
Theoretical Computer Science 337 (2005) 1–50
www.elsevier.com/locate/tcs

Fundamental Study

Transforming semantics by abstract interpretation

Roberto Giacobazzi∗, Isabella Mastroeni
Dipartimento di Informatica, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy

Received 3 February 2004; received in revised form 7 December 2004; accepted 13 December 2004

Communicated by G. Levi

Abstract

In 1997, Cousot introduced a hierarchy where semantics are related with each other by abstract
interpretation. In this field we consider the standard abstract domain transformers, devoted to refine
abstract domains in order to include attribute independent and relational information, respectively the
reduced product and power of abstract domains, as domain operations to systematically design and
compare semantics of programming languages by abstract interpretation. We first prove that natural
semantics can be decomposed in terms of complementary attribute independent observables, leading
to an algebraic characterization of the symmetric structure of the hierarchy. Moreover, we character-
ize some structural property of semantics, such as their compositionality, in terms of simple abstract
domain equations. This provides an equational presentation of most well known semantics, which is
parametric on the observable and structural property of the semantics, making it possible to systemat-
ically derive abstract semantics, e.g. for program analysis, as solutions of abstract domain equations.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Abstract interpretation; Comparative semantics; Domain theory; Compositionality; Constraint
programming

1. Introduction

Since its origin in 1977, abstract interpretation[11] has been widely used, implicitly
or explicitly, to describe and formalize approximate computations in many different areas
of computer science, from its very beginning use in formalizing (compile-time) program

∗ Corresponding author. Tel.: +39458027995; fax: +39458027982.
E-mail addresses:roberto.giacobazzi@univr.it(R. Giacobazzi),mastroeni@sci.univr.it(I. Mastroeni).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.12.021

http://www.elsevier.com/locate/tcs
mailto:roberto.giacobazzi@univr.it
mailto:mastroeni@sci.univr.it

2 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

analysis frameworks to more recent applications in model checking, program verification,
data security, type inference, automateddeduction, andcomparative semantics. This justifies
a now well established definition of abstract interpretation asa general theory to approx-
imate the semantics of discrete dynamic systems[8]. This is particularly striking in com-
parative semantics, where semantics at different levels of abstraction can be compared with
each other by abstract interpretation[10]. In this paper, we analyze the most well-known
structural properties of semantics, such as their precision, compositionality, and relation
between complementary observables, by using standard abstract interpretation techniques.
We prove that most of these properties be characterized in terms of properties of the corre-
sponding abstractions. This is achieved by isolating a suitable set of abstract domain trans-
formers which allows us to design abstractions accordingly, providing a characterization
of semantics of programming languages as solutions of simple abstract domain equations,
involving both some basic observable property which has to be observed by the semantics
and the abstract domain transformers necessary in order to achieve a suitable structural
property.

1.1. The scenario

Semantics is central in the construction of any abstract interpretation. The so-calledcon-
crete semanticsspecifies the observable property of programbehavior and anymore abstract
semantics, e.g. decidable semantics for program analysis, can be derived by abstraction.
As a consequence, a semantics, at any level of abstraction, can be fully specified as an
abstract interpretation of a more concrete semantics. This key idea is the basis of Cousot’s
design of a complete hierarchy of semantics of programming languages[9,15]. A number of
semantics including big-step, termination and non-termination, Plotkin’s natural, Smyth’s
demonic, Hoare’s angelic relational and corresponding denotational, Dijkstra’s predicate
transformer weakest-precondition and weakest-liberal precondition and Hoare’s partial and
total axiomatic semantics, have all been derived by successive abstractions from an (op-
erational) maximal trace semantics of a transition system. The resulting hierarchy (here
called Cousot’s hierarchy) provides a complete account on the structure and the relative
precision of most well known semantics of programming languages. One of the major
challenge in Cousot’s construction is thatsemantics are abstract domains. Therefore they
can be transformed, refined, decomposed, and composed similarly to what is usually done
with abstract domains in static program analysis. This view of semantics as domains pro-
vides both a better insight on the structure and relative precision of traditional well known
semantics of programming languages and the possibility to systematically specify new se-
mantics by composition, decomposition, refinement and simplification of existing ones, by
manipulating the corresponding domains.

1.2. The main results

In this paper, we treat the Cousot’s hierarchy of semantics as analgebra of semantics,
namely we apply algebraic operations to semantics, here seen as abstract domains. Our
aim is to relate the properties of semantics with the properties of the abstract domain
transformations used in their design. This is achieved by considering the main operations

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 3

Fig. 1. Cousot’s hierarchy.

for abstract domain transformation in[13], i.e., theattribute independentreduced product
and therelational reduced power composition. The reduced product of two domainsA and
B consists in building the domain that observes all the information contained in bothA and
B, independently of each other. The reduced power, of two domainsA andB, builds the
domain of all the functional relations between the elements ofA andB. We prove that all
the semantics in Cousot’s hierarchy can be specified as solutions of simple abstract domain
equations involving attribute independent and relational combinators. The duality between
relational and attribute independent combination of abstract domains is reflected in the
structure of the paper.
In the first part of this paper, we analyze Cousot’s hierarchy of semantics and we char-

acterize its symmetric structure (see Fig.1) in terms of a purely algebraic manipulation
of domains. We prove that complementary information characterizes the symmetric struc-
ture of Cousot’s hierarchy. We consider thereduced product, introduced in[13], as the
basic operation for composing semantics, and its inverse operation,abstract domain com-
plementationintroduced in[7], as the basic operation for decomposing semantics. Given
two semanticsS1 andS2, the product semanticsS1 � S2 is the most abstract semantics
which is as precise as bothS1 andS2, namely which is able to observe both the observables
of S1 andS2. Domain complementation was originally introduced to decompose abstract
domains in static program analysis, and it is the inverse operation of reduced product. In
our case, this operation provides a systematic methodology for decomposing semantics
by characterizing the most abstract semanticsS which, when composed with a given se-
manticsB, yields the semanticsC = S � B as result. These operations provide advanced
methods for comparing semantics with respect to their relative expressiveness. This is
particularly relevant in the study of semantics observing complementary behaviors of pro-
grams, e.g. finite and infinite computations of a transition system. According to Cousot’s

4 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

construction, in fact, any semantic style (trace-operational, relational, denotational, Dijk-
stra’s predicate transformer and Hoare’s axiomatic semantics) may have a corresponding
natural, finite/angelic, demonic, andinfinitenature. The nature of each semantics defines
a corresponding observable behavior of programs (later calledobservable), which can be
parameterized according to the chosen semantic style, and it corresponds respectively to:
terminating, chaotic non-terminating, and infinite computations. We prove that natural se-
mantics are always the reduced product of finite/angelic and demonic or infinite semantics,
and that these semantics factorize the natural semantic construction by complementation.
In particular any finite/angelic semantics can be systematically derived as the domain com-
plementation in the natural semantics of the demonic or infinite semantics. Moreover, we
prove that finite/angelic and infinite semantics form themost abstract decomposition of any
natural semantics, and that demonic semantics can be further factorized in terms of infinite
semantics and of a new semantics, here calledslothful, which is unable to observe infinite
computations when programs may produce any possible output. Then we prove that this
highly symmetric structure is a consequence of a common pattern of abstraction between
semantic styles and observables, ranging from operational trace-based to the more abstract
Hoare’s axiomatic semantics. We characterize this pattern in terms of some basic properties
of the closure operators, associated with the semantics abstractions in Cousot’s hierarchy.
This allows us to prove the basic results on symmetric semantics for the trace-operational
semantic style only, deriving the results concerning all the other styles and observables as
a simple consequence. These results provide both an algebraic characterization of com-
plementary observable properties in semantics, and a decomposition result for observable
properties of programs in terms of complementary observables, similar to the well known
Alpern & Schneider’s safety/liveness decomposition of properties of concurrent program
executions (cf.[2]). This part is an extended and revised version of[25]. The attribute
independent combination of semantics does not include in abstractions the relational infor-
mation which is typically included in compositional semantics, such as in the denotational
semantics.
In the second part of this paper, we consider thereduced poweroperation[13,30], for

abstract domain refinement, as the basic operation able to include input/output relations
in domains. Reduced power has been proved to give the necessary structure of abstract
domains in order to model relational properties of in program analysis[14,32,37,42]. LetS
be the concrete domain, andS1 andS2 two abstractions ofS. The reduced powerS1 −→ S2
is the domain of all the monotone functions from elements ofS1 to elements ofS2. We
prove that the compositional semantics observing finite computations only, i.e., angelic
denotational and weakest-liberal precondition semantics, can be systematically derived
as the most abstract semantics closed under reduced power, and including the semantics
which observes, respectively, final and initial states of finite traces only. These semantics
are the most abstract ones which are compositional for observing, respectively, final and
initial states. Compositionality here means that, if[[P1]] and[[P2]] are the semantics of pro-
gram componentsP1 andP2, and� is a syntactic operator for program composition, then
there exists an operation◦ such that:[[P1 � P2]] = [[P1]] ◦ [[P2]]. We show that most well
known compositional semantics of imperative programs, such as the standard angelic deno-
tational and weakest-liberal precondition semantics, can be systematically derived as solu-
tions of simple abstract domain equations. We consider sequential syntactic composition of

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 5

programs and trace composition� for composing semantics. In this case, compositionality
boils down to[[P1;P2]] = [[P1]]�[[P2]]. As a consequence of these results, we obtain a sys-
tematic method for the design of semantics, where semantics can be designed as solutions
of domain equations involving the basic operations of reduced product, power and domain
complementation. Our results are general, and can be applied to any programming language
whose semantics can be defined in terms of traces of program states in a transition system.
As an example, we apply our construction to the case of concurrent constraint program-
ming ccp languages[40]. These languages well fit into Cousot’s hierarchy of semantics
being easily defined in terms of traces of constraints in a transition system. We prove that
both, Saraswat’s closure-based denotational[41], and de Boer et al.’s predicate transformer
semantics[16], can be derived by composing non-compositional semantics observing, re-
spectively, the final and initial constraints in terminating computations. This provides an
equational presentation of semantics as abstract interpretation of the maximal traces of
constraints, associated with an operational small-step transition system semantics ofccp
programs. Consequently, the corresponding finite/angelic, demonic, and infinite semantics,
can be specified by domain complementation.

1.3. State of the art

The foundation for a theory of abstract domains was fixed in[13]. In this paper, the
authors provide the main structure of abstract domains enjoyingGalois connections, and
some basic operators to systematically compose domains, i.e., thereduced productand
thereduced poweroperations. Since then, a number of papers have developed new domain
operations, andstudied the impact of theseoperations in thedesignof abstract interpretations
(e.g. see[29] for a survey). The notion ofdomain refinementanddomain simplification,
introduced in[21,29], provided the very first generalization of these ideas. Intuitively, a
refinement is any operator performing an action of refinement with respect to the standard
order of precision, e.g. by adding information to domains; while simplificators perform the
dual action of “taking out” information from domains. Few examples are known on the use
of systematic domain operations in abstract interpretation to reason about the structure and
the expressiveness of semantics of programming languages. Most of these examples are
in the semantics of logic programs, which basically relies on the hierarchy of semantics
developed in[6,24]. In [28], the authors study the relations between different semantics of
logic programs, namely success pattern semantics, computed answer substitution semantics
and call pattern semantics by means of complementation. This is the very first and unique
example of the use of complementation in systematic semantics design. In[9], the domain
operationoftensorproduct[43] is considered inorder todesignHoare’saxiomatic semantics
by exploiting the adjoint relation between pre- and post-conditions in Hoare triples. As far
as compositionality is concerned, the very first and, up to our knowledge, unique example
of construction of compositional semantics by abstract domain transformation, is in[30].
In this work, the authors proved that compositional semantics of logic programs in[5,23]
can be systematically designed by a generalization of Cousot’s reduced cardinal power
operation[13], from non-compositional semantics of computed answer substitution. This
work represents a starting point for the second part of our paper, which generalizes the
results in[30] to arbitrary programming languages whose semantics can be specified by a

6 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

transition system of states. In[26], a similar method has been considered in order to derive
compositional models for program slicing. These models allow transfinite semantics and
provide an adequate framework for specifying natural compositional semantics observing
both termination and non-termination.

2. Preliminaries

2.1. Basic notions

If SandT are sets, then℘(S) denotes the powerset ofS, S\T denotes the set-difference
betweenSandT, S ⊂ T denotes strict inclusion, and for a functionf : S → T andX ⊆ S,
f (X)

def= {f (x) | x ∈ X}. By f |X we denote the functionf whose domain is restricted to
X. By g ◦ f we denote the composition of the functionsf andg, i.e.,g ◦ f def= �x.g(f (x)).
The notation〈P, �〉 denotes a posetPwith ordering relation� , while〈P, � ,∨,∧,�,⊥〉
denotes a complete latticeP, with ordering� , lub∨, glb∧, greatest element (top)�, and
least element (bottom)⊥. Often,�P will be used to denote the underlying ordering of a
posetP, and∨P , ∧P ,�P and⊥P denote the basic operations and elements of a complete
lattice. The notationC�A denotes thatC andA are isomorphic ordered structures. An
elementx ∈ P is meet-irreducibleif x �= � andx = a ∧ b impliesx ∈ {a, b}. The set
of meet-irreducible elements inP is denotedMirr (P). The downward closure ofS ⊆ P is
defined as↓ S def= {x ∈ P | ∃y ∈ S. x�P y}, and forx ∈ P , ↓ x is a shorthand for↓ {x},
while the upward closure↑ is dually defined.S−→T denotes the set of all functions from
S to T. We use the symbol� to denote pointwise ordering between functions: IfS is any
set,P a poset, andf, g : S → P thenf � g if for all x ∈ S, f (x)�P g(x). LetC andA
be complete lattices. Then,C m−→A, C c−→A, C a−→A, andC coa−→A denote, respectively,
the set of all monotone, (Scott-)continuous, additive, and co-additive functions fromC to
A. Recall[1] thatf ∈ C c−→A iff f preserveslub’s of (non-empty) chains ifff preserves
lub’s of directed subsets, andf : C → A is (completely) additive iff preserveslub’s of all
subsets ofC (emptyset included). Co-additivity is defined by duality. We denote bylfp�

⊥ f
andgfp�

� f , respectively, the least and greatest fix-point, when they exist, of an operatorf
on a poset. Iff ∈ C c−→C thenlfp� c

⊥c f = ∨i∈Nf
i(⊥C), where, for anyi ∈ N andx ∈ C,

the ith power off in x is inductively defined as follows:f 0(x) = x; f i+1(x) = f (f i(x)).
Dually, if f is co-continuous thengfp

�C
�C f = ∧i∈Nf

i(�C). {f i(⊥C)}i∈N and{f i(�C)}i∈N

are called, respectively, thelowerandupper Kleene’s iteration sequences of f(see[12]).

2.2. Abstract interpretation

Abstract domains can be equivalently formulated in many different ways. The most used
ones are Galois connections and upper closure operators[13]. An upper closure operator
on a posetP is an operator� : P → P monotone, idempotent and extensive (∀x ∈
P. x�P�(x)). The set of all upper closure operators onP is denoted byuco(P). Let
〈C, � ,∨,∧,�,⊥〉 be a complete lattice. A basic property of closure operators is that
each closure is uniquely determined by the set of its fix-points�(C). For upper closures:
X ⊆ C is the set of fix-points of an upper closure onC iff X is aMoore-familyof C, i.e.,

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 7

X = M(X)
def= {∧S | S ⊆ X}—where∧� = � ∈ M(X). For anyX ⊆ C,M(X) is called

theMoore-closureof X in C, i.e.,M(X) is the least (w.r.t. set-inclusion) subset ofCwhich
containsX and it is a Moore-family ofC. It turns out that〈�(C), �〉 is a complete meet
subsemilattice ofC (i.e.,∧ is itsglb). Often, we will find particularly convenient to identify
closure operators with their sets of fix-points. IfC is a complete lattice thenuco(C) ordered
pointwise is also a complete lattice, denoted by

〈
uco(C),�, ,�, �x.�, �x.x〉, where for

every�, � ∈ uco(C), {�i}i∈I ⊆ uco(C) andx ∈ C:
– � � � iff ∀y ∈ C. �(y)��(y) iff �(C) ⊆ �(C);
– (�i∈I�i)(x) = ∧i∈I�i (x);
– (i∈I�i)(x) = x ⇔ ∀i ∈ I. �i (x) = x.
If � ∈ C

m−→A and � ∈ A
m−→C are monotone functions such that�x.x � � ◦ � and

� ◦ � � �x.x, then(A, �, �, C) is called aGalois connection(GC for short) oradjunction

betweenC andA, also denoted〈C, �C〉 −−→←−−�
� 〈A, �A〉. Note that in a GC, for anyx ∈ C

andy ∈ A: �(x)�Ay ⇔ x�C�(y) where the functions are�(y) =∨{
x
∣∣ �(x)�y

}
and

�(x) =∧{
y
∣∣ x��(y)

}
. The set of all GCs between two complete latticesA andC is the

tensor productA ⊗ C, which is a complete lattice andA ⊗ C�A
a−→C�C

coa−→A [43].
If in addition � ◦ � = �x.x (� ◦ � = �x.x), then(A, �, �, C) is aGalois insertion(GI)

(resp.projection) also denoted〈C, �C〉 −−→−→←−−−
�

� 〈A, �A〉 (resp.〈C, �C〉 −−−→←←−−−
�

� 〈A, �A〉)
of A in C. It is worth noting thatA�C if and only if the connection in an isomorphism,

i.e., 〈C, �C〉 −−→−→←←−−−
�

� 〈A, �A〉.
Let f : C → C be a monotone concrete semantic function and letf � : A → A

be a correspondingabstract function, where〈C, �C〉 −−→−→←−−−
�

� 〈A, �A〉. Then,
〈
A, f �

〉
is a

sound abstract interpretation—orf � is a correct approximation off relatively toA—when
∀c ∈ C. �(f (c))�Af

�(�(c)). On the other hand,
〈
A, f �

〉
is complete when the equality

holds, i.e.,� ◦ f = f � ◦ �.
The standard abstract interpretation framework is based on the adjoint relation between

abstraction and concretization functions[11]. The concrete and abstract domains,C andA,
are assumed to be complete lattices and are related by twomaps forming a GC(A, �, �, C).
Following a standard terminology,A is called an abstraction ofC, andC is a concretiza-
tion of A. If (A, �, �, C) is a GI, then each value of the abstract domainA is useful in
representingC, because all the elements ofA represent distinct members ofC, being�
1-1. Any GC may be lifted to a GI by identifying, in an equivalence class, those values, of
the abstract domain, with the same concretization. This process is known asreductionof
the abstract domain. Note that any GI(A, �, �, C) uniquely determines an upper closure
operator, i.e.,� ◦ � ∈ uco(C), and conversely, any closure operator� ∈ uco(C) uniquely
determines a GI(�(C),�, id, C), up to isomorphic representation of domain’s objects.
Hence, wewill identifyuco(C)with the so-calledlatticeLC of abstract interpretationsofC
(cf. [11, Section 7]and[13, Section 8]), i.e., the complete lattice of all possible abstract
domains (modulo isomorphic representation of their objects) of the concrete domainC.
The pointwise ordering onuco(C) corresponds precisely to the standard ordering used to
compare abstract domains, as regards their precision:A1 is more precise thanA2 (i.e.,A2 is

an abstraction ofA1) iff A1 � A2 in uco(C) iff
〈
A1, �A1

〉
−−→−→←−−−

�

� 〈
A2, �A2

〉
.

