Available online at www.sciencedirect.com

scuENCE@DIREcT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 337 (2005) 1-50

www.elsevier.com/locate/tcs

Fundamental Study
Transforming semantics by abstract interpretation

Roberto GiacobazZj Isabella Mastroeni

Dipartimento di Informatica, Universita di Verona, Strada Le Grazie 15, 37134 Verona, Italy

Received 3 February 2004, received in revised form 7 December 2004; accepted 13 December 2004

Communicated by G. Levi

Abstract

In 1997, Cousot introduced a hierarchy where semantics are related with each other by abstract
interpretation. In this field we consider the standard abstract domain transformers, devoted to refine
abstract domains in order to include attribute independent and relational information, respectively the
reduced product and power of abstract domains, as domain operations to systematically design and
compare semantics of programming languages by abstract interpretation. We first prove that natural
semantics can be decomposed in terms of complementary attribute independent observables, leading
to an algebraic characterization of the symmetric structure of the hierarchy. Moreover, we character-
ize some structural property of semantics, such as their compositionality, in terms of simple abstract
domain equations. This provides an equational presentation of most well known semantics, which is
parametric on the observable and structural property of the semantics, making it possible to systemat-
ically derive abstract semantics, e.g. for program analysis, as solutions of abstract domain equations.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Abstract interpretation; Comparative semantics; Domain theory; Compositionality; Constraint
programming

1. Introduction

Since its origin in 1977, abstract interpretatidri] has been widely used, implicitly
or explicitly, to describe and formalize approximate computations in many different areas
of computer science, from its very beginning use in formalizing (compile-time) program

* Corresponding author. Tel.: +39 45802 7995; fax: +39 45802 7982.
E-mail addressegoberto.giacobazzi@univr{R. Giacobazzi)mastroeni@sci.univr.ii. Mastroeni).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.12.021

http://www.elsevier.com/locate/tcs
mailto:roberto.giacobazzi@univr.it
mailto:mastroeni@sci.univr.it

2 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

analysis frameworks to more recent applications in model checking, program verification,
data security, type inference, automated deduction, and comparative semantics. This justifies
a now well established definition of abstract interpretatioa general theory to approx-

imate the semantics of discrete dynamic syst@hsThis is particularly striking in com-
parative semantics, where semantics at different levels of abstraction can be compared with
each other by abstract interpretatid®]. In this paper, we analyze the most well-known
structural properties of semantics, such as their precision, compositionality, and relation
between complementary observables, by using standard abstract interpretation techniques.
We prove that most of these properties be characterized in terms of properties of the corre-
sponding abstractions. This is achieved by isolating a suitable set of abstract domain trans-
formers which allows us to design abstractions accordingly, providing a characterization
of semantics of programming languages as solutions of simple abstract domain equations,
involving both some basic observable property which has to be observed by the semantics
and the abstract domain transformers necessary in order to achieve a suitable structural

property.
1.1. The scenario

Semantics is central in the construction of any abstract interpretation. The soewadled
crete semanticspecifies the observable property of program behavior and any more abstract
semantics, e.g. decidable semantics for program analysis, can be derived by abstraction.
As a consequence, a semantics, at any level of abstraction, can be fully specified as an
abstract interpretation of a more concrete semantics. This key idea is the basis of Cousot's
design of a complete hierarchy of semantics of programming lang{@&dé&$ A number of
semantics including big-step, termination and non-termination, Plotkin’s natural, Smyth’s
demonic, Hoare’s angelic relational and corresponding denotational, Dijkstra’s predicate
transformer weakest-precondition and weakest-liberal precondition and Hoare’s partial and
total axiomatic semantics, have all been derived by successive abstractions from an (op-
erational) maximal trace semantics of a transition system. The resulting hierarchy (here
called Cousot’s hierarchy) provides a complete account on the structure and the relative
precision of most well known semantics of programming languages. One of the major
challenge in Cousot’s construction is tisgmantics are abstract domairiEherefore they
can be transformed, refined, decomposed, and composed similarly to what is usually done
with abstract domains in static program analysis. This view of semantics as domains pro-
vides both a better insight on the structure and relative precision of traditional well known
semantics of programming languages and the possibility to systematically specify new se-
mantics by composition, decomposition, refinement and simplification of existing ones, by
manipulating the corresponding domains.

1.2. The main results

In this paper, we treat the Cousot’s hierarchy of semantics adgabra of semantics
namely we apply algebraic operations to semantics, here seen as abstract domains. Our
aim is to relate the properties of semantics with the properties of the abstract domain
transformations used in their design. This is achieved by considering the main operations

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 3

infinite
angelic demonic _®9%*
Hoare’s axiomatic e_ natural / t3
" \ / 9977 Ly
Dijkstra’s pred—trans / Wp
\ \/\7176
®
/ pw
Denotational pe
Da
)
/ Rw
Relational pe
ma
)
/17'“’
Trace-based .

+

T

Fig. 1. Cousot's hierarchy.

for abstract domain transformation[ib3], i.e., theattribute independerneduced product
and therelational reduced power composition. The reduced product of two donfesrs]
B consists in building the domain that observes all the information contained irzottl
B, independently of each other. The reduced power, of two donfasrsd B, builds the
domain of all the functional relations between the elemens afidB. We prove that all
the semantics in Cousot's hierarchy can be specified as solutions of simple abstract domain
equations involving attribute independent and relational combinators. The duality between
relational and attribute independent combination of abstract domains is reflected in the
structure of the paper.

In the first part of this paper, we analyze Cousot’s hierarchy of semantics and we char-
acterize its symmetric structure (see Flj.in terms of a purely algebraic manipulation
of domains. We prove that complementary information characterizes the symmetric struc-
ture of Cousot's hierarchy. We consider tlegluced productintroduced in[13], as the
basic operation for composing semantics, and its inverse operabstract domain com-
plementationintroduced in[7], as the basic operation for decomposing semantics. Given
two semanticsS; andS», the product semanticS; n S is the most abstract semantics
which is as precise as boffy andS,, namely which is able to observe both the observables
of §; andS». Domain complementation was originally introduced to decompose abstract
domains in static program analysis, and it is the inverse operation of reduced product. In
our case, this operation provides a systematic methodology for decomposing semantics
by characterizing the most abstract semanfiaghich, when composed with a given se-
manticss3, yields the semantia§ = S n B as result. These operations provide advanced
methods for comparing semantics with respect to their relative expressiveness. This is
particularly relevant in the study of semantics observing complementary behaviors of pro-
grams, e.qg. finite and infinite computations of a transition system. According to Cousot’s

4 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

construction, in fact, any semantic style (trace-operational, relational, denotational, Dijk-
stra’s predicate transformer and Hoare’s axiomatic semantics) may have a corresponding
natural, finite/angelic demonic¢ andinfinite nature. The nature of each semantics defines
a corresponding observable behavior of programs (later calisdrvablg which can be
parameterized according to the chosen semantic style, and it corresponds respectively to:
terminating, chaotic non-terminating, and infinite computations. We prove that natural se-
mantics are always the reduced product of fifarggelic and demonic or infinite semantics,
and that these semantics factorize the natural semantic construction by complementation.
In particular any finitgangelic semantics can be systematically derived as the domain com-
plementation in the natural semantics of the demonic or infinite semantics. Moreover, we
prove that finit¢angelic and infinite semantics form the most abstract decomposition of any
natural semantics, and that demonic semantics can be further factorized in terms of infinite
semantics and of a new semantics, here callethful which is unable to observe infinite
computations when programs may produce any possible output. Then we prove that this
highly symmetric structure is a consequence of a common pattern of abstraction between
semantic styles and observables, ranging from operational trace-based to the more abstract
Hoare’s axiomatic semantics. We characterize this pattern in terms of some basic properties
of the closure operators, associated with the semantics abstractions in Cousot’s hierarchy.
This allows us to prove the basic results on symmetric semantics for the trace-operational
semantic style only, deriving the results concerning all the other styles and observables as
a simple consequence. These results provide both an algebraic characterization of com-
plementary observable properties in semantics, and a decomposition result for observable
properties of programs in terms of complementary observables, similar to the well known
Alpern & Schneider’s safeffiveness decomposition of properties of concurrent program
executions (cf[2]). This part is an extended and revised versiorj25]. The attribute
independent combination of semantics does not include in abstractions the relational infor-
mation which is typically included in compositional semantics, such as in the denotational
semantics.

In the second part of this paper, we considerrdduced powepperation[13,30], for
abstract domain refinement, as the basic operation able to includeoonputt relations
in domains. Reduced power has been proved to give the necessary structure of abstract
domains in order to model relational properties of in program andl4i82,37,42]LetS
be the concrete domain, aiSgd andS, two abstractions of. The reduced powef; — S»
is the domain of all the monotone functions from element$pfo elements ofS,. We
prove that the compositional semantics observing finite computations only, i.e., angelic
denotational and weakest-liberal precondition semantics, can be systematically derived
as the most abstract semantics closed under reduced power, and including the semantics
which observes, respectively, final and initial states of finite traces only. These semantics
are the most abstract ones which are compositional for observing, respectively, final and
initial states. Compositionality here means thaf,Af | and[P>] are the semantics of pro-
gram component®; and P, and¢ is a syntactic operator for program composition, then
there exists an operatiansuch that{{ Py ¢ P>]] = [P1]l o [P2]]. We show that most well
known compositional semantics of imperative programs, such as the standard angelic deno-
tational and weakest-liberal precondition semantics, can be systematically derived as solu-
tions of simple abstract domain equations. We consider sequential syntactic composition of

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 5

programs and trace compositienfor composing semantics. In this case, compositionality
boils down to[P1; P2]l = [P1]" [P2]l. As a consequence of these results, we obtain a sys-
tematic method for the design of semantics, where semantics can be designed as solutions
of domain equations involving the basic operations of reduced product, power and domain
complementation. Our results are general, and can be applied to any programming language
whose semantics can be defined in terms of traces of program states in a transition system.
As an example, we apply our construction to the case of concurrent constraint program-
ming ccp languageg40]. These languages well fit into Cousot’s hierarchy of semantics
being easily defined in terms of traces of constraints in a transition system. We prove that
both, Saraswat’s closure-based denotatiptHl, and de Boer et al.'s predicate transformer
semanticg16], can be derived by composing non-compositional semantics observing, re-
spectively, the final and initial constraints in terminating computations. This provides an
equational presentation of semantics as abstract interpretation of the maximal traces of
constraints, associated with an operational small-step transition system semantips of
programs. Consequently, the corresponding filaitgelic, demonic, and infinite semantics,

can be specified by domain complementation.

1.3. State of the art

The foundation for a theory of abstract domains was fixefiL8]. In this paper, the
authors provide the main structure of abstract domains enjdgaigis connectionsand
some basic operators to systematically compose domains, i.eedbeed producaind
thereduced poweoperations. Since then, a number of papers have developed new domain
operations, and studied the impact of these operations in the design of abstract interpretations
(e.g. sed29] for a survey). The notion alomain refinemerainddomain simplification
introduced in[21,29] provided the very first generalization of these ideas. Intuitively, a
refinement is any operator performing an action of refinement with respect to the standard
order of precision, e.g. by adding information to domains; while simplificators perform the
dual action of “taking out” information from domains. Few examples are known on the use
of systematic domain operations in abstract interpretation to reason about the structure and
the expressiveness of semantics of programming languages. Most of these examples are
in the semantics of logic programs, which basically relies on the hierarchy of semantics
developed ir{6,24]. In [28], the authors study the relations between different semantics of
logic programs, namely success pattern semantics, computed answer substitution semantics
and call pattern semantics by means of complementation. This is the very first and unique
example of the use of complementation in systematic semantics des[@h. thme domain
operation ofensor producf43] is considered in order to design Hoare’s axiomatic semantics
by exploiting the adjoint relation between pre- and post-conditions in Hoare triples. As far
as compositionality is concerned, the very first and, up to our knowledge, unique example
of construction of compositional semantics by abstract domain transformatiori3i8]in
In this work, the authors proved that compositional semantics of logic prografa3]
can be systematically designed by a generalization of Cousot’s reduced cardinal power
operation[13], from non-compositional semantics of computed answer substitution. This
work represents a starting point for the second part of our paper, which generalizes the
results in[30] to arbitrary programming languages whose semantics can be specified by a

6 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

transition system of states. |26], a similar method has been considered in order to derive
compositional models for program slicing. These models allow transfinite semantics and
provide an adequate framework for specifying natural compositional semantics observing
both termination and non-termination.

2. Preliminaries
2.1. Basic notions

If SandT are sets, thep (S) denotes the powerset 8f S\ T denotes the set-difference
betweerSandT, S C T denotes strict inclusion, and for a functign S — T andX C S,
f(X) & {f(x) | x € X}. By f|x we denote the functiohwhose domain is restricted to
X. By g o f we denote the composition of the functidrendg, i.e.,g o f Y Ax.g(f(x)).
The notation P, <) denotes a pos@&with ordering relation<, while (P, <, Vv, A, T, 1)
denotes a complete lattié® with ordering<, lub v, glb A, greatest element (tof), and
least element (bottom).. Often, < p will be used to denote the underlying ordering of a
posetP, andv p, Ap, T p and_Lp denote the basic operations and elements of a complete
lattice. The notatiorC =~ A denotes thaC and A are isomorphic ordered structures. An
elementx € P is meet-irreducibléf x # T andx = a A b impliesx € {a, b}. The set
of meet-irreducible elements fis denotedMirr (P). The downward closure &f C P is
defined ag| S & {x e P|3Ay € S. x<py},andforx € P, | x is a shorthand foy, {x},
while the upward closuré is dually definedS — T denotes the set of all functions from
Sto T. We use the symbat to denote pointwise ordering between functionss 1§ any
set,Paposet,and,g: S — Pthenf C gifforall x € S, f(x)<pg(x). LetCandA
be complete lattices. Thed,— A, C = A, C 2> A, andC =5 A denote, respectively,
the set of all monotone, (Scott-)continuous, additive, and co-additive functionsGriam
A. Recall[1] that f € C <> A iff f preservesub’s of (non-empty) chains iff preserves
lub’s of directed subsets, anfl: C — A is (completely) additive if preservesub’s of all
subsets o€ (emptyset included). Co-additivity is defined by duality. We denotéy f
andgfps f, respectively, the least and greatest fix-point, when they exist, of an operator
on a poset. Iff € C—> C thenlfp * f = Vien f (L), where, forany € N andx € C,
theith power off in x is inductively defined as followst%(x) = x; fit1(x) = f(f (x)).
Dually, if fis co-continuous thegfp; f = Ajen £ (T¢). £ (Le)}ien and{f (Te)lien
are called, respectively, thewer andupper Kleene’s iteration sequences ¢sée[12]).

2.2. Abstract interpretation

Abstract domains can be equivalently formulated in many different ways. The most used
ones are Galois connections and upper closure opeffa®jrsAn upper closure operator
on a posefP is an operatop : P — P monotone, idempotent and extensivé (e
P. x<pp(x)). The set of all upper closure operators Bris denoted byuco(P). Let
(C, <, Vv, A, T, 1) be a complete lattice. A basic property of closure operators is that
each closure is uniquely determined by the set of its fix-pgii€3). For upper closures:
X C C is the set of fix-points of an upper closure Griff X is aMoore-familyof C, i.e.,

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 7

X = M(X) E(AS | S € X}—wherend = T € M(X).ForanyX < C, M(X)is called
theMoore-closureof Xin C, i.e., M(X) is the least (w.r.t. set-inclusion) subse®ivhich
containsX and it is a Moore-family ofC. It turns out thatp(C), <) is a complete meet
subsemilattice o€ (i.e., A is itsglb). Often, we will find particularly convenient to identify
closure operators with their sets of fix-pointsClis a complete lattice theuco(C) ordered
pointwise is also a complete lattice, denoted(th;go(C), C,u,m, Ax. T,),x.x), where for
everyp, 1 € uco(C), {p,}ier € uco(C) andx € C:

- pCniff Yy € C. p(y)<n(y) iff n(C) < p(C);

= (Micrp)(x) = Nierp; (x);

= (Uierp))(x) =x & Viel p;(x)=x.

