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ABSTRACT 

 

In forensic cases human
 
remains are often the only biological material available 

for identification of missing persons or unknown remains found in different 

circumstances such as mass disasters, wars or socio-political events and to solve 

paternity issues. DNA extracted from bones is often present in low copy number (LCN) 

and in various states of degradation due to chemical and physical damages produced by 

intrinsic and extrinsic bone characteristics. Efficient DNA extraction procedures, as 

well as accurate DNA amplification, are critical steps involved in the process of 

successful DNA analysis of skeletal samples. Unfortunately, at present there is not an 

infallible method to recover DNA from very degraded samples due to variations in 

DNA yield from larger bone fragments that may be attributed to heterogeneity within a 

bones. 

In this study different types of human bones ranging in age from few months to 

90 years post mortem, found in various states of preservation and conserved in different 

places, were analyzed. We developed a modified silica based spin columns protocol, 

consisting in an initial separation of DNA from proteins and waste material, by using 

phenol-chloroform to better purify samples. Moreover, as the recovery of information 

from these degraded samples is enhanced by the use of smaller PCR products (Mini 

Short Tandem Repeats) rather than conventional STRs, eight STR markers included in 

available commercial multiplex PCR kits, were redesigned by moving forward and 

reverse primers in close proximity to the STR repeat region. Two PCR quadruplexes 

were assembled to obtain PCR products less than 130 bp in size. 

Our modified protocol was successfully employed to extract DNA from long bones 

of different ages and preservation state. Importantly the use of phenol chloroform 

consistently increased the amount of DNA that could be extracted from long bones, 

because it allowed to clean samples preventing that waste material interferes with 

columns or magnetic beads. Environmental conditions under which remains were 

exposed, had stronger influence on the state of DNA quality than the age of skeletal 

remains.  

Moreover the use of miniSTRs has proposed here could be used in addition to 

commercial kits, to increase as much as possible the number of markers analyzed. Using 



amplification commercial kits and the two new mini-STR quadruplex systems we 

always obtained genetic profiles of at least 12 STR from DNA typing of femur samples. 

The improvement of DNA extraction methods and the inclusion of robust and 

powerful miniSTR loci in addition to the commercial available kits, are effective 

solutions for forensic practices of degraded DNA samples because ensure that difficult 

casework samples with low amounts of degraded DNA can be fully typed. 
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1. INTRODUCTION 

1.1 Identification of human skeletal remains in forensic genetic investigations 

The introduction of new DNA analysis techniques for human identification, is a 

recent development in forensic investigations. The application of an identification 

method based on DNA analysis is essential when recognition cannot be based only on 

the examination of personal effects or other physical characteristics. In the last twenty 

years substantial efforts have continuously been made to identify human remains found 

in different circumstances such as mass disasters, wars, socio-political events, to 

identify people responsible for violent crimes and to solve paternity issues.  

The first detection of deoxyribonucleic acid (DNA) polymorphism in forensic 

casework investigation was performed by Jeffreys et al. in 1985 (1) and since its first 

use it has become a powerful tool in identification tests. The development and 

validation of new technology for detection of DNA polymorphisms have been very 

rapid. Over the last twenty years DNA profiling has become the main method for 

forensic human, animal and plant identification, in particular by introducing the study of 

microsatellite regions - Short Tandem Repeat (STR) loci - in routine paternity testing, 

as well as human identification (2).  

Genetic investigations are usually performed with enzymatic amplification and 

analysis of STRs regions, using Polymerase Chain Reaction (PCR) technique and DNA 

sequencers, respectively. DNA intron regions are usually examined in forensic genetic 

practice because do not code for any known characteristics. The polymorphism of an 

STR mainly results from differences in the number of the repeated sequences, that leads 

to variations in the total length of the STR regions from person to person (3). Data 

obtaining by DNA typing are highly reliable and can be used as a powerful tool for 

producing valuable results. Multiplex PCR amplification of all or a subset of these STR 

markers is possible with a variety of commercial STR kit using spectrally resolvable 

fluorescent dyes (4). Moreover, the availability of commercial STR kits has greatly 

simplified the use of STRs, in recent years and leaded to development of DNA 

population databases (5). The use of STR markers for DNA profiling has a  number of 

advantages over previously used methods, including highly polymorphic nature, ease of 

genotyping and ability to obtain results from degraded DNA samples or extremely small 

amounts of DNA. For the comparison of DNA profiles between different European 
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countries, the use of DNA kit containing the European Standard Set (ESS) or the 

Interpol Standard Set of Loci, is necessary and recommended by European Network 

Forensic Science International (ENFSI) (6). 

 

The use of human skeletal remains as sources for detection of DNA 

polymorphism is a relatively recent advance in forensic identification. Intrinsic features 

of bones, such as physical and chemical robustness to environmental degradation and 

biological attack, make DNA analysis the only way to determine the identity of a person 

when traditional methods such as facial recognition, dactiloscopy or odontology, cannot 

be established (7).  

Forensic identification case studies of human remains are usually referred both 

to identification of skeletal remains found in different circumstances and exhumation of 

remains from public or private cemeteries for investigation of paternity civil processes, 

where the task is usually to determine whether the people being investigated are related 

as parent-child (8). A common problem with these kinds of analysis is the preservation 

of DNA. The majority of DNA in bone is located in the osteocytes and Hochmeister et 

al. (1991) estimated that microgram quantities of DNA could potentially be extracted 

from a gram of bone (9). Osteocytes are embedded in a calcified matrix that is a barrier 

for access to DNA during the extraction process. Therefore, it is necessary to remove 

the matrix to improve the yield of DNA. Moreover the skeletal fragments recovered 

from mass fatality incidents often undergo series of decomposition changes that degrade 

both nuclear and mitochondrial DNA. For this reason the quality of DNA in old bones 

is highly variable and often substantially limited. This reflect the fact that remains are 

buried or disposed in many different environmental context, with differential exposure 

to potentially harsh extrinsic factors such as temperature, UV radiation, humidity and 

exposure to animals, insects and microbes. Different disposal conditions are marked by 

burial in different soil types, complete or partial immersion of remains in water, or in 

contact with fire. Microbial degradation is evidenced in old bones by both morphology 

and co-extraction of variable amount of microbial DNA and DNA inhibitors which are 

variable among samples (10). Qualitative differences in DNA content of different 

samples can be determined by the degree of reproducibility of allele determinations 

such as the presence or absence of artifacts (i.e. stutter bands or allelic dropouts and 
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drop in) (11). Finally, since airborne contamination can be caused by bone powder, 

highly stringent contamination control measures must be included when handling bone 

powder. The possibility of laboratory contamination increases particularly when 

processing a number of bone samples simultaneously, such as in mass fatality incidents. 

The ideal method for purification and concentration of DNA should at the same 

time maximize DNA recovery and minimize the co-purification of PCR inhibitors. Low 

yields in the quantitative comparison may either indicate low amounts of template DNA 

or high amounts of inhibitions. In addition to decomposition by bacteria and other 

microorganisms, the simultaneous exposure to environmental agents results in DNA 

degradation in postmortem tissues. The state of preservation varies from putrefying 

cadavers, but still complete, to bones with little or no soft tissues (12). In cadavers, 

DNA degrades very quickly, even in early postmortem periods. The degradation of soft 

tissues is particularly evident after short intervals of time, a consequence of the rapid 

bacterial increase that is natural in decomposing corpses, especially in those that are 

exposed to hot temperatures. 

In conclusion it is possible to suppose that the same characteristics of bone correlated 

with its general long term survival, i.e. its resistance to morphological degradation at the 

macroscopic and microscopic level, are those that contribute to protect DNA from 

degradation and therefore make difficult the extraction process.   

 

1.2 Structure of bone 

Bone is a complex, highly organized and specialized connective tissue. It is 

characterized physically by the hardness, rigidness and strongness, and microscopically 

by the presence of relatively few cells and much intercellular substance formed of 

collagen fibers and stiffening substances. Bone tissue is primarily composed of proteins 

and minerals and the association of organic and inorganic substances, which form the 

bone matrix, gives bone its hardness and resistance. (13) 

1.2.1 Classification of bones 

There are five types of bone in the human body: long, short, flat, irregular and 

sesamoid. 

Long bones are characterize by a long shaft (diaphysis) that is the result of the primary 

ossification center of bone. The expanded, flared ends of the shaft are called 

http://en.wikipedia.org/wiki/Long_bones
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metaphyses, while the ends of long bone are called epiphyses because they develop 

from secondary ossification center of the bone (the articular surfaces of the epiphysis 

are parts of joints). 

The outer part of a long bone is made of compact bone which makes up 80% of the 

human skeleton. Microscopically, compact bone is riddled with canals and passageways 

that serve as conduits for nerves, blood vessels, and lymphatic vessels. The structural 

unit of compact bone is called osteon or Haversian system that is an elongated cylinder 

oriented along the long axis of the bone. Osteons appear as tiny weight-bearing pillars 

composed of a group of hollow tubes (lamella) of bone matrix, one placed inside the 

next. Running through the core of each osteon there is a canal (central or Haversian 

canal) which contains small blood vessels and nerve fibers. Running a right angles to 

the long axis are canals (perforating or Volkmann's canals) which connect the vascular 

and nerve supplies of the periosteum to those in the central canals and medullary cavity. 

The interior part of a long bone is composed of spongy structure which consists of 

plates (trabeculae) and bars of bone adjacent to small, irregular cavities that contain red 

bone marrow. The canaliculi connect to the adjacent cavities, instead of a central 

haversian canal, to receive their blood supply. It may appear that the trabeculae are 

arranged in a haphazard manner, but they are organized to provide maximum strength 

similar to braces that are used to support a building. The trabeculae of spongy bone 

follow the lines of stress and can realign if the direction of stress changes. 

Short bones are roughly cube-shaped, and have only a thin layer of compact bone 

surrounding a spongy interior. The bones of wrist and ankle are short bones, as are the 

sesamoid bones. 

Flat bones are thin and generally curved, with two parallel layers of compact bones 

sandwiching a layer of spongy bone. Most of the bones of the skull are flat bones, as is 

the sternum. 

Irregular bones do not fit into the above categories. They consist of thin layers of 

compact bone surrounding a spongy interior. As implied by the name, their shapes are 

irregular and complicated. The bones of the spine and hips are irregular bones. 

Sesamoid bones are bones embedded in tendons. They are tight, inflexible fibrous 

joints between bones that are united by bands of dense fibrous tissue in the form of 

http://www.daviddarling.info/encyclopedia/E/epiphysis.html
http://en.wikipedia.org/wiki/Short_bones
http://en.wikipedia.org/wiki/Cube
http://en.wikipedia.org/wiki/Sesamoid_bones
http://en.wikipedia.org/wiki/Flat_bone
http://en.wikipedia.org/wiki/Skull
http://en.wikipedia.org/wiki/Sternum
http://en.wikipedia.org/wiki/Irregular_bones
http://en.wikipedia.org/wiki/Spine
http://en.wikipedia.org/wiki/Hip_bone
http://en.wikipedia.org/wiki/Sesamoid_bones
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membranes or ligaments. Examples of sesamoid bones are the patella and the pisiform 

(14). 

 

1.2.2 Organic composition of bone matrix 

Collagen constitutes about 90% of the organic content of bone matrix and it is 

included in the amorphous substance made of proteoglycans and glycoproteins of which  

ostonectin binds to collagen and hydroxiapatite to form type I collagen fibers. Type I 

collagen is synthesized as tropocollagen and then exported, forming fibrils. Individual 

collagen molecules contain three polypeptides of about 1000 amino acids per chain with 

a high glycine and hydroxyproline content. The chains are aligned and linked into fibrils 

that subsequently rearranged into layers in which crystals of mineral are deposited. 