8 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

Let {Ai}i∈I ⊆ uco(C): i∈I Ai is the most concrete inLC which is an abstraction of
all theAi ’s, i.e., i∈IAi is the least (w.r.t. �) common abstractionof all theAi ’s; and
�i∈IAi is (isomorphic to) the well knownreduced product(basically cartesian product plus
reduction) of all theAi ’s, or, equivalently, it is themost abstract domain inLC which ismore
concrete than everyAi . Let us remark that the reduced product can be also characterized as
Moore-closure of set-union, i.e.,�i∈IAi = M(∪i∈IAi).

3. Cousot’s semantics hierarchy

In this section, we recall Cousot’s hierarchy of semantics[10,15]. Semantics, in the
hierarchy, are derived as abstract interpretations of a more concrete operational semantics
that associates a discrete transition system with each well-formed program. A transition
system is a pair〈�, �〉, where� is a non-empty set of states, and� ⊆ � × � is a binary
transition relation between a state and its possible successors. In the following,�+ and
�� def= N−→� denote, respectively, the set of all the finite non-empty sequences, and the
set of all the infinite sequences, of symbols in�. Given a sequence	 ∈ �∞ def= �+ ∪ ��,
its length is denoted by|	| ∈ N ∪ {�} and itsith element is denoted by	i . Moreover,
in the following, when|	| = n��, 	� will denote	0 and	� will denote	n−1. A non-
empty finite (infinite)trace	 is a finite (infinite) sequence of program states, where two
consecutive elements are in the transition relation�, i.e., for all i < |	|: 〈	i ,	i+1〉 ∈ �.
A generic traceis any such element in�∞. Themaximal trace semanticsof a transition
system[15] is �∞ def= �+ ∪ ��, where ifT ⊆ � is a set of final/blocking states�ṅ = {	 ∈
�+||	| = n,∀i ∈ [1, n) . 〈	i−1,	i〉 ∈ �}, �� = {	 ∈ ��| ∀i ∈ N . 〈	i ,	i+1〉 ∈ �}, �+ =
∪n>0{	 ∈ �ṅ| 	� ∈ T }, and�n = �ṅ ∩ �+. In the following, we will use theconcatenation
operation between traces: the concatenation	 = ��
 of the traces�,
 ∈ �∞ is defined
only if �|�|−1 =
0. In this case,	 has length|	| = |�| + |
| − 1 and it is such that	l = �l
for each 0� l < |�|, while 	|�|−1+n =
n if 0�n < |
|. Moreover, if� ∈ ��, then, for
each
 ∈ �∞, we have��
 = �.
The semantics�∞ has been obtained in[15] as the least fix-point of the monotone oper-

atorF∞ : ℘(�∞)→ ℘(�∞), defined on traces asF∞(X) = �1 ∪ �2̇�X. This operator
provides a bi-induction (induction and co-induction) on the complete lattice of the maxi-
mal trace semantics

〈
℘(�∞),�∞,�∞, ∞,�∞,�+,��〉, whereX �∞ Y if and only if

X ∩ �+ ⊆ Y ∩ �+ andY ∩ �� ⊆ X ∩ ��. This order, later called thecomputational
order, allows us to combine both least and greatest fix-point process in a unique least fix-
point presentation: finite (terminating) traces are obtained by induction (least fix-point) of
F∞ on

〈
℘(�+),⊆〉, and infinite traces are obtained by co-induction (greatest fix-point) on〈

℘(��),⊆〉, which corresponds to theleast fix-pointof F∞ on
〈
℘(��),⊇〉. In this case:

�∞ = lfp�
∞

�� F∞ (see[10,15]for details). Cousot proved also that the natural trace semantics
can be calculated as thegreatest fix-point, of the same function, on the domain with the
usual inclusion order, here calledapproximation order, namely�∞ = gfp⊆�∞F

∞.
All the semantics, in the hierarchy, are derived as abstract interpretation of the trace-

based semantics. In particular, each semantics in natural style corresponds to a suitable

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 9

Table 1
Basic natural-style semantics as abstract interpretations

Semantics Domain relation Abstraction and concretization

R∞ = �R(�∞)
〈
℘
(
�∞)

,⊆〉 −−−−→−→←−−−−−
�R
�R 〈

℘
(
�×�⊥

)
,⊆〉 �R(X) = {〈

	�,	�
〉 ∣∣ 	 ∈ X+ }

∪ {〈	�,⊥
〉 ∣∣ 	 ∈ X� }

�R(Y) =
{
	 ∈ �+ ∣∣ 〈	�,	�

〉 ∈ Y }
∪ {	 ∈ �� ∣∣ 〈	�,⊥

〉 ∈ Y }

D∞ = �D(R∞)
〈
℘
(
�×�⊥

)
,⊆〉 −−−−→−→←←−−−−−

�D
�D 〈

� −→ ℘
(
�⊥

)
,�〉 �D(X)

def= �s.{s′ ∈ �⊥| 〈s, s′〉 ∈ X}
�D(f) = {〈x, y〉 ∣∣ y ∈ f (x) }

gWp = �gWp(D∞)
〈
� −→ ℘

(
�⊥

)
,�〉 −−−−−−→−→←←−−−−−−−

�gWp

�gWp 〈
℘
(
�⊥

) coa−→℘
(
�
)
,+
〉

�gWp(f) = �P.
{
s ∈ �

∣∣ f (s) ⊆ P
}

�gWp(�) = �s .
{
s′
∣∣ s �∈ �

(
�⊥\{s′}

) }

gH = �gH(gWp)
〈
℘
(
�⊥

) coa−→℘
(
�
)
,+
〉
−−−−−→−→←←−−−−−−

�gH
�gH 〈

℘
(
�
)⊗ ℘

(
�⊥

)
,⊇〉 �gH(�) = {〈X, Y 〉 ∣∣ X ⊆ �(Y)

}
�gH(H) = �Y .

⋃{
X
∣∣ 〈X, Y 〉 ∈ H }

abstraction of the basic natural trace-based semantics�∞. In the following we denote by
Nat the identical abstraction of the maximal trace semantics.
Relational semantics. The relational semanticsR∞ associates, with program traces, an

input–output relation by using the bottom symbol,⊥ /∈ �, to denote non-termination.
This corresponds to an abstraction of the maximal trace semantics, where intermediate
computation states are ignored. The abstraction function�R, that allows to get the relational
semantics as abstraction of the maximal trace one, i.e.,R∞ = �R(�∞), is given in Table1.
The corresponding closure is

Rel(X)
def= �R�R(X)= {	 ∈ �+ ∣∣ ∃ � ∈ X+ . 	� = �� ∧ 	� = ��

}
∪ {

	 ∈ �� ∣∣ ∃ � ∈ X� . 	� = ��

}
Denotational semantics. The denotational semanticsD∞ abstracts away from the history

of computations, by considering input–output functions. This semantics is isomorphic to
relational semantics. The abstraction function�D, that allows to get the denotational se-
mantics as abstraction of the relational one, i.e.,D∞ = �D(R∞), is given in Table1. The
corresponding closure operator on the trace semantics is

Den(X)
def= �R�D�D�R(X)
= {

	 ∈ �+ ∣∣ ∃ � ∈ X+ . 	� = �� ∧ 	� = ��

}
∪ {

	 ∈ �� ∣∣ ∃ � ∈ X� . 	� = ��

}
Weakest precondition semantics. Dijkstra’s predicate transformergWp is represented

as co-additive functions, denoting weakest-precondition predicate transformers[18]. We
consider the programS, and apost-condition(set of desired final states)P, that we want to
hold after the execution ofS. The semantics consists in finding the weakestprecondition,
namely the biggest set of possible initial states, which allows the program to finish inP.

10 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

Table 2
Observable semantics as abstract interpretations

Semantics Domain relation Abstraction and concretization

�+ = �+(�∞)
〈
℘(�∞),⊆〉 −−−→−→←−−−−

�+
�+ 〈

℘(�+),⊆〉 �+(X) = X ∩ �+ def= X+
�+(Y) = Y ∪ ��

�� = ��(�∞)
〈
℘(�∞),⊆〉 −−−→−→←−−−

��

�� 〈
D�,⊆〉 ��(X)

def= X ∪⋃{
chaos(�)

∣∣ 	 ∈ X ∩ �� }
��(Y) = Y

�� = ��(�∞)
〈
℘(�∞),⊆〉 −−−→−→←−−−−

��

�� 〈
℘(��),⊆〉 ��(X) = X ∩ �� def= X�

�� = X ∪ �+

The abstraction function�gWp, that allows to get the weakest precondition semantics as
abstraction of the denotational one, i.e.,gWp = �gWp(D∞), is given in Table1. The
corresponding closure operator on the trace semantics is

gWp(X)
def= �R�D�gWp�gWp�D�R(X)
= {

	 ∈ �+ ∣∣ ∃ � ∈ X+ . 	� = �� ∧ 	� = ��

}
∪ {

	 ∈ �� ∣∣ ∃ � ∈ X� . 	� = ��

}

Hoare’s axiomatic semantics. Similar to thegWp semantics, in the Hoare axiomatic
semantics we consider triples of the kind{Q} S {P }, and, in this case, we give semantics
to the programSby finding all the pairs〈P,Q〉 such that{Q} S {P } is a valid Hoare triple
[35]. Hoare’s axiomatic semanticsgH is represented as elements in tensor product domains,
i.e., GCs, specifying the adjoint relation between weakest-precondition and strongest-post-
condition in Hoare’s triples{P } C {Q}. The abstraction function�gH, that allows to get the
axiomatic semantics as abstraction of the weakest precondition one, i.e.,gH = �gH(gWp),
is given in Table1. The corresponding closure operator on the trace semantics is the same
as the denotational semantics.
Each semantics in natural style may have a correspondingangelic, demonic, andinfinite

observable,which is again anabstraction. For each semantics, all the observables are derived
as the fix-points, in the computational order, of semantic functions obtained by applying
the fix-point transfer theorems[10].
Angelic. The angelic trace semantics�+ is designed as an abstraction of themaximal trace

semantics, and it is obtained by approximating sets, of possibly finite or infinite traces, with
the set of finite traces only, i.e.,�+ = �+(�∞) (see Table2).
Wedenote byR+,D+,Wlp, andpH, respectively, the big-step relational semantics[38],

angelic denotational, weakest-liberal precondition[18], and Hoare’s partial correctness se-
mantics[35]. All these semantics have been proved, in[9], to be the angelic abstractions
of the corresponding semantics in natural style. The basic angelic trace semantics is con-
structively derived as the least fix-point, in the computational order, of a semantic function:
�+ = lfp⊆�F

+ whereF+(X) = �1 ∪ �2̇�X.

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 11

Demonic. The demonic trace semantics, denoted as��, is derived from themaximal trace
semantics by approximating non-termination bychaos, namely by the set of all the possible
finite computations starting from the state that leads to non-termination. This corresponds to
allowing the worst possible behavior of the program[10,17,18]. This semantics is obtained
as abstraction of the natural semantics by using the function��, i.e., �� = ��(�∞) (see
Table2). In this way, the demonic observable is defined on the domainD� = ��(℘ (�∞)),
which is such thatX ∈ D� if and only if

	 ∈ X� ⇒ chaos(�) ⊆ X+

wherechaos(�)
def= {

� ∈ �+ ∣∣ �� = 	�

}
.

We denote byR�,D�,Wp�, andgH� the demonic relational, demonic denotational[3],
demonic weakest-precondition and demonic Hoare’s semantics. These semantics have been
proved, in[9], to be thedemonic abstractions of the corresponding semantics in natural style.
The basic demonic trace semantics is constructively derived as the least fix-point, in the
computational order, of a semantic function:�� = lfp�

�

�∞F
� whereF �(X) = �1 ∪ �2̇�X.

Infinite. The infinite trace semantics, denoted��, is derived by observing non-terminating
traces only, i.e.,�� = ��(�∞) (see Table2). The corresponding infinite semantics are
denoted byR�, D�, Wp�, andgH�. The basic infinite trace semantics is constructively
derived as the greatest fix-point, in the computational order, of a semantic function:�� =
gfp⊆��F� whereF�(X) = �2̇�X.
Weakest precondition. The weakest precondition semantics for total correctnessWp, is

modeled as a further abstraction of the natural trace semantics. This semantics considers
only those computations that surely terminate, in other words, the weakest precondition is
the largest set of initial states terminating in the given post-condition. This observable is
obtained as abstraction of thegWp semantics:Wp = �Wp(gWp) where

�Wp(�) = � |℘(�)
�Wp(
) = �P . (if ⊥ /∈ P then
(P) else�)

and
〈
(℘ (�⊥)

coa−→ ℘(�)),⊇
〉
−−−−→−→←−−−−−

�Wp

�Wp 〈
(℘ (�)

coa−→ ℘(�)),⊇
〉
.

The semanticstH is the Hoare’s axiomatic abstraction ofWp, i.e.,tH = �gH(Wp).
The whole hierarchy, relating semantics styles and observables, is shown in Fig.1,

where lines and arrows denote, respectively, isomorphisms and strict abstractions between
semantics.
In the following sections, we characterize the properties of the semantics in Cousot’s

hierarchy, in terms of the basic operations that compose and decompose abstract domains.
We consider, first, the attribute independent composition of semantics, which is provided by
the reduced product operation. This operation, and its inverse, which is domain complemen-
tation, provides a formal method for isolating complementary and independent observables
in well known semantics of programming languages. Afterwards, we consider the relational
combinator of domains, which is reduced relative power. This provides a characterization
of compositionality of semantics, which is parametric on the observation made. The result
is an algebra of semantics, where both, concrete and abstract semantics for program analy-
sis, can be obtained as solutions of the same domain equations, involving reduced product,

12 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

reduced power and domain complementation. These equations are parametric on the chosen
observable property.

4. Independent composition and decomposition of semantics

LetProgrambe the collection of all well-formed programs in a programming language.
LetC be a domain of semantic denotations, e.g. execution traces, functions, sets of states,
etc., and[[·]] : Program→ C is the semantics assigning, with each programP ∈ Program,
its meaning inC. For any� ∈ uco(C), we define the abstract semantics function[[·]]� :
Program→ �(C), as[[P]]� def= �([[P]]). The following result[28] formally expresses the
intuition that the reduced product semantics corresponds precisely to the logical conjunction
of the observables associated with each semantics in the product.

Theorem 4.1. If P,Q ∈ Program and{Ai}i∈I ⊆ uco(C) then[[P]]�i∈I Ai = [[Q]]�i∈I Ai iff
∀i ∈ I. [[P]]Ai = [[Q]]Ai .

Proof. ConsiderP,Q ∈ Program.
(⇒) Assume thatk ∈ I . Since�i∈I�i � �k, then we have[[P]]�k = [[Q]]�k , as desired.
(⇐) Since∀i ∈ I. �i ([[P]]) = �i ([[Q]]), we have∧i∈I�i ([[P]]) = ∧i∈I�i ([[Q]]) which

proves the thesis. �
A sequence of abstract domains{Ai}i∈I is a (conjunctive) decomposition of the abstract

domainB, if B = �i∈IAi . In this context, we can characterize the independent observables
contained in a given semantics, by identifying themost abstract observables that, composed
with each other, gives back the semantics. This allows to find the most abstract decompo-
sition of a semantics, as regards a given observable. In this way, we are able to identify the
complementary observables contained in a semantics.

4.1. Domain complementation

Abstract domain complementation, introduced in[7], provides a systematic method for
decomposing abstract domains. Complementation is theinverseoperation of the reduced
product (see[29]) in the sense that, starting from any two domainsC � D, it gives, as
result, the most abstract domainC�D, whose reduced product withD is exactlyC (i.e.,
(C�D) � D = C). By the equivalence between closure operators and abstract domains,
the above notion of complementation corresponds precisely topseudo-complementation
on closures. In particular the complement described above is the pseudo-complement of
the closure�D, corresponding toD, in uco(C). Recall that, ifL is a meet-semilattice with
bottom, then thepseudo-complementof x ∈ L, when it exists, is the unique elementx∗ ∈ L
such thatx ∧ x∗ = ⊥ and such that∀y ∈ L. (x ∧ y = ⊥) ⇒ (y�x∗) [4]. In a complete
latticeL, if x∗ exists, thenx∗ = ∨{y ∈ L | x ∧ y = ⊥}. If every x ∈ L has the pseudo-
complement,L is pseudo-complemented. It is worth noting that pseudo-complementation
is the only possible form of complementation in abstract interpretation. Indeed, it is well
known [20,36] that uco(C) is complemented (in the standard sense) iffC is a complete
well-ordered chain, and this is a far too restrictive hypothesis for semantic domains. The

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 13

following results[22,27]provide two sufficient conditions, onC, that makeuco(C) pseudo-
complemented. Recall that a complete latticeC ismeet-continuousif for any chainY ⊆ C

and for anyx ∈ C, x ∧ (∨Y) = ∨y∈Y (x ∧ y). MoreoverC is meet-generated, byS ⊆ C,
if C = M(S).

Theorem 4.2. Let C be a complete lattice.
1. If C is a meet-continuous then uco(C) is pseudo-complemented[27].
2. If C is meet-generated by Mirr(C) then uco(C) is pseudo-complemented and, for any

A ∈ uco(C), we haveA∗ def= C�A = M(Mirr (C)\A) [22].

Note that for anyA,B ∈ uco(C) such thatA � B,A�B is well defined if↑A = uco(A)
is pseudo-complemented.

4.2. Decomposing trace-based semantics

Domain complementation is the standard operation used for factorizing semantics. Given
any two semanticsX,A ∈ uco(C), such thatX � A, the complement semantics[[·]](X�A),
is themostabstract semanticssuch that[[P]]X = [[Q]]X iff [[P]]A = [[Q]]A and[[P]](X�A) =
[[Q]](X�A). In practice, it is always possible to define complements of semantics, since the
hypotheses in Theorem4.2, assuring their existence, are extremely weak. In most cases, in
fact, the domain of abstract interpretations is a continuous, or even algebraic lattice, or it is
generated by its meet-irreducible elements.
In this section, we prove that angelic and demonic semantics provide a conjunctive

decomposition of natural semantics, and that angelic and infinite semantics form aminimal
(most abstract) decomposition of natural semantics. This is proved for the basic operational
trace-based semantics only, which represents the bottom (most concrete) semantics in the
Cousot’s hierarchy (see Fig.1). We will generalize this construction to the whole hierarchy,
in Section4.3.
Consider the angelic, demonic, and infinite closure operators on maximal traces, i.e.,

Ang,Dem, Inf ∈ uco(℘ (�∞),⊆), induced by, respectively, the angelic, demonic, and
infiniteabstractionson the tracesemantics:Ang

def= �+◦�+,Demdef= ��◦��, andInf
def= ��◦��

(see Table2). It is immediate to observe that for anyX ∈ �∞:

Nat(X) = X

Ang(X) = X ∪ ��

Dem(X) = X ∪⋃{
chaos(��)

∣∣ � ∈ X� }
Inf (X) = X ∪ �+

In order to prove that infinite and angelic semantics factorize the natural semantics, we have
to characterize the meet-irreducible elements of the domains involved. The semantics�∞
is defined on the domain℘(�∞), whose meet-irreducibles are�∞ \ {	}, for each	 ∈ �∞.
The semantics�+ is defined on℘(�+) whose meet-irreducible elements are�+\{	}, for
each	 ∈ �+. Finally the semantics�� is defined on℘(��), whose meet-irreducibles are
��\{	}, for each	 ∈ ��.

14 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

Lemma 4.3. Let	 ∈ �+ and� ∈ ��. Then we have

�∞ \ {	} ∈ Ang, �∞ \ {�} /∈ Ang
�∞ \ {	} /∈ Dem, �∞ \ {�} ∈ Dem

Proof. It is immediate, by definition ofAng, that if 	 ∈ �+ and� ∈ �� thenAng(�∞ \
{	}) = (�∞\{	})∪�� = �∞\{	}, whilewehave thatAng(�∞\{�}) = (�∞\{�})∪�� =
�∞.
An analogous reasoning can be done for the demonic semanticsDem, indeed we can note

thatDem(�∞ \ {	}) = �∞ \ {	} ∪ {	′ ∈ �+ ∣∣ ∃ � ∈ �� . 	′� = ��

} = �∞. On the other
hand,Dem(�∞ \ {�}) = �∞ \ {�} ∪ {	′ ∈ �+ ∣∣ ∃ � ∈ �� . 	′� = ��

} = �∞ \ {�}. �
The angelic semanticsAngfactorizes the maximal trace semantics together withInf and

Dem. Moreover, the angelic semantics does not share information with both, the infinite
and the demonic semantics.

Proposition 4.4. Nat�Ang= Inf , Nat�Inf = Ang, Nat�Dem= Ang, Ang Dem=
�∞ and Ang Inf = �∞.

Proof. We know thatNat�Ang= M(Mirr (℘ (�∞)) \Ang), namelyMirr (Nat�Ang) =
Mirr (℘ (�∞)) \ Ang. SinceMirr (℘ (�∞)) is the set of all the elements of the kind�∞ \
{�}, with � ∈ �∞, we have thatX ∈ Mirr (Nat�Ang) iff X = �∞ \ {�} with � ∈
��, by Lemma4.3. At this point, sinceX = �� \ {�} is a meet-irreducible element
in ℘(��), then it is immediate to verify that�+ ∪ (�� \ {�}) is meet-irreducible in{
�+ ∪X ∣∣X ∈ ℘(��)

}
, the set of the fix-points ofInf . Hence, we can conclude that

Mirr (Nat�Ang) = Mirr (Inf), i.e.,Nat�Ang = Inf . The proof forNat�Inf = Ang
is analogous. The proof forNat�Dem= AngandAng Dem= �∞ is immediate by
Theorem4.2and Lemma4.3. �
It is worth noting that the angelic and demonic abstractions do not factorize natural

semantics in most abstract factors. In fact, while the complement of demonic semantics is
angelic, the converse does not hold. It is worth noting thatNat�Ang �= Dem. In particular,
for any finite trace	 ∈ �+, Dem({	}) = {	}, whileNat�Ang({	}) = �+ ⊃ {	}. In order
to provide an example of the relationship between the angelic and infinite observables, we
represent sets of traces by the pair of their initial (input) and final (output) states,⊥ for
infinite traces. This corresponds to mapping, the factorization given above, on the relational
semantics. In Figs.2 and 5, we can see a representation of the relational angelic and infinite
semantics on the alphabet� = {a, b}.
4.3. Decomposing the hierarchy

In this section, we characterize the symmetric structure of Cousot’s hierarchy of seman-
tics, in terms of a general algebraic property of closure operators. Indeed, note that the
angelic/demonic/infinite observables are abstractions of the natural semantics, in any style
(trace-based, relational, denotational, predicate transformer and axiomatic), since the ab-
stractions, that relates the different styles of semantics and observables, commute all over
Cousot’s hierarchy.

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 15

Fig. 2. Relational angelic semantics on� = {a, b}.

Fig. 3. Basic abstraction structure.

In order to understand this situation better, we consider a concrete semantic domainC,
generated by its meet-irreducibles, and two closure operators�, � ∈ uco(C). Recall that
� ◦ � ∈ uco(C) iff � ◦ � = � ◦� = � � [36]. Namely, the composition of two closures is a
closure if andonly if they commute.Consider the structure inFig.3. It is perfectly symmetric
if the closure�(C)��(�(C)) corresponds precisely to the abstraction, by�, of the com-
plementary closureC��(C), namely if the closure� is an�-morphism:�(C��(C)) =
�(C)��(�(C)) or, equivalently, whenever(� �)∗, computed inuco(�(C)), is the same
closure as� �∗.
Our aim is that of finding sufficient conditions that guarantee that a closure distributes

on the complement operation, and of proving that all the closures in the Cousot’s hierarchy
satisfy these conditions. This would mean that all the symmetric semantics in the hierarchy
are complements, as it happens in Fig.3.
Unfortunately, not all abstractions, viz. closures, commute with respect to complemen-

tation. The following example shows this situation.

16 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

Fig. 4. TheSignandNzerodomains.

Example 4.5. LetSignbe the domain, for sign analysis of integer variables, represented in
Fig.4, and let�(Sign) = {Z,0−,−}. If �(Sign) = {Z,0−,0}, then��(Sign) = ��(Sign) =
�(Sign) ∩ �(Sign) for definition of , so�(�(Sign)) = {Z,0−}.
Then we can verify that�(Sign��(Sign)) = �({Z,0+, �=0,+}) = {Z} while we have

�(Sign)��(�(Sign)) = {Z,−}.

Lemma 4.6. Let �, � ∈ uco(C). If � ◦ � = � ◦ � and� ◦ �∗ = �∗ ◦ � then(� �∗) �
��(� �).

Proof. It is well known that� ◦ � ∈ uco(C) if and only if � ◦ � = � ◦ � = � � [36].
Moreover,� � (� �) � (� �∗), since, both� �∗ and� �, by definition oflub , are
closuresmore abstract than�, and therefore also their reduced product is more abstract than
�. On the other hand, by definition of domain complementation, we have that� � �∗ = C,
so for eachx ∈ C we have�(x) ∧ �∗(x) = x. Therefore, ifx ∈ �(C) ⊆ C we have

x = �(x) ∧ �∗(x)
= �(�(x)) ∧ �∗(�(x))
= (� �)(x) ∧ (� �∗)(x)

Hence by definition of reduced product we have� = (� �) � (� �∗), and, by definition
of pseudo-complementation inuco(�(C)), we know that��(� �) is the most abstract
closure whose reduced product with� � returns�. Therefore, since the reduced product
between� �∗ and� � is �, we can conclude that� �∗ is more concrete than its
complement, namely� �∗ � ��(� �). �
This lemma tells us that one of the inclusions, implicit in the equality, holds under certain

hypotheses. Next lemma, instead, gives a sufficient condition for the other inclusion.

Lemma 4.7. Let�, � ∈ uco(C). If � �∗ = {�} and Mirr(�(C) ∩ �∗(C)) ⊆ Mirr (�(C))
then��(� �) � (� �∗).

Proof. By hypothesis, we have that� �∗ = {�}, namely�(C) ∩ �∗(C) = {�}. On the
other hand, we have that�(C)∩�∗(C) ⊆ �∗(C), therefore the conjunction of these two facts
implies that(�(C)∩�∗(C))∩�(C) = {�}. This means thatMirr (�(C)∩�∗(C))∩�(C) =
� (1). Moreover, by hypothesis, we haveMirr (�(C) ∩ �∗(C)) ⊆ Mirr (�(C)) then the

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 17

following relations hold:

Mirr (��(� �)) (by Theorem 4.2)

= Mirr (�(C)) \ (�(C) ∩ �(C)) (by hypothesis)

⊇ Mirr (�(C) ∩ �∗(C)) \ (�(C) ∩ �(C))(∗)
= Mirr (�(C) ∩ �∗(C))
= Mirr (� �∗)

where the step(∗) holds because, ifx ∈ Mirr (�(C) ∩ �∗(C)), then, by condition (1), we
havex /∈ �(C), and sox /∈ �(C) ∩ �(C).
Since(��(� �))(C) ⊇ (� �∗)(C), we can conclude that��(� �) � � �∗. �
By Theorem4.2 we know that the complement of a closure depends on the meet-

irreducible elements of the concrete domain. For this reason it seems sufficient that a closure
transformsmeet-irreducibles intomeet-irreducibles formaking the closure commutingwith
respect to domain complementation. But it is immediate to note that the structure of meet-
irreducible elements is not always left unchanged by an abstraction. Indeed an abstraction
erases elements from the concrete domain and nothing prevents it from eliminating meet-
irreducibles, too. Moreover, the abstraction can also create new meet-irreducible elements.
Indeed, if we extract a chain from a more complex domain (such asSign) all its elements
become meet-irreducible. This is a consequence of the structure of the abstract domains,
which areMoore families. Indeed�(Mirr (C)) ⊆ Mirr (�(C)), but the inverse inclusion gen-
erally does not hold, as we can see in Example4.5where the element− is meet-irreducible
in �(Sign) but it is not the image, as regards�, of any meet-irreducible element ofSign.
Theseobservations lead to the following theorem.This theoremprovides two independent

sufficient conditions for making� commuting with�.

Theorem 4.8. Let�, � ∈ uco(C) such that�◦� = �◦�, � �∗ = {�} and�◦�∗ = �∗ ◦�.
(i) If Mirr (�(C) ∩ �∗(C)) ⊆ Mirr (�(C)) then�(C��(C)) = �(C)��(�(C)).
(ii) If Mirr (�(C)) = �(Mirr (C)) then�(C��(C)) = �(C)��(�(C)).

Proof. (i) Immediate by Lemmas4.6and4.7.
(ii) We have to prove that�(C��(C)) = �(C)��(�(C)). First of all, we prove that

�(Mirr (C))\�(�(C)) = �(Mirr (C)\�(C)). We know that, in general, for each mapf, we
havef (A)\f (B) ⊆ f (A\B), hence the inclusion⊆ holds. Now, we prove that also the other
inclusionholds. Inorder toshow this,weprove thateachelement in theset�(Mirr (C)\�(C))
belongs to�(Mirr (C)) and does not belong to��(C). We know thatMirr (C) \ �(C) ⊆
Mirr (C), hence, by monotonicity of�, we obtain that�(Mirr (C)\�(C)) ⊆ �(Mirr (C)).
Moreover, sinceMirr (�(C)) = �(Mirr (C)), and since, by definition,� /∈ Mirr (�(C)), we
have that� /∈ �(Mirr (C))which implies� /∈ �(Mirr (C)\�(C)). Finally, we have to prove
that

x ∈ �(Mirr (C)\�(C)) ⇒ x /∈ �(�(C))

wherex �= � for theconsiderationabove.Note that, if anelementbelongs to thecomposition
of two closures that commute, then it belongs to each closure. Moreover� �∗ = {�},

18 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

therefore the following implications hold:

x ∈ �(Mirr (C) \ �(C)) ⇒ x ∈ ��∗(C)
⇒ x ∈ �(C) ∧ x ∈ �∗(C)
⇒ x /∈ ��(C)

Since�(Mirr (C) \ �(C)) ⊆ �(Mirr (C)), we have:

�(Mirr (C) \ �(C)) ⊆ �(Mirr (C)) \ �(�(C))

Hence, we have the equality. By the argument above, this implies the following equalities:

Mirr (�(C)��(�(C))) = Mirr (�(C)) \ �(�(C)) (by Theorem 4.2)
= �(Mirr (C)) \ �(�(C)) (by hypothesis)
= �(Mirr (C) \ �(C))

from which the thesis follows. �
The following example shows that the converse of Theorem4.8-(ii) does not, in general,

hold.

Example 4.9. LetSignand�(Sign) = Nzerobe the domains represented in Fig.4, for sign
and non-zero analysis of integer variables. If�(Sign) = {Z,0−,−}, then�(�(Sign)) =
{Z,−}.
In this case, we have that�(Sign��(Sign)) = �({Z,0+, �= 0,+}) = {Z, �=0,+}.

Moreover, it is simple to verify that�(Sign)��(�(Sign)) = Nzero�{Z,−} = {Z, �=0,+},
while we have�(Mirr (Sign)) = {�=0} andMirr (�(Sign)) = Mirr (Nzero) = {�=0,+,−}.
4.4. Symmetric abstractions in the hierarchy

In this section, we extend the complementary relation, existing among the angelic, de-
monic, and infinite observables on maximal traces of a transition system, all over the hi-
erarchy. We use Theorem4.8 to obtain this generalization. In particular, we prove that the
domain complementation commutes with respect to all the abstractions connecting the dif-
ferent semantics styles. Let us consider the relational abstractionRel (see Section3 and
[10]):

Rel(X) = {
	 ∈ �+ ∣∣ ∃ � ∈ X+ . 	� = �� ∧ 	� = ��

}
∪ {

	 ∈ ��
∣∣ ∃ � ∈ X� . 	� = ��

}
Lemma 4.10. Let �, � ∈ uco(C). If � ◦ � = � ◦ � and � ◦ �∗ = � �∗ = {�} then
� ◦ �∗ = �∗ ◦ �.

Proof. For anyx ∈ C we have:

�(�∗(x)) = �(�(�∗(x))) ∧ �∗(�(�∗(x)))
(by definition of pseudo-complement)

= �(�(�∗(x))) ∧ �∗(�(�∗(x))) (by hypothesis)
= � ∧ �∗(�(�∗(x))) (by hypothesis)
= �∗(�(�∗(x)))

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 19

These relations say that�(�∗(x)) = �(�∗(�(�∗(x)))) because� is a closure, namely it is
idempotent.Moreover, we know that� and�∗ are upper closures, namely they are extensive,
which means thatx��∗(x); by monotonicity of� we have also that�(x)��(�∗(x)) and
therefore, by the extensivity of�, we havex��(�∗(x)), namely also��∗ is extensive.
Finally we know that the composition of monotone maps is monotone. Then� ◦ �∗ is
idempotent, extensive and monotone, namely� ◦ �∗ ∈ uco(C), which holds if and only if
� ◦ �∗ = �∗ ◦ �. �

Proposition 4.11. 1.Rel◦ Ang= Ang◦ Rel.
2.Rel◦ Dem= Dem◦ Rel.
3.Rel◦ Inf = Inf ◦ Rel.

Proof. It is easy to prove thatRel is additive. Therefore

Rel(Ang(X)) = Rel(X ∪ ��)

= Rel(X) ∪ Rel(��)

= Rel(X) ∪ ��

= Ang(Rel(X))

Let us prove thatRel◦ Dem= Dem◦ Rel. By definition and additivity ofRel, we have
Rel(Dem(X)) = Rel(X) ∪ Rel({	 ∈ �+|� ∈ X ∩ ��, �� = 	�}) andDem(Rel(X)) =
Rel(X) ∪ {	 ∈ �+|� ∈ Rel(X) ∩ ��, �� = 	�}. Note that� ∈ Rel({	 ∈ �+|� ∈ X ∩
��, �� = 	�}) if and only if � ∈ �+, and there exist	 ∈ �+ and� ∈ X ∩ �� such that
�� = 	�, 	� = �� and�� = 	�. Therefore� ∈ {	 ∈ �+|� ∈ X ∩ ��, �� = 	�}. This
implies thatRel({	 ∈ �+|� ∈ X ∩ ��, �� = 	�}) = {	 ∈ �+|� ∈ X ∩ ��, �� = 	�}.
Moreover if� is such that� ∈ Rel(X) ∩ �� and�� = ��, then by definition ofRel, there
exists�′ ∈ X ∩ �� such that�� = �′� = ��. This implies that� ∈ Rel({	 ∈ �+|� ∈
X ∩ ��, �� = 	�}) if and only if � ∈ {	 ∈ �+|� ∈ Rel(X) ∩ ��, �� = 	�}. The third
equality of the proposition holds because we proved thatRel◦Ang= Ang◦Rel, moreover
by Proposition4.4we know thatAng∗ = Inf andAng Inf = �∞. Moreover, it is worth
noting thatAng◦ Inf = Inf ◦ Ang= �∞. Hence, by Lemma4.10, we haveRel◦ Inf =
Inf ◦ Rel. �
Proposition4.11tells us that, for each possible closure� ∈ {Ang, Inf ,Dem}, we have

Rel◦ � = � ◦ RelandRel◦ �∗ = �∗ ◦ Rel. Moreover, it is worth noting that the relational
semantics does not factorize the trace-based one, being too abstract, i.e.,Nat�Rel= Nat.
This does not allow us to use Theorem4.8-(ii) for relating the observables in the trace-based
and relational semantic styles in theCousot’s hierarchy. Instead,we canuseTheorem4.8-(i),
as shown below.

Proposition 4.12. 1.Mirr (Rel(℘ (�∞)) ∩ Ang(℘ (�∞))) ⊆ Mirr (Rel(℘ (�∞))).
2.Mirr (Rel(℘ (�∞)) ∩ Inf (℘ (�∞))) ⊆ Mirr (Rel(℘ (�∞))).

Proof. We know thatRelandAngcommute by the previous proposition, so it is immediate
to see that the intersection betweenRelandAng is exactly the angelic relational closure,

20 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

that we denoteAngR.

Mirr (Rel(℘ (�∞)) ∩ Ang(℘ (�∞))) = Mirr (AngR(℘ (�∞))))

Let X be meet-irreducible inAngR. Then, it contains all the infinite traces and, moreover,
there exists, s′ ∈ � such that

{
	 ∈ �+ ∣∣ 	� = s ∧ 	� = s′

} ∩ X = � (these meet-
irreducibles are the concretizations, as regards�R, of the meet-irreducible elements of
℘(�× �)).
We have to prove thatX is meet-irreducible inRel. Suppose that there existA,B ∈ Rel

such thatA∩B = X, withA �= X andB �= X. SinceX is meet-irreducible inAngR, either
A or B is in AngR. SupposeA in AngR. This means thatA does not contain all the infinite
traces, which implies that it cannot generate, by intersection, all the sets containing all the
infinite traces. Hence, ifX is meet-irreducible inAngR then it is meet-irreducible inRel.
The other cases are analogous.�
Therefore, it is immediate, by Theorem4.8-(i), that:

Rel = AngR � DemR = AngR � InfR
InfR = Rel�AngR

AngR = Rel�DemR = Rel�InfR

where the apexR denotes the relational version of the corresponding closures, i.e., the
composition of each closure with the relational one. We know that the part of the hierarchy
over the trace level is constituted by isomorphic levels. Then, we can think of applying
Theorem4.8-(ii), in order to propagate the properties of complementation. We can prove
that the basic pattern of the hierarchy between the angelic, infinite and demonic observables
can always be characterized by complementation, at any level of the Cousot’s semantics
hierarchy.
The following lemma proves that all the semantics, in the Cousot’s hierarchy, satisfy the

hypotheses of Theorem4.8-(ii). In the following we denote the meet-irreducible elements
of R∞ byMirr R

def= Mirr (〈℘(�× �⊥),⊆〉).

Lemma 4.13.

Mirr (〈� −→ ℘(�⊥),�〉) = �D(Mirr R)
Mirr (

〈
℘(�⊥) coa−→℘(�),+

〉
) = �gWp(�D(Mirr R))

Mirr (〈℘(�)⊗ ℘(�⊥),⊇〉) = �gH(�gWp(�D(Mirr R)))

Proof. Note that,Den is isomorphic toRel [10]. Therefore, it is immediate to determine
the structure of its meet-irreducible elements:

Mirr (� −→ ℘(�⊥),�) =
{
f

∣∣∣∣ ∃ s ∈ �, ∃s′ ∈ �⊥ . f (s) = �⊥\{s′},
∀ s ∈ �\{s} . f (s) = �⊥

}

We have to prove thatMirr (〈� −→ ℘(�⊥),�〉) = �D(Mirr R). Recall that�D(X) =
�s.{s′ |〈s, s′〉 ∈ X}. Let us consider the two implications of the equality separately.

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 21

LetX ∈ Mirr R, then

�D(X) = �D((�× �⊥)\{〈s0, s1〉})
=
{

�s.�⊥ if s �= s0
�s.�⊥\{s1} otherwise

This implies that�D(X) ∈ Mirr (〈� −→ ℘(�⊥),�〉). Consider now the functionf ∈
Mirr (〈� −→ ℘(�⊥),�〉), then there exists0 ∈ � ands1 ∈ �⊥ such thatf (s0) = �⊥\{s1},
and for alls �= s0 we havef (s) = �⊥. At this point, we can takeX = �×�⊥\{〈s0, s1〉} ∈
Mirr R such thatf = �D(X). The other cases are similar.�
The lemma above, together with Theorem4.8-(ii), and since all the complementary

observables share only the top element, implies the following result relating program se-
mantics at different levels of abstraction (see Fig.7). In this case, we extend the scope of
� from closures to semantics in the obvious way: LetA = �A(�∞) andB = �B(�∞) then
A�B = (���)(�∞).

Theorem 4.14. In Cousot’s hierarchy of semantics we have�∞��+ = �� and�∞��� =
�∞��� = �+.Moreover:

R∞�R+ = R�, D∞�D+ = D�

R∞�R� = R∞�R� = R+, D∞�D� = D∞�D� = D+

gWp�Wlp = Wp�, gH�pH = gH�

gWp�Wp� = gWp�Wp� = Wlp, gH�gH� = gH�gH� = pH

4.5. Decomposing predicate transformers

The predicate transformer semantics provides an intensional description of programming
language semantics in terms of functions transforming logic-based descriptions of compu-
tational states. In this context, a predicate is a set of states, while apredicate transformer
is a function transforming predicates. Consider the presentation of a transition system as
〈�,→〉, with configurations� consisting of pairs of program components (e.g. expres-
sions or commands), and program statess ∈ � which are mappings from variables into
values, and a transition relation→⊆ � × �. The weakest precondition semantics[18] is
traditionally defined as follows, whereP,Q ⊆ �, andS is a program fragment:

P ⇒ Wlp(S,Q) ⇔ ∀s . (s ∈ P ⇒ (〈S, s〉 → s′ ∧ s′ ∈ Q) ∨ 〈S, s〉↑)
A similar definition can be made for its infinite counterpart:

P ⇒ Wp�(S,Q) ⇔ ∀s . (s ∈ P
⇒ (〈S, s〉↑ ∧ ⊥ ∈ Q) ∨ (∃s′ . 〈S, s〉 → s′))

It is immediate to transform the above relations into the following sets of states: the
weakest-liberal preconditionWlp(S,Q) = {

s
∣∣ ∀ s′ ∈ � . (〈S, s〉 �→ s′ ∨ s′ ∈ Q) } and

the infinite oneWp�(S,Q) = {
s
∣∣ ∃ s′ ∈ � . (〈S, s〉 → s′ ∨ ⊥ ∈ Q) }. By complement-

ing these sets, we obtain the following set-theoretic complements: the complement of the

22 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

weakest-liberal precondition,¬Wlp(S,Q) = {
s
∣∣ ∃ s′ ∈ � . (〈S, s〉 → s′ ∧ s′ /∈ Q) },

and of the infinite one,¬Wp�(S,Q) = {s | ∀s′ ∈ �.(〈S, s〉 �→ s′ ∧ ⊥ /∈ Q)} ≡ {s | 〈S, s〉
↑ ∧⊥ /∈ Q}.
By Theorem4.1, we have that the natural semantics corresponds to the reduced product

of the angelic and infinite semantics. Therefore, in this context, it is the conjunction of the
two semantics above, namely:

gWp(S,Q) = {
s
∣∣ (〈S, s〉↑ ∧ ⊥ ∈ Q) ∨ (〈S, s〉 → s′ ∧ s′ ∈ Q) }

In this framework, it is possible to compare logical and algebraic complementation of
observables. While the algebraic complementation corresponds to abstract domain com-
plementation, the logical one boils down to the set-theoretic complementation of predicate
transformers. The following complementary relationshold between infiniteweakest precon-
dition semantics and the angelic (liberal) one:Wp�(S,Q) \ gWp(S,Q) = ¬Wlp(S,Q)

andWlp(S,Q) \ gWp(S,Q) = ¬Wp�(S,Q). Hence we have:

Wlp(S,Q) \ gWp(S,Q) = ¬Wp�(S,Q)⇔
Wlp(S,Q) ⇒ gWp(S,Q) = Wp�(S,Q)

Wp�(S,Q) \ gWp(S,Q) = ¬Wlp(S,Q)⇔
Wp�(S,Q) ⇒ gWp(S,Q) = Wlp(S,Q)

In this way, we have the following relation between the algebraic and logical complemen-
tation of predicate transformers:

gWp�Wlp = Wp� (Wlp(S,Q) ⇒ gWp(S,Q)) = Wp�(S,Q)

gWp�Wp� = Wlp (Wp�(S,Q) ⇒ gWp(S,Q)) = Wlp(S,Q)

Algebraic transformation Logic transformation

This implies thatP ⇒ Wp�(S,Q) iff P ∧ Wlp(S,Q) ⇒ gWp(S,Q). An analogous,
but dual, formulation holds for the weakest-liberal precondition semantics, with respect to
the infinite one. This shows that the domain complementation corresponds to the classical
implication, as far as predicate transformers are concerned.
We conclude this section by proving that the weakest precondition semantics, which

abstracts the demonic relational semantics[10], is too abstract to provide any significant
decomposition of the demonic relational semantics. We consider the relational semantics,
which is the simplest semantics in Cousot’s hierarchy, which is isomorphic to the weakest
precondition one.

Lemma 4.15. Let�R(DemR) be the demonic relational closure, and let�R(InfR) be the
infinite one. Then we have:

Mirr (�R(DemR))=Mirr (�R(InfR))

∪ {X ∈ ℘(�× �⊥)|X = (�× �⊥) \ {
〈
s, s′

〉 〈s,⊥〉}, s, s′ ∈ �}

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 23

Proof. Let us denote withM the set on the right side of the equality.We prove the two inclu-
sions separately. Consider an elementX ∈ M.We can prove that it ismeet-irreducible in the
demonic relational closure. IfXbelongs to the set ofmeet-irreducible elements of�R(InfR),
thenX ismeet-irreducible and it is in�R(DemR)because, by definition, the demonic seman-
tics contains the infinite one. Suppose now thatX ∈ M, but not inMirr (�R(InfR)), i.e.,
X ∈ {

X ∈ ℘(�× �⊥)
∣∣X = (�× �⊥) \ {

〈
s, s′

〉
, 〈s,⊥〉}, s, s′ ∈ �

}
, in other words let

X = (�×�) \ {〈s, s′〉 , 〈s,⊥〉}. We can considerA,B ∈ �R(DemR) such thatA∩B = X,
this means that(� × �) \ {〈s, s′〉} ⊆ A+ and (� × ⊥) \ {〈s,⊥〉} ⊆ A�, and the same
holds forB. We can see that each possible combination implies thatX = A orX = B, or
it implies a contradiction. Since we are in the demonic observable, ifA� = � × ⊥, then
A+ = �×�. In these conditions, ifB+ = �×� orB� = �×⊥, thenA∩B cannot beX,
so we haveX = B. Suppose now thatA� = (�×⊥)\ {〈s,⊥〉}. If A+ = (�×�)\ {〈s, s′〉},
thenX = A. Hence, considerA+ = �×�. In this case, ifB+ = �×� thenA ∩B �= X,
thereforeB+ = (�× �) \ {〈s, s′〉} and, sinceB is in the demonic closure, this implies that
B� = (� × ⊥) \ {〈s,⊥〉}, namelyB = X. We can conclude thatM is a subset of the
meet-irreducibles of the demonic relational closure.
Consider, now,Xmeet-irreducible in the relational demonic semantics. This means that,

if X = A ∩ B, then eitherX = A or X = B. Suppose thatX /∈ M, then we have the
following possible situations:
1. X+ = (�× �) \D1, withD1 ⊆ �× � and|D1| > 1;
2. X = (�× �⊥) \

〈
s, s′

〉
;

3. X� = (�×⊥) \D2, withD2 ⊆ �×⊥ and|D2| > 1.
It is worth noting that, in the second case, we have thatX does not belong to the demonic
closure, which is a contradiction. Consider, then, the condition(1), we can define the sets
A = X�∪ ((�×�)\D′

1) andB = X�∪ ((�×�)\ {x}), with x ∈ D1 andD′
1 = D1\ {x}.

Then, it is immediate to note thatA ∩ B = X with X �= A andX �= B, which contradicts
the hypothesis onX. Analogously, we can prove that the third point leads to a contradiction.
Therefore,wecanconclude that, ifX ismeet-irreducible in the relational demonic semantics,
then it belongs toM. �
The lemma above tells us that all themeet-irreducible elements of the demonic semantics

include infinite computations. In this case, theWp semantics forgets about the input states
thatmay lead to an infinite computation[10]. Thismeans that this semantics doesnot include
the meet-irreducibles of the demonic relational one. In this sense, it does not factorize the
demonic closure. In order to understand this situation better, let us consider the following
example.

Example 4.16.LetX = { 〈a, a〉 , 〈a, b〉 , 〈b, a〉 , 〈a,⊥〉 } be an element of the domain in
Fig. 6 (meet-irreducible). Then the mapf = �D(X) is such that

a 2→ {a, b,⊥}
b 2→ {a}

At this point, in order to calculate thegWp semantics,weconsider thepredicate transformer
� = �gWp(f) : ℘(�⊥) → ℘(�), and we obtain the function that executes the following

24 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

associations:

{a} 2→ {b}
{a, b,⊥} 2→ {a}

� , {b}, {⊥}, {a,⊥}, {b,⊥}, {a, b} 2→ �

At this point, the abstraction�Wp reduces the domain of this function to℘(�), obtaining

{a} 2→ {b}
� , {b}, {a, b} 2→ �

But, if we concretize with�Wp, we obtain the function�′ that is such that�′ : {a} 2→ {b}
while for each setX ∈ ℘(�⊥) \ {a} we have�′ : X 2→ �. So, concretizing this map till
the relational domain, we obtain the setY = �× �⊥ which strictly containsX.

4.6. Decomposing demonic semantics

In Section4.2, we proved that the angelic and demonic abstractions do not factorize natu-
ral semantics in most abstract factors. This means that it is possible to isolate an observable
which is more abstract than the demonic semantics, and complementary with respect to the
infinite one. In this section, we give a computational meaning to this new observable.

Lemma 4.17. Let	 ∈ �∞ and�	
def= {� ∈ �� | �� = 	�}. Then we have:

Mirr (Dem) = Mirr (Inf) ∪ {X ⊆ �∞ ∣∣ ∃ 	 ∈ �+ . X = �∞ \ (�	 ∪ {	})
}

Proof. Let us use the denotationM
def= {

X ⊆ �∞ ∣∣ ∃ 	 ∈ �+ . X = �∞ \ (�	 ∪ {	})
}
,

and consider the two inclusions separately. Let us prove thatM ⊆ Mirr (Dem), namely
considerX ∈ M. If X ∈ Mirr (Inf), thenX is meet-irreducible also inDem. This because
the only sets of traces inDemcontaining all the finite traces are elements inInf . Now, if
X = �∞ \ (�	 ∪ {	}), we have the following possible cases. ConsiderA1, A2 ∈ Dem
such thatA1 ∩ A2 = X, then we have that�� \ �	 ⊆ A�

i , and�+ \ {	} ⊆ A+i , for
i = 1,2. Therefore, for the infinite part of the sets, we have the following possible cases:
A�
i = �� \�	,A�

i = �� \D0, whereD0 ⊂ �	, orA�
i = ��. While, for the finite part of

the sets, we have the following possible cases:A+i = �+ \ {	} orA+i = �+. We can prove
that in all the combinations of these cases eitherAi = X or we find a contradiction.
• ConsiderA�

1 = �� \ �	. If A
+
1 = �+ \ {	}, thenA1 = X. Therefore, let us consider

A+1 = �+, i.e.,A1 = �∞ \ �	. In these conditions, ifA
+
2 = �+, thenA1 ∩ A2 �= X,

thereforeA+2 = �+ \ {	}. As far asA�
2 is concerned, ifA�

2 = �� \ �	, thenA2 = X,
and ifA�

2 = �� orA�
2 = �� \D0, thenA2 /∈ Dem.

• ConsiderA�
1 = ��. Since we are considering elements inDem, this implies thatA+1 =

�+, i.e.,A1 = �∞. In these conditions, it is clear that, ifA+2 = �+, thenA1∩A2 �= X,
henceA+2 = �+ \ {	}. As far asA�

2 is concerned, ifA�
2 = ��, thenA1 ∩ A2 �= X, if

A�
2 = �� \ �	, thenA2 = X, and ifA�

2 = �� \D0, then we would haveA2 /∈ Dem.
• ConsiderA�

1 = �� \ D0. In this case, we haveA+1 = �+, otherwiseA1 /∈ Dem, i.e.,
A1 = �∞ \D0. On the other hand,A

+
2 = �+ \ {	}, otherwiseA1 ∩ A2 �= X. Finally,

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 25

if A�
2 = ��, thenA1 ∩ A2 /∈ Dem, if A�

2 = �� \ D0, thenA1 ∩ A2 �= X, and if
A�
2 = �� \ �	, thenA2 = X.

