On deciding satisfiability by DPLL(I" + 7) and
unsound theorem proving

Maria Paola Bonacina'*, Christopher Lynch?, and Leonardo de Moura?

! Dipartimento di Informatica, Universita degli Studi di Verona
Strada Le Grazie 15, I-37134 Verona, Italy
mariapaola.bonacina@univr.it

2 Department of Mathematics and Computer Science
Clarkson University, Potsdam, NY 13699-5815, U.S.A.
clynch@clarkson.edu

3 Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.

leonardo@microsoft.com

Abstract. Applications in software verification often require deter-
mining the satisfiability of first-order formulse with respect to some
background theories. During development, conjectures are usually false.
Therefore, it is desirable to have a theorem prover that terminates on
satisfiable instances. Satisfiability Modulo Theories (SMT) solvers have
proven highly scalable, efficient and suitable for integrated theory rea-
soning. Superposition-based inference systems are strong at reasoning
with equalities, universally quantified variables, and Horn clauses. We de-
scribe a calculus that tightly integrates Superposition and SMT solvers.
The combination is refutationally complete if background theory sym-
bols only occur in ground formulse, and non-ground clauses are variable
inactive. Termination is enforced by introducing additional axioms as
hypotheses. The calculus detects any unsoundness introduced by these
axioms and recovers from it.

1 Introduction

Applications in software verification have benefited greatly from recent advances
in automated reasoning. Applications in this field often require determining the
satisfiability of first-order formulae with respect to some background theories.
In numerous contexts in software verification, quantifiers are needed. For exam-
ple, they are used for capturing frame conditions over loops, axiomatizing type
systems, summarizing auxiliary invariants over heaps, and for supplying axioms
of theories that are not already equipped with decision procedures for ground
formulze. Thus, many verification problems consist in determining the satisfia-
bility of a set of formulee R & P modulo a background theory 7, where R is a
set of non-ground clauses without occurrences of 7-symbols, and P is a large
ground formula (or set of ground clauses) that may contain 7-symbols. The set

* Research supported in part by MIUR grant no. 2007-9E5KMS.

of formulee R can be viewed as the axiomatization of an application specific
theory. The background theory 7T is a combination of general-purpose theories
commonly used in hardware and software verification, such as linear arithmetic
and bit-vectors.

Satisfiability Modulo Theories (SMT) solvers have proven highly scalable,
efficient and suitable for integrated theory reasoning. Most SMT solvers are
restricted to ground formulee, and integrate the Davis-Putnam-Logemann-
Loveland procedure (DPLL) with satellite 7;-solvers for ground satisfiability
problems in special theories 7;, 1 < i < n, so that 7 = JI_, 7;. In compar-
ison, superposition-based inference systems (SP) are strong at reasoning with
equalities, universally quantified variables, and Horn clauses. Moreover, SP was
proved to terminate and hence to be a satisfiability procedure for several theories
of data structures [1, 2, 5].

The DPLL(I" + T) calculus [11] integrates an SMT solver with an inference
system I that is sound and refutationally complete for first-order logic with
equality. The key to the integration is that the literals in the candidate model
built by the DPLL engine can occur as premises of [-inferences. In general,
the DPLL(I" + T) calculus is not refutationally complete when 7 is not empty,
even when 7-symbols do not occur in R. For example, assume R = {z =
aVz =b} and P = {), and the background theory 7 is arithmetic. The clause
{z = aV x = b} implies that any model has at most two elements, which is
clearly incompatible with any model for arithmetic. A first contribution of this
paper are the conditions under which DPLL(I" + T) is refutationally complete
when 7T is not empty.

DPLL(I"+ T) has to combine all the theories in 7 = [J;—, 7; and R. Combi-
nation of theories in SMT solvers is usually done by the Nelson-Oppen scheme
[20], which requires that each 7; be stably infinite* and its solvers capable of
generating all entailed disjunctions of equalities between constants. The second
requirement could be relaxed as in [12], if each T;-solver were able to generate a
candidate model, which may not be the case in general for all 7;-solvers and for
I' acting as R-solver. A second contribution of this work is to explain how to
apply known results on variable inactivity [1, 8] to combine the built-in theories
Ti,...,Tn and the axiomatized theory R in DPLL(I"+ T).

In software verification, during development time, several conjectures are
false because of mistakes in the implementation or specification. Therefore, it is
desirable to have a theorem prover that terminates on satisfiable instances. In
general, this is not a realistic goal since pure first-order logic is not decidable, and,
even worse, there is no sound and complete procedure for first-order logic for-
mule of linear arithmetic with uninterpreted functions [15]. Axioms such as tran-
sitwity (—(x C y)V-(y C 2) Ve C z) and monotonicity (—(x Cy)V f(z) C f(y))
are problematic for any resolution-based I, since they tend to generate an un-
bounded number of clauses, even with a selection function that selects negative
literals to prevent self-resolutions. Such axioms may arise in formalizations of
type systems for programming languages. The signature features a predicate C

4 Every Ti-satisfiable ground formula has a model with domain of infinite cardinality.

that represents a subtype relationship, and a monadic function f that represents
a type constructor, such as Array-of. As an example, assume that the axioma-
tization contains a monotonicity axiom —(z C y) V f(x) C f(y). Resolution with
negative selection would generate an infinite sequence {f(a) C f*(b)}i>o for
each literal a C b in its input. In practice, it is seldom the case that we need to
go beyond f(a) C f(b) or f2(a) C f2(b) to show satisfiability. A third and main
contribution of this paper is a new calculus that combines DPLL(I" + 7)) with
unsound theorem proving [17] to avoid such infinitary behaviors and obtain deci-
sion procedures for axiomatizations relevant to software verification. The idea is
to control the infinitary behavior by using additional hypotheses/axioms, detect
any unsoundness they may introduce and recover from it.

2 Background

We employ basic notions from logic usually assumed in theorem proving. Let X
be a signature consisting of a set of function and predicate symbols, each with
its arity, denoted by arity(f), for symbol f. We call 0-arity function symbols
constant symbols, and use a, b, ¢ and d for constants, f, g, h for non-constant
function symbols, and z, y, z for variables. We use ~ to denote the interpreted
predicate symbol for equality and Var(l) to denote the set of variables occurring
in a term or literal [. A first order X-theory is presented, or axiomatized, by a
set of X-sentences. We use the symbols 7 and R to denote such presentations.
Interpreted symbols are those symbols whose interpretation is restricted to the
models of a certain theory, whereas free or uninterpreted symbols are those
symbols whose interpretation is unrestricted.

A Y-structure @ consists of a non-empty universe |®| and an interpretation
for variables and symbols in Y. For each symbol f in X, the interpretation of f is
denoted by &(f). For a function symbol f with arity(f) = n, the interpretation
&(f) is an n-ary function on |@| with range(®(f)) = {u | v € |P|, D(f)(v) =
u}. For a predicate symbol p with arity(p) = n, &(p) is a subset of |®|™. The
interpretation of a term ¢ is denoted by ®(t). If ¢ is a variable or constant, ()
is an element in |@|. Otherwise, @(f(t1,...,tn)) = P(f)(P(t1),...,D(tn)). If S'is
a set of terms, P(S) means the set {P(t) | t € S}. Satisfaction @ = C is defined
as usual, and if ¢ = C, the structure @ is said to be a model of C.

An inference system I' is a set of inference rules. We consider an ordering-
based inference system, that assumes an ordering > on terms and literals, and
uses it to restrict expansion inferences and define contraction inferences. This
ordering is a complete simplification ordering (stable, monotone, with the sub-
term property, hence well-founded, and total on ground terms and literals). An
inference rule v with n premises is an n + l-ary relation on clauses. Each in-
ference rule has a main premise that yields the conclusion in the context of the
other (side) premises. For contraction rules, the main premise is reduced to the
conclusion. Let I be a mapping, called a model functor, that assigns to each set
of ground clauses N not containing O an interpretation I, called the candidate
model. An inference system I" has the reduction property for counterexamples, if

for all sets N of clauses and minimal counterexamples C for Iy in N, there is
an inference in I' from N with main premise C, side premises that are true in
Iy, and conclusion D that is a smaller counterexample for I than C.

3 Variable inactivity in DPLL(I" + T)

In this section we will see how previous results from the rewrite-based approach
to satisfiability procedures [1, 8] can be imported into the DPLL(I" 4+ T) frame-
work to combine a built-in theory 7 and an axiomatized theory R. In a purely
rewrite-based approach there is no built-in theory and all axioms are part of the
input in R. The core of the methodology is to show that a first-order engine,
such as SP, is an R-satisfiability procedure, by showing that it is guaranteed to
terminate on R-satisfiability problems RW.S, where S is a set of ground unit R-
clauses. Termination is modular: if SP terminates on R;-satisfiability problems,
for 1 < ¢ < n, it terminates also on R-satisfiability problems for R = U?:l Ri,
provided the signatures of the R;’s do not share function symbols, and all the
R;’s are variable inactive [1]:

Definition 1. A clause C is variable-inactive if no maximal literal in C is an
equation t ~ x where © & Var(t). A set of clauses is variable-inactive if all its
clauses are.

Maximality is relative to the ordering > of I', which is required to be good,
meaning that ¢ = ¢ for all ground compound term ¢ and constant ¢ [1, 6].

Definition 2. A theory presentation R is variable-inactive for an inference sys-
tem I' if the limit Soo of a fair I'-derivation from Sy = RWS is variable-inactive,
where S is a set of ground unit R-clauses.

It was proved in [1] (cf. Thm. 4.5) that if R is variable-inactive, then it is stably-
infinite. This observation is a corollary of a result of [8] (cf. Lemma 5.2) that
says that if Sy is satisfiable, then Sy admits no infinite models if and only if the
limit Sy, of a fair SP-derivation from Sy contains a cardinality constraint, that
is, a clause containing only non-trivial (i.e., other than x ~ x) positive equations
between variables (e.g., y ~ = V y ~ z). Such a clause is clearly not variable-
inactive. SP will reveal the lack of stable infiniteness by generating a cardinality
constraint.> Thus, variable-inactivity is a sufficient condition for modularity of
termination, hence to combine theories in the rewrite-based approach, and for
stable-infiniteness, hence to mix combination of axiomatized theories as in the
rewrite-based approach with combination of built-in theories a la Nelson-Oppen,
as investigated also in [7] in a different setting.

® Lemma 5.2 in [8] requires that the superposition-based inference system is invariant
with respect to renaming finitely many constants. Most inference systems satisfy
a stronger requirement, namely they allow signature extensions, e.g., to introduce
Skolem constants.