If « ¢ C=> A andy € A" C are monotone functions such that.x C y o « and
woy C Ax.x, then(A, «, y, C) is called aGalois connectioffGC for short) oradjunction

betweenC andA, also denotedC, <¢) <;— (A, <4). Note thatin a GC, forany € C

andy € A: o(x) <y ¢ x<¢y(y) where the functions arg(y) = \/ {x | «(x)<y } and
a(x) = {y | x<y(y) } The set of all GCs between two complete lattiéeendC is the

tensor productt ® C, which is a complete lattice andl ® C ~A 2> C~C =3 A [43].
If in addition o o y = Ax.x (y o & = Ax.x), then(A, «, y, C) is aGalois insertion(Gl)

_— y b
(resp.projection also denotedC, <) é;a»— (A, <4) (resp.(C, <¢) «—_a>— (A, <4))
of Aiin C. It is worth noting thatA ~ C if and only if the connection in an isomorphism,

Y
e.(C, <c) == (A, <)

Let f : C — C be a monotone concrete semantlc function andffet A — A
be a correspondingbstract functionwhere(C, <¢) == _» (A, <4). Then (A fﬁ) is a

sound abstract interpretation — 6t is a correct approximation éfelatively toA— when
Ve € C.a(f(c))<af*(a(c)). On the other handA, f¥) is complete when the equality
holds, i.e.pco f = ffoa.

The standard abstract interpretation framework is based on the adjoint relation between
abstraction and concretization functida4]. The concrete and abstract domai@sndA,
are assumed to be complete lattices and are related by two maps forming4d &G, C).
Following a standard terminolog#, is called an abstraction @&, andC is a concretiza-
tion of A. If (A, a, 7y, C) is a G, then each value of the abstract domaiis useful in
representindgC, because all the elements Afrepresent distinct members &f beingy
1-1. Any GC may be lifted to a Gl by identifying, in an equivalence class, those values, of
the abstract domain, with the same concretization. This process is knowduwdionof
the abstract domain. Note that any @G, «, y, C) uniquely determines an upper closure
operator, i.e.y o o € uco(C), and conversely, any closure operatoe uco(C) uniquely
determines a Glp(C), p, id, C), up to isomorphic representation of domain’s objects.
Hence, we will identifyuco(C) with the so-calledattice £ of abstract interpretationsf C
(cf. [11, Section 7]Jand[13, Section 8}, i.e., the complete lattice of all possible abstract
domains (modulo isomorphic representation of their objects) of the concrete d@mnain
The pointwise ordering oaco(C) corresponds precisely to the standard ordering used to
compare abstract domains, as regards their precigipis. more precise thaAz (i.e.,Azis

an abstraction ofA;) iff A1 = Az in ucoC) iff (Ag, \Al):(Az, < ay)-

8 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

Let {A;}ie; € uco(C): U;er A; is the most concrete i®¢ which is an abstraction of

all the A;'s, i.e., ;¢ A; is theleast(w.r.t. ©) common abstractionf all the A;’s; and

Mies A; is (isomorphic to) the well knowreduced productbasically cartesian product plus
reduction) of all thed;’s, or, equivalently, it is the most abstract domaiti@which is more
concrete than every;. Let us remark that the reduced product can be also characterized as
Moore-closure of set-union, i.el;c; A; = M(Uicr A;p).

3. Cousot’s semantics hierarchy

In this section, we recall Cousot’s hierarchy of semantids15] Semantics, in the
hierarchy, are derived as abstract interpretations of a more concrete operational semantics
that associates a discrete transition system with each well-formed program. A transition
system is a paitX, 1), where is a non-empty set of states, andc 2 x X is a binary
transition relation between a state and its possible successors. In the foll&wirayd
3@ ©'N— X denote, respectively, the set of all the finite non-empty sequences, and the
set of all the infinite sequences, of symbolinGiven a sequence € X Lstuzoe,
its length is denoted bys| € N U {w} and itsith element is denoted by;. Moreover,
in the following, when|o| = n < w, o~ will denoteog anda4 will denotea,_1. A non-
empty finite (infinite)trace ¢ is a finite (infinite) sequence of program states, where two
consecutive elements are in the transition relatione., for alli < |o|: (0}, 0i11) € T.

A generic traces any such element id°°. Themaximal trace semantiasf a transition
system[15] is t*° L't U@, where ifT < X is a set of finglblocking states” = (s €
Xt|o] =n,Vi € [Ln).(0;_1,0;) € 1}, 7° ={c € 2?|Vi e N. (07, 0i41) € 1}, 1+ =
Unofo € 7| a4 € T}, andt” = " N tt. In the following, we will use theoncatenation
operation between traces: the concatenation ¢ of the traces;, £ € 2 is defined
only if 1, _1 = &o. Inthis caseg has lengthia| = |y| + |¢] — 1 and it is such that; = ¥,
for each 6<! < |y|, while ayy—14, = &, If0<n < []. Moreover, ify € X, then, for
eaché € X*°, we havey™¢ = .

The semantics™ has been obtained [d5] as the least fix-point of the monotone oper-
ator F® : p(Z°) — (), defined on traces a&®(X) = 1 U 12~ X. This operator
provides a bi-induction (induction and co-induction) on the complete lattice of the maxi-
mal trace semantidg (2°°), £, N, U™, N, ¥*,), whereX C* Y if and only if
XNt cynXtandy nX?® € X N X This order, later called theomputational
order, allows us to combine both least and greatest fix-point process in a unigue least fix-
point presentation: finite (terminating) traces are obtained by indudgast(fix-poin} of
F° on <5o =1, g), and infinite traces are obtained by co-inductigreétest fix-poirjton
(9 (), €), which corresponds to tHeast fix-pointof F>° on (p (Z®), D). In this case:
™ = Ifp5. F* (se€g10,15]for details). Cousot proved also that the natural trace semantics
can be calculated as tlypeatest fix-pointof the same function, on the domain with the
usual inclusion order, here callegiproximation ordernamelyr™ = gfps.. F>°.

All the semantics, in the hierarchy, are derived as abstract interpretation of the trace-
based semantics. In particular, each semantics in natural style corresponds to a suitable

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 9

Table 1

Basic natural-style semantics as abstract interpretations

Semantics Domain relation Abstraction and concretization
R

R® = R (1) (p(Z“).g)_’?(p(Zle)E) aRx)={(or.04)| oext }

* Ufloy, L)| o ex® }

PRY) = {a eXt| (o, 0))ey }
Ufoe2?|(op. L)eY }
P def
D*® = ¢P(R>) (p(ZXZL),g)’«:»D(ZA»@(ZL)E) oP)L s ds’ € 11 (s,s') € X}
: PP ={ | yerfw)
Padda coa
sWp = asWr (D) (Z — p(Zl),g) b — <5<7 (Zl) -—)5{7(2),3> OCKWp(f) = AP. {X € Z‘ f(s) S P }
8Wp LeW \ , y
PEVP(D) =As . {s'| s ¢ D (X \{s") }
8H
=0T ewp) (o(Z1) B (2).3) === (p (D ep(ZL).2) @M@ ={x.n|xcdm |
ot pHHE) =y UlX|(X.Y)eH }

abstraction of the basic natural trace-based semattticén the following we denote by
Nat the identical abstraction of the maximal trace semantics.

Relational semanticsThe relational semantic8> associates, with program traces, an
input—output relation by using the bottom symbal, ¢ X, to denote non-termination.
This corresponds to an abstraction of the maximal trace semantics, where intermediate
computation states are ignored. The abstraction funeffarihat allows to get the relational
semantics as abstraction of the maximal trace oneA®. = o= (t®), is given in Tablel.
The corresponding closure is

RelX) £yRaR(X)={oe Xt | 3de Xt .0 =3 A a3=04}
U{G€2w| 35€Xw.0'}_=5|_}

Denotational semantic3 he denotational semanti€¥® abstracts away from the history
of computations, by considering input—output functions. This semantics is isomorphic to
relational semantics. The abstraction functidf, that allows to get the denotational se-
mantics as abstraction of the relational one, I¥° = «P(R), is given in Tablel. The
corresponding closure operator on the trace semantics is

Den(x) £ y%yPaPaR(x)
= {O’EZ+’ 35€X+.O}=5F AN 0'4254 }
U {O‘EZw| 35€Xw.m_=5|_}

Weakest precondition semantid3ijkstra’s predicate transforme\Vp is represented
as co-additive functions, denoting weakest-precondition predicate transfdiBgrsve
consider the prograt§ and apost-conditior(set of desired final stateB) that we want to
hold after the execution && The semantics consists in finding the wealg@stondition
namely the biggest set of possible initial states, which allows the program to finigh in

10 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

Table 2
Observable semantics as abstract interpretations

Semantics Domain relation Abstraction and concretization
rt def
= ot (z) [0 (2%), €} = {p ™). <) aF(X)=xnxt=xt
’ yrY)=vux®
° P’ 5, . def
0 = 0¥ (™) (9 (),) == (D° <) (X) =X ulJ{chaogs,)| e X NI }
P =Y
0 = @ (7°) (5()(200), g) < (p(zw)’ g) w@(X) =X N2 d:eme
a? 7(() — XU Z‘+

The abstraction functions?V?, that allows to get the weakest precondition semantics as
abstraction of the denotational one, i.eWp = o8¥* (D), is given in Tablel. The
corresponding closure operator on the trace semantics is

gwqx) d:ef VR)/D])ngO(ngOCDOCR(X)
= {O’EZ+| 3oeXT .o =8 A 04254}
U {O’GZ(U| 30 € X? .o =0t }

Hoare’s axiomatic semanticSimilar to theg)Vp semantics, in the Hoare axiomatic
semantics we consider triples of the kin@d} S {P}, and, in this case, we give semantics
to the progransby finding all the pairg P, Q) such thafQ} S { P} is a valid Hoare triple
[35]. Hoare’s axiomatic semantig${ is represented as elements in tensor product domains,
i.e., GCs, specifying the adjoint relation between weakest-precondition and strongest-post-
condition in Hoare's triple$P} C {Q}. The abstraction functions*, that allows to get the
axiomatic semantics as abstraction of the weakest precondition ongH.es,a¢* (g¢Wp),
is given in Tablel. The corresponding closure operator on the trace semantics is the same
as the denotational semantics.

Each semantics in natural style may have a corresporatigglic demoni¢ andinfinite
observable, which is again an abstraction. For each semantics, all the observables are derived
as the fix-points, in the computational order, of semantic functions obtained by applying
the fix-point transfer theorenj40].

Angelic The angelic trace semanticsis designed as an abstraction of the maximal trace
semantics, and it is obtained by approximating sets, of possibly finite or infinite traces, with
the set of finite traces only, i.ecT = a™(t™°) (see Table).

We denote byR T, DT, Wip, andpH, respectively, the big-step relational semani&s,
angelic denotational, weakest-liberal precondifit], and Hoare’s partial correctness se-
mantics[35]. All these semantics have been proved[dh to be the angelic abstractions
of the corresponding semantics in natural style. The basic angelic trace semantics is con-
structively derived as the least fix-point, in the computational order, of a semantic function:

tt = Ifp5 Ft whereF ™ (X) = 1t U?~X.

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 11

Demonic The demonic trace semantics, denoted’ais derived from the maximal trace
semantics by approximating non-terminationdmaos namely by the set of all the possible
finite computations starting from the state that leads to non-termination. This corresponds to
allowing the worst possible behavior of the progrdf,17,18] This semantics is obtained
as abstraction of the natural semantics by using the funefione., 2° = «°(t>) (see
Table2). In this way, the demonic observable is defined on the dorbéia- oca(ga (2°°)),
which is such thak e D? if and only if

6eX® = chaogoy) € X

wherechaogo,) £ {5 € Xt |6, = oy }.

We denote byR?, DY, Wp?, andg#° the demonic relational, demonic denotatiofsi)
demonic weakest-precondition and demonic Hoare’s semantics. These semantics have been
proved, in9], to be the demonic abstractions of the corresponding semantics in natural style.
The basic demonic trace semantics is constructively derived as the least fix-point, in the
computational order, of a semantic functiaf:= IfpS, FO where FO(X) =t} U2~ X.

Infinite. The infinite trace semantics, denotéd is derived by observing non-terminating
traces only, i.e.z®” = a® (™) (see Table?). The corresponding infinite semantics are
denoted byR®, D®, Wp®, andgH®. The basic infinite trace semantics is constructively
derived as the greatest fix-point, in the computational order, of a semantic functien:
ofps. F® where F®(X) = 1>~ X.

Weakest preconditioThe weakest precondition semantics for total correctiggs is
modeled as a further abstraction of the natural trace semantics. This semantics considers
only those computations that surely terminate, in other words, the weakest precondition is
the largest set of initial states terminating in the given post-condition. This observable is
obtained as abstraction of tlg&V p semanticsWp = «"V?(gWWp) where

V(D) = D | (x)
YWVP(P) = AP . (if L ¢ PthenW(P) elsed)

SWp
coa

and((p (1) <5 9 (2)). 2) == (0 (2) <5 p(2)). 2).

o
The semanticsH is the Hoare’s axiomatic abstractionp, i.e.,rH = at™ (Wp).

The whole hierarchy, relating semantics styles and observables, is shown i, Fig.
where lines and arrows denote, respectively, isomorphisms and strict abstractions between
semantics.

In the following sections, we characterize the properties of the semantics in Cousot’s
hierarchy, in terms of the basic operations that compose and decompose abstract domains.
We consider, first, the attribute independent composition of semantics, which is provided by
the reduced product operation. This operation, and its inverse, which is domain complemen-
tation, provides a formal method for isolating complementary and independent observables
in well known semantics of programming languages. Afterwards, we consider the relational
combinator of domains, which is reduced relative power. This provides a characterization
of compositionality of semantics, which is parametric on the observation made. The result
is an algebra of semantics, where both, concrete and abstract semantics for program analy-
sis, can be obtained as solutions of the same domain equations, involving reduced product,

12 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

reduced power and domain complementation. These equations are parametric on the chosen
observable property.

4. Independent composition and decomposition of semantics

Let Programbe the collection of all well-formed programs in a programming language.
Let C be a domain of semantic denotations, e.g. execution traces, functions, sets of states,
etc., and[-] : Program— C is the semantics assigning, with each progiara Program
its meaning inC. For anyp € uco(C), we define the abstract semantics functjol, :
Program — p(C), as[[P]l, d=Gfp([[P]]). The following resulf28] formally expresses the
intuition that the reduced product semantics corresponds precisely to the logical conjunction
of the observables associated with each semantics in the product.

Theorem 4.1.If P, Q € Program and{A;};c; € uco(C) then[[Plin,_,a; = [Qllr;, 4; iff
Viel. [Plla, =10Cl4,.

Proof. ConsiderP, Q € Program
(=) Assume thak € I. Sincerie;p; T py, then we havg PJl,, = [Q]l,,, as desired.
(&) Sincevi € I. p;([P1) = p;(LQ1), we haven;c;p; (I PT) = Aicrp; (LQT) which
proves the thesis. O

A sequence of abstract domaifis; };<; is a (conjunctive) decomposition of the abstract
domainB, if B = M;¢;A;. In this context, we can characterize the independent observables
contained in a given semantics, by identifying the most abstract observables that, composed
with each other, gives back the semantics. This allows to find the most abstract decompo-
sition of a semantics, as regards a given observable. In this way, we are able to identify the
complementary observables contained in a semantics.

4.1. Domain complementation

Abstract domain complementation, introduced#h provides a systematic method for
decomposing abstract domains. Complementation isntherseoperation of the reduced
product (sed29]) in the sense that, starting from any two domaihsc D, it gives, as
result, the most abstract domair® D, whose reduced product with is exactlyC (i.e.,
(CeD)n D = C). By the equivalence between closure operators and abstract domains,
the above notion of complementation corresponds precisebséndo-complementation
on closures. In particular the complement described above is the pseudo-complement of
the closurep , corresponding t@, in uco(C). Recall that, ifL is a meet-semilattice with
bottom, then th@seudo-complemeat x € L, when it exists, is the unique elemerite L
such thatr A x* = L and suchthaty e L. (x Ay = 1) = (y<x™) [4]. In a complete
lattice L, if x* exists, then™ = v{y € L | x Ay = L}. If everyx € L has the pseudo-
complementL is pseudo-complementeld is worth noting that pseudo-complementation
is the only possible form of complementation in abstract interpretation. Indeed, it is well
known [20,36] that uco(C) is complemented (in the standard senseliffs a complete
well-ordered chain, and this is a far too restrictive hypothesis for semantic domains. The

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 13

following resultq22,27]provide two sufficient conditions, dp, that makaico(C) pseudo-
complemented. Recall that a complete lattitis meet-continuous for any chainy € C
and for anyx € C, x A (VY) = V,ey(x A y). MoreoverC is meet-generated, by € C,
if C = M(S).

Theorem 4.2. Let C be a complete lattice

1. If C is a meet-continuous then ugd) is pseudo-complementgzi7].

2. If C is meet-generated by Mi¢€) then uc@C) is pseudo-complemented aridr any
A € uco(C), we haveAd* défC@A = MMirr (C)\ A) [22].

Note thatforany, B € uco(C) suchthatd C B, A© B iswell defined it A = uco(A)
is pseudo-complemented.

4.2. Decomposing trace-based semantics

Domain complementation is the standard operation used for factorizing semantics. Given
any two semanticX, A € uco(C), such thaiX C A, the complement semantiffg(x o 4),
isthe mostabstractsemantics suchfilx = [Qlx iff [PTla = [Qla and[Pl(xoa) =
[Qlxeoa). In practice, it is always possible to define complements of semantics, since the
hypotheses in Theorem?2, assuring their existence, are extremely weak. In most cases, in
fact, the domain of abstract interpretations is a continuous, or even algebraic lattice, or it is
generated by its meet-irreducible elements.

In this section, we prove that angelic and demonic semantics provide a conjunctive
decomposition of natural semantics, and that angelic and infinite semantics form a minimal
(most abstract) decomposition of natural semantics. This is proved for the basic operational
trace-based semantics only, which represents the bottom (most concrete) semantics in the
Cousot’s hierarchy (see Fitj). We will generalize this construction to the whole hierarchy,
in Sectior4.3.

Consider the angelic, demonic, and infinite closure operators on maximal traces, i.e.,
Ang Dem Inf € uco(p (2°°), ©), induced by, respectively, the angelic, demonic, and
infinite abstractions on the trace semanthasg £ y+ oo, DemE 12000, andinf £ y@ou®
(see Table). It is immediate to observe that for afye X°°:

Nat(X) = X
AngX) = xXuUx?®
DemX) = X U|J{chaogd,)|d € X }

Inf(X) =XxXuxt

In order to prove that infinite and angelic semantics factorize the natural semantics, we have
to characterize the meet-irreducible elements of the domains involved. The seméhtics

is defined on the domaijp (2°°), whose meet-irreducibles ak&° \ {s}, for eachs € 2.

The semantics™ is defined orp (2) whose meet-irreducible elements &ré\ {s}, for

eachs € X . Finally the semanticE® is defined onp (2®), whose meet-irreducibles are

2\ {o}, for eachs € 2.

14 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

Lemma 4.3. Letg € X1 andd € X®. Then we have

2%\ {0} € Ang, 2\ {6} ¢ Ang
2%\ {0} ¢ Dem 2%\ {0} € Dem

Proof. It is immediate, by definition oAng, thatif ¢ € X andé € X thenAng(X™ \
{o}) = (Z°\{g}))UZ® = 3\ {g}, while we have thahng(X>®\ {6}) = (X®\{0)UZ® =
2,

An analogous reasoning can be done for the demonic semBmsimsndeed we can note
thatDemZ™ \ {¢}) = Z®°\{g}U{c’ € T | I € 2” . 0", =, } = 2. On the other
hand,DemZ®\ {6}) = Z®°\{5}U{d’ € 27| 3pe X? .o = f. } =2°\{6}. O

The angelic semantigsngfactorizes the maximal trace semantics together imithand
Dem Moreover, the angelic semantics does not share information with both, the infinite
and the demonic semantics.

Proposition 4.4. Nat©Ang = Inf, NatoInf = Ang Nat©Dem = Ang, Angu Dem =
2*° and Angu Inf = X°°,

Proof. We know thaNat©Ang= M (Mirr (p (X°°)) \ Ang), namelyMirr (Nat©Ang) =
Mirr ((2°°)) \ Ang SinceMirr (g (X)) is the set of all the elements of the kiad® \
{0}, with 6 € X°°, we have thatX e Mirr (Nat&Ang) iff X = X°°\ {0} with 0 €
2“, by Lemma4.3. At this point, sinceX = X \ {0} is a meet-irreducible element
in o (Z?®), then it is immediate to verify thak™ U (X \ {§}) is meet-irreducible in
[ZtUX|X e p(®) }, the set of the fix-points ofnf. Hence, we can conclude that
Mirr (Nat©Ang = Mirr (Inf), i.e., Nat©Ang = Inf. The proof forNato©Inf = Ang
is analogous. The proof fddat&Dem = AngandAngu Dem = X* is immediate by
Theoremd4.2and Lemma&t.3. [

It is worth noting that the angelic and demonic abstractions do not factorize natural
semantics in most abstract factors. In fact, while the complement of demonic semantics is
angelic, the converse does not hold. It is worth noting HettS Ang £ Dem In particular,
for any finite tracer € X, Dem({c}) = {c}, while Nat©Ang({s}) = X' D {a}. In order
to provide an example of the relationship between the angelic and infinite observables, we
represent sets of traces by the pair of their initial (input) and final (output) statés,
infinite traces. This corresponds to mapping, the factorization given above, on the relational
semantics. In Fig® and 5, we can see a representation of the relational angelic and infinite
semantics on the alphahBt= {a, b}.

4.3. Decomposing the hierarchy

In this section, we characterize the symmetric structure of Cousot’s hierarchy of seman-
tics, in terms of a general algebraic property of closure operators. Indeed, note that the
angeligdemoniginfinite observables are abstractions of the natural semantics, in any style
(trace-based, relational, denotational, predicate transformer and axiomatic), since the ab-
stractions, that relates the different styles of semantics and observables, commute all over
Cousot’s hierarchy.

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 15

zx {1}
(b, a) (b, b)
o (B0

= x {L} = x {L}
(a,a) (a,b) (b, a) (b, b)
(b, b) {a,a)

BN x 1y, = x (L} =X NG5
{a) b} {oa (a,5)(b, a) b (b a)
= x {Ll} = x {L}
(a,a) (b, b)

2 x {L}

Fig. 2. Relational angelic semantics &n= {a, b}.

p(C) © p(n(C)) p(n(C))
K" e PC) T
cen©) \ n(C)
c

Fig. 3. Basic abstraction structure.

In order to understand this situation better, we consider a concrete semantic dmain
generated by its meet-irreducibles, and two closure operpators uco(C). Recall that
pon € ucoC) iff pon =nop =mnup[36]. Namely, the composition of two closures is a
closure ifand only if they commute. Consider the structure inF:iljis perfectly symmetric
if the closurep(C)©p(n(C)) corresponds precisely to the abstraction phpf the com-
plementary closur€ ©#,(C), namely if the closure is an ©-morphism:p(C ©3(C)) =
p(C)Op(n(C)) or, equivalently, whenevep L)*, computed iruco(p(C)), is the same
closure ap U n*.

Our aim is that of finding sufficient conditions that guarantee that a closure distributes
on the complement operation, and of proving that all the closures in the Cousot’s hierarchy
satisfy these conditions. This would mean that all the symmetric semantics in the hierarchy
are complements, as it happens in Hg.

Unfortunately, not all abstractions, viz. closures, commute with respect to complemen-
tation. The following example shows this situation.

16 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

Z Z
0— 0+ LﬁO
KT <\
./
z
Fig. 4. TheSignandNzerodomains.

Example 4.5. Let Signbe the domain, for sign analysis of integer variables, represented in
Fig.4,andletp(Sign = {Z, 0—, —}.If n(Sign = {Z, 0—, 0}, thenyp(Sign = pn(Sign =
p(Sign N x(Sign for definition ofu, sop(r(Sign) = {Z, 0—}.

Then we can verify thgbd(SignSn(Sign) = p({Z, 0+, #0, +}) = {Z} while we have
p(SigN ©p(n(Sign) = {Z, —}.

Lemma 4.6. Letp, € ucaC). If pon =nopandpon* = y*opthen(pun*) C
pO(pun).

Proof. It is well known thatp o n € uco(C) if and only if pony = 5o p = p L5 [36].
Moreover,p T (p Un) M (p U y*), since, bothp L y* andp Ly, by definition oflub L, are
closures more abstract thapand therefore also their reduced product is more abstract than
p. On the other hand, by definition of domain complementation, we have that = C,

so for eachx € C we havey(x) A n*(x) = x. Therefore, ifx € p(C) C C we have

x = n(x) An*(x)
= n(px)) An*(p(x))
= (punx) A (pun(x)

Hence by definition of reduced product we have- (p L) M (p U *), and, by definition

of pseudo-complementation irco(p(C)), we know thato©(p L) is the most abstract
closure whose reduced product withu 1 returnsp. Therefore, since the reduced product
betweenp L n* and p U 7 is p, we can conclude that L #* is more concrete than its
complement, namelyun* C pO((puy). O

This lemma tells us that one of the inclusions, implicit in the equality, holds under certain
hypotheses. Next lemma, instead, gives a sufficient condition for the other inclusion.

Lemma 4.7. Letp, n € uco(C). If nun* = {T} and Mirr(p(C) N n*(C)) € Mirr (p(C))
thenp©(pUn) E (pUn®).

Proof. By hypothesis, we have thatu n* = {T}, namelyy(C) N y*(C) = {T}. On the
other hand, we have thatC)Nn*(C) C *(C), therefore the conjunction of these two facts
implies that(p(C) N*(C)) Ny(C) = {T}. This means thavirr (p(C) Ny*(C)) Ny(C) =

& (1). Moreover, by hypothesis, we haldirr (o(C) N #*(C)) € Mirr (p(C)) then the

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 17

following relations hold:

Mirr (p©(p U n)) (by Theorem 4.2
= Mirr (p(C)) \ (p(C) Nn(C)) (by hypothesis
2 Mirr (p(C) N *(€)) \ (p(C) N y(C)) (%)
= Mirr (p(C) N n*(C))
= Mirr (p un*)

where the stefgx) holds because, if € Mirr (p(C) N n*(C)), then, by condition (1), we
havex ¢ 1(C), and sax ¢ p(C) N n(C).
Since(p©(pun)(C) 2 (pun*)(C), we can conclude thato (pun) C puy*. O

By Theorem4.2 we know that the complement of a closure depends on the meet-
irreducible elements of the concrete domain. For this reason it seems sufficient that a closure
transforms meet-irreducibles into meet-irreducibles for making the closure commuting with
respect to domain complementation. But it is immediate to note that the structure of meet-
irreducible elements is not always left unchanged by an abstraction. Indeed an abstraction
erases elements from the concrete domain and nothing prevents it from eliminating meet-
irreducibles, too. Moreover, the abstraction can also create new meet-irreducible elements.
Indeed, if we extract a chain from a more complex domain (suigs all its elements
become meet-irreducible. This is a consequence of the structure of the abstract domains,
which are Moore families. IndegdMirr (C)) € Mirr (p(C)), butthe inverse inclusion gen-
erally does not hold, as we can see in Exandpfavhere the element is meet-irreducible
in p(Sign but it is not the image, as regargsof any meet-irreducible element 8fgn

These observations lead to the following theorem. This theorem provides two independent
sufficient conditions for making commuting with©.

Theorem 4.8. Letp, n € ucao(C) suchthatpon = nop,nun* = {T}andpon™ = n*op.
(i) If Mirr (p(C) Nyp*(C)) € Mirr (p(C)) thenp(COn(C)) = p(C)Op(n(C)).
(i) If Mirr (p(C)) = p(Mirr (C)) thenp(COn(C)) = p(C)Op(1(C)).

Proof. (i) Immediate by Lemmad.6and4.7.

(i) We have to prove thap(COn(C)) = p(C)Op#(C)). First of all, we prove that
p(Mirr (C)\ p(n(C)) = p(Mirr (C)\n(C)). We know that, in general, for each mgpve
havef (A)\f(B) C f(A\B), hencetheinclusiog holds. Now, we prove that also the other
inclusion holds. In order to show this, we prove that each elementin théMdat (C)\n(C))
belongs top(Mirr (C)) and does not belong ten(C). We know thatMirr (C) \ n(C) <
Mirr (C), hence, by monotonicity gf, we obtain thap(Mirr (C)\n(C)) < p(Mirr (C)).
Moreover, sinceMirr (p(C)) = p(Mirr (C)), and since, by definition] ¢ Mirr (p(C)), we
have thatl ¢ p(Mirr (C)) which impliesT ¢ p(Mirr (C)\n(C)). Finally, we have to prove
that

x € p(Mirr (O\n(C)) = x ¢ p(n(C))

wherex £ T forthe consideration above. Note that, if an element belongs to the composition
of two closures that commute, then it belongs to each closure. Morgaver* = {T},

18 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

therefore the following implications hold:

x € p(Mirr (C) \ n(C)) = x € pn*(C)
= x € p(C) A x €n™(C)
= x & pn(C)

Sincep(Mirr (C) \ n(C)) € p(Mirr (C)), we have:
p(Mirr (C) \ n(C)) € p(Mirr (C)) \ p(n(C))

Hence, we have the equality. By the argument above, this implies the following equalities:

Mirr (p(C)©p((C))) = Mirr (p(C)) \ p(n(C)) (by Theorem 4.2)
= p(Mirr (C)) \ p(n(C)) (by hypothesis)
= p(Mirr (C) \ n(C))

from which the thesis follows. [

The following example shows that the converse of Theote{ii) does not, in general,
hold.

Example 4.9. Let Signandp(Sign = Nzerobe the domains represented in Fgfor sign
and non-zero analysis of integer variablesy(8ign = {Z, 0—, —}, thenp(5(Sign) =
{Za _}

In this case, we have that(Signon(Sign) = p({Z,0+, # 0,+4}) = {Z, #0, +}.
Moreover, it is simple to verify thai(Sign © p(n(Sign) = Nzerao{Z, —} = {Z, #0, +},
while we havep(Mirr (Sign) = {0} andMirr (p(Sign) = Mirr (Nzerg = {#0, +, —}.

4.4. Symmetric abstractions in the hierarchy

In this section, we extend the complementary relation, existing among the angelic, de-
monic, and infinite observables on maximal traces of a transition system, all over the hi-
erarchy. We use Theorem8to obtain this generalization. In particular, we prove that the
domain complementation commutes with respect to all the abstractions connecting the dif-
ferent semantics styles. Let us consider the relational abstrargb(see Sectior8 and
[10]):

REI(X)Z{O'EZ+|E|5€X+.O'|.=5}_ A 0'.125_1}
U{O’EZw| 35€Xw.0}_=5|_}

Lemma 4.10. Let p, € ucoC). lf pon = nopandyon* = nuny* = {T} then
pont=mn*op.