Now we have to prove thatMirr (Dem) ⊆ M, namely that ifX /∈ M, thenX /∈ Mirr (Dem).
Hence, considerX /∈ M. Then, there existsD0 ⊆ ��, withD0 ⊃ �	, such thatX� = �� \
D0, or there existsD1 ⊆ �+, with |D1| > 1, such thatX+ = �+ \D1, andX /∈ Mirr (Inf).
In these conditions, ifX+ = �+, thenX ∈ Inf , by definition of Inf , andX is meet-
irreducible. All these facts together imply thatX ∈ Mirr (Inf), which is a contradiction,
sinceX /∈ Mirr (Inf). Therefore, considerX+ ⊂ �+ and, in particular, considerX+ =
�+ \ D1. We can define the setsD′

1
def= D1 \ {	′}, with 	′ ∈ D1, A

def= X� ∪ (�+ \ D′
1)

andB
def= X� ∪ (�+ \ {	′}). It is worth noting thatA ∩ B = X with A �= X andB �= X,

namelyX is not meet irreducible inDem. Finally, if X+ = �+ \ {	} andX� = �� \ D0
(by hypothesis), then we can define the setsD′

0
def= D0 \ {�′}, with �′ /∈ �	 and�′ ∈ D0,

A
def= �∞\(D′

0∪{	}) andB def= �∞\{�′}. It is worth noting that, also in this case,A∩B = X

withA �= X andB �= X, namely also in this caseX /∈ Mirr (Dem). We proved, in this way,
thatM = Mirr (Dem). �
It is clear that, for eachx ∈ Mirr (Dem) \ Mirr (Inf), we havex /∈ Inf . Therefore,

we can obtain a new observable which is generated from the objects of the formX =
�∞ \ (�	 ∪ {	}), with 	 ∈ �+. In particular, we can define a new closure operator,
calledslothful, that characterizes the new complementary semantics defined byDem�Inf .
This is a closure on the demonic domainSlo ∈ uco(Dem(℘ (�∞))), which is defined as
follows:

Slo
def= �X . X ∪ {� ∈ �� ∣∣ chaos(��) ⊆ X+ }

On the other hand, ifX ∈ M ({
X ⊆ �∞ ∣∣ ∃ 	 ∈ �+ . X = �∞ \ (�	 ∪ {	})

})
, then it

means that ,when there exists a trace	 /∈ X+, then all the traces� ∈ ��, such that�� = 	�,
cannot be inX.

Proposition 4.18.

X ∈ Slo ⇔ X ∈ M ({
X ⊆ �∞ ∣∣ ∃ 	 ∈ �+ . X = �∞ \ (�	 ∪ {	})

})
Proof. Let us prove the two implications separately.(⇒) ConsiderX ∈ Slo, we know by
definition of slothful closure that	 ∈ X� implieschaos(�) ⊆ X+. Hence

X ∈ Slo ⇔ X = X ∪ {� ∈ ��
∣∣ chaos(��) ⊆ X+ }

⇔ ∀ � ∈ X� . chaos(��) ⊆ X+

Suppose thatX is not the intersection of elements inMirr (Dem)\ Inf , namely there exists an
infinite trace� ∈ X, starting with the initial state of a finite trace	 /∈ X. By definition ofX,
we know thatchaos(��) ⊆ X+, then, since	 ∈ chaos(��) (being�� = 	�), we would have
	 ∈ X+, which is a contradiction.(⇐) Let us prove that each element inMirr (Dem) \ Inf
belongs to the closure operator. ConsiderSlo(�∞ \ (�	 ∪ {	})). By definition, this closure
adds, with each setA, the chaos of each infinite trace inA. This means that the operation
cannot add any trace contained in�	, because they are all infinite. Moreover, it cannot add
	, since there are no infinite traces starting with	�, being these traces in�	. Hence, we can

26 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

Fig. 5. Relational infinite semantics on� = {a, b}.

conclude that all the meet-irreducible elements inMirr (Dem) \ Inf are fix-points ofSlo,
which is meet-generated by them.�
It is simple to verify that this new semantics is unable to distinguish whether, in a set of

traces,the set of all the finite traces with the same given initial states, is generated by the
existence of an infinite trace in�∞ starting froms, or it is produced by the program itself.
This abstraction is achieved by enhancing any set of tracesX with all the infinite traces
� ∈ ��, whenever the chaos generated by�, namelychaos(��), is contained inX.
The following result is straightforward by Theorem4.2 and by Lemma4.17. As ex-

pected, this new semanticsSlo(Dem(�∞)) is unable to observe infinite behaviors. More-
over,(Dem�Inf) ◦ Dem is unable to factorize the basic trace semantics. Indeed, for any
X ∈ Mirr (℘ (�∞)) we have(Dem�Inf)(Dem(X)) = �∞ (Figs.5 and6).

Theorem 4.19.Dem�Inf = Slo, Dem�Slo= Inf , and Nat�(Slo◦ Dem) = Nat.

We can conclude that the infinite and the slothful semantics are fully complementary,
namely they share only the demonic top element�∞.

Proposition 4.20. Slo Inf = �∞.

The following result proves that the complementary structure of the slothful semantics
can be extended all over the hierarchy.

Lemma 4.21. 1.Rel◦ Slo= Slo◦ Rel.
2.Mirr (Rel(Dem(℘ (�∞))) ∩ Slo(℘ (�∞))) ⊆ Mirr (Rel(Dem(℘ (�∞)))).

Proof. By Theorem4.19, Proposition4.20and Lemma4.10, the proof is analogous to the
one of Propositions4.11and4.12. �
Therefore, by using also Proposition4.11, we can apply Theorem4.8-(i), obtaining that:

DemR = SloR � InfR
InfR = DemR�SloR
SloR = DemR�InfR

The following theorem is analogous to Theorem4.14.

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 27

Fig. 6. Demonic relational semantics on� = {a, b}.

Theorem 4.22. In Cousot’s hierarchy of semantics we have:

R��R� = R�, D��D� = D�

R��R� = R�, D��D� = D�

Wp��Wp� = Wp�, gH��gH� = gH�

Wp��Wp� = Wp�, gH��gH� = gH�

In Fig. 6 we have the relational version, on the alphabet� = {a, b}, of the demonic
semantics. In this representation, we underline with empty points the elements that belong
both,to the demonic and to the infinite semantics. In this figure, the slothful domain is
represented by full points.
The factorization of the demonic semantics led us to the definition of a new observable,

which is complementary with respect to the infinite semantics relatively to the demonic
observable. We prove that this semantics can be constructively derived as the least fix-point
of amonotoneoperator, under particular conditions. The slothful semantics canbe viewedas
an abstraction of the natural semantics by composing the demonic and the slothful closures.
This leads to the following closure operator on the maximal trace semantics:

Slo�(X)
def= Slo◦ Dem(X)
= X ∪⋃{

chaos(��)
∣∣ � ∈ X� } ∪ {� ∈ ��

∣∣ chaos(��) ⊆ X+ }
In order to define the abstraction of the demonic observable corresponding to the
slothful domain, we can think of distinguishing, in the set of all the finite traces of a

28 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

Fig. 7. Semantics in Cousot’s hierarchy.

program, those traces which are the effect of a computation, from those which belong
to the chaos given by an infinite computation. In the following we will use the notation:
CH

def= {
chaos(s)

∣∣ s ∈ �
} ⊆ ℘(�+). Consider the setD�, with elementsX = 〈

X+, Xch
〉
,

where we considerX+ ∈ ℘(�+) andXch ∈ ℘(CH), defined as

D� =


〈
X+, Xch

〉
∈ ℘(�+)× ℘(CH)

∣∣∣∣∣∣
	 ∈ X+ ⇒ chaos(�) �⊆ X+,
chaos(s) ∈ Xch

⇒ ∀� ∈ �+ . s� /∈ X+




The abstraction and concretization functions are, respectively,�d : D� → D� and�d :
D� → D�, and they are defined as follows: IfX ∈ D� andY ∈ D� then

�d(X) = 〈{
	 ∈ X+ ∣∣ chaos(�) �⊆ X+ }

,
{
chaos(�)

∣∣ chaos(�) ⊆ X+ }〉
�d(Y) = Y+ ∪ {� ∈ �∞ ∣∣ chaos(��) ∈ Y ch

}
The idea is the following. The abstraction ignores the infinite traces, while it keeps their
chaos, which is represented by the setchaos(s), for their initial states. The concretization,
instead, leaves unchanged the finite traces and substitutes each setchaos(s) with all the
finite and infinite traces starting with the states. It is worth noting thatSlo= �d ◦ �d .
The semantics, not originally included in Cousot’s hierarchy, are represented in Fig.7

with dashed lines and empty points.
The characterization of the slothful semantics as a fix-point of a monotone operator on

traces requires the definition of a computational order which has to be coherent with the
structure of the slothful abstraction. In order to obtain this, we apply the abstraction above
to the demonic domain reordered by the computational order,

〈
D�,��〉, defined in[10]:

X �� Y if for each	 ∈ ��:

	 ∈ X ∨ (/∈ Y ∧ ∀� ∈ �+. 	�� ∈ X ⇒ 	�� ∈ Y)

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 29

Fig. 8. The reordered slothful domain.

This order says thatX ∩ �� ⊇ Y ∩ ��, and for any states, which in bothX andY does
not lead to non-termination, we haveX ∩ chaos(s) ⊆ Y ∩ chaos(s). It is trivial to prove
that the computational order, induced on the domainD�, is defined as follows:X �� Y iff
X+ ⊆ Y+ andXch ⊇ Y ch. We can observe that the induced least upper bound is⊔ �

Xi =
〈⋃

i X
+
i ,
⋂

i X
ch
i

〉
where{Xi}i∈I ⊆ D�, i.e., it is the union on the finite traces part and the intersection on the
chaos part, of the sets involved in the operation. The greatest lower bound is defined dually.
The problem here is that〈D�,��〉 is not a complete partial order (CPO). This implies that
we cannot specify the slothful semantics of a program as the least fix-point of a monotone
operator, i.e., the slothful semantics does not have a computational meaning for infinite state
systems, such as programs. In order to observe this fact, we remind that a setX is inD� iff
∀s ∈ � .chaos(s) ∈ X ⇒ ∀s� ∈ �+ . s� /∈ X+ and∀s� ∈ X+ .chaos(s) �⊆ X+. Consider
a states ∈ �, and consider the increasing chain{Xi}i<� ⊆ D� defined as follows:

X0 =
〈
�,�

〉
Xn =

〈
X+
n−1 ∪ (chaos(s) ∩ �n),�

〉
where�n is the set of all the finite traces whose length isn < �. It is worth noting that
∀i . Xi ∈ D� and that∀i . Xi �� Xi+1. Then, we haveX� = ⊔

n Xn and it is clear that
chaos(s) ⊆ X+

� = ⋃
n X

+
n , whileX

ch
� = �, namelyX� /∈ D�. The problem here is that

the chaos of a state is an infinite set. This means that we are not able to systematically
build the slothful observable on transition systems involving infinite states. Indeed, the only
situation, where the argument above fails, is when the domain is finite, namely when we
consider the relational domain with a finite set of states such as in Fig.8. The idea is that of
finding a monotone operator able to systematically derive the slothful relational semantics,

30 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

under the hypothesis of finite states. We can rewrite, in the relational domain, all the objects
defined above, as follows:
• chaosR(s) = {〈

s, s′
〉 ∣∣ s′ ∈ �

}
;

• CHR =
{
chaosR(s)

∣∣ s ∈ �
}
;

• DR� def= �R(D�)

=

〈X+, Xch

〉 ∈ ℘(�× �)× ℘(CHR)

∣∣∣∣∣∣
〈
s, s′

〉 ∈ X+ ⇒ chaosR(s) �⊆ X+,
chaosR(s) ∈ Xch

⇒ ∀s′ ∈ � .
〈
s, s′

〉
/∈ X+


;

• X, Y ∈ DR� : X �� Y ⇔ X+ ⊆ Y+ ∧ Xch ⊇ Y ch.
In the following theorem, we will denote withchaos(s) the setchaosR(s) and withCH the
setCHR. Remind thatT is the set of all the final/blocking states.

Theorem 4.23.Let s1, s2, s ∈ � and� = {〈s, s〉 ∣∣ s ∈ T }
. LetF �(X) ∈ DR� −→ DR�

be a monotone operator defined as

F �(X) = 〈
� ∪ {〈s1, s2〉 ∣∣ s1�s, 〈s, s2〉 ∈ X+, chaos(s1) /∈ Xch

}
,{

chaos(s)
∣∣ s�s1, chaos(s1) ∈ Xch

}〉
ThenR� = lfp�

�

CHF
�.

Proof. Let us define the following notation. Considera, b ∈ � and 0< i < �:

a�ib ⇔ ∃s1, s2, . . . , si−1 . a�s1�s2� . . . �si−1�b and a ∈ �i ⇔ ∃b ∈ � . a�ib

We prove that thenth iteration ofF � is

F
�
n =

〈
� ∪ {〈s1, s2〉 ∣∣ ∃ i . 0< i < n . s1�i s2, s2 ∈ T , s1 /∈ �n

}
,{

chaos(s)
∣∣ s ∈ �n+1

}〉
We prove this by induction onn. Consider the base of the induction, namelyn = 0:

F
�
0 (CH) =

〈
�,
{
chaos(s)

∣∣ s�s1, chaos(s1) ∈ CH }〉 = 〈
�,
{
chaos(s)

∣∣ s ∈ �1
}〉

Suppose now that the hypothesis holds forn, we can calculate the(n+ 1)th iteration.

F
�
n+1= F �(F

�
n) =

〈
� ∪ {〈s1, s2〉 ∣∣ s1�s, 〈s, s2〉 ∈ F �

n , chaos(s1) /∈ F �
n

}
,{

chaos(s)
∣∣ s�s1, chaos(s1) ∈ F �

n

}〉

=
〈
� ∪


〈s1, s2〉

∣∣∣∣∣∣
s1�s, 〈s, s2〉 ∈ � ∪

{
〈s1, s2〉

∣∣∣∣ ∃ 0< i < n . s1�i s2,
s2 ∈ T , s1 /∈ �n

}
,

s2 ∈ T , chaos(s1) /∈
{
chaos(s)

∣∣ s ∈ �n+1
}


 ,

{
chaos(s)

∣∣ s�s1, s1 ∈ �n+1
}〉

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 31

=
〈
� ∪


〈s1, s2〉

∣∣∣∣∣∣
s1�s, 〈s, s2〉 ∈ � ∪

{
〈s1, s2〉

∣∣∣∣ ∃ i . 0< i < n . s1�i s2,
s2 ∈ T , s1 /∈ �n

}
,

s2 ∈ T , s1 /∈ �n+1


 ,

{
chaos(s)

∣∣ s ∈ �n+2
}〉

= 〈� ∪ {〈s1, s2〉 ∣∣ s1�s2, s2 ∈ T , s1 /∈ �n+1
}∪{〈s1, s2〉 ∣∣ s1�s, s2 ∈ T , ∃i . 0< i < n . s�i s2, s /∈ �n, s1 /∈ �n+1

}
{
chaos(s)

∣∣ s ∈ �n+2
}〉

=
〈
� ∪ {〈s1, s2〉 ∣∣ s1�s2, s2 ∈ T , s1 /∈ �n+1

}∪
{
〈s1, s2〉

∣∣∣∣∣
∃ 1< i < n+ 1 . s1�i s2,

s2 ∈ T , s1 /∈ �n+1

}
,
{
chaos(s)

∣∣ s ∈ �n+2
}〉

= 〈� ∪ {〈s1, s2〉 ∣∣ ∃ 0< i < n+ 1 . s1�i s2, s2 ∈ T , s1 /∈ �n+1
}
,{

chaos(s)
∣∣ s ∈ �n+2

}〉
It is worth noting that the resulting chain is increasing because at each iteration the

condition on the finite traces part of each set become weaker, while the condition on the
chaos part become stronger. Now, we have to prove that the fix-point of the function defined
above is, precisely, the slothful semantics of the transition system. Namely, we have to
compute the limit R�, which is the relational version of the operator defined previously.

⊔R�
n F

�
n =⊔R�

n

(〈
� ∪

{
〈s1, s2〉

∣∣∣∣ ∃ i . 0< i < n . s1�i s2,
s2 ∈ T , s1 /∈ �n

}
,

{
chaos(s)

∣∣ s ∈ �n+1
}〉)

= 〈� ∪ (⋃n

{〈s1, s2〉 ∣∣ ∃ i . 0< i < n . s1�i s2, s2 ∈ T , s1 /∈ �n
})
,(⋂

n

{
chaos(s)

∣∣ s ∈ �n+1
})〉

= 〈� ∪ {〈s1, s2〉 ∣∣ ∃ n > 0, i . 0< i < n . s1�i s2, s2 ∈ T , s1 /∈ �n
}
,{

chaos(s)
∣∣ ∀ n > 1 . s ∈ �n

}〉
It is worth noting that the set

{〈s1, s2〉 ∣∣ ∃ n > 0, 0< i < n . s1�i s2, s2 ∈ T , s1 /∈ �n
}

takes all the pairs of states, initial and final of finite traces, where the first state cannot
lead to non-termination, while the set

{
chaos(s)

∣∣ ∀ n > 1 . s ∈ �n
}
takes all thechaos(s)

wheresmay lead to non-termination. This is exactly the slothful semantics.�

32 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

Example 4.24.Consider the following transition system:

〈�, �〉 with � = {a, b, c, d}, � = {〈a, a〉 , 〈a, b〉 , 〈c, b〉 , 〈c, d〉 , 〈d, b〉} andT = {b}
It is worth noting that the maximal trace semantics corresponding to this transition sys-
tem is the set of traces{cb, cdb, db, b, ab, aab, aa . . . b, . . . , aa . . . a . . .}. Moreover, it is
clear that the slothful semantics is〈{b, cb, cdb, db}, {chaos(a)}〉 and the relational ver-

sion is
〈
{〈b, b〉 , 〈c, b〉 , 〈d, b〉}{chaosR(a)}

〉
. Let us see how this semantics can be derived

systematically by using the function above. In the following, we will denote again the set
chaosR(s) simply bychaos(s).

F
�
0 (CH)=

〈
�,
{
chaos(s)

∣∣ s ∈ �1
}〉

= 〈{〈b, b〉}, {chaos(a), chaos(c), chaos(d)}〉
F

�
1 (CH)=

〈
�,
{
chaos(s)

∣∣ s ∈ �2
}〉

= 〈{〈b, b〉}, {chaos(a), chaos(c)}〉

F
�
2 (CH)=

〈
� ∪

{
〈s1, s2〉

∣∣∣∣ ∃ 0< i < 2 . s1�i s2,
s2 ∈ T , s1 /∈ �2

}
,
{
chaos(s)

∣∣ s ∈ �3
}〉

= 〈{〈b, b〉} ∪ {〈d, b〉}, {chaos(a)}〉

F
�
3 (CH)=

〈
� ∪

{
〈s1, s2〉

∣∣∣∣ ∃ i . 0< i < 3 . s1�i s2,
s2 ∈ T , s1 /∈ �3

}
,
{
chaos(s)

∣∣ s ∈ �4
}〉

= 〈{〈b, b〉} ∪ {〈d, b〉 , 〈c, b〉}, {chaos(a)}〉

F
�
4 (CH)=

〈
� ∪

{
〈s1, s2〉

∣∣∣∣ ∃ i . 0< i < 4 . s1�i s2,
s2 ∈ T , s1 /∈ �4

}
,
{
chaos(s)

∣∣ s ∈ �5
}〉

= 〈{〈b, b〉} ∪ {〈d, b〉 , 〈c, b〉}, {chaos(a)}〉

We have reached, in this way, the fix-point{〈b, b〉 , 〈d, b〉 , 〈c, b〉} ∪ {chaos(a)}, which is
exactly the slothful semantics of the given transition system.

5. Relational composition of semantics: compositionality

The independent composition of observables does not model the way relational informa-
tion can be extracted from traces by abstract interpretation. In particular the independent
composition is inadequate for modeling compositional semantics as abstract interpretations
of trace semantics. In general, a semantics is said to be compositional when the semantics
of a program can be reconstructed from the semantics of its components. In this section,
we specify the property of semantics compositionality as a property of the corresponding
closure operator on maximal traces. Indeed, the maximal trace semantics is also a well
known compositionalsemantics, namely it is equal to the composition of the semantics
of program’s sub-components. The idea is that we can compose the observations made
on partial computations, obtaining back, as result and without any loss of precision, the

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 33

observation of the whole computation. We remind the reader that, if we denote as[[·]] this
semantics, then we can describe its compositionality as[[P1;P2]] = [[P1]]�[[P2]], where
P1 andP2 are generic programs. Consider a GI:

〈
℘(�∞),⊆〉 −−→−→←−−−

�

� 〈A, �A〉 defined on

the concrete domain of the maximal traces℘(�∞). This induces an abstract semantics
which is defined on the abstract domain of denotationsA: [[·]]A def= �([[·]]). Our aim is that
of characterizing those abstract semantics that are compositional as regards as the concate-
nation of programs, i.e., such that[[P1;P2]]A = [[P1]]A�[[P2]]A. In this equation, we have
the abstract operation� that has to approximate the concrete composition of traces on the
domain of abstract denotations. The best correct approximation of� in A is, by definition,
the best choice defining�: [[P1]]A�[[P2]]A def= �(�([[P1]]A)��([[P2]]A)). Note that we have

[[P1;P2]]A = �([[P1;P2]]) = �([[P1]]�[[P2]]). If � is the best correct approximation of�,
then�([[P1]]�[[P2]])�[[P1]]A�[[P2]]A = �(�([[P1]]A)��([[P2]]A)). Because semantics can
be modeled as abstract domains, we can think of formulating the problem of composi-
tionality, in terms of closure operators, namely we would like to characterize the closure
operators which describe compositional semantics. It is clear that the abstract semantics
that makes the relation�([[P1]]�[[P2]])��(�([[P1]]A)��([[P2]]A)) an equality satisfy the
following equation: IfX andY are two sets of traces, representing the semantics of the
components of a program, and� is a closure operator, representing an observable property
of the semantics, then the corresponding semantics is compositional if

(COMP) �(X�Y) = �(�(X)��(Y))

where the concatenation operator,�, is the canonical way of composing traces. This means
that the equation (COMP) characterizes precisely the semantics that are compositional as
regards as the concatenation of traces. Clearly, not all the semantics satisfy the condition
(COMP). This is the case of the semantics observing a single state in a computation, e.g. the
final or the initial state, as shown in the following section.

5.1. Forward/backward potential termination semantics

Consider a semantics which identifies the final states of finite traces, namely which
considers only the states that are terminating in the traces of a given program. We call
this semanticsforward potential termination semantics. This observable is the dual of
the potential termination semanticsintroduced in[10], here calledbackward potential
termination semantics, observing the initial states of all the finite traces, namely which
considers only those states which, potentially, lead to termination. Both semantics can be
specified as abstractions of the natural trace semantics, by using a pair of adjoint functions:

��? : ℘(�∞)→ ℘(�), ��?(X) = {
	�

∣∣ 	 ∈ X+ }
��? : ℘(�)→ ℘(�∞), ��?(Y) = {

	 ∈ �+ ∣∣ 	� ∈ Y
} ∪ ��

��? : ℘(�∞)→ ℘(�), ��?(X) = {
	�

∣∣ 	 ∈ X+ }
��? : ℘(�)→ ℘(�∞), ��?(Y) = {

	 ∈ �+ ∣∣ 	� ∈ Y
} ∪ ��

Proposition 5.1.
〈
℘(�∞),⊆〉 −−−→−→←−−−−

��?

��?

〈℘(�),⊆〉 and 〈℘(�∞),⊆〉 −−−→−→←−−−−
��?

��?

〈℘(�),⊆〉.

34 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

Proof. The maps are trivially monotone, we prove that they form a Galois insertion.

��?��?(Y) = ��?
({

	 ∈ �+ ∣∣ 	� ∈ Y
} ∪ ��)

= {
	�

∣∣ 	 ∈ {� ∈ �+ ∣∣ �� ∈ Y
} }

= {
	�

∣∣ 	� ∈ Y
} = Y

��?��?(X) = ��?
({

	�

∣∣ 	 ∈ X+ })
= {

� ∈ �+ ∣∣ �� ∈
{
	�

∣∣ 	 ∈ X+ } } ∪ ��

= {
� ∈ �+ ∣∣ ∃ 	 ∈ X+ . �� = 	�

} ∪ �� ⊇ X

The other adjunction follows from the definition of potential termination semantics
in [10]. �
We can define the corresponding closure operators as follows:

Pot�?(X)
def= ��?��?(X) = {

	 ∈ �+ ∣∣ ∃ � ∈ X+ . �� = 	�

} ∪ ��

Pot�?(X)
def= ��?��? = {

	 ∈ �+ ∣∣ ∃ � ∈ X+ . �� = 	�

} ∪ ��

In the following we will identify with��? and��?, respectively the semantics obtained with
the operators just defined, namely��? def= ��?(�∞) and��? def= ��?(�∞).
The forward potential termination semantics is not adequate for modeling relational

properties of trace semantics. This because the history of the computation is lost in forward
potential termination semantics, and this information cannot be retrievedwhen it is required
for composing semantics to get the semantics of program composition.

Example 5.2. Consider the forward potential termination semantics that observes the final
states of finite computations only, and consider the program

P



P1

[
x := 0;
while x�3 do x := x + 1;

P2

[
y := 0;
z := x + y;

In this context, the states of the program are identified with the triples of values inN that
can be assigned to the corresponding variables ofP. The concrete semantics ofP is the set
of all the finite traces of states, each one with a possible initial value for each variable:

[[P]] = {〈x, y, z〉 → 〈0, y, z〉 → 〈1, y, z〉 → 〈2, y, z〉 → 〈3, y, z〉
→ 〈4, y, z〉 → 〈4,0, z〉 → 〈4,0,4〉 | x, y, z ∈ N}

On the other hand, the concrete semantics ofP1 andP2 are

[[P1]] = {〈x, y, z〉 → 〈0, y, z〉 → 〈1, y, z〉 → 〈2, y, z〉 → 〈3, y, z〉
→ 〈4, y, z〉 → 〈4, y, z〉}

[[P2]] = {〈x, y, z〉 → 〈x,0, z〉 → 〈x,0, x〉}

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 35

again withx, y, z ∈ N. Then the abstract semantics, denoted by[[·]]�? def= ��?([[·]]), are
[[P]]�? = {〈4,0,4〉}
[[P1]]�? = {〈4, y, z〉 | y, z ∈ N}
[[P2]]�? = {〈x,0, x〉 | x ∈ N}

It is easy to observe that any trace with initial state〈4,5,6〉 and final state〈10,0,10〉 is
in ��?([[P2]]�?). Therefore,〈10,0,10〉 ∈ ��?(��?([[P1]]�?)���?([[P2]]�?)). This fact proves
thatPot�? is not compositional, i.e.,[[P]]�? ⊂ ��?(��?([[P1]]�?)���?([[P2]]�?)).

As shown in Example5.2above, there are semantics which fail in modeling the input/
output behavior of program traces. This information is not even captured by the independent
composition of forward and backward potential termination semantics, as shown in the
following example. In this case note that:

(Pot�? � Pot�?)(X) = {
	 ∈ �+ ∣∣ ∃ �, � ∈ X : . 	� = �� ∧ 	� = ��

} ∪ ��

Pot�?�Pot�? does not represent input/output relations. Indeed, there are traces that do not
have necessarily the same initial and final state.Pot�? � Pot�? includes the product of all
the possible initial states, with all the possible final states of traces inX.

Example 5.3. Consider the programP1 in Example5.2. Let us denote bys0 →∗ sn a trace
with input states0 and output terminating statesn. It is clear that both〈5,6,7〉 →∗ 〈4,6,7〉
and〈10,11,12〉 →∗ 〈4,11,12〉 are in[[P1]]. Therefore

〈5,6,7〉 →∗ 〈4,11,12〉 ∈ Pot�? � Pot�?([[P1]])
which clearly fails to model input/output relations inP1.

5.2. The reduced relative power

In the following sections, we apply the reduced relative power in order to derive compo-
sitional semantics systematically, starting from simpler and non-compositional ones. This
operations is a well knownmethod for refining abstract domain, by including relational (at-
tribute dependent) information. In order to apply this operation, the concrete domain must
be asemi-quantale[39], i.e., a structure〈D, � ,4〉 where〈D, �〉 is a complete lattice and
4 : D ×D → D is an associative, monotone and left-adjoint operation.
The reduced relative power of two abstract domains ofD, D1 andD2, is the set of all

the monotone functions[30] �x.�2(d4 �1(x)) fromD1 toD2,D1
4−→ D2, whered ranges

over concrete values,�1 is the concretization map forD1 and�2 is the abstraction map
for D2.
Such functions are called dependences because they establish a dependency relation

between the values ofD1 and the values ofD2.Moreover, the operation4 can be considered
as a kind of combinator of the concrete denotations.
A dual operation can be defined simply applying the4 operation to the same elements

but interchanged, namely we denote asD2
4←− D1 the set of all monotone functions

�x.�2(�1(x) 4 d) where the elements are the same defined before. In the following, we

36 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

will call, the first operation,forward reduced power, and the second onebackward reduced
power.

Theorem 5.4(Giacobazzi and Ranzato[30]). Let 〈D, � ,4〉 be a semi-quantale,D1 and
D2 be complete lattices, �1 : D1 → D be amonotone function and

〈
D2, �2, �2,D

〉
aGalois

connection. The map� : D → (D1
4−→ D2) defined as�(d)

def= �x. �2(d 4 �1(x)) is the
left adjoint of a Galois insertion, namely there exists� such that

〈
D1

4−→ D2, �, �,D
〉
is a

GI.

A dual theorem can be proved for the forward reduced relative powerD2
4←− D1.

In order to apply the reduced relative power to the abstractions of the maximal trace
semantics, we need the following result.

Proposition 5.5.
〈
℘(�∞),⊆,� 〉 is a unitary quantale, with unity�.

5.3. Systematic construction of the angelic denotational semantics

We can characterize the angelic denotational semantics as upper closure operator on the
domain of finite and infinite traces (see Table2 and[10]):

AngD(X) = {
	 ∈ �+ ∣∣ ∃ � ∈ X+ . 	� = �� ∧ 	� = ��

} ∪ ��

The idea is that of obtaining the denotational angelic closure as the set of functional relations
between the terminating states of finite computations. For this reason, we use the reduced
relative power on the concrete domain℘(�∞), where the concrete combinator is the trace
concatenation. Moreover, the domains involved in the operation coincide both with the
forward potential termination semantics. Therefore we build the closure operatorPot�?

�←−
Pot�?.

Proposition 5.6. Let�D
+ : ℘(�∞)→ (℘ (�)← ℘(�)) be the map obtained by reduced

power of backward potential termination semantics, �D
+
(X) = �Y. ��?(��?(Y)�X) =

�Y.
{
	�

∣∣ 	 ∈ X+, 	� ∈ Y
}
. ThenD+��D

+
(�∞).

Proof. First of all we calculate the abstraction by using the backward reduced relative
power. Consider the setX ∈ ℘(�∞), then:

�D
+
(X) = �Y. ��?(��?(Y)�X)

= �Y. ��?
(({

� ∈ �+ ∣∣ �� ∈ Y
}�

X
) ∪ ��)

= �Y. ��?
({

��
∣∣ � ∈ X, �� ∈ Y, � ∈ �+ } ∪ ��)

= �Y.
{
	�

∣∣ 	 ∈ {��
∣∣ � ∈ X+, �� ∈ Y, � ∈ �+ } }

= �Y.
{
	�

∣∣ 	 ∈ X+, 	� ∈ Y
}

Now it is immediate to verify that this abstraction is such thatD+��D
+
(�∞). �

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 37

Theorem 5.7. The angelic denotational semantics is the set of all the monotone functions
between the elements of the forward potential termination, namely Pot�?

�←− Pot�? =
AngD.

Proof. We prove that the two functions�D
+
(X) = �Y.

{
	�

∣∣ 	 ∈ X+, 	� ∈ Y
}
and

�D
+
(f) = {

	 ∈ �+ ∣∣ 	� ∈ f (�)
} ∪ �� form a Galois connection. The monotonicity

is trivial, so consider the following relations, wheref : ℘(�)→ ℘(�) andX ∈ ℘(�∞):

�D
+
�D

+
(f) = �D

+ ({
	 ∈ �+ ∣∣ 	� ∈ f (�)

} ∪ ��)
= �Y.

{
	�

∣∣ 	 ∈ {� ∈ �+ ∣∣ �� ∈ f (��)
}
,	� ∈ Y

}
= �Y.

{
	�

∣∣ 	� ∈ f (Y)
}

= �Y. f (Y)

= f

�D
+
�D

+
(X) = �D

+ (
�Y.

{
��

∣∣ � ∈ X+, �� ∈ Y
})

= {
	 ∈ �+ ∣∣ 	� ∈

{
��

∣∣ � ∈ X+, �� = 	�

} } ∪ ��

= {
	 ∈ �+ ∣∣ ∃ � ∈ X+ . �� = 	�, �� = 	�

} ∪ ��

⊇ X

Now, we consider thePot�?
�←− Pot�?

def= {
	 ∈ �+ ∣∣ ∃ � ∈ X+ . �� = 	�, �� = 	�

}∪��

closure, that is clearly equal to the angelic denotational closure.�
This result tells us that the set of monotone functions between the terminating states of

finite traces is exactly the set of the functions of the denotational angelic semantics of the
transition system.

5.4. Optimality of the angelic denotational semantics

Wecan prove that the denotational angelic semantics is themost abstract semantics, more
concrete thanPot�?, which observes the final states of terminating computations. In order
to show this fact, we can prove that the angelic denotational semantics is the solution of
the abstract domain equationX = Pot�? � (X �←− X). This allows us to prove a result
of optimality of the closurePot�?

�←− Pot�?. Namely, we prove that this semantics is the
most abstract semantics which observePot�?, and which is closed as regards

�←−. In the
following, we denote by5s the constant function�x. s.

Theorem 5.8. (Pot�?
�←− Pot�?)

�←− (Pot�?
�←− Pot�?) = Pot�?

�←− Pot�?.

Proof. We characterize(Pot�?
�←− Pot�?)

�←− (Pot�?
�←− Pot�?) as a closure operator.

We use the backward reduced relative power, over the domainPot�?
�←− Pot�?, in order to

38 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

build the function� : ℘(�∞)→ ((℘ (�)→ ℘(�))→ (℘ (�)→ ℘(�))):

�(X) = �f. �D
+
(�D

+
(f)�X)

= �f. �D
+ (({

	 ∈ �+ ∣∣ 	� ∈ f (�)
}�

X
) ∪ ��)

= �f. �D
+
(
{
��
∣∣ � ∈ X, � ∈ �+, �� ∈ f (��)

} ∪ ��)

= �f.�Y.

{
	�

∣∣∣∣∣ 	 ∈
{

��

∣∣∣∣∣
� ∈ X+, � ∈ �+,

�� ∈ f (��)

}
,	� ∈ Y

}

= �f.�Y.
{
	�

∣∣ 	 ∈ X+, 	� ∈ f (��), � ∈ �+, �� ∈ Y
}

= �f.�Y.
{
	�

∣∣ 	 ∈ X+, 	� ∈ f (Y)
}

We know that this function is the left adjoint of a Galois insertion. Therefore let us consider
the concretization� : ((℘ (�)→ ℘(�))→ (℘ (�)→ ℘(�)))→ ℘(�∞), defined as

�(g) = {
	 ∈ �+ ∣∣ ∀X ∈ ℘(�) . 	� ∈ (g(5	�))(X)

} ∪ ��

We prove that℘(�∞) −−→−→←−−−
�

�
�(℘ (�∞)). Considerg ∈ �(℘ (�∞)) defined asg

def= �(X)
for someX ∈ ℘(�∞).

��(g) = �
({

� ∈ �+
∣∣∣ ∀Z ∈ ℘(�) . �� ∈ (g(5��))(Z)

}
∪ ��

)

= �f.�Y.


	�

∣∣∣∣∣∣
	 ∈

{
� ∈ �+

∣∣∣∣ ∀Z ∈ ℘(�) .
�� ∈ (g(5��))(Z)

}
	� ∈ f (Y)




= �f.�Y.
{
	�

∣∣∣∣ 	 ∈ �+, ∀Z ∈ ℘(�) . 	� ∈ (g(5	�))(Z),

	� ∈ f (Y)
}

= �f.�Y.
{
	�

∣∣∣∣ 	 ∈ �+, 	� ∈ f (Y),
	� ∈

{
��

∣∣ � ∈ X+, �� = 	�

} }
= �f.�Y.

{
	�

∣∣ ∃ � ∈ X+ . 	� = ��, �� = 	� ∈ f (Y)
}

= �f.�Y.
{
	�

∣∣ 	 ∈ X+, 	� ∈ f (Y)
}

= g

��(X) = �
(
�f.�Y.

{
	�

∣∣ 	 ∈ X+, 	� ∈ f (Y)
})

= {
	 ∈ �+ ∣∣ 	� ∈

{
��

∣∣ � ∈ X+, �� = 	�

} } ∪ ��

= {
	 ∈ �+ ∣∣ ∃ � ∈ X+ . �� = 	�, �� = 	�

} ∪ ��

⊇ X

We can note that this closure is exactly the angelic denotational semantics. Hence we have
(Pot�?

�←− Pot�?)
�←− (Pot�?

�←− Pot�?) is the closurePot�?
�←− Pot�?. �

It is possible to conclude that the domainPot�?
�←− Pot�? is the most abstract solution

of the equationX = Pot�?�X �←− X, because it is trivial to prove thatPot�? � Pot�?
�←−

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 39

Pot�?. This fact tells us that the domainPot�?
�←− Pot�?, which is the denotational angelic

semantics, is the fixed point of refining process, starting fromPot�?, by using
�←−. So, this

closure, is the most abstract one which observe the final states of finite traces and which is
closed as regards the functional relations between these states.

5.5. Systematic construction of the liberal weakest precondition semantics

An analogous construction can be made for theWlp semantics, which is isomorphic to
the denotational angelic one. This semantics can be defined as a closure operator[10] on
the natural trace semantics, and it is equal to the angelic denotational semantics.

Wlp(X) = {
	 ∈ �+ ∣∣ ∃ � ∈ X+ . 	� = ��, 	� = ��

} ∪ ��

As we have done for the denotational angelic semantics, we can build the set of the mono-
tone functions between the states which lead to termination. In particular, we will use the
forward reduced relative power on the concrete domain℘(�∞), with the trace concatena-
tion. The involved abstract domains coincide, both, with the backward potential termination
semantics, therefore the idea is to build the closure operatorPot�?

�−→ Pot�?.

Proposition 5.9. Let �W
+ : ℘(�∞) → (℘ (�) ← ℘(�)) be the function obtained as re-

duced power of forward potential termination semantics,�W
+
(X) = �Y.��?(X���?(Y)) =

�Y.
{
	�

∣∣ 	 ∈ X+, 	� ∈ Y
}
. ThenWlp��W

+
(�∞).

Proof. First of all, we find the abstraction by using the forward reduced relative power.
Analogous to Proposition5.6we can show that, ifX ∈ ℘(�∞), then:

�W
+
(X) = �Y. ��?(X���?(Y)) = �Y.

{
	�

∣∣ 	 ∈ X+, 	� ∈ Y
}

Now we can prove that

Wlp = �gWp(�D(�+))
= �gWp

({
f
∣∣ f = �	�.

{
	�

∣∣ 	 ∈ X }
, X ∈ ℘(�+)

})
= {

�
∣∣� = �P.

{
	�

∣∣ {	�

∣∣ 	 ∈ X } ⊆ P
}
, X ∈ ℘(�+)

}
= {

�
∣∣� = �P.

{
	�

∣∣ 	 ∈ X, 	� ∈ P
}
, X ∈ ℘(�+)

}
from which the thesis follows. �

Theorem 5.10.Theweakest-liberal precondition semantics is the set of themonotone func-
tion between the elements of the backward potential termination semantics,namely we have
Pot�?

�−→ Pot�? =Wlp.

Proof. Analogous to Theorem5.7we can prove that the function�W
+
defined in Proposi-

tion 5.9and�W
+
(f) = {

	 ∈ �+ ∣∣ 	� ∈ f (�)
} ∪ �� form a Galois insertion.

Moreover, the closurePot�?
�←− Pot�? = {

	 ∈ �+ ∣∣ ∃ � ∈ X+ . �� = 	�, �� = 	�

} ∪
�� is exactly the angelic denotational closure.�

40 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

5.6. Optimality of the weakest-liberal precondition semantics

The same property of optimality, which holds for the angelic denotational semantics,
holds also for the liberal weakest precondition semantics.

Theorem 5.11. (Pot�?
�−→ Pot�?)

�−→ (Pot�?
�−→ Pot�?) = Pot�?

�−→ Pot�?.

Proof. We characterize(Pot�?
�−→ Pot�?)

�−→ (Pot�?
�−→ Pot�?) as a closure operator by

using the forward reduced relativepower, on the just defineddomain, similar toTheorem5.8.
First of all we obtain the function� : ℘(�∞)→ ((℘ (�)→ ℘(�))→ (℘ (�)→ ℘(�)))
as

�(X) = �f. �W
+
(X��W

+
(f)) = �f.�Y.

{
	�

∣∣ 	 ∈ X+, 	� ∈ f (Y)
}

We define the concretization function, and prove that it is the right adjoint of the abstraction
� just defined. Let� : ((℘ (�)→ ℘(�))→ (℘ (�)→ ℘(�)))→ ℘(�∞) be the function

�(g) = {
	 ∈ �+ ∣∣ ∀X ∈ ℘(�) . 	� ∈ (g(5	�))(X)

} ∪ ��

and analogous to Theorem5.8we can prove that℘(�∞) −−→−→←−−−
�

�
�(℘ (�∞)).

Finally note that��(X) = {
	 ∈ �+ ∣∣ ∃ � ∈ X+ . �� = 	�, �� = 	�

} ∪ �� is exactly

the weakest-liberal precondition semantics. Hence, the closure(Pot�?
�−→ Pot�?) is equal

to (Pot�?
�−→ Pot�?)

�−→ (Pot�?
�−→ Pot�?). �

This theorem tells us that the domainPot�?
�−→ Pot�? is the most abstract solution of the

equationX = Pot�?�X �−→ X, as it happens forD+. Even the liberal weakest precondition
semantics is the fixedpoint of the refining process starting fromPot�?, by using

�−→. Namely
also this semantics is the most abstract semantics which observes the initial states that can
lead to termination, and which is closed as regards the functional relations between these
states.
We can conclude that the semantics, obtained starting from the backward potential termi-

nation semantics, and starting from the forward potential termination, are the same closure
operator, i.e.,

Pot�?
�−→ Pot�? = Pot�?

�←− Pot�?

Remark 5.12. As shown in Example5.3, the attribute independent composition of ob-
servables does not lead to compositional semantics. It is clear thatPot�?

�−→ Pot�? �
Pot�? � Pot�?, namely thatPot�?

�−→ Pot�? it is not the most abstract semantics, more
concrete of bothPot�? andPot�?. Moreover, it can be easily verified that, by inverting the
direction of the arrow inPot�?

�←− Pot�?, we obtain the identity, namely it is immediate to
prove the relationPot�?

�−→ Pot�? = �℘(�). Intuitively, this happens because the forward
reduced relative power of the forward termination semantics encodes how a given setX of
concrete traces behaves when these are extended with any possible trace, ending in a given
set of observable statesY. Hence, by observing the final states of these extended traces we
get backY. Instead, if we consider the initial states, in this construction, we can observe the

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 41

set of initial states of concrete traces that will have final states inY. This is precisely Dijk-
stra’s weakest precondition semanticsWlp, as proved in Theorem5.10. A similar reasoning
holds if we dualizePot�?

�−→ Pot�?.

5.7. Compositional angelic semantics

In this section, we prove that both the denotational and the liberal weakest precondition
semantics, are the most abstract semantics on℘(�∞) observing, respectively, final and
initial states, and which are compositional, i.e., solutions of the equation (COMP) above.

Theorem 5.13(Giacobazzi et al.[31]). The most abstract solution of�(X�Y) =
�(�(X)��(Y)) onuco(C) is � = � � (� �−→ �C) � (�C �←− �) � ((�C �−→ �)

�←− �C).

We have to prove that the closurePot�?
�←− Pot�? = Pot�?

�−→ Pot�? is the most
abstract compositional semantics definable on the set of maximal traces, which includes
respectively,Pot�? andPot�?, as an abstract interpretation. In the following, we will denote
by � the identical closure�℘(�∞), and byTheorems5.7and5.10Ang

D = Pot�?
�←− Pot�? =

Pot�?
�−→ Pot�?.

Lemma 5.14. (i) �
�−→ AngD = AngD.

(ii) AngD �←− � = AngD.

Proof. (i) We can use the forward reduced relative power for building the closure cor-
responding to the semantics�

�−→ AngD. Let X ∈ ℘(�∞), and consider, in particular
AngD = Pot�?

�−→ Pot�?:

�(X) = �Y. �W
+
(X�Y)

= �Y.�Z.
{
	�

∣∣ 	 ∈ X+�Y+, 	� ∈ Z
}

note that� : ℘(�∞) → ((℘ (�∞) × ℘(�))) → ℘(�)), and that it is the left adjoint of a
GI. Consider the function�(g) : ((℘ (�∞)× ℘(�)))→ ℘(�∞) defined as

�(g) = {
	 ∈ �+ ∣∣ 	� ∈ g(�,	�)

} ∪ ��

we prove that℘(�∞) −−→−→←−−−
�

�
�(℘ (�∞)). Let g ∈ �(℘ (�∞)) be such thatg = �(X), we

can compute

��(g)= �(
{
	 ∈ �+ ∣∣ 	� ∈ g(�,	�)

} ∪ ��)

= �Y.�Z.
{
	�

∣∣ 	 ∈ {� ∈ �+ ∣∣ �� ∈ g(�, ��)
}�

Y+, 	� ∈ Z
}

= �Y.�Z.
{
	�

∣∣∣∣ 	 ∈
{
��

∣∣∣∣ �� ∈ g(�, ��),

��� ∈ Y+
}
, 	� ∈ Z

}

= �Y.�Z.
{
��

∣∣ �� ∈ g(�, ��), ��� ∈ Y+, �� ∈ Z
}

42 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

= �Y.�Z.
{
��

∣∣∣∣ �� ∈
{
	�

∣∣ 	 ∈ X+, 	� = ��

}
,

��� ∈ Y+, �� ∈ Z
}

= �Y.�Z.
{
��

∣∣∣∣ ∃ 	 ∈ X+ . 	� = ��, 	� = ��,

��� ∈ Y+, �� ∈ Z
}

= �Y.�Z.
{
	�

∣∣ 	 ∈ X+, 	�� ∈ Y+, �� ∈ Z
}

= �Y.�Z.
{
��

∣∣ � ∈ X+�Y+, �� ∈ Z
} = g

��(X)= �
(
�Y.�Z.

{
��

∣∣ � ∈ X+�Y+, �� ∈ Z
})

= {	 ∈ �+ ∣∣ 	� ∈
{
��

∣∣ � ∈ X+, �� = 	�

} } ∪ ��

= {	 ∈ �+ ∣∣ ∃ � ∈ X+ . 	� = ��, �� = 	�

} ∪ �� ⊇ X

It is immediate to prove that�
�−→ AngD = �� = AngD.

(ii) ConsiderX ∈ ℘(�∞), andAngD = Pot�?
�←− Pot�?

�(X)= �Y. �D
+
(Y�X)

= �Y.�Z.
{
	�

∣∣ 	 ∈ Y+�X+, 	� ∈ Z
}

where� : ℘(�∞) → ((℘ (�∞) × ℘(�))) → ℘(�)). Consider the function�(g) :
((℘ (�∞)× ℘(�)))→ ℘(�∞), defined as

�(g) = {
	 ∈ �+ ∣∣ 	� ∈ g(�,	�)

} ∪ ��

We can prove that the two functions form Galois insertion showing that the following fact

holds:℘(�∞) −−→−→←−−−
�

�
�(℘ (�∞)). Considerg ∈ �(℘ (�∞)), such thatg = �(X), and

��(g)= �
({

	 ∈ �+ ∣∣ 	� ∈ g(�,	�)
} ∪ ��)

= �Y.�Z.
{
	�

∣∣∣∣ 	 ∈ Y+�
{
� ∈ �+ ∣∣ �� ∈ g(�, ��)

}
,

	� ∈ Z
}

= �Y.�Z.
{
	�

∣∣ 	 ∈ {��
∣∣ ��� ∈ X+, �� ∈ g(�, ��)

}
,	� ∈ Z

}
= �Y.�Z.

{
��

∣∣ �� ∈ g(�, ��), ��� ∈ Y+, �� ∈ Z
}

= �Y.�Z.
{
��

∣∣∣∣ �� ∈
{
	�

∣∣ 	 ∈ X+, 	� = ��

}
,

��� ∈ Y+, �� ∈ Z
}

= �Y.�Z.
{
��

∣∣∣∣ ∃ 	 ∈ X+ . 	� = ��, 	� = ��,

��� ∈ Y+, �� ∈ Z
}

= �Y.�Z.
{
	�

∣∣ 	 ∈ X+, �	� ∈ Y+, �� ∈ Z
}

= �Y.�Z.
{
��

∣∣ � ∈ Y+�X+, �� ∈ Z
} = g

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 43

��(X)= �
(
�Y.�Z.

{
��

∣∣ � ∈ Y+�X+, �� ∈ Z
})

= {	 ∈ �+ ∣∣ 	� ∈
{
��

∣∣ � ∈ X+, �� = 	�

} } ∪ ��

= {	 ∈ �+ ∣∣ ∃ � ∈ X+ . 	� = ��, �� = 	�

} ∪ �� ⊇ X

It is clear thatAngD �←− � = �� = AngD. �
By Theorem5.13and Lemma5.14, the following result is straightforward, and implies

the optimality of the denotational and weakest precondition semantics. Namely, they are
the most abstract semantics which are compositional as regards the trace concatenation.

Theorem 5.15.For anyX, Y ∈ �∞:
• AngD(X�Y) = AngD(AngD(X)�AngD(Y));
• �(X�Y) = �(�(X)��(Y)) ∧ � � Pot�? ⇒ � � AngD.

6. The equational hierarchy of semantics

In the previous sections we derived the angelic compositional semantics as solutions of
domain equations. Note that, by the definition of the semantics in the Cousot’s hierarchy
of semantics[10], while all the closures representing all the semantics more abstract than
the relational one are all the same, the abstractions are different and considers different
aspects of computation. For this reason we have to use the backward reduced relative
power for obtaining the denotational abstraction, which is isomorphic to the relational one.
While we have to use the forward reduced relative power for deriving the weakest-liberal
precondition, and therefore the isomorphic partial correctness semantics. In particular, we
obtain the angelic denotational/relational semantics as the backward reduced relative power
of the semantics observing terminating states. In the same way, we derived the weakest-
liberal precondition/partial-correctness semantics as forward reduced relative power of the
semantics observing states that potentially lead to termination.
Moreover, in[26] we derived, in a very similar way, the equational representation of all

the natural compositional semantics, i.e., denotational/relational andweakest precondition/
Hoare’s axiomatic. More precisely, the equational representation is obtained in a more con-
crete level, of the hierarchy of semantics: the transfinite one. In this level of abstraction, all
the semantics are able to observe the transfinite behavior of programs, namely computations
whose length is a generic ordinal. In this way we can distinguish also traces that leads to
non-termination, characterizing which ordinal characterizes the infinity of the computation.
Only by using this concrete semantics, we can use the reduced relative power operation in
order to derive compositional semantics:

Den = �∝(X) s.t.X = Pot� �X �←− X

gWp= �∝(X) s.t.X = Pot� �X �−→ X

where�∝ forgets the transfinite behavior collecting all the computation leading to non-
termination, by abstracting non-terminating traces to⊥, whilePot� andPot� are the trans-
finite version of, respectively,Pot�? andPot�? [26], i.e., they observe, respectively, initial
and final states of traces with a fixed ordinal length.

44 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

Fig. 9. Semantics as abstract domain equations.

Finally, we can combine the results described in Section4.4with the results described in
Section5.7, in order to obtain the equational representation also of the infinite semantics, as
complements of the angelic semantics in the natural ones. In this way we derive the global
picture depicted in Fig.9.

7. Systematic design of semantics for concurrent constraint languages

In this section, we consider, as example, the case ofconcurrent constraint programming
languages[40] andwederive their denotational closure-based[41], andaxiomatic semantics
[16], as an abstract interpretations of themaximal traces of constraints in a transition system
semantics.
Concurrent constraint programming (ccpfor short) is a well known concurrent program-

ming paradigm where processes interact through a common store[40]. This leads to a
computational model based on the notion ofstore-as-constraint. The main features of a
concurrent constraint process is to refine the store (tell-constraints) or synchronize itself
with other processes (ask-constraints). Theask–tellparadigm, which is the basis ofccp
languages, is an extension of constraint logic programming: In addition to satisfiability
(tell), entailment(ask) is introduced. A store is a constraint representing the global state of
the computation. Synchronization is achieved throughblocking ask: a process is suspended
when the store does not entail the ask constraint, and it remains suspended until the store
entails it.

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 45

The constraint system represents the basic algebraic notion behindccp. The construction,
in [41], is an extension of Scott’s partial information systems[1]. Informally, we have a
countable setD of elementary assertions (containing distinct elements1and0 representing
the least informative assertion and the contradiction, respectively), and a finite entailment
relation� ⊆ ℘f (D × D). A simple constraint systemis � def= 〈℘(D), �〉 /∼, which is a

complete�-algebraic lattice[1] whereX ∼ Y iff (X)� = (Y)�, being(X)� the entailment
closure of a set of assertionsX. An arbitrary element of� is called aconstraint. Compact
elements are calledfinite constraints, since they are equivalent to a finite subset ofD. In
order to treat the hiding operator of the language, Saraswat et al.[41] introduce a family
of unary operations calledcylindrifications(see[33]). Intuitively, given a constraintc, the
cylindrification operation∃x(c) yields the constraint obtained by “projecting out” fromc
the information about the variablex. Diagonal elements(equational constraints between
variables[33]) are considered as a way to provide parameter passing. Note that special
variables (not accessible to the user) together with a suitable use of cylindrification and
diagonal elements make variable renaming no longer needed[41].

Definition 7.1. A constraint system
〈
�, �, false, true,∧, V , ∃x, dxy

〉
is a structure where:

〈�, �〉 is a simple constraint system,true = [1]∼ and false= [0]∼, ∧ is theglb, V is a
denumerable set of variables, and∀x, y ∈ V , ∀c, c′ ∈ �, the operator∃x : � → � satisfies
1. c�∃xc,
2. if c�c′ then∃xc�∃xc′,
3. ∃x(c ∧ ∃xc′) = ∃xc ∧ ∃xc′,
4. ∃x(∃yc) = ∃y(∃xc).
∀x, y, z ∈ V , ∀c ∈ �, the diagonal elementdxy satisfies
1. dxx = true.
2. if z �= x, y thendxy = ∃z(dxz ∧ dzy),
3. if x �= y thendxy ∧ ∃x(c ∧ dxy)�c.

The semantic operators of concurrent constraint languages are: elementary actions (ask
andtell), hiding (∃), parallel composition (‖), guarded non-deterministic choice (

∑
) and

recursion. The semantics ofccp programs well fits into Cousot’s hierarchy being eas-
ily described as maximalconsistenttraces of a transition system, i.e., maximal traces
〈A0, c0〉 −→T 〈A1, c1〉 −→T . . . whereAi are agents andci�ci−1 are constraints. We
denote by(Agent× �)∞� this set of traces. The standard syntax and transition-system
semantics is in Table3. The maximal-trace semantics of accpprogramP = D.A is im-
mediately defined as the set of finite and infinite consistent traces of constraints generated
fromP in an initial storec ∈ �.

O(D.A)(c) =
{
� ∈ (Agent× �)∞�

∣∣∣∣ �� = 〈A, c〉 ,∀i ∈ [0, |�|)
�i −→T �i+1

}

We define the maximal trace semantics of accpprogramP as follows:

[[P]]∞ = �
({O(P)(c) ∣∣ c ∈ �

})
where the function� ∈ ℘((Agent×�)∞) a−→℘(�∞) abstracts away the agent information
from traces:�(X) = {

	 ∈ �∞ ∣∣ � ∈ X, �i = 〈A,	i〉
}
. The following result characterizes

46 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

Table 3
The syntax and operational semantics ofccp

Program ::= Dec . Agent

Dec ::= �
| p(5x) :− Agent. Dec

Agent ::= tell(c)
| ∃ 5x.Agent
| Agent‖ Agent
|

n∑
i=1

(ask(ci)→ Agenti)

| p(5y)

R1 〈tell(c) , 	〉 −→T 〈� , 	 ∧ c〉

R2
	�ci〈

n∑
i=1

(ask(ci)→ Ai) , 	

〉
−→T 〈Ai , 	〉

R3
〈A , 	〉 −→T

〈
A′ , 	′

〉
〈A‖B , 	〉 −→T

〈
A′‖B , 	′

〉
〈B‖A , 	〉 −→T

〈
B‖A′ , 	′

〉

R4

〈
A , d ∧ ∃5x	

〉 −→T 〈B , e〉
〈∃(5x, d).A , 	〉 −→T

〈∃(5x, e).B , 	 ∧ ∃5xe
〉

R5
p(5x) :− A ∈ P

〈p(5y) , 	〉 −→T
〈
∃(5x, d5x,5y).A , 	

〉

both, the closure-based denotational[41], and the predicate-transformer semantics of non-
deterministicccpprogramsP ∈ Program, in [16], as abstract interpretations of themaximal
trace semantics[[P]]∞. In particular these semantics can be both systematically derived
from a non-compositional semantics observing, respectively, final and initial constraints in
computational traces. In this case,��?([[P]]∞) and��?([[P]]∞) are, respectively, the forward
and backward potential termination semantics ofP.

Theorem 7.2. Let P be a ccp program.
– AngD([[P]]∞) = �X.

⋃{
�D(�R([[P]]∞))(c)

∣∣ c ∈ X }
is a linear continuous closure

operator on Smith’s powerdomain℘(�⊥), with⊥ representing divergence.
– Wlp([[P]]∞) = �X.

⋃{
c
∣∣ �D(�R([[P]]∞))(c) ⊆ X

}
is a co-additive function on

℘(�⊥) and its left adjoint function is�X.
⋃{[[P]]D(c) ∣∣ c ∈ X }

.

Proof. By a straightforward inductive argument, it is easy to prove that any trace
in �([[P]]∞) is consistent, i.e., it refines constraints. This proves thatAngD([[P]]∞) =
�X.

⋃{
�D(�R([[P]]∞))(c)

∣∣ c ∈ X }
is reductive on the Smith’s powerdomain℘(�⊥),

ordered by�. Monotonicity is trivial, while idempotence comes directly because only final
terminating constraints (i.e., resting points[41]) are considered in��?([[P]]∞) andAngD =
Pot�?

�←− Pot�?. As far as the strongest postcondition semantics is concerned, it is
immediate to prove, by construction, that the weakest-liberal precondition semantics
Wlp([[P]]∞) = �X.

⋃{
c
∣∣ �D(�R([[P]]∞))(c) ⊆ X

}
is co-additive with left adjoint

function�X.
⋃{[[P]]D(c) ∣∣ c ∈ X }

. �

We define[[P]]D def= AngD([[P]]∞) and [[P]]Wlp def=Wlp([[P]]∞). By Theorem7.2, they
correspond, respectively, to the closure-based denotational semantics, in[41], and to the
strongest postcondition semantics, in[16].
We close this section by considering examples of programs, with their denotational se-

mantics, for the different observable behaviors, corresponding to the different complemen-

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 47

tary semantics in Cousot’s hierarchy, namely the angelic, demonic, slothful, and infinite
semantics. These semantics are all abstractions of[[·]]D. Consider the following programs,
whereask(true)→ A is denotedA and the starting agent is underlined.

P : p(x) : − tell(x = 2)+ q(x).

q(x) : − p(x). p(x)

Q : p(x) : − tell(x = 2). p(x)
U : p(x) : − tell(x = 1)+ q(x).

q(x) : − p(x). p(x)

It is immediate that[[P]]D+ = [[Q]]D+ , since the two programs have the same set of
finite output constraints, althoughP generates an infinite sequence from the same input
constraint, indeed,[[P]]D� �= [[Q]]D� . These facts imply that[[P]]D� �= [[Q]]D� and that
[[P]]D� �= [[Q]]D� . Consider now the programsP andU, then[[P]]D+ �= [[U]]D+ , since
they have different finite output constraints, moreover,[[P]]D� = [[U]]D� , since they have
also the same infinite sequence starting from the same input constraint. This fact implies
that [[P]]D� = [[U]]D� , since the demonic closure adds all the possible finite output from
the same initial constraint, and for the same reason we have[[P]]D� = [[U]]D� . As far as the
demonic, slothful and infinite semantics are concerned, consider the following programs:

H : p(x) : − ask(x = 1)→ q(x).

q(x) : − q(x). p(x)

K : p(x) : − ask(x = 1)→ q(x)+
ask(x > 1)→ tell(y = 2 ∗ x).

q(x) : − q(x). p(x)

In this case,[[H]]D� = [[K]]D� , because they generate the same infinite sequence starting
from the same input constraint, but[[H]]D� �= [[K]]D� becauseH can only stop or generate
an infinite sequence, therefore chaos, while there exist input constraints (x > 1) such that
K terminates without generating chaos. Finally, consider the following programs, where we
assume that� is a finite domainFD constraint system (see[34]), andA is a terminating
agent that, givenc ∈ �, generates all thec′ ∈ � such thatc′�c:

G : p(x) : − p(x)+ A. p(x)

R : p(x) : − A. p(x)

then[[G]]D� �= [[R]]D� , sinceG generates an infinite trace, whileR cannot, but[[G]]D� =
[[R]]D� , because both the programs generate the whole chaos, starting from the same initial
point,G generates it for the infinite sequence andR, by its definition, generates a chaotic
computation from the initial constraint.

8. Conclusions

In this paper, we have shown that standard semantics for programming languages can
be systematically designed as solutions of abstract domain equations involving the basic
operations known for designing abstractions for program analysis. In particular, we have

48 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

shown that complementary semantics of transition systems, in this hierarchy of semantics,
can be systematically constructed by domain complementation in abstract interpretation.
This provides both a better insight on semantics designed for characterizing complemen-
tary observable properties of programs, and the possibility to decompose semantics into
most abstract factors involving possibly new semantics (e.g. the slothful semantics). In this
context, we have shown a correspondence between logic and algebraic complementation
in theWp semantics. This means that, inuco, we have an element that belongs also to a
Boolean algebra, it would be interesting to identify inucoa maximal Boolean sub-algebra
of known semantics. Then we have shown a strong connection between the structure of
relational abstract domains for program analysis, and compositionality of the underlying
semantics. Both can be systematically designed by solving the same abstract domain equa-
tion by means of the same domain refinement: the reduced power operation. This provides
an equational presentation of semantics and abstract domains for program analysis in a
unique formal setting. All these results prove that standard concrete semantics and abstract
domains for program analysis share a common pattern, which is designed in terms of the
same basic operators for domain transformation and depends upon the property of the se-
mantics or analysis wewant to achieve. The construction of either a semantics, or a program
analysis tool, can therefore be unified in a common algebraic structure, where both can be
seen as solutions of simple and basic domain equations (see Fig.9), which can be made
parametric on the observable property: complete final or initial states for concrete semantics
or approximated final/initial states for abstract semantics or program analysis.

References

[1] S. Abramsky, A. Jung, Domain theory, in: S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (Eds.), Handbook
of Logic in Computer Science, Vol. 3, Clarendon Press, Oxford, U.K., 1994, pp. 1–168.

[2] B. Alpern, F.B. Schneider, Recognizing safety and liveness, Distributed Comp. 2 (1987) 117–126.
[3] K.R. Apt, G.D. Plotkin, Countable nondeterminism and random assignment, J. ACM 33 (4) (1986) 724–767.
[4] G. Birkhoff, Lattice Theory, 3rd Ed., AMS Colloquium Publication, AMS, Providence, RI, 1967.
[5] A. Bossi,M.Gabbrielli, G. Levi,M.C.Meo, A compositional semantics for logic programs, Theoret. Comput.

Sci. 122 (1–2) (1994) 3–47.
[6] M. Comini, G. Levi, An algebraic theory of observables, in: M. Bruynooghe (Ed.), Proc. 1994 Internat. Logic

Programming Symp. (ILPS ’94), MIT Press, Cambridge, MA, 1994, pp. 172–186.
[7] A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, F. Ranzato, Complementation in abstract interpretation,

ACM Trans. Program. Lang. Syst. 19 (1) (1997) 7–47.
[8] P. Cousot, Abstract interpretation, ACM Comput. Surveys 28 (2) (1996) 324–328.
[9] P. Cousot, Constructive design of a hierarchy of semantics of a transition system by abstract interpretation

(invited paper), in: S. Brookes, M. Mislove (Eds.), Proc. 13th Internat. Symp. on Mathematical Foundations
of Programming Semantics (MFPS ’97), Electronic Notes in Theoretical Computer Science, Vol. 6, Elsevier,
Amsterdam, 1997,URL: http://www.elsevier.nl/locate/entcs/volume6.html.

[10] P. Cousot, Constructive design of a hierarchy of semantics of a transition system by abstract interpretation,
Theoret. Comput. Sci. 277 (1–2) (2002) 47,103.

[11] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints, in: Proc. Conf. Record of the 4th ACM Symp. on Principles of
Programming Languages (POPL ’77), ACM Press, New York, 1977, pp. 238–252.

[12] P. Cousot, R. Cousot, Constructive versions of Tarski’s fixed point theorems, Pacific J. Math. 82 (1) (1979)
43–57.

http://www.elsevier.nl/locate/entcs/volume6.html

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50 49

[13] P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Proc. Conf. Record of the
6th ACM Symp. on Principles of Programming Languages (POPL ’79), ACM Press, New York, 1979,
pp. 269–282.

[14] P. Cousot, R. Cousot, Abstract interpretation and application to logic programs, J. Logic Program. 13 (2–3)
(1992) 103–179.

[15] P. Cousot, R. Cousot, Inductive definitions semantics, and abstract interpretation, in: Proc. Conf. Record of
the 19th ACM Symp. on Principles of Programming Languages (POPL ’92), ACM Press, New York, 1992,
pp. 83–94.

[16] F. de Boer, M. Gabbrielli, E. Marchiori, C. Palamidessi, Proving concurrent constraint programs correct, in:
Proc. Conf. Record of the ACM Symp. on Principles of Programming Languages (POPL ’94), ACM Press,
New York, 1994, pp. 35–35.

[17] J. Desharnais, B. Möller, F. Tchier, Kleene under a demonic star, Proc. 9th Internat. Conf. on Algebraic
Methodology and Software Technology (AMAST ’00), Lecture Notes in Computer Science, Vol. 1816,
Springer, Berlin, 2000, pp. 355–370.

[18] E.W. Dijkstra, Guarded commands, nondeterminism and formal derivation of programs, Comm. ACM 18 (8)
(1975) 453–457.

[19] E.W. Dijkstra, A discipline of programming, Series in Automatic Computation, Prentice-Hall, Englewood
Cliffs, NJ, 1976.

[20] P. Dwinger, On the closure operators of a complete lattice, Indag. Math. 16 (1954) 560–563.
[21] G. Filé, R. Giacobazzi, F. Ranzato, A unifying view of abstract domain design, ACM Comput. Survey 28 (2)

(1996) 333–336.
[22] G. Filé, F. Ranzato, Complementation of abstract domains made easy, in: M. Maher (Ed.), Proc. 1996

Joint Internat. Conf. and Symp. on Logic Programming (JICSLP ’96), MIT Press, Cambridge, MA, 1996,
pp. 348–362.

[23] H. Gaifman, E. Shapiro, Fully abstract compositional semantics for logic programs, in: Proc. Conf. Record of
the 16th ACM Symp. on Principles of Programming Languages (POPL ’89), ACM Press, New York, 1989,
pp. 134–142.

[24] R. Giacobazzi, “Optimal” collecting semantics for analysis in a hierarchy of logic program semantics, in: C.
Puech, R. Reischuk (Eds.), Proc. 13th Internat. Symp. on Theoretical Aspects of Computer Science (STACS
’96), Lecture Notes in Computer Science, Vol. 1046, Springer, Berlin, 1996, pp. 503–514.

[25] R. Giacobazzi, I. Mastroeni, A characterization of symmetric semantics by domain complementation, in:
Proc. 2nd Internat. Conf. in Principles and Practice of Declarative Programming PPDP’00, ACM Press,
New York, 2000, pp. 115–126.

[26] R. Giacobazzi, I. Mastroeni, Non-standard semantics for program slicing, (Special issue on partial evaluation
and semantics-based program manipulation), Higher-Order Symbol. Comput. 16 (4) (2003) 297–339.

[27] R. Giacobazzi, C. Palamidessi, F. Ranzato, Weak relative pseudo-complements of closure operators, Algebra
Universalis 36 (3) (1996) 405–412.

[28] R. Giacobazzi, F. Ranzato, Complementing logic program semantics, in: M. Hanus, M. Rodríguez Artalejo
(Eds.), Proc. 5th Internat. Conf. on Algebraic and Logic Programming (ALP ’96), Lecture Notes in Computer
Science, Springer, Berlin, 1996, pp. 238–253.

[29] R. Giacobazzi, F. Ranzato, Refining and compressing abstract domains, in: P. Degano, R. Gorrieri, A.
Marchetti-Spaccamela (Eds.), Proc. 24th Internat. Colloq. on Automata, Languages and Programming
(ICALP ’97), Lecture Notes in Computer Science, Vol. 1256, Springer, Berlin, 1997, pp. 771–781.

[30] R. Giacobazzi, F. Ranzato, The reduced relative power operation on abstract domains, Theoret. Comput. Sci.
216 (1999) 159–211.

[31] R. Giacobazzi, F. Ranzato, F. Scozzari, Building complete abstract interpretations in a linear logic-based
setting, in: G. Levi (Ed.), Proc. 5th Internat. Static Analysis Symp. (SAS’98), Vol. 1503, 1998, pp. 215–229.

[32] R. Giacobazzi, F. Scozzari, A logical model for relational abstract domains, ACM Trans. Program. Lang.
Syst. 20 (5) (1998) 1067–1109.

[33] L. Henkin, J.D. Monk, A. Tarski, Cylindric Algebras, Part I, North-Holland, Amsterdam, 1971.
[34] P. Van Hentenryck, V. Saraswat, Y. Deville, Constraint processing in cc(FD), in: A. Podelski (Ed.), Constraint

Programming: Basics and Trends, Lecture Notes in Computer Science, Vol. 910, Springer, Berlin, 1995.
[35] C.A.R. Hoare, An axiomatic basis for computer programming, Comm. ACM 12 (10) (1969) 576–580.
[36] J. Morgado, Note on complemented closure operators of complete lattices, Portugal. Math. 21 (3) (1962)

135–142.

50 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

[37] F. Nielson, Tensor products generalize the relational data flow analysis method, in: M. Arató, I. Kátai, L.
Varga (Eds.), Proc. 4th Hungarian Computer Science Conf., 1985, pp. 211–225.

[38] G. Plotkin, A Structural Approach to Operational Semantics, DAIMI-19 Aarhus University, Denmark, 1981.
[39] K.I. Rosenthal, Quantales and their applications, in: Pitman Research Notes in Mathematics, Longman

Scientific & Technical, London, 1990.
[40] V. Saraswat, Concurrent Constraint Programming Languages, MIT Press, Cambridge, MA, 1993.
[41] V. Saraswat, V.A. Rinard, P. Panangaden, Semantic foundations of concurrent constraint programming, in:

Proc. Conf. Record of the 18th ACM Symp. on Principles of Programming Languages (POPL ’91), ACM
Press, New York, 1991, pp. 333–353.

[42] F. Scozzari, Logical optimality of groundness analysis, in: P. Van Hentenryck (Ed.), Proc. 4th Internat. Static
Analysis Symp. (SAS’97), Lecture Notes in Computer Science, Vol. 1302, Springer, Berlin, 1997, pp. 83–
97.

[43] Z. Shmuely, The structure of Galois connections, Pacific J. Math. 54 (2) (1974) 209–225.

	Transforming semantics by abstract interpretation
	Introduction
	The scenario
	The main results
	State of the art

	Preliminaries
	Basic notions
	Abstract interpretation

	Cousot's semantics hierarchy
	Independent composition and decomposition of semantics
	Domain complementation
	Decomposing trace-based semantics
	Decomposing the hierarchy
	Symmetric abstractions in the hierarchy
	Decomposing predicate transformers
	Decomposing demonic semantics

	Relational composition of semantics: compositionality
	Forward/backward potential termination semantics
	The reduced relative power
	Systematic construction of the angelic denotational semantics
	Optimality of the angelic denotational semantics
	Systematic construction of the liberal weakest precondition semantics
	Optimality of the weakest-liberal precondition semantics
	Compositional angelic semantics

	The equational hierarchy of semantics
	Systematic design of semantics for concurrent constraint languages
	Conclusions
	References

