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Abstract. This article presents a taxonomy of strategies for fully-au-
tomated general-purpose first-order theorem proving. It covers forward-
reasoning ordering-based strategies and backward-reasoning subgoal-re-
duction strategies, which do not appear together often. Unlike traditional
presentations that emphasize logical inferences, this classification strives
to give equal weight to the inference and search components of theorem
proving, which are equally important in practice. For this purpose, a
formal notion of search plan is given and shown to apply to all classes
of strategies. For each class, the form of derivation is specified, and it is
shown how inference system and search plan cooperate to generate it.

1 Introduction

The objective of fully-automated theorem proving is to have computer programs
that, given a collection of assumptions H and a conjecture ¢, determine whether
¢ is a logical consequence of H (in symbols, whether H = ¢). Assumptions and
conjecture need to be written in some language; let © be a first-order signature,
providing symbols for variables, constants, functions and predicates; for now,
let Lo denote ambiguously a @-language of sentences, or clauses, or equations,
depending on the problem, and P(Lg) its powerset. The theorem-proving ap-
proach to the problem is to try to show that there is a proof of ¢ from H (in
symbols, H - ¢, or, refutationally, that there is a proof of a contradiction from
HU{-p}, ie., HU{—¢} FL1), or disprove ¢ by exhibiting a model of H U {—¢}.
A proof is a sequence! of statements in Lg logically connected by applications
of inference rules, that is, rules in the form:

f: 1/}

which says that the inference rule named f, if given premises in the form
1 ...y, infers a consequence in the form . For example, binary clausal reso-
lution is defined as

* Supported in part by the National Science Foundation with grant CCR-97-01508.
! Proofs are read sequentially also when they are presented as trees or graphs.
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where L1 and Lo are literals and C' and D are disjunctions of literals. As another
example, the T-rule for conjunction in analytic tableaux? with signed formulae
is defined as

TAAB
TA, TB

where A and B are sentences and T is the sign for true.

In order to make sure that once a proof has been obtained, it really means
that H |= ¢, one needs to check that the inference rules are sound: the generic
inference rule f above is sound if for all interpretations Z of @, that is, for all
ways to give meaning to the predicates, functions and constants in ©, if Z satisfies
{11 ...¢,}, then T satisfies ¢. Symmetrically, one wishes that whenever H | ¢,
the inference rules are sufficiently strong to ensure that there is a proof of ¢ from
H: a set of inference rules — or inference system — with this property is said to
be complete. Since most inference systems for mechanical theorem proving work
refutationally rather than directly, the requirement is that whenever H & o,
there is a proof of L from H U {—y}, or the system is refutationally complete.

The availability of a sound and complete inference system guarantees the
existence of a proof. It remains the problem of how to compute one. The initial
state of a proof attempt contains H and —p, and the application of an infer-
ence rule to this state produces a new state. Thus, the problem can be seen in
the terms, familiar to Artificial Intelligence, of a search problem, with the infer-
ence rules as transformation rules, or production rules, states containing partial
proofs, successful states containing complete proofs, and a search plan — or com-
putation rule in terminology influenced by logic programming — controlling the
search.

Let States denote, ambiguously, for now, the set of all possible states. Given
a set of inference rules I, a search plan Y is made of at least three components:

— A rule-selecting function (: States* — I, which selects the next rule to be
applied based on the history of the search so far;

— A premise-selecting function &: States™ — P(Lg), which selects the elements
of the current state the inference rule should be applied to;

— A termination-detecting function w: States — Bool, which returns true if
the given state is successful, false otherwise.

If the current state is not successful, ¢ selects rule f and £ selects premises
Y1 ... 1Yy, the next step will consist of inferring ¢ from 1 ... 1,. The sequence
of states thus generated forms the derivation by I controlled by X' from the given
input. A derivation is successful if it terminates in a successful state.

2 Analytic tableaux are a form of semantic tableaux: see [126] for an introduction.



It is important to appreciate that given an initial state with H and —¢, there
are many derivations that an inference system I can generate from the initial
state. In this sense, an inference system is non-deterministic. If I is coupled with
a search plan X, there is one and only one derivation generated by I and X from
the initial state. The combination of inference system and search plan forms a
deterministic procedure called a theorem-proving strategy. While the inference
system is required to be sound and refutationally complete, a search plan is
expected to be fair: if there are proofs, or, equivalently, if there are successful
states in the search space, one will be generated eventually.