In DPLL(I"'+7) applied to a problem RWP modulo 7, I" deals only with non-
ground clauses and ground unit clauses, so that I" works on an R-satisfiability
problem R W .S, where S is a set of ground unit clauses. Thus, it makes sense
to apply the results from the rewrite-based approach to I" seen as an R-solver.
DPLL(I'+7T) needs to combine Ty, . .., T,, R in the Nelson-Oppen scheme, which
requires that the theories do not share function symbols, are stably infinite and
each solver generates all entailed (disjunctions of) equalities between constants.
We assume that 71, ..., 7, satisfy these requirements and that R does not share
function symbols with them. For stable infiniteness of R, we apply the above
result about variable inactivity implying stable infiniteness: in the new version
of Z3(SP), the SP engine is equipped with a test that detects the generation
of variable-inactive clauses, hence cardinality constraints, and discovers whether
R is not stably infinite. Such a test also excludes upfront a situation such as
R = {z = aV z = b} of the example in Section 1. For the generation of
(disjunctions of) equalities between constants in R, we assume that the I" engine
is fair, which ensures that every theorem is implied by some generated formulae.®
If contraction is also done systematically, only irredundant clauses generated by
I" are kept and passed to the DPLL(T) core.

The aforementioned results on variable inactivity were proved under the hy-
potheses that the ground unit clauses in S are R-clauses and equality is the
only predicate symbol. In the framework of DPLL(I" + 7), ground clauses may
contain also 7T-symbols, and R may introduce predicate symbols other than
equality. We handle the first issue by purification, a standard step in the Nelson-
Oppen method, which separate occurrences of function symbols from different
signatures, by introducing new constant symbols (e.g., f(g(a)) ~ b, where f and
g belongs to different signatures, becomes f(c) ~ b A g(a) =~ ¢, where ¢ is new).
The initial set of ground clauses P is transformed in two disjoint sets P; and Ps,
where P; contains only R-symbols and P only 7-symbols. Since only constants
are introduced, the problem remains ground. We deal with the second issue by
representing an R-atom p(ti,...,¢,) as fp(t1,...,t,) = T, where f, is a new
function symbols and T is a special constant.

Definition 3. A set of formule R'W P is smooth with respect to a background
theory T = U, Ti, if the signatures of Ti,...,Tn, R do mot share function
symbols, R is variable inactive, and P is a set of ground formule Py W Py, where
Py contains only R-symbols, and Py only T -symbols.

This definition summarizes the problem requirements for the sequel.

4 Unsound theorem proving in DPLL(I" 4+ 7))

In theorem proving applied to mathematics, most conjectures are true. Thus,
it is customary to sacrifice completeness for efficiency, and retain soundness,

5 Fairness guarantees that inferences are done systematically, in such a way that every
theorem has a minimal proof in the limit: see [4] for details.

which is necessary to attribute unsatisfiability to a set of clauses F' if a proof is
found. A traditional example is deletion by weight [19], where clauses that are too
“heavy” are deleted. In theorem proving applied to verification, most conjectures
are false. Thus, it was suggested in [17] to sacrifice soundness for termination,
and retain completeness, which is necessary to establish satisfiability if a proof
is not found. Dually to deletion by weight, an unsound inference could suppress
literals in clauses that are too heavy.

We consider a single unsound inference rule: adding an arbitrary clause C'.
This rule is unsound because C' may not be implied by F'. This rule is simple, but
can simulate different kinds of unsound inferences. Suppose we want to suppress
the literals D in C'V D, then we can simply add C, which subsumes C' V D.
Suppose a clause C[t] contains a deep term ¢, and we want to replace it with
a constant a. We can accomplish this by adding ¢ ~ a. The idea is to extend
DPLL(I" + T) with a reversible unsound inference rule. We say it is reversible,
because we track the consequences of the clauses added by this rule.

DPLL(I"+ T) works on hypothetical clauses of the form H >C, where C is a
clause (i.e., a disjunction of literals), and H is the set of ground literals, from the
candidate model built by DPLL(I'+7), that C' depends on, in the sense that they
were used as premises to infer C' by I'-inferences. The set of hypotheses should be
interpreted as a conjunction, and a hypothetical clause (I3 A... AL (4 V... 1)
should be interpreted as =iy V...V =l, VI{ V... VI . In this context, rather than
merely adding a clause C, the unsound inference rule introduces a hypothetical
clause [C] > C, where [C'] is a new propositional variable that is used to track
the consequences of adding C. Note that the hypothetical clause [C] > C is
semantically equivalent to —=[C|VC'. This clause does not change the satisfiability
of the input formula because [C'] is a new propositional variable.

The DPLL(I"+T) calculus is described as a transition system [11]. States of
the transition system are of the form M | F', where M is a sequence of assigned
literals, and F a set of hypothetical clauses. Intuitively, M represents a partial
assignment to ground literals, with their justifications, and therefore it represents
a partial model, or a set of candidate models. An assigned literal can be either a
decided literal or an implied literal. A decided literal represents a guess, and an
implied literal [a literal [that was implied by a clause C. No assigned literal
occurs twice in M nor does it occur negated in M. If neither [nor —l appears in
M, then [is said to be undefined. The initial state is | Fy, where Fy is the set
{d>C | C € RW P}. During conflict resolution, we also use states of the form
M | F|C, where C is a ground clause. In the following, clauses(F') denotes the
set {C | H>C € F}, M =p C indicates that M propositionally satisfies C, and
if C is the clause [1 V.. .Vl,, then =C' is the formula —l; A. . . A=l,,. We use lits(M)
to denote the set of assigned literals, ngclauses(F') for the subset of non-ground
clauses of clauses(F), and clauses™ (M | F) for ngclauses(F) U lits(M). We also
write C instead of @ > C.

We extend the calculus with the rule UnsoundIntro. This rule introduces an
arbitrary clause C into F, and it adds the ground literal [C| to M, where [C']

is a new propositional variable used as a label for clause C. The idea is to record
the fact that we are guessing C.