Proof. For anyx € C we have:

p*(x)) = n(pm*(x)) An*(p(*(x)))

(by definition of pseudo-complement)
= p((r*(x))) A" (p(n*(x))) (by hypothesis)
= T An*(p(r*(x))) (by hypothesis)
= 1" (p(n*(x)))

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 19

These relations say thatn*(x)) = p(n*(p(n*(x)))) because is a closure, namely it is
idempotent. Moreover, we know thaandy;™* are upper closures, namely they are extensive,
which means that <#*(x); by monotonicity ofp we have also that(x) < p(n*(x)) and
therefore, by the extensivity gf, we havex < p(n*(x)), namely alsopn™ is extensive.
Finally we know that the composition of monotone maps is monotone. phen* is
idempotent, extensive and monotone, namedyn* € uco(C), which holds if and only if

pon*=ntop. U

Proposition 4.11. 1. Relo Ang= Ango Rel
2.Relo Dem= Demo Rel.
3.Relo Inf = Inf o Rel

Proof. Itis easy to prove thaRelis additive. Therefore

RellAng(X)) = Rel(X U X?)
= Rel(X) URel(2*)
= Rel(x)u x?
= Ang(Rel(X))

Let us prove thaRelo Dem = Demo Rel By definition and additivity oRel, we have
RelDem X)) = Rel(X) URel({c € 2T|6 € X N 2?, 6y = o1}) andDemRel X)) =

RelX) U {c € 27|65 € Rel(X) N 2®, 6. = o+}. Note that) € Rel({c € ZT|d € X N

X? 6 = op)) ifand only if 0 € X, and there exist € X+ andd € X N X® such that
O = or, or = 0 and04 = o4. Therefored € {¢ € XT|6 € X N X°, 6y = o). This
implies thatRek{c € X0 € XNZX? 6 =01) = {6 € ZT|6d € XN X9 6 = o).

Moreover iff is such that) € Rel(X) N X“ andd. = 0., then by definition oRel, there
existsd’ € X N X* such thaty, = 6 = 6. This implies that) € Rel({c € XT|J €

XNX? 6 =o)ifandonly if 0 € {6 € 21|06 € Rel(X) N X?, - = o+}. The third
equality of the proposition holds because we provedRed Ang= Ango Rel, moreover
by Propositiod.4 we know thatAng" = Inf andAngu Inf = X°°. Moreover, it is worth
noting thatAngo Inf = Inf o Ang= 2. Hence, by Lemm4.10, we haveRelo Inf =

Inf oRel O

Propositiond.11tells us that, for each possible closure= {Ang, Inf, Dem}, we have
Relo n = o RelandRelo n* = 1* o Rel Moreover, it is worth noting that the relational
semantics does not factorize the trace-based one, being too abstradgtieRel = Nat.
This does not allow us to use TheordtB-(ii) for relating the observables in the trace-based
and relational semantic styles in the Cousot’s hierarchy. Instead, we can use THe®(@m
as shown below.

Proposition 4.12. 1. Mirr (Rel(p (2°°)) N Ang(p (2°°))) € Mirr (Rel(gp (Z°))).
2. Mirr (Rel(p (2°°)) N Inf (g (2°°))) < Mirr (Rel(p (2°°))).

Proof. We know thaRelandAngcommute by the previous proposition, so it is immediate
to see that the intersection betwdeal and Angis exactly the angelic relational closure,

20 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50
that we denoténg/®.

Mirr (Rekp (2°)) N Ang(p (2°))) = Mirr (Ang (p (2))))

Let X be meet-irreducible idng’®. Then, it contains all the infinite traces and, moreover,
there exists, s’ € X such that{c € Xt |0 =5 A 0y =5"} N X = J (these meet-
irreducibles are the concretizations, as regards of the meet-irreducible elements of
P (2 x 2)).

We have to prove thaX is meet-irreducible iflRel. Suppose that there exidt B € Rel
suchthatd N B = X, with A # X andB # X. SinceX is meet-irreducible ilng®, either
AorBis in Ang’®. Supposé in Ang’®. This means thah does not contain all the infinite
traces, which implies that it cannot generate, by intersection, all the sets containing all the
infinite traces. Hence, KX is meet-irreducible irAng”® then it is meet-irreducible iRel.

The other cases are analogous[]

Therefore, it is immediate, by Theorefr8-(i), that:

Rel = Ang® n Dem® = Ang® nInf®
Inf? = Rel©AngR
Ang? = ReloDen® = ReloInf™®

where the apexR denotes the relational version of the corresponding closures, i.e., the
composition of each closure with the relational one. We know that the part of the hierarchy
over the trace level is constituted by isomorphic levels. Then, we can think of applying
Theorem4.8(ii), in order to propagate the properties of complementation. We can prove
that the basic pattern of the hierarchy between the angelic, infinite and demonic observables
can always be characterized by complementation, at any level of the Cousot’s semantics
hierarchy.

The following lemma proves that all the semantics, in the Cousot's hierarchy, satisfy the
hypotheses of Theorem8-(ii). In the following we denote the meet-irreducible elements
of R by Mirr 2 £ Mirr ((p (2 x £1), C)).

Lemma 4.13.
Mirr (£ — ©(Z1),5) = 2P (Mirr)
Mirt (((£1)=5 9 (2), 2) 2P (P (Mt)
Mirr ((p () @ (21),2) = a8t (@VP (P (Mirr z)))

Proof. Note that,Denis isomorphic toRel[10]. Therefore, it is immediate to determine
the structure of its meet-irreducible elements:

Mirr(ZH@(ZL)’E):{f’ A5 e X, 3" € 21 . f(5) =21\ {s'}, }

VseI\(5). f(s) =2,

We have to prove thatlirr (X — (1), C)) = «P(Mirr). Recall thato? (X) =
As.{s’ |(s,s’) € X}. Let us consider the two implications of the equality separately.

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 21

Let X € Mirr g, then

«P(X) = aP((Z x Z1)\ (50, 51)})
8.2 if s # 50
As.2 1 \{s1} otherwise

This implies thatz?(X) € Mirr ((X — © (2 1), C)). Consider now the functiorf €
Mirr ({2 — p (2 1), C)), thenthere exisiy € 2 ands; € 2, suchthatf (so) = 2 \{s1},
and for alls # so we havef (s) = 2 . Atthis point, we cantak& = X x X \{(so, s1)} €
Mirr ¢ such thatf = «P(X). The other cases are similar..]

The lemma above, together with Theoreh®-(ii), and since all the complementary
observables share only the top element, implies the following result relating program se-
mantics at different levels of abstraction (see Fig.In this case, we extend the scope of
© from closures to semantics in the obvious way: Met pA(t*°) andB = 1B (™) then
ASB = (pon) (x™).

Theorem 4.14. In Cousots hierarchy of semantics we has®@ O1+ = t® andt>® O1® =
1 91°% = . Moreover

R @R+ — Ra)’ D> @D+ = D®
RXORY = R°ORY = RT, DXOD° = PXOD? = D+
gWpOWIip = Wp?, gHOPH = gH”

gWpOWp® = gWpOWp® = Wip, gHOgH® = gHOgH” = pH
4.5. Decomposing predicate transformers

The predicate transformer semantics provides an intensional description of programming
language semantics in terms of functions transforming logic-based descriptions of compu-
tational states. In this context, a predicate is a set of states, whitedécate transformer
is a function transforming predicates. Consider the presentation of a transition system as
(I', —), with configurationsl” consisting of pairs of program components (e.g. expres-
sions or commands), and program states X which are mappings from variables into
values, and a transition relatier C I' x I'. The weakest precondition semantjt8] is
traditionally defined as follows, whem®, 9 C X, andSis a program fragment:

P = WIp(S,0) & Vs.(seP = ((S,s) > s As' €Q) Vv (S s)1)
A similar definition can be made for its infinite counterpart:

P = Wp?»S,0) & Vs.(seP
= (§,sP ALeQ)v@as. (S, s)—5))

It is immediate to transform the above relations into the following sets of states: the
weakest-liberal preconditioip(S, Q) = {s| Vs' € 2. ((S,s) /s’ v s’ € Q) } and

the infinite oneVp®(S, Q) = {s | 3s' € . ((S,s) - s’ v L € Q) }. By complement-

ing these sets, we obtain the following set-theoretic complements: the complement of the

22 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

weakest-liberal preconditionsWip(S, Q) = {s| 35’ e X.((S,s) >s' A s' ¢ Q) },
and of the infinite one; Wp® (S, Q) = {s|Vs' € 2. ((S,s) A s AL ¢ Q) ={s] (S,s)
+ Al¢ 0}

By Theoremd.1, we have that the natural semantics corresponds to the reduced product
of the angelic and infinite semantics. Therefore, in this context, it is the conjunction of the
two semantics above, namely:

gWp(S, Q) ={s|(S.s)t ALeQ) Vv ((S,s) >s As' €0}

In this framework, it is possible to compare logical and algebraic complementation of
observables. While the algebraic complementation corresponds to abstract domain com-
plementation, the logical one boils down to the set-theoretic complementation of predicate
transformers. The following complementary relations hold between infinite weakest precon-
dition semantics and the angelic (liberal) om8p® (S, Q) \ gWp(S, Q) = =WIip(S, Q)
andWip(S, Q) \ gWp(S, Q) = = Wp®(S, Q). Hence we have:

WIp(S, Q) \ gWp(S, Q) = = Wp?(S, Q) &

WIp(S, Q) = gWp(S, Q) = Wp“(S, Q)
Wp?(S, Q)\ gWp(S, Q) = =WIp(S, Q) &

Wp@(S, Q) = gWp(S, Q) = WIp(S, Q)

In this way, we have the following relation between the algebraic and logical complemen-
tation of predicate transformers:

gWpWIp =Wp® WIp(S, Q) = gWp(S, Q) = Wp“(S, Q)
gWpWp® =WIp OWWp?(S, Q) = gWp(S, Q) =WIp(S, Q)

Algebraic transformation Logic transformation

This implies thatP = Wp®» (S, Q) iff P A WIp(S, Q) = gWp(S, Q). An analogous,

but dual, formulation holds for the weakest-liberal precondition semantics, with respect to
the infinite one. This shows that the domain complementation corresponds to the classical
implication, as far as predicate transformers are concerned.

We conclude this section by proving that the weakest precondition semantics, which
abstracts the demonic relational semanfid, is too abstract to provide any significant
decomposition of the demonic relational semantics. We consider the relational semantics,
which is the simplest semantics in Cousot’s hierarchy, which is isomorphic to the weakest
precondition one.

Lemma 4.15. Leto® (Denf?) be the demonic relational closurand leto™ (Inf ?) be the
infinite one. Then we have

Mirr (o (Dent?)) = Mirr (o (Inf ?))
UIX € (X x ZDIX =@ x 2D\ {{s.s") (s, L)}, s, s" € 2}

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 23

Proof. Letus denote witiM the set on the right side of the equality. We prove the two inclu-
sions separately. Consider an elemgrd M. We can prove that itis meet-irreducible in the
demonic relational closure. Xbelongs to the set of meet-irreducible elementsofinf ?),
thenXis meet-irreducible and it is i’ (Dent?) because, by definition, the demonic seman-
tics contains the infinite one. Suppose now thiag M, but not inMirr (@R (InfRy), i.e.,
XelXep@Zx2Z)|X=CxZ)\{ss).(s.L)},s,s" €2}, in other words let

X = x2)\{[s,s'), (s, L)}. We can consided, B € o (Denf) suchthatt N B = X,
this means that> x X) \ {(s,s')} € AT and(Z x L)\ {(s, L)} € A, and the same
holds forB. We can see that each possible combination impliesXhat A or X = B, or

it implies a contradiction. Since we are in the demonic observabl?it= 2 x L, then

AT = X x X.Inthese conditions, iB™ = X x X or B® = X x L, thenA N B cannot beX,
sowe haveX = B. Suppose now that® = (X' x L)\ {(s, L)}. If AT = (T x)\ {[s, s")},
thenX = A. Hence, consideA™ = X x . Inthis case, ifBT = 2 x X thenAN B # X,
thereforeB™ = (X x)\ {<s, s’)} and, sinceB is in the demonic closure, this implies that
B® = (2 x 1)\ {{(s, L)}, namelyB = X. We can conclude tha¥l is a subset of the
meet-irreducibles of the demonic relational closure.

Consider, nowx meet-irreducible in the relational demonic semantics. This means that,
if X = AN B, then eitherX = A or X = B. Suppose thak ¢ M, then we have the
following possible situations:

1. XT = (X x X))\ Dy, with D1 € X x X and|D1| > 1;

2.X=Zx2Z)\(s,s);

3. X? = (X x 1)\ Do, with D € ¥ x L and|D>| > 1.

It is worth noting that, in the second case, we have ¥dbes not belong to the demonic
closure, which is a contradiction. Consider, then, the conditionwe can define the sets
A=X?U(Zx2)\D))andB = XU ((Zx)\ {x}), withx € Dy andD] = D1\ {x}.
Then, it is immediate to note thatN B = X with X # A andX # B, which contradicts
the hypothesis oK. Analogously, we can prove that the third point leads to a contradiction.
Therefore, we can conclude thatXifs meet-irreducible in the relational demonic semantics,
then it belongstd1. [

The lemma above tells us that all the meet-irreducible elements of the demonic semantics
include infinite computations. In this case, & semantics forgets about the input states
that may lead to an infinite computatifi0]. This means that this semantics does notinclude
the meet-irreducibles of the demonic relational one. In this sense, it does not factorize the
demonic closure. In order to understand this situation better, let us consider the following
example.

Example 4.16.Let X = { (a,a), (a,b), (b, a), (a, L) } be an element of the domain in
Fig. 6 (meet-irreducible). Then the mgp= P (X) is such that

a +— {a,b, 1}
b — la}

Atthis point, in order to calculate th@/V p semantics, we consider theedicate transformer
D =aVP(f): (X)) — p(2), and we obtain the function that executes the following

24 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

associations:

{a} — (b}
{a,b, 1} — {a}
D, (b}, {1}, {a, L}, {b, L}, {a, b} —

At this point, the abstraction”V? reduces the domain of this functionga(X), obtaining

{a} — {b}
(b}, {a, b} —» O

But, if we concretize with*V?, we obtain the functio®’ that is such tha®’ : {a} — (b}
while for each sek € p(21) \ {a} we haved’ : X — J. So, concretizing this map till
the relational domain, we obtain the 3et= 2 x X} which strictly contains<.

4.6. Decomposing demonic semantics

In Sectiord.2, we proved that the angelic and demonic abstractions do not factorize natu-
ral semantics in most abstract factors. This means that it is possible to isolate an observable
which is more abstract than the demonic semantics, and complementary with respect to the
infinite one. In this section, we give a computational meaning to this new observable.

Lemma 4.17. Leto € 2 and 4, & {60 € 2| 6 = o+}. Then we have

Mirr (Dem) = Mirr (Inf) U{X € 2*| Jo0e X" . X =3\ (4, U{o}) }
Proof. Let us use the denotatioll & (Xcz2®|3doeZt . X=2%\(4,U{o}) },
and consider the two inclusions separately. Let us provehat Mirr (Dem), namely
considerX € M. If X e Mirr (Inf), thenX is meet-irreducible also iDem This because
the only sets of traces iDemcontaining all the finite traces are elementdrih. Now, if
X = 2%\ (44 U {o}), we have the following possible cases. Consider A, € Dem
such thatd; N A, = X, then we have that” \ 4, € A?, andX™ \ {g} € A, for
i = 1, 2. Therefore, for the infinite part of the sets, we have the following possible cases:
AP =29\ As, AP = 2\ Do, whereDg C 45, or AP = 2. While, for the finite part of
the sets, we have the following possible casgs= X \ {c} or A} = X*. We can prove
that in all the combinations of these cases eithee X or we find a contradiction.

e ConsiderAy = X9\ Ag. If AT = X1\ {0}, thenA; = X. Therefore, let us consider
Al =% ie.,, A1 = 2%\ 4,. In these conditions, it] = X7, thenA; N Ay # X,
thereforeAzr = X1\ {g}. As far asAy is concerned, iA9 = X\ 4,, thenA; = X,
andif A9 = X or A9 = X\ Do, thenA; ¢ Dem

e Considerd{ = 2. Since we are considering element®iem this implies thatAir =
>t ie., A1 = 2. In these conditions, itis clear thatAf; = X, thenA1 N A # X,
henceA; = X* \ {g}. As far asA} is concerned, i = X, thenA1 N Az # X, if
A9 =2\ A, thenA; = X, and if A9 = X\ Do, then we would havel> ¢ Dem

e ConsiderA{ = X%\ Dy. In this case, we hava = >+, otherwiseA; ¢ Dem i.e.,
A1 = X\ Dg. On the other handd] = >+ \ {a}, otherwiseA1 N A, # X. Finally,

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 25

if AY = X“ thenA; N Az ¢ Dem if AY = X\ Do, thenA; N Az # X, and if

A9 =29\ 4,4, thend; = X.
Now we have to prove thadlirr (Dem) € M, namely thatifX ¢ M, thenX ¢ Mirr (Dem).
Hence, consideX ¢ M. Then, there exist®g € 2, with Dg D 4, suchthat(® = X\
Do, or there exist®; € X1, with |D1] > 1, suchthakX+ = X+ \ Dy, andX ¢ Mirr (Inf).
In these conditions, ifx* = X, thenX e Inf, by definition ofInf, and X is meet-
irreducible. All these facts together imply th&t € Mirr (Inf), which is a contradiction,
sinceX ¢ Mirr (Inf). Therefore, considekt < X7 and, in particular, considex* =
Xt \ D;. We can define the sefd] & Dy \ {0}, witho € D1, A Erxeoy ety D))

andB £ x© U (Z*\ {¢'}). It is worth noting thatd N B = X with A # X andB # X,

namelyX is not meet irreducible iDem Finally, if Xt = X7\ {g} andX® = X®\ Dg
(by hypothesis), then we can define the slé@,s":ef Do\ {6}, with &' ¢ 4, andd’ € Do,

def def

A = X%\ (DgyU{s}) andB = X%\ {§'}. Itis worth noting that, also in this caséN B = X
with A # X andB # X, namely also in this casé ¢ Mirr (Dem). We proved, in this way,
thatM = Mirr (Dem. [

It is clear that, for eachr € Mirr (Dem) \ Mirr (Inf), we havex ¢ Inf. Therefore,
we can obtain a new observable which is generated from the objects of thexfosm
X\ (4, U {a}), with ¢ € X7. In particular, we can define a new closure operator,
calledslothful that characterizes the new complementary semantics defiredrb@Inf .
This is a closure on the demonic dom&lo € ucoDem(gp (X°°))), which is defined as
follows:

def

Slo= X .X U {6 € 2”|chaogd;) € X }

On the other hand, ik € M ({X € 2™ | 36Xt . X =2%\ (4, U{a}) }), thenit
means that ,when there exists a tracg X, then all the traced € X®, such thab, = o},
cannot be inxX.

Proposition 4.18.
XeSloe XeM({Xxcx®|FoeXt . X =3\ (4,U{a}) })

Proof. Let us prove the two implications separatéhs) ConsiderX € Slo we know by
definition of slothful closure that € X® implieschaosgs.) € X*. Hence

XeSlo s X=XU{ée2?|chaogdy) € X }
& Voe X?.chaogor) € X+

Suppose thaXis not the intersection of elementshirr (Dem) \ Inf, namely there exists an
infinite traced € X, starting with the initial state of a finite traee¢ X. By definition ofX,

we know thathaogd,) € X, then, since e chaogd;) (beingdr = o+), we would have

o € X, which is a contradictioni«<) Let us prove that each elementhfirr (Dem) \ Inf
belongs to the closure operator. Consi8&(X°° \ (4, U {a})). By definition, this closure
adds, with each s&, the chaos of each infinite trace A1 This means that the operation
cannot add any trace containeddp, because they are all infinite. Moreover, it cannot add
g, since there are no infinite traces starting withbeing these traces if,;. Hence, we can

26 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

EXEJ_
[)

XX XXX
o .\ /. o
[]

XX

Fig. 5. Relational infinite semantics @ah= {a, b}.

conclude that all the meet-irreducible elementd/inr (Dem) \ Inf are fix-points ofSlq,
which is meet-generated by them]

It is simple to verify that this new semantics is unable to distinguish whether, in a set of
traces,the set of all the finite traces with the same given initial stagegenerated by the
existence of an infinite trace it starting froms, or it is produced by the program itself.
This abstraction is achieved by enhancing any set of trXcegh all the infinite traces
0 € 2, whenever the chaos generateddhyamelychaogd;), is contained irX.

The following result is straightforward by Theoredni2 and by Lemmad.17. As ex-
pected, this new semanti®&o(Dem(z*>)) is unable to observe infinite behaviors. More-
over, (DemSInf) o Demis unable to factorize the basic trace semantics. Indeed, for any
X e Mirr ((2°°)) we have(Dem3Inf)(Dem(X)) = X*° (Figs.5 and®6).

Theorem 4.19. Dem@Inf = Slo, Dem©Slo= Inf, and Nat© (Sloo Dem) = Nat.

We can conclude that the infinite and the slothful semantics are fully complementary,
namely they share only the demonic top elemgfit

Proposition 4.20. Slou Inf = X*°,

The following result proves that the complementary structure of the slothful semantics
can be extended all over the hierarchy.

Lemma 4.21. 1. Relo Slo= Sloo Rel.
2. Mirr (Rel(Dem(gp (X°°))) N Slo(p (2°°))) < Mirr (RelDem(p (2°°)))).

Proof. By Theoren#.19 Propositiod.20and Lemmat.1Q, the proof is analogous to the
one of Propositiond.11and4.12 [
Therefore, by using also Propositidri], we can apply Theored.8-(i), obtaining that:

Dem® = SR nInfR
InfR = Dem* O©SIR
Sl = Dem*OInf®

The following theorem is analogous to Theordri4

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 27

XX

. o

(a, a) (a, b) s b, b)

LR I xx/ m . L) (a, b)
a, L) (b, b) (b, , o

(a, a)
& _(b,b) (b, a)

(a, L) ((b, L)
(b, a) ’ (b, a)
o) / ‘ - \ 5, a)
a,

(a, a) (a, b) &0 {a, b) © (b, b)
(b, a) (b, a} (b, by

(a,a) | (a, b) y (6, b)

%]

Fig. 6. Demonic relational semantics an= {a, b}.

Theorem 4.22.In Cousots hierarchy of semantics we have

RCORE = R®, PYODe =D
Ra OR® = R, D@ OD? = D2

WpPeWpl =Wp®, ¢H OgH? = gH”
Wpa@pr — 1/‘;17(_)7 gHa@gH(l) — ngQ

In Fig. 6 we have the relational version, on the alphabet {a, b}, of the demonic
semantics. In this representation, we underline with empty points the elements that belong
both,to the demonic and to the infinite semantics. In this figure, the slothful domain is
represented by full points.

The factorization of the demonic semantics led us to the definition of a new observable,
which is complementary with respect to the infinite semantics relatively to the demonic
observable. We prove that this semantics can be constructively derived as the least fix-point
of amonotone operator, under particular conditions. The slothful semantics can be viewed as
an abstraction of the natural semantics by composing the demonic and the slothful closures.
This leads to the following closure operator on the maximal trace semantics:

SI?(X) £ Sloo DemX)
= XUlJ{chaogé)|d e X® } U {6 € 2”|chaogdr) € X }

In order to define the abstraction of the demonic observable corresponding to the
slothful domain, we can think of distinguishing, in the set of all the finite traces of a

28 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

slothful infinite
angelic g}(gov demonic —
Hoare’s axiomatic P 3
p Wp*
Dijkstra’s pred-trans Wp

Denotational

Relational

Trace-based

Fig. 7. Semantics in Cousot’s hierarchy.

program, those traces which are the effect of a computation, from those which belong
to the chaos given by an infinite computation. In the following we will use the notation:
CHY {chaogs) | s € £ } < p(=™). Consider the seb?, with elementsy = (X+, X°),
where we considek* € p () andx¢ch e g (CH), defined as

ce Xt = chaogo.) € XT,
De = <X+, x°“> € 9 (Z) x p(CH) | chaogs) e x¢h
= VoeXt . sé¢ X+

The abstraction and concretization functions are, respectivély, D° — D¢ and y
D? — D% and they are defined as follows:Xf e D% andY € D¢ then

2?(X) = ({o € X* | chaogs;) £ X* }, {chaogo,) | chaogs;) € X })
1 (Y) =YT U e 2| chaogsy) e YN }

The idea is the following. The abstraction ignores the infinite traces, while it keeps their
chaos, which is represented by thed®ogs), for their initial states. The concretization,
instead, leaves unchanged the finite traces and substitutes eattasgt) with all the
finite and infinite traces starting with the statét is worth noting thaSlo= 7 o «?.

The semantics, not originally included in Cousot’s hierarchy, are represented in Fig.
with dashed lines and empty points.

The characterization of the slothful semantics as a fix-point of a monotone operator on
traces requires the definition of a computational order which has to be coherent with the
structure of the slothful abstraction. In order to obtain this, we apply the abstraction above

to the demonic domain reordered by the computational o(ﬂl?r,,;@), defined in[10]:
X 0 v if for eachs € 2%;

ceXV(cgY AVéeXT.q6eX = a.d€eY)

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 29

(a, b) (a, a) (a, b) (a, a)
(b, b) (b, b) (b, a) (b, a)

(b, b)

chaos(a) chaos(a) \\/
(b, b) @ /
chaos(a)
chaos(b)

(a,a)

chaos(b)
(a, b)

chaos(b)
(a,a)

chaos(a)

chaos(b)

Fig. 8. The reordered slothful domain.

This order says thax N 2“ 2> Y N X, and for any stats, which in bothX andY does
not lead to non-termination, we hawen chaogs) € Y N chaogs). It is trivial to prove
that the computational order, induced on the doniafnis defined as followsX C¢ Y iff

Xt c Yyt andX® > v We can observe that the induced least upper bound is

L1ox: = (U; X/ N X2

where{X;}ie; € DY, i.e., itis the union on the finite traces part and the intersection on the
chaos part, of the sets involved in the operation. The greatest lower bound is defined dually.
The problem here is thaiD?, C?) is not a complete partial order (CPO). This implies that

we cannot specify the slothful semantics of a program as the least fix-point of a monotone
operator, i.e., the slothful semantics does not have a computational meaning for infinite state
systems, such as programs. In order to observe this fact, we remind thatia geiD? iff

Vs € X.chaogs) € X = Vsée X7 .56 ¢ Xt andvsd € XT.chaogs) £ X*. Consider

a states € 2, and consider the increasing chgixy }; ., € D? defined as follows:

Xo = <@, @)
X, = (X, U (chaogs) N 2"), D)

where2" is the set of all the finite traces whose lengthisc w. It is worth noting that

Vi . X; € D? and thatvi . X; C¢ X; 1. Then, we haveX,, = | |, X,, and it is clear that
chaogs) € X, = U, X;, while X8 = &, namelyX,, ¢ D?. The problem here is that

the chaos of a state is an |nf|n|te set. This means that we are not able to systematically
build the slothful observable on transition systems involving infinite states. Indeed, the only
situation, where the argument above fails, is when the domain is finite, namely when we
consider the relational domain with a finite set of states such as i8Hte idea is that of
finding a monotone operator able to systematically derive the slothful relational semantics,

30 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

under the hypothesis of finite states. We can rewrite, in the relational domain, all the objects
defined above, as follows:
e chao®(s) = {(s s’)}s/ e }
o CHR = {chaogz(s) |sex }
o DR ZR(DY)
(s,s’) e Xt = chaof(s) ¢ X,
={(X*, XM e p(Z x 2) x p(CHR) | chaod¥(s) € X ;
= Vs eX. <s,s’) ¢ Xt
e X,YeDR¢: XY & XtcCyt A Xxhoyeh
In the following theorem, we will denote witthaoss) the sethao¥(s) and withCH the
setC H®. Remind thafl is the set of all the fingblocking states.

Theorem 4.23.Letsy, s, s € X andT = {(s,s)|s € T }. Let F¢(X) € D** — D™
be a monotone operator defined as

FO(X) = (TU {(s1, s2) | 5175, (s,52) € XT, chaogsy) ¢ X"},
{chaogs) | sts1, chaogsi) € XN })

ThenRe = Ifpg,, F¢.
Proof. Let us define the following notation. Considerb € 2 and 0< i < w:
at'h & 351,52, ..., 8_1.aTs1TS2T ... Tsi_1th and a € 7 & FBbeX.ath

We prove that theth iteration of F¢ is

Ff:(fu{(sl,sz” 3i.0<i<n.s1tlsp, speT, s1¢ 1" },
{chaogs) | s € 711 })

We prove this by induction on. Consider the base of the induction, namel¢ 0:
F§(CH) = (7, {chaogs) | sts1, chaogs1) € CH }) = (7, {chaogs) | s € <t })
Suppose now that the hypothesis holdsrfowe can calculate th@: + 1)th iteration.
F’fH: FOFy) = (TU {{s1, 52) | s1ts, (s, 52) € FY, chaogs1) ¢ Fy } .

{chaogs) | sts1, chaogsy) € Fy })

_ 30 <i <n.sitiso,
=<f (51, 52) 5178, (s,852) € TU {(SLSZ) sp €T, s1¢ 7" } ,
s2 € T, chaogs1) ¢ {chaogs) | s € "1}

{chaoss) | sts1, s1 € Tt }>

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 31

_ 3i.0<i<n.sitlso,
5178, (s,82) € TU {(S1,sz> it

s2eT, s1¢1"

= <f U 3 (s1, 52)

s2€T, s1¢ o+l
{chaogs) | s € 7"*+2 }>

=(TU {(s1, s2) ‘ 51752, sp € T, s1 ¢ T"11 ju
51, 52) |s1‘cs, soeT,3i.0<i<n.stlsy, s¢t", s1¢ 1" }

{(
{chaogs) | s € 142 })
= <?U {(sl, 52) \sl‘csz, soeT, s1¢ 1+l }U

Jl<i<n+1.s517s9,

, {chaogs) | s € 712 }>

soeT, S1¢‘L’”+l
=(TU{(s1,52)| 30<i <n+1.s1t'sp, sp€T, s1¢ "1},

{chaogs) | s € 7"+2 })

It is worth noting that the resulting chain is increasing because at each iteration the
condition on the finite traces part of each set become weaker, while the condition on the
chaos part become stronger. Now, we have to prove that the fix-point of the function defined
above is, precisely, the slothful semantics of the transition system. Namely, we have to
compute the limitu®¢, which is the relational version of the operator defined previously.

’

soeT, s1¢1"

LIFeFs =% (<f U {<s1, 52)

3i.0<i <n.s1iTsy, }

{chaogs) | s € "1 }>>

=<TU(UH{(S1,S2)’ 3i.0<i<n.s1tlsp, speT, s1¢ 1" }),
(N, {chaogs) | s € "1 }))

=(?U{(s1,sz)| In>0,i.0<i<n.sitisy, soeT, s1 ¢ 1" },
{chao$s)| Vn>1l.se1" })
It is worth noting that the sef(s1,s2) | 3n >0, 0<i <n.s1Tsp, s2€ T, s1 ¢ 7" }
takes all the pairs of states, initial and final of finite traces, where the first state cannot

lead to non-termination, while the sfthaoss) | Vn > 1.5 € t" } takes all thechaoss)
wheres may lead to non-termination. This is exactly the slothful semantidsl.

32 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

Example 4.24. Consider the following transition system:
(Z,7) with 2 = {a, b, c,d}, t ={(a,a), (a,b),{c,b),(c,d),(d,b)} andT = {b}

It is worth noting that the maximal trace semantics corresponding to this transition sys-
tem is the set of trac€sb, cdb, db, b, ab, aab,aa ...b,...,aa...a...}. Moreover, it is
clear that the slothful semantics (&, cb, cdb, db}, {chaoga)}) and the relational ver-

sion is<{(b, b),{c,b), {d, b)}{chaogz(a)}>. Let us see how this semantics can be derived

systematically by using the function above. In the following, we will denote again the set
chao$¥(s) simply bychaoss).

F{(CH) =z, {chaogs) | s € 11 })
({(b, b)}, {chaoga), chaogc), chaogd)})
F{(CH) =z, {chaoss) | s € 12 })

30 <i <2.s17ls9,
soeT, s1¢‘52

} , {ChaOi{s) | setd }>

3i.0<i <3.s517s92, 4
e T, 511 },{chao:{s)|se7: }

3i.0<i<4.51752,
soeT, sy ¢
= ({(b, D)} U {(d, b), (c, D)}, {chaoga)})

}, {chaoss) | s € t° }>

We have reached, in this way, the fix-poi{itb, b) , (d, b) , (c, b)} U {chaoga)}, which is
exactly the slothful semantics of the given transition system.

5. Relational composition of semantics: compositionality

The independent composition of observables does not model the way relational informa-
tion can be extracted from traces by abstract interpretation. In particular the independent
composition is inadequate for modeling compositional semantics as abstract interpretations
of trace semantics. In general, a semantics is said to be compositional when the semantics
of a program can be reconstructed from the semantics of its components. In this section,
we specify the property of semantics compositionality as a property of the corresponding
closure operator on maximal traces. Indeed, the maximal trace semantics is also a well
known compositionalsemantics, namely it is equal to the composition of the semantics
of program’s sub-components. The idea is that we can compose the observations made
on partial computations, obtaining back, as result and without any loss of precision, the

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 33

observation of the whole computation. We remind the reader that, if we denfptf thss
semantics, then we can describe its compositionalityRs P2l = [P1]" [P21, where

P1 and P, are generic programs. Consider a @:(200), g) $ (A, <4) defined on

the concrete domain of the maximal trage$X°°). This induces an abstract semantics
which is defined on the abstract domain of denotatimng 4 & o([-1D. Our aim is that

of characterizing those abstract semantics that are compositional as regards as the concate-
nation of programs, i.e., such thPy; P>|4 = [P1]4-[P2]*. In this equation, we have

the abstract operationthat has to approximate the concrete composition of traces on the
domain of abstract denotations. The best correct approximationif is, by definition,

the best choice defining [Pi1A[P21 £ a(y([P114) " y(I P2]4)). Note that we have

[Py; Po]l4 = a([Pr; P2]) = a([PL [P21). If - is the best correct approximation of

thena ([P [P2D) <[PLI4-[P14 = a(p([PLI*) ([P2]4)). Because semantics can

be modeled as abstract domains, we can think of formulating the problem of composi-
tionality, in terms of closure operators, namely we would like to characterize the closure
operators which describe compositional semantics. It is clear that the abstract semantics
that makes the relation([P11~ [P21) <a(p([P14 " y([P214)) an equality satisfy the
following equation: IfX andY are two sets of traces, representing the semantics of the
components of a program, apds a closure operator, representing an observable property
of the semantics, then the corresponding semantics is compositional if

(COMP) p(X™Y) = p(p(X)”~p(Y))

where the concatenation operator,is the canonical way of composing traces. This means
that the equation (@vP) characterizes precisely the semantics that are compositional as
regards as the concatenation of traces. Clearly, not all the semantics satisfy the condition
(CompP). This is the case of the semantics observing a single state in a computation, e.g. the
final or the initial state, as shown in the following section.

5.1. Forward’backward potential termination semantics

Consider a semantics which identifies the final states of finite traces, namely which
considers only the states that are terminating in the traces of a given program. We call
this semanticdorward potential termination semantic¥his observable is the dual of
the potential termination semantidstroduced in[10], here calledbackward potential
termination semantigobserving the initial states of all the finite traces, namely which
considers only those states which, potentially, lead to termination. Both semantics can be
specified as abstractions of the natural trace semantics, by using a pair of adjoint functions:

7 (2% > p(2), oF(X)={oi|oe X"}

ip) > pE®), W) ={ceZt|oiey JU®
7 (2 > p (), o?(X)={o |ce X}

772 = pE®), yPW)={ceZt|or ey JU®

H? 2

Proposition 5.1. (p (3), €) < (p(2),) and(p (), €) < (p(2), ©).

34 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

Proof. The maps are trivially monotone, we prove that they form a Galois insertion.
) = ({oe Xt oy ey JUE?)

loi|oe{oezt|dier }}

{o4]osey =Y

7 ({os] o e XT)

{6e2t|dyefoy]|oexT}uze

= {5€Z+‘ Joe Xt .64 =0y }UZ(DQX

'))F?OCF?(X)

The other adjunction follows from the definition of potential termination semantics
in[10]. O

We can define the corresponding closure operators as follows:

Pot ?(X) £y (X) = {c e 2T 3o e Xt .oy =0y JUZ?
POﬁ?(X) dIEf'y4?OC4?: {O‘ et | I5e XT. R }UZw

In the following we will identify witht"? andz™?, respectively the semantics obtained with
the operators just defined, namely = of?(z>°) andt?? & 4 1?(¢).

The forward potential termination semantics is not adequate for modeling relational
properties of trace semantics. This because the history of the computation is lost in forward
potential termination semantics, and this information cannot be retrieved when itis required
for composing semantics to get the semantics of program composition.

Example 5.2. Consider the forward potential termination semantics that observes the final
states of finite computations only, and consider the program

p x:=0;
1| while x<3dox := x + 1;

y:=0;
P
2[z:=x+y;

P

In this context, the states of the program are identified with the triples of valugsliat
can be assigned to the corresponding variablés @he concrete semantics Bfis the set
of all the finite traces of states, each one with a possible initial value for each variable:

[Pl = {{x,y,2) > (0,y,2) > (L y,2) > (2,y,2) > (3, ¥,2)
- {4,y,2) > (4,0,2) > (4,0,4) |x,y,z € N}

On the other hand, the concrete semanticBodnd P, are
[Pl = {{x,y,2) > (0,y,2) > (Ly,2) > (2, y,2) > (3 y,2)

- (4,y,2) = (4,5,2)}
[Pl = {{x,y,2) = (x,0,2) = (x,0,x)}

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 35

again withx, y, z € N. Then the abstract semantics, denoted iy’ = o ?([-1), are

[PI = {(4,0,4)}
[P = {(4,y,2) |y, ze N}
[P217° = {(x,0,x) | x € N}

It is easy to observe that any trace with initial stéte5, 6) and final statg10, 0, 10) is
in y72([P21"?). Therefore, (10,0, 10) € o« ()" ([PL1™)) "y ([P21"?)). This fact proves
thatPot"? is not compositional, i.e[P1™? c o« ?(" (L PL1™) "y ([P217)).

As shown in Exampl&.2 above, there are semantics which fail in modeling the input/
output behavior of program traces. This information is not even captured by the independent
composition of forward and backward potential termination semantics, as shown in the
following example. In this case note that:

(Pot?mPot?)y(X) ={ceXt|3dneX:.0. =0 Aoy=n; JUZ?

Pot"? n Pot™? does not represent inpiatutput relations. Indeed, there are traces that do not
have necessarily the same initial and final stRt-? 1 Pot'” includes the product of all
the possible initial states, with all the possible final states of tracks in

Example 5.3. Consider the programy in Examples.2 Let us denote byy —* s,, atrace
with input statesp and output terminating statg. It is clear that boti5, 6, 7) —* (4, 6, 7)
and(10,11,12) —* (4,11, 12) are in[[P1]]. Therefore

(5,6,7) —* (4,11, 12) € Pot™? 1 Pot' ([P1]))

which clearly fails to model inpybutput relations inP;.
5.2. The reduced relative power

In the following sections, we apply the reduced relative power in order to derive compo-
sitional semantics systematically, starting from simpler and non-compositional ones. This
operations is a well known method for refining abstract domain, by including relational (at-
tribute dependent) information. In order to apply this operation, the concrete domain must
be asemi-quantal¢39], i.e., a structuréD, <, ®) where(D, <) is a complete lattice and
®: D x D — D is an associative, monotone and left-adjoint operation.

The reduced relative power of two abstract domain® oD, and D5, is the set of all
the monotone function80] Ax.c2(d © y1(x)) from D1 to D2, D1 N D5, whered ranges
over concrete valueg, is the concretization map fab; andoy is the abstraction map
for Do.

Such functions are called dependences because they establish a dependency relation
between the values @f; and the values ab,. Moreover, the operatiop can be considered
as a kind of combinator of the concrete denotations.

A dual operation can be defined simply agplying theperation to the same elements
but interchanged, namely we denote Bs «— D; the set of all monotone functions
/Ax.02(y1(x) © d) where the elements are the same defined before. In the following, we

36 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

will call, the first operationforward reduced powemand the second oreckward reduced
power.

Theorem 5.4(Giacobazzi and Ranzaf80]). Let(D, <, ©) be a semi-quantaleD; and
D3 be complete lattices, : D1 — D be a monotone function ar(lsz, 02, V2, D) a Galois

connection. Themap : D — (D1 SN D») defined as(d) & x. o (d © y1(x)) is the
left adjoint of a Galois insertionamely there existssuch thaI<D1 — Do, a, 7, D> isa
Gl.

A dual theorem can be proved for the forward reduced relative pﬁwef& D1.
In order to apply the reduced relative power to the abstractions of the maximal trace
semantics, we need the following result.

Proposition 5.5. (p (X*), €,) is a unitary quantalewith unity .
5.3. Systematic construction of the angelic denotational semantics

We can characterize the angelic denotational semantics as upper closure operator on the
domain of finite and infinite traces (see TaBland[10]):

AngD(X)Z{O'EZ+’35€X+.O'|_=5}_ /\0'.4254}U2w

The idea is that of obtaining the denotational angelic closure as the set of functional relations
between the terminating states of finite computations. For this reason, we use the reduced
relative power on the concrete domgiri>™), where the concrete combinator is the trace
concatenation. Moreover, the domains involved in the operation coincide both with the

forward potential termination semantics. Therefore we build the closure opPrtér<—
Pot™?.

Proposition 5.6. LetoP" : P (X)) — (p(2) < p(2)) be the map obtained by reduced
power of backward potential termination semantie8" (X) = Y. «"?(7?(¥)"X) =
Y. {oy|oe Xt aey . ThenD+ =P (z%).

Proof. First of all we calculate the abstraction by using the backward reduced relative
power. Consider the sét € p (X2°), then:

oL (X) = AY. PGP (Y) T X)
=Y. a7 (({neZf|nyey }” X)uz®)
=Y. a7 ({né|deX, o ey, nezt juz?)
=Y. {oy|oe{nd|deXT, oY, next}}
=Y. {oy|ceXT, o eV}

Now it is immediate to verify that this abstraction is such that= aP* (*). 0O

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 37

Theorem 5.7. The angelic denotational semantics is the set of all the monotone functions
between the elements of the forward potential terminatimmely Pot’ <— Pot™? =

AngP.

Proof. We prove that the two functions?” (X) = AY. {o4|ceXt, oo €Y} and

W) = {ogeXt|oy€ flor) } UZ? form a Galois connection. The monotonicity
is trivial, so consider the following relations, whefe o (2) — o (2) andX € p (2°):

P (o e 2| oy e fo) JUZ?)
= /Y. {O’4’O’€{5EZ+|64€f(5F)},O'|_€Y}

Y. Aoy|oie f(¥)}
Y. f(Y)

= f

2P P ()

PPt (X)

|
—_—

DY (Gy. {o4|de Xt drer))
G€Z+|046{54|5€X+, 5F=O}}}Uzw
U€Z+| 36e Xt .0y=o04, 5F=GF}UZ(’)

—_——

(O]
B

Now, we consider theot > <— Pot? < {5 € 3% | 3d € Xt ., =04, O = o JUZ?

closure, that is clearly equal to the angelic denotational closurs.

This result tells us that the set of monotone functions between the terminating states of
finite traces is exactly the set of the functions of the denotational angelic semantics of the
transition system.

5.4. Optimality of the angelic denotational semantics

We can prove that the denotational angelic semantics is the most abstract semantics, more
concrete tharPot™?, which observes the final states of terminating computations. In order
to show this fact, we can prove that the angelic denotational semantics is the solution of

the abstract domain equatioh = Pot™ m (X <— X). This allows us to prove a result
of optimality of the closuré®ot™?> <— Pot"?. Namely, we prove that this semantics is the
most abstract semantics which obsePa# ?, and which is closed as regards-. In the
following, we denote by the constant functionx. s.

Theorem 5.8. (Pot™? <— Pot"?) <— (Pot"? <— Pot™?) = Pot™? <— Pot"”.

Proof. We characterizéPot™? <— Pot™?) <— (Pot™? <— Pot™?) as a closure operator.
We use the backward reduced relative power, over the doRwi <— Pot™?, in order to

38 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50
build the functionx : p (X°) — ((p(2) = (X)) = (P (X)) — P (2))):
uX) = ifaP P (HTX)
= 2f.0P" ((lee 2t | o1 e flon))~ X)UZ?)
= 2faP ({nd|de X, ne Xt & e fin) JU V)

deXt next,
g€ {nd ,or €Y
or € f(np)

= 2f2Y. {oy|oe Xt o€ fn), neXt, noey}
= Af2Y. {oy|oe Xt o € f(V) }

= Lf.AY. {0'_1

We know that this function is the left adjoint of a Galois insertion. Therefore let us consider
the concretization : ((p (2) = (X)) = (P (2) = p(2))) > »(X°), defined as

Q) ={oe Xt | VX ep). 01 e @G))X) JUI®

We prove thatp (2°°) $ a(gp (2°°)). Considerg € a(p (2°°)) defined ag &ef a(X)
for someX € p (2°).

() = x([oert | vzep®. bic @@ juz)

| VZep®.
= AfAY. {m ’c {562 51 € (5(3)(2)
or €];(Y)
_ celX",VZep(2).aqe (g(6))(2),
=)\,f}LY {O'-{ o € f(Y) }
_ ceXt, g€ f(Y),
= ;\,f;uY {O-% Gy € {5<1 | Se X+, 5}_ _ } }

Q

= AfAY¥ Aoy 3de€eXT . 04=04, O =0 € f(V) }
= JfAY. {oi|oeXT, o € f(V)}
= g

yuX) = y(AfAY. {oy|o e XT, o € f(V)})
= {oeXt|oye{ds|deXT, 6o =0} JUZ®
= {oe2t|3deXxt.d1=04, 6 =0 JUZ?
> X

We can note that this closure is exactly the angelic denotational semantics. Hence we have
(Pot™? <— Pot™?) <— (Pot"? <— Pot™?) is the closurd®ot™? <— Pot™?. [

It is possible to conclude that the dom#&at™? <— Pot ? is the most abstract solution
of the equationX = Pot™?m X <— X, because it s trivial to prove th®ot ™’ = Pot? <—

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 39

Pot™?. This fact tells us that the domaRot™? <— Pot™?, which is the denotational angelic
semantics, is the fixed point of refining process, starting fRmth’, by using<—. So, this
closure, is the most abstract one which observe the final states of finite traces and which is
closed as regards the functional relations between these states.

5.5. Systematic construction of the liberal weakest precondition semantics

An analogous construction can be made fonthig semantics, which is isomorphic to
the denotational angelic one. This semantics can be defined as a closure dipéijaiar
the natural trace semantics, and it is equal to the angelic denotational semantics.

Wlp(X):{GGZ-'_‘ 36e Xt .o =6, 04:54}U2w

As we have done for the denotational angelic semantics, we can build the set of the mono-
tone functions between the states which lead to termination. In particular, we will use the
forward reduced relative power on the concrete domgaia®), with the trace concatena-

tion. The involved abstract domains coincide, both, with the backward potential termination

semantics, therefore the idea is to build the closure opePatdf — Pot'”.

Proposition 5.9. LetaW " : P (2°) = (p(2) < p(2)) be the function obtained as re-
duced power of forward potential termination semantidé" (X) = AY.«?(X~y?(Y)) =
2. for|oe X+, oyeY). ThenWip=a"" (z).

Proof. First of all, we find the abstraction by using the forward reduced relative power.
Analogous to Propositio.6 we can show that, iK € g (X*°), then:

M(X) = Y. o0 (X () =AY {or |0 e XT, 5y e)
Now we can prove that

Wip = a7 (P (1))
= (| f=ior. {oi]oeX). XepEh))

{(p|(p=iP. {0',_|{04|0€X}§P}, Xe@(ZJF)}
={plo=iP. {o.|ceX oc1eP}, Xeph}

from which the thesis follows. [

Theorem 5.10. The weakest-liberal precondition semantics is the set of the monotone func-
tion between the elements of the backward potential termination semauatiosly we have
Pot™? — Pot'? = Wip.

Proof. Analogous to Theorer.7 we can prove that the functiad’ " defined in Proposi-
tion5.9andyV" (f) = {o € Xt |or € f(og) } UZ form a Galois insertion.

Moreover, the closurBot’® <— Pot'” = {c € 2t |35 e XT.6y=04, 6y =0 } U
2 is exactly the angelic denotational closure.[]

40 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50
5.6. Optimality of the weakest-liberal precondition semantics

The same property of optimality, which holds for the angelic denotational semantics,
holds also for the liberal weakest precondition semantics.

Theorem 5.11. (Pot'? — Pot'?) — (Pot'? — Pot'?) = Pot'? — Pot ™.

Proof. We characterizéPot'? — Pot'?) — (Pot'” — Pot'?) as a closure operator by
using the forward reduced relative power, on the just defined domain, similar to The@&em
First of all we obtain the function : o (2°) — ((p(2) = P (2)) = (P (2) = (X))

as

X)) = if. oV (X YV () = AfAY. o |o € XT, oy e F(Y))

We define the concretization function, and prove that it is the right adjoint of the abstraction
o just defined. Lep : ((p(2) — 9 (2)) = (p(2) — »(2))) = »(Z°) be the function

2@ ={oeZt | VX ep() .o € (gG)X) JUS”

and analogous to TheoreBn8we can prove thap (2°°) $ a(p (Z2°)).

Finally note thatyo(X) = {c € X7 | 3d € X* .0, =01, 64 =04 } U X is exactly
the weakest-liberal precondition semantics. Hence, the clgBoté’ — Pot'?) is equal
to (Pot'? = Pot'?) — (Pot'? — Pot'?). O

This theorem tells us that the dom&lat'? — Pot'? is the most abstract solution of the
equationX = Pot'’nX — X, asithappensfabt. Even the liberal weakest precondition
semantics is the fixed point of the refining process starting Roti7, by using— . Namely
also this semantics is the most abstract semantics which observes the initial states that can
lead to termination, and which is closed as regards the functional relations between these
states.

We can conclude that the semantics, obtained starting from the backward potential termi-
nation semantics, and starting from the forward potential termination, are the same closure
operator, i.e.,

Pot'? — Pot'? = Pot"? <— Pot"’

Remark 5.12. As shown in Examplé.3, the attribute independent composition of ob-
servables does not lead to compositional semantics. It is cleaPt&t — Pot'? T

Pot™? 1 Pot'?, namely thatPot’” — Pot'? it is not the most abstract semantics, more
concrete of bottPot™? andPot'?. Moreover, it can be easily verified that, by inverting the
direction of the arrow irPot™?> <— Pot™?, we obtain the identity, namely it is immediate to
prove the relatiorPot? — Pot™? = 1,(x). Intuitively, this happens because the forward
reduced relative power of the forward termination semantics encodes how a giveafset
concrete traces behaves when these are extended with any possible trace, ending in a given
set of observable stat¥sHence, by observing the final states of these extended traces we
get backY. Instead, if we consider the initial states, in this construction, we can observe the

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 41

set of initial states of concrete traces that will have final stat¥sTiis is precisely Dijk-
stra’s weakest precondition semanttp, as proved in Theorem 10 A similar reasoning
holds if we dualizePot’” — Pot'?.

5.7. Compositional angelic semantics

In this section, we prove that both the denotational and the liberal weakest precondition
semantics, are the most abstract semanticg Qi) observing, respectively, final and
initial states, and which are compositional, i.e., solutions of the equatiomgCabove.

Theorem 5.13(Giacobazzi et al[31]). The most abstract solution oh(X"Y) =
p(p(X)~p(¥)) onuco(C)isp = pn(p — 1c) N (ic <— p)N((ic —> p) <— 1c).

We have to prove that the closuRet™” <— Pot™? = Pot'? — Pot'? is the most
abstract compositional semantics definable on the set of maximal traces, which includes
respectivelyPot ? andPot'?, as an abstract interpretation. In the following, we will denote
by : the identical closure, s~), and by Theorems.7and5.10Ang” = Pot™? <— Pot™? =

Pot'? — Pot™.

Lemma 5.14. (i) 1 — Ang® = AngP.
(i) Ang® <— 1 = AndP.
Proof. (i) We can use the forward reduced relative power for building the closure cor-

responding to the semantics— Ang". Let X € (2™), and consider, in particular
AngP = Pot'? = Pot™:

ALANS 9
= AIZ {op|oeXtTYT 6eZ}

a(X)

note thatx : p (Z°) — (p(Z%°) x (X)) — »(2)), and that it is the left adjoint of a
Gl. Consider the function(g) : ((p (Z°°) x (X)) — » (2°°) defined as

g ={oeZt|oregX oy jUX?
we prove tha (2°°) _»<;— a(p (2°°)). Let g € a(p (Z2°°)) be such thay = a(X), we
can compute ‘

ap(g) =a({o € Xt oy € g(Z, 09) JUZ?)

=Y..Z. {0“66 {5€Z+‘5}_ € g(2,09) }Ay+, o4 GZ}

ae{én‘&eg(z’é*)’ } meZ}

=)\,Yiz {O‘k 5_”1 c Y+

=Y..Z. {5}_ | Or € g(2,0y), dqne YT, ny ez }

42 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

_ 5F€{O}|O'€X+,G4=5_¢},
=Y..Z. {5} Smert, ez

. doe X .o =06, 04 =04,
;\,YJVZ {5}— 5”1 c Y+, 174 c Z

=Y2Z o |oeXt, omeYT, nyez}

=YAZ {6 |de XY, 6,eZ)=¢g

yuX)=7(AYIZ. {6y |6 e XTTYT, 61€Z})
={6€Z+|0}€{5F|5€X+, 04 = o4 } }UZ“’
={G€Z+| 36e Xt .o =0, 64 =0y }UZwQX

It is immediate to prove that— Ang® = ya = AngP.
(i) ConsiderX e p (2*), andAng” = Pot™? <— Pot™?

w(X) =Y. aP (Y™ X)
=Y2Z {oi|oeYt Xt o, €27}

whereo : p(Z%°) — (P ((Z®) x p(2)) — p(2)). Consider the functior(g) :
(9 (Z%) x p(2))) = »(2*), defined as

1Wg)={oeX|oieg o) UL

We can prove that the two functions form Galois insertion showing that the following fact
holds: g () : a(p (2°°)). Considerg € a(p (2°°)), such thag = a(X), and

@) =a({oceXt|oyegX o) UZ?)

=Y..Z. {04 oL €7

GEY+A{5EZ+|54€g(Z,5F)}v}

=YAZ. {oy|ce{nd|nd e XT, 6,€g(X,6p) }.or €2}

=AY.JZ. |04 €8(Z,0p), nor Y™, n. € Z }

5_16 O‘{‘O‘EX"', 0}_—5|_}
noreYt, nez

=Y.AZ. {04

Joe Xt .o =0, 04 =204,
noreYt, nez

=Y2Z. {oi|oe Xt noreYt, no ez}

{

{04
=Y.z, {54

|

{

{04

=2YAZ {o4|0eYt Xt 6peZ)=¢g

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 43

youX) =y (AY.AZ. {6406 YTTXT, 6 eZ})
={oe2t|oyef{di|6eXT, =0 } JUZ?
={6€Z+| dde Xt .op =0, 04 =04 }Uzng

Itis clear thatAng® <— 1 = yo = Ang®. O

By Theoremb.13and Lemmab.14 the following result is straightforward, and implies
the optimality of the denotational and weakest precondition semantics. Namely, they are
the most abstract semantics which are compositional as regards the trace concatenation.

Theorem 5.15.Forany X, Y € X°°:

o Ang”(X"Y) = Ang” (Ang” (X)~Ang" (Y));
o p(X7Y)=p(pX)"p(Y)) A pEPot? = pC AngP.

6. The equational hierarchy of semantics

In the previous sections we derived the angelic compositional semantics as solutions of
domain equations. Note that, by the definition of the semantics in the Cousot’s hierarchy
of semanticg10], while all the closures representing all the semantics more abstract than
the relational one are all the same, the abstractions are different and considers different
aspects of computation. For this reason we have to use the backward reduced relative
power for obtaining the denotational abstraction, which is isomorphic to the relational one.
While we have to use the forward reduced relative power for deriving the weakest-liberal
precondition, and therefore the isomorphic partial correctness semantics. In particular, we
obtain the angelic denotationiatlational semantics as the backward reduced relative power
of the semantics observing terminating states. In the same way, we derived the weakest-
liberal preconditioyipartial-correctness semantics as forward reduced relative power of the
semantics observing states that potentially lead to termination.

Moreover, in[26] we derived, in a very similar way, the equational representation of all
the natural compositional semantics, i.e., denotatjoakdtional and weakest precondition/
Hoare's axiomatic. More precisely, the equational representation is obtained in a more con-
crete level, of the hierarchy of semantics: the transfinite one. In this level of abstraction, all
the semantics are able to observe the transfinite behavior of programs, namely computations
whose length is a generic ordinal. In this way we can distinguish also traces that leads to
non-termination, characterizing which ordinal characterizes the infinity of the computation.
Only by using this concrete semantics, we can use the reduced relative power operation in
order to derive compositional semantics:

Den = o*(X) st.X=PottnX < X
gWp= a*(X) stX=Potinx — X

wherea™ forgets the transfinite behavior collecting all the computation leading to non-
termination, by abstracting non-terminating traces tavhile Pot™ andPot" are the trans-
finite version of, respectivelyot ? andPot'? [26], i.e., they observe, respectively, initial
and final states of traces with a fixed ordinal length.

44 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

Angelic Natural Infinite

‘Weakest-liberal: "~ —
X =PotV"NX = X Inge(Pot'FlX—>X)

~

gH = gWp =
a®(Pot"MNX = X)

Angelic denotational:
X =Pot''nX <& X

T~

Pot™ Rel = Den =
Potential term. a=(Poth MX < X)

T

Den © (Pot™’ N X < X)

Nat
Maximal trace

Fig. 9. Semantics as abstract domain equations.

Finally, we can combine the results described in Sectidmvith the results described in
Sectionb.7, in order to obtain the equational representation also of the infinite semantics, as
complements of the angelic semantics in the natural ones. In this way we derive the global
picture depicted in Figd.

7. Systematic design of semantics for concurrent constraint languages

In this section, we consider, as example, the cas®ofurrent constraint programming
languagef40] and we derive their denotational closure-bgddd, and axiomatic semantics
[16], as an abstract interpretations of the maximal traces of constraints in a transition system
semantics.

Concurrent constraint programmingcpfor short) is a well known concurrent program-
ming paradigm where processes interact through a common [€@feThis leads to a
computational model based on the notionstfre-as-constraintThe main features of a
concurrent constraint process is to refine the store (tell-constraints) or synchronize itself
with other processes (ask-constraints). Hs&—tellparadigm, which is the basis otp
languages, is an extension of constraint logic programming: In addition to satisfiability
(tell), entailment(ask) is introduced. A store is a constraint representing the global state of
the computation. Synchronization is achieved throbigicking aska process is suspended
when the store does not entail the ask constraint, and it remains suspended until the store
entails it.

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 45

The constraint system represents the basic algebraic notion toaiminiche construction,
in [41], is an extension of Scott’s partial information systeitis Informally, we have a
countable se of elementary assertions (containing distinct elemgmtisdO representing
the least informative assertion and the contradiction, reSffectively), and a finite entailment
relationt € p¢(D x D). A simple constraint systeis 2 Z (p(D),) /~, which is a
completew-algebraic latticd1] whereX ~ Y iff (X)" = (¥)7, being(X)" the entailment
closure of a set of assertioXs An arbitrary element of' is called aconstraint Compact
elements are callefinite constraintssince they are equivalent to a finite subsebDofin
order to treat the hiding operator of the language, Saraswat [@tldlintroduce a family
of unary operations calledylindrifications(see[33]). Intuitively, given a constraint, the
cylindrification operatiort, (¢) yields the constraint obtained by “projecting out” fram
the information about the variable Diagonal elementgequational constraints between
variables[33]) are considered as a way to provide parameter passing. Note that special
variables (not accessible to the user) together with a suitable use of cylindrification and
diagonal elements make variable renaming no longer ne@déd

Definition 7.1. A constraint syster(12, F, false true, A, V, 3, dxy) is a structure where:
(X,) is a simple constraint systertiue = [1]. andfalse = [0]~, A is theglb, Vis a

denumerable set of variables, and y € V, Ve, ¢’ € 2, the operatos, : 2 — X satisfies
1. cH,c,

2. if ck¢’ then3, k3,

3. 3, (c A) =T e AL,

4. 3,(3y0) =3,(3x0).

Vx,y,z € V,Vc € X, the diagonal elemeiat,, satisfies

1. dyy = true.

2. ifz # x, ythend,, = 3.(dx; A dzy),

3. if x # y thendyy A 3i(c Adyy)tec.

The semantic operators of concurrent constraint languages are: elementary as#ons (
andtell), hiding @), parallel composition|f), guarded non-deterministic choicg j and
recursion. The semantics otp programs well fits into Cousot's hierarchy being eas-
ily described as maximatonsistenttraces of a transition system, i.e., maximal traces
(Ag, co) —+ (A1,c1) — 5 ... WhereA; are agents and;lc;_; are constraints. We
denote by(Agentx 2)¥ this set of traces. The standard syntax and transition-system
semantics is in Tabl8. The maximal-trace semantics otep programP = D.A is im-
mediately defined as the set of finite and infinite consistent traces of constraints generated
from P in an initial storec € X.

0i —> 7 Oit+1
We define the maximal trace semantics afcaprogramP as follows:
[Pl = B ({OP) () |c € 2 })

where the functior € p ((Agentx X)>) 2> o (2°°) abstracts away the agent information
from tracesB(X) = {6 € 2| € X, 6; = (A, g;) }. The following result characterizes

46 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

Table 3
The syntax and operational semanticecp

R1 (tell(c), 6) —7 (¢, 0 Ac)

R2 O'FC,'
Program::= Dec . Agent n
9 9 <Z (ask(c)) — A;), a> — 7 (47, o)
“
Dec n= & !
| p(¥) :— Agent. Dec R3 (A, o) —7 (A, &)
(AlB, o) —7 (A'IIB, o)
Agent - - (BIA. 0) — (BIA', o)
x.Agen
Agent || Agent
! ,,g IAg R4 (A,d/\EI;J)—)T(B,e)
| ‘21 (ask(ci) — Agent) AE, d).A, 6) —7 (3, e).B, 0 A ze)
i=
[p() e p(E) —AcP

(PG, o) —7T <a(x,d,\-._;).A, ¢7>

both, the closure-based denotatiof#l], and the predicate-transformer semantics of non-
deterministiccpprogramsP € Program in [16], as abstract interpretations of the maximal
trace semantic§PJl... In particular these semantics can be both systematically derived
from a non-compositional semantics observing, respectively, final and initial constraints in
computational traces. In this case’([P]ls) anda’([P10) are, respectively, the forward

and backward potential termination semantic®of

Theorem 7.2. Let P be a ccp program

- AngP([PTlso) = 2X. U {aP @R ([PTso))(c) | c € X } is alinear continuous closure
operator on Smitts powerdomaingp (X1), with L representing divergence

- WIp(TPTl) = 2X. Uf{c|aP@R([Pl))(c) € X } is a co-additive function on
»(21) and its left adjoint function igX. (J {[PIp(c)|c € X }.

Proof. By a straightforward inductive argument, it is easy to prove that any trace
in B([Plls) is consistent, i.e., it refines constraints. This proves A’ ([Pllo) =

2X. U {oeP @R ([Pls))() | ¢ € X } is reductive on the Smith’s powerdomain(Z 1),
ordered by-. Monotonicity is trivial, while idempotence comes directly because only final
terminating constraints (i.e., resting poiftd]) are considered in"?([P]l») andAng® =

Pot™® <— Pot™”. As far as the strongest postcondition semantics is concerned, it is
immediate to prove, by construction, that the weakest-liberal precondition semantics
WIp([PTs) = 2X. U{c|aP @R ([Pll))(c) € X } is co-additive with left adjoint
functioniX. J{[PIp(c)|ceXx }. O

We define[PlIp e Ang® ([P1lso) and [PTlwip & WIp([Pllx). By Theorem7.2, they
correspond, respectively, to the closure-based denotational semanfitt], iand to the
strongest postcondition semantics[18].

We close this section by considering examples of programs, with their denotational se-
mantics, for the different observable behaviors, corresponding to the different complemen-

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 47

tary semantics in Cousot’s hierarchy, namely the angelic, demonic, slothful, and infinite
semantics. These semantics are all abstractiofiglef. Consider the following programs,
whereask(true) — A is denotedA and the starting agent is underlined.

P:px):—tell(x =2) +qgkx).
g(x) : — p(x). p(x)

0: pkx):—tell(x = 2). p(x)

U: px):—tell(x =1) +g(x).
g() 1 = p(x). p(x)

It is immediate thafl P]p+ = [Qlp+, since the two programs have the same set of
finite output constraints, althoudgh generates an infinite sequence from the same input
constraint, indeed[Plip» # [Qlp~. These facts imply thefPllps # [QTpo and that
[Plpe # [Qllpe. Consider now the progranisand U, then[[P]p+ # [Ulp+, Since

they have different finite output constraints, moreoffé&]p» = [U]p, Since they have

also the same infinite sequence starting from the same input constraint. This fact implies
that[Pllpe = [U]lpe, since the demonic closure adds all the possible finite output from
the same initial constraint, and for the same reason weh@y®. = [U]lp.. As far as the
demonic, slothful and infinite semantics are concerned, consider the following programs:

H: p(x):—askix =1) - g(x).
qg(x):—qx). px)
K: px):—askix=1 — gx)+
ask(x > 1) — tell(y = 2% x).
4(x) : — q(x). p(x)

In this case[[H]lp» = [K]p~, because they generate the same infinite sequence starting
from the same input constraint, 4Ul [lpe # [K e becauséd can only stop or generate

an infinite sequence, therefore chaos, while there exist input constraistdj such that

K terminates without generating chaos. Finally, consider the following programs, where we
assume that is a finite domainFD constraint system (sd84]), andA is a terminating
agent that, givem € X, generates all thé € X such that't-c:

G:pl):—pk)+A pk)
R: px):—A. pkx)

then[Gllps # [RIpe, SinceG generates an infinite trace, whikecannot, bu{Gllp. =

[R1pe, because both the programs generate the whole chaos, starting from the same initial
point, G generates it for the infinite sequence @&)dy its definition, generates a chaotic
computation from the initial constraint.

8. Conclusions

In this paper, we have shown that standard semantics for programming languages can
be systematically designed as solutions of abstract domain equations involving the basic
operations known for designing abstractions for program analysis. In particular, we have

48 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

shown that complementary semantics of transition systems, in this hierarchy of semantics,
can be systematically constructed by domain complementation in abstract interpretation.
This provides both a better insight on semantics designed for characterizing complemen-
tary observable properties of programs, and the possibility to decompose semantics into
most abstract factors involving possibly new semantics (e.g. the slothful semantics). In this
context, we have shown a correspondence between logic and algebraic complementation
in the Wp semantics. This means that,lng we have an element that belongs also to a
Boolean algebra, it would be interesting to identifyuicoa maximal Boolean sub-algebra

of known semantics. Then we have shown a strong connection between the structure of
relational abstract domains for program analysis, and compositionality of the underlying
semantics. Both can be systematically designed by solving the same abstract domain equa-
tion by means of the same domain refinement: the reduced power operation. This provides
an equational presentation of semantics and abstract domains for program analysis in a
unique formal setting. All these results prove that standard concrete semantics and abstract
domains for program analysis share a common pattern, which is designed in terms of the
same basic operators for domain transformation and depends upon the property of the se-
mantics or analysis we want to achieve. The construction of either a semantics, or a program
analysis tool, can therefore be unified in a common algebraic structure, where both can be
seen as solutions of simple and basic domain equations (se8)Fhich can be made
parametric on the observable property: complete final or initial states for concrete semantics
or approximated finglinitial states for abstract semantics or program analysis.

References

[1] S. Abramsky, A. Jung, Domain theory, in: S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (Eds.), Handbook
of Logic in Computer Science, Vol. 3, Clarendon Press, Oxford, U.K., 1994, pp. 1-168.

[2] B. Alpern, F.B. Schneider, Recognizing safety and liveness, Distributed Comp. 2 (1987) 117-126.

[3] K.R. Apt, G.D. Plotkin, Countable nondeterminism and random assignment, J. ACM 33 (4) (1986) 724-767.

[4] G. Birkhoff, Lattice Theory, 3rd Ed., AMS Colloguium Publication, AMS, Providence, RI, 1967.

[5] A.Bossi, M. Gabbrielli, G. Levi, M.C. Meo, A compositional semantics for logic programs, Theoret. Comput.
Sci. 122 (1-2) (1994) 3—47.

[6] M. Comini, G. Levi, An algebraic theory of observables, in: M. Bruynooghe (Ed.), Proc. 1994 Internat. Logic
Programming Symp. (ILPS '94), MIT Press, Cambridge, MA, 1994, pp. 172-186.

[7] A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, F. Ranzato, Complementation in abstract interpretation,
ACM Trans. Program. Lang. Syst. 19 (1) (1997) 7-47.

[8] P. Cousot, Abstract interpretation, ACM Comput. Surveys 28 (2) (1996) 324—328.

[9] P. Cousot, Constructive design of a hierarchy of semantics of a transition system by abstract interpretation
(invited paper), in: S. Brookes, M. Mislove (Eds.), Proc. 13th Internat. Symp. on Mathematical Foundations
of Programming Semantics (MFPS '97), Electronic Notes in Theoretical Computer Science, Vol. 6, Elsevier,
Amsterdam, 1997JRL: http://www.elsevier.nl/locate/entcs/volume6.html

[10] P. Cousot, Constructive design of a hierarchy of semantics of a transition system by abstract interpretation,
Theoret. Comput. Sci. 277 (1-2) (2002) 47,103.

[11] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints, in: Proc. Conf. Record of the 4th ACM Symp. on Principles of
Programming Languages (POPL '77), ACM Press, New York, 1977, pp. 238—252.

[12] P. Cousot, R. Cousot, Constructive versions of Tarski’s fixed point theorems, Pacific J. Math. 82 (1) (1979)
43-57.

http://www.elsevier.nl/locate/entcs/volume6.html

R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50 49

[13] P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Proc. Conf. Record of the
6th ACM Symp. on Principles of Programming Languages (POPL '79), ACM Press, New York, 1979,
pp. 269-282.

[14] P. Cousot, R. Cousot, Abstract interpretation and application to logic programs, J. Logic Program. 13 (2-3)
(1992) 103-179.

[15] P. Cousot, R. Cousot, Inductive definitions semantics, and abstract interpretation, in: Proc. Conf. Record of
the 19th ACM Symp. on Principles of Programming Languages (POPL '92), ACM Press, New York, 1992,
pp. 83-94.

[16] F. de Boer, M. Gabbirielli, E. Marchiori, C. Palamidessi, Proving concurrent constraint programs correct, in:
Proc. Conf. Record of the ACM Symp. on Principles of Programming Languages (POPL '94), ACM Press,
New York, 1994, pp. 35-35.

[17] J. Desharnais, B. Mdller, F. Tchier, Kleene under a demonic star, Proc. 9th Internat. Conf. on Algebraic
Methodology and Software Technology (AMAST '00), Lecture Notes in Computer Science, Vol. 1816,
Springer, Berlin, 2000, pp. 355-370.

[18] E.W. Dijkstra, Guarded commands, nondeterminism and formal derivation of programs, Comm. ACM 18 (8)
(1975) 453-457.

[19] E.W. Dijkstra, A discipline of programming, Series in Automatic Computation, Prentice-Hall, Englewood
Cliffs, NJ, 1976.

[20] P. Dwinger, On the closure operators of a complete lattice, Indag. Math. 16 (1954) 560-563.

[21] G. Filé, R. Giacobazzi, F. Ranzato, A unifying view of abstract domain design, ACM Comput. Survey 28 (2)
(1996) 333-336.

[22] G. Filé, F. Ranzato, Complementation of abstract domains made easy, in: M. Maher (Ed.), Proc. 1996
Joint Internat. Conf. and Symp. on Logic Programming (JICSLP '96), MIT Press, Cambridge, MA, 1996,
pp. 348-362.

[23] H. Gaifman, E. Shapiro, Fully abstract compositional semantics for logic programs, in: Proc. Conf. Record of
the 16th ACM Symp. on Principles of Programming Languages (POPL '89), ACM Press, New York, 1989,
pp. 134-142.

[24] R. Giacobazzi, “Optimal” collecting semantics for analysis in a hierarchy of logic program semantics, in: C.
Puech, R. Reischuk (Eds.), Proc. 13th Internat. Symp. on Theoretical Aspects of Computer Science (STACS
'96), Lecture Notes in Computer Science, Vol. 1046, Springer, Berlin, 1996, pp. 503—-514.

[25] R. Giacobazzi, I. Mastroeni, A characterization of symmetric semantics by domain complementation, in:
Proc. 2nd Internat. Conf. in Principles and Practice of Declarative Programming PPDP’00, ACM Press,
New York, 2000, pp. 115-126.

[26] R. Giacobazzi, I. Mastroeni, Non-standard semantics for program slicing, (Special issue on partial evaluation
and semantics-based program manipulation), Higher-Order Symbol. Comput. 16 (4) (2003) 297—-339.

[27] R. Giacobazzi, C. Palamidessi, F. Ranzato, Weak relative pseudo-complements of closure operators, Algebra
Universalis 36 (3) (1996) 405-412.

[28] R. Giacobazzi, F. Ranzato, Complementing logic program semantics, in: M. Hanus, M. Rodriguez Artalejo
(Eds.), Proc. 5th Internat. Conf. on Algebraic and Logic Programming (ALP '96), Lecture Notes in Computer
Science, Springer, Berlin, 1996, pp. 238—253.

[29] R. Giacobazzi, F. Ranzato, Refining and compressing abstract domains, in: P. Degano, R. Gorrieri, A.
Marchetti-Spaccamela (Eds.), Proc. 24th Internat. Collog. on Automata, Languages and Programming
(ICALP '97), Lecture Notes in Computer Science, Vol. 1256, Springer, Berlin, 1997, pp. 771-781.

[30] R. Giacobazzi, F. Ranzato, The reduced relative power operation on abstract domains, Theoret. Comput. Sci.
216 (1999) 159-211.

[31] R. Giacobazzi, F. Ranzato, F. Scozzari, Building complete abstract interpretations in a linear logic-based
setting, in: G. Levi (Ed.), Proc. 5th Internat. Static Analysis Symp. (SAS'98), Vol. 1503, 1998, pp. 215-229.

[32] R. Giacobazzi, F. Scozzari, A logical model for relational abstract domains, ACM Trans. Program. Lang.
Syst. 20 (5) (1998) 1067-1109.

[33] L. Henkin, J.D. Monk, A. Tarski, Cylindric Algebras, Part I, North-Holland, Amsterdam, 1971.

[34] P.Van Hentenryck, V. Saraswat, Y. Deville, Constraint processing in cc(FD), in: A. Podelski (Ed.), Constraint
Programming: Basics and Trends, Lecture Notes in Computer Science, Vol. 910, Springer, Berlin, 1995.

[35] C.A.R. Hoare, An axiomatic basis for computer programming, Comm. ACM 12 (10) (1969) 576-580.

[36] J. Morgado, Note on complemented closure operators of complete lattices, Portugal. Math. 21 (3) (1962)
135-142.

50 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1-50

[37] F. Nielson, Tensor products generalize the relational data flow analysis method, in: M. Arato, |. Katai, L.
Varga (Eds.), Proc. 4th Hungarian Computer Science Conf., 1985, pp. 211-225.

[38] G. Plotkin, A Structural Approach to Operational Semantics, DAIMI-19 Aarhus University, Denmark, 1981.

[39] K.I. Rosenthal, Quantales and their applications, in: Pitman Research Notes in Mathematics, Longman
Scientific & Technical, London, 1990.

[40] V. Saraswat, Concurrent Constraint Programming Languages, MIT Press, Cambridge, MA, 1993.

[41] V. Saraswat, V.A. Rinard, P. Panangaden, Semantic foundations of concurrent constraint programming, in:
Proc. Conf. Record of the 18th ACM Symp. on Principles of Programming Languages (POPL '91), ACM
Press, New York, 1991, pp. 333-353.

[42] F. Scozzari, Logical optimality of groundness analysis, in: P. Van Hentenryck (Ed.), Proc. 4th Internat. Static
Analysis Symp. (SAS’97), Lecture Notes in Computer Science, Vol. 1302, Springer, Berlin, 1997, pp. 83—
97.

[43] Z. Shmuely, The structure of Galois connections, Pacific J. Math. 54 (2) (1974) 209-225.

	Transforming semantics by abstract interpretation
	Introduction
	The scenario
	The main results
	State of the art

	Preliminaries
	Basic notions
	Abstract interpretation

	Cousot's semantics hierarchy
	Independent composition and decomposition of semantics
	Domain complementation
	Decomposing trace-based semantics
	Decomposing the hierarchy
	Symmetric abstractions in the hierarchy
	Decomposing predicate transformers
	Decomposing demonic semantics

	Relational composition of semantics: compositionality
	Forward/backward potential termination semantics
	The reduced relative power
	Systematic construction of the angelic denotational semantics
	Optimality of the angelic denotational semantics
	Systematic construction of the liberal weakest precondition semantics
	Optimality of the weakest-liberal precondition semantics
	Compositional angelic semantics

	The equational hierarchy of semantics
	Systematic design of semantics for concurrent constraint languages
	Conclusions
	References