Collagen molecules intertwine to form flexible, slightly elastic fibers to give strength 

and flexibility to the bone.  

The organic matrix of bone contains, in addition to type I collagen, includes other 

proteins such as osteonectin, a glycoprotein of molecular weight 32000 Dalton which 

constitutes about 3% of the organic matrix, osteocalcin and bone sialoprotein (BSP) 

(14,15). 

Osteonectin binds collagen, hydroxyapatite, and growth factors; it regulates cell 

proliferation and can stimulate angiogenesis and the production of matrix 

metalloproteinases. 

Osteocalcin is secreted by osteoblasts and thought to play a role in 

mineralization and calcium ion homeostasis. Its specific interaction with 

hydroxyapatite, osteocalcin has been thought to affect the growth or maturation of 

calcium phosphate mineral phases. Moreover it has been also stipulated that osteocalcin 

may also function as a negative regulator of bone formation, although its exact role is 

unknown. 

BSP contains both mineral and arginine-glycine-aspartic (RGD) integrin-binding 

sites. The protein has been localized in vivo at the mineralization front, concurrent with 

and just prior to mineralization. Based on its affinity for type I collagen and 

hydroxyapatite, some believe BSP to be a de novo nucleator. Other possible functions 

of BSP relate to its ability to mediate cell attachment and it has been suggested that the 

protein is involved in the metastasis of tumor cells in bone (16). 

http://en.wikipedia.org/wiki/Pisiform
http://en.wikipedia.org/wiki/Fibril
http://en.wikipedia.org/wiki/Osteoblasts
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1.2.3 Inorganic composition of bone matrix 

Approximately 70% of the mineral portion of the bone is composed of 

hydroxyapatite, which includes calcium phosphate, calcium carbonate, calcium fluoride, 

calcium hydroxide and citrate. Initially the main mineral constituent of new bone is 

calcium phosphate that laid down in amorphous form and subsequently, in mature bone, 

it is organized into crystals of hydroxyapatite that impregnate the collagen matrix. 

Calcium carbonate is the mineral usually found in the hard tissues of invertebrates, but 

calcium phosphate and apatite do occur in other groups than vertebrates. The 

composition of the mineral matrix of bone varies with age and in relation to various 

dietary factors. Mineral crystals are distributed as particles along the adjacent sheaves of 

collagen fibrils but also along individual fibrils and in the thickness of the fibrils 

themselves with which they combine chemically.  

Structural arrangement of bone tissue is such that the mineral portion provides structural 

support to the protein portion in the bone and, by doing so, physically excludes 

exogenous/extracellular agents/enzymes that are potentially harmful to the protein 

portion of the bone (17). DNA has a very strong affinity for hydroxyapatite and its 

degradation is linked to the loss of crystallinity in the hydroxyapatite and also related to 

the loss of collagen (18). 

 

1.2.4 Cellular composition of bone  

There are several types of cells constituting bone. Three primary cells involved 

in forming and maintaining bone tissue, are described below. 

Osteoblasts descend from osteoprogenitor cells and are mononucleate bone-

forming cells responsible for synthesizing and depositing bone material. They make a 

large quantities of a material known as osteoid (prebone tissue), an uncalcified organic 

matrix rich in collagen. Calcification of bone take place as crystal of hydroxyapatite that 

is deposited into the osteoid matrix. Once surrounded by bony matrix, the osteoblast are 

called osteocytes, cells that reside in lacunae and are responsible for maintaining bone 

tissue. Osteoblasts also manufacture hormones, such as prostaglandins, to act on the 

bone itself. Bone lining cells are essentially inactive osteoblasts. They cover all of the 

available bone surface and function as a barrier for certain ions.  

http://en.wikipedia.org/wiki/Osteoblast
http://en.wikipedia.org/wiki/Osteoblast#Osteoblastogenesis
http://en.wikipedia.org/wiki/Hormone
http://en.wikipedia.org/wiki/Prostaglandin
http://en.wikipedia.org/wiki/Ion


7 
 

Osteocytes originate from osteoblasts that migrate into and become trapped and 

surrounde by bone matrix that they themselves produce. The spaces they occupy are 

known as lacunae. Osteocytes have many processes that reach out to meet osteoblasts 

and other osteocytes probably for the purposes of communication. Their functions 

include to varying degrees: formation of bone, matrix maintenance and calcium 

homeostasis. They have also been shown to act as mechano-sensory receptors — 

regulating the bone's response to stress and mechanical load. They are mature bone 

cells. 

Osteoclasts are those cells responsible for bone resorption (remodelling of bone to 

reduce its volume). Osteoclasts are large, multinucleated cells located on bone surfaces 

in what are called Howship's lacunae or resorption pits. These lacunae, or resorption 

pits, are left behind after the breakdown of bone surface. All skeletal elements change 

dramatically during ontogeny and continue to be capable of change in childhood. Bone 

formation take place throughout the life and the remodelling of bone occurs at the 

cellular level as osteoclasts remove bone tissue and osteoblast build bone tissue. The 

opposing processes of bone formation and resorption allow bones to maintain or change 

their shape and size during growth (14). 

 

1.3 Molecular damage in old bone: DNA degradation processes 

As described before the major constituent of bone are protein and collagen and 

the relationship between these constituent involves complex features and chemical 

bonds. Alterations of bone proteins cause the complete structural and chemical 

breakdown, responsible of the post mortem changes in bone.  

Enzymatic repair processes maintained the integrity of DNA molecules within living 

cells and after the death of an organism cell compartments that normally sequester 

catabolic enzymes, breakdown (19). In post mortem period the DNA is rapidly 

degraded by enzymes such as lysosomal nucleases together with endogenous nucleases 

that are the first agents to start the process of DNA fragmentation (20). Moreover due to 

the exposure to exogenous agents, like microorganisms, humidity and many organic 

compounds, the amount of informative DNA available is drastically reduced. 

Spontaneous degradation by hydrolysis and oxidation will further modify DNA 

structure at a much slower speed and escape enzymatic and microbial degradation under 

http://en.wikipedia.org/wiki/Osteocyte
http://en.wikipedia.org/wiki/Lacuna
http://en.wikipedia.org/wiki/Homeostasis
http://en.wikipedia.org/wiki/Osteoclast
http://en.wikipedia.org/wiki/Bone_resorption
http://en.wikipedia.org/w/index.php?title=Howship%27s_lacunae&action=edit&redlink=1
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rare circumstances, such as when a tissue becomes rapidly desiccated after death or 

DNA is adsorbed to a mineral matrix. In these cases chemical processes start affecting 

the DNA slower but still relentless. Many of DNA degradation processes are similar or 

identical to those that affect DNA in living cell but after death they are not 

counterbalanced by cellular repair processes. Damages accumulate progressively until 

DNA loses its integrity and decomposes, with an irreversible loss of nucleotide 

sequence information (Table 1) (21). With modern molecular biology techniques such 

as PCR reaction, it is possible to recover partial or complete information from DNA not 

yet completely degraded. 

DNA degradation into small average size, generally between 100 and 200 bp, is the 

most common type of DNA damage of old skeletal remains (22). The reduction in size 

is due to both enzymatic processes that occur shortly after death and nonenzymatic 

hydrolytic cleavage of phosphodiester bonds in the phosphate-sugar backbone (21) that 

generate single-stranded nicks. The glycosidic bonds between nitrous bases and the 

sugar backbone are the most susceptible bond hydrolytic cleavage that result in 

depurination and depyrimidination of bases, producing an apurinic and apyrimidinic site 

(19). Once a nucleotide is released, the abasic site can undergo a chemical 

rearrangement that can lead to strand scission if it is not immediately repaired. 

In addition to these modifications, DNA bases are also susceptible to hydrolytic 

deamination of cytosine (uracil), 5-methyl-cytosine (thymine) and adenine 

(hypoxanthine), that are of particular relevance for DNA amplification since they cause 

incorrect insertion of bases (A instead of G, and C instead of T) when new DNA strands 

are synthesized by DNA polymerase (21).  

Endogenous damage of DNA are also induced by oxidative reactions such as 

superoxide radical (O2
.
-), hydrogen peroxide (H2O2) that are produced by ionizing 

radiation or aerobic metabolism of microorganisms that colonize post mortem tissue. 

Ionizing radiations can also produce hydroxyl radicals (
.
OH) in cells and tissues by 

interacting with cellular water. Pyrimidines (in particular thymine) are more sensitive to 

oxidative damage than purines. Oxidative damage mostly includes modifications of 

sugar residues, conversion of cytosine and thymine to hydantions, removal of bases and 

cross linkages (23). It has been shown that skeletal remains from different range of 

environments and ages contain oxidized base residues. Specifically, no DNA sequences 
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could be amplified via PCR from samples with higher amounts of two oxidized 

pyrimidines (5-hydroxy-5-methylhydantoin and 5-hydroxyhydantoin), which block the 

Taq DNA polymerase (24).  

Another type of damage are crosslinks, that occur when various exogenous or 

endogenous agents react with two different positions in DNA. This can either occur in 

the same strand (intrastrand crosslink), in the opposite strands of the DNA (interstrand 

crosslink) and also between DNA and protein. The cross linking reaction between the 

two DNA strands is temperature dependent and is slower in low temperatures (25). 

DNA strands would also react through their bases with reducing sugars in a 

nonenzymatic glycation reaction followed by the generation of abasic sites (23). An 

effect of crosslinking reaction is represented by Maillard products that have been 

identified in ancient fecal remains (coprolites) by head space gas chromatography–mass 

spectroscopy. Maillard products are formed by condensation reactions between sugars 

and primary amino-groups in proteins and nucleic acids. Treatment with a reagent, N-

phenacylthiazolium bromide, which breaks Maillard products, allows DNA sequences 

to be amplified from some ancient remains that otherwise are not amenable to 

amplification (21).  

All of these DNA modifications are problematic because they could cause 

incorrect incorporation of bases during the PCR, or produce the total loss of expected 

DNA fragment during PCR amplification. 

  

http://en.wikipedia.org/wiki/Protein


10 
 

TABLE 1- Overview over different types of damage in aged DNA (21,23). 

 

 

TYPE OF 

DAMAGE 

 

CAUSES 

 

EFFECT ON 

DNA 

 

EFFECTS ON 

PCR 

 

TROUBLE 

SHOOTING 

 

 

 

Strand breaks 

 

 

Nuclease 

activity; 

degradation by 

microorganisms 

 

 

Reduction of 

overall template 

copy numbers; 

size reduction 

 

 

PCR failure; 

increased stutter 

peaks; 

inconsistent 

PCR outcomes 

 

 

 

 

 

Resampling, 

multiple 

independent 

PCRs; 

size 

reduction; 

Mini-STRs; 

mtDNA; 

SNPs; 

increase PCR 

cycles up 34; 

Extra dose of 

Taq 

polymerase; 

DNA repair 

 

 

Oxidative 

lesions 

 

 

Bacterial 

metabolism; 

radiation 

 

 

Base or sugar 

fragmentation; 

nucleotide 

modification 

 

 

PCR failure 

 

 

DNA 

crosslinkage 

 

 

Hydrolytic base 

loss; 

Reduced sugar 

residues; 

 

 

DNA to DNA or 

DNA to other 

biomolecules 

linkage 

 

 

PCR failure; 

Millard products 

 

Hydrolytic 

lesions 

 

Hydrolytic loss 

of amino group 

 

Change of coding 

potential 

 

PCR miscoding 

lesions 
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1.4 PCR amplification of degraded DNA  

Bone samples may contain highly fragmented DNA molecules caused by different 

forms of damage, summarized before. The modern forensic analysis of human remains 

is based on size or sequence analysis of PCR products. PCR based protocols although 

highly effective may encounter complications through the low copy numbers of the 

template or modifications imposed on the template during the degradation process. 

