On Theorem Proving for Program Checking*

Historical perspective and recent developments

Maria Paola Bonacina

Dipartimento di Informatica
Universita degli Studi di Verona
Strada Le Grazie 15, 1-37134 Verona, Italy

mariapaola.bonacina@univr.it

Abstract e Deductive verification (e.g., weakest precondition cajaudri-

This article is a survey of recent results, related works aea fication condition generation and proof by theorem proving)

challenges in automated theorem proving for program checki ~ The complexity, variety, size and pervasiveness of softvware

The aim is to give some historical perspective, albeit ey such, that no approach is expected to be good enough on its own
incomplete, and highlight some of the turning points thatlena  and in general. Rather, an increasingly wide-spread vitsoto
crucial advances possible. have apipeline of toolswhere technologies of increasing cost are

applied to problems of increasing difficulty: for instanfiest static
analysis, then theorem proving, or first static analysisntimodel
checking with theorem proving.

A common trait of several of these approaches is some appli-
cation of logic, ranging from type theories behind type eyst,
General Terms  Theory, Verification to temporal logics to write properties to be checked by model

checking, to first-order theories to write annotations aedfica-
Keywords Satisfiability modulo theories, Combination of theo- tion conditions to be proved by theorem proving. If logic =ed

Categoriesand Subject Descriptors  1.2.3 [Artificial Intelligencéd:
Deduction and Theorem Proving—inference engines, rasatut
D.2.4 [Software Engineerirlg Software/Program Verification—
formal methods, reliability, assertion checkers

ries, Rewrite-based theorem proving, Speculative infezen to formalize properties, then different sorts of mechamnieason-
ing, from model checking to theorem proving and model baigli
1. Introduction can be applied to reason about them. Historically, the natiat

) computation is a natural field of application for logic apmehas
The design of computer programs that check whether other com early as [81, 82], in the same epoch whesolutionfor mechan-
puter programs satisfy given properties is a central quesbm- ical theorem proving was invented [101]. A few years latewts
puter science. On the one hand, software is so importart, tha giscovered that program statements can be annotated wittalo
we cannot abdicate from making it as reliable as possiblehen  formulee [52, 62]. At the same timgaramodulationand demod-
other hand, it is too complex to be checked manually, whehee t  yjation [100, 116], anccompletionwith superpositiorandsimpli-

grand challenge of reliable software, as outlined, foranee, in fication by rewriting [69], began the study of inference rules that
[34, 63, 86]. Much science and technology has been develiped  pyijld the axioms of equality in the inference engine. Reaspn
improvesoftware reliability including: with equality and more generaltheory reasoningre essential to

« Testing (e.g., automated test case generation, automated o'®asoning about programs. . )
semi-automated testing), Since the early days, the history of research in program veri

fication and in automated reasoning has continued, enadngte

* Static analysis (e.g., type systems, data-flow analysisyae both periods of successful synergy and others of detachriaet
flow analysis, pointer analysis, symbolic execution, &str  present time is one of renewed enthousiasm, due to recent pro
interpretation), gresses on both sides, revisitations of relatively oldeagdin new

e Dynamic analysis (e.g., traces, abstract interpretation) light, and mergers of research streams that were sepamatsdrfie

time. One of the purposes of this article will be to highligbtne of
these connections. A current sentiment, shared in thideyris that
not only deductive verification, that uses theorem provingrove
the validity of verification conditions, but pretty much #ik verifi-
cation technologies listed above can benefit from theoremwimy
(e.g., [10, 18, 59]).

e Software model checking (e.g., bounded model checking,
counter-example guided abstraction refinement), and
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2. Program checking and theorem proving
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many states, it is not possible to do model checking by enaiimgr
execution paths, as in the original model checking, or biynaitely
reducing the problem to propositional logic, as in symbaticdel
checking. Thus, one resorts to a combinatioaladtraction model
checkingandtheorem proving

¢ In the abstraction phase, afstract programthat represents
an abstraction of the given program, is built automatically

In the model checking phase, a model checker is applied to
check whether the abstract program satisfies the desirgd pro
erty. If it does, so does the program. Otherwise,adstract
counterexamplées produced, together with a formula that is sat-
isfiable if and only if the abstract counterexample is alsora c
crete counterexample.

In the refinement phase, a theorem prover is applied to decide
the satisfiability of this formula. If it is satisfiable, a gram
error has been found. Otherwise, it is not necessarily the ca
that the program is correct, because the abstraction may hav
been too coarse. Thus, information extracted from the proof
of unsatisfiability is applied to refine the abstraction lbefo
repeating the cycle.

A notion of abstractionin first-order theorem proving appeared in
[96], where abstraction is generalization, such as repigteirms by
new variables, to capture the idea that a more general timeoay

be easier to prove than the original one. An abstraction ficstx
order to propositional logic maps first-order atoms to psifianal
variables. When this sort of abstraction is applied to arotatad
program, the abstract program i®@aolean prograne.g., [60]). If
abstraction is restriction to linear arithmetic, the afbstiprogram

is alinear program where the allowed atoms involve linear expres-
sions on integer or real variables (e.g., [4]).

A refinement of the abstraction means allowing a richer lan-
guage, with more predicates, hence more atoms. The proof-of u
satisfiability is used to determine which predicates to attds
choice is crucial to limit the amount of repetition betweemeo
round of the CEGAR paradigm and the next. The goal is to add
a minimal set of predicates, while making sure that the abstr
counterexample that was already considered will not beiderex
again. Then, the prover needs to produce a minimal unsalisfia
set of literals, calledinsatisfiable corebecause it represents the
core of the proof of unsatisfiability.

