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Abstract Despite the great relevance of temporal logics in many applications
of computer science, their theoretical analysis is far from being concluded. In
particular, we still lack a satisfactory proof theory for temporal logics and this is
especially true in the case of branching-time logics.

The main contribution of this thesis consists in presenting a modular approach
to the definition of labeled (natural) deduction systems for a large class of tem-
poral logics. We start by proposing a system for the minimal Priorean tense logic
and show how to modularly enrich it in order to deal with more complex logics,
like LTL. We also consider the extension to the branching case, focusing on the
Ockhamist branching-time logics with a bundled semantics.

A detailed proof-theoretical analysis of the systems is performed. In particular,
in the case of discrete-time logics, for which rules modeling an induction principle
are required, we define a procedure of normalization inspired to those of systems
for Heyting Arithmetic. As a consequence of normalization, we obtain a purely
syntactical proof of the consistency of the systems.
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1

Introduction

1.1 Background and motivation

The history of the philosophical and logical reasoning about time goes back at least
to ancient Greece, with the works of Aristotle and Diodorus Cronus. However, the
birth of modern (symbolic) temporal logic is mainly connected to the name of
Prior, who in the late 1950’s developed the so-called tense logics on the model of
modal logics, in a work significantly titled “Time and Modality” [127].

Since the seminal work of Pnueli in 1977 [124], temporal logic has also gained
a great importance in computer science: applications include its use as a tool for
the specification and verification of programs and protocols [18], in the study and
development of temporal databases [39], as a framework within which to define
the semantics of temporal expressions in natural language [90] and as a language
for encoding temporal knowledge in artificial intelligence [72].

Many temporal logics have been proposed, varying both in the set of the op-
erators used and in the semantics adopted (see [88] for a survey). Despite the fact
that temporal logics have been studied for many years, their theoretical analysis
is far from being concluded. In particular, a satisfactory proof-theoretical analysis
for temporal logics is still lacking. This is especially true in the case of branching-
time logics, as shown by the fact that for one of the most important of such logics,
CTL∗, even the problem of finding a complete Hilbert-style axiomatization has
been, partially, solved only recently [135]. Furthermore, when deduction systems
have been devised in a form that allows for a meta-theoretical and proof-theoretical
analysis (e.g., natural deduction, sequent systems), they have been given for spe-
cific logics and do not seem to be easily generalizable to a modular treatment of a
wide range of logics of time.

The aim of this thesis is to provide a modular approach to the definition of
deduction systems for a large class of temporal logics and to their proof-theoretical
analysis. We will mainly deal with natural deduction systems [73, 125]. Such sys-
tems present an elegant meta-theory in which derivations can be treated as math-
ematical objects interesting in themselves. It follows that a “good” natural de-
duction presentation can be seen also as a useful device for understanding a logic
better and for reasoning on its properties. Namely, we believe that a good formula-
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tion, in a natural deduction setting, of a logic should at least satisfy the following
requirements:

(i) for each connective, there is exactly one introduction and one elimination
rule1, which also express, as well illustrated by Prawitz [125], the “meaning”
of the connective;

(ii) a normalization theorem holds and, moreover, the structure of normal proofs
is informative enough to let one derive important meta-theorems, such as the
subformula property or consistency.

There are a number of different reasons for the delay in the development of
temporal proof theory, but perhaps the most important one is that temporal logics
are (multi) modal logics and modal proof theory is notoriously a difficult subject.
For instance, adapting natural deduction systems for classical (or intuitionistic)
logic to modal logic is not straightforward and, in fact, it is not trivial to define
systems that enjoy properties (i) and (ii) mentioned above.

Fortunately, in the last decades some interesting proposals for modal proof
theory have been presented, e.g. [5, 7, 8, 16, 26, 27, 61, 66, 81, 104,143,148,159,162].
Among these, particularly interesting are the proposals that are based on labeled
deduction [26,27,66,143,148,159], a framework that has been successfully employed
for several non-classical, and in particular modal, logics, since labeling provides
a clean and effective way of dealing with modalities and gives rise to deduction
systems with good proof-theoretical properties. The basic idea is that labels allow
one to explicitly encode additional information, of a semantical or proof-theoretical
nature, that is otherwise implicit in the logic one wants to capture. So, for instance,
instead of a formula A, one can consider the labeled formula b : A, which intuitively
means that A holds at the world denoted by b within the underlying Kripke seman-
tics. We can also use labels to specify how worlds are related, e.g. the relational
formula bRc states that the world c is accessible from b.

Such an enrichment of the language allows for defining introduction and elimi-
nation rules for modal operators that are extremely clean and follow the “spirit” of
natural deduction. For instance, we can express b : �A as the metalevel implication
bRb′ =⇒ b′ : A for an arbitrary b′ accessible from b to give the rules:

[bRb′]
....

b′ : A
b : �A

�I
b : �A bRb′

b′ : A
�E

where the rule �I has the side condition that b′ is different from b and does not
occur in any assumption on which b′ : A depends other than bRb′.

Since it is possible to think of a temporal logic (at least the ones we consider in
this thesis) as a modal logic, we propose to use the framework of labeled deduction
to develop a proof theory for temporal logics. In fact, by following the Priorean
approach, mentioned at the beginning, we can see a temporal logic as a modal logic
where the worlds in the semantics are time instants and the accessibility relation is

1 Up to a few standard exceptions, like, e.g., two symmetrical elimination rules for
conjunction.
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the ordering < between such time instants. In this view, the modalities of necessity
� and possibility ♦ assume the intended meanings of always (usually denoted G)
and eventually (usually denoted F), respectively. An extension considering past
operators is also possible.

1.2 Contributions

Table 1.1 presents a, clearly not comprehensive, map of temporal logics, which will
help clarify the main contributions of this thesis. The first column presents logics
whose underlying flow of time is linear, while in the second and third column we
have branching logics, i.e., the flow of time is assumed to have a tree-like structure
and the language is extended with an operator ∀ that allows for quantifying on
the branches. A further classification can be made when reading the table by rows:
the first row presents logics where the flow of time is an arbitrary time-line or an
arbitrary tree (general time); in the second row, we consider discrete time logics,
and thus also enrich the language with a next-time operator; in the third row,
we are still in a discrete-time setting and further extend the language with the
operator until [96].

With regard to branching logics, we remark that we focus here on the so-
called Ockhamist ones, whose language allows for a free combination of temporal
operators and quantifiers, and distinguish between two forms of semantics: in the
third column, we find the standard (full) semantics of the well-known CTL∗ [55]
(and of its general-time corresponding OBTL [136]); in the second column, we have
logics originated by using a generalized (bundled) semantics obtained by allowing
restrictions on the set of branches considered.

In the literature, labeled natural deduction systems have been proposed for
linear-time logics [19, 103] and the branching logic CTL [20, 131], which, given its
syntactic restrictions on the nesting of operators, is not Ockhamist and thus is
not reported in Table 1.1. In this thesis, we propose a modular approach, based
on labeling, to natural deduction for (linear and Ockhamist branching) temporal
logics and focus on a proof-theoretical analysis of the defined systems. The main
difficulties in such a work can be summarized in the following points:

(1) extending the approach from the linear to the branching case, i.e., moving
from the first to the second column of Table 1.1;

(2) treating in a proof-theoretically satisfactory way the operator until, i.e., mov-
ing from the second to the third row2;

(3) capturing the full semantics of branching logics (by means of a system with
finitary rules), i.e., moving from the second to the third column;

(4) defining a normalization procedure in the case of systems for discrete-time
logics, which require a rule modeling the induction principle.

In this thesis, we mainly face and solve points (1) and (4) and give a proposal
for point (2), thus covering the first two columns of Table 1.1. The very complex

2 In this thesis, we consider the use of until explicitly only in the case of discrete logics,
but indeed the recipe we propose for dealing with such an operator can be easily
adapted to the case of general-time logics.
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Linear-Time
Bundled Ockhamist

Branching-Time

Full Ockhamist

Branching-Time

General time Kl BOBTL OBTL

Until-free discrete time LTL
−

BCTL∗
− CTL∗

−

Discrete time with until LTL BCTL∗ CTL∗

Table 1.1. A map of temporal logics.

problem of item (3) (we remind that even finding a finitary Hilbert-style axioma-
tization for such logics is still a partially open problem) is left for future work. We
further analyze these points below.

1.2.1 Labeled natural deduction for linear temporal logics

We have already seen that, at least in the case of the Priorean tense logics, tem-
poral operators are nothing more than modal operators with respect to a Kripke
semantics where the worlds are time instants and the accessibility relation is the
ordering < between the time instants. It follows that we may apply the same pat-
tern of introduction/elimination rules seen above in the modal case (just replace
� with G and R with <):

[b < b′]
....

b′ : A
b : GA

GI
b : GA b < b′

b′ : A
GE

with the usual condition of freshness for b′ in GI.
Relational properties specifying a particular flow of time can also be expressed

by means of rules that manage relational formulas, along the same line of relational
rules of labeled natural deduction systems for modal logics3 [148,159]. For instance,
we can force the flow of time to be transitive by endowing the system with a rule
like:

b1 < b2 b2 < b3

[b1 < b3]....
b : A

b : A
trans <

Some labeled natural deduction systems for linear temporal logics have been
proposed [19, 103] by following the ideas sketched above. Our contribution with

3 Though, as we will see, some of such properties, e.g., expressing a temporal induction
principle in the case of discrete time, require a much more complex treatment than
that for most common modal logics.
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regard to these logics consists mainly in giving a uniform and modular presentation
of systems for a large class of linear temporal logics and in performing a proof-
theoretical analysis of such systems. Namely, we give a system for the general
linear tense logic Kl , consider some of its variants, e.g., Kl with dense time, with
first/final point, unbounded, etc., and finally treat the case of the discrete-time
logic LTL

−
. With regard to the last logic, it is easy to observe that the operator

X of next-time can be treated exactly in the same way as the operator G, since it
can be seen as a �-like modal operator with respect to the functional relation of
being the immediate predecessor.

1.2.2 Labeled natural deduction for branching temporal logics

When we are interested in reasoning about concurrent or non-deterministic pro-
cesses, it can be convenient to refer to richer semantical structures and more expres-
sive languages than those of linear-time logics. Namely, we can consider tree-like
structures and exploit the possibility of quantifying over sets of branches of such
trees, where a single branch represents a possible computation. In this thesis, we
will mainly deal with the so-called bundled branching-time logics, which are ob-
tained by considering a generalization of the standard tree-based semantics. The
semantics is defined on the larger class of bundled trees, where a bundled tree is
represented by a (standard) tree and a set of branches, satisfying some closure
properties, on it.4

Bundled versions of branching logics have been often considered in the liter-
ature [31, 139, 150, 167] and, though less popular than the corresponding “full”
logics, are relevant both from a philosophical point of view [116, 118] and in the
case of applications to computer science, e.g., when we are interested in restricting
the set of computations to be taken into consideration; namely, in the case of rea-
soning under fairness assumptions. In fact, it has been shown in [42] that BCTL∗ is
equivalent to the logic generated by fair structures, i.e. transition systems endowed
with a mechanism for expressing conditions of generalized fairness [63].

The extension of the system for linear-time logics to the bundled branching-
time logics requires the definition of rules for treating the path quantifier ∀. The
idea we apply here consists in considering a different, but equivalent, semantical
formulation of such logics, given by means of the so-called Ockhamist frames [150,
167]. An Ockhamist frame is a Kripke frame with two accessibility relations5 (say
≺ and ≃) obtained from a bundled tree as follows:

• each branch of the tree is a world of the Ockhamist frame;
• b1 ≺ b2 if b2 is a sub-branch of b1;
• b1 ≃ b2 if b1 and b2 share the same initial node.

4 Namely, in the case of BOBTL, the set of branches must be closed under sub-branches
and super-branches and such that every node of the tree belongs to some branch in
the set. In the case of BCTL∗, and of its until-free fragment, the bundled semantics is
obtained by removing the so-called limit-closure condition from the standard semantics
of CTL∗. Details in Chapter 2.

5 In the case of discrete-time logics, we can also consider a relation of immediate sub-
branch on which the operator X will be defined.
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Fig. 1.1. A bundled tree (left) and the corresponding Ockhamist frame (right).

Figure 1.1 illustrates this correspondence, which, as observed in [167], allows for
giving a genuine Kripke-style semantics, where also the path quantifier ∀ is seen
as a standard (S5 ) modal operator with respect to the equivalence relation ≃.

We have observed above that, when dealing with “pure” modal operators,
labeling allows for devising clean and effective introduction and elimination natural
deduction rules. And in fact, with this semantics in mind, and by using labels to
refer to branches rather than to time instants, we are able to give well-behaved
rules for the quantifier ∀ as well: just consider the rules for G given above and
replace G with ∀ and < with ≃.

This leads to a clean and strongly modular deduction system where each basic
operator (i.e. G, ∀ and, possibly, X) is seen as a modal operator and is endowed with
a proper accessibility relation. Interactions between the relations are expressed by
means of structural rules that do not involve the operators themselves directly.

A detailed proof-theoretical analysis of the system is also made. Normalization
is especially problematic in the case of the logics with both the operators X and
G because of the underlying temporal induction principle, which relates the next-
time relation and the order relation. Such temporal induction is handled, inside the
system, in a way strongly similar to first-order induction of Peano/Heyting Arith-
metics and in fact the normalization procedure follows those defined for systems
for Heyting Arithmetics in [74,126,151]. As is standard in these cases, we present
an intuitionistic version of the system and, though the standard subformula prop-
erty cannot hold, we are able to prove for it confluence and weak normalization;
then we use such results to give a purely syntactical proof of consistency for the
intuitionistic system and, via a proper translation, for the classical system as well.

1.2.3 The treatment of until

In the thesis, normalization is studied in the case of systems for until-free logics.
In fact, the until U is a quite complex operator, from a proof-theoretical point
of view, mainly because of its ambivalent nature of being both “universal” and
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“existential”6. Indeed, if one is interested in a natural deduction presentation en-
joying the properties (i) and (ii) illustrated in Section 1.1, the solutions given in
the literature do not seem to be really satisfactory. Here we give a proposal based
on using a slightly more complex labeling discipline than the usual one, so that a
formula can be also labeled by a pair of labels, and on introducing a new temporal
operator history ∇, which allows for a bounded universal quantification between
two points. So, for instance, we are allowed to write bc : ∇A to say that A holds
in all the points contained between the instants denoted by b and c. Rules for
the new operator can be given in a very clean way, which mirrors the one of the
other temporal operators, and until can be clearly expressed in terms of the new
operator by exploiting the following equivalence:

AUB ≡ B ∨ F(XB ∧∇A)7 .

In the thesis, we give a system for a variant of LTL, obtained by replacing until
with history, and prove that such a variant is as expressive as standard LTL. We
remark, however, that our solution is fully general and can be easily adapted to
the case of other (possibly branching) logics with until.

1.2.4 Mosaics for temporal logics

In this thesis we also consider an “orthogonal” model-theoretical topic: the use of
the mosaic method in temporal logic [105]. Although the subject is rather different,
our contribution, which consists in an extension of the method from the linear to
the bundled branching case and is based on the same intuition related to the
Ockhamist frames, is in a way similar.

The mosaic method has been introduced in algebraic logic as a way of proving
the decidability of the theories of some classes of algebras of relations [114, 115].
The basic idea consists in showing that the existence of a model is equivalent to
the existence of a (finite) set of fragments of models (called mosaics), satisfying
a given number of requirements. From that, we get a decision procedure for the
logic, which consists in checking whether such a (finite) set exists or not. The
mosaic method has been recently applied [105,134,137,140] to prove decidability,
complexity results and completeness of Hilbert-style axiomatizations for several
linear temporal logics, namely Kl and some of its variants.

Here we propose an extension of the method to the case of bundled branching-
time logics, i.e., we move from Kl (for which the mosaic method is defined in [105])
to BOBTL, and in doing so we also consider a number of intermediate logics. The
results concerning decidability and completeness of these logics are already well

6 In LTL, the formula AUB holds at the current time instant b iff either B holds at b or
there exists a time instant b′ in the future at which B holds and such that A holds in
all the time instants between the current one and b′. The words in emphasis highlight
the dual existential and universal nature of U.

7 That is: AUB iff either B holds or there exists a time instant b′ in the future (as
expressed by the sometime in the future operator F) such that (i) B holds in the
successor time instant, and (ii) A holds in all the time instants between the current
one and b′ (included). The latter conjunct is precisely what the history operator ∇
expresses.
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known [31], however we believe that the mosaic method is interesting in itself as
it provides a uniform way of establishing such results for many logics, by simple
and modular modifications of the basic definitions. Moreover, our proposal for this
class of branching-time logics can be seen as a basis for dealing with other more
interesting logics, for which decidability and complexity results are still missing.

1.3 Synopsis

Part I - Background
- In Chapter 2, we give a brief presentation of modal and temporal logics,

focusing on those considered in the thesis.
- In Chapter 3, we introduce labeled natural deduction and describe its use in

the case of most common modal logics.
Part II - Labeled Natural Deduction for Temporal Logics

- In Chapter 4, we present and analyze labeled natural deduction systems for
linear temporal logics; a proposal for the treatment of until is also given.

- In Chapter 5, we describe labeled natural deduction for a number of bundled
branching-time logics, and study normalization, in particular, of the system
for BCTL∗

−.
Part III - Mosaics for Temporal Logics

- In Chapter 6, we introduce the technique of mosaics in temporal logics and
describe an extension to the case of bundled branching Ockhamist logics.

Finally, in Chapter 7, we summarize the contents of the thesis and discuss some
possible directions for future work.

In order to ease readability, some of the proofs of Chapter 5 are given in an
appendix.

1.4 Publications

Some of the material of this thesis has been published or submitted for publication.

Chapter 4
[160] Luca Viganò and Marco Volpe. Labeled Natural Deduction Systems for a
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resentation and Reasoning (TIME-2008), pages 118-126. IEEE Computer
Society, 2008.
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Notes in Theoretical Computer Science, pages 189-204, 2010.
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Background





2

Modal and Temporal Logics

2.1 Introduction

In this chapter, we present the basic notions related to the logics that will be
considered in the thesis. We will start introducing the most basic modal logics
and then, by enriching the language and by refining the semantical structures
considered, we will move to describe a number of linear-time and branching-time
temporal logics. For most of the logics, we will also present Hilbert-style axiom-
atizations, which will turn out to be useful, in the rest of the thesis, in order to
prove meta-theoretical properties (typically, completeness) of the natural deduc-
tion systems defined.

We remark that in this chapter (as in the rest of the thesis) we restrict to
consider only propositional modal and temporal logics.

The structure of the chapter is the following:

- in Section 2.2, we introduce the minimal normal modal logic K and some of its
most common extensions;

- in Section 2.3, we present linear-time temporal logics;
- in Section 2.4, we describe branching-time temporal logics, focusing on the so-

called Ockhamist ones.

2.2 Modal Logics

While classical logic has been devised for dealing with the basic notions of true and
false, modal logics allow for qualifying the truth of a judgment. This is obtained by
using modal operators, commonly denoted by � and ♦, with the intended meaning
of “necessarily” and “possibly”, respectively. There are other possible readings for
such modal operators, each of which giving rise to a particular class of modal logics.
Some common interpretations are collected in Table 2.1. Modal logics also have
important applications in computer science. For an introduction, see [16, 38, 62].
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Modal logic Interpretation for �A

Alethic A is necessarily true

Epistemic A is known

Deontic it is obligatory that A

Temporal it will always be the case that A

Table 2.1. Interpretation of modal operators in most common modal logics.

2.2.1 The minimal normal modal logic K

First we introduce syntax and semantics of the minimal normal modal logic K .
As we will show in Section 2.2.2, several extensions of K can be obtained by
considering the same language but a different semantical characterization.

Syntax

The language of propositional modal logic K consists of a functionally complete
set of classical connectives (here we will use falsum, denoted by ⊥, and implication,
denoted by ⊃), a modal operator � and a denumerable set of propositional symbols
(or propositional symbols).

Definition 2.1. Given a set P of propositional symbols, the set of (well-formed)
modal formulas is defined by the grammar

A ::= p | ⊥ | A ⊃ A | �A ,

where p ∈ P. The set of atomic formulas is P∪{⊥}. The complexity of a formula
is the number of occurrences of connectives (⊃) and operators (�).

The given syntax uses a restricted set of classical connectives and modal op-
erators. As is standard, we can introduce abbreviations and use, e.g., ¬, ∧ and ∨
for the negation, the conjunction and the disjunction, respectively. For instance,
¬A ≡ A ⊃⊥. We can also define the dual modal operator of �, denoted by ♦,
i.e. ♦A ≡ ¬�¬A.

Semantics

Since the early sixties, semantics for modal logics has been given by means of
relational (Kripke) structures, i.e. structures consisting of a set of elements (usually
called worlds, or points) on which a binary accessibility relation is defined.1 We
also associate each relational structure with a valuation function, which assigns to
every world the set of propositional symbols that are true in it. The truth at every
world is defined locally by using the laws of classical logic, while truth for �A in a
given world w is defined by considering that �A is true in w if A is true in every
world accessible from w.
1 As a generalization, we obtain multi-modal logics by considering structures with more

than one relation (and a distinct modal operator for each relation) and more complex
modal logics, e.g. relevance logics, by allowing relations that are not necessarily binary.
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Definition 2.2. A Kripke frame is a pair F = (W ,R) where:

• W is a non empty set of worlds (or points);
• R is a binary relation on W, called accessibility relation.

Given a set P of propositional symbols, a Kripke structure (or Kripke model) on
P is a triple M = (W ,R,V) where:

• (W ,R) is a Kripke frame;
• V : W → 2P is a (valuation) function that assigns to each world in W a

(possibly empty) set of propositional symbols.

Definition 2.3. Truth in the logic K for a modal formula at a point w in a Kripke
structure M = (W ,R,V) is the smallest relation |=

K
satisfying:

M, w |=
K

p iff p ∈ V(w)

M, w |=
K

A ⊃ B iff M, w |=
K

A implies M, w |=
K

B

M, w |=
K
�A iff M, w′ |=

K
A for all w′ s.t. wRw′

Note that M, w 2⊥ for every M and w. By extension, given a modal formula A
and a set of modal formulas Γ , we write:

M |=
K

A iff M, w |=
K

A for all w ∈ W

M |=
K

Γ iff M |=
K

A for all A ∈ Γ

Γ |=
K

A iff M |=
K

Γ implies M |=
K

A, for every Kripke structure M

|=
K

A iff M |=
K

A for every Kripke structure M.

We say that:

• a modal formula A is K -satisfiable in a Kripke structure M iff there exists a
world w in M such that M, w |=

K
A;

• a modal formula A is K -satisfiable iff A is satisfiable in some Kripke structure
M; otherwise it is K -unsatisfiable;

• a modal formula A is K -valid in a Kripke structure M iff M |=
K

A;
• a modal formula A is K -valid in a Kripke frame F iff M |=

K
A for every

model M defined on the frame F ;
• a modal formula A is K -valid iff |=

K
A, i.e. A is valid in every Kripke structure.

We can now define the logic K as the set of formulas that are valid according
to the semantics given above, i.e. K = {A | |=

K
A}.

A Hilbert-style axiomatization

For the minimal modal logic K , we can give the following Hilbert-style axiomati-
zation H(K ):

(CL) Any tautology instance of classical propositional logic

(K ) �(A ⊃ B) ⊃ (�A ⊃ �B)
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We have also the inference rules of modus ponens and modal necessitation (or
generalization):

(MP) If A and A ⊃ B then B

(Nec) If A then �A

The set of theorems of H(K ) is defined as the smallest set of modal formulas
containing the set of axioms and closed with respect to the rules of inference above.
We denote with ⊢

K
the notion of derivability in H(K ), i.e. ⊢

K
A iff A is a theorem

of H(K ). Furthermore we write Γ ⊢
K

A (A follows deductively from Γ ) if A can
be derived from all theorems of H(K ) and the formulas in Γ by applying the rule
(MP) only.2

We can now state a relation between the notions of logical consequence,
i.e. Γ |=

K
A, and deductive consequence, i.e. Γ ⊢

K
A,. In fact, by a Henkin-style

construction (see, e.g., [89]), it is possible to show the following result of sound-
ness (right-to-left direction) and completeness (left-to-right direction) for the given
axiomatization.

Theorem 2.4 (Soundness and completeness). Given a modal formula A and
a set of modal formulas Γ , it holds:

Γ |=
K

A ⇔ Γ ⊢
K

A .

2.2.2 Axiomatic extensions

Several further modal logics (we call them frame logics) can be defined as exten-
sions of the logic K by simply restricting the class of frames we consider. Classes of
frames can be distinguished by means of the properties (e.g., reflexivity, transitiv-
ity, etc.) of their accessibility relation. Many of the restrictions we are interested
in are definable as formulas of first-order logic where the binary predicate R(x, y)
refers to the corresponding accessibility relation.3 Table 2.2, adapted from [81],
summarizes some of the most common frame logics, describing the corresponding
frame property. The semantics of a given logic KP can be inferred from the one
for K of Definition 2.3: we just consider Kripke models whose accessibility relation
satisfies the property P instead of generic Kripke models. This idea can be further
generalized by defining a logic KP1 . . . Pn as the logic of frames satisfying the set
of properties {P1, . . . , Pn}.

At the heart of correspondence theory (see [144, 154] for details) lays the fact
that particular axioms correspond to particular restrictions on the accessibility
relation, i.e. suppose (W ,R) is a frame, then a certain axiom P will be valid on
all the models based on (W ,R) if and only if the accessibility relation R meets
a certain condition P (for simplicity, we give the same name to properties of the
accessibility relation and axioms).

2 We remark that, due to the rule of necessitation, the deduction theorem (Γ ⊢
K

A ⊃ B
iff Γ ∪{A} ⊢ B) fails if we adopt the same notion of derivability as in classical Hilbert
system formulations (see, e.g., [62] for details).

3 Note that, for simplicity, we use here the same symbol for denoting both the accessi-
bility relation and the predicate.
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Axiom Condition First-Order Formula

T Reflexive ∀w : R(w, w)

D Serial ∀w∃w′ : R(w, w′)

4 Transitive ∀s, t, u : (R(s, t) ∧R(t, u)) ⇒ R(s, u)

5 Euclidean ∀s, t, u : (R(s, t) ∧R(s, u)) ⇒ R(t, u)

B Symmetric ∀w,w′ : R(w, w′) ⇒ R(w′, w)

2 Weakly-Directed ∀s, t, u∃v : (R(s, t) ∧R(s, u)) ⇒ (R(t, v) ∧ R(u, v))

L Weakly-Connected ∀s, t, u : (R(s, t) ∧R(s, u)) ⇒ (R(t, u) ∨ t = u ∨R(u, t))

X Dense ∀u, v∃w : (R(u, v) ⇒ (R(u, w) ∧R(w, v)

Table 2.2. Axioms and corresponding first-order conditions on R.

It is obviously possible to extend the notions of K -satisfiability and K -validity
to the case of a logic KP1 . . . Pn = {A | |=KP1...Pn

A}. The same analogy holds
also in considering axiomatic deduction systems: for each property described in
Table 2.2, we give a corresponding defining axiom in Table 2.3. Let P be one of
such axioms; then, by adding the axiom P to the axiomatization H(K ) we get an
axiomatization H(KP ) that is sound and complete for the logic KP .

Traditionally, some of these axiomatic extensions of K have been denoted in
the literature with specific names. In particular, the following equivalences hold:
S4 = KT 4, S5 = KT 4B. In other words, S4 denotes the logic of reflexive and
transitive frames, while S5 denotes the logic of frames whose accessibility relation
is an equivalence relation.

Axiom Defining Formula

K �(A ⊃ B) ⊃ (�A ⊃ �B)

T �A ⊃ A

D �A ⊃ ♦A

4 �A ⊃ ��A

5 �A ⊃ �♦A

B A ⊃ �♦A

2 ♦�A ⊃ �♦A

L �((A ∧�A) ⊃ B) ∨�((B ∧ �B) ⊃ A)

X ��A ⊃ �A

Table 2.3. Modal logics and corresponding defining formulas.

2.3 Linear Temporal Logics

Temporal logics can be seen as a branch of modal logic, where the accessibility
relation is used to model the flow of time and each world in a structure corresponds
to a time instant. In this section we focus on linear temporal logics, i.e. those whose
underlying semantical structures represent flows of time with the shape of a line.
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First, we will present some basic tense logic whose definition is due to Prior [128]
(see also [34, 68]). Then we will present more interesting logics from a computa-
tional point of view, i.e LTL [124] and fragments of LTL.

2.3.1 The basic tense logic Kt

As for modal logics, we begin by fixing a temporal language that will be used first
for introducing a basic tense logic, called Kt , and then for considering axiomatic
extensions of it, in the vein of the extensions presented in Section 2.2.2.

Syntax

The language of propositional priorean tense logic consists of a functionally com-
plete set of classical connectives, two modal operators (G and P) and a denumerable
set of propositional symbols.

Definition 2.5. Given a set P of propositional symbols, the set of (well-formed)
tense formulas is defined by the grammar

A ::= p | ⊥ | A ⊃ A | GA | HA,

where p ∈ P. The set of atomic formulas is P∪{⊥}. The complexity of a formula
is the number of occurrences of connectives (⊃) and operators (G and H).

G and H are “universal” modal operators, whose intuitive meaning is always in
the future and always in the past, respectively. Their duals F and P (eventually in
the future and sometime in the past, respectively) can be defined as FA ≡ ¬G¬A
and PA ≡ ¬H¬A. Other classical connectives can also be defined as usual.

Semantics

Temporal frames and structures are simple adaptations of the standard Kripke
ones (Section 2.2.1). Since we are interested in representing a flow of time, from
now on we will use the symbol ≺ (recalling the idea of an order relation) to denote
the accessibility relation R and the term instant instead of world. For the moment
we do not make any particular assumption about the nature of the relation ≺.4

Truth for a tense formula is then defined by letting G behave as the operator
� and H as its analogous with respect to the symmetric relation ≺−1.

Definition 2.6. A temporal frame is a pair F = (W ,≺) where:

• W is a non empty set of (time) instants;
• ≺ is a binary relation on W.

Given a set P of propositional symbols, a temporal structure (model) on P is a
triple M = (W ,≺,V) where:

4 For convenience, we present Kt in the section devoted to linear temporal logics, but
indeed there is no assumption of linearity in the semantical structures of Kt .
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• (W ,≺) is a temporal frame;
• V : W → 2P is a (valuation) function that assigns to each instant in W a

(possibly empty) set of propositional symbols.

Definition 2.7. Truth in the logic Kt for a tense formula at an instant w in a
temporal structure M = (W ,≺,V) is the smallest relation |=

Kt
satisfying:

M, w |=
Kt

p iff p ∈ V(w)

M, w |=
Kt

A ⊃ B iff M, w |=
Kt

A implies M, w |=
Kt

B

M, w |=
Kt

GA iff M, w′ |=
Kt

A for all w′ s.t. w ≺ w′

M, w |=
Kt

HA iff M, w′ |=
Kt

A for all w′ s.t. w′ ≺ w

Note that, as a consequence, we have M, w 2⊥ for every M and w. By extension,
given a tense formula A and a set of tense formulas Γ , we write:

M |=
Kt

A iff M, w |=
Kt

A for all w ∈ W

M |=
Kt

Γ iff M |=
Kt

A for all A ∈ Γ

Γ |=
Kt

A iff M |=
Kt

Γ implies M |=
Kt

A, for every linear temporal structure M

|=
Kt

A iff M |=
Kt

A for every linear temporal structure M.

We say that:

• a tense formula A is Kt-satisfiable in a temporal structure M iff there exists
a world w in M such that M, w |=

Kt
A;

• a tense formula A is Kt-satisfiable iff A is satisfiable in some temporal structure
M; otherwise it is Kt-unsatisfiable;

• a tense formula A is Kt -valid in a temporal structure M iff M |=
Kt

A;
• a tense formula A is Kt-valid in a temporal frame F iff M |=

Kt
A for every

model M defined on the frame F ;
• a tense formula A is Kt -valid iff |=

Kt
A, i.e. A is valid in every temporal

structure.

As we did for K , we can define the logic Kt as the set of formulas that are
Kt-valid according to the semantics given above, i.e. Kt = {A | |=

Kt
A}.

A Hilbert-style axiomatization

A Hilbert-style axiomatization H(Kt) for Kt can be easily obtained by adapting
the one for K (see, e.g., [75]). An equivalent of the axiom schema K is needed for
both the operators G and H, in addition to a couple of axioms stating the relation
between the two operators.

(CL) Any tautology instance of classical propositional logic

(KG) G(A ⊃ B) ⊃ (GA ⊃ GB)
(KH) H(A ⊃ B) ⊃ (HA ⊃ HB)
(GP) A ⊃ GPA
(HF) A ⊃ HFA
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We also need the inference rules of modus ponens and necessitation (or general-
ization):

(MP) If A and A ⊃ B then B

(NecG) If A then GA
(NecH) If A then HA

As for K , we define the notions of theorem of H(Kt) and derivability in H(Kt)
(⊢

Kt
) and enunciate a theorem of soundness and completeness [75].

Theorem 2.8 (Soundness and completeness). Given a tense formula A and
a set of tense formulas Γ , it holds::

Γ |=
Kt

A ⇔ Γ ⊢
Kt

A .

2.3.2 Axiomatic extensions

As in Section 2.2.2, we can obtain extensions of the basic logic, in this case Kt , by
adding axioms to the given axiomatization H(Kt). Some of the most interesting
axioms (and the corresponding properties) are shown in Table 2.4.

Axiom Property Formula

(REFLR) Right-Reflexivity GA ⊃ A
(REFLL) Left-Reflexivity HA ⊃ A

(TRANSR) Right-Transitivity GA ⊃ GGA
(TRANSL) Left-Transitivity HA ⊃ HHA
(CONNR) Right-Linearity (HA ∧ A ∧ GA) ⊃ GHA
(CONNL) Left-Linearity (HA ∧ A ∧ GA) ⊃ HGA
(SERR) Right-seriality F⊤
(SERL) Left-seriality P⊤

(FINAL) Right-Boundedness G ⊥ ∨FG ⊥
(FIRST ) Left-Boundedness H ⊥ ∨PH ⊥
(DENSR) Right-Density FA ⊃ FFA
(DENSL) Left-Density PA ⊃ PPA
(DISCRR) Right-Discreteness (F⊤∧ A ∧ HA) ⊃ FHA
(DISCRL) Left-Discreteness (P⊤∧ A ∧ GA) ⊃ PGA

Table 2.4. Axioms expressing temporal properties.

Such axioms are obviously not completely independent one of each other. Some
combinations give rise to interesting tense logics extending Kt .

In the following, we present explicitly those axiomatic extensions to which we
will refer more often in the thesis: the linear tense logic Kl and some of its variants.

The logic Kl

The language of the logic Kl is the language of tense formulas defined in Definition
2.5.
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Semantics

The semantics is given on a refinement of the temporal structures of Definition 2.7
that takes into account transitivity and linearity (or connectedness) of the flow of
time.

Definition 2.9. A linear temporal frame is a pair F = (W ,≺), where:

• W is a non-empty set of (time) instants;
• ≺⊆ W × W is a binary relation that satisfies the properties of irreflexivity,

transitivity and connectedness, i.e. for all (w, w′) ∈ W2 we have w = w′ or
(w, w′) ∈≺ or (w′, w) ∈≺.

Given a set P of propositional symbols, a linear temporal structure (model) on P
is a triple M = (W ,≺,V) where:

• (W ,≺) is a linear temporal frame;
• V : W → 2P is a (valuation) function that assigns to each instant in W a

(possibly empty) set of propositional symbols.

Truth in the logic Kl for a tense formula is defined as in Definition 2.7 where
we consider linear temporal structures instead of temporal structures. We also
extend the notion of Kl -truth to the notions of Kl-satisfiability and Kl -validity in
a standard way and define Kl as the set of Kl -valid formulas.

A Hilbert-style axiomatization

A Hilbert-style axiomatization H(Kl) for Kl is obtained (see, e.g., [75]) by extend-
ing the one for Kt of Section 2.3.1 with the following axiom schemata:

(TRANSR) GA ⊃ GGA
(TRANSL) HA ⊃ HHA
(CONNR) HA ∧ A ∧ GA ⊃ GHA
(CONNL) HA ∧ A ∧ GA ⊃ HGA

Axioms (TRANSR) and (TRANSL) express the transitivity of ≺, while (CONNR)
and (CONNL) expresses its connectedness.

Kl with unbounded time

We can further restrict the set of linear temporal frames by requiring that they
satisfy additional relational properties. For instance, we can express the fact that
the sequence of time points is unbounded, towards the future and/or towards the
past. This corresponds to adding the conditions of seriality on the right and/or on
the left, i.e. every point has a successor and/or a predecessor.

The axioms expressing unboundedness are SERR and SERL in Table 2.4, which
express, respectively, the following two properties:

• ∀x∃y . x ≺ y ;
• ∀x∃y . y ≺ x .



22 2 Modal and Temporal Logics

Kl with a first/final point

The semantics of Kl is given by means of temporal structures where nothing is
said about the existence of a first or a final point. To express the existence of such
points, we add the axioms (FINAL) and (FIRST ) of Table 2.4, which correspond
to the properties:

• ∃x∀y.¬(y ≺ x) ;
• ∃x∀y.¬(x ≺ y) .

Kl with dense time

Another constraint that we can impose on relational structures is that the flow of
time is dense, i.e. between any two points we can find a third point:

• ∀x∀y . x ≺ y ⇒ ∃z. x ≺ z and z ≺ y .

This property is represented by the two axioms DENSR and DENSL.

Kl with discrete time

Finally, we can express discreteness both towards the future:

• for all x, y, if x ≺ y, then there exists z such that:
- x ≺ z; and
- for all w, ¬(x ≺ w) or ¬(w ≺ z);

and towards the past:

• for all x, y, if x ≺ y, then there exists z such that:
- z ≺ y; and
- for all w, ¬(z ≺ w) or ¬(w ≺ y).

In terms of axiomatization, this corresponds to the addition of the axioms DISCRR

and DISCRL, respectively, to H(Kl).

2.3.3 Language extensions

Interesting extensions can also be obtained by considering languages enriched with
further temporal operators on the semantical structures of Section 2.3.2. In his
doctoral dissertation [96], Kamp extended the basic tense language with the binary
operator until (and its past-oriented version since), which has been shown to be
very expressive and particularly useful for applications to computer science. In
the case of discrete flows of time, it makes also sense to consider an operator of
next-time. For a description of the more expressive resulting logics, see [68, 75].

Here we will consider both until and next-time in Section 2.3.4, in the specific
context of LTL, where we will also formalize their semantics.
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2.3.4 LTL

LTL is probably the most popular linear temporal logic in computer science. It has
been proposed in [124] and further developed and studied in [71]. Here we recall
the syntax and semantics of LTL and give an axiomatization for it.

Syntax

When considering LTL, we are used to restrict the attention to the future-oriented
operators. The set of basic temporal operators is enriched by the next-time (de-
noted X) and the until (denoted U) operators.

Definition 2.10. Given a set P of propositional symbols, the set of (well-formed)
LTL-formulas is defined by the grammar

A ::= p |⊥| A ⊃ A | GA | XA | AUA

where p ∈ P. The set of LTL-atomic formulas is P ∪ {⊥}. The complexity of an
LTL-formula is the number of occurrences of the connective ⊃ and of the temporal
operators G, X, and U.

The intuitive meaning of the temporal operators G, X, and U is the standard
one:

• GA states that A holds always in the future;
• XA states that A holds in the next time instant;
• AUB states that B holds at the current time instant or there is a time instant

w in the future such that B holds in w and A holds in all the time instants
between the current one and w.

Semantics

The semantics of LTL is defined on structures that are isomorphic to the set of
natural numbers. Note that in this case we consider a non-strict order relation ≤,
as it seems to be more common in the literature when considering LTL. So, for
example, GA holds in a time instant w iff A holds in w and in all its successors.

Definition 2.11. Let N = (N, s : N → N,≤) be the standard structure of natural
numbers, where s and ≤ are the successor function and the total (reflexive) order
relation, respectively. An LTL-structure is a pair M = (N ,V) where V : N → 2P .
Truth for an LTL-formula at a point n ∈ N in an LTL-structure M = (N ,V) is
the smallest relation |=

LTL
satisfying:

M, n |=
LTL

p iff p ∈ V(n)

M, n |=
LTL

A ⊃ B iff M, n |=
LTL

A implies M, n |=
LTL

B

M, n |=
LTL

GA iff M, m |=
LTL

A for all m ≥ n

M, n |=
LTL

XA iff M, n + 1 |=
LTL

A

M, n |=
LTL

AUB iff there exists n′ ≥ n such that M, n′ |=
LTL

B

and M, m |=
LTL

A for all n ≤ m < n′
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Note that M, n 2
LTL

⊥ for every M and n. By extension, we write:

M |=
LTL

A iff M, n |=
LTL

A for every natural number n

M |=
LTL

Γ iff M |=
LTL

A for all A ∈ Γ

Γ |=
LTL

A iff M |=
LTL

Γ implies M |=
LTL

A, for every LTL-structure M

A Hilbert-style axiomatization

We now present a sound and complete Hilbert-style axiomatization, which we call
H(LTL), for LTL (see, e.g., [75]). H(LTL) consists of the axioms

(A1 ) Any tautology instance
(A2 ) G(A ⊃ B) ⊃ (GA ⊃ GB)
(A3 ) (X¬A ↔ ¬XA)
(A4 ) X(A ⊃ B) ⊃ (XA ⊃ XB)
(A5 ) GA ⊃ A ∧ XGA
(A6 ) G(A ⊃ XA) ⊃ (A ⊃ GA)
(A7 ) AUB ↔ (B ∨ (A ∧ X(AUB)))
(A8 ) AUB ⊃ FB

where we denote with ↔ the double implication, and of the rules of inference

(MP) If A and A ⊃ B then B
(NecX ) If A then XA
(NecG) If A then GA

The set of theorems of H(LTL) is the smallest set containing these axioms and
closed with respect to these rules of inference. The notion of derivability in H(LTL)
will be denoted with ⊢

LTL
and the deductive consequence Γ ⊢

LTL
A is defined as

usual.
With regard to H(LTL), we need to notice that it is possible to express only

a result of weak completeness, i.e. a result in terms of single valid formulas, or
in terms of a consequence relation Γ |=

LTL
A where Γ is a finite set. As H(LTL)

consists of only finitary rules, it cannot be strongly complete and indeed all the
finitary deduction systems for temporal logics equipped with at least the operators
X and G (and thus not compact) present such a problem; see, e.g., [100, Chapter
6]. In fact, it is easy to check that {XiA}i<ω |=

LTL
GA but (via soundness) we can

see that {XiA}i<ω 6⊢
LTL

GA, where X0A is just A and Xi+1A stands for XXiA. We
will return to this point in Chapter 4 when discussing completeness of a natural
deduction system for (a fragment of) LTL.

Theorem 2.12 (Soundness and completeness). Let A be an LTL-formula and
Γ a set of LTL-formulas. Then it holds:

Γ ⊢
LTL

A ⇒ Γ |=
LTL

A ,

|=
LTL

A ⇒ ⊢
LTL

A .
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Until-free LTL: LTL
−

Since we will consider it in the thesis, we also define here a fragment of LTL named
LTL

−
. It corresponds to the until-free fragment of LTL.

The syntax is given by the following definition.

Definition 2.13. Given a set P of propositional symbols, the set of (well-formed)
LTL

−
-formulas is defined by the grammar

A ::= p |⊥| A ⊃ A | GA | XA

where p ∈ P.

The semantics is given on LTL-structures and can be inferred from that of LTL,
i.e., given an LTL

−
-formula A and an LTL-structure M, we have M |=

LTL
−

A iff

M |=
LTL

A. The notions of validity and consequence relation come from it as is
standard.

A sound and weakly complete axiomatizationH(LTL
−
) for LTL

−
(see, e.g., [75])

is obtained by just removing the axioms (A7) and (A8) (concerning the until) from
the axiomatization H(LTL).

2.4 Branching Temporal Logics

The temporal logics presented so far are of interest for reasoning about single
computations. When we are interested in reasoning about concurrent or non-
deterministic processes, it is convenient to refer to richer semantical structures
and more expressive languages. Namely, we will consider tree-like structures and
exploit the possibility of quantifying over sets of branches of such trees, where a
single branch represents a possible computation.

The philosophical basis of branching-time logics can be found already in the
work of Prior [128]. However their development in computer science is due to
[2,13,40,55]. A survey for the “philosophical” branching-time logics is in [167]; for
a survey more oriented towards computer science, see [52].

Here we will focus on those branching-time logics according to which the past
is determined and cannot be changed (from which the term historical necessity de-
rives), while the future is non-deterministic and can take different possible courses.
However, before defining the most standard logics of historical necessity, we will
also present (by following the taxonomy in [167]) several intermediate logics, whose
tree-like branching nature is much weaker.

In particular, we will consider here the logics originated from the so-called
Ockhamist semantics (see [128, 167]). In an Ockhamist view, the actual future is
in some way determined, that is temporal formulas are evaluated with respect not
just to a given instant but to an instant and a branch beginning from such instant.

First we will present a class of logics, to which we will refer as bundled Ock-
hamist logics with general time, that have been mainly object of philosophical
study and in which arbitrary trees are allowed as flows of time. Then we will move
to the so-called computation tree logics, which are more interesting from a compu-
tational point of view: these logics consider flows of time that are discrete ω-height
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trees. In both cases, particular attention will be concentrated on the definition of a
generalized semantics (usually referred to as bundled), in addition to the standard
one, since such a generalized semantics will be object of study in the rest of the
thesis.

2.4.1 Bundled Ockhamist logics with general time

Syntax

The language of the branching logics considered in this section consists of a set
of classical connectives enriched by some linear temporal operators (the ones we
have already considered in Section 2.3) and by one or more path quantifiers.

Definition 2.14. Given a set P of propositional symbols, the set of (well-formed)
Ockhamist formulas is defined by the grammar

A ::= p | ⊥ | A ⊃ A | GA | HA | ∀A ,

where p ∈ P. The set of atomic formulas is P ∪ {⊥}. The complexity of a for-
mula is the number of occurrences of connectives (⊃), operators (G, H) and path
quantifiers (∀).

The intuitive meaning of the linear operators G and H is as in linear temporal
logics with respect to a single branch of the tree. The path quantifier ∀ allows one
to switch from a branch to another: intuitively, ∀A holds at a node s iff A holds
in all the branches starting from the node s.

Semantics

Semantics in terms of trees

As we anticipated, we consider as branching logics the logics whose semantical
structure have a tree-like representation.

Definition 2.15. A tree is an irreflexive ordered set T = (T, <) in which the set
of the <-predecessors of any element t of T is linearly ordered by <, that is, for
all x, y, z in T , if x < z and y < z then either x < y or y < x or x = y.

A path in a tree T is a maximal linearly ordered set of nodes. A branch in a
tree T is any set of nodes {y | y ∈ π and x < y} for a given path π and a node
x ∈ π. The least node x of a branch b is the initial node of b, denoted by I(b) and
b is said to be stemming from x. The set of all branches in T will be denoted by
B(T ). If b and c are branches and b ⊆ c then we say that b is a sub-branch of c
and c is a super-branch of b.

We will refer to the notion of validity based on trees, as defined above, as full
validity and to the logic originating from such trees as OBTL, or full Ockhamist
logic. However, in this thesis we will be mainly concerned with the notion of the
so-called bundled validity and with the bundled logics (introduced in [31]), in which
the modal quantification over branches is restricted to a given set.
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Definition 2.16. Given a tree T , a bundle B on T is a subset of B(T ) closed
under sub-branches and super-branches and such that every node of T belongs to
some branch in B. A bundled tree is a pair (T , B) where T is a tree and B is a
bundle on T . We say that a bundled tree (T , B) is complete when B = B(T ).

We can define the semantics for such logics by providing trees with a valuation
function. With respect to this point, we notice that different branching-time logics
are defined according to the policy we associate to such valuations. Many authors
(see, e.g., [128]) assume that propositional symbols refer in some way to the future.
A consequence of this assumption is that the valuation of an atom depends not
only on the node we are considering but also on a particular branch containing that
node. Thus the valuation function is defined in terms of pairs (branch, instant).

A different point of view consists in assuming that propositional symbols con-
tain no trace of futurity [136]. This leads to consider all the branches starting
from a given instant in a tree-like frame as sharing the same evaluation of every
propositional variable.

In the following, we will adopt this no trace of futurity approach (we will some-
times also call it atomic harmony assumption), since it is more common in com-
puter science-oriented branching temporal logics.5 Namely, the logics presented in
this section are those described in [167] with the only difference that we adopt, as,
e.g., in [136], the atomic harmony assumption. As a consequence, we have that the
classical substitution rule is not a valid deduction rule in the axiomatizations of our
logics, e.g., the validity of the formula p ⊃ ∀p is not preserved under substitution.

Definition 2.17. Given a bundled tree (T , B), a valuation V on (T , B) is a func-
tion assigning a (possibly empty) set of propositional symbols to each branch in B,
such that if I(b) = I(b′) then V(b) = V(b′).

Given a bundled tree (T , B) and a valuation V on it, truth for an Ockhamist
formula at a branch b ∈ B is the smallest relation |= defined as follows:

M, b |= p iff p ∈ V(b);
M, b |= A ⊃ B iff M, b |= A implies M, b |= B;
M, b |= GA iff for all b′ ∈ B s.t. b ⊂ b′, M, b′ |= A;
M, b |= HA iff for all b′ ∈ B s.t. b′ ⊂ b, M, b′ |= A;
M, b |= ∀A iff for all b′ ∈ B s.t. I(b) = I(b′), M, b′ |= A.

Semantics in terms of Ockhamist frames

In order to give a semantics to bundled logics in a more traditional Kripke style,
we can give a different characterization of bundled trees. Namely we can view a
bundled tree (T , B) as a triple (W ,≺,≃), in which:

• W is B, i.e. the set of branches of the bundled tree;
• ≺ is ⊃, i.e. the inclusion relation between branches;
• ≃ is the relation of having the same initial point, i.e. b ≃ c iff I(b) = I(c).

The structures that we obtain correspond to the Ockhamist frames of, e.g., [167].

5 In fact, both the most well-known computation tree logics, CTL and CTL∗ (see Section
2.4.2), rely on this assumption.
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Definition 2.18. A basic frame is a triple (W ,≺,≃), where W is a non-empty
set, ≺ is a union of irreflexive linear orders on W and ≃ is an equivalence relation
on W.

An Ockhamist frame is a basic frame (W ,≺,≃), satisfying the following con-
ditions:

(Dis) if x ≃ y then x ⊀ y ;
(PI) if x ≃ y, then there exists an order-isomorphism f between {z | z ≺ x} and

{z | z ≺ y} such that for all z ≺ x, z ≃ f(z) ;
(WDC) if x ≺ y ≃ y′ , then there exists x′ such that x ≃ x′ ≺ y′ ;

(MB) if x ≃ y and x 6= y, then there exists x′ ≻ x such that for all z ≻ y not-
(x′ ≃ z) .

(Dis) stays for disjointness of ≺ and ≃ and comes from the irreflexivity of
≺. (PI) expresses the past isomorphism of two points that are ≃-related, while
(WDC) stays for weak diagram completion and both properties are consequences
of the left linearity of ≺. Finally, since two distinct branches in a tree must have
disjoint subbranches, a property expressing the maximality of branches holds.

It is possible to prove (see [167]) that for every Ockhamist frame there exists
a corresponding bundled tree, from which the Ockhamist frame can be built as
suggested above. Thus the semantics generated by bundled trees is exactly the
same that we get when we consider Ockhamist frames. In the following we choose
to refer to Ockhamist frames, since this gives us the possibility of defining the
notion of truth in a pure Kripke-style. We anticipate that this possibility is in fact
what will allow us, in Chapter 5, to extend the labeled deduction framework used
for standard modal logics to the context of these branching-time logics.

Note also that the properties (Dis), (PI), (WDC) and (MB) are not completely
independent one of each other, e.g. (Dis) + (WDC) implies (PI). We enumerate
all of them because, as in [167], this gives us the possibility of considering several
intermediate logics, according to which of the conditions above we require the
frames to satisfy. In particular, we will consider, in the rest of the thesis, the
following classes of frames.

Definition 2.19. A (Dis)-frame is a basic frame satisfying the condition (Dis). A
(WDC)-frame is a basic frame satisfying the condition (WDC). A (Dis+WDC)-
frame is a (Dis)-frame that is also a (WDC)-frame.

As usual, we can obtain a class of structures from each class of frames consid-
ered, by providing the frames with a valuation function. As we remarked above
when defining valuation functions for trees, the policy that we follow in this thesis
is such that all the points ≃-related in an Ockhamist frame satisfy the same set
of atoms.

Definition 2.20. Let P be a denumerable set of propositional symbols. A basic
(Dis, WDC, Dis+WDC, Ockhamist) structure is a 4-ple (W ,≺,≃,V), where (W ,≺
,≃) is a basic (Dis, WDC, Dis+WDC, Ockhamist) frame and V is a valuation
function V : W → 2P such that for all u, v ∈ W, if u ≃ v then V(u) = V(v).

Now we give the notion of truth with respect to a point in a structure. Note
that truth is defined by having the temporal operators G and H operate along the
≺-lines of points, and the quantifier ∀ within a ≃-equivalence class.
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Definition 2.21. Given a basic (Dis, WDC, Dis+WDC, Ockhamist) structure
M = (W ,≺,≃,V) and a point u ∈ W the corresponding notion of basic (Dis,
WDC, Dis+WDC, Ockhamist) truth for a Ockhamist formula is the smallest re-
lation |= defined as follows:

M, u |= p iff p ∈ V(u);
M, u |= A ⊃ B iff M, u |= A implies M, u |= B;
M, u |= GA iff for all v s.t. u ≺ v, M, v |= A;
M, u |= HA iff for all v s.t. v ≺ u, M, v |= A;
M, u |= ∀A iff for all v s.t. u ≃ v, M, v |= A;

As is standard, we can extend this notion of truth to the notions of basic (Dis,
WDC, Dis+WDC, Ockhamist) satisfiability and validity.

In the following, we will use the symbols |=
Dis

, |=
W DC

, etc. to refer to the
corresponding notions of truth and validity. |=

bas
will denote basic truth/validity.

|=
O

will denote Ockhamist truth/validity. We will refer to the logic of Ockhamist
frames also as BOBTL. Sometimes we will also consider frames and validities orig-
inating from other combinations, e.g., (Dis+PI)-validity is the notion of validity
determined by (Dis+PI)-frames, i.e. by basic frames satisfying both the properties
(Dis) and (PI).

Some interesting results concerning the relations between these notions of va-
lidity are described in [167]. First of all, it has been shown that, as long as validity
is concerned, the property (MB) can be replaced by:

(MB−) if x is a ≺-maximal element, then, for every y, x ≃ y implies x = y.

Moreover, if we put ourselves in the no trace of futurity setting, we can further
simplify the maximality of branches property as follows:

(MB−−) if x is a ≺-maximal element, and x ≃ y, then y is a ≺-maximal element.

We introduce also another property that will be useful in the following sections.
It can be seen as a strong form of (WDC) and will be referred to as strong diagram
completion:

(SDC) if x ≺ y ≺ z ≃ z′ ≻ x′ ≃ x, then there exists y′ such that y′ ≃ y and
x′ ≺ y′ ≺ z′.

It is interesting because one can prove that the logic determined by (Dis+WDC)-
frames and the logic determined by (WDC+SDC)-frames coincide.

We collect in the following lemma some comparison results that can be easily
adapted from [167].

Lemma 2.22. Basic validity and (Dis)-validity coincide. (Dis+WDC)-validity,
(Dis+PI)-validity and (WDC+SDC)-validity coincide. (Dis+WDC+MB)-validity,
(Dis+WDC+MB−)-validity, (Dis+WDC+MB−−)-validity and Ockhamist validity
coincide.

Proof. By trivial adaptations of the analogous results proved in [167] in the case
where no assumptions are made about the evaluation of the atoms.

⊓⊔
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Hilbert-style axiomatizations

Hilbert-style axiomatizations for several bundled Ockhamist logics have been pro-
posed in [68, 136, 164, 167]. In this section, we present the ones corresponding to
the logics considered above.

Note that for the full Ockhamist logic OBTL, i.e. the logic of complete bundled
trees, as for its corresponding computation tree logic CTL∗, no finitary complete
axiomatization is known.

The logic of basic frames (or (Dis)-frames)

First, we present a Hilbert-style axiomatization H(bas) (slightly adapted from
[167]) for the logic of basic frames (or, which is the same, the logic of Dis-frames).
We have that the temporal axioms for linear time, plus the modal axioms for S5
with respect to the operator ∀, plus a rule for atomic harmony (i.e., branches with
the same initial point satisfy the same atoms), plus the usual deduction rules form
a complete deductive system.

(CL) Any tautology instance of classical propositional logic

(KG) G(A ⊃ B) ⊃ (GA ⊃ GB)
(KH) H(A ⊃ B) ⊃ (HA ⊃ HB)
(K∀) ∀(A ⊃ B) ⊃ (∀A ⊃ ∀B)

(GP) A ⊃ GPA
(HF) A ⊃ HFA
(L1 ) FA ⊃ G(FA ∨ A ∨ PA)
(L2 ) PA ⊃ H(FA ∨ A ∨ PA)
(L3 ) GA ⊃ GGA
(L4 ) HA ⊃ HHA

(∀1 ) ∀A ⊃ ∀∀A
(∀2 ) ∀A ⊃ A
(∀3 ) A ⊃ ∀∃A

(Atom) p ⊃ ∀p for each atomic proposition p

Notice that the axioms above have to be considered axiom schemata: in fact,
because of the axiom (Atom), the common rule of substitution does not hold for
this logic.

The rules of inference are the following:

(MP) If A and A ⊃ B then B

(NecG) If A then GA
(NecH) If A then HA
(Nec∀) If A then ∀A

As usual, we define the notions of theorem of H(bas) and derivability in H(bas)
(denoted ⊢

bas
).
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The logic of (WDC)-frames

Such an axiomatization can be extended to capture the logic of (WDC)-frames by
adding the following axiom (from [167]). We denote with H(WDC ) the resulting
axiomatization.

(WDC ) PA ⊃ ∀P∃A

The logic of (Dis+WDC)-frames

The logic of (Dis+WDC)-frames is much more difficult to capture by means of
Hilbert-style axioms. The use of a form of the Gabbay irreflexivity rule [64] as a
further deduction rule greatly simplifies the task, as proposed in [68].

In [164], Zanardo proposes the following two rather complex (but with a stan-
dard form) Hilbert-style axioms:

(DW1 ) P(∀A ∧ GB) ∧ H¬(B ∧ ∃C)
⊃ ∀[GA1 ∧ PC ⊃ P(A ∧ (C ∨ PC)) ∧ G(C ⊃ GA1)]

(DW2 ) [HA ∧ H¬(B ∧ ∃C ∧ F(B ∧ A ∧ ∃C1)) ∧ P(∀A1 ∧ GB)]
⊃ ∀[GB1 ⊃ P(A1 ∧ G(C ⊃ G(C1 ⊃ GB1)))]

The addition of them to the ones for the logic of (WDC)-frames gives an axioma-
tization H(Dis + WDC ) for the (Dis+WDC)-frames logic.

The logic BOBTL of Ockhamist frames

Finally, we get an axiomatization H(O) for the logic BOBTL by adding the fol-
lowing axiom expressing the maximality of branches.

(MB−−) G ⊥⊃ ∀G ⊥

Theorem 2.23 (Soundness and completeness). The Hilbert-style axiomatiza-
tions H(bas), H(WDC ), H(Dis + WDC ) and H(O) are sound and complete with
respect to the corresponding semantics.

Proof. The axiomatizations are trivial adaptations of the ones given in [164] and
[167] for a version of the logics that did not consider atomic harmony. Proofs can
be easily adapted to deal with the case in which branches with the same initial
node agree on the valuation of propositional symbols.

⊓⊔

Related logics

Although they will not be explicitly treated in this thesis, it is worth mentioning
some variations and extensions of the logics presented above. They include the
logics obtained by adding until and since operators [166] and logics originating
from allowing the truth of propositional symbols to be dependent both on branches
and time-instants [128,136,167].

Finally, we remark that we focused here on Ockhamist branching logics. An-
other important class is that of Peircean branching logics [128,129,165], in which
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truth of all formulas depends only on the time instant of evaluation and not on a
branch. In other words, all the formulas can be considered to be state formulas. An
example is represented by a sublanguage of the Ockhamist logics above, obtained
by allowing the combination of branching and linear operators only in the form of
a single linear operator preceded by a single path quantifier, as in ∀G, ∀H, ∀F, ∀P,
∃G, ∃H, ∃F and ∃P.

2.4.2 Computation tree logics

In this section, we present some branching temporal logics that are more common
in computer science and are usually referred to as computation tree logics.

CTL
∗

The logic CTL∗ has been introduced in [55] as an extension of the less expressive
CTL. Here we first define CTL∗ and then specify which is the subset corresponding
to CTL.

Syntax

The language of CTL∗ extends that of Ockhamist logics presented in Section
2.4.1 with the linear temporal operator until and restricts the attention to future-
oriented operators.

Definition 2.24. Given a set P of propositional symbols, the set of (well-formed)
CTL∗-formulas is defined by the grammar

A ::= p | ⊥ | A ⊃ A | GA | XA | AUB | ∀A ,

where p ∈ P. The set of atomic formulas is P∪{⊥}. The complexity of a formula
is the number of occurrences of connectives (⊃), operators (X, G and U) and path
quantifiers (∀).

Semantics

Several alternative characterizations can be given for CTL∗ and the other compu-
tation tree logics and some equivalence results have been shown (see, e.g., [51]).

In particular, as for the Ockhamist logics seen in Section 2.4.1, we can give two
main notions of validity: the full validity and the bundled validity; for a detailed
account see [52, 135].

The notion of validity underlying the semantics of CTL∗ is the full one.
If we define a transition system as consisting of a set S of states and of a serial6

relation R on S, i.e. a relation such that for every s in S there exists a t in S for
which sRt holds, then the notion of full validity is given by defining the semantics
with respect to the set of all the R-generable paths, i.e. of all the ω-sequences
s1, s2, ... such that (si, si+1) ∈ R for all i ∈ N. The following definitions formalize
these notions.
6 In the computer science literature, the condition of seriality is often referred to as

totality.
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Definition 2.25. A transition system is a pair F = (S,R) where:

• S is a non empty set of states;
• R is a serial binary relation on S, i.e. for each s ∈ S there exists t ∈ S such

that (s, t) ∈ R.

Given a set P of propositional symbols, a labeled transition system is a triple
M = (S,R,V) where:

• (S,R) is a transition system;
• V : S → 2P is a ( labeling) function that assigns to each state in S a (possibly

empty) set of propositional symbols.

A fullpath (or just path) in a (labeled) transition system M = (S,R,V) is an
infinite sequence s0, s1, s2, . . . of states in S.

Given a fullpath σ = s0, s1, s2, . . ., we write σi to denote the suffix path
si, si+1, si+2, . . . and σ(i) to denote the i-th state of σ, i.e. si.

Note that we are considering here the case of monomodal transition systems:
the generalization to transition systems with more relations (actions) is straight-
forward.

It is quite common to present the language of computation tree logics by dis-
tinguishing between state formulas, which are evaluated with respect to a state,
and path formulas, which are evaluated with respect to a fullpath.

The distinction between state and path formulas is specified by the following
alternative formulation of the language of CTL∗-formulas:

S ::= p | ⊥ | S ⊃ S | ∀P

P ::= S | P ⊃ P | XP | GP | P UP ,

where S denotes the category of state formulas and P the category of path formu-
las.

It is also possible to define the notion of truth for a formula just with respect
to fullpaths, by assuming that an atomic proposition is true at a fullpath σ iff it
is true at the initial state of σ. Note that here, as in LTL, and since it seems to
be more common in the literature, we assume the relation behind linear temporal
operators to be reflexive.

Definition 2.26. Truth in the logic CTL∗ for a CTL∗-formula at a fullpath σ in a
labeled transition system M = (S,R,V) is the smallest relation |=

CTL∗
satisfying:

M, σ |=
CTL∗

p iff p ∈ V(σ(0))

M, σ |=
CTL∗

A ⊃ B iff M, σ |=
CTL∗

A implies M, σ |=
CTL∗

B

M, σ |=
CTL∗

GA iff M, σi |=
CTL∗

A for all i ≥ 0

M, σ |=
CTL∗

XA iff M, σ1 |=
CTL∗

A

M, σ |=
CTL∗

AUB iff M, σj |=
CTL∗

B for some j ≥ 0 and

M, σk |=
CTL∗

A for every 0 ≤ k < j

M, σ |=
CTL∗

∀A iff M, τ |=
CTL∗

A for every fullpath τ s.t. τ(0) = σ(0)
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By extension, given a CTL∗-formula A and a set of CTL∗-formulas Γ , we write:

M |=
CTL∗

A iff M, σ |=
CTL∗

A for every fullpath σ

M |=
CTL∗

Γ iff M |=
CTL∗

A for all A ∈ Γ

Γ |=
CTL∗

A iff M |=
CTL∗

Γ implies M |=
CTL∗

A, for every labeled transition

system M

|=
CTL∗

A iff M |=
CTL∗

A for every labeled transition system M.

As in the previous sections, we can generalize this notion of truth to the notions
of satisfiability and validity and define CTL∗ as the set of formulas that are CTL∗-
valid according to the resulting semantics.

We remark that a (kind of “unorthodox”) Hilbert-style axiomatization for
CTL∗ has been provided by Reynolds [135], by using a special auxiliary atoms
rule, which allows for adding new atoms in a derivation.

CTL

The sublogic CTL is obtained by restricting the syntax of CTL∗ to disallow boolean
combinations and nestings of linear-time operators, i.e. linear-time operators can
appear only immediately preceded by a path quantifier. While CTL∗ can be seen
as the computational version of Ockhamist branching-time logic, CTL can be con-
sidered the computational version of the Peircean branching logic (for more details
on this, consult, e.g., [79]).

Given this syntactic restriction, the semantics of CTL is trivially inferred from
the one of CTL∗, i.e. a CTL-formula is CTL-valid iff it is CTL∗-valid. In other
words, CTL∗ is a conservative extension of CTL.

Since in the rest of the thesis the focus will be on Ockhamist logics, we do
not go into details concerning CTL; the interested reader can see [52]. A further
restriction consists in considering the until-free fragment of CTL, presented in [13]
with the name of UB .

BCTL
∗

As we anticipated when presenting CTL∗, it is possible to give a generalized se-
mantics, by considering more general structures. This gives rise to a logic that is
a subset of CTL∗ and is usually named BCTL∗7 [139], i.e. bundled CTL∗.

The language considered is the same of CTL∗ (see Section 2.4.2).

Semantics in terms of transition systems

In order to introduce the semantics of BCTL∗, we recall that the semantics of
CTL∗ is given by considering all the R-generable paths of a transition system. The
notion of bundled validity, in the context of computation tree logics, is obtained by
restricting the set P of admissible paths. The only requirement that such restricted
set has to satisfy is given by the following conditions:

7 This logic coincides with the logic determined by the deductive system ∀LTFC de-
scribed in [149].
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(i) suffix-closure, i.e. if the path s0, s1, s2... is in P then the path s1, s2, ... is also
in P ; and

(ii) fusion-closure, i.e. if s1, s2, ..., sn, sn+1, sn+2, ... and s′1, s
′
2, ..., s

′
n−1, sn, s′n+1,

s′n+2, ... are in P then s1, s2, ..., sn, s′n+1, s
′
n+2, ... is also in P .

We remark that, in order to retrieve the set of all the R-generable paths, a
third condition needs to be added (a proof is in [51]):

(iii) limit-closure, i.e. if the paths (s1, σ1), (s1, s2, σ2), (s1, s2, s3, σ3), etc.
are in P then the path (s1, s2, s3, . . .), which is the limit of the prefixes
(s1), (s1, s2), (s1, s2, s3), etc. is also in P .

An example showing that the full and the bundled validity are distinct notions
is given by the formula A ≡ ∀G(p ⊃ ∃Xp) ⊃ (p ⊃ ∃Gp), where p is an atomic
formula. It is possible to check (see [135]) that A is valid with respect to the full
semantics, i.e. in CTL∗, but not with respect to the bundled one, i.e. in BCTL∗.

Thus the notion of truth in BCTL∗ can be inferred from that given for CTL∗

in Definition 2.32. The only difference is that now we consider not just labeled
transition systems but also all the variants of such systems obtained by restricting
the set of admissible paths to a subset, satisfying suffix- and fusion-closure, of the
set of all paths. This means that we have a greater number of structures, i.e. a
smaller set of valid formulas.

In [42], it has been shown that it is possible to give a precise characterization of
the family of transition systems giving rise to the logic BCTL∗. Such a definition
consists in endowing transition systems with a mechanism for excluding those
computation paths that do not fit some fairness requirements.

Definition 2.27. A fair transition system is a triple F = (S,R, C) where:

• (S,R) is a transition system;
• C ⊆ 2S × 2S is the fairness condition.

C is a set of pairs (Xi, Yi) of subsets of S and it is used to define the set of fair
paths through F .

A fullpath is defined as for transition systems. Given a set X ⊆ S and a
fullpath σ, we define the size of the intersection of X with σ (denoted |X ∩ σ|) as
the cardinality of the set {j ∈ ω|σ(j) ∈ X}. A fullpath σ is fair iff, for all pairs
(Xi, Yi) ∈ C, if |Xi ∩ σ| is infinite, then |Yi ∩ σ| is also infinite.

Given a set P of propositional symbols, a fair labeled transition system is a
4-ple M = (S,R, C,V) where:

• (S,R, C) is a fair transition system;
• V : S → 2P is a ( labeling) function that assigns to each state in S a (possibly

empty) set of propositional symbols.

Then a notion of truth given in terms of fair transition systems can be obtained
from Definition 2.26 by letting the quantification range over just fair paths.
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Fig. 2.1. An Ockhamist frame (left) and the corresponding bundled tree (right).

Semantics in terms of Ockhamist frames

However, here we prefer to consider a different but equivalent semantical formu-
lation given by frames where the basic entities (or worlds, in a Kripke-style ter-
minology) are the paths of computation rather than the states. In fact, this view
allows us to present a more genuine Kripke-style semantics.

We thus introduce (N ×W)-structures [135], which are closely related to the
Kamp and Ockhamist structures, described respectively in [150] and [167], and
introduced in Section 2.4.1.

We need to adapt the general notion of Ockhamist frame to a notion that
considers the fact that the flow of time behind each computation is now required
to be isomorphic to the set of natural numbers.

Definition 2.28. A floored Ockhamist frame (of countable height) is a triple
(T ,≺,≃) where:

1. T is the set of points;
2. ≺ is a transitive, anti-symmetric, irreflexive, linear relation on T , i.e.:

a) ∀x, y, z. ((x ≺ y) ∧ (y ≺ z)) ⇒ (x ≺ z);
b) ∀x, y.¬ ((x ≺ y) ∧ (y ≺ x));
c) ∀x.¬ (x ≺ x);
d) ∀x, y, z. ((x ≺ y) ∧ (x ≺ z)) ⇒ ((z ≺ y) ∨ (z = y) ∨ (y ≺ z));
e) ∀x, y, z. ((y ≺ x) ∧ (z ≺ x)) ⇒ ((z ≺ y) ∨ (z = y) ∨ (y ≺ z));

3. {y | y ≺ x} is finite for each x ∈ T ;
4. ≃ is an equivalence relation such that:

a) if x ≃ y then it is not the case that x ≺ y;
b) if x ≃ y and u ≺ x then there is a v such that v ≺ y and u ≃ v;

5. there is an element 0 ∈ T such that for each w ∈ T , there is a w′ ∈ T such
that 0 ≃ w′ and either w′ ≺ w or w′ = w (the equivalence class 0/≃ is known
as the floor).
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Intuitively, every Ockhamist point can be thought of as corresponding to a path
in a transition system and the relation ≺ as the equivalent of the relation “is a
prefix of”, i.e. x ≺ y stands for “the path x is a prefix of the path y”. The branching
nature of Ockhamist frames is hidden in the ≃-equivalence relation, where the idea
is that each ≃-class of points contains all the paths of the corresponding transition
system that share a same initial state.

More precisely, there exists an equivalence [138] between Ockhamist frames (or
their unwindings into bundled trees, as exemplified in Fig. 2.1) and fair transition
systems. Such an equivalence is based on the fact that Ockhamist points correspond
to paths in the transition system while points related by ≃ correspond to paths
with the same initial state.

In order to give a proper semantics for every linear temporal operator, we
require the lines of points defined by ≺ to be isomorphic to the natural numbers.

Definition 2.29. An Ockhamist frame (T ,≺,≃) is an (N ×W)-frame iff

(i) there is some set W such that T = (N ×W);
(ii) the order ≺ is defined by (n, u) ≺ (m, v) iff n < m and u = v.

As usual, we obtain a structure by providing the frame a valuation function.
In this case, as for the logics of Section 2.4.1, we also require that all points in a
≃-equivalence class satisfy the same set of atoms.

Definition 2.30. The structure (T ,≺,≃,V) is an (N ×W)-structure iff (T ,≺,≃)
is an (N ×W)-frame, V : (N ×W) → 2P , and for all n ∈ N and for all u, v ∈ W,
if (n, u) ≃ (n, v) then V(n, u) = V(n, v).

It is easy to show by induction the following lemma (see [138]), which will be
useful later on.

Lemma 2.31. Given an (N ×W)-structure (T ,≺,≃,V) and two points (n, w) and
(m, v) in T , if (n, w) ≃ (m, v) then n = m.

Definition 2.32. Given an (N ×W)-structure M = (T ,≺,≃,V), where T =
(N ×W) for some set W, truth in the logic BCTL∗ for a CTL∗-formula at a
point (n, w) ∈ T is the smallest relation |=

BCTL∗
satisfying:

M, (n, w) |=
BCTL∗

p iff p ∈ V(n, w)

M, (n, w) |=
BCTL∗

A ⊃ B iff M, (n, w) |=
BCTL∗

A implies M, (n, w) |=
BCTL∗

B

M, (n, w) |=
BCTL∗

GA iff M, (m, w) |=
BCTL∗

A for all m ≥ n

M, (n, w) |=
BCTL∗

XA iff M, (n + 1, w) |=
BCTL∗

A

M, (n, w) |=
BCTL∗

AUB iff M, (m, w) |=
BCTL∗

B for some m ≥ n and

M, (m′, w) |=
BCTL∗

A for every n ≤ m′ < m

M, (n, w) |=
BCTL∗

∀A iff M, (n, v) |=
BCTL∗

A for every point (n, v)

s.t. (n, w) ≃ (n, v)

As for CTL∗, we can generalize this notion of truth to the notions of logical
consequence (Γ |=

BCTL∗
A), satisfiability and validity and define BCTL∗ as the set

of formulas that are BCTL∗-valid according to the resulting semantics.
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BCTL
∗

−
: the until-free version of BCTL

∗

In the rest of the thesis, we will often refer to a syntactic restriction of BCTL∗,
obtained by just removing the operator until.

Syntax

Definition 2.33. Given a set P of propositional symbols, the set of (well-formed)
BCTL∗

−-formulas is defined by the grammar

A ::= p | ⊥ | A ⊃ A | GA | XA | ∀A ,

where p ∈ P.

Semantics

BCTL∗ is a conservative extension of BCTL∗
−: a BCTL∗

−-formula is BCTL∗
−-valid

iff it is BCTL∗-valid. We use the symbol |=
BCTL∗

−

to denote the notion of truth in

BCTL∗
−; its extension to express logical consequence is also standard.

A Hilbert-style axiomatization for BCTL∗
−

Now we give a Hilbert-style axiomatization, which we call H(BCTL∗
−), for the logic

BCTL∗
−. H(BCTL∗

−) consists of two sets of axioms (axioms for linear temporal
formulas and axioms for quantified formulas) and a set of inference rules. For the
first set of axioms, we refer to a standard axiomatization for until-free LTL [149]:

(L1 ) Any tautology instance

(L2 ) G(A ⊃ B) ⊃ (GA ⊃ GB)

(L3 ) (X¬A ⊃ ¬XA) ∧ (¬XA ⊃ X¬A)

(L4 ) X(A ⊃ B) ⊃ (XA ⊃ XB)

(L5 ) GA ⊃ A ∧ XGA

(L6 ) G(A ⊃ XA) ⊃ (A ⊃ GA)

The second set of axioms ensures that the path modality ∀ behaves as a � in
the modal logic S5 and defines some interactions between the linear temporal
operators and the path quantifier. This set of axioms comes from [135] and is
slightly different from, but clearly equivalent to, the one in [149]:

(K∀) ∀(A ⊃ B) ⊃ (∀A ⊃ ∀B)

(∀1 ) ∀A ⊃ ∀∀A

(∀2 ) ∀A ⊃ A

(∀3 ) A ⊃ ∀∃A

(Atom) p ⊃ ∀p for each atomic proposition p

(Fusion) ∀XA ⊃ X∀A

Finally, we have the inference rules of modus ponens and temporal and path gen-
eralization:
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(MP) If A and A ⊃ B then B

(NecX ) If A then XA

(NecG) If A then GA

(Nec∀) If A then ∀A

The set of theorems of H(BCTL∗
−) is the smallest set containing the set of

axioms above and closed with respect to the rules of inference. Soundness and weak
completeness8 of this axiomatization can be easily verified by adapting analogous
proofs for similar axiom systems, as in the following lemma.

Lemma 2.34. The axiom system H(BCTL∗
−) is sound and weakly complete for

the logic BCTL∗
−, i.e. the set of theorems of H(BCTL∗

−) coincides with the set
BCTL∗

−.

Proof. (Sketch) The proof mirrors the one given in [149] for BCTL∗, with respect
to which our axiom system only misses the two axioms concerning the operator
until, namely:

(L7 ) AUB ⊃ FB
(L8 ) AUB ↔ B ∨ (A ∧ X(AUB))

where we denote with ↔ the double implication.
H(BCTL∗

−) is sound as it is a subset of the axiomatization in [149] and BCTL∗
−

structures coincide with BCTL∗ structures. A proof of completeness can be easily
obtained by adapting the one in [149], which consists of two parts:

(i) first a Henkin-style proof is given for the LTL axiomatization, by the defini-
tion of a canonical model construction;

(ii) then such a construction is extended in order to consider the system for
BCTL∗.

We can modify such a proof for our case by noticing that in (i) the axioms (L7) and
(L8) are used along the proof only to deal with formulas containing the operator
until. We can use the same arguments to show that the axioms (L1) − (L6) form
a complete axiomatization for until-free LTL (as it is done for example in [71]). It
is also easy to observe that the arguments in (ii) do not make use of the axioms
(L7) and (L8). Thus, we can mirror part (ii) of the proof in [149] to extend our
canonical model construction for until-free LTL to a canonical model construction
for BCTL∗

−. The main idea here is to consider the equivalence relation between
points of the linear canonical model that satisfy the same state formulas and take
such equivalence classes as the points of the branching canonical model.

⊓⊔

8 On the impossibility of giving a finitary and strongly complete axiomatization for
BCTL∗

−, see the discussion about H(LTL) in Section 2.3.4.
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Labeled Natural Deduction for Modal Logics

3.1 Introduction

Labeling [10, 61, 66] (sometimes also called prefixing, annotating or subscripting)
is a method designed for giving uniform presentations of logics, typically the non-
classical ones, such as modal, substructural or non-monotonic logics. Labeling
allows one to explicitly encode additional information, of a semantic or proof-
theoretical nature, that is otherwise implicit in the logic one wants to capture.
Such additional information is typically internalized in the syntax by means of
proper labels. So, for instance, we will consider a labeled formula of the form b : A
instead of the standard logical formula A. Some possible interpretations of the
label b in a formula b : A, as suggested by Gabbay in [66], are the following:

• possible world where A holds (modal logics);
• time instant when A holds (temporal logics);
• fuzzy reliability value, i.e. b is a number between 0 and 1 (fuzzy logics);
• origin of A, i.e. b indicates where the input A comes from (databases).

This general approach has then been used [4,9,10,23,43,66,93,103,119,148,159]
in the context of several different logics and with respect to different classes of
deduction systems: natural deduction, sequent calculus, tableaux methods.

Since in the thesis we will mainly deal with natural deduction systems [73],
the rest of this chapter will be devoted to give a general presentation of natural
deduction and to consider the specific example of the application of labeling tech-
niques to natural deduction systems. In particular, we will illustrate the use of
labeled natural deduction in the case of modal logic. This will provide a basis for
the definition of labeled natural deduction systems for temporal logics, which will
be treated in Chapters 4 and 5.

The structure of this chapter is the following:

- in Section 3.2, we present the basis of classical natural deduction and give a brief
description of normalization in the context of natural deduction;

- in Section 3.3, we discuss the adaptation of natural deduction to the case of
modal logics and, in particular, present an approach to natural deduction for
modal logics based on labeling.
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3.2 Natural Deduction

Natural deduction is the term used to denote a class of deduction systems that
have been first proposed by Gentzen [73].

A key property of natural deduction systems is the fact that they formalize
intuitive reasoning very closely. This is mainly due to the possibility of reasoning
“under assumptions”, e.g., in order to prove A ⊃ B one can assume the truth of A
and prove (under such an assumption) the truth of B. During the deduction pro-
cess, the assumption A is active and can be used to derive B. When the derivation
of B is concluded, the assumption A may be cancelled so to obtain a derivation of
A ⊃ B which does not depend on the truth of A.

From a proof-theoretical point of view, natural deduction systems present an
elegant meta-theory in which derivations are treated as mathematical objects in-
teresting in themselves.

We give here a brief presentation of natural deduction, focusing for concreteness
on a system for propositional classical logic. For a formal and exhaustive treatment,
standard references are [125,152].

3.2.1 Rules and derivations

A natural deduction system is described by means of a set of logical rules. As an
example, we give here a set of logical rules for propositional classical logic (where
we consider only the constant ⊥ and the implication ⊃ explicitly).

[A ⊃⊥]
....
⊥
A

⊥E

[A]
....
B

A ⊃ B
⊃I

A ⊃ B A
B

⊃E

The formulas above the line are called premises and the one below the line is
the conclusion.

A derivation is a tree-like structure where each node is a formula and such
that if A is the child of a set of nodes {A1, . . . , An}, then there exists a rule in the
system whose premises are A1, . . . , An and whose conclusion is A. The leaves of a
derivation are called assumptions and its root is the conclusion of the derivation.

As notation, we write
A1 . . . An

Π
A

to denote that Π is a derivation whose conclusion is A (we also say that Π
is a derivation of A) and whose set of assumptions may contain the formulas
A1, . . . , An. In some cases, we will also write

Π
A

r

to denote a derivation of A obtained by applying a rule r to the conclusion of Π .
Some rules (⊥E and ⊃ I in the system given above) allow for discharging

assumptions, e.g., when we apply the rule ⊃I and conclude A ⊃ B we are allowed



3.2 Natural Deduction 43

(but not obliged) to discharge possible assumptions of the form A1. We denote
discharged assumptions by using square brackets. We can also use an index to
relate the assumption to the rule application that discharges it, like in the following
example:

[A]1

Π
B

A ⊃ B ⊃I1

Assumptions that are not discharged are said to be open.
Given a system N of natural deduction, we write Γ ⊢

N
A to say that there

exists a derivation of A in the system N whose open assumptions are all contained
in the set of formulas Γ . A derivation of A in N where all the assumptions are
discharged is a proof of A in N and we then say that A is a theorem of N and
write ⊢

N
A.

3.2.2 Normalization

Natural deduction rules are designed to render the intuitive meaning of the connec-
tives as faithfully as possible. Each rule is related to a logical connective and can
be classified either as an introduction rule or as an elimination rule. The premises
of an introduction rule can be seen as the “minimal” conditions necessary to derive
the conclusion; conversely the conclusion of an elimination rule can be seen as the
“maximal” information that can be restored from the premises.

Up to a few standard exceptions, each connective has one introduction rule and
one elimination rule. If the system is well-behaved, each elimination rule is dual to
the corresponding introduction rule. In elimination rules, the premise containing
the connective is called the major premise; the other premises, if any, are called
the minor premises. A formula occurrence is a maximum formula in a derivation
when it is both the conclusion of an introduction rule and the major premise of
an elimination rule.

Corresponding to the notion of maximum formula is that of detour, i.e., a pair
of introduction/elimination rules such that the application of the elimination rule
occurs immediately below the application of the corresponding introduction rule.
Intuitively, a detour represents a redundant step in a derivation (it does not seem
to be so clever to introduce something and to eliminate it soon after). A process
of normalization will consist basically in removing such redundancies, by means of
contraction rules that transform a derivation into another derivation with the same
open assumptions and conclusion. As an example, we show here the contraction
rule for a detour ⊃I/ ⊃E.

[A]1

Π1

B
A ⊃ B ⊃I1 Π2

A
B

⊃E

 

Π2

A
Π1

B

1 We also remark that the rule is applicable even if such a dischargeable assumption is

not present, e.g.,
B

A ⊃ B
is a correct derivation.
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Contraction rules focus on a subtree of a larger derivation; the rest of the derivation
remains unaltered. We can define a reduction relation ⇒ built on such contractions,
i.e., we say that Π ⇒1 Π ′ if Π ′ is obtained by Π by applying a contraction to
a subderivation of Π and that Π1 ⇒ Πn if there exists a reduction sequence
Π1 ⇒1 Π2 ⇒1 . . . ⇒1 Πn−1 ⇒1 Πn.

We say that a derivation Π is in normal form if there is no Π ′ such that
Π ⇒ Π ′, i.e., no contractions can be applied to any subderivation of Π or, which
is equivalent, Π does not contain any maximum formulas.

We can distinguish between two forms of normalization: we say that ⇒ is weakly
normalizing if every derivation reduces to a normal form and that it is strongly
normalizing if there are no infinite reduction sequences. Informally speaking, weak
normalization states that if we apply the contractions in a proper way, then we
will find a normal form; strong normalization says that we will finally get to a
normal form no matter how we choose the contractions.

We do not go into the details of the proof here (see, e.g., [126]) and just con-
clude that a theorem of (strong) normalization can be proved for the system of
propositional classical logic given above. Indeed, the relation ⇒ also satisfies the
Church-Rosser property (see [74]): if Π ⇒ Π ′ and Π ⇒ Π ′′ then there exists
Π ′′′ such that Π ′ ⇒ Π ′′′ and Π ′′ ⇒ Π ′′′. As a consequence, we have that each
derivation reduces to a unique normal form.

Normalization has a great relevance in proof theory since normal derivations
usually satisfy several interesting properties, amongst which we mention the sub-
formula property: if Π is a normal derivation of A from a set Γ of assumptions,
then every formula B occurring in Π is a subformula of Γ ∪ {A}.

Structural properties of normal derivations can also be used to prove interesting
corollaries, such as the consistency of the deduction system, by means of a purely
syntactic argument.

For more details on normalization in natural deduction systems for classical
(and intuitionistic) logic, one can consult, e.g., [74,125,126,152]. We will return to
these matters in Chapters 4 and 5, when discussing normalization of the systems
proposed.

3.3 Natural Deduction for Modal Logics

3.3.1 Towards a Natural Deduction for Modal Logics

Traditionally, modal logics have been presented in terms of Hilbert-style axiom
systems, but these are notoriously difficult to use in practice. Unfortunately, nat-
ural deduction (or sequent) systems are typically badly suited for non-classical
logics: a basic reference on the subject is [61]; a more recent survey on natural
deduction methods for modal logics is [92].

The reason of such difficulties is well described in [159]. As we remarked in
Section 3.2, a nice feature of natural deduction systems is in the possibility of
proving under assumptions. This is clearly illustrated by the rule ⊃ I, which is
directly related to the deduction theorem:

A |= B ⇒ |= A ⊃ B ,
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where ⇒ denotes the implication in the meta-language and ⊃ the implication in
the object language.

When we consider logics whose notion of implication is different from the classi-
cal (or intuitionistic) one, it is not immediate to retrieve such a connection between
the rule and the theorem. In the case of modal logic, for example, the rule would
suggest a global deduction theorem like the following:

(∀b ∈ M(M |= b : A) ⇒ ∀b ∈ M(M |= b : B)) ⇒ ∀b ∈ M(M |= b : A ⊃ B) .

But in fact the semantics of ⊃ in modal logic is weaker and gives rise to the
following local deduction theorem:

∀b ∈ M((M |= b : A ⇒ M |= b : B) ⇒ M |= b : A ⊃ B) .

More on this discussion in [159].
As a consequence, we have that rules for modalities need to take into account

such a distinction between global and local assumptions and that it is not trivial
to design rules that are proof-theoretically well-behaving. In fact, in the literature
we find systems with no explicit modal introduction and elimination rules [30] or
with a modal rule like the following one, which is neither an introduction nor an
elimination rule:

�Γ

[Γ ]
....
A

�A

where �Γ indicates that each assumption in Γ has � as its main logical operator.
In [61], Fitting presents systems for a number of modal propositional logics,

treating them by a uniform method. Such natural deduction systems are based
on the idea of subordinate proofs. The solution described is in the style of that
introduced in [59] and consists in adding a second level of subordination, to which
we give the name of strict subordinate proof. A strict subordinate proof does not
represent simply a deduction from an assumption, but we can think of it as an ar-
gument in an arbitrary alternative world. Additional rules for managing such strict
subordinate proofs are needed and their definition also depends on the different
modal logic one wants to represent.

Other methods, still not in the range of labeled deduction, proposed for ex-
tending deduction systems to modal (or non-classical in general) logics are in
[14, 30, 49, 50, 104, 106, 107, 125, 161, 162]. We remark that such methods are typi-
cally referred to some specific logic and not easily generalizable to consider a large
class of modal logics. For example, Prawitz [125] provides a rather elegant natu-
ral deduction presentation for the logics S4 and S5 , but such an approach is not
generalizable to other modal logics.

3.3.2 Labeled Natural Deduction for Modal Logics

Around the ’90s2, a new interesting approach, based on the ideas of labeling, has
been developed for facing such a problem: rather than modifying the structure of

2 But its origin can be already found in the semantic approaches to tableaux of [99] and
to natural deduction of [60].
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a natural deduction proof with extra devices and new kinds of rules, we extend the
logical language by using labels. This choice leads to labeled deduction systems
[66]. Here we will focus on a particular class of labeled deduction systems, those
where labels are used to denote worlds in the corresponding Kripke semantics. In
particular, the approaches that we will follow more closely, here and in the rest of
the thesis, are those presented in [148,159].

We consider an extended language consisting of two classes of formulas:

1. labeled formulas of the form b : A, intuitively expressing that the propositional
modal formula A holds at the world b;

2. relational formulas of the form bRb′, expressing that b′ is accessible from b
according to the relation R of the model.

(Note that here we have used the overline to denote the worlds in the semantics
and distinguish them from the labels used in the syntax. The idea is that the label
b refers to the world b.)

As an example, given the modal language defined in Definition 2.1, we can
define the corresponding labeled language as follows.

Definition 3.1. Let L be a denumerable set of labels and R a binary relation
symbol over L. If b and c are labels in L and A is a modal formula, then bRc is a
relational well-formed formula (hereafter simply called relational formula or rwff
for short) and b : A is a labeled well-formed (modal) formula (hereafter simply
called labeled formula or lwff for short).

In the rest of the thesis, when not differently specified, we assume that the
variables b, c, . . . range over labels, the variables A, B, . . . range over formulas of the
(not labeled) logics, ϕ is an arbitrary rwff or lwff. All variables may be annotated
with subscripts or superscripts.

Now we can extend the semantics given for the logic K to the labeled modal
language defined above; it is necessary to define an interpretation of labels as
worlds explicitly.

Definition 3.2 (Interpretation of labels). Given a denumerable set of labels L
and a Kripke structure M = (W ,R,V), an interpretation is a function λ : L → W
that maps every label in L to a world in W.

A semantics for the labeled logic can be given now with respect to a structure
and an interpretation. We extend the notion |=

K
to deal with labeled and relational

formulas as follows.

Definition 3.3. Given a Kripke structure M = (W ,R,V), a denumerable set L
of labels and an interpretation λ on them, truth for a generic formula ϕ at a pair
(M, λ) is the smallest relation |=

K
satisfying:

M, λ |=
K

bRc iff λ(b)Rλ(c)

M, λ |=
K

b : A iff M, λ(b) |=
K

A

Given a set Γ of generic formulas and a generic formula ϕ:

M, λ |=
K

Γ iff M, λ |=
K

ϕ for all ϕ ∈ Γ

Γ |=
K

ϕ iff M, λ |=
K

Γ implies M, λ |=
K

ϕ for all M and λ
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[b : A ⊃⊥]
....

b′ :⊥
b : A

⊥E

[b : A]
....

b : B
b : A ⊃ B

⊃I
b : A ⊃ B b : A

b : B
⊃E

[bRb′]
....

b′ : A
b : �A

�I
b : �A bRb′

b′ : A
�E

• In �I , b′ is fresh, i.e., it is different from b and does not occur in any assumption on
which b′ : A depends other than bRb′.

Fig. 3.1. The rules of N (K ).

The enrichment of the language allows us to give introduction and elimina-
tion rules for modal operators that are extremely clean and follow the “spirit” of
natural deduction. One can observe that these rules are close to the rules for quan-
tifiers in predicate classical logic [125]. In fact, we express b : �A as the metalevel
implication bRb′ =⇒ b′ : A for an arbitrary b′ accessible from b:

[bRb′]
....

b′ : A
b : �A

�I
b : �A bRb′

b′ : A
�E

where the rule �I has the side condition that b′ is different from b and does not
occur in any assumption on which b′ : A depends other than bRb′.

Analogously, for the operator of possibility, introduction and elimination rules
can be defined in the following way:

c : A bRc
b : ♦A

♦I
b : ♦A

[c : A] [bRc]
....

d : B

d : B
♦E

where ♦E has the side condition that c is different from b and d and does not
occur in any assumption on which the upper occurrence of d : B depends other
than c : A or bRc.

In Figure 3.1, we summarize the rules of a natural deduction system N (K )
for the basic modal logic K . Rules for classical connectives can be modified in a
straightforward way in order to treat labeled formulas. Just notice that, in the
case of ⊥E, which is a labeled version of reductio ad absurdum, we do not enforce
Prawitz’s side condition that A 6= ⊥.3

3 See [159] for a detailed discussion on ⊥E, which in particular explains how, in order
to maintain the duality of modal operators like � and ♦, the rule must allow one to
derive w : A from a contradiction ⊥ at a possibly different world w′, and thereby
discharge the assumption w : A ⊃⊥.
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Given a labeled natural deduction system, the notions of derivation, theorem
and derivability are defined as for standard natural deduction systems (Section
3.2). Thus we write Γ ⊢

N(K)
b : A to say that there exists a derivation of b : A in

the system N (K ) whose open assumptions are all contained in the set of formulas
Γ .

For the system N (K ), it is possible to state the following result of soundness
and completeness (see, e.g., [159] for a proof).

Theorem 3.4. Let Γ be a set of labeled formulas and b : A a labeled formula.
Then

Γ ⊢
N(K)

b : A ⇔ Γ |=
K

b : A .

The system N (K ) can now be extended in order to capture axiomatic exten-
sions of the modal logic K (see Section 2.2.2) simply by formalizing the details of
particular accessibility relations.

Further classifications can be made inside the field of labeled deduction sys-
tems. In the following, we describe a few methods presented in the literature for
dealing with modal logics by using labels. In particular, we focus on the approaches
presented in [159] and [148], to which the systems defined in Chapters 4 and 5 are
mainly inspired.

Systems with a proper relational theory

In [159], Viganò introduces a general methodology for presenting and working
with a large set of non-classical logics, in particular modal and relevance logics.
His natural deduction systems consist of two parts:

- a base system, whose rules are in the style of the ones presented above for the
logic K , for manipulating labeled formulas;

- a labeling algebra for reasoning about the labels, i.e. for manipulating relational
formulas.

The base system presents the base logic of a family of propositional non-classical
logics. The base and the relational systems are separate and communicate through
an interface provided by the rules for the modal operators; the intuition behind
all this is that for a family or class of related logics we keep the same base system
and obtain a presentation of the particular logic we want by “plugging in” the
appropriate relational theory.

In [159], labeling algebras are restricted to those that can be formulated in a
Horn Theory (see [155]).

Definition 3.5 (Horn relational theory). A Horn relational formula is a closed
formula of the form

∀x1, ..., xn((s1Rt1 ∧ ... ∧ smRtm) ⊃ s0Rt0),

where m ≥ 0, and the si and ti are terms built from the labels x1, ..., xn and
constant function symbols. Corresponding to each such formula is a Horn relational
rule

s1Rt1 ... smRtm
s0Rt0

,
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which has no premises when m = 0. A Horn relational theory is a theory generated
by a set of such rules.

The use of a Horn theory gives rise to natural deduction systems that enjoy good
normalization properties. To give an idea of the way the whole system works, we
give here two relational rules: RT expresses the reflexivity of the relation R and
R4 expresses the transitivity of R.

RT
bRb

bRc cRd
R4

bRd

By adding the relational rule R4 to the base system for K of Figure 3.1, we obtain
a sound and complete system for the logic K4 . If we add also RT , then we get a
system for S4 .

A nice feature of Viganò’s framework is the strict separation between the base
systems and the labeling algebras, which is maintained also when building deriva-
tions: in the relational theory we reason only on relational formulas, while in the
base system we exploit labeled and relational formulas to infer only labeled for-
mulas, so that a derivation in the base system may depend on a derivation in the
relational theory but not viceversa. It follows that derivations of labeled formulas
consist of a tree built from the base system, which is decorated with relational sub-
derivations. As an example, we show here a derivation of the axiom 4, expressing
the property of transitivity (see Section 2.3.2).

[b : �A]1
[bRc]2 [cRd]3

bRd
R4

d : A
�E

c : �A �I3

b : ��A �I2

b : �A ⊃ ��A
⊃I1

The strict separation between the base and the relational systems can be ex-
ploited to show that these deduction systems enjoy some “good” structural prop-
erties, in particular that derivations normalize and that normal derivations satisfy
some form of the subformula property.

In this thesis, we will propose labeled natural deduction systems closely related
to this approach in Section 4.3 for a number of linear tense logics.

Systems without a proper relational theory

In [148], Simpson presents a natural deduction system for intuitionistic modal
logics, although the technique used for this purpose can also be used to develop
systems for classical modal logics. From our point of view, what really differentiates
his systems from systems in [159] is the way of treating relational formulas.

Simpson relegates relational formulas to the role of assumptions in the deriva-
tion of labeled logical formulas. This is justified by the fact that relational formulas
are not part of the logic and thus that one would not expect that a rule of the
system concludes with a relational formula.
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This approach aims at keeping the system as simple as possible and at avoiding
the explicit introduction of an algebra of terms for the labels. As an example we
show now the rules R′

T and R′
4, concerning reflexivity and transitivity respectively,

expressed in the Simpson-style: while in [159] premises and conclusions are both
relational formulas, here relational formulas appear only as premises or discharged
assumptions.

[bRb]
....

b′ : A
b′ : A

R′
T

bRc cRd

[bRd]
....

b′ : A
b′ : A

R′
4

The following is a proof of the axiom 4 given in a Simpson-style system. One can
compare it with the corresponding one given above (in a Viganò-style system) and
observe that in this case we lose the strict separation between base and relational
subderivations.

[bRc]2 [cRd]3
[b : �A]1 [bRd]4

d : A
�E

d : A
R′4

4

c : �A �I3

b : ��A �I2

b : �A ⊃ ��A
⊃I1

Also Simpson’s systems are proved [148] to enjoy good meta and proof-
theoretical properties.

In this thesis, we will propose labeled natural deduction systems following this
approach in Sections 4.2, 5.2, and 5.3.

Related approaches

The approaches presented above are the ones that will be followed more closely in
the definition of labeled natural deduction systems throughout this thesis. How-
ever, it is worth mentioning some related works in the field of labeling for modal
and non-classical logics.

In [66], Gabbay describes a general and unifying method for presenting a huge
variety of logics. The rules of the deduction systems are designed for manipulating
the informations in a sort of logical data-base based on diagrams. As an example,
we show here a rule for the elimination of ♦:

b : ♦A

Create a new point b′ with bRb′ and deduce b′ : A

In a sense, as noticed in [159], Gabbay manipulates labels metalinguistically by
using expressions coming from a sort of programming language, while, in the ap-
proaches of [148,159] such commands are expressed directly by using rules defined
in a more natural deduction-style (compare the rule for ♦E in the system N (K )
with the one above).

The development of [66] follow different directions. In [26,27,143] uniform sys-
tems for families of modal and non-classical logics are formalized. Labeled sequent
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systems are presented in [112] for modal and in [113] for non-classical logics. La-
beling is also used in defining tableaux for some substructural logics in [44], for
modal logics with richer languages in [6], for modal and description logics in [45].
For a survey on labeled tableaux see [43], and in particular [81]. Also goal-oriented
deduction systems for several non-classical logics [69] have been defined by using
labeling.

Labeled deduction is clearly related also to semantic embeddings [117] con-
sisting in translating modal formulas into a first-order classical language, where
relational statements are expressed by using binary predicates.

Finally, we mention the so-called hybrid logics [5], in which the enrichment of
the language with elements coming from the semantics is not just used as a tool for
deduction but becomes part of the logic itself. Namely, the language is extended
with propositional symbols (nominals) of a new sort, such that each symbol is true
at exactly one world. This leads to the definition of more expressive logics, which
are usually endowed with a “good” proof theory.

Here we focused on works oriented to modal, and in general non-classical, logics.
We postpone the analysis of other related works, specific to temporal logics, to
Sections 4.2.6, 4.3.5 and 5.5.
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Labeled Natural Deduction for Temporal Logics





4

Labeled Natural Deduction for Linear Temporal

Logics

4.1 Introduction

In Chapter 2 we introduced a number of modal and temporal logics, while in
Chapter 3 we presented an approach to deduction for non-classical logics based
on labeling and described its application in the case of the most common modal
logics. In this chapter, we focus on linear temporal logics and define labeled natural
deduction systems for several such logics.

When we introduced labeled natural deduction, we distinguished between two
possible approaches: in the first one (followed, e.g., by Simpson in [148]) relational
formulas are used only as assumptions in the derivation of (labeled) logical for-
mulas, while in the last one (proposed, e.g., by Viganò in [159]) we have a proper
relational sub-system where the inference of a relational formula from premises
that are also relational formulas is allowed. In this chapter, we will consider both
the approaches and analyze benefits and limitations of each of them.

In Section 4.2, we present a labeled natural deduction system in the style of
Simpson’s approach for the basic tense logic Kt . Then we show how to extend
modularly such a system in order to capture the linear tense logic Kl and some of
its variants, namely Kl with bounded or unbounded time, Kl with dense time and
Kl with discrete time. We show that all such systems are sound and complete with
respect to the corresponding semantics. Finally, we describe a further extension
leading to a system for the logic LTL

−
, i.e. the until-free fragment of LTL. We re-

mark that our original contribution in the context of Section 4.2 is mainly in giving
a uniform and modular presentation of systems for a large class of linear temporal
logics. In fact, the system for Kt is a trivial extension of the ones presented for
the modal logic K , the systems for Kl and its variants are a specialization of the
ones for axiomatic extensions of modal logics (as described, e.g., in [148]) and the
system for N (LTL

−
) is very close to the one described in [103] for the same logic.

In Section 4.3, we use [159], where labeled natural deduction systems are de-
fined for several non-classical logics, as a starting point. As described in Section
3.3.2, systems in [159] are composed of a base system for inferring labeled logical
formulas and of a sub-system, consisting of Horn rules, for reasoning on relational
formulas. Such a restriction of considering only Horn rules in the relational sub-
system allows for well-behaving, from a proof-theoretical point of view, natural
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deduction systems, based on the strict separation between the labeled and the
relational systems. If we consider linear temporal logics, even a basic logic like
Kl , Horn rules do not suffice, because we need to capture a condition of linearity
(see Section 2.3 for details), which requires the possibility of expressing at least
a disjunction. Thus we need to consider more powerful relational systems. Here
we define a sound and complete system for Kl where the relational language is
extended to be a full first-order relational language and study the consequences
of such an extension. We see that the strict separation between the base and the
relational system, typical of the systems in [159], is lost, but also that the resulting
systems still enjoy some good structural properties that can be exploited in order
to prove some form of normalization. Furthermore the extension of the relational
language allows us to capture the axiomatic extensions of Kl presented in Section
2.3.2 in a clean and modular way. The possibility of further extending the system
in order to reason on LTL or LTL

−
is also discussed. Part of the material of Section

4.3 has been presented in [160].
The systems in Sections 4.2 and 4.3 do not consider the operators since and un-

til. In fact, such operators are quite complex to be treated from a proof-theoretical
point of view, e.g., if we are interested in defining a normalization procedure for
our systems. In Section 4.4, we propose a solution for the treatment of until (we
focus on the future fragment but an extension to the past should not be prob-
lematic), consisting in replacing it by a new unary operator, called history. As a
concrete example, we define a logic LTL∇, obtained by replacing until with history,
and showing that the two logics are equally expressive, i.e., that it is possible to
define a translation from LTL into LTL∇ and, viceversa, a translation from LTL∇

into LTL such that the notions of semantical consequence are preserved. Then we
define a labeled natural deduction system for LTL∇, where the interesting point
is that the rules for the introduction and the elimination of the new operator are
very simple and absolutely in the spirit of natural deduction; indeed, they present
the same pattern of the rules for the other modal (temporal) operators. The equiv-
alence between the two logics makes the system useful also for reasoning on LTL.
Furthermore the approach presented is fully general and can be easily adapted to
other linear and branching temporal logics with until.

4.2 Systems for linear temporal logics

In this section, we present sound and complete labeled natural deduction systems
in the style of Section 3.3.2 for linear temporal logics.

The structure of this section is the following:

- in Section 4.2.1, we present a labeled natural deduction system for Kt ;
- in Section 4.2.2, we extend it to capture the linear tense logic Kl ;
- in Section 4.2.3, we consider extensions of the system for some variants of Kl ;
- in Section 4.2.4, we give a system for the until-free version of LTL;
- in Section 4.2.5, we briefly discuss normalization matters;
- in Section 4.2.6, we summarize and compare with related work.
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4.2.1 A system for Kt

The minimal Priorean tense logic Kt presented in Section 2.3.1 is no more than the
basic modal logic K (Section 2.2) with a symmetrical modal (temporal) operator
directed towards the past. Thus a trivial extension of the labeled base system
N (K ) (Section 3.3.2) of [148, 159] will work. As is standard for temporal logics,
we use G and F for � and ♦ and denote with < the relational symbol used in the
syntax (corresponding to the relation ≺ of the semantics; see Section 2.3.1).

A labeled version of Kt

As we did in Section 3.3.2 for modal logics, we need to formalize the extension
of the language and the adaptations to the semantics required by the labeled
deduction setting.

Definition 4.1. Let L be a denumerable set of labels and < a binary relation
symbol over L. If b and c are labels in L and A is a tense formula, then b < c is a
relational well-formed formula (or relational formula, or rwff for short) and b : A
is a labeled well-formed (tense) formula (or labeled formula, or lwff for short).

We remark that the terms labeled formula (or lwff) and relational formula (or rwff)
will be often redefined in the thesis and thus will be used with different meanings
in the context of different sections. Since each section is typically devoted to a
specific labeled system, and consequently deals with a specific labeled language,
we believe that this will not generate any confusion.

Definition 4.2. Given a denumerable set of labels L and a temporal structure
M = (W ,≺,V), an interpretation is a function λ : L → W that maps every label
in L to a time-instant in W.

Definition 4.3. Given a temporal structure M = (W ,≺,V), a denumerable set L
of labels and an interpretation λ on them, truth for a labeled or relational formula
ϕ at a pair (M, λ) is the smallest relation |=

Kt
satisfying:

M, λ |=
Kt

b < c iff λ(b) ≺ λ(c)

M, λ |=
Kt

b : A iff M, λ(b) |=
Kt

A

Given a set Γ of generic formulas and a generic formula ϕ:

M, λ |=
Kt

Γ iff M, λ |=
Kt

ϕ for all ϕ ∈ Γ

Γ |=
Kt

ϕ iff M, λ |=
Kt

Γ implies M, λ |=
Kt

ϕ for all M and λ

The system N (Kt)

With respect to N (K ), the extension consists in introducing a pair of introduc-
tion/elimination rules for the operator H to the base system N (K ); such rules are
just the symmetrical version of �I and �E.
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[b1 : A ⊃⊥]
....

b2 :⊥

b1 : A
⊥E

[b : A]
....

b : B
b : A ⊃ B

⊃I
b : A ⊃ B b : A

b : B
⊃E

[b1 < b2]
....

b2 : A

b1 : GA
GI

b1 : GA b1 < b2

b2 : A
GE

[b1 < b2]
....

b1 : A

b2 : HA
HI

b2 : HA b1 < b2

b1 : A
HE

• In GI , b2 is fresh, i.e., it is different from b1 and does not occur in any assumption
on which b2 : A depends other than the discharged assumption b1 < b2.

• In HI , b1 is fresh, i.e., it is different from b2 and does not occur in any assumption
on which b1 : A depends other than the discharged assumption b1 < b2.

Fig. 4.1. The rules of N (Kt).

The set of rules of the system N (Kt), for which the notion of derivability
⊢

N(Kt)
can be defined as usual, is given in Figure 4.1. The notions of derivation

and theorem, here and for the other systems of this section, are the standard ones
(see Section 3.2).

We will give concrete examples of derivations in the following. For simplicity,
we will sometimes employ the rules for conjunction ∧ and disjunction ∨, which are
derived from the basic propositional rules as is standard, as well as other derived
rules such as those for F and P (see Figure 4.2).

As examples, we show how to derive the rules ∧I, FI and FE:

b : A b : B
b : A ∧ B

∧I abbreviates

[b : A ⊃ (B ⊃ ⊥)]1 b : A

b : B ⊃ ⊥
⊃E

b : B
b : ⊥

⊃E

b : (A ⊃ (B ⊃ ⊥)) ⊃ ⊥
⊃I1

The rule
c : A b < c

FI
b : FA

can be derived as follows:

[b : G(A ⊃⊥)]1 b < c
GE

c : A ⊃⊥ c : A
⊃ E

c :⊥
⊥E

b :⊥
⊃ I1

b : G(A ⊃⊥) ⊃⊥

while an application of FE
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c : A b < c
b : FA

FI
b : FA

[c : A][b < c]
....

d : B
d : B

FE

c : A c < b
b : PA

PI
b : PA

[c : A][c < b]
....

d : B
d : B

PE

b : A b : B
b : A ∧ B

∧I
b : A ∧ B

b : A
∧E1

b : A ∧ B
b : B

∧E2

b : A
b : A ∨ B

∨I1
b : B

b : A ∨ B
∨I2

b′ : B ∨ C

[b′ : B]
....

b : A

[b′ : C]
....

b : A
b : A

∨E

• In FE, c is different from b and d, and does not occur in any assumption on which
the upper occurrence of d : B depends other than c : A or b < c (c < b).

• In PE, c is different from b and d, and does not occur in any assumption on which
the upper occurrence of d : B depends other than c : A or c < b.

Fig. 4.2. Some derived rules.

b : FA

[c : A] [b < c]

Π

d : B
FE

d : B

can be replaced by the following derivation:

b : G(A ⊃⊥) ⊃⊥

[d : B ⊃⊥]1

[c : A]3 [b < c]2

Π

d : B
⊃ E

d :⊥
⊥E

c :⊥
⊃ I3

c : A ⊃⊥
GI2

b : G(A ⊃⊥)
⊃ E

b :⊥
⊥E1

d : B

Soundness

Theorem 4.4. Let Γ be a set of labeled and relational tense formulas and b : A a
labeled tense formula. Then
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Γ ⊢
N(Kt)

b : A ⇒ Γ |=
Kt

b : A .

Proof. The proof proceeds by induction on the structure of the derivation of b :
A. The base case is when b : A ∈ Γ and is trivial. There is one step case for
every rule. Soundness of the rules for logical connectives can be proved by using
standard arguments, while the soundness of the rules of introduction/elimination
of temporal operators and quantifiers follows like in other labeled systems for non-
classical logics (see, e.g., [148, 159]). We show only the cases of introduction and
elimination of G; the cases concerning H can be proved analogously.

Consider an application of the rule GI

[b1 < b2]
Π

b2 : A

b1 : GA
GI

where Π is a proof of b2 : A from hypotheses in Γ ′, with b2 fresh and with
Γ ′ = Γ ∪ {b1 < b2}. By the induction hypothesis, for all interpretations λ, if
M, λ |=

Kt
Γ ′ then M, λ |=

Kt
b2 : A. We let λ be any interpretation such that

M, λ |=
Kt

Γ , and show that M, λ |=
Kt

b1 : GA. Let λ(b1) = n. Now let us consider
a generic successor n + k of n for some k > 0. Since λ can be trivially extended to
another interpretation (still called λ for simplicity) by setting λ(b2) = n + k, the
induction hypothesis yields M, λ |=

Kt
b2 : A, i.e. M, n + k |=

Kt
A. Given that k is

arbitrary we can conclude M, λ |=
Kt

b1 : GA.
Consider the case in which the last rule applied is GE:

Π
b1 : GA b1 < b2

b2 : A
GE

where Π is a proof of b1 : GA from hypotheses in Γ1, with Γ = Γ1 ∪ {b1 < b2} for
some set Γ1 of formulas. By applying the induction hypothesis on Π , we have:

Γ1 |=
Kt

b1 : GA .

From Γ ⊃ Γ1, we deduce (by the induction hypothesis) M, λ |=
Kt

b1 : GA. Fur-
thermore M, λ |= Γ entails M, λ |=

Kt
b1 < b2 and thus M, λ(b2) |=

Kt
A, i.e., by

Definition 4.3, M, λ |=
Kt

b2 : A.
⊓⊔

Completeness

Theorem 4.5. Let Γ be a set of labeled tense formulas and b : A a labeled tense
formula. Then

Γ |=
Kt

b : A ⇒ Γ ⊢
N(Kt)

b : A .

Proof. We show that the system N (Kt) is complete with respect to the semantics
of Kt (Definition 2.7) by showing that every axiom and rule of inference in the
axiomatization H(Kt) is provable in N (Kt).
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Firstly, we show by induction on the length of H(Kt) derivations that it is
possible to derive the rules of inference of H(Kt) in N (Kt).

(MP)
If ⊢

Kt
A and ⊢

Kt
A ⊃ B , then ⊢

Kt
B .

By induction hypothesis, given an arbitrary label b, we have in N (Kt) a deriva-
tion Π1 of b : A and a derivation Π2 of b : A ⊃ B. By applying ⊃E, we obtain:

Π2

b : A ⊃ B
Π1

b : A
b : B

⊃E

(NecG)
If ⊢

Kt
A , then ⊢

Kt
GA .

Given an arbitrary label b′, by induction hypothesis we have a proof Π of b′ : A
in N (Kt). Then we can use the arbitrariness of b′ and build a proof of b : GA as
follows:

[b < b′]
Π

b′ : A
b : GA

GI

The case of the rule NecH can be treated in a symmetrical way.
In the following, we give derivations of the axioms KG and GP. We omit the

derivations for KH and HF, which are very similar.
(KG)

[b : G(A ⊃ B)]1 [b < c]3

c : A ⊃ B
GE

[b : GA]2 [b < c]3

c : A
GE

c : B
⊃E

b : GB GI3

b : GA ⊃ GB
⊃I2

b : G(A ⊃ B) ⊃ (GA ⊃ GB)
⊃I1

(GP)
[b : A]1 [b < c]2

c : PA
PI

b : GPA GI2

b : A ⊃ GPA
⊃I1

⊓⊔

4.2.2 A system for Kl

When moving from Kt to Kl , we restrict to consider models where the flow of time
is irreflexive, transitive and connected (or linear). With regard to irreflexivity, it is
well known (see, e.g., [75]) that considering or not such a property does not modify
the set of valid formulas and thus, in terms of rules, we can avoid considering it.1

1 We will return to this point in Section 4.3, where, by considering natural deduction
systems endowed with a proper first-order relational subsystem, we will be able to
capture also irreflexivity.
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b1 < b2 b2 < b3

[b1 < b3]
....

b : A

b : A
trans <

b1 : B

[b2 : B]
....

b : A

[b1 < b2]
....

b : A

[b2 < b1]
....

b : A

b : A
conn <

Fig. 4.3. The rules for transitivity and connectedness.

By enriching the system N (Kt) of Section 4.2.1 with two further rules, one for
transitivity and one for connectedness, we get a system that is sound and complete
with respect to Kl .

We use the same labeled language defined for Kt (Section 4.2.1). The definition
of interpretation in the case of Kl and the extension of |=

Kl
to labeled and relational

formulas can be easily adapted from Section 4.2.1: just replace temporal structure
by Kl -structure; we omit the details.

The system N (Kl)

In Figure 4.3, we present the rules trans < and conn <, which capture transitivity
and connectedness, respectively. We define N (Kl) as the system containing the
set of rules in N (Kt) plus trans < and conn <.

With regard to conn <, we remark that, since we do not treat equality between
labels explicitly in our relational language2, we express it by means of equality of
the sets of formulas holding in the labels. Thus, given two instants b1 and b2, the
rule can be read as stating that one of the following must hold:

1. b1 and b2 coincide, and then if a formula B holds in b1, it must also hold in b2;
2. b1 precedes b2;
3. b2 precedes b1.

We also notice that, in the case in which the relation < was assumed to be reflexive
(denoted 6), the rule conn < could be simplified as follows3:

[b1 6 b2]....
b : A

[b2 6 b1]....
b : A

b : A
conn 6

2 We will consider equality explicitly, by allowing also relational formulas of the form
b = c, in Section 4.3, where we will investigate benefits and disadvantages of having a
much richer relational system.

3 A system for the “reflexive” version of Kl could then be obtained by simply replacing
< by 6 in each rule of N (Kl), by using conn 6 instead of conn < and by adding the
following rule for reflexivity:

[b1 6 b1]
....

b : A
b : A

refl 6
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Soundness

Theorem 4.6. Let Γ be a set of labeled and relational tense formulas and b : A a
labeled tense formula. Then

Γ ⊢
N(Kl)

b : A ⇒ Γ |=
Kl

b : A .

Proof. We extend the proof of Theorem 4.4 by considering the cases regarding the
rules trans < and conn <.

(trans <) Consider the case in which the last rule applied is trans <:

b1 < b2 b2 < b3

[b1 < b3]
Π

b : A

b : A
trans <

where Π is a proof of b : A from hypotheses in Γ2, with Γ = Γ1∪{b1 < b2, b2 < b3}
and Γ2 = Γ1 ∪ {b1 < b3} for some set Γ1 of formulas. By applying the induction
hypothesis on Π , we have:

Γ2 |=
Kl

b : A .

We proceed by considering a generic linear temporal structure M = (W ,≺,V)
and a generic interpretation λ on it such that M, λ |=

Kl
Γ and showing that this

entails
M, λ |=

Kl
b : A .

Let λ(b1) = w for some w ∈ W . Then, by M, λ |=
Kl

Γ , we infer λ(b1) ≺ λ(b2) and
λ(b2) ≺ λ(b3) and, by the definition of a linear temporal frame, we have λ(b1) ≺
λ(b3), i.e. M, λ |=

Kl
b1 < b3. This implies M, λ |=

Kl
Γ2 and thus M, λ |=

Kl
b : A

by the induction hypothesis.
(conn <) Now consider the case in which the last rule applied is conn <:

b1 : B

[b2 : B]
Π

b : A

[b1 < b2]
Π ′

b : A

[b2 < b1]
Π ′′

b : A

b : A
conn <

where Π is a proof of b : A from hypotheses in Γ2, Π ′ is a proof of b : A from
hypotheses in Γ ′

2 and Π ′′ is a proof of b : A from hypotheses in Γ ′′
2 , where Γ =

Γ1 ∪ {b1 : B}, Γ2 = Γ1 ∪ {b2 : B}, Γ ′
2 = Γ1 ∪ {b1 < b2} and Γ ′′

2 = Γ1 ∪ {b2 < b1}
for some set Γ1 of formulas. By applying the induction hypothesis on Π , Π ′ and
Π ′′ we have (respectively):

Γ2 |=
Kl

b : A , Γ ′
2 |=

Kl
b : A , Γ ′′

2 |=
Kl

b : A .

We proceed by considering a generic linear temporal structure M = (W ,≺,V)
and a generic interpretation λ on it such that M, λ |=

Kl
Γ and showing that this

entails
M, λ |=

Kl
b : A .

First notice that M, λ |=
Kl

Γ , implies M, λ |=
Kl

b1 : B. By the condition of
linearity on linear temporal models, we have that one of the following must hold:
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1. λ(b1) = λ(b2): and then we have that M, λ |=
Kl

b1 : B implies M, λ |=
Kl

b2 : B,
from which we infer M, λ |=

Kl
Γ2 and thus M, λ |=

Kl
b : A by the induction

hypothesis;
2. λ(b1) ≺ λ(b2): and then we have that M, λ |=

Kl
b1 < b2, from which we infer

M, λ |=
Kl

Γ ′
2 and thus M, λ |=

Kl
b : A by the induction hypothesis;

3. λ(b2) ≺ λ(b1): and then, symmetrically, we have that M, λ |=
Kl

b2 < b1,
from which we infer M, λ |=

Kl
Γ ′′

2 and thus M, λ |=
Kl

b : A by the induction
hypothesis.

⊓⊔

Completeness

Theorem 4.7. Let Γ be a set of labeled tense formulas and b : A a labeled tense
formula. Then

Γ |=
Kl

b : A ⇒ Γ ⊢
N(Kl)

b : A .

Proof. We give a derivation of the axioms TRANSR and CONNR. The proofs for
TRANSL and CONNL are completely symmetrical and we omit them.

(TRANSR)

[b < c]2 [c < d]3
[b : GA]1 [b < d]4

d : A
GE

d : A
trans <4

c : GA GI3

b : GGA GI2

b : GA ⊃ GGA
⊃I1

(CONNR)
We slightly simplify the derivation here, by allowing the application of ∧E on
a premise consisting of three conjuncts.

[b : HA ∧ A ∧ GA]1

b : A
∧E

[d : A]4
Π1

d : A
Π2

d : A

d : A
conn <4

c : HA HI3

b : GHA GI2

b : HA ∧ A ∧ GA ⊃ GHA
⊃I1

where Π1 is
[b : HA ∧ A ∧ GA]1

b : GA
∧E

[b < d]4

d : A
GE

and Π2 is
[b : HA ∧ A ∧ GA]1

b : HA
∧E

[d < b]4

d : A
HE

⊓⊔



4.2 Systems for linear temporal logics 65

4.2.3 Systems for axiomatic extensions of Kl

Here we consider extensions of the system N (Kl) aiming at capturing some of the
axiomatic extensions presented in Section 2.3.2.

Kl with unbounded time

One of the possible extensions of Kl consists in requiring that the underlying flow
of time is unbounded, i.e., every point has a successor and/or a predecessor. We
can express such properties by adding the rules serR and serL below.

[b1 < b2]....
b : A
b : A

serR

[b1 < b2]....
b : A
b : A

serL
,

where we require that b2 is fresh in serR (i.e., it is different from b1 and does
not occur in any assumption on which b : A depends other than the discharged
assumptions b1 < b2) and that b1 is fresh in serL (i.e., it is different from b2

and does not occur in any assumption on which b : A depends other than the
discharged assumptions b1 < b2).

A derivation of the axiom SERR, using the rules of N (Kl) and serR, is the
following.

[c : A ∧ ¬A]2

c : A
∧E

[c : A ∧ ¬A]2

c : ¬A
∧E

c :⊥
¬E

c : A ∨ ¬A ⊥E2
[b < c]1

b : F(A ∨ ¬A)
FI

b : F(A ∨ ¬A)
ser 1

R

In a completely symmetrical way, one can obtain a derivation of SERL, using
the rules of N (Kl) and serL.

Kl with first/final point

Conversely, we can require that the flow of time is bounded by a first and/or
a final point. It is not trivial to express such a property in our setting, as long
as we are interested in keeping the good structural properties of our derivations,
i.e., in particular, limiting the introduction/elimination of the operators to the
rules devoted to that.

A solution could consist in the use of two special labels as constants, which
intuitively denote in the syntax the first and the final point of the flow of time.
What we miss is the possibility of deriving a contradiction at a relational level.4

A rule like the following5

4 In fact, in Section 4.3, we will show that the usage of a first-order relational language
makes it simple to capture this extension of the logic Kl .

5 Plus clearly some other rules modeling the use of the constants.
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b1 < b2 b2 < b1

b1 :⊥

would do if we just aim at obtaining soundness and completeness but we are aware
of the fact that we lose some of the good properties of the system.

Kl with dense time

A flow of time is dense if between any two points we can find a third point. The
following rule captures such a property:

b1 < b2

[b1 < b′] [b′ < b2]....
b : A

b : A
dens <

where we require that b′ is fresh, i.e., it is different from b1 and b2 and does
not occur in any assumption on which b : A depends other than the discharged
assumptions b1 < b′ and b′ < b2.

We give here a derivation of the axiom DENSR, using the rules of N (Kl) and
dens <. We omit the derivation of the axiom DENSL, which is symmetrical.

[b : FA]1
[b < c]2

[c : A]2 [d < c]3

d : FA
FI

[b < d]3

b : FFA
FI

b : FFA
dens <3

b : FFA FE2

b : FA ⊃ FFA
⊃I1

Kl with discrete time

Finally, we can express discreteness both towards the future and towards the past
(see Section 2.3.2 for details).

A solution for capturing such a property consists in introducing into the system
a new relational symbol expressing the relation of being the immediate successor
of another point. We use the symbol ⊳ for such a relation and thus extend the
relational language by considering as rwffs also formulas of the form b ⊳ c. We
extend the semantics of labeled Kl with the following clause:

M, λ |=
Kl

b⊳ c iff λ(b) ≺ λ(c) and there is no x ∈ W s.t. λ(b) ≺ x ≺ λ(c) .

Now we introduce some rules for modeling its properties. First of all, we require
the relation ⊳ to be functional, i.e., if both b2 and b3 are the immediate successors
of b1, then b2 and b3 must coincide. We define two symmetrical rules, expressing
functionality (or linearity, since it prevents in some way the formation of a branch)
towards the future and towards the past, respectively.

b1 ⊳ b2 b1 ⊳ b3 b2 : A

b3 : A
lin⊳R

b1 ⊳ b2 b3 ⊳ b2 b1 : A

b3 : A
lin⊳L
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Then we need to specify the interaction between the relations ⊳ and <. First,
we have that ⊳ is contained in <, i.e. if b1⊳ b2 holds, then also b1 < b2 must hold.

b1 ⊳ b2

[b1 < b2]....
b : A

b : A
base <

We can also state that if a point has a successor (predecessor), then it must
also have an immediate successor (predecessor).6

b1 < b2

[b1 ⊳ b′]
....

b : A

b : A
discr <R

b1 < b2

[b′ ⊳ b2]....
b : A

b : A
discr <L

In both the rules we require that b′ is fresh, i.e., it is different from b1 and b2

and does not occur in any assumption on which b : A depends other than the
discharged assumption.

Finally, we need a rule that allows us to split a statement of the form b1 < b2

into two cases: either b2 is the immediate successor of b1 or b2 is a successor of the
immediate successor of b1.

b1 < b2

[b1 ⊳ b2]....
b : A

[b1 ⊳ b′] [b′ < b2]....
b : A

b : A
split <R ,

where we require that b′ is fresh, i.e., it is different from b1 and b2 and does
not occur in any assumption on which b : A depends other than the discharged
assumptions b1 ⊳ b′ and b′ < b2.

Clearly, the same argument holds if we reason (symmetrically) in terms of
predecessors and immediate predecessors.

b1 < b2

[b1 ⊳ b2]....
b : A

[b1 < b′] [b′ ⊳ b2]....
b : A

b : A
split <L

,

where we require that b′ is fresh, i.e., it is different from b1 and b2 and does
not occur in any assumption on which b : A depends other than the discharged
assumptions b1 < b′ and b′ ⊳ b2.

In Figure 4.4, we present a derivation of the axiom DISCRR, using the rules
of N (Kl) and the ones introduced in this paragraph. A derivation of the axiom
DISCRL can be obtained symmetrically.

6 Note that in the case of discrete unbounded time, we could omit these rules and replace
the rules serR and serL by analogous ones defined on the relation ⊳.
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[b : F⊤ ∧ A ∧ HA]1

b : F⊤
∧E

[b < c]2
[b⊳ d]3

Π
d : HA [b < d]3

b : FHA
FI

b : FHA
base <4

b : FHA
discr <3

R

b : FHA FE2

b : F⊤ ∧ A ∧ HA ⊃ FHA
⊃I1

where Π is the following derivation:

[e < d]5
[b ⊳ d]3 [e < d]6

[b : F⊤ ∧ A ∧ HA]1

b : A
∧E

e : A
lin⊳L

[b⊳ d]3 [f ⊳ d]6
[b : F⊤ ∧ A ∧ HA]1

b : HA
∧E

f : HA
lin⊳L

[e < f ]6

e : A
HE

e : A
split <6

L

d : HA HI5

Fig. 4.4. A derivation of the axiom DISCRR.
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Soundness and completeness

Theorem 4.8. The extensions of N (Kl) presented above are sound and complete
with respect to the semantics of the corresponding logics.

Proof. Soundness of the extended systems is straightforward, since the rules mirror
the properties that the models of the extended logics are required to satisfy.

With regard to completeness, we have already presented derivations of the
axioms expressing the properties that define each logic when we introduced the
rules.

⊓⊔

4.2.4 A system for until-free LTL

In this section, we present a labeled natural deduction system for the logic LTL
−

described in Section 2.3.4. The core of the system comes from [103]; we just apply
some slight modifications, partly due to the fact that we do not use an explicit
relational symbol for equality and partly just for uniformity of treatment with the
other systems presented here.

A labeled version of LTL
−

For clarity, since the language used in the system N (LTL) is different from the
one of previous sections, we define it formally.

As we already did in Section 2.3.4 in presenting the logic, here we restrict to
consider only future-time operators. We also remark that in this case, since it
seems to be more common in the related literature, we use an order relation that
enjoys reflexivity, i.e. ≤ instead of ≺. We will use 6 as its corresponding in the
syntax. Like in Section 4.2.3, we use ⊳ to denote, in the syntax, the relation of
immediate predecessor.

Definition 4.9. Let L be a denumerable set of labels. If b and c are labels in L
and A is an LTL

−
-formula, then b 6 c and b⊳c are relational well-formed (LTL

−
)

formulas and b : A is a labeled well-formed (LTL
−
) formula.

An interpretation is defined as usual as a function mapping a label into a time-
instant. The notion of |=

LTL
−

can be extended as follows in order to deal with

labeled and relational formulas.

Definition 4.10. Given an LTL-structure M = (N ,V), a denumerable set L of
labels and an interpretation λ on them, truth for a generic formula ϕ at a pair
(M, λ) is the smallest relation |=

LTL
−

satisfying:

M, λ |=
LTL

−
b 6 c iff λ(b) ≤ λ(c)

M, λ |=
LTL

−
b⊳ c iff λ(b) + 1 = λ(c)

M, λ |=
LTL

−
b : A iff M, λ(b) |=

LTL
−

A
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[b1 : A ⊃⊥]
....

b2 :⊥

b1 : A
⊥E

[b : A]
....

b : B
b : A ⊃ B

⊃I
b : A ⊃ B b : A

b : B
⊃E

[b1 ⊳ b2]
....

b2 : A

b1 : Xα
XI

b1 : XA b1 ⊳ b2

b2 : A
XE

[b1 ⊳ b2]
....

b : A
b : A

ser⊳
b1 ⊳ b2 b1 ⊳ b3 b2 : A

b3 : A
lin⊳

[b1 6 b2]
....

b2 : A

b1 : GA
GI

b1 : GA b1 6 b2

b2 : A
GE

[b1 6 b1]
....

b : A
b : A

refl 6
b1 6 b2 b2 6 b3

[b1 6 b3]
....

b : A

b : A
trans 6

b1 ⊳ b2

[b1 6 b2]
....

b : A

b : A
base 6

b0 : α b0 6 b

[b0 6 bi] [bi ⊳ bj ] [bi : A]
....

bj : A

b : A
ind

• In XI , b2 is fresh, i.e. it is different from b1 and does not occur in any assumption on
which b2 : A depends other than the discarded assumption b1 ⊳ b2.

• In ser⊳, b2 is fresh, i.e. it is different from b and does not occur in any assumption
on which b : A depends other than the discarded assumption b1 ⊳ b2.

• In GI , b2 is fresh, i.e. it is different from b1 and does not occur in any assumption on
which b2 : A depends other than the discarded assumption b1 6 b2.

• In ind , bi and bj are fresh, i.e. they are different from b and do not occur in any
assumption on which b : A depends other than the discarded assumptions of the rule.

Fig. 4.5. The rules of N (LTL
−

).

Given a set Γ of generic formulas and a generic formula ϕ:

M, λ |=
LTL

−
Γ iff M, λ |=

LTL
−

ϕ for all ϕ ∈ Γ

Γ |=
LTL

−
ϕ iff M, λ |=

LTL
−

Γ implies M, λ |=
LTL

−
ϕ for all M and λ

The system N (LTL
−

)

The set of rules of the system N (LTL
−
), for which the notion of derivability

⊢
N(LTL

−
)

can be defined as usual, is given in Figure 4.5.

First of all, we have the standard rules for classical connectives seen in the
previous sections. With regard to GI and GE we just remark that for simplicity
we keep using such rule names even if the relational symbol used (6) is different
from that of the systems N (Kt) and N (Kl). The set of rules for temporal operators
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is completed by XI and XE, that present, with respect to the relation ⊳, the same
structure of GI and GE. In fact, they share the same universal formulation.7

The rule ser⊳ models the fact that the flow of time is unbounded towards the
future. The rule lin⊳ expresses the uniqueness of the immediate successor of a
point. refl 6 and trans 6 state the reflexivity and the transitivity of the order
relation denoted by 6, respectively.

Finally, we have two rules modeling the interactions between the relations ⊳
and 6. We have already encountered base 6 (though with respect to the relation
<) in Section 4.2.3: it captures the fact that6 contains⊳. ind models the induction
principle underlying the relation between ⊳ and 6. If (base case) A holds in b0 and
if (inductive step) by assuming that A holds in bi for an arbitrary bi 6-accessible
from b0, we can derive that A holds also in bj , where bj is the immediate successor
of bi, then we can conclude that A holds in every b such that b is 6-accessible from
b0.

8

Soundness

Theorem 4.11. Let Γ be a set of labeled LTL
−
-formulas and b : A a labeled

LTL
−
-formula. Then

Γ ⊢
N(LTL

−
)
b : A ⇒ Γ |=

LTL
−

b : A .

Proof. By induction on the structure of the derivation of b : A. The base case is
when b : A ∈ Γ and is trivial. There is one step case for every rule. We consider
some cases.

Consider an application of the rule GI

[b1 < b2]
Π

b2 : A

b1 : GA
GI

where Π is a proof of b2 : A from hypotheses in Γ ′, with b2 fresh and with
Γ ′ = Γ ∪ {b1 < b2}. By the induction hypothesis, for all interpretations λ, if
M, λ |=

LTL
−

Γ ′ then M, λ |=
LTL

−
b2 : A. We let λ be any interpretation such that

M, λ |=
LTL

−
Γ , and show that M, λ |=

LTL
−

b1 : GA. Let λ(b1) = n. Now let us

7 Notice that, since ⊳ is functional, an existential formulation of the rules for introduc-
tion and elimination of X would also be possible. Thus we could consider, instead of
the ones given, the following two rules:

b2 : A b1 ⊳ b2

b1 : XA
XI ′

b1 : XA

[b1 ⊳ b2] [b2 : A]
....

b : A

b : A
XE′

,

where b2 is required to be fresh in XE′.
8 The rule is given only in terms of relations between labels, since (for proof-theoretical

reasons) we restrict the treatment of operators in the system to the specific rules for
their introduction and elimination.
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consider a generic successor n + k of n for some k > 0. Since λ can be trivially
extended to another interpretation (still called λ for simplicity) by setting λ(b2) =
n + k, the induction hypothesis yields M, λ |=

LTL
−

b2 : A, i.e. M, n + k |=
LTL

−
A.

Given that k is arbitrary we can conclude M, λ |=
LTL

−
b1 : GA.

Consider the case in which the last rule applied is ser⊳:

[b1 ⊳ b2]
Π

b : A
b : A

ser⊳

where Π is a proof of b : A from hypotheses in Γ1, with Γ1 = Γ ∪ {b1 ⊳ b2}. By
the side-condition on the application of ser⊳, b2 is fresh in Π and b2 6= b. Hence,
by applying the induction hypothesis on Π , we have:

Γ1 |=
LTL

−
b : A .

We proceed by considering a generic LTL-structure M = (N ,V) and a generic
interpretation λ on it such that M, λ |=

LTL
−

Γ and showing that this entails

M, λ |=
LTL

−
b : A .

Let λ(b1) = n for some n ∈ N. Since every element of N has an immediate successor,
we can define an interpretation λ′ = λ[b2 7→ n+1]. Given that b2 is fresh in Π , we
can infer M, λ′ |=

LTL
−

Γ . Furthermore it holds M, λ′ |=
LTL

−
b1 ⊳ b2 and thus we

can conclude M, λ′ |=
LTL

−
Γ1. The induction hypothesis yields M, λ′ |=

LTL
−

b : A.

Since b2 6= b (by the side condition on ser⊳) and the interpretations λ and λ′ differ
only in the value assigned to b2, we have M, λ |=

LTL
−

b : A as desired.

Now consider the case in which the last rule applied is ind :

Π ′

b0 : A b0 6 b

[b0 6 bi] [bi ⊳ bj ] [bi : A]
Π

bj : A

b : A
ind

where Π is a proof of bj : A from hypotheses in Γ2 and Π ′ is a proof of b0 : A from
hypotheses in Γ1, with Γ = Γ1∪{b0 6 b} and Γ2 = Γ1∪{b0 6 bi}∪{bi⊳bj}∪{bi : A}
for some set Γ1 of formulas. The side-condition on ind ensures that bi and bj are
fresh in Π . Hence, by applying the induction hypothesis on Π and Π ′, we have:

Γ2 |=
LTL

−
bj : A Γ1 |=

LTL
−

b0 : A.

We proceed by considering a generic LTL-structure M = (N ,V) and a generic
interpretation λ on it such that M, λ |=

LTL
−

Γ and showing that this entails

M, λ |=
LTL

−
b : A .

First we note that Γ ⊃ Γ1 and therefore M, λ |=
LTL

−
Γ implies M, λ |=

LTL
−

Γ1

and, by induction hypothesis on Π ′, M, λ |=
LTL

−
b0 : A. Let λ(b0) = n for some
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n ∈ N. From M, λ |=
LTL

−
Γ , we can deduce M, λ |=

LTL
−

b0 6 b and thus λ(b) =

n + k for some k ∈ N. We show by induction on k that M, λ |=
LTL

−
b : A. As

a base case, we have k = 0; it follows that λ(b) = λ(b0) and thus trivially that
M, λ |=

LTL
−

b0 : A entails M, λ |=
LTL

−
b : A. Let us consider now the induction

step. Given a label bk−1 such that λ(bk−1) = n+ k− 1 we show that the induction
hypothesis M, λ |=

LTL
−

bk−1 : A entails the thesis M, λ |=
LTL

−
b : A. We can

build an interpretation λ′ that differs from λ only in the points assigned to bi

and bj , namely λ′ = λ[bi 7→ n + k − 1][bj 7→ n + k]. It is easy to verify that the
interpretation λ′ is such that the following three conditions hold:

(i) M, λ′ |=
LTL

−
bi : A;

(ii) M, λ′ |=
LTL

−
b0 6 bi;

(iii) M, λ′ |=
LTL

−
bi ⊳ bj .

Furthermore the side-condition on the rule ind ensures that λ and λ′ agree on
all the labels occurring in Γ1, from which we can infer that also M, λ′ |=

LTL
−

Γ1

must hold. It follows M, λ′ |=
LTL

−
Γ2 and thus (by the induction hypothesis on

Π) M, λ′ |=
LTL

−
bj : A. We conclude M, λ |=

LTL
−

b : A by observing that λ′(bj) =

λ(b).
Soundness of the other rules can be proved by using an analogous way of

reasoning and the corresponding relational properties of the structures.
⊓⊔

Completeness

With regard to completeness, we remark that, since N (LTL
−
) consists of only

finitary rules, it cannot be strongly complete.9 In fact, it is easy to check that {b :
XiA}i<ω |=

LTL
−

b : GA but (via soundness) we can see that {b : XiA}i<ω 6⊢
N(LTL

−
)

b : GA, where X0A is just A and Xi+1A stands for XXiA.
Nevertheless, our system N (LTL

−
) is weakly complete with respect to the

semantics of N (LTL
−
), namely:

Theorem 4.12. Let Γ be a finite set of labeled LTL
−
-formulas and b : A a labeled

LTL
−
-formula. Then

Γ |=
LTL

−
b : A ⇒ Γ ⊢

N(LTL
−

)
b : A .

Proof. We need to prove that each rule of inference and each axiom of the Hilbert-
style axiomatization H(LTL

−
) given in Section 2.3.4 is derivable in N (LTL

−
). The

derivation of the rules is analogous to that described in the proof of Theorem 4.5.
With regard to the axioms, derivations for A2 and A4 are completely analogous

to that of KG of Theorem 4.5. We show derivations of the other axioms.

9 This is not a problem of our formulation: all the finitary deduction systems for temporal
logics equipped with at least the operators X and G (and thus not compact) have such
a defect; see, e.g., [100, Chapter 6].
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(A3 ) (X¬A ⊃ ¬XA) ∧ (¬XA ⊃ X¬A)

[b : X¬A]1 [b⊳ c]3

c : ¬A
XE

[b⊳ d]4 [b ⊳ c]3
[b : XA]2 [b⊳ d]4

d : A
XE

c : A
lin⊳

c : A ser⊳4

c :⊥
⊃E

c :⊥ ser⊳3

b : ¬XA
⊃I2

b : X¬A ⊃ ¬XA
⊃I1

[b : ¬XA]1

[b⊳ c]2 [b ⊳ d]4 [c : A]3

d : A
lin⊳

b : XA XI4

b :⊥
⊃E

c : ¬A ⊃3

b : X¬A XI2

b : ¬XA ⊃ X¬A
⊃I1

(A5 ) GA ⊃ A ∧ XGA

[b : GA]1 [b 6 b]2

b : A
GE

b : A
refl 62

[b⊳ c]3
[b 6 c]5 [c 6 d]4

[b : GA]1 [b 6 d]6

d : A
GE

d : A
trans 66

d : A
base 65

c : GA GI4

b : XGA XI3

b : A ∧ XGA
∧I

b : GA ⊃ (A ∧ XGA)
⊃I1

(A6 ) G(A ⊃ XA) ⊃ (A ⊃ GA)

[b : A]2 [b 6 c]3

[b : G(A ⊃ XA)]1 [b 6 d]4

d : A ⊃ XA
GE

[d : A]4

d : XA
⊃E

[d : ⊳d′]4

d′ : A
XE

c : A ind4

b : GA
⊃3

b : A ⊃ GA
⊃I2

b : G(A ⊃ XA) ⊃ (A ⊃ GA)
⊃I1

⊓⊔

Remark 4.13. Note that we could also express completeness for our system as
follows:

Γ |=
LTL

−
b : A ⇒ Γ ⊢

N(LTL
−

)
b : A ,
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where Γ is a finite set of lwffs. We remark, however, that such a result does not
hold if Γ contains also rwffs, i.e. our system is not complete with respect to (even
a finite set of) relational assumptions. As an example, it is easy to check that
{b1 ⊳ b2 , b2 ⊳ b1} |=

LTL
−

b :⊥ but {b1 ⊳ b2 , b2 ⊳ b1} 6⊢
N(LTL

−
)

b :⊥.

4.2.5 Normalization

The labeled natural deduction systems presented in this section have been designed
with an eye to normalization matters. In particular, we have restricted the treat-
ment of the operators to the specific rules for their introduction and elimination
and in fact for each connective and operator (with the only standard exception of
⊥) we have one introduction and one elimination rule. Moreover, the rules mod-
eling relational properties are defined in such a way that they can be shown to
be reduced to have only atomic conclusions and thus they do not compromise the
definition of a normalization procedure. The only exception to this is represented
by the rule ind , for which a particular treatment is required.

In this section, we omit a detailed treatment of normalization. However, in [103]
a system for a so-called small temporal logic, which corresponds to the until-free
fragment of LTL with a semantics given on frames where the principle of induction
does not hold, and a normalization procedure for such a system is given. Since the
systems presented in Sections 4.2.1, 4.2.2 and 4.2.3 present the same main features
of the system in [103], we believe that an analogous procedure could be defined
for them. Moreover, the use of some of the techniques required will be illustrated
in Section 4.3, where we will present a detailed treatment of normalization for a
number of systems, where a proper relational labeling algebra is employed, that
capture the same logics of Sections 4.2.1, 4.2.2 and 4.2.3.

With regard to the system of Section 4.2.4 for LTL
−
, we just say that, as already

remarked, the presence of a principle of induction at a semantical level, and thus of
the rule ind in the system, requires a much more complex analysis of normalization.
A standard subformula property cannot hold for such a system, however we are
able to show that a normalizing reduction procedure can be defined and that such
a procedure allows us to prove, in a purely syntactic way, the consistency of the
system. Again, we omit the details here. However, a full description will be given
in Section 5.3 with regard to a system (for a branching-time logic) that is an
extension of the one presented here for LTL

−
. Thus the procedure defined there

can be easily applied also to N (LTL
−
) by just ignoring the treatment of those

rules (specific to the branching case) that are not considered in N (LTL
−
).

4.2.6 Discussion and related works

We have already discussed some works that are related to the labeled natural
deduction systems for tense logics that we have given here, for which, summarizing,
we have proved soundness and completeness, and sketched some ideas concerning
normalization. Our approach is based on the extension of a fixed base system for
the temporal operators with relational rules that express the relational properties
of the considered logic. This, in particular, allows for uniform and modular proofs
of meta-theoretic properties for families of logics. Moreover, it makes our systems
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amenable to extensions to other logics, as we have seen for LTL
−

and, as we will
show in Chapter 5, to branching-time logics also.

Kt and its extensions

The main difficulties in applying deduction in the context of linear tense logics
arise from the need of expressing the condition of connectedness in the case of the
basic linear tense logic Kl (see [93] for a discussion).

In [66,68] a general presentation of the tense logic Kt , of its quantified version
and of some of its extensions, in the context of labeled deduction is provided.

A natural deduction system for Kl is given in [93]. It is a labeled and analytical
system, that has only elimination rules for temporal operators and can be used as
a decision procedure. The system follows the Kalish/Montague variant for Natu-
ral Deduction (see [95]), whose main feature is that of explicitly writing down the
goal of the derivation at a given stage. However, the system is closer to labeled
tableau systems than to standard natural deduction, and indeed the duality intro-
duction/elimination for modal operators, commonly preserved by labeled natural
deduction systems, here is lost. The system in [93] is analytical in the sense that
all the formulas admissible in a proof of the formula A belong to the set of sub-
formulas of A and their single negations, although some of the rules do not satisfy
the subformula property “per se”. Labels have a rich structure, which helps build
a model: they are nonempty finite sequences of natural numbers with 1 as the first
digit, marked with an [F ] or a [P ]. We remark that they are used as prefixes of
formulas but no operations are made in a specific relational language. The relation
between labels is contained in the structure of the label itself: e.g., 1.2[F ] denotes
that the point 1.2 follows the point 1. In the paper, variants are proposed in order
to capture extensions of Kl . Properties of the accessibility relation (like reflexivity,
having a first or a last point, density, etc.) are expressed by means of rules that
follow the corresponding Hilbert-style axioms closely. To give an idea, we show
here a rule that captures the reflexivity of the relation.

w : GA
(≤T )

w : A

In general, we can say that the paper focuses more on the automatizability of the
proof construction than on the theoretical purity of the system.

It is worth mentioning that in [23], Bonnette and Goré give a labeled sequent
system for the minimal tense logic Kt that can easily capture any combination of
the reflexive, transitive, euclidean, symmetrical and serial extensions of the logic.
We have not considered all of these properties of the accessibility relation here,
but the missing ones can be added straightforwardly thanks to the modularity of
our system, which we exploit to capture the extensions towards LTL we consider
in the remainder of this section. The labeling discipline of [23] is different from
ours and is tailored to a lean Prolog implementation of their sequent systems. In
contrast, we focus here on the proof-theoretical aspects of our natural deduction
systems and leave an implementation for future work.
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LTL and LTL
−

In [103], Marchignoli presents labeled natural deduction proof systems for discrete
linear temporal logics. His way of dealing with labels is similar to the approach
of Simpson: relational formulas are simply used to express assumptions on logical
rules and are not provided with a proper algebra. Our presentation of a system
for LTL

−
is, up to some minor modifications and adaptations, taken from [103].

As we remarked in Section 4.2.4, the most problematic aspect of defining natural
deduction systems for LTL (and LTL

−
) is probably the necessity of modeling the

induction principle that links the relation of next to the ordering ≤ on time points.
To tackle this problem, Marchignoli first defines a proof system for a simplified logic
(“smaller” than LTL) for which no induction rule is needed. The resulting proof
system is rather simple and, for such a system, Marchignoli proves that standard
proof theoretical properties of predicate logic hold. In particular, it is shown that
derivations in this system normalize and that the intuitionistic fragment of the
system enjoys the disjunction property and the existential property. Then such
a system is extended to capture standard LTL

−
. The new system requires an

induction rule (like the rule ind we used in Section 4.2.4), which breaks the clean
symmetry of introduction/elimination pairs for temporal operators and causes
the failure of normalization. It is shown that normalization of derivations can be
obtained instead by defining a new proof system with an infinitary rule. The new
system is proved to be equivalent to the system based on the inductive rule as long
as we consider finite sets of formulas.

In [19], Bolotov et al. also present a natural deduction calculus for LTL. It is
a labeled system based on the idea of natural deduction with subordinate proofs
originally developed by Jaskowski [94], and then improved and simplified by Quine
[130] and Fitch [59]. The system is based on the classical separation of formulas into
labeled and relational ones and the rules of the labeled system can be separated,
like ours, into two main categories:

- rules for the introduction/elimination of logical connectives;
- rules for the introduction/elimination of temporal operators.

Rules in the first category are quite standard. About rules for temporal operators,
it has to be remarked the use of a mechanism of flagging for the set of labels.
By saying that the label w is flagged, we mean that it is bound to a time point
and, hence, that it cannot be rebound to some other point. By saying that w is
relatively flagged by v (for example by the judgement w ≤ v), we restrict the range
of time points to which w can be mapped. During the construction of a proof, a
label cannot be flagged twice and cannot relatively bind itself. This system also
presents rules for the operator until. When modeled in a natural deduction setting,
the until does not behave very well. Even in this case, three introduction and
two elimination rules are needed to represent his behavior. As in [103], also the
induction principle requires a specific rule to be modeled. Relational properties
are expressed by means of purely relational rules, following an approach similar to
that of [159]. Relational formulas are not used just as side conditions but become
part of a separate system. The system is proved to be sound and complete and
is strongly oriented to the development of a proof-searching procedure, based on
the goal-directed nature of the proofs. Such an approach is further developed in
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the papers [21], in which an automated proof searching technique is presented,
and [22], where an optimization of the system is proposed.

Finally, we mention [7], where an extension of standard (non-labeled) natural
deduction for logics like LTL

−
is presented and a strong normalization theorem for

an intuitionistic version of the calculus is proved. As a consequence, the authors
get also a proof of the consistency of the system.

Other methods

We just mention some other works where deduction systems, not falling in the
scope of natural deduction, for linear temporal logics are described.

Gentzen’s sequent systems are introduced in [73] (for a good presentation in
classical logic, see, e.g., [87]) and in fact natural deduction can be seen as a
variant of sequent calculus. Traditional sequent calculi for linear temporal logics
can be seen in [91, 97, 120, 123, 147, 162]. In [8], a sequent calculus with an ω-rule
for LTL

−
is proposed. Cut-free labeled sequent systems are also in [28] and [24],

which extends the work of [112] to linear temporal logics.
Quite popular in the field of temporal logics is also the use of semantic tableaux,

introduced in [15, 85] and extended to modal logics in [61, 89]. Overview on the
use of tableaux for temporal logics are in [53, 81, 163]. Interesting examples are
in [80, 145, 146] and [9, 11], where a labeled tableaux system for a distributed
temporal logic that comprises full LTL is given. A labeled tableaux system, based
on the technique of mosaics, is in [105]: we will return to this in Chapter 6. In the
case of logics of discrete time, a particular way of managing tableaux generation,
based on the use of more general graph structures instead of trees, has been often
adopted [12, 41, 98].

Finally, we cite the use of the resolution method, described in [142] for classical
logic and extended to linear temporal logics in [1, 36, 56, 57, 158].

4.3 Systems with an explicit relational theory

In this section, we propose the definition of systems designed in the style of Section
3.1 for a number of linear temporal logics and discuss benefits and limitations of
such an approach. The difference between the systems in Section 4.2 and the ones
that will be presented here is in the fact that relational formulas were used there
just as assumptions in the derivation of labeled logical formulas, while here we
consider also rules concluding with a relational formula. Part of the material of
this section has been presented in [160].

4.3.1 Introduction

As illustrated in Section 3.3.2, labeled deduction systems have been given for sev-
eral non-classical logics. Research has focused not only on the design of systems for
specific logics, but also, more generally, on the characterization of the classes of log-
ics that can be formalized this way. General properties and limitations of labeling
techniques have also been investigated. For example, [159] highlights an important
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trade-off between limitations and properties, which can be roughly summarized as
follows. Assume that we have a labeled system like the ones described in Section
3.3.2, i.e., by summing up, a set of rules for reasoning about the introduction and
elimination of modal operators in labeled formulas b : A such as the rules for �
of the system N (K ) and of its extensions. Assume also that we reason on the
semantic information provided by labeling using only Horn-style relational rules
(see Section 3.3.2). While restricting our systems to such Horn rules allows us to
present only a subset of all possible non-classical logics, we can still capture sev-
eral of the most common modal and relevance logics [159], and, more importantly,
labeling provides an efficient general method for establishing the metatheoretical
properties of these logics, including their completeness, decidability, and compu-
tational complexity. This method relies on the separation between the sub-system
for reasoning about lwffs and the sub-system for reasoning about rwffs: derivations
of lwffs can depend on derivations of rwffs (e.g. via the � rules), but rwffs depend
only on rwffs (via the Horn rules).

If we are interested now in considering linear temporal logics, it should be
immediately clear that Horn rules do not suffice: even a basic tense logic like Kl
(see Section 2.3.2) requires its time points to be connected, i.e. for any two points b
and c either b = c, or b is before c, or c is before b. It is straightforward to see that
such a property cannot be captured by a Horn rule; rather, we need non-atomic
rwffs, in particular disjunction (⊔) of relations, and more complex rules built using
a full first-order language, such as the axiom

∀b.c. b < c ⊔ b = c ⊔ c < b
conn .

A similar situation occurs if we wish to impose irreflexivity of our worlds. And
that’s not all: as shown in [159] (in the case of modal logics, but the same arguments
apply here, mutatis mutandis), if we move to such a first-order language and wish
to retain completeness of the resulting systems, then we need to abandon the strict
separation between the sub-system for lwffs and that for rwffs (and let derivations
of rwffs depend also on lwffs). As we will see in more detail below, this is best
achieved by introducing a so-called universal falsum, so that a contradiction in a
world can be propagated not only to any other world but also to the relational
structure to derive any rwff; and, vice versa, from a contradiction in the relational
sub-system we can obtain any lwff.

The structure of this section is the following:

- in Section 4.3.2, first we give a brief presentation of the syntax and semantics
of a labeled version of the logic Kl ; then we give a labeled natural deduction
system N ′(Kl) for Kl , which we show to be sound and complete (extending
the completeness proofs given for modal logics in [159]); finally, we show that
N ′(Kl) possesses a number of useful normalization properties; in particular,
derivations reduce to a normal form that enjoys a subformula property;

- in Section 4.3.3, we extend N ′(Kl) to capture some interesting extensions of Kl ;
- in Section 4.3.4 we discuss how to extend our systems to capture richer logics

like (fragments of) LTL.
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4.3.2 A system for Kl

A labeled version of Kl

The definition of the language of tense formulas and of the semantics of Kl has
been given in Section 2.3. The extension of the language with labels and relational
symbols, as required by the labeled deduction setting, are in the vein of those
described in Section 3.3.2. For a greater clarity, in the following subsections, we
recall some notions, give a formal definition of the language used in this section
and present an adaptation of the semantics of Kl to the labeled language.

Syntax

Definition 4.14. Let L be a denumerable set of labels and let b and c be labels in
L. If A is a well-formed tense formula, then b : A is a labeled well-formed tense
formula (labeled formula or lwff, for short).

The set of well-formed relational (N ′(Kl))-formulas (relational formulas or
rwffs, for short) is defined as follows:

ρ ::= b < c | b = c | ∅ | ρ ⊐ ρ | ∀b. ρ .

For simplicity, in this section we will often omit the adjective “tense” and
just speak of labeled formulas or lwffs, as well as we will speak just of relational
formulas (or rwffs) instead of N ′(Kl)-relational formulas. As in Section 3.3.2, ϕ
will denote a generic formula (lwff or rwff). We say that an lwff b : A is atomic
when A is atomic, i.e. A is a propositional variable or A is ⊥. An rwff ρ is atomic
when it does not contain any connective or quantifiers, i.e. ρ is ∅ or ρ has the
form b < c or b = c. The grade of an lwff or rwff is the number of occurrences of
connectives (⊃ or ⊐), operators (G or H), and quantifiers (∀). Finally, given a set
of lwffs Γ and a set of rwffs ∆, we call the ordered pair (Γ, ∆) a proof context.

∅ and ⊐ denote, respectively, the falsum and the implication in the relational
language. Both the languages of labeled and relational formulas present a minimal
set of connectives, operators and quantifiers. As usual, we can introduce abbrevi-
ations and use, e.g., ¬, ∧, ∨ and ∼, ⊓, ⊔, for the negation, the conjunction, and
the disjunction in the labeled language and in the relational one, respectively. For
instance, ¬A ≡ A ⊃⊥ and ρ′ ⊔ ρ′′ ≡ (ρ′ ⊐ ∅) ⊐ ρ′′. We can also define ⊤ ≡ ¬ ⊥
or other quantifiers, e.g. ∃b. ρ ≡∼ ∀b. ∼ ρ.

Semantics

The notions of Kl -frames and models, together with the semantics of the logic
Kl , are given in Section 2.3.2. Here we recall the notion of an interpretation and
define the semantics of the labeled logic corresponding to Kl . In particular, we
extend the notion of |=

Kl
defined in Section 2.3.2 with respect to labeled and

relational formulas. Note that, for simplicity, we keep using the symbol |=
Kl

even
if the underlying notion is different, as the relational language used is different,
from the one of Section 4.2.2.
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Definition 4.15. Given a denumerable set of labels L and a linear temporal struc-
ture M = (W ,≺,V), an interpretation is a function λ : L → W that maps every
label in L to a world in W.

Given a linear temporal structure M and an interpretation λ on it, truth for
an rwff or lwff ϕ is the smallest relation |=

Kl
satisfying:

M, λ |=
Kl

b < c iff (λ(b), λ(c)) ∈≺;
M, λ |=

Kl
b = c iff λ(b) = λ(c);

M, λ |=
Kl

ρ1 ⊐ ρ2 iff M, λ |=
Kl

ρ1 implies M, λ |=
Kl

ρ2;
M, λ |=

Kl
∀b. ρ iff for all c, M, λ |=

Kl
ρ[c/b];

M, λ |=
Kl

b : p iff p ∈ V(λ(b));
M, λ |=

Kl
b : A ⊃ B iff M, λ |=

Kl
b : A implies M, λ |=

Kl
b : B;

M, λ |=
Kl

b : GA iff for all c, M, λ |=
Kl

b < c implies M, λ |=
Kl

c : A;
M, λ |=

Kl
b : HA iff for all c, M, λ |=

Kl
c < b implies M, λ |=

Kl
c : A.

Hence, M, λ 2 b : ⊥ and M, λ 2 ∅. When M, λ |=
Kl

ϕ, we say that ϕ is true in
M according to the interpretation λ. By extension:

M, λ |=
Kl

Γ iff M, λ |=
Kl

b : A for all b : A ∈ Γ ;
M, λ |=

Kl
∆ iff M, λ |=

Kl
ρ for all ρ ∈ ∆;

M, λ |=
Kl

(Γ, ∆) iff M, λ |=
Kl

Γ and M, λ |=
Kl

∆;
Γ, ∆ |=

Kl
ϕ iff M, λ |=

Kl
(Γ, ∆) implies M, λ |=

Kl
ϕ

for all M and λ.

Truth for lwffs and rwffs built using other connectives or operators can
be defined in the usual manner. As an abbreviation, we will sometimes write
Γ, ∆ |=M,λ

Kl
ϕ to denote that M, λ |=

Kl
(Γ, ∆) implies M, λ |=

Kl
ϕ;

An axiomatization of Kl

Several different Hilbert-style axiomatizations have been given for the logic Kl .
Here we will consider an axiomatization, given in [132], which is slightly different
from (but clearly equivalent to) the one presented in Section 2.3.2.

(G1 ) G(A ⊃ B) ⊃ (GA ⊃ GB)
(G2 ) ¬H¬GA ⊃ A
(G3 ) GA ⊃ GGA
(G4 ) [G(A ∨ B) ∧ G(A ∨ GB) ∧ G(GA ∨ B)] ⊃ (GA ∨ GB)

(NecG) If A then GA
(NecH ) If A then HA
(MP) If A and A ⊃ B then B

The axiom (G1 ) is standard for modal and temporal logics, while (G2 ) sets
the dual relation between G and H, (G3 ) expresses the transitivity and (G4 )
the connectedness of G. For brevity, we have omitted the symmetrical axioms
(H1 )-(H4 ) that are obtained by replacing every G by H and vice versa. Moreover,
every classical tautology is a tautology, and there are rules for modus ponens and
necessitation for both G and H.
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Along this section, we denote with H′(Kl) the axiomatization given above. The
set of theorems of H′(Kl) is defined as the smallest set of tense formulas containing
the set of axioms and closed with respect to the rules of inference above. We denote
with ⊢

Kl
the notion of derivability in H′(Kl), i.e. ⊢

Kl
A iff A is a theorem of H′(Kl).

Furthermore we write Γ ⊢
Kl

A to say that A is derivable in H(K ) from assumptions
in Γ .

The system N ′(Kl)

Our labeled natural deduction system N ′(Kl) = N (KlL) + N (KlR) + N (KlG)
comprises of three sub-systems, whose rules are given in Figure 4.6.

The propositional and temporal rules of N (KlL) allow us to derive lwffs from
other lwffs with the help of rwffs. The rules ⊃I, ⊃E and ⊥E are just the labeled
version of the standard natural deduction rules and are as defined in Section 3.3.2.

The temporal operators G and H share the structure of the basic introduc-
tion/elimination rules, with respect to the same accessibility relation <. Such
rules are analogous to the ones seen in Section 4.2.

The relational rules of N (KlR) allow us to derive rwffs from other rwffs only.
The rules RAA∅, ⊐I, and ⊐E are reductio ad absurdum and implication introduc-
tion and elimination for rwffs, while ∀I and ∀E are the standard rules for universal
quantification, with the usual proviso for ∀I. There are also four axiomatic rules (or
“axioms”, for short) refl =, irrefl <, trans <, and conn, which express the proper-
ties of =10 and <, where, for readability, we employed the symbols for disjunction,
conjunction, and negation.

The general rules of N (KlG) allow us to derive lwffs from rwffs and vice versa.
The rule mon applies monotonicity to an lwff or rwff ϕ, while the rules uf 1 and uf 2
export falsum (and we thus call it a universal falsum) from the labeled sub-system
to the relational one, and vice versa.11

For what concerns this section, we adapt the standard definitions (Section 3.2)
of derivation, proof, theorem, etc. as follows.

Definition 4.16. A derivation of a formula (lwff or rwff) ϕ from a proof context
(Γ, ∆) in N ′(Kl) is a tree formed using the rules in N ′(Kl), ending with ϕ and

10 Note that we do not need further axioms to express symmetry and transitivity of =,
since the former can be derived by using mon, conn , and irrefl <, and the latter by
using mon.

11 Note that the presentation of the system could be simplified by introducing a unique
symbol for falsum (say f), shared by the labeled and the relational sub-systems. In that
case, we would not need the rules uf 1 and uf 2, while the rules for falsum elimination
⊥E and RAA∅ could be replaced by the following rule, where with −ϕ we denote the
negation of a generic formula (labeled or relational):

[−ϕ]
....
f
ϕ RAAf

However, we prefer to maintain a clear separation between the two sub-systems, as it
will allow us to give a simpler presentation of normalization.
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[b : A ⊃⊥]
....

c :⊥
b : A

⊥E

[b : A]
....

b : B
b : A ⊃ B

⊃I
b : A ⊃ B b : A

b : B
⊃E

[b < c]
....

c : A
b : GA

GI
b : GA b < c

c : A
GE

[c < b]
....

c : A
b : HA

HI
b : HA c < b

c : A
HE

[ρ ⊐ ∅]
....
∅
ρ RAA∅

[ρ1]
....

ρ2

ρ1 ⊐ ρ2
⊐ I

ρ1 ⊐ ρ2 ρ1

ρ2
⊐E

ρ

∀b. ρ
∀I

∀b. ρ

ρ[c/b]
∀E

∀b. b = b
refl =

∀b. ∼ (b < b)
irrefl <

∀b.c.d. (b < c ⊓ c < d) ⊐ b < d
trans <

∀b.c. b < c ⊔ b = c ⊔ c < b
conn

ϕ b = c

ϕ[c/b]
mon b :⊥

∅
uf 1

∅
b :⊥

uf 2

• In GI (respectively, HI), c is different from b and does not occur in any assumption
on which c : A depends other than the discharged assumption b < c (respectively,
c < b).

• In ∀I , the variable b must not occur in any open assumption on which ρ depends.

Fig. 4.6. The rules of N ′(Kl).

ρ1

ρ1 ⊔ ρ2
⊔I1

ρ2

ρ1 ⊔ ρ2
⊔I2

ρ1 ⊔ ρ2

[ρ1]
....
ρ

[ρ2]
....
ρ

ρ ⊔E

ρ[c/b]

∃b. ρ
∃I

∃b. ρ

[ρ[c/b]]
....
ρ′

ρ′ ∃E

Fig. 4.7. Some derived rules.

depending only on a finite subset of Γ ∪ ∆. We then write Γ, ∆ ⊢
N′(Kl)

ϕ. A

derivation of ϕ in N ′(Kl) depending on the empty set, ⊢
N′(Kl)

ϕ, is a proof of ϕ

in N ′(Kl) and we then say that ϕ is a theorem of N ′(Kl).
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We will give concrete examples of derivations in the following. For simplicity, we
will sometimes employ the rules for conjunction ∧, disjunction ∨ and the operators
F and P which are derived as is standard (Section 4.2), as well as other derived
rules such as those for ⊔, and ∃ given in Figure 4.7.

Soundness

Here we prove the soundness of the system. The proof follows the standard tech-
nique, provided the required adaptation to the labeled case (see also [66,148,159]).

Theorem 4.17. N ′(Kl) = N (KlL) + N (KlR) + N (KlG) is sound, i.e. it holds:

(i) Γ, ∆ ⊢
N′(Kl)

ρ ⇒ Γ, ∆ |=
Kl

ρ ;

(ii) Γ, ∆ ⊢
N′(Kl)

b : A ⇒ Γ, ∆ |=
Kl

b : A .

Proof.

(i) The proof is by induction on the structure of the derivation of ρ. The base
case is when ρ ∈ ∆ and is trivial. There is one step case for every axiom or
rule. The axioms conn, trans <, and irrefl < directly refer to the properties
of connectedness, transitivity, and irreflexivity of Kl models and thus are
trivially sound, while refl = and mon preserve soundness by definition of
M, λ |=

Kl
b = c (Definition 4.15).

Consider the case of an application of RAA∅

Γ ∆ [ρ ⊐ ∅]1

Π

∅
RAA1

∅ρ

where ∆1 = ∆ ∪ {ρ ⊐ ∅}. By the induction hypothesis, Γ, ∆1 |=
Kl

∅. Let
us consider an arbitrary model M and an arbitrary interpretation λ; we
assume M, λ |=

Kl
(Γ, ∆) and prove M, λ |=

Kl
ρ. Since M, λ 6|=

Kl
∅, from the

induction hypothesis we obtain M, λ 6|=
Kl

(Γ, ∆1), that, given the assumption
M, λ |=

Kl
(Γ, ∆), leads to M, λ 6|=

Kl
ρ ⊐ ∅, i.e. M, λ |=

Kl
ρ and M, λ 6|=

Kl
∅

by Definition 4.15.
The cases for ⊐ I, ⊐ E, ∀I and ∀E follow by simple adaptations of the
standard proofs for classical logic.
Finally, consider the case of an application of uf 1

Γ ∆

Π

b :⊥
uf 1

∅

for a proof context (Γ, ∆) and some label b. By the induction hypothesis, we
have Γ, ∆ |=

Kl
b :⊥. Given a generic model M and a generic interpretation

λ, we can write M, λ 6|=
Kl

b :⊥; it follows that M, λ 6|=
Kl

(Γ, ∆) and then also
Γ, ∆ |=M,λ

Kl
∅ by Definition 4.15.
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(ii) As in (i), by induction on the structure of the derivation of b : A. The base
case is trivial and there is a step case for every rule of the labeled system.
The cases of introduction and elimination of connectives and that of universal
falsum are as in (i).
Consider an application of the rule GI

Γ ∆ [b < c]1

Π

c : A
GI1

b : GA

where Γ, ∆1 ⊢
N′(Kl)

c : A with c fresh and with ∆1 = ∆ ∪ {b < c}. By the

induction hypothesis, it holds Γ, ∆ |=
Kl

c : A. We let λ be any interpretation
such that M, λ |=

Kl
(Γ, ∆) and show that M, λ |=

Kl
b : GA. Let w be

any world such that λ(b) ≺ w. Since λ can be trivially extended to another
interpretation (still called λ for simplicity) by setting λ(c) = w, the induction
hypothesis yields M, λ |=

Kl
c : A, and thus M, λ |=

Kl
b : GA.

Finally, consider an application of the rule GE

Γ1 ∆1

Π1

b : GA

Γ2 ∆2

Π2

b < c
GE .

c : A

Let M be an arbitrary model and λ an arbitrary interpretation. If we assume
M, λ |=

Kl
(Γ1 ∪ Γ2, ∆1 ∪∆2), then from the induction hypotheses we obtain

M, λ |=
Kl

b : GA and M, λ |=
Kl

b < c, and thus M, λ |=
Kl

c : A by Definition
4.15.
The treatment of HI and HE is analogous.

⊓⊔

Completeness

Since the axiomatization of Kl given in Section 4.3.2 is sound and complete, we
can prove in N ′(Kl) the axioms and the rules of the axiomatization to establish
the completeness of N ′(Kl) indirectly (and we do so in the second part of this
section). It seems interesting, however, to give also a direct proof of completeness,
by adapting standard proofs for labeled systems (see, e.g., [66, 148, 159]) and in
particular by extending those for modal logics in [159], which has been our starting
point for the systems in this section, to the case of universal falsum and other
general rules that mix derivations of lwffs and rwffs.

Completeness by canonical model construction

In the following, slightly abusing notation, we will write ϕ ∈ (Γ, ∆) whenever
ϕ ∈ Γ or ϕ ∈ ∆, and write b ∈ (Γ, ∆) whenever the label b occurs in some
ϕ ∈ (Γ, ∆).
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Definition 4.18. A proof context (Γ, ∆) is N ′(Kl)-consistent iff Γ, ∆ 0 b :⊥ for
every b, and it is N ′(Kl)-inconsistent otherwise.

Note that we can have inconsistency also by deriving ∅ in the relational system;
given the rules uf 1 and uf 2 for universal falsum, also this case is captured by the
previous definition.

For simplicity, in the following we will omit the “N ′(Kl)” and simply speak of
consistent and inconsistent proof contexts.

Proposition 4.19. Let (Γ, ∆) be a consistent proof context. Then:

(i) for every b and every A, either (Γ ∪ {b : A}, ∆) is consistent or (Γ ∪ {b :
¬A}, ∆) is consistent;

(ii) for every relational formula ρ , either (Γ, ∆∪{ρ}) is consistent or (Γ, ∆∪{∼
ρ}) is consistent.

Proof. (i) Suppose that both (Γ ∪{b : A}, ∆) and (Γ ∪{b : ¬A}, ∆) are inconsis-
tent. Then from Γ ∪ {b : A}, ∆ ⊢

N′(Kl)
b :⊥, by applying the rule ⊃I, we get

Γ, ∆ ⊢
N′(Kl)

b : ¬A. Similarly, from Γ ∪{b : ¬A}, ∆ ⊢
N′(Kl)

b :⊥, by applying
the rule ⊥E, we get Γ, ∆ ⊢

N′(Kl)
b : A.

But, if both b : A and b : ¬A are derivable in the proof context (Γ, ∆), then
it also holds Γ, ∆ ⊢

N′(Kl)
b :⊥, by the rule ∼E. It follows that the original

proof context (Γ, ∆) had to be inconsistent (contradiction).
(ii) The proof for the relational case is analogous and is obtained by using the

corresponding relational rules i.e. ⊐I, RAA∅ and ∼E.
⊓⊔

Definition 4.20. A proof context (Γ, ∆) is maximally consistent iff the following
three conditions hold:

1. (Γ, ∆) is consistent,
2. for every relational formula ρ, either ρ ∈ ∆ or ∼ ρ ∈ ∆,
3. for every b and every A, either b : A ∈ Γ or b : ¬A ∈ Γ .

Completeness follows by a Henkin–style proof, where a canonical model

MC = (WC ,≺C ,VC)

is built from a proof context (Γ, ∆) to show that (Γ, ∆) 0 ϕ implies Γ, ∆ 2MC ,λC

ϕ
for every formula ϕ.

In standard proofs for unlabeled modal, temporal, and for other non-classical
logics, the set WC is obtained by progressively building maximally consistent sets
of formulas, where consistency is locally checked within each set. In our case,
given the presence of lwffs and rwffs, we modify the Lindenbaum lemma to extend
(Γ, ∆) to one single maximally consistent context (Γ ∗, ∆∗), where consistency is
“globally” checked also against the additional assumptions in ∆.12 The elements
of WC are then built by partitioning Γ ∗ and ∆∗ with respect to the labels, and
the relation ≺C between the worlds is defined by exploiting the information in ∆∗.

12 We consider only consistent proof contexts. If (Γ, ∆) is inconsistent, then Γ, ∆ ⊢
N′(Kl)

ϕ for all ϕ, and thus completeness immediately holds for all lwffs and rwffs.
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In the Lindenbaum lemma for predicate logic, a maximally consistent and ω-
complete set of formulas is inductively built by adding for every formula ¬∀b. A a
witness to its truth, namely a formula ¬A[s/b] for some new individual constant
s. This ensures that the resulting set is ω-complete, i.e. that if, for every closed
term t, A[t/b] is contained in the set, then so is ∀b. A. A similar procedure applies
here not only for rwffs ∼ ∀b. ρ, but also in the case of lwffs of the form b : ¬GA.
That is, together with b : ¬GA we consistently add c : ¬A and b < c for some
new c, which acts as a witness world to the truth of b : ¬GA. This ensures that
the maximally consistent context (Γ ∗, ∆∗) is such that if b < d ∈ (Γ ∗, ∆∗) implies
d : B ∈ (Γ ∗, ∆∗) for every d, then b : GB ∈ (Γ ∗, ∆∗), as shown in Lemma 4.22
below. Note that in the standard completeness proof for unlabeled modal logics, for
instance, one instead considers a canonical model MC and shows that if W1 ∈ WC

and MC ,W1 � ¬GA, then WC also contains a world W2 accessible from W1 that
serves as a witness world to the truth of ¬GA at W1, i.e. MC ,W2 � ¬A.

Lemma 4.21. Every consistent proof context (Γ, ∆) can be extended to a maxi-
mally consistent proof context (Γ ∗, ∆∗).

Proof. We first extend the language of N ′(Kl) with infinitely many new constants
for witness terms and for witness worlds. Let t range over the original terms, s
range over the new constants for witness terms, and r range over both; further,
let w range over labels, v range over the new constants for witness worlds, and u
range over both. All these may be subscripted. Let ϕ1, ϕ2, ... be an enumeration
of all lwffs and rwffs in the extended language; when ϕi is u : A, we write ¬ϕi for
u : ¬A.

We iteratively build a sequence of consistent proof contexts by defining (Γ0, ∆0)
= (Γ, ∆) and (Γi+1, ∆i+1) to be:

• (Γi, ∆i), if (Γi ∪ {ϕi+1}, ∆i) is inconsistent; else
• (Γi ∪ {u : ¬GA, v : ¬A}, ∆i ∪ {u < v}) for a v not occurring in (Γi ∪ {u :

¬GA}, ∆i) if ϕi+1 is u : ¬GA; else
• (Γi ∪ {u : ¬HA, v : ¬A}, ∆i ∪ {v < u}) for a v not occurring in (Γi ∪ {u :

¬HA}, ∆i) if ϕi+1 is u : ¬HA; else
• (Γi, ∆i ∪ {∼ ∀b. ρ, ∼ ρ[s/b]}) for an s not occurring in (Γi, ∆i ∪ {∼ ∀b. ρ}) if

ϕi+1 is ¬∀b. ρ; else
• (Γi ∪ {ϕi+1}, ∆i) if ϕi+1 is an lwff or (Γi, ∆i ∪ {ϕi+1}) if ϕi+1 is an rwff.

Now define
(Γ ∗, ∆∗) = (

⋃

i≥0

Γi,
⋃

i≥0

∆i) .

We show that the proof context (Γ ∗, ∆∗) is maximally consistent, i.e. it verifies
the three conditions of Definition 4.20.

(i) First we prove that our construction preserves consistency by showing that
every (Γi, ∆i) is consistent. The only interesting cases are when ϕi+1 is one
of ¬GA, ¬HA, or ∼ ∀b. ρ. We only consider the first case, since the second
one is symmetrical, and the third is very similar.
If (Γi ∪ {u : ¬GA}, ∆i) is consistent, then so is (Γi ∪ {u : ¬GA, v : ¬A}) for
a v not occurring in (Γi ∪ {u : ¬GA}, ∆i). By contraposition, suppose that
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Γi ∪ {u : ¬GA, v : ¬A} , ∆i ∪ {u < v} ⊢
N′(Kl)

uj :⊥

by a derivation Π (where v does not occur in (Γi ∪ {u : ¬GA}, ∆i)). Then in
N ′(Kl) we can have a derivation like the following:

Γi ∆i u : ¬GA [v : ¬A]1 [u < v]2

Π

uj :⊥
⊥E1

v : A
GI2

u : GA u : ¬GA
¬E

u :⊥

This shows that (Γi ∪ {u : ¬GA}, ∆i) is inconsistent, which is not the case.
(ii) Consider an rwff ρ. Suppose that both ρ /∈ ∆∗ and ∼ ρ /∈ ∆∗ hold. Let ρ

be ϕi+1 for some i in our enumeration of formulas and ∼ ρ be ϕj+1. Now
suppose i < j (the other case is symmetrical). ρ /∈ ∆∗ implies that (Γi, ∆i ∪
{ϕi+1}) is inconsistent. Given that in our inductive construction we only add
formulas to the proof context, i.e. ∆i ⊆ ∆j , we have that (Γj , ∆j ∪ {ϕi+1})
is also inconsistent. Then, by Proposition 4.19(ii), (Γj , ∆j ∪ {ϕj+1}) has to
be consistent and ϕj+1 is added by definition to ∆j . This implies ϕj+1 ∈ ∆∗,
i.e. ∼ ρ ∈ ∆∗.

(iii) The proof for labeled formulas is the same as in the previous case and pro-
ceeds by contraposition by using Proposition 4.19(i).

⊓⊔

Lemma 4.22. Let (Γ, ∆) be a maximally consistent proof context. Then:

(i) Γ, ∆ ⊢
N′(Kl)

ϕ iff ϕ ∈ (Γ, ∆);

(ii) ρ1 ⊐ ρ2 ∈ ∆ iff ρ1 ∈ ∆ implies ρ2 ∈ ∆;
(iii) ∀b. ρ ∈ ∆ iff ρ[c/b] ∈ ∆ for all c;
(iv) u : A ⊃ B ∈ Γ iff u : A ∈ Γ implies u : B ∈ Γ ;
(v) u1 : GA ∈ Γ iff u1 < u2 ∈ ∆ implies u2 : A ∈ Γ for all u2;
(vi) u1 : HA ∈ Γ iff u2 < u1 ∈ ∆ implies u2 : A ∈ Γ for all u2.

Proof. We treat only some cases, the others are similar and follow by maximality
and consistency of (Γ, ∆).

(i) The proof is analogous for rwffs and lwffs, we see the first case.
(⇐) If ϕ ∈ (Γ, ∆), then trivially Γ, ∆ ⊢

N′(Kl)
ϕ.

(⇒) Consider an rwff ϕ such that ϕ /∈ (Γ, ∆). Then, by Definition 4.20, ∼
ϕ ∈ (Γ, ∆). It follows trivially that Γ, ∆ ⊢

N′(Kl)
∼ ϕ holds. By hypothesis,

Γ, ∆ ⊢
N′(Kl)

ϕ and thus by using ∼ E we get Γ, ∆ ⊢
N′(Kl)

∅, that contradicts

the consistency of (Γ, ∆).
(v) (⇐) Suppose u1 : GA /∈ Γ and u2 : A ∈ Γ for every u2 such that u1 < u2 ∈ ∆.

Then, by maximality of (Γ, ∆), u1 : ¬GA ∈ Γ . Now suppose there exists a
u3 such that u1 < u3 ∈ ∆ and u3 : ¬A ∈ Γ . Then, by hypothesis, we know
u3 : A ∈ Γ and this leads to a contradiction. Otherwise, if such a u3 does not
exist, we can conclude u1 : GA ∈ Γ that leads to a contradiction as well.
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(⇒) We show it by contraposition. Suppose u1 : GA ∈ Γ , u1 < u2 ∈ ∆ and
u2 : A /∈ Γ . By maximality of (Γ, ∆), we have u2 : ¬A ∈ Γ . Then the following
is an N ′(Kl) proof that shows (Γ, ∆) is inconsistent.

u1 : GA u1 < u2
GE

u2 : A u2 : ¬A
¬E

u :⊥
⊓⊔

Our construction of maximally consistent proof contexts (Lemma 4.21) does
not exclude the presence of two labels b and c that are related by the relation
b = c. Now we want to derive a model from such a construction. Since we know
from Definition 4.15 that M, λ |=

Kl
b = c holds only if λ(b) = λ(c), we need

to state an equivalence relation between labels on which the function λ can be
defined.

Definition 4.23. Let C = (Γ, ∆) be a maximally consistent proof context and LC

the set of labels occurring in it, we define the binary relation ≡C on LC as follows:
for every u1, u2 ∈ LC,

u1 ≡C u2 iff u1 = u2 ∈ ∆.

Proposition 4.24. Given a maximally consistent proof context C, the relation ≡C

is an equivalence relation.

Proof. It follows trivially by the maximality of C and by the rules refl =, mon,
irrefl < and conn.

⊓⊔

It follows from Proposition 4.24 that every maximally consistent proof context
C determines a partition of the set LC of labels occurring in it. In the following,
we will also use the notation [u]C to indicate the equivalence class containing the
label u, i.e.

[u]C = {u′ | u ≡C u′}.

Definition 4.25. Let C = (Γ, ∆) be a maximally consistent proof context and LC

be the set of labels occurring in it. We define the canonical model MC = (WC ,≺C

,VC) as follows:

• WC = {[u]C | u ∈ LC};
• ([ui]

C , [uj]
C) ∈≺C iff ui < uj ∈ ∆;

• VC([u]C , p) = 1 iff u : p ∈ Γ .

We define the canonical interpretation λC : LC → WC as follows:

λC(u) = [u]C for every u ∈ LC.

Remark 4.26. Note that in the previous definition ≺C and VC are well defined,
since it is easy to verify that for every u1, u2 ∈ LC it holds:

• u1 ≡C u2 implies for every u3 ∈ LC , u1 < u3 ∈ ∆ iff u2 < u3 ∈ ∆;
• u1 ≡C u2 implies for every u3 ∈ LC , u3 < u1 ∈ ∆ iff u3 < u2 ∈ ∆;
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conn
∀b.c. b < c ⊔ b = c ⊔ c < b

∀E
b < c ⊔ b = c ⊔ c < b

Π

∅

[c < b]1 ∼ (c < b)
∼ E

∅
⊔E1

∅

where Π is

[b < c ⊔ b = c]1

[b < c]2 ∼ (b < c)
∼ E

∅

[b = c]2 ∼ (b = c)
∼ E

∅
⊔E2

∅

Fig. 4.8. Proof for connectedness of canonical models.

• u1 ≡C u2 implies for every p ∈ P , u1 : p ∈ Γ iff u2 : p ∈ Γ .

Proposition 4.27. Given a maximally consistent proof context C = (Γ, ∆), the
canonical model MC is a Kripke model for Kl.

Proof. It suffices to show that MC is irreflexive, transitive and connected.
Suppose there exist three worlds W1, W2, and W3 in WC such that (W1,W2)

∈ ≺C and (W2,W3) ∈≺C , but (W1,W3) /∈≺C . By definition 4.25, this implies
there exist at least three labels b, c and d such that λ(b) = W1, λ(c) = W2,
λ(d) = W3, b < c ∈ ∆ and c < d ∈ ∆, but b < d /∈ ∆, i.e. by the maximality of
C, ∼ (b < d) ∈ ∆. But this leads to the inconsistency of (Γ, ∆), as shown by the
following derivation.

trans <
∀b.c.d. (b < c ⊓ c < d) ⊐ b < d

∀E
(b < c ⊓ c < d) ⊐ b < d

b < c c < d
⊓I

b < c ⊓ c < d
⊐E

b < d ∼ (b < d)
∼ E

∅

Connectedness of MC can be proved in a similar way by using the rule
conn. Suppose there exist two distinct worlds W1 and W2 in WC such that
(W1,W2) /∈≺C and (W2,W1) /∈≺C . By definition 4.25, this implies there exist
at least two labels b and c such that λ(b) = W1, λ(c) = W2, b = c /∈ ∆, b < c /∈ ∆
and c < b /∈ ∆, i.e. by the maximality of C, ∼ (b = c) ∈ ∆, ∼ (b < c) ∈ ∆ and
∼ (c < b) ∈ ∆. But this leads to the inconsistency of (Γ, ∆), as shown by the
derivation in Figure 4.8.

Irreflexivity of MC can be shown in a similar way.
⊓⊔

Lemma 4.28. Let C = (Γ, ∆) be a maximally consistent proof context, MC the
canonical model and λC the canonical interpretation built on C as in Defini-
tion 4.25. Then:

(i) ρ ∈ ∆ iff Γ, ∆ |=MC ,λC

Kl
ρ;



4.3 Systems with an explicit relational theory 91

(ii) u : A ∈ Γ iff Γ, ∆ |=MC ,λC

Kl
u : A.

Proof. (i) (⇒) By hypothesis, ρ ∈ ∆. Then, if we assume MC , λC |=
Kl

(Γ, ∆),
it immediately follows MC , λC |=

Kl
ρ.

(⇐) By hypothesis, Γ, ∆ |=MC ,λC

Kl
ρ. Let us suppose ρ /∈ ∆. By maximality

of (Γ, ∆), it follows ∼ ρ ∈ ∆. Then we have also Γ, ∆ |=MC ,λC

Kl
∼ ρ (see

direction (⇒)). But, since we have by hypothesis Γ, ∆ |=MC ,λC

Kl
ρ, this yields

the absurd Γ, ∆ |=MC ,λC

Kl
∅.

(ii) The proof for labeled formulas is analogous.
⊓⊔

Theorem 4.29. N ′(Kl) = N (KlL)+N (KlR)+N (KlG) is complete, i.e. it holds:

(i) if Γ, ∆ 0 w : A , then there exist a Kl model MC and an interpretation λC

such that Γ, ∆ 2MC ,λC

w : A;
(ii) if Γ, ∆ 0 ρ , then there exist a Kl model MC and an interpretation λC such

that Γ, ∆ 2MC ,λC

ρ.

Proof. (i) If Γ, ∆ 0 w : A, then (Γ ∪ {w : ¬A}, ∆) is consistent; otherwise there
exists a wi such that Γ ∪{w : ¬A}, ∆ ⊢

N′(Kl)
wi :⊥, and then Γ, ∆ ⊢

N′(Kl)
w :

A. Therefore, by Lemma 4.21, (Γ ∪ {w : ¬A}, ∆) is included in a maximally
consistent proof context C = ((Γ∪{w : ¬A})∗, ∆∗). Let MC be the canonical
model for C. It suffices to find an interpretation according to which MC is

not a model for w : A. By Lemma 4.28, (Γ ∪ {w : ¬A})∗, ∆∗ |=MC ,λC

Kl

w : ¬A, where MC is a Kl model by Proposition 4.27. It follows Γ ∪ {w :

¬A})∗, ∆∗ 2MC ,λC

w : A, and thus Γ, ∆ 2MC ,λC

w : A.
(ii) We can repeat the same proof for relational formulas. If Γ, ∆ 0 ρ, then

(Γ, ∆∪{∼ ρ}) is consistent. Then we can build a maximally consistent proof

context Γ ∗, (∆ ∪ {∼ ρ})∗ such that Γ ∗, (∆ ∪ {∼ ρ})∗ 2MC ,λC

ρ, and thus

Γ, ∆ 2MC ,λC

ρ.
⊓⊔

Completeness by axioms

It is possible to give an indirect proof of completeness (Theorem 4.29) by show-
ing that all the rules of inference and axioms of H′(Kl) (Section 4.3.2) derivable
in N ′(Kl). In the following derivations, for simplicity, we will sometimes use de-
rived operators and derived rules (see Figure 4.7), and exploit trivial equivalences
between formulas implicitly.

A derivation for (G1) is obtained as in the systems of Section 4.2. The following
is a derivation of (G2 ):

[t : PGA]1

[s : GA]2 [s < t]2

GE
t : A

PE2

t : A
⊃ I1

t : PGA ⊃ A
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[t : GA]1

trans <
∀b.c.d. (b < c ⊓ c < d) ⊐ b < d

∀E
∀c.d. (t < c ⊓ c < d) ⊐ t < d

∀E
∀d. (t < s ⊓ s < d) ⊐ t < d

∀E
(t < s ⊓ s < r) ⊐ t < r

[t < s]2 [s < r]3

⊓I
t < s ⊓ s < r

⊐ E
t < r

GE
r : A

GI3

s : GA
GI2

t : GGA
⊃ I1

t : GA ⊃ GGA

Fig. 4.9. Derivation of the axiom (G3 ).

The derivation for (G3 ) is shown in Figure 4.9, while the derivation for (G4 ) is in
Figures 4.10 and 4.11. We omit here the derivations for the symmetrical axioms
(H1 )-(H4 ).

Normalization

Derivations in normal form

We will now show that the system N ′(Kl) possesses a number of useful normal-
ization properties. To that end, we will follow the classical normalization process
of [125] as much as possible, while some adaptations are inspired by [159]. We
begin by simplifying the proofs by restricting the applications of some of the rules.

Lemma 4.30. If Γ, ∆ ⊢
N′(Kl)

ϕ, then there exists a derivation of ϕ from (Γ, ∆)

where: (i) the conclusions of applications of ⊥E, RAA∅, and mon are atomic; (ii)
mon is not applied to lwffs of the form b :⊥.

Proof. (i) We show that any application of ⊥E, RAA∅, and mon with a non-atomic
conclusion can be replaced with a derivation in which such rules are applied only
to formulas of smaller grade by the set of transformations given below. By iterating
these transformations, we get a derivation of ϕ from Γ, ∆ where the conclusions
of applications of ⊥E, RAA∅, and mon are atomic.

(1) First, we consider applications of ⊥E. There are three possible cases, de-
pending on whether the conclusion is b : B ⊃ C, b : GB, or b : HB. Note that
in the following transformations we only show the part of the derivation where
the reduction, denoted by  , actually takes place; the missing parts remain un-
changed.
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[t : F¬A ∧ F¬B]2

∧E
t : F¬A

[t : F¬A ∧ F¬B]2

∧E
t : F¬B

conn
∀b.c. b < c ⊔ b = c ⊔ c < b

∀E
∀c. s < c ⊔ s = c ⊔ c < s

∀E
s < r ⊔ s = r ⊔ r < s

Π1

∅

[s = r ⊔ r < s]5

Π2

∅

Π3

∅
⊔E8

∅
⊔E5

∅
uf 2

t :⊥
FE4

t :⊥
FE3

t :⊥
⊥E2

t : GA ∨ GB
⊃ I1

t : (G(A ∨ B) ∧ G(A ∨ GB) ∧ G(GA ∨ B)) ⊃ (GA ∨ GB)

where Π1 is:

[r : ¬B]4

[t : (G(A ∨ B) ∧ G(A ∨ GB) ∧ G(GA ∨ B))]1

∧E
t : G(A ∨ GB) [t < s]3

GE
(s : A ∨ GB)

[s : ¬A]3 [s : A]7

¬E
s :⊥

[s : ¬GB]6 [s : GB]7

¬E
s :⊥

∨E7

s :⊥
⊥E6

s : GB [s < r]5

GE
r : B

¬E
r :⊥

uf 1
∅

Fig. 4.10. Derivation of the axiom (G4 ) (1/2).
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Π2 is:

[r : ¬B]4

[t : (G(A ∨ B) ∧ G(A ∨ GB) ∧ G(GA ∨ B))]1

∧E
t : G(A ∨ B) [t < s]3

GE
s : A ∨ B

[s : ¬A]3 [s : A]12

¬E
s :⊥

[s : ¬B]11 [s : B]12

¬E
s :⊥

∨E12

s :⊥
⊥E11

s : B [s = r]8

mon
r : B

¬E
r :⊥

uf 1
∅

and Π3 is:

[s : ¬A]3

[t : (G(A ∨ B) ∧ G(A ∨ GB) ∧ G(GA ∨ B))]1

∧E
t : G(GA ∨ B) [t < r]4

GE
r : GA ∨ B

[r : ¬GA]9 [r : GA]10

¬E
r :⊥

[r : ¬B]4 [r : B]10

¬E
r :⊥

∨E10

r :⊥
⊥E9

r : GA [r < s]8

GE
s : A

¬E
s :⊥

uf 1
∅

Fig. 4.11. Derivation of the axiom (G4 ) (2/2).
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(Case 1)

[b : (B ⊃ C) ⊃⊥]

Π

c :⊥
⊥E

b : B ⊃ C

 

[b : C ⊃⊥]2

[b : B ⊃ C]1 [b : B]3

⊃ E
b : C

⊃ E
b :⊥

⊃ I1

b : (B ⊃ C) ⊃⊥

Π

c :⊥
⊥E2

b : C
⊃ I3

b : B ⊃ C

(Case 2)

[b : GB ⊃⊥]

Π

c :⊥
⊥E

b : GB

 

[c : B ⊃⊥]2

[b : GB]1 [b < c]3

GE
c : B

⊃ E
c :⊥

⊥E
b :⊥

⊃ I1

b : GB ⊃⊥

Π

c :⊥
⊥E2

c : B
GI3

b : GB

Case 3 concerns formulas of the form c : HA; it is analogous to the previous one
and we omit the reduction for it.

(2) Applications of RAA∅ can be reduced to applications on formulas of lower
grade, following an approach analogous to that of ⊥E. It is easy to see that in this
case, we can also restrict to applications of RAA∅ in which the conclusion is not ∅.
We have to consider two possibilities: formulas of the form ρ1 ⊐ ρ2 and formulas
of the form ∀b. ρ. We consider only the second case, since the first one is analogous
to the case of implication for labeled formulas:

[∀b. ρ ⊐ ∅]

Π

∅
RAA∅

∀b. ρ

 

[ρ ⊐ ∅]1

∀I
∀b. ρ ⊐ ∅

Π

∅
RAA1

∅ρ
∀I

∀b. ρ

(3) Finally, we consider applications of the rule mon . We have five cases depend-
ing on the form of the formula that is the major premise of the mon application:

(a) b : A ⊃ B
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(b) b : GA
(c) b : HA
(d) ρ1 ⊐ ρ2

(e) ∀b. ρ

(Case a)

b : A ⊃ B b = c
mon

c : A ⊃ B
 

b : A ⊃ B

[c : A]1 b = c
mon

b : A
⊃ E

b : B b = c
mon

c : B
⊃ I1

c : A ⊃ B

(Case b)

b : GA b = c
mon

c : GA
 

b : GA

[c < d]1 b = c
mon

b < d
GE

d : A
GI1

c : GA

(Case e)

∀b. ρ c = d
mon

∀b. ρ[d/c]
 

∀b. ρ
∀E

ρ c = d
mon

ρ[d/c]
∀I

∀b. ρ[d/c]

The case (c) is analogous to (b), while the transformation for the case (d) is as in
(a) where ⊐ plays the role of ⊃.

(ii) We show that every application of mon on a lwff of the form b :⊥ can be
replaced by an application of ⊥E that does not discharge any assumption:

Π

b :⊥

Π ′

b = c
mon

c :⊥

 

Π

b :⊥
⊥E

c :⊥
⊓⊔

The system obtained from N ′(Kl) by restricting the rules ⊥E, RAA∅, and
mon according to this lemma is equivalent to N ′(Kl). From now on, we will thus
consider only this restricted system and keep calling it N ′(Kl).

The natural deduction systems given in [159] for families of modal and relevance
logics are based on a strict separation between the labeled and the relational sub-
systems (i.e. derivations of lwffs can depend on derivations of rwffs, but not vice
versa). This separation is possible thanks to the restriction to relational theories
that are Horn theories. Our system N ′(Kl) does not allow for such a separation,
since the rules for universal falsum let relational derivations depend also on labeled
ones. Thus, more complex derivations are possible, which implies that with respect
to [159] we need to consider more forms of detours and hence more forms of
reductions. We adapt to our case the definitions given in Section 3.2.
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Π

bRc

Π1

b = d
mon

dRc

Π2

c = u
mon

dRu

Π3

d = v
mon

vRu

 

Π

bRc

Π1

b = d
mon

dRc

Π3

d = v
mon

vRc

Π2

c = u
mon

vRu

Fig. 4.12. Rule permutation for the ordering of mon applications.

Definition 4.31. We say that a formula ϕ is a maximum formula in a derivation
when it is both the conclusion of an introduction rule and the major premise of an
elimination rule.

We define the notion of label position for labels occurring in a formula ϕ to
which the rule mon is applied. By the restrictions of Lemma 4.30, ϕ can have the
form (i) b : p, (ii) b < c, or (iii) b = c. We say that b has label position 1 in (i),
(ii) and (iii), and c has label position 2 in (ii) and (iii).

A derivation is in pre-normal form (is a pre-normal derivation) if it has no
maximum formulas and in every sequence of mon applications, all the applications
which concern variables with the same label position occur consecutively.

The notion of pre-normal derivation embodies the elimination of standard detours
(given by a couple of introduction/elimination rule applications on the same con-
nective or operator) and an ordering of mon applications that aims at eliminating
mon detours, i.e. two or more applications of mon which concern variables with
the same label position. Note that, since mon is only applied to atomic formulas
of the form described above, once we have eliminated maximum formulas, the case
of a sequence of mon applications is the only case in which we can have this kind
of detour.

Lemma 4.32. Every derivation in N ′(Kl) reduces to a derivation in pre-normal
form.

Proof. We follow the procedure based on proper reductions used in [159] and we
only treat the cases ⊃ I/⊃E, GI/GE and ∀I/∀E. The transformations for the
detours ⊐I/⊐E and HI/HE can be easily inferred from these. Any formula ϕ in a
derivation is the root of a tree of rule applications leading back to assumptions. We
call side formulas of ϕ the formulas in this tree other than ϕ. In order to eliminate
maximum formulas from a derivation, it suffices to apply the transformations listed
below, picking in the set of maximum formulas the formula with the highest grade
that has only maximum formulas of lower grade as side formulas, and iterating
this process until there are no more maximum formulas in the proof. The process
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ends because at every step no new maximum formula as large as (or larger than)
the eliminated one is introduced.

(i)

[b : A]

Π1

b : B
⊃ I

b : A ⊃ B

Π2

b : A
⊃ E

b : B

 

Π2

b : A

Π1

b : B

(ii)

[b < c]

Π

c : A
GI

b : GA b < d
GE

d : A

 

b < d

Π [d/c]

d : A

(iii)

Π

ρ
∀I

∀b. ρ
∀E

ρ[c/b]

 
Π [c/b]

ρ[c/b]

Finally, in Fig. 4.12 we show how to permute applications of rules in order to get a
derivation where, given a sequence of mon applications, the ones on the same label
position occur one immediately below the other. We denote with R a relational
symbol that can stay both for < and for =. In the derivation on the left, the first
and the third application of mon refer to the same label position and thus are
moved one immediately below the other. The derivations obtained in this way will
then be further simplified during the normalization process.

⊓⊔

Definition 4.33. We call falsum-rules the rules ⊥E, RAA∅, uf 1, and uf 2. We
say that a formula ϕ is a redundant formula in a derivation when: (i) ϕ is both
the conclusion and the premise of a falsum-rule; or (ii) ϕ is both the conclusion
and the major premise of a mon carrying out two substitutions in the same label
position.

A derivation is in normal form (is a normal derivation) iff it is in pre-normal
form and does not contain any redundant formula.

Theorem 4.34. Every derivation in N ′(Kl) reduces to a derivation in normal
form.

Proof. First, we observe that by Lemma 4.32 we can obtain a derivation in pre-
normal form. Now let us show how to remove redundant formulas. We know from
Lemma 4.30 that every application of a falsum-rule has an atomic formula as a
conclusion. Thus it is sufficient to consider the following transformations:
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(i)

Γ ∆

Π

b :⊥
⊥E

c :⊥
⊥E

d : A

 

Γ ∆

Π

b :⊥
⊥E

d : A

where A is ⊥ or an atomic formula. Note that if the formula d : A ⊃⊥ is contained
in Γ and discharged by the second application of ⊥E in the derivation on the left,
then the same can be done in the derivation on the right.

(ii)

Π

b :⊥
⊥E

c :⊥
uf 1

∅

 

Π

b :⊥
uf 1

∅

(iii)

Π

b :⊥
uf 1

∅
uf 2

c :⊥

 

Π

b :⊥
⊥E

c :⊥

(iv)

Π

∅
uf 2

b :⊥
uf 1

∅

 
Π

∅

For the rule mon, given the ordering of mon applications obtained by permutations
defined in Lemma 4.32, the only case we have to treat is when two applications
of mon working on the same label position of a formula occur consecutively. Then
we simply exploit the transitivity of = (obtained by using mon). Note that, by
Lemma 4.30, in the following reduction ϕ is an atomic formula.

Π1

ϕ

Π2

b = c
mon

ϕ[c/b]

Π3

c = d
mon

ϕ[d/b]

 
Π1

ϕ

Π2

b = c

Π3

c = d
mon

b = d
mon

ϕ[d/b]
⊓⊔

Normal derivations in N ′(Kl) have a well-defined structure that has a number
of desirable properties. In particular, there is an ordering on the application of the
rules, which we can exploit to prove a subformula property for our system. To that
end, we adapt the standard definitions of subformula and track as follows:
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Definition 4.35. B is a subformula of A iff (i) A is B; (ii) A is A1 ⊃ A2 and
B is a subformula of A1 or A2; (iii) A is GA1 and B is a subformula of A1; or
(iv) A is HA1 and B is a subformula of A1. We say that c : B is a subformula of
b : A iff B is a subformula of A.

ρ2 is a subformula of ρ1 iff (i) ρ1 is ρ2; (ii) ρ1 is ρ′1 ⊐ ρ′′1 and ρ2 is a subformula
of ρ′1 or ρ′′1 ; or (iii) ρ1 is ∀b. ρ and ρ2 is a subformula of ρ.

Given a derivation Π in N ′(Kl), a track in Π is a sequence of formulas
ϕ1, . . . , ϕn such that:

(i) ϕ1 is an assumption of Π, an axiom, or the conclusion of a universal falsum
rule (uf 1 or uf 2);

(ii) ϕi stands immediately above ϕi+1 and is the major (or the only) premise
of a rule for 1 ≤ i < n;

(iii) ϕn is the conclusion of Π, the premise of a universal falsum rule, or the
minor premise of a rule.

We call a track ϕ1, . . . , ϕn a labeled track when each ϕi is an lwff and a
relational track when each ϕi is an rwff.

In other words, a track can only pass through the major premises of rules
and it ends at the first minor premise of a rule, or at an application of universal
falsum, or at the conclusion of Π . The following lemmas formalize properties of
the structure of the tracks and specify the way in which the tracks are linked one
to each other.

Lemma 4.36. Let Π be a normal derivation, and let t be a track ϕ1, . . . , ϕn in
Π. Then t consists of three (possibly empty) parts: (1) an elimination part, (2) a
central part, and (3) an introduction part (see Figure 4.13) where:

(i) each ϕi in the elimination part is the major premise of an elimination rule
and contains ϕi+1 as a subformula;

(ii) each ϕj in the introduction part except the last one is the premise of an
introduction rule and is a subformula of ϕj+1;

(iii) each ϕk in the central part is atomic and is the premise of a falsum-rule
or the major premise of a mon;

(iv) the central part contains at most one application of falsum-rules;
(v) tracks originating from an application of uf 1 or uf 2 have an empty elimi-

nation part;
(vi) tracks ending in an application of uf 1 or uf 2 have an empty introduction

part.

Proof. (i) and (ii) follow from the absence of maximum formulas in a normal
derivation: in a track t, no introduction rule application can precede an application
of an elimination rule. In other words, a track in a normal derivation is such that the
elimination part (when not empty) starts with a non-atomic formula and consists of
some applications of elimination-rules; if the elimination part ends with an atomic
formula, then the central part (when not empty) consists of some applications
of rules whose conclusion is still an atomic formula; the introduction part (when
not empty) starts with an atomic formula and consists of some applications of
introduction rules (see Fig 4.13).
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⊐E, ∀E

⊐I, ∀I

RAA∅, uf 2, mon

Elimination

Central

Introduction

Part:

Part:

Part:

⊃E, GE, HE

⊃I, GI, HI

RAA⊥, uf 1, mon

Fig. 4.13. The structure of a labeled track (left) and that of a relational track (right).

CASE 1

x < y

tr
tl

GE, HE tr

x = y

CASE 2

tl

mon uf 2
∅

x :⊥

CASE 3

tr

tl

∅
x :⊥

uf 1

CASE 4

tl

tr

Fig. 4.14. Possible connections between labeled tracks tl and relational tracks tr.

(iii) comes from the fact that in a normal derivation a falsum-rule and the
mon-rule can be applied only to atomic formulas.

(iv) follows directly from the absence of redundant formulas in a normal deriva-
tion (see Theorem 4.34).

For (v) and (vi), observe that tracks originating from an application of uf 1 or
uf 2 start with an atomic formula and thus cannot have an elimination part, while
tracks ending in an application of uf 1 or uf 2 end with an atomic formula and thus
their introduction part must be empty.

⊓⊔

Lemma 4.37. Let tl be a labeled track and tr a relational track in a derivation
Π. Then tl and tr can be connected in one of the following ways (shown in Fig-
ure 4.14):

(i) the last formula in tr is the minor premise of a GE or of a HE whose major
premise is a formula in the elimination part of tl;

(ii) the last formula in tr is the minor premise of a mon whose major premise
is a formula in the central part of tl;

(iii) tr ends with an application of uf 2 and the conclusion of that application
is the first formula in tl;

(iv) tl ends with an application of uf 1 and the conclusion of that application
is the first formula in tr.
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Proof. The statement follows trivially by observing that GE, HE, mon, uf 1, and
uf 2 are the only rules that mix labeled and relational formulas and that, by
Lemma 4.36, such rules can be applied only in a specific part of a track.

⊓⊔

The subformula property

To prove a subformula property for N ′(Kl), we adapt further standard definitions:

Definition 4.38. Given a derivation Π in N ′(Kl), the main thread is the se-
quence t1, . . . , tn of tracks such that: (1) the first formula in t1 is an assumption
or an axiom; (2) ti and ti+1 are connected by means of an application of uf 1 or
uf 2, for 1 ≤ i ≤ (n − 1); and (3) the last formula in tn is the conclusion of Π.

Let Π be a derivation of ϕ from (Γ, ∆) in N ′(Kl), SL be the set of subformulas
of the formulas in Γ (or in Γ ∪ {ϕ} if ϕ is a labeled formula), and SR be the set
of subformulas of the formulas in ∆ ∪Ax (or in ∆ ∪Ax∪ {ϕ} if ϕ is a relational
formula), where Ax is the set of axioms used in Π. We say that Π enjoys the
subformula property iff

1. for all lwffs c : B used in the derivation Π:
(i) B ∈ SL; or
(ii) B is an assumption D ⊃⊥ discharged by an application of ⊥E where
D ∈ SL; or
(iii) B is an occurrence of ⊥ obtained by ⊃E from an assumption D ⊃⊥
discharged by an application of ⊥E, where D ∈ SL; or
(iv) B is an occurrence of ⊥ obtained by an application of ⊥E that does not
discharge any assumption; or
(v) B is an occurrence of ⊥ obtained by an application of uf 2;

2. for all rwffs ρ used in the derivation Π:
(i) ρ ∈ SR; or
(ii) ρ is an assumption ρ1 ⊐⊥ discharged by an application of RAA∅ where
ρ1 ∈ SR; or
(iii) ρ is an occurrence of ∅ obtained by ⊐ E from an assumption ρ′ ⊐ ∅
discharged by an application of RAA∅, where ρ′ ∈ SR; or
(iv) ρ is an occurrence of ∅ obtained by an application of uf 1; or
(v) ρ is obtained by an application of mon.

Lemma 4.39. Every normal derivation in N ′(Kl) satisfies the subformula prop-
erty.

Proof. This follows immediately from the standard proof [125], which is based on
the introduction of an ordering of the tracks in a normal derivation depending on
their distance from a main thread. In our case, a main thread contains not only
labeled formulas and we have to consider more cases than in the standard proof,
given that the central part of a track can have a more complex structure (as it can
also contain applications of uf 1, uf 2, and mon).

⊓⊔
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This lemma shows that although normal derivations in N ′(Kl) have a more
complex structure than normal derivations in natural deduction systems for clas-
sical logic [125] and natural deduction systems for families of modal and relevance
logics [159], they have still a well-defined structure and satisfy a subformula prop-
erty. It is important to remark that the special cases added to the definition of
subformula property (i.e. formulas can be derived by applications of uf 1, uf 2, or
mon) do not compromise automatic proof search completely, given that such cases
can occur only in a limited section of a normal derivation (i.e. the central part of
a track).

We also note that the presence of axioms (and in particular the fact that they
are expressed in a full first-order language) makes our proof of normalization more
complex and our results weaker. Thus, it is not possible to use it as a means to
show the consistency of the system or the validity of an interpolation theorem,
as can be done for systems in [159], where relational properties are expressed by
Horn rules and we have only atomic axioms.

4.3.3 Systems for axiomatic extensions of Kl

The basic linear tense logic Kl leaves unanswered many fundamental natural ques-
tions about the structure of time. However, the labeling framework allows us to
express several further relational properties in a straightforward and clean way,
i.e. by only adding the corresponding relational axioms to the relational sub-
system. In particular, we will now show how to extend N ′(Kl) to capture the
extensions of Kl described in Section 2.3.2, i.e., Kl with:

- unbounded time;
- a first/final point;
- dense time;
- discrete time.

To help the reader, we recall in Figure 4.15 the axioms corresponding to such
extensions.

Kl with unbounded time

In the case of an unbounded flow of time, we can add two relational axioms cor-
responding to the axioms for left and right seriality given in Figure 4.15:

∀b.∃c. c < b
lser

∀b.∃c. b < c
rser .

As an example, we show how to derive the axiom for (right-seriality), where Π
is some proof of s : ⊤ based on a proof of ⊤ or A ∨¬A in classical logic (see,
e.g., [125, 152]):

rser
∀b.∃c. b < c

∀E
∃c. t < c

Π

s : ⊤ [t < s]1

FI
t : F⊤

∃E1

t : F⊤
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(having a first point) H ⊥ ∨ PH ⊥
(having a final point) G ⊥ ∨ FG ⊥
(left-seriality) P⊤
(right-seriality) F⊤

(left-density) PA ⊃ PPA
(right-density) FA ⊃ FFA
(left-discreteness) (P⊤ ∧ A ∧ GA) ⊃ (PGA)
(right-discreteness) (F⊤∧ A ∧ HA) ⊃ (FHA)

Fig. 4.15. Some axioms for extensions of Kl .

Kl with a first/final point

To express the existence of a first or of a final point, we can add the following
axioms13 to the relational sub-systems:

∃b. ∀c. ∼ (c < b)
first

∃b. ∀c. ∼ (b < c)
final .

The two axioms do not affect each other; thus we can decide to add both or just one
of them to the system, according to the logic we want to represent. A derivation
of the axiom for first point is given in Figure 4.16.

Kl with dense time

Having a dense flow of time corresponds to require that between any two points
we can find a third point:

∀b.c. b < c ⊐ ∃d. b < d ⊓ d < c
dens .

Figure 4.17 shows the proof of the axiom for (right-density); the proof for (left-
density) can be obtained in a symmetrical way by using the same axiom (dens).

Kl with discrete time

Finally, we can express discreteness by means of the following axiomatic rules:

∀b.c. b < c ⊐ ∃d. d < c⊓ ∼ ∃u. (d < u ⊓ u < c)
ldiscr

∀b.c. b < c ⊐ ∃d. b < d⊓ ∼ ∃u. (b < u ⊓ u < d)
rdiscr .

In Figure 4.18, we show how to derive the axiom for right-discreteness.

Soundness and completeness

Theorem 4.40. The extensions of N ′(Kl) presented above are sound and com-
plete with respect to the semantics of the corresponding logics.

13 The existence of a first (or a final) point is often expressed by adding a constant to
the language. For example, we could introduce a constant 0 for the first point and an
axiom stating that ∀c. ∼ (c < 0). We prefer not to modify the language and keep the
treatment of this property closer to that of other ones.
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first
∃b.∀c. ∼ (c < b)

conn
∀b.c. b < c ⊔ b = c ⊔ c < b

∀E
∀c. t < c ⊔ t = c ⊔ t < b

∀E
t < s ⊔ t = s ⊔ s < t

[∀c. ∼ (c < s)]2

∀E
∼ (t < s) [t < s]3

∼ E
∅

[t = s ⊔ s < t]3

Π1

∅

Π2

∅
⊔E4

∅
⊔E3

∅
∃E2

∅
uf 2

t :⊥
⊥E1

t : H ⊥ ∨PH ⊥

where Π1 is:

[t : P⊤ ∧ HP⊤]1

∧E
∼ (t : P⊤) [t = s]4

mon
(s : P⊤)

[∀c. ∼ (c < s)]2

∀E
∼ (q < s) [q < s]5

∼ E
∅

uf 2
s :⊥

PE5

s :⊥
uf 1

∅

and Π2 is:

[t : P⊤ ∧ HP⊤]1

∧E
t : HP⊤ [s < t]4

HE
s : P⊤

[∀c. ∼ (c < s)]2

∀E
∼ (r < s) [r < s]6

∼ E
∅

uf 2
s :⊥

PE6

s :⊥
uf 1

∅

Fig. 4.16. Derivation of the modal axiom for first point.
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[t : FA]1

dens
∀b.c. b < c ⊐ ∃d. (b < d ⊓ d < c)

∀E
∀c. (t < c ⊐ ∃d. (t < d ⊓ d < c))

∀E
t < s ⊐ ∃d. (t < d ⊓ d < s) [t < s]2

⊐ E
∃d. (t < d ⊓ d < s)

Π

∅
∃E4

∅
uf 2

t :⊥
⊥E3

t : FFA
FE2

t : FFA
⊃ I1

t : FA ⊃ FFA

where Π is:

[t : ¬FFA]3

[s : A]2
[t < r ⊓ r < s]4

⊓E
r < s

FI
r : FA

[t < r ⊓ r < s]4

⊓E
t < r

FI
t : FFA

¬E
t :⊥

uf 1
∅

Fig. 4.17. Derivation of the modal axiom for right-density.

Proof. Soundness of the extended systems is straightforward. We have just to
extend the proof of Theorem 4.17 by considering the axiomatic rules extending the
relational sub-system. But they are trivially sound since they mirror the properties
that the models of the extended logic are required to satisfy.

To show completeness, it suffices to extend the canonical model construction
presented for N ′(Kl) to consider also the new relational axioms. Alternatively, we
can simply prove completeness by proving the corresponding Hilbert-style axioms.
We have already proved the axioms for right-seriality, having a first point, right-
density and right-discreteness. Derivations of the other axioms (final point, left-
seriality, left-density, left-discreteness) are symmetrical and we thus omit them.

⊓⊔

4.3.4 Towards LTL

We have seen that natural deduction systems for several extensions of Kl can be
given by extending the “base system” N ′(Kl). This is not the case for all the
possible extensions, however, as some properties, e.g. continuity or finite intervals,
are second-order properties [156] and thus require an appropriate higher-order
relational language. We now briefly discuss whether (and how) it is possible to
extend N ′(Kl) to capture a richer logic like (fragments of) LTL.
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[t:F⊤∧A∧HA]1

∧E
t:F⊤

rdiscr
∀b.c. b<c⊐(∃d. b<d⊓(∼∃u. b<u⊓u<d))

∀E
∀c. t<c⊐(∃d. t<d⊓(∀u. ∼(t<u)⊔∼(u<d)))

∀E
t<q⊐(∃d. t<d⊓(∀u. ∼(t<u)⊔∼(u<d))) [t<u]3

⊐ E
∃d. t<d⊓(∀u. ∼(t<u)⊔∼(u<d))

[t:¬FHA]2

Π

∅
uf 2

r:⊥
⊥E6

r:A
HI5

s:HA

[t<s⊓(∀u. ∼(t<u)⊔∼(u<s))]4

⊓E
t<s

FI
t:FHA

¬E
t:⊥

uf 1
∅

∃E4

∅

FE3

∅
uf 2

t:⊥
⊥E2

t:FHA
⊃ I1

t:(F⊤∧A∧HA)⊃FHA

where Π is:

conn
∀b.c. b<c⊔b=c⊔c<b

∀E
∀c. r<c⊔r=c⊔c<r

∀E
r<t⊔r=t⊔t<r

[r:¬A]6

[t:F⊤∧A∧HA]1

∧E
t:HA [r<t]7

HE
r:A

¬E
r:⊥

uf 1
∅

Π1

∅

⊔E7

∅

and Π1 is:

[r=t⊔t<r]7

[r:¬A]6

[t:F⊤∧A∧HA]1

∧E
t:A [r = t]8

mon
r:A

¬E
r:⊥

uf 1
∅

[t<s⊓(∀u.∼(t<u)⊔∼(u<s))]4

⊓E
∀u.∼(t<u)⊔∼(u<s)

∀E
∼(t<r)⊔∼(r<s)

[ ∼(t<r)]9 [t<r]8

∼ E
∅

[∼(r<s)]9 [r<s]5

∼ E
∅

⊔E9

∅

⊔E8

∅

Fig. 4.18. Derivation of the modal axiom for right-discreteness.
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MTL: a subset of LTL
−

For brevity, we restrict our attention to future temporal operators only (but the
extension to the past is straightforward) and begin by considering the system
N ′(Kl) extended with the axioms rdiscr and rser so that the flow of time is
discrete and unbounded towards the future (in this case, the presence of rser
allows us to simplify rdiscr to ∀b. ∃d. b < d⊓ ∼ ∃u. (b < u ⊓ u < d)). We can
express in our syntax the relation next in terms of the relation < (see, e.g., [76]),
i.e. we can introduce, as in Section 4.2.3, a relational symbol ⊳ (with the meaning
of immediately precedes) as an abbreviation:

s⊳ t ≡ s < t ⊓ ∀b. ∼ (s < b)⊔ ∼ (b < t) .

This allows us to enrich the language with an operator X, as in the system for
LTL

−
of Section 4.2.4, whose semantics can be given without having to introduce

a specific relation for it in the definition of a model. We just need to require that
models for this logic are linear temporal structures where ≺ is also discrete and
serial on the right, and extend the definition of truth with:

M, λ |=
Kl

b : XA iff M, λ |=
Kl

b⊳ c and M, λ |=
Kl

c : A .

Rules for introduction and elimination of X can now be given in a clean way, with
the usual freshness proviso for XI:14

[b⊳ c]
....

c : A
b : XA

XI (c fresh)
b : XA b⊳ c

c : A
XE .

The logic that we capture in this extended system, which we call N (KMTL), is not
LTL

−
yet. We are able to express the existence of an immediate successor, but we

miss a way to say that between any two points (related by ≺) there can be only a
finite sequence of points related one to each other by the relation next. We would
need to express the finite interval property, but this is a second-order property, as
observed above.

In [103], a subset of LTL
−

called Small Temporal Logic, or STL for short, is
introduced and given a natural deduction system. The reasons behind the defini-
tion of STL are the difficulties arising from dealing with the induction principle
(relating ⊳ and <) that is needed in order to represent LTL

−
. While the semantics

of LTL
−

can be given by considering Kripke structures defined over a relation of
successor (denoted by N) and by defining ≺ as the least transitive closure of N ,
in the semantics of STL the relation ≺ is just required to contain N . It follows
that a rule for induction is not needed in a system for STL.

It is easy to verify that N (KMTL) is complete with respect to the semantics
of STL. Moreover, it can be proven to correspond to a logic “larger” than STL

14 The fact that every time point has one (and only one) immediate successor follows
from right-discreteness, right-seriality, and connectedness, and it allows one to express
rules for X both in a universal and in an existential formulation. We give here the
universal one.
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for which the condition of linearity (or connectedness) on the relation ≺ holds: we
call this logic Medium Temporal Logic MTL.15

LTL
−

In Section 4.2.4, we defined a labeled natural deduction system for LTL
−
, with an

induction rule (borrowed from [103]) like the following (where b′ and b′′ are fresh)

b : A b < c

[b < b′][b′ ⊳ b′′][b′ : A]
....

b′′ : A
c : A

ind

which does not operate at a purely relational level. Some remarks are worth about a
solution like this. First of all, the rule ind adds some more points of contact between
the labeled and the relational sub-systems and leads to a failure of normalization.
Moreover, one can show that the axiom of connectedness is not needed anymore
since it is in a way “contained” in the induction principle. In fact, the axiom (3)

¬G(GA ⊃ B) ⊃ G(GB ⊃ A)

of weak connectedness must obviously hold in LTL (and thus LTL
−
), for it can be

subsumed by the induction axiom (see, e.g., [75]). Thus, in the case we want to
use a rule like ind to capture LTL

−
, it seems more reasonable to follow a different

approach that avoids both the extension of the relational language to a first-order
language and the introduction of the universal falsum. In other words, we can have
a system for LTL

−
which uses only Horn rules in the relational theory (from which

it follows that we have only atomic rwffs and no relational falsum) but extends
the labeled sub-systems with a rule for induction that mixes labeled and relational
premises.

4.3.5 Discussion and related works

In this section, we have given labeled natural deduction systems for a family of
tense logics and we have proved not only soundness and completeness, but also
a number of useful proof-theoretical properties. We have also discussed possible
extensions leading up to LTL.

An analysis of related works has been already done in Section 4.2.6. Here we
just remark that, as discussed in Section 4.3.4, the approach followed in this section
and based on the use of a (first-order) relational sub-system allows us to express
all the first-order relational properties of structures in a clean and modular way.

15 An axiomatization of MTL can be obtained, as shown in [76], by adding the following
axioms to those given for future-time Kl :

(KX) X(A ⊃ B) ⊃ (XA ⊃ XB)
(FUNC ) (X¬A ⊃ ¬XA) ∧ (¬XA ⊃ X¬A)
(RECG) (GA ⊃ X(A ∧ GA)) ∧ (X(A ∧ GA) ⊃ GA)
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When we consider the case of (fragments of) LTL, however, we need to express the
induction principle, which is a second-order property, and thus it is not possible
(at least in our formulation) to do it at a purely relational level. Thus, in such a
case, the complexity introduced by using a relational sub-system like the ones of
this section seems not to be justified. This is the reason why, in Chapter 5, when
moving to consider branching-time logics, we will prefer not to use an explicit
relational sub-system. In particular, in Section 5.3, in order to define a natural
deduction system for a temporal logic that is based on a branching extension of
the linear LTL

−
, we will use as a base system the one for LTL

−
presented in

Section 4.2.4 and extend it with rules capturing the branching nature of the logic.

4.4 A proposal for the treatment of until

In Sections 4.3 and 4.2, we presented natural deduction systems for a large number
of linear temporal logics. However, all of them did not consider the operator until.
The reason for such a choice is that until is a notoriously difficult temporal operator
to deal with from a proof-theoretical point of view. Thus, at first stage, we have
preferred to focus on the definition of well-behaved deduction systems for the
until-free fragments of the logics considered. In this section, we propose a solution
for the treatment of until in the context of labeled natural deduction. A slightly
different version of the material of this section has been presented in [110].

4.4.1 Introduction

The operator until has an “ambivalent” nature, for it can be seen both as an
existential and a universal operator at the same time: AUB holds at the current
time instant w iff either B holds at w or there exists a time instant w′ in the future
at which B holds and such that A holds in all the time instants between the current
one and w′. The words in emphasis highlight the dual existential and universal
nature of U, which poses a significant challenge when attempting to give deduction
rules for until, so that deduction systems for temporal logics either deliberately
exclude until from the set of operators considered or devise clever ways to formalize
reasoning about until. And even if one manages to give rules, these often come at
the price of additional difficulties for, or even the impossibility of, proving useful
metatheoretic properties, such as normalization or the subformula property. (This
is even more so in the case of Hilbert-style axiomatizations, which provide axioms
for until, but are not easily usable for proof construction.) See, for instance, [9,
21,58,81,83,146], where techniques for formalizing suitable inference rules include
introducing additional information (such as the use of a Skolem function f(AUB)
to name the time instant where B begins to hold), or exploiting the standard
recursive unfolding of until (corresponding to the axiom (A7 ) of Section 2.3.4)

AUB ≡ B ∨ (A ∧ X(AUB)) (4.1)

which says that AUB iff either B holds or A holds and in the successor time instant
(as expressed by the next operator X) we have again AUB.
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The problem

Let us illustrate more precisely the problem in the context of labeled natural
deduction. For concreteness, we can consider the system N (LTL

−
), defined in

Section 4.2.4 for LTL
−
. A straightforward way to have a complete system for full

LTL is to extend N (LTL
−
) with the following three axioms:

1. b : AUB ⊃ ¬G¬B;
2. b : AUB ⊃ (¬B ⊃ (A ∧ X(AUB)));
3. b : (¬B ⊃ (A ∧ X(AUB))) ⊃ AUB.

It is however evident that this solution is not proof-theoretically acceptable, as it
would make the system of no use in terms of normalization properties.

Unfortunately, finding a proof-theoretically satisfactory solution for the treat-
ment of until is an extremely challenging task. To illustrate this, let us consider a
simplified version UX of until with the following semantics:

M, λ |=
LTL

b : AU
XB iff there are b1, b2 such that

M, λ |=
LTL

b 6 b1 and
M, λ |=

LTL
b1 ⊳ b2 and

M, λ |=
LTL

b2 : B and
for all b′, if M, λ |=

LTL
b 6 b′ and M, λ |=

LTL
b′ 6 b1

then M, λ |=
LTL

b′ : A

The standard until formula AUB is then simply equivalent to the formula ¬B ⊃
AUXB.

In the spirit of labeled natural deduction, we could use this semantics to define
the following “good” rules for the introduction and elimination of UX:

b 6 b1 b1 ⊳ b2 b2 : B

[b 6 b′] [b′ 6 b1]....
b′ : A

b : AUXB
UXI

b : AUXB

[b 6 b1] [b1 ⊳ b2] [b2 : B] [
∧

b′ ((b 6 b′ & b′ 6 b1) =⇒ b′ : A)]
....

b′′ : C
b′′ : C

UXE

where b′ is fresh in UXI and b1, b2 are fresh in UXE, and where we employ the
symbols =⇒, & and

∧
to denote the usual semantical operators for implication,

conjunction and universal quantification, respectively.
The rule UXI is fully standard with respect to our labeled framework, whereas

UXE falls outside of it. In fact, in order to eliminate the until, we have formalized
the semantical condition

for all b′, if M, λ |=
LTL

b 6 b′ and M, λ |=
LTL

b′ 6 b1 then M, λ |=
LTL

b′ : A ,

using the conditional assumption



112 4 Labeled Natural Deduction for Linear Temporal Logics

∧
b′ ((b 6 b′ & b′ 6 b1) =⇒ b′ : A) .

Unfortunately, this conditional assumption is not expressible, neither directly nor
indirectly, in our labeled framework. More generally, we cannot express conditional
hypotheses where the conditions are a conjunction of relational formulas (namely,
assumptions of the kind b1 6 b2 & . . . & bk−1 6 bk =⇒ b : A), nor can we express
the universal quantification in the hypothesis. We leave for future work the in-
vestigation of extensions of our approach in order to deal with such new kinds of
hypotheses.

Our proposal

In the solution proposed in this section, we try to make explicit the duality of
until by introducing a new temporal operator ∇ that allows us to formalize the
“history” of until, i.e., the fact that when we have AUB the formula A holds in all
the time instants between the current one and the one where B holds. We express
this “historic” universal quantification by means of a new temporal operator ∇
with respect to the following intuitive translation:

AUB ≡ B ∨ F(XB ∧∇A) (4.2)

That is: AUB iff either B holds or there exists a time instant w′ in the future (as
expressed by the sometime in the future operator F) such that

• B holds in the successor time instant, and
• A holds in all the time instants between the current one and w′ (included).

The latter conjunct is precisely what the history operator ∇ expresses16. This is
better seen when introducing labeling: since ∇ actually quantifies over the time
instants in an interval (delimited by the current instant and the one where the B
of the until holds), we adopt a labeling discipline that is slightly different from the
more customary one of labeled deduction seen in Sections 4.3 and 4.2.

In fact, considering labels that consist of a single time instant is not enough
for ∇, as the operator is explicitly designed to speak about an interval. We thus
consider labels that are possibly built out of a pair of time instants, so that we can
write b1b3 : ∇A to express, intuitively, that A holds in the interval between the
time instants b1 and b3. This allows us to give the natural deduction elimination
rule

b1b3 : ∇A b1 6 b2 b2 6 b3

b2 : A
∇E

that says that if ∇A holds in the interval delimited by b1 and b3 and if b2 is in-
between b1 and b3, as expressed by the relational formulas with the accessibility
relation 6, then we can conclude that A holds at b2.

Dually, we can introduce ∇A at the pair (b1, b3) whenever from the assumptions
b1 6 b2 and b2 6 b3 for a fresh b2 we can infer b2 : A:

16 This is in contrast to the unfolding (4.1). The decoupling of U that we achieve with
∇ is precisely what allows us to give well-behaved (in a sense made clearer below)
natural deduction rules.
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[b1 6 b2] [b2 6 b3]....
b2 : A

b1b3 : ∇A
∇I

The adoption of pairs of time instant for labels has thus allowed us to give
rules for ∇ that are well-behaved in the spirit of natural deduction [125]: there
is precisely one introduction and one elimination rule for ∇, as well as for the
other connectives and temporal operators (⊃, G, and X). This paves the way to a
proof-theoretical analysis of the resulting natural deduction systems, e.g., to show
proof normalization and other useful meta-theoretical analysis.

Moreover, the rules ∇I and ∇E provide a clean-cut way of reasoning about
until, according to the translation (4.2), provided that we also give rules for F and
X. These operators have a local nature, in the sense that they speak not about
intervals (pairs of time instants) but about single time instants. Still, we can easily
give natural deduction rules for them by generalizing the more standard “single-
time instant” rules of Sections 4.3 and 4.2 using our labeling with (possibly) pairs
of time instants. As we will discuss in more detail below, if we collapse the pairs
of time instants to consider only the final time instant in the pair, then these rules
reduce to the standard ones. For instance, for the always in the future operator G

(the dual of F) and X, with the corresponding successor relation ⊳, we can give
the elimination rules

b1 : GA b1 6 b2

b1b2 : A
GE

and

b1 : XA b1 ⊳ b2

b1b2 : A
XE

The corresponding introduction rules are given in Section 4.4.4, together with a
revised version of the usual rules for ⊥ and the connective ⊃, as well as a rule
for induction on the underlying linear ordering and rules expressing the properties
of the relations 6 and ⊳. Moreover, the fact that we consider labels that are not
necessarily single time instants requires us to consider some structural rules to
express properties of such labels (with respect to formulas).

This approach thus provides the basis for formalizing deduction systems for
temporal logics endowed with the until operator. For concreteness, we give here
a labeled natural deduction system for a linear-time logic endowed with the new
history operator ∇ and show that, via a proper translation, such a system is
also sound and complete with respect to the linear temporal logic LTL with until
(Section 2.3.4). (We do not consider past explicitly here, but adding operators and
rules for it should be unproblematic, e.g., as in Section 4.3.)

The structure of this section is the following:

- in Section 4.4.2, we define LTL∇, the logic that is obtained from LTL by replacing
U with the operator history ∇;

- in Section 4.4.3, we provide a translation (·)∗ from the language of LTL into the
language of LTL∇ and an inverse translation (·)• from LTL∇ into LTL. Since
both the translations can be shown to preserve the validity of formulas, we
will finally prove that the two logics are equally expressive;

- in Section 4.4.4, we give a labeled natural deduction system N (LTL∇) for LTL∇;
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- in Section 4.4.5, we show that N (LTL∇) is sound with respect to the semantics
of LTL∇ and that, via the translation (·)•, it can be also used to capture
reasoning in LTL, with respect to which it is sound too;

- in Section 4.4.6, we prove that N (LTL∇) is complete, via the translation (·)∗,
with respect to LTL; by using a double translation ((·)•)∗, we also prove a
form of completeness with respect to LTL∇;

- in Section 4.4.7, we summarize and compare with related work.

4.4.2 LTL∇: LTL with history

Syntax and semantics of LTL, together with a Hilbert-style axiomatization of the
logic, have been described in Section 2.3.4. Here we introduce the linear temporal
logic LTL∇, which is obtained from LTL by replacing the operator U with a new
unary temporal operator ∇, called history. The definition of the semantics of LTL∇

requires a notion of truth given with respect to points that are possibly pairs of
time instants rather than just time instants.

Syntax and semantics

Definition 4.41. Given a set P of propositional symbols, the set of (well-formed)
LTL∇-formulas is defined by the grammar

A ::= p |⊥| A ⊃ A | GA | XA | ∇A

where p ∈ P. The set of LTL∇-atomic formulas is P ∪ {⊥}. The complexity of
an LTL∇-formula is the number of occurrences of the connective ⊃ and of the
temporal operators X, G, and ∇.

The intuitive meaning of the operators G and X is the same as for LTL, while
∇A intuitively states that A holds at any instant of a particular time interval (but
here we see that we need more than just time instants to formalize the semantics
of the history operator, as we anticipated in Section 4.4.1). Again, we can define
other connectives and operators as abbreviations, e.g., ¬, ∨, ∧, F and so on.

As usual, in order to define a labeled deduction system for the logic LTL∇, we
extend the language with a set of labels and introduce the new notions of labeled
formula and relational formula.

Definition 4.42. Let L be a denumerable set of labels. We say that a prefix is a
single label b or a pair of labels bc, where b, c ∈ L. If A is an LTL∇-formula and α
is a prefix, then α : A is a labeled (well-formed) LTL∇-formula ( lwff for short).
The set of relational (well-formed) LTL∇-formulas ( rwffs for short) is the set of
expressions of the form b 6 c or b⊳ c, where b, c ∈ L.

In the rest of this section, we will assume given a fixed denumerable set L of
labels and we will use b, c, d, . . . to denote labels and α, β, γ, . . . to denote prefixes.
We will sometimes use parentheses and write, e.g., (b)c to denote a prefix where
b is not necessarily present. Furthermore, we will write Λ to denote a set of LTL-
formulas and Γ to denote a set of LTL∇-formulas. For simplicity, we will often
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omit the term LTL∇ when referring to labeled or relational formulas. So a labeled
formula, in the context of this section, is always a labeled LTL∇-formula and a
relational formula is a relational LTL∇-formula. ϕ will denote a generic formula
(either labeled or relational) and Γ a set of generic formulas.

Truth for an LTL∇-formula is defined by using the same models of LTL (see
Section 2.3.4), i.e. structures that are isomorphic to the set of natural numbers,
but with respect to points that are not necessarily single natural numbers. As
anticipated in 4.4.1, we will sometimes need to store elements of the model in
order to give a proper interpretation of a formula.

Definition 4.43. A time instant is a natural number n. A time instant with a
store is a pair of natural numbers (m, n). An observation point is a time instant
or a time instant with a store.

We will denote observation points by using square brackets and a comma to
separate the possible two values; so we will write, e.g., [n] to indicate a time instant
and [m, n] to indicate a time instant with a store. The intuitive interpretation
of a time instant with a store [m, n] is that the last element (n) represents the
instant where the formula has to be actually evaluated, while the first element (m)
represents an instant that we need to store (in order to give an interpretation to
formulas with ∇). We will use parentheses, like in [(m, )n], to denote an observation
point that may possibly contain a store.

Definition 4.44. Truth for an LTL∇-formula at an observation point σ in an
LTL-model M = (N ,V) is the smallest relation |=

∇
satisfying :

M, [(m, )n] |=
∇

p iff p ∈ V(n)

M, σ |=
∇

A ⊃ B iff M, σ |=
∇

A implies M, σ |=
∇

B

M, [(m, )n] |=
∇

GA iff M, [n, i] |=
∇

A for all i ≥ n

M, [(m, )n] |=
∇

XA iff M, [n, n + 1] |=
∇

A

M, [m, n] |=
∇
∇A iff M, [i] |=

∇
A for all m ≤ i ≤ n

M, [n] |=
∇
∇A iff M, [n] |=

∇
A

By extension, we write:

M |=
∇

A iff M, [n] |=
∇

A for every n ∈ N

M |=
∇

Γ iff M |=
∇

A for all A ∈ Γ

Γ |=
∇

A iff M |=
∇

Γ implies M |=
∇

A, for every LTL-model M

Notice that the notion of validity in a model (M |=
∇

A) is given by considering
only those observation points consisting of a single instant. This emphasizes the
fact that the use of observation points consisting of a time instant plus a store can
be seen as just an auxiliary technical device, i.e. in order to evaluate a formula
at a given single time instant, we possibly need to consider the evaluation of
some of its subformulas at observation points that are endowed with a store. The
following example shows that the notion of validity given with respect to single
time instants and the notion of validity given with respect to all the observation
points are different.
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Example 4.45. Let us define a new notion of validity |=∇ as follows:

M |=∇ A iff M, σ |=
∇

A for every observation point σ

M |=∇ Γ and Γ |=∇ A can be defined consequently. Now let A = p ∨ ¬p, A1 =
∇(p ∨ ¬p) and A2 = ∇p ∨ ∇(¬p). Then A1 is semantically equivalent to A (and
thus valid) according to both the notion of validities, while A2 is semantically
equivalent to A (and thus valid) only according to the notion of validity |=

∇
. In

fact, we have |=∇ A2 iff |=∇ p or |=∇ ¬p and thus A2 is not valid according to |=∇ .

Now we introduce the notion of interpretation of labels and prefixes and define,
in terms of it, the notion of truth for labeled and relational formulas.

Definition 4.46. Given an LTL-model M and a set L of labels, an interpretation
λ : L → N is a function mapping each label to a natural number. Let Pref be the
set of prefixes defined on L and Σ the set of observation points on M. We define
the extension of λ, denoted λ+ : Pref → Σ, as follows:

λ+(n) = [λ(n)];
λ+(n1 n2) = [λ(n1), λ(n2)].

Given an LTL-model M, a set L of labels and an interpretation λ on them, truth
for a generic formula ϕ in a pair (M, λ) is the smallest relation |=

∇
satisfying:

M, λ |=
∇

b 6 c iff λ(b) ≤ λ(c)

M, λ |=
∇

b⊳ c iff λ(c) = λ(b) + 1

M, λ |=
∇

α : A iff M, λ+(α) |=
∇

A

Note that M, σ 2
∇
⊥ and M, λ 2

∇
α : ⊥ for every M, σ and λ.

Given a set Γ of generic formulas and a generic formula ϕ:

M, λ |=
∇

Γ iff M, λ |=
∇

ϕ for all ϕ ∈ Γ

Γ |=
∇

ϕ iff M, λ |=
∇

Γ implies M, λ |=
∇

ϕ for all M and λ

4.4.3 The equivalence of LTL and LTL∇

We introduced a variant of LTL based on replacing the operator U with the oper-
ator ∇, whose interpretation has been described in Section 4.4.1. Here we study
the relation between LTL and LTL∇ and prove that the two logics are indeed
equally expressive. Such a proof is given by defining a translation from LTL into
LTL∇ and an inverse one from LTL∇ into LTL. Both the translations are proved
to preserve the validity of formulas.

A translation from LTL into LTL∇

We proceed as follows: first, we define a translation (·)∗ from LTL into LTL∇.
Then, in Lemma 4.48, we will show that if an LTL∇-formula corresponds to the
translation of some LTL-formula, then it can be interpreted “locally”, i.e., its truth
value with respect to an observation point depends only on the last element and
not on the store. Finally, in Lemma 4.50 and Theorem 4.51, we will use this result
to prove that the translation preserves the validity of formulas.
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Definition 4.47. We define the translation (·)∗ from the language of LTL into the
language of LTL∇ inductively as follows:

(p)∗ = p , for p atomic
(GA)∗ = G (A)∗

(⊥)∗ = ⊥
(XA)∗ = X (A)∗

(A ⊃ B)∗ = (A)∗ ⊃ (B)∗

(AUB)∗ = (B)∗ ∨ (F (X (B)∗ ∧∇(A)∗ ))

We extend (·)∗ to sets of formulas in the obvious way: Λ∗ = {(A)∗ | A ∈ Λ}.

In the following, when not confusing, we will sometimes omit parentheses and
write, e.g., A∗ instead of (A)∗.

Lemma 4.48. Let M be an LTL-model, [(m, )n] an observation point and A an
LTL-formula. Then

M, [(m, )n] |=
∇

A∗ ⇔ M, [(i, )n] |=
∇

A∗ for every natural number i .

Proof. By induction on the complexity of A. The base case is when A = p or A =⊥
and is trivial. There is one inductive step case for each connective and temporal
operator.

A = B ⊃ C. Then the translation of A is A∗ = B∗ ⊃ C∗. By Definition 4.44, we
obtain M, [(m, )n] |=

∇
B∗ ⊃ C∗ iff M, [(m, )n] |=

∇
B∗ implies M, [(m, )n] |=

∇

C∗. By the induction hypothesis, we see that this holds iff M, [(i, )n] |=
∇

B∗

implies M, [(i, )n] |=
∇

C∗ for every natural number i and thus, by Definition
4.44, iff for every natural number i, M, [(i, )n] |=

∇
B∗ ⊃ C∗.

A = GB. Then A∗ = GB∗. In this case, we do not even use the induction hy-
pothesis. Just observe that, by Definition 4.44, the possible value of m is not
involved in the evaluation of the formula. Thus we have M, [(m, )n] |=

∇
GB∗

iff ∀l ≥ n.M, [n, l] |=
∇

B∗ iff M, [(i, )n] |=
∇

GB∗, for every natural number i.
A = XB. This case is very similar to the previous one and we omit it.
A = BUC. Then A∗ = C∗ ∨ (F(XC∗ ∧ ∇B∗)). By Definition 4.44, we have M,

[(m, )n] |=
∇

A∗ iff (M, [(m, )n] |=
∇

C∗ or M, [(m, )n] |=
∇

F(XC∗ ∧ ∇B∗)) iff
(M, [(m, )n] |=

∇
C∗ or ∃l ≥ n. (M, [n, l] |=

∇
XC∗ ∧∇B∗)) iff (M, [(m, )n] |=

∇

C∗ or ∃l ≥ n. (M, [n, l] |=
∇

XC∗ and M, [n, l] |=
∇
∇B∗)) iff (M, [(m, )n] |=

∇

C∗ or ∃l ≥ n. (M, [l, l + 1] |=
∇

C∗ and ∀l′. n ≤ l′ ≤ l implies M, [l′] |=
∇

B∗)) iff (by the induction hypothesis) for every natural number i, we have
(M, [(i, )n] |=

∇
C∗ or ∃l ≥ n. (M, [l, l + 1] |=

∇
C∗ and ∀l′. n ≤ l′ ≤ l implies

M, [l′] |=
∇

B∗)) iff (by Definition 4.44) M, [(i, )n] |=
∇

C∗ ∨ (F(XC∗ ∧ ∇B∗))
for every natural number i.

⊓⊔

Corollary 4.49. Let M be an LTL-model, [(m, )n] an observation point, and A
an LTL-formula. Then M, [(m, )n] |=

∇
A∗ iff M, [n] |=

∇
A∗.

Proof. Immediate, by Lemma 4.48.
⊓⊔
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Lemma 4.50. Let M be an LTL-model, n a natural number and A an LTL-
formula. Then

M, n |=
LTL

A ⇔ M, [n] |=
∇

A∗ .

Proof. By induction on the complexity of A. The base case is when A = p or A =⊥
and is trivial. As inductive step, we have a case for each connective and temporal
operator.

A = B ⊃ C. Then A∗ = B∗ ⊃ C∗. We have M, n |=
LTL

B ⊃ C iff (by Definition
2.11) M, n |=

LTL
B implies M, n |=

LTL
C iff (by the induction hypothesis)

M, [n] |=
∇

B∗ implies M, [n] |=
∇

C∗ iff (by Definition 4.44) M, [n] |=
∇

B∗ ⊃
C∗.

A = GB. Then A∗ = GB∗. We have M, n |=
LTL

GB iff (by Definition 2.11) ∀m ≥
n.M, m |=

LTL
B iff (by the induction hypothesis) ∀m ≥ n.M, [m] |=

∇
B∗ iff

(by Lemma 4.48) ∀m ≥ n.M, [n, m] |=
∇

B∗ iff (by Definition 4.44) M, [n] |=
∇

GB∗.
A = XB. This case is very similar to the previous one and we omit it.
A = BUC. Then A∗ = C∗ ∨ (F(XC∗ ∧∇B∗)). We have M, n |=

LTL
A iff (by Defi-

nition 2.11) ∃m ≥ n.M, m |=
LTL

C and ∀n′. n ≤ n′ < m implies M, n′ |=
LTL

B
iff M, n |=

LTL
C or (∃m > n.M, m |=

LTL
C and ∀n′. n ≤ n′ < m im-

plies M, n′ |=
LTL

B) iff (by the induction hypothesis) M, [n] |=
∇

C∗ or
(∃m > n.M, [m] |=

∇
C∗ and ∀n′. n ≤ n′ < m implies M, [n′] |=

∇
B∗)

iff (by simple rewriting) M, [n] |=
∇

C∗ or (∃l ≥ n.M, [l + 1] |=
∇

C∗ and
∀n′. n ≤ n′ ≤ l implies M, [n′] |=

∇
B∗) iff (by Lemma 4.48) M, [n] |=

∇
C∗ or

(∃l ≥ n.M, [l, l +1] |=
∇

C∗ and ∀n′. n ≤ n′ ≤ l implies M, [n′] |=
∇

B∗) iff (by
Definition 4.44) M, [n] |=

∇
C∗ or (∃l ≥ n.M, [n, l] |=

∇
XC∗ ∧ ∇B∗) iff (by

Definition 4.44) M, [n] |=
∇

C∗ ∨ F(XC∗ ∧∇B∗).
⊓⊔

Theorem 4.51. Let Λ be a set of LTL-formulas and A an LTL-formula. Then

Λ |=
LTL

A ⇔ Λ∗ |=
∇

A∗ .

Proof. By Definition 2.11, Λ |=
LTL

A iff ∀M.M |=
LTL

Λ implies M |=
LTL

A
iff ∀M. (∀B ∈ Λ. ∀n.M, n |=

LTL
B implies ∀n.M, n |=

LTL
A ) iff (by Lemma

4.50) ∀M. (∀B ∈ Λ. ∀n.M, [n] |=
∇

B∗ implies ∀n.M, [n] |=
∇

A∗ ) iff (by Lemma
4.48) ∀M. (∀B ∈ Λ. ∀σ.M, σ |=

∇
B∗ implies ∀σ.M, σ |=

∇
A∗ ) iff (by Definition

4.44) ∀M. (∀B ∈ Λ.M |=
∇

B∗ implies M |=
∇

A∗ ) iff ∀M. (M |=
∇

Λ∗ implies
M |=

∇
A∗ ) iff Λ∗ |=

∇
A∗.

⊓⊔

A translation from LTL∇ into LTL

Defining a translation from LTL∇ into LTL is a much trickier task. Typically,
translations are defined recursively: we have a case for each possible main con-
nective of a formula and in all of these cases the translation is given in terms of
the translation of its subformulas. A similar recursive definition, when translating
LTL∇ into LTL, needs to take into account some subtleties.
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Clearly, the interesting case in the translation is that of formulas containing
the operator ∇. Furthermore, by observing the semantics of LTL∇ (Section 4.4.2),
one can conclude (we will prove it formally below) that:

• when ∇ is in the scope of another ∇, it can be ignored, e.g., ∇∇A ≡ ∇A;
• when ∇ is not in the scope of any temporal operator, it does not alter the

evaluation of the formula, e.g., ∇A ≡ A.

Thus the crucial case is when ∇ is in the scope of a different temporal operator:
X or G (or F, if we consider it explicitly).17

We have seen that, in order to define the semantics of LTL∇, we need to
consider pairs of instants, such that one instant (the second one) is where the
evaluation actually takes place and the other (the first one) is a kind of pointer to
some other instant in the flow of time. By reading Definition 4.44, we deduce that
this pointer is in fact only needed to evaluate a restricted class of LTL∇-formulas.

Namely, we can divide LTL∇-formulas into two classes:

1. the class of history-independent formulas, whose evaluation only depends on
the last element of an observation point;

2. the class of history-dependent formulas, whose evaluation depends also on the
first element (the pointer, or the store) of an observation point.

By observing the semantics of LTL∇, one can easily check that the history-
dependent formulas are indeed those where the ∇ operator is not in the scope
of any different temporal operator. As an example, we have that the formula G∇p
is history-independent, but its subformula ∇p is history-dependent.

All these arguments lead to the intuition that the translation of a formula of the
form XA or GA should depend on the nature of the subformula A. If the formula
A is history-independent, then we can give for it a simple recursive definition,
otherwise we need to consider a translation that mimics in some way the action
of the pointer. In this second case, considering a (disjunctive) normal form for
LTL∇-formulas will help define the translation.

In the following paragraphs, we formalize all these ideas and prove that the
resulting translation preserves the validity of formulas.

An alternative grammar for LTL∇-formulas

Here we give an alternative grammar for LTL∇-formulas with the intent of making
the separation between history-independent and history-dependent formulas clear.
Since it allows for a simpler presentation of the translation, we give the grammar
by considering ¬, ∧, ∨, X and F as primitive connectives. ⊥, ⊃ and G can be
defined in terms of these in the standard way.

Definition 4.52. Given a set P of propositional symbols, the set of (well-formed)
LTL∇-formulas is defined by the grammar

A ::= γ | δ

17 Indeed, even the case of a ∇ in the scope of an X could be simplified by splitting it
into two elementary subcases, e.g., X∇A ≡ A∧XA. Thus, in conclusion, the case of a
∇ in the scope of a G (or of an F) is the one that really matters.



120 4 Labeled Natural Deduction for Linear Temporal Logics

γ ::= p | γ ∧ γ | γ ∨ γ | ¬γ | Xγ | Fγ | Xδ | Fδ

δ ::= ∇A | ¬δ | A ∧ δ | δ ∧ A | A ∨ δ | δ ∨ A

where p ∈ P. We call (LTL∇) history-independent formulas the formulas belonging
to the syntactic category γ and (LTL∇) history-dependent formulas the formulas
belonging to the syntactic category δ.

Lemma 4.53. The language of LTL∇-formulas and the language of LTL∇-formulas
coincide.

Proof. We have to show that: (i) each LTL∇-formula is also an LTL∇-formula; and,
viceversa, (ii) each LTL∇-formula is also an LTL∇-formula. The proof proceeds
by structural induction in both directions; we omit the details.

⊓⊔

Because of Lemma 4.53, from now on, for simplicity, we will speak of LTL∇-
formulas also when referring to formulas originating from the grammar in Defini-
tion 4.52.

A normal form for LTL∇-formulas

Considering a normal form for LTL∇-formulas will help define the translation.
The first step will consist in eliminating some redundant occurrences of ∇: intu-
itively, those occurrences falling directly into the scope of another ∇. Some proper
terminology needs to be introduced.

Definition 4.54. Let A be an LTL∇-formula of the form XA′ (or GA′, or ∇A′)
and let us denote with h that occurrence of X (or of G, or of ∇, respectively).
Then for each occurrence h′ of a temporal operator in A′, we say that h′ is in the
temporal scope of h.

Given an LTL∇-formula A, we say that an occurrence h of a temporal operator
in A is in the strict temporal scope of an occurrence h′ of a temporal operator in
A iff:

1. h is in the temporal scope of h′; and
2. for each occurrence h′′ of a temporal operator in A:

a) h is not in in the temporal scope of h′′; or
b) h′ is in the temporal scope of h′′.

We also say that an occurrence of a ∇ in an LTL∇-formula A is redundant if
it is in the strict temporal scope of another occurrence of ∇.

Example 4.55. Consider the formula XG(∇p∧ q). The occurrence of ∇ (not redun-
dant) is in the temporal scope of the occurrences of both X and G, and in the strict
temporal scope of the occurrence of G.

In X∇(∇p ∧ q), the second occurrence of ∇ is in the strict temporal scope of
the first one and thus it is redundant.

Lemma 4.56. Let A be an LTL∇-formula and B be the formula obtained by re-
moving all the redundant occurrences of the operator ∇. Then A and B are se-
mantically equivalent.
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Proof. By observing the semantics given in Definition 4.44, we can first notice that
the evaluation of a formula of the form ∇A at an observation point that is a single
time instant (without a store) corresponds to the evaluation of the formula A at
the same point. Now observe that if an occurrence of ∇ is in the strict temporal
scope of another occurrence of ∇, then its evaluation is performed in a single time
instant-observation point. This implies that the removal of the inner-most ∇ does
not alter the evaluation.

⊓⊔

In order to get a normal form, we require, in addition to the removal of redundant
occurrences of ∇, that each history-dependent subformula is written in a particular
form. The following definition, lemma and example clarify and formalize the form
of normal LTL∇-formulas.

Definition 4.57. Given an LTL∇-formula A, we say that δ is a history-dependent
subformula of A iff δ is a subformula of A and is a history-dependent formula.

Definition 4.58. A δ-disjunctive normal form clause (δ-DNF clause, for short)
is an LTL∇-formula consisting of a conjunction of formulas that are:

1. history-independent formulas; or
2. history-dependent formulas of the form ∇γ or ¬∇γ for some history-independent

formula γ.

An LTL∇-formula A is in δ-disjunctive normal form (in δ-DNF, for short) if:

1. A does not contain any redundant occurrence of a ∇; and
2. for each history-dependent subformula δ of A, δ is the disjunction of δ-DNF

clauses.

Lemma 4.59. For every LTL∇-formula A, there exists an equivalent LTL∇-
formula A′ such that A′ is in δ-DNF.

Proof. We prove the statement by describing a procedure for transforming a
generic LTL∇-formula A into an LTL∇-formula A′ that is in δ-DNF.

First, we remove all the occurrences of the operator ∇ that are in the strict
temporal scope of another occurrence of ∇. Lemma 4.56 ensures that after this
process we have an equivalent formula.

Then we observe that, once we have removed the redundant occurrences of ∇,
given a subformula δ of A, the process of reducing δ to a disjunction of conjunctions
(as required by Definition 4.58) is equivalent to the process of reducing a formula
of propositional classical logic into the standard disjunctive normal form (see,
e.g., [155]), where we consider as literals:

1. history-independent formulas; or
2. history-dependent formulas of the form ∇γ or ¬∇γ for some history-independent

formula γ.

Thus, in order to transform an LTL∇-formula without redundant occurrences of
∇ into a formula in δ-DNF, we can iteratively apply the following procedure,
corresponding (mutatis mutandis) to the one defined for producing a disjunctive
normal form, to each history dependent subformula of A, starting from the inner-
most one.
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1. we iteratively apply the so-called double negation and De Morgan’s laws (see
[155]) in order to get a formula where we have only single negations and they
occur just before the atoms (where we consider history-independent formulas
or history-dependent formulas of the form ∇γ as atoms);

2. we iteratively apply distributivity laws in order to get a disjunction of con-
junctions.

The proof that the resulting formula is equivalent to the original one is a trivial
adaptation (again, mutatis mutandis) of the proof [155] given for transformations
into the standard disjunctive normal form in the case of propositional classical
logic.

⊓⊔

Example 4.60. Let us consider the LTL∇-formula

A ≡ p1 ∧ ¬F(X∇p2 ∧ ¬(p3 ∨∇F∇(p4 ∨ p5))) .

First, we eliminate the redundant occurrences of ∇ and obtain

A1 ≡ p1 ∧ ¬F(X∇p2 ∧ ¬(p3 ∨∇F(p4 ∨ p5))) .

Then we consider the history-dependent subformulas of A′. The inner-most ones
are ∇p2 and ∇F(p4 ∨ p5), which are already in normal form. Then we consider
¬(p3 ∧∇F(p4 ∨ p5)), to which we can apply De Morgan laws and obtain

A2 ≡ p1 ∧ ¬F(X∇p2 ∧ (¬p3 ∨ ¬∇F(p4 ∨ p5))) .

Finally, by applying distributivity laws to X∇p2 ∧ (¬p3 ∨ ¬∇F(p4 ∨ p5)), we get

A3 ≡ p1 ∧ ¬F((X∇p2 ∧ ¬p3) ∨ (X∇p2 ∧ ¬∇F(p4 ∨ p5))) ,

which is in δ-DNF.

The translation (·)•

Since Lemma 4.59 holds, we can, with no loss of generality, restrict the attention
to LTL∇-formulas that are in δ-DNF and define the translation (·)• from LTL∇

into LTL in terms of this class of formulas. We also remark, as it will be useful
in defining the translation and in proving some statements, that given an LTL∇-
formula A in δ-DNF, every its subformula of the form ∇B is such that B is history-
independent. Such a fact is a direct consequence of the absence of redundant
occurrences of ∇ in a formula in δ-DNF form.

Definition 4.61. We define the translation (·)• from the language of LTL∇-
formulas in δ-DNF form into the language of LTL inductively as follows. (Note
that, as in Definition 4.52, we use A, γ and δ (possibly subscripted) to denote
a generic LTL∇-formula, a history-independent formula and a history-dependent
formula, respectively.)
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(p)• = p , for p atomic
(A1 ∧ A2)

• = (A1)
• ∧ (A2)

•

(A1 ∨ A2)
• = (A1)

• ∨ (A2)
•

(¬A)• = ¬ (A)•

(Xγ)• = X (γ)•

(Fγ)• = F (γ)•

(∇A)• = (A)•

(Xδ)• = (C1)
X ∨ . . . ∨ (Cn)X

(Fδ)• = (C1)
F ∨ . . . ∨ (Cn)F

where δ ≡ C1∨. . .∨Cn for C1, . . . , Cn δ-DNF clauses and (·)X and (·)F are auxiliary
translations defined from the set of δ-DNF clauses into the set of LTL-formulas as
specified below.

Let C be a δ-DNF clause. Since the order of the elements of a conjunction does
not alter its evaluation, we can always write it as:

C ≡ (γ1 ∧ . . . ∧ γn) ∧ (∇γ′
1 ∧ . . . ∧∇γ′

m) ∧ (¬∇γ′′
1 ∧ . . . ∧ ¬∇γ′′

l ) .

Furthermore, let γ ≡ γ1∧ . . .∧γn and γ
∇
≡ γ′

1∧ . . .∧γ′
m. For greater convenience,

we also define another version of the operator until on LTL-formulas:

AUB ≡ (A ∧ B) ∧ ((A ∧ XA)U B) ,

where the idea is that now A holds also in the instant where B holds.
Then we define (·)X and (·)F as follows:

(C)X = X(γ)• ∧ (γ
∇

)• ∧ X(γ
∇

)• ∧ (¬(γ′′
1 )• ∨ ¬X(γ′′

1 )•) ∧ . . .∧ (¬(γ′′
l )• ∨ ¬X(γ′′

l )•)

(C)F = F(γ)• ∧ ((γ
∇

)• U (γ)•) ∧ ¬((γ′′
1 )• U (γ)•) ∧ . . . ∧ ¬((γ′′

l )• U (γ)•)

We extend (·)• to sets of formulas in the obvious way: Γ • = {(A)• | A ∈ Γ}.

In the following, when not confusing, we will sometimes omit parentheses and
write, e.g., A•, CX and CF instead of (A)•, (C)X and (C)F, respectively.

Properties of the translation

Here we show that the translation (·)• preserves the validity of formulas. Along
the proofs of the following lemmas, γ, γ1, γ2, . . . will denote history-independent
formulas, δ, δ1, δ2, . . . history-dependent formulas and A, A1, A2, . . . generic LTL∇-
formulas.

Lemma 4.62. Let M be an LTL-model, m, n ∈ N and γ a history-independent
formula. Then

M, [(m, )n] |=
∇

γ ⇔ M, [(m′, )n] |=
∇

γ , for all m′ ∈ N .

Proof. The proof is by induction on the complexity of the formula γ. The base
case is when γ = p and is trivial. There is one inductive step case for each other
formation case coming from the recursive definition of the grammar in Definition
4.52. Along the proof, γ, γ1 and γ2 denote history-independent formulas while A
denotes a generic LTL∇-formula.
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γ = γ1 ∧ γ2. By Definition 4.44, we have M, [(m, )n] |=
∇

γ1 ∧ γ2 iff M,
[(m, )n] |=

∇
γ1 and M, [(m, )n] |=

∇
γ2. By the induction hypothesis, this

holds iff M, [(m′, )n] |=
∇

γ1 and M, [(m′, )n] |=
∇

γ2 for every natural num-
ber m′, and thus, by Definition 4.44, iff for every natural number m′, M,
[(m′, )n] |=

∇
γ1 ∧ γ2 .

γ = γ1 ∨ γ2. By Definition 4.44, we have M, [(m, )n] |=
∇

γ1 ∨ γ2 iff M,
[(m, )n] |=

∇
γ1 or M, [(m, )n] |=

∇
γ2. By the induction hypothesis, this holds

iff M, [(m′, )n] |=
∇

γ1 or M, [(m′, )n] |=
∇

γ2 for every natural number m′,
and thus, by Definition 4.44, iff for every natural number m′, M, [(m′, )n]
|=

∇
γ1 ∨ γ2 .

γ = ¬γ1. By Definition 4.44, we have M, [(m, )n] |=
∇
¬γ1 iff M, [(m, )n] 6|=

∇
γ1.

By the induction hypothesis, this holds iff M, [(m′, )n] 6|=
∇

γ1 for every
natural number m′, and thus, by Definition 4.44, iff for every natural number
m′, M, [(m′, )n] |=

∇
¬γ1 .

γ = XA. We treat at the same time the cases where A is a history-independent
and A is a history-dependent formula, and we do not need to use the induction
hypothesis. By Definition 4.44, we have M, [(m, )n] |=

∇
XA iff M, [n, n +

1] |=
∇

A . Again, by Definition 4.44, this holds iff for every natural number
m′, M, [(m′, )n] |=

∇
XA .

γ = FA. Again, we do not use the induction hypothesis. By Definition 4.44, we
have M, [(m, )n] |=

∇
FA iff there exists i ≥ n such that M, [n, i] |=

∇
A .

By Definition 4.44, this holds iff for every natural number m′, M, [(m′, )n]
|=

∇
FA .

⊓⊔

Lemma 4.63. Let M be an LTL-model, n ∈ N and A an LTL∇-formula. Then

M, [n] |=
∇

A ⇔ M, n |=
LTL

A• .

Proof. The proof is by structural induction on A.

A = p. By Definition 4.61, A• = p. We have M, [n] |=
∇

p iff (by Definition 4.44)
p ∈ V(n) iff (by Definition 2.11) M, n |=

LTL
p.

A = A1 ∧ A2. By Definition 4.61, A• = A•
1 ∧ A•

2. We have M, [n] |=
∇

A1 ∧ A2

iff (by Definition 4.44) M, [n] |=
∇

A1 and M, [n] |=
∇

A2 iff (by the induc-
tion hypothesis) M, n |=

LTL
A•

1 and M, n |=
LTL

A•
2 iff (by Definition 2.11)

M, n |=
LTL

A•
1 ∧ A•

2.
A = A1 ∨ A2. By Definition 4.61, A• = A•

1 ∨ A•
2. We have M, [n] |=

∇
A1 ∨ A2

iff (by Definition 4.44) M, [n] |=
∇

A1 or M, [n] |=
∇

A2 iff (by the induction
hypothesis) M, n |=

LTL
A•

1 or M, n |=
LTL

A•
2 iff (by Definition 2.11) M, n |=

LTL

A•
1 ∨ A•

2.
A = ¬A1. By Definition 4.61, A• = ¬(A•

1). We have M, [n] |=
∇
¬A1 iff (by Def-

inition 4.44) M, [n] 6|=
∇

A1 iff (by the induction hypothesis) M, n 6|=
LTL

A•
1

iff (by Definition 2.11) M, n |=
LTL

¬(A•
1).

A = Xγ. By Definition 4.61, A• = X(γ•). We have M, [n] |=
∇

Xγ iff (by Definition
4.44) M, [n, n + 1] |=

∇
γ iff (by Lemma 4.63) M, [n + 1] |=

∇
γ iff (by the

induction hypothesis) M, n + 1 |=
LTL

γ• iff (by Definition 2.11) M, n |=
LTL

X(γ•).
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A = Fγ. By Definition 4.61, A• = F(γ•). We have M, [n] |=
∇

Fγ iff (by Definition
4.44) there exists i ≥ n such that M, [n, i] |=

∇
γ iff (by Lemma 4.63) there

exists i ≥ n such that M, [i] |=
∇

γ iff (by the induction hypothesis) there
exists i ≥ n such that M, i |=

LTL
γ• iff (by Definition 2.11) M, n |=

LTL
F(γ•).

A = Xδ. By Definition 4.61, A• = (C1)
X ∨ . . . ∨ (Cm)X, where δ ≡ C1 ∨ . . . ∨ Cm

and C1, . . . , Cm are δ-DNF clauses. For 1 ≤ i ≤ m, we can write Ci = γ1 ∧
. . .∧ γ

ki
∧ (∇γ′

1
∧ . . .∧∇γ′

ji
)∧ (¬∇γ′′

1
∧ . . .∧¬∇γ′′

li
). For convenience, we also

define γ
∧i

= γ
1
∧ . . . ∧ γ

ki
and γ

∇i
= γ′

1
∧ . . . ∧ γ′

ji
.

First, we prove that, for 1 ≤ i ≤ m, M, [n, n + 1] |=
∇

Ci iff M, n |=
LTL

(Ci)
X.

We have: M, [n, n + 1] |=
∇

Ci

iff (by Definition 4.44) M, [n, n + 1] |=
∇

γ
h

for all h s.t. 1 ≤ h ≤ ki and
M, [n, n + 1] |=

∇
∇γ′

h
for all h s.t. 1 ≤ h ≤ ji and M, [n, n + 1] |=

∇
¬∇γ′′

h

for all h s.t. 1 ≤ h ≤ li
iff (by Lemma 4.62) M, [n+1] |=

∇
γ

h
for all h s.t. 1 ≤ h ≤ ki and M, [n, n+

1] |=
∇
∇γ′

h
for all h s.t. 1 ≤ h ≤ ji and M, [n, n + 1] |=

∇
¬∇γ′′

h
for all h

s.t. 1 ≤ h ≤ li
iff (by Definition 4.44) M, [n + 1] |=

∇
γ

h
for all h s.t. 1 ≤ h ≤ ki and

(M, [n] |=
∇

γ′
h

and M, [n + 1] |=
∇

γ′
h
) for all h s.t. 1 ≤ h ≤ ji and

(M, [n] 6|=
∇

γ′′
h

or M, [n + 1] 6|=
∇

γ′′
h
) for all h s.t. 1 ≤ h ≤ li

iff (by the induction hypothesis) M, n + 1 |=
LTL

γ•
h

for all h s.t. 1 ≤ h ≤ ki

and (M, n |=
LTL

γ′•
h

and M, n + 1 |=
LTL

γ′•
h

) for all h s.t. 1 ≤ h ≤ ji and
(M, n 6|=

LTL
γ′′•

h
or M, n + 1 6|=

LTL
γ′′•

h
) for all h s.t. 1 ≤ h ≤ li

iff (by Definition 2.11) M, n + 1 |=
LTL

γ•
1
∧ . . . ∧ γ•

ki
and (M, n |=

LTL
γ′•

1
∧

. . . ∧ γ′•
ji

and M, n + 1 |=
LTL

γ′•
1

∧ . . . ∧ γ′•
ji

) and (M, n 6|=
LTL

γ′′•
h

or

M, n 6|=
LTL

X(γ′′•
h

)) for all h s.t. 1 ≤ h ≤ li
iff (by Definition 4.61) M, n + 1 |=

LTL
(γ

∧i
)• and (M, n |=

LTL
(γ

∇i
)• and

M, n + 1 |=
LTL

(γ
∇i

)•) and (M, n 6|=
LTL

γ′′•
h

or M, n 6|=
LTL

X(γ′′•
h

)) for all
h s.t. 1 ≤ h ≤ li

iff (by Definition 2.11) M, n |=
LTL

X(γ
∧i

)• and M, n |=
LTL

(γ
∇i

)• and
M, n |=

LTL
X((γ

∇i
)•) and (M, n |=

LTL
¬(γ′′•

h
) or M, n |=

LTL
¬X(γ′′•

h
))

for all h s.t. 1 ≤ h ≤ li
iff M, n |=

LTL
(Ci)

X .
Now we use this result to prove the main statement. Namely we have:
M, [n] |=

∇
Xδ

iff (by Definition 4.44) M, [n, n + 1] |=
∇

δ
iff (by Definition 4.44) M, [n, n + 1] |=

∇
C1 or . . . or M, [n, n + 1] |=

∇
Cm

iff (by the result above) M, n |=
LTL

(C1)
X or . . . or M, n |=

LTL
(Cm)X

iff (by Definition 2.11) M, n |=
LTL

(C1)
X ∨ . . . ∨ (Cm)X

iff M, n |=
LTL

A• .
A = Fδ. By Definition 4.61, A• = (C1)

F ∨ . . . ∨ (Cm)F, where δ ≡ C1 ∨ . . . ∨ Cm

and C1, . . . , Cm are δ-DNF clauses. For 1 ≤ i ≤ m, we can write Ci = γ1 ∧
. . .∧ γ

ki
∧ (∇γ′

1
∧ . . .∧∇γ′

ji
)∧ (¬∇γ′′

1
∧ . . .∧¬∇γ′′

li
). For convenience, we also

define, as above, γ
∧i

= γ1 ∧ . . . ∧ γ
ki

and γ
∇i

= γ′
1
∧ . . . ∧ γ′

ji
.

First, we prove that, for 1 ≤ i ≤ m, there exists n′ ≥ n such that
M, [n, n′] |=

∇
Ci iff M, n |=

LTL
(Ci)

F. In fact, we have: there exists n′ ≥ n
such that M, [n, n′] |=

∇
Ci
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iff (by Definition 4.44) there exists n′ ≥ n such that M, [n, n′] |=
∇

γ
h

for all
h s.t. 1 ≤ h ≤ ki and M, [n, n′] |=

∇
∇γ′

h
for all h s.t. 1 ≤ h ≤ ji and

M, [n, n′] |=
∇
¬∇γ′′

h
for all h s.t. 1 ≤ h ≤ li

iff (by Lemma 4.62) there exists n′ ≥ n such that M, [n′] |=
∇

γ
h

for all h
s.t. 1 ≤ h ≤ ki and M, [n, n′] |=

∇
∇γ′

h
for all h s.t. 1 ≤ h ≤ ji and

M, [n, n′] |=
∇
¬∇γ′′

h
for all h s.t. 1 ≤ h ≤ li

iff (by Definition 4.44) there exists n′ ≥ n such that M, [n′] |=
∇

γ
h

for all h
s.t. 1 ≤ h ≤ ki and (M, [n′′] |=

∇
γ′

h
for all n′′ s.t. n ≤ n′′ ≤ n′ and for

all h s.t. 1 ≤ h ≤ ji) and (for all h s.t. 1 ≤ h ≤ li there exists n′′ s.t.
n ≤ n′′ ≤ n′ for which M, [n′′] 6|=

∇
γ′′

h
)

iff (by the induction hypothesis) there exists n′ ≥ n such that M, n′ |=
LTL

γ•
h

for all h s.t. 1 ≤ h ≤ ki and (M, n′′ |=
LTL

γ′•
h

for all n′′ s.t. n ≤ n′′ ≤ n′

and for all h s.t. 1 ≤ h ≤ ji) and (for all h s.t. 1 ≤ h ≤ li there exists n′′

s.t. n ≤ n′′ ≤ n′ for which M, n′′ 6|=
LTL

γ′′•
h

)
iff (by Definition 2.11) there exists n′ ≥ n such that (M, n′ |=

LTL
γ•

1
∧. . .∧γ•

ki
)

and (M, n′′ |=
LTL

γ′•
1
∧ . . .∧ γ′•

ji
for all n′′ s.t. n ≤ n′′ ≤ n′) and (for all h

s.t. 1 ≤ h ≤ li there exists n′′ s.t. n ≤ n′′ ≤ n′ for which M, n′′ 6|=
LTL

γ′′•
h

)
iff (by Definition 4.61) there exists n′ ≥ n such that (M, n′ |=

LTL
(γ

∧i
)•)

and (M, n′′ |=
LTL

(γ
∇i

)• for all n′′ s.t. n ≤ n′′ ≤ n′) and (for all h s.t.
1 ≤ h ≤ li there exists n′′ s.t. n ≤ n′′ ≤ n′ for which M, n′′ 6|=

LTL
γ′′•

h
)

iff (by Definition 2.11) M, n |=
LTL

F(γ
∧i

)• and M, n |=
LTL

((γ
∇i

)•U(γ
∧i

)•)
and for all h s.t. 1 ≤ h ≤ li , M, n |=

LTL
¬((γ′′

h
)•U(γ

∧i
)•)

iff M, n |=
LTL

(Ci)
F .

Now we use this result to prove the main statement. Namely we have:
M, [n] |=

∇
Fδ

iff (by Definition 4.44) there exists n′ ≥ n such that M, [n, n′] |=
∇

δ
iff (by Definition 4.44) there exists n′ ≥ n such that M, [n, n′] |=

∇
C1 or . . .

or M, [n, n′] |=
∇

Cm

iff (by the result above) M, n |=
LTL

(C1)
F or . . . or M, n |=

LTL
(Cm)F

iff (by Definition 2.11) M, n |=
LTL

(C1)
F ∨ . . . ∨ (Cm)F

iff M, n |=
LTL

A• .
⊓⊔

Proposition 4.64. Let M be an LTL-model and γ a history-independent formula.
Then

M |=
∇

γ ⇔ M |=
LTL

γ• .

Proof. By Definition 4.44, M |=
∇

γ iff M, [n] |=
∇

γ for all n ∈ N iff (by Lemma
4.63) M, n |=

LTL
γ• for all n ∈ N iff (by Definition 2.11) M |=

LTL
γ•.

⊓⊔

Proposition 4.65. Let M be an LTL-model and δ a history-dependent formula.
Then

M |=
∇

δ ⇔ M |=
LTL

δ• .

Proof. By Definition 4.44, M |=
∇

δ iff M, [n] |=
∇

δ for all n ∈ N iff (by Lemma
4.63) M, n |=

LTL
δ• for all n ∈ N iff (by Definition 2.11) M |=

LTL
δ•.

⊓⊔
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Theorem 4.66. Let Γ be a set of LTL∇-formulas and A an LTL∇-formula. Then

Γ |=
∇

A ⇔ Γ • |=
LTL

A• .

Proof. We have Γ |=
∇

A iff (by Definition 4.44) for every LTL-model M, (M |=
∇

Γ implies M |=
∇

A) iff (by Definition 4.44) for every LTL-model M, ((M |=
∇

B
for every LTL∇-formula B ∈ Γ ) implies M |=

∇
A) iff (by Propositions 4.64 and

4.65) for every LTL-model M, ((M |=
LTL

B• for every LTL∇-formula B ∈ Γ )
implies M |=

LTL
A•) iff (by Definition 2.11) Γ • |=

LTL
A•.

⊓⊔

4.4.4 N (LTL∇): a labeled natural deduction system for LTL∇

In this section, we will first define a labeled natural deduction system N (LTL∇)
on the language of LTL∇-formulas. By considering the translations (·)∗ and (·)•,
in the next sections we will show how it is possible to use such a system also for
reasoning on LTL.

The rules of N (LTL∇)

The rules of N (LTL∇) are given in Figure 4.19. The core is the system N (LTL
−
);

thus, there are no rules whose conclusion is an rwff.
The rules ⊃I, ⊃E and ⊥E are just an adaptation of those of N (LTL

−
) to the

case of prefixes that are not necessarily single labels.
The rules for the introduction and the elimination of G and X share the same

structure. Consider, for instance, G and the corresponding relation 6. The idea
underlying the introduction rule GI is that the meaning of b1 : GA is given by the
metalevel implication b1 6 b2 =⇒ b1b2 : A for an arbitrary b2 6-accessible from b1

(where the arbitrariness of b2 is ensured by the side-condition on the rule). As we
remarked above, the operators G and X have a local nature, in that when we write
(b1)b2 : GA we are stating that GA holds at time instant b2, which is the last in the
observation point. Hence, the elimination rule GE says that if b2 is 6-accessible
from b1 (i.e., b1 6 b2), then we can conclude that A holds for the sequence b1b2.
Similar observations hold for X and the corresponding relation ⊳.

As in the previous sections, the rule ser⊳ models the fact that every time
instant has an immediate successor, while the rule lin⊳ specifies that such a suc-
cessor must be unique.

Similarly, the rules refl 6 and trans 6 state the reflexivity and transitivity
of 6, while eq 6 captures substitution of equals.18 The rule split 6 states that
if b1 6 b2, then either b1 = b2 or b1 < b2. The rule thus works in the style of a
disjunction elimination: if by assuming either of the two cases, we can derive a
formula α : A, then we can discharge the assumptions and conclude α : A.

The rule base 6 expresses the fact that 6 contains ⊳, while the rule ind models
the induction principle underlying the relation between ⊳ and 6.

18 Recall that in this system we use rwffs only as assumptions for the derivation of lwffs,
so we do not need a more general rule that concludes ϕ[b2/b1] from ϕ, b1 6 b2 and
b2 6 b1.
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[α1 : A ⊃⊥]
....

α2 :⊥

α1 : A
⊥E

[α : A]
....

α : B
α : A ⊃ B

⊃I
α : A ⊃ B α : A

α : B
⊃E

[b1 6 b2]
....

b1b2 : A

b1 : GA
GI

(b)b1 : GA b1 6 b2

b1b2 : A
GE

b1 ⊳ b2 b1 ⊳ b3 ϕ

[ϕ[b3/b2]]
....

α : A

α : A
lin⊳

[b1 ⊳ b2]
....

b1b2 : A

b1 : XA
XI

(b)b1 : XA b1 ⊳ b2

b1b2 : A
XE

b1 6 b2 b2 6 b3

[b1 6 b3]
....

α : A

α : A
trans 6

[b1 6 b2] [b2 6 b3]
....

b2 : A

b1b3 : ∇A
∇I

b1b3 : ∇A b1 6 b2 b2 6 b3

b2 : A
∇E

(b1)b : A

(b2)b : A
last

[b1 6 b1]
....

α : A
α : A

refl 6

b1 6 b2 ϕ

[ϕ[b2/b1]]
....

α : A

[b1 ⊳ b′] [b′ 6 b2]
....

α : A

α : A
split 6

b1 ⊳ b2

[b1 6 b2]
....

α : A

α : A
base 6

[b1 ⊳ b2]
....

α : A
α : A

ser⊳

b1 6 b2 b2 6 b1 (b′)b1 : A

(b′)b2 : A
eq 6

(b′)b0 : A b0 6 b

[b0 6 bi] [bi ⊳ bj ] [(b′)bi : A]
....

(b′)bj : A

(b′)b : A
ind

The rules have the following side conditions:

• In XI (GI), b2 is fresh, i.e., it is different from b1 and does not occur in any assumption
on which αb1b2 : A depends other than the discharged assumption b1 ⊳ b2 (b1 6 b2).

• In ∇I , b2 is fresh, i.e., it is different from b1 and b3, and does not occur in any
assumption on which αb1b2 : A depends other than the discharged assumptions b1 6

b2 and b2 6 b3.
• In last , the formula A must be history-independent (see Definition 4.52).
• In ser⊳, b2 is fresh, i.e., it is different from b and does not occur in any assumption

on which α : A depends other than the discharged assumption b1 ⊳ b2.
• In split 6, b′ is fresh, i.e., it is different from b1 and b2 and does not occur in any

assumption on which α : A depends other than the discharged assumptions b1 ⊳ b′

and b′ 6 b2.
• In ind , bi and bj are fresh, i.e., they are different from each other and from b and

b0, and do not occur in any assumption on which αb0bj : A depends other than the
discharged assumptions of the rule.

• In ind and eq 6, the use of the parentheses has to be intended as follows: b′ is either
present in all the prefixes where it occurs between parentheses or in none of them.

Fig. 4.19. The rules of N (LTL∇).
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Finally, we have three rules that speak about the history and the observation
points: the rules ∇I and ∇E, which we already described in the introduction,
and last . This rule expresses what we also anticipated in Sections 4.4.1 and 4.4.3:
the standard operators (and connectives) of LTL only speak about single time
instants, and thus if a formula A is history-independent (see Definition 4.52), then
given a lwff (b1)b : A we can safely replace the possible store b1 of our observation
point by any other time instant b2 and conclude that A holds at (b2)b.

We write Φ ⊢
∇

α : A to say that there exists a derivation of α : A in the system
N (LTL∇) whose open assumptions are all contained in the set of formulas Φ.

4.4.5 Soundness

In this section we discuss the soundness of the system N (LTL∇). First, we show
that it is sound with respect to the semantics of LTL∇. Then we extend this result
to LTL and prove that N (LTL∇) is also sound, by means of the translation (·)•,
with respect to the semantics of LTL.

Theorem 4.67. For every set Φ of labeled and relational formulas and every la-
beled formula α : A,

Φ ⊢
∇

α : A ⇒ Φ |=
∇

α : A .

Proof. The proof proceeds by induction on the structure of the derivation of α : A.
The base case is when α : A ∈ Φ and is trivial. There is one step case for every
rule and we show here the most representative cases.

First, consider the case in which the last rule application is a ∇I, where α =
b1b3, A = ∇B, and Π is a proof of b2 : B from hypotheses in Φ′, with b2 fresh and
with Φ′ = Φ ∪ {b1 6 b2} ∪ {b2 6 b3}.

[b1 6 b2] [b2 6 b3]
Π

b2 : B

b1b3 : ∇B
∇I

By the induction hypothesis, for every interpretation λ, if M, λ |=
∇

Φ′, then
M, λ |=

∇
b1b2 : B. We let λ be any interpretation such that M, λ |=

∇
Φ, and show

that M, λ |=
∇

b1b3 : ∇B. Let λ(b1) = n and λ(b3) = m. Since b2 is fresh, we can
extend λ to an interpretation (still called λ for simplicity) such that λ(b2) = n + i
for an arbitrary 0 ≤ i ≤ m. The induction hypothesis yields M, λ |=

∇
b2 : B,

i.e., M, [n + i] |=
∇

B, and thus, since i is an arbitrary point between 0 and m, we
obtain M, [n, n + m] |=

∇
∇B. It follows M, λ |=

∇
βb1b3 : ∇B.

Now consider the case in which the last rule applied is ∇E and α = b2:

Π
b1b3 : ∇A b1 6 b2 b2 6 b3

b2 : A
∇E

where Π is a proof of b1b3 : ∇A from hypotheses in Φ1, with Φ = Φ1 ∪ {b1 6

b2}∪ {b2 6 b3} for some set Φ1 of formulas. By applying the induction hypothesis
on Π , we have:
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Φ1 |=
∇

b1b3 : ∇A .

We proceed by considering a generic LTL-model M and a generic interpretation
λ on it such that M, λ |=

∇
Φ and showing that this entails

M, λ |=
∇

b2 : A .

Since Φ1 ⊂ Φ, we deduce M, λ |=
∇

Φ1 and, from the induction hypothesis,
M, λ |=

∇
b1b3 : ∇A. Furthermore M, λ |=

∇
Φ entails M, λ |=

∇
b1 6 b2 and

M, λ |=
∇

b2 6 b3. Then, by Definition 4.44, we obtain M, λ |=
∇

b2 : A.
Consider the case in which the last rule application is a GI, where α = b1 and

A = GB:
[b1 6 b2]

Π
b1b2 : B

b1 : GB
GI

where Π is a proof of b1 : GB from hypotheses in Φ′, with b2 fresh and with
Φ′ = Φ ∪ {b1 6 b2}. By the induction hypothesis, for all interpretations λ, if
M, λ |=

∇
Φ′, then M, λ |=

∇
b1b2 : B. We let λ be any interpretation such that

M, λ |=
∇

Φ, and show that M, λ |=
∇

b1 : GB. Let λ(b1) = n. Since b2 is fresh, we
can extend λ to an interpretation (still called λ for simplicity) such that λ(b2) =
n + m for an arbitrary m > 0. The induction hypothesis yields M, λ |=

∇
b1b2 : B,

i.e., M, [n, n+m] |=
∇

B, and thus, since m is arbitrary, we obtain M, [n] |=
∇

GB.
It follows M, λ |=

∇
b1 : GB.

Now consider the case in which the last rule applied is GE and α = b1b2:

Π
(b)b1 : GA b1 6 b2

b1b2 : A
GE

where Π is a proof of (b)b1 : GA from hypotheses in Φ1, with Φ = Φ1 ∪ {b1 6 b2}
for some set Φ1 of formulas. By applying the induction hypothesis on Π , we have:

Φ1 |=
∇

(b)b1 : GA .

We proceed by considering a generic LTL-model M and a generic interpretation
λ on it such that M, λ |=

∇
Φ and showing that this entails

M, λ |=
∇

b1b2 : A .

Since Φ1 ⊂ Φ, we deduce M, λ |=
∇

Φ1 and, from the induction hypothesis,
M, λ |=

∇
(b)b1 : GA. Furthermore M, λ |=

∇
Φ entails M, λ |=

∇
b1 6 b2. Then, by

Definition 4.44, we obtain M, λ |=
∇

b1b2 : A.
Now consider the case in which the last rule applied is last and α = (b2)b,

where Π is a proof of (b1)b : A from hypotheses in Φ. By applying the induction
hypothesis on Π , we have Φ |=

∇
(b1)b : A.

Π
(b1)b : A

(b2)b : A
last
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We proceed by considering a generic LTL-model M and a generic interpretation
λ on it such that M, λ |=

∇
Φ and showing that this entails M, λ |=

∇
(b2)b :

A. By the induction hypothesis, M, λ |=
∇

(b1)b : A, i.e., M, λ+((b1)b) |=
∇

A
by Definition 4.44. Since A is a history-independent formula, by the side condition
of the rule, and the two observation sequences λ+((b1)b) and λ+((b2)b) share the
same last element λ(b), we can apply Lemma 4.62 and obtain M, λ+((b2)b) |=∇

A,
i.e., M, λ |=

∇
(b2)b : A by Definition 4.44.

Finally, consider the case in which the last rule applied is ind and α = (b′)b:

Π ′

(b′)b0 : A b0 6 b

[b0 6 bi] [bi ⊳ bj ] [(b′)bi : A]
Π

(b′)bj : A

(b′)b : A
ind

where Π is a proof of (b′)bj : A from hypotheses in Φ2 and Π ′ is a proof of
(b′)b0 : A from hypotheses in Φ1, with Φ = Φ1 ∪ {b0 6 b} and Φ2 = Φ1 ∪ {b0 6

bi}∪{bi⊳ bj}∪{(b′)bi : A} for some set Φ1 of formulas. The side-condition on ind
ensures that bi and bj are fresh in Π . Hence, by applying the induction hypothesis
on Π and Π ′, we have:

Φ2 |=
∇

(b′)bj : A and Φ1 |=
∇

(b′)b0 : A .

We proceed by considering a generic LTL-model M and a generic interpretation
λ on it such that M, λ |=

∇
Φ and showing that this entails

M, λ |=
∇

(b′)b : A .

First, we note that Φ1 ⊂ Φ and therefore M, λ |=
∇

Φ implies M, λ |=
∇

Φ1 and,
by the induction hypothesis on Π ′, M, λ |=

∇
(b′)b0 : A. Now let λ(b0) = n for

some natural number n. From M, λ |=
∇

Φ, we deduce M, λ |=
∇

b0 6 b and thus
λ(b) = n + k for some k ∈ N. We show by induction on k that M, λ |=

∇
(b′)b : A.

As a base case, we have k = 0; it follows that λ(b) = λ(b0) and thus trivially that
M, λ |=

∇
(b′)b0 : A entails M, λ |=

∇
(b′)b : A. Let us consider now the induction

step. Given a label bk−1 such that λ(bk−1) = n+k−1, we show that the induction
hypothesis M, λ |=

∇
(b′)bk−1 : A entails the thesis M, λ |=

∇
(b′)b : A. We can

build an interpretation λ′ that differs from λ only in the points assigned to bi

and bj , namely, λ′ = λ[bi 7→ n + k − 1][bj 7→ n + k]. It is easy to verify that the
interpretation λ′ is such that the following three conditions hold:

(i) M, λ′ |=
∇

(b′)bi : A;
(ii) M, λ′ |=

∇
b0 6 bi;

(iii) M, λ′ |=
∇

bi ⊳ bj .

Furthermore, the side-condition on the rule ind ensures that λ and λ′ agree on
all the labels occurring in Φ1, from which we can infer M, λ′ |=

∇
Φ1. It follows

M, λ′ |=
∇

Φ2 and thus, by the induction hypothesis on Π , M, λ′ |=
∇

(b′)bj : A.
We conclude M, λ′ |=

∇
(b′)b : A by observing that λ′(bj) = λ(b).

⊓⊔
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We have proved the soundness of the system in terms of the labeled language. It
is trivial to infer from it a result of soundness in terms of the logic LTL∇, by focus-
ing on those derivations where both the conclusion and all the open assumptions
are lwffs prefixed by the same single label.

Corollary 4.68. Let Γ = {A1, . . . , An} be a set of LTL∇-formulas, A an LTL∇-
formula and b a label. Then

b : A1, . . . , b : An ⊢
∇

b : A ⇒ Γ |=
∇

A .

Proof. By Theorem 4.67, b : A1, . . . , b : An ⊢
∇

b : A implies b : A1, . . . , b : An |=
∇

b : A. By Definition 4.46, b : A1, . . . , b : An |=
∇

b : A implies Γ |=
∇

A.
⊓⊔

Now, by exploiting the translation (·)• defined in Section 4.4.3, we extend this
result to a form of soundness with respect to LTL.

Theorem 4.69. Let Γ = {A1, . . . , An} be a set of LTL∇-formulas, A an LTL∇-
formula and b a label. Then

b : A1, . . . , b : An ⊢
∇

b : A ⇒ Γ • |=
LTL

A• .

Proof. By Corollary 4.68, b : A1, . . . , b : An ⊢
∇

b : A implies Γ |=
∇

A. By Theorem
4.66, Γ |=

∇
A implies Γ • |=

LTL
A•.

⊓⊔

4.4.6 Completeness

In order to prove the completeness of the system N (LTL∇), we can exploit
the equivalence shown in Section 4.4.3 and use the Hilbert-style axiomatization
H(LTL) of Section 2.3.4. The proposed natural deduction system consists of only
finitary rules; consequently, it cannot be strongly complete for LTL (see also the
discussion in Section 4.2). Nevertheless, by using the translation (·)∗, we can give
a proof of weak completeness for it. First, we introduce a lemma that will be useful
in proving completeness.

Lemma 4.70. If A is an LTL-formula, then A∗ is a history- independent formula.

Proof. It follows easily from Definition 4.52. The proof proceeds by induction on
the complexity of the formula A.

⊓⊔

Theorem 4.71. Let A be an LTL-formula and b a label. Then

|=
LTL

A ⇒ ⊢
∇

b : A∗ .

Proof. We can prove the theorem by showing that N (LTL∇) is complete with
respect to the (translation of the) axiomatization H(LTL) given in Section 2.3.4,
which is sound and complete for the logic LTL. That is, we need to prove that:
(i) the translation, via (·)∗, of every axiom of H(LTL) is provable in N (LTL∇) by
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means of an LTL-derivation, and (ii) the notion of ⊢
LTL

is closed under the (labeled
equivalent of the) rules of inference of H(LTL).

We focus on (i); showing (ii) is straightforward and we omit it here.
Note that, for simplicity, we use also some rules (i.e., FI, FE, ∨I, ∨E, ∧I and

∧E) concerning derived operators. They can be easily derived from the set of rules
in Figure 4.19.

We also remark that, by Lemma 4.70, our use of the rule last in the following
derivations respects the side-conditions of the rule, i.e. the premise (and thus the
conclusion) of each application of last is a history-independent labeled formula.

(A2 )

[b : G(A ⊃ B)]1 [b 6 c]3

bc : A ⊃ B
GE

[b : GA]2 [b 6 c]3

bc : A
GE

bc : B
⊃E

b : GB GI3

b : GA ⊃ GB
⊃I2

b : G(A ⊃ B) ⊃ (GA ⊃ GB)
⊃I1

(A3 )

(X¬A ↔ ¬XA)

[b : X¬A]1 [b⊳ c]2

bc : ¬A
XE

[b : XA]3 [b⊳ c]2

bc : A
XE

bc :⊥
⊃E

b : ¬XA ⊥E3

b : ¬XA
ser⊳2

b : X¬A ⊃ ¬XA
⊃I1

[b : ¬XA]1

[b⊳ c]2 [b ⊳ d]4 [bc : A]3

bd : A
lin⊳

b : XA XI4

b :⊥
⊃E

bc : ¬A
⊃3

b : X¬A XI2

b : ¬XA ⊃ X¬A
⊃I1

(A4 )

This proof is very similar to the one for (A2 ) and we thus omit it.

(A5 )



134 4 Labeled Natural Deduction for Linear Temporal Logics

[b : GA]1 [b 6 b]2

bb : A
GE

b : A
last

b : A
refl 62

[b⊳ c]3
[b 6 c]5 [c 6 d]4

[b : GA]1 [b 6 d]6

bd : A
GE

bd : A
trans 66

bd : A
base 65

cd : A
last

c : GA GI4

bc : GA
last

b : XGA XI3

b : A ∧ XGA
∧I

b : GA ⊃ (A ∧ XGA)
⊃I1

(A6 )

[b : A]2 [b 6 c]3

[b : G(A ⊃ XA)]1 [b 6 bi]
4

bbi : A ⊃ XA
GE

[bi : A]4

bbi : A
last

bbi : XA
⊃E

[bi ⊳ bj ]
4

bibj : A
XE

bj : A
last

c : A ind4

bc : A
last

b : GA
⊃3

b : A ⊃ GA
⊃I2

b : G(A ⊃ XA) ⊃ (A ⊃ GA)
⊃I1

(A7 )

Derivations are presented in Figures 4.20 and 4.21. Note that, for brevity, we
give a derivation of a, clearly equivalent, simplified version of the translation of
(A7 ). Namely, we consider F(XB ∧ ∇A) ⊃ (A ∧ X(B ∨ F(XB ∧ ∇A))) instead of
B ∨ F(XB ∧∇A) ⊃ B ∨ (A ∧ X(B ∨ F(XB ∧∇A))).

(A8 )

A proof of the axiom (A8 ) is given in Figure 4.22.
⊓⊔

Theorem 4.73 below expresses a form of completeness with regard to LTL∇. It
is based upon the composed translation ((·)•)∗, going first from LTL∇ into LTL
and then back into LTL∇. We need to remark that the result of such a translation
is a formula that is semantically (but not necessarily syntactically) equivalent to
the original one, as shown by the following example.

Example 4.72. Consider the formula A = ∇p ∨ ∇q. Then we have A• = p ∨ q
and (A•)∗ = p ∨ q. A and (A•)∗, though syntactically different, are semantically
equivalent.

In other words, if we are interested in reasoning on LTL∇, we can reduce the
problem of finding a derivation for a given LTL∇-formula A to the problem of
finding a derivation for the formula (A•)∗, which is semantically equivalent to A
and for which a derivation in N (LTL∇) exists.
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Left-to-right direction:

[b : F(XB ∧ ∇A)]1

[bc : XB ∧ ∇A]2

bc : ∇A
∧E

[b 6 b]3 [b 6 c]2

b : A
∇E

b : A
refl 63 Π1

b : X(B ∨ F(XB ∧∇A))

b : A ∧ X(B ∨ F(XB ∧∇A))
∧I

b : A ∧ X(B ∨ F(XB ∧∇A))
FE2

b : F(XB ∧ ∇A) ⊃ (A ∧ X(B ∨ F(XB ∧∇A)))
⊃I1

where Π1 is the following derivation:

[b 6 c]2 [b⊳ b′]4

[bc : XB ∧∇A]2

bc : XB
∧E

[c⊳ b′]5

cb′ : B
XE

bb′ : B
last

bb′ : B ∨ F(XB ∧∇A)
∨I

b⊳ b′ b⊳ b′′
Π2

bb′′ : B ∨ F(XB ∧∇A) [bb′ : B ∨ F(XB ∧ ∇A)]6

bb′ : B ∨ F(XB ∧∇A)
lin⊳6

bb′ : B ∨ F(XB ∧∇A)
split 65

b : X(B ∨ F(XB ∧∇A))
XI4

and Π2 is the following derivation:

[bc : XB ∧∇A]2

bc : XB
∧E

[c ⊳ c′]7

cc′ : B
XE

c : XB XI7

b′′c : XB
last

[b ⊳ b′′]5
[b 6 b′′]9 [b′′ 6 d]8

[bc : XB ∧∇A]2

bc : ∇A
∧E

[b 6 d]10 [d 6 c]8

d : A
∇E

d : A
trans 610

d : A
base 69

b′′c : ∇A
∇I8

b′′c : XB ∧∇A
∧I

[b′′ 6 c]5

b′′ : F(XB ∧∇A)
FI

b′ : B ∨ F(XB ∧∇A)
∨I

bb′′ : B ∨ F(XB ∧∇A)
last

Fig. 4.20. Proof of the Axiom (A7 ): left-to-right direction.
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Right-to-left direction: in the following derivations, we denote with ϕ the formula b : A ∧ X(B ∨ F(XB ∧∇A)).

[ϕ]1

b : X(B ∨ F(XB ∧∇A))
∧E

[b⊳ e]2

be : B ∨ F(XB ∧∇A)
XE

[be : B]3

Π1

b : F(XB ∧∇A)

[be : F(XB ∧ ∇A)]3

Π2

b : F(XB ∧∇A)

b : F(XB ∧ ∇A)
∨E3

b : F(XB ∧ ∇A)
ser⊳2

b : (A ∧ X(B ∨ F(XB ∧∇A))) ⊃ F(XB ∧∇A)
⊃I1

where Π1 is the following derivation:

[b ⊳ e]2 [b⊳ f ]5 [be : B]3 [bf : B]6

bf : B
lin⊳6

b : XB XI5

bb : XB
last

[b 6 b′]7 [b′ 6 b]7
[ϕ]1

b : A
∧E

b′ : A
eq 6

bb : ∇A ∇I7

bb : XB ∧ ∇A
∧I

[b 6 b]4

b : F(XB ∧∇A)
FI

b : F(XB ∧∇A)
refl 64

Π2 is the following derivation:

[be : F(XB ∧ ∇A)]3
[b⊳ e]2

[b 6 e]9 [e 6 c]8

[c : XB ∧ ∇A]8

c : XB
∧E

[c ⊳ f ]11

cf : B
XE

c : XB XI11

bc : XB
last Π3

bc : ∇A
bc : XB ∧ ∇A

∧I
[b 6 c]10

b : F(XB ∧∇A)
FI

b : F(XB ∧ ∇A)
trans 610

b : F(XB ∧∇A)
base 69

b : F(XB ∧∇A)
FE8

and Π3 is the following derivation:

[b 6 d]12
[ϕ]1

b : A
∧E

[d : A]13
[b⊳ f ]13 [b⊳ e]2 [f 6 d]13

[ec : XB ∧∇A]8

ec : ∇A
∧E

[e 6 d]14 [d 6 c]12

d : A
∇E

d : A
lin⊳14

d : A
split 613

bc : ∇A ∇I12

Fig. 4.21. Proof of the Axiom (A7 ): right-to-left direction.
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[b : B ∨ (F(XB ∧ ∇A))]1

[b : B]2

bb : B
last

[b 6 b]3

b : FB
FI

b : FB
refl 63

[b : F(XB ∧ ∇A)]2

[c⊳ d]5
Π

b : FB

b : FB
base 66

b : FB
ser⊳5

b : FB FE4

b : FB ∨E2

b : B ∨ (F(XB ∧ ∇A)) ⊃ FB
⊃I1

where Π is the following derivation:

[b 6 c]4 [c 6 d]6

[bc : XB ∧∇A]4

bc : XB
∧E

[c ⊳ d]5

bcd : B
XE

bd : B
last

[b 6 d]7

b : FB
FI

b : FB
trans 67

Fig. 4.22. Proof of the axiom (A8).
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Theorem 4.73. Let A be an LTL∇-formula and b a label. Then

|=
∇

A ⇒ ⊢
∇

b : (A•)∗ .

Proof. By Theorem 4.66, |=
∇

A implies |=
LTL

A•. By Theorem 4.71, |=
LTL

A•

implies ⊢
∇

b : (A•)∗.
⊓⊔

4.4.7 Discussion and related works

The introduction of the operator ∇ has allowed us to formalize the “history” of
until and thus, via a proper translation, to give a labeled natural deduction system
for a linear-time logic endowed with ∇ that is also sound and complete with respect
to LTL with until. We remark that the “recipe” for dealing with until that we gave
here is abstract and general, and thus provides the basis for formalizing deduction
systems for temporal logics endowed with U, both linear and branching time.

In this section, we did not address normalization matters explicitly. However
the well-behaved nature of this approach, where each connective and operator has
one introduction and one elimination rule, paves the way to a proof-theoretical
analysis of the resulting natural deduction systems, e.g., to show proof normaliza-
tion and other useful meta-theoretical properties. In fact, the procedure of nor-
malization presented in Section 4.3 for linear-time logics (and the one that will
be presented in Section 5.3 with regard to a branching-time logic as well) can be
easily adapted to deal also with the rules for ∇ given here.

With regard to the discussion on the rule last , we believe that the restriction
we imposed, i.e., the rule can only be applied to history-independent formulas, is
closely related, at least in spirit, to the focus on persistent formulas when combin-
ing intuitionistic and classical logic so as to avoid the collapse of the two logics into
one, see [46] but also [35,67]. We are, after all, considering here formulas stemming
from two classes (if not two logics altogether), and it makes thus sense that they
require different labeling (single instants and pairs of time instants).

In [101], an extension of a linear-time temporal logic with past is presented,
where a unary operator now is used in order to fix a point of evaluation. When
used in combination with past operators, now allows to “forget” part of the past.
The resulting logic is proved to be equally expressive to, but more succinct than,
LTL with past19.

A class of logics extending the expressivity of standard temporal logics is that
of hybrid temporal logics, where the possibility of referring to worlds (instants)
of a model is internalized in the syntax of the logic itself and not just used as a
technical device when performing deduction like we use to do in our systems. Early
examples are in [29, 128]; more recent works in [3, 17, 77]. Many other works have
proposed interesting extensions of temporal logics with new operators, e.g., [48,77].

Finally, it is worth observing that several works have considered interval tem-
poral logics, e.g., [25,37,78,84,145]. While these works consider intervals explicitly,

19 We also remark that [71] proves that LTL is expressively complete, thus as expressive
as PLTL, i.e., LTL with past [96]. Furthermore, [65] presents an algorithm for the
translation of a PLTL formula into an LTL one that is initially equivalent.
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we have used them somehow implicitly here, as a means to formalize the dual
nature of until via the history ∇.





5

Labeled Natural Deduction for Branching

Temporal Logics

5.1 Introduction

In Chapter 4, we presented labeled natural deduction systems for a wide range of
linear temporal logics and shown that such systems are well-behaved, in the sense
that their derivations enjoy some godo structural properties. In this chapter, we
propose extensions of the systems already presented in order to capture branch-
ing temporal logics. In particular, we will use as a starting point the framework
adopted in Section 4.2, i.e., we will define systems without an explicit relational
labeling algebra.

The extension to branching logics will require the definition of rules for treating
the path quantifier ∀ (or, equivalently, its dual ∃). The intuition we move from is
that, as shown by the systems in Chapters 3 and 4, labeling allows for devising
clean and effective natural deduction rules for the introduction and elimination
of operators, at least as long as we are able to consider them as “pure” modal
operators. We have seen in Section 2.4.1 that the semantics of bundled branching
logics can be given in terms of Ockhamist frames and that this gives us the pos-
sibility of defining the notion of truth in a purely Kripkean style, according to an
interpretation that sees the branches as the worlds of our structures. With such
an interpretation in mind, we can consider also the path quantifier ∀ as a stan-
dard (S5 ) modal operator with respect to the accessibility (equivalence) relation,
defined on branches, of having the same initial node.

It follows that the rules for introduction and elimination of ∀ can be given by
following the same pattern of the other modal and temporal operators, i.e.,

[b1 • b2]....
b2 : A

b1 : ∀A
∀I

b1 : ∀A b1 • b2

b2 : A
∀E

where we use • as the syntactic corresponding of ≃ and impose the standard condi-
tion that b2 is fresh in ∀I. Relational properties of ≃, i.e., reflexivity, symmetry and
transitivity, are also easy to capture by means of labeled natural deduction rules
(see the analogous rules presented in Chapter 4 with respect to other relations).



142 5 Labeled Natural Deduction for Branching Temporal Logics

Finally, we need rules expressing the interactions between the relations ≃ and
≺ (and/or ⊳ if we are in the discrete case) and thus expressing the branching
nature of the particular logic we want to capture. Such rules are devised in such a
way that operators are neither introduced nor eliminated.

This approach makes it easy and natural to define labeled natural deduction
systems for Ockhamist branching temporal logics, i.e., for those branching-time
logics where there are no restrictions on the nesting of the operators. In fact, in
this chapter, we will define natural deduction systems for several such logics.1

In Section 5.2, we will start by defining a sound and complete system for a
simple logic (the logic of basic frames [167]), where we have no interdependencies
between ≃ and ≺. Then we will proceed by modularly enriching such a system with
rules specifying interaction properties in order to capture other bundled Ockhamist
logics.

In Section 5.3, we will consider computation tree logics and define a sound
and (weakly) complete system for the logic BCTL∗

−. A detailed proof-theoretical
analysis of the system will be also made. As already remarked in Section 4.2.4,
when we considered a system for LTL

−
, the main problem in considering normal-

ization of systems for logics with both the operators X and G arises from dealing
with the underlying induction principle, which relates the next-time relation and
the order relation. Such temporal induction is handled, inside the system, in a
way strongly similar to first-order induction of Peano/Heyting Arithmetics and in
fact the normalization procedure will follow those defined for systems for Heyting
Arithmetics in [74,126,151]. We will present an intuitionistic version2 of the system
and prove its confluence and weak normalization; consequently, we will use such
results to give a purely syntactical proof of consistency (for both the intuitionistic
and classical versions) of the deduction system.

We remark that here we limit ourselves to consider bundled branching temporal
logics. In fact, considering the full semantics, both in the case of the “philosophi-
cal” logics of Section 5.2 and in the case of computation tree logics, introduces a
complexity that we are not able to deal with in terms of finitary natural deduction
rules. Indeed, as discussed in Section 5.5, even the definition of (standard) finitary
Hilbert-style axiomatizations for the full Ockhamist logic and for CTL∗ are still
open problems.

Finally, we remark that in this chapter, for simplicity, we will consider only
until-free logics. We recall, however, that the recipe for the treatment of the op-
erator until, formalized in Section 4.4 in the case of a linear-time logic, is general
and can be easily adapted to the branching case.

1 We note anyway that Peircean logics can be obtained by the Ockhamist ones by just
imposing a restriction on the language. Thus our systems can be also used for reasoning
on Peircean logics, e.g., by considering a restriction on the set of admissible derivations.

2 Moving to intuitionistic systems for studying normalization is also standard in such
cases. The results obtained, e.g., a proof of consistency, can be then extended to the
classical system by considering a proper translation.
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5.2 Systems for bundled Ockhamist logics with general time

In this section, we first define a labeled natural deduction system N (bas) for the
logics of basic frames and (Dis)-frames (which are proved to be equivalent in [167]).
Then we extend such a system in order to consider other bundled Ockhamist logics
(see Section 2.4.1). All the systems are shown to be sound and complete.

5.2.1 A system for the logic of basic frames

A labeled version of the logic of basic frames

As usual, we need to formalize the extension of the language and the adaptations
to the semantics required by the labeled deduction setting. We use < to denote
the order relation between points of a basic frame and, as indicated above, • for
the corresponding of ≃.

Definition 5.1. Let L be a denumerable set of labels, < and • two binary relation
symbols over L. If b and c are labels in L and A is an Ockhamist formula, then b < c
and b • c are relational well-formed (Ockhamist) formulas (or relational formulas,
or rwffs for short) and b : A is a labeled well-formed (Ockhamist) formula (or
labeled formula, or lwff for short).

The notion of interpretation can be adapted to the case of this logic in a standard
way.

Definition 5.2. Given a denumerable set of labels L and a basic structure M =
(W ,≺,≃,V), an interpretation is a function λ : L → W that maps every label in
L to an element of W.

Definition 5.3. Given a basic structure M = (W ,≺,≃,V), a denumerable set L
of labels and an interpretation λ on them, truth for a labeled or relational formula
ϕ at a pair (M, λ) is the smallest relation |=

bas
satisfying:

M, λ |=
bas

b < c iff λ(b) ≺ λ(c)

M, λ |=
bas

b • c iff λ(b) ≃ λ(c)

M, λ |=
bas

b : A iff M, λ(b) |=
bas

A

Given a set Γ of generic formulas and a generic formula ϕ, we say that:

M, λ |=
bas

Γ iff M, λ |=
bas

ϕ for all ϕ ∈ Γ

Γ |=
bas

ϕ iff M, λ |=
bas

Γ implies M, λ |=
bas

ϕ for all M and λ

The system N (bas)

The complete set of rules of the system N (bas) is presented in Figure 5.1. Rules
for classical connectives and linear temporal operators are as seen in Chapter 4.
Indeed, the core of the system is given by the rules of N (Kl) (Section 4.2.2) which
cover the linear part of the logic. We just remark that, when dealing with branching
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logics, the condition of linearity captured by the rule conn < requires a slightly
more complex formulation3 and needs to be split into two rules, one related to the
future and one related to the past. The one related to the future, conn <R, says
that if both b2 and b3 are sub-branches of b1, then one of the following facts holds:

1. b2 = b3, and then if a formula B holds in b2 it must also hold in b3 (again, as
in Section 4.2, we express equality indirectly); or

2. b2 ≺ b3; or
3. b3 ≺ b2.

The structure of conn <L is symmetrical.
As anticipated in Section 5.1, the rules for introduction and elimination of ∀

mirror those for X and G. The rule atom• captures the property of basic structures
according to which if u ≃ v then V(u) = V(v) (see Definition 2.20) and is the
equivalent of the axiom (Atom) in H(bas).

The set of rules of N (bas) is completed by refl•, symm• and trans•, which
express reflexivity, symmetry and transitivity of the relation ≃, respectively.

As is standard, ⊢
N(bas)

denotes the notion of derivability in the system N (bas).
The notions of derivation and theorem are also standard (see Section 3.2).

In addition to the derived rules for other classical connectives and temporal
operators given in Section 4.2.1, we will use sometimes the following derived rules
for introduction/elimination of ∃, which is the dual of the path quantifier ∀:

b2 : A b1 • b2

b2 : ∃A
∃I

c : ∃A

[c • c′] [c′ : A]
....

b : A
b : A

∃E

where c′ is required to be fresh in ∃E.

Soundness

Theorem 5.4. Let Γ be a set of labeled and relational Ockhamist formulas and
b : A a labeled Ockhamist formula. Then

Γ ⊢
N(bas)

b : A ⇒ Γ |=
bas

b : A .

Proof. The proof is by induction on the length of the derivation. We have one
case for each rule; some have already been treated for the analogous rules of the
systems in Chapter 4. As further examples, w e show here some new cases: the
rules for the quantifier ∀, though they can be treated in a way similar to that of
the rules for the other temporal operators, and the rule atom•.

(∀I ) Consider an application of the rule ∀I

[b1 • b2]
Π

b2 : A

b1 : ∀A
∀I

3 The reason is that given two worlds b and c of an Ockhamist structure, it is not true
that either b ≺ c holds or c ≺ b holds; they may also be ≺-unrelated.
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[b1 : A ⊃⊥]
....

b2 :⊥

b1 : A
⊥E

[b : A]
....

b : B
b : A ⊃ B

⊃I
b : A ⊃ B b : A

b : B
⊃E

[b1 < b2]
....

b2 : A

b1 : GA
GI

b1 : GA b1 < b2

b2 : A
GE

[b1 < b2]
....

b1 : A

b2 : HA
HI

b2 : HA b1 < b2

b1 : A
HE

b1 < b2 b2 < b3

[b1 < b3]
....

b : A

b : A
trans <

b1 < b2 b1 < b3 b2 : B

[b3 : B]
....

b : A

[b2 < b3]
....

b : A

[b3 < b2]
....

b : A

b : A
conn <R

b2 < b1 b3 < b1 b2 : B

[b3 : B]
....

b : A

[b2 < b3]
....

b : A

[b3 < b2]
....

b : A

b : A
conn <L

[b1 • b2]
....

b2 : A

b1 : ∀A
∀I

b1 : ∀A b1 • b2

b2 : A
∀E

b1 : p b1 • b2

b2 : p
atom•

[b1 • b1]
....

b : A
b : A

refl•
b1 • b2

[b2 • b1]
....

b : A

b : A
symm• b1 • b2 b2 • b3

[b1 • b3]
....

b : A

b : A
trans•

• In GI , b2 is fresh, i.e., it is different from b1 and does not occur in any assumption
on which b2 : A depends other than the discharged assumption b1 < b2.

• In HI , b1 is fresh, i.e., it is different from b2 and does not occur in any assumption
on which b1 : A depends other than the discharged assumption b1 < b2.

• In ∀I , b2 is fresh, i.e., it is different from b1 and does not occur in any assumption on
which b2 : A depends other than the discharged assumption b1 • b2.

• In atom•, p is an atomic proposition.

Fig. 5.1. The rules of N (bas).
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where Π is a proof of b2 : A from hypotheses in Γ ′, with b2 fresh and with Γ ′ =
Γ ∪{b1•b2}. By the induction hypothesis, for all interpretations λ, if M, λ |=

bas
Γ ′

then M, λ |=
bas

b2 : A. We let M = (W ,≺,≃,V) and λ be any basic structure
and interpretation such that M, λ |=

bas
Γ , and show that M, λ |=

bas
b1 : ∀A. Let

λ(b1) = w, for some world w in the set W . Now let us consider a generic world
w′ such that w ≃ w′. Since λ can be trivially extended to another interpretation
(still called λ for simplicity) by setting λ(b2) = w′, the induction hypothesis yields
M, λ |=

bas
b2 : A, i.e. M, w′ |=

bas
A. Given that w′ is an arbitrary world ≃-related

to w, we can conclude M, λ |=
bas

b1 : ∀A.
(∀E) Consider the case in which the last rule applied is ∀E:

Π
b1 : ∀A b1 • b2

b2 : A
∀E

where Π is a proof of b1 : ∀A from hypotheses in Γ1, with Γ = Γ1 ∪ {b1 • b2} for
some set Γ1 of formulas. By applying the induction hypothesis on Π , we have:

Γ1 |=
bas

b1 : ∀A .

Now we proceed by considering a generic basic structure M = (W ,≺,≃,V) and a
generic interpretation λ on it such that M, λ |=

bas
Γ and showing that this entails

M, λ |=
bas

b2 : A .

From Γ ⊃ Γ1, we deduce (by the induction hypothesis) M, λ |=
bas

b1 : ∀A.
Furthermore M, λ |=

bas
Γ entails M, λ |=

bas
b1 • b2 and thus M, λ(b2) |=

bas
A,

i.e., by Definition 5.3, M, λ |=
bas

b2 : A.
(atom•) Consider the case in which the last rule applied is atom•:

Π
b1 : A b1 • b

b : A
atom•

where Π is a proof of b1 : A from hypotheses in Γ1, with Γ = Γ1 ∪ {b1 • b} for
some set Γ1 of formulas and A is an atomic proposition. By applying the induction
hypothesis on Π , we have:

Γ1 |=
bas

b1 : A .

Now we proceed by considering a generic basic structure M = (W ,≺,≃,V) and a
generic interpretation λ on it such that M, λ |=

bas
Γ and showing that this entails

M, λ |=
bas

b : A .

By M, λ |=
bas

Γ we deduce:

(i) M, λ |=
bas

Γ1;
(ii) λ(b1) ≃ λ(b).

By the induction hypothesis, (i) yields M, λ |=
bas

b1 : A. By Definition 2.20, (ii)
yields V(λ(b1)) = V(λ(b)). Since A is atomic, from M, λ |=

bas
b1 : A we can

conclude M, λ |=
bas

b : A.
⊓⊔
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Completeness

Theorem 5.5. Let Γ be a set of labeled Ockhamist formulas and b : A a labeled
Ockhamist formula. Then

Γ |=
bas

b : A ⇒ Γ ⊢
N(bas)

b : A .

Proof. In order to show that the system N (bas) is complete with respect to the
semantics of the logic of basic frames (Definition 2.21), we need to prove that every
axiom and rule of inference in the axiomatization H(bas) is provable in N (bas).

We omit the proofs for rules of inference, which are standard (see Section 4.2.1).
As for the axioms, we give derivations of the ones concerning linearity and of

the ones related to the quantifier ∀. For the other axioms, the reader is referred to
the proofs given in the case of the system N (Kt) (Section 4.2.1).

(K∀)
[b : ∀(A ⊃ B)]1 [b • c]3

c : A ⊃ B
∀E

[b : ∀A]2 [b • c]3

c : A
∀E

c : B
⊃E

b : ∀B ∀I3

b : ∀A ⊃ ∀B
⊃I2

b : ∀(A ⊃ B) ⊃ (∀A ⊃ ∀B)
⊃I1

(L1 )

[b : FA]1
[b < d]3 [b < c]2 [d : A]3

[c : A]4

ϕ ∨I Π1
ϕ

Π2
ϕ

c : FA ∨ A ∨ PA
conn <4

R

c : FA ∨ A ∨ PA FE3

b : G(FA ∨ A ∨ PA)
GI2

b : FA ⊃ G(FA ∨ A ∨ PA)
⊃I1

where Π1 is
[d : A]3 [d < c]4

c : PA
PI

ϕ ∨I

and Π2 is
[d : A]3 [c < d]4

c : FA
FI

ϕ ∨I

Note that we have used the abbreviation ϕ ≡ c : FA ∨ A ∨ PA and we have
slightly simplified the proof by using a generic ∨I rule. The axiom (L2 ) can be
derived in a symmetrical way.

(∀1 )
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[b • c]2 [c • d]3
[b : ∀A]1 [b • d]4

d : A
∀E

d : A trans•4

c : ∀A ∀I3

b : ∀∀A ∀I2

b : ∀A ⊃ ∀∀A
⊃I1

(∀2 )
[b : ∀A]1 [b • b]2

b : A
∀E

b : A
refl•2

b : ∀A ⊃ A
⊃I1

(∀3 )

[b • c]2

[c : ∀¬A]4 [c • b]3

b : ¬A
∀E

[b : A]1

b :⊥
⊃E

c :⊥
⊥E

c : ¬∀¬A
⊃I4

c : ¬∀¬A
symm•3

b : ∀¬∀¬A ∀I2

b : A ⊃ ∀¬∀¬A
⊃I1

(Atom)
[b : p]1 [b • c]2

c : p atom•

b : ∀p ∀I2

b : p ⊃ ∀p
⊃I1

⊓⊔

5.2.2 Systems for other bundled Ockhamist logics

In this section, we consider extensions of the system N (bas) aiming at capturing
some of the extensions of the logic of basic frames presented in Section 2.4.1,
namely the logic of (WDC)-frames, the logic of (Dis+WDC)-frames and the logic
BOBTL of Ockhamist frames. We will show that a modular enrichment of the base
system N (bas) with specific rules capturing the new properties will work.

We use the same labeled language defined for N (bas) (Section 5.2.1). The
definition of interpretation and the notions of truth and validity are also standard
and can be easily inferred from those of Section 5.2.1: just replace basic structure
by the proper structure; we omit the details.



5.2 Systems for bundled Ockhamist logics with general time 149

The logic of (WDC)-frames

In basic frames there is no interaction between the relations ≺ and ≃. The first
extension that we consider consists in requiring that the basic frames satisfy the
property WDC (we recall it here for convenience):

(WDC) If x ≺ y ≃ y′ , then there exists x′ such that x ≃ x′ ≺ y′ .

We can capture such a property by adding the rule wdc below.

c • c′ d < c

[d′ < c′] [d • d′]
....

b : A
b : A

wdc

where we require that d′ is fresh.
A derivation of the axiom (WDC ) (see Section 2.4.1), obtained by using the

rules of N (bas) and wdc, is the following.

[b : PA]1
[b • c]2 [d < b]3

[d : A]3 [d • d′]4

d′ : ∃A
∃I

[d′ < c]4

c : P∃A
PI

c : P∃A wdc4

c : P∃A PE3

b : ∀P∃A ∀I2

b : PA ⊃ ∀P∃A
⊃I1

The logic of (Dis+WDC)-frames

As stated in Lemma 2.22, (Dis+WDC)-validity and (WDC+SDC)-validity coin-
cide.

We recall here the property SDC, which is the one on which we will build our
deduction rule:

(SDC) if x ≺ y ≺ z ≃ z′ ≻ x′ ≃ x, then there exists y′ such that y′ ≃ y and
x′ ≺ y′ ≺ z′.

The following rule sdc models such a property.

b < c c < d b′ • b d′ • d b′ < d′

[c′ • c] [b′ < c′] [c′ < d′]
....

b : A
b : A

sdc

where we require that c′ is fresh.
We present in Figures 5.2 and 5.3 a derivation of the axiom (DW1 ) (see Section

2.4.1), obtained by using the rules of N (bas), wdc and sdc. We omit the derivation
of the axiom (DW2 ), which can be obtained similarly by using conn <R instead
of conn <L.
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Π1

c : P(A ∧ (C ∨ PC))
Π2

c : G(C ⊃ GA1)

c : P(A ∧ (C ∨ PC)) ∧ G(C ⊃ GA1)
∧I

c : (GA1 ∧ PC) ⊃ P(A ∧ (C ∨ PC)) ∧ G(C ⊃ GA1)
⊃I3

b : ∀(GA1 ∧ PC ⊃ P(A ∧ (C ∨ PC)) ∧ G(C ⊃ GA1))
∀I2

b : (P(∀A ∧ GB) ∧ H¬(B ∧ ∃C)) ⊃ ∀(GA1 ∧ PC ⊃ P(A ∧ (C ∨ PC)) ∧ G(C ⊃ GA1))
⊃I1

where Π1 is the following derivation:

[b : P(∀A ∧ GB) ∧ H¬(B ∧ ∃C)]1

b : P(∀A ∧ GB)
∧E

[f < b]8 [b • c]2

[f : ∀A ∧ GB]8

f : ∀A
∧I

[f • d]9

d : A
∀E Π3

d : C ∨ PC
d : A ∧ (C ∨ PC)

∧I
[d < c]9

c : P(A ∧ (C ∨ PC))
PI

c : P(A ∧ (C ∨ PC))
wdc9

c : P(A ∧ (C ∨ PC))
PE8

and Π3 is the following derivation:

[c : GA1 ∧ PC]3

c : PC
∧E

[e < c]10 [d < c]9 [e : C]10
[d : C]11

d : C ∨ PC
∨I

[e : C]10 [e < d]11

d : PC
PI

d : C ∨ PC
∨I Π4

d : C ∨ PC

d : C ∨ PC
conn <11

L

d : C ∨ PC PE10

Fig. 5.2. A derivation of the axiom DW1 (1/2).
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Π4 is the following derivation:

[d < e]11 [e < c]10 [f • d]9 [b • c]2 [f < b]8

[b : P(∀A ∧ GB) ∧ H¬(B ∧ ∃C)]1

b : H(¬B ∨ ∀¬C)
∧E

[e′ < b]12

e′ : ¬B ∨ ∀¬C
HE

[e′ : ¬B]13

[f : ∀A ∧ GB]8

f : GB
∧E

[f < e′]12

e : B
GE

e′ :⊥
⊃E

d : C ∨ PC
⊥E Π5

d : C ∨ PC
d : C ∨ PC ∨E13

d : C ∨ PC sdc12

Π5 is the following derivation:

[e′ : ∀¬C]13 [e′ • e]12

e : ¬C
∀E

[e : C]10

d : C ∨ PC
⊃E

and Π2 is the following derivation:

[c < d]4 [d < e]6

[c : GA1 ∧ PC]3

c : GA1
∧E

[c < e]7

e : A1
GE

e : A1
trans <7

d : GA1
GI6

d : C ⊃ GA1
⊃I5

c : G(C ⊃ GA1)
GI4

Fig. 5.3. A derivation of the axiom DW1 (2/2).
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The logic BOBTL

Finally, we obtain Ockhamist frames by requiring the set of frames to satisfy also
the property MB−−.

(MB−−) if x is a ≺-maximal element, and x ≃ y, then y is a ≺-maximal element.

A further extension of the system will contain the following rule:

d • c c < c′

[d < d′]
....

b : A
b : A

mb

where we require that d′ is fresh.
A derivation of the corresponding axiom MB−− (see Section 2.4.1) in the ex-

tended system is the following:

[b : ∃F⊤]2
[d : F⊤]3

[b • d]3 [d < e]4
[b : G ⊥]1 [b < c]5

c :⊥
GE

c :⊥ mb5

c :⊥ FE4

c :⊥ ∃E3

b : ∀G ⊥ ⊥E2

b : G ⊥⊃ ∀G ⊥ ⊃I1

Soundness and completeness

Theorem 5.6. The extensions of N (bas) presented in Section 5.2.2 are sound and
complete with respect to the semantics of the corresponding logics.

Proof. Soundness of the extended systems is easy to prove, since the rules mirror
the properties that the frames of the extended logics are required to satisfy. We
do not go into details and just remark that the proof is in the style of those of
Section 4.2.

With regard to completeness, we have already presented derivations of (most
of) the axioms expressing the properties that define each logic when we introduced
the rules.

⊓⊔

5.2.3 Normalization

The labeled natural deduction systems defined in this section present the same
features of those of Section 4.2. In particular, we have restricted the introduc-
tion/elimination of the operators to the specific rules GI, GE, ∀I, ∀E. Moreover,
as in Section 4.2, relational rules can be reduced to have only atomic conclusions.
Here we omit an explicit analysis of normalization, however the nature of the sys-
tem is such that an adaptation of the techniques used in similar labeled systems
(see, e.g., [103, 148]) does not seem to be difficult.
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In particular, we remark that a standard procedure, defined by induction on
the complexity of the maximum formulas to be removed (see also Section 3.2 for
a brief introduction to normalization in natural deduction), is expected to work
in this case. A deeper proof-theoretical analysis will be performed in Section 5.3
in the case of a system for the logic BCTL∗

−, for which a more complex treatment
will be required.

5.3 A System for BCTL
∗

−

5.3.1 Introduction

In this section, we consider computation tree logics. One of the most popular of
such logics is the so-called CTL∗ (see Section 2.4.2), which has been shown to be
especially useful in developing and checking the correctness of reactive systems
(see, e.g., [70, 102]). In spite of its great relevance, the problem of presenting a
satisfactory deduction system or even a Hilbert-style axiomatization for such a
logic has been, partially, solved only recently in [135]. However, it is a non-standard
automata-based axiomatization, which makes use of “an unusual and unorthodox
rule of inference” (as stated by Reynolds himself in [139]).

The main difficulty encountered in finding a finitary axiomatization of CTL∗

(and, in fact, such an axiomatization is still unknown, as discussed in, e.g., [135])
resides in the extreme difficulty to master the so-called limit-closure property of
the standard CTL∗ validity semantics.

For this reason, a number of interesting sublogics of CTL∗ have been proposed
in the literature. Amongst these logics, a special role is played by BCTL∗ [139].
The logic BCTL∗, is obtained by referring to a more general semantics than that
of CTL∗, where we only require that the set of paths in a model is closed under
taking suffixes (i.e. is suffix-closed) and is closed under putting together a finite
prefix of one path with the suffix of any other path beginning at the same state
where the prefix ends (i.e. is fusion-closed). In other words, this logic does not
enjoy the limit-closure property (see Section 2.4.2 for details).

It is important to stress that BCTL∗ is not merely a kind of escape from
CTL∗. It is also relevant in itself when we are interested in restricting the set
of computations to be taken into consideration; namely, in the case of reasoning
under fairness assumptions. In fact, as described in Section 2.4.2, it has been
shown [42] that BCTL∗ is equivalent to the logic generated by fair structures,
i.e. transition systems endowed with a mechanism for expressing conditions of
generalized fairness [63].

In this section, we present a labeled natural deduction system N (BCTL∗
−)

for the bundled computation tree logic BCTL∗
−, which is the until-free version of

BCTL∗. In defining such a system, we adapt the ideas laying behind the formula-
tion of systems for Ockhamist logics of Section 5.2 to the discrete case. Excluding
until from the set of considered operators makes an analysis of normalization easier.
We remark, however, that the solution proposed in Section 4.4 for the treatment
of until is pretty general and thus could be easily adapted to the case of this sec-
tion. With regard to possible extensions towards CTL∗ (and in general towards
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capturing a full semantics, also in the case of OBTL) some ideas will be sketched
in Section 5.5. Part of the material of this section has been presented in [109].

The structure of this section is the following:

– in Section 5.3.2, we define a labeled version of BCTL∗
− and specify its semantics;

– in Section 5.3.3, we present and briefly describe the rules of the natural deduction
system;

– in Section 5.3.4, we prove that the system is sound with respect to the given
semantics;

– in Section 5.3.5, we give a proof of weak completeness by using a given Hilbert-
style axiomatization for the logic.

Normalization of the system will be treated in Section 5.4.

5.3.2 A labeled version of BCTL
∗

−

It is not difficult to adapt the extension to a labeled version of the logic of basic
frames provided in Section 5.2.1 to the case of BCTL∗

−. First, we need to add a
further relational symbol: we will use ⊳, as in Chapter 4, to denote, in the syntax,
the relation of immediate successor, upon which the operator X is defined.

In this section, the terms labeled formula and relational formula will corre-
spond to the following notions. We also remark that, in order to give a more
complete treatment of normalization (Section 5.4), in this case we consider also
the conjunction ∧ as a primitive connective.

Definition 5.7. Let L be a denumerable set of labels, < and • two binary relation
symbols over L. If b and c are labels in L and A is a BCTL∗

− formula, then
b⊳ c, b 6 c and b • c are relational well-formed (BCTL∗

−) formulas (or relational
formulas, or rwffs for short) and b : A is a labeled well-formed (BCTL∗

−) formula
(or labeled formula, or lwff for short).

If we reason in terms of transition frames, the intended meaning of an lwff b : A
is that:

- A holds in the initial state of b when A is a state formula, and that
- A holds in the path b when A is a path formula.

In the rwffs, we use ⊳, 6 and • with the following intended meaning:

- b1 6 b2 states that b2 is a suffix of b1, i.e. if b1 = s1, s2, ... then b2 = si, si+1, ...
for some i ≥ 1;

- b1⊳ b2 states that b2 is the maximal proper suffix of b1, i.e. if b1 = s1, s2, s3, ...
then b2 = s2, s3, ...;

- b1 • b2 states that b1 and b2 share the same initial state, i.e. if b1 = s1, s2, s3, ...
and b2 = s′1, s

′
2, s

′
3, ... then s1 = s′1.

For the sake of clarity, we define explicitly the notion of truth for labeled and
relational formulas as follows. The notion of interpretation is adapted to the case
of BCTL∗

− from the standard one (Section 3.3.2) in the obvious way.
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Definition 5.8. Given an (N ×W)-structure M = (T ,≺,≃,V), where T =
(N ×W) for some set W, and an interpretation λ on it, truth for a formula ϕ
(relational or labeled) is the relation |=

BCTL∗
−

defined as follows:

M, λ 6|=
BCTL∗

−

b :⊥;

M, λ |=
BCTL∗

−

b1 ⊳ b2 iff there exist n ∈ N and w ∈ W such that

λ(b1) = (n, w) and λ(b2) = (n + 1, w);
M, λ |=

BCTL∗
−

b1 6 b2 iff λ(b1) = λ(b2) or λ(b1) ≺ λ(b2);

M, λ |=
BCTL∗

−

b1 • b2 iff λ(b1) ≃ λ(b2);

M, λ |=
BCTL∗

−

b : p iff p ∈ V(λ(b));

M, λ |=
BCTL∗

−

b : A ⊃ B iff M, λ |=
BCTL∗

−

b : A implies M, λ |=
BCTL∗

−

b : B;

M, λ |=
BCTL∗

−

b : A ∧ B iff M, λ |=
BCTL∗

−

b : A and M, λ |=
BCTL∗

−

b : B;

M, λ |=
BCTL∗

−

b : XA iff for all b′, M, λ |=
BCTL∗

−

b⊳ b′ implies

M, λ |=
BCTL∗

−

b′ : A;

M, λ |=
BCTL∗

−

b : GA iff for all b′, M, λ |=
BCTL∗

−

b 6 b′ implies

M, λ |=
BCTL∗

−

b′ : A;

M, λ |=
BCTL∗

−

b : ∀A iff for all b′, M, λ |=
BCTL∗

−

b • b′ implies

M, λ |=
BCTL∗

−

b′ : A.

When M, λ |=
BCTL∗

−

ϕ, we say that ϕ is true in M according to λ. By extension:

M, λ |=
BCTL∗

−

Γ iff M, λ |=
BCTL∗

−

ϕ for all ϕ ∈ Γ ;

M |=
BCTL∗

−

ϕ iff for every interpretation λ, M, λ |=
BCTL∗

−

ϕ;

M |=
BCTL∗

−

Γ iff for every interpretation λ, M, λ |=
BCTL∗

−

Γ ;

Γ |=
BCTL∗

−

ϕ iff for every (N ×W)-structure M and interpretation λ,

M, λ |=
BCTL∗

−

Γ implies M, λ |=
BCTL∗

−

ϕ.

5.3.3 The System N (BCTL
∗

−
)

In this section, we give a labeled natural deduction system, which we call N (BCTL∗
−),

for the logic BCTL∗
−.

The rules of N (BCTL∗
−) are given in Fig. 5.4. The notion of derivability in

N (BCTL∗
−) (denoted ⊢

N(BCTL∗
−

)
) can be defined in the usual way (see Section 3.2).

Rules for logical connectives and for temporal operators are in the same vein of
those of the systems already presented (Chapter 4 and Section 5.2). Here we briefly
describe the other rules, trying to clarify also their interpretation in terms of paths
in a transition system.

Rules for ⊳

The rule ser⊳ models the fact that every world has an immediate successor and
thus ensures that the suffix-closure property (as described in Section 2.4.2) is
satisfied. The rule lin⊳ specifies that such a successor must be unique.
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[b1 : A ⊃⊥]
....

b2 :⊥

b1 : A
⊥E

[b : A]
....

b : B
b : A ⊃ B

⊃I
b : A ⊃ B b : A

b : B
⊃E

b : A b : B
b : A ∧ B

∧I
b : A ∧ B

b : A
∧E1

b : A ∧ B
b : B

∧E2

[b1 ⊳ b2]
....

b2 : A

b1 : XA
XI

b1 : XA b1 ⊳ b2

b2 : A
XE

[b1 ⊳ b2]
....

b : A
b : A

ser⊳
b1 ⊳ b2 b1 ⊳ b3 b2 : A

b3 : A
lin⊳

[b1 6 b2]
....

b2 : A

b1 : GA
GI

b1 : GA b1 6 b2

b2 : A
GE

[b1 6 b1]
....

b : A
b : A

refl 6
b1 6 b2 b2 6 b3

[b1 6 b3]
....

b : A

b : A
trans 6

[b1 • b2]
....

b2 : A

b1 : ∀A
∀I

b1 : ∀A b1 • b2

b2 : A
∀E

[b1 • b1]
....

b : A
b : A

refl•
b1 • b2

[b2 • b1]
....

b : A

b : A
symm•

b1 • b2 b2 • b3

[b1 • b3]
....

b : A

b : A
trans•

b1 : p b1 • b2

b2 : p
atom•

b1 ⊳ b2

[b1 6 b2]
....

b : A

b : A
base 6

b1 ⊳ b2 b2 • b3

[b′ • b1] [b′ ⊳ b3]
....

b : A

b : A
fusion

b0 : A b0 6 b

[b0 6 bi] [bi ⊳ bj ] [bi : A]
....

bj : A

b : A
ind

• In XI (respectively GI , ∀I), b2 is fresh, i.e. it is different from b1 and does not occur
in any assumption on which b2 : A depends other than the discharged assumption
b1 ⊳ b2 (respectively b1 6 b2, b1 • b2).

• In ser⊳, b2 is fresh, i.e. it is different from b and does not occur in any assumption
on which b : A depends other than the discharged assumption b1 ⊳ b2.

• In atom•, p is an atomic proposition.
• In fusion, b′ is fresh, i.e. it is different from b, b1, b2 and b3, and does not occur in

any assumption on which b : A depends other than the discharged assumptions b′ • b1

and b′ ⊳ b3.
• In ind , bi and bj are fresh, i.e. they are different from each other and from b and

b0, and do not occur in any assumption on which bj : A depends other than the
discharged assumptions of the rule.

Fig. 5.4. The rules of N (BCTL∗
−).



5.3 A System for BCTL∗
− 157

Rules for 6

We recall that b1 6 b2 intuitively means that b2 is a suffix of b1. In terms of the
given semantics, 6 denotes in the syntax the reflexive and transitive closure of ≺
(see Definition 2.28). The rules refl 6 and trans 6 state respectively the reflexivity
and transitivity of 6.

Rules for •

We recall from Section 5.3.2 that the symbol • in the syntax corresponds to the
accessibility relation ≃ in the semantics. ≃ is defined as an equivalence relation and
thus we have the rules refl•, symm• and trans• that express reflexivity, symmetry
and transitivity of •, respectively. It follows that ∀ behaves as the modal operator
� does in the modal logic S5 .

Finally, atom• mirrors the property of (N ×W)-structures according to which if
x ≃ y then V(x) = V(y) (see Definition 2.30). Intuitively, with regard to transition
structures, it models the idea that two paths having the same initial state must
satisfy the same set of atomic propositions and is the equivalent of the axiom
(Atom) in the axiomatization H(BCTL∗

−) given in Section 2.4.2.

Rules for Interactions between the Relations

The rule base 6 expresses the fact that the relation corresponding to 6 contains
the relation corresponding to ⊳: in the “path terminology”, it says that every path
b is a prefix of its maximal proper suffix.

The rule fusion strictly corresponds to the fusion-closure property (see Section
2.4.2) of transition systems, according to which the set of paths must be closed
under putting together a finite prefix of one path with the suffix of any other path
such that the prefix ends at the same state as the suffix begins. In terms of the
given semantics, it roughly corresponds to condition 4(b) in the definition of an
Ockhamist frame (Definition 2.28). In terms of the axiomatization H(BCTL∗

−), it
is the equivalent of the axiom (Fusion).

Finally, we have a rule ind modeling the induction principle underlying the
relation between ⊳ and 6. It comes from the definition of (N ×W)-frame (Def-
inition 2.29), which requires the vertical lines of points to be isomorphic to the
natural numbers.

5.3.4 Soundness

Theorem 5.9. For every set Γ of labeled and relational formulas and every labeled
formula b : A, it holds that

Γ ⊢
N(BCTL∗

−
)
b : A ⇒ Γ |=

BCTL∗
−

b : A .

Proof. The proof proceeds by induction on the structure of the derivation of b : A.
The base case is when b : A ∈ Γ and is trivial. There is one step case for every
rule: most of them can be treated in a way similar to the analogous rules given for
the other systems; we show only five representative cases.
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Consider an application of the rule XI:

[b⊳ b′]
Π

b′ : A
b : XA

XI

where Π is a proof of b′ : A from hypotheses in Γ ′, with b′ fresh and with Γ ′ = Γ ∪
{b⊳ b′}. By the induction hypothesis, for all interpretations λ, if M, λ |=

BCTL∗
−

Γ ′

then M, λ |=
BCTL∗

−

b′ : A. We let λ be any interpretation such that M, λ |=
BCTL∗

−

Γ ,

and show that M, λ |=
BCTL∗

−

b : XA. Let (n, w) be any point such that λ(b) =

(n, w). Since λ can be trivially extended to another interpretation (still called
λ for simplicity) by setting λ(b′) = (n + 1, w), the induction hypothesis yields
M, λ |=

BCTL∗
−

b′ : A, i.e. M, (n + 1, w) |=
BCTL∗

−

A, and thus M, λ |=
BCTL∗

−

b : XA.

Consider an application of the rule ∀I:

[b • b′]
Π

b′ : A
b : ∀A

∀I

where Π is a proof of b′ : A from hypotheses in Γ ′, with b′ fresh and with Γ ′ =
Γ∪{b•b′}. By the induction hypothesis, for all interpretations λ, if M, λ |=

BCTL∗
−

Γ ′

then M, λ |=
BCTL∗

−

b′ : A. We let λ be any interpretation such that M, λ |=
BCTL∗

−

Γ ,

and show that M, λ |=
BCTL∗

−

b : ∀A. Let (n, w) be any point such that λ(b) = (n, w).

Now let us consider an arbitrary point (n, w′) for some w′. Since λ can be trivially
extended to another interpretation (still called λ for simplicity) by setting λ(b′) =
(n, w′), the induction hypothesis yields M, λ |=

BCTL∗
−

b′ : A, i.e. M, (n, w′) |=
BCTL∗

−

A. Given that w′ is arbitrary we can conclude M, λ |=
BCTL∗

−

b : ∀A.

Consider the case in which the last rule applied is GE:

Π
b′ : GA b′ 6 b

b : A
GE

where Π is a proof of b′ : GA from hypotheses in Γ1, with Γ = Γ1 ∪ {b′ 6 b} for
some set Γ1 of formulas. By applying the induction hypothesis on Π , we have:

Γ1 |=
BCTL∗

−

b′ : GA .

We proceed by considering a generic (N ×W)-structure M = (T ,≺,≃,V) and a
generic interpretation λ on it such that M, λ |=

BCTL∗
−

Γ and showing that this

entails
M, λ |=

BCTL∗
−

b : A .

Since Γ1 ⊂ Γ , from the induction hypothesis we deduce M, λ |=
BCTL∗

−

b′ : GA.

Furthermore M, λ |=
BCTL∗

−

Γ entails M, λ |=
BCTL∗

−

b′ 6 b. Then, by Definition

2.32, we obtain M, λ |=
BCTL∗

−

b : A.
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Let an application of fusion be the last rule application in the derivation of
b : A:

b1 ⊳ b2 b2 • b3

[b′ • b1] [b′ ⊳ b3]
Π

b : A

b : A
fusion

where Π is a proof of b : A from hypotheses in Γ2, with Γ = Γ1∪{b1⊳b2}∪{b2•b3}
and Γ2 = Γ1 ∪ {b′ • b1} ∪ {b′ ⊳ b3} for some set Γ1 of formulas. The side-condition
ensures that b′ is fresh in Π . Hence, by applying the induction hypothesis on Π ,
we have

Γ2 |=
BCTL∗

−

b : A .

We proceed by considering a generic (N ×W)-structure M = (T ,≺,≃,V) and a
generic interpretation λ on it such that M, λ |=

BCTL∗
−

Γ and showing that this

entails
M, λ |=

BCTL∗
−

b : A .

From M, λ |=
BCTL∗

−

Γ , we deduce:

(i) there exists a point (n, w) ∈ T such that λ(b1) = (n, w) and λ(b2) = (n +
1, w);

(ii) λ(b2) ≃ λ(b3).

We know from Lemma 2.31 that λ(b3) = (n + 1, v) for some (n + 1, v) ∈ T . Then
by the property 4(b) of Ockhamist frames (Definition 2.28), the point (n, v) is such
that (n, v) ≃ (n, w) = λ(b1). Now let us consider an interpretation λ′ which differs
from λ only for the point assigned to b′, namely λ′ = λ[b′ 7→ (n, v)]. Note that we
have defined λ′ in a way such that M, λ′ |=

BCTL∗
−

b′ • b1 and M, λ′ |=
BCTL∗

−

b′ ⊳ b3.

Since b′ does not occur in Γ (by the side-condition on the application of fusion),
we have M, λ′ |=

BCTL∗
−

Γ1 and thus also M, λ′ |=
BCTL∗

−

Γ2. Then, by the induction

hypothesis, M, λ′ |=
BCTL∗

−

b : A. We conclude M, λ |=
BCTL∗

−

b : A by observing that

the side-condition b′ 6= b ensures λ(b) = λ′(b).
Finally, consider the case in which the last rule applied is ind :

Π ′

b0 : A b0 6 b

[b0 6 bi] [bi ⊳ bj ] [bi : A]
Π

bj : A

b : A
ind

where Π is a proof of bj : A from hypotheses in Γ2 and Π ′ is a proof of b0 : A from
hypotheses in Γ1, with Γ = Γ1∪{b0 6 b} and Γ2 = Γ1∪{b0 6 bi}∪{bi⊳bj}∪{bi : A}
for some set Γ1 of formulas. The side-condition on ind ensures that bi and bj are
fresh in Π . Hence, by applying the induction hypothesis on Π and Π ′, we have:

Γ2 |=
BCTL∗

−

bj : A and Γ1 |=
BCTL∗

−

b0 : A .

We proceed by considering a generic (N ×W)-structure M = (T ,≺,≃,V) and a
generic interpretation λ on it such that M, λ |=

BCTL∗
−

Γ and showing that this

entails
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M, λ |=
BCTL∗

−

b : A .

First, we note that Γ1 ⊂ Γ and therefore M, λ |=
BCTL∗

−

Γ implies M, λ |=
BCTL∗

−

Γ1

and, by the induction hypothesis on Π ′, M, λ |=
BCTL∗

−

b0 : A. Let λ(b0) = (n, w)

for some (n, w) ∈ T . From M, λ |=
BCTL∗

−

Γ , we deduce M, λ |=
BCTL∗

−

b0 6 b

and thus λ(b) = (n + k, w) for some k ∈ N. We show by induction on k that
M, λ |=

BCTL∗
−

b : A. As a base case, we have k = 0; it follows that λ(b) = λ(b0) and

thus trivially that M, λ |=
BCTL∗

−

b0 : A entails M, λ |=
BCTL∗

−

b : A. Let us consider

now the induction step. Given a label bk−1 such that λ(bk−1) = (n + k − 1, w),
we show that the induction hypothesis M, λ |=

BCTL∗
−

bk−1 : A entails the thesis

M, λ |=
BCTL∗

−

b : A. We can build an interpretation λ′ that differs from λ only in the

points assigned to bi and bj, namely λ′ = λ[bi 7→ (n+k−1, w)][bj 7→ (n+k, w)]. It is
easy to verify that the interpretation λ′ is such that the following three conditions
hold:

(i) M, λ′ |=
BCTL∗

−

bi : A;

(ii) M, λ′ |=
BCTL∗

−

b0 6 bi;

(iii) M, λ′ |=
BCTL∗

−

bi ⊳ bj .

Furthermore, the side-condition on the rule ind ensures that λ and λ′ agree on
all the labels occurring in Γ1, from which we can infer that also M, λ′ |=

BCTL∗
−

Γ1

must hold. It follows that M, λ′ |=
BCTL∗

−

Γ2 and thus, by the induction hypothesis

on Π , that M, λ′ |=
BCTL∗

−

bj : A. We conclude M, λ |=
BCTL∗

−

b : A by observing

that λ′(bj) = λ(b).
⊓⊔

5.3.5 Completeness

The proposed natural deduction system N (BCTL∗
−) consists of only finitary rules;

consequently, it cannot be strongly complete (see the discussion on the failure of
compactness in Section 2.3.4). Nevertheless, our system N (BCTL∗

−) is weakly
complete with respect to BCTL∗

−, namely:

Theorem 5.10. For every labeled formula b : A it holds:

|=
BCTL∗

−

b : A ⇒ ⊢
N(BCTL∗

−
)
b : A .

Proof. The most “economic” way to prove the theorem is to show that N (BCTL∗
−)

is complete with respect to the axiomatization H(BCTL∗
−) given in Section 2.4.2,

which is sound and complete for the logic BCTL∗
−. Most of the axioms can be

proved in a way analogous to the proof for N (LTL
−
) (for the linear part) or

N (bas) (for the branching part). Here we just show a derivation for the axiom
(Fusion).
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[b ⊳ c]2 [c • d]3

[b : ∀XA]1 [b • b′]4

b′ : XA
∀E

[b′ ⊳ d]4

d : A
XE

d : A
fusion4

c : ∀A ∀I3

b : X∀A XI2

b : ∀XA ⊃ X∀A
⊃I1

⊓⊔

5.4 Normalization of the system for BCTL
∗

−

In this section, we describe a process of normalization for an intuitionistic version
of the system N (BCTL∗

−).
In studying normalization for N (BCTL∗

−), the main difficulties arise from the
presence of a rule (ind) modeling the induction principle. This suggests an analogy
with deduction systems for Peano Arithmetic. Though it can be proved that a
standard subformula property does not hold for such systems, it is possible to
consider forms of normalization that are “good” enough to get a syntactic proof
of consistency.

There exist several translations from classical Peano arithmetic to intuitionis-
tic Heyting arithmetic such that if a contradiction is provable in the former, then
it is also provable in the latter. This implies that the consistency of intuition-
istic arithmetic guarantees also the consistency of classical arithmetic. Thus, in
order to simplify the treatment of normalization, it is quite standard to focus on
intuitionistic versions of the system.

We will follow the same way of reasoning here. The structure of the proof
mirrors those given in [74, 126, 151] with regard to natural deduction systems for
Heyting arithmetic. Some adaptations required by the labeled nature of our system
are inspired by normalization presented for labeled systems in [148,159].

We will obtain a result of consistency for the intuitionistic version of our system.
Moreover, we will extend it, via a proper translation, to a result of consistency for
the classical system N (BCTL∗

−) presented in Section 5.3.3.
The structure of this section is the following:

– in Section 5.4.1, we introduce the intuitionistic version N (BCTL∗
−i ) of the sys-

tem, for which normalization will be studied;
– in Section 5.4.2, we define a normal form for N (BCTL∗

−i ) derivations, where the
idea is that we do not have detours and allow only some forms of ind -applications;

– in Section 5.4.3, we define a reduction relation ⇒ between derivations, where,
in addition to standard contractions, we consider some contractions for ind -
applications;

– in Section 5.4.4, we prove that N (BCTL∗
−i ) derivations enjoy the Church-Rosser

property with regard to the relation ⇒, i.e. if a derivation Π is such that Π ⇒ Π ′

and Π ⇒ Π ′′ then there exists a derivation Π ′′′ such that Π ′ ⇒ Π ′′′ and
Π ′′ ⇒ Π ′′′;
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– in Section 5.4.5, we exploit the Church-Rosser property to prove a theorem of
weak normalization for the system N (BCTL∗

−i ), i.e. we show that every deriva-
tion reduces (by ⇒) to a derivation in normal form; the proof is not by induc-
tion on the complexity of the maximum formulas to be removed but follows the
schema of normalization procedures of natural deduction systems for Heyting
arithmetics (in particular, [74]);

– in Section 5.4.6, we analyze the structure of normal derivations;
– in Section 5.4.7, we use the structural properties of normal derivations to give

a (syntactic) proof of the consistency of N (BCTL∗
−i ) and indirectly, by us-

ing a translation from the classical to the intuitionistic version of the logic,
of N (BCTL∗

−);
– finally, in Section 5.4.8, we show that the system N (BCTL∗

−i ), with respect to
the normalization defined, does not enjoy the subformula property.

In order to ease readability, some of the proofs are given in Appendix A.
The content of this section has been submitted in [108].

5.4.1 The intuitionistic system N (BCTL
∗

−i
)

Here we define the intuitionistic system N (BCTL∗
−i ) for which we will study nor-

malization. First, we show that some conditions hold on the use of labels; then we
introduce some modifications to the rules of N (BCTL∗

−) in order to get an intu-
itionistic version of the system and some restrictions in order to simplify the nor-
malization procedure; finally, we present a translation from the classical (BCTL∗

−)
into the intuitionistic (BCTL∗

−i ) version of the logic, which will be used to extend
to N (BCTL∗

−) the result of consistency proved for N (BCTL∗
−i ).

In order to carry out the process of normalization described in the following, we
need to note that some conditions on variables hold in the system N (BCTL∗

−) (and
also in its intuitionistic version). In particular, we adapt the standard definition
of proper parameter from [125,153] and prove a lemma on parameters.

Definition 5.11. A label b is said to be the proper parameter of an application r
of XI, GI, ∀I, ser⊳, fusion or ind if b is the label that is required to be fresh in
the dischargeable assumption of r. A label b is said to be a proper parameter in a
derivation Π if it is the proper parameter of some rule application in Π.

Lemma 5.12. If b : A is derivable, then there exists a derivation Π of b : A from
Γ where:

(i) each proper parameter of Π is a proper parameter of a single rule application;
(ii) the proper parameter of an application r of XI, GI or ∀I occurs only above

the conclusion of r.
(iii) the proper parameter of an application r of ser⊳, fusion or ind occurs only

above one of the premises of r.

Proof. By induction on Π , by systematically renaming proper parameters starting
with the uppermost applications of XI, GI, ∀I, ser⊳, fusion and ind .

⊓⊔
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In order to simplify the analysis, we modify the system N (BCTL∗
−) by adding

a rule lin⊳R that exploits linearity of ⊳ also in the context of rwffs:

b1 ⊳ b2 b1 ⊳ b3 ρ

ρ[b3/b2]....
b : A

b : A
lin⊳R

,

where ρ is an rwff. The system obtained is equivalent, with respect to the set of
derivable formulas, to the previous one, as shown in the following lemma.

Lemma 5.13. The system N (BCTL∗
−) with the addition of the rule lin⊳R is

sound with respect to the semantics of BCTL∗
−.

Proof. We show that for every set Γ of labeled and relational formulas and every
labeled formula b : A, if b : A is derivable in the system by using assumptions in
Γ then Γ |=

BCTL∗
−

b : A holds. The proof is by induction on the structure of the

derivations: with respect to Theorem 5.9, we have to consider just one additional
case. Let an application of lin⊳R be the last rule application in the derivation of
b : A:

b1 ⊳ b2 b1 ⊳ b3 ρ

ρ[b3/b2]
Π

b : A

b : A
lin⊳R

,

where Π is a proof of b : A from hypotheses in Γ2, with Γ = Γ1 ∪{b1⊳ b2}∪{b1⊳

b3} ∪ {ρ} and Γ2 = Γ1 ∪ {ρ[b3/b2]} for some set Γ1 of formulas. By applying the
induction hypothesis on Π , we have

Γ2 |=
BCTL∗

−

b : A .

We proceed by considering a generic (N ×W)-structure M = (T ,≺,≃,V) and a
generic interpretation λ on it such that M, λ |=

BCTL∗
−

Γ and showing that this

entails
M, λ |=

BCTL∗
−

b : A .

From M, λ |=
BCTL∗

−

Γ , we deduce:

(i) there exists a point (n, w) ∈ T such that λ(b1) = (n, w) and λ(b2) = (n +
1, w);

(ii) there exists a point (m, v) ∈ T such that λ(b1) = (m, v) and λ(b3) = (m +
1, v).

Since λ is a function, (n, w) and (m, v) must coincide. It follows that also λ(b2) and
λ(b3) coincide. But then, from M, λ |=

BCTL∗
−

ρ, we deduce that also M, λ |=
BCTL∗

−

ρ[b3/b2] holds, whatever ρ is.
⊓⊔

In the following, we call relational rules the rules ser⊳, lin⊳, lin⊳R, base 6,
refl 6, trans 6, refl•, symm•, trans•, atom• and fusion .
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An intuitionistic version N (BCTL∗
−i ) of the system is now obtained by substi-

tuting the rule ⊥E with its intuitionistic version ⊥Ei:

b2 :⊥

b1 : A
⊥Ei .

We can also restrict relational rules and ⊥Ei so that they have only atomic
conclusions.

Lemma 5.14. If Γ ⊢
N(BCTL∗

−i
)
b : A, then there exists a derivation in N (BCTL∗

−i )

of b : A from Γ where all the applications of relational rules and of ⊥Ei have an
atomic conclusion.

Proof. We can give rules that systematically reduce the complexity of the formula
that is the conclusion of the application. As an example, we show the reductions for
the rule base 6, when the main connective of the conclusion is ⊃ or G, respectively:

b1 ⊳ b2

[b1 6 b2]
1

Π
b : A ⊃ B

b : A ⊃ B
base 61

 
b1 ⊳ b2

[b1 6 b2]
2

Π
b : A ⊃ B [b : A]1

b : B
⊃E

b : B
base 62

b : A ⊃ B
⊃I1

,

b1 ⊳ b2

[b1 6 b2]
1

Π
b : GA

b : GA
base 61

 
b1 ⊳ b2

[b1 6 b2]
2

Π
b : GA [b 6 b′]1

b′ : A
GE

b′ : A
base 62

b : GA GI1

.

The reductions for other relational rules are very similar. We show instead reduc-
tions for ⊥Ei:

Π
b1 :⊥

b : A ⊃ B
⊥Ei

 

[b : A]1

Π
b1 :⊥

b : B
⊥Ei

b : A ⊃ B
⊃I1

,

Π
b1 :⊥
b : GA

⊥Ei
 

[b 6 b2]
1

Π
b1 :⊥
b2 : A

⊥Ei

b : GA GI1

.

⊓⊔

Thus we can consider a system where the application of relational rules and of
⊥Ei is restricted to have atomic conclusions. For simplicity, we will keep calling
this system N (BCTL∗

−i ).
By summing up, in the following we will study normalization for the system

obtained by modifying N (BCTL∗
−) as specified by the following definition.
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Definition 5.15. The system N (BCTL∗
−i ) is obtained by modifying the system

N (BCTL∗
−), presented in Fig. 5.4, as follows:

(i) we add the rule lin⊳R:

b1 ⊳ b2 b1 ⊳ b3 ρ

ρ[b3/b2]....
b : A

b : A
lin⊳R

,

where ρ is an rwff;
(ii) we replace the rule ⊥E with the rule ⊥Ei:

b2 :⊥

b1 : A
⊥Ei ;

(iii) we restrict the application of relational rules and of ⊥Ei to atomic conclu-
sions.

We remark that the intuitionistic nature of the system is given by modification
(ii), while (i) and (iii) are just introduced in order to simplify the normalization
procedure.

We can now adapt the Gödel-Gentzen negative translation (·)g (see, e.g., [152])
to our case.

Definition 5.16. For all formulas of BCTL∗
− the negative translation (·)g is de-

fined inductively as follows:

(p)g = ¬¬p , for p atomic and p 6=⊥ ;
(⊥)g = ⊥ ;
(A ⊃ B)g = (A)g ⊃ (B)g ;
(A ∧ B)g = (A)g ∧ (B)g ;
(XA)g = X(A)g ;
(GA)g = G(A)g ;
(∀A)g = ∀(A)g .

By extension, we define the negative translation for lwffs and rwffs as follows:

(b : A)g = b : (A)g ;
(ρ)g = ρ .

Lemma 5.17. Given a set Γ of lwffs and rwffs and an lwff b : A, it holds

Γ ⊢
N(BCTL∗

−
)
b : A iff (Γ )g ⊢

N(BCTL∗
−i

)
(b : A)g ,

where Γ g = {(ϕ)g | ϕ ∈ Γ}.

Proof. By induction on the length of the derivation, we show that for every proof in
N (BCTL∗

−) there exists an equivalent derivation in N (BCTL∗
−i ). The only inter-

esting case is when the last rule applied is ⊥E. Let Π be the following derivation:
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[b : ¬A]
Π1

b :⊥
b : A

⊥E
.

By the induction hypothesis, there exists an N (BCTL∗
−i ) derivation Πg

1 equiva-
lent to Π1. Then we can obtain the following N (BCTL∗

−i ) derivation, which is
equivalent to Π :

Π ′

b : ¬¬Ag ⊃ Ag

[¬Ag]
Πg

1

b :⊥
b : ¬¬Ag ⊃I

b : Ag ⊃E

,

where Π ′ is some proof of b : ¬¬Ag ⊃ Ag, which is clearly provable in N (BCTL∗
−i ).

As an example, we show a derivation of b : ¬¬Ag ⊃ Ag in the case when A = p

[b : ¬p]2 [b : ¬¬p]3

b :⊥
⊃E

b : ¬¬¬p
⊃I3

[b : ¬¬¬¬p]1

b :⊥
⊃E

b : ¬¬p
⊃I2

b : ¬¬¬¬p ⊃ ¬¬p
⊃I1

and further note that (·)g preserves intuitionistic provability.
⊓⊔

In Section 5.4.7, we will prove consistency for the system N (BCTL∗
−i ). By

Lemma 5.17, such a result can be also used to prove the consistency of the classical
version N (BCTL∗

−) of the system.

5.4.2 The normal form of derivations

Derivations in normal form

In normalizing derivations of N (BCTL∗
−i ), we have to consider some more forms of

detours than in standard natural deduction normalization processes for classical
or intuitionistic logic (see, e.g., [125]). In particular, in order to get a normal
form that allows us to prove the consistency of the system, we need to reduce
(as in [74, 151]) some applications of ind ; namely, those applications in which
the relational premise, say b0 6 bn, is “obtained” by a chain of labels, leading
from b0 to bn, where every element of the chain is linked to the next one by the
relational symbol ⊳. In the following definitions, we will clarify what we mean
with “obtained”.

Definition 5.18. We call 6-formulas the rwffs of the form b1 6 b2 and ⊳-
formulas the rwffs of the form b1⊳ b2. Let Π be a N (BCTL∗

−i ) derivation. We say
that a discharged 6-formula occurrence immediately depends on an rwff occurrence
ρ′ if ρ is discharged by an application of base 6, trans 6 or lin⊳R that contains ρ′

as a premise. We also say that ρ depends on ρ′ if there exists a sequence (possibly
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of length 1) ρ1, . . . , ρn such that ρ1 ≡ ρ, ρn ≡ ρ′, and ρi immediately depends on
ρi+1 for each 1 ≤ i < n.

The dependence tree of ρ is the tree of rwff occurrences, whose root is ρ and
such that every rwff in the tree has the rwffs on which it immediately depends as
children.

In other words, the relation depends is the reflexive and transitive closure of
the relation immediately depends.

Definition 5.19. Let ρ be a 6-formula occurrence in a derivation Π. We say that
ρ is unfoldable in Π if each leaf of its dependence tree is:

(i) a ⊳-formula; or
(ii) a 6-formula of the form b 6 b for some label b.

Definition 5.20. Let Π be a derivation obtained by applying r to the conclusion of
a derivation Π1, for which a formula ρ is an assumption, and possibly discharging
(by r) some of the assumptions of Π1:

Π =

[ρ]

Π1
r

b : A

.

We say that r unfolds ρ if ρ is unfoldable in Π but not in Π1.

In order to give the definition of normal form, it is convenient to extend the
notion of unfoldability also to applications of ind .

Definition 5.21. Let s be an application of ind. Then s will have the following
form (for some labels b0, bn, bi, bj):

b0 : A b0 6 bn

[b0 6 bi] [bi ⊳ bj ] [bi : A]
....

bj : A

bn : A
s

.

We call the premises b0 : A, b0 6 bn and bj : A the base premise, the ending
premise and the inductive premise of s, respectively. b0 and bn are called respec-
tively the base label and the ending label of s.

We say that an ind-application s is unfoldable in a derivation Π if its ending
premise is unfoldable in Π. Finally, we say that an application r unfolds s if r
unfolds the ending premise of s.

We can now adapt the standard definitions of maximum formula and normal
form (see, e.g., [125]) to our case.

Definition 5.22. A formula occurrence b : A is a maximum formula in Π if it is:

(i) both the conclusion of an introduction rule application and the major premise
of an elimination rule application; or

(ii) the conclusion of an unfoldable application of ind.
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Note that while (i) is standard, (ii) is specific to our case. As we will show in
Section 5.4.7, this further condition is necessary in order to get a normal form
that allows for proving the consistency of the system.

Definition 5.23. A derivation Π is in normal form (is a normal derivation) if
Π contains no maximum formulas.

Derivations in standard form

In contracting applications of ind , we have to deal with a further technical com-
plication. Namely, such contractions (see Section 5.4.3) will require the addition
of some relational assumptions to the fragment of derivation involved in the con-
traction. In order to make the contraction admissible we need to be sure that
all such assumptions are “justified”, i.e. they are either dischargeable or open as-
sumptions already occurring in the original derivation. We will show that for every
N (BCTL∗

−i ) derivation there exists an equivalent one in such a form (we will call
it a standard form) that all the assumptions of this kind can be in fact justified.
We formalize all these notions as follows.

Definition 5.24. Given a derivation Π and a 6-formula ρ in it, we say that an
rwff ρ′ is dischargeable above ρ (in Π) if:

(i) it is an open assumption of Π; or
(ii) it is dischargeable by one of the rule applications occurring in Π below ρ.

Note that, according to the previous definition, a formula ρ′ dischargeable
above a formula ρ in a derivation Π must not necessarily occur in Π .

Definition 5.25. Given a 6-formula ρ ≡ b0 6 bn, a chain for ρ is a sequence
(possibly of length 0, i.e. b0 and bn coincide) of rwffs

b0 ⊳ b1, b1 ⊳ b2, . . . , bn−1 ⊳ bn

for some labels b1, . . . , bn−1. We say that a chain is dischargeable above a formula
ρ in a derivation Π if every formula in the chain is dischargeable above ρ in Π.

In the following lemma, we prove that if a 6-formula ρ is unfoldable in a
derivation Π , then there is a chain for ρ in Π which is dischargeable above ρ. It
might be the case that such a chain is “hidden” in the derivation, i.e. it is in some
way inferable but not actually dischargeable in Π . Anyway it is always possible to
make it “explicit” by means of lin⊳R-applications.

As an example, consider a derivation Π such that a 6-formula ρ = b0 6 bn

occurs in it and a set of assumptions {b0⊳ b1, b1⊳ b2, b
′
2⊳ b3, . . . , bn−1⊳ bn}∪{b⊳

b2, b ⊳ b′2} is dischargeable above ρ. It is immediate to observe that, from such a
set, one can infer a chain for ρ by just adding an application of lin⊳R.4

Lemma 5.26. If a 6-formula occurrence ρ ≡ b0 6 bn is unfoldable in a derivation
Π then there is a derivation Π ′ equivalent to Π (i.e. with the same open assump-
tions and the same conclusion) that is obtained from Π by only inserting into Π a
number of applications of lin⊳R (possibly none) and such that there exists a chain
for ρ that is dischargeable above ρ in Π ′.

4 Note that it is necessary to include such cases in the definition of unfoldability in order
to have a normal form that allows us to prove consistency.
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Proof. The definition of unfoldable formula implies that every 6-formula in the
dependence tree of ρ is unfoldable as well. By observing the rules base 6, trans 6
and lin⊳R, we also notice that the top of the dependence tree of an unfoldable
formula is composed by a subtree of 6-formulas. The proof is by induction on the
height of such a subtree. As a base case, if the 6-subtree has height 1, then ρ is
either:

(i) such that b0 and bn coincide and then an empty chain for ρ is trivially
dischargeable above ρ; or

(ii) discharged by an application of base 6 and then a chain for ρ is trivially
dischargeable above ρ in Π by the base 6-application itself.

If ρ is discharged by an application of trans 6 whose other premises are ρ1 and
ρ2 then, by the induction hypothesis, we have that there exists a Π ′ in which
both a chain for ρ1 and a chain for ρ2 are dischargeable above ρ. But then their
composition gives a chain for ρ that is still dischargeable above ρ in Π ′. Finally,
let ρ be discharged by an application of lin⊳R: we have two cases according to the
fact that the substitution is applied to b0 or to bn. Let us consider the first one;
the other is analogous. The application discharging b0 6 bn will have the following
form:

b̂ ⊳ b′0 b̂ ⊳ b0 b′0 6 bn

[b0 6 bn]
Π1

b : A

b : A
lin⊳R

,

for some labels b̂ and b′0. By the induction hypothesis, there is a Π ′ equivalent to Π
in which a chain b′0⊳b1, b1⊳b2, . . . , bn−1⊳bn is dischargeable above the occurrence
of b′0 6 bn (and thus above ρ). Since the dischargeability of a chain for a 6-formula
depends only on the rule applications below that formula, we can assume, without
loss of generality, that the fragment of derivation shown above occurs in Π ′ also.
But then by replacing that fragment of derivation by the following one, where we
only add a further lin⊳R application:

b̂⊳ b′0 b̂⊳ b0 b′0 6 bn

b̂⊳ b′0 b̂⊳ b0 b′0 ⊳ b1

[b0 6 bn]
Π1

b : A

b : A
lin⊳R

b : A
lin⊳R

,

we get a new derivation Π ′′ that is still equivalent to Π and in which a chain for
ρ is dischargeable above ρ.

⊓⊔

Lemma 5.27. If a rule application r unfolds a formula ρ, then r is an application
of base 6 or lin⊳R.

Proof. By inspecting the rules of N (BCTL∗
−i ) and the definition of a dependence

tree (Definition 5.18), one can observe that base 6 and lin⊳R are the only rules
that can introduce in a derivation, as a premise, a ⊳-formula on which ρ depends.

⊓⊔
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As we will define formally in Section 5.4.3, given an unfoldable ind -application
s in Π and a chain b0 ⊳ b1 , b1 ⊳ b2 , . . . , bn−1 ⊳ bn for it, in order to replace s
we need to be sure that every rwff of the form b0 6 bi (and not only the chain
itself), for 0 ≤ i < n, is dischargeable in Π . This could require the addition of
some applications of trans 6, base 6 or refl 6. For this reason, in the following
we will:

(i) define a standard form for derivations, where the intuitive idea is that a
standard derivation contains all such further applications;

(ii) show that every derivation is equivalent to (and can be transformed into) a
derivation in standard form; and

(iii) study normalization with respect to the set of standard derivations.

Definition 5.28. A derivation Π is in standard form (is a standard derivation)
if for each unfoldable 6-formula ρ ≡ b0 6 bn occurring in Π:

(i) a chain µ for ρ is dischargeable above ρ in Π; and
(ii) for each bi occurring in µ, the rwff b0 6 bi is dischargeable above ρ in Π.

Lemma 5.29. Given a derivation Π in N (BCTL∗
−i ), it is always possible to define

an equivalent derivation Π ′ that is in standard form.

Proof. For each unfoldable 6-formula ρ in Π , Lemma 5.26 suggests a way of
obtaining a derivation Π ′ equivalent to the original one and such that a chain µ ≡
b0⊳ b1, b1⊳ b2, . . . , bn−1⊳ bn for ρ is dischargeable above ρ in Π ′, i.e. we only have
to add lin⊳R-applications in the way suggested in the lemma. In order to satisfy
also condition (ii) of Definition 5.28, we apply the following procedure, which
(possibly) enriches the original derivation with further applications of relational
rules:

(i) if b0 6 b0 is not dischargeable above ρ, then we add an application of refl 6
discharging b0 6 b0;

(ii) for each bi⊳ bi+1 in µ, if bi 6 bi+1 is not dischargeable above ρ, then we add
an application of base 6 discharging bi 6 bi+1;

(iii) for 1 < i < n, if b0 6 bi is not dischargeable above ρ, then we add an
application of trans 6 discharging b0 6 bi (and whose premises are b0 6 bi−1

and bi−1 6 bi) .

Such rules can always be applied above the uppermost atomic lwff occurring below
ρ (at least one such an lwff does exist since the application that unfolds ρ has an
atomic conclusion).

It is easy to check that the algorithm described above is well-defined (every
step provides the premises needed for the subsequent ones) and gives a derivation
in standard form equivalent to the original one as a result.

⊓⊔

Fig. 5.5 gives an example of a transformation of a derivation into a standard
form. In the starting phase, we add a lin⊳R-application (denoted by 7) discharging
b0 ⊳ b1, as specified in Lemma 5.26, in order to get a derivation in which a chain
for the 6-formula ρ ≡ b0 6 b3 is dischargeable above ρ. Then (step (i) of the
procedure described in the proof of Lemma 5.29) we add a refl 6-application



5.4 Normalization of the system for BCTL∗
− 171

(8) that discharges b0 6 b0. With regard to step (ii), we only add the base 6-
application 9. Finally, in step (iii) we make the formula b0 6 b2 dischargeable by
adding the trans 6-application 10.

Since Lemma 5.29 holds, we can (and in the following will) restrict our
attention to derivations in standard form.

5.4.3 Reduction of derivations

Here we present the contractions that will be used in our normalization process
in order to remove the maximum formulas and we define a reduction relation (⇒)
based on such contractions. We have two classes of contractions:

(i) proper contractions; and
(ii) induction contractions.

Such contractions are operations transforming a derivation (i) ending with the
application of an elimination rule on a maximum formula, or (ii) containing an
unfoldable induction into another derivation with the same conclusion. After a
contraction, when needed, we can always rename labels in order to satisfy the
conditions of Lemma 5.12.

Proper contractions

Proper contractions remove maximum formulas from a derivation. We have a con-
traction for each detour: ⊃I/ ⊃E, ∧I/ ∧ E, XI/XE, GI/GE, ∀I/∀E. Such con-
tractions are quite standard [148,159] and, as examples, we give here the ones for
the cases ⊃I/ ⊃E and XI/XE:

[b : A]1

Π1

b : B
b : A ⊃ B

⊃I1 Π2

b : A
b : B

⊃E

 

Π2

b : A
Π1

b : B

,

[b1 ⊳ b2]
1

Π
b2 : A

b1 : XA XI1
b1 ⊳ b3

b3 : A
XE

 

b1 ⊳ b3

Π [b3/b2]
b3 : A

,

where the condition of the rule XI according to which b2 is fresh in Π ensures that
the substitution with b3 does not produce any undesired side-effect.

Induction contractions

We consider contractions for unfoldable applications of ind . The first contraction
reduces ind -applications where the base label and the ending label coincide. The
intuition behind this contraction is that when the chain consists of just one element
we can replace the induction application with its base case:

Π0

b0 : A b0 6 b0

[b0 6 bi] [bi : A] [bi ⊳ bj]
Π1

bj : A

b0 : A
r

 
Π0

b0 : A

.
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b′0 ⊳ b1

b1 ⊳ b2

b2 ⊳ b3

[b0 6 b1]1 [b1 6 b2]2
[b′0 6 b2]4 [b2 6 b3]3

bb ⊳ b′0
bb ⊳ b0 [b′0 6 b3]

5

[b0 6 b3]
6

Π1

b : p

b : p
lin⊳

6
R

b : p
trans 65

b : p
trans 64

b : p
base 63

b : p
base 62

b : p
base 61

has the standard form

b′0 ⊳ b1

b1 ⊳ b2

b2 ⊳ b3

[b0 6 b1]
1 [b1 6 b2]2

[b′0 6 b2]
4 [b2 6 b3]3

bb ⊳ b′0
bb ⊳ b0 [b′0 6 b3]

5

bb ⊳ b′0
bb ⊳ b0 b′0 ⊳ b1

[b0 ⊳ b1]7
[b0 6 b1]9 [b1 6 b2]

2

[b0 6 b3]6

Π1

b : p

b : p
trans 610

b : p
base 69

b : p
refl 68

b : p
lin⊳7

R

b : p
lin⊳6

R

b : p
trans 65

b : p
trans 64

b : p
base 63

b : p
base 62

b : p
base 61

Fig. 5.5. An example of a transformation into a standard form.
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The second contraction is applied when an ind -application is unfolded by a base 6
or by a lin⊳R. Here the main idea is that if there exists a chain, say of length n,
leading from the base label to the ending label and composed by labels that are
one the immediate successor of the other, then we do not need to use the induction
principle; namely, we can replace the ind -application by a subderivation built up
by applying the inductive step n times (one for every label in the chain).

Note that the structure of relational rules in N (BCTL∗
−i ) is such that rwffs de-

pend, in the sense of Definition 5.18, on formulas that occur below in a derivation.
This forces us to consider the context in which an ind is applied along a derivation.
We show here the case base 6; the case lin⊳R is treated in an analogous way, by
simply substituting the last rule. We denote with s the ind -application and with
r the base 6-application that unfolds s. The fact that we deal with derivations in
standard form ensures that all the assumptions of the form b0 6 bi and bi ⊳ bi+1

added by the contraction are either open assumptions already occurring below s
or dischargeable (and in this case discharged by the contraction step) by some rule
application in Π2 or by r. We denote this by using the symbol †.

bm−1 ⊳ bm

Π0

b0 : A [b0 6 bn]

[b0 6 bi]
1 [bi : A]1 [bi ⊳ bj ]

1

Π1

bj : A

bn : A s1

Π2

b : p

b : p
r

 

bm−1 ⊳ bm

Π0

b0 6 b †
0 b0 : A b0 ⊳ b †

1

Π1[b0/bi][b1/bj]

b0 6 b †
1 b1 : A b1 ⊳ b †

2

Π1[b1/bi][b2/bj]

b2 : A
.
.
.

b0 6 b †
n−1 bn−1 : A bn−1 ⊳ b †

n

Π1[bn−1/bi][bn/bj]

bn : A

Π2

b : p
r

b : p
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The reduction relation ⇒

We define now a reduction relation between derivations built on the proper and
induction contractions described above. It is important to notice that such con-
tractions preserve the standard form of derivations and thus the whole process of
normalization is in fact defined over the set of standard derivations.

Definition 5.30. A reduction sequence is a sequence Π1, ..., Πn of derivations
such that Πi is obtained from Πi−1 by applying a single proper or induction con-
traction to a subderivation of Πi for 1 < i ≤ n. We say that Π reduces to Π ′,
and we write Π ⇒ Π ′, if there exists a reduction sequence (possibly of length 1)
Π1, . . . , Πn such that Π1 = Π and Πn = Π ′.

We also say that Π reduces to a normal form (has a normal form) if there
exists a Π ′ such that Π ⇒ Π ′ and Π ′ is in normal form.

It is immediate to observe that a derivation is in normal form iff it is not possible
to apply any proper or inductive contractions to any of its subderivations.

5.4.4 The Church-Rosser property

Here we show that the Church-Rosser property, with regard to the relation ⇒,
holds for N (BCTL∗

−i ) derivations. We follow mainly [74], but some non-trivial
adaptations are required by the presence of the rule ind .

The structure of the proof is the following:

(i) first we will define a relation ⇒1 between derivations, where the idea is
that ⇒1 builds ⇒, i.e. Π ⇒ Π ′ iff there exists a sequence of reductions
Π = Π1 ⇒1 . . . ⇒1 Πn = Π ′ for some n;

(ii) then we will prove that one-step confluence holds, i.e. if Π ⇒1 Π ′ and
Π ⇒1 Π ′′ then there exists a Π ′′′ such that Π ′ ⇒1 Π ′′′ and Π ′′ ⇒1 Π ′′′;

(iii) finally, as standard, we will use the previous result to prove confluence of ⇒,
i.e. if Π ⇒ Π ′ and Π ⇒ Π ′′ then there exists a Π ′′′ such that Π ′ ⇒ Π ′′′

and Π ′′ ⇒ Π ′′′.

While the proof of step (iii) is standard (once (ii) is given) some technical compli-
cations arise in proving (ii); we give here an intuition of the problem and a sketch
of the solution that will be formalized in the following.

In (ii), in order to use an inductive argument, we need to prove the result
with regard to a larger set of reductions. Namely, the problem comes from the
definition of induction contractions (Section 5.4.3) that are not strictly local and
in applying which we are required to consider at least a fragment of derivation
(the one containing a chain) below the ind -application. This “non-locality” gives
rise to difficulties when providing inductive definitions and when using inductive
arguments within the proofs.

Thus we will make use of a further relation֌1 (containing ⇒1) for which an
inductive definition is provided. The definition is such that, given a derivation con-
cluding with an ind -application r, a step of֌1 allows us to mimic the application
of an induction contraction on it, regardless both of the length of a possible chain
for r and of the labels used in it, i.e. we will have a formation rule in the inductive
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definition of ֌1 that will allow us to unfold an ind -application into a chain of
length n for each possible n and for each possible choice of labels to be used in the
unfolding. Clearly, such a rule implies that not every step of ֌1 will correspond
to contractions as defined in Section 5.4.3.

We manage this by keeping track of those unfoldings of ind -applications that
are not “justified” by the presence of an appropriate chain below them; we will
call these unfoldings defects. Technically, the set of defects associated to a pair
in ֌1 is defined inductively by adding a defect every time we unfold an ind -
application and by removing it only when all the relational assumptions introduced
by the unfolding are discharged. In order to keep track of the relational formulas
introduced by the unfolding of some ind -application, we use a marking mechanism
that consists in marking each such formula with a same symbol; when all the rwffs
marked with a same symbol get discharged we can conclude that the unfolding is
no longer a defect and we can remove it from the set.

Then the relation ⇒1 will be defined as the subset of֌1 containing pairs with
no defects.

We go now into technical details; first we need to formalize the notion of mark-
ing.

Definition 5.31. Given a derivation Π and a set of marks Σ, a marking l for
Π is a function that associates a mark in Σ to each rule application in Π and a
mark in Σ to some of the rwffs in Π. A marking l for Π is said to be standard
if l associates a different mark to each rule application of Π and no marks to any
rwff of Π. A marked derivation is a pair (Π, l) where Π is a derivation and l is a
marking for Π.

As notation, we denote the mark associated to a rule application with a symbol
between parentheses on the right of the application line and the mark associated
to an rwff as a subscript of the formula. For simplicity, in the rest of this section,
we will often omit to specify the marking and just use the symbol Π (possibly
subscripted or superscripted) to denote also a marked derivation. The context will
clarify whether we are referring to a marked or to an unmarked derivation.

Now we define the relation֌1 between marked derivations, where the idea is
that in one step of ֌1 we are allowed to perform at the same time more than
one contraction, provided that they do not interfere with each other. Note that,
as explained above, in the case of a derivation ending with an ind -application
we are allowed to unfold it in any way and that the case corresponding to an
induction contraction is the only one that introduces new marked rwffs. When a
rule application introduces a relational open assumption as a premise of the rule,
then possible marked rwffs of the same form can be made unmarked in the result
of the transformation.

At the same time, we also define inductively the set of defects associated to
each pair of derivations in ֌1. A defect is introduced when an induction con-
traction is performed (case [IndContr] below) and removed when all the marked
rwffs introduced with such a contraction have been discharged. We remark that, as
notation, in the following definition we specify the mark associated to a relational
formula only when it seems to be relevant, i.e., when the mark is introduced. In
the other cases, one can assume that the ֌1-step does not modify the marks,
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i.e., each occurrence of a relational formula is either unmarked both on the left
and on the right side of֌1 or marked with the same symbol on both sides.

Definition 5.32. Let Σ be a set of marks. We define the binary relation ֌1

between N (BCTL∗
−i ) derivations marked with symbols in Σ inductively as follows.

Contextually, we define a function δ that maps every element of ֌1 into a subset
of Σ.

PASSIVE CLAUSES

(i) [BC]
Π ֌1 Π and δ (Π, Π) = ∅ .

(ii) [⊃I]

If
b : A
Π1

b : B
֌1

b : A
Π ′

1

b : B
,

then Π =

[b : A]
Π1

b : B
b : A ⊃ B

⊃I (r)
֌1 Π ′ =

[b : A]
Π ′

1

b : B
b : A ⊃ B

⊃I (r)

and δ (Π, Π ′) = δ (Π1, Π
′
1) .

(iii) [∧I]

If Π1

b : A
֌1

Π ′
1

b : A
and Π2

b : B
֌1

Π ′
2

b : B
,

then Π =
Π1

b : A
Π2

b : B
b : A ∧ B

∧I (r)
֌1 Π ′ =

Π ′
1

b : A
Π ′

2

b : B
b : A ∧ B

∧I (r)

and δ (Π, Π ′) = δ (Π1, Π
′
1) ∪ δ (Π2, Π

′
2) .

(iv) [XI]

If
b1 ⊳ b2

Π1

b2 : A
֌1

b1 ⊳ b2

Π ′
1

b2 : A
,

then Π =

[b1 ⊳ b2]
Π1

b2 : A

b1 : XA
XI (r)

֌1 Π ′ =

[b1 ⊳ b2]
Π ′

1

b2 : A

b1 : XA
XI (r)

and δ (Π, Π ′) = δ (Π1, Π
′
1)\ {s ∈ Σ | all the rwffs marked with s, if any, are

discharged in Π ′}.

(v) [GI]

If
b1 6 b2

Π1

b2 : A
֌1

b1 6 b2

Π ′
1

b2 : A
,
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then Π =

[b1 6 b2]
Π1

b2 : A

b1 : GA
GI (r)

֌1 Π ′ =

[b1 6 b2]
Π ′

1

b2 : A

b1 : GA
GI (r)

and δ (Π, Π ′) = δ (Π1, Π
′
1)\ {s ∈ Σ | all the rwffs marked with s, if any, are

discharged in Π ′}.

(vi) [∀I]

If
b1 • b2

Π1

b2 : A
֌1

b1 • b2

Π ′
1

b2 : A
,

then Π =

[b1 • b2]
Π1

b2 : A

b1 : ∀A
∀I (r)

֌1 Π ′ =

[b1 • b2]
Π ′

1

b2 : A

b1 : ∀A
∀I (r)

and δ (Π, Π ′) = δ (Π1, Π
′
1) .

(vii) [⊃E]

If Π1

b : A ⊃ B
֌1

Π ′
1

b : A ⊃ B
and Π2

b : A
֌1

Π ′
2

b : A
,

then Π =
Π1

b : A ⊃ B
Π2

b : A
b : B

⊃E (r)
֌1 Π ′ =

Π ′
1

b : A ⊃ B
Π ′

2

b : A
b : B

⊃E (r)

and δ (Π, Π ′) = δ (Π1, Π
′
1) ∪ δ (Π2, Π

′
2) .

(viii) [∧E1]

If Π1

b : A ∧ B
֌1

Π ′
1

b : A ∧ B
,

then Π =
Π1

b : A ∧ B
b : A

∧E1 (r)
֌1 Π ′ =

Π ′
1

b : A ∧ B
b : A

∧E1 (r)

and δ (Π, Π ′) = δ (Π1, Π
′
1) .

(ix) [∧E2]

If Π1

b : A ∧ B
֌1

Π ′
1

b : A ∧ B
,

then Π =
Π1

b : A ∧ B
b : B

∧E2 (r)
֌1 Π ′ =

Π ′
1

b : A ∧ B
b : B

∧E2 (r)

and δ (Π, Π ′) = δ (Π1, Π
′
1) .
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(x) [XE]

If
Π1

b1 : XA
֌1

Π ′
1

b1 : XA
,

then Π =
Π1

b1 : XA b1 ⊳ b2

b2 : A
XE (r)

֌1 Π ′ =
Π ′

1

b1 : XA b1 ⊳ b2

b2 : A
XE (r)

where if there are marked occurrences of b1⊳ b2 in Π1, then their correspond-
ing occurrences in Π ′

1 can be unmarked and δ (Π, Π ′) = δ (Π1, Π
′
1)\{s ∈ Σ |

all the rwffs marked with s, if any, are discharged in Π ′}.

(xi) [GE]

If
Π1

b1 : GA
֌1

Π ′
1

b1 : GA
,

then Π =
Π1

b1 : GA b1 6 b2

b2 : A
GE (r)

֌1 Π ′ =
Π ′

1

b1 : GA b1 6 b2

b2 : A
GE (r)

where if there are marked occurrences of b1 6 b2 in Π1, then their correspond-
ing occurrences in Π ′

1 can be unmarked and δ (Π, Π ′) = δ (Π1, Π
′
1)\{s ∈ Σ |

all the rwffs marked with s, if any, are discharged in Π ′}.

(xii) [∀E]

If
Π1

b1 : ∀A
֌1

Π ′
1

b1 : ∀A
,

then Π =
Π

b1 : ∀A b1 • b2

b2 : A
∀E (r) ֌1 Π ′ =

Π ′

b1 : ∀A b1 • b2

b2 : A
∀E (r)

and δ (Π, Π ′) = δ (Π1, Π
′
1) .

(xiii) [⊥E]

If
Π1

b1 :⊥
֌1

Π ′
1

b1 :⊥
,

then Π =
Π1

b1 :⊥

b : A
⊥E (r)

֌1 Π ′ =
Π ′

1

b1 :⊥

b : A
⊥E (r)

and δ (Π, Π ′) = δ (Π1, Π
′
1) .

(xiv) [base 6], [lin⊳R], [ser⊳], [lin⊳], [refl 6], [trans 6], [refl•], [symm•],
[trans•], [atom•], [fusion ]
These cases are all very similar. When relational open assumptions are intro-
duced as premises of the rule application, possible marked rwffs of the same
form can be made unmarked in the result of the transformation. As example
cases, we show base 6 and refl 6.
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If
b1 6 b2

Π1

b : A
֌1

b1 6 b2

Π ′
1

b : A
,

then

Π =
b1 ⊳ b2

[b1 6 b2]
1

Π1

b : A

b : A
base 61 (r)

֌1

Π ′ =
b1 ⊳ b2

[b1 6 b2]
1

Π ′
1

b : A

b : A
base 61 (r)

where if there are marked occurrences of b1⊳b2 in Π1, then their corresponding
occurrences in Π ′

1 can be unmarked and δ (Π, Π ′) = δ (Π1, Π
′
1) \ {s ∈ Σ |

all the rwffs marked with s, if any, are discharged in Π ′}.

If
b1 6 b1

Π1

b : A
֌1

b1 6 b1

Π ′
1

b : A
,

then Π =

[b1 6 b1]
1

Π1

b : A
b : A

refl 61 (r)
֌1 Π ′ =

[b1 6 b1]
1

Π ′
1

b : A
b : A

refl 61 (r)

where δ (Π, Π ′) = δ (Π1, Π
′
1) \ {s ∈ Σ | all the rwffs marked with s, if any,

are discharged in Π ′}.

(xv) [ind ]

If
Π0

b0 : A
֌1

Π ′
0

b0 : A

and
b0 6 bi bi : A bi ⊳ bj

Π1

bj : A
֌1

b0 6 bi bi : A bi ⊳ bj

Π ′
1

bj : A

then

Π =
Π0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj]
Π1

bj : A

b : A
ind (r)

֌1
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Π ′ =
Π ′

0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj ]
Π ′

1

bj : A

b : A
ind (r)

where if there are marked occurrences of b0 6 b in Π0 or Π1, then their
corresponding occurrences in Π ′

0 and Π ′
1 can be unmarked and δ (Π, Π ′) =

δ (Π0, Π
′
0) ∪ δ (Π1, Π

′
1) \ {s ∈ Σ | all the rwffs marked with s, if any, are

discharged in Π ′}.

ACTIVE CLAUSES

(xvi) [IndContr]

If
Π0

b0 : A
֌1

Π ′
0

b0 : A

and
b0 6 bi bi : A bi ⊳ bj

Π1

bj : A
֌1

b0 6 bi bi : A bi ⊳ bj

Π ′
1

bj : A

then for each n and for every choice of labels b1, . . . , bn−1

Π =

Π0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj ]
Π1

bj : A

b : A
ind (r)

֌1

Π ′ =

Π ′
0

b0 6 b0(r) b0 : A b0 ⊳ b1(r)

Π ′
1[b0/bi][b1/bj]

b0 6 b1(r) b1 : A b1 ⊳ b2(r)

Π ′
1[b1/bi][b2/bj]

b2 : A
.
.
.

b0 6 bn−1(r) bn−1 : A bn−1 ⊳ b(r)

Π ′
1[bn−1/bi][b/bj]

b : A
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where if there are marked occurrences of b0 6 b in Π0 or Π1, then their
corresponding occurrences in Π ′

0 and Π ′
1 can be unmarked and δ (Π, Π ′) =

δ (Π0, Π
′
0) ∪ δ (Π1, Π

′
1) ∪ {r} \ {s ∈ Σ | all the rwffs marked with s, if

any, are discharged in Π ′}.

(xvii) [⊃I/ ⊃E]

If Π1

b : A
֌1

Π ′
1

b : A
and

b : A
Π2

b : B
֌1

b : A
Π ′

2

b : B
,

then Π = Π1

b : A

[b : A]
Π2

b : B
b : A ⊃ B

⊃I

b : B
⊃E

֌1 Π ′ =

Π ′
1

b : A
Π ′

2

b : B

and δ (Π, Π ′) = δ (Π1, Π
′
1) ∪ δ (Π2, Π

′
2) .

(xviii) [∧I/ ∧ E1]

If Π1

b : A
֌1

Π ′
1

b : A
and Π2

b : B
֌1

Π ′
2

b : B
,

then Π =

Π1

b : A
Π2

b : B
b : A ∧ B

∧I

b : A
∧E1

֌1 Π ′ = Π ′
1

b : A

and δ (Π, Π ′) = δ (Π1, Π
′
1) .

(xix) [∧I/ ∧ E2]

If Π1

b : A
֌1

Π ′
1

b : A
and Π2

b : B
֌1

Π ′
2

b : B
,

then Π =

Π1

b : A
Π2

b : B
b : A ∧ B

∧I

b : B
∧E2

֌1 Π ′ = Π ′
2

b : B

and δ (Π, Π ′) = δ (Π2, Π
′
2) .

