus the described structure is exploited to separate the
deformation simulation from the handling of frictional contact. This requires that
the surface embodies some physical properties such as friction coefficient. The sep-
aration of the deformable model from its surface representation allows to adapt
the resolution of the physics to simulation needs without affecting the resolution
of its surface, keeping unaltered the realism of the interactions. The main problem
that rises from this separation is the need for keeping the surface model and the
deformable model “synchronized” by propagating displacements and forces.

3.2.1 Point Based Approach

A similar problem can be found in meshless modeling and in point based rendering:
where the physics and the graphics of models are handled separately. The problem
can be formalized as the reconstruction of surfaces from unstructured data samples.
The representation of two dimensional surfaces in three dimensional space can be
classified in two groups: implicit surfaces and parametric surfaces.

Implicit surfaces are defined as the zero set of a scalar function over the whole
three dimensional domain. The algebraic structure of this representation is simple
and largely independent of the topological complexity of the surface. Surface defor-
mations and topological changes can be easily applied while preserving the global

3.2 Common representation 37

consistency of the surface. The scalar field can be specified through radial basis
functions [15] or with level sets [82]. Point set surfaces are based on moving least
squares approximation and a projection operator to implicitly define the surface.

Parametric surfaces are defined by mapping a two dimensional domain into
three dimensional space. In computer graphics the use of Bézier curves, B-splines,
NURBS and subdivision surface is quite common. A survey of this topic can be
found, for example, in [32]. These representations are based on a mesh of control
points with known connectivity. B-splines and NURBS surfaces require that the
underlying mesh has a regular connectivity, whereas subdivision surfaces work
also with semi regular meshes. Parametric surfaces provide some advantages in
handling texture mapping, but they are more complex to adapt to topological
changes.

In this work we focus on implicit surfaces because of their simplicity and abil-
ity to handle changes in topology. The method we have developed is based on
approaches developed to render meshless based deformable models. As described
in Section 2.3, meshless models are based on a set of physical points that are used
to approximate the displacement inside the modeled body volume. A meshless
model provides no information about point connectivity, thus it is not possible to
extract a surface mesh representation from its structure. To overcome this limita-
tion and to provide an effective method to visually render them, a set of surface
points or surfels (in opposition to phyxels, the physics points) are scattered along
the model surface before the simulation and are used in the graphical rendering.

3.2.2 Geometric Analysis

To compute the surfels, the surface of the undeformed body should be known.
This appears as a reasonable assumption for solid bodies for which the surface can
usually be extracted in form of an isosurface, signed distance function or simply
by a polygonal mesh. During the simulation, data computed for the phyxels are
used to approximate the displacement of surfels with a procedure similar to the
one described in Section 2.3.1. The displacement vector usfl at the surfel position
xsfl is computed from the displacements ui of the neighboring phyxels. To obtain
a good approximation of surface displacement a MLS method is used. The value
usfl can be expressed as:

usfl =
1

∑

i w(xi,xsfl)

∑

i

ω(xi,xsfl)
(

ui + ∇uT
i (xsfl − xi)

)

(3.9)

where ui is the displacement computed for the phyxel in position xi and ω is
a proper weighting function. The choice of the weighting function ω is of great
importance for the quality of results. In point based rendering the number of
surfels is much bigger than the number of phyxels, and the time spent on the
computation of the ω function can considerably slow down the simulation. For this
reason simple weight functions are commonly used in the computation of surface
deformation: a very common choice for ω is a truncated Gaussian function:

ω′(xi,xj) =

{

e(−‖xj−xi‖
2/h2) if ‖xj − xi‖ < h

0 otherwise
(3.10)

38 3 Common Representation Framework

The value h defines the region that affects the surfel behavior. Big value of h en-
sures a smooth surface at higher computational cost, whereas small values of h
increase the computation speed and provide sharper surfaces, at the risk of surfels
that are affected by only one phyxel or completely separate from the underlying
physics in case of big deformations. Thus the choice of h requires particular at-
tention. h value is usually not unique for all elements of the model. We use an
approach similar to the one proposed in [79]: we allow irregular sampling of model
volume and surface. For each element i we compute the average distance r̄1 to its
10 nearest neighbors then we define hi = 3r̄i. This ensure good results of realism
and stability in the simulation.

One limitation of the truncated exponential function is its discontinuity at
‖xj−xi‖ = h, where the function jump to 0 with a discontinuity. This is in contrast
with the MLS approach that ensures the continuity in the physics simulation. In
contrast with point based rendering techniques, our method works on a triangular
mesh defined on the points on the model surface. This guarantees a good realism in
the rendering even if a, relatively, small number of surfels is used. For this reason
we can afford more complex ω′ functions that preserve the continuity property
also for the model surface. For these reasons we employ a polynomial weighting
function [79]:

ω(xi,xj) =

{

315
64πh9

(

h2 − ‖xj − xi‖2
)3

if ‖xj − xi‖ < h
0 otherwise

(3.11)

Fig. 3.5. The two proposed weighting functions ω′ and ω on the left and the right
respectively. The chosen value for h is 0.5.

The differences between the two weighting functions are depicted in Figure 3.5. The
differences in the amplitude are due to the scale factor used in the computation of
ω that normalizes the area beneath the curve. The scaling factor can be neglected
if the displacement of the surfel is computed as in Equation 3.9 since the normal-
ization is carried out by the division by the sum of the weights

∑

i w(xi,xsfl). An

3.2 Common representation 39

example of interpolation using Equation 3.9 and weighting function ω defined in
Equation 3.11 is shown in Figure 3.6.

This method is particularly suited to handle meshless models, where relatively
few physical points are considered, and when the spatial derivatives ∇u of the
displacement field are known. For FEM s or MSM s, where the number of physical
points needs to be higher to ensure a good realism, the overhead introduced to
compute ∇u is not affordable. Moreover, due to the high physical point density,
the contribution of ∇u to the displacement of surface points (Equation 3.9) can be
neglected and visual realism is still good. Simulations of the same body, performed
with different deformable models are shown in Figure 3.7. The three models be-
havior is clearly different, and this is due to the different approach in deformation
modeling. The external mesh is the same for the three models and it is defined on
surfels that are located at the same position with respect to the undeformed body.
From the figure it is possible to see that the proposed method can handle sharp
edges with no computational overhead and that it is suitable for meshless models
too.

(a) (b)

(c) (d)

(e)

Fig. 3.6. Interpolation using Equation 3.9 and weighting function ω. In (a) the displace-
ment value for phyxel 1, and the value of its weighting function. In (b) and in (c) the
data for phyxel 2 and 3 respectively. In (d) the three contributions are plotted together
and the displacement for a surfel placed in the center of the figure is computed. In (e)
the distribution of weighting functions in 2D space is plotted.

3.2.3 Dynamic Analysis

Another important step in this approach to deformable bodies modeling is the
propagation of forces between physics and surface. The propagation of forces can

40 3 Common Representation Framework

(a) (b) (c)

Fig. 3.7. Deformation of the same body undergoing gravity force simulated with different
methods. From left to right: finite element model, mass spring model and meshless model.
In the first two simulations the contribution of ∇u is neglected during the rendering
phase.

be handled similarly to the propagation of displacements but paying attention to
avoid changing the overall forces in the system. This requires a different function for
distributing forces from surfels to phyxels and vice versa. To ensure that no forces
are created or destroyed during the propagation we used the following function to
compute the force acting on phyxel j:

fj =
∑

i∈S

ω′(xi,xj)fi
∑

k∈P ω
′(xi,xk)

(3.12)

where fi indicates the force acting on the i-th surfel, S is the set of model surfels
and P is the set of model phyxels. Equation 3.12 ensures that all and only the
force acting on each surfel is distributed to neighboring phyxels. In fact the term
in the denominator of Equation 3.12 represents the sum of the weights assigned
to phyxels influences by surfels i. In this way the single contributions due to surfel
i are normalized and the resulting weights sum to one. This ensure that all and
only the forces that act on the single surfel i are propagated to model phyxels.

By swapping the role of surfels and phyxels the same method can be used to
distribute the forces from the physical representation of the model to its surface
and used during the computation of contact forces. The use of the truncated
exponential function described in Equation 3.10, even if not continuous on its
border, is justified by the nature of the approximated value: in fact forces applied
by the surface to surfels are transferred to internal physical elements (and thus
smoothed) by the physical simulation. The result of external forces applied to
different deformable models can be evaluated in as Figure 3.8, where the three
models presented in Figure 3.7 are deformed by an external force. The force and
the application point is the same in all three cases.

The wrapping surface not only provides an interface to constraint forces and
displacements between the deformable model and the external environment, but
it is also used to handle the friction force that generates during the contact be-
tween deformable bodies and other entities. During a contact, in fact, two kind of
forces act: reaction forces and frictional forces. Our framework uses the physics of
deformable models to compute the reaction forces keeping into account both dy-
namic properties of the colliding bodies and their stiffnesses. Other values needed

3.2 Common representation 41

(a) (b) (c)

Fig. 3.8. Three different models deformed by the same external force. From left to right:
finite element model, mass spring model and meshless model. In the first two simulations
the contribution of ∇u is neglected during the rendering phase.

to solve the frictional contact such as relative velocities between contacting sur-
faces and friction coefficient are obtained directly from the surface structures. This
simplifies the computation of the frictional contacts allowing to abstract it from
the underlying physical deformable model.

When propagating forces and displacements between the two parts of the model
(surface and internal) the h value that governs Equation 3.10 plays a very impor-
tant role. In fact it controls the area influenced by the contribution of the single
element. Small values of h reduce the computational time, as less neighbors need to
be processed for each element, but also lead to model where constraints (forces and
displacements) effect is more local. On the other hand, higher values propagates
constraints on wider areas but with a higher computational cost. To compute the
h value for the ω′ weighting functions we use the same approach defined in Section
3.2.2. For each element i we compute the average distance r̄1 to its 10 nearest
neighbors then we define hi = 3r̄i. Figure 3.9 compares the results obtained for
a meshless physical model wrapped by surfaces with different values of h. In (a)
we used a value hi = 1.5r̄i, in (b) the used values is hi = 3r̄i whereas in (c) we
used hi = 4.5r̄i. As can be seen higher values of h propagates the constraint from
the fixed end of the cylinder deeper along the model structure: this leads to an
increment to the model rigidity.

(a) (b) (c)

Fig. 3.9. The same meshless model wrapped by different surfaces and deformed by
gravity. Values of h are computed by hi = 1.5r̄i, hi = 3r̄i and hi = 4.5r̄i in (a), (b) and
(c) respectively.

42 3 Common Representation Framework

3.3 Conclusions

The choice of the right model to simulate deformable environments is not straight-
forward. Different models generate very different results in terms of computational
cost, fidelity of the simulation, and realism of the simulated task. To cope with
this problem various approaches have been developed. Two main categories can be
identified: multi resolution techniques and hybrid models. The first ones increases,
at run time, the number of elements used in the simulation to increase the real-
ism of the model. Hybrid methods, instead, use different modelization techniques
to adapt the area of the model to the simulation requirements prior to the sim-
ulation. The main limitation of those methods is the increase in computational
time in the former case and the strong constraints imposed on the simulation in
the latter case. To ensure a bounded computational time and to allow the user
to freely interact with simulated models, we developed a method that allows to
handle in a common way different deformable models. The most appropriate sim-
ulation method is chosen off line based on simulation requirements. This method
only affects the physics computation, ensuring a fixed computational time and the
required realism of the simulation.

The proposed approach is based on a separation of the internal (or physical)
part of the model from the visual representation, i.e. the surface, that acts as
an interface between the internal part and the external world. The interactions
between the world and the physical model are obtained through the exchange of
forces and displacement from and to the model surface. Forces and displacements
are handled similarly, with a method inspired by the point based rendering tech-
niques. The difference in the nature of the exchanged values justifies the different
weighting functions involved in the method. Preliminary results show that the dis-
tribution of the displacement on the surface of the model is realistic and adapt
to different modelization techniques. At the same time the application of external
forces to the model can be successfully achieved with the proposed method. This
method may allow to switch, during the computation, from one physical model to
another, this switch may not preserve the overall stabillity of the simulation, as
it could introduce energy into the system. It is thus necessary that the simulation
remains stable during and after the switch, with proper methods based on model
physical properties (such as [105]) or on the actual switching (as it happens in [36]
or in [73]).

4

Collision Handling

In this chapter we will address the problem of collision detection between bodies
in virtual scenes. When simulating dynamic environments, bodies in the scene
can come in contact and also penetrate each other. To ensure the realism of the
simulation it is required that these situations are detected and properly solved.
Collision are usually checked after the update of the scene and the results of the
detection are used to restore the consistency. The whole process consists of two
steps. The first part of the process, called collision detection, aims at obtaining
an estimation of the instant of the contact and at identifying the points involved
in the contact. The second part modifies the body configuration to avoid overlap
between bodies and is usually called collision solution.

Collision detection represents an issue in many fields of research, it has been
addressed in assembly and disassembly [47], in computer-aided design and machin-
ing [98], in tolerance verification [59] and computer simulated environments [64].
Its goal is the identification of the geometrical contact before it occurs or when
it has actually occurred. Solving collision requires a proper method to handle the
contact: contacting rigid bodies are usually displaced along the minimum penetra-
tion depth [120], whereas local methods are used to separate contacting deformable
models [28,38].

In this chapter we will introduce the principal techniques and libraries devel-
oped to perform collision detection, evaluating their use in the specific scenario of
interactive, physically based simulation of deformable models. The introduction of
complex contact mechanics in the simulation requires a high level of accuracy in
the detection of contact points and in the solution of collisions, thus an innovative
approach, specific for deformable triangular mesh, will be presented. The imple-
mentation of the described method relies on the use of root finding methods. Some
algorithms for root approximations will be compared from the theoretical point of
view, and their performance on real cases will be evaluated.

4.1 Collision Detection

Collision detection is a fundamental step in physically based simulations. The
choice of the right collision detection algorithm is not always straightforward,

44 4 Collision Handling

as it depends on the nature of the modeled phenomena, the time step involved
in the simulation and the precision needed. Collision detection procedures have
been developed to solve many classes of problems. Many criteria can be used
to differentiate them but the main differences stay in the model properties that
methods handle, the kind of queries that they can answer and the simulation
environments they can handle.

4.1.1 General Approach

Different model representations have been developed to suit the needs of different
tasks. Interacting bodies can be represented by non polygonal models, e.g. con-
structive solid geometry (CSG), where objects are obtained by primitives shapes
(spheres, cubes, cones, ...) combined with union, difference or intersection opera-
tors. CSG is quite difficult to apply to deformable models, moreover an accurate
boundary or surface representation, useful for rendering or interference detection
can be hard to compute from CSG representations [58].

Another method to describe objects uses implicit surfaces. Implicit surfaces
exploit a map from the 3D space to real numbers f : R

3 7→ R. The surface is
the locus of points where f(x, y, z) = 0. Implicit surfaces are generally closed
manifolds and have been used to model deformable bodies [13]. When looking for
the interference between two implicit representations the surfaces are sampled and
the collisions are checked using the approximated models obtained from sampled
points.

Rigid bodies can also be represented by using parametric surfaces: a paramet-
ric surface is a mapping between a plane to the 3D space f : R

2 7→ R
3. Parametric

surfaces do not always represent closed manifolds, thus they do not describe a
complete solid model, but rather its surface boundary. Thanks to its simple do-
main, the function f is usually easy to polygonalize and to render graphically.
A special case of parametric surface commonly used in CAD are Non-Uniform
Rational B-spline (NURBS) [122].

The most common representation used in deformable body simulation is polyg-
onal models that describes a model through a collection of triangles that are not
required to be geometrically connected, nor to have a topological structure. When
the polygons form a closed manifold the solid has well defined interior and external
parts. Some collision detection algorithms exploit this structure, many apply only
to convex, closed manifold, models.

Another difference between collision detection algorithms is the information
that they can provide. Some applications, such as assembly-disassembly simula-
tions, requires to know only if objects interpenetrate or touch. In our scenario,
where the contact between bodies is not restricted to point contact but it can
involve multiple areas of the objects, we still need to know which points are in
contact but we also require the identification of overlapping object parts. In other
scenarios, such as robot motion planning, the knowledge of the separation distance
between the bodies is required. The separation distance is also useful to estimate
the collision time and it is used in physical simulations to adapt the simulation
step to the environment [65].

Collision detection algorithms differentiate also for how they handle time in
the simulation. Static collision detection is computed by retrieving the position of

4.1 Collision Detection 45

the bodies in the scene and by considering them fixed. The computation is sim-
pler, but those methods can miss many collisions: i.e. completely compenetrated
bodies or small bodies that in one simulation step move from one side of an object
to the other. Dynamic collision detection keeps into account the motion of the
bodies during the simulation step. They usually approximate the motion of bodies
with linear trajectories, associate a swept volume to each body or element (tri-
angles, lines, ...) in the scene, and check for intersection between swept volumes.
An intermediate approach increases the accuracy of static methods by sampling
the trajectory of bodies during the simulation step and checking, statically, the
collisions between bodies in the scene.

Collision detection in deformable environment requires particular attention, in
fact the majority of the methods developed for rigid bodies collision detection
cannot be applied to soft bodies. Collision detection algorithms for rigid struc-
tures usually rely on precomputed data to speed up the on line test phase. These
structures include axis aligned bounding boxes (AABB), bounding spheres, spa-
tial partitioning (such as octrees, binary space partitioning trees (BSP tree). The
update of those structures when addressing soft bodies deformations is computa-
tionally too heavy to provide benefits. Thus, ad hoc methods have been developed
to identify collisions between deformable models.

4.1.2 Collision Detection for Deformable Models

When applying collision detection algorithms to deformable models some of the
assumptions exploited in collision detection of rigid bodies do not hold. In addition
to point displacement, deformation also changes the size of the model elements.
Thus the update of the collision detection structures requires a lot of computation
and is, in general, not convenient.

Few methods have been developed to speed up collision identification for de-
formable models. They can be roughly subdivided in methods that handle implicit
surfaces and methods that work on polygonal meshes. Implicit surfaces simulate
deformations by updating control points of model surface. The control point up-
date requires the re-computation of the surface and, usually, its re-tesselation to
guarantee the quality of the result.

In [107] the authors present a method to detect geometric collisions between
time dependent parametric surfaces. The described algorithm works on surfaces
that are continuous and have bounded derivative. Surfaces are checked pairwise
and the values corresponding to coincident points are obtained numerically. The
big theoretical limitation of the method is that it is restricted to functions with
computable Lipschitz number1, from the practical point of view the main limitation
is its high computational cost.

A method that handles parametric surfaces is detailed in [51]. The algorithm
uses AABB and convex hulls of the objects to speed up the computation of pairs
in close vicinity. Pseudo-normal patches and Gauss maps are used to detect self

1 Lipschitz continuity is a smoothness condition for functions which is stronger than
regular continuity. A Lipschitz continuous function is limited in how fast it can change;
a line joining any two points on the graph of this function will never have a slope steeper
than a certain number called the Lipschitz number of the function.

46 4 Collision Handling

collisions and sweep and prune method is used to compute other collisions. Tempo-
ral coherence is utilized to achieve incremental computations. The algorithm has
been implemented and provide contact computation for scenes undergoing second-
order polynomial deformations at graphics frame rate (30 Hz). The computation
of the pseudo-normal patch and the update of the AABB structure is very time
consuming, and the method can hardly be adapted to haptic simulations.

In general the use of parametric surfaces to describe deformations represents
a disadvantage for collision detection computation. In fact deformations of the
reference shape requires the update of sampling points that can be computationally
very expensive. Some work focused on the use of NURBS due to their reduced
computational cost. In particular, [62] describes a method that relies on NURBS

to perform deformation simulation, rendering and collision detection. The method
relies on precomputation of AABB bounding hierarchy for each deformable object
of the scene. Some additional data structure is used to allow the method to detect
self collisions. All the structures are updated at run time, but objects are tested for
collision only in the deformed area. This saves some computation but the method
is not suitable to handle haptic interactions. Moreover it noticeably slows down in
the presence of colliding large object patches.

Methods to compute collisions between deformable models represented with
polygonal meshes have been developed too. They are usually based on decompo-
sition of the scene objects in hierarchies of bounding volumes with convex shapes.

In [12] sets of spheres are used to represent the geometry of deformable models
and are used to perform fast collision detection. The method extends the Quinlan
algorithm [90] and works really fast in both the updating of data structures and in
the actual collision detection. The principal limitation of this approach is the low
resolution that can be obtained, as relatively big spheres should be used to keep
their number low and the accuracy of detected collision depends on the radius of
the spheres. Moreover the algorithm only detects one contact and does not handle
changes in the topology of models.

Fig. 4.1. Collision detection between forceps and severed vessel, collision detection is
performed with the method described in [12].

This approach is extended in [16] by identifying all the contacts between the
structures and overcomes the limitations on the triangle size and, thus, in sphere

4.1 Collision Detection 47

radius. However the resulting algorithm does not handle complex models at suit-
able frame rates for haptic interaction.

A different approach is described in [103] where the overlap test between
AABB ’s is improved to speed up the interference detection. Optimized AABB ’s
provide better performance than OBB ’s for rigid objects. Moreover the author
presents an innovative method to update data structures when the model is de-
formed or its topology changes.

Some other methods do not use hierarchical representation to speed up the col-
lision detection. [35] presents a linked volumes based approach to the simulation of
deformable models that allows straightforward collision detection. In the described
approach objects are mapped into an occupancy map. Collisions are detected by
simply checking if two objects try to occupy the same voxel. The complexity of
the method is quite high, as the representation of the objects is not hierarchical,
moreover, the simulation of deformations lacks a clear physical interpretation.

[67] and [108] describe methods that are based on graphical rendering tech-
niques to detect collisions. The approaches use the rasterization process that maps
the scene object coordinates into the camera coordinate system, clip the tetrahe-
dral faces outside the viewing volume, and project the remaining visible polygons
into rasterized pixels. In this way, objects that are not rasterized at the same pixel
do not collide. The resulting algorithm is simple and fast, but it has some im-
portant limitations that prevent it to be applicable to general collision detection.
They cannot handle collisions between deformable models and, during the raster-
izing process, they lose important tri dimensional information useful to compute
the penetration depth such as the distance between colliding surfaces.

Fig. 4.2. Collision detection between a triangular mesh modeling a human liver and a
static position of a tool (from [67]).

Some recent work focused on the use of GPU to improve collision detection
performance. [44] and [43] describe a method that is based on chromatic decompo-
sition and exploits GPU computational power to speed up collision detection. The
main goal of the approach is to reduce the number of tests needed to detect the
first time of contact between two bodies. The chromatic decomposition, computed
at the beginning of the simulation, partitions the set of triangles that compose one
model surface in k disjoint independent sets such that no primitive in the same set

48 4 Collision Handling

(a) (b) (c)

Fig. 4.3. Overview of the method described in [108]: (a) the object volume V is rendered
with a parallel projection in direction π. (b) Each triangle of the membrane has a unique
color. Triangles with hidden parts are colliding. (c) Application of deformation vectors.

is adjacent and that each primitive of a set has at most one adjacent primitive in
each other set. The properties of this decomposition is exploited to discard tests
during the actual collision detection phase. The main limitation of this method is
its requirement that the model topology does not change during the simulation
(otherwise the chromatic decomposition must be updated).

Another approach is described in [111]. The method reduces the number of tests
by introducing four phases in the computation: a pre processing step marks the
triangles of the model to filter colliding primitive pairs (triangles, edges and points
are considered as primitives). Then a bit masking process assigns primitives to each
triangle. At run time triangle markings are used to extract potentially interacting
primitive pairs from each pair of potentially colliding triangles. The last step check
for the actual interference between primitives, limiting the computation to one
test for each pair of primitives. This method introduces less overhead in the pre
processing phase with respect to the previous one, but it cannot handle topological
changes too.

In [121] the collision detection is improved by the use of streams of AABBs that
bound deformable models in the scene. The stream of bounding boxes is updated
at run time when objects in the scene deform. GPU is exploited to parallelize
the tests on the AABBs. Results are encoded to reduce the amount of memory
that needs to be exchanged between GPU and CPU . The algorithm imposes no
limitations on the shape of the model nor it requires that the topology remains
constant during the simulation. The method shows to improve the performance
with respect to standard collision detectors, but it cannot guarantee performance
suitable for interactive haptic simulations, as it takes more than 8msec even for
relatively simple models.

4.1.3 Collision Detection Library

We identified the requirements that our scenario impose on collision detection al-
gorithm: our goal is to solve collisions between deformable models, represented as
triangular meshes, with the possibility to change model topology and at a frame

4.1 Collision Detection 49

(a) (b) (c)

Fig. 4.4. Collision Detection using Streaming AABBs [121]. (a) shows intersecting two
bunny models; (b) two bounding AABB streams are superimposed on the bunny models
that they bound respectively; (c) highlights intersecting AABBs (shown as orange and
yellow boxes).

rate that is suitable for haptic interaction. In addition, the detection of collisions
should not stop after the first contact has been detected, but should provide all the
pairs of triangles that collide between each pair of bodies. Thanks to the reduced
time step used in the physical simulation we can avoid continuous collision detec-
tion and focus on static detection. Since we address deformable models, we cannot
guarantee that objects are convex, and we discarded methods that rely on the
decomposition of objects in convex parts as the complexity of the decomposition
for our specific deformations is too high.

We investigated the features of some collision detection libraries, to identify the
most suitable to our needs. In particular we analyzed four libraries: RAPID [42],
V-Collide [50], DeformCD [101] and SOLID [104].

RAPID stands for Robust and Accurate Polygon Interference Detection, and is
targeted to detect interferences between pairs of unstructured polygonal meshes by
using OBB ’s. It works with polygonal soups (i.e. models represented by triangles
without connectivity information) but it does not explicitly handle changes in
topology. It is most suitable for close proximity configurations between highly
tessellated smooth surfaces. When deformations in the body occur the OBB tree
associated to the body needs to be completely recomputed, slowing down the
simulation.

V-Collide is a collision detection library for large dynamic environments that
couples an n-nody algorithm : an algorithm that handle multiple bodies in contact
and is not limited to pairs of objects, to the fast processing algorithms developed
in RAPID . It is designed to operate on large number of static or moving polygonal
objects and to allow dynamic addition or deletion of objects between time steps.
The method suffers from the same limitations of RAPID since it uses the same
algorithms for collision detection.

DeformCD is a fast collision detection library designed to accelerate calcula-
tion for deforming objects. For deforming objects, whose elements shape changes, a
AABB refitting solution is used for collision detection. It exploits GPU to improve
the performance of the detection, thus leading to a bottleneck when object topol-
ogy changes and data needs to be uploaded to GPU . Very little documentation is
provided on the use of the library.

50 4 Collision Handling

SOLID is a library for interference detection of multiple three-dimensional
polygonal objects undergoing rigid motion. It works with polygonal soups, it does
not provide methods to handle changes in topology nor deformations. Its perfor-
mances and features are similar to the ones of V-Collide.

We choose V-Collide, for its generality and for its ability to handle multiple
objects in the scene. This requires that, at each time step, we rebuild the data
structures involved in the collision detection. This greatly slows down the simu-
lation, but we are not aware of any other algorithm that can compute collisions
between deformable object undergoing general deformations that runs at frame
rate that is suitable for interactive, haptic simulations.

4.2 Collision Solution

Once the collisions between bodies have been identified some action should be
taken to restore the consistent configuration of the bodies in the scene. This phase
of collision handling is often referred to as “collision solution”. In many applications
it is sufficient to warn the user about the compenetrating bodies or to recover the
previous state of the scene. This is the case of assembly/disassembly simulations
or tolerance verification. Computer aided design or machining, instead, require a
more complex collision solution, in fact object shape should change in response
to user input. Thus, it is necessary to update the configuration of the bodies to
simulate the action of the virtual tool.

When applied to physics based simulations of rigid bodies, collision solution
requires more information to correctly update the scene: usually it needs a good
approximation of the collision time, a contact normal and a contact point for each
colliding pair of objects. The contact point is the point where the objects first
touch and the contact normal is the normal to a plane that passes through the
contact point and is oriented such that it separates the object near the contact
point. Objects are displaced along the normal until they do not interpenetrate. In
addition contact forces can be computed and introduced into the simulation.

Solving collisions for physically based simulation of deformable bodies is even
more complex. When a posteriori collision detection is employed, in fact, the def-
inition of the contact point is not clear. The exact position of the contact point
depends on the dynamical properties of material composing the contacting bodies,
on their topology and on the body boundary conditions.

Some techniques have been developed to approximate the contact point using
the knowledge of the body stiffness. In [28], for example, a virtual spring is intro-
duced for each couple of bodies in contact. This spring is used to model the energy
stored during the collision. The deformation of the bodies is not modeled, instead,
a contact plane is associated to the point of initial contact of each body. To com-
pute the separation plane used to solve the collision the algorithm simply evaluate
a weighted mean of the contact planes. The exact position of the plane depends
on the weights that are computed as functions of the relative stiffness of the two
objects. This approach leads to good results in obtaining analytical description
of contact between deformable bodies, but its application to general shapes and
complex interactions is difficult, and cannot take into account properties such as
object topology.

4.2 Collision Solution 51

To address a wider range of interactions and topologies, we developed an-
other method, that is not based on the analytical representation of the interact-
ing shapes. Instead it exploits the characteristics that are typical of interactive
deformable models simulation: the reduced time step employed and the explicit
computation of model deformations. The simulation of physics based deformable
environments requires the use of very small time steps in the temporal integration.
This represents a stringent constraint for the computation of deformations but it
allows some simplification in the process of collision solution. In fact, when han-
dling deformable models, the contact forces that act during a single time step can
be neglected due to the small module of the force itself and to the small amount
of time considered.

To handle the contact between deformable model we identify the time of contact
between the bodies, we recover a configuration in which the two bodies do not
overlap and we rely on the physical simulation of deformations to compute the
forces exerted during the interaction. The main issue in this procedures is the
identification of the collision time.

4.2.1 Problem Statement

Given a pair of intersecting triangles we need to know with good accuracy when,
during the last simulated time step, they first touched. The problem is quite com-
mon in rigid bodies collision solution and can be solved by computing the inter-
section of the segments covered by one triangle vertexes with the other triangles,
then swap the triangles, repeat, and keep the minimum time obtained for triangle
segment intersections.

In [77] a method to solve a similar problem for rigid triangles is described.
The method is suitable to identify the collision between a static triangle and a
segment. The method changes the frame of reference to place the triangle on the
yz plane and to align its edges along the coordinate axes. Moreover it orients the
segment along the x axis. The intersection point is simply obtained by solving an
associated linear system.

In our scenario the triangle is not static nor it is rigid. Instead its three vertices
are free to move during the whole time step. Thus we need to extend the previous
method to handle deformations in the triangle.

The proposed method starts by assigning to each point of each model a time
t̂ equals to one, that means that the point position coincides with its position at
the end of the simulated time step. Then it scans each pair of colliding bodies, for
each body it scrolls the pairs of colliding triangles.

Given a pair of triangles, r and s. We indicate with ~ar, ~br and ~cr the positions
of the vertices of triangle r at the beginning of the last simulated time step and
with ~a′r,

~b′r and ~c′r their positions at the end of the time step. Similarly we indicate

with ~as, ~bs and ~cs the positions of the vertices of triangle s at the beginning of the
last simulated time step and with ~a′s,

~b′s and ~c′s their positions at the end of the
time step.

During a time step, each point covers a linear trajectory that can be expressed
as a linear combination of the starting and ending position: i.e. the trajectory
associated with vertex a of triangle r is:

52 4 Collision Handling

~ar(t) = ~ar + t(~a′r − ~ar) for t ∈ [0, 1] (4.1)

the same procedures can be applied to obtain the segment associated to the other
vertices.

The method checks each triangle for collisions with the segments associated to
the other triangle vertices. The result of each test is a value of t for which a point
on the segment lies on the triangle surface. The minimum between the obtained
values of t represents the first time of contact between the two triangles.

We can analyze one single test without loss of generality: other tests are per-
formed in a similar way. To identify the time of collision between triangle r and
vertex a of triangle s we express a generic point ~p on the plane containing triangle
r during the time step as a linear combination of triangle vertices. The position of
~p is a function of four parameters:

~p(t, α, β, γ) = α~ar(t) + β~br(t) + γ~cr(t) (4.2)

where α, β, γ ≥ 0. The time of contact can be found by equating this parametric
description of the point with a point moving along the segment defined by ~as(t):

α~ar(t) + β~br(t) + γ~cr(t) = ~as(t) (4.3)

By substituting Equation 4.2 (and the corresponding equations for the other ver-
tices) in the above equation we obtain:

α(~ar +t(~a′r−~ar))+β(~br +t(~b′r−~br))+γ(~cr +t(~c′r−~cr))−~as−t(~a′s−~as) = 0 (4.4)

Fig. 4.5. Graphical representation of the values involved in Equation 4.4: in gray the
initial and final triangle configuration, in blue the triangle on the plane defined by
~p(t, α, β, γ)

The non linear system that results from Equation 4.4 leads to the identification
of the time instant in which the point on the segment lies on the plane containing

4.2 Collision Solution 53

the triangle. After identifying the contact time of the six possible combinations
(some contact may not happen) the minimum value t̂ is used to update the time
label associated to each vertex.

When all the colliding pairs have been checked and each colliding body tested
the method updates each vertex position of the scene by moving it backwards
along the trajectory covered during the last simulated time step. In particular
the updated position for a point a of the model that moved from position ~a to a
position ~a′ is simply computed as:

~anew = ~a+ t(~a′ − ~a). (4.5)

This ensures the the two bodies do not overlap and that the two surfaces only
touch on one or more points.

4.2.2 Method

As we noticed in the previous section, Equation 4.4 leads to a non linear sys-
tem, whose analytical solution is quite complex. To rapidly compute the results
of collision detection we adopted a numerical root finding method. The function
we consider is the signed distance between the point ~as moving along the segment
and the closest point on the plane containing the triangle r, as a function of time
t.

To compute the signed distance we need the normal to the plane containing
the triangle, since the triangle orientation changes during the time step the plane
normal is a function of the time that can be obtained as the normalized cross
product between two edges of the triangle:

~nr(t) =
(~br(t) − ~ar(t)) × (~cr(t) − ~ar(t))
∥

∥

∥(~br(t) − ~ar(t)) × (~cr(t) − ~ar(t))
∥

∥

∥

. (4.6)

The signed distance is then computed as:

dist(t) = −‖~as(t) − ~ar(t)‖
(~as(t) − ~ar(t)) · ~nr(t)

‖(~as(t) − ~ar(t)) · ~nr(t)‖
(4.7)

The first factor of the right side of Equation 4.7 actually computes the distance
between the moving ar point and the triangle plane, whereas the second factor
computes controls the sign of the result. This ensures that when the point lies
in the half space pointed by the normal (i.e. the point is outside the body) its
distance is negative. On the other hand, when the point is inside the body its
distance from the plane is positive.

We assume that, at the beginning of a time step (t = 0), all the objects are
disjoint, thus each vertex of each body has a non positive distance with respect to
all the triangles of other bodies. When after the temporal integration t = 1, two
triangles intersect, at least one point of one triangle lies on the internal side of the
other triangle. We identify these points and we compute the time in which they
cross the triangle surface, i.e. the root of the distance function.

54 4 Collision Handling

The previous consideration allows us to bracket the root: in fact function dist(t)
is continuous and its sign changes in the interval [0, 1]. A root finding method is
thus suitable to approximate the time t̄ in which dist(t̄) ≈ 0. Since the derivative
of the distance function is hard to compute we cannot adopt methods that assume
this knowledge, instead we focus on simpler methods. We analyzed the bisection
method [57], the secant method [57] the regula falsi method [89] and the Brent
method [89]. In the following we briefly present the four methods and discuss their
principal features. All these methods start from the assumption that the value of
the function changes in the interval [a, b], that the function is continuous and that
it presents only one root in the analyzed interval.

Bisection Method

Bisection method iteratively evaluates the function in the interval midpoint and
examine its sign. Then it uses the midpoint to replace whichever limit has the same
sign. After each iteration the bounds containing the root decrease by a factor of
two. The method is guaranteed to converge, and its rate of convergence is linear.

Secant Method

Secant method approximates the function with a line inside the considered interval.
At each iteration the computed solution is updated with the intersection of the
approximating line and the t axis, using the following relation:

t̄k+1 = t̄k − t̄k − t̄k−1

dist(t̄k) − dist(t̄k−1)
dist(t̄k) (4.8)

If the analyzed function is twice continuously differentiable and the root is simple,
then the rate of convergence of the method is super linear. One drawback of the
method is that the estimated root can temporarily move outside the initial interval
during the computation.

Regula Falsi Method

Regula falsi, or false position method, is similar in principle to the secant method,
but it does not produce a succession of roots approximating the real root, instead
it reduces the interval until its size is smaller than a desired threshold. At each
iteration k it updates the interval [ak, bk] by computing the value:

ck =
dist(bk)ak − dist(ak)bk
dist(bk) − dist(ak)

. (4.9)

The value ck replace the interval limit with the same sign. The rate of convergence
of the method is super linear in many cases, but an estimation of the exact order
is not easy.

4.3 Results 55

Brent Method

Brent method couples the advantages of root bracketing and bisection with an
inverse quadratic interpolation. It exploits three prior points to fit an inverse
quadratic function (t as a quadratic function of dist(t)) whose value at dist(t) = 0
is taken as the next estimate of the root t̄. If the estimated root falls out of the
current root brackets or if the bound does not collapse rapidly enough then the
algorithm uses a bisection method to compute the new approximation.

Given three points, t̄0, t̄1 and t̄2, computed at step k the use of the inverse
quadratic function leads to the following rule to update the approximation:

t̄k+1 = t̄1 +
S(T (R− T)(t̄2 − t̄1) − (1 −R)(t̄1 − t̄0))

(T − 1)(R− 1)(S − 1)
(4.10)

where

R ≡ dist(t̄1)

dist(t̄2)
S ≡ dist(t̄1)

dist(t̄0)
T ≡ dist(t̄0)

dist(t̄2)
. (4.11)

This method has, in many cases, super linear rate of convergence, in other cases
it ensures at least linear convergence. The drawback is the increased complexity
in computation that can penalize its performance when the number of required
iterations is small.

Due to the difficulties in performing an accurate analysis of convergence for the
presented methods we decided to implement the methods and to compare their
mean performance to identify the most suitable for our scenario. Since we require
that the root remains bracketed during the whole root finding process, to avoid
errors in the solution, we discarded the secant method from our analysis.

4.3 Results

We integrate the collision detection library and the collision solution method with
the deformable model simulation to test the behavior of the collision handling
scheme in a realistic scenario. The resulting application simulates the interactions
between two deformable models in contact. We analyzed the collision detection
and solution step of the simulation that is composed by three basic sub steps:

• Collision detection structures generation: at each time step, after the models
have been deformed by the physics computation, the collision detection struc-
tures have to be updated to the new model configurations.

• Collision detection test: once the structures have been updated they are used
to detect the collision between the models. The result of the test consists in
a list of pairs of interacting objects. For each interacting object pair a list of
pairs of colliding triangles is generated.

• Collision solution: each pair of colliding triangles is analyzed with the method
described in Section 4.2. Three different root finding methods have been eval-
uated to find the one that provides the best results in realistic cases.

To obtain meaningful results during our analysis all the tests we performed were
based on two different models. The firs model, coarse model, is a MSM composed

56 4 Collision Handling

by 554 points and 2729 tetrahedra, whose surface is defined by 906 triangles. The
second one, detailed model, is a MSM composed by 2579 points, 15092 tetrahedra
and with 2386 surface triangles. Both models are shown in Figure 4.6.

Fig. 4.6. The models used in the collision detection tests: coarse model on the left,
composed by 554 points and 906 triangles and fine model on the right, composed by 2579
points and 2386 triangles.

4.3.1 Structure Update

The phase of structures update is handled directly by the collision detection li-
brary, it basically recomputes the OBB tree structures that wrap the analyzed
objects. Two scenarios are analyzed during this test: in both scenarios the envi-
ronment is composed by two cylinders. One cylinder is fixed at its basis. The other
cylinder is free and falls under the effect of gravity. The second cylinder touches
and compenetrates the first one during its fall. The scenarios differ only for the
employed models: in one two coarse models were used, whereas in the other we
use two instances of detailed model. A graphical representation of the scene for
the case of coarse models can be seen in Figure 4.9. Timings obtained in the two
scenarios are showed in Figure 4.7. Computational time required for the update
of the structure is analyzed during the evolution of the scene to identify potential
dependencies of the algorithm on the model configuration (mainly the presence of
long triangles).

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

5

10

15

Coarse model
Detailed model

Fig. 4.7. Analysis of collision detection structures update. The evolution of the mean
time required to update the structures used by the collision detector for the two models.
Times are expressed in msec.

Results show that the time required to update the data structures is almost
constant during the evolution of the scene. Instead it depends on the complexity of

4.3 Results 57

the model: for the coarse model it takes about 4.4msec at each iteration, whereas
for the detailed model it requires approximately 14.3msec to update the OBB

trees.

4.3.2 Collision Detection

The scenarios used to evaluate the actual collision detection phase performance
is the same used to test the structure update step. The required computational
time was tracked during the first 5000 time steps to analyze the dependency of
the procedure on the number of contacts. In fact, as the simulation proceeds the
number of contacts increases until the two objects maximally compenetrates (after
about 5000 time steps). Then the number of colliding triangles decrease and goes
to zero when the red cylinder exits from the blue one. Plots of time required to
compute the list of colliding triangles are shown in Figure 4.8.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.4

0.8

1.2

Coarse model
Detailed model

Fig. 4.8. Computational time required to perform actual collision detection for the two
models during the simulation. Times are expressed in msec.

A graphical representation of the results of collision detection is showed in
Figure 4.9. The figure shows the evolution of the scene as the red cylinder falls
over the blue one. Interfering triangles of both models are highlighted in yellow:
the collision detection algorithm correctly detects the colliding triangles. It can
be noticed that the area of the models interested by the contact increases while
the red cylinder penetrates the blue one. When the red cylinder exits the colliding
areas decrease in size and the number of colliding triangles decreases too.

It is clear from Figure 4.8 that the complexity of the collision detection phase
depends on the scene. When the number of colliding triangles increases the time
required to detect all the interferences increases as well. This represents an impor-
tant drawback for the integration of the collision detection phase in an interactive
simulator, where each simulation step computation should complete in a fixed
amount of time. Collision detection performance clearly depend on the complexity
of the models that populate the scene, but thanks to the use of OBBs tree to
speed up the computation an increment of a factor of 2.6 in the complexity of the
models translates into an increment of a factor smaller than two in the time spent
in the detection.

58 4 Collision Handling

Fig. 4.9. Results of the collision detection phase. A sequence of two instances of the
coarse model interpenetrating. Interfering triangles are highlighted in yellow. The blue
cylinder is fixed at the two basis, the red cylinder is free, both are under the effect of
gravity.

4.3.3 Collision Solution

During this test we evaluate the correctness of the approach described in Sec-
tion 4.2, moreover we compare and analyze the performance of different numerical
methods that can be used to approximate the time of collision between each pair
of triangle. We integrated three root finding methods in the simulation: the bisec-
tion method, the regula falsi method and the Brent method. We use these three
methods to solve collisions in the two scenarios used in previous tests. The analysis
is carried out during the first 5000 steps of simulation to better identify method
features. Timing of the three methods applied to the coarse and to the detailed
models can be found in Figure 4.10 where plotted graphs represent the mean time
for each invocation of the respective root finding method i.e. the total time required
to identify one root (or the time of collision).

The analysis of the results shows that the three methods have very similar
performance when applied to the coarse model. When applied to detailed model,
regula falsi method shows worse performance with respect to other methods. This
can be related to numerical instability of the method, as the detailed model has
shorter edges that generates shorter vectors during the normal computations. The
other two methods show a slight increment in the performance when applied to
the pair of detailed models with respect to the case of the coarse models. The
three methods correctly solve the collisions, results have been compared and the
positions of model points after the collision solution step result equal. A graphical
representation of the simulation after the phase of collision solution is shown in
Figure 4.11.

4.4 Conclusions 59

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

1

2

x 10
−4

Bisection
Regula falsi
Brent

(a)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

1

2

x 10
−4

Bisection
Regula falsi
Brent

(b)

Fig. 4.10. Comparison of computational times (in msec) for the three root finding
methods. On the x-axis the iteration number, on the y axis the mean time for one
invocation of root finding method. (a) provides results for the coarse model (b) shows
results for the fine model.

Time required to solve collisions between deformable models of average com-
plexity suggest that some simplifications should be introduced to use them in sim-
ulations with haptic feedback. The overall time required to update data structures
and to perform the actual collision detection is more than 1msec. On the other
hand, once that colliding pairs of triangles have been identified, the time required
to compute the exact time of collision is quite small: all the three methods are
suitable for interactive simulations as they can perform more than 10.000 tests in
a millisecond (that is more than 1500 pairs of triangle). In addition, the simplicity
and the fixed rate of convergence of the bisection method suggests that its imple-
mentation on parallel hardware may lead to important performance increments
and to further increase its applicability in haptic simulations.

4.4 Conclusions

Collision detection and the solution of interferences between deformable models
represent a bottleneck in the computation of interactive environments. Many ap-
proaches have been proposed in the literature to solve the problem ensuring suit-
able performance. We revised the state of the art in collision detection to identify

60 4 Collision Handling

Fig. 4.11. Results of the collision solution phase. A sequence of two instances of detailed
model interacting. The stiffness of the red model is lower than the stiffness of the blue
one. The blue cylinder is fixed at the two basis, the red cylinder is free, both move under
the effect of gravity.

the requirements of a collision detection algorithm suitable to handle the inter-
actions between deformable models. We analyzed the principal collision detection
libraries and compared their features.

We identify in V-Collide the library that best fits our needs and extended its
capabilities with an innovative collision solution method. Collision detection is
performed at the end of each time step and results are used to restore a physically
correct configuration of the environment. Collision detection phase can return
wrong results in some pathological situations: such as when a model, moving fast,
crosses another body surface with its whole volume. In this case the collision
detection will not identify the impact and thus the whole algorithm will not solve
the compenetration. Other erroneous configurations may arise when two bodies
in contact have very different sizes. In this case, in fact, numerical errors in the
exact intersection between triangles and edges may lead to inaccurate results. This
also happens when two colliding triangles are coplanar or two colliding segments
collinear.

The complete method allows to approximate dynamic or continuous collision
detection with reduced impact on the overall computation. The method is based
on the computation of the time of contact between interfering triangles. During
the simulation approximated values are used, due to the difficulties of solving the
non linear system associated.

Different root finding methods have been analyzed and evaluated to identify the
one that provides the best results in realistic conditions. The three methods provide

4.4 Conclusions 61

similar results; bisection method, despite its simplicity and the linear convergence
rate, behave as well as the more complex Brent method. The use of the bisection
method appears thus more suitable, also in anticipation of the implementation
of a simulator on different architectures such as parallel processors or graphic
cards that usually impose constraints on the number of available resources or the
handling of branches and loops.

The simulation of virtual environments, comprising of physical simulation, col-
lision detection with V-collide library and collision solution with the described
approach runs at 55Hz when two detailed models are introduced in the scene
and at 165Hz when two coarse models are simulated. The time required for the
computation of the exact collision times is 0.94msec and 0.24msec respectively.

5

Friction Models

Due to the very evident effects it has in daily life, friction has been studied since
Renaissance. Empirical studies identified three main parameters that rule the fric-
tional contact between bodies: the normal force between the two contacting sur-
faces, the tangential force and the friction coefficient that is a characteristic of the
two materials in contact. Two principal states can be identified by the observation
of contacting bodies: sticking and sliding contact. In the sticking phase the exter-
nal tangential force is completely balanced by the frictional force, whereas in the
sliding phase friction only partially counterbalances the tangential force. The first
observations of friction led to the development of three empirical laws that state
that:

• friction force is directly proportional to the normal load;
• friction force does not depend on the apparent area of contact;
• kinetic friction is independent of the sliding velocity.

Even if modern studies proved that these three laws are not correct (in particular,
the second one does not hold when applied to deformable models), they summarize
the key aspects of friction as it can be perceived in common experiences. The
development of correct friction models is nonetheless a key requirement for many
research fields such as control, geology or automotive. It is essential in tribology
but it is also an important aspect of the physical simulation of environments when
simulated bodies interact.

In the following section we will provide a brief overview of some aspect of
the friction that underline the need for realistic (and dynamic) friction models.
Then we will review some of the principal models that allow to mimic the dry
contact between solid bodies and their extension to lubricated contact. We will
provide a comparison of the computational complexity of the different models and
a qualitative analysis of their responses. Finally we will discuss how the different
models can be integrated into the physical environment described in previous
chapters.

64 5 Friction Models

5.1 Dynamic Components of Friction

During the study of friction, the identification of phenomena that cannot be ex-
plained with the cited laws lead to the development of more complex laws and
models. These phenomena are principally related to the dynamic components of
the friction effect. One of these phenomena is the dependency of the friction on
the relative velocity of the contacting surfaces that is in sharp contrast with the
third empirical law. It can be represented by plotting the frictional force against
the relative velocity of the two surfaces, and the result is presented in Figure 5.1.
The figure shows that the frictional force at constant normal load and constant
velocity is a function of the velocity. The dip in the force at lower velocities is
called Stribeck effect from the name of the researcher that first identified it [97].
The actual shape of the curve depends on the contacting surfaces, the temperature
and the lubrication. Stribeck effect is only observed when two stiff materials (such
as metals) are in rolling contact with lubricant. For this reason it is not a crucial
component in the simulation of soft bodies in contact but we include it in our
analysis for the sake of completeness.

Frictional Force

Velocity

Fig. 5.1. The Stribeck effect: at constant normal load and velocity the modulus of the
friction force is a function of the velocity.

Another effect that characterizes the contact between surfaces is the depen-
dency of the break away force on the the rate of increment of the tangential
force [55]. The break away force is the force that is needed to overcome the static
friction and to initiate the motion. If the break away force is plotted against the
rate of variation of the tangential force the obtained graph shows a curve simi-
lar to the one shown in Figure 5.2. The figure illustrates that for higher rates of
variation of the external force, the force needed to switch from sticking to sliding
phase decreases.

A further aspect of the sticking regime, that usually is not clearly noticeable,
is the pre-sliding motion. It can be verified with two bodies that are in frictional
contact with a tangential force that stays below a certain threshold: if the force is
held constant, the displacement will likewise remain constant (except perhaps for
creeping motion). When the force is decreased to zero, not all displacement will
be recovered, i.e. there will be a residual displacement that is called pre-sliding
motion.

The last important component of friction that we cover has been presented
in [49], where authors describe experiments conducted by superimposing a periodic

5.2 Friction Models 65

Force rate

Break away force

Fig. 5.2. The graph illustrates the dependency of the break away force on the ratio of
increment of the force: smaller forces are required to switch from the sticking phase when
higher force ratio are applied.

time-varying velocity on a bias velocity, so that unidirectional motion is obtained.
In these conditions the relation between friction and velocity is characterized by
hysteresis. The plot of the friction force against the velocity can be found in Figure
5.3. The size of the hysteresis loop increases with normal force, viscosity and
frequency of the velocity variation.

Frictional Force

Velocity

Fig. 5.3. Relation between friction force and velocity observed in [49]. The friction loop is
lower for decreasing velocities than for increasing velocities. The hysteresis loop augments
with the increment of the velocity variation frequency.

All these phenomena suggest that the laws previously presented cannot fully
describe friction. Models should then be based on more complex laws and should
take into account the dynamic components of the effect.