Compared with contemporary DNA preparations from fresh samples of saliva or blood, 

old bones DNA is generally of shorter length. The length of DNA sequences that can be 

amplified by PCR is in fact limited not only by strand breaks but also by lesions that 

present blocks to the elongation of DNA strands by the Taq polymerase. A diploid 

human cell contains ~ 6.6 pg of genomic DNA and template DNA concentration < 100 

pg genomic DNA (about 15-17 diploid copies of nuclear DNA) is considered as Low 

Copy Number (LCN) (26). When processing a small number of starting templates 

during the PCR, stochastic effects may occur. The result is that the following events 

may appear: allelic dropout, allelic imbalance, increased stutter or non-template 

addition. 

The preferential amplification condition could happen in heterozygote individuals when 

one of the two alleles fail to amplify properly. This effect is known as allelic dropout 

and the result is the incorrect genotyping of the individual as homozygote (23).  

When the ratio of the expression levels of 2 alleles at a given heterozygous locus is not 

1 to 1,  the final effect is an allelic imbalance. 

Other frequent artifacts that occur are stutter products that are originated from the 

slippage of the Taq polymerase enzyme during DNA replication. Thus, for 

tetranucleotide repeat units, stutter products are 4 base pairs shorter or higher than the 

main allele band and less than 10% of the main peak (27). 

Non-template addition is another type of frequent artifact and refers to the addition of 

an extra nucleotide to the 3’ end of PCR product. Because the non-template addition is 

often adenine (A), sometimes it is referred to as adenilation. This plus A modification is 

primer specific and results in a product that is one base pair longer than the target 

sequence (28).  

Optimal template amounts are well defined and typically range from 200 pg to 2 ng of 

input DNA (1 ng is considered the optimum amount for most commercial kits) with 28-
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30 PCR amplification cycles (29). One nanogram of DNA is approximately equal to 

660 copies of genomic DNA and when the starting DNA amount is less than 60 copies 

an increased incidence of PCR failures is observed (30). DNA amplification displays a 

similar efficiency for loci such as those used in forensic applications, characterized by a 

length less than 500 bp and a GC content of 45-56%. Commercial multiplex kits used in 

forensic DNA typing amplify fragments in the size range of 100-450 bp and 

multiplexing the PCR reaction reduces the amount of sample material necessary for 

analysis and minimizes the experimental time and costs. 

In low copy number samples repeated extractions and amplifications are recommended 

to authenticate the results and other analytical approaches recommended include 

reducing PCR volume, increasing PCR cycle number and nested PCR. Whilst low copy 

number typing is appropriate for identification of missing persons and human remains 

and far developing investigative leads, future developments are required to overcome its 

limitations in other applications. Occurrence of artifacts discussed here could be 

reduced if quantification of samples indicate that template DNA containes fragments 

several hundred base pairs to initiate the PCR. Such quantification of template 

molecules can be achieved by using competitive PCR and more recently, by using real-

time quantitative PCR (23). 

 

1.5 Application of miniSTRs on degraded samples 

 The current commercially available multiplex STR kits used in forensic DNA 

typing, can generate amplicons in the size range of 100 bp to 450 bp. Within the 

forensic community, a core set of STR markers have been developed for the use in 

forensic casework, and large databases such as the Combined DNA Index System 

(CODIS). In situations where samples are badly degraded that STR analysis is not 

possible, the analysis of the mitochondrial DNA (mtDNA) hypervariable regions is 

typically used (31). However, mtDNA testing is a time-consuming process and, due to 

the haploid, non-Mendelian nature of mtDNA inheritance, data are not as powerful for 

identification purposes as a full 13-locus STR match of CODIS. Furthermore recovery 

of information from degraded DNA samples is theoretically possible also with single 

nucleotide polymorphism (SNP) typing, since a smaller target region is needed. The 

most significant disadvantage exists with SNP markers is due to their low power of 
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discrimination compared to STR markers. Numbers on the order of 40–60 SNPs have 

been suggested to reach equivalent power of discrimination or random match 

probabilities of 13-15 STR loci as are commonly in use today (32). 

 Although PCR target size reduction increases amplification efficiency, it may also 

increase the chances of amplifying contaminating DNA, especially in highly degraded 

DNA specimens. An additional approach to try to recover information from degraded 

DNA samples is to reduce the size of the PCR products by moving primers in as close 

as possible to the STR repeat region (fig.1). These reduced sized targets are referred to 

as miniSTRs (33).  

 

 

 

Fig.1. MiniSTR primers are closer to STR repeat region than conventional STR primers, producing 

reduced size PCR amplicons that enables higher recovery of information from degraded DNA samples. 

 

Because the main problem associated with DNA degradation is the fragmentation of the 

DNA template, primers which produce smaller PCR products have higher possibility of 

obtaining a profile from shorter DNA fragments. The advantage of miniSTRs is that the 

fragments are likely to survive degradation, hence it is more likely that a complete DNA 

profile will be observed using a standard number of cycles. Due to their wide use, 

CODIS STR markers would thus be ideal for candidates in designing new primers that 

could create smaller PCR products. The newly designed primers are combined into 

various multiplexed sets, referred to as ―miniplexes,‖ usually with a single locus in each 

dye colour. A major advantage of these miniSTRs, is that database compatibility could 

be maintained with convicted offender samples processed using commercial STR 

multiplexes. However, a few of the CODIS loci cannot be made into smaller amplicons 

due to the fact that some of the CODIS loci have large allele ranges (e.g. FGA) (34).  

In conclusion miniSTR assays should offer a new potential tool for recovering useful 

information from samples that generated partial profiles with present STR multiplexes. 
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1.6 Aim of this study 

 In this study different types of human bones ranging in age from few months to 90 

years post mortem, found in various states of preservation and conserved in different 

places, were analyzed. Extraction and successful PCR amplification of DNA from 

human remains in historical and forensic cases has great importance, but is particularly 

difficult because the methods employed at present are not always satisfactory.  Several 

of them are in fact complicated and time consuming and none methods has reached on 

acceptance level such that they are routinely used on a widespread basis. Bone 

extraction protocols currently employed in forensic laboratories tend to be limited 

because they often fail to give reproducible results, e.g. in cases where bones are 

exposed to environmental conditions for a long time (35).  

 Different kind of bone, femur, homerus, tibia, jaw, rib, belonging to different 

cadavers were analyzed. We established a semi-standardized protocol for DNA 

extraction from bones, verifying which kind of bone yields the best quality of DNA and 

evaluating different characteristics such as preservation, place of conservation and age 

of skeletal remains. A comparison in terms of quality of electrophoretic products, was 

performed from human skeletal remains considering five different DNA extraction 

methods and starting from a low amount of bone powder (50 -100 mg). In addition to 

the traditional phenol–chloroform organic method for DNA extraction, four commercial 

kits were evaluated: QIAamp® DNA Mini kit (Qiagen, Hilden, Germany), QIAamp® 

DNA Investigator kit (Qiagen, Hilden, Germany), DNA IQ™ System (Promega, Milan, 

Italy) and PrepFiler™ Forensic DNA Extraction Kit (Applied Biosystems, Foster City, 

CA). Experiments were also performed with a modified protocols developed by 

Forensic Genetic Laboratory of University of Verona, consisting in an initial separation 

of DNA from proteins and waste material, by using phenol-chloroform to better purify 

samples. The new step was introduced after incubation in lysis buffer of different kit 

solutions. The phenol-chloroform step allowed to clean samples avoiding that the waste 

material would interfere with columns or magnetic beads.   

Moreover as recovery of information from degraded samples is enhanced by the 

use of smaller PCR products called miniSTR, primer pairs of eight STR markers, 

included in available commercially multiplex PCR kits, were redesigned by moving 

forward and reverse primers in close proximity to the STR repeat region. They were 
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assembled in two PCR-multiplexes to obtain PCR products less than 130 bp in size. The 

choice of this size was determined by the observation that in degraded samples 

amelogenin is usually the only marker amplified because it is the lowest in size (106-

112 bp). In addition to the new miniSTRs multiplexes all samples were amplify also 

with two kits widespread in forensic use such as AmpFlSTR
®
 Identifiler

™
 PCR 

Amplification Kit (Applied Biosystems), AmpFlSTR
®
 MiniFiler™ PCR Amplification 

Kit (Applied Biosystems) and PowerPlex
® 

 ESI 17 System (Promega). 

 The improvement of DNA extraction methods and increasing number of miniSTRs 

in addition to the commercial available kits, may be effective solutions for forensic 

practices of degraded DNA samples. The application of the DNA extraction protocol 

based on the use phenol-chloroform for bones exposed to critical environmental 

conditions for long periods and for low amounts of bone gave good results. Moreover 

the use of miniSTRs has proposed here could be used in addition to commercial kits, to 

increase as much as possible the number of markers analyzed. 
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2. MATERIALS AND METHODS 

 

2.1 Samples 

The present study was conducted on skeletal remains of 14 persons that were 

recovered from very different geographical and environmental areas (wooded area, corn 

field, exhumed from zinc coffin, buried under soil and burned body). Due to variability 

of conservation of each sample and post mortem intervals that ranged from few months 

to 90 years (eg. bones of unknown soldiers of World War I), skeletal remains were 

found in extremely different state of preservation. Moreover, the type of skeletal 

elements could be different from case to case  (Table 2).  

To ensure quality standards and prevent contamination in Forensic Genetics 

Laboratory, were followed recommendations by DNA commission of the ISFG (36). 

All samples were initially examined in the autopsy room, where about 2 mm of 

the external and internal surfaces of all bones were grounded away with sandpaper to 

eliminate potential contaminants. Bone fragments were then transferred to Laboratory 

of Forensic Genetics and pulverized.  

First of all, bones were cut into small pieces and placed into 7 ml Shaking flask, 

made of stainless steel (Sartorius), and frozen in liquid nitrogen. Then Shaking flask 

together with fragments of bone and a grinding ball, provided with the flask, was placed 

into the homogenizer Mikro-Dismembrator S (Sartorius) that was set at maximum 

frequency of 3.000 min
–1

. Due to the high efficiency of shaking with grinding balls, 

samples were rapidly disintegrated and 100-150 mg of powder transferred to a sterile 2 

ml tubes. Pulverized bones were then decalcified in 1.5 ml of 0,5 M Ethylene Diamine 

Tetra-acetic Acid (EDTA), incubated overnight at 56°C in a water bath and after 

centrifugation, the supernatant was discarded and the remaining decalcified pellet was 

extracted with different kits. 
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Table 2. Case profiles  

Case Specimen type Maturity 
Post mortem 

period 
Location where found 

Reference 

information 

1 Femur Adult I World War Buried in pauper grave 
Completely 

skeletonized 

2 
Femur, 

humerus,tibia  
Adult I World War Buried in pauper grave 

Completely 

skeletonized 

3 
Cranium 

Compact bone,  
Fetus 26 years Buried in an ossuary 

Completely 

skeletonized 

4 

Femur, cranium, 

homerus, ribs, 

vertebrae 

Adult 22 years 
Wooded area on 

mountain 

Completely 

skeletonised 

5 All skeleton Adult 20 years 
Exhumed from zinc 

coffin 
Mummified 

6 All skeleton Adult  20 years 
Exhumed from zinc 

coffin 

Partially  

skeletonized 

7 
Spongy bone, 

homerus, femur 
Adult 19 years Buried under soil 

Completely 

skeletonized 

8 
Compact bone, 

femur 
Adult 12 years 

Buried in pauper grave 

in the mountains of 

Colombia 

Completely 

skeletonized 

9 Cranium, femur Adult 4 months 
Burned,  

homicide in a car 

Burned, Partially 

skeletonized  

10 
Fragment of 

femur 
Adult 2 months 

Burned,  

Suicide at home 

Burned, 

Completely 

skeletonized 

11 
Fragment of 

femur 
Adult 2 months 

Burned,  

Suicide in a car 

Burned, 

Completely 

skeletonized 

12 Femur, tibia Adult 1 months 
Burned 

Plane crash  

Burned, Partially 

skeletonized 

13 
Cranium, femur, 

tibia 
Adult 1 months 

Burned,  

homicide in a car 

Burned, Partially 

skeletonized 

14 Cranium, femur Adult 2 months 
Discarded in a corn 

field during summer 

Partially 

skeletonized 
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2.2 DNA extraction  

All bone powder samples were extracted by the use of conventional 

phenol/chloroform procedure and four different commercial kits such as QIAamp
®

 

DNA Mini kit (Qiagen), QIAamp
®
 DNA Investigator kit (Qiagen), DNA IQ™ System 

(Promega) and PrepFiler™ Forensic DNA Extraction Kit (Applied Biosystems), 

following  standard protocols. Subsequently from the same samples, DNA was 

extracted using the same kits with minor modifications. Both standard and modified 

protocols are described below.  

 

2.2.1 Conventional phenol/chloroform DNA extraction procedure 

1. 1 ml of TNE (10 mM Tris–HCl, 10 mM EDTA, 100 mM NaCl, 2%  sodium dodecyl 

sulfate), 20 μl of proteinase K and 10 μl of DTT were added to the samples and 

incubated overnight at 60°C. 

2. 1 ml of phenol-chloroform–isoamylalcohol (25:24:1) was added and the tube was 

centrifuged at 14000 rpm for 5 minutes to separate the phases. 

3. About 90% of the upper, aqueous layer was removed and placed in a clean tube, 

carefully avoiding proteins at the aqueous phenol interface.  

4. Step 2 was repeated twice. 

5. The upper layer was transferred and mixed with 1 ml chloroform isoamylalcohol 

(24:1) before the third centrifugation at 14000 rpm for 5 minutes 

6. The supernatant was again transferred to another tube and DNA made insoluble by 

the addition of twice-three times the solution’s volume of cold absolute ethanol (Carlo 

Erba, Milan, Italy). 

7. This solution was then centrifuged at maximum speed for 30 min.  

8. DNA was rinsed by centrifugation in 70% isopropanol at maximum speed. 

9. Subsequently sample was dried up before it was made soluble in 50 μl of distilled 

water (37). 

 

2.2.2 QIAamp
®
 DNA Mini kit  

1. 700 μl of Buffer ATL , 20 μl of proteinase K and 10 μl of dithiotreithol (DTT) 1 M 

(Sigma Aldric, Milan, Italy) were added to the samples. 
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2. Samples were incubate overnight at 56°C in a water bath (Vetrotecnica, Verona, 

Italia).  

3. 500 μl of Buffer AL were added and mixed by pulse-vortexing for 10 s.  

4. The tube was place in a water bath (Instruments s.r.l.), and incubated at 70°C with for 

15 min. 

6. Samples were centrifuged at full speed 14,000 rpm for 2 min (Eppendorf) and 

carefully the supernatant was transferred to a new 1.5 ml microcentrifuge tube. 

7. 500 μl of ethanol (96%) were added and mixed by pulse-vortexing for 20 s.  

8. Carefully the entire lysate was transferred to the QIAamp MinElute column (in a 2 ml 

collection tube). 

9. Sample was centrifuged at 8000 rpm for 1 min. If the lysate was not completely 

passed through the membrane after centrifugation, it was centrifuged again at a higher 

speed until the QIAamp MinElute column was empty. 

10. 500 μl of Buffer AW1 were added to the QIAamp MinElute column and centrifuged 

at 8000 rpm for 1 min.  

11. 500 μl of Buffer AW2 were added to the QIAamp MinElute column and centrifuged 

at  14,000 rpm for 1 min.  

12. QIAamp MinElute column were placed in a clean 2 ml eppendorf and incubated at 

room temperature for 1 min. 

13. 70 μl of Buffer AE were applied to the center of the membrane and incubate at room 

temperature (15–25°C) for 1 min.  

14. Samples were centrifuged at 8,000 rpm for 1 min (38). 

 

2.2.3 QIAamp
®
 DNA Investigator kit  

1. 360 μl of Buffer ATL, 20 μl of proteinase K and 10 μl of dithiotreithol (DTT) 1 M 

were added to the samples. 

2. Samples were incubate overnight at 56°C in a water bath.  

3. 300 μl of Buffer AL were added and mixed by pulse-vortexing for 10 s.  

4. The tube was place in a water bath (Instruments s.r.l.), and incubated at 70°C with for 

10 min. 

6. Samples were centrifuged at full speed 14,000 rpm for 2 min (Eppendorf) and 

carefully the supernatant was transferred to a new 1.5 ml microcentrifuge tube. 
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7. 150 μl of ethanol (96%) (Carlo Erba) were added and mixed by pulse-vortexing for 

15 s.  

8. Carefully the entire lysate was transferred to the QIAamp MinElute column (in a 2 ml 

collection tube). 

9. Sample was centrifuged at 14000 rpm for 1 min. If the lysate was not completely 

passed through the membrane after centrifugation, it was centrifuged again until the 

QIAamp MinElute column was empty. 

10. 600 μl of Buffer AW1 were added to the QIAamp MinElute column and centrifuged 

at 8000 rpm for 1 min.  

11. 700 μl of Buffer AW2 to the QIAamp MinElute column and centrifuged at  8,000 

rpm for 1 min.  

12. 700 μl of ethanol (96%) were added to the QIAamp MinElute column and 

centrifuged at  8,000 rpm for 1 min.  

13. Samples were centrifuged again but at full speed 14,000 rpm for 3 min to dry the 

membrane completely. This step was necessary since ethanol carryover into the eluate 

could interfere with some downstream applications  

14. QIAamp MinElute column were placed in a clean 2 ml eppendorf and incubated at 

56°C for 3 min. 

15. 40 μl of Buffer ATE were applied to the center of the membrane and incubate at 

room temperature (15–25°C) for 1 min.  

16. Samples were centrifuged at 14,000 rpm for 1 min (39). 

 

2.2.4 DNA IQ
™

 System  

1. 100  μl of Bone Incubation Buffer (10mM Tris pH 8.0, 100mM NaCl , 50mM EDTA, 

0.5% SDS), 20 μl of Proteinase K and 10 μl of DTT (Sigma Aldrich) were added and 

incubated overnight at 56 °C. 

2. Samples were placed in a 1.5 ml eppendorf, added 200 μl of prepared Lysis Buffer 

and incubated at 70°C for 1 hour. 

3. Samples together with incubation and lysis buffers were transferred to a DNA IQ™ 

Spin Basket seated in a 1.5ml Microtube. 

4. Samples were centrifuged at room temperature for 2 minutes at maximum speed and 

then the spin basket was removed. 
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5. The stock resin bottle was vortexed until resin is thoroughly mixed. 15μl of DNA 

IQ™ Resin were added to the samples.  

6. samples/Lysis Buffer/resin mixture were vortexed for 3 seconds at high speed and 

incubate at room temperature for 5 minutes. Vortex tube for 2 seconds at high speed.  

7. The tube was placed in the magnetic stand and separation occurred instantly. 

8. All of the solution was carefully removed and discarded without disturbing the resin 

pellet on the side of the tube. 

9. 100μl of prepared Lysis Buffer were added, the tube was removed from the magnetic 

stand and vortex for 2 seconds at high speed. 

10. The tube was returned to the magnetic stand and all Lysis Buffer discarded. 

11. 100μl of prepared 1X Wash Buffer were add, the tube was removed from the 

magnetic stand and vortex for 2 seconds at high speed. 

12. The tube was returned to the magnetic stand and  all Wash Buffer discarded.  

13. Steps 11 and 12 were repeated two more times for a total of three washes.  

14. With the tube in the magnetic stand and the lid open, the resin was air-dry for 5 

minutes. 

15. 25μl of Elution Buffer were added and the tube vortexed for 2 seconds. 

16. The tube was incubated at 65°C for 5 minutes. 

17. The tube was vortexed for 2 and immediately placed on the magnetic stand. 

18. The DNA-containing solution was carefully transferred in a clean microtube (40). 

 

2.2.5 PrepFiler
™

  Forensic DNA Extraction Kit  

1. 300 μL of PrepFiler™ Lysis Buffer, 20μl of Proteinase K and 10 μl of DTT were 

added to the samples and incubated overnight at 60 °C. 

2. Samples together with incubation buffer and lysis buffers were transferred to a 

PrepFiler™ Filter Column into a new 1.5 ml PrepFiler™ Spin Tube. 

3. Samples were centrifuged at room temperature for 2 minutes at maximum speed and 

then the Filter Column  was removed. 

4. The stock magnetic particles bottle was vortexed until resin is thoroughly mixed. 

15μl of PrepFiler™ Magnetic Particles were added to the samples.  

5. Samples were vortexed for 10 seconds, then centrifuged briefly. 
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6. 180 μL isopropanol were added to the sample lysate tube and vortexed for 10 

seconds, then centrifuged briefly. 

7. After binding the DNA to the magnetic particles, the tube was returned to the 

magnetic stand and all visible liquid phase was discarded. 

8. 300μl of prepared PrepFiler™ Wash Buffer were add, the tube was removed from the 

magnetic stand and vortex for 2 seconds at high speed. 

9. All of the solution was carefully removed and discarded without disturbing the resin 

pellet on the side of the tube. 

10. Steps 8 and 9 were repeated two more times for a total of three washes.  

11. With the tube in the magnetic stand and the lid open, the resin was air-dry for 5 

minutes. 

12. 30 μl of PrepFiler
™

 Elution Buffer were added and the tube vortexed for 2 seconds. 

13. The tube was incubated at 65°C for 5 minutes. 

14. The tube was vortexed for 2 and immediately placed on the magnetic stand. 

15. The DNA-containing solution was carefully transferred in a clean 2 ml eppendorf 

(41). 

 

2.2.6 Introduction to minor modifications to standard protocols 

 After incubation in lysis buffer an equal volume of phenol-chloroform-

isoamylalcohol was added in each sample. Samples were vortexed and then centrifuged 

at 14000 rpm for 3 minutes to separate upper aqueous phase containing the nucleic 

acids and a bright pink lower phase containing the proteins and the lipids dissolved in 

phenol-chloroform. This step was repeated one or two times depending on the 

contamination of bones with soil. The aqueous phase were then transferred in a new 

tube and the same quantity of chloroform-isoamylalcohol was added. After 

centrifugation at 14000 rpm for 3 minutes the aqueous phase was transferred in a new 

tube and 500 μl of ethanol (96%) were added and vortexes for 20 seconds. Samples 

were then transferred in the columns, or in an tube depending on the type of kit and 

processed following the standard protocol. 
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2.3 DNA amplification 

DNA amplification and STRs typing of autosomal DNA were performed using various 

commercial kits: AmpFlSTR Identifiler™ PCR Amplification Kit (Applied 

Biosystems), PowerPlex
®
  ESI 17 System (Promega), AmpFlSTR MiniFiler™ PCR 

Amplification Kit (Applied Biosystems) and two new miniSTR quadruplexes developed 

and validated by Forensic Genetic Laboratory of  Verona.  

PCR negative and positive controls (K562 and 9947A, Promega)  were included 

in each amplification reaction to verify the purity of amplification reagents.  

 

2.3.1 AmpFlSTR
®
 Identifiler™ PCR Amplification Kit 

The AmpFlSTR
®

 Identifiler
™

 PCR Amplification Kit (Applied Biosystems) is a STR 

multiplex assay that amplifies 15 tetranucleotide repeat loci and the Amelogenin gender 

determining marker in a single PCR amplification (Table 3). 

PCR amplifications were performed in reaction volumes of 25 µl using 10.5 µl of 

AmpFlSTR
®
 PCR Reaction Mix, 0.5 μl of AmpliTaq Gold DNA Polymerase (5U/ μl) 

(Applied Biosystems), 5.5 μl of AmpFlSTR
®
 Identifiler Primer Set. 15 µl of master mix 

were dispensed in each PCR tube and 10µl of DNA sample were added. Thermal 

cycling was performed with the GeneAmp
®
 9700 (Applied Biosystems) using the 

following conditions: 

• Initial incubation step: 95°C for 11 min; 

• 28-34 cycles: denaturation 94°C for 1 min, annealing 59°C for 1 min, extension 72°C 

for 1 min; 

• Final extension: 60°C for 60 min; 

• Final hold: 4°C forever. 
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Table 3- Loci amplified with AmpFlSTR
®
 Identifiler

™
 PCR Amplification Kit, the range of PCR 

products expresses in base pair and the corresponding dyes used (42). 

Locus  Range of PCR product sizes 

(bp) 

Dye label 

D8S1179 123-169 6-FAM
™

 

D21S11 185-240 

D7S820 255-291 

CSF1PO 305-341 

D3S1358 112-140 VIC
®
 

 TH01 163-202 

D13S317 217-245 

D16S539 252-292 

D2S1338 307-359 

D19S433 102-135 NED
™

 

vWA 155-207 

TPOX 222-250 

D18S51 262-346 

Amelogenin  106/112 PET
®
 

D5S818 134-172 

FGA 215-355 

 

2.3.2 AmpFlSTR
®
 MiniFiler™ PCR Amplification Kit  

The AmpFlSTR MiniFiler™ PCR Amplification Kit (Applied Biosystems) contains 

eight STR loci shared with the AmpFlSTR Identifiler™ PCR Amplification Kit, but 

uses shorter amplicons, which makes them more likely to be successful on fragmented 

DNA (Table 4).  

PCR amplifications were performed in reaction volumes of 25 µl using 10.0 µL of 

AmpFlSTR
®
 MiniFiler

™
 Master Mix, containing 1X GeneAmp

®
 PCR Gold buffer 

(Applied Biosystems), 5.0 µl AmpFlSTR® MiniFiler™ Primer Set and 10 µl of DNA 

sample. 

Thermal cycling was performed in the GeneAmp
®
 9700 (Applied Biosystems) using the 

following conditions : 

• Initial incubation step: 95°C for 11 min; 

• 28-34 cycles: denaturation 94°C for 20 sec, annealing 59°C for 2 min, extension 72°C 

for 1 min; 
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• Final extension: 60°C for 45 min; 

• Final hold: 4°C forever. 

 

Table 4- Loci amplified with AmpFlSTR
®
 MiniFiler

™
 PCR Amplification Kit, amplicon length reduction 

of STR markers compared to the Identifiler® and expressed in nucleotides and finally the corresponding 

dyes color (43). 

Locus  MiniFiler Kit Amplicon 

Reduction (nt) 

Dye label 

D7S820 -129  6-FAM™ 

D13S317 -99 

Amelogenin 0 VIC® 

 D21S11 -33 

D2S1338 -183 

D18S51 -168 NED™ 

D16S539 -157 

FGA -87 PET® 

CSF1PO -201 

 

2.3.3 Two new miniSTR quadruplexes 

Eight conventional STR markers (D8S1179, D3S1358, TPOX, TH01, D5S818, 

CSF1P0, D13S317, D16S539) included in multiplex PCR kits commercially available, 

were redesigned and converted into Mini-STRs, in order to reduce or eliminate the 

polymorphism’s flanking regions. The eight STRs were amplified in two quadruplex: 

D8S1179, D3S1358, TPOX, D16S539 and CSF1P0, TH01, D13S317, D5S818 (Table 

5). Two quadruplexes were designed with one miniSTR locus in each dye color (Fam, 

Vic, Ned Pet) to avoid overlap and interference with other loci. Three of eight mini-

STRs (CSF1P0, D8S1179 and D13S317) described in this work, were previously 

validated and tested (44). 

DNA amplification of the two quadruplexes  was performed in a reaction volume of 

12.5 µl using Qiagen® Multiplex PCR kit (Qiagen, Hilden, Germany) following the 

manufacturer’s recommendations in terms of primers and DNA concentrations (45). 

Thermal cycling was performed with a GeneAmp
®
 9700 (Applied Biosystems) using 

following conditions:  

• Initial incubation step: 95°C for 15 min; 
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• 28-30 cycles: denaturation 94°C for 30 sec, annealing 59°C for 1.30 min, extension 

72°C for 1 min; 

• Final extension: 60°C for 30 min; 

• Final hold: 4°C forever. 

Allelic ladders for mini-STRs were created using 1:1000 dilution of allelic ladder from 

Identifiler
®

 kit. 2 µl
 
of these diluted ladders were amplified in the two quadruplex sets 

using the termal cycling parameters outlined for the PCR above, except amplified for 15 

cycles instead of the standard 28 cycles (31). The cell line samples K562 and 9947A 

(Promega) were used as control DNA for calibrating allelic ladders.  

Two macros for the new quadruplexes were specifically written for the use of 

two new mini multiplexes in order to make the allele calls from the allelic ladders. 

All PCR amplifications, together with positive and negative control samples, 

were performed on Gene Amp
®
 PCR System 9700 (Applied Biosystem). Each miniplex 

consists of four different loci, with each locus labeled using different colored dyes (44). 

 

Table 5- Primer sequences and PCR product sizes, reduction amplicon length compared to STR markers 

of Identifiler
®
 kit, of the two Mini-STR quadruplex systems. 

Locus mini-STR primers (5’–3’) Mini-STR 

size (bp) 

Reduction 

size 

D8S1179 F [6-FAM] GTATTTCATGTGTACATTCG 

RGATTATTTTCACTGTGGGG 

68–112 59 

D3S1358 F [VIC] CAGAGCAAGACCCTGTCT 

R GAAATCAACAGAGGCTTGC 

73–117 24 

TPOX F [NED] AGGCACTTAGGGAACCCT 

R GTCAGCGTTTATTTGCCC 

64–92 153 

D16S539 F [PET] CAGACAGACAGACAGGTG 

R GTATCTATCATCCATCTCTG 

86–114 178 

 

Locus mini-STR primers (5’–3’) Mini-STR 

size (bp) 

Reduction 

size  

CSF1P0 F [6-FAM] CAGTAACTGCCTTCATAGATAG 

R GACCCTGTTCTAAGTACTTCC 

82–118 223 

TH01 F [VIC] ATTCCCATTGGCCTGTTC 

R GTCACAGGGAACACAGACTC 

69–115 95 

D13S317 F [NED] GCCTATCTGTATTTACAAATAC 

R CCCAAAAAGACAGAAAGAA 

92–120 113 

D5S818 

 

F [PET] CCTCTTTGGTATCCTTATGT 

R CTTTATCTGTATCCTTATTTATACC 

84–120 50 
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  Microsatellites and their adjacent regions have mutation rates higher than other 

genomic regions (46) and when the primers are redesigned problems may occur in 

despite of well known polymorphisms have been taken in account. For this region only 

comparison study can verify the presence of previously undetected polymorphisms. If 

the polymorphism is close to 3’ end of the primer the allele may not be amplified and 

stochastic event may occur such as null allele or allele dropout (47). On the other hand, 

if the polymorphism is close to 5’ end of the primer only small reduction in 

amplification efficiency will be observed.  

We performed a concordance study on 100 buccal swab provided by healthy 

donors and previously typed with Identifiler
®
 and Minifiler

TM
. The comparison of 

typing results between the two new quadruplexes and conventional STRs showed no 

genotype differences with good balance between alleles, no double peaks due to +A/-A 

and stutter products higher less than 15% of the main peak, confirming that changes in 

the dimensions of the STRs do not influence the profile. 

 

2.3.4 PowerPlex®  ESI 17 System  

The PowerPlex
® 

ESI 17 System allows co-amplification and four-color fluorescent 

detection of seventeen loci (sixteen STR loci and Amelogenin) described in Table 7. 

The markers typed comprise the 15 STRs of Identifiler
® 

kit plus five recently introduced 

European Standard Set (ESS) STRs: D1S1656, D2S441, D10S1248, D12S391 and 

D22S1045. Moreover this kit includes also the marker SE33. 

PCR amplifications were performed in reaction volumes of 25 µl using 5.0 µl of 

PowerPlex
®
 ESI 5X Master Mix, 2.5 µl PowerPlex

®
 ESI 10X Primer Pair Mix, 10 µL 

of DNA sample and water up to final volume. 

Thermal cycling was performed with the GeneAmp
®
 9700 (Applied Biosystems) using 

the following conditions : 

• Initial incubation step: 96°C for 2 min; 

• 28-34 cycles: denaturation 94°C for 30 sec, annealing 59°C for 2 min, extension 72°C 

for 90 sec; 

• Final extension: 60°C for 45 min; 

• Final hold: 4°C forever. 
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Table 7-The table shows the loci amplified with PowerPlex
® 

ESI 17 System, the range of PCR products 

expresses in base pair and the corresponding dyes used (48). 

Locus  Range of PCR product sizes (bp) Dye label 

Amelogenin  87/93 Fluorescein 

D3S1358 103-147 

D19S433 163-215 

D2S1338 223-295 

D22S1045 306-345 

D16S539 84-132 JOE 

D18S51 134-214 

D1S1656 226-273 

D10S1248 286-330 

D2S441 347-383 

TH01 72-115 TMR-ET 

 
vWA 124-180 

D21S11 203-259 

D12S391 291-343 

D8S1179 76-124 CXR-ET 

FGA 143-289 

SE33 309-459 

 

 

2.4 Samples preparation  

Samples were prepared for electrophoresis on the ABI Prism 3100 Avant and 

3130 Genetic Analyzer (Applied Biosystems) using 10 μl of Hi-Di formamide (Applied 

Biosystems), 0.5 μL of GS500 LIZ Size Standard (Applied Biosystems) and 1 μl of 

PCR products of Applied Biosystems and homemade miniSTRs kits, or 10 μl of Hi-Di 

formamide (Applied Biosystems), 0.5 μl of CC5 Internal Lane Standard 500 Size 

Standard  (Promega) and 1 μl of PCR products when PowerPlex 
®

17 ESI was used. 

The reaction plate was heated in a thermal cycler for 3 minutes at 95 °C and  then was 

cooled at 4 C° to ensure that the denaturation process had occurred. 

Prior to running any multiplex samples on the ABI 3130, a five dye matrix was 

established under the ―G5 filter‖ (Applied Biosystems or Promega). PCR products were 

run using the default module HIDFragmentAnalysis36_ POP4_1 which performs an 

electrokinetic injection onto the 4-capillary array for 10 s at 3000 volts. The STR alleles 
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were then separated at 15 000 volts for approximately 30 min with a run temperature of 

60°C using the 3130 POP™-4 sieving polymer, 1X Genetic Analyzer Buffer with 

EDTA, and a 36-cm array (Applied Biosystems). 

 

2.5 Capillary electrophoresis on ABI Prism 3100 Avant and 3130 Genetic Analyzer 

All samples were separated on an ABI Prism 3100 Avant and/or 3130 Genetic 

Analyzer, a fluorescence-based, multi-capillary electrophoresis instrument that allow to 

analyze 4 samples simultaneously. In both instruments all steps are automated, 

including polymer loading, sample injection, washing and filling of polymer syringes, 

separation and detection and data analysis. 

The completely automated system consists in the following steps:  

1. Flowable polymer is loaded into the capillaries prior to each run. 

2. Samples are injected and run according to specified conditions  

3. Data are collected and analyzed by GeneScan/Genotyper v 3.7 or GeneMapper 

ID-X v 1.1 software and the files are then available for direct transfer to a 

database for further analysis and reporting. 

4. Up to 96 samples can be scheduled to run without interruption. 

Amplification products were separated in four capillaries of 36 cm in length and 50 µm 

of internal diameter. The efficient heat dissipation of the narrow capillaries, along with 

a detection cell heater, provides enhanced thermal control, which results in more 

consistent runs and faster run times. 

In these capillaries, the ionic double layer at the surface of the capillary wall is 

immobilized to suppress electro-osmotic flow (EOF), created by residual charges on the 

silica surface, that  induce a flow of the bulk solution toward the negative electrode. The 

EOF creates problems for reproducible DNA separations because the velocity of the 

DNA molecules can change from run to run. Capillaries contain charged silanol groups, 

that are dynamically coated to prevent EOF in DNA separations. The ion boundary at 

the surface of the capillaries used in the ABI PRISM Genetic Analyzers instruments are 

immobilized by specially formulated polymers, which are renewed each time the 

capillaries are filled with polymer. The polymer used was a poly-dimethylacrylamide 

POP-4 (POP-4™ Polymer for 3100 and 3130/3130xl Genetic Analyzers, Applied 

Biosystems) commercially available, which is successfully used in DNA genotyping 

because it provides a sieving matrix for the separation of single-stranded DNA and, at 
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the same time, suppress the EOF. POP-4™  consists of 4% linear dimethylacrylamide, 8 

M urea, 5% 2-pyrrolidinone. For STR analysis, the run temperature was set at 60°C to 

further help keep the DNA strand denatured. 

The polymer was dissolved in the electrophoresis capillary systems with a Buffer 10X 

with EDTA (Applied Biosystems) diluted 1X to stabilize and solubilize the DNA, to 

provide charge carriers for the electrophoretic current and to enhance the injection. 

Following electrophoresis, the automated polymer delivery system automatically 

flushes and replenishes the capillaries with fresh polymer. After the capillary array has 

been filled, the next set of samples is automatically injected directly from either 96-well 

sample plates. 

Samples were automatically loaded onto the separation medium from sample plates. 

The electrokinetic injection of the samples consists to applied a voltage for a defined 

time, to move charged molecules from the sample into the capillary. As DNA is 

negatively charged, a positive voltage is applied to draw the DNA molecules into the 

capillary. Electrokinetic injections produce narrow injection zones, but highly sensitive 

to the sample matrix. The result is the simultaneous loading of samples into the parallel 

4 capillary array in less than 30 seconds reducing the sample usage. 

PCR products were separated by size and dye color using electrophoresis followed by 

laser-induced fluorescence with multiwavelength detection. The covalent bind of 

different dye onto the 5’(nonreactive) end of each primer  allowed to detect 

contemporary a multiplex of different STR markers including loci that have alleles with 

overlapping size ranges.  

All forward STRs and miniSTR primers were labeled with a dye color and an internal 

standard, containing DNA fragments of known size was labeled with a different dye 

color which enabled the use of available matrix standards and reliable color separations 

on the ABI PRISM instruments. The dyes are all excited by a single argon-ion laser, 

with primary excitation lines at 488 and 514.5 nm, yet fluoresce in different regions of 

the spectra. Each of these fluorescent dyes emits its maximum fluorescence at a 

different wavelength. During data collection on the ABI PRISM
®
 instruments, the 

fluorescent signals are separated by a diffraction grating according to their wavelengths 

and projected onto a charge-coupled device (CCD) camera that allow to determine 

which dye is present, based on the emission of each fragment as it passes the detector 
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window. CCD camera simultaneously detects all wavelengths from 525 to 680 nm (fig. 

2). 

 

 

                                        

Fig. 2. The laser excites the colored fluorophores, when DNA fragments pass by the detection window. 

(http://www.nfstc.org/pdi/Subject05/pdi_s05_m02_01_e.htm) 

 

The multicomponent analysis separates the five different fluorescent dye colors 

into distinct spectral components. Although each of these dyes emits its maximum 

fluorescence at a different wavelength, there is some overlap in the emission spectra 

between the dyes (fig. 3). 

  

 

 

Fig. 3. Example of emission spectra of 6-FAM™, VIC
®
, NED™, PET

®
 and LIZ

®
 dye used with Amp-

FlSTR Identifiler
®
 PCR Amplification Kit and Amp-FlSTR

®
MiniFiler

TM
 PCR Amplification Kit 

(Applied Biosystems). 
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The goal of multicomponent analysis is to effectively correct for spectral overlap. 

Alleles for overlapping loci are distinguished by labeling locus-specific primers with 

different colored dyes 

The position of the primers defines the overall PCR product size as does the number of 

repeats present in the STR region. The internal standard was coelectrophoresed with 

each sample to calibrate sizes from run to run. The collected data in the form of 

multicolored electropherograms were analyzed by software that automatically 

determines STR allele sizes based on a standard curve produced from the internal size 

standard. STR genotyping is performed by comparing the allele sizes in each sample to 

the sizes of alleles present in an allelic ladder, which contains common alleles that have 

been previously sequenced. 

When the fluorescent light has been collected and dispersed across the CCD, the data 

are transferred to the instrument computer where they are transformed by chemometric 

algorithmic processing into 5-dye electropherograms. This method of collecting and 

imaging light has several advantages such as reducing the experimental noise in the dye 

electropherogram through the use of spectral over-sampling, preventing the time-

interpolation problem by simultaneously collecting all the colors and providing the 

versatility required to adapt new chemistries and dye sets as they become available 

without requiring changes in the optical hardware (4,49,50). The capillary 

electrophoresis system is schematically summarised  in figure 4.  

 

 

 

Fig. 4. Capillary electophoresis system. 
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2.5.1 GeneScan and Genotyper programs 

The GeneScan and Genotyper programs were used with ABI PRISM
®
 3100 

Avant
™

 Genetic Analyzer to convert the raw data into the appropriately colored peak 

and to generate STR genotyping information.  

GeneScan software performs three primary functions. It calls peaks based on 

threshold values specified by the user; it separates the peaks into the appropriate dye 

color based on a matrix file and it sizes the STR allele peaks based on an internal size 

standard labeled with a different colored dye that is run in every sample. It is important 

to be consistent in the use of an internal size standard because all STR allele peaks are 

measured relative to this internal size standard. The default sizing algorithm, and one 

most commonly used, with the GeneScan program is the local Southern method. The 

local Southern method measures the size of an unknown peak relative to its position 

from two peaks in the internal standard that are larger than the unknown peak and two 

that are smaller than the unknown peak. GeneScan software contains six different 

screens that may be used as part of data analysis and evaluation: processed data (color-

separated), size standard curve, electrophoresis history, sample information, raw data 

(no color separation) and an analysis log file. 

Genotyper software program takes GeneScan data and converts the sized 

peaks into genotype calls. Genotyping is performed by comparison of allele sizes in an 

allelic ladder to the sample alleles. The manufacturer of a particular STR kit normally 

provides Genotyper macros in order to make the allele calls from the allelic ladders. 

These macros can be designed to filter out stutter peaks that may interfere with sample 

interpretation (4). 

 

2.5.2 GeneMapper ID-X v.1.1 

GeneMapper ID-X v.1.1 is an automated genotyping software running on the 

Windows XP
®
 platform and used with ABI PRISM 3130 Genetic Analyzer. 

GeneMapper ID-X v.1.1 DataCollection v.3.0 combines functions of GeneScan
®
 and 

Genotyper
®
 Softwares, and it includes additional features and enhancements. 

GeneMapper
®
 ID-X v.1.1  database stores the following data: 
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1. predefined and custom designed size standard definitions; 

2. panel, marker (loci), and allele bin definitions; 

3. analysis methods; 

4. table profiles (for generating tabular reports); 

5. saved projects with sizing and genotyping results; 

6. plot settings; 

Process Component-Based Quality Values System (CBQVS) automatically assigns 

values to the quality of data in respect to sizing and allele calling. Poor quality samples 

are those below the user defined thresholds.  

GeneMapper
®
 ID-X software compares genotype concordance between overlapping 

loci among different kits for the same sample, or concordance of genotype calls from 

duplicate amplifications or duplicate injections of the same sample. Positive and 

negative controls give the expected allele calls.  

The software displays different types of labels. In addition to traditional allele labels, 

artifact labels have been introduced which are applied automatically to data spikes 

(identified through a rule set). Artifact labels are visible on the electropherogram 

(identified by a pink box) to help the review process but are not transferred to the 

genotypes table (51).  
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3. RESULTS and DISCUSSION 

 

 The most important variables upon which DNA identification depends are: extent of 

time after death, environmental conditions, preservation of skeletal remains and 

available type of bone.  

 When working with DNA from old bones, the main problem stems from the low 

amount of starting molecules, the presence of PCR inhibitors and DNA degradation. All 

these events often make the extraction process very difficult and the success of DNA 

typing mostly depends on selection of appropriate DNA isolation protocols (52). 

Efficient DNA extraction procedures, as well as accurate DNA amplification, are 

critical steps involved in the process of successful DNA analysis of skeletal samples. 

The extraction techniques that have had most impact on general degraded DNA work 

have focused on purifying extracted DNA with silica binding and decalcifying bone 

with EDTA (53). 

 In this study three DNA extraction methods have been tested and compared to 

evaluate the ability to recover DNA from skeletal samples, that also depend on the 

capacity of the extraction method to remove PCR inhibitors.  

 In order to develop a reliable method to extract DNA and to verify the 

reproducibility of results obtained, we analyzed femur, homerus, tibia, jaw, rib, cranium 

belonging to different cadavers. The authenticity of profiles obtained from bone 

samples were confirmed by comparison of DNA profiles obtained from saliva sample of 

presumptive living relatives, when disposables, as in a routine paternity analysis. 

 

3.1 Consideration on human skeletal remains. 

 The lack of precise information on the best samples for DNA testing from degraded 

bone, is due to the difficulty in performing controlled experiments, with regard to the 

long post mortem periods, the effect of relevant environmental variables, inter-

individual variations, such as sex or age, and the need of a large sample size.  

 In this study skeletal samples were obtained from 14 severely decomposed cadavers 

from 1 month to 90 years old with a large variety of post mortem histories.  
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In our cases post mortem periods, environmental conditions, preservation of skeletal 

remains and available of bone specimens, were widely variable.    

Bones buried in the soil appeared in brown colour, internal structures were completely 

decomposed and all agents of surrounding soil matrix such as humic acids, fungus or 

bacteria living in the soil, have caused the total bone crumbly. Differently, skeletal 

remains found during summer in a corn field and exposed for 1 months to 

environmental conditions, still presented shreds of soft tissues and intact bone 

structures. Bodies enclosed in zinc coffins were completely saponify, with a white and 

crumbly aspect caused by organic degradation produced by the enclosed space. Finally 

burned bones were extremely fragile and exhibited warping, shrinkage, fracturing and 

color change.  

 The most significant imagines of caseworks discussed in this study are shown below 

(figures 5, 6a, 6b, 7a, 7b, 8, 9a and 9b), where are evident the wide different conditions 

of bone preservation in different cases.  

Differences in quantity and quality of DNA could be attributed to the respective 

prevailing environmental factors or to the respective storage conditions. Temperature, 

humidity, and pH value are environmental factors that play an important rule on DNA 

preservation. In the case of finds embedded in soil, it could be relevant to know the 

amount of post mortal organic substances in the soil (classified as humic and fulvic 

acids) and the general degree of microbial infestation in the respective soil.  

 The relative small sample size evaluated in this study showed that success rates of 

DNA extraction seemed have no association with post mortem intervals, while 

environmental conditions, preservation and type of bones would be important factors 

influencing success.  
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Fig. 5.  Skeletal remains of soldiers dating to the World War I, found in a mass grave. 

 

      

Fig.6a) and b). Cranium a)  and femur b) found in a corn field 2 months after death.  

 

               

Fig. 7 a) and b) Comparison between two femurs: a) saponified bone, aged 20 years old and preserved in 

a zinc coffin; b) bone 19 years old buried in the soil.  
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Fig 8. Human skeleton found in a mass grave in Columbia, 12 years after death.  

 

     

 

 

Fig.9 a) and b).Skeletal remains of a 9 months fetus buried 26 years ago. 
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3.2 Evaluation of DNA extraction methods and amplification protocols 

Careful considerations must be given not only to the environmental inhibitors or 

other metal ion-rich environments that often accompany bone samples found in soil, but 

also to the inhibitors that are naturally inherent in bones, such as calcium ions and 

collagen derivatives.  

The surfaces of skeletal remains were cleaned by soaking, to reduce the possibility 

of bone sample source contamination. This procedure improves the quality of DNA 

because it reduces the possibility to have PCR inhibitors and other components that may 

interfere with accurate isolation and amplification of nucleic acids.  

100-150 mg of decalcified and undecalcified bone powder samples were prepared 

before the digestion to evaluate which would be better for DNA typing. Decalcification 

treatment  removes calcium ions from bone specimens and should improve bone 

powder dissolution during the digestion to enhance DNA recovery. However, in our 

cases, decalcification resulted in lower detectability during DNA typing. This was 

probably due to the inhibitory effect of decalcification on amplification, which can be 

enhanced by excess amounts of impurities in the dissolved bone. These results suggest 

that, if possible, should be better processing a set of undecalcified bone powder samples 

simultaneously with a set of decalcified powder samples. 

Because of the extraction methods affects the quality and quantity of DNA 

recovered, different procedures have been tested to maximise the yield of DNA and 

eliminate PCR inhibitors. 

DNA extractions were performed using three different DNA extraction methods that 

include: silica based spin columns (QIAmp
®

 DNA mini kit, QIAamp
®
 DNA 

Investigator kit by Qiagen), magnetic bead-based treatment (DNA IQ
™

 system kit by 

Promega, PrepFiler
™ 

Forensic DNA Extraction Kit by Applied Biosystems) and 

conventional organic extraction (phenol-chloroform).  

An additional step with organic solvents was apply to the first two DNA extraction 

methods to improve DNA purification. 

The QIAamp
® 

columns provided in QIAamp
®
 DNA Mini kit and QIAamp

®
 DNA 

Investigator kit use a silica membrane to bind the DNA template. Binding to silica is 

widely used when clean DNA is required or samples contain large amounts of chemical 

substances of a poorly understood chemical nature but which are known to inhibit PCR. 
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Investigator kit was used because it should ensure better purification of genomic 

DNA from small sample volumes or sizes as reported in the kit handbook (39). Buffers,  

pH and salt conditions are optimized to ensure proper binding of DNA to silica 

membrane, while other proteins and contaminants, which can inhibit PCR, are not 

retained. Purified DNA is then eluted with an elution buffer under basic conditions and 

low salt concentration. DNA samples adsorb to the silica membrane in the presence of 

high salt concentrations, low pH (< 7.5) and do not require organic components. Silica 

filters are convenient if are used with a filtration system, but require extensive washing 

to remove the guanidine-based lysis buffer. 

The other two DNA extraction methods such as PrepFiler
™ 

and DNA IQ
™ 

system 

are based on magnetic bead particles. The two kits use silica coated magnetic beads and  

a magnetic support to separate DNA template from other cellular debris and 

contaminants. These particles are made up of crosslinked polymer with magnetic 

material and should offer a large surface area with high and efficient DNA binding 

capacity that should result in a maximum for DNA isolation. Problems concerning this 

DNA extraction method are due to persistence of contaminant inhibitors in final DNA 

extract when magnetic-beads are not properly washed and the capacity to capture only a 

constant amount of DNA. In situation where samples recovered have been exposed to a 

variety of environmental insults, this latter effect can decrease the yield of human DNA 

as the ratio of bacterial DNA to human DNA increases.  

The last purification method applied in this study was a traditional extraction 

with phenol-chloroform. This method is based on the difference of solubility of nucleic 

acids and proteins in two different organic phases. Addition of phenol allows to remove 

proteins and lipids leaving nucleic acids in aqueous layer. The use of chloroform 

improves protein removal by further denaturing and removing residual phenol from the 

aqueous layer. Isoamyl alcohol is added to help reduce foaming of chloroform. The pH 

of PCIA is important because higher pH and salt concentration help strip DNA 

molecules from histone proteins (54).  

Despite of its efficiency to ensure the complete removal of proteins and other 

PCR inhibitors, the method has several disadvantages such as the use of hazardous 

organic chemicals (phenol) and multiple centrifugation steps that may result in 

significant loss of DNA amount.  
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We observed that none of these methods, following standard DNA extraction 

procedure, provided reproducible results in all skeletal remains analyzed, probably 

because variables between different bones were extremely emphasize. DNA extraction 

methods could not solve all problems due to intrinsic characteristics (i.e. collagen type 

I) described above and probably to their inability to  remove inhibitors.  

As mentioned before an additional step with organic solvents was therefore apply to 

the silica based and magnetic beads DNA extraction methods to improve DNA 

purification. 

The introduction of an intermediate step performed with organic solvents could 

improve DNA purification. Both silica and magnetic beads standard methods were 

modified, introducing one purification step only with phenol-chloroform-isoamyl 

alcohol after lysis buffer incubation. This step does not determine the loss of material 

and the possibility of contamination as traditional PCIA procedure. Furthermore, it 

seems to ensure an efficient separation of the waste material from nucleic acids and 

allows to maximize the recovery of DNA, probably due to the less interference of 

proteins and contaminants with columns or magnetic beads. The presence of PCR 

inhibitors such as Maillard products is often, but not always, indicated by a discoloured 

DNA extract, usually tinted yellowish to reddish-brown (55). Moreover, it is known that 

bone contains long fibrils of type I collagen that under specific environmental 

conditions such as low pH and relative high temperature, swell and collapse to form 

gelatine (56). These conditions may occur also during DNA extraction, because some 

DNA extraction kits involving the use of low pH lysis buffer (pH≤5) and cell lysis at 60 

°C. 

In our experience, Maillard products and degraded collagen may cause DNA 

trapped and the reduction of DNA extraction efficiency due to the saturation of columns 

and magnetic beads that could prevent with phenol-chloroform-isoamyl alcohol 

treatment. 

 For each sample analyzed, we evaluated the presence of partial profiles, 

unbalanced peaks, allelic drop out and drop in, the presence of artifacts caused by the 

increased number of PCR cycles and the reproducibility of results.  

Initially, to evaluate the best DNA extraction protocol in term of number of 

STRs obtained and reproducibility of results, DNA from all type of samples (short, flat 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6W-4SG5531-2&_user=500062&_coverDate=07%2F04%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1260942346&_rerunOrigin=google&_acct=C000024641&_version=1&_urlVersion=0&_userid=500062&md5=3d55f17dff9d140839134c8b6365d7cf#bib2


42 
 

and long bones) were amplified only by AmpFlSTR
® 

Identifiler
® 

PCR Amplification 

Kit.  

All three standard DNA extraction procedures failed STRs amplification except 

for amelogenin gene (106-112 bp in size), probably due to low amount and highly 

fragmentation of DNA template. These results were confirmed also increasing PCR 

number cycles from standard 28 to 34. 

 It is well known that the success of amplification is determined by the average 

size of DNA template and by the absence of PCR inhibitors.  

Moreover we observed that short and flat bones processed with modified silica 

and magnetic bead protocols, failed to give positive results, in fact none marker was 

amplified or in rare cases only amelogenin marker. The attention was therefore focused 

on long bones and in particular on femur.  

Better results were obtained when the modified protocols were used for DNA 

extraction from long bones. In this situation partial genetic profiles consisting of the 

lowest STRs in size with peaks at very low Relative Fluorescence Unit (RFU) below the 

detection threshold (<100 RFU in homozygote genotype), were obtained.  

Nevertheless, both modified magnetic beads and QIAamp
® 

DNA Investigator kit 

DNA extraction protocols produced insufficient results. Magnetic beads procedure 

failed probably due to the inability of lysing both undecalcified and decalcified bone 

powder specimens, that were completely undissolved after overnight incubation. 

Differently, using silica method, bone powder was almost completely digested in the 

extraction buffer, even if lower DNA amount was recovered from QIAamp
®
 DNA 

Investigator kit than QIAamp DNA mini kit. This result was probably due to the small 

diameter of column filter membrane, which can be easily occluded by debris, soil and 

all other contaminants that cause insufficient DNA recovery.  

Only QIAamp DNA mini kit modified protocol gave better results in term of 

reproducibility of electopherograms than all other DNA extraction methods. In this 

study the best results were obtained combining the positive aspects of phenol 

choloroform step with the high efficiency of QIAamp
®
 DNA Mini kit in recovering 

DNA. Using this kit the number of STR systems obtained from all long bone samples, 

significantly increased. The new silica based protocol  produced a variable number of 5-

11 markers plus amelogenin in all femurs analyzed.  
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We found that the quality of DNA seems not to be influenced on the age of 

skeletal remains. Femur 22 years old, found in a wooded area (fig.10), in fact, produced 

a profile of 11 STRs, while a femur 12 years old but buried and exposed to drastic 

environmental conditions produced only 6 STRs (fig. 11).  

 



44 
 

. 

 

Fig. 10. Partial profile of 11STR allele peaks plus amelogenin, obtained from Identifiler kit on a 22 years 

old femur found in a wooded  area 

 

          

Fig. 11. Partial profile of 6 STR allele peaks obtained from Identifiler kit on 12 years old femur.  
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It was difficult to predict DNA yield or profiling success from appearance and 

age of bones. As mentioned before, the quality of DNA changes between different type 

of bone: femur in comparison with humerus, tibia, short and flat bones was always the 

best sample for obtaining the high number of STR systems and reproducible results.  

 

After evaluation of all DNA extraction methods based on results obtained in the 

first step of amplification with AmpFlSTR
® 

Identifiler
®
 PCR Amplification Kit, the 

attention was focused on other amplification protocols that allowed to increase the 

number of STR markers to obtain a complete genetic profile. 

A better approach to improve the success rate for degraded DNA encountered 

with current STR systems, would be to redesign primer to produce smaller PCR 

products (miniSTR). Because the main problem associated with DNA degradation is the 

fragmentation of DNA template, primer producing smaller PCR amplicons could 

increase the probability of obtaining a profile from shorter DNA fragments. 

Moreover, European Network of Forensic Science Institutes (ENFSI) has 

recommended to use the European Standard Set (ESS) of Loci as minimum number of 

markers to enable international comparison of DNA profiles. ESS contains only 7 

STRs, that should be extended by 5 additional loci after EU-Prum-Decision (57).  

A similar recommendation was already proposed by DNA Commission of the 

International Society for Forensic Genetics (ISFG) which established that a minimum 

set of 12 markers (plus Amelogenin) should be attempted on degraded samples (36).  

In order to observe these recommendations, we decided to use MiniFiler
TM

 

commercial kit that consists of 8 miniSTR (D13S317, D7S820, D2S1338, D21S11, 

D16S539, D18S51, CSF1P0 and FGA) plus amelogenin, and two new homemade 

miniplexes, each of which includes 4 miniSTR (CSF1P0, TH01, D13S317, D5S818 and 

D8S1179, D3S1358, TPOX, D16S539). Minifiler and two quadruplex allowed 

amplification of 13 miniSTR overall. We knew that three miniSTR (D13S317, 

D16S539 and CSF1P0) of the two homemade multiplexes were already present in 

Minifiler kit, but we decided to redesigned them also to have a positive control on 

profiles obtained from each sample.  
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To test the effect of PCR cycle numbers on the sensitivity of MiniFiler kit and 

two miniSTR quadruplexes, DNA was amplified at 28, 30, 32 and 34 cycles. At 28 

cycles amplification products were observed, but the signal intensity was quite low 

(RFU<100 in homozygote genotype), while good signal intensity (RFU>700) and good 

peak imbalance ratio were obtained at 30-32 cycles. Although increasing the cycle 

number can increase signal intensity, lower cycles can achieve better peak imbalance. In 

fact, at 34 PCR cycles many artefacts were observed and the quality of profiles was not 

good.  The benefit of increased sensitivity derived from increasing the number of cycles 

of amplification has to be balanced against a reduction of profile quality (58). 

Using MiniFiler
TM

 and the two new mini-STR quadruplex systems we obtained 

genetic profiles of at least 12 STR from DNA typing of femur samples in all those cases 

in which Identifiler
®
  provided a partial profile consisting of the lowest STR in size.  

Figures below refers to a genetic profile obtained from femur sample aged 12 

years (case 8), found in a mass grave. At 32 PCR cycles Identifiler
®
 kit provided only 6 

STRs (D8S1179, D3S1358, TH01, D19S433 and vWA) plus amelogenin marker (fig. 

12a), while Minifiler kit allowed to obtain 7 of 8 STRs and amelogenin (D13S317, 

D7S820, D2S1338, D21S11, D18S51, CSF1P0 and FGA) (fig. 12b). Due to the high 

DNA degradation locus D16S539 failed to amplify. The two new homemade 

quadruplexes amplified all 8 loci and also D16S539 because it was shorter than 

Minifiler (12c and 12d). This demonstrated that the two new multiplexes could be 

successfully employed in degraded samples and could provide additional information 

on skeletal remain samples. 
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12a) 

 

 

12b) 
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12c) 

 

12d) 

 

Fig. 12. Results obtained from Identifiler® kit (a), Minifiler kit (b) and two new quadruplexes (c and d) 

on a 12 years old femur extracted with new protocol consisting of phenol chloroform and QIAamp DNA 

mini kit.  
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Last year Promega Corporation developed a new STR multiplex kit 

(PowerPlex® ESI 17 System) containing the five new loci selected by ENFSI and 

EDNAP (D10S1248, D22S1045, D2S441, D12S391 and D1S1656) as well as 11 other 

loci commonly used throughout Europe, plus SE33 marker. PowerPlex® ESI 17 

Systems focus on miniaturization of current ESS loci, which can be very useful on 

degraded DNA. For this reason we decided to extend STR analysis also using 

PowerPlex ESI 17 Systems on all our DNA samples. 

In all cases the new commercial kit amplified a greater number of STRs than 

Identifiler kit, due to the reduced size of markers and probably to an higher PCR 

amplification efficiency. 

Results obtained from PowerPlex ESI 17 Systems on femur 12 years old, 

showed the amplification of two more STRs (D16S539 and FGA) compared to 

Identifiler (fig. 13).  

In conclusion, considering all commercial and homemade kits, a genetic profile 

of 15 STRs plus amelogenin (X/Y) was obtained on 12 years old femur, which 

corresponds to the Identifiler complete profile. Using Italian population database the 

probability of founding a man with the same genotype (Random Match Probability -

RMP) was 5,26678*10
-20

. Identification was also confirmed comparing the genetic 

profile with that of parents. 

 

 

Fig. 13. PowerPlex ESI® 17 kit partial profile generated from a femur 12 years old extracted 

with the new protocol 
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Similar results were obtained in another case of a saponified body exhumed 

from zinc coffin after 20 years after death (case 5). 

Identifiler kit, generated a partial profile of 6 STRs (fig.14a) plus amelogenin. 

Increasing the analysis with Minifiler kit and the two new homemade qudruplexes we 

obtained 15 loci (14b, c and d).  

 

14a) 
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14b) 

 

 

14c) 
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14d) 

 

Fig. 14. Results obtained from Identifiler® kit (a), Minifiler kit (b) and two new quadruplexes (c and d) 

on a 20 years old saponified femur, extracted with new protocol consisting of phenol chloroform and 

QIAamp DNA mini kit.  

 

 

Also in this case results obtained from PowerPlex ESI 17 Systems showed the 

amplification of three more STRs (D16S539, D18S51 and FGA) compared to Identifiler 

kit (fig.15). Using Italian population database the probability of founding a man with 

the same genotype (Random Match Probability -RMP) was 8,11x10
-23

.  
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Fig.15. PowerPlex ESI® 17 kit partial profile generated from a 20 years old femur extracted with the new 

protocol.  

 

Complete autosomal genetic profiles (21 STR loci and amelogenin) were only 

obtained from 2 cases, partial profiles with one or two STR loci missing were obtained 

from 2 bones (primarily longer loci were missing), and in the remaining 10 cases 12 to 

17 loci were amplified (Table 8).  
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Table 8. Efficiency of autosomal DNA typing (AmpFlSTR Identifiler™ PCR Amplification Kit (Applied 

Biosystems) and PowerPlex ESI 17 System(Promega), expressed as the number of successfully typed 

autosomal short tandem repeats (STRs) Minifiler kit (Applied Biosystems and two homemade 

quadrupexes. 

 

Case 
Specimen  

type 
Maturity 

Post mortem 

period 

Location  

where found 

Number of autosomal 

STRs  

(Identifiler, ESI, 

Minifiler, two mini 

quadruplexes) 

1 Femur Adult I World War Buried  
 

12/21 

2 Femur  Adult I World War Buried  13/21 

3 Femur  Fetus 26 years Buried  12/21 

4 Femur  Adult 22 years Wooded area  15/21 

5 Femur Adult 20 years Zinc coffin 15/21 

6 Femur Adult  20 years Zinc coffin 17/21 

7 Femur Adult 19 years Buried  19/21 

8 Femur Adult 12 years Buried  15/21 

9 Femur Adult 4 months 
Burned 

 

14/21 

10 
Fragment of 

femur 
Adult 2 months 

Burned 

 

16/21 

11 
Fragment of 

femur 
Adult 2 months 

Burned 

 

15/21 

12 Femur Adult 1 months 
Burned 

 

20/21 

13 Femur Adult 1 months 
Burned 

 

21/21 

14 Femur Adult 2 months Corn field  21/21 
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Considering all STR markers used (Identifiler
®
, MiniFiler

TM
, PowerPlex ESI

® kit 

and two new miniplexes) in most cases we obtained a profile of 13 STRs, the same 

number of markers contained in Combined DNA Index System (CODIS), which is the 

system adopted by the FBI. 

The good quality of results were confirmed both repeating all PCR 

amplifications at least three times (58) and comparing genetic profile with parents and 

relative living persons, when they were available.  
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4. CONCLUSIONS 

Purification of DNA from a variety of samples is still a rate-limiting step in 

obtaining useful genotypes. Several procedures are currently used to purify and extract 

DNA from degraded samples such as skeletal remains (59-62). Variations in DNA yield 

from larger bone fragments are inevitable and may be attributed to heterogeneity within 

a bone. For this reason, unfortunately, at present there is not an infallible method to 

recover DNA from very degraded samples.  

Many paper regarding DNA extraction protocols from ancient and modern bones are 

present in literature, but they are frequently in contrast between them. Some are based 

on bone extraction protocols that involve the incubation of powdered material in a lysis 

buffer, followed by the collection of the supernatant. Other protocols obtain DNA by 

full demineralization of bone, resulting in full physical dissolution of the bone powder 

and recovery of all DNA released by the complete demineralization procedure (63).  

Recently a new experimental DNA extraction kit was developed to extract DNA 

from degraded skeletal remains without the need of powdering the samples (64). These 

results are in contrast with another study where it is demonstrate that the fine powder 

produced higher yields compared with samples ground to pieces one to a few 

millimeters in diameter (65). The fact that so many different extraction techniques are in 

use, indicates that no single procedure has emerged yet as having clear advantages that 

would lead to it becoming standardized. 

Our new DNA extraction method based on combining phenol-chloroform-isoamyl 

alcohol and QIAamp
®

 DNA Mini kit can provide an alternative method to standard 

protocols and traditional method of phenol-chloroform, but always with the limitations 

related to the technique that failed on such bone samples (short and flat). This method, 

in fact, produced genetic profiles consisting of at least 12 STRs on long bones 

especially femur, but only amelogenin gene on the other bones. The extraction 

procedure used in new protocol, yielded higher amounts of DNA of starting material 

from femurs than the conventional phenol/chloroform method, magnetic beads and 

silica based QIAmp Investigator methods and allowed the simple extraction of DNA 

from small quantity of bone powder.  

The difference in success rates between long bones of upper body and lower body, 

in particularly femur, were already shown in previous studies (10) and, importantly, 
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environmental conditions under which remains were exposed, had stronger influence on 

the state of DNA quality than the age of skeletal remains.  

Moreover it was difficult to predict DNA yield or profiling success from the 

appearance or characteristics of bones. In some cases, in fact, very aged femurs 

produced unexpectedly partial profiles while other more recent bones failed to give 

partial results. In concordance to a previous study (66), samples that gave lower 

amounts of DNA or partial profiles showed no characteristics with regard to 

morphology that would permit speculation as to why they may have failed, or why the 

correlation between yields of different methods varied among samples.  

However, given a representative sampling of bones, it is clear that the higher level 

of DNA recovery with the silica method in some cases is essential to recover a full 

DNA profile. In choosing a DNA extraction method it is important that the method 

would allow to remove as many inhibitors as possible and at the same time maximize 

the yield of DNA template.  

Amplification with reduced size fragments included in Minifiler
TM

 kit, and the two 

new homemade quadruplexes, have proved to be a very useful resource when traditional 

marker fail to give a genetic profile of at least 12 STRs as recommended by ENFSI and 

ISFG Commission.  

Unfortunately not all conventional STRs included in Identifiler
® 

amplification kit 

can be reduced less than 130 bp, but only those that are characterized by a limited 

number of repetitive units. The two new miniSTRs multiplexes were also able to give 

more complete profiles for bone samples that had been exposed to different 

environmental conditions. DNA template in low copy number (LCN) can be 

successfully amplified with high sensitivity and good peak imbalance. The 

improvement in amplification of smaller sized fragments was evidently compared with 

that of traditional kits such as Identifiler or Powerplex ESI 17 systems. 

In this study a limited sample size were analyzed, and moreover the size was 

variable among different type of skeletal elements. Large sample size is extremely 

important to observe the differences and understand the difficulties in performing 

experimental studies of DNA degradation in different bone and properly controlling the 

effect of environmental variables. Unfortunately the effect of environmental variables 
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was not controlled for at all, since the samples originated from a very wide range of 

contexts.  

Finally the high success rate for nuclear STR typing reported here further confirmed 

that STRs and in particular mini-STRs could be considered a good method of choice in 

casework with missing persons, exhumation or identification involving degraded 

skeletal remains. As a consequence, an extended of European Standard Set (ESS) of 

DNA Database Loci were defined for the following reasons: 1) to improve the 

discrimination power; 2) improve the sensitivity of testing so that smaller amounts of 

DNA are detected, and 3) improve robustness or the quality of the result (67).  

Only the inclusion of robust and powerful mini STR loci will ensure that difficult 

casework samples with low amounts of degraded DNA can be fully typed to avoid 

unacceptable rates of adventitious matches due to increasing numbers of partial profiles 

in the databases. 
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