(xx) [XI/XE]

If
b1 ⊳ b2

Π1

b2 : A
֌1

b1 ⊳ b2

Π ′
1

b2 : A
,

then Π =

[b1 ⊳ b2]
Π1

b2 : A

b1 : XA
XI

b1 ⊳ b

b : A
XE

֌1 Π ′ =
b1 ⊳ b

Π ′
1[b/b2]
b : A

where if there are marked occurrences of b1 ⊳ b in Π1, then their corre-
sponding occurrences in Π ′

1 can be unmarked and δ (Π, Π ′) = δ (Π0, Π
′
0) ∪
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δ (Π1, Π
′
1) \ {s ∈ Σ | all the rwffs marked with s, if any, are discharged in

Π ′}.

(xxi) [GI/GE]

If
b1 6 b2

Π1

b2 : A
֌1

b1 6 b2

Π ′
1

b2 : A
,

then Π =

[b1 6 b2]
Π1

b2 : A

b1 : GA
GI

b1 6 b

b : A
GE

֌1 Π ′ =
b1 6 b

Π ′
1[b/b2]
b : A

where if there are marked occurrences of b1 6 b in Π1, then their corre-
sponding occurrences in Π ′

1 can be unmarked and δ (Π, Π ′) = δ (Π0, Π
′
0) ∪

δ (Π1, Π
′
1) \ {s ∈ Σ | all the rwffs marked with s, if any, are discharged in

Π ′}.

(xxii) [∀I/∀E]

If
b1 • b2

Π1

b2 : A
֌1

b1 • b2

Π ′
1

b2 : A
,

then Π =

[b1 • b2]
Π1

b2 : A

b1 : ∀A
∀I

b1 • b

b : A
∀E

֌1 Π ′ =
b1 • b

Π ′
1[b/b2]
b : A

and δ (Π, Π ′) = δ (Π1, Π
′
1) .

We illustrate the mechanism of marking by means of an example. Let Π be the
following derivation:

Π =
b0 ⊳ b1

b0 : A [b0 6 b1]
2

[b0 6 b1]
3 [bi : A]3 [bi ⊳ bj]

3

Π1

bj : A

b1 : A
ind3(s)

b1 : A
base 62 (r)

b1 : A
refl 61 (q)

,

with Π1 ֌1 Π ′
1 and δ (Π1, Π

′
1) = ∅ for some Π ′

1. Then, by Definition 5.32, we
have:

Π2 = b0 : A b0 6 b1

[b0 6 bi]
3 [bi : A]3 [bi ⊳ bj]

3

Π1

bj : A

b1 : A
ind3(s)

֌1
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Π ′
2 =

b0 6 b0(s) b0 : A b0 ⊳ b1(s)

Π ′
1[b0/bi][b1/bj]

b1 : A

,

with δ (Π2, Π
′
2) = {s} and consequently:

Π =
b0 ⊳ b1

Π2

b1 : A

b1 : A
base 6 (r)

b1 : A
refl 61 (q)

֌1

Π ′ = b0 ⊳ b1

[b0 6 b0(s)]
1 b0 : A b0 ⊳ b1

Π ′
2

b1 : A

b1 : A
base 6 (r)

b1 : A
refl 61 (q)

,

with δ (Π, Π ′) = ∅. Now we can use the relation֌1 to define the 1-reduction ⇒1.
Namely, ⇒1 contains those pairs in ֌1 whose set of defects is empty. Note that
in this case we give the definition directly for unmarked derivations.

Definition 5.33. We define the 1-reduction relation (denoted by ⇒1) between
N (BCTL∗

−i ) derivations Π and Π ′ as follows: Π ⇒1 Π ′ iff for every standard
marking l for Π, there exists a marking l′ for Π ′ such that (Π, l)֌1 (Π ′, l′) and
δ ((Π, l), (Π ′, l′)) = ∅.

By extension, we define the n-reduction (denoted by ⇒n) inductively as follows:

(i) Π ⇒0 Π;
(ii) if Π ⇒n Π ′ and Π ′ ⇒1 Π ′′ then Π ⇒n+1 Π ′′.

Lemma 5.34. Let Π and Π ′ be two derivations. Π ⇒ Π ′ if and only if there
exists a positive integer n such that Π ⇒n Π ′.

Proof. Immediate, by observing that the contractions on which ⇒ is based can be
“reproduced” by ֌1-reductions with no defects. Concerning the other direction,
every ֌1-reduction without any defect corresponds to the application of one or
more contractions of Section 5.4.3.

⊓⊔

A result of confluence holds for ⇒1; the details of the proof are in Appendix
A.1.

Lemma 5.35. Let Π, Π ′ and Π ′′ be derivations. If Π ⇒1 Π ′ and Π ⇒1 Π ′′,
then there exists a derivation Π ′′′ such that Π ′ ⇒1 Π ′′′ and Π ′′ ⇒1 Π ′′′.

Theorem 5.36. Let Π, Π ′ and Π ′′ be N (BCTL∗
−i ) derivations. If Π ⇒ Π ′ and

Π ⇒ Π ′′, then there exists a derivation Π ′′′ such that Π ′ ⇒ Π ′′′ and Π ′′ ⇒ Π ′′′.
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Proof. By Lemma 5.34, there exist two sequences of 1-reductions Π00 ⇒1 Π01 . . . ⇒1

Π0n and Π00 ⇒1 Π10 . . . ⇒1 Πm0 such that Π00 = Π , Π0n = Π ′ and Πm0 = Π ′′.
Repeated applications of Lemma 5.35 let us build an (n × m)-grid of derivations
(see Fig. 5.6), where for each 0 ≤ i < n and 0 ≤ j < m, there exists a derivation
Π(i+1)(j+1) such that Πi(j+1) ⇒1 Π(i+1)(j+1) and Π(i+1)j ⇒1 Π(i+1)(j+1). We can
now take Π ′′′ = Πmn. By Lemma 5.34, we conclude Π ′ ⇒ Π ′′′ and Π ′′ ⇒ Π ′′′.

⊓⊔
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Fig. 5.6. The Church-Rosser theorem.
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5.4.5 The normalization theorem

We are now in a position to establish a normalization theorem with regard to the
definition of normal form given in Definition 5.23 and to the reduction ⇒ based
on proper and induction contractions.

Similar to what Girard noted in [74] with regard to his natural deduction
system for Heyting arithmetic, also for N (BCTL∗

−i ) it is not possible to give a
proof of normalization by induction on the complexity of the maximum formulas
to be removed. As an example, consider the following contraction:

[b1 6 b′]1

Π
b′ : A

b1 : GA GI1
b1 6 b2

b2 : A
GE

 

b1 6 b2

Π [b2/b′]
b2 : A

.

If Π contains an ind -application r whose ending label is b′, then in Π [b2/b′], r will
have b2 as ending label. But, unlike b′, b2 is not required to be a proper parameter
and thus the application r, which is not unfoldable in Π , could be unfoldable in
Π [b2/b′]. This is an example of a contraction that can give rise to a new maximum
formula, about whose complexity we cannot say anything.

Similar to [74], we thus introduce a notion of reducibility for derivations in
N (BCTL∗

−i ). The general schema of the proof of normalization will then consist
in showing that:

(i) every N (BCTL∗
−i ) derivation is reducible (Corollary 5.44); and

(ii) every reducible derivation reduces to a normal form (Theorem 5.41, property
Red1).

From (i) and (ii), it trivially follows that every N (BCTL∗
−i ) derivation has a

normal form, which is what we wish to prove.
With respect to the case of systems for Heyting arithmetic, a further problem

that we have to face here comes again from dealing with ind -applications whose
contractions are not strictly local. As we did for the Church-Rosser theorem, the
solution will consist in proving the statement with regard to a larger class of re-
ductions, according to which we are allowed to unfold an ind -application into a
subderivation (of the form specified by the induction contractions of Section 5.4.3)
whose length and whose set of labels are arbitrary. This idea will be formalized in-
side the notion of reducibility under substitution (Definition 5.42): in fact, instead
of proving directly (i), we will introduce this stronger notion of reducibility and
prove that every N (BCTL∗

−i ) derivation is actually reducible under substitution
(Theorem 5.43).

A number of auxiliary lemmas will be used along the proof. In particular, in
order to prove (i), we will need to show that the notion of reducibility is preserved
by the addition of applications with atomic conclusions (Lemma 5.38), and that
it is strictly connected to the relation ⇒, namely if Π ⇒ Π ′ then Π and Π ′

are either both reducible or both non-reducible (Lemma 5.39). In Definition 5.40,
we also introduce another characterization of N (BCTL∗

−i ) derivations: the set
of S-derivations. We will show that this set is contained in the set of reducible
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derivations (Theorem 5.41, property Red2) and this characterization will turn out
to be useful in the case of ind -applications.

Finally, both in proving (i) and (ii) we will use the Church-Rosser property
shown in Theorem 5.36.

Definition 5.37. Let Π be a derivation of b : A. We define the notion of re-
ducibility by induction on the complexity of A as follows:

(i) if A is an atomic formula, then Π is reducible iff it reduces to a normal form;
(ii) if A is A1 ⊃ A2, then Π is reducible iff for all reducible derivations Π1 of

b : A1, the derivation
Π

b : A1 ⊃ A2

Π1

b : A1

b : A2
⊃E

is reducible;
(iii) if A is A1 ∧ A2, then Π is reducible iff

Π
b : A1 ∧ A2

b : A1
∧E1

and
Π

b : A1 ∧ A2

b : A2
∧E2

are reducible;
(iv) if A is XB, then Π is reducible iff for each label b′ the derivation

Π
b : XB b⊳ b′

b′ : B
XE

is reducible;
(v) if A is GB, then Π is reducible iff for each label b′ the derivation

Π
b : GB b 6 b′

b′ : B
GE

is reducible;
(vi) if A is ∀B, then Π is reducible iff for each label b′ the derivation

Π
b : ∀B b • b′

b′ : B
∀E

is reducible.

We begin our proof by showing a useful lemma:

Lemma 5.38. Applications of ser⊳, lin⊳, refl 6, trans 6, refl•, symm•, trans•,
atom•, fusion and ⊥Ei preserve reducibility.

Proof. We use the facts that the conclusions of such rules are atomic and that
they cannot introduce any maximum formulas. As an example (the other cases are
analogous), let us consider a derivation Π whose last application is a ser⊳:
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[b1 ⊳ b2]
Π1

b : p

b : p
ser⊳

.

For derivations of atomic formulas, by Definition 5.37, reducibility coincides with
normalizability. We conclude by noticing that if Π1 has a normal form Π ′

1, then
Π has the following derivation as a normal form:

[b1 ⊳ b2]
Π ′

1

b : p

b : p
ser⊳

.

⊓⊔

In Lemma 5.38, we do not consider applications of the relational rules lin⊳R

and base 6, which can introduce maximum formulas and have to be treated dif-
ferently.

Lemma 5.39. Let Π and Π ′ be N (BCTL∗
−i ) derivations. If Π ⇒ Π ′ then Π is

reducible iff Π ′ is reducible.

Proof. By induction on the complexity of the conclusion b : A of Π .

(i) b : A is atomic.
For derivations of atomic formulas, reducibility coincides with normalizabil-
ity. (Left-to-right implication) If Π has a normal form Π ′′ then by Theorem
5.36 there exists a Π ′′′ to which both Π ′ and Π ′′ reduce. Since Π ′′ is nor-
mal, Π ′′ and Π ′′′ must coincide, i.e. also Π ′ has a normal form. (Right-to-left
implication) If Π ⇒ Π ′ and Π ′ has a normal form Π ′′, then Π ⇒ Π ′′.

(ii) b : A is b : A1 ⊃ A2.
Assume Π ⇒ Π ′ and consider the derivations

Π1 =
Π

b : A1 ⊃ A2

Π̂
b : A1

b : A2
⊃E

and Π2 =
Π ′

b : A1 ⊃ A2

Π̂
b : A1

b : A2
⊃E

where Π̂ is some reducible derivation. We prove both directions simultane-
ously. By definition of reducibility, Π is reducible iff Π1 is reducible. But
Π1 ⇒ Π2 and thus, by the induction hypothesis, Π1 is reducible iff Π2

is reducible. Finally, by definition of reducibility, Π2 is reducible iff Π ′ is
reducible.

(iii) b : A is b : A1 ∧ A2.
Assume Π ⇒ Π ′ and consider the derivations

Π1 =
Π

b : A1 ∧ A2

b : A1
∧E1

and Π ′
1 =

Π ′

b : A1 ∧ A2

b : A1
∧E1

.

We prove both directions simultaneously. By definition of reducibility, Π is
reducible iff Π1 is reducible. But Π1 ⇒ Π ′

1. It follows that, by the induction
hypothesis, Π1 is reducible iff Π ′

1 is reducible. By definition of reducibility,
Π ′

1 is reducible iff Π ′ is reducible. We proceed similarly for ∧E2.
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(iv) b : A is b : XB or b : GB or b : ∀B.
We consider the case b : XB; the other ones are analogous. Assume Π ⇒ Π ′

and consider the derivations

Π1 =
Π

b : XB b⊳ b′

b′ : B
XE

and Π2 =
Π ′

b : XB b⊳ b′

b′ : B
XE

for some label b′. By definition of reducibility, Π is reducible iff Π1 is re-
ducible. But Π1 ⇒ Π2 and thus, by the induction hypothesis, Π1 is reducible
iff Π2 is reducible. Again, by definition of reducibility, Π2 is reducible iff Π ′

is reducible.
⊓⊔

As in [74], we also define a subset of reducible derivations, which will be useful
in the following.

Definition 5.40. We say that a N (BCTL∗
−i ) derivation is S-reducible if it be-

longs to the set S defined inductively as follows:

(1) A derivation consisting of just an assumption is in S.
(2) If a derivation Π of b : A ⊃ B is in S and if a derivation Π ′ of b : A has a

normal form, then the derivation

Π
b : A ⊃ B

Π ′

b : A
b : B

⊃E

is in S;
(3) If a derivation Π of b : A ∧ B is in S, then

Π
b : A ∧ B

b : A
∧E1

and
Π

b : A ∧ B
b : B

∧E2

are in S;
(4) If a derivation Π of b : XA is in S, then the derivation

Π
b : XA b⊳ b′

b′ : A
XE

is in S for every label b′;
(5) If a derivation Π of b : GA is in S, then the derivation

Π
b : GA b 6 b′

b′ : A
GE

is in S for every label b′;
(6) If a derivation Π of b : ∀A is in S, then the derivation

Π
b : ∀A b • b′

b′ : A
∀E

is in S for every label b′;
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(7) If the derivations

Π0

b0 : A and

b0 6 bi bi : A bi ⊳ bj

Π1

bj : A

have normal forms, then the derivation

Π0

b0 : A b0 6 bn

[b0 6 bi] [bi : A] [bi ⊳ bj]
Π1

bj : A

bn : A
ind

is in S.
(8) No other derivation belongs to S.

We prove now some properties of reducible and S-reducible derivations that
will be used in the subsequent proofs.

Theorem 5.41. Reducible derivations enjoy the following properties:

(Red1) If Π is reducible, then Π reduces to a normal form.
(Red2) If Π is S-reducible, then Π is reducible.

Proof. We proceed by induction on the complexity of the conclusion b : A of Π .

(i) b : A is atomic
(Red1) By definition of reducibility.
(Red2) Let us consider the inductive definition of S-reducibility. If in each

application of step (2) we replace Π ′ by its normal form, and in each
application of (7) we replace Π0 and Π1 by their normal forms, then it
is clear that all the S-reducible derivations are normalizable.

(ii) b : A is b : A1 ⊃ A2

(Red1) Let Π ′
0 be the following derivation:

Π
b : A1 ⊃ A2 b : A1

b : A2
⊃E

.

By the induction hypothesis, there exists a reduction sequence Π ′
0, . . . , Π

′
n

such that Π ′
n is normal. We have two cases:

(a) If all the contractions in the reduction sequence are applied on strict
subproofs, then we have that Π ′

i is

Πi

b : A1 ⊃ A2 b : A1

b : A2
⊃E

,

for each 0 ≤ i < n, and we can write Π ⇒ Πn, where Πn is normal.
(b) Otherwise, we can choose the minimum i such that the contraction

is not made on a strict subderivation of Π ′
i:
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Πi =

[b : A1]

Π̂
b : A2

b : A1 ⊃ A2
⊃I

b : A1

b : A2
⊃E

.

Then Π ′
0 ⇒ Π̂ and, by Theorem 5.36, Π̂ ⇒ Π ′

n; hence:

Π ⇒

[b : A1]
Π ′

n

b : A2

b : A1 ⊃ A2
⊃I

,

which is normal.
(Red2) Assume that Π is S-reducible and consider the following derivation:

Π ′ =
Π

b : A1 ⊃ A2

Π̂
b : A1

b : A2
⊃E

,

where Π̂ is reducible. By the induction hypothesis on (Red1), Π̂ is nor-
malizable. Then Π ′ also is S-reducible and, by the induction hypothesis,
reducible. By definition of reducibility, we conclude that Π is reducible.

(iii) b : A is b : A1 ∧ A2

(Red1) Let Π ′
0 and Π ′′

0 be the following derivations:

Π ′
0 =

Π
b : A1 ∧ A2

b : A1
∧E1

, Π ′′
0 =

Π
b : A1 ∧ A2

b : A2
∧E2

.

By the induction hypothesis, there exist two reduction sequences Π ′
0, . . . , Π

′
n

and Π ′′
0 , . . . , Π ′′

m such that Π ′
n and Π ′′

m are normal. We have two cases:
(a) If all the contractions in the reduction sequence Π ′

0, . . . , Π
′
n are ap-

plied on strict subproofs, then we have that Π ′
i can be written as

Πi

b : A1 ∧ A2

b : A1
∧E1

,

for each 0 ≤ i < n, and we can conclude Π ⇒ Πn, where Πn is
normal.

(b) Otherwise, we can choose the minimum i such that the contraction
is not applied to a strict subderivation of Π ′

i:

Π ′
i =

Π̂1

b : A1

Π̂2

b : A2

b : A1 ∧ A2
∧I

b : A1
∧E1

.

Then Π ′
0 ⇒ Π̂1 and Π ′′

0 ⇒ Π̂2. By Theorem 5.36, Π̂1 ⇒ Π ′
n and

Π̂2 ⇒ Π ′′
m; hence:
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Π ⇒
Π ′

n

b : A1

Π ′′
m

b : A2

b : A1 ∧ A2
∧I

,

which is normal.
(Red2) Assume that Π is S-reducible and consider the following derivations:

Π ′ =
Π

b : A1 ∧ A2

b : A1
∧E1

and Π ′′ =
Π

b : A1 ∧ A2

b : A2
∧E2

.

By Definition 5.40, Π ′ and Π ′′ are S-reducible and thus, by the induction
hypothesis, reducible. Then, by definition of reducibility, we conclude
that Π is reducible.

(iv) b : A is b : XB
(Red1) Assume that Π is reducible. Then, by definition of reducibility, there

exists a reducible derivation Π ′
0 such as:

Π
b : XB b⊳ b′

b′ : B
XE

,

for some label b′. By the induction hypothesis on Π ′
0, there exists a

reduction sequence Π ′
0, . . . , Π

′
n such that Π ′

n is normal. We have two
cases:
(a) If all the contractions in the reduction sequence are made on strict

subderivations, then we have that Π ′
i is

Πi

b : XB b⊳ b′

b′ : B
XE

,

for each 0 ≤ i < n, and we can write Π ⇒ Πn, where Πn is clearly
normal.

(b) Otherwise, there exists a minimum i such that the contraction is not
made on a strict subderivation of Π ′

i:

Π ′
i =

[b⊳ b′′]1

Π̂
b′′ : B
b : XB XI1

b⊳ b′

b′ : B
XE

,

for some b′′ fresh in Π̂. But Π ′
i  Π̂ [b′/b′′] and thus we have Π ′

0 ⇒

Π̂ [b′/b′′]. We know that

Π ⇒

[b⊳ b′′]1

Π̂
b′′ : B
b : XB XI1

.

By Theorem 5.36, Π̂[b′/b′′] ⇒ Π ′
n, which is normal. By the freshness

of b′′ in Π̂ , we have that if Π ′
n is a normal form for Π̂[b′/b′′] then

Π ′
n[b′′/b′] is a normal form for Π̂. Thus we have:
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Π ⇒
Π ′

n[b′′/b′]
b′′ : B
b : XB

XI
,

which is normal.
(Red2) Assume that Π is S-reducible and consider the derivation:

Π ′ =
Π

b : XB b⊳ b′

b′ : B
XE

,

for some label b′. By definition of S-reducibility, if Π is S-reducible,
then also Π ′ is S-reducible. But then, by the induction hypothesis, Π ′ is
reducible. We conclude that Π is reducible by definition of reducibility.

(v) b : A is b : GB

(vi) b : A is b : ∀B
Proofs for the cases (v) and (vi) are analogous to those for the case (iv).

⊓⊔

Now we introduce the stronger notion of reducibility under substitution and
show that every derivation is in fact reducible under substitution.

Definition 5.42. A derivation Π is reducible under substitution if:

(i) for each substitution of labels that are not proper parameters;
(ii) for each replacement of open hypotheses by reducible derivations of such hy-

potheses; and
(iii) for each replacement of a subderivation of Π, whose last application is an

ind-application s, like the following

Π0

b0 : A b0 6 b

[b0 6 b1]
1 [bi : A]1 [bi ⊳ bj ]

1

Π1

bj : A

b : A s1

by a subderivation like the following (for each n and for every choice of labels
b1, . . . , bn−1)

Π0

b0 6 b0 b0 : A b0 ⊳ b1

Π1[b0/bi][b1/bj]

b0 6 b1 b1 : A b1 ⊳ b2

Π1[b1/bi][b2/bj]

b2 : A
.
.
.

b0 6 bn−1 bn−1 : A bn−1 ⊳ b

Π1[bn−1/bi][b/bj]

b : A
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the resulting derivation is reducible.
We say that a derivation Π∗ is obtained by substitution from Π if Π∗ is

obtained from Π by applying zero or more substitutions and/or replacements as
specified by the items (i), (ii) and (iii).

Lemma 5.43. Every N (BCTL∗
−i ) derivation is reducible under substitution.

Proof. The proof proceeds by induction on the length of the derivation Π . If Π is
just an assumption, then it is clearly reducible under substitution. As an inductive
step, we have a case for every possible rule.

(⊃I)
Let ⊃I be the last rule applied in Π :

[b : A]
Π1

b : B
b : A ⊃ B

⊃I
.

By the induction hypothesis, Π1 is reducible under substitution. Without loss of
generality, we consider now a derivation Π∗ obtained by substitution from Π and
prove that it is reducible. Π∗ will have the form:

[b∗ : A]
Π∗

1

b∗ : B
b∗ : A ⊃ B

⊃I
.

Note that Π∗
1 is obtained by substitution from Π1. By Definition 5.37, we need to

show that for all reducible derivations Π ′ of b∗ : A, the derivation

Π ′

b∗ : A

[b∗ : A]
Π∗

1

b∗ : B
b∗ : A ⊃ B

⊃I

b∗ : B
⊃E

is reducible. But it is enough to notice that this derivation reduces to

Π ′

b∗ : A
Π∗

1

b∗ : B

,

which is reducible as it is obtained by substitution from Π1 (that is reducible under
substitution by the induction hypothesis). By Lemma 5.39, we have the thesis.

(∧I)
Let ∧I be the last rule applied in Π :

Π1

b : A
Π2

b : B
b : A ∧ B

∧I .
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By the induction hypothesis, Π1 and Π2 are reducible under substitution. Without
loss of generality, we consider now a derivation Π∗ obtained by substitution from
Π and prove that it is reducible. Π∗ will have the form:

Π∗
1

b∗ : A
Π∗

2

b∗ : B
b∗ : A ∧ B

∧I
.

Note that Π∗
1 and Π∗

2 are obtained by substitution from Π1 and Π∗
2 respectively.

By Definition 5.37, we need to show that the derivations

Π∗
1

b∗ : A
Π∗

2

b∗ : B
b∗ : A ∧ B

∧I

b∗ : A
∧E1

and

Π∗
1

b∗ : A
Π∗

2

b∗ : B
b∗ : A ∧ B

∧I

b∗ : B
∧E2

are reducible. But it is enough to notice that they reduce to

Π∗
1

b∗ : A
and Π∗

2

b∗ : B
,

which are reducible as they are obtained by substitution from Π1 and Π2, respec-
tively (and Π1 and Π2 are reducible under substitution by the induction hypoth-
esis). By Lemma 5.39, we obtain the thesis.

(XI), (GI), (∀I)
We consider here the case of XI; the other cases are analogous. Let XI be the last
rule applied in Π :

[b⊳ b1]
Π1

b1 : A

b : XA
XI

.

We consider now a generic Π∗ obtained by substitution from Π and prove that it is
reducible. By Definition 5.37, we need to show that for each label b′ the derivation

[b∗ ⊳ b1]
Π∗

1

b1 : A

b∗ : XA
XI

b∗ ⊳ b′

b′ : A
XE

is reducible. But this derivation reduces to

b∗ ⊳ b′

Π∗
1 [b′/b1]
b′ : A

,

which is reducible as it is obtained by substitution from Π1, which is reducible
under substitution by the induction hypothesis. (Note that b1 is a proper parameter
in Π but not in Π1.) By Lemma 5.39, we have the thesis.

(⊃E), (∧E1), (∧E2), (XE), (GE), (∀E)
The definition of reducibility is given in such a way that elimination rules clearly
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preserve reducibility. Since elimination rules do not introduce proper parameters,
do not close any assumption and do not solve any ind -application, the set of
possible substitutions on Π is exactly the same as in the subderivations obtained
from Π by removing the last rule application. Such subderivations are reducible
under substitution by the induction hypothesis. Thus we have the thesis.

(ser⊳), (lin⊳), (refl 6), (trans 6), (refl•), (symm•), (trans•), (atom•), (fusion),
(⊥Ei)
As in the previous case, these rules do not introduce proper parameters, do not
close any assumption and do not solve any ind -application. Thus the thesis follows
directly from Lemma 5.38.

(ind)
Let ind be the last rule applied in Π :

Π0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj]
Π1

bj : A

b : A
ind

.

Let us consider a derivation Π∗ obtained by substitution from Π and show that
it is reducible. We have two cases:

(a) Π∗ is obtained without replacing the last ind -application in Π :

Π∗
0

b∗0 : A b∗0 6 b∗
Π∗

1

b∗j : A

b∗ : A
ind

.

By the induction hypothesis, Π∗
0 and Π∗

1 are reducible and thus, by Red1 of
Theorem 5.41, they have a normal form. By Definition 5.40, it follows that Π∗

is S-reducible. Then, by Red2 of Theorem 5.41, we can conclude that Π∗ is
reducible.

(b) Π∗ is obtained by replacing (also) the last ind -application in Π :

Π∗ =

Π∗
0

b∗0 6 b1 b∗0 : A b1 ⊳ b2

Π∗
1 [b1/bi][b2/bj]

b∗0 6 b2 b1 : A b2 ⊳ b3

.

.

.

b∗0 6 bn−1 bn−1 : A bn−1 ⊳ b∗

Π∗
1 [bn−1/bi][b

∗/bj ]

b∗ : A

for some n and some set of labels {b1, . . . , bn−1}. By the induction hypothesis,
Π0 and Π1 are reducible under substitution. From this, by induction on the
value of n, it follows that Π∗ is reducible whatever n is.
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(base 6), (lin⊳R)
We consider the case base 6; the other one is analogous. Let r be the last rule
application in Π and let it be an application of base 6:

bm−1 ⊳ bm

[bm−1 6 bm]
Π ′

b : p

b : p
r

.

We consider now a generic derivation Π∗ obtained by substitution from Π and
show that it is reducible. If r does not solve any ind -application, then we can
simply use the induction hypothesis on Π ′ and Lemma 5.38. Otherwise, let s be
an ind -application unfolded by r by a chain of rwffs

b0 ⊳ b1 , b1 ⊳ b2 , . . . , bn−1 ⊳ bn ,

for some n; Π will have the following form:

bm−1 ⊳ bm

Π0

b0 : A [b0 6 bn]

[b0 6 bi] [bi : A] [bi ⊳ bj]
Π1

bj : A

bn : A
s

Π2

b : p

b : p
r

.

If in the derivation Π∗, obtained by substitution from Π , the application s is
replaced, then we just apply the induction hypothesis on Π ′ and we are done.
Otherwise, we have Π∗ ⇒ Π̂∗:

Π̂∗ =

bm−1 ⊳ bm

Π̂ ′∗

b∗ : p

b∗ : p
r

where Π̂ ′∗ is
Π∗

0

b∗0 : A
Π∗

1

b∗1 : A
....

Π∗
1

b∗n : A
Π∗

2

b∗ : p

.

Note that Π̂ ′∗ can be obtained by substitution from Π ′. Thus from the reducibility
under substitution of Π ′ we infer the reducibility of Π̂ ′∗. Furthermore, by Lemma
5.38, r preserves reducibility. It follows that Π̂∗ is reducible and thus, by Lemma
5.39, that also Π∗ is reducible. We conclude that Π is reducible under substitution.

⊓⊔
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Corollary 5.44. Every N (BCTL∗
−i ) derivation is reducible.

Proof. Immediate, by Lemma 5.43. We just notice that, according to Definitions
5.37 and 5.42, the notion of reducibility under substitution clearly implies that of
reducibility, i.e. a derivation reducible under substitution is reducible.

⊓⊔

Theorem 5.45. Every N (BCTL∗
−i ) derivation has a normal form.

Proof. The thesis follows easily by Corollary 5.44, i.e. every derivation is reducible,
and by property Red1 of Theorem 5.41, i.e. every reducible derivation has a normal
form.

⊓⊔

5.4.6 The form of normal derivations

Here we investigate the structure of normal derivations in N (BCTL∗
−i ). We adapt

from [151] the definition of spine.

Definition 5.46. Given a derivation Π, a spine is a sequence of lwffs b1 : A1, b2 :
A2, . . . , bn : An such that:

(i) bn : An is the conclusion of Π;
(ii) bi+1 : Ai+1 occurs immediately below bi : Ai, for 1 ≤ i < n;
(iii) bi : Ai is the major (or the only) premise of a rule, for 1 ≤ i < n;
(iv) b1 : A1 is an assumption of Π or the conclusion of an ind-application.

Lemma 5.47. In a normal derivation, a spine b1 : A1, b2 : A2, . . . , bn : An can be
divided into three parts:

(i) an elimination part b1 : A1, . . . , bm−1 : Am−1 where each bj : Aj, for 1 ≤ j <
m−1 is the major premise of an elimination rule with conclusion bj+1 : Aj+1;

(ii) a minimum part bm : Am, . . . , bm+k−1 : Am+k−1, where each formula except
the last one is premise of ⊥Ei or of a relational rule;

(iii) an introduction part bm+k : Am+k, . . . , bn : An, where each bj : Aj, for
m+k ≤ j < n is premise of an introduction rule with conclusion bj+1 : Aj+1.

Proof. Straightforward, by the definition of normal form, which requires the ab-
sence of maximum formulas in Π .

⊓⊔

5.4.7 Consistency

We can exploit the structural properties of normal derivations to prove the con-
sistency of N (BCTL∗

−i ).

Theorem 5.48. The system N (BCTL∗
−i ) is consistent, i.e. b :⊥ is not derivable

in N (BCTL∗
−i ).
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Proof. We proceed by showing that a derivation concluding with b :⊥ must have
at least one open assumption. Since each N (BCTL∗

−i ) derivation has a normal
form (Theorem 5.45), we can restrict the analysis to normal derivations. Let Π
be a normal derivation of b :⊥ and b1 : A1, b2 : A2, . . . , bn : An ≡ b :⊥ a spine
of Π . First we note that Π has an atomic conclusion and thus, by Lemma 5.47,
cannot contain introductions. Moreover, by the definition of a spine (Definition
5.46), there are no ind -applications below b1 : A1. Given that only introduction
rules and ind can discharge lwffs, we have that b1 : A1 cannot be a discharged
assumption. By Definition 5.46, we have two cases left:

(i) b1 : A1 is an open assumption, and then we are done; or

(ii) b1 : A1 is the conclusion of an ind -application s. Then let ρ be the ending
premise of s. We will assume that ρ does not depend on any open assumption
and show that this leads to a contradiction. We know that there are no GI
and no ind -applications below s. Since these are the only rules that can
discharge a formula of the form b′ 6 b′′ where b′ and b′′ do not coincide,
we can conclude that all the leaves of the dependence tree of ρ are either
⊳-formulas or 6-formulas of the form b′ 6 b′ for some label b′. By Definition
5.19, it follows that ρ is unfoldable. But then s is unfoldable and Π is not
normal (contradiction).

⊓⊔

Corollary 5.49. The system N (BCTL∗
−) is consistent, i.e. b :⊥ is not derivable

in N (BCTL∗
−).

Proof. By Lemma 5.17, b :⊥ is derivable in N (BCTL∗
−) if and only if it is derivable

in N (BCTL∗
−i ). By Theorem 5.48, we have the thesis.

⊓⊔

5.4.8 The failure of the subformula property

Theorem 5.48 shows that the procedure of normalization that we have defined for
N (BCTL∗

−i ) is good enough to get as a consequence a proof, by purely syntactic
means, of the consistency of the system. However, as in normalization of natu-
ral deduction systems for Heyting arithmetic (see [152, Chapter 10.4.12] for an
example), we do not have a subformula property. Namely, it is possible to show
examples of N (BCTL∗

−i ) derivations that are normal with respect to Definition
5.23 but in which formulas occur that are neither subformulas of the conclusion
nor of any of the open assumptions.

In Fig. 5.7, we give, as an example, an N (BCTL∗
−i ) derivation of {b : A, b :

XA, b : G(A ⊃ XXA)} ⊢
N(BCTL∗

−i
)

b : GA. The derivation is clearly in normal form

and the formula b : A ∧ XA, which occurs in it, is not a subformula of any of the
open assumptions or of the conclusion, according to any reasonable definition of
subformula for our labeled logic.

5.5 Discussion and related works

In this chapter, we have given labeled natural deduction systems for the until-free
versions of a number of Ockhamist branching-time logics.
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b : A b : XA
b : A ∧ XA

∧I
[b 6 c]1

[bi : A ∧ XA]2

bi : XA
∧E

[bi ⊳ bj ]2

bj : A
XE

b : G(A ⊃ XXA) [b 6 bi]
2

bi : A ⊃ XXA
GE

[bi : A ∧ XA]2

bi : A
∧E

bi : XXA
⊃E

[bi ⊳ bj ]2

bj : XA
XE

bj : A ∧ XA
∧I

c : A ∧ XA ind2

c : A
∧E

b : GA GI1

Fig. 5.7. An example of the failure of the subformula property.
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Both in the case of general time (Section 5.2) and of discrete time (Section 5.3),
we have considered a generalized version of the semantics giving rise to branching
sublogics usually known as “bundled”. We remark that this limitation is common
also in the field of Hilbert-style axiomatizations, where an axiomatization has
been only recently given for CTL∗ [135] and announced for OBTL by Reynolds.
Moreover the one for CTL∗ is a not completely standard axiomatization, which
makes use of a rule involving the addition of fresh atoms in a proof (similar to the
rule IRR of Gabbay [64]). The problem can be summarized, in the case of CTL∗,
in the difficulty of capturing the limit-closure property (see Section 2.4.2), which
is clearly a second-order property. An extension towards the logics endowed with
such a semantics is left for future work. A first step could consist in considering a
system with infinitary rules. It would be also interesting to consider an extension
of our approach to PCTL∗, i.e. CTL∗ with past, for which a completely standard
Hilbert-style axiomatization has been provided [138].

We wish to remark, however, that BCTL∗ is relevant in itself when studying
applications in which fairness constraints are considered [42]. Some authors [116,
118] also assert that bundled validity represents a more correct interpretation of
human reasoning about time from a philosophical point of view.

We have already discussed a number of relevant related works in the previous
sections. In the case of Ockhamist logics of general time, the only known deduction
systems are Hilbert-style axiomatizations [68, 136,164,167].

Labeled natural deduction systems have been proposed for the logic CTL.
Renteria and Haesler [131] present a system where logical formulas are labeled but
no relational rules are given and indeed not even a notion of relational formula is
used, since informations about the relations between labels are contained in the
structure of the labels itself. The system is presented by restricting the attention to
a minimal set of three temporal operators, for which introduction, elimination and
“hybrid” (neither introduction nor elimination) rules are given. Some of these rules
resemble reasoning similar to arithmetic induction. Both soundness and complete-
ness are proved for the system. The presence of “hybrid” rules makes an analysis
of normalization quite complex and unnatural.

In [19], Bolotov et al. also extend the approach presented in [19] for LTL in
order to capture CTL. The same mechanism of flagging for labels is used, but in
this case we have two separate classes of labels:

1. state labels, which are interpreted over time points;
2. path labels, which are interpreted over branches.

A further classification separates labels into universal and rigid with the idea that
a universal label refers to a generic state (or path) and a rigid label to a specific
state (or path). The authors consider the combination of a path quantifier and of
a linear time operator as a unique temporal operator. For each of these operators,
one or more introduction and one or more elimination rules are given. We give here
the example of (∀GE ) and (∃GE ) which allows us also to show the use of labels in
this context.

i : ∀GA
(∀GE )

(i ≤ j)ϕU , j : A

i : ∃GA
(∃GE )

(i ≤ j)ϕR , j : A
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Rules are given in Jaskowski style [94]: in this case we have rules with one premise
and two conclusions. The two elimination rules are analogous but they differ in
the fact that ϕ is a universal path label in (∀GE ) (and thus refers to a generic
path) and a rigid path label in (∃GE ) (and thus refers to a particular path). As
in [19], relational rules belong to a separate relational system and specific rules to
model induction are required.

In [139], a tableau-based decision procedure for BCTL∗ is given. The tableau
construction differs from the traditional tree-shaped one and consists, like for other
tableau systems for temporal logics, e.g. [54,163], in starting with a graph and it-
eratively pruning away some nodes until a success or a failure condition is reached.
We remark that the focus of our work, instead, mainly concerns the definition of
a deduction system with good proof-theoretical properties.
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The Mosaic Method for Temporal Logics

6.1 Introduction

The mosaic method has been introduced in algebraic logic as a way of proving the
decidability of the theories of some classes of algebras of relations [114, 115]. The
basic idea consists in showing that the existence of a model is equivalent to the
existence of a (finite) set of fragments of models (called mosaics). There are of
course several conditions to be satisfied: first of all, every single mosaic needs to
satisfy some local coherency conditions ; furthermore, the set of mosaics is required
to be closed with respect to a number of saturation conditions.

The usefulness of mosaics comes from the fact that, given a formula, we do not
need to generate a full model in order to prove its satisfiability: it is enough to
show that there exists such a saturated set of mosaics. Thus we have a decision
procedure for the logic, which consists in checking whether such a (finite) set
exists or not. The mosaic method has been recently applied to prove decidability,
complexity results and completeness of Hilbert-style axiomatizations for several
modal logics [86, 111,157].

With regard to temporal logics, a first work considering an adaptation of the
technique to the linear temporal logic Kl is [105]. In this paper, the authors give
a proper definition of mosaics for the logic Kl and prove that the existence of a
saturated set of mosaics for a formula is indeed equivalent to the existence of a
model for that formula. Then they apply this result to prove the decidability of the
logic and the completeness of a given Hilbert-style axiomatization. A mosaic-based
labeled tableau construction is also presented, and the ideas behind that are used
to provide a method for automated theorem-proving. Finally, a generalization of
these results to the case of several variants of Kl is sketched by suggesting possible
modifications of the conditions defining mosaics and saturated sets of mosaics.

Further works using mosaics in temporal logics established complexity results
for the logic of until over general linear time [137] and the logic using both since and
until over the reals [134] (See also [140,141] for more recent and general accounts on
mosaics and complexity topics.) In [133], a variant of the mosaic method has been
used to prove decidability of a so-called temporal logic of parallelism, mentioned
also in [150]. This logic consists in a simple combination of the temporal operators
F and P with a modal operator ♦. The semantics is given on rectangular frames
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consisting of the cross product of a (vertical) linear order and a (horizontal) non-
empty set. F and P operate along the vertical lines and ♦ acts horizontally as an
S5 existential operator but there is no dependence between the vertical and the
horizontal relations. In the paper, it is also shown that this logic does not enjoy
the finite model property and thus that the mosaic method is in some cases a more
powerful tool for proving decidability.

In this chapter, first we briefly recall, mainly from [105], the definitions and
results concerning mosaics for linear temporal logics. Then we propose an extension
of the mosaic method to the case of branching-time logics. Here we will limit our
extension to the case of the bundled Ockhamist branching logics presented in
Section 2.4.1, i.e., to BOBTL and some of its sublogics. The results concerning
decidability and completeness of these logics are already well-known, however we
believe that the mosaic method is interesting in itself as it provides a uniform
way of establishing such results for a large class of logics, by simple and modular
modifications of the basic definitions. Moreover, our proposal for this class of
branching-time logics can be seen as a basis for dealing with other more interesting
logics, for which decidability and complexity results are still missing.

We also remark that, in this thesis, we do not consider extensions of the mosaic-
based techniques to more complex linear-time logics, like LTL, or branching-time
logics, like computation tree logics, for which further work is required.

The structure of the chapter is the following:

– in Section 6.2, we consider the use of mosaics in the case of linear-time logics.
We recall the results from [105] and adapt them to the case of some logics not
explicitly considered there;

– in Section 6.3, an extension for the branching-time bundled logics of Section
2.4.1 is proposed.

6.2 Mosaics for linear temporal logics

In this section, we define mosaics in the case of the basic priorean tense logics
of Sections 2.3.1 and 2.3.2. Most of the results presented in this section come
from [105], where the definition of mosaics for Kl and other temporal logics with
the operators F and P over linear flows of time is given.

6.2.1 Mosaics for the basic priorean tense logics

In this section, and in general when dealing with mosaics, we will consider as
primitive connectives ∧ and ¬, instead of ⊃ and ⊥. Intuitively, temporal mosaics
can be seen as pairs (M, M ′) where the two elements M and M ′ refer to two
points in a temporal structure, such that the point associated to M precedes (by
the relation ≺) the one associated to M ′. An element M is indeed a set of formulas,
namely the set of formulas that are evaluated true at that point.

Given this basic intuition, it seems reasonable to require that mosaics satisfy
some local coherency conditions: as an example, given a mosaic (M, M ′), we want
that if GA ∈ M , then A ∈ M ′. Moreover, we are interested in considering particular
sets of mosaics, saturated in such a way that we are able to build a complete model
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by just composing the mosaics contained in a given set of that kind. This means we
need to define the saturation conditions that a “good” set of mosaics is required to
satisfy. Basically, this amounts to making sure that each counterexample occurring
in the model we are building can be “cured”. In this context, a counterexample
consists in the presence of a point w labeled with a formula of the form FA such
that all of its successors are labeled with ¬A. By “curing” it, we mean adding a
new point w′ in the structure (as a successor of w) such that the labeling set of
w′ contains A.

These ideas are formalized in the following definitions and theorems.

Mosaics for Kt

For completeness, and uniformity with previous chapters, here we adapt the def-
inition of a mosaic, given in [105] for the logic Kl , to the case of the simpler Kt .
Note that, as in [105], our definition also admits the presence of mosaics that are
singletons: we need them in order to consider the existence of single-point models
(or, possibly, of models containing disconnected points, i.e. points that are not
related to any other point).

Definition 6.1. Let ∆ be a set of formulas closed under subformulas and single
negation, in the language of tense formulas (Section 2.3.1). A mosaic (on ∆) is
a pair (M0, M1) or a singleton (M0), where M0, M1 ⊆ ∆, satisfying the following
coherency conditions.

COHERENCY CONDITIONS

For every formula A, B ∈ ∆ and i ∈ {0, 1},

(CL1) A ∈ Mi iff ¬A /∈ Mi;
(CL2) A ∧ B ∈ Mi iff {A, B} ⊆ Mi;
(CL3) if A = GA′ ∈ M0, then A′ ∈ M1;
(CL4) if A = HA′ ∈ M1, then A′ ∈ M0.

In the case of a mosaic being a singleton only conditions CL1 and CL2 need to be
satisfied.

Definition 6.2. Let S be a set of mosaics on ∆. Then the set of points of S is the
set Points(S ) = {M ⊆ ∆ | there exists (M0, M1) ∈ S or (M0) ∈ S s.t. M0 = M
or M1 = M}.

Definition 6.3. A set S of mosaics is a Kt-saturated set of mosaics (a Kt-SSM
for short) if it satisfies the following saturation conditions.

SATURATION CONDITIONS

For every point M ∈ Points(S ),

(SL1) if FA ∈ M , then there exists (M, M ′) ∈ S s.t. A ∈ M ′;
(SL2) if PA ∈ M , then there exists (M ′, M) ∈ S s.t. A ∈ M ′;

Theorem 6.4. For any set Γ of tense formulas, Γ is Kt-satisfiable iff there exists
a Kt-SSM for Γ .
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Proof. (⇒) Let M = (W ,≺,V) be a temporal structure satisfying Γ and let u ∈ W
be a point such that M, u |= Γ . Given a set ∆, which contains Γ and is closed
under subformulas and single negations, we can associate a subset of ∆ to every
point of W , i.e. for every w ∈ W we define Mw = {A ∈ ∆ | M, w |= A}. Then
we can define the set S = {(Mw, Mw′) | w, w′ ∈ W and w ≺ w′} ∪ {(Mw) | w ∈
W and for all w′ ∈ W we have w 6≺ w′ and w′ 6≺ w}. It is easy to verify that every
element of S is indeed a mosaic and that the set S is a Kt -SSM. In fact, coherence
and saturation conditions are clearly satisfied since the definition of each point
in S comes from the labeling of the corresponding point in a temporal structure.
Furthermore, S is a Kt -SSM for Γ since Γ ⊆ Mu and Mu ∈ Points(S ).

(⇐) Let S be a Kt-SSM for Γ and ∆ the set of formulas (containing Γ )
on which mosaics are defined, i.e. S is a set of mosaics on ∆. Then, in order
to obtain a temporal structure satisfying Γ , we just define a set of instants W
isomorphic to the set of points of S, i.e. W = {wM | M ∈ Points(S )}. Then we
set ≺= {(wM , wM ′) | (M, M ′) ∈ S} and V(wM ) = M for every M ∈ Points(S ).

⊓⊔

Mosaics for Kl

Things get more interesting when we consider more specific flows of time. In [105],
mosaics for the logic Kl , i.e. the logic of irreflexive, transitive and connected or-
derings (see 2.3.2 for details), are defined. In this case, coherence conditions are
enriched by a new one capturing the transitivity of Kl-frames: so, for instance, if
GA is in a point M , then it must also be in all the points M ′ such that (M, M ′)
is a mosaic. Linearity is obtained by adding a further saturation condition, which
says that if (M, M ′) is a mosaic in our set such that FA is in M but FA /∈ M ′,
then there must be an intermediate point (a point between M and M ′) satisfying
A.

Definition 6.5. Let ∆ be a set of formulas closed under subformulas and single
negation, in the language of tense formulas (Section 2.3.1). A mosaic (on ∆) is
a pair (M0, M1) or a singleton (M0), where M0, M1 ⊆ ∆, satisfying the following
coherency conditions.

COHERENCY CONDITIONS

For every formula A, B ∈ ∆ and i ∈ {0, 1}

(CL1), (CL2), (CL3) and (CL4) as defined in Definition 6.1;

(CL5) if A = GA′ ∈ M0, then GA′ ∈ M1;
(CL6) if A = HA′ ∈ M1, then HA′ ∈ M0.

In the case of a mosaic being a singleton, only conditions CL1 and CL2 need to
be satisfied.

The set of points of a given set of mosaics is defined as before. We express now
the saturation conditions.

Definition 6.6. A set S of mosaics is a Kl -saturated set of mosaics if it satisfies
the following saturation conditions.
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SATURATION CONDITIONS

For every mosaic (M0, M1) ∈ S,

(SL1) and (SL2) as in Definition 6.3;

(SL3) if FA ∈ M0, then:
(i) FA ∈ M1; or
(ii) there exist (M ′

0, M
′
1), (M

′′
0 , M ′′

1 ) ∈ S s.t. M0 = M ′
0, M1 = M ′′

1 and
A ∈ M ′

1 = M ′′
0 ;

(SL4) if PA ∈ M1, then:
(i) PA ∈ M0; or
(ii) there exist (M ′

0, M
′
1), (M

′′
0 , M ′′

1 ) ∈ S s.t. M0 = M ′
0, M1 = M ′′

1 and
A ∈ M ′

1 = M ′′
0 ;

Theorem 6.7. For any set Γ of tense formulas, Γ is Kl-satisfiable iff there exists
a Kl-SSM for Γ .

Proof. (⇒) As in the proof of Theorem 6.4.
(⇐) We give here just a sketch of the proof; full details can be found in [105].

Given a Kl-SSM S for Γ we build a structure satisfying Γ step by step, by using
the mosaics in S as building blocks. We begin with a mosaic containing Γ in one
of its points and at each step we cure a defect of the construction, where a defect
is represented by some point labeled with a formula of the form FA such that
none of its successors is labeled with A (or by the symmetric situation with regard
to the past). Saturation conditions ensure that such a curing is always possible,
i.e. that it is always possible to provide a proper witness. The construction is an
ω-construction. At the ω-step, we obtain a labeled structure that is a Kl -model
where no defects occur. Furthermore, as required, such a structure satisfies Γ .

⊓⊔

6.2.2 Applications

Completeness via mosaics

One of the possible applications of the mosaic method is its use in proving the
completeness of a given Hilbert-style axiomatization. In fact, Theorems 6.4 and
6.7 can be used to simplify the standard proofs of completeness: given a consistent1

set of formulas we do not need to create a model satisfying it; an SSM will suffice.

Theorem 6.8. For any set Γ of tense formulas, Γ is Kt-consistent (Kl-consistent)
iff there exists a Kt-SSM (a Kl-SSM) for Γ .

Proof. (⇒) Given a consistent set Γ of formulas, we can build a saturated set
of mosaics as follows. As labeling set we use the set of all formulas in the
language and we consider maximal consistent sets on this language with re-
spect to the axiomatization H(Kt) (H(Kl), respectively) of Section 2.3. Then,

1 We recall that a set Γ of formulas is consistent with respect to an inference system iff
it is impossible to derive contradictions from Γ by using the inference system.
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in the case of Kt , we define the set S of mosaics as the set S = {(M, M ′) |
M, M ′ are MCSs and for every GA ∈ M, A ∈ M ′}. In the case of Kl , we need
to consider also transitivity and thus the set of mosaics is S = {(M, M ′) |
M, M ′ are MCSs and for every GA ∈ M, {A, GA} ⊆ M ′}. One can prove that
each element of S is indeed a mosaic, i.e. that the coherency conditions are satis-
fied, and that S is saturated, i.e. that the saturation conditions are satisfied. More
details in [105].

(⇐) If there exists an SSM for Γ , then Γ is satisfiable, and hence consistent
by the soundness of H(Kt) (or H(Kl)).

⊓⊔

Decidability via mosaics

The most typical use of the mosaic method, however, is in showing the decidability
of a given logic. Although decidability of the logics Kt and Kl is already well-
known, here we sketch a proof obtained by using mosaics. We remark that, as in
proving completeness, our work is simplified with respect to standard proofs of
decidability (e.g. via the finite model property) by the results of Theorems 6.4 and
6.7. Further details can be found in [105].

Theorem 6.9. Given a tense formula A, checking its satisfiability (with respect
to Kt or Kl semantics) is decidable.

Proof. By Theorems 6.4 and 6.7, we only need to show that the task of checking
whether there is an SSM (a Kt-SSM or a Kl-SSM, according to which case we are
interested in) for A is decidable. We use the set of the subformulas of A and their
single negations as labeling set. The number of possible mosaics on that labeling
set is finite and checking the saturation conditions is clearly decidable (both for Kt
and for Kl). Thus it is also decidable whether any subset of the set of all mosaics
form an SSM for A.

⊓⊔

6.2.3 Mosaics for other linear flows of time

It is possible to adapt the definition of mosaic and SSM in order to capture variants
of Kl , i.e. other axiomatic extensions presented in Section 2.3.2. Some of them are
described in [105]. We list them here. These changes will require in some cases
trivial extensions of the labeling set in order to keep it closed under subformulas
and single negations.

Substructures of the whole numbers In condition SL3, we require not only
A ∈ M ′

1 but also ¬FA ∈ M ′
1. (An analogous modification can be made for the

symmetric condition SL4.) This implies that once we insert a point satisfying
a given A as a witness for an FA-defect, in our construction FA-defects will
no longer occur. Since there are only finitely many FA (and PA) in our label-
ing set2, we will insert only finitely many points into the linear order under
construction.

2 Note that this modification works only when the labeling set is supposed to be finite,
e.g. in proving decidability or weak (but not strong) completeness.
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Without endpoint We add as a further coherence condition that F⊤ ∈ Mi.
With endpoint We add as a further coherence condition that FG ⊥∈ Mi.
Without beginning point We add as a further coherence condition that P⊤ ∈

Mi.
With beginning point We add as a further coherence condition that PH ⊥∈

Mi.
Dense We require in the definition of a Kl -SSM that, for every mosaic, there exist

mosaics that can be inserted in-between, like in saturation conditions SL3 and
SL4. Then, in the construction of the model from the Kl -SSM, in each step we
insert the provided points between all neighboring points. In the limit step,
there will be no immediate successors and predecessors.

Finally we remark that a refined definition of mosaics covering also the case of
the operators since and until is proposed in [105,134,137].

6.3 Mosaics for branching temporal logics

Here we extend the definition of the mosaic method for a linear tense logic (see
Section 6.2) to the case of several bundled branching logics. We will start by giving
the definition of mosaics for the logic of basic frames (see Section 2.4.1) and, by
following the classification of [167], by extending it to other more complex and, in
a sense, more “branching” logics. Throughout this section, the formulas that we
consider belong to the Ockhamist language defined in Section 2.14.

As remarked in Section 2.4, we consider in this thesis branching logics where the
evaluation of atoms depends only on the state we are considering and not on the
path we are going to follow (no trace of futurity assumption) and this assumption
is crucial in our extension of the mosaic method to the branching case.

We keep here the intuition behind linear temporal mosaics: we still deal with
pairs (M, M ′) of sets of formulas, such that each set refers to a point in a structure
and such that the point referred from M ≺-precedes the one referred from M ′.
As in the linear case, in our key theorem we need to show how to build a full
structure from a (saturated) set of mosaics. In other words, we need to define a
proper way of combining mosaics, both vertically and horizontally. Vertical combi-
nations are defined as in the linear case: we iteratively provide witnesses for linear
counterexamples, where a linear counterexample is a point labeled with a formula
of the form FA such that none of its successors is labeled with A. In the case of
branching logics, we need to consider also branching counterexamples (and thus
horizontal combinations of mosaics): given a point w labeled with a formula of the
form ∃A, we add in the structure a new point w′, which satisfies A and is in some
way “compatible” with w. Since we follow the no trace of futurity approach, we
can let such a compatibility consist basically in the fact that w and w′ satisfy the
same set of state formulas.

6.3.1 Mosaics for the logic of basic frames

We distinguish between linear and branching, both for coherency and for saturation
conditions. Linear conditions are as expressed in Section 6.2; for clarity, we recall
them in the following definition.
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Definition 6.10. Let ∆ be a set of formulas closed under subformulas and single
negation, in the language of Ockhamist formulas (Section 2.4.1). A mosaic (on
∆) is a pair (M0, M1) or a singleton (M0), where M0, M1 ⊆ ∆, satisfying the
following coherency conditions.

COHERENCY CONDITIONS

For every formula A, B ∈ ∆ and i ∈ {0, 1},

LINEAR CONDITIONS

(CL1) A ∈ Mi iff ¬A /∈ Mi;
(CL2) A ∧ B ∈ Mi iff {A, B} ⊆ Mi;
(CL3) if A = GA′ ∈ M0, then A′ ∈ M1;
(CL4) if A = HA′ ∈ M1, then A′ ∈ M0;
(CL5) if A = GA′ ∈ M0, then GA′ ∈ M1;
(CL6) if A = HA′ ∈ M1, then HA′ ∈ M0.

BRANCHING CONDITIONS

(CB1) if A = ∀A′ ∈ Mi, then A′ ∈ Mi.

In the case of a mosaic being a singleton only conditions CL1, CL2 and CB1 need
to be satisfied.

Definition 6.11. The set of (Ockhamist) state formulas is defined recursively as
follows:

1. all atomic formulas are state formulas;
2. if A and B are state formulas, then A ∧ B is a state formula;
3. if A is a state formula, then ¬A is a state formula;
4. if A is an Ockhamist formula, then ∀A is a state formula.

Definition 6.12. Let ∆ be a set of formulas closed under subformulas and single
negation and M, M ′ ∈ ∆. We say that M and M ′ are state-equivalent (and we
write M ∼s M ′) if for each Ockhamist state formula A ∈ ∆, A ∈ M if and only
if A ∈ M ′.

In the following definition, we will also use the notion of points of a set of mosaics
defined in Section 6.3.1.

Definition 6.13. A set S of mosaics is a basic saturated set of mosaics (a basic
SSM for short) if it satisfies the following saturation conditions.

SATURATION CONDITIONS

For every mosaic (M0, M1) ∈ S,

LINEAR CONDITIONS

(SL1) if FA ∈ M1, then there exists (M ′
0, M

′
1) ∈ S s.t. M1 = M ′

0 and A ∈ M ′
1;

(SL2) if PA ∈ M0, then there exists (M ′
0, M

′
1) ∈ S s.t. M0 = M ′

1 and A ∈ M ′
0;

(SL3) if FA ∈ M0, then:
(i) FA ∈ M1; or
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(ii) there exist (M ′
0, M

′
1), (M

′′
0 , M ′′

1 ) ∈ S s.t. M0 = M ′
0, M1 = M ′′

1 and
A ∈ M ′

1 = M ′′
0 ;

(SL4) if PA ∈ M1, then:
(i) PA ∈ M0; or
(ii) there exist (M ′

0, M
′
1), (M

′′
0 , M ′′

1 ) ∈ S s.t. M0 = M ′
0, M1 = M ′′

1 and
A ∈ M ′

1 = M ′′
0 ;

BRANCHING CONDITIONS

(SB1) if M ∈ Points(S ) and ∃A ∈ M , then there exists M ′ ∈ Points(S ) s.t.
M ∼s M ′ and A ∈ M ′.

Given an SSM S and a set of formulas Γ , we say that S is a basic SSM for Γ if
there exists M ∈ Points(S ) such that Γ ⊆ M .

Theorem 6.14. For any set Γ of formulas, Γ is (Basic)-satisfiable iff there exists
a basic SSM for Γ .

Proof. (⇒) Let M = (T ,≺,≃,V) be a basic structure satisfying Γ and let u ∈ T
be a point such that M, u |= Γ . Given a set ∆, which contains Γ and is closed under
subformulas and single negations, we can associate a subset of ∆ to every point of
T , i.e. for every v ∈ T we define Mv = {A ∈ ∆ : M, v |= A}. Then we can define
the set S = {(Mv, M

′
v) : v, v′ ∈ T and v ≺ v′} ∪ {(Mv) : v ∈ T and for all v′ ∈

T we have v 6≺ v′ and v′ 6≺ v}. It is easy to verify that every element of S is indeed
a mosaic and that the set S is a basic SSM. In fact coherence and saturation
conditions are clearly satisfied since the definition of each point in S comes from
the labeling of the corresponding point in a basic structure. Furthermore S is a
basic SSM for Γ since Γ ⊆ Mu and Mu ∈ Points(S ).

(⇐) Let S be a basic SSM for Γ and ∆ the set of formulas (containing Γ )
on which mosaics are defined, i.e. S is a set of mosaics on ∆. As in [105], we will
build a model for Γ step by step by using the mosaics in S as building blocks.
The structure that we are going to construct can be seen as a grid composed
by a countable set of vertical lines, where each vertical line is a substructure of
the rational numbers and every point in the structure is associated with a set of
formulas (a subset of ∆).

Formally a labeled structure L has the form (H, {Vh, <h}h∈H ,≡,L), where:

1. H ⊆ N;
2. Vh ⊆ Q for every h ∈ H

( (h, v) is said to be a point of L if h ∈ H and v ∈ Vh );
3. <h is the order defined on rational numbers restricted to Vh for every h ∈ H ;
4. ≡ is an equivalence relation defined between points of L; and
5. L is a labeling function which associates a subset of ∆ to every point of L3.

The construction proceeds by “curing” at every step one of the defects in the
structure. First we enumerate all the possible defects. They are of three kinds:

1. linear future defects of the form 〈(h, v), FA〉, where (h, v) represents a point in
the structure and FA is a formula in ∆;

3 In order to simplify the notation, in the following, given a point (h, v), we will write
L(h, v) instead of L((h, v)).
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2. linear past defects of the form 〈(h, v), PA〉, where (h, v) represents a point in
the structure and PA is a formula in ∆;

3. branching defects of the form 〈(h, v), ∃A〉, where (h, v) represents a point in
the structure and ∃A is a formula in ∆.

Since the language contains at most countably many atoms, also the number of
defects is countable. Thus we can set an enumeration over N of the following set
D of possible defects:

D = {〈(h, v), FA〉, 〈(h, v), PA〉, 〈(h, v), ∃A〉 : h ∈ N, v ∈ Q and FA, PA, ∃A ∈ ∆} .

Given a labeled structure L = (H, {Vh, <h}h∈H ,≡,L), we say that an element
〈(h, v), FA〉 of D is a linear future defect of L if:

1. (h, v) is a point of L;
2. FA ∈ L(h, v) ;
3. for every (h, v′) such that v′ ∈ Vh and v <h v′, we have A /∈ L(h, v′).

In a similar way, we say that 〈(h, v), PA〉 of D is a linear future defect of L if:

1. (h, v) is a point of L;
2. PA ∈ L(h, v) ;
3. for every (h, v′) such that v′ ∈ V and v′ <h v, we have A /∈ L(h, v′).

Finally, 〈(h, v), ∃A〉 ∈ D is a branching defect of L if:

1. (h, v) is a point of L;
2. ∃A ∈ L(h, v);
3. for every point (h′, v′) of L, if (h, v) ≡ (h′, v′) then A /∈ (h′, v′).

Furthermore, we will say that L is coherent if the following conditions (anal-
ogous of the coherency conditions in Definition 6.10) are satisfied by every point
(h, v) of L:

1. A ∈ L(h, v) iff ¬A /∈ L(h, v);
2. A ∧ B ∈ L(h, v) iff {A, B} ⊆ L(h, v);
3. if GA ∈ L(h, v), then {A, GA} ⊆ L(h, v′) for every v′ ∈ Vh such that v <h v′;
4. if HA ∈ L(h, v), then {A, HA} ⊆ L(h, v′) for every v′ ∈ Vh such that v′ <h v;
5. if ∀A ∈ L(h, v), then A ∈ L(h, v).

Our construction is such that at every step n < ω we will have a labeled
structure Ln = (Hn, {Vhn

, <hn
}h∈Hn

,≡n,Ln) satisfying the following formation
conditions :

(F1) Ln is coherent;
(F2) for every h ∈ Hn, (Vhn

, <hn
) determines a finite linear order of rational num-

bers 〈i0h
< i1h

< . . . < ikh
〉 such that, for every j, (Ln(h, ijh

), Ln(h, ij+1h
))

is a mosaic in S;
(F3) if (h, v) ≡n (h′, v)4 then Ln(h, v) and Ln(h′, v) are state-equivalent.

4 Note that our construction will be such that whenever two points (h1, v1) and (h2, v2)
are ≡-equivalent at some stage j, i.e. (h1, v1) ≡j (h2, v2), then v1 and v2 must coincide.
Viceversa, having at some stage j two points (h1, v1) and (h2, v2) such that v1 = v2

does not imply (h1, v1) ≡j (h2, v2).
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Note that the condition (F3) is the analogous of the branching saturation
condition (SB1) of Definition 6.13.

We will use a scheduling function σ : ω → ω such that, for every j ∈ ω, there
are infinitely many k such that σ(k) = j. At the n-th step we will cure the σ(n)-th
defect in our enumeration of D. In the following we describe our limit construction
of a model for Γ .

[STEP 0] First let us consider a mosaic µ ∈ S such that µ is a mosaic for Γ
(since S is a basic SSM for Γ , such a mosaic exists). If µ = (M0) is a singleton, then
we can define an L0 such that H0 = {0}, V00 = {0}, <00= ∅, ≡0= {((0, 0), (0, 0))},
L0(0, 0) = M0. If µ = (M0, M1), then L0 is such that H0 = {0}, V00 = {0, 1},
<00= 〈0, 1〉, ≡0= {((0, 0), (0, 0)), ((0, 1), (0, 1))}, L0(0, 0) = M0, L0(0, 1) = M1.
Note that in both cases L0 trivially satisfies formation conditions.

[STEP n + 1] Assume that we have already defined a labeled structure Ln

satisfying the formation conditions. Then we consider the σ(n + 1)-th defect d
in our enumeration of D. If d is not an actual defect of Ln, then we just set
Ln+1 = Ln. Otherwise we have three cases:

(i) d = 〈(h, v), FA〉 is a linear future defect. Then let v′ be the greatest element
of Vhn

with respect to the order <hn
such that FA ∈ (h, v′). Since d is an

actual defect of Ln, such v′ exists. We have two subcases:
(a) v′ is the greatest element of Vhn

according to <hn
. Then by the saturation

condition (SL1) there is a mosaic (M ′
0, M

′
1) in S such that M ′

0 = Ln(h, v′)
and A ∈ M ′

1. We add a new element (v′ + 1) to Vhn
and define <hn+1

as the restriction to Vhn+1 of the usual order < on rational numbers.
Formally, we define:
• Hn+1 = Hn;
• Vhn+1 = Vhn

∪ {v′ + 1};
• Ln+1(h, v′ + 1) = M ′

1;
• Vin+1 = Vin

for every i ∈ Hn+1 such that i 6= h;
• <in+1 for every i ∈ Hn+1 is the restriction to Vin+1 of the usual order

< on rational numbers;
• ≡n =≡n+1 ∪{((h, v′ + 1), (h, v′ + 1))};
• Ln+1(i, j) = Ln(i, j) for every point (i, j) of Ln.

(b) v′ is not the greatest element of Vhn
. Then there exists an element

v′′ ∈ Vhn
such that v′′ is the immediate successor of v′, according to

the relation <hn
, and, by the maximality of v′, ¬FA ∈ Ln(h, v′′). By

the condition (SL3), there exist two mosaics (M0, M), (M, M1) ∈ S such
that M0 = Ln(h, v′), M1 = Ln(h, v′′) and A ∈ M . Then we insert a
point v∗ between v′ and v′′ and label (h, v∗) with M .
By summing up, we define Ln+1 as follows:
• Hn+1 = Hn;
• Vhn+1 = Vhn

∪{v∗}, where v∗ is a rational number such that v′ < v∗ <
v′′;

• Ln+1(h, v∗) = M where M is obtained as described above;
• <in+1 for every i ∈ Hn+1 is the restriction to Vin+1 of the usual order

< on rational numbers;
• Vin+1 = Vin

for every i ∈ Hn+1 such that i 6= h;
• ≡n =≡n+1 ∪{((h, v′ + 1), (h, v′ + 1))};
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• Ln+1(i, j) = Ln(i, j) for every point (i, j) of Ln;
(ii) d = 〈(h, v), PA〉 is a linear past defect. Then the treatment of such defects

exploits the saturation conditions (SL2) and (SL4) of the basic SSM S and
is completely symmetrical to that of future defects; we omit a detailed de-
scription;

(iii) d = 〈(h, v), ∃A〉 is a branching defect. By the saturation conditions in
Definition 6.13, we know that there exists M ′ ∈ Points(S ) such that
Ln((h, v)) ∼s M ′ and A ∈ M ′. Then we add a new vertical line (say with
index n + 1) consisting of a single element (say with index v) labeled with
M ′. Formally, we define Ln+1 as follows:
• Hn+1 = Hn ∪ {n + 1};
• Vn+1n+1 = {v};
• <n+1n+1= ∅;
• Vin+1 = Vin

for every i ∈ Hn;
• <in+1=<in

for every i ∈ Hn;
• Ln+1((n + 1, v)) = M ′;
• Ln+1((i, j)) = Ln((i, j)) for every point (i, j) of Ln.

The construction is such that in all the cases we get a labeled structure Ln+1 which
satisfies formation conditions F1, F2 and F3 and where d is no longer a defect. In
order to ensure that the limit construction is well defined, it is also important to
remark that the new labeling Ln+1 is just an extension of the old Ln and that the
defect d (once cured) cannot occur in any expansion of the structure.

[STEP ω] Now we can just take the union L = (H, {Vh, <h}h∈H ,≡,L) of the
labeled structures defined so far. L is a coherent labeled structure that does not
contain any defect, since the scheduling function σ ensures that if a defect becomes
actual at some step, then we cure it in a later step.

We can then build a basic structure satisfying Γ by using the labeled structure
L. Namely, we define a structure M = (T ,≺,≃,V) such that:

1. T = {u : u is a point of L};
2. ≺=

⋃
h∈H <h;

3. ≃=≡;
4. for all u ∈ T , p ∈ V(u) iff p ∈ L(u).

It is easy to observe that M is well defined and is indeed a basic structure
which satisfies Γ .5

⊓⊔

5 We remark that, as observed in [167], basic frames and (Dis)-frames generate the
same logic. This means that we could have written down an equivalent statement of
the lemma by considering (Dis)-frames instead of basic frames. Indeed, one can notice
that our construction in the proof of the lemma is such that we finally get a (Dis)-
structure. This comes from the strategy adopted in curing branching defects, which
consists here in adding a new point in any case. Different strategies could be adopted.
For example, we could cure branching defects by (i) linking (i.e. by ≡-relating) the
point where the defect arises to some other point (already present in the labeled
structure) providing a counterexample to the defect, if such a point exists and (ii)
adding a new point, only if such a point does not exist. In this way we would finally
get a basic structure that does not necessarily enjoy the property (Dis).
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6.3.2 Mosaics for the logic of (WDC)-frames

Here we show how to extend and modify the definitions of Section 6.3.1 for the
logic resulting from considering (WDC)-frames.

First of all, we can enrich the definition of an SSM with a branching saturation
condition that is the analogous of the property (WDC):

(SB2) if M, M ′, M0 ∈ Points(S ), M ∼s M ′ and (M0, M) ∈ S, then there exists
M ′

0 ∈ Points(S ) s.t. M0 ∼s M ′
0 and (M ′

0, M
′) ∈ S.

In building a structure from an SSM, now the idea is to consider also WDC-
defects, i.e. triples of points in the labeled structure under-construction such that
they violate the property WDC.

However, the addition of (SB2) is not sufficient, as shown by the following
example. Let x, y and y′ be three points representing a counterexample to the
property WDC in our labeled structure, i.e. x < y ≡ y′ but there is no x′ in the
structure such that x ≡ x′ < y′. If L(x), L(y) and L(z) are the sets of formulas
labeling the points x, y and z, respectively, then, by construction, there must be
a mosaic (L(x),L(y)) and a point L(z) in our SSM. By exploiting the condition
(SB2), we would be able to add a point x′ in the structure such that x ≡ x′ < y′

holds and that (L(x′),L(y′)) is a mosaic in the SSM. However this could violate
connectedness of the relation <: in fact, the structure we are building could contain
a point z < y′ such that L(z) 6= L(x′) and none of z < x′ and x′ < z is coherent.

We can solve this problem by forcing an SSM to satisfy stronger conditions. The
addition of the following saturation condition allows us to retrieve connectedness:

(SL5) if (M0, M1), (M
′
0, M1) ∈ S and M0 6= M ′

0, then either (M0, M
′
0) ∈ S or

(M ′
0, M0) ∈ S.

Definition 6.15. A set S of mosaics is a (WDC)-saturated set of mosaics (a
(WDC)-SSM for short) if it satisfies the following saturation conditions.

SATURATION CONDITIONS

For every mosaic (M0, M1) ∈ S,

LINEAR CONDITIONS

(SL1), (SL3), (SL2) and (SL4) as defined in Definition 6.13;
(SL5) as defined above;

BRANCHING CONDITIONS

(SB1) as in Definition 6.13;
(SB2) as defined above.

Given a (WDC)-SSM S and a set of formulas Γ , we say that S is a (WDC)-
SSM for Γ if there exists M ∈ Points(S ) such that Γ ⊆ M .

Theorem 6.16. For any set Γ of formulas, Γ is (WDC)-satisfiable iff there exists
a (WDC)-SSM for Γ .
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Proof. (⇒) As in the proof of Theorem 6.14.
(⇐) By a limit construction, as in the proof of Theorem 6.14 with some adap-
tations. In particular, we consider now also (WDC)-defects and cure them by
exploiting conditions (SL5) and (SB2) on (WDC)-SSMs.

⊓⊔

6.3.3 Mosaics for the logic of (Dis+WDC)-frames

We recall from Section 6.3.1 the notions of mosaic, state-equivalence and points of a
set of mosaics. A definition of (Dis+WDC)-saturated sets of mosaics is introduced
in the following. The linear saturation conditions are analogous to the ones given
for the logic of basic frames in Definition 6.13. With regard to the branching
conditions, we recall SB1 and SB2 from Definition 6.15 for the logic of (WDC)-
frames. We need to add a further branching condition, denoted with SB3 below,
which can be seen as corresponding to the property SDC on frames (see Section
2.4.1). In fact, we know from Lemma 2.22 that the logic of (Dis+WDC)-frames
and the logic of (WDC+SDC)-frames coincide. We remark that after the addition
of condition SB3 we do not longer need condition SL5 of Section 6.3.2, since
WDC+SDC imply the linearity of the relation ≺; more details in the proof of
Theorem 6.18.

Definition 6.17. A set S of mosaics is a (Dis+WDC)-saturated set of mosaics
(a (Dis+WDC)-SSM for short) if it satisfies the following saturation conditions.

SATURATION CONDITIONS

For every mosaic (M0, M1) ∈ S,

LINEAR CONDITIONS
(SL1), (SL3), (SL2) and (SL4) as defined in Definition 6.13;

BRANCHING CONDITIONS

(SB1) and (SB2) as defined above;

(SB3) let M0, M1, M2, M
′
0 and M ′

2 be points of S s.t.
(i) M0 ∼s M ′

0;
(ii) M2 ∼s M ′

2; and
(iii) (M0, M1), (M1, M2) ∈ S;
then there exists M ′

1 ∈ Points(S ) s.t. M1 ∼s M ′
1 and (M ′

0, M
′
1), (M

′
1, M

′
2) ∈

S.

Given a (Dis+WDC)-SSM S and a set of formulas Γ , we say that S is a
(Dis+WDC)-SSM for Γ if there exists M ∈ Points(S ) such that Γ ⊆ M .

Now we present the key theorem concerning mosaics for the logic of (Dis+WDC)-
frames. In Section 6.3.2, when we sketched the analogous theorem for the (WDC)-
logic, we suggested considering three classes of defects: linear, branching and WDC.
In this case, it seems convenient to move back to the classification of Section 6.3.1,
distinguishing only between linear and branching defects. Possible WDC-defects
and SDC-defects are cured “indirectly” when we treat branching defects. Namely,
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when we add a new vertical line, we make sure that we add all the points necessary
for letting the structure enjoy the properties (WDC) and (SDC). Conditions SB2
and SB3 ensure that this is always possible.

Theorem 6.18. For any set Γ of formulas, Γ is (Dis+WDC)-satisfiable iff there
exists a (Dis+WDC)-SSM for Γ .

Proof. (⇒) Let M = (T ,≺,≃,V) be a (Dis+WDC)-structure satisfying Γ and
let u ∈ T be a point such that M, u |= Γ . Given a set ∆′, which contains Γ
and is closed under subformulas and single negations, we can associate a different
fresh atom, i.e. an atom that is not in ∆′, to each ≃-equivalence class. Let ∆′′

be the set containing such atoms and their negations and ∆ = ∆′ ∪ ∆′′. We
associate a subset of ∆ to every point of T as follows: for every v ∈ T we define
Mv = {A ∈ ∆′ : M, v |= A} ∪ {pv} ∪ {¬p : p ∈ ∆′′ and p 6= pv}, where pv

is the atomic proposition associated to the equivalence class [v]. Then we define
the set S = {(Mv, M

′
v) : v, v′ ∈ T and v ≺ v′} ∪ {(Mv) : v ∈ T and for all v′ ∈

T we have v 6≺ v′ and v′ 6≺ v}. It is easy to verify that every element of S is indeed
a mosaic and that the set S is an SSM. In fact coherence and saturation conditions
are clearly satisfied since the definition of each point in S comes from the labeling
of the corresponding point in an (Dis+WDC)-structure. In particular, the use of
fresh atoms ensures that points of T that are state-equivalent but not ≃-equivalent
give rise to distinct points in S and thus that the saturation conditions (SB2) and
(SB3) are satisfied by S. Furthermore S is an SSM for Γ since Γ ⊆ Mu and
Mu ∈ Points(S ).

(⇐) As in the case of basic frames, we will build a model for Γ step by step by
using the mosaics in S as building blocks. We recall from the proof of Theorem 6.14
the notions of (coherent) labeled structure and (linear and branching) defect, set
an enumeration D of all the possible defects and a scheduling function σ : ω → ω
such that, for every j ∈ ω, there are infinitely many k such that σ(k) = j.

Our construction is such that at every step n < ω we will have a labeled
structure Ln = (Hn, {Vhn

, <hn
}h∈Hn

,≡n,Ln) satisfying the following formation
conditions :

(F1) Ln is coherent;
(F2) for every h ∈ Hn, (Vhn

, <hn
) determines a finite linear order of rational num-

bers 〈i0h
< i1h

< . . . < ikh
〉 such that, for every j, (Ln(h, ijh

), Ln(h, ij+1h
))

is a mosaic in S;
(F3) if (h, v) ≡n (h′, v) then Ln(h, v) and Ln(h′, v) are state-equivalent;
(F4) if (h, v) ≡n (h′, v) and (h, v′) is a point of Ln for some v′ < v, then there

exists (h′, v′) in Ln such that (h, v′) ≡n (h′, v′);
(F5) if (h, v), (h, v′), (h, v′′), (h′, v) and (h′, v′′) are points in Ln such that v <

v′ < v′′, (h, v) ≡n (h′, v) and (h, v′′) ≡n (h′, v′′), then there exists (h′, v′) in
Ln such that (h, v′) ≡n (h′, v′).

Conditions (F1), (F2) and (F3) above are the same as in the proof of Theorem
6.14. (F4) and (F5) are, respectively, the analogous of the branching saturation
conditions (SB2) and (SB3) of Definition 6.17.

In the following, we will describe our limit construction of a (Dis+WDC)-model
for Γ .
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[STEP 0] As in the proof of Theorem 6.14.
[STEP n + 1] Assume that we have already defined a labeled structure Ln

satisfying the formation conditions. Then we consider the σ(n + 1)-th defect d
in our enumeration of D. If d is not an actual defect of Ln, then we just set
Ln+1 = Ln. Otherwise we have three cases:

(i) d = 〈(h, v), FA〉 is a linear future defect. Then let v′ be the greatest element
of Vhn

with respect to the order <hn
such that FA ∈ (h, v′). Since d is an

actual defect of Ln, such v′ exists. We have two subcases:
(a) v′ is the greatest element of Vhn

according to <hn
. Then by the sat-

uration condition (SL1), there is a mosaic (M ′
0, M

′
1) in S such that

M ′
0 = Ln(h, v′) and A ∈ M ′

1. We add a new element (v′ + 1) to Vhn

and define <hn+1 as the restriction to Vhn+1 of the usual order < on
rational numbers. Formally, we define:
• Hn+1 = Hn;
• Vhn+1 = Vhn

∪ {v′ + 1};
• Ln+1(h, v′ + 1) = M ′

1 for an M ′
1 obtained as described above;

• Vin+1 = Vin
for every i ∈ Hn+1 such that i 6= h;

• <in+1 is, for every i ∈ Hn+1, the restriction to Vin+1 of the usual order
< on rational numbers;

• ≡n =≡n+1 ∪{((h, v′ + 1), (h, v′ + 1))};
• Ln+1(i, j) = Ln(i, j) for every point (i, j) of Ln.

(b) v′ is not the greatest element of Vhn
. Then there exists an element

v′′ ∈ Vhn
such that v′′ is the immediate successor of v′, according to

the relation <hn
, and, by the maximality of v′, ¬FA ∈ Ln(h, v′′). By

the condition (SL3), there exist two mosaics (M0, M), (M, M1) ∈ S such
that M0 = Ln(h, v′), M1 = Ln(h, v′′) and A ∈ M . Then we insert a
point v∗ between v′ and v′′ and label (h, v∗) with M . In order to let
Ln+1 satisfy the formation condition (F5), in this case we need also to
consider all the points of Ln that are ≡n-related to (h, v′′). Let (h′, v′′)
be one such point. The formation conditions on Ln ensure that there
exist two points M ′

0 = Ln(h′, v′) and M ′
1 = Ln(h′, v′′) in Points(S ) such

that M0 ∼s M ′
0, M1 ∼s M ′

1 and (M0, M1) ∈ S. Furthermore, by the
saturation condition (SB3) on S, there exists M ′ ∈ Points(S ) such that
M ∼s M ′, (M ′

0, M
′) ∈ S and (M ′, M ′

1) ∈ S. Then we add v∗ to the set
Vh′

n
and label it with M ′.

By summing up, we define Ln+1 as follows:
• Hn+1 = Hn;
• Vhn+1 = Vhn

∪{v∗}, where v∗ is a rational number such that v′ < v∗ <
v′′;

• Ln+1(h, v∗) = M where M is obtained as described above;
• for every i ∈ Hn+1 such that i 6= h, if (i, v′′) is a point of Ln and

(h, v′′) ≡n (i, v′′), then Vin+1 = Vin
∪ {v∗} and Ln+1(i, v

∗) = M ′ for a
set M ′ ∼s M obtained as described above; otherwise Vin+1 = Vin

;
• <in+1 is, for every i ∈ Hn+1, the restriction to Vin+1 of the usual order

< on rational numbers;
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• ≡n+1 is the transitive closure of ≡n ∪{((h1, v1), (h2, v2)) | (h1, v1)
and (h2, v2) are (not necessarily distinct) points of Ln+1 but not of

Ln};
• Ln+1(i, j) = Ln(i, j) for every point (i, j) of Ln.

(ii) d = 〈(h, v), PA〉 is a linear past defect. The treatment of such defects is
symmetrical to that of future defects, though some subtleties need to be
taken into account. Let v′ be the lowest element of Vhn

with respect to the
order <hn

such that PA ∈ (h, v′). Since d is an actual defect of Ln, such v′

exists. We have two subcases:
(a) v′ is the lowest element of Vhn

according to <hn
. Then by the saturation

condition (SL2) there is a mosaic (M ′
0, M

′
1) in S such that M ′

1 = Ln(h, v′)
and A ∈ M ′

0. We add a new element (v′ − 1) to Vhn
and define <hn+1 as

the restriction to Vhn+1 of the usual order < on rational numbers. Unlike
the symmetrical case concerning linear future defects treated above, here
we need also to ensure that the formation condition (F4) is satisfied.
Namely, let (h′, v′) be a point in Ln such that (h, v′) ≡n (h′, v′). Then,
by the formation condition (F3), there exists a point M ′′

1 = Ln(h′, v′) ∈
Points(S ) such that M ′′

1 ∼s M ′
1 and, by the saturation condition (SB2)

on S, there exists a mosaic (M ′′
0 , M ′′

1 ) such that M ′′
0 ∼s M ′

0. Then we add
(v′ − 1) to Vh′

n+1
, set labn+1(h

′, v′ − 1) = M ′′
0 and put (h′, v′ − 1) ≡n+1

(h, v′ − 1). By summing up, we have:
• Hn+1 = Hn;
• Vhn+1 = Vhn

∪ {v′ − 1};
• Ln+1(h, v′ − 1) = M ′

0 for an M ′
0 obtained as described above;

• for every i ∈ Hn+1 such that i 6= h, if (i, v′) is a point of Ln and
(h, v′) ≡n (i, v′), then Vin+1 = Vin

∪{v′ − 1} and Ln+1(i, v
′ − 1) = M ′′

0

for an M ′′
0 ∼s M ′

0 obtained as described above; otherwise Vin+1 = Vin
;

• for every i ∈ Hn+1, <in+1 is the restriction to Vin+1 of the usual order
< on rational numbers;

• ≡n+1 is the transitive closure of ≡n ∪{((h1, v1), (h2, v2)) | (h1, v1)
and (h2, v2) are (not necessarily distinct) points of Ln+1 but not of

Ln};
• Ln+1(i, j) = Ln(i, j) for every point (i, j) of Ln.

(b) v′ is not the lowest element of Vhn
. Then there exists an element v′′ ∈ Vhn

such that v′′ is the immediate predecessor of v′, according to the relation
<hn

, and, by the maximality of v′, ¬PA ∈ Ln(h, v′′). By the condition
(SL4), there exist two mosaics (M0, M), (M, M1) ∈ S such that M0 =
Ln(h, v′′), M1 = Ln(h, v′) and A ∈ M . Then we insert a point v∗ between
v′′ and v′ and label (h, v∗) with M . In order to let Ln+1 satisfy the
formation condition (F5), we need to consider all the points of Ln that
are ≡n-related to (h, v′). Let (h′, v′) be one such point. The formation
conditions on Ln ensure that there exist two points M ′

0 = Ln(h′, v′′)
and M ′

1 = Ln(h′, v′) in Points(S ) such that M0 ∼s M ′
0, M1 ∼s M ′

1 and
(M0, M1) ∈ S. Furthermore, by the saturation condition (SB3) on S,
there exists M ′ ∈ Points(S ) such that M ∼s M ′, (M ′

0, M
′) ∈ S and

(M ′, M ′
1) ∈ S. Then we add v∗ to the set Vh′

n
and label it with M ′.

By summing up, we define Ln+1 as follows:
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• Hn+1 = Hn;
• Vhn+1 = Vhn

∪ {v∗}, where v∗ is a rational number such that v′′ <
v∗ < v′;

• Ln+1(h, v∗) = M where M is obtained as described above;
• for every i ∈ Hn+1 such that i 6= h, if (i, v′) is a point of Ln and

(h, v′) ≡n (i, v′), then Vin+1 = Vin
∪ {v∗} and Ln+1(i, v

∗) = M ′ for a
set M ′ ∼s M obtained as described above; otherwise Vin+1 = Vin

;
• for every i ∈ Hn+1, <in+1 is the restriction to Vin+1 of the usual order

< on rational numbers;
• ≡n+1 is the transitive closure of the set ≡n ∪{((h1, v1), (h2, v2)) |

(h1, v1) and (h2, v2) are (not necessarily distinct) points of Ln+1 but
not of Ln};

• Ln+1(i, j) = Ln(i, j) for every point (i, j) of Ln.
(iii) d = 〈(h, v), ∃A〉 is a branching defect. By the saturation condition SB1,

we know that there exists M ′ ∈ Points(S ) such that Ln(h, v) ∼s M ′ and
A ∈ M ′. Then we add a new vertical line (with a fresh index, say n + 1)
consisting of a single element (with index v) labeled with M ′, i.e. we add a
new point (n + 1, v) to Ln+1, and set (h, v) ≡n+1 (n + 1, v). We will possibly
need to add some further points in order to let Ln+1 satisfy the formation
condition (F4). Namely, if Ln contains some point below (h, v), then the
idea consists in enriching the labeled structure by adding below (n + 1, v) a
linearly ordered set of points isomorphic to the set of predecessors of (h, v)
and such that all the corresponding points are state-equivalent. We proceed
as follows. Let (h, v′) be the point in Ln that is the immediate predecessor of
(h, v) according to <hn

. By the formation condition (F2), (Ln(h, v′),Ln(h, v))
is a mosaic in S. Then the saturation condition (SB2) on S ensures that
there exists a mosaic (M, M ′) ∈ Points(S ) such that M ∼s Ln(h, v′) and
thus, by the formation condition (F3), such that M ∼s Ln(h′, v′) for each
(h′, v′) ≡n (h, v′). Then we add v′ to Vn+1n+1 and set Ln+1(n + 1, v′) = M
and (n + 1, v′) ≡n+1 (h′, v′) for each (h′, v′) ≡n (h, v′). Then we consider
the immediate predecessor (h, v′′) of (h, v′) and repeat the same procedure
with respect to these two points. Then again with respect to (h, v′′) and its
predecessor and so on. By summing up, we define Ln+1 as follows:
• Hn+1 = Hn ∪ {n + 1};
• Vin+1 = Vin

for every i ∈ Hn;
• Vn+1n+1 = {v | v ∈ Vhn

and v < v};
• for every i ∈ Hn+1, <in+1 is the restriction to Vin+1 of the usual order <

on rational numbers;
• Ln+1(i, j) = Ln(i, j) for every point (i, j) of Ln.
• Ln+1(n + 1, v) = M ′, where M ′ is obtained as described above;
• for every v ∈ Vn+1n+1

such that v 6= v, Ln+1(n + 1, v) = M for a set
M ∼s Ln(h, v) obtained as described above;

• ≡n+1 is the reflexive, symmetric and transitive closure of the set ≡n

∪{((h, v), (n + 1, v)) | v ∈ Vn+1n+1}.

The construction is such that in all the cases we get a labeled structure Ln+1

which satisfies formation conditions and where d is no longer a defect. As in the
proof of Theorem 6.14, we have that the new labeling Ln+1 is just an extension
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of the old Ln and that the defect d (once cured) cannot occur in any expansion of
the structure.

[STEP ω] We take the union L = (H, {Vh, <h}h∈H ,≡,L) of the labeled struc-
tures defined so far and define a structure M = (T ,≺,≃,V) such that:

1. T = {u : u is a point of L};
2. ≺=

⋃
h∈H <h;

3. ≃=≡;
4. for all u ∈ T , p ∈ V(u) iff p ∈ L(u).

By construction, M is a (Dis+WDC)-structure that satisfies Γ .
⊓⊔

6.3.4 Mosaics for the logic BOBTL of Ockhamist frames

The definition of (Dis+WDC)-SSM is still not strong enough in order to get an
Ockhamist structure. What we still miss is the property of maximality of branches
(MB), which in our case can also be expressed (see Lemma 2.22) by the conditions
(MB−) or (MB−−).

In the second part of the proof of Theorem 6.18, we used the mosaics contained
in a (Dis+WDC)-SSM to build a (Dis+WDC)-structure. If we are interested in
building an Ockhamist structure, we need a way to ensure that a <-maximal point
of a vertical line is ≡-related only to <-maximal points.

It is enough to add a branching coherence condition to the definition of a
mosaic.

Definition 6.19. Let ∆ be a set of formulas closed under subformulas and single
negation, in the language of Ockhamist formulas. An (MB)-mosaic (on ∆) is a
mosaic (M0, M1) or (M0) on ∆ such that the following condition holds:

(CB2) Let i ∈ {0, 1}. If for all FA ∈ ∆, FA /∈ Mi, then for all ∃A ∈ Mi, A ∈ Mi.

Definition 6.20. An Ockhamist SSM is a set of (MB)-mosaics satisfying the
conditions (SL1), (SL2), (SL3), (SL4), (SB1), (SB2) and (SB3), where in each
condition (MB)-mosaics replace mosaics.

Given a set Γ of branching formulas, an Ockhamist SSM is an Ockhamist SSM
for Γ if there exists M ∈ Points(S ) such that Γ ⊆ M .

Theorem 6.21. For any set Γ of Ockhamist formulas, Γ is Ockhamist-satisfiable
iff there exists an Ockhamist SSM for Γ .

Proof. (⇒) As in the proof of Theorem 6.18.
(⇐) The construction of a structure from the SSM mirrors that of the proof of
Theorem 6.18. The condition CB2 ensures that if we have a point where no future
defects can occur, then at that point also the occurrence of branching defects
is excluded. It follows that, given a <-maximal point, the construction will not
generate for it any ≡-related point distinct from itself.

⊓⊔
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6.3.5 Discussion

Related works concerning the use of the mosaic method in temporal logics have
been already described in Section 6.1. Most of such works present definitions and
techniques for linear tense logics. Our contribution consists in the extension of such
techniques (in particular of those presented in [105]) to the case of the bundled
branching Ockhamist logic BOBTL [167] and some of its sublogics.

The extension is mainly based on the fact that ≃-related points in a (possibly
generalized) Ockhamist structure satisfy the same set of atomic propositions and
thus the same set of state formulas. The saturation conditions of the linear case
are enriched with a further condition requiring that if a point M in the set of
mosaics contains a formula of the form ∃A, then a point M ′ state-equivalent to
M , i.e. satisfying the same set of state formulas, and containing A must also
be in the set. Such a condition allows for capturing the so-called logic of basic
frames [167]. Further refinements of the definition of a saturated set of mosaics are
required in order to consider BOBTL and other intermediate logics.

In this section, we have focused on providing proper definitions of mosaics and
saturated sets of mosaics for the case considered and on proving the key theorem
relating the satisfiability of a set of formulas to the existence of a saturated set
of mosaics. An analysis of possible applications is left for future work; here we
just sketch some ideas concerning the use of mosaics in proving completeness of a
Hilbert-style axiomatization and decidability.

With regard to completeness, we notice that the use of mosaics allows for sim-
plifying the standard proofs [167] of completeness of Hilbert-style axiomatizations
for these logics. Such proofs consist in considering maximal consistent sets and
defining two relations ≺M and ≃M on them, based on the formulas they contain,
i.e.,

Γ ≺M ∆ iff {A | GA ∈ Γ} ⊆ ∆ , Γ ≃M ∆ iff {A | ∀A ∈ Γ} ⊆ ∆.

The idea is that such relations can be used as the basis for building a structure by
a procedure of elimination of counterexamples [32,33,167]. If we use mosaics, then
part of this procedure is already contained in the theorems of Sections 6.3.1-6.3.4
and it suffices to show that the set of all pairs (M1, M2) such that M1 and M2 are
maximal consistent sets and M1 ≺M M2 form a saturated set of mosaics6

Particular attention is required in the case of (Dis+WDC) and Ockhamist
frames, since the property (SDC) fails in the set of maximal consistent sets for
the corresponding axiomatizations. However we believe that techniques analogous
to those described in [164] for proving completeness should help prove that a
saturated set of mosaics can be retrieved from a set of pairs of maximal consistent
sets defined as above.

By adapting the considerations above, we observe that a proof of completeness
for the natural deduction systems defined in the previous chapters could also be
obtained via mosaics.

With regard to decidability, we notice that decidability of the logics considered
in this section follows from the results of Burgess in [31] (see also [68]). It should

6 Note that we do not need to consider the relation ≃M explicitly since we treat branch-
ing counterexamples by using the notion of state-equivalence.
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be possible to give a proof of decidability via mosaics (as in Theorem 6.9) by
considering that the set of subformulas and single negations of a given formula
is finite and that checking saturation conditions on a finite set is decidable. A
detailed treatment is left for future work.





7

Conclusions

7.1 Summary of contributions

Despite the fact that temporal logics have been studied for decades and despite
their great relevance in many applications of computer science, their theoretical
analysis is far from being concluded. In particular, we believe that we still lack a
satisfactory proof-theoretical analysis for temporal logics.

The main contribution of this thesis is in the presentation of an approach for the
definition of modular natural deduction systems for a large class of, both linear and
branching, temporal logics and in their proof-theoretical analysis. Our approach is
based on the framework of labeling, which has been successfully employed in the
case of proof theory for modal, and in general non-classical, logics.

We started by defining a basic system for the minimal tense logic Kt and,
by modular enrichments of the system, we have been able to capture other more
complex logics, like the linear tense logic Kl , some of its variants, and finally the
until-free fragment of LTL.

The extension to the branching case is limited to the so-called bundled branch-
ing logics, obtained by a generalization of the standard semantics for CTL∗ or
for its corresponding general-time logic. The semantics of bundled logics can be
formulated in terms of Ockhamist frames [139, 167] rather than tree-like frames.
Ockhamist frames allow for the definition of a pure Kripke-style semantics, where
also the path quantifier ∀ can be seen as a modal operator, endowed with a proper
accessibility relation. As a consequence, we have that we are able to exploit the
well-known good behavior of labeled deduction systems for modal logics also in
the case of such branching-time logics.

The modularity of the approach is in the fact that each connective (operator,
quantifier) has its own accessibility relation, its own rules for defining the properties
of such a relation and its own rules for introduction and elimination. Possible
interactions between the relations are managed by means of rules not involving
the operators themselves, whose introduction and elimination is restricted to the
specific rules.

The result is a clean natural deduction system, for which it is possible to define
a procedure of normalization. In particular, we have studied normalization in the
case of the system for BCTL∗

−, where the presence of a rule for induction makes an
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analogy with systems for Peano/Heyting Arithmetic. We have proved a result of
weak normalization and obtained a syntactical proof of consistency as a corollary.

The proof-theoretical analysis has mainly focused on systems for until-free
logics. In fact, until is a very complex operator from a proof-theoretical point of
view. In this thesis, we have proposed a solution for its treatment, which is based
on the usage of a labeling discipline different from the most standard one and on
replacing the until with a new operator, which is easier to treat and in terms of
which the until can be defined.

Finally, we have proposed an extension of the mosaic method, presented in
the literature [105] in the case of several (non-discrete) linear temporal logics to
the corresponding bundled branching logics. The mosaic method can be used for
proving decidability, complexity results or completeness of Hilbert-style axiomati-
zations of a given logic.

7.2 Future work

As usual, much is still to be done.
The most complex, and at the same time most stimulating, direction is repre-

sented by an extension towards the “full semantics” branching-time logics, OBTL
and CTL∗. We recall that such logics represent a, partially still, open problem
even when considering Hilbert-style axiomatizations [135, 136]. A first step could
consist in providing a system with an infinitary rule, able to capture the so-called
limit-closure property.

It is interesting to observe that, if we add past operators to CTL∗, then we
get a more expressive logic for which the definition of a standard and complete
Hilbert-style axiomatization is easier and has been in fact given by Reynolds [138].
Considering an extension of our system to deal with such a logic is another possible
direction of research. The definition of a system for CTL∗ with past could shed
some light to the case of standard CTL∗ as well.

In this thesis, we dealt with Ockhamist branching-time logics, whose language
allows for a free combination of quantifiers and operators. We note anyway that
Peircean logics, like CTL, can be obtained by the Ockhamist ones by just imposing
a restriction on the language. Thus our systems can be also used for reasoning on
Peircean logics, e.g., by considering a restriction on the set of admissible deriva-
tions. Although our approach, based on a strict separation between the operators,
seems to lead more naturally to work with the language of Ockhamist logics, it
would be interesting to consider possible adaptations explicitly designed for CTL-
like logics, as in such cases it is also typically less complex to capture the full
semantics.

We also plan to extend our work towards the investigation of practical ap-
plications of our systems. In particular, we believe that the one for BCTL∗

− can
be interesting to reason about fairness, along the lines of [42, 63]. To that end, it
will be especially important to mechanize reasoning as much as possible by pro-
viding automated reasoning procedures or employing interactive theorem provers,
e.g. encoding our systems into a logical framework such as Isabelle [121,122].

With regard to our proposal for the treatment of until, we notice that here
we used the logic based on the new operator history mainly as a service-logic for
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reasoning on the standard logic with until. Future work will be oriented towards
an analysis of the real “meaning” and expressiveness of the new operator. Further-
more, although the introduction of history has been motivated by proof-theoretical
considerations and we expect such an operator to be rather well-behaved, a de-
tailed analysis of normalization for history-based logics has been left for future
work.

Finally, the extension of the technique of mosaics to the case of the bundled
branching Ockhamist logic BOBTL can be seen as just a first step towards a more
general definition of the method in the context of other, more interesting and
complex, logics, for which decidability and complexity results are still missing. In
this thesis, we have proved completeness of the deduction systems indirectly by
exploiting given Hilbert-style axiomatizations for the same logics (with the only
exception of Section 4.3). We believe that a direct proof for (some of) the natural
deduction systems defined here could be provided by using the mosaic method,
thus creating also a stronger connection between the two tracks of this thesis.
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Appendix

A.1 Proofs of Chapter 5

The Church-Rosser property

Lemma A.1. Let Π1 and Π2 be two marked derivations such that
Π1

b1 : A
֌1

Π ′
1

b1 : A
and

b1 : A
Π2

b2 : B
֌1

b1 : A
Π ′

2

b2 : B
. Then Π =

Π1

b1 : A
Π2

b2 : B

֌1 Π ′ =

Π ′
1

b1 : A
Π ′

2

b2 : B

and

δ (Π, Π ′) = δ (Π1, Π
′
1) ∪ δ (Π2, Π

′
2).

Proof. The proof proceeds by induction on the definition of Π2 ֌1 Π ′
2.

(i) [BC]
If Π2 = Π ′

2, then we easily obtain the thesis by using the passive clauses in
the definition of֌1.

(ii) [⊃I]
Let

Π2 =

b1 : A [b2 : B1]
1

Π3

b2 : B2

b2 : B1 ⊃ B2
⊃I1

֌1 Π ′
2 =

b1 : A [b2 : B1]
1

Π ′
3

b2 : B2

b2 : B1 ⊃ B2
⊃I1

,

where B = B1 ⊃ B2 and Π3 ֌1 Π ′
3. Then, by the induction hypothesis:

Π̂3 =

Π1

b1 : A b2 : B1

Π3

b2 : B2

֌1 Π̂3

′
=

Π ′
1

b1 : A b2 : B1

Π ′
3

b2 : B2

,

where δ (Π̂3, Π̂3

′
) = δ (Π1, Π

′
1)∪δ (Π3, Π

′
3). By Definition 5.32, we conclude:

Π =

Π1

b1 : A [b2 : B1]
1

Π3

b2 : B2

b2 : B1 ⊃ B2
⊃I1

֌1 Π ′ =

Π ′
1

b1 : A [b2 : B1]
1

Π ′
3

b2 : B2

b2 : B1 ⊃ B2
⊃I1

,



232 A Appendix

where

δ (Π, Π ′) = δ (Π̂3, Π̂3

′
) =

= δ (Π1, Π
′
1) ∪ δ (Π3, Π

′
3) =

= δ (Π1, Π
′
1) ∪ δ (Π2, Π

′
2) .

(iii− xv) Cases concerning the remaining passive clauses are treated as (ii) above.

(xvi) [IndContr]
Let

Π2 =






b1 : A
Π3

c0 : B c0 6 b2

[c0 6 ci]
1 [ci : B]1 [ci ⊳ cj ]

1 b1 : A
Π4

cj : B

b2 : B
(r)1

֌1

Π ′
2 =






b1 : A

Π ′
3

c0 6 c0(r) c0 : B c0 ⊳ c1(r) b1 : A

Π ′
4[c0/ci][c1/cj ]

c0 6 c1(r) c1 : B c1 ⊳ c2(r) b1 : A

Π ′
4[c1/ci][c2/cj ]

c2 : B
.
.
.

c0 6 cn−1(r) cn−1 : B cn−1 ⊳ b2(r) b1 : A

Π ′
4[cn−1/ci][b2/cj]

b2 : B

,

where r is an application of ind , Π3 ֌1 Π ′
3 and Π4 ֌1 Π ′

4. Then, by the
induction hypothesis:

Π̂3 =

Π1

b1 : A
Π3

c0 : B

֌1 Π̂3

′
=

Π ′
1

b1 : A
Π ′

3

c0 : B

,

where δ (Π̂3, Π̂3

′
) = δ (Π1, Π

′
1) ∪ δ (Π3, Π

′
3) and

Π̂4 =

Π1

b1 : A c0 6 ci ci : A ci ⊳ cj

Π4

cj : B
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֌1

Π̂4

′
=

Π ′
1

b1 : A c0 6 ci ci : A ci ⊳ cj

Π ′
4

cj : B

,

where δ (Π̂4, Π̂4

′
) = δ (Π1, Π

′
1)∪δ (Π4, Π

′
4). By Definition 5.32, we conclude:

Π =






Π1

b1 : A
Π3

c0 : B c0 6 b2

[c0 6 ci]
1 [ci : B]1 [ci ⊳ cj ]

1
Π1

b1 : A
Π4

cj : B

b2 : B
(r)1

֌1

Π ′ =






Π ′
1

b1 : A

Π ′
3

c0 6 c0(r) c0 : B c0 ⊳ c1(r)

Π ′
1

b1 : A

Π ′
4[c0/ci][c1/cj ]

c0 6 c1(r) c1 : B c1 ⊳ c2(r)

Π ′
1

b1 : A

Π ′
4[c1/ci][c2/cj ]

c2 : B
.
.
.

c0 6 cn−1(r) cn−1 : B cn−1 ⊳ b2(r)

Π ′
1

b1 : A

Π ′
4[cn−1/ci][b2/cj ]

b2 : B

,

where

δ (Π, Π ′) = δ (Π̂3, Π̂3

′
) ∪ δ (Π̂4, Π̂4

′
) ∪ {r} =

= δ (Π1, Π
′
1) ∪ δ (Π3, Π

′
3) ∪ δ (Π1, Π

′
1) ∪ δ (Π4, Π

′
4) ∪ {r} =

= δ (Π1, Π
′
1) ∪ δ (Π3, Π

′
3) ∪ δ (Π4, Π

′
4) ∪ {r} =

= δ (Π1, Π
′
1) ∪ δ (Π2, Π

′
2) .

(xvii) [⊃I/ ⊃E]
Let
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Π2 =
b1 : A
Π3

b2 : B1

[b2 : B1]
1 b1 : A

Π4

b2 : B

b2 : B1 ⊃ B
⊃I1

b2 : B
⊃E

֌1 Π ′
2 =

b1 : A
Π ′

3

b2 : B1

Π ′
4

b2 : B

,

where Π3 ֌1 Π ′
3 and Π4 ֌1 Π ′

4. Then, by the induction hypothesis:

Π̂3 =

Π1

b1 : A
Π3

b2 : B1

֌1 Π̂3

′
=

Π ′
1

b1 : A
Π ′

3

b2 : B1

,

where δ (Π̂3, Π̂3

′
) = δ (Π1, Π

′
1) ∪ δ (Π3, Π

′
3) and

Π̂4 = b2 : B1

Π1

b1 : A
Π4

b2 : B

֌1 Π̂4

′
= b2 : B1

Π ′
1

b1 : A
Π ′

4

b2 : B

,

where δ (Π̂4, Π̂4

′
) = δ (Π1, Π

′
1)∪δ (Π4, Π

′
4). By Definition 5.32, we conclude:

Π =

Π1

b1 : A
Π3

b2 : B1

[b2 : B1]
1

Π1

b1 : A
Π4

b2 : B

b2 : B1 ⊃ B
⊃I1

b2 : B
⊃E

֌1 Π ′ =

Π ′
1

b1 : A
Π ′

3

b2 : B1

Π ′
1

b1 : A
Π ′

4

b2 : B

,

where

δ (Π, Π ′) = δ (Π̂3, Π̂3

′
) ∪ δ (Π̂4, Π̂4

′
) =

= δ (Π1, Π
′
1) ∪ δ (Π3, Π

′
3) ∪ δ (Π1, Π

′
1) ∪ δ (Π4, Π

′
4) =

= δ (Π1, Π
′
1) ∪ δ (Π2, Π

′
2) .

(xviii) [∧I/ ∧ E1]
Let

Π2 =

b1 : A
Π3

b2 : B

b1 : A
Π4

b2 : C

b2 : B ∧ C
∧I

b2 : B
∧E1

֌1 Π ′
2 =

b1 : A
Π ′

3

b2 : B
,

where Π3 ֌1 Π ′
3. Then, by the induction hypothesis:

Π̂3 =

Π1

b1 : A
Π3

b2 : B

֌1 Π̂3

′
=

Π ′
1

b1 : A
Π ′

3

b2 : B

,

where δ (Π̂3, Π̂3

′
) = δ (Π1, Π

′
1)∪δ (Π3, Π

′
3). By Definition 5.32, we conclude:
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Π =

Π1

b1 : A
Π3

b2 : B

Π1

b1 : A
Π4

b2 : C

b2 : B ∧ C
∧I

b2 : B
∧E1

֌1 Π ′ =

Π ′
1

b1 : A
Π ′

3

b2 : B

,

where

δ (Π, Π ′) = δ (Π̂3, Π̂3

′
) =

= δ (Π1, Π
′
1) ∪ δ (Π3, Π

′
3) =

= δ (Π1, Π
′
1) ∪ δ (Π2, Π

′
2) .

(xix) [∧I/ ∧ E2]
Analogous to the previous case.

(xx) [XI/XE]
Let

Π2 =

[b⊳ b′]1 b1 : A
Π3

b′ : B
b : XB XI1

b⊳ b2

b2 : B
XE

֌1 Π ′
2 =

b ⊳ b2 b1 : A
Π ′

3[b2/b′]
b2 : B

,

where Π3 ֌1 Π ′
3. Then, by the induction hypothesis:

Π̂3 = b ⊳ b′
Π1

b1 : A
Π3

b′ : B

֌1 Π̂3

′
= b⊳ b′

Π ′
1

b1 : A
Π ′

3

b′ : B

,

where δ (Π̂3, Π̂3

′
) = δ (Π1, Π

′
1)∪δ (Π3, Π

′
3). By Definition 5.32, we conclude:

Π =

[b⊳ b′]1
Π1

b1 : A
Π3

b′ : B
b : XB XI1

b⊳ b2

b2 : B
XE

֌1 Π ′ = b⊳ b2

Π ′
1

b1 : A
Π ′

3[b2/b′]
b2 : B

,

where
δ (Π, Π ′) = δ (Π̂3, Π̂3

′
) =

= δ (Π1, Π
′
1) ∪ δ (Π3, Π

′
3) =

= δ (Π1, Π
′
1) ∪ δ (Π2, Π

′
2) .

(xxi) − (xxii) [GI/GE] and [∀I/∀E] are treated as (xx) above.
⊓⊔

Lemma 5.34 shows that there is a strict correspondence between the contrac-
tions defined in Section 5.4.3 and֌1-reductions with no defects. This correspon-
dence does not hold if we consider all the ֌1-reductions. In particular, given
Π ֌1 Π ′ and Π ֌1 Π ′′, we cannot say that Π ′ and Π ′′ converge to a common
Π ′′′. This is true only if Π ֌1 Π ′ and Π ֌1 Π ′′ are in some way “compatible”.
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Intuitively, we need to require that, when we reduce an ind -application r both in
deriving Π ′ and in deriving Π ′′, we “unfold” it in the same way, i.e. with respect to
a chain of the same length and by using the same sequence of labels. The following
definition formalizes this idea.

Definition A.2. Let Π, Π ′ and Π ′′ be marked derivations such that Π ֌1 Π ′

and Π ֌1 Π ′′. We say that (Π, Π ′) and (Π, Π ′′) are compatible if and only if
one of the following cases holds:

(i) Π ′ = Π or Π ′′ = Π.

(ii) Π =

[b : A]
Π1

b : B
b : A ⊃ B

⊃I
, Π ′ =

[b : A]
Π ′

1

b : B
b : A ⊃ B

⊃I

, Π ′′ =

[b : A]
Π ′′

1

b : B
b : A ⊃ B

⊃I

and (Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible.

(iii) Π =
Π1

b : A
Π2

b : B
b : A ∧ B

∧I
, Π ′ =

Π ′
1

b : A
Π ′

2

b : B
b : A ∧ B

∧I
, Π ′′ =

Π ′′
1

b : A
Π ′′

2

b : B
b : A ∧ B

∧I
,

(Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible and (Π2, Π

′
2) and (Π2, Π

′′
2 ) are com-

patible.

(iv) Π =

[b1 ⊳ b2]
Π1

b2 : A

b1 : XA
XI

, Π ′ =

[b1 ⊳ b2]
Π ′

1

b2 : A

b1 : XA
XI

, Π ′′ =

[b1 ⊳ b2]
Π ′′

1

b2 : A

b1 : XA
XI

and (Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible.

Analogously for the cases in which the last application of Π is a GI or a ∀I.

(v) Π =
Π1

b : A ⊃ B
Π2

b : A
b : B

⊃E
, Π ′ =

Π ′
1

b : A ⊃ B
Π ′

2

b : A
b : B

⊃E
,

Π ′′ =
Π ′′

1

b : A ⊃ B
Π ′′

2

b : A
b : B

⊃E
,

(Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible and (Π2, Π

′
2) and (Π2, Π

′′
2 ) are com-

patible.

(vi) Π =
Π1

b1 : XA b1 ⊳ b2

b2 : A
XE

, Π ′ =
Π ′

1

b1 : XA b1 ⊳ b2

b2 : A
XE

,

Π ′′ =
Π ′′

1

b1 : XA b1 ⊳ b2

b2 : A
XE

and (Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible.

Analogously for the cases in which the last application of Π is a GE or a ∀E.
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(vii) Π =
Π1

b1 :⊥
b : A

⊥E
, Π ′ =

Π ′
1

b1 :⊥
b : A

⊥E
, Π ′′ =

Π ′′
1

b1 :⊥
b : A

⊥E

and (Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible.

(viii) Π =

[b1 ⊳ b1]
Π1

b2 : A

b2 : A
ser⊳

, Π ′ =

[b1 ⊳ b1]
Π ′

1

b2 : A

b2 : A
ser⊳

, Π ′′ =

[b1 ⊳ b1]
Π ′′

1

b2 : A

b2 : A
ser⊳

and (Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible.

Analogously for the cases in which the last application of Π is one of the
following relational or structural rules: base 6, lin⊳, lin⊳R, refl 6, trans 6,
refl•, symm•, trans•, atom•, fusion.

(ix) Π =
Π0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj]
Π1

bj : A

b : A
ind

,

Π ′ =
Π ′

0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj]
Π ′

1

bj : A

b : A
ind

Π ′′ =
Π ′′

0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj ]
Π ′′

1

bj : A

b : A
ind

,

(Π0, Π
′
0) and (Π0, Π

′′
0 ) are compatible and (Π1, Π

′
1) and (Π1, Π

′′
1 ) are com-

patible.

(x) Π =
Π0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj]
Π1

bj : A

b : A
ind (r)

,

Π ′ =
Π ′

0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj]
Π ′

1

bj : A

b : A
ind (r)

,
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Π ′′ =






Π ′′
0

b0 6 b0(r) b0 : A b0 ⊳ b1(r)

Π ′′
1 [b0/bi][b1/bj]

b0 6 b1(r) b1 : A b1 ⊳ b2(r)

Π ′′
1 [b1/bi][b2/bj]

b2 : A
.
.
.

b0 6 bn−1(r) bn−1 : A bn−1 ⊳ b(r)

Π ′′
1 [bn−1/bi][b/bj]

b : A

,

(Π0, Π
′
0) and (Π0, Π

′′
0 ) are compatible and (Π1, Π

′
1) and (Π1, Π

′′
1 ) are com-

patible.

(xi) Π =





Π0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj]
Π1

bj : A

b : A
ind (r)

,

Π ′ =






Π ′
0

b0 6 b0(r) b0 : A b0 ⊳ b1(r)

Π ′
1[b0/bi][b1/bj]

b0 6 b1(r) b1 : A b1 ⊳ b2(r)

Π ′
1[b1/bi][b2/bj]

b2 : A
.
.
.

b0 6 bn−1(r) bn−1 : A bn−1 ⊳ b(r)

Π ′
1[bn−1/bi][b/bj]

b : A

,
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Π ′′ =






Π ′′
0

b0 6 b0(r) b0 : A b0 ⊳ b1(r)

Π ′′
1 [b0/bi][b1/bj]

b0 6 b1(r) b1 : A b1 ⊳ b2(r)

Π ′′
1 [b1/bi][b2/bj]

b2 : A
.
.
.

b0 6 bn−1(r) bn−1 : A bn−1 ⊳ b(r)

Π ′′
1 [bn−1/bi][b/bj]

b : A

,

(Π0, Π
′
0) and (Π0, Π

′′
0 ) are compatible and (Π1, Π

′
1) and (Π1, Π

′′
1 ) are com-

patible.

(xii) Π =

[b : A]
Π1

b : B
b : A ⊃ B

⊃I Π2

b : A
b : B

⊃E

, Π ′ =

[b : A]
Π ′

1

b : B
b : A ⊃ B

⊃I
Π ′

2

b : A
b : B

⊃E

,

Π ′′ =

Π ′′
2

b : A
Π ′′

1

b : B

,

(Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible and (Π2, Π

′
2) and (Π2, Π

′′
2 ) are com-

patible.

(xiii) Π =

[b : A]
Π1

b : B
b : A ⊃ B

⊃I Π2

b : A
b : B

⊃E

, Π ′ =

Π ′
2

b : A
Π ′

1

b : B

, Π ′′ =

Π ′′
2

b : A
Π ′′

1

b : B

,

(Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible and (Π2, Π

′
2) and (Π2, Π

′′
2 ) are com-

patible.

(xiv) Π =

Π1

b : A
Π2

b : B
b : A ∧ B

∧I

b : A
∧E1

, Π ′ =

Π ′
1

b : A
Π ′

2

b : B
b : A ∧ B

∧I

b : A
∧E1

, Π ′′ = Π ′′
1

b : A
,

and (Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible. There is an analogous case with

∧E2.
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(xv) Π =

Π1

b : A
Π2

b : B
b : A ∧ B

∧I

b : A
∧E1

, Π ′ = Π ′
1

b : A
, Π ′′ = Π ′′

1

b : A

and (Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible. There is an analogous case with

∧E2.

(xvi) Π =

[b1 ⊳ b2]
Π1

b2 : A

b1 : XA
XI

b1 ⊳ b

b : A
XE

, Π ′ =

[b1 ⊳ b2]
Π ′

1

b2 : A

b1 : XA
XI

b1 ⊳ b

b : A
XE

,

Π ′′ =
b1 ⊳ b

Π ′′
1 [b/b2]
b : A

and (Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible.

Analogously for the cases in which the last application of Π is a GE or a ∀E.

(xvii) Π =

[b1 ⊳ b2]
Π1

b2 : A

b1 : XA
XI

b1 ⊳ b

b : A
XE

, Π ′ =
b1 ⊳ b

Π ′
1[b/b2]
b : A

,

Π ′′ =
b1 ⊳ b

Π ′′
1 [b/b2]
b : A

and (Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible.

Analogously for the cases in which the last application of Π is a GE or a ∀E.

Lemma A.3. Let Π, Π ′ and Π ′′ be marked derivations such that Π ֌1 Π ′,
Π ֌1 Π ′′, δ (Π, Π ′) = ∅ and δ (Π, Π ′′) = ∅. Then (Π, Π ′) and (Π, Π ′′) are
compatible.

Proof. By observing the inductive definition in Definition A.2, one can notice that
the only source of incompatibility comes by unfolding in two different ways some
application of ind . But having no defects implies that the ֌1-steps correspond
to a number of ⇒-contractions (see Lemma 5.34) and thus that all the possible
unfolded ind -applications have been treated in the same way.

⊓⊔

We can now prove that whenever two ֌1-steps diverge but are compatible,
then there exists some marked derivation to which their results converge.

Lemma A.4. Let Π, Π ′ and Π ′′ be marked derivations. If Π ֌1 Π ′ and Π ֌1

Π ′′ and (Π, Π ′) and (Π, Π ′′) are compatible, then there exists a marked deriva-
tion Π ′′′ such that Π ′, Π ′′ ֌1 Π ′′′, δ (Π ′, Π ′′′) ⊆ δ (Π, Π ′′) and δ (Π ′′, Π ′′′) ⊆
δ (Π, Π ′).

Proof. Let n′ and n′′ be the number of times the clauses in Definition 5.32 have
been applied in order to get Π1 ֌1 Π ′ and Π1 ֌1 Π ′′, respectively. The proof
proceeds by induction on n′ + n′′. We show here the main cases.
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(i) If Π = Π ′ (by clause [BC]), then just take Π ′′′ = Π ′′. Analogously, if
Π = Π ′′ then take Π ′′′ = Π ′.

(ii) The cases in which the last clause application, both in deriving Π ֌1 Π ′

and in deriving Π ֌1 Π ′′, is a passive clause are all very similar. We show
the case [⊃I] as an example. Let Π be the derivation

[b : A]1

Π1

b : B
b : A ⊃ B

⊃I1

and let Π ′ and Π ′′ be

Π ′ =

[b : A]1

Π ′
1

b : B
b : A ⊃ B

⊃I1

and Π ′′ =

[b : A]1

Π ′′
1

b : B
b : A ⊃ B

⊃I1

.

In the derivations above, we have Π1 ֌1 Π ′
1 and Π1 ֌1 Π ′′

1 in less than
n′ and less than n′′ clause applications, respectively. If (Π, Π ′) and (Π, Π ′′)
are compatible then, by Definition A.2, we have that (Π1, Π

′
1) and (Π1, Π

′′
1 )

are compatible. By the induction hypothesis, we can infer Π ′
1 ֌1 Π ′′′

1

and Π ′′
1 ֌1 Π ′′′

1 for some Π ′′′
1 such that δ (Π ′

1, Π
′′′
1 ) ⊆ δ (Π1, Π

′′
1 ) and

δ (Π ′′
1 , Π ′′′

1 ) ⊆ δ (Π1, Π
′
1). Then given

Π ′′′ =

[b : A]1

Π ′′′
1

b : B
b : A ⊃ B

⊃I1

,

we have, by Definition 5.32, Π ′ ֌1 Π ′′′ and Π ′′ ֌1 Π ′′′. Furthermore we
have:

δ (Π ′, Π ′′′) = δ (Π ′
1, Π

′′′
1 ) ⊆ δ (Π1, Π

′′
1 ) = δ (Π, Π ′′) ;

δ (Π ′′, Π ′′′) = δ (Π ′′
1 , Π ′′′

1 ) ⊆ δ (Π1, Π
′
1) = δ (Π, Π ′) .

(iii) Let Π be the following derivation:

[b : A]1

Π1

b : B
b : A ⊃ B

⊃I1 Π2

b : A
b : B

⊃E

.

Then, by Definition 5.32, we can have a derivation Π ′ obtained by applying
[⊃E] as the last clause and a derivation Π ′′ obtained by applying [⊃I/ ⊃E]
as the last clause, where Π ′ and Π ′′ are as follows:

Π ′ =
Π ′

3

b : A ⊃ B
Π ′

2

b : A
b : B

⊃E
, Π ′′ =

Π ′′
2

b : A
Π ′′

1

b : B

.
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In the derivations above, we have Π2 ֌1 Π ′
2, Π2 ֌1 Π ′′

2 and Π1 ֌1 Π ′′
1 .

Furthermore

[b : A]
Π1

b : B
b : A ⊃ B

⊃I
֌1 Π ′

3 , where Π ′
3 =

[b : A]
Π ′

1

b : B
b : A ⊃ B

⊃I

for some Π ′
1 such that Π1 ֌1 Π ′

1 with less than n′ clauses applications.
If (Π, Π ′) and (Π, Π ′′) are compatible then, by Definition A.2, we have
that (Π1, Π

′
1) and (Π1, Π

′′
1 ) are compatible and that (Π2, Π

′
2) and (Π2, Π

′′
2 )

are compatible. By the induction hypothesis, we can infer Π ′
2 ֌1 Π ′′′

2 ,
Π ′′

2 ֌1 Π ′′′
2 , Π ′

1 ֌1 Π ′′′
1 and Π ′′

1 ֌1 Π ′′′
1 for some Π ′′′

2 and Π ′′′
1 such

that δ (Π ′
1, Π

′′′
1 ) ⊆ δ (Π1, Π

′′
1 ) and δ (Π ′′

1 , Π ′′′
1 ) ⊆ δ (Π1, Π

′
1). Then, given

Π ′′′ =

Π ′′′
2

b : A
Π ′′′

1

b : B

,

we have, by Definition 5.32, Π ′ ֌1 Π ′′′ and, by Lemma A.1, Π ′′ ֌1 Π ′′′.
Furthermore we have:

δ (Π ′, Π ′′′) = δ (Π ′
1, Π

′′′
1 ) ∪ δ (Π ′

2, Π
′′′
2 ) ⊆

⊆ δ (Π1, Π
′′
1 ) ∪ δ (Π2, Π

′′
2 ) =

= δ (Π, Π ′′) .

Analogously:

δ (Π ′′, Π ′′′) = δ (Π ′′
1 , Π ′′′

1 ) ∪ δ (Π ′′
2 , Π ′′′

2 ) ⊆
⊆ δ (Π1, Π

′
1) ∪ δ (Π2, Π

′
2) =

= δ (Π, Π ′) .

(iv) We show here only the case ∧E1, as the case ∧E2 is symmetrical. Let Π be
the following derivation:

Π1

b : A
Π2

b : B
b : A ∧ B

∧I

b : A
∧E1

.

Then, by Definition 5.32, we can have a derivation Π ′ obtained by applying
[∧E1] as the last clause and a derivation Π ′′ obtained by applying [∧I/∧E2]
as the last clause, where Π ′ and Π ′′ are as follows:

Π ′ =

Π ′
1

b : A
Π ′

2

b : B
b : A ∧ B

∧I

b : A
∧E1

, Π ′′ = Π ′′
1

b : A
,

where Π1 ֌1 Π ′
1, Π1 ֌1 Π ′′

1 and Π2 ֌1 Π ′
2. If (Π, Π ′) and (Π, Π ′′) are

compatible then, by Definition A.2, we have that (Π1, Π
′
1) and (Π1, Π

′′
1 )

are compatible. By the induction hypothesis, we can infer Π ′
1 ֌1 Π ′′′

1
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and Π ′′
1 ֌1 Π ′′′

1 for some Π ′′′
1 such that δ (Π ′

1, Π
′′′
1 ) ⊆ δ (Π1, Π

′′
1 ) and

δ (Π ′′
1 , Π ′′′

1 ) ⊆ δ (Π1, Π
′
1). Then given

Π ′′′ = Π ′′′
1

b : A
,

we have, by Definition 5.32, Π ′ ֌1 Π ′′′ and Π ′′ ֌1 Π ′′′. Furthermore we
have:

δ (Π ′, Π ′′′) = δ (Π ′
1, Π

′′′
1 ) ⊆ δ (Π1, Π

′′
1 ) = δ (Π, Π ′′) .

Analogously:

δ (Π ′′, Π ′′′) = δ (Π ′′
1 , Π ′′′

1 ) ⊆ δ (Π1, Π
′
1) = δ (Π, Π ′) .

(v) The cases in which the last rule is XE, GE or ∀E are all analogous. We show
the first one as an example. Let Π be the following derivation:

[b1 ⊳ b]1

Π1

b : A
b1 : XA XI1

b1 ⊳ b2

b2 : A
XE

.

Then, by Definition 5.32, we can have a Π ′ obtained by applying [XE] as the
last clause and Π ′′ obtained by applying [XI/XE] as the last clause, where
Π ′ and Π ′′ are as follows:

Π ′ =
Π ′

2

b1 : XA b1 ⊳ b2

b2 : A
XE

, Π ′′ =
b1 ⊳ b2

Π ′′
1 [b2/b]
b2 : A

where

Π ′
2 =

b1 ⊳ b
Π ′

1

b : A
b1 : XA

XI

for some Π ′
1 such that Π1 ֌1 Π ′

1 by less than n′ clause applications. We
also have

[b1 ⊳ b]1

Π1

b : A
b1 : XA XI1

֌1 Π ′
2 and Π1 ֌1 Π ′′

1 ,

in less than n′ and less than n′′ clause applications respectively. If (Π, Π ′) and
(Π, Π ′′) are compatible then, by Definition A.2, we have that (Π1, Π

′
1) and

(Π1, Π
′′
1 ) are compatible. By the induction hypothesis, we can infer Π ′

1 ֌1

Π ′′′
1 and Π ′′

1 ֌1 Π ′′′
1 for some Π ′′′

1 such that δ (Π ′
1, Π

′′′
1 ) ⊆ δ (Π1, Π

′′
1 ) and

δ (Π ′′
1 , Π ′′′

1 ) ⊆ δ (Π1, Π
′
1). We conclude:

Π ′, Π ′′֌1 Π ′′′ =
b1 ⊳ b2

Π ′′′
1 [b2/b]
b2 : A

.

Furthermore we have:
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δ (Π ′, Π ′′′) = δ (Π ′
1, Π

′′′
1 ) ⊆ δ (Π1, Π

′′
1 ) = δ (Π, Π ′′) ;

δ (Π ′′, Π ′′′) = δ (Π ′′
1 , Π ′′′

1 ) ⊆ δ (Π1, Π
′
1) = δ (Π, Π ′) .

(vi) Now let the last rule application of Π be a ind and Π be the following
derivation:

Π0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj ]
Π1

bj : A

b : A
ind (r)

.

Then, by Definition 5.32, we can have Π ֌1 Π ′ and Π ֌1 Π ′′ such that
Π ′ and Π ′′ are obtained by applying respectively [ind ] or [IndContr] as the
last clause. Π ′ and Π ′′ will have the following form:

Π ′ =





Π ′

0

b0 : A b0 6 b

[b0 6 bi] [bi : A] [bi ⊳ bj ]
Π ′

1

bj : A

b : A
ind (r)

,

Π ′′ =






Π ′′
0

b0 6 b0(r) b0 : A b0 ⊳ b1(r)

Π ′′
1 [b0/bi][b1/bj]

b0 6 b1(r) b1 : A b1 ⊳ b2(r)

Π ′′
1 [b1/bi][b2/bj]

b2 : A
.
.
.

b0 6 bn−1(r) bn−1 : A bn−1 ⊳ b(r)

Π ′′
1 [bn−1/bi][b/bj]

b : A

,

where Π0 ֌1 Π ′
0 and Π0 ֌1 Π ′′

0 with less than n′ and less than n′′ clause
applications, respectively, and Π1 ֌1 Π ′

1 and Π1 ֌1 Π ′′
1 with less than n′

and less than n′′ clause applications, respectively. If (Π, Π ′) and (Π, Π ′′) are
compatible then, by Definition A.2, we have that (Π0, Π

′
0) and (Π0, Π

′′
0 ) are

compatible and that (Π1, Π
′
1) and (Π1, Π

′′
1 ) are compatible. By the induction

hypothesis, we can infer Π ′
0 ֌1 Π ′′′

0 , Π ′′
0 ֌1 Π ′′′

0 , Π ′
1 ֌1 Π ′′′

1 and Π ′′
1 ֌1

Π ′′′
1 for some Π ′′′

0 and Π ′′′
1 such that δ (Π ′

0, Π
′′′
0 ) ⊆ δ (Π0, Π

′′
0 ), δ (Π ′′

0 , Π ′′′
0 ) ⊆

δ (Π0, Π
′
0), δ (Π ′

1, Π
′′′
1 ) ⊆ δ (Π1, Π

′′
1 ) and δ (Π ′′

1 , Π ′′′
1 ) ⊆ δ (Π1, Π

′
1).

If we define:
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Π ′′′ =






Π ′′′
0

b0 6 b0 b0 : A b0 ⊳ b1

Π ′′′
1 [b0/bi][b1/bj]

b0 6 b1 b1 : A b1 ⊳ b2

Π ′′′
1 [b1/bi][b2/bj]

b2 : A
.
.
.

b0 6 bn−1 bn−1 : A bn−1 ⊳ b

Π ′′′
1 [bn−1/bi][b/bj]

b : A

,

then we have Π ′ ֌1 Π ′′′ by applying [IndContr] as the last clause. And it
is easy to observe that

δ (Π ′, Π ′′′) = δ (Π ′
0, Π

′′′
0 ) ∪ δ (Π ′

1, Π
′′′
1 ) ∪ {r} ⊆

⊆ δ (Π0, Π
′′
0 ) ∪ δ (Π1, Π

′′
1 ) ∪ {r} =

= δ (Π, Π ′′) .

Analogously, Π ′′ ֌1 Π ′′′ by n applications of Lemma A.1 and we have:

δ (Π ′′, Π ′′′) = δ (Π ′′
0 , Π ′′′

0 ) ∪ δ (Π ′′
1 , Π ′′′

1 ) ⊆
⊆ δ (Π0, Π

′
0) ∪ δ (Π1, Π

′
1) =

= δ (Π, Π ′) .
⊓⊔

The confluence for ⇒1 (Lemma 5.35) follows as a corollary of Lemma A.4.
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