5.2 Friction Models

Friction models can be classified in two main categories: static models and dynamic
models. In static friction models the friction force is given by a static function,
except possibly for zero velocity. Dynamic friction models, on the contrary, take
into account the evolution of the system in time and are usually defined through
the application of the derivative operator to one or more variables of the system.
They are thus more complex and computationally heavier. During our analysis we
evaluated static and dynamic models, as, in some circumstances, the simplicity

66 5 Friction Models

and the computational speed of static models can balance the benefits of a more
realistic but more complex dynamic model.

5.2.1 Static Models

Classical models identify a class of static models that can mimic many features of
frictional contacts. They extend the law of Coulomb adding effects such as viscous
friction, Stribeck effect and stiction. The basic model is called Coulomb friction
model, it comes directly from the three laws cited at the beginning of this chapter
and it models the friction as a force that opposes the motion with magnitude that
is independent of velocity and contact area. The equation that rules this model is
simply:

F = FCsign(v), (5.1)

where FC stands for Coulomb force and is expressed as:

FC = µF⊥ (5.2)

where µ represents the friction coefficient between the contacting surfaces and
F⊥ is the force normal to the contact surfaces. This model does not define the
force at zero velocity: its value depends on the definition of the sign function and
can assume any value in the interval [−FC , FC]. A graphical representation of the
model response can be found in Figure 5.4(a).

An extension to the Coulomb friction model can be obtained by taking into ac-
count the viscous friction, that depends on the relative velocity v of the contacting
surfaces and can be expressed as:

F = (FC + Fv|v|δv)sign(v) (5.3)

where δv allows a non linear dependence on the velocity and Fv is the viscous
coefficient. The resulting relation between frictional force and velocity is shown in
Figure 5.4(b) for the case δv = 1.

To better approximate the real behavior of friction forces, stiction should also
be taken into account. Stiction describes the friction force at rest as a force that
completely balance the tangential force if it is under a threshold Fs and partially
balances it otherwise:

F =

{

F‖ if v = 0 and |F‖| < Fs

Fssign(Fe) if v = 0 and |F‖| ≥ Fs
(5.4)

Using this approach friction force cannot be described just as a function of the
velocity, instead when the velocity is zero, it becomes a function of the tangential
force. In simulations, stiction can be integrated into the friction model by switch-
ing from static friction to dynamic friction when the tangential force exceed the
threshold Fs. The whole model is graphically represented in Figure 5.4(c).

This model can be further extended to mimic the Stribeck effect that provides
a continuous dependency of the force on the velocity, as plotted in Figure 5.4(d).
The complete description of the Coulomb model with stiction, stribeck effect and
viscous friction is summarized by:

5.2 Friction Models 67

F =

F‖ if v = 0 and |F‖| < Fs

F (v) if v 6= 0
Fssign(Fe) otherwise.

(5.5)

Different functions can be used as F (v) as detailed in [3], one of the most common

Velocity v

F
ri

ct
io

n
fo

rc
e
F

(a)

Velocity v

F
ri

ct
io

n
fo

rc
e
F

(b)

Velocity v

F
ri

ct
io

n
fo

rc
e
F

(c)

Velocity v

F
ri

ct
io

n
fo

rc
e
F

(d)

Fig. 5.4. Classical static friction models. (a) shows Coulomb friction, (b) plots Coulomb
friction with viscous contribution, (c) add the contribution of stiction to Coulomb model
and viscous model. (d) shows an example of Stribeck friction model.

relates the velocity to the force non linearly and can be expressed by:

F (v) = FC + (Fs − FC)e−|v/vs|
δs

+ Fvv. (5.6)

This choice computes the overall force as a weighted sum of the three discussed
terms: the Coulomb force Fc, the stiction force Fs and the viscous force Fv.

Some problems arise when the models described are used in simulation. It is no
easy, in fact, to correctly detect when the relative velocity v is zero and thus switch
from one state to the others. A method developed to overcome this limitation is
described in [56]. The proposed solution simply defines a dead zone of width 2∆v
in which the model input velocity may vary and the model output is kept zero.
The Karnopp model (by the name of the author) can be described as:

F =

{

F‖ if v ≤ ∆v
F (v) otherwise,

(5.7)

68 5 Friction Models

where the function F (v) can be any arbitrary static function of the velocity. An
example of the behavior of this model coupled with the function expressed in
Equation 5.6 is plotted in Figure 5.5. The main limitation of this model is its
requirement of the tangential force as input. Moreover the zero velocity interval,
although of practical use, does not reflect the real behavior of friction.

Velocity v

F
ri

ct
io

n
fo

rc
e
F

Fig. 5.5. Karnopp model: the graph of the friction force plotted against the velocity for
a Karnopp model with F (v) defined by Equation 5.6.

5.2.2 Dynamic Models

The use of static models can result in a lack of accuracy in some region of in-
terest: such as pre sliding displacement in the stiction regime or hysteresis when
changing the velocities of the contacting surfaces. In some simulations or models
these aspect can be of great importance: slip stick phenomena, for example, are
of great importance in the modeling of earthquakes [10] whereas hysteresis is re-
quired in the modelization of machine tools or servomechanisms [109]. To capture
these behaviors it is necessary to extend the static models to keep track of the
evolution of the system. This evolution is usually encoded in some state variables,
thus dynamic models are also referred to as state variable models.

Dahl models is a dynamic friction model that is based on classic solid mechanics
[23]. In solids subjected to stress, the friction force increases until rupture occurs,
the stress strain curve can be expressed as a differential equation and used to model
the friction. Dahl model is based on this approach and it defines the friction force
as:

dF

dx
= σ

(

1 − F

FC
sign(v)

)α

(5.8)

where x is the relative displacement of the contacting surfaces, σ is the stiffness
coefficient and α is a parameter that controls the shape of the stress strain curve.
The Coulomb force FC controls the slope of the derivative of the resulting force. In
this model the friction force depends only on the displacement. Velocity is ignored
in the computation of friction force, except for its sign. Thus this model cannot
mimic Stribeck effect, as it is strictly related to velocity and to its variation rate..
The Dahl model can also be expressed in the time domain, and, for α = 1 (a very
common choice) it becomes:

5.2 Friction Models 69

dF

dt
= σv − F

FC
|v| (5.9)

and then, by introducing F = σz

dz

dt
= v − σ|v|

FC
z (5.10)

F = σz (5.11)

In the previous equation z describes the evolution of the system, and is used in
implementations to keep track of the state of the system. The response of a Dahl
model to a sinusoidal input velocity is show in Figure 5.6 in which hysteresis
is clearly visible. Since the model does not take into account the velocity ratio,
doubling the amplitude of the input (thus doubling its derivative) leads to bigger
displacements, but the maximum exerted force remains constant.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Displacement x

F
ri

ct
io

n
F
o
rc

e
F

Fig. 5.6. The frictional force computed by a Dahl friction model to a sinusoidal input
velocity. The force is plotted against the displacement of the body.

An extension of the Dahl model is the LuGre model [14]. It combines the Dahl
model with arbitrary steady state characteristics such as the Stribeck effect. The
internal state of the model can be interpreted as in the bristle model [22]: when two
bodies are in contact each point of contact can be considered as a bound between
flexible bristles. A relative movement of the contacting surfaces causes a change
in the strain of the bristles which act as springs, giving rise to frictional force:

F =

N
∑

i=1

σ0(xi − bi) (5.12)

where N is the total number of bristles, σ0 is the stiffness of the bristles, xi is the
relative position of the bristles and bi is the location where the bound was formed.
When the deflection is large enough the bristles start to slip. The average bristle
deflection for a steady motion is determined by its velocity. This model is able
to mimic the Stribeck effect and rate dependent phenomena, such as the break
away phenomena described in Figure 5.2 or hysteresis. The complete model can
be expressed by:

70 5 Friction Models

dz

dt
= v − σ0

|v|
g(v)

z (5.13)

F = σ0z + σ1(v)
dz

dt
+ f(v), (5.14)

where z encodes the average bristle deflection and σ1(v) is the damping of the
bristles. Functions g(v) and f(v) model the Stribeck effect and the viscous friction
respectively. A common choice for g(v) is:

g(v) = α0 + α1e
−(v/v0)

2

(5.15)

in which α0 represents the Coulomb force (FC in previous equations), α0 + α1

corresponds to stiction force (previously Fs) and the parameter v0 controls how
the Stribeck effect varies within the interval [α0, α0 +α1]. The plot of the frictional
force generated by a LuGre model in response to a sinusoidal velocity is plotted
in Figure 5.7. In this case, by doubling the input velocity the maximum exerted
force greatly increases.

0 0.5 1 1.5 2 2.5 3 3.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Displacement x

F
ri

ct
io

n
F
o
rc

e
F

Fig. 5.7. An example of the response of a LuGre model to a sinusoidal input velocity.

This model is suitable to simulate lubricated contact. By using a decreasing
function σ1(v), for example, it models the change in damping due to more lubricant
being forced into the contact interface by the increased relative velocity.

By modifying the equation that rules the evolution of the state in Equation
5.14 it is possible to derive the Elasto Plastic model [29]. This model extend the
LuGre model and introduces the possibility to simulate pre sliding displacement
and stiction. The state variable z is defined as follow:

dz

dt
= v

(

1 − α(z, v)
σ0

Fs(v)
sign(v)z

)i

, i ∈ Z (5.16)

where the function α(z, v) is used to introduce stiction in the behavior of the
model. An example of this function is:

α(z, v) =

0 if |z| < zba

1
2 sin

(

π
z−
(

zmax+zba
2

)

zmax−zba

)

+ 1
2 if zba ≤ |z| < zmax

1 otherwise

(5.17)

5.3 Model Comparison 71

The response of an elasto plastic model computed for a sinusoidal input velocity
is qualitatively very similar to the response of a LuGre model and can be found
in Figure 5.8.

0 0.5 1 1.5 2 2.5 3 3.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Displacement x

F
ri

ct
io

n
F
o
rc

e
F

Fig. 5.8. The response of an elasto plastic friction model to a sinusoidal input. The
behavior of the model is similar to the LuGre model behavior, but the output force is
shifted of a positive amount (about 0.15 N).

The great number of friction models and their modifications suggest that the
choice of the right model depends on the application for both the realism require-
ments and the computational complexity. In the next section we evaluate these
requirements for the scenario of interactive simulations of deformable models.

5.3 Model Comparison

As we discussed in the previous section, there are big differences between the
various friction models. As we are interested in interactive simulations the com-
putational time represents a discriminant factor in the choice of the model. Thus
we analyze a simple system composed by a mass that slides, with friction, over a
plane. The weight of the system used for the simulations is 1kg subject to a gravity
acceleration of 9.8m/s2. The parameters of the different models have been tuned
to obtain similar physical characteristics: for example the same FC has been used
for Coulomb, Karnopp and Dahl models, whereas for LuGre and Elasto Plastic
models their parameter α0 has been initialized to FC . A similar approach has been
used in the definition of other constants.

We apply a force to the mass composed by a sinusoidal imposed over a con-
tinuous force, as shown in Figure 5.9. The small positive bias in the applied force
allows us to highlight the absence of stiction effect in some models. We report
and comment the evolution of the system with the different friction models and
provide an evaluation of the time spent in the update of the friction force and of
the model state at each simulation time step. We intentionally neglect to discuss
and evaluate the parameters of the models and their effect on the output as the
main goal of our analysis is the comparison of model features and complexity.

72 5 Friction Models

−0.9

−0.6

−0.3

0

0.3

0.6

0.9

1.1

x 10
−4

Time

Fig. 5.9. The force used as input to the system during the evaluation of different friction
models. The signal is composed by a constant value and a sinusoidal component.

5.3.1 Coulomb Model

The output obtained by coupling the physical system with a Coulomb friction
model extended with stribeck effect is provided in Figure 5.10. The graph shows the
position, the velocity and the frictional force during the evolution of the system.
As can be noticed, the position of the mass increases in time as a sinusoidal
signal superimposed to a constant slope. The underlying constant displacement
demonstrates the absence of stiction in the evaluated model. The friction force
shows a discontinuous behavior and its sign changes accordingly to the velocity.

Time

Position
Velocity
Force

Fig. 5.10. The evolution of the physical system with friction modeled with a Coulomb
model. Force graph has been scaled down to increase readability.

Some undesired jumps can be seen at the beginning of the simulation, when
the velocity is zero, and right after the middle of the plot and are identified by
the thicker lines in the graph. These jumps are due to the difficulty of the model

5.3 Model Comparison 73

to correctly identify when the mass velocity is zero. The mean time required to
compute the friction force at each time step is 1.58−2msec.

5.3.2 Karnopp Model

The Karnopp model gives results that are very similar to the Coulomb one. The
graph of its output is shown in Figure 5.11. The evolution of velocity and position
is indistinguishable from the ones obtained with Coulomb model, whereas the
computed friction force does not show the spikes that are present the output
of Coulomb model. Karnopp model, in fact, does not require to recognize zero
velocity, thus provide a more stable behavior at low velocities. Its implementation
is very similar to Coulomb model’s one, but since it requires one branch less, the
mean time required for the computation of one single update in the friction force
is thus 5.73−4msec.

Time

Position
Velocity
Force

Fig. 5.11. The evolution of the physical system coupled with a Karnopp friction modeled.
Force graph has been scaled down to increase readability.

5.3.3 Dahl Model

Dahl method is the first dynamic model we analyze, its response greatly differs
from static method output as can be noticed from Figure 5.12. The graph clearly
shows that the computed friction force reaches a stationary state after the initial
phase, the force values has been amplified in the plot. Since the frictional force is
smaller with respect to previous cases, the contribution to the velocity due to the
continuous component of the input force increases. This leads to a drift of velocity
toward the positive axis and to bigger displacement.

The mean computational time required to update the model state and to obtain
the friction force estimation is 4−3msec.

5.3.4 LuGre Model

The LuGre model response is summarized in Figure 5.13. By isolating the periodic
component in the force, it is possible to recognize a dip in the force that corresponds

74 5 Friction Models

Time

Position
Velocity
Force

Fig. 5.12. The output of Dahl model applied to the analyzed system and the corre-
sponding velocity and position profiles. Force values have been magnified in the graph to
increase readability.

to the Stribeck effect. This model cannot reproduce stiction, in fact the body
continues to increase its position during the whole simulation. The complexity of
the model translates into a higher computational time, in fact, the mean time
for the update of the model state and the computation of the friction force is
1.15−1msec.

Time

Position
Velocity
Force

Fig. 5.13. Response of the LuGre model integrated into the simulated environment.
Stribeck effect can be isolated in the force profile. Force has been scaled down to increase
readability.

5.3.5 Elasto Plastic Model

The simulation of Elasto Plastic model provides interesting results. As expected,
it is the only model (among the models evaluated in this work) that is capable of
modeling stiction. The behavior of the model can be seen in Figure 5.14. Stiction
is indicated by the absence of net motion when the system stabilizes. This is due

5.4 Integration 75

to the friction model completely balancing the small constant input force and this
is due to its ability to model stiction. The model requires the computation of
Equation 5.17 and thus is computationally heavier than the LuGre model. The
computational time required to update the model and the force however is very
similar and it is about 1.17−1msec for a single step.

Time

Position
Velocity
Force

Fig. 5.14. Behavior of the Elasto Plastic model applied to the simulated environment.
Stiction can be recognized by the absence of net motion after the initial phase. Force plot
has been scaled down to increase readability.

The evaluation of the different models shows that their behavior is very differ-
ent. Thus, to allow a wider range of simulations, we do not restrict our approach
to one model, instead we developed a framework to seamlessly integrate different
friction model into the physics of the environment.

5.4 Integration

The integration of friction models into the physical simulation requires the com-
putation of three vectors for each contact point: the vector describing the relative
velocity of the contact point, the vector containing the force normal to the con-
tacting surfaces and the vector with the tangential force. These variables can be
approximated from the results of the physical simulation. In fact, during the simu-
lation we compute the direction of each surface point of the model, we estimate the
force acting on that point and we obtain, through collision detection and solution,
the exact point where the contacts happen.

To obtain the required values we consider a point that, during a simulation
step, moved from a position p(0) to a position p(1). During this time step the point
crosses the surface of a triangle tri at a time t (these information are provided
by the collision detection and solution phase) as showed in Figure 5.15. Moreover,
from the physical model, we obtain the force fi(0) that acted on each surface point
i of the contacting bodies at the beginning of the time step.

With these data we can compute an approximation of the variables needed
to feed the friction model. The basic idea is to detect the velocity and the force

76 5 Friction Models

tri

p(0)

p(1)

p(t)

a

b

c

f

f

n (t)
tri

Fig. 5.15. A point colliding with a triangle: the picture shows some of the variables
involved in the computation of the contact forces.

at the time of contact, and to decompose them into their tangential and normal
components.

5.4.1 Velocity Approximation

During a single time step each point moves along a straight line with a constant
velocity. Thus the velocity of the colliding point ~vp does not change during the
time step and at the instant of contact it is equal to the velocity ~vp(0) it has at the
beginning of that step. During the collision solution phase we freeze the colliding
point and triangle at the instant of collision. Thus we exactly know the normal
~ntri(t) to the plane containing the triangle at the time of collision. As the triangle
also moves during the simulation we compute the force of the contact point on
triangle surface ~vt(t) as the linear combination of the velocities at the beginning
of the time step of triangle’s vertices:

~vtri = ~vtri(0) = α~va(0) + β~vb(0) + γ~vc(0), (5.18)

where ~vi(t) indicates the velocity at time t of the point i and α, β, γ are the convex
combination of the triangle vertices that define the point on the triangle surface.
These coordinates are defined as follows

αa(t) + βb(t) + γc(t) = p(t) with α+ β + γ = 1 and α, β, γ ≥ 0, (5.19)

and allow to express each point inside the triangle as a weighted combination of
triangle vertices. If the contact happens outside the triangle, we use the barycentric
coordinates obtained by projecting the contact point on the closest triangle edge
or vertex.

The relative velocity of the two points is thus simply the difference of the two
velocities:

~v = ~vp − ~vtri. (5.20)

5.4 Integration 77

We split this velocity in two components: a contribution along the triangle sur-
face ~v‖ and a contribution normal to the triangle surface ~v⊥. Normal velocity is
discarded whereas parallel component is used by the friction model if it needs it.
The two components are simply computed by:

~v⊥ = ~v × ~n (5.21)

~v‖ = ~v − ~v⊥. (5.22)

5.4.2 Force Approximation

Forces are computed with a similar method. We consider that forces acting on
each surface point remain constant during a single temporal step. This is in accor-
dance with the numerical integration technique used to update model configura-
tion. Another consideration supports this assumption: model surface in fact does
not provide any inertial property during the contact, as no masses are associated
to surface points. Thus, the assumption of a non null force at the end of the time
step may provide a sort of inertia to the body surface.

In analogy with the velocity approximation, we compute the overall forces
exerted on the contact point by the colliding point and by the triangle. The force
on the triangle surface is parameterized with the barycentric coordinates of the
point:

~ftri = ~ftri(0) = α~fa(0) + β ~fb(0) + γ ~fc(0). (5.23)

In the above equation fi(t) is the force acting on element i at time t and α, β and
γ are the parameters identified during the velocity approximation.

The computation of the total force requires more attention, as a simple differ-
ence can produce wrong forces. We have to handle the cases where the two forces
pull the point away from the triangle even if they have the same direction. For
example if the two forces are both directed along the normal and the force acting
on the point is bigger, in modulus, than the force acting on the triangle the point
moves away from the triangle and the normal force should be zero. To obtain the
correct estimation of the force we use:

~f =

0 if |~fp| > |~ftri| and (~fp − ~ftri) · ~fp > 0 or

|~fp| < |~ftri| and (~fp − ~ftri) · ~ftri < 0,
~fp − ~ftri otherwise

(5.24)

The case described in the previous paragraph is captured by the first part of
the clause, the second part, instead, describes the situation when the resultant
force is directed along ~ftri and ~ftri is the bigger force. The force is then split into
two components, one perpendicular to the triangle surface and represented by ~f⊥
and the other directed long the triangle surface and indicated by ~f‖. The two
components are obtained by:

~f⊥ = ~f × ~n (5.25)

~f‖ = ~f − ~f⊥. (5.26)

The computed relative velocity ~v‖ and the normal and tangential forces ~f⊥ and
~f‖ are fed to the friction model to obtain the frictional force exerted during the

78 5 Friction Models

contact. It should be noticed that all the variables are expressed from the point
of view of the colliding point. If the friction model requires a description of its
state, the value is stored in the colliding point data structure. This allows to keep
a distinct model for each contact.

5.4.3 Force Distribution

Once that the frictional force ~ff has been computed it can be applied to the surface
point and used in the next simulation step to update the physics of the model.
Handling the distribution of the force to the triangle is more complex, since forces
can only be applied to the nodes of the surface mesh. To solve this problem without
introducing ghost forces we distribute the force acting on the triangle using the
barycentric coordinates introduced in Section 5.4.1. Moreover the friction force is
oriented along the versor defined by the relative velocity of the colliding point and
the triangle surface. The forces due to friction are thus:

~ff
p = −~ff ~v

|~v| (5.27)

~ff
a = α~ff ~v

|~v| (5.28)

~ff
b = β ~ff ~v

|~v| (5.29)

~ff
c = γ ~ff ~v

|~v| (5.30)

To take into account the orientation of the friction force in the two cases, point
and triangle, we change the sign of the force when applied to the colliding point,
as the presented friction models return a force that is oriented as the velocity (or
the tangential force).

5.4.4 Examples

We integrated the friction models described in Section 5.2 and the force/veloc-
ity computation method proposed in Section 5.4 with the framework described
in Chapter 3. This integration lead to a virtual environment where deformable
models interact with frictional contact. We use the obtained simulator to compute
the evolution of the interaction between two deformable models. The considered
models are the coarse model and the detailed model described in Section 4.3. When
applied to a pair of coarse models the simulation enriched with Dahl model runs at
157Hz whereas the use of a pair of detailed models leads to an update frequency
of 43Hz.

In Figure 5.16 we compare the result of the simulation of two deformable models
in contact with and without friction. The scene is composed by the two models
introduced in Chapter 4 where the red model is free to fall under gravity force and
the blue model deforms under gravity force but is fixed at his ends. The friction
model used in the simulation is a Karnopp model. The different images are taken
at corresponding simulation time.

5.4 Integration 79

The difference between the evolution of the two scenes is evident: in the non
frictional contact the falling body slides along the surface of the fixed one and falls,
whereas in presence of friction (with a proper value for the friction coefficient µ)
it stops on the second model. Intermediate behaviors can be obtained by changing
the parameters of the friction model. The use of different models does not lead to
significant differences into this specific simulation.

Fig. 5.16. The simulation of the same scene with and without the friction effect. In the
upper row the friction computed by a Karnopp friction model slows down and stops the
red model. In the lower row the absence of friction causes the red model to fall after
sliding without friction on the blue model.

The simulations of a deformable sphere that falls over an inclined plane for
different values of µ (and thus of FC) are provided in Figure 5.17. Each column of
the figure represents one simulation: in the leftmost column the contact between
the plane and the ball has no friction, thus the ball simply slide along the plane
without rolling. In the middle and in the rightmost column a Karnopp model is
used to mimic the friction between the plane surface and the ball. The value of
the parameter µ used in the right column is twice the value used in the middle
column. The images cover ten seconds of simulation, and are taken at regular
temporal intervals.

The presence of friction in the last two simulations causes the ball to start
rolling on the plane surface. In addition, the increment of the µ value does not
changes significantly the evolution of the simulation. This is in accordance with
reality in the case of stiff bodies. In fact, after the body started rolling, the relative
velocity and the tangential forces between the contacting points remain small
and the increment of the friction coefficient µ leads to small differences in the
simulation.

80 5 Friction Models

Fig. 5.17. Three simulations of a ball falling on an inclined plane. The left column
presents some screenshots of the simulated environment without friction. The central
column represents the same environment with friction modeled with Karnopp model.
The right column presents the environment with a Karnopp model instantiated with a
value of µ that is twice the one used in the central column. The images cover ten seconds
of simulation, and are taken at regular temporal intervals.

5.5 Conclusions 81

5.5 Conclusions

To enrich the simulation of deformable environments with frictional contact we
analyzed some of the most used friction models in physical simulation and in
control. Two classes of model have been considered: static models (Coulomb and
Karnopp models) and dynamic models (Dahl, LuGre and Elasto Plastic models).
All of these models allow the simulation of dry contact, in addition LuGre and
Elasto Plastic models also provide the ability to simulate lubricated contacts.

The analysis was conducted by isolating some dynamic aspects of friction, and
by identifying the requirements and the features needed by our scenario: basically
the requirement for fast computations and reduced interest in behaviors that can-
not be perceived in the common life experience. The theoretical background of
the different models have been presented along with their response to a sinusoidal
input. The responses highlighted the difference between the models.

In addition, the models have been evaluated in a realistic scenario, i.e. inte-
grated into a mass spring system undergoing a tangential force. The input force
has been chosen to highlight the stiction component of model response. Results
clearly show the difference between the analyzed models, in particular between the
coulomb, Karnopp and Dahl models provides results that are qualitatively similar.
LuGre and Elasto plastic models, on the other hand, show more complex behaviors
but at the cost of higher computation time.

The choice of the friction model is strictly dependent on the phenomena of in-
terest and on the condition of simulated environment. The reduced computational
time of Dahl and Karnopp models make them suitable for environments where a
lot of contacts are expected (very soft bodies or crowded environments) whereas
LuGre and Elasto Plastic models are more suitable in presence of few contacts
and when a higher realism is required. Due to the oscillations in the friction force
computed by Coulomb model we do not integrate it in the simulation, as similar
properties can be obtained by using the more stable Karnopp model.

The integration of the friction model into the deformable model simulation
leads to realistic results, as shown by Figure 5.16. The use of different models lead
to very similar results in the proposed case. This is mainly due to the simplicity of
the simulated environment, nevertheless different values for the Coulomb force or
for other parameters lead to great differences in the evolution of the scene. Figure
5.16 shows two antithetic cases: in the first sequence the falling model completely
is completely stopped over the fixed one by the friction, whereas, in absence of
friction it slides on the fixed model and falls.

Friction models require the tuning of one or more parameters. The identification
of these parameters is not straightforward, but it should be carefully performed
taking into account the different features of the colliding bodies such as: properties
of the bulk materials of the bodies, properties of the surface materials of the bodies
and the presence of lubricant or water.

The low frame rate obtained in the simulation of deformable models in contact
with friction suggests that the overall computation requires great improvements.
In particular, thanks to the nature of the computation, it can take advantage from
the parallelization of the code. Thus, in Chapter 7 we will provide the details of a
parallel implementation of a deformable environment with frictional contact that

82 5 Friction Models

exploits GPU computational power to obtain update frequencies that are suitable
for interactive application with haptic feedback.

6

Anisotropic Mass Spring Models

In many scenarios, material behavior is more complex that the one described by
an isotropic model. Many materials does not behave in the same way when de-
formed along different directions, and this requires the introduction of anisotropic
deformable models. In Chapter 2 we limited our study to isotropic deformable
models: in fact Equation 2.5 validity is restricted to this kind of tissues. This limi-
tation can be too restrictive in many applications. In the simulation of anatomical
structures, for example, many tissues are transversally isotropic, i.e. they have dif-
ferent behaviors along one direction and in the plane orthogonal to this direction.
This is the case of muscles, tendons, ligaments or blood vessels and more generally
fiber reinforced composites where all the fibers are parallel. For this reason it is
important to introduce in the simulation deformable models that are able to mimic
non isotropic materials.

A fibrous material usually offers more resistance when compressed or stretched
along fiber directions. The modelization of such tissues requires a more complex
approach. While an isotropic material has only two independent parameters that
defines the elasticity matrix, for a transversally isotropic tissue the number of
parameters is five. Supposing that the fiber are oriented along the z-axis and thus
the anisotropy direction coincides with the z direction the five parameters can be
defined as follows:

• Ep: Young’s modulus in the x-y symmetry plane;
• νp: Poisson’s ratio in the x-y symmetry plane;
• Epz: Young’s modulus in the z direction;
• νpz: Poisson’s ratio in the z direction;
• Gzp: shear modulus in the z direction.

These parameters can be determined experimentally with uniaxial tension tests
(Eo, νp, Epz, νpz) or with pure shear solicitations (Gzp).

In this chapter we will review some of the techniques developed to simulate
anisotropic tissues in general and for transversally isotropic tissues in particular.
Then we will propose an innovative method to introduce anisotropy in MSM s.
We will compare the method with FEM formulation in the 2D case and provide
results of simulations to prove that the method is particularly suited for interactive
simulations because of its simplicity and limited computational requirements.

84 6 Anisotropic Mass Spring Models

6.1 Related work

Because of the high importance of anisotropic behaviors many methods have been
developed to introduce anisotropy in simulations. One of the most active area from
this point of view is surgery simulation, because of the stringent requirements of
realism.

Anisotropic material simulation using FEM s has been addressed in [110]. Two
methods are introduced in this work: the first one expresses the material stiffness
matrix in a frame of reference that is aligned with the material fiber direction. This
approach is not suitable for interactive simulations because, even if the obtained
realism is higher, since it requires to update the model every time that the direction
of fibers change (i.e. the model rotates or bends). The second approach, followed
also in [87] models anisotropy by using Saint Venant-Kirchhoff elasticity theory and
adding to the isotropic elastic energy an anisotropic contribution that penalizes the
material stretch along a desired direction. This method is based on the isotropic
stiffness matrix that is defined by the two Lamé coefficients λ and µ and extends it
by introducing two more parameters, called Lamé coefficients along the anisotropy
direction: λzp and µzp. Results prove the feasibility of the methods: Figure 6.1
compares the behavior of an isotropic model (in pink, on the left) and of two
transversally isotropic models obtained with the proposed method (in light blue
and blue, the rightmost one has twice the stiffness of the central one along the
anisotropy direction). The number of total independent parameters that rule the
deformations is four, thus this method has some limitations in the realism of
the simulation. In particular it neglects the shear modulus Gzp thus ignoring the
dependency of deformations along different directions.

Fig. 6.1. Deformation of tubular structures with nonlinear transversally isotropic elas-
ticity, from [87].

Due to the limitations of FEM s to model anisotropic behavior in interactive
simulations ad-hoc methods have been developed. In [60] a chain linked model
is extended to provide anisotropy in simulations at frequencies that are suitable
for haptic feedback. The model is composed of springs and cylinders: springs rep-
resent material elastic properties whereas cylinders are used to activate springs.

6.1 Related work 85

The model deformations can be computed separately along each direction, this
ensures the ability to introduce different behaviors along different directions. The
deformed configuration is used to compute the object internal potential energy
that is used to update the model and is reflected to the user. The method proved
to be suitable for interactive simulation with force feedback, but the decoupling
of deformations along different directions reduces the realism of the simulation. In
particular this model completely decouples the different directions, thus a deforma-
tion along one axis does not affect the model configuration in the plane orthogonal
to that axis. Another method is detailed in [123] where the authors propose an
approach based on the analogy between heat conduction and elastic deformation.
The potential energy stored in an elastic body is propagated among mass points
following the principle of heat conduction. The method allows the simulation of
large deformations and handles anisotropic behaviors by changing the thermal con-
ductivity constants between a node and its neighbors. The simulation presented of
anisotropic materials fails to provide different behaviors along different directions,
instead they only show models with areas of different stiffness (see Figure 6.2).
Thus it is not clear how the proposed method behaves in transversally isotropic
tissue modeling. A tensor based approach is proposed in [88]. This approach ex-
tends the method introduced in [87] and discretize the deformable body volume
with a tetrahedral mesh. Each tetrahedron is characterized by its four vertices
and six edges, by four Lamé coefficients introduced in Section 2.1, a direction of
anisotropy and four shape vectors. These shape vectors store the relative position
of each vertex with respect to the other vertices of the tetrahedron. The obtained
model allows to include the anisotropic contribution to the internal force compu-
tation. The computational complexity of the model is not discussed in the paper,
but is is stated that the obtained physical simulation runs at 30Hz, and forces fed
to the user are extrapolated from the graphical simulation.

(a) (b) (c)

Fig. 6.2. Deformations of anisotropic materials. The part highlighted in red corresponds
to anisotropic tissue.

86 6 Anisotropic Mass Spring Models

The introduction of anisotropic behavior in mass spring based simulation is
more difficult. The simulation of cloths is the more common area of application
for this techniques. The simulation of cloths is indeed very challenging but the
required anisotropic behavior is in two dimensions only and they are usually tar-
geted at graphical simulations. In [4] a model of cloth using a triangular mesh is
derived, it computes in-plane forces from a continuum formulation. This approach
supports anisotropic behavior but it is not guaranteed to converge. In [9] the au-
thors enhance MSM ’s for tetrahedral and hexahedral meshes to include anisotropic
material behavior. The volumetric elements they use (tetrahedra or hexahedra) in-
clude a frame of reference placed at their barycenter. The barycenter is connected
to element faces by springs, in addition, angular springs are introduced at each
vertex to the element, to oppose the deformation of connected edges. The frame of
reference is used to assign the anisotropy direction to the single elements and used
during internal force computation to obtain the desired behavior. This approach
allows the simulation of anisotropic behaviors at the cost of increased compu-
tational complexity. Simulation results obtained with this method are shown in
Figure 6.3.

(a) (b) (c)

Fig. 6.3. Different anisotropic behaviors were obtained using the same tetrahedral mesh
undergoing gravity force. Anisotropy is tuned by changing the stiffest direction in the
material. This direction is: (a) horizontal (as a result, the material tends to get thinner
and longer), (b) diagonal (with angle of π/4, which constrains the material to bend in
this towards left), (c) hemicircular (as a C shape, which causes a snake-like undulation
of the material.

A naive approach to anisotropy simulation is described in [17] where a regular lat-
tice is generated. Springs are aligned with the anisotropy direction and their elastic
coefficient depends on the orientation. This approach leads to realistic results when
applied to regular structures but it is difficult to generalize it to irregular tetrahe-
dral meshes or to varying anisotropy directions. Moreover, to reduce computational
burden, the authors limit the propagation of forces and deformation to a subset of
model nodes computed with a breadth-first search, this limits the realism of simu-

6.2 Method Description 87

lation results. An innovative and interesting method is described in [116] where the
authors generate a set of ellipsoids that cover the volumetric domain. The shape
and orientation of the ellipsoids allow to keep track of the direction of anisotropy:
spring rest length and forces are computed as a function of the ellipsoid shapes to
maintain the anisotropy during deformations of the mesh. This method does not
simulate deformations, but it can be used, in conjunction with a proper deformable
model, to simulate anisotropic behaviors. The main drawback of the methods is
the high computational cost introduced by the remeshing phase.

6.2 Method Description

The goal of the work described in this section is to obtain an effective way to
simulate transversally isotropic tissues using MSM s. To introduce our approach
we will first present it in two dimensions and then we will extend it to three and
more dimensions.

6.2.1 Analytical Description

For a 2D model, or when a flat thin sheet of material is loaded with “in plane
force” (i.e a force that lies in the model plane), the behavior of an anisotropic
material can be described by the material elasticity matrix D, that has the form:

D =
1

1 − µxyµyx

Ex Exµxy 0
Eyµyx Ey 0

0 0 Gxy

 , (6.1)

where Ex and Ey are Young’s moduli and µxy and µyx are the Poisson’s ratios in
the x and y directions respectively and Gxy is the shear modulus. Young modulus
is a measure of tissue stiffness and the difference between Ex and Ey control
the amount of anisotropy in the model. Geometric considerations introduce the
constraint Exµxy = Eyµyx and leads to a symmetric stiffness matrix.

The method we propose extends standard MSM springs with one or more pa-
rameters to obtain the anisotropic behavior. Each parameter is used to encode the
initial orientation of the spring with respect to an anisotropy direction and is used
to compute spring response. The method can handle any number of anisotropy axes
and any model dimensionality. We will introduce our approach with an explana-
tory example in two dimensions and then we will present the analytical description
of the behavior of extended springs.

We start by considering a 2D tissue whose principal axes are aligned with
the coordinates axes (i.e. the difference in the behavior of the tissue is maximum
for stimuli along the x and y directions) and that has a lower stiffness along the
x direction. To obtain the needed anisotropic behavior we initialize the model
as a standard, isotropic, mass spring model thus considering only one stiffness
parameter k that represent the material stiffness along the stiffer direction (in our
example the y axis). In addition we define a parameter j for each spring; this
parameter is proportional to the cosine of the initial angle α between the spring
and the softer direction (x axis in our case):

88 6 Anisotropic Mass Spring Models

j = hl cosα

where γ is a global parameter that controls the magnitude of anisotropy (i.e. the
difference of stiffness along the two directions) whereas l is the rest length of the
spring. Using this method, springs that are aligned with the softer axis will have a
j value equal to hl whereas springs that lie along the y direction will have a value
of j equal to 0.

During the computation of spring length, needed to obtain the force exerted
by the spring on connected masses, we add a contribution proportional to j to the
actual spring length. Considering the 2D tissue previously defined we can consider,
without loss of generality, a 2D spring that connects a mass located in the origin
O = (0, 0) of the frame of reference to a point P = (x, y). The parameter j
associated to the spring and the extended spring length are:

j = γ
√

x2 + y2
x

√

x2 + y2
= γx

laug =
√

x2 + y2 + j2 =
√

l2 + j2

where l is the spring length computed in the standard way and laug its augmented
length. This new method of computing the spring length leads to a useful property
of the extended springs. In the previous example, if the spring end in P is moved
to P ′ by an amount d in a direction that forms an angle β with the original spring
orientation, the force due to the length variation computed with the standard and
the extended methods are, respectively:

F = k
(

√

l2 + d2 + 2dl cosβ − l
) P ′O

‖P ′O‖

Faug = k
(

√

l2 + d2 + 2dl cosβ + j2 −
√

l2 + j2
) P ′O

‖P ′O‖
the modulus of the force exerted by the extended spring is always smaller than
the force exerted by the regular spring, i.e:

∣

∣

∣

√

l2 + d2 + 2dl cosβ + j2 −
√

l2 + j2
∣

∣

∣
≤
∣

∣

∣

√

l2 + d2 + 2dl cosβ −
√
l2
∣

∣

∣

that is equivalent to say that the function Faug has a global maximum in j = 0.
The first derivative of Faug can be written as

−1
√

(l2 + j2)(l2 + d2 + 2dl cosβ + j2)
·

(

√

l2 + d2 + 2dl cosβ + j2 −
√

l2 + j2
)2

∣

∣

∣

√

l2 + d2 + 2dl cosβ + j2 −
√

l2 + j2
∣

∣

∣

· j.

Since the modulus, square root and square are positives, the only term that in-
fluences the sign of the function is −j. Thus Faug has a global maximum in
j = 0. This mean that springs that are oriented along the y-axis, with associ-
ated j = hl cosπ/2 = 0, result stiffer than springs oriented along the x-axis for
which j = hl cos 0 = hl. This allows us to simulate the required anisotropy, more-
over, the parameter γ defines the difference between the two extreme behaviors
thus controls the magnitude of anisotropy.

6.2 Method Description 89

6.2.2 Geometrical Interpretation

This method offers also a simple geometrical interpretation that can be exploited
in the actual computation to avoid computing complex functions (such as cos(·))
thus leading to better performance. We can consider a standard spring with one
end in the origin of the frame and the other on a point P in the xy plane. To obtain
the anisotropic behavior we then lift the spring along the z-axis (thus introducing a
new dimension to the model) of an angle that is proportional to the angle between
the spring and x axis. The second end of the spring is thus raised of a certain
amount that remains fixed for the overall simulation and that is a function of the
orientation of the spring with respect to softer direction, in this example the x-
axis. In this simple case the amoount is the difference between the x coordinates
of the spring original ends. Applying the same procedure to all the spring of a
model the whole model will be lifted from the xy plane and will lie in an inclined
plane. Displacements will still lie in the starting xy plane but computed spring
forces will be in the skewed plane and rotated back into the starting space.

The behavior of springs that are aligned with the y axis will remain unchanged,
whereas the springs along the x axis will result softer. In fact the ratio between
displacement and rest length changes when the spring rest length computed in the
augmented space is higher than the rest length in the starting space. The behavior
of springs at intermediate angles will be a combinations of the two described
behaviors. Figure 6.4 represents a spring in the 2D space and the correspondent
spring in the augmented space.

Fig. 6.4. Construction of the augmented model, starting from a standard 2D model we
add a third dimension and obtain the augmented model (its projection is shaded).

To prove the correctness of this approach we can apply simple geometrical
considerations to obtain the force exerted by a spring as a function of spring rest
orientation, displacement intensity and orientation and slope of the plane in which
the augmented model lies. Without loss of generality we can consider a spring of
unit length that connects the origin O with a point P = (cosα, sinα), where α is
the angle between spring direction at rest and the x axis (refer to Figure 6.4 for a
graphic representation). If we move the point P to a new position P ′ by displacing
it of an amount d at an angle β with the spring orientation we measure a force
Fstd along the spring direction:

90 6 Anisotropic Mass Spring Models

~Fstd =
(

√

1 + d2 + 2d cos(α− β) − 1
)

~P ′O/‖ ~P ′O‖ . (6.2)

Using the augmented model the point P is lifted to a new position Paug =
(cosα sin γ, sinβ sin γ, zaug) where γ = tan−1 zaug is the angle between the spring
and the plane xy. If we apply to Paug the same displacement than in the previ-
ous example and obtain the new position P ′

aug the force Faug we obtain can be
expressed as:

~Faug =
(

√

1 + d2 + 2d cos γ cos(α− β) − 1
)

~P ′O/‖ ~P ′O‖ , (6.3)

where the rightmost fraction is needed to align the force to the spring direction in
the starting space.

It can be noted that in the second case the force exerted depends on the value
of cos γ that is a function of zaug. If zaug = 0 the augmented spring behaves as
a standard spring, if zaug increases the behavior of the spring changes. Figure
6.5 plots the behaviors of the two springs, for α = {0, π/4, π/2}, d = 0.1 and
zaug = cosα cosπ/3. From the figure it is clear that the augmented spring is softer

−1 0 1 2 3 4

−0.1

−0.05

0

0.05

0.1

β

Spring parallel to anisotropy axis (α = 0, γ = π/3)

F
or

ce
 m

od
ul

us

Proposed method
Standard method

−2 −1 0 1 2 3

−0.1

−0.05

0

0.05

0.1

β

Spring at 45° with anisotropy axis (α = π/4, γ ≈ pi/18)

F
or

ce
 m

od
ul

us

Proposed method
Standard method

−3 −2 −1 0 1 2 3

−0.1

−0.05

0

0.05

0.1

β

Spring normal to anisotropy axis (α = π/2, γ = 0)

F
or

ce
 m

od
ul

us

Proposed model
Standard model

Fig. 6.5. Comparison of spring behaviors for three cases: α = {0, π/4, π/2} for d = 0.1
and zaug = cos α cos π/3.

when it is oriented along the x-axis (α = 0) and becomes stiffer as it rotates toward
the y-axis (α = π/4). When the spring is aligned with the y-axis (α = π/2) its
behavior is identical to standard springs. Increasing the value of γ (i.e. if the plane
containing the extended model moves toward the vertical) the difference between
standard and extended behavior increases, augmenting the anisotropic behavior.
To simplify the notation the spring length in these examples is one for both the
standard and augmented spring, but in the actual application of the method we
require that the projection of the spring along the augmented dimension has length
equal to the length of the original spring. This ensure that the size of the projection
of the augmented model match the size of the original model.

Extended springs can be used to simulate different stiffness along arbitrary
directions. For a material in 2D that shows a softer behavior along an arbitrary di-
rection ~a we compute, for each spring of the model, the angle α between the spring
at rest and the direction ~a and lift one of its ends by a quantity tan γ cos(α)lstd

where γ defines the anisotropy of the material and lstd is the rest length of the
spring in the original model. This results in an extended model lying on a plane
inclined of an angle γ along the direction ~a. So when augmenting a model to add
anisotropy only one value of γ should be defined. Our method ensures that the

6.3 Results 91

projection of the undeformed augmented model along the augmented dimension
coincides with the original model and that the projection of the deformed model
represents the deformation of the original model with anisotropic behavior. Forces
and displacements applied by the user are defined in a plane parallel to the origi-
nal space. During the simulation we never explicitly compute the angle γ nor we
use the cos(·) function that has super linear computational complexity instead we
handle augmented springs as regular springs defined in the augmented space.

The last constrain leads to non linear spring response. In fact in Eq. 6.3 the
value of γ is not constant during the simulation: if a spring is lengthened the value
of γ decreases whereas if it is compressed the angle γ augments. The extent of
the introduced non linearity is discussed in Section 6.3. Looking at Eq. 6.3 it can
be noticed that, for small values of γ the variation of sin γ is negligible while for
bigger values of γ (i.e. the augmented spring is very steep and much longer than
the original one) the ratio of spring length and its projection slightly changes if
the spring is compressed or stretched. Thus we expect the variation of angle γ to
be negligible.

The described method can easily be extended to handle 3D solids. By adding
one augmented dimension to a 3D solid it is possible to obtain a transversely
isotropic material, that is a material whose response in one plane S is different
to its response in the direction ~n orthogonal to the plane. By using only one
extra dimension and by defining the direction ~a as parallel to ~n allows to obtain
a material that is softer in the direction ~n. To model a body that is stiffer along
~n it is enough augmenting the model along two extra dimensions aligned with the
two vectors orthogonal to ~n and lying on the plane S. In a similar way all kinds of
anisotropic materials can be modeled, by associating up to two extra dimensions
to the model each of them aligned with an axis of anisotropy.

6.3 Results

We analyzed two key aspects of the proposed method: the realism of the results and
the additional computational time required to model the anisotropic behavior. To
prove the effectiveness of the proposed method we compared its behavior with an
anisotropic finite element models in MatLab, whereas to test the computational
requirements we compared the C implementations of a standard MSM and the
proposed method.

To obtain a reference behavior we have constructed an anisotropic dynamic
FEM of a square with 100mm edge starting from a uniform mesh composed by
200 triangles, using the matrix obtained by (6.1) using Ex = 100, Ey = 500,
µxy = 0.09 and G = 100. Then we choose two model surfaces, corresponding to
the square edges x = 5 and y = 5. We applied the same force to the face middle
points. We have instantiated the two models to obtain the same behavior, i.e.
tuning MSM stiffness and anisotropic parameter γ. The spring stiffness used is
300Pa and the slope is γ = 1.1607π ≈ 66◦. The comparisons of the simulation of
anisotropic FEM and the proposed approach are depicted in Figure 6.6.

Figure 6.6 shows that the behavior of the proposed MSM s is clearly anisotropic
and is qualitatively similar to the anisotropic FEM . We evaluated the relative

92 6 Anisotropic Mass Spring Models

Fig. 6.6. Comparison between anisotropic FEM and proposed model: the shaded trian-
gular mesh represents the MSM and the color indicates the error between the MSM and
the FEM . red wire frames represent FEMmodels.

error in displacement between FEM and augmented MSM and it always stayed
under 20% during tests. An error of 20% can be tolerated, as it is composed
by to two contributions: the error due to mass spring model and the error due
to the introduction of anisotropic behavior. In fact mass spring models can only
approximate FEM ’s [66], moreover triangular meshes are not really suitable to
mimic FEM ’s behavior, thus the error due to the introduction of anisotropy is far
smaller than 20%. Another evidence of the different behavior of the model along
the two directions is the angle between springs in the two test cases: springs along
stiffer axis bend less with respect to springs in the softer direction.

To test the computational requirement of the proposed approach we instantiate
three different MSM ’s: a cylindric model composed of 988 springs, a finer cylindric
model composed of 11321 springs and a spleen model with 19023 springs. We
use them to simulate a standard model, with no anisotropy, and a model with
anisotropy obtained with the proposed method. The key features of the models
used during these test are summarized in Table 6.1 whereas mean computational
time for a single frame of the simulation has been evaluated and is reported in
Table 6.2.

Model Points Springs Tetrahedra

Cylinder (coarse) 222 988 561

Cylinder (fine) 2579 11321 15092

Spleen 2700 19023 16383

Table 6.1. Key features of models used in tests

6.3 Results 93

Model Computational time Computational Time
standard model anisotropic model

Cylinder (coarse) 0.0463 ms (21.6 kHz) 0.0497 ms (20.1 kHz)

Cylinder (fine) 0.7042 ms (1420 Hz) 0.7564 ms (1322 Hz)

Spleen 0.8302 ms (1204 Hz) 0.9041 ms (1106 Hz)

Table 6.2. Computational times of standard and proposed MSM

The results obtained showed that the proposed method slightly slows down
the computation. In the case of the simpler model the decrease of performance
is about 6.8%. For the fine cylindric model the decrease in performance is 7.9%
whereas when handling the more complex model the overall computation slows
down of about 8.2%. The increment in computational complexity is justified by
the possibility of modeling anisotropic behavior.

In Figure 6.7 we show different anisotropic models deformed by gravity acting
along the z-axis. In the first column the direction of anisotropy is along the x-axis,
in the second column the anisotropy is along th y-axis and in the third column
it is parallel to the force direction (z-axis). In the first row the coefficient γ used
is 4, in the second row it is 8 and in the last column used γ is 12, corresponding
to a ratio between the stiffness along the stiffer and softer axis of 1.32, 1.44 and
1.48 respectively. It is clear from images that the choice of the anisotropy direc-
tion greatly affects the response of the deformable model. In particular, when the
anisotropy is orthogonal to the acting force direction (first and second columns of
Figure 6.7) the obtained deformations are similar, whereas when the anisotropy
axis is aligned with the force the tissue results softer and deforms more.

To visually compare the results of our method with other methods proposed
in literature we simulated a pinched tube, under different anisotropy conditions.
Figure 6.3 shows the results of such simulations. In (a) the tissue is modeled with a
standard isotropic model and is proposed as a reference for the other simulations. In
(b) the tissue is modeled with the proposed method and presents a softer behavior
along the vertical direction z (this required just one added dimension), finally, in
(c) the model presents a higher stiffness along the x axis. To obtain this behavior
we extended the model along two dimensions. As discussed, in fact, our method
allows to make the tissue softer along desired directions. To obtain a 3D model with
higher stiffness along one direction we need to soften the orthogonal directions,
in this case, x and y. The forces are applied to slightly different heights. Model
in (b) squeezes less since the reduced stiffness along the z direction allows it to
deform along that direction and to stretch along z. In addition it also slightly bends
because of the difference in the force application point. Model in (c) squeezes more
because of its higher stiffness along the vertical axis.

As discussed in Section 6.2 one drawback of the proposed method is that the
behavior of obtained springs is not linear because the angle γ between the spring
and the xy-plane changes when the spring is deformed. However, the amount of
non linearity is negligible. In fact for spring deformations that stay below 100% of
spring rest lenght (computed in the original, non augmented, model) the difference

94 6 Anisotropic Mass Spring Models

Fig. 6.7. Different anisotropic models undergoing gravity. In the first column model
anisotropy (softer) axis is aligned with x-axis, in the second column it is aligned with
y-axis and in the last column it is along the z-axis, and parallel to gravity direction. In
first row a value of 4 for γ is used to instantiate the model, in the second row γ is 8 and
in the third γ is 12, corresponding to a ratio between the stiffness along the stiffer and
softer axis of 1.32, 1.44 and 1.48 respectively.

(a) (b) (c)

Fig. 6.8. Different models pinched by the same forces: in (a) an isotropic model, in (b) a
transversally isotropic model, softer along the vertical direction and in (c) a transversally
isotropic model, stiffer along the vertical direction.

between the linear behavior and the behavior of anisotropic spring is always smaller
than 1% (measured as the relative error between the ideal, linear spring response
and the anisotropic spring response).

6.4 Conclusions 95

6.4 Conclusions

In this chapter we described a novel method that allows to simulate anisotropic
MSM s with reduced computational overhead. In the proposed approach MSM

points are augmented with new dimensions that skew the model springs, thus
obtaining different behaviors in different directions. Starting from a geometrical
description of the method we have analyzed the response of the anisotropic springs,
showing that they actually change their behavior along with their orientation. To
test the realism of our method we compare the simulation results with anisotropic
FEM .

Results prove that the proposed method provides an effective way to reproduce
anisotropic behavior. Some differences have been identified in the behavior of FEM

and augmented MSM that can be due to the lack of a correct calibration procedure
or to coarser model resolution.

The behavior of the tested model clearly differs when the tissue is compressed
or stretched along different directions moreover spring configuration during the de-
formation resembles anisotropic, fibrous tissue behavior. We have also tested the
computational overhead introduced by the use of our anisotropic model and found
that it is less than 10% of the computational time of a standard MSM . Therefore
the model is suitable for interactive surgical simulations, where a proper trade off
between realism and computational complexity is required. In fact the computa-
tional overhead introduced by our method is moderated, and it does not influence
the nature, intrinsically parallel of MSM . This makes the proposed approach suit-
able for multicore and parallel implementations. Moreover the method is not only
useful in modeling transversally isotropic materials, but it can be also used to
model materials with different behaviors along the three axis.

One drawback of the model that has been identified during the tests is the
introduction of a non linear behavior, however experimental results prove that
the non linearity is negligible because its contribution stays under 1% of the total
spring response.

One main limitation of the proposed method is the lack of a physical meaning
for the γ parameters, that results in difficulties when tuning the model. This is,
indeed, a common characteristic of all MSM parameters. For this reason proper
calibration techniques have been developed to define spring and damper values
that allow to mimic desired behavior [119]. These methods can easily be extended
to handle the γ parameter introduced by our method.

7

Implementation

As described in Chapters 1 and 2 the implementation of an interactive, physically
based environment requires particular attention to the computation time. In fact,
the simulation of deformable models should satisfy Equation 2.3 that relates the
temporal step used in the numerical integration to the properties of the simulated
models, in particular its stiffness and its spatial resolution. The introduction of
haptic feedback into the simulation imposes another tight constraint on the com-
putational time. In fact, to ensure a smooth and realistic force feedback to the
user, the rendered force should be updated every millisecond [60].

To avoid the computational burden due to the update of complex models at
the frequency of 1 kHz, methods based on extrapolation have been developed. But,
with the diffusion of parallel architectures they have been abandoned in favor of
parallel implementations. The parallelization of the computation allows to update
the physics of interactive environments at the proper frame rate, even in presence
of deformable models. For most applications, a frame rate of 1 kHz provides a
good trade off between computation time and realism of the simulation, in terms
of model resolution and physical parameters of the modeled tissue. Thus it is
widely accepted that a physical simulation with force feedback should run at a
frequency above 1 kHz.

The current trend in CPU design integrates two or four cores on a single chip
to improve the performance of the processor. The parallelism offered by these
architectures, in fact, allows the execution of different applications at the same
time. A similar approach led the development of the Cell BE processor, where eight
(or more) synergistic processing elements (SPE) are coordinated by a single power
processor element (PPE) to increase the level or parallelism. Graphic processing
units (GPU), on the other hand, are an example of massively multi core processor,
in fact they can embed more than 100 cores.

Thanks to the low cost of modern architectures the use of parallel processors
is gaining popularity in many fields, from gaming to scientific computation: some
libraries integrates in Matlab the support for the execution of basic operations
such as FFT, matrix multiplication or element-by-element multiplication directly
on the GPU [118].

We chose to focus on the use of GPU because of its wide diffusion on com-
mercial personal computers that ensures both a lower cost and a good future

98 7 Implementation

development for the hardware architecture. The objective of our work is the im-
plementation of a physical based simulator that allows the user to freely interact
with soft tissues feeling the force feedback. In the following we will discuss the
aspects related to the physical engine underlying the virtual environment simula-
tion. The engine exploits MSM ’s to handle deformations and performs temporal
integration, collision detection and solution, and computes the forces that should
be rendered to the user. Then we will present a method that has been devel-
oped to reduce the impact of rendering on the performance of the simulator. This
method is based on the encoding and transmission of a minimal description of the
scene, that allows a remote machine to perform the actual graphics rendering and
visualization.

7.1 GPU Implementation

The graphical processing unit (GPU) is the vector processor of current video cards.
It consists of several embedded computational units which, given their inherent
parallel structure, can be programmed using tools and languages originally de-
signed for graphics rendering such as OpenGL. The computational model is based
on a kernel function fs, called fragment shader that is a, usually simple, code
that is applied independently to each (u, v) element in a subregion of a bidimen-
sional array (or texture in the following). The result of the computation is a vector
obtained such as:

Ci(u, v) = fs(u, v, p, Ci−1(u, v)) (7.1)

where u and v are the coordinates of the processed element, p is a set of parameters
defined at the beginning of the computation process (such as scalar constants or
references to external arrays, called textures), Ci(u, v) is the resulting vector and
Ci−1(u, v) is the previously stored result.

A non-trivial CPU algorithm cannot be directly ported to GPU due to some
hardware limitations (such as limited number of simultaneously accessible re-
sources, CPU -GPU synchronization issues, lack of function recursion support,
conformance issues to IEEE-754 floating point numbers). The most complex phase
in porting is the required adaptation of the original code in terms of arrays, inter-
polators and kernel functions.

Many works focused on the implementation of physical based deformable en-
vironments on GPU . One of the most challenging and investigated topics is the
simulation of surgical scenarios. This is due to the level of realism required and to
the benefits that such a software can bring to the medical field. In [24] the authors
present an approach that works on GPU and does not rely on physics, instead
it approximates the deformation of a soft body by a local displacement field thus
obtaining frame rates suitable for haptic feedback. The main drawback of this and
other not physically based techniques, is the difficulty in the calibration of the
model. Moreover surface based methods usually do not allow to perform cuts in
the simulated body.

In [39] the authors propose to allocate masses on a 2D texture and springs on
a group of 2D textures where each element stores a spring connected to a mass
stored on the same position. Since spring valence is not constant over the model,

7.1 GPU Implementation 99

it is necessary to store invalid elements that leave the result arrays unaltered:
this reduces the computational efficiency and increases memory requirements. In
order to limit the number of invalid elements, a sorting algorithm is applied before
storing masses.

A different approach is presented in [95] where the physical simulation is not
applied to the set of masses, but to a regular cubic grid of points interconnected to
the 26 nearest ones. Since some of these points are external to the body’s volume,
the efficiency of the method is somewhat reduced. The advantage of this approach
is that it does not require to store an additional spring array since connections are
implicit in the uniform grid structure. When rendering of the body is required, the
surface mesh has to be updated: for each vertex the position has to be interpolated
from the positions of the 8 nearest points at rest instant and the normal has to
be recomputed or approximated. Force rendering is based on the download on the
system memory of all simulated data: this approach introduces synchronization
issues and reduces global performance.

Currently, a lot of different implementation of surgical simulations are using
FEM , such as in [113]. Recent researches have shown the possibility of taking
advantage of the GPU for the necessary matrix multiplications. However, compu-
tational time does not allow to reach the desired haptic frequency of 1kHz.

The use of GPU demonstrates to be effective in handling topological changes in
interactive simulations of deformable models. In [33] and [34] a method is proposed
that allows removing tetrahedra from a manifold mesh preserving the manifoldness
property. The described strategy consists of a phase of mesh refinement in the area
interested by the cut, followed by a phase of removal of the elements located near
the surface cut. The approach has the advantage of generating high-quality ele-
ments but with the drawback of creating cuts that are not very smooth. Moreover,
when applied to interactive simulations, the presented results show a big variance:
the average time for removing one tetrahedron is 0.8 ms, but it can rise to 5 ms in
some cases. This is not acceptable in interactive simulations with force feedback, as
it will compromise the realism and stability of the simulation. Another method to
handle topological changes in tetrahedrized deformable models is proposed in [93].
The approach keeps two different descriptions of the model, the first is a coarse
representation of the physical model, based on tetrahedral mesh, the second is a
triangular mesh that represents the surface and is embedded in the previous one.
The method provides good graphical results, but it is not clear how it can handle
possible haptic feedback and the time requirements of the method.

An important aspect in GPU based interactive simulation with haptic feed-
back is the computation of forces acting on surgical tools. Identifying contacts
and computing forces introduces some important issues on GPU simulators, since
downloading data from the graphics device requires CPU -GPU synchronization.
The literature about this topic is not wide and the proposed solutions (such as [95])
imply a great performance loss. For this reason we developed an approximated col-
lision detection algorithm (described in Section 7.3.1) that exploits the features of
GPU to speed up the computation and provide reasonable results.

As we already discussed, one of the main issues of physical based simulations
with haptic feedback is the requirement of 1 msec update frequency. However it is
not enough to ensure that the mean computational time required for each temporal

100 7 Implementation

step simulation is less than 1msec. The delay between two contiguous simulation
step should also be kept as constant and close to 1 msec as possible. An irregu-
lar delay in the rendering of the forces results, in fact, in a loss of realism of the
simulation. In terms of graphical rendering a variation in the delay of the frame
translates in not smooth scenes and in irrealistic variations of object perceived ve-
locities, in haptic rendering it results in non smooth interaction with virtual object
and in instabilities in the simulation. Thus, to further improve the performance of
the proposed method we use a distributed approach for the graphical rendering.

If the same GPU is in charge of physical computation and graphic render-
ing it is difficult to ensure the necessary constant timing. When evaluating the
performance of simulators, computation mean times are usually considered and
exhaustive analysis of the computation timing is often neglected. We have inves-
tigated both measures in our simulator and we found that the graphic rendering
phase can take ten times the time required for the physics update. Even splitting
the graphic rendering task in simpler sub tasks the computational time dedicated
to rendering introduces delay and discontinuities to the computation of physics and
rendering of forces because of the use of the graphic card for the visual rendering
computation.

Some works addressed the simulation of high demanding or collaborative envi-
ronments and proposed the development of algorithm for remote rendering. The
basic idea is to remotely perform the rendering computation of the scene. In [48] a
network architecture that provides adaptive level of detail rendering is presented.
In this architecture the machine in charge of rendering downloads a representation
of the part of the scene that the user is exploring, and the server provides the
representation with a progressive encoding. The main drawback of this architec-
ture is the requirement of precomputing a sequence of approximations of the scene
objects, from a coarse representation to a fine one. This requirement can not be
satisfied when the environment is populated by deformable models, because of the
difficulty of precomputing representation with different levels of detail.

In [96] a generic method for remote rendering of computed scene is proposed:
the method basically draws the scene on the machine that performs the computa-
tion, and then transmits the drawn frame buffer through the network to the remote
viewer. The network bandwidth requirement of this method is quite high, as the
whole rendered scene has to be transmitted to the viewer at each frame. In addition
this does not reduce the computational load on the GPU . In [31] a comparison
between streaming of rendered scenes and streaming of rendering commands is
performed. Moreover an innovative approach to OpenGL commands streaming is
proposed and evaluated with games. The main limitation of the latter method is
its bandwidth requirements, as, for complex scenes it exceeds 26 Mbit/s.

To address most of the limitations discussed, in the following sections we will
present the data structures we developed to fully exploit the GPU computational
power, then we will describe how the physics of MSM is implemented on GPU

with simple collision detection between rigid bodies and virtual tools. Then we
will explain how basic interactions can be rendered with this approach and how
topological changes can be handled. At the end we will present a framework that
allows exploiting remote computation to speed up the simulation and to obtain
remote rendering of the virtual environment.

7.2 Physics Simulation 101

7.2 Physics Simulation

To fully exploit the GPU computational power it is necessary to encode data
in a format that allows parallel processing and that agrees with the limitations
imposed by GPU memory management. In addition to proper data structures,
GPU computational model imposes limitations on the code, such as limited number
of simultaneously accessible resources, CPU -GPU synchronization issues, lack of
function recursion support and conformance issues to IEEE-754 floating point
numbers. The most complex porting phase is the required adaptation of the original
code in terms of arrays, interpolators and kernel functions. In the following sections
we describe the data structures we designed to store MSM data and the algorithms
we developed to compute the physics of the deformable models.

7.2.1 Physical Model Representation

Our model representation extends the one proposed in [39]. The mass data struc-
ture is composed by the position vector ~x for three contiguous time instants, a
force vector ~F accumulating internal and external forces, and a set of constant
values such as mass value and damping factor. Since current GPU arrays are lim-
ited to 4096 elements for each dimension and to 4 scalars for each element, the
physical allocation of n masses requires a set of bidimensional arrays with a size
of w × h, with w · h ≥ n. This set, successively called mass array, is composed by
5 independent arrays: 4 to store ~xt+1, ~xt, ~xt−1, ~F in homogeneous coordinates,
1 to store other constant mass information. To load the entire data structure of
the i-th mass the fragment shader needs to access each array with the same (u, v)
coordinates, where u = i div w and v = i mod w.

The spring representation requires a set of S arrays of size w × h each, where
S is the maximum spring valence. Each spring data structure is stored into two
independent elements, at the coordinates used by the two connected masses (u1, v1)
and (u2, v2). The structure stored in element (u1, v1) (alternatively (u2, v2)), is
composed by the rest length, the elastic coefficient and the (u2, v2) coordinates
(alternatively (u1, v1)). There is no need to store the coordinates of the first mass
because they are equal to those where the actual spring structure is located. The
spring second end (u2, v2) is encoded in one single integer uv2

= v2 + u2

w to save
a scalar value, therefore we store the spring damping coefficient in that field.
Since the spring valence si is not constant over the set of masses, the spring
arrays will contain

∑

i (S − si) empty elements. During the computation process
the fragment shader will detect and discard these elements with a loss in global
performance.

To reduce the impact of empty elements on system performance, we propose
an innovative policy in the mass allocation phase aiming at reducing the number
of empty elements processed. Our method is based on the possibility of apply-
ing the fragment shader not only to bi dimensional subregions but also to mono
dimensional ones. Initially we set the mass array dimensions: width is set to the
maximum GPU array size, usually 4096, while height is set accordingly to accom-
modate the entire mass set. Before allocating the mass set, we sort the masses
by decreasing value of si and we compute the corresponding (u, v) coordinates as

102 7 Implementation

Fig. 7.1. Allocation of masses and springs of a dummy model: spring S1 links masses
M1 and M4, spring S2 links masses M2 and M3 and so on.

described previously. At runtime every fragment shader is applied to the bidimen-
sional array by horizontal lines, by the following pseudo-code:

current = 0

row = 0

while (current <total)

count = max(width ,total -current)

line(0,row)(count ,row)

current = current+count

row = row+1

where width is the width of the mass array, total is the number of total
elements to process, current is the number of element processed, count is the
number of elements to process in a single line call. A simple example is depicted
in Fig. 7.1. This dummy model is composed by 8 springs and 8 masses (M1 and
M2 with si = 3, M3 and M4 with si = 2, and M5, M6, M7 and M8 with si = 1). In
this model, the maximum spring valence S is equal to 3, thus we created 3 spring
arrays.

Along with the mass static information we store information about the state of
springs acting on each mass. We put this information in bit masks that are stored
in a texture of the same size of the mass texture and that is used to update the
model topology at run time. We chose to store data in a half precision floating
point texture to speed up the computation. GPU ’s store half precision floating
point values with one bit for the sign, ten bits for the mantissa and 5 bits for the
exponent so integers in the range [0, 211] can be stored without loss of precision.
Since each texel has up to four values we get 4 positive integers of 11 bits each. In
each bit we store the state (active/cut) of each spring, for a total of 44 springs for
each mass, which we found to be more than enough for all models we used.

In Figure 7.2 we show an example of one texture used to encode the spring
state. Two springs of the model are cut: spring 22 that links mass 30 and mass 18
and spring 27 that links mass 30 and mass 31. For mass 30 the encoded sequence
of bit is 110 (since the second and the third springs are cut), and we store the
sequence as a 6 in the spring state texture. When decoding this information we
lookup the spring texture stack, and in the position corresponding to mass 30 we
consider as cut the springs in the texture at level 1 and 2. Since springs are stored
twice in the spring texture stack a total of 4 bit in the whole spring state matrix
are set to 1.

As spring valence varies over the mass set, the spring textures will contain
elements marked as empty: at runtime these elements must be detected and dis-

7.2 Physics Simulation 103

Fig. 7.2. Encoding of cut spring in the spring state texture: spring 22 and 27, linking
masses 30 and 18 and 30 and 31, respectively, are cut.

carded. To access all springs connected to a specific mass stored at (u, v) the
fragment shader has to fetch each element stored in position (u, v) in the spring
textures, decompress each cuv member and finally use the obtained coordinates to
fetch the mass textures. The spring textures for a dummy model are depicted in
Fig. 7.3: gray texels are marked as empty and should be discarded during runtime
computation.

Fig. 7.3. Allocation of masses and springs of a dummy model: gray texels are marked
as empty and represent springs that should be discarded during runtime computation

To better understand the proposed method is useful to think about the spring
textures as a stack of horizontal slices (i.e. a 3D matrix or a 3D texture), where
the first two indexes u and v identify the first mass of each spring, and the third
index t is the height of spring inside the texture stack. By keeping u and v fixed,
it is possible to scroll along the matrix to find all the springs that act on the mass
(u, v). So each pile in the 3D texture can be seen as an ordered set of springs.
When handling cuts or topological changes we use this implicit order to identify
springs in the model and we represent cuts by enabling or disabling springs in a
fast and optimized way.

7.2.2 Elastic Force Computation

The elastic force that acts on the mass i of the model is computed in accordance
with the theory presented in Section 2.2, thus it is obtained by:

~F el
i =

si
∑

n

~Fn =

si
∑

n

kn

∣

∣

∣

~ln

∣

∣

∣− rn
∣

∣

∣

~ln

∣

∣

∣

· ~ln

 (7.2)

104 7 Implementation

where si is the number of springs connected to the i-th mass, called spring valence,
~Fn is the elastic force due to the n-th connected spring, ~ln is the distance vector
between the two connected masses, rn is the spring rest length and kn is the

elastic coefficient. This equation is used to update the array where ~F el vectors are

stored. Each element accumulates ~Fi vectors computed in different iterations by
the following pseudo-code:

#on cpu:

reset totalForce array

for each spring array i from S to 1

springTexture = springArray(i)

massTexture = massArray

apply fragmentShader on masses with s>=i

#on gpu:

for each (u,v) selected by cpu:

spring = fetch(springTexture ,(u,v))

break_if_null_spring(spring)

break_if_cut_spring (spring)

v1 = fetch(massTexture ,(u,v))

v2 = fetch(massTexture ,expand(spring.uv2))

l = v2 -v1;

f = spring.k*(l-spring.rest*normalize(l))

totalForce(u,v) = totalForce(u,v)+f

To evaluate the function break_if_cut_spring(spring) the shader needs to
fetch the element (u, v) from the spring state textures (i.e. a single floating point
value that stores the state of all the springs connected to the spring first mass)
and to detect whether the current spring is cut or not by checking the i-th bit
in the spring state. In the dummy example of Fig.7.1 the algorithm saves only
three useless calculations, but in real cases this technique significantly reduces the
number of processed elements for texture lines that are partially full: if volume
preservation is considered (see next Section), our method is 20% faster compared
to [39].

7.2.3 Volume Preservation

One of the biggest issues using mass-spring systems is the inability to model some
material volumetric properties, for example incompressibility. This limitation can
be overcame by the introduction of volumetric entities, tetrahedra, and by consid-
ering additional force contributions, as suggested in [63]. The tetrahedron represen-
tation is similar to the spring one. The data structure stored in (u, v) is composed
by the rest volume and 3 indexes, compressing the coordinates of the 3 masses con-
nected to the one stored in (u, v). The computation of volume preservation force
is more expensive than the computation of the elastic force: each tetrahedron is
processed and stored four times. For this reason, we sort the mass set by a new
key: ti · S + si where ti is the number of tetrahedra connected to the i-th mass.

The computation process of the volume preservation is similar to the elastic
force method. The additional force contribution ~F v

i is obtained by the following:

7.2 Physics Simulation 105

~F v
i =

ti
∑

j

(vr − vj) · ~nij (7.3)

where vj is the volume of the j-th tetrahedron, vr is the tetrahedron rest volume
and ~nij is the normal vector for mass i facing outside the tetrahedron j.

This approach improves the simulation realism for deformable bodies with low
elasticity springs but it does not provide any noticeable difference otherwise.

In the next section we will discuss how all the computed forces are used to
evolve the state of the system.

7.2.4 Temporal Integration

A new computational phase starts after all the internal forces have been computed.
In this phase the state of the model is updated to move its configuration towards
an equilibrium state through the numerical integration of mass positions.

Temporal integration of mass position is performed by a fragment shader that
works on mass positions and data and uses the computed internal force vector to
update the position of each mass. The computation is based on a Verlet scheme1

[106]. The choice of Verlet scheme is motivated by its good trade off between
stability and computational complexity. In fact it is a two step explicit integration
scheme and it only requires the position of the mass in the two previous temporal
steps and the force currently applied to the mass. This makes the method easily
parallelizable and suitable for GPU implementation: the following pseudo-code
performs the temporal integration as described.

#on cpu:

massProperties = massStaticData

massCurrentPosition = massArray(t)

massPreviousPosition = massArray(t-1)

massForces = totalForce

apply fragmentShader on masses

#on gpu:

for each (u,v) selected by cpu:

massData = fetch(massProperties ,(u,v))

break_if_fixed_mass (massData)

currPos = fetch(massCurrentPosition ,(u,v))

prevPos = fetch(massPreviousPosition ,(u,v))

force = fetch(massForces ,(u,v))

newPos =

2* currPos - prevPos + (force/massData.mass)*pow(dt ,2)

massArray(t+1,(u,v)) = newPos

The value dt that appears in the pseudo-code represent the temporal step used
in the simulation. The three arrays storing the mass positions are handled as a
circular buffer, to minimize the operations needed to update model state. Since all

1 Verlet integration is a numerical method used to integrate Newton’s equations of
motion. The Verlet integrator offers greater stability than the much simpler Euler
method, as well as time-reversibility and area preserving properties.

106 7 Implementation

the data are stored on GPU memory, the CPU only binds some GPU memory
areas to the shader variables and thus no complex data exchange takes place.

7.3 Deformable Model Interaction

In the simulator developed to demonstrate the methods described, deformable
models interact with fixed structures and with two virtual tools controlled by
the user. These two kinds of interaction are handled separately to optimize the
computation and to reduce computational time. In the following we explain how we
handle collisions between the nodes of the deformable model and some structures
that are fixed during the whole simulation. Then we detail three techniques that
provide the user with the ability to interact with the deformable models present
in the scene.

To increase the realism of the simulation we focused on a surgical scenario,
where the user controls surgical tools that act on a human abdomen, reconstructed
from real patient CT data [8] . The user can interact with organs in the virtual
environment by probing, grabbing or cutting them. All the tests involved in the
detection and solution of the interactions are performed in a frame of reference
relative to the tool, to simplify the computation. This introduces a small overhead
to the computation: in fact it only requires a multiplication of each point by
an affine transformation matrix, operation that can be performed very efficiently
by the GPU . The shape of the tool is approximated with simple geometrical
primitives, that can be expressed in analytical form. This reduces the complexity
of the collision detection and allows computing the projection of each point to the
surface of the tool.

The surface of the model that is used in collision detection and in frictional
force computation is obtained as the triangularization of the tetrahedral mesh that
composes the MSM . This provides us the sets of surfels and triangles needed to
perform the graphical rendering of the scene but it also gives us the connectivity
information between the surface points that are used to handle the changes in
model topology. In fact each edge of the surface mesh is stored and used to improve
the results of cuts and grabbing gestures. During each of the described interactions
the user feels the forces acting on the virtual tool that he/she handles.

7.3.1 Collision Detection With Fixed Structures

Collision detection and response are the two main aspects of dynamic simulation.
Due to problem complexity and hardware limitations, we cannot define an efficient
general algorithm. We propose a method to detect body’s collisions against rigid
bodies with a high complexity mesh in a fixed space. Even if this is a really
specific configuration, it is common in a surgical environment. This method is
not as general as the methods described in Chapter 4, but it is suitable to detect
collision between deformable and static structures at the very high frame rate
required in haptic enabled interactive simulations.

Our approach requires discretization of the workspace in a uniform grid com-
posed by cubic voxels. This structure can be stored in a 3D array where each

7.3 Deformable Model Interaction 107

element stores a boolean value that indicates whether the identified voxel is taken
up by some rigid body. Collision detection can be realized in the fragment shader

used for the final time integration by identifying intersections between each mass
motion vector ~d = ~xi+1 − ~xi and voxels marked as filled. Due to the small tem-
poral simulation step used, it is usually sufficient to fetch the 3D array at ~xi+1

coordinates, applying a standard collision detection algorithm to see whether the
corresponding voxel is occupied. The geometry of a skeleton and the corresponding
voxelization are depicted in Fig. 7.4.

Fig. 7.4. Geometry voxelization.

7.3.2 Probing

The probing gesture allows the user to interact with objects by touching their
surface. The implementation of this action is performed in two distinct phases.

The first step detects all the surfels that have collided with the tool during the
last simulation step. To identify these points we check the position of each surfels
with respect to the tool position in the current and in the previous temporal step.
This allows detecting points that lie inside the tool at the end of the simulation
step and points that, during the evolution of the scene, “jumped” from one side of
the tool to the other. Points that collided with the tool are marked as active and
are processed during the second phase.

In the second phase we perform the actual collision response: for each point that
during the last temporal step has collided with the tool we compute the projection
of its position on the tool surface. This operation is very effective because we use
the analytical approximation of the tool. The point is displaced to the projected
position to solve the collision, moreover, the projected position is also used to
compute the relative velocity between the current point and the tool. The relative
velocity is then used to compute the frictional force that is added to the forces
acting on the point and used to update the physics of the environment. The results
of probing gesture are shown in Fig. 7.5.

108 7 Implementation

Fig. 7.5. Probing gesture

Fig. 7.6. Grabbing gesture

7.3.3 Grabbing

The grabbing gesture allows the user to manipulate deformable model parts with
tweezers. The implementation of this action requires two steps.

In the first step we detect which masses are grabbed by the tools. Grabbed
masses will be considered blocked and will follow tool movements. This phase is
only needed at the instant when the tool actually grabs the model (e.g. when
virtual tweezers close). Its impact on the overall computation time is thus reduced
and this allows using complex detection tests. As introduced in Section 7.2.1 this
phase takes into account the connections between surface points to increase the
realism of the simulation. When the tool performs the grab action we check the
edges that cross the tool and we mark them and memorize their position with
respect to the tool.

During the second phase, that is performed at each simulation step, we move
the grabbed edges to make them follow the motion of the tool. To force this
movement we place the marked edges in the stored position with respect to the
current tool position. Since this method works on two dimensional elements we are
able to apply twist motion to model surface: this would be in general impossible
to obtain with only surface points. Since this step is required only if at least
one mass is grabbed, we use a query to count the number of marked masses at
closing instant but we start using its results only after one simulation step to avoid
synchronization issues. The results of this gesture are shown in Fig. 7.6.

7.3.4 Cutting

During the simulation, we apply a fragment shader to every edge of the model
surface to check if it should be cut or not. We implemented two different
fragment shaders for cut detection: the first one (shader1) is the simplest and
it just checks if the segment associated to the current edge intersects the cutter’s
approximated geometry (an ellipsoid). This can be useful in surgical simulations,
to mimic the behavior of an electro cutter. The second fragment shader (shader2)
is more complex and checks whether the triangle approximating the cutter’s blade
intersects the segment associated to the spring and can be used to simulate the be-
havior of a knife. For example: when checking the i-th spring of the mass (u, v), de-

7.3 Deformable Model Interaction 109

tector shader computes the following pseudo-code (the difference between shader1

and shader2 is how detect_cut_spring(spring) is actually computed):

#on cpu:

for each spring array i from S to 1

springTexture = springArray(i)

springState = springState

apply fragmentShader on masses with s>=i

#on gpu:

for each (u,v) selected by cpu:

spring = fetch(springTexture ,(u,v))

oldState = fetch(springState ,(u,v))

cut = detect_cut_spring(spring)

newState = cut | oldState

springState(u,v) = exp2(i)* newState

The results of the computations are summed up exploiting standard blending
capabilities provided by the GPU and the updated state of model springs is ob-
tained. The method we use to encode cut spring data ensures that the results of
the sum on the floating point values is consistent with the bitwise OR operator
that is commonly used to merge bit masks (i.e. only the i-th bit mask can have the
i-th bit equal to 1). This data representation allows the computation to be per-
formed completely on the GPU and does not require data to be exchanged with
the CPU to update the physics of the model ensuring that the whole computation
is fast and that the delay between user input and corresponding force output is
kept low.

7.3.5 Interaction Forces Computation

The innovative method presented here to compute interaction forces requires to
identify all masses in contact with a virtual tool and to accumulate acting forces
and torques. This operation has a really simple implementation on CPU s but
not on GPU s, due to current hardware limitations. Other implementations, as
in [95], transfer all masses’ positions and forces to the system memory and realize
the whole computation on CPU . This approach is really simple but significantly
degrades simulation performance since it introduces time latencies due to limited
bandwidth and synchronization issues. Our approach exploits the GPU for all
computations, so that only final force and torque vectors have to be transferred.
The implementation of our approach is composed of three phases.

The first phase is aimed at computing force and torque vectors for each mass
of the system. We store all masses’ force F and torque T into two distinct arrays
obtained by:

~F = b ·M−1 · f
~T = b ·M−1 · (f × x)

(7.4)

where b is the boolean mark that identifies if a mass collides with a tool and M−1

is the inverse matrix of tool position.
In the second phase we accumulate the content of the two new arrays ~F and

~T , obtaining the force and torque vectors needed for haptic feedback. This is

110 7 Implementation

realized in the third phase with an iterative process based on a reduction operator.
The reduction is performed by updating the content of an array by computing
the element (u, v) as the sum of elements (2u, 2v), (2u + 1, 2v), (2u, 2v + 1) and
(2u+ 1, 2v+ 1) stored in the array by the previous iteration. The resulting vector
will be stored at element (0, 0) of the last destination array. This process is shown
in Fig. 7.7 and can be easily implemented by using the classic ping-pong technique
[21]. In the third phase we start the asynchronous transfer of results from the GPU

Fig. 7.7. Reduction steps

memory to the CPU one.
This method dramatically improves the global simulation process since it scales

with GPU computational power and does not depend on system bandwidth and
CPU . Our implementation is about 10 times faster than the one proposed in [95].

7.4 Results

In this section we will present and evaluate the results obtained by simulating
models of different complexity and topology and cutting them using the proposed
method with the two different cut detector shaders we described in Section 7.2.1.
To test the performance of the method we integrated it into a deformable model
simulator based on OpenGL Shading Language that exploits current graphics card
computational power. Each step of physical simulation is composed of five phases:

• approximate collision detection between the two virtual tools and the de-
formable model;

• cut detection (only for the cutter tool);
• collision response;
• internal forces update;
• numerical integration of mass positions.

Obtained simulator represents a human abdomen composed by rigid, fixed
structures, and one or more deformable organs. It provides different kind of virtual
tools to allow the user performing actions such as grabbing, probing or cutting.
The user handles up to two tools and receives graphic and haptic feedback. Since
we model the physics of the whole deformable model, the user perceives also the
interaction between the tools. A screenshot of the simulation can be seen in Figure
7.8.

The main goal of this work is the development of a method to simulate cutting
of deformable models at haptic frequencies. Therefore the principal aspect we take

7.4 Results 111

Fig. 7.8. A screenshot of the simulator showing the interaction between two tweezers
and a virtual liver.

into account during tests is the physics update frequency, but we also present and
discuss the graphical rendering, as it is an important part of any simulation with
haptic feedback. In all tests discussed here the graphical rendering was performed
at 30 fps, using per-pixel lighting and normal mapping. The tests were performed
on a desktop equipped with an Intel Core 2 Duo E6600 with 2 GB of ram and an
Nvidia GeForce 8800 GTX.

To obtain a meaningful evaluation of our algorithm we instantiated three mod-
els that differ for element (masses and springs) number and topology. The first
model (cube) is obtained by tetrahedrization of a cube: the resulting model is
composed by 21544 masses, 139236 springs and 452340 triangles (internal and ex-
ternal) and shows a regular disposition of masses and springs. The second and
third models (liver1 and liver2 respectively) were reconstructed from surface rep-
resentation of a liver with different levels of detail. The second model is composed
by 7977 masses, 50115 springs and 158960 triangles, whereas the third one is com-
posed by 20227 masses, 130754 springs and 425112 triangles: due to the nature of
the initial surface the two liver models show an irregular mass arrangement that
leads to an irregular mesh. In Figure 7.9 we present a wire frame representation
of the models used during the tests and in Table 7.1 we summarize their features.

Model number of number of number of
name masses springs triangles

cube 21544 139236 452340

liver1 7977 50115 158960

liver2 20227 130754 425112

Table 7.1. Main features of the models we used during tests

112 7 Implementation

Fig. 7.9. Wire frame representation of models used during tests: in (a) the model cube,
in (b) liver1 and in (c) liver2.

Fig. 7.10. Evolution of liver2 model undergoing deformation and resection.

We apply our method with the two different cut detector shaders to the three
models and compute the update frequency of the model physics with the graphics
rendering. During the test we allow the simultaneous use of two tools able to
perform cut, so the shader in charge of handling the cut was applied twice for each
simulation step. Table 7.2 summarizes the results we obtained.

Model shader1 shader2

cube 0.91 msec (1099 Hz) 0.92 msec (1080 Hz)

liver1 0.74 msec (1351 Hz) 0.70 msec (1428 Hz)

liver2 0.90 msec (1111 Hz) 0.94 msec (1063 Hz)

Table 7.2. Update times of cutting method applied to the three models (in brackets the
update frequency)

The proposed methodology has proven to work efficiently. Moreover, the mass-
spring model used for deformation is also used transparently for the cut, so that
there is no data/code duplication and the integration is full and natural. Syn-
chronization between the surface mesh and the physics model is thus granted (see
Figure 7.10 and Figure 7.11). This approach to the cut is the simplest possible,
but relies on a series of specific solutions to avoid the down-sides.

As mentioned above, the cut has been studied in [33] and [34], concluding
that the “remove tetrahedra from list” principle is considered simple but limited,
so manifolds were preferred. Our implementation contradicts this point: the use
of GPU introduced the possibility of doing calculation in parallel, increasing the

7.4 Results 113

speed of computation on conventional PC with mid-end video cards. A wise use of
the GPU allows our algorithm to perform at rates far over 1 kHz with an enormous
number of elements. Therefore, no mesh smoothing/resampling is performed, as
each tetrahedron is small: a cube with 113085 tetrahedra still manages to be sim-
ulated within the haptic threshold. No new points are added, and the movement
of vertexes is managed independently by the underlying mass-spring model, so
that coherence is still preserved. Given the need of haptic feedback, it is impor-
tant to preserve the volume of data in use, as adding elements make structures
and memory usage grow, thus increasing the computation complexity and leading
to unpredictable update frequency. On the contrary, our approach guarantees a
constant amount of data and makes the computation times constant and reliable.
Interference detection, both to find collision and detect masses for probing/grab-
bing/cut scales depending on the number of vertexes, and can be tuned by setting
the dimensions of the cutting tool. Along with the huge number of tetrahedra, the
number of springs is also very high. This means that the behavior of the physics is
still very realistic and precise. The distinction between operative and non operative
zones is not present due to the fine definition of the external and internal mesh.
A distinctive feature of the presented implementation is its generality, so that no
constraints are imposed on the way meshes are built. So, whilst not needed, it is
still possible to build models with different non-homogeneous resolutions when-
ever is necessary. Our method offers a solution easy to understand and to use.
Graphically, we bypassed the limits of the tetrahedra removal approach by taking
advantage of the GPU to compute fine meshes, thus getting a better rendering
and a more precise and realistic physics, difficult in traditional removal-based al-
gorithms. The need of smoothing seen in [33] and [34] is avoided, and so is the
need of deep topology changes, as point addition and mesh resampling. The speed
of calculations still allows using up-to-date graphical effects as per-pixel lighting
and normal mapping to enhance the visual quality. The physics used for the cut
is designed to blend with existing models and data structures, with few additions.

Fig. 7.11. A cube of cheese (the cube model described in Section 7.4) is deformed and
cut.

114 7 Implementation

In the whole, results reported in Table 7.2 show that this method scales well with
the increase of model complexity, as the high parallelism provided by the GPU

makes it works proportionally better with more complex models. Moreover it has
been implemented to scale well with the GPU computational power, and, as video
cards quickly increase, the speed of computation will significantly increase with-
out any additional modification to the code. Despite FEM and other advanced
methods may have higher precision, the high resolution of our models still grants
a high level of realism, relying on the high number of elastic elements. The tricks
associated to tetrahedral removal have been avoided, and the model is dependent
neither on local models nor on pre-computations.

7.5 Optimized Graphical Rendering

As described in Section 7.1 irregular update of the force feedback in physical simu-
lation leads to the perception of non realistic physical behavior of the environment.
Moreover a common assumption in deformable model simulation is that the veloc-
ity of objects in the scene (human operated tools and environment) stays below
a certain threshold because fast movements or sudden interactions may lead to
instability in the simulation. Changes in the perceived speed of the environment
cause faster reactions by the user and thus instability in the simulation. The phys-
ical simulation and the haptic rendering should then have the highest priority in
the computation. On the other hand the visual rendering is slower, as 30 frame per
second are enough to ensure a good visual quality, and can tolerate higher delays
without causing loss of realism. For these reasons GPU based physical simulation
can take advantage of the following method for remote visual rendering.

7.5.1 Remote Rendering Overview

We analyzed the behavior of the proposed interactive simulator that is based on
MSM and exploits the GPU power to speed up the computation. We found that
on a NVIDIA GeForce 7900 graphics card the mean time for a single frame up-
date (made up of elastic and damping forces computation, collision detection and
resolution followed by force summation) is 0.87 ms, while a single step of graphic
rendering take approximately 8 ms. The switch between physics computation and
graphics rendering leads to an unsynchronized update of the configuration of de-
formable models and to a non linear force feedback rendering.

To solve this problem we decided to perform the simulation using two com-
puters arranged in a distributed system where a PC equipped with a powerful
programmable GPU (the simulator) perform the physical simulation and the force
summation for haptic rendering, while the other PC with no particular require-
ments (the viewer) is only in charge of the visual rendering. To limit the delay in
the graphics rendering the coding, transmission and decoding process should be
fast, moreover, to avoid jitter the process should always take the same time. From
these considerations we decided not to use any data compression algorithm as it
will increase the computational time and it will change the length of the coding
during the simulation. We implemented instead a lightweight remote rendering
protocol.

7.5 Optimized Graphical Rendering 115

Fig. 7.12. Remote rendering protocol: (1) Asynchronous data download, (2) Data en-
coding, (3) Data transmission, (4) Data decoding, (5) Rendering

The network protocol chosen for the transmission is RTP (Real-time Transport
Protocol) over UDP. We choose UDP because it guarantees speed and low delay
in the transmission, and RTP because it delivers the necessary data to make sure
that the viewer can put the received packets in the correct order, moreover RTP is
a standard protocol for real time communications, and this makes it a good choice
for future development.

Our protocol makes some assumptions about the bodies of the environment:

• The scene can be described two ordered sets: the first describing fixed or floating
rigid bodies and the second composed by deformable bodies.

• Both PCs (simulator and viewer) have the initial representation of the scene
(object models and placements).

• Deformable models can be described by a cloud of point potentially linked in
a polygonal mesh.

• The simulator can asynchronously download the surface representation of de-
formable models from the graphics card memory (asynchronous download does
not lock the GPU and thus introduces negligible delay in the physics compu-
tation).

Remote rendering is composed of five phases (graphically summarized in Figure
7.12):

1. Asynchronous data download. For each deformable model of the virtual scene
its surface representation and edge connectivity data are copied into the main
memory of the simulator (i.e. on the CPU memory). The use of asynchronous
transfer allows the GPU to continue working and thus it does not stop the
physical simulation.

2. Data encoding. For each point of the deformable models the simulator com-
putes the difference between its current position and the initial position. Each
coded point is represented by three displacement in three directions. Coded
points are stored in memory ordered by model and then by their index inside

116 7 Implementation

the model (this order must be the same on the simulator and the viewer).
Edge data are not encoded, as they can be considered as an effective, compact
representation of the model state since only one bit is used to store the state
of each edge.

3. Data transmission. Data encoded by the previous step are sent to the viewer
using RTP over UDP. Each RTP packet contains a time stamp that indicates
the moment in the simulation at which the data has been encoded, a sequence
number, which is a progressive packet number that goes from 0 to the total
number to transmit one frame (this number is fixed during the whole simu-
lation, as the encoding does not change the data length and the number of
transmitted points remains constant). The last packet of the stream contains
matrices that define positions and orientations of rigid bodies of the scene and,
if necessary, other useful information for the viewer. The last packet has the
9-th bit in the header set to 1, to indicate the end of the coding.

4. Data decoding. At the beginning of the computation the viewer pre-allocates
and zeroes a memory area that will contain the ordered displacement of sur-

Fig. 7.13. Graphical representation of the simulator and viewer memory alignment. The
viewer stores received packet with offset equal to the product between packet sequence
number and RTP payload

Fig. 7.14. Evolution of the viewer memory during a frame rendering: (1) Memory con-
tains previous frame data, (2) Packet 2 is received, (3) Packet 0 is received, (4) Last
packet is received, (5) Rendering is performed (packet 2 is lost or delayed: previous data
is used)

7.6 Integration in the Simulation 117

fels and the edge state of deformable models. During the simulation received
packets are discarded if their time stamp is lower than the higher time stamp
received (i.e. if the packet belongs to an old frame). If the packet is not marked
as last its data is copied into the memory, using the packet sequence number
to compute the offset (Figure 7.14 (2) and (3)). The offset is computed as the
product between packet sequence and RTP packet payload size (Figure 7.13
shows graphically the alignment of simulator and viewer memories). This en-
sures that the packet arrival order is not important in the decoding of a frame.
Moreover, since the memory area that contains stored data is never zeroed
(Figure 7.14 (1)), if a packet is lost or delayed previous data is automatically
used (Figure 7.14 (5)). Since rendering is carried out at 30 frame per second
and movements are usually slow, the introduced errors are negligible. When
the last packet is received its data is processed: matrices are extracted and
useful information are used accordingly (Figure 7.14 (4)).

5. Rendering. When the last packet has been received and decoded the viewer
adds the updated displacements to the initial configuration of the model to
obtain the current representation and update the state of the model edges
accordingly to decoded data. Received matrices are used to update the position
and orientation of rigid bodies in the scene. The described method only updates
the scene, it does not trigger the graphical rendering. Instead the graphical
rendering is performed at 30fps to ensure realistic perception and to allow the
viewer to control some rendering parameters (mainly the camera position).

7.6 Integration in the Simulation

We implemented and integrated the proposed method into the GPU -based frame-
work described before. In the implementation we choose to put in each RTP packet
1000 bytes of data (corresponding to about 83 encoded points), so the whole packet
results composed by 1012 byte. This ensure a good trade off between speed and
reliability.

To prove the correctness and test the scalability of this method we tested it on
different configurations: we tried the simulator/viewer communications on different
architectures, with different network connections and with models of different sizes,
results of these tests are provided in Section 7.6.2 and following.

7.6.1 Deformable Models Rendering

During the graphical rendering the viewer should update the scene description.
The scene is composed by three kinds of models:

• Rigid, still bodies, like chest or other bones, do not move during the simulation
and thus do not require any update in their data structures.

• Virtual tools, controlled by the user, needs only few data to define their state,
as we discussed, the matrices that define their position and orientation are sent
in the last packet of the encoded scene, along with few bits that describes their
state (closed/open tweezers, ...).

118 7 Implementation

• Deformable bodies. The state of those models is described by the position of
their points and by the state of their edges.

The rendering of the first two classes of models is trivial, even when performed
remotely, but the handling of deformable models is more complex, also because of
the changes in topology that can happen during the simulation. To render changes
in edge connectivity in the model the viewer has to update the graphical represen-
tation of the model to reflect the changes in physics. During the physics simulation,
springs (or edges) are marked as cut and their contribution to the internal force is
neglected. In graphics it is necessary to discard the triangles that use that spring
to represent the new physical state. Even if visual rendering has less strict require-
ments than haptic feedback all the model updates and visual rendering operations
must run in real-time at 30 Hz. To carry out this task respecting those constraints
we take again advantage of the GPU . We defined some optimized data structures
to ensure the required frame rate.

Starting from a complete description of the model triangles (i.e. we have a
list of every triangle of every tetrahedron of the model) the goal is to remove the
triangles in which at least one side is matching with a cut spring in the physical
model. Another requirement is to render in a different way the inside and the
outside of the object in order to make the cut visual rendering more realistic.

To store information about points and the complete model triangulation we
rely on Vertex Buffer and Index Buffer, respectively, that never change during the
whole simulation, and thus does not need to be transmitted by the simulator to
the viewer.

To efficiently handle data stored in these structures we developed a method to
store and access triangle data that is both simple and fast, and is based on a list of
incident triangles for each vertex. This structure is an array of lists whose length
equals the number of element in the Vertex Buffer. At position i of this array
there is a list whose elements are four integers, as presented in Figure 7.15: the
first three elements are the indexes of the three vertices referenced by the triangle,
one of those (marked in red in the figure) will be the vertex i. The last element of
the list is the index of the triangle they belong to, which is the pointer to the first
index in the Index Buffer. The vertex i can be omitted for what concerns the cut,
but it is necessary if disabled triangles should be restored for any reason. In that
case, in fact, the order of the vertexes will be needed. The fourth value is kept
because it allows a fast access to the triangles that need to be cut, avoiding an
expensive search. As we do not change the triangulation in real-time but we only
delete triangles of the model representation, this data structure can be stored in
the off line initialization phase, without affecting performance during the graphical
rendering.

In this way we can retrieve the list of triangles that share a vertex in constant
time. Using this structure we get the triangles in which two vertices are present
simply by finding the triangles that are in both the lists. The described data
structures is based on information available on two different buffers, the Vertex
and the Index Buffers on the GPU . The need for fast access, considering that
those buffers can contain huge amount of data, is then satisfied by using indices
that build a map of the memory. If we need to find triangles relying on a certain
vertex with index i, we just scan the array at position i.

7.6 Integration in the Simulation 119

Fig. 7.15. The representation of the data structure that store and access efficiently the
lists of triangle

Once that those data structures have been initialized at the beginning we can
efficiently use them to update the graphical representation of the model. To do
this, we obtain the cut edges from the simulator and find the triangles to remove.
As explained in Section 7.2.1, during the physical simulation the spring states are
stored for each vertex. The method we use to store them allows fast computation
on the GPU and can be used as a 44 bit wide unsigned integer that, read bit by
bit, represents the state of each spring connected to the point, each bit being a
flag. Spring corresponding to bit with value 1 are the cut springs. So, when we
do the cut we first get a texture of half which will be seen as a texture of bit
masks. The texture is downloaded from the GPU memory to the CPU memory
and decoded, then the obtained bit mask is used to find, through the indexes,
the springs affected by the cut. From the edge index we can fetch its two ends
indexes and use them together with our structure to find the triangles that should
be cut. Those triangles are then turned into degenerate elements by setting their
three indexes to the same value, so that the culling phase during the rendering will
discard them. The consequence is that the triangle is not visible in the rendering.
It is possible to use one single value to degenerate the triangles, e.g. 0, so all the cut
triangles have 0, 0, 0 as indexes. By using instead different numbers it is possible
to restore cut triangles.

With this method, we can handle all the internal triangles (that will not be
visible until we cut the surface) and the surface triangles of our model in different
structures and treat them in different ways (e.g. different textures) to improve the
rendering realism.

After the model representation have been synchronized with the physical state
the rendering is performed with the possibility, as mentioned above, to use different
textures to best represent the discontinuity between original external surface and
internal exposed surfaces as can be seen in Figure 7.16.

7.6.2 Architecture Scalability Test

The first test aimed at proving the scalability of the method to more powerful
hardware, so we compared the performance of the simulator/viewer architecture
when the underlying architecture varies between a Nvidia 7 series GPU and a

120 7 Implementation

Fig. 7.16. The model of an orange cut in slices that fall under the effect of gravity.

Nvidia 8 series GPU . The first machine on which we tested the simulator was a
laptop with an Intel Core 2 Duo T7200 (2.16 GHz), 2 GB of ram and a Nvidia
GeForce 7900 GS. The second was a desktop equipped with an Intel Core 2 Duo
E6600 with 2 GB of ram and a Nvidia GeForce 8800 GTX. The viewer run on a
desktop with an Intel Xeon 2.80 GHz, 2 GB of ram and an Nvidia Quadro FX
3450. During these tests the PCs running the simulator and the machine running
the viewer where connected through cable to the laboratory LAN. The deformable
model used during these tests was composed by 7750 points, 38077 tetrahedra
and 48254 springs, the scene was composed by some fixed rigid bodies (that does
not affect the transmission), two virtual tools and a floating camera. Table 7.3
summarize results of the tests.

Table 7.3. Simulation and visualization on different architectures

Obtained frame rate

only physics physics and physics and
Architecture simulation local rendering remote rendering

7900 GS 1299 Hz 1018 Hz 1288 Hz

8800 GTX 3412 Hz 3409 Hz 3167 Hz

Computational times

Architecture physics local rendering remote rendering

7900 GS 0.769 ms 7.211 ms 0.282 ms

8800 GTX 0.293 ms 2.394 ms 0.029 ms

Computational times reported in Table 7.3 show that the classic graphic ren-
dering of a scene takes about ten times the computational time required to update
the physics of one step, while the proposed method for remote rendering requires
less than half of the time required for one physics step on a GeForce 7900 GS and a
tenth of the time required to update the physics on a GeForce 8800 GTX. The big
difference in the ratio between physics update and remote rendering on the two

7.6 Integration in the Simulation 121

architectures can be explained considering that the first computer is a laptop and
that laptop performance is usually worse than a desktop is. These tests highlight
the ability of the proposed method to save the graphics card from the burden of
the rendering and confirm that the method is useful in guaranteeing a smoother
physics simulation that leads to better realism of the simulation and numerical
stability in the temporal integration.

7.6.3 Network Performance Test

Then we tested the proposed protocol with different network connections using
the first computer and the environment described for the previous test. The con-
nections we considered during this test were: direct connection via crossed cable,
connection through wired LAN and connection through wireless LAN. The scene
used during these test was the same scene used in previously described tests.

The use of a crossed cable between the simulator and the viewer allows the
simulation to run at 1289 Hz whereas the use of cabled laboratory LAN leads to
an update frequency of 1288 Hz. Last, the use of wireless connection from the
simulator to the cabled LAN yield an update frequency of 1255 Hz for the physics
simulation.

In these tests we intentionally avoid to consider transmission over Internet as
our protocol is currently intended to work only on local networks. As expected the
choice of UDP protocol ensures that the transmission speed is independent on the
wired LAN configuration, as UDP provides no guarantees for message delivery.
However the architecture performance depends on the network interface speed, as
shown by the last test, where wireless LAN has been used. These results clearly
show that the method is suitable to be used in local network to transmit the
virtual scene from the simulator to the viewer, moreover the use of the wireless
connection does not influence the quality of the rendering even if UDP protocol
has been chosen for the transmission.

7.6.4 Model Complexity Test

For the last test we changed the size of the model used in the simulation. This
allows to change the quantity of locally rendered and transmitted data for each
graphic rendering step. We developed two deformable models representing the
same deformable object. The first low resolution model, is composed of 1244 points,
with 599 surface points, 5413 tetrahedra and 7253 springs. The second one with
higher resolution, is composed of 7977 points 2401 of them marked as surface
points, 39740 tetrahedra and 50115 springs. The two models simulation were tested
on the PCs used for the first test, for each model and machine three modalities were
evaluated: physical rendering only (without any visual rendering), classical local
rendering and the proposed method for remote rendering. Results are presented
in Table 7.4.

From the tests we obtained the overhead due to the download and the trans-
mission of the scene description: in the case of the GeForce 7900 GS with the
low-res model, the overhead is about 0.058 ms while with the high-res model the

122 7 Implementation

Table 7.4. Effects of model resolution on the simulation

Intel Core 2 Duo T7200 with GeForce 7900 GS (Laptop)

only physics physics and physics and
Model simulation local rendering remote rendering

Low-res model 2282 Hz 1872 Hz 2278 Hz

High-res model 1253 Hz 991 Hz 1244 Hz

Intel Core 2 Duo E6600 with GeForce 8800 GTX

only physics physics and physics and
Model simulation local rendering remote rendering

Low-res model 3381 Hz 3229 Hz 3377 Hz

High-res model 3413 Hz 3228 Hz 3404 Hz

overhead is 0.239 ms. When using the GeForce 8800 GTX the overhead is reduced
to 0.039 ms for the low-res model and to 0.088 ms for the high-res model.

Tests demonstrate that the on the first architecture our method scales linearly
with the data transmitted. In fact, the ratio between transmitted data for the first
and the second model is 0.249 and the ratio between time required for the encoding
and transmission of the two models is 0.243. On the second architecture the ratio
between the overheads is 0.443 that indicates a sub linear dependence on the data
size. This indicates that the proposed method is suitable to handle complex scenes
composed by many deformable models or for scene with high level of detail. It
can be noticed that in the presented case the physic simulation performs better
with the more complex model, this is not due to the remote rendering protocol
but to the dependence of simulation performance on the model topology (i.e. the
maximum number of springs connected to each point).

7.7 Conclusions

The objective of the presented methods is to propose a solution that is both
graphically appealing and realistic, real-time (with no pre calculated data), general
(with no limitations to user interactions), high performance and haptic compliant
(frequency must be higher than 1kHz). Despite the severe requirements the results
matched the expectations and can be considered good. Graphics, depending on
the resolution of the models, has proved to be realistic. Shaders have been used to
improve and enhance the rendering, including per-pixel lighting, normal mapping,
shadowing and other effects. Stereo rendering and 3D goggles are supported by
our current implementation.

The physics of the cut has also proved to have a realistic behavior. The cut
can be both superficial and deep, with the possibility to cut the object into several
pieces. Even complete resections of an object preserves the physics of all the parts.
The results of the computations of the physics have been tested thoroughly with
high-end haptic devices, proving to be perfectly working with real time constraints
and to give a realistic sensation.

The implementation has proved to match the speed requirements, taking ad-
vantage of the power of the video cards. Programming the computation with

7.7 Conclusions 123

Fig. 7.17. The simulator experimental setup: haptic feedback is provided through two
MPB Freedom 7s connected to the simulator, graphic rendering is obtained with the
described method

shaders has shown to give very high computational rates, impossible with tra-
ditional CPU programming. Physics is updated at rates higher than 1 kHz, well
beyond the requirement for the haptic devices. The implementation allows the cut
to be completely generic, and no constraint is present about the way it is managed.
Furthermore, the implementation uses OpenGL Shading Language shaders, highly
compatible and cross platform, as well as OpenGL. The novelty of the approach is
focused on realism, performance, generality and portability. The implementation,
designed to be the state-of-the-art solution, has confirmed theoretical results and
proved to be suitable for a wide range of fields, especially real-time, high-frequency
applications.

With our remote rendering procedure we can increase the complexity of the
simulated environment with deformable or rigid, fixed or floating, bodies. The
method relies on the asynchronous non-blocking download of data from the graph-
ics to the main memory to decrease the GPU computational burden, downloaded
data is then sent through the network to the viewer with a protocol that automati-
cally corrects packet losses. The method relies on the possibility to asynchronously
download data from the GPU and on the relatively slow refresh rate of the visual
rendering to obtain updated representation of deformable models from the graph-
ics card memory without slowing down the GPU computation. Tests performed
on the implementation of the method prove that the method can effectively save
the GPU from the burden of rendering the scene and that it does not introduce
any noticeable overhead on the computation. On the contrary, the reduction of

124 7 Implementation

computational requirements for graphics rendering produces a more regular physi-
cal simulation with benefits to the realism and the stability. Remote rendering can
be enriched with advanced techniques since it does not slow down the simulation.
The method has been used to provide stereo rendering of a virtual environment
with deformable models, thus allowing the user to navigate into the scene in a
more intuitive way.

Our simulator still lacks a proper self collision algorithm that will allow to
make the cut parts of the model to interact with each other, and the realistic
computation of the physics of the forces acting during the cut. We foresee to
include a GPU based collision detection algorithm into the simulation that will
handle both collision between virtual tools and models and self collision in a unified
way.

8

Conclusions and Future Work

In this thesis we analyzed the problems related to the simulation of the physics of
deformable environments for interactive applications with force feedback. As dis-
cussed in Chapter 2, physic simulation requires very small steps in the temporal
integration phase, in addition the introduction of interactive force feedback im-
poses real time constraints to the simulation. For these reasons the computational
speed of the simulation represents a key aspect of the whole research.

To cope with the reduced computational time available in the evaluation of one
single step of the simulation the different parts of the simulation needs to be care-
fully evaluated. For this reason we deeply investigated the features of different soft
tissue modeling techniques, from the point of view of the aspects of the deforma-
tion that they can represent but also from the point of view of the computational
complexity they impose to the simulation.

The results of this analysis show that the evaluated models (FEM MSM and
meshless) provide very different behaviors and offers different advantages. In par-
ticular FEM and MSM can be simulated at very reduced computational cost thus
allowing the simulation of a greater number of physics elements for an increased
realism. Point based models, on the other hand, are computationally mode expen-
sive but they handle changes in topology with ease and speed. For this reason it is
useful to include these three model classes into the virtual environment. The prob-
lem with this approach is that the three models have very different structures and
that their integration with other parts of the simulation requires to write codes to
adapt these structures.

To reduce the effort spent in integrating the different parts of the simulation
we developed a common representation framework, described in Chapter 3, that
provides a unified interface between the different deformable models and the other
components. Our approach defines a surface that wraps the physic node of the
models and that moves with them. This framework handles the distribution of
forces and displacements between deformable models and the environment. In ad-
dition it provides a surface that embodies some physical properties. In fact this
surface representation is successfully integrated with collision detection algorithm
and with friction models. Presented results show the difference in the behavior of
different modelization techniques, but they also prove the effectiveness of the pro-
posed framework in handling the displacements. Images reported in the chapter

126 8 Conclusions and Future Work

clearly show that the use of triangles in the definition of the model allows the ren-
dering of smooth surface as well as sharp details. In addition, the precomputation
of the interdependence between surface points and internal, physics, points, limits
the computational overhead introduced into the simulation.

The subsequent step in physical simulations requires to detect the interactions
between bodies in the scene. To this extent we decided to integrate in our work a
collision detection library. In Chapter 4 we evaluated some of the state of the art
algorithms that perform collision detection between rigid models and deformable
models. These algorithms have been compared to the requirements of interactive
simulations of deformable environments and we identified in V-collide [50] the
most suitable to our needs. This library is not targeted to deformable models, but
it correctly handles polygonal soups and thus it is suitable for collision detection
between soft bodies. In addition it detects interferences between multiple bodies
and returns for each pair of colliding bodies the list of overlapping triangles. The
introduction of collision detection in the physics simulation greatly reduces the
frame rate of the simulation. For this reason the chosen library, even if it satisfies
the requirements for the realism, is not appropriate for our needs.

In Chapter 5 we compared some of the most common methods used in friction
simulations. Except for the Coulomb and Karnopp models, that provide similar
behaviors, the differences between other models are very important, also from the
point of view of the computational time. The comparison between complexity of
simulations allows us to split the models in two classes. The first class comprises
Karnopp and Dahl models and identifies the models that are suitable to handle
big number of collision in the scene. The second class, composed by LuGre and
Elasto Plastic models, is most suitable in the simulation of complex behaviors, but
only for simple scenes, where there is a reduced number of interacting points.

We avoid restricting the simulation to one particular friction model, instead
we decided to provide a framework that allows the integration of different friction
models in the environment. The framework is in charge of computing the variables
involved in the contact: it computes the tangential and the normal forces that acts
in the contact and the relative velocity of the surfaces interested by the collision.
These values are used by friction model to compute the friction force. Then the
framework distributes the friction force among contacting surface points. This
framework proved to work well in association with the presented friction models
but thanks to its generality it can also operate with different models, as long as
they only requires the cited variables and at most one variable state.

Chapter 6 describes an innovative approach to the simulation of anisotropic
tissues with mass spring models. To evaluate the correctness of the method we
compare it with FEM that are considered as the ground truth in soft tissue sim-
ulation. Comparisons have been carried on for bidimensional models to simplify
the evaluation. Results show a good match between the simulations obtained with
FEM and the ones obtained with our approach. To further prove the correctness
of the method we provided some screenshots of results obtained in the simula-
tion of anisotropic bodies. The method is very fast and realistic in the simulation
of transversally isotropic materials, that are the most common among biological
tissues.

8 Conclusions and Future Work 127

Chapter 7 provides the details of the implementation of a physically based sim-
ulator. It describes an interactive deformable environments with haptic feedback
and complex user actions. Figure 8.1 provides an example of the interaction with
the simulation. The method exploits GPU parallelism and computational power
to ensure fast update times and provides the ability to grab, probe and cut de-
formable tissues. The use of the GPU imposes some limitations on the developed
code: by arranging required informations in proper data structures and by decom-
posing the whole process in smaller, parallelizable tasks, we are able to increase
the speed of the simulation and to obtain the required frame rate to give the user
haptic feedback during the interaction with complex models. Our method allows
the user to handle two virtual tools and to have force feedback on them both.

Fig. 8.1. The complete simulation setup: two haptic devices allow the user to interact
with the virtual environment that is perceived through haptic feedback and with graphical
rendering.

To further optimize the computation we defined an innovative remote rendering
protocol that increases the realism of the physical simulation. With this method
we save computational time and thus we increase the complexity of the models
that can be simulated in real time. This, in turn, increases the simulator real-
ism: in fact the physics realism increases as more physical elements are used. The
overhead introduced by the update of model surface representation is transferred
to a remote machine via the proposed remote graphical rendering method. The
method efficiently transmits the virtual scene from the simulator to the viewer. As
expected, the choice of UDP protocol ensures that the transmission performance
is independent on the network configuration, as UDP provides no guarantees for

128 8 Conclusions and Future Work

message delivery. This required us to develop an implicit error recovery protocol.
The proposed method has been used to increase the realism of the scene by us-
ing stereo rendering techniques. In the near future it will be extended to handle
multiple viewers and frictional contacts between the virtual tools and deformable
models will be introduced. Remote rendering technique will be improved to reduce
the effect of data transmission delay on the physical simulation.

Our work proved that with commercial hardware it is possible to simulate
complex scenes with physical realism and to provide the user with both advanced
graphical rendering and force feedback. We implemented a prototype of a surgical
simulator that can be used to train surgeons to laparoscopic interventions. A first
validation of the simulations have been obtained by developing a real synthetic
model, and by modeling it in the virtual environment. Forces measured during the
interaction with the real model were compared to interaction forces computed by
the simulation and we obtain a good similarity. Moreover the simulation allows
the user to perceive and locate some stiffer inclusions under the surface of the
synthetic model.

The main limitation of the implemented simulator is represented by the lack of
a complex collision detection phase. As observed in Chapter 4, collision detection
phase is still computationally expensive, moreover we found no algorithm that per-
forms collision detection between deformable models and runs on GPU . The main
extension to the obtained simulator is thus the introduction of proper collision
detection routines, which will allow the simulation of several deformable models in
frictional contact. Another possible extension to the simulator is the integration
of different soft tissue modeling techniques and the integration of more friction
models to allow the simulation of lubricated contacts without the complexity of
LuGre or Elasto Plastic models.

The current simulator can be extended with more friction models. Suitable
friction models should provide realistic behavior at a reduced computational cost,
to prevent slowing down the simulation. The introduction of friction model that
depends on values different from the relative velocity of contacting point or the
force exerted during the contact will require the extension of the collision solution
method.

References

1. Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin,
and Claudio T. Silva. Computing and rendering point set surfaces. IEEE Transac-
tions on Visualization and Computer Graphics, 9(1):3–15, 2003.

2. Ron Alterovitz, Kenneth Y. Goldberg, and Allison M. Okamura. Planning for
steerable bevel-tip needle insertion through 2d soft tissue with obstacles. In ICRA,
pages 1640–1645, 2005.

3. Brian Armstrong-Hlouvry. Control of Machines with Friction. Springer, 1st edition,
1991.

4. David Baraff and Andrew Witkin. Large steps in cloth simulation. In SIGGRAPH
’98: Proceedings of the 25th annual conference on Computer graphics and interactive
techniques, pages 43–54, New York, NY, USA, 1998. ACM.

5. Jernej Barbič and Doug L. James. Real-time subspace integration for St. Venant-
Kirchhoff deformable models. ACM Transactions on Graphics (SIGGRAPH 2005),
24(3):982–990, August 2005.

6. Cagatay Basdogan, Mert Sedef, Matthias Harders, and Stefan Wesarg. Vr-based
simulators for training in minimally invasive surgery. IEEE Computer Graphics and
Applications, 27:54–66, 2007.

7. Klaus J. Bathe. Finite Element Procedures. Prentice Hall, 1995.
8. Debora Botturi, Francesca Pizzorni Ferrarese, Giulia Angela Zamboni, and Davide

Zerbato. Preoperative workflow for lymph nodes staging. Int J Comput Assist
Radiol Surg, 4(1):99–104, 2009.

9. David Bourguignon and Marie-Paule Cani. Controlling anisotropy in mass-spring
systems. In Eurographics Workshop on Computer Animation and Simulation
(EGCAS), Springer Computer Science, pages 113–123. Springer-Verlag, aug 2000.
Proceedings of the 11th Eurographics Workshop, Interlaken, Switzerland, August
21–22, 2000.

10. W. F. Brace and J. D. Byerlee. Stick-slip as a mechanism for earthquakes. Science,
(3739):990 – 992, 1966.

11. Morten Bro-Nielsen. Surgery simulation using fast finite elements. In VBC ’96: Pro-
ceedings of the 4th International Conference on Visualization in Biomedical Com-
puting, pages 529–534, London, UK, 1996. Springer-Verlag.

12. Joel Brown, Stephen Sorkin, Jean-Claude Latombe, Kevin Montgomery, and
Michael Stephanides. Algorithmic tools for real-time microsurgery simulation. Med-
ical Image Analysis, 6(3):289 – 300, 2002.

13. Marie-Paule Cani and Mathieu Desbrun. Animation of deformable models using
implicit surfaces. IEEE Trans. Vis. Comput. Graph., 3(1):39–50, 1997.

130 References

14. C. Canudas. A new model for control of systems with friction. IEEE Trans. on
Automatic Control, 40(3):419–425, 1995.

15. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCal-
lum, and T. R. Evans. Reconstruction and representation of 3d objects with radial
basis functions. In Computer Graphics (SIGGRAPH 01 Conf. Proc.), pages 6776.
ACM SIGGRAPH, pages 67–76. Springer, 2001.

16. M. A. Padilla Castaneda and F. Arambula Cosio. Improved collision detection
algorithm for soft tissue deformable models. In ENC ’05: Proceedings of the Sixth
Mexican International Conference on Computer Science, pages 41–49, Washington,
DC, USA, 2005. IEEE Computer Society.

17. Kup-Sze Choi, Hanqiu Sun, and Pheng-Ann Heng. Interactive deformation of
soft tissues with haptic feedback for medical learning. Information Technology in
Biomedicine, IEEE Transactions on, 7(4):358–363, Dec. 2003.

18. Min Gyu Choi and Hyeong-Seok Ko. Modal warping: Real-time simulation of large
rotational deformation and manipulation. IEEE Transactions on Visualization and
Computer Graphics, 11(1):91–101, 2005.

19. Yoo-Joo Choi, Min Hong, Min-Hyung Choi, and Myoung-Hee Kim. Adaptive
surface-deformable model with shape-preserving spring. Comput. Animat. Virtual
Worlds, 16(1):69–83, 2005.

20. Robert D. Cook, David S. Malkus, Michael E. Plesha, and Robert J. Witt. Concepts
and Applications of Finite Element Analysis. John Wiley & Sons, 2007.

21. J. L. Cornwall. Efficient multiple pass, multiple output algorithms on the gpu. In
2nd European Conference on Visual Media Production, 2005.

22. Jr. D. A. Haessig and B. Friedland. On the modeling and simulation of friction.
Journal of Dynamic Systems, Measurement, and Control, 113(3):354–362, 1991.

23. P. R. Dahl. A solid friction model. Technical report, The Aerospace Corporation,
El Segundo, CA, 1968.

24. M. de Pascale, G. de Pascale, and D. Prattichizzo. Exploiting gpus for visuo-haptic
modelling of deformable tissues. BioRob 2006, pages 467–470, 2006.

25. Gilles Debunne, Mathieu Desbrun, Alan H. Barr, and Marie-Paule Cani. Interactive
multiresolution animation of deformable models. In Nadia Magnenat-Thalmann and
Daniel Thalmann, editors, Eurographics Workshop on Computer Animation and
Simulation’99, September, 1999, Computer Science, pages 133–144, Milan, Italie,
September 1999. Springer.

26. Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. Dynamic
real-time deformations using space & time adaptive sampling. In SIGGRAPH ’01:
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pages 31–36, New York, NY, USA, 2001. ACM.

27. Hervé Delingette, Stéphane Cotin, and Nicholas Ayache. A hybrid elastic model
allowing real-time cutting, deformations and force-feedback for surgery training and
simulation. In CA ’99: Proceedings of the Computer Animation, page 70, Washing-
ton, DC, USA, 1999. IEEE Computer Society.

28. Vincent Duindam and Stefano Stramigioli. Modeling the kinematics and dynamics
of compliant contact. In IEEE International Conference on Robotics and Automa-
tion, ICRA, volume 3, pages 4029–4034. IEEE, 2003.

29. Pierre Dupont, Brian Armstrong, and Vincent Hayward. Elasto-plastic friction
model: Contact compliance and stiction. In American Control Conference, pages
1072–1077, 2000.

30. Nra Dyn, David Levin, and John A. Gregory. A butterfly subdivision scheme for
surface interpolation with tension control. ACM Transactions on Graphics, 9:160–
169, 1990.

References 131

31. Peter Eisert and Philipp Fechteler. Remote rendering of computer games. In Pro-
ceedings of the International Conference on Signal Processing and Multimedia Ap-
plications (SIGMAP), July 2007.

32. Gerald Farin. Curves and Surfaces for CAGD: A Practical Guide. Morgan Kauf-
mann, 5 edition, November 2001.

33. C. Forest, H. Delingette, and N. Ayache. Cutting simulation of manifold volu-
metric meshes. In Medical Image Computing and Computer-Assisted Intervention
(MICCAI02). Volume 2489 of LNCS, pages 235–244. Springer, 2002.

34. C. Forest, H. Delingette, and N. Ayache. Removing tetrahedra from manifold tetra-
hedralisation : application to real-time surgical simulation. Medical Image Analysis,
9(2):113–122, April 2005.

35. Sarah F. Frisken-Gibson. Using linked volumes to model object collisions, defor-
mation, cutting, carving, and joining. IEEE Transactions on Visualization and
Computer Graphics, 5:333–348, 1999.

36. Antonio Frisoli, Luigi Borelli, and Massimo Bergamasco. Modeling biologic soft
tissues for haptic feedback with an hybrid multiresolution method. Medicine Meets
Virtual Reality 13: The Magical Next Becomes the Medical Now, 111:145–148, 2005.

37. Y.C. Fung. Biomechanics Mechanical Properties of Living Tissues. Springer, Berlin,
1993.

38. Nico Galoppo, Miguel A. Otaduy, Paul Mecklenburg, Markus Gross, and Ming C.
Lin. Fast simulation of deformable models in contact using dynamic deformation
textures. In SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, pages 73–82, Aire-la-Ville, Switzerland, Switzer-
land, 2006. Eurographics Association.

39. Joachim Georgii, Florian Echtler, and Rüdiger Westermann. Interactive simula-
tion of deformable bodies on GPUs. In In proc. SimVis 05, pages 247–258. SCS
Publishing House e.V, 2005.

40. Thomas Di Giacomo and Nadia Magnenat-Thalmann. Bi-layered mass-spring model
for fast deformations of flexible linear bodies. In CASA ’03: Proceedings of the 16th
International Conference on Computer Animation and Social Agents (CASA 2003),
page 48, Washington, DC, USA, 2003. IEEE Computer Society.

41. Sarah Gibson, Christina Fyock, Eric Grimson, Takeo Kanade, Rob Kikinis, Hugh
Lauer, Neil McKenzie, Andrew Mor, Shin Nakajima, Hide Ohkami, Randy Osborne,
Joseph Samosky, and Akira Sawada. Volumetric object modeling for surgical sim-
ulation. Medical Image Analysis, 2(2):121–132, 1998.

42. S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: A hierarchical struc-
ture for rapid interference detection. Computer Graphics, 30(Annual Conference
Series):171–180, 1996.

43. Naga K. Govindaraju, Ilknur Kabul, Ming C. Lin, and Dinesh Manocha. Fast
continuous collision detection among deformable models using graphics processors.
Comput. Graph., 31(1):5–14, 2007.

44. Naga K. Govindaraju, David Knott, Nitin Jain, Ilknur Kabul, Rasmus Tamstorf,
Russell Gayle, Ming C. Lin, and Dinesh Manocha. Interactive collision detection
between deformable models using chromatic decomposition. ACM Trans. Graph.,
24(3):991–999, 2005.

45. Kris K. Hauser, Chen Shen, and James F. O’Brien. Interactive deformation us-
ing modal analysis with constraints. In Graphics Interface, pages 247–256. CIPS,
Canadian Human-Computer Commnication Society, A K Peters, June 2003.

46. M. Hauth and W. Strasser. Corotational simulation of deformable solids. In WSCG,
pages 137–144, 2004.

47. Martin Held, James T. Klosowski, and Joseph S.B. Mitchell. Evaluation of collision
detection methods for virtual reality fly-throughs. In In Canadian Conference on
Computational Geometry, pages 205–210, 1995.

132 References

48. Gerd Hesina and Dieter Schmalstieg. A network architecture for remote rendering.
Technical report, Institute of Computer Graphics and Algorithms, Vienna Univer-
sity of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, April 1998.

49. D. P. Hess and A. Soom. Friction at a lubricated line contact operating at oscillating
sliding velocities. Journal of Tribology, 112:147–152, 1990.

50. Thomas C. Hudson, Ming C. Lin, Jonathan Cohen, Stefan Gottschalk, and Dinesh
Manocha. V-collide: accelerated collision detection for vrml. In VRML ’97: Proceed-
ings of the second symposium on Virtual reality modeling language, pages 117–ff.,
New York, NY, USA, 1997. ACM.

51. M. Hughes, C. DiMattia, M. C. Lin, and D. Manocha. Efficient and accurate interfer-
ence detection for polynomial deformation. In CA ’96: Proceedings of the Computer
Animation, page 155, Washington, DC, USA, 1996. IEEE Computer Society.

52. INRIA: institut national de recherche en informatique et en automa-
tique. Sofa, an open source framework targeted at real-time simulation.
http://www.sofa-framework.org.

53. Doug L. James and Kayvon Fatahalian. Precomputing interactive dynamic de-
formable scenes. ACM Trans. Graph., 22(3):879–887, 2003.

54. Doug L. James and Dinesh K. Pai. Dyrt: dynamic response textures for real time
deformation simulation with graphics hardware. In SIGGRAPH ’02: Proceedings of
the 29th annual conference on Computer graphics and interactive techniques, pages
582–585, New York, NY, USA, 2002. ACM.

55. V. I. Johannes, Green M. A., and Brockley C. A. The role of the rate of application
of the tangential force in determining the static friction coefficient. Wear, 24:381–
385, 1973.

56. Dean Karnopp. Computer simulation of stick-slip friction in mechanical dynamic
systems. Journal of Dynamic Systems, Measurement, and Control, 107(1):100–103,
1985.

57. Autar K Kaw and Egwu Eric Kalu. Numerical Methods with Applications.
http://www.autarkaw.com, 2008.

58. John Keyser, Shankar Krishnan, and Dinesh Manocha. Efficient and accurate b-
rep generation of low degree sculptured solids using exact arithmetic. In SMA
’97: Proceedings of the fourth ACM symposium on Solid modeling and applications,
pages 42–55, New York, NY, USA, 1997. ACM.

59. Chang E. Kim and Judy M. Vance. Collision detection and part interaction mod-
eling to facilitate immersive virtual assembly methods. Journal of Computing and
Information Science in Engineering, 4(2):83–90, 2004.

60. Sang-Youn Kim, Jinah Park, and Dong-Soo Kwon. The real-time haptic simulation
of a biomedical volumetric object with shape-retaining chain linked model. IEICE
- Trans. Inf. Syst., E88-D(5):1012–1020, 2005.

61. Rolf M. Koch, Markus H. Gross, Friedrich R. Carls, Daniel F. von Büren, George
Fankhauser, and Yoav I. H. Parish. Simulating facial surgery using finite element
models. Computer Graphics, 30(Annual Conference Series):421–428, 1996.

62. Rynson W.H. Lau, Oliver Chan, Mo Luk, and Frederick W.B. Li. Large a collision
detection framework for deformable objects. In VRST ’02: Proceedings of the ACM
symposium on Virtual reality software and technology, pages 113–120, New York,
NY, USA, 2002. ACM.

63. Yuencheng Lee, Demetri Terzopoulos, and Keith Waters. Realistic modeling for
facial animation. In In SIGGRAPH 95, pages 55–62, 1995.

64. Ming C. Lin. Fast and accurate collision detection for virtual environments. 1999.
65. Ming C. Lin and Stefan Gottschalk. Collision detection between geometric models:

A survey. In In Proc. of IMA Conference on Mathematics of Surfaces, pages 37–56,
1998.

http://www.sofa-framework.org

References 133

66. Bryn A. Lloyd, Gbor Szkely, and Matthias Harders. Identification of spring param-
eters for deformable object simulation. IEEE Transactions on Visualization and
Computer Graphics, 13:1081–1094, 2007.

67. Jean-Christophe Lombardo, Marie-Paule Cani, and Fabrice Neyret. Real-time col-
lision detection for virtual surgery. In Computer Animation, May 1999.

68. Müller M, Keiser R, Nealen A, Pauly M, Gross M, and Alexa M. Point-based
animation of elastic, plastic, and melting objects. ACM SIGGRAPH/Eurographics
Symp. Computer Animation, pages 141–151, 2004.

69. Pauly M, Keiser R, Adams B, Dutré P, Gross M, and Guibas LJ. Meshless animation
of fracturing solids. ACM Transactions Graphics, 24(3):957–964, 2005.

70. M. Mahvash. Novel approach for modeling separation forces between deformable
bodies. IEEE Transactions on Information Technology in Biomedicine, 10(3):618–
626, 2006.

71. Nuno N. Maia and Julio M. M. Silva. Theoretical and Experimental Modal Analysis.
Research Studies Press, 1998.

72. Maximo De Mero and Antonio Susin. Deformable 3d objects for a vr medical
application. In 3es. Jornades de Recerca en Enginyeria Biomdica, pages 264–269,
2002.

73. Maximo De Mero and Antonio Susin. Deformable hybrid model for haptic interac-
tion. In 3rd. Workshop in Virtual Reality, Interactions, and Physical Simulations
(VRIPHYS’06), pages 8–16, 2006.

74. Shinya Miyazaki, Mamoru Endo, Masashi Yamada, Junichi Hasegawa, Takami Ya-
suda, and Shigeki Yokoi. A deformable fast computation elastic model based on
element reduction and reconstruction. In CW ’04: Proceedings of the 2004 Interna-
tional Conference on Cyberworlds, pages 94–99, Washington, DC, USA, 2004. IEEE
Computer Society.

75. M.B. Mohr, L. Blumcke, F.B. Sachse, G. Seemann, and O. Dossei. Hybrid defor-
mation model of myocardium. In Computers in Cardiology, 2003, pages 319–322,
Sept. 2003.

76. Wouter Mollemans, Filip Schutyser, Johan Van Cleynenbreugel, and Paul Suetens.
Tetrahedral mass spring model for fast soft tissue deformation. In IS4TH, pages
145–154, 2003.

77. Tomas Möller and Ben Trumbore. Fast, minimum storage ray-triangle intersection.
J. Graph. Tools, 2(1):21–28, 1997.

78. Andrew Mor. Progressive Cutting with Minimal New Element Creation of Soft
Tissue Models for Interactive Surgical Simulation. PhD thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, 2001.

79. M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. Point based
animation of elastic, plastic and melting objects. In SCA ’04: Proceedings of the
2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
141–151, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Association.

80. Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara
Cutler. Stable real-time deformations. In SCA ’02: Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 49–54, New
York, NY, USA, 2002. ACM.

81. Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. Mesh-
less deformations based on shape matching. ACM Trans. Graph., 24(3):471–478,
2005.

82. Ken Museth, David E. Breen, Ross T. Whitaker, and Alan H. Barr. Level set
surface editing operators. In ACM TRANSACTIONS ON GRAPHICS, pages 330–
338, 2002.

134 References

83. Matthieu Nesme, Maud Marchal, Emmanuel Promayon, Matthieu Chabanas, Yohan
Payan, and François Faure. Physically realistic interactive simulation for biological
soft tissues. In Recent Research Developments in Biomechanics, 2005, volume 2 of
Transworld Research Network, pages 117–139. Research signpost, 2005.

84. Fries T P and Matties H G. Classification and overview of meshfree methods. In
Technical Report, volume 3. TU Brunswick, Germany, 2003.

85. Celine Paloc, Alessandro Faraci, and Fernando Bello. Online remeshing for soft
tissue simulation in surgical training. IEEE Comput. Graph. Appl., 26(6):24–34,
2006.

86. A. Pentland and J. Williams. Good vibrations: modal dynamics for graphics and
animation. SIGGRAPH Comput. Graph., 23(3):207–214, 1989.

87. G. Picinbono, H. Delingette, and N. Ayache. Nonlinear and anisotropic elastic soft
tissue models for medical simulation. In Robotics and Automation, 2001. Proceedings
2001 ICRA. IEEE International Conference on, volume 2, pages 1370–1375 vol.2,
2001.

88. Guillaume Picinbono, Jean Christophe Lombardo, Herv Delingette, and Nicholas
Ayache. Improving realism of a surgery simulator: linear anisotropic elasticity, com-
plex interactions and force extrapolation. Journal of Visualization and Computer
Animation, 13:147–167, 2002.

89. William Press, Saul Teukolsky, William Vetterling, and Brian Flannery. Numerical
Recipes in C. Cambridge University Press, Cambridge, UK, 2nd edition, 1992.

90. S. Quinlan. Efficient distance computation between non-convex objects. In Robotics
and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages
3324–3329 vol.4, May 1994.

91. Alec R. Rivers and Doug L. James. Fastlsm: fast lattice shape matching for robust
real-time deformation. ACM Trans. Graph., 26(3):82, 2007.

92. Li Shaofan and Liu Wing Kam. Meshfree particle methods and their applications.
Applied Mechanics Review, 54:1–34, 2002.

93. Eftychios Sifakis, Kevin G. Der, and Ronald Fedkiw. Arbitrary cutting of de-
formable tetrahedralized objects. In SCA ’07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 73–80, Aire-la-
Ville, Switzerland, Switzerland, 2007. Eurographics Association.

94. Russel Smith. Ode, open dynamics engine. http://www.ode.org.
95. T. Soresen and J. Mosegaard. Haptic feedback for the GPU-based surgical simulator.

In Medicine Meets Virtual Reality 14, pages 523–528, 2006.
96. Simon Stegmaier, Marcelo Magallón, and Thomas Ertl. A generic solution for

hardware-accelerated remote visualization. In VISSYM ’02: Proceedings of the sym-
posium on Data Visualisation 2002, pages 87–ff, Aire-la-Ville, Switzerland, Switzer-
land, 2002. Eurographics Association.

97. R. Stribeck. Die wesentlichen eigenschaften der gleit- und rollenlager (the key qual-
ities of sliding and roller bearings). Zeitschrift des Vereines Seutscher Ingenieure,
46(38,39):1342–1348, 1432–1437, 1902.

98. Chuan-Jun Su, Fuhua Lin, and Lan Ye. A new collision detection method for csg-
represented objects in virtual manufacturing. Comput. Ind., 40(1):1–13, 1999.

99. Belytschko T, Krongauz Y, Organ D, Fleming M, and Krysl P. Meshless methods: an
overview and recent developments. Computation Methods Application Mechanical
Engineering, 139:3–47, 1996.

100. Belytschko T, Lu Y Y, and Gu L. Element free galerkin methods. International
Journal for Numerical Methods in Engineering, 37:229–256, 1994.

101. Min Tang, Sean Curtis, Sung-Eui Yoon, and Dinesh Manocha. Interactive continu-
ous collision detection between deformable models using connectivity-based culling.
In SPM ’08: Proceedings of the 2008 ACM symposium on Solid and physical mod-
eling, pages 25–36, New York, NY, USA, 2008. ACM.

http://www.ode.org

References 135

102. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically de-
formable models. In SIGGRAPH ’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, volume 21, pages 205–214, New
York, NY, USA, July 1987. ACM Press.

103. Gino van den Bergen. Efficient collision detection of complex deformable models
using aabb trees. J. Graph. Tools, 2(4):1–13, 1997.

104. Gino Van den Bergen. A fast and robust gjk implementation for collision detection
of convex objects. J. Graph. Tools, 4(2):7–25, 1999.

105. Allen Van Gelder. Approximate simulation of elastic membranes by triangulated
spring meshes. J. Graph. Tools, 3(2):21–42, 1998.

106. Loup Verlet. Computer ”experiments” on classical fluids. i. thermodynamical prop-
erties of lennard-jones molecules. Phys. Rev., 159(1):98, Jul 1967.

107. Brian Von Herzen, Alan H. Barr, and Harold R. Zatz. Geometric collisions for
time-dependent parametric surfaces. SIGGRAPH Comput. Graph., 24(4):39–48,
1990.

108. Clemens Wagner, Markus A. Schill, and Reinhard Männer. Collision detection and
tissue modeling in a vr-simulator for eye surgery. In EGVE ’02: Proceedings of the
workshop on Virtual environments 2002, pages 27–36, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.

109. Feei Wang, Terril Hurst, Daniel Abramovitch, and Gene Franklin. Disk drive pivot
nonlinearity modeling part ii: Time domain, 1994.

110. J.A Weiss, B.N. Maker, and Govindjee S. Finite element implementation of in-
compressible, transversely isotropic hyperelasticity. Computer Methods in Applied
Mechanics and Engineering, 135(1):107–128, August 1996.

111. Wingo Sai-Keung Wong and George Baciu. Robust continuous collision detection
for interactive deformable surfaces: Research articles. Comput. Animat. Virtual
Worlds, 18(3):179–192, 2007.

112. Wen Wu and Pheng Ann Heng. A hybrid condensed finite element model with
gpu acceleration for interactive 3d soft tissue cutting: Research articles. Comput.
Animat. Virtual Worlds, 15(3-4):219–227, 2004.

113. Wen Wu and Pheng-Ann Heng. An improved scheme of an interactive finite element
model for 3D soft-tissue cutting and deformation. The Visual Computer, 21(8-
10):707–716, 2005.

114. Xunlei Wu, Michael S. Downes, Tolga Goktekin, and Frank Tendick. Adaptive
nonlinear finite elements for deformable body simulation using dynamic progressive
meshes. In Computer Graphics Forum, pages 349–358, 2001.

115. Guo X and Qin H. Point-based dynamic deformation and crack propagation. In
Technical Report. Stony Brook University, 2004.

116. Soji Yamakawa and Kenji Shimada. Anisotropic tetrahedral meshing via bubble
packing and advancing front. International Journal for Numerical Methods in En-
gineering, 57(13):1923–1942, 2003.

117. Che Yinghui, Wang Jing, and Liang Xiaohui. Real-time deformation using modal
analysis on graphics hardware. In GRAPHITE ’06: Proceedings of the 4th inter-
national conference on Computer graphics and interactive techniques in Australasia
and Southeast Asia, pages 173–176, New York, NY, USA, 2006. ACM.

118. GP you Groupe. Gpumat: Gpu toolbox for matlab. http://www.gp-you.org.
119. D. Zerbato, S. Galvan, and P. Fiorini. Calibration of mass spring models for or-

gan simulations. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on, 29 2007-Nov. 2 2007.

120. Liangjun Zhang, Young J. Kim, and Dinesh Manocha. A fast and practical al-
gorithm for generalized penetration depth computation. In Robotics: Science and
Systems Conference (RSS07, 2007.

http://www.gp-you.org

136 References

121. Xinyu Zhang and Young J. Kim. Interactive collision detection for deformable
models using streaming aabbs. IEEE Transactions on Visualization and Computer
Graphics, 13(2):318–329, 2007.

122. Deng-Hua Zhong, Ming-Chao Li, Ling-Guang Song, and Gang Wang. Enhanced
nurbs modeling and visualization for large 3d geoengineering applications: An ex-
ample from the jinping first-level hydropower engineering project, china. Comput.
Geosci., 32(9):1270–1282, 2006.

123. Yongmin Zhong, B. Shirinzadeh, G. Alici, and J. Smith. A new methodology for
deformable object simulation. In Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference on, pages 1902–1907, April
2005.

Curriculum Vitæ of Davide Zerbato

Davide Zerbato was born in Verona on the 30th of March 1979. He received a
master’s degree in Computer Science from University of Verona in March 2006. In
his thesis he addressed the problem of deformable model calibration. He obtained
his PhD in Computer Science at University of Verona with a thesis about the
simulation of frictional contact in interactive deformable environments.

Since 2006 he is a member of ALTAIR Laboratory (Verona) where he worked for
AccuRobAs European project and he is currently involved in SAFROS European
project, the focus of his work is the implementation of a surgical simulator with
haptic feedback based on general purpose graphics processing unit programming.
The focus of his work is the development of highly parallel algorithms for the
simulation of interactive environments with haptic feedback.

His expertise includes deformable tissues modeling and haptic simulations.

Education

2007 - 2009: Dottorato di ricerca in Informatica, Università degli

Studi di Verona with the thesis “Frictional Contact in Inter-
active Deformable Environments” on soft bodies frictional con-
tact simulation in virtual interactive environments with haptic
feedback.

2004 - 2006: Laurea specialistica in Sistemi intelligenti e multimedi-

ali, Università degli Studi di Verona with a thesis entitled
“Deformable models calibratiion for organ simulation”, about
a method to calibrate mass spring model in an automatic way
to obtain patient-specific organ models (graded 110/110 cum

laude).
2001 - 2003: Laurea Triennale in Tecnologie dell’informazione: mul-

timedia, Università degli Studi di Verona with a thesis
entitled “Multiresolution surface parametrization”, about a pro-
cedure to parametrize meshes that allow to simplify or modify
them in an easy and intuitive way (graded 109/110).

1993 - 1998: Diploma di Maturità Scientifica: Istituto “Alle Sti-

mate”, Verona (graded 54/60).

138 Curriculum Vitæ of Davide Zerbato

Work Experience

2008 & 2009: University of Verona, teaching assistant. Provided instruc-
tional support for the courses “System and signals” held by Prof.
Paolo Fiorini.

Since April 2006: Altair, robotic Laboratory of University of Verona, in-

ternship. Development of a prototype of a surgical simulator
with haptic feedback: graphical interface and deformable mod-
els.

Winter 2002: Intercomp, Verona, technician. Technical assistance and
stock list for ULSS 20, Legnago.

Summer 2001: Banca Popolare di Verona BSGSP, Verona, bank teller.

Publications and Patents

1. D. Zerbato, D. Baschirotto, D. Baschirotto, D. Botturi, P. Fiorini GPU based
physical cut in interactive haptic simulations, accepted to Int. J CARS

2. D. Zerbato, D. Baschirotto, D. Baschirotto, D. Botturi, P. Fiorini GPU based
physical cut in interactive haptic simulations, CARS 2010

3. D. Zerbato, D. DallAlba, L. Giona, M. Vicentini, D. Botturi, P. Fiorini En-
hancing maxilofacial implantology with virtual fixtures, CARS 2010

4. D. Dall’Alba, L. Giona, D. Zerbato, D. Botturi, P. Fiorini, G. Schiroli, Image
based accuracy analysis in dental implantology applications. CARS 2010

5. D. Botturi, F. Pizzorni Ferrarese, G.A. Zamboni, D. Zerbato, Preoperative
workflow for lymph nodes staging, Int. J CARS (2008)

6. D. Botturi, F. Pizzorni Ferrarese, D. Zerbato, G.A. Zamboni, Automatically
Segmented CT Model for Preoperative Lymph Nodes Characterization and
Staging, RSNA 2008

7. M. Altomonte, D. Zerbato, D. Botturi, Fiorini, Simulation of Deformable En-
vironment with Haptic Feedback on GPU, IROS 2008

8. F. Pizzorni Ferrarese, D. Botturi, G.A. Zamboni, D. Zerbato, Preoperative
non-invasive staging of lymph nodes, CARS 2008

9. D. Zerbato, S. Galvan, P. Fiorini, Calibration of Mass Spring Models for Organ
Simulation, IROS 2007

10. D. Zerbato Metodo per la simulazione interattiva di immagini (Method for the
interactive simulation of images), domanda di brevetto.

Sommario

L’uso di simulazioni garantisce notevoli vantaggi in termini di economia, realismo
e di flessibilità in molte aree di ricerca e in ambito dello sviluppo tecnologico.
Per questo motivo le simulazioni vengono usate spesso in ambiti quali la pro-
totipazione di parti meccaniche, nella pianificazione e nell’addestramento di pro-
cedure di assemblaggio e disassemblaggio inoltre, recentemente, le simulazioni si
sono dimostrate dei validi strumenti anche nell’assistenza e nell’addestramento ai
chirurghi. Ciò risulta particolarmente vero nel caso della chirurgia laparoscopica.

La chirurgia laparoscopica, infatti, viene considerata lo standard per molte
procedure chirurgiche. La principale differenza rispetto alla chirurgia tradizionale
risiede nella notevole limitazione che ha il chirurgo nell’interagire e nel percepire
l’ambiente in cui sta lavorando, sia nell’aspetto visivo che in quello tattile. Questo
rappresenta una forte limitazione per il chirurgo a cui è richiesta una lunga fase di
addestramento prima di poter ottenere la necessaria destrezza per intervenire in
laparoscopia con profitto. Queste limitazioni, d’altra parte, rendono la laparoscopia
il candidato ideale per l’introduzione della simulazione nell’addestramento.

Attualmente sono disponibili in commercio alcuni software per l’addestramento
alla chirurgia laparoscopica, tuttavia essi sono in genere basati su modelli rigidi,
o modelli che comunque mancano del necessario realismo fisico. L’introduzione
di modelli deformabili porterebbe a migliorare notevolmente l’accuratezza e sim-
ulazioni più realistiche. Nel caso dell’addestramento alla laparoscopia il maggior
realismo potrebbe permettere all’utente di acquisire non solo le conoscenze motorie
basilari ma anche capacità e conoscenze di più alto livello. I corpi rigidi, infatti,
rappresentano una buona approssimazione della realtà solo in situazioni particolari
ed entro intervalli di sollecitazioni molto ristretti. Quando si considerano materiali
non ingegneristici, come accade nelle simulazioni chirurgiche, le deformazioni non
possono essere trascurate senza compromettere irrimediabilmente il realismo dei
risultati della simulazione. L’uso di modelli deformabili tuttavia introduce notev-
ole complessità computazionale per il calcolo della fisica che regola le deformazioni
e limita fortemente l’uso di dati precalcolati, spesso utilizzati per velocizzare la
fase di identificazione delle collisioni tra i corpi. I ritardi dovuti all’uso di modelli
deformabili rappresentano un grosso limite soprattutto nelle applicazioni interat-
tive che, per consentire all’utente di interagire con l’ambiente, richiedono il calcolo
della simulazione entro intervalli di tempo molto ridotti.

140 Sommario

In questa tesi viene affrontato il tema della simulazione di ambienti interattivi
composti da corpi deformabili che interagiscono con attrito. Vengono analizzati e
sviluppati differenti tecniche e metodi per le diverse componenti della simulazione:
in particolare la simulazione di modelli deformabili, gli algoritmi di identificazione
e soluzione delle collisioni e la modellazione e l’integrazione degli effetti dell’attrito
nella simulazione.

In particolare vengono valutati i principali metodi che rappresentano lo stato
dell’arte nella modellazione di materiali deformabili. L’analisi considera i fonda-
menti fisici su cui i modelli si basano e quindi sul grado di realismo che possono
garantire in termini di deformazioni modellabili e la semplicità d’uso degli stessi
(ovvero la facilità di comprensione del metodo, la calibrazione del modello e la
possibilità di adattare il modello a situazioni differenti) ma viene considerata an-
che la complessità computazionale di ciascun metodo in quanto essa rappresenta
un fattore estremamente importante nella scelta e nell’uso dei modelli deformabili
nelle simulazioni.

Il confronto dei differenti modelli e le caratteristiche identificate hanno moti-
vato lo sviluppo di un metodo innovativo per fornire un’interfaccia comune ai vari
metodi di simulazione dei materiali deformabili. Tale interfaccia ha il vantaggio
di fornire dei metodi omogenei per la manipolazione di tutti i differenti modelli
deformabili e ciò garantisce la possibilità di scambiare il modello usato per la sim-
ulazione delle deformazioni mantenendo inalterati le altre strutture dati e i metodi
della simulazione.

L’introduzione di tale interfaccia unificata si dimostra particolarmente van-
taggiosa in quanto permette l’uso di un solo metodo per l’identificazione delle
collisioni su tutti i differenti modelli deformabili. Ciò semplifica molto l’analisi e
la definizione dei requisiti di tale modulo software. L’identificazione delle collisioni
tra modelli rigidi generalmente pre computa delle partizioni dello spazio in cui
i corpi sono definiti oppure sfrutta la suddivisione del corpo analizzato in parti
convesse, per velocizzare i calcoli durante la simulazione. Nel caso di modelli de-
formabili non è possibile applicare tali tecniche a causa dei continui cambiamenti
nella configurazione dei corpi.

Dopo che le collisioni tra i corpi sono state riconosciute e che i punti di contatto
sono stati identificati e necessario risolvere le collisioni tenendo conto della fisica
sottostante i contatti. Per garantire il realismo fisico è necessario assicurare che i
corpi non si compenetrino mai durante la simulazione e che nella simulazione delle
collisioni tutti i fenomeni fisici di interesse coinvolti nel contatto tra i corpi vengano
considerati: questi includono le forze elastiche che si esercitano tra i corpi e le
forze di attrito che si generano lungo le superfici di contatto. L’innovativo metodo
proposto per la soluzione delle collisioni garantisce il realismo della simulazione e
l’integrazione con l’interfaccia proposta per la gestione unificata dei modelli.

Una caratteristica importante dei tessuti biologici è il comportamento anisotrop-
ico, dovuto, in genere, alla loro struttura fibrosa. In questa tesi viene proposto un
nuovo metodo per aggiungere l’anisotropia al comportamento dei modelli massa
molla. Il metodo ha il vantaggio di mantenere la velocità computazionale e la sem-
plicità di implementazione dei modelli massa molla classici e riesce a differenziare
efficacemente la risposta del modello alle sollecitazioni lungo le differenti direzioni.

Sommario 141

Le tecniche descritte sono state integrate in due applicazioni che forniscono
la simulazione della fisica di ambienti con corpi deformabili. La prima delle due
implementa tutti i metodi descritti per la simulazione dei modelli deformabili,
identifica le collisioni con precisione e le risolve fornendo la possibilità di scegliere
il modello di attrito più adatto, dimostrando cos̀ı la fattibilità dell’approccio pro-
posto. La limitazione principale di tale simulatore risiede nell’alto tempo di cal-
colo richiesto per la simulazione dei singoli passi di simulazione. Tale limitazione
è stata superata in una seconda implementazione che sfrutta il parallelismo in-
trinseco delle simulazioni fisiche per ottimizzare gli algoritmi e che, quindi, riesce
a sfruttare al meglio la potenza computazionale delle architetture hardware par-
allele. Al fine di ottenere le prestazioni richieste per la simulazione di ambienti
interattivi con ritorno di forza, la simulazione è basata su un algoritmo di identi-
ficazione delle collisioni semplificato, ma implementa gli altri metodi descritti in
questa tesi. L’implementazione parallela sfrutta le capacità di calcolo delle moderne
schede video munite di processori altamente paralleli e ciò permette di aggiornare
la scena ogni millisecondo. Questo elimina ogni discontinuità nel ritorno di forza
reso all’utente e nell’aggiornamento della grafica della scena, inoltre garantisce il
realismo necessario alla simulazione fisica sottostante.

Le applicazioni implementate provano la fattibilità della simulazione della fisica
di interazioni complesse tra corpi deformabili. Inoltre, l’implementazione parallela
della simulazione rappresenta un promettente punto di partenza per la realiz-
zazione di simulazioni interattive che potrà essere utilizzato in ambiti di ricerca
differenti, quali l’addestramento di chirurghi o la prototipazione rapida.

	Introduction
	Simulation Components
	User Input
	Physical Modeling
	Temporal Integration
	Interference Detection
	Collision Solution
	Scene Rendering

	Contributions
	Structure Of The Thesis

	Soft Tissue Simulation Techniques
	Finite Elements
	Condensation
	Boundary Element Method
	Modal Analysis

	Mass Spring Models
	Damping in Mass Spring Models
	Volume Preservation

	Meshless Models
	Physically Based Meshless
	Shape Matching Based Meshless

	Conclusions

	Common Representation Framework
	Adaptive Models
	Multi Resolution Models
	Hybrid Models

	Common representation
	Point Based Approach
	Geometric Analysis
	Dynamic Analysis

	Conclusions

	Collision Handling
	Collision Detection
	General Approach
	Collision Detection for Deformable Models
	Collision Detection Library

	Collision Solution
	Problem Statement
	Method

	Results
	Structure Update
	Collision Detection
	Collision Solution

	Conclusions

	Friction Models
	Dynamic Components of Friction
	Friction Models
	Static Models
	Dynamic Models

	Model Comparison
	Coulomb Model
	Karnopp Model
	Dahl Model
	LuGre Model
	Elasto Plastic Model

	Integration
	Velocity Approximation
	Force Approximation
	Force Distribution
	Examples

	Conclusions

	Anisotropic Mass Spring Models
	Related work
	Method Description
	Analytical Description
	Geometrical Interpretation

	Results
	Conclusions

	Implementation
	GPU Implementation
	Physics Simulation
	Physical Model Representation
	Elastic Force Computation
	Volume Preservation
	Temporal Integration

	Deformable Model Interaction
	Collision Detection With Fixed Structures
	Probing
	Grabbing
	Cutting
	Interaction Forces Computation

	Results
	Optimized Graphical Rendering
	Remote Rendering Overview

	Integration in the Simulation
	Deformable Models Rendering
	Architecture Scalability Test
	Network Performance Test
	Model Complexity Test

	Conclusions

	Conclusions and Future Work
	References