2.2 Interpolation

In this context, a counterexample is a representation oecugion
trace, such as a sequence of program locations that lead®tooa
location. Many or even infinitely many concrete traces apond

to an abstract trace, and even at the abstract level différaces
have subtraces in common. The refinement ought to be so @recis
to detect which predicates to add to exclude specific sutdrac
even states. Decomposing traces into subtraces involdiadim-
termediate states. Since formulae are associated to praiedes,
finding intermediate states corresponds to finding interatedor-
mulae, or formulae that lie between given formulee.

This intuition is expressed formally by the notioninferpolant
given formulee A and B, an interpolant of(A, B) is a formula
I, such thatA entails1, I entails B, and I is built only out of
symbols common tod and B. The trace fromA to B can be
decomposed into subtraces frafnto I and from/ to B. If [ is
areverse interpolandf (A, B), that is, an interpolant ofA, —B),
the addition of literals froml' to the abstraction may exclude the
subtrace fron7 to B, which may be erroneous or spurious, while
saving that fromA to I. More generally,/ can be seen as an
approximationof A directed by the goal of reaching, or excluding,

B. Thus, theorem provers are used to generate interpolagts (e
[61, 66, 67, 72, 84, 117]).

2.3 Deductive verification

The rdle of theorem proving in deductive verification iseveore
direct (e.g., [13, 29, 51, 75, 76, 79, 80]):

¢ |n the annotation phase, the given program is annotatedasith
sertions includingfunction specificationghat is preconditions
and postconditions for each functidopp invariants runtime
assertionsandfunction call assertionsProgram variablesap-
pear in assertions deee variables A program statds an as-
signment to program variables, hence to free variablesgtwhi
can be extended to an interpretation, so that it makes sense t
check whether it satisfies an assertion.

¢ In the generation phase,verifying compilerdecomposes the
annotated program inteasic pathsFor each basic path, it prop-
agates the given postcondition backward to computeakest
precondition Then, theverification conditionis that the given
precondition implies this weakest precondition. If theifiea-
tion conditions are valid, the given assertions iaductive in-
variants or invariantsfor short, of the program, which means
that the program satisfies its specification.

In the validation phase, a theorem prover is applied to deter
whether the verification conditions are valid. If the ansvger
positive, the prover produces a proof of validity, usualfyraof

of unsatisfiability of the negation of the verification cotnain,
since the reasoning is refutational. Otherwise, it produae
model of the negation of the verification condition, that is a
counter-model of the verification condition itself. Thisucer-
model is a counterexample to the notion that the asserti@ns a
inductive invariants, and therefore can be used to detesmtran
either in the code or in the assertions.

A quantifier-free formula with free variables is valid if andly if
its universal closure is. In refutational theorem provittyjough
negation and skolemization, a universally quantified \deias
replaced by a constant. Thus, program variables becomé¢artss
from a theorem-proving point of view. This is a reason why it
happens that symbols that are called “variables” in thefieation
literature are called “constants” in the theorem provirgréture:
in the former, one is mindful of the origin of the symbols, wes
in the latter, one is careful about the presence of quardjféénce it
has an impact on the difficulty of the problem and on the infeee
engine to be used.

2.4

Some annotations, such as runtime assertions (e.g., boaradsay
indices), can be generated automatically by the verifyimmmiler
itself. However, this is not true in general for all annatas, and
since annotating programs by hand is cumbersome and expensi
manual annotation is an obstacle to the wide-spread acuaptf
these technologies [76]. Thus, there is much interest ioraating
the annotation process, or, better still, in generatingraatically
invariants, that is, valid annotations. Here too, theorawovipg
can be of help: a theorem prover can be seen not onlypmsat
procedure that searches for a proof of a submitted conjecture,
but also as @ompletion procedurethat completes a given set of
formulae into acompleteor saturatedset.

This notion appeared as early as [69], for the special case of
confluent rewrite systemand has been developed and generalized
by many authors, including [6-8, 19, 20, 24, 47, 64, 71]. Adfet
formulee is apresentationof a theory. Operationally, a set is satu-
rated if all inferences are redundant. If inferences areeved as
normalizing proofs by transforming presentations, theorapete

Invariant generation



presentation is one which affords a normal form proof forrgve
theorem, and a saturated presentation is one which prozitide
normal form proofs of all theorems.

Invariant generation can be approched by submitting to @ the
rem prover an appropriate set of formulae about the prograch, a
extracting invariants during the saturation, even if theisdion
may not halt. The crux is to design which formulee to submit an
which ones to filter from the output. Furthermore, the extgddor-
mulae may need to be post-processed: for instance, they nigrbe
skolemized to put back existential quantifiers in place ofl&k
terms. This line of research was explored already in [31d, i
cently was investigated in [73, 85].

2.5 Static analysis

More effort has been devoted to automate invariant geloer&ly
static analysige.qg., [29, 112]). The goal is to generate an assertion
for the beginning and ending locations of all basic pathe Kéy
idea is that ofsymbolic executignvhere a formula is propagated
through the program over basic paths.fémward propagation a
precondition is propagated forward by computistgongest post-
conditions In backward propagatiopa postcondition is propagated
backward by computingveakest precondition€ither process re-
quires to determine the validity of implications: for exadmpfor-
ward propagation requires to determine whether the stsingest-
condition computed over a path implies the current postitiomd
of the path; if not, the current postcondition needs to beatgut
Thus, a static analyzer performing a symbolic executiookeg a
theorem prover to decide the validity of implications. Clgain-
variant generation by a static analyzer and invariant dngdy a
verifying compiler are complementary and may be combinedhB
call upon a theorem prover to determine the validity of folaau

In a real execution, a program is applied to a specific input,
and it is in a unigue state at every stage of the execution. In
a symbolic execution, a program is applied to formulae: simce
formula represents all the states that satisfy it, the progis in
a set of states at every stage of a symbolic execution. Iipt&
the symbolic execution tries to generate for each locatifmnraula
SO precise, that it is satisfied by all and only the states tthat
program can be in, when its control reaches that locatioa.pFite
to pay for such an ideal precision is that the symbolic exenout
does not terminate even on very simple programs. In order to
enforce termination, one resorts abstraction In static analysis
with abstract interpretation(e.g., [34, 35, 68, 104]), the realm of
admissible formulee is restricted to abstract domainthat is, a
syntactically defined class of formulee, that can state oalyam
properties (e.g., numerical constraints on program veE®bAs
in [96], and in the CEGAR paradigm, the abstraction involaes
map, calledabstraction functionfrom the language of first-order
formulee to a simpler language. All the formulee that cannot be
expressed in the target language are mapped,tor true, and
therefore ignored, whence the abstraction. The tradeeiffiden
terminationandscalability, on the one hand, arekpressivityand
precision on the other, is at the heart of this research.

3. Decision procedures

In all the above contexts, it is crucial that the theorem pras a
decision procedurdor validity, so that it is guaranteed to termi-
nate. In first-order logic, validity, or, equivalently, wisfiability,
is only semi-decidable. Its complement, invalidity, orusalently,
satisfiability, is not even semi-decidable. Thus, it is sseey to re-
strict the attention to decidable theories or fragmentsalifiity is
decidable, then also satisfiability is decidable. This isdditional
reason why both software model checking and static analysest

so strong, that they yield domains where implication queden
be answered directly by the static analyzer without evemtesl
for a decision procedure: this is the case, for instanceinferval
analysis or Karr’s analysis [29, 35, 68]. Clearly, such domaave
limited expressive power.

3.1 Propositional satisfiability

Aside from those abstractions that do not even require asideci
procedure, a most basic abstraction is the one that maps first
order formulze to propositional formulee. Regardless of rabst
tion, a decision procedure for propositional logic is anyvess-
sential to handle boolean connectives. Among the many idecis
procedures for propositional logic, tiizavis-Putnam-Logemann-
Loveland (DPLL) proceduremerged as a standard choice in theo-
rem proving for program checking. Originally conceived fost-
order logic [37, 38], its basic mechanism consists of seéagcfor
a model, bydeciding or guessingthe truth value of each propo-
sitional variable, and then propagate bibflean constraint prop-
agation (BCP)) over the given set of propositional formulae, typ-
ically clauses. The procedure maintamset F' of clausesto be
satisfied andh current assignment/, that represents a candidate
model. Since there are finitely many variables, the seardorig
by depth-first searchWhen the assignment falsifies a clausen-
flict claus@, the procedure undoes decisions by backtracking. If it
finds a model, it returns satisfiable, and unsatisfiable ratise.

From a theorem proving point of view, its distinctive advage
is that the assignment of truth values to propositionalaldes has
the effect ofsplitting disjunctions (e.g., gived Vv B, consider first
the case wherd is true, and if that fails, the case whetéds false
and B needs to be true). This breaking apart of disjunctions ig ver
important in theorem proving for program checking, becawse
fying compilers and static analyzers tend to generate famwith
huge ground disjunctions (e.g., with a disjunct for everggiole
number of iterations of a loop).

The success of DPLL was made possible by an impressive
history of advances in its understanding and implementggog.,
[40, 48, 66, 87, 118, 119]), including:

e Choice of normal form:negation normal form(NNF), with
the so-called'seitin encoding113], yieldsequisatisfiable con-
junctive normal form(ECNF), which avoids the duplication of
subformulae by distributivity of plain conjunctive normairfn
(CNF);

Data structures and algorithms for fast BCP: twe watched
literals schemeeckons that a clause is neither a conflict clause
(all literals false) nor it contains aimplied literal (all literals
false except one), as long as it contains two non-falsealger
so that it is sufficient to watch two literals at a time in every
clause;

Conflict-driven backjumpinghe conflict clause yields a series
of explanationsteps by resolution, that generate other conflict
clauses, until arasserting claus&”, that is, a conflict clause
with only one literall assigned in the current decision level, is
generated; ther' is added toF', the value of is flipped, and
the procedure backjumps to the earliest decision level vher
is unassigned and all other literals ©f are false, so that is
implied by C andC is satisfied.

In the following, aSAT-solveis a theorem prover implementing
DPLL along these lines.

3.2 Satisfiability modulo theories
Assertions about programs need to state properties abmliers,

to abstraction the less expressive language of the abstract domain and about data structures, such as lists, queues, arragsdse

should have a decidable validity problem. Certain abstrastare

sets, multisets, hashtables, in their various flavours,(siggly-



linked lists and doubly-linked lists). From a theorem praypoint
of view, these are first-order theories defined by a signaiutbat
includes equality, and a presentatign The most common and
most studied of these theories inclugiguality, linear arithmetic
recursive data structurewith constructorsandselectorslists, ar-
raysandbitvectors For the theory of equality]” contains only the
axioms of equality. For this reason, this theory is alscetiiqual-
ity with uninterpreted function symbalEUF): equality is the only
predicate symbol and all other symbols arénterpretedfunction
symbols, since there are no axioms restricting their imégpion.
Uninterpreted predicates can be replaced by uninterprietec
tions. Linear arithmetic will not be covered here: the iatted
reader may read, for instance, [29, 50, 78]. Similarly, rerfiees
for the theory of bitvectors include [30, 36, 44]. For listete
are different axiomatizations, including: non-empty am$gibly
cyclic lists [3, 89, 108], possibly empty and possibly cgdists
[5], non-empty and acyclic lists. The latter is the instanith one
constructor and two selectors of the theory of recursiva datic-
tures [21, 94]. For arrays, one distinguishes between theryhof
arrays without extensionalifywhich can express equality between
elements or between indices of arrays, and the theorgrrafys
with extensionalitywhich can express also equality between arrays
(e.g., [3, 5, 44, 110]).

An interpretation that satisfiés is a7-model.7T -satisfiability;
or satisfiability modulo7” (SMT), is the problem of determining
whether &7 -formula is T -satisfiable, or has @-model. For most
first-order theories7 -satisfiability is only semi-decidable, but it is
decidable in the quantifier-free fragment of several thesorA de-
cision procedure fof -satisfiability in the quantifier-free fragment
of 7 is usually called &/ -decision procedureSince a quantifier-
free formula can be reduced to a conjunction of grotindlauses,
the input for a7 -decision procedure is typically a set of ground
T-clauses. A simpler instance of the problem is to decidejthe
satisfiability ofa setS of ground7 -literals. A decision procedure
for T-satisfiability of sets of ground@ -literals is usually called a
T -satisfiability procedureln principle, a7 -satisfiability procedure
would suffice, because a quantifier-free formula can be et
disjunctive normal fornr{iDNF): if all disjuncts are found unsatis-
fiable, the formula is unsatisfiable, and satisfiable othsewi his
reduction is not considered practical in general, becafifeeau-
plication of subformulee caused by distributivity. Howewerob-
lems reduce to sets of literals through negation and skaksion:
for instance,T -validity of a 7-clausevz C is equivalent toT -
unsatisfiability of a set of groun@-literals. Also, the assignment
M in DPLL is a set of literals, and -decision procedures are ob-
tained by integrating -satisfiability procedures in DPLL.

If T is the theory of equality, the quantifier-free fragment is de
cidable, andS is a set of ground equalities and negated equalities.
The algorithm of choice for this problem is thengruence closure
(CC) algorithm (e.g., [48, 49, 89, 107]). This algorithm seas
about equality in a bottom-up fashion, deducing that twmgawith
the same top function symbol are congruent, if their argusare
pairwise congruent. All terms i$ are represented in a directed
acyclic graph, calledz-graph, where the consequences of every
discovered congruence propagate. The congruence clopara-o
tions are implemented on the graph tnyion (to unite congruence
classes) antind (to produce the representative of each class) steps.
If two terms sides of a negated equality turn out to be congrue
the algorithm returns unsatisfiable, and satisfiable otiserw

For a set of ground literals, completion with superpositonl
rewriting reduces tground completionwhere superposition re-
duces to rewriting, since there is no need for unificationatTh
ground completion can compute congruence closure was known
since [77]. Symmetrically, congruence closure can be usedm-
pute ground completion [32, 54, 109]. The analysis in [9)vebd

that in terms of algorithmic complexity congruence closargl
ground completion are comparable. What made the fortuneref ¢
gruence closure is that it proved to be a building block for:

o T -satisfiability procedures for theories other than eqyadib-
tained bybuilding the axioms of7” into the CC algorithm, as
shown already in [89], for the theory of non-empty and possi-
bly cyclic lists, and later, for instance, in [44, 110], fdwose
of arrays with or without extensionality: key moves are addi
to the E-graph the terms of the instances of axiomsygfob-
tained by replacing their universally quantified variabhgth
terms inS, viewing the E-graph as central repository for both
equality and theory reasoning, and applying the axiomstpki
into account the congruence being built (e.g., [44, 48]);

o T-satisfiability procedures fotombinations of theorie§ =
U, T:, based on thequality sharingmethod and its variants
(e.0., [29, 88, 95, 102, 108, 111]); and

e T-decision procedures obtained by integrating DPLL, to fend
the boolean structure of the formula, wilirsatisfiability pro-
cedures, to do the theory reasoning, according t@theL(7)
paradigm(e.qg., [93, 106]).

The equality sharing method and the DP{Il)(paradigm are
covered in the next two subsections.

3.3 Equality sharing

The problem otombination of theorieis to obtain &7 -satisfiabi-
lity procedure forT = | J_, T, givenT;-satisfiability procedures,
for 1 < i < n. For simplicity, letn = 2. Combination of
theories is a fundamental issue in theorem proving for Enogr
checking, since the queries generated by verifying comgpite
static analyzers typically involve multiple theories (¢.igtegers
and arrays, integers and lists, arrays and bitvectors)itively, it is
desirable to minimize communication: why should a procedar
the theory of arrays be concerned about arithmetic or vicea?e
This is even more true for procedures that build the axiontbef
theory into the algorithm, precisely because knowledgaubtiee
theory is embedded in the algorithm. To begin with, drgiality
sharing methodequires that th&;’s aredisjoint, which means that
they do not share function or predicate symbols other thaaléy
However, the terms it typically do mix symbols from different
theories. Then, the first step is$eparateoccurrences of symbols
from different theories, by introducingew constant symbol§or
example,f(g(a)) ~ b, wheref andg belong to the signatures of
different theories, becomefc) ~ b A g(a) ~ ¢, wherec is new.
S is partitioned into two set$; and S> such thatS, is a set of
T1-literals, Sz is a set of7z-literals, and they share only constants:
since only constants are introducef], U S» remains ground, and
since the constants are netly, U S» and S areT-equisatisfiable.

Let V' be the set of shared constants. In order to de@ide
satisfiability of S; U Ss it is sufficient to guess aarrangement
of V, that is, whethern ~ b or a £ b for every paira,b € V, and
let the procedures fof; and 72 check whether the arrangement
is acceptable for the respective theories. Formaily,U Sz is
T-satisfiable if and only if there exists an arrangeméntsuch
that S; U K is T;-satisfiable andS, U K is 7»-satisfiable. In
practice, each procedure deduces the equalities betwesrdsh
constants entailed by it U S; and propagates them to the other.
This is sufficient for completeness if eadh is convex that is,
whenever7; = H = \/7_, a; ~ b;, whereH is a conjunction
of atoms, ther/; £ H = a; ~ b;, for somej, 1 < j < m.
Convexity excludes the situation where all models satigine
disjunct, but no disjunct is satisfied by all models. Cleaifiyall
theories are convey, it is hot necessary to reason abounhdigpns.
For instance, Horn theories are convex.



If a theory is not convey, its procedure needs to propagéte al
entaileddisjunctions of equalitiebetween shared constants. This
generalization is sufficient for completeness, if each thep is
stably infinite that is, everyT;-satisfiable ground formula hasya
model with domain of infinite cardinality. For first-orderetbries
with no trivial models, convexity implies stable infinitesse[17,
55]. The meaning of stable infiniteness is less intuitiventtizat
of convexity: technically, what needs to be exchanged betviiee
theories arénterpolants whence the emphasis on shared symbols,
and stable infiniteness is needed to make sure that it isisuiffito
propagate quantifier-free interpolants. More precisélg, infinite
supply of elements of the infinite domain guaranteesntifier
elimination or that an interpolant with quantifiers can be replaced
by an equivalent interpolant without quantifiers (e.qg., [29)]).

In the following, a7 -solveris an engine implementing &-
satisfiability procedure for a combinatign of theories.

3.4 SMT-solvers

Many problems in computer science can be reduced to instarice
propositional satisfiability (SAT). This tradition and tlhenazing
progress in the efficiency of SAT-solvers made popular fonso
time the notion of attacking -decision problems by reducing them
to instances of SAT and applying a SAT-solver. This approgas
calledeagerfor the eagerness of the reduction to SAT. Combination
of theories is not an issue, since all get reduced to prdposit
logic. Two drawbacks of reduction to SAT are the loss of peabl
structure and the space complexity of the reduction, whithtes
the size of the resulting formula to that of the original oBeen a
quadratic reduction, which may sound efficient in theoryyrba
problematic in practice, since the size of relevant formiglaf the
order of megabytes. Although there are specific theorietasses

of problems for which reduction to SAT may be the best optibe,
notion that it may represent a general solution for7altlecision
problems for all theories has been abandoned. The expitgssiv
requirements of problems generated by program checkirnginkr
played a role in this evolution.

The DPLL(T) paradigmintegrates the SAT-solver with &-
solver, in such a way that the SAT-solver searches for a mafdel
the formula, and th§ -solver ensures that the propositional model
is also a7 -model. In the first trials (e.g., [16, 45]), the SAT-solver
would generate a complete propositional model and thenttoall
T-solver to check it. For this reason, and to differentiatérdn
the eager approach, this style was callagdy. However, such a
loose integration cannot be sufficiently efficient, becaak¢he
work wasted by the SAT-solver pursuing candidate modelsattea
then discarded by thg-solver. Thus, the prevailing approach, still
called “lazy” or sometimes “hybrid” or simply DPLIX), is a tight
integration, where the SAT-solver propagates tofhsolver every
truth assignment. Th&-solver responds by signalling whenever a
subset of the current assignmé¥itis 7 -inconsistent T-conflict),
and by propagating to the SAT-solver ground literals thagéntails
in T (T-propagatg. In other words, the notions afonflict and
implied literal of DPLL are generalized to conflict and implication
modulo7.

The CC algorithm and th&-solver reason in first-order logic,
while the SAT-solver reasons in propositional logic, sot ttree
interface between them involves abstraction functiormapping
first-order atoms to propositional variables and vice vePsaposi-
tional variables standing for first-order atoms are sometitermed
proxy variables Theorem provers implementing this paradigm are
called SMT-solverge.g., CVC and its successor CVC Lite [15],
Simplify [48], MathSAT [27], ICS [46] and its successor Y&e
[50], Barcelogic [91], Z3 [43]).

The development of DPLIN)-based SMT-solvers affected the
implementation of equality sharing:

e The propagation of disjunctions required by non-convex+the
ries is realized by case analysis and backtracking, thtteq, -
solver propagates one literal of the disjunction, and ifghess
fails, it will be undone by backtracking, and another litest,
the disjunction will be tried. A disjunction due to non-cemity
is simply another clause to satisfy.

In delayed theory combinatiofDTC) [28] the SAT-solver in-
teracts withn 7;-solvers, rather than with on&-solver for

T = U;_, Ti. The SAT-solver is endowed from the start with
proxy variables for all possible equalities between shamed
stants, and it computes their arrangement by guessingnassig
ments and propagating them to tigsolvers that check them
for T;-consistency. Thplunging on the literatechnique of [48]
could be seen as an ancestor of DTC. Since DTC may yield too
much trial and error, many variations have been studied,(e.g
[14, 74)).

Model-based theory combinatidd?2] requires that eacly;-
solver maintains a candidafg-model consistent with the cur-
rent assignmenf\/. Each 7;-solver is allowed to propagate
equalities between shared constants, that are true inntii-ca
date model, regardless of whether they are entailed: if gleey
erate conflicts, they will be undone by backtracking, and the
Ti-solver will update its7;-model accordingly. Since it is gen-
erally less expensive to produce the equalities satisfieddpe-
cific 7;-model than those satisfied by §l-models consistent
with M, and the number of equalities that matter in practice is
small, it pays off to be optimistic and try those that are eats
generate.

A significant body of work has been spent to extend equal-
ity sharing to non-disjoint combinations or beyond staluifinite
theories. Theoretical investigations include [53, 57, BI§]. For
example, the theory of fixed-size bitvectors is not stabfinite.
The approach of [44] is based on the observation that thizryhe
is strongly disjointfrom other theories, such as linear arithmetic,
meaning that not only there are no shared function or praglica
symbols, but also no shared sorts. A few strongly disjoiabtfes,
namely bitvectors, linear arithmetic, scalar values armldam val-
ues, are combined with EUF by model-based combination,rta fo
a core theory Then, other theories, such as arrays, are reduced to
the core theory by a model-based reduction.

From now on, alBMT-solveis an engine implementing DPLI)
for a combinatior7” of theories.

4. General theorem proving

The proof obligations that verifying compilers or staticabizers
generate for theorem provers are not restricted to quantie
problems. Quantifiers are needed to write, for instancendreon-
ditions over loops, invariants about arrays or heaps, armcitum-
atize theories, such as type systems, for which decisiorepoes
for ground formulae are not available. A typical verificatjomob-
lem consists of determining the satisfiability moddalo= |J;__, 7:

of a set of formulagk U P, whereR contains non-ground clauses,
andP is a large ground formula, or set of ground clauses. Usually,
T-symbols occur inP, but not inR, which can be regarded as the
axiomatization of an application specific theory.

4.1 E-matching

Most SMT-solvers are restricted to ground formulee, and may i
stantiate quantified variables only by heuristic technsqu@own
as F-matching[39, 48, 56]. LetE be the set of equations currently
represented in th&-graph, and let[z] be a term in a non-ground
clauseC' with a universally quantified variable. The idea ofE-
matching is to instantiat€’ with those ground substitutiomssuch



thatt[z]c ~g s, wheres is a ground term in theé-graph, and
~p is equality moduloE. Since there are finitely many ground
terms in theE-graph, only finitely many ground instances will be
considered, saving termination at the expense of comm@sgetfror
reasons of efficiency, not all non-ground tertfis| are necessarily
considered. The procedure is usually restricted to thosegnound
termst[z] selected by the user with an appropriate syntax in every
non-ground claus€'. These selected terms are caltaggers be-
cause they “trigger” the instantiation mechanism.

An advantage ofE-matching is that it takes into account
the information in theE-graph. This seems to be a reason why
E-matching is efficient, when it works. On the other hand, the
choice of triggers is not only problem-dependent, but alewer-

triggers. The incompleteness due to this heuristic hagdifrquan-
tifiers may cause false positives: the software model chreake
conclude that an abstract counterexample is a concretearexn
ample when it is not; the verifying compiler will concludeatra
verification condition is not valid, when it is; in both casgairious
errors will be reported. For a static analyzer generatingriants,
an erroneous rejection of valid conjectures will cause ttoelyoc-
tion of less precise invariants.

4.2 Rewrite-based decision procedures

A natural choice to reason in a complete way about quantifiers

is to resort to a theorem prover for first-order logic with alify
(e.g., Otter [83], E [105], SPASS [114], Vampire [99], to rtien
a few with a long history of development and application)e3al
state-of-the-art theorem provers for first-order logichwéguality
implement inference systems issued from the merger of uesol
tion and completion, called at various points in timesolution-
based rewrite-based completion-basedsuperposition-baseca-
ramodulation-basedcontraction-basedsaturation-basear orde-

ring-based to emphasize one aspect or the other (e.g., [7, 19, 24,

65, 92, 103]). Advantages of generic first-order systemhidec
expressivity soundnessand completenesspowerful contraction
rules to remove redundant formulpeoof generationmodel gener-
ation from finite saturated sets, combination of theories by tkin
as input the union of their presentations, and theory-iaddpnt
support of all these features. The crux is termination. Harea
series of somewhat surprising results showed that firstrdideo-
rem proving strategies can be decision procedures foffighiigty
modulo theories.

Consider a rewrite-based strategy whose only built-inthéo
equality, so thaf” may stand for7 U R. Such a strategy is guar-
anteed to terminate ofi-satisfiability problems U S, in several
theories of interest for program checking, includeguality; lists,
recursive data structuresrrays finite setsandrecords all three
with or without extensionality, and two fragments of aritng, in-
teger offsetsandinteger offsets modulaised with arrays to model
queuesandcircular queueg3, 5, 21, 22]. The proofs of termination
are obtained by analyzing the inferences frgrmJ S, and showing
that only finitely many clauses can be generated. Thus, agheo
proving strategy is & -satisfiability procedure. The experiments
in [5] compared the rewrite-based theorem prover E 0.82 thith
SMT-solvers CVC 1.0a and CVC Lite 1.1.0, with results thateve
comparable or even favorable to the prover. Shortly afterais
proved that a rewrite-based strategy odynomial7 -satisfiability
procedures forecords with extensionalitgndinteger offset$22].
These findings dispelled the folklore that the only way tcscea
effectively about such theories would be to build their axsoin
the CC algorithm.

4.3 Variable inactivity

Combination of theories is approached bynadularity theorem
stating sufficient conditions for termination on a uniondaries,
given termination on each [5]. The sufficient conditions trat
the theories arelisjoint and variable-inactive the latter property
means that no persistent irredundant clause generatecdbysa#t-
egy from7 U S has a maximal literal ~ = with x & Var(t). All
the above mentioned theories satisfy these conditions treere-
fore a fair rewrite-based strategy iasatisfiability procedure for
any of their combinations. Intuitively, disjointness aratiable in-
activity prevent unbounded inferences across theoriethaaer-
mination on each theory is sufficient to get termination euhion.
Disjointness prevents paramodulations from compoundgeamd
Yariable inactivity prevents paramodulations from valeabso that
the only inferences across theories are paramodulations ¢on-
stants, that are bounded by the number of constant symbols.
This result is an analogue of equality sharing for general th
orem proving, where paramodulations from constants cpores
to the propagation of equalities between constants. Indesé
able inactivity implies stable infinitenefs, 25]: if a theory is not
stably infinite, a fair rewrite-based strategy is guaramteegen-
erate eventually @ardinality constraint(e.g.,y ~ = V y ~ z),
which is not variable-inactive. Thus, a rewrite-basedsggcan be
used to discover the lack of stable infiniteness. Furtheemb? is
variable-inactive, and a rewrite-based strategy &-gatisfiability
procedure, then it is also&A-decision procedur§2]. The proof is
based on an analysis of inferences in a variable-inactierth

4.4 Decision procedures by stages

The direct application of a first-order theorem prover to @fica-
tion problem7 U R U P is not expected to work well in practice,
for at least two reasons:

e Resolution recombines in the resolvent most of the liteoéls
its parent clauses. Because of tHigplication by combination
[97], resolution is not designed for propositional effidgnes-
pecially on non-Horn clauses. Its strength is the use of eaifi
tion to instantiate universally quantified variables at finst-
order level, rather than the mere recombination of literdls
the ground level. Sincé typically contains huge non-Horn
clauses, it is preferable to handle them by the case anddysis
splitting of DPLL.

Theories such alinear arithmeticandbitvectorsrequire com-
puting and solving rather than deducing, and these theapes
pear very often in the combinatioh and in the ground pa®
of the problem.

First-order theorem provers are strong at reasoning with no
ground first-order clauses and ground unit first-order @apshile
SMT-solvers are strong at reasoning with propositionais#tas and
embedding special theories. Since they complement eaeh afh+
proaches to integrate them are being investigatededbision pro-
cedures by stagd@3], a rewrite-based strategy is applied in a first
stage to do theory reasoning ®, and an SMT-solver is applied
in a second stage to do propositional reasoning and theaspne
ing in the built-in theoryT . The ground seP is decomposed into
P, U P, insuch away tha contains unitR-clauses and® con-
tains everything else. In the first stage,u P is completed in a
saturated seR U P. In the second stagé? U P» is passed to an
SMT-solver that decides its satisfiability modufo Under suitable
hypothesesP U P is finite, and one obtains &R-decision proce-
dure by an inference-based, rather than model-based, redugftion
R to 7. The theories o@rrays andrecords both with or without
extensionality,nteger offsetsand their combinations, satisfy the
hypotheses and get reduced to the theory of equality. @echksy



stages inodularwith respect to combination of theories, since dif-
ferent theories can be completed independently, and ivallme
to leave inT theories such as linear arithmetic and bitvectors.

4.5 DPLL(I" + 7) and speculative inferences

In decision by stages the rewrite-based strategy is useccama
pletion procedure to generate a saturated set. A tightegiation
of theorem prover and SMT-solver is obtained by conceivimgy t
theorem prover as a generic satellite solver for @yor which
the SMT-solver does not have a built-in decision procedutes
is the idea of thdOPLL(T" + 7) inference enging26, 41], where
T" is a generic inference system based on resolution, supgomos
and rewriting. In order to maximize their synergy, DPIL)(works
on ground clauses and literals, wherdasvorks on non-ground
clauses and unit groun®-clauses. The integration daf within
DPLL(T) affects several aspects:

¢ Deduction T-inferences may take as premises clauseg’in
andR-literals in M, and add taF' the clauses thus generated;
clauses are replaced by hypothetical claugesC, whereC'is
a clause, the hypothesis is the set of groundz-literals from
M thatC depends on, an@l1 A ... Al,) > (I V... 01,) s
interpreted as-ly V...V =, VI V...V l,; I'-inferences
essentially ignore the hypotheses of their premises, éxbap
conclusion inherits them as hypotheses together with7any
literals from M used as premises.

Backjumping hypothetical clauses depending on literals re-
tracted by backjumping are removed frdm

Contraction while contraction rules that simply delete a clause,
such agautology deletionapply toH>C like to C, contraction
rules that justify the removal off > C' by other clauses, such
assubsumptiormandsimplification are modified to take into ac-
count dependence aw': for instance, assume thax subsumes
C, so thatH; > D subsumedd; > C'; letlevel (H) be the max-
imum among the decision levels the literals f belong to;
H, > Cis deleted only ifevel(H1) > level(Hz); otherwise,
H,>C is only disabled and will be re-enabled whenel(H>)

is backjumped. The conditiofevel(H1) > level(Hz) en-
sures thatH; > C would be removed upon backjumpirme-
fore H > D; it prevents the unsound situation whéfe > C'is

asArray-of, are problematic, because they generate an unbounded
number of clauses. For example, resolution, even with negse-
lection [7], would generate an infinite seri€g’(a) T f(b)}i>o0
from monotonicity and a literat C b. In practice, it is seldom the
case that one needs to go beygf@) C f(b) or f2(a) T £*(b)

to decide satisfiability. The idea is to allow the prover, loe £x-
perimenter, to guess additional axioms, that avoid thefeitary
behaviors. Such a guesssiseculativebecause it may cause an un-
soundness, if it turns a satisfiable set into an unsatisfaig#eThus,

it must bereversible DPLL(I"+7) features &peculativelntraule,
that adds an arbitrary claugg written [C] > C, to F', and[C] to

M, where[C is a new propositional variable used to record the
fact that the system uessing”'. If the guess turns out to be incon-
sistent,[C], hence[C'>C, will be retracted by backjumping. Note
that [C] may end up in the hypotheses of clauses, henp€]
may appear in an asserting clause, recording a situatiora/yhg

is inconsistent. An unnatural failure due to a speculai®treated

in the same way as a natural failure due to the problem. Glearl
also the number dpeculativelntrsteps is potentially unbounded,
and therefore it is controlled by iterative deepening. DALY T)

is said to bestuck if it halts because the only possible inferences
areT'-inferences or speculative inferences that would violh&grt
bounds.

In order to get a decision procedure, one needs to show that
for some sequence of speculative axioms, there exists lsooihd
iterative deepening, oi-inferences and speculations, such that
DPLL(T" + 7) is guaranteed to terminate in a state with the empty
clause, wheneve$ is unsatisfiable, and in a non-conflict non-stuck
state, wheneves is satisfiable. Continuing with the monotonicity
example, letR be {=(z C y) V—=(y C z2) Va C z, =(z C
y)V f(z) C f(y)}, andPbe{a C b, a C f(c), ~(a C o)}

If Speculativelntroadds|[f(z) ~ z] > f(x) ~ z, monotonic-
ity anda C f(c) are disabled by simplification, angf(z) ~

z] > a C cis added toF'. Resolution generates the conflict clause
[f(z) ~ z] >0, so that~[ f(z) ~ z] is added taM, prevent-
ing DPLL(T" + 7) from guessingf(z) ~ x again. Next, ifSpec-
ulativelntroadds[ f(f(z)) ~ z] > f(f(z)) ~ z, monotonicity
anda C b produce onlyf(a) C f(b), while monotonicity and

a C f(c) produce onlyf(a) C f(f(c)), which is disabled and re-
placed by[ f(f(z)) = z]> f(a) C c. Then, DPLL{ 4 T7) reaches

a saturated state and detects satisfiability. In [26], tréshmnism

subsumed when the clause that subsumes it is gone because at shown to yield decision procedures for theories thatessen-

backjumping.

DPLL(I" + 7) uses equality sharing implemented by model-
based theory combination to combine the built-in theorie§i
and variable inactivity to combine the axiomatized thepiieR
[26]. Thus, its refutational completeness requires that .., 7,
andR are pairwiselisjoint, 71, . . ., T, arestably infinite andR is
variable-inactive Since variable inactivity implies stable infinite-
ness, it allows the system to combine built-in and axioneattheo-
ries, and to detect unsatisfiability due to the lack of inémitodels,
if " generates a cardinality constraint. To obtain a complega-st
egy, a refutationally complete inference system needs tobpled
with a fair search plan. In the presence of first-order clausda
first-order inferences, the search space is not finite, andejpth-
first search plan of DPLLY) is not fair. Thus, DPLLI'+7) resorts
to depth-first search with iterative deepeniog the depth of infer-
ences.

Up to here, DPLLL + 7) is a semi-decision procedure for
validity. In order to get decision procedures, it is equippeth
the capability of performingpeculative inferencg26]. The intu-
ition comes from the observation that axioms suchrassitivity
(~(z T y)V-(y C 2) Ve C z) andmonotonicity(—(z T
y) V f(z) C f(y)), that arise in formalizations of type systems,
whereL is a subtype relationship, anfla type constructor such

tially finite — a generalization of thénite model property- and
their combinations. This class includes axiomatizatidrgme sys-
tems, with eithesingleor multiple inheritanceused in tools such
as ESC/Java [51] and Spec# [13].

5. Discussion
A general objective in program checking is to increase

e expressivityof the logic, hence qualitative coverage of pro-
grams,

¢ scalabilityof performances, hence quantitative coverage of pro-
grams,

o precisionof the results, hence reliability of the analysis, and
e automationto reduce cost.

Different methods have different advantages and disadyast
with respect to these goals. For instarsmsglabilityis regarded as a
main challenge for software model checking, while statialgsis
may scale better, but at the expenserefkcision which causes false
alarms. Thus, a current trend isitdegrateapproaches, in order to
leverage their strengths. While the cooperation of modetkimg
and theorem proving has received significant attentiort,dhab-



stract interpretation and theorem proving seems to have less
explored. A view of their interrelation was suggested inZJL1A

question is whether and how the theorem prover could helgfitoer
the abstraction itself, in addition to answer validity gasrgener-
ated by a given abstraction. Other examples of integratioludle
model checking and abstract interpretation, static arsabysd di-
rected testing, or static analysis and dynamic analysigs, (£8]).

Integration poses both theoretical and engineering agdle, and
it is problem-driven: it requires to choose which approactrein-

tegrate for which classes of properties, such as safetyeptiop,
information flow properties, temporal properties. In aidditto the
integration of verification technologies, another evezgrgquest is
the cooperation of verification (i.e., checking that a pamgrsatis-
fies a property) and synthesis (i.e., generating a progratstiis-
fies a property).

It is plausible that a cooperation of verification and synthe
sis happens for hardware sooner than for software. Howéwer,
constant evolution of the border between software and hanelw
is bound to challenge long-held classifications of problend
methods and favor fruitful hybridizations. Hardware desgmore
automated, employs fewer and more standardized languageds;
hardware verification may employ simulation. The traditibcon-
ceptual difference is that a hardware circuit is modellec fipite
state machine, whereas a software program is modelled hyfian i
nite state machine. Nonetheless, the transfer of fundit@safrom
software to hardware, the use of software to design and peodu
hardware, and the growth of new contexts for computing (erg-
bedded systems, biological systems), means that approacigée
nally conceived for hardware may impact software and viesaze

Integration is the keyword also in automated theorem prov-
ing. After several years where SMT-solvers and generalrémo
provers grew independently, the integration of generabribim
prover within SMT-solver in DPLLY + 7)) is a case in point. Sym-
metrically, approaches such as [1, 70] embéB-solver for linear
arithmetic into a general theorem prover. In turn, the iraégn
of automated and interactive theorem proving is more anceraor
reality. Induction is fundamental to reason about progrdfos in-
stance, in deductive verification as described here, tiseaeform
of induction at the meta-level, in going from validity of tiver-
ification conditions for each basic path to validity of theesifi-
cations for the whole program. In general, since the setdifidn
tive theorems is not even semi-decidable, inductive thraqueov-
ing involves some degree of interaction. However, the mtisiton
itself between automated and interactive theorem provsngro-
gressively fading. Automated theorem provers are integcas
they require the user to set options, or even decorate th with
heuristic information such as triggers. Symmetricallyeractive
theorem provers and proof assistants are automated, partheir
own, partly because they embed decision procedures, dréraa-
tomated theorem provers, to discharge proof obligationeigeed
as sub-proofs of the interactive proof. One could say thatraated
theorem provers have a long interaction cycle, and inteeathe-
orem provers have a short interaction cycle.

This trend is likely to continue and become more generales th
orem provingdisappearsinside applications. A fundamental rea-
son for this to happen is that logic is increasingly proviade as
well adapted for machines as it is user-unfriendly for meshans.
In essence, logic is a low-level language, and artificialligence
may be more successful in enabling machines to think abeit th
own circuits and programs than about most other subjects.
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