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Abstract
This article is a survey of recent results, related works andnew
challenges in automated theorem proving for program checking.
The aim is to give some historical perspective, albeit necessarily
incomplete, and highlight some of the turning points that made
crucial advances possible.

Categories and Subject Descriptors I.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving—inference engines, resolution;
D.2.4 [Software Engineering]: Software/Program Verification—
formal methods, reliability, assertion checkers

General Terms Theory, Verification

Keywords Satisfiability modulo theories, Combination of theo-
ries, Rewrite-based theorem proving, Speculative inferences

1. Introduction
The design of computer programs that check whether other com-
puter programs satisfy given properties is a central quest in com-
puter science. On the one hand, software is so important, that
we cannot abdicate from making it as reliable as possible; onthe
other hand, it is too complex to be checked manually, whence the
grand challenge of reliable software, as outlined, for instance, in
[34, 63, 86]. Much science and technology has been developedto
improvesoftware reliability, including:

• Testing (e.g., automated test case generation, automated or
semi-automated testing),

• Static analysis (e.g., type systems, data-flow analysis, control-
flow analysis, pointer analysis, symbolic execution, abstract
interpretation),

• Dynamic analysis (e.g., traces, abstract interpretation),

• Software model checking (e.g., bounded model checking,
counter-example guided abstraction refinement), and
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• Deductive verification (e.g., weakest precondition calculi, veri-
fication condition generation and proof by theorem proving).

The complexity, variety, size and pervasiveness of software are
such, that no approach is expected to be good enough on its own
and in general. Rather, an increasingly wide-spread visionis to
have apipeline of tools, where technologies of increasing cost are
applied to problems of increasing difficulty: for instance,first static
analysis, then theorem proving, or first static analysis, then model
checking with theorem proving.

A common trait of several of these approaches is some appli-
cation of logic, ranging from type theories behind type systems,
to temporal logics to write properties to be checked by model
checking, to first-order theories to write annotations and verifica-
tion conditions to be proved by theorem proving. If logic is used
to formalize properties, then different sorts of mechanical reason-
ing, from model checking to theorem proving and model building,
can be applied to reason about them. Historically, the notion that
computation is a natural field of application for logic appeared as
early as [81, 82], in the same epoch whenresolutionfor mechan-
ical theorem proving was invented [101]. A few years later itwas
discovered that program statements can be annotated with logical
formulæ [52, 62]. At the same time,paramodulationanddemod-
ulation [100, 116], andcompletionwith superpositionandsimpli-
fication by rewriting [69], began the study of inference rules that
build the axioms of equality in the inference engine. Reasoning
with equality and more generallytheory reasoningare essential to
reasoning about programs.

Since the early days, the history of research in program veri-
fication and in automated reasoning has continued, encountering
both periods of successful synergy and others of detachment. The
present time is one of renewed enthousiasm, due to recent pro-
gresses on both sides, revisitations of relatively older ideas in new
light, and mergers of research streams that were separated for some
time. One of the purposes of this article will be to highlightsome of
these connections. A current sentiment, shared in this article, is that
not only deductive verification, that uses theorem proving to prove
the validity of verification conditions, but pretty much allthe verifi-
cation technologies listed above can benefit from theorem proving
(e.g., [10, 18, 59]).

2. Program checking and theorem proving
2.1 Software model checking

Perhaps a most well-known example is the usage of theorem prov-
ing in the CounterExample-Guided Abstraction Refinement(CE-
GAR) paradigm for software model checking (e.g., [2, 4, 11, 12, 33,
58, 60]). The essence of software model checking is to do model
checking for infinite-state systems. Since the system has infinitely



many states, it is not possible to do model checking by enumerating
execution paths, as in the original model checking, or by ultimately
reducing the problem to propositional logic, as in symbolicmodel
checking. Thus, one resorts to a combination ofabstraction, model
checkingandtheorem proving:

• In the abstraction phase, anabstract program, that represents
an abstraction of the given program, is built automatically.

• In the model checking phase, a model checker is applied to
check whether the abstract program satisfies the desired prop-
erty. If it does, so does the program. Otherwise, anabstract
counterexampleis produced, together with a formula that is sat-
isfiable if and only if the abstract counterexample is also a con-
crete counterexample.

• In the refinement phase, a theorem prover is applied to decide
the satisfiability of this formula. If it is satisfiable, a program
error has been found. Otherwise, it is not necessarily the case
that the program is correct, because the abstraction may have
been too coarse. Thus, information extracted from the proof
of unsatisfiability is applied to refine the abstraction before
repeating the cycle.

A notion of abstractionin first-order theorem proving appeared in
[96], where abstraction is generalization, such as replacing terms by
new variables, to capture the idea that a more general theorem may
be easier to prove than the original one. An abstraction fromfirst-
order to propositional logic maps first-order atoms to propositional
variables. When this sort of abstraction is applied to an annotated
program, the abstract program is aboolean program(e.g., [60]). If
abstraction is restriction to linear arithmetic, the abstract program
is alinear program, where the allowed atoms involve linear expres-
sions on integer or real variables (e.g., [4]).

A refinement of the abstraction means allowing a richer lan-
guage, with more predicates, hence more atoms. The proof of un-
satisfiability is used to determine which predicates to add.This
choice is crucial to limit the amount of repetition between one
round of the CEGAR paradigm and the next. The goal is to add
a minimal set of predicates, while making sure that the abstract
counterexample that was already considered will not be considered
again. Then, the prover needs to produce a minimal unsatisfiable
set of literals, calledunsatisfiable core, because it represents the
core of the proof of unsatisfiability.

2.2 Interpolation

In this context, a counterexample is a representation of an execution
trace, such as a sequence of program locations that leads to an error
location. Many or even infinitely many concrete traces correspond
to an abstract trace, and even at the abstract level different traces
have subtraces in common. The refinement ought to be so precise
to detect which predicates to add to exclude specific subtraces or
even states. Decomposing traces into subtraces involves finding in-
termediate states. Since formulæ are associated to programstates,
finding intermediate states corresponds to finding intermediate for-
mulæ, or formulæ that lie between given formulæ.

This intuition is expressed formally by the notion ofinterpolant:
given formulæA and B, an interpolant of(A,B) is a formula
I , such thatA entailsI , I entailsB, and I is built only out of
symbols common toA and B. The trace fromA to B can be
decomposed into subtraces fromA to I and fromI to B. If I is
a reverse interpolantof (A,B), that is, an interpolant of(A,¬B),
the addition of literals fromI to the abstraction may exclude the
subtrace fromI to B, which may be erroneous or spurious, while
saving that fromA to I . More generally,I can be seen as an
approximationof A directed by the goal of reaching, or excluding,

B. Thus, theorem provers are used to generate interpolants (e.g.,
[61, 66, 67, 72, 84, 117]).

2.3 Deductive verification

The rôle of theorem proving in deductive verification is even more
direct (e.g., [13, 29, 51, 75, 76, 79, 80]):

• In the annotation phase, the given program is annotated withas-
sertions, includingfunction specifications, that is preconditions
and postconditions for each function,loop invariants, runtime
assertionsandfunction call assertions. Program variablesap-
pear in assertions asfree variables. A program stateis an as-
signment to program variables, hence to free variables, which
can be extended to an interpretation, so that it makes sense to
check whether it satisfies an assertion.

• In the generation phase, averifying compilerdecomposes the
annotated program intobasic paths. For each basic path, it prop-
agates the given postcondition backward to compute aweakest
precondition. Then, theverification conditionis that the given
precondition implies this weakest precondition. If the verifica-
tion conditions are valid, the given assertions areinductive in-
variants, or invariants for short, of the program, which means
that the program satisfies its specification.

• In the validation phase, a theorem prover is applied to determine
whether the verification conditions are valid. If the answeris
positive, the prover produces a proof of validity, usually aproof
of unsatisfiability of the negation of the verification condition,
since the reasoning is refutational. Otherwise, it produces a
model of the negation of the verification condition, that is a
counter-model of the verification condition itself. This counter-
model is a counterexample to the notion that the assertions are
inductive invariants, and therefore can be used to detect anerror,
either in the code or in the assertions.

A quantifier-free formula with free variables is valid if andonly if
its universal closure is. In refutational theorem proving,through
negation and skolemization, a universally quantified variable is
replaced by a constant. Thus, program variables become constants
from a theorem-proving point of view. This is a reason why it
happens that symbols that are called “variables” in the verification
literature are called “constants” in the theorem proving literature:
in the former, one is mindful of the origin of the symbols, whereas
in the latter, one is careful about the presence of quantifiers, since it
has an impact on the difficulty of the problem and on the inference
engine to be used.

2.4 Invariant generation

Some annotations, such as runtime assertions (e.g., boundson array
indices), can be generated automatically by the verifying compiler
itself. However, this is not true in general for all annotations, and
since annotating programs by hand is cumbersome and expensive,
manual annotation is an obstacle to the wide-spread acceptance of
these technologies [76]. Thus, there is much interest in automating
the annotation process, or, better still, in generating automatically
invariants, that is, valid annotations. Here too, theorem proving
can be of help: a theorem prover can be seen not only as aproof
procedure, that searches for a proof of a submitted conjecture,
but also as acompletion procedure, that completes a given set of
formulæ into acompleteor saturatedset.

This notion appeared as early as [69], for the special case of
confluent rewrite systems, and has been developed and generalized
by many authors, including [6–8, 19, 20, 24, 47, 64, 71]. A setof
formulæ is apresentationof a theory. Operationally, a set is satu-
rated if all inferences are redundant. If inferences are conceived as
normalizing proofs by transforming presentations, then a complete



presentation is one which affords a normal form proof for every
theorem, and a saturated presentation is one which providesall the
normal form proofs of all theorems.

Invariant generation can be approched by submitting to a theo-
rem prover an appropriate set of formulæ about the program, and
extracting invariants during the saturation, even if the saturation
may not halt. The crux is to design which formulæ to submit, and
which ones to filter from the output. Furthermore, the extracted for-
mulæ may need to be post-processed: for instance, they may bede-
skolemized to put back existential quantifiers in place of Skolem
terms. This line of research was explored already in [31], and re-
cently was investigated in [73, 85].

2.5 Static analysis

More effort has been devoted to automate invariant generation by
static analysis(e.g., [29, 112]). The goal is to generate an assertion
for the beginning and ending locations of all basic paths. The key
idea is that ofsymbolic execution, where a formula is propagated
through the program over basic paths. Inforward propagation, a
precondition is propagated forward by computingstrongest post-
conditions. In backward propagation, a postcondition is propagated
backward by computingweakest preconditions. Either process re-
quires to determine the validity of implications: for example, for-
ward propagation requires to determine whether the strongest post-
condition computed over a path implies the current postcondition
of the path; if not, the current postcondition needs to be updated.
Thus, a static analyzer performing a symbolic execution invokes a
theorem prover to decide the validity of implications. Clearly, in-
variant generation by a static analyzer and invariant checking by a
verifying compiler are complementary and may be combined. Both
call upon a theorem prover to determine the validity of formulæ.

In a real execution, a program is applied to a specific input,
and it is in a unique state at every stage of the execution. In
a symbolic execution, a program is applied to formulæ: sincea
formula represents all the states that satisfy it, the program is in
a set of states at every stage of a symbolic execution. In principle,
the symbolic execution tries to generate for each location aformula
so precise, that it is satisfied by all and only the states thatthe
program can be in, when its control reaches that location. The price
to pay for such an ideal precision is that the symbolic execution
does not terminate even on very simple programs. In order to
enforce termination, one resorts toabstraction. In static analysis
with abstract interpretation(e.g., [34, 35, 68, 104]), the realm of
admissible formulæ is restricted to anabstract domain, that is, a
syntactically defined class of formulæ, that can state only certain
properties (e.g., numerical constraints on program variables). As
in [96], and in the CEGAR paradigm, the abstraction involvesa
map, calledabstraction function, from the language of first-order
formulæ to a simpler language. All the formulæ that cannot be
expressed in the target language are mapped to⊤, or true, and
therefore ignored, whence the abstraction. The trade-off between
terminationandscalability, on the one hand, andexpressivityand
precision, on the other, is at the heart of this research.

3. Decision procedures
In all the above contexts, it is crucial that the theorem prover is a
decision procedurefor validity, so that it is guaranteed to termi-
nate. In first-order logic, validity, or, equivalently, unsatisfiability,
is only semi-decidable. Its complement, invalidity, or, equivalently,
satisfiability, is not even semi-decidable. Thus, it is necessary to re-
strict the attention to decidable theories or fragments. Ifvalidity is
decidable, then also satisfiability is decidable. This is anadditional
reason why both software model checking and static analysisresort
to abstraction: the less expressive language of the abstract domain
should have a decidable validity problem. Certain abstractions are

so strong, that they yield domains where implication queries can
be answered directly by the static analyzer without even theneed
for a decision procedure: this is the case, for instance, forinterval
analysis or Karr’s analysis [29, 35, 68]. Clearly, such domains have
limited expressive power.

3.1 Propositional satisfiability

Aside from those abstractions that do not even require a decision
procedure, a most basic abstraction is the one that maps first-
order formulæ to propositional formulæ. Regardless of abstrac-
tion, a decision procedure for propositional logic is anyway es-
sential to handle boolean connectives. Among the many decision
procedures for propositional logic, theDavis-Putnam-Logemann-
Loveland (DPLL) procedureemerged as a standard choice in theo-
rem proving for program checking. Originally conceived forfirst-
order logic [37, 38], its basic mechanism consists of searching for
a model, bydeciding, or guessing, the truth value of each propo-
sitional variable, and then propagate it (boolean constraint prop-
agation (BCP)) over the given set of propositional formulæ, typ-
ically clauses. The procedure maintainsa setF of clausesto be
satisfied anda current assignmentM , that represents a candidate
model. Since there are finitely many variables, the search isdone
by depth-first search. When the assignment falsifies a clause (con-
flict clause), the procedure undoes decisions by backtracking. If it
finds a model, it returns satisfiable, and unsatisfiable, otherwise.

From a theorem proving point of view, its distinctive advantage
is that the assignment of truth values to propositional variables has
the effect ofsplittingdisjunctions (e.g., givenA ∨B, consider first
the case whereA is true, and if that fails, the case whereA is false
andB needs to be true). This breaking apart of disjunctions is very
important in theorem proving for program checking, becauseveri-
fying compilers and static analyzers tend to generate formulæ with
huge ground disjunctions (e.g., with a disjunct for every possible
number of iterations of a loop).

The success of DPLL was made possible by an impressive
history of advances in its understanding and implementation (e.g.,
[40, 48, 66, 87, 118, 119]), including:

• Choice of normal form:negation normal form(NNF), with
the so-calledTseitin encoding[113], yieldsequisatisfiable con-
junctive normal form(ECNF), which avoids the duplication of
subformulæ by distributivity of plain conjunctive normal form
(CNF);

• Data structures and algorithms for fast BCP: thetwo watched
literals schemereckons that a clause is neither a conflict clause
(all literals false) nor it contains animplied literal (all literals
false except one), as long as it contains two non-false literals,
so that it is sufficient to watch two literals at a time in every
clause;

• Conflict-driven backjumping: the conflict clause yields a series
of explanationsteps by resolution, that generate other conflict
clauses, until anasserting clauseC, that is, a conflict clause
with only one literall assigned in the current decision level, is
generated; thenC is added toF , the value ofl is flipped, and
the procedure backjumps to the earliest decision level where l
is unassigned and all other literals ofC are false, so thatl is
implied byC andC is satisfied.

In the following, aSAT-solveris a theorem prover implementing
DPLL along these lines.

3.2 Satisfiability modulo theories

Assertions about programs need to state properties about numbers,
and about data structures, such as lists, queues, arrays, records,
sets, multisets, hashtables, in their various flavours (e.g., singly-



linked lists and doubly-linked lists). From a theorem proving point
of view, these are first-order theories defined by a signatureΣ, that
includes equality, and a presentationT . The most common and
most studied of these theories includeequality, linear arithmetic,
recursive data structureswith constructorsandselectors, lists, ar-
raysandbitvectors. For the theory of equality,T contains only the
axioms of equality. For this reason, this theory is also calledequal-
ity with uninterpreted function symbols(EUF): equality is the only
predicate symbol and all other symbols areuninterpretedfunction
symbols, since there are no axioms restricting their interpretation.
Uninterpreted predicates can be replaced by uninterpretedfunc-
tions. Linear arithmetic will not be covered here: the interested
reader may read, for instance, [29, 50, 78]. Similarly, references
for the theory of bitvectors include [30, 36, 44]. For lists there
are different axiomatizations, including: non-empty and possibly
cyclic lists [3, 89, 108], possibly empty and possibly cyclic lists
[5], non-empty and acyclic lists. The latter is the instancewith one
constructor and two selectors of the theory of recursive data struc-
tures [21, 94]. For arrays, one distinguishes between the theory of
arrays without extensionality, which can express equality between
elements or between indices of arrays, and the theory ofarrays
with extensionality, which can express also equality between arrays
(e.g., [3, 5, 44, 110]).

An interpretation that satisfiesT is aT -model.T -satisfiability,
or satisfiability moduloT (SMT), is the problem of determining
whether aT -formula isT -satisfiable, or has aT -model. For most
first-order theories,T -satisfiability is only semi-decidable, but it is
decidable in the quantifier-free fragment of several theories. A de-
cision procedure forT -satisfiability in the quantifier-free fragment
of T is usually called aT -decision procedure. Since a quantifier-
free formula can be reduced to a conjunction of groundT -clauses,
the input for aT -decision procedure is typically a set of ground
T -clauses. A simpler instance of the problem is to decide theT -
satisfiability ofa setS of groundT -literals. A decision procedure
for T -satisfiability of sets of groundT -literals is usually called a
T -satisfiability procedure. In principle, aT -satisfiability procedure
would suffice, because a quantifier-free formula can be reduced to
disjunctive normal form(DNF): if all disjuncts are found unsatis-
fiable, the formula is unsatisfiable, and satisfiable otherwise. This
reduction is not considered practical in general, because of the du-
plication of subformulæ caused by distributivity. However, prob-
lems reduce to sets of literals through negation and skolemization:
for instance,T -validity of a T -clause∀x̄ C is equivalent toT -
unsatisfiability of a set of groundT -literals. Also, the assignment
M in DPLL is a set of literals, andT -decision procedures are ob-
tained by integratingT -satisfiability procedures in DPLL.

If T is the theory of equality, the quantifier-free fragment is de-
cidable, andS is a set of ground equalities and negated equalities.
The algorithm of choice for this problem is thecongruence closure
(CC) algorithm (e.g., [48, 49, 89, 107]). This algorithm reasons
about equality in a bottom-up fashion, deducing that two terms with
the same top function symbol are congruent, if their arguments are
pairwise congruent. All terms inS are represented in a directed
acyclic graph, calledE-graph, where the consequences of every
discovered congruence propagate. The congruence closure opera-
tions are implemented on the graph byunion (to unite congruence
classes) andfind (to produce the representative of each class) steps.
If two terms sides of a negated equality turn out to be congruent,
the algorithm returns unsatisfiable, and satisfiable otherwise.

For a set of ground literals, completion with superpositionand
rewriting reduces toground completion, where superposition re-
duces to rewriting, since there is no need for unification. That
ground completion can compute congruence closure was known
since [77]. Symmetrically, congruence closure can be used to com-
pute ground completion [32, 54, 109]. The analysis in [9] showed

that in terms of algorithmic complexity congruence closureand
ground completion are comparable. What made the fortune of con-
gruence closure is that it proved to be a building block for:

• T -satisfiability procedures for theories other than equality, ob-
tained bybuilding the axioms ofT into the CC algorithm, as
shown already in [89], for the theory of non-empty and possi-
bly cyclic lists, and later, for instance, in [44, 110], for those
of arrays with or without extensionality: key moves are adding
to theE-graph the terms of the instances of axioms ofT , ob-
tained by replacing their universally quantified variableswith
terms inS, viewing theE-graph as central repository for both
equality and theory reasoning, and applying the axioms taking
into account the congruence being built (e.g., [44, 48]);

• T -satisfiability procedures forcombinations of theoriesT =⋃n

i=1
Ti, based on theequality sharingmethod and its variants

(e.g., [29, 88, 95, 102, 108, 111]); and

• T -decision procedures obtained by integrating DPLL, to handle
the boolean structure of the formula, withT -satisfiability pro-
cedures, to do the theory reasoning, according to theDPLL(T )
paradigm(e.g., [93, 106]).

The equality sharing method and the DPLL(T ) paradigm are
covered in the next two subsections.

3.3 Equality sharing

The problem ofcombination of theoriesis to obtain aT -satisfiabi-
lity procedure forT =

⋃n

i=1
Ti, givenTi-satisfiability procedures,

for 1 ≤ i ≤ n. For simplicity, let n = 2. Combination of
theories is a fundamental issue in theorem proving for program
checking, since the queries generated by verifying compilers or
static analyzers typically involve multiple theories (e.g., integers
and arrays, integers and lists, arrays and bitvectors). Intuitively, it is
desirable to minimize communication: why should a procedure for
the theory of arrays be concerned about arithmetic or vice versa?
This is even more true for procedures that build the axioms ofthe
theory into the algorithm, precisely because knowledge about the
theory is embedded in the algorithm. To begin with, theequality
sharing methodrequires that theTi’s aredisjoint, which means that
they do not share function or predicate symbols other than equality.
However, the terms inS typically do mix symbols from different
theories. Then, the first step is toseparateoccurrences of symbols
from different theories, by introducingnew constant symbols. For
example,f(g(a)) ≃ b, wheref andg belong to the signatures of
different theories, becomesf(c) ≃ b ∧ g(a) ≃ c, wherec is new.
S is partitioned into two setsS1 andS2 such thatS1 is a set of
T1-literals,S2 is a set ofT2-literals, and they share only constants:
since only constants are introduced,S1 ∪ S2 remains ground, and
since the constants are new,S1 ∪ S2 andS areT -equisatisfiable.

Let V be the set of shared constants. In order to decideT -
satisfiability ofS1 ∪ S2 it is sufficient to guess anarrangement
of V , that is, whethera ≃ b or a 6≃ b for every paira, b ∈ V , and
let the procedures forT1 andT2 check whether the arrangement
is acceptable for the respective theories. Formally,S1 ∪ S2 is
T -satisfiable if and only if there exists an arrangementK such
that S1 ∪ K is T1-satisfiable andS2 ∪ K is T2-satisfiable. In
practice, each procedure deduces the equalities between shared
constants entailed by itsTi ∪ Si and propagates them to the other.
This is sufficient for completeness if eachTi is convex, that is,
wheneverTi |= H ⇒

∨m

j=1
aj ≃ bj , whereH is a conjunction

of atoms, thenTi |= H ⇒ aj ≃ bj , for somej, 1 ≤ j ≤ m.
Convexity excludes the situation where all models satisfy some
disjunct, but no disjunct is satisfied by all models. Clearly, if all
theories are convex, it is not necessary to reason about disjunctions.
For instance, Horn theories are convex.



If a theory is not convex, its procedure needs to propagate all
entaileddisjunctions of equalitiesbetween shared constants. This
generalization is sufficient for completeness, if each theory Ti is
stably infinite, that is, everyTi-satisfiable ground formula has aTi-
model with domain of infinite cardinality. For first-order theories
with no trivial models, convexity implies stable infiniteness [17,
55]. The meaning of stable infiniteness is less intuitive than that
of convexity: technically, what needs to be exchanged between the
theories areinterpolants, whence the emphasis on shared symbols,
and stable infiniteness is needed to make sure that it is sufficient to
propagate quantifier-free interpolants. More precisely, the infinite
supply of elements of the infinite domain guaranteesquantifier
elimination, or that an interpolant with quantifiers can be replaced
by an equivalent interpolant without quantifiers (e.g., [29, 55]).

In the following, aT -solver is an engine implementing aT -
satisfiability procedure for a combinationT of theories.

3.4 SMT-solvers

Many problems in computer science can be reduced to instances of
propositional satisfiability (SAT). This tradition and theamazing
progress in the efficiency of SAT-solvers made popular for some
time the notion of attackingT -decision problems by reducing them
to instances of SAT and applying a SAT-solver. This approachwas
calledeagerfor the eagerness of the reduction to SAT. Combination
of theories is not an issue, since all get reduced to propositional
logic. Two drawbacks of reduction to SAT are the loss of problem
structure and the space complexity of the reduction, which relates
the size of the resulting formula to that of the original one.Even a
quadratic reduction, which may sound efficient in theory, may be
problematic in practice, since the size of relevant formulæis of the
order of megabytes. Although there are specific theories or classes
of problems for which reduction to SAT may be the best option,the
notion that it may represent a general solution for allT -decision
problems for all theories has been abandoned. The expressivity
requirements of problems generated by program checking certainly
played a rôle in this evolution.

The DPLL(T ) paradigm integrates the SAT-solver with aT -
solver, in such a way that the SAT-solver searches for a modelof
the formula, and theT -solver ensures that the propositional model
is also aT -model. In the first trials (e.g., [16, 45]), the SAT-solver
would generate a complete propositional model and then callthe
T -solver to check it. For this reason, and to differentiate itfrom
the eager approach, this style was calledlazy. However, such a
loose integration cannot be sufficiently efficient, becauseof the
work wasted by the SAT-solver pursuing candidate models that are
then discarded by theT -solver. Thus, the prevailing approach, still
called “lazy” or sometimes “hybrid” or simply DPLL(T ), is a tight
integration, where the SAT-solver propagates to theT -solver every
truth assignment. TheT -solver responds by signalling whenever a
subset of the current assignmentM is T -inconsistent (T -conflict),
and by propagating to the SAT-solver ground literals thatM entails
in T (T -propagate). In other words, the notions ofconflict and
implied literal of DPLL are generalized to conflict and implication
moduloT .

The CC algorithm and theT -solver reason in first-order logic,
while the SAT-solver reasons in propositional logic, so that the
interface between them involves anabstraction functionmapping
first-order atoms to propositional variables and vice versa. Proposi-
tional variables standing for first-order atoms are sometimes termed
proxy variables. Theorem provers implementing this paradigm are
called SMT-solvers(e.g., CVC and its successor CVC Lite [15],
Simplify [48], MathSAT [27], ICS [46] and its successor Yices
[50], Barcelogic [91], Z3 [43]).

The development of DPLL(T )-based SMT-solvers affected the
implementation of equality sharing:

• The propagation of disjunctions required by non-convex theo-
ries is realized by case analysis and backtracking, that is,theT -
solver propagates one literal of the disjunction, and if theguess
fails, it will be undone by backtracking, and another literal of
the disjunction will be tried. A disjunction due to non-convexity
is simply another clause to satisfy.

• In delayed theory combination(DTC) [28] the SAT-solver in-
teracts withn Ti-solvers, rather than with oneT -solver for
T =

⋃n

i=1
Ti. The SAT-solver is endowed from the start with

proxy variables for all possible equalities between sharedcon-
stants, and it computes their arrangement by guessing assign-
ments and propagating them to theTi-solvers that check them
for Ti-consistency. Theplunging on the literaltechnique of [48]
could be seen as an ancestor of DTC. Since DTC may yield too
much trial and error, many variations have been studied (e.g.,
[14, 74]).

• Model-based theory combination[42] requires that eachTi-
solver maintains a candidateTi-model consistent with the cur-
rent assignmentM . EachTi-solver is allowed to propagate
equalities between shared constants, that are true in its candi-
date model, regardless of whether they are entailed: if theygen-
erate conflicts, they will be undone by backtracking, and the
Ti-solver will update itsTi-model accordingly. Since it is gen-
erally less expensive to produce the equalities satisfied bya spe-
cific Ti-model than those satisfied by allTi-models consistent
with M , and the number of equalities that matter in practice is
small, it pays off to be optimistic and try those that are easier to
generate.

A significant body of work has been spent to extend equal-
ity sharing to non-disjoint combinations or beyond stably infinite
theories. Theoretical investigations include [53, 57, 90,115]. For
example, the theory of fixed-size bitvectors is not stably infinite.
The approach of [44] is based on the observation that this theory
is strongly disjointfrom other theories, such as linear arithmetic,
meaning that not only there are no shared function or predicate
symbols, but also no shared sorts. A few strongly disjoint theories,
namely bitvectors, linear arithmetic, scalar values and boolean val-
ues, are combined with EUF by model-based combination, to form
a core theory. Then, other theories, such as arrays, are reduced to
the core theory by a model-based reduction.

From now on, anSMT-solveris an engine implementing DPLL(T )
for a combinationT of theories.

4. General theorem proving
The proof obligations that verifying compilers or static analyzers
generate for theorem provers are not restricted to quantifier-free
problems. Quantifiers are needed to write, for instance, frame con-
ditions over loops, invariants about arrays or heaps, and toaxiom-
atize theories, such as type systems, for which decision procedures
for ground formulæ are not available. A typical verificationprob-
lem consists of determining the satisfiability moduloT =

⋃n

i=1
Ti

of a set of formulæR ∪ P , whereR contains non-ground clauses,
andP is a large ground formula, or set of ground clauses. Usually,
T -symbols occur inP , but not inR, which can be regarded as the
axiomatization of an application specific theory.

4.1 E-matching

Most SMT-solvers are restricted to ground formulæ, and may in-
stantiate quantified variables only by heuristic techniques, known
asE-matching[39, 48, 56]. LetE be the set of equations currently
represented in theE-graph, and lett[x] be a term in a non-ground
clauseC with a universally quantified variablex. The idea ofE-
matching is to instantiateC with those ground substitutionsσ such



that t[x]σ ≃E s, wheres is a ground term in theE-graph, and
≃E is equality moduloE. Since there are finitely many ground
terms in theE-graph, only finitely many ground instances will be
considered, saving termination at the expense of completeness. For
reasons of efficiency, not all non-ground termst[x] are necessarily
considered. The procedure is usually restricted to those non-ground
termst[x] selected by the user with an appropriate syntax in every
non-ground clauseC. These selected terms are calledtriggers, be-
cause they “trigger” the instantiation mechanism.

An advantage ofE-matching is that it takes into account
the information in theE-graph. This seems to be a reason why
E-matching is efficient, when it works. On the other hand, the
choice of triggers is not only problem-dependent, but also prover-
dependent; and it may take weeks to the user to guess the right
triggers. The incompleteness due to this heuristic handling of quan-
tifiers may cause false positives: the software model checker will
conclude that an abstract counterexample is a concrete counterex-
ample when it is not; the verifying compiler will conclude that a
verification condition is not valid, when it is; in both casesspurious
errors will be reported. For a static analyzer generating invariants,
an erroneous rejection of valid conjectures will cause the produc-
tion of less precise invariants.

4.2 Rewrite-based decision procedures

A natural choice to reason in a complete way about quantifiers
is to resort to a theorem prover for first-order logic with equality
(e.g., Otter [83], E [105], SPASS [114], Vampire [99], to mention
a few with a long history of development and application). Several
state-of-the-art theorem provers for first-order logic with equality
implement inference systems issued from the merger of resolu-
tion and completion, called at various points in timeresolution-
based, rewrite-based, completion-based, superposition-based, pa-
ramodulation-based, contraction-based, saturation-basedor orde-
ring-based, to emphasize one aspect or the other (e.g., [7, 19, 24,
65, 92, 103]). Advantages of generic first-order systems include:
expressivity, soundnessand completeness, powerful contraction
rules to remove redundant formulæ,proof generation, model gener-
ation from finite saturated sets, combination of theories by taking
as input the union of their presentations, and theory-independent
support of all these features. The crux is termination. However, a
series of somewhat surprising results showed that first-order theo-
rem proving strategies can be decision procedures for satisfiability
modulo theories.

Consider a rewrite-based strategy whose only built-in theory is
equality, so thatT may stand forT ∪ R. Such a strategy is guar-
anteed to terminate onT -satisfiability problemsT ∪ S, in several
theories of interest for program checking, includingequality, lists,
recursive data structures, arrays, finite setsand records, all three
with or without extensionality, and two fragments of arithmetic, in-
teger offsets, andinteger offsets modulo, used with arrays to model
queuesandcircular queues[3, 5, 21, 22]. The proofs of termination
are obtained by analyzing the inferences fromT ∪ S, and showing
that only finitely many clauses can be generated. Thus, a theorem-
proving strategy is aT -satisfiability procedure. The experiments
in [5] compared the rewrite-based theorem prover E 0.82 withthe
SMT-solvers CVC 1.0a and CVC Lite 1.1.0, with results that were
comparable or even favorable to the prover. Shortly after, it was
proved that a rewrite-based strategy is apolynomialT -satisfiability
procedures forrecords with extensionalityandinteger offsets[22].
These findings dispelled the folklore that the only way to reason
effectively about such theories would be to build their axioms in
the CC algorithm.

4.3 Variable inactivity

Combination of theories is approached by amodularity theorem
stating sufficient conditions for termination on a union of theories,
given termination on each [5]. The sufficient conditions arethat
the theories aredisjoint and variable-inactive: the latter property
means that no persistent irredundant clause generated by a fair strat-
egy fromT ∪ S has a maximal literalt ≃ x with x 6∈ V ar(t). All
the above mentioned theories satisfy these conditions, andthere-
fore a fair rewrite-based strategy is aT -satisfiability procedure for
any of their combinations. Intuitively, disjointness and variable in-
activity prevent unbounded inferences across theories, sothat ter-
mination on each theory is sufficient to get termination in the union.
Disjointness prevents paramodulations from compound terms, and
variable inactivity prevents paramodulations from variables, so that
the only inferences across theories are paramodulations from con-
stants, that are bounded by the number of constant symbols.

This result is an analogue of equality sharing for general the-
orem proving, where paramodulations from constants correspond
to the propagation of equalities between constants. Indeed, vari-
able inactivity implies stable infiniteness[5, 25]: if a theory is not
stably infinite, a fair rewrite-based strategy is guaranteed to gen-
erate eventually acardinality constraint(e.g.,y ≃ x ∨ y ≃ z),
which is not variable-inactive. Thus, a rewrite-based strategy can be
used to discover the lack of stable infiniteness. Furthermore, if T is
variable-inactive, and a rewrite-based strategy is aT -satisfiability
procedure, then it is also aT -decision procedure[22]. The proof is
based on an analysis of inferences in a variable-inactive theory.

4.4 Decision procedures by stages

The direct application of a first-order theorem prover to a verifica-
tion problemT ∪ R ∪ P is not expected to work well in practice,
for at least two reasons:

• Resolution recombines in the resolvent most of the literalsof
its parent clauses. Because of thisduplication by combination
[97], resolution is not designed for propositional efficiency, es-
pecially on non-Horn clauses. Its strength is the use of unifica-
tion to instantiate universally quantified variables at thefirst-
order level, rather than the mere recombination of literalsat
the ground level. SinceP typically contains huge non-Horn
clauses, it is preferable to handle them by the case analysisby
splitting of DPLL.

• Theories such aslinear arithmeticandbitvectorsrequire com-
puting and solving rather than deducing, and these theoriesap-
pear very often in the combinationT and in the ground partP
of the problem.

First-order theorem provers are strong at reasoning with non-
ground first-order clauses and ground unit first-order clauses, while
SMT-solvers are strong at reasoning with propositional clauses and
embedding special theories. Since they complement each other, ap-
proaches to integrate them are being investigated. Indecision pro-
cedures by stages[23], a rewrite-based strategy is applied in a first
stage to do theory reasoning inR, and an SMT-solver is applied
in a second stage to do propositional reasoning and theory reason-
ing in the built-in theoryT . The ground setP is decomposed into
P1 ∪P2 in such a way thatP1 contains unitR-clauses andP2 con-
tains everything else. In the first stage,R ∪ P1 is completed in a
saturated setR ∪ P̄ . In the second stage,̄P ∪ P2 is passed to an
SMT-solver that decides its satisfiability moduloT . Under suitable
hypotheses,̄P ∪ P2 is finite, and one obtains anR-decision proce-
dureby an inference-based, rather than model-based, reductionof
R to T . The theories ofarrays andrecords, both with or without
extensionality,integer offsets, and their combinations, satisfy the
hypotheses and get reduced to the theory of equality. Decision by



stages ismodularwith respect to combination of theories, since dif-
ferent theories can be completed independently, and it allows one
to leave inT theories such as linear arithmetic and bitvectors.

4.5 DPLL(Γ+ T ) and speculative inferences

In decision by stages the rewrite-based strategy is used as acom-
pletion procedure to generate a saturated set. A tighter integration
of theorem prover and SMT-solver is obtained by conceiving the
theorem prover as a generic satellite solver for anyR for which
the SMT-solver does not have a built-in decision procedure.This
is the idea of theDPLL(Γ + T ) inference engine[26, 41], where
Γ is a generic inference system based on resolution, superposition
and rewriting. In order to maximize their synergy, DPLL(T ) works
on ground clauses and literals, whereasΓ works on non-ground
clauses and unit groundR-clauses. The integration ofΓ within
DPLL(T ) affects several aspects:

• Deduction: Γ-inferences may take as premises clauses inF
andR-literals inM , and add toF the clauses thus generated;
clauses are replaced by hypothetical clausesH ⊲C, whereC is
a clause, the hypothesisH is the set of groundR-literals from
M thatC depends on, and(l1 ∧ . . . ∧ ln) ⊲ (l′1 ∨ . . . l′m) is
interpreted as¬l1 ∨ . . . ∨ ¬ln ∨ l′1 ∨ . . . ∨ l′m; Γ-inferences
essentially ignore the hypotheses of their premises, except that
conclusion inherits them as hypotheses together with anyR-
literals fromM used as premises.

• Backjumping: hypothetical clauses depending on literals re-
tracted by backjumping are removed fromF .

• Contraction: while contraction rules that simply delete a clause,
such astautology deletion, apply toH⊲C like toC, contraction
rules that justify the removal ofH ⊲ C by other clauses, such
assubsumptionandsimplification, are modified to take into ac-
count dependence onM : for instance, assume thatD subsumes
C, so thatH2 ⊲D subsumesH1 ⊲ C; let level(H) be the max-
imum among the decision levels the literals ofH belong to;
H1 ⊲ C is deleted only iflevel(H1) ≥ level(H2); otherwise,
H1 ⊲C is only disabled and will be re-enabled whenlevel(H2)
is backjumped. The conditionlevel(H1) ≥ level(H2) en-
sures thatH1 ⊲ C would be removed upon backjumpingbe-
foreH2 ⊲ D; it prevents the unsound situation whereH1 ⊲ C is
subsumed when the clause that subsumes it is gone because of
backjumping.

DPLL(Γ + T ) uses equality sharing implemented by model-
based theory combination to combine the built-in theories in T
and variable inactivity to combine the axiomatized theories in R
[26]. Thus, its refutational completeness requires thatT1, . . . , Tn

andR are pairwisedisjoint, T1, . . . , Tn arestably infinite, andR is
variable-inactive. Since variable inactivity implies stable infinite-
ness, it allows the system to combine built-in and axiomatized theo-
ries, and to detect unsatisfiability due to the lack of infinite models,
if Γ generates a cardinality constraint. To obtain a complete strat-
egy, a refutationally complete inference system needs to becoupled
with a fair search plan. In the presence of first-order clauses and
first-order inferences, the search space is not finite, and the depth-
first search plan of DPLL(T ) is not fair. Thus, DPLL(Γ+T ) resorts
to depth-first search with iterative deepeningon the depth of infer-
ences.

Up to here, DPLL(Γ + T ) is a semi-decision procedure for
validity. In order to get decision procedures, it is equipped with
the capability of performingspeculative inferences[26]. The intu-
ition comes from the observation that axioms such astransitivity
(¬(x ⊑ y) ∨ ¬(y ⊑ z) ∨ x ⊑ z) and monotonicity(¬(x ⊑
y) ∨ f(x) ⊑ f(y)), that arise in formalizations of type systems,
where⊑ is a subtype relationship, andf a type constructor such

asArray-of, are problematic, because they generate an unbounded
number of clauses. For example, resolution, even with negative se-
lection [7], would generate an infinite series{f i(a) ⊑ f i(b)}i≥0

from monotonicity and a literala ⊑ b. In practice, it is seldom the
case that one needs to go beyondf(a) ⊑ f(b) or f2(a) ⊑ f2(b)
to decide satisfiability. The idea is to allow the prover, or the ex-
perimenter, to guess additional axioms, that avoid these infinitary
behaviors. Such a guess isspeculative, because it may cause an un-
soundness, if it turns a satisfiable set into an unsatisfiableone. Thus,
it must bereversible. DPLL(Γ+T ) features aSpeculativeIntrorule,
that adds an arbitrary clauseC, written⌈C⌉ ⊲ C, toF , and⌈C⌉ to
M , where⌈C⌉ is a new propositional variable used to record the
fact that the system isguessingC. If the guess turns out to be incon-
sistent,⌈C⌉, hence⌈C⌉⊲C, will be retracted by backjumping. Note
that ⌈C⌉ may end up in the hypotheses of clauses, hence¬⌈C⌉
may appear in an asserting clause, recording a situation where⌈C⌉
is inconsistent. An unnatural failure due to a speculation,is treated
in the same way as a natural failure due to the problem. Clearly,
also the number ofSpeculativeIntrosteps is potentially unbounded,
and therefore it is controlled by iterative deepening. DPLL(Γ+ T )
is said to bestuck, if it halts because the only possible inferences
areΓ-inferences or speculative inferences that would violate their
bounds.

In order to get a decision procedure, one needs to show that
for some sequence of speculative axioms, there exists bounds of
iterative deepening, onΓ-inferences and speculations, such that
DPLL(Γ+ T ) is guaranteed to terminate in a state with the empty
clause, wheneverS is unsatisfiable, and in a non-conflict non-stuck
state, wheneverS is satisfiable. Continuing with the monotonicity
example, letR be {¬(x ⊑ y) ∨ ¬(y ⊑ z) ∨ x ⊑ z, ¬(x ⊑
y) ∨ f(x) ⊑ f(y)}, andP be {a ⊑ b, a ⊑ f(c), ¬(a ⊑ c)}.
If SpeculativeIntroadds⌈f(x) ≃ x⌉ ⊲ f(x) ≃ x, monotonic-
ity and a ⊑ f(c) are disabled by simplification, and⌈f(x) ≃
x⌉ ⊲ a ⊑ c is added toF . Resolution generates the conflict clause
⌈f(x) ≃ x⌉ ⊲ �, so that¬⌈f(x) ≃ x⌉ is added toM , prevent-
ing DPLL(Γ + T ) from guessingf(x) ≃ x again. Next, ifSpec-
ulativeIntro adds⌈f(f(x)) ≃ x⌉ ⊲ f(f(x)) ≃ x, monotonicity
anda ⊑ b produce onlyf(a) ⊑ f(b), while monotonicity and
a ⊑ f(c) produce onlyf(a) ⊑ f(f(c)), which is disabled and re-
placed by⌈f(f(x)) = x⌉⊲f(a) ⊑ c. Then, DPLL(Γ+T ) reaches
a saturated state and detects satisfiability. In [26], this mechanism
is shown to yield decision procedures for theories that areessen-
tially finite – a generalization of thefinite model property– and
their combinations. This class includes axiomatizations of type sys-
tems, with eithersingleor multiple inheritance, used in tools such
as ESC/Java [51] and Spec# [13].

5. Discussion
A general objective in program checking is to increase

• expressivityof the logic, hence qualitative coverage of pro-
grams,

• scalabilityof performances, hence quantitative coverage of pro-
grams,

• precisionof the results, hence reliability of the analysis, and

• automation, to reduce cost.

Different methods have different advantages and disadvantages
with respect to these goals. For instance,scalabilityis regarded as a
main challenge for software model checking, while static analysis
may scale better, but at the expense ofprecision, which causes false
alarms. Thus, a current trend is tointegrateapproaches, in order to
leverage their strengths. While the cooperation of model checking
and theorem proving has received significant attention, that of ab-



stract interpretation and theorem proving seems to have been less
explored. A view of their interrelation was suggested in [112]. A
question is whether and how the theorem prover could help to refine
the abstraction itself, in addition to answer validity queries gener-
ated by a given abstraction. Other examples of integration include
model checking and abstract interpretation, static analysis and di-
rected testing, or static analysis and dynamic analysis (e.g., [98]).
Integration poses both theoretical and engineering challenges, and
it is problem-driven: it requires to choose which approaches to in-
tegrate for which classes of properties, such as safety properties,
information flow properties, temporal properties. In addition to the
integration of verification technologies, another evergreen quest is
the cooperation of verification (i.e., checking that a program satis-
fies a property) and synthesis (i.e., generating a program that satis-
fies a property).

It is plausible that a cooperation of verification and synthe-
sis happens for hardware sooner than for software. However,the
constant evolution of the border between software and hardware
is bound to challenge long-held classifications of problemsand
methods and favor fruitful hybridizations. Hardware design is more
automated, employs fewer and more standardized languages;and
hardware verification may employ simulation. The traditional con-
ceptual difference is that a hardware circuit is modelled bya finite
state machine, whereas a software program is modelled by an infi-
nite state machine. Nonetheless, the transfer of functionalities from
software to hardware, the use of software to design and produce
hardware, and the growth of new contexts for computing (e.g., em-
bedded systems, biological systems), means that approaches origi-
nally conceived for hardware may impact software and vice versa.

Integration is the keyword also in automated theorem prov-
ing. After several years where SMT-solvers and general theorem
provers grew independently, the integration of general theorem
prover within SMT-solver in DPLL(Γ+T ) is a case in point. Sym-
metrically, approaches such as [1, 70] embed aT -solver for linear
arithmetic into a general theorem prover. In turn, the integration
of automated and interactive theorem proving is more and more a
reality. Induction is fundamental to reason about programs. For in-
stance, in deductive verification as described here, there is a form
of induction at the meta-level, in going from validity of thever-
ification conditions for each basic path to validity of the specifi-
cations for the whole program. In general, since the set of induc-
tive theorems is not even semi-decidable, inductive theorem prov-
ing involves some degree of interaction. However, the distinction
itself between automated and interactive theorem proving is pro-
gressively fading. Automated theorem provers are interactive, as
they require the user to set options, or even decorate the input with
heuristic information such as triggers. Symmetrically, interactive
theorem provers and proof assistants are automated, partlyon their
own, partly because they embed decision procedures, or invoke au-
tomated theorem provers, to discharge proof obligations generated
as sub-proofs of the interactive proof. One could say that automated
theorem provers have a long interaction cycle, and interactive the-
orem provers have a short interaction cycle.

This trend is likely to continue and become more general as the-
orem provingdisappearsinside applications. A fundamental rea-
son for this to happen is that logic is increasingly proving to be as
well adapted for machines as it is user-unfriendly for most humans.
In essence, logic is a low-level language, and artificial intelligence
may be more successful in enabling machines to think about their
own circuits and programs than about most other subjects.
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