UnsoundIntro
C ¢ clauses(F),
M| F =M [C]| F, [C]>C if ¢ [C] is new,
[C,-[CT ¢ M,

where the side condition prevents the system from adding C, if it is already
known to be inconsistent with the partial model M.

In order to combine the theories in 7 = | J!_; 7; and R in the Nelson-Oppen
scheme, we need to communicate to R the (disjunctions of) equalities between
constants entailed by 7 and P. The next inference rule takes care of this re-
quirement, which we relax as in [12], because the T;-solvers for linear arithmetic
and bit-vectors can build a specific candidate T-model for M, that we denote
by model(M). The idea is to inspect model(M) and propagate all the equalities
it implies, hedging that they are consistent with R. Since these equalities are
guesses, if one of them is inconsistent with R, backtracking will be used to fix
model(M). The rationale for this approach is practical: it is generally far less ex-
pensive to enumerate the equalities satisfied in a particular 7-model than those
satisfied by all T-models consistent with M; the number of equalities that really
matter is small in practice.

PropagateEq

t and s are ground,

t,s occur in F,

(t ~ s) is undefined in M,
model(M)(t) = model(M)(s).

M|F —Mt~s|F if

The basic and theory propagation rules of DPLL(I" + 7)) are repeated from
[11] in Figure 1.

The interface with the inference system I is realized by the Deduce rule:
assume 7 is an inference rule of I" with n premises, {Hy > Cy,..., H,, > C,,} is
a set of hypothetical clauses in F, {l;11,...,0,} is a set of assigned literals in
M, and H(y) denotes the set Hy U...U Hy, U{lmy1, ..., ln}; then v is applied
to the set of premises P(y) = {C4,...,Cum,lnt1,...,1n}, and the conclusion
C(~) is added to F as H(v) > C(v). The hypotheses of the clauses H; > C; are
hidden from the inference rules in I'. Our Deduce rule is slightly different from
its predecessor, named Deduce? in [11]: Deduce’ allowed I" to use as premises
non-ground clauses and ground unit clauses in clauses(F), whereas our Deduce
allows it to use only non-ground clauses in clauses(F'). This is a consequence
of the addition of PropagateEq, which adds the relevant ground unit clauses
directly to M, so that I' finds them in lits(M). This is also the reason why
we let PropagateEq add equalities between ground terms and not only between
constants.

We say a hypothetical clause H > C is in conflict if every literal in C is
complementary to an assigned literal. The Conflict rule converts a hypothetical

Decide
UnitPropagate
M| F,H>(CVI)
Deduce
Conflict
M|F,H>C
Explain ~
M|F|CVI
Learn

M|F|C
Backjump

MUM|F|CVI

Unsat
M|F|O
T-Propagate

T-Conflict
M| F

[is ground,
[or =l occurs in F,
[is undefined in M.

=MI|F

[is ground,
M Ep =C,
[is undefined in M.

if {
=M lgscwy | F, H>(C V1) if {
el
(v) C clauses* (M | F),
(7) € clauses(F).

if M':p -C

v
= M | F,H(y) > C(7v) if ¢ P
C

= M|F,HoC|-HVC

= M|F|-HVvDVC if lgppviy €M

= M|F,C|C if C ¢ clauses(F)
M):P _'07
[is undefined in M,
P H>CeF|
Hnlits(I' M) =10

— M lcv; H F if

)

[is ground and occurs in F;
[is undefined in M,

—> unsat

= Mlcuvev-tw I F 00 € lits(M),
[P Ay

. li,...,ln € lits(M),

M F [~ V...Vl if {11,...,ln|:Tfalse.

Fig. 1. Basic and theory propagation rules

conflict clause H>C' into a regular clause by negating its hypotheses, and puts the
DPLL(I'+T) system in conflict resolution mode. The Explain rule unfolds literals
from conflict clauses that were produced by unit propagation. Any clause derived
by Explain can be added to F' by the Learn rule, because it is a logical consequence
of the original set of clauses. The rule Backjump drives the DPLL(I"+ T) system
back from conflict resolution to search mode, and it unassigns at least one decided
literal (I’ in the rule definition). All hypothetical clauses H > C' which contain
hypotheses that will be unassigned by the Backjump rule are deleted. Note that
a learnt clause D may contain —[C. In this case, the clause D is recording the
context where guessing the clause C' is unsound.

It was proved in [11] that DPLL(I" + T) is refutationally complete when T
is empty. We prove a stronger result for the case where T is not empty. We say
a state M | F' is saturated if the only applicable rule is UnsoundlIntro.

Theorem 1. If the initial set of clauses S = R W P is smooth, and I' has
the reduction property for counterexamples, whenever M | F is saturated, S is
satisfiable modulo the background theory T .

All inference systems considered in the rest of this paper satisfy the reduction
property for counterexamples.

We assign an inference depth to every clause in clauses(F') and literal in
lits(M). Intuitively, the inference depth of a clause C' indicates the depth of the
derivation needed to produce C. More precisely, all clauses in the original set
of clauses have inference depth 0. If a clause C' is produced using the Deduce
rule, and n is the maximum inference depth of the premises, then the inference
depth of C is n + 1. The inference depth of a literal [¢ in M is equal to the
inference depth of C. If [is a decided literal, and n is the minimum inference
depth of the clauses in F' that contain [, then the inference depth of [is n. We
say DPLL(I" + T) is (kq, ky)-bounded if Deduce is restricted to premises with
inference depth < kg4, and UnsoundIntro can only be applied k,, times.

Theorem 2. (kq, ky)-bounded DPLL(T" + T) always terminates.

A state M || F' is stuck at kq if the only applicable rules are UnsoundIntro and
Deduce, and Deduce is only applicable to premises with inference depth > k.
Theorem 2 suggests a simple saturation strategy where the bounds kg and k,
are increased whenever the procedure reaches a blocked state.

We use U to denote a sequence of “unsound axioms” introduced by Unsound-
Intro. In the next section, we investigate some examples where DPLL(I" + T)
is a decision procedure for a smooth set of formulee S. This is accomplished by
showing that for some sequence of “unsound axioms” U, there are kg and k,,
such that (kgq, k.,)-bounded DPLL(I"+7) is guaranteed to terminate in the unsat
state, whenever S is unsatisfiable, and in a state M | F' which is not stuck at kg,
whenever S is satisfiable.

Due to space limitations, we refer to [11] for the contraction inference rules of
DPLL(I'+T). DPLL(I'+T) assigns a scope level to each literal in M. The scope
level of a literal I, level(l), in M | M’, is equal to the number of decided literals

in M [. The level of a set of literals H is level(H) = max{level(l) | | € H}. A
contraction rule v from I" is generalized to hypothetical clauses as follows: given
a main premise H>C, and side premises Ho>Co, ..., Hy>Chyy and Lyyq, ... Uy,
taken from F and lits(M), respectively, let H = HoU...UH, U{lpmi1,..,ln}
Assume that + applies to the premises C, Cs, ..., Cpylmt1, - -y . If level(H) >
level(H'), we claim it is safe to delete H>C'. In contrast, if level(H) < level(H'),
then it is only safe to disable the clause H > C until level(H') is backjumped. A
disabled clause is not deleted, but it is not used as premise until it is re-enabled.

Ezample 1. Let Rbe {~(z Cy)V-(y C z)Vz C 2z, 7(x T y)Vf(z) C f(y)}, and
Pbe{aCbh al f(c), ~(a Cc)}. Assume I" features Resolution, Superposition
and Simplification. If UnsoundIntro adds [f(z) ~ x> f(x) ~ x, the monotonicity
axiom and a C f(c) get rewritten. Note that [f(z) ~] is a decision literal,
and level([f(z) ~ x]) = 1. Thus, the rewriting step only disables a T f(c),
and adds [f(z) ~ z]>a C ¢ to F. Resolution generates the conflict clause
[f(z) =~ «] > O. Using the conflict resolution rules, the literal —[f(x) ~ z] is
added to M, preventing DPLL(I" + 7)) from guessing f(x) ~ x again. Next, if
UnsoundIntro adds [f(f(z)) ~ z]> f(f(x)) =~ z, monotonicity and a C b produce
only f(a) C f(b), while monotonicity and a C f(¢) produce only f(a) C f(f(c)),
which is disabled and replaced by [f(f(z)) = z]> f(a) C ¢. Then, DPLL(I"+T)
reaches a saturated state, and satisfiability is detected.

Ezample 2. Let Rbe {~(z Cy)V-(yC2)Va CE z}, Pbe{a C by, bs C ¢, =(a C
¢),by < bg,by > by—1}, and T be the theory of linear integer arithmetic. Assume
I' is Hyperresolution, Superposition and Simplification. UnitPropagate adds the
literals of P to M. In the model model(M) maintained by the linear arithmetic
solver, model(M)(b1) = model(M)(b2). Thus, PropagateEq guesses the equation
by ~ by. Say bs = by: Simplification rewrites by T ¢ to by C ¢. Hyperresolution
derives a C ¢ from a C by, by C ¢ and transitivity, so that an inconsistency is
detected. DPLL(I"+ 7)) backtracks and adds —(by ~ bs) to M. T-Conflict detects
the inconsistency between this literal and {b; < by,b; > by — 1}. The conflict
resolution rules are applied again and the empty clause is produced.

5 Essentially finite theories

We say a structure @ is essentially finite with respect to the function symbol
f if @(f) has finite range. Essential finiteness is slightly weaker than finiteness,
because it admits an infinite domain provided the range of &(f) is finite.

Theorem 3. If ¢ is an essentially finite structure with respect to a monadic
function symbol f, then there exist ki, ko, ki # ko, such that ® = f*(z) ~

* ().

Proof. For all v € ||, we call f-chain starting at v, the sequence:

Since @(f) has finite range, there exist g1, g2, with q1 # g2, such that &(f)% (v) =
@(f)%(v). Say that g1 > ¢o. Then we call size, denoted sz(P, f,v), and prefiz, de-
noted pr(®, f,v), of the f-chain starting at v, the smallest ¢; and g2, respectively,
such that @(f)? (v) = &(f)®(v) and ¢1 > g2. We term lasso, denoted Is(P, f,v),
of the f-chain starting at v, the difference between size and prefix, that is,
Is(P, f,v) = sz(P, f,v) — pr(P, f,v). We say that @(f)"(v) is in the lasso of the
f-chain starting at v, if n > pr(®, f,v). Clearly, for all elements u in the lasso of
the f-chain starting at v, @(f)™(u) = u, when m = Is(®, f,v). Also, for all mul-
tiples of the lasso, that is, for all [= h - Is(®, f,v) for some h > 0, &(f) (u) = u.
Let p = max{pr(®, f,v) | v € range(®(f))} + 1 and | = lem{Is(®, f,v) | v €
range(®(f))}, where lem abbreviates least common multiple. We claim that
& = frtli(z) ~ fP(x), that is, k; = p+ 1 and ky = p. By way of contradic-
tion, assume that for some v € ||, &(f)P* (v) # &(f)P(v). Take the f-chain
starting at v: @(f)P(v) is in the lasso of this chain, because p > pr(®, f,v). Since
[is a multiple of Is(®, f,v), we have &()P (v) = &(f)(D(f)P(v)) = &(f)?P(v),
a contradiction. a

Ezample 3. Let @ be a structure such that |®| = {vg,v1,va,...,v9,...}, and let
@(f) be the function defined by the following mapping: {vg — vy, v1 > va, V2 —>
V3,V3 > U4,V4 — V2,V5 H— Vg,Vg > U7,V7 > Ug,Vg +> Vs, * — ’Ug}, where *
stands for any other element. The f-chain starting at vy has pr(®, f,vg) = 2,
sz(®, f,vo) = 5 and Is(P, f,v9) = 3. The f-chain starting at vs has pr(®, f,vs) =
0,sz(®P, f,vs) =4 and Is(P, f,vs) =4. Then,p=2+1=3,1 =12,k = p+Ii =15
and ko =p =3, and & = f15(z) ~ f3(x).

To identify classes of problems for which DPLL(I" 4 T) is a decision procedure,
we focus on theories R that satisfy either one of the following properties:

Definition 4. R has the finite model property, if for all sets P of ground R-
clauses, such that R W P is satisfiable, R W P has a model & with finite |P|.

Definition 5. Let R be a presentation whose signature contains a single
monadic function symbol f. R is essentially finite, if for all sets P of ground R-
clauses, such that RWP is satisfiable, RYP has a model @, such that range(P(f))
is finite.

We show that essentially finite theories can give rise to decision procedures if
clause length is bounded.

Theorem 4. Let R be an essentially finite theory and P a set of ground clauses.
Let I' be a rewrite-based inference system. Consider a DPLL(T" + T) procedure
where UnsoundlIntro progressively adds all equations of the form fi(z) ~ f*(x)
with j > k. Then DPLL(I" + T) is a decision procedure for the satisfiability
modulo T of smooth problems in the form R W P if there exists an n such that
no clause created contains more than n literals.

Proof. Tf RWP is unsatisfiable, then by completeness DPLL(I"+7) will generate
the empty clause when k; becomes large enough. If R W P is satisfiable, choose

11

k. large enough to contain the axiom f*'(x) ~ f*2(z) as given in Theorem 3.
We need to prove that if k4 is large enough, DPLL(I" + 7)) will not get stuck at
kq. To do that, we prove that only a finite number of clauses are generated for
unbounded kg for the given k,. The axiom f*'(x) ~ f*2(z) is oriented into the
rewrite rule f¥!(z) — f*2(x). This guarantees that no term f*(t) with k > k;
is kept. Since no clause can contain more than n literals, only a finite number of
clauses can be derived for an unbounded k. O

Assume that I" is Superposition with negative selection plus Hyperresolution?. If
R is Horn, Superposition is Unit Superposition, which does not increase clause
length, and Hyperresolution only generates positive unit clauses, so that no
clause containing more than n literals can be produced. If R is a set of nonequal-
ity clauses with no more than two literals each, and I" is Resolution plus Simpli-
fication (to apply f*!(z) — f*2(x)), then all generated clauses contain at most
two literals. To give further examples, we need the following:

Definition 6. A clause C = —l1V.. V=l Vip41V. . Viptm is ground-preserving
if U;Li:;l Var(l;) C U;L:1 Var(l;). A set is ground-preserving if all its clauses
are.

In a ground-preserving® set the only positive clauses are ground. If R is ground-
preserving, Hyperresolution only generates ground clauses; Superposition with
negative selection yields either ground clauses or ground-preserving clauses with
decreasing number of variable positions, so that no new non-ground terms can
be created, and only finitely many non-ground ground-preserving clauses can be
derived. If R is also essentially finite, the depth of terms is limited by Simpli-
fication by f*i(z) — f*2(x), so that only finitely many ground clauses can be
generated. Below, we show that some specific theories relevant to the axiom-
atization of type systems in programming languages are essentially finite and
satisfy the properties of Theorem 4. Given the axioms

Reflexivity = C z (1)
Transitivity ~(z Cy)Vo(yC2)Vaz C 2z (2)
Anti-Symmetry =(z Cy)V-(yCz)Vae~y (3)
Monotonicity —(z C y) V f(x) C f(y) (4)
Tree-Property ~(2 C2)V-(zCy)VeCyVyLCux (5)

Ml = {(1),(2),(3),(4)} presents a type system with multiple inheritance, and
SI = MIW {(5)} presents a type system with single inheritance, where C is the
subtype relationship and f is a type constructor.

Theorem 5. Sl has the finite model property hence it is essentially finite.

" Hyperresolution is realized by Resolution with negative selection rule.
8 This notion is a weakening of that of “positive variable dominated” clause of Defi-
nition 3.18 in [9].

12

Proof. Assume SlW P is satisfiable, and let @ be a model for it. It is sufficient
to show there is a finite model @'. Let Tp be the set of subterms of terms in P,
and Vp be the set #(Tp). Since P is finite and ground, Vp is finite. Let |®@'| be
Vp U {r}, where r is an element not in Vp. Then, we define ¢'(C)(vy, v2) as:

r =g or (v1,v9) € P(C).

Intuitively, r is a new maximal element. {|?’|, &'(C)) is a poset and &' (C) satisfies
the Tree-Property. Now, we define an auxiliary function g: |®'| — |@'| as:

g(v) = {@(f)(v) if f(t) € Tp, and B(t) = v;

T otherwise.

Let domy, the relevant domain of f, be the set {&(t) | f(t) € Tp}U{r}. With a
small abuse of notation, we use v C w to denote (v,w) € ¢'(C). Then, we define
@'(f)(v) as g(w), where w is an element in |¢'| such that v T w, w € domy, and
for all w’, v C w’ and w’ € domy imply w C w’. This function is well defined
because @' (C) satisfies the Tree-Property, r is the maximal element of |®'|, and
r € domy. Moreover, ¢'(f) is monotonic with respect to ¢'(C). a

Definition 7. Let (A,C) be a poset. The Dedekind-MacNeille completion [18]
of (A,C) is the unique complete lattice (B, <) satisfying the following properties.

— There is an injection « from A to B such that: vi C vy iff a(vy) < a(vs),
— Ewery subset of B has a greatest (least) lower bound, and
— B is finite if A is finite. Actually, B is a subset of 24.

Theorem 6. Ml has the finite model property hence it is essentially finite.

Proof. The construction used for Sl does not work for MI, because without the
Tree-Property the w in the definition of @'(f)(v) may not be unique for a given v.
First, we define an auxiliary structure $q such that |@y| = Vp, @o(C) = ¢(C)|v,,
and Py(f) is defined as:

O(f)(v) it f(t) € Tp, and &(t) = v,
w otherwise,

#(N) = {

where w is some element of Vp. Note that (Vp,Po(C)) is a poset. Let doms be
the set {&(t) | f(t) € Tp}. Then, following [10] we use the Dedekind-MacNeille
completion to complete (Vp, Po(C)) into a complete lattice (B, X). We use glb(S)
to denote the greatest lower bound of a subset S of B. Now, we define a finite
model @' for MW P with domain |¢'| = B, in the following way:

d'(c) = a(Po(c)) for every constant ¢ in Tp,
() ==,
P'(f)(v) = glb({a(@o(f)(w)) | w € Vp, w € domy, v X a(w)}).
The function &' (f) is monotonic with respect to &'(C). The structure ¢’ satisfies
P because for every term t in Tp, we have &'(t) = a(P(t)). Moreover, the C-
literals in P are satisfied because the lattice (B, =) is a Dedekind-MacNeille
completion of @y which is a restriction of ®. O

13

Now we show that DPLL(I" + 7) with the UnsoundIntro rule is a decision pro-
cedure for M| and SI.

Theorem 7. Let P be a set of ground clauses. Let I' be Hyperresolution plus
Superposition and Simplification. Consider a DPLL(I"+T) procedure where Un-
soundIntro progressively adds all equations of the form fI(x) ~ f*(x) with j > k.
Then DPLL(I" + T) is a decision procedure for the satisfiability modulo T of
smooth problems in the form Mlw P.

Proof. Since Ml is essentially finite, we only need to show that we never generate
a clause with more than n literals. This follows from the fact that Ml is a Horn
theory. m]

Theorem 8. Let P be a set of ground clauses. Let I' be Hyperresolution plus
Superposition and Simplification. Consider a DPLL(I"+T) procedure where Un-
soundIntro progressively adds all equations of the form f7(x) ~ f*(x) with j > k.
Then DPLL(I + T) is a decision procedure for the satisfiability modulo T of
smooth problems in the form Sly P.

Proof. Since Sl is essentially finite, we need to show that only finitely many
clauses can be generated. Sl is not Horn, because of Tree-Property, and it is not
ground-preserving, because of Reflexivity. Since all the axioms besides Reflex-
ivity are ground-preserving, any inference will yield either a ground clause or a
non-ground ground-preserving clause with fewer variable positions. We just need
to consider a Hyperresolution which includes Reflexivity. All those inferences ei-
ther yield a tautology, a subsumed clause, or a ground clause. O

In Spec# [3], the axiomatization of the type system also contains the axioms
TR = {—(g(z) ~ null), h(g(x)) =~ x}, where the function g represents the type
representative of some type. The first axiom states that the representative is
never the constant null, and the second states that g has an inverse, hence it is
injective. Note that any model of TR must be infinite.

Theorem 9. Let P be a set of ground clauses. Let I' be Hyperresolution plus
Superposition and Simplification. Consider a DPLL(I"+T) procedure where Un-
soundIntro progressively adds all equations of the form fI(z) ~ f*(z) with j > k.
Then DPLL(I + T) is a decision procedure for the satisfiability modulo T of
smooth problems in the form MIJ TRW P and SIW TRW P.

Proof. I' applied to TR and ground equations only generates ground equations
of non-increasing depth, hence it terminates. Since Ml (SI) and TR do not share
function symbols and are variable inactive, I" terminates also on their union. O

6 Discussion

The DPLL(I"+ 7)) system integrates DPLL(T) with a generic first-order engine
I' to combine the strengths of DPLL, efficient solvers for special theories such

14

as linear arithmetic, and first-order reasoning based on superposition and reso-
lution. The study in [6] was concerned with using the first-order engine alone as
decision procedure, without integrating an SMT-solver. In the method of [7], the
first-order engine is used as a pre-processor to compile the theory R and reduce it
to a theory that DPLL(T) alone can handle. Thus, it is a two-stage approach. In
DPLL(I" 4 T) the first-order engine is tightly integrated within DPLL(7). The
downside of such a tight integration was that refutational completeness had not
been established, except in the case where the background theory 7T is empty. In
this paper we advanced the DPLL(I" + 7T) approach by giving conditions under
which it is refutationally complete when 7 is not empty.

Then, we introduced a new calculus that combines DPLL(I" 4+ 7) with un-
sound theorem proving. The purpose is to try to enforce termination by introduc-
ing additional axioms as hypothesis. A framework for unsound theorem proving
was originally given in [17] along with some examples. In the current paper we
have provided a mechanism for the prover to detect any unsoundness introduced
by the added axioms and recover from it, and we have instantiated the framework
with concrete examples for which unsound theorem proving becomes a decision
procedure. Some of these examples include monotonicity axioms. Another ap-
proach to handle such axioms is locality: for instance, extending a theory with
a monotonicity axiom is a local extension [22,16]. However, in the applications
that motivate our research, there is no guarantee that all relevant instances of
T WR WP can be seen as hierarchies of local extensions.

Directions for future work include extensions to more presentations, includ-
ing, for instance, cases where the signature of R features also non-monadic func-
tion symbols (e.g., to cover axioms such as y C 2 Au C v = map(z,u) C
map(y, v)). Another open issue is some duplication of reasoning on ground unit
clauses in DPLL(I" + 7)), due to the fact that ground unit clauses are seen by
both I' and the congruence closure (CC) algorithm within DPLL(T). Using the
CC algorithm to compute the completion of the set of ground equations [14, 21],
and pass the resulting canonical system to I', would not solve the problem en-
tirely, because this solution is not incremental, as the addition of a single ground
equation requires recomputing the canonical system.

The class of formulee that can be decided using DPLL(I" + 7)) with un-
sound inferences includes axiomatizations of type systems, used in tools such as
ESC/Java [13] and Spec# [3], which is significant evidence of the relevance of
this work to applications.

Acknowledgments Part of this work initiated during a visit of the first author
with the Software Reliability Group of Microsoft Research in Redmond.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-
based satisfiability procedures. ACM TOCL, 10(1):129-179, 20009.

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Inf. Comput., 183(2):140-164, 2003.

M. Barnett, K. R. M. Leino, and W. Schulte. The Specf programming system:
An overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, Proc. CASSIS’04, volume 3362 of LNCS, pages 49-69. Springer, 2005.
M. P. Bonacina and N. Dershowitz. Abstract canonical inference. ACM TOCL,
8(1):180-208, 2007.

M. P. Bonacina and M. Echenim. Rewrite-based satisfiability procedures for re-
cursive data structures. In B. Cook and R. Sebastiani, editors, Proc. 4th PDPAR
Workshop, FLoC 2006, volume 174(8) of ENTCS, pages 55—70. Elsevier, 2007.
M. P. Bonacina and M. Echenim. On variable-inactivity and polynomial T-
satisfiability procedures. J. Logic and Comput., 18(1):77-96, 2008.

M. P. Bonacina and M. Echenim. Theory decision by decomposition. J. Symb.
Comput., pages 1-42, To appear.

M. P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decidability
and undecidability results for Nelson-Oppen and rewrite-based decision procedures.
In U. Furbach and N. Shankar, editors, Proc. 8rd IJCAR, volume 4130 of LNAI,
pages 513-527. Springer, 2006.

R. Caferra, A. Leitsch, and N. Peltier. Automated Model Building. Kluwer Aca-
demic Publishers, Amsterdam, 2004.

D. Cantone and C. G. Zarba. A decision procedure for monotone functions over
bounded and complete lattices. In H. de Swart, editor, Proc. TARSKI II, volume
4342 of LNAI pages 318-333. Springer, 2006.

L. de Moura and N. Bjgrner. Engineering DPLL(T) + saturation. In A. Armando,
P. Baumgartner, and G. Dowek, editors, Proc. 4th IJCAR, volume 5195 of LNAI,
pages 475-490. Springer, 2008.

L. de Moura and N. Bjgrner. Model-based theory combination. In S. Krstié
and A. Oliveras, editors, Proc. 5th SMT Workshop, CAV 2007, volume 198(2) of
ENTCS, pages 37-49. Elsevier, 2008.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Proc. PLDI, pages 234245, 2002.

J. Gallier, P. Narendran, D. A. Plaisted, S. Raatz, and W. Snyder. Finding canon-
ical rewriting systems equivalent to a finite set of ground equations in polynomial
time. J. ACM, 40(1):1-16, 1993.

J. Y. Halpern. Presburger Arithmetic with unary predicates is II{ Complete. J.
Symb. Logic, 56:637-642, 1991.

S. Jacobs. Incremental instance generation in local reasoning. In Notes 1st CEDAR
Workshop, IJCAR 2008, pages 47-62, 2008.

C. A. Lynch. Unsound theorem proving. In J. Marcinkowski and A. Tarlecki,
editors, Proc. CSL’04, volume 3210 of LNCS, pages 473-487. Springer, 2004.

H. M. MacNeille. Partially ordered sets. In Transactions of the American Mathe-
matical Society, volume 42, pages 416-460, 1937.

W. W. McCune. Otter 3.3 reference manual. Technical Report ANL/MCS-TM-
263, MCS Division, Argonne National Laboratory, Argonne, IL, USA, 2003.

G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM TOPLAS, 1(2):245-257, 1979.

W. Snyder. A fast algorithm for generating reduced ground rewriting systems from
a set of ground equations. J. Symb. Comput., 1992.

V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In
R. Nieuwenhuis, editor, Proc. 20th CADE, volume 3632 of LNAI, pages 219-234.
Springer, 2005.

16