In summary, a theorem-proving problem has the form S = HU{—p}, where ¢
is called the target theorem and —y is called the goal; a theorem-proving strategy
C is specified by an inference system and a search plan, C = (I, X). If I is
refutationally complete, whenever H &= ¢, there exist proofs H U {—¢}t; L,
and if X is fair, the unique derivation driven by X will generate one of these
proofs.

There are many ways to classify theorem-proving strategies. From a proof-
theoretical point of view, one may question whether the strategy is analytic (i.e.,
it only generates formulae that are subformulae of H D ¢) or generative (i.e.,
not analytic). From the point of view of the language and its expressive power,
one may be interested in whether the strategy works with equations, clauses,
or sentences. From the point of view of the logic and its applicability, one may
consider whether the strategy works for propositional logic, Horn logic, or first-
order logic. The point of view of this taxonomy is to give a classification of
strategies based on how they search.

A classification key for this purpose is to observe whether the strategy works
from the assumptions — called forward reasoning, forward chaining or bottom-
up reasoning — or from the goal — called backward reasoning, backward chaining
or top-down reasoning. Since finding a proof generally requires some combina-
tion of the two, forward-reasoning strategies are strategies that work primarily,
not exclusively, by forward reasoning, and backward-reasoning strategies are de-
fined dually. This criterion alone, however, may not be sufficient. First, different
strategies may not have the same notion of what is the goal: for instance, in
resolution, - is the goal, but in analytic tableaux one may consider the whole
—(H D ) as the goal. Second, the same feature of a strategy can be used for
either type of reasoning. For instance, in a strategy with set of support, one can
get a backward-reasoning behaviour by putting in the set of support the goal
clauses (i.e., those originated from the transformation of the goal into clausal
form), and a forward-reasoning behaviour by putting in the set of support clauses
originated from the transformation of the assumptions. Therefore, the distinc-
tion between forward and backward reasoning will be used in the following, but
it will not be the only key.

The primary key will be to distinguish between those strategies that work
on a set of objects (e.g., clauses) and develop implicitly many proof attempts,
and those strategies that work on one object at a time (e.g., a goal clause, or a
tableau) and develop one proof attempt at a time, backtracking when the current



proof attempt cannot be completed into a proof. The strategies of the first type,
on the other hand, never backtrack, because whatever they do may further one
of the proof attempts. While other names may be chosen to emphasize other
features, strategies in the first group will be called here ordering-based strategies,
to emphasize that exactly because they work with a set of objects, they can
use a well-founded ordering to order them, and possibly delete objects that are
greater than and entailed by others. Thus, these strategies work by generating
objects, expanding the set, and deleting objects, contracting the set. Since the
set typically grow very large, they may employ indexing techniques to retrieve
objects, and eager-contraction search plans to control the growth. Ordering-
based strategies with an eager-contraction search plan are called contraction-
based strategies. The strategies resulting from the merging of the resolution-
paramodulation paradigm with the term-rewriting and Knuth-Bendix paradigm,
as well as strategies based on generating instances instead of resolvents, belong
to this class®. Theorem provers based on these strategies include Otter [97], RRL
[76], Reveal [3], SNARK [134], EQP [98], Barcelona [104], CLIN-S [47], SPASS
[142], Gandalf [137], OSHL [114], and daTac [138].

The strategies of the second type will be called subgoal-reduction strategies,
because if one considers the single object they work on as the goal, each step
consists in reducing the goal to subgoals. Since they do not generate a set of
objects, subgoal-reduction strategies do not use an ordering to sort it, neither
can they use an object to delete another one. Because they need backtrack-
ing, a typical choice of search plan is depth-first search with iterative deepening.
Tableaux-based strategies, model elimination, linear resolution, and problem re-
duction format methods belong to this class. Theorem provers implementing
these strategies include Setheo [87,64], METEOR [4], Protein [17], TAP [23,22]
and Tatzelwurm [29]. More provers of both types can be found in the system
descriptions in the CADE proceedings [123,92,135,77,41,101,100] and in [136].

Note that the notion of goal in “subgoal-reduction” does not necessarily
coincide with the notion of goal based on the interpretation of the problem.
For instance, model elimination can start with any input clause as the first
goal, although it is natural to start with a goal clause. This, together with the
above observation about strategies with set of support, which are ordering-based
strategies, shows that it is not necessarily the case that ordering-based strategies
do forward reasoning, and subgoal-reduction strategies do backward reasoning.
However, most ordering-based strategies are forward-reasoning strategies, and
most subgoal-reduction strategies are backward-reasoning strategies. Similarly,
it is not necessarily the case that subgoal-reduction strategies work with tableaux
and ordering-based strategies work with clauses, although this is true for many
strategies. For instance, linear resolution strategies are subgoal-reduction strate-
gies that work with clauses, and the disjunctive positive model elimination with
subsumption of [16] is an example of an ordering-based strategy that works with

3 E.g., a strategy that features only resolution is an ordering-based strategy with an
empty ordering.



tableaux. Thus, the essential criterion to separate the strategies is the nature of
the search. Table 1 summarizes these points.

|| Ordering-based | Subgoal-reduction ||

data set of objects |one goal-object at a time
proof attempts built||{many implicitly one at a time
backtracking No Yes
contraction Yes No

Table 1. Two main classes of strategies

The following sections cover first ordering-based strategies and their sub-
classes, and then subgoal-reduction strategies and their subclasses.

1.1 Remarks and further reading

Classical books in theorem proving are Chang and Lee [45], Loveland [91] and
Bibel [24], while recent books include [25,85,128]. Wos et al. [145] emphasize
experimentation with theorem provers. Books in logic useful for theorem proving
include Smullyan [126], Gallier [63], Ramsay [115], and Fitting [60], while a
classical reference for search in Al is Pearl [106].

Collections of research articles in theorem proving and related topics include
[122], which makes early classical papers (1957-1970) available, and [83, 40, 62],
while [28] emphasizes applications. A major forum for the presentation of re-
sults in theorem proving is CADE — the International Conference on Automated
Deduction: recent issues are [123,92,135,77,41,101,100].

The inference+search paradigm may be as old as theorem proving itself;
Kowalski emphasized search in theorem proving in [81]. The formalization of the
inference+search paradigm and the taxonomy of strategies in this paper orga-
nize, improve and extend elements appeared in [36, 37,35, 38, 39, 32]. This paper
considers only sequential strategies: an extension to parallel and distributed
strategies, continuing the work begun in [35], will be a subject of future work.

2 Ordering-based strategies

Since most ordering-based strategies work with clauses, in this section Lg is the
language of clauses on signature © and L is the empty clause O. If H U {—p} is
not already in clausal form, each element in H U {—} is transformed into a set
of clauses, whose union S is the clausal form of the theorem-proving problem
(e.g., [45] for this transformation). The goal — is considered as an additional
assumption, and most ordering-based strategies do not distinguish the clauses
coming from —¢ from those coming from H.



2.1 Inference systems for ordering-based strategies

Inference rules for ordering-based strategies operate on sets:

S
fig

where S and S’ are sets of clauses. For instance, binary resolution is written

SU{LiVvD,LyV C} Lo
SU{LVD,LyvC,(CVD)y}

=-Lso (0 most general unifier)

Exactly because generated data are kept, it is possible to use them to estab-
lish that other generated data are not needed. What is not needed is determined
by a well-founded ordering on clauses >: intuitively, if a clause ¢ is entailed by
one or more smaller clauses, ¢ can be deleted. Thus, ordering-based strategies
have two types of inference rules:

— FEzxpansion inference rules, that generate and add clauses:

S
f: 7 scs
where the condition S C S tells that something has been added, and implies
S <mu S', where >, is the multiset extension of >.
— Contraction inference rules, that delete clauses or replace them by smaller
ones:

S
fgSgs

where the condition S € S’ tells that something has been deleted; further-
more, S’ <,u S needs to hold.

With this formulation of inference rules, the soundness requirement is written
Th(S") C Th(S), where Th(S) = {¢ | S E ¢}, which means that whatever
is added is a logical consequence of what was given. Since there are inference
rules that delete elements, one needs also the dual property of monotonicity:
Th(S) C Th(S"), which means that all theorems are preserved.

The ordering > is fundamental for these strategies. In addition to being well-
founded, it needs to be monotonic with respect to the term structure (i.e., s > ¢
implies ¢[s] = c[t] for all terms s,t,¢) and stable with respect to substitutions
(i.e., s > ¢ implies so > to for all substitutions o). An ordering with these three
properties is a reduction ordering. A simplification ordering has monotonicity,
stability and the subterm property (i.e., a term is greater than any of its proper
subterms), which together imply well-foundedness [52]. Complete simplification
orderings — introduced in [69] — are also total on ground terms. Since complete
simplification orderings are used most frequently, let > be such an ordering.
Once an ordering on terms and literals is given, it can be extended to equations
and clauses in standard ways based on the multiset extension (e.g., [70,12]).



In addition to resolution® [118], paramodulation (on clauses) [116,70], and
superposition (on rewrite rules [79] or equations [69,10]) are expansion inferen-
ce rules. Contraction rules include tautology deletion, purity deletion [50,38],
subsumption [118], clausal simplification (also called unit simplification or unit
deletion, because a unit clause simplifies another clause), functional subsumption
[69], and simplification [144,79,69,10,119]:

SU{p~gq,LV D}
SuU{p=~gq,Llgol,V D}

Liu=po A L > L[go]y

where L|u denotes the subterm of L at position u and L[go],, denotes the literal
obtained by replacing L|u by go.

In order to describe unambiguously how a strategy generates a derivation,
inference rules can be characterized as functions f: P(Le) — P(Leo) x P(Le),
which take as argument a set of premises, and return a pair of sets, a set of
generated clauses and a set of clauses to be deleted®. If f does not apply to a set
X, f(X) = (0,0). Let m; and 75 be the projection functions 7 (z,y) = x and
mo(x,y) = y; then expansion and contraction rules (with respect to >=) can be
described in this form as follows:

— An inference rule f is an expansion inference rule if for all X, mo(f(X)) =
— An inference rule f is a contraction inference rule if either m (f(X))

m2(f(X)) =0, or ma(f(X)) # 0 and X — ma(f (X)) Umi(f(X)) <mu X.

Most inference rules generate and/or delete one clause at each application, so
that 71 (f(X)) and 7o (f (X)) are singletons. In the following the same notation is
used ambiguously to denote both the set and the single element it contains. The
condition X = 71 (f(X)) implies soundness, while X — mo(f (X)) U (f(X))
m2(f(X)) implies monotonicity.

Contraction does more than deleting existing clauses. By deleting existing
clauses, it also prevents the strategy from using those clauses to generate others.
In order to understand better this deeper effect of contraction, the notion of re-
dundancy, whereby clauses deleted by contraction are redundant, was developed
(e.g., [119,127,12,36]). The advantages of working with a notion of redundancy
are several. First, not only clauses deleted by contraction are redundant, but also
clauses that can be generated only by redundant clauses. Second, redundancy
can be generalized from clauses to inferences, observing that an inference step
that uses a redundant clause without deleting it is redundant. Third, restric-
tions to expansion inference rules such as ordered inference rules (e.g., [70,12,
105]), critical pair criteria (e.g., [9,73]), and basic inferences (e.g., [14]), can be
explained as preventing the expansion rules from generating redundant clauses.
Thus, the design of contraction rules to delete redundant clauses and the design
of refinements of expansion rules to prevent the generation of redundant clauses
are two sides of the same effort to contain redundancy.

0.

4 Here and in the rest of the paper resolution include factoring.
® In the notation, P( ) means powerset, and if X = {41 ..., } we may write f(X) or

f(1/117 s 77\/}”) instead of f({q‘/}h s 77‘/}”})



Redundancy depends on the well-founded ordering on clauses: like selecting
different orderings may yield different contraction rules, selecting different or-
derings may yield different redundancy criteria [11]. A redundancy criterion is a
mapping R on sets of clauses, such that R(S) is the set of clauses that are redun-
dant with respect to S according to R, and the following properties are satisfied:
(1) S—R(S) = R(S), (2)if S C 5, then R(S) C R(5"), (3) if (§'—S) C R(5),
then R(S’) C R(S) [11].

A redundancy criterion R and a set of contraction rules I correspond if they
are based on the same well-founded ordering >, and for all sets of clauses S:

— Whatever is deleted by I is redundant according to R: for all f € I and
X € P(S), ma(F(X)) € R(X - ma(f(X)) Uma(£(X))).

— If a clause in S is redundant with respect to S, I can delete it with no need
to add other clauses (to make it redundant): for all ¢ € SNR(S —{¢}), there
exist f € I and X € P(S), such that 7 (f(X)) = 0 and m2(f(X)) = {©}.

Given an inference system I, I denotes the subset of expansion rules, and
IR denotes the subset of contraction rules, with R the corresponding redundancy
criterion. The first property of redundancy criteria serves the purpose of implying
that if Sty, S’ then Th(S) C Th(S’), and it is equivalent in this respect to the
condition X — mo(f(X)) Um (f(X)) | m2(f(X)) formulated for all contraction
rules in Ir. The second and third properties of redundancy criteria guarantee
that St .S" implies R(S) C R(S5’).

Redundancy control is fundamental for ordering-based strategies, exactly be-
cause they work by generating and keeping consequences. In first-order theorem
proving, the search space of consequences that can be generated from a given
H U {—¢} is typically infinite: a strategy that searches this space by generat-
ing clauses without the possibility of deleting/avoiding redundant ones is not
practical. In summary, ordering-based strategies need redundancy control, and
at the same time they make it possible (e.g., one cannot use clauses to delete
other clauses if clauses are not kept in the first place).

Remarks and further reading Much research on ordering-based strategies
originated from works in rewriting, orderings, and Knuth-Bendiz completion: a
comprehensive treatment of this area can be found in [55], while theorem-proving
oriented surveys include [111,57,108].

The essential role of orderings for these strategies can be appreciated by con-
sidering the history of simplification, paramodulation and ordered resolution. Sim-
plification was introduced as demodulation in [144], but without a well-founded
ordering to guarantee termination one had to impose a maximum number of
rewriting steps. Paramodulation was introduced in [116], but the completeness
proof required the functionally reflexive axioms and paramodulating into vari-
ables. The conjecture of [116] that these requirements are not necessary was
proved in [107], but only postulating an ordering with a very rare property
(order-isomorphism to w), and finally in [70], with a complete simplification or-
dering as the fundamental ingredient. Ordered resolution is almost as old as



resolution itself: the early research is summarized in [70], where prior references
can be found. The main difference between the early formulations and the con-
temporary ones is the ordering on literals: the former treated clauses as lists, so
that the ordering was arbitrary, whereas the latter use a complete simplification
ordering. Further developments are treated in [13]; the references to previous
work on basic narrowing and basic paramodulation can be found in [14].

While most ordering-based strategies work on clauses, the strategies that
work with rewrite rules or equations in the Boolean ring [67] also belong to
this class: their key characteristics include the uniqueness of normal forms in
the Boolean ring representation, and simplification inferences that cannot be
simulated by resolution and subsumption (see [102] for this comparison). These
strategies began with the N-strategy of [67] and the Grébner basis method of
[74]. The strategy of [8] continued in the spirit of [74], while the N-strategy was
extended to first-order logic with equality in [68], and to non-clausal input in
[147]. Other developments can be found in [102], together with a comparison
with clausal resolution methods continuing [56].

Other directions of growth for these inference systems have been theory rea-
soning and constrained reasoning. Theory resolution was pioneered in [131], while
a recent overview of theory reasoning is available in Chapter 4 of [15]. In equa-
tional logic forms of theory reasoning may be obtained by replacing syntactic
unification in the inference rules with semantic unification: two surveys of this
large field are [72,7]. Ordering-based strategies with constraints were studied in
[78], where references to previous work can be found. A general treatment of
constrained resolution was given in [42].

The RAMC method [44] and its successor EQMC [43] also work with con-
strained clauses. These methods combine searching for a refutation by generating
consequences with searching for a model by generating non-consequences: if S
were consistent, the fact that S £ ¥ means that there exists a model of S where
1 is false and — true, and therefore generating 1 is a step towards identi-
fying such a model if it exists. The search for a refutation employs expansion
rules, such as resolution, and contraction rules, such as subsumption, similar to
other ordering-based strategies, while the search for a model employs dual dis-
inference rules (e.g., dis-resolution, dis-subsumption), case analysis by splitting,
generation of pure literals, and equational constraints to encode models.

2.2 Search plans for ordering-based strategies

Since ordering-based strategies work on sets of clauses, and multisets need to
be used in order to apply the ordering, for these strategies States is the set of
all multisets of Lg. The general notion of search plan given in Section 1 can be
instantiated to a tuple X' = ((, &1, &2, w) where:

— &: States™ — Lo selects a primary premise from the current state:
&((So...53)) =1 € S

— (: States™ x Lo — I selects an inference rule, based on the history and the
primary premise: (((So...S;), 1) = f" € I;



— &:States* x Lo x I — P(Leg) selects one or more secondary premises,
depending on the arity of the inference rule that ¢ selected:
§2((So .- Si), 1, f1) = {2 .. . n} C Si

— w: States — Bool returns true if and only if the given state contains the
empty clause.

For example, if &; selects a clause ¢, and ( selects a binary expansion rule, &;
selects a second clause; if ¢ selects simplification (normalization), &2 selects the
simplifier(s) to reduce ).

Concrete search plans may fit in this pattern in various ways. Consider the
given-clause algorithm of Otter [97]: it works with a list of clauses to be selected,
called sos for historical reasons (the Set of Support strategy of [143]), and a
list of clauses already selected, called usable, because these clauses can be used
for inferences. It selects a given clause from sos, makes all expansion inferences
between the given clause and the clauses in usable, process and appends to
sos the non-trivial normal forms of all clauses thus generated, moves the given
clause from sos to usable, and repeats. Then &; is the mechanism that selects
the given clause, ( represents the order of the expansion rules in the code of the
prover, and &> is the mechanism that selects the other premises from usable.

In the default configuration of Otter, the next given clause is the short-
est clause in sos. Thus, & performs a best-first search, with the length of the
clause as heuristic evaluation function. Changing the heuristic evaluation func-
tion amounts to modifying the component &; of the search plan. For instance,
Otter has a parameter, called pick-given-ratio, which allows one to to add some
breadth-first search: if the value of pick-given-ratio is k, & selects the oldest
clause in sos (instead of the shortest) every k choices. The selection of suitable
premises from usable is done by an indexing technique [133,95,46]. Then &,
is the abstraction of the indexing technique, and choosing a different indexing
technique amounts to changing the component &3 of the search plan.

The equational prover EQP [98], which solved the Robbins conjecture [99],
features search plans based on the given-clause algorithm, and search plans based
on another algorithm, called the pair algorithm. This search plan works on an
index of all possible pairs of equations in the database: it selects a pair from the
index, performs all expansion inferences between the equations in the pair, if at
least one of them belongs to sos, and repeats. Then there is no &, and & is the
mechanism that selects the next pair.

For the control of contraction, one needs to distinguish between forward con-
traction, which normalizes a newly generated clause with respect to the existing
clauses, and backward contraction, which applies the normal form of a newly gen-
erated clause to reduce the existing clauses. For forward contraction, &; returns
the newly generated clause, say 1, ¢ corresponds to the order of the contraction
rules in the code of the prover, and & to the indexing mechanism that selects
the simplifers that match . For backward contraction, £ corresponds to the
indexing mechanism that selects the clauses matched by .

It is possible to abstract from the relation between selection of the inference
rule and selection of the premises, and use (: States* — I and &: States™ x I —



P(Lo), with the condition that &((So...S:), f") = {¢1...¢y} if and only if
§1((So - Si)) = 1 and &((So - .. Si), Y1, f7) = {2 .. Yu}.

Given a theorem-proving problem S, an ordering-based strategy C = (I, X},
with X' =< (,&,w >, generates the derivation

Sob...SiF...
C C

where Sy = S and for all i > 0, if w(S;) = false, (((So...S;)) = f, and
£((So...8:),f) = X, then Sit1 = S; Um(f(X)) — m2(f(X)). An equivalent
characterization can be given using &; and &».

Remarks and further reading Most theorem-proving search plans exist only
in the code of theorem provers, with specifications in natural language in manuals
or system descriptions. A definition of search plan was given by Kowalski in [81]:
it was defined directly on the search space of resolution, and therefore did not
account for the generation of the derivation. The definition given here allows to
fit in concrete search plans; it is a refinement of the definition in [37], improved
in [39,32], which was the first one to account for the derivation in the context
of general expansion and contraction.

The distinction between forward and backward subsumption was made when
several authors working towards proving the completeness of resolution with
subsumption discovered that unrestricted backward subsumption of variants can
violate completeness: the solution was to perform forward subsumption before
backward subsumption; Kowalski summarized this early work in the introduction
of [81]. The problem was better understood later, when it was clarified that the
difficulty is that the subsumption ordering is not well-founded. The solution is
to label the clauses based on generation time and use a well-founded ordering
given by the lexicographic combination of the proper subsumption ordering and
a well-founded ordering on the labels of clauses, so that newly generated variants
are forward-subsumed before they can back-subsume; Loveland presents problem
and solution on pages 207-208 of [91]. An analysis and solutions of problems of
the same nature with subsumption in distributed derivations can be found in
[34]. McCune distinguishes between forward and backward subsumption, and
forward and backward demodulation in the code of Otter [97] and EQP [98]; the
distinction was generalized to any kind of contraction in [35].

2.3 Search spaces and proofs by ordering-based strategies

The search space of a theorem-proving problem S contains all the clauses that
can be derived from S by using the inference system I: the closure of S with
respect to I is the set S7 = Uy I7(9), where I(S) = SU{p| ¢ € m (f(X)), [ €
I, X C S}, I°S) =8, and for k > 1, I*(S) = I(I*=1(S)) for k > 1.

This search space can be modelled as a search graph, a hypergraph G(S7) =
(V, E,l, h), where the vertices in V represent the clauses in the closure S%, and
the hyperarcs in F represent the inferences. The hypergraph is decorated by an



arc-labelling function h: E — I from hyperarcs to inference rules, and an injective
vertex-labelling function I:V — Lg/ = from vertices to equivalence classes of
clauses, where = is equivalence up to variable renaming. Thus, all variants of a
clause are associated to a unique vertex. For simplicity, [(v) denotes a clause,
meaning a representative of a class of variants.

If f"({er...on}) = {¥1.. . ¥m}t, {m...7p}) for f* € I, E contains a hy-
perarc e = (V1 ...Ug; W1 ... Wp; U1 ... Um) Where h(e) = f" and:

— w1 ...vx are the vertices labelled by those premises that are not deleted, i.e.,
l(vj) = pj and ; € {71... 7%}, V4, 1 <j <k, where k =n —p,

— w1 ... wp are the vertices labelled by the deleted clauses, i.e., l(w;) = v;, V7,
1 <j<p,and

— U1...Un are the vertices labelled by the generated clauses, i.e., I(u;) = 1,
Vi, 1<j5<m.

Vertices and their labels can be used interchangeably, and without loss of
generality one can consider hyperarcs in the form (v;...v,;w;u), where at
most one clause is added or deleted. For instance, a resolution arc has the
form (v1,vq;u), where u is a resolvent of v; and ve; a simplification arc has
the form (v; w; u), where v reduces w to u; and a normalization arc has the form
(1 ...vp;w;u), where u is a normal form of w with respect to the simplifiers
V1 . ..Un. Contraction inferences that purely delete clauses are represented as re-
placement by true, where true is a dummy clause, such that true < ¢ for all
v, and a special vertex T in G(S7) is labelled by true. The application of this
representation to more inference rules and several examples of inference steps
can be found in [39].

G(S7) = (V, E,l, h) represents the static structure of the search space. The
dynamics of the search during a derivation is described by marking functions for
vertices and arcs. A marked search-graph (V, E,l h,s,c) is enriched with

— A vertex-marking function s:V — Z from vertices to integers, such that

m if m variants (m > 0) of I(v) are present,
s(v) = ¢ —1if all variants of I(v) have been deleted,
0 otherwise.

— An arc-marking function c: E — Z from hyperarcs to non-negative integers,
such that ¢(e) = n if the inference of arc e has been executed n times.

The vertex-marking function represents the dynamic effect of contraction (if a
clause is deleted, its marking becomes negative), while the arc-marking function
represents the selections of steps done by the search plan.

It is then possible to represent the evolution of the search space during a
derivation. First, a hyperarc e = (v1...v,;w;u) € E is enabled if its premises
are present: s*(v;) > 0for 1 < j < nand s*(w) > 0 (s¥(w) > Lifw € {v1...v,},
e.g., for a variant subsumption arc (v,v, T)).

A derivation induces a succession of vertex-marking functions {s;}i>o and a
succession of arc-marking functions {c;}i>o initialized as follows: for all v € V,



so(v) =0, and for all a € E, cp(a) = 0. Then, Vi > 0, if at stage i the strategy
executes an enabled hyperarc e = (vy ... v,;w;u):

8i(v) — 1if v = w A s;(v) > 1 (decrease marking of deleted clause),
-1 ifv=wAsi(v) =1,

Si+1(v) =< s;(v) +1ifv=uAsi(v) >0 (mcrease marking of generated clause),
1 ifv=uAsi(v)=
si(v) otherwise.

Cia(a) = ci(a) + 1 if a = e (increase marking of executed arc),
T T eia) otherwise.

The initialization so(v) = 0 for all vertices, including input clauses, assumes
that also the steps of reading the input clauses are included in the derivation
(e.g., modelled as expansion steps). Alternatively, one can start with sg(v) = 1,
if o =1(v) is in Sp, and sp(v) = 0 otherwise.

Each state S; has its associated search graph G; = (V, E, [, h, s;,¢;), and S;
is exactly the multiset of clauses with positive marking in G;. The subgraph
containing only these clauses, G = (VT E* 1, h,s;,¢;), where VY = {v | v €
V, si(v) > 0} and E7 is the restriction of E to V', represents the active part
of the search space at stage i. The subgraph of all the clauses with non-zero
marking, Gi = (V*,E*,l, h,s;,¢;), where V* = {v | v € V, s;(v) # 0} and E* is
the restriction of E to V*, represents the generated search space up to stage i.
If the derivation halts at some stage k, G, is the search space generated by the
strategy during the entire derivation.

It is important to emphasize that neither Gj, nor GZ represent the proof
computed by an ordering-based strategy. The notion of ancestor-graph of a clause
clarifies this point. Given a search graph G = (V, E,l, h), for all v € V:

— If v has no incoming hyperarcs, the ancestor-graph of v is the graph made
of v itself.

—If e = (v1...Un;Up41;v) is a hyperarc in F and t;...t,41 are ancestor-
graphs of v ...vy,41, the graph with root v connected by e to the subgraphs
t1...typy1 is an ancestor-graph of v, denoted by the triple (v;e; (¢1 ... tn41)).

An ancestor-graph of v represents a sequence of inferences, or a generation-path,
that generates its associated clause ¢ from the input clauses. If the strategy halts
at stage k (i.e., O € Si), the computed proof is the ancestor-graph of O that has
been traversed to generate O during the derivation.

It is clear in this model why ordering-based strategies generate many proof
attempts: at each stage i each ancestor-graph (v;e; (t1...t,41)) in G;-F is a proof
of I(v) and an attempt at a proof of O, because it may be possible to continue it
into an ancestor-graph of O. Of course, the strategy does not know which proof
attempts (ancestor-graphs) can be extended into a proof (an ancestor-graph of
0O). This is equivalent to saying that the strategy does not know which clauses
in S; are ancestors of 0. Also, the strategy works on S;, not on G : hence the
proof attempts are built implicitly.



After an empty clause has been generated, the prover engages in proof re-
construction to make the proof explicit. Proof reconstruction is the operation of
extracting the ancestor-graph of O from G7. For instance, in Otter [97] and EQP
[98], each clause is stored with its identifier and its “justification,” that is, the
name of the inference rule that generated it, and the identifiers of its parents.
As soon as an empty clause is generated, the prover reconstructs the proof by
listing first the empty clause, then its parents, then the parents of each parent
and so on, until it reaches input clauses. Then, this list of clauses is printed with
the input clauses first and the empty clause last.

The proof may include contraction steps and clauses deleted by contraction.
Clauses deleted by forward contraction are not used as premises of other steps
before deletion and therefore cannot occur in the proof. Clauses deleted by back-
ward contraction may occur, because they may have been used as premises of
other steps before being deleted. Therefore, provers such as Otter or EQP need
to save the clauses deleted by backward contraction in a separate component of
the database, which will be consulted only by the proof reconstruction algorithm.

Also, the proof is generally a graph, not a tree, because a clause may be
used more than once in the proof, and all variants of a clause are associated
to the same vertex. However, once the proof has been extracted, it is possible
to transform it into a tree, by creating a distinct vertex (in the tree) for each
occurrence of a clause in the proof. The resulting tree is a deduction tree [45],
and since it is a deduction tree of O, it is a refutation of the initial set S.

Remarks and further reading A model of the search space of resolution as
a search graph was given by Kowalski in [81]. The model given here appeared
in [39]: it is compatible with the one in [81] for the representation of expansion
inferences, it has been the first to model contraction inferences, and it has been
extended to distributed search in [32]. A different representation of the search
space is adopted by Plaisted and Zhu in [113] for other purposes. Comparisons
of the model given here with those in [81] and [113] can be found in [39, 31].

2.4 Expansion-oriented and contraction-based strategies

Ordering-based strategies can be classified further based on usage of contraction
and degree of goal-sensitivity, as shown in Figure 1.

Strategies that feature only expansion rules, and strategies that apply con-
traction rules only for forward contraction, are called expansion-oriented stra-
tegies®. If the strategy features contraction rules, it is convenient to separate
the newly generated clauses from the others, because the former are subject to
contraction, and the latter are not. Thus, the elements of States are pairs of
sets (S; N), where S is the set of clauses that may be used as premises of ex-
pansion or as simplifiers, whereas N is the set of raw clauses, or the newly
generated clauses that need to be normalized before being inserted in S. If

6 The names expansion-oriented and contraction-based appeared in [35].
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C((So;No) . (Sl,Nl)) = f € Ig, then 5((50,]\[0) R (Sl,Nl), f) = X C Si,
because clauses in N are not eligible to be premises for expansion until they
are normalized and moved to S. If ¢((So;No)...(Si; N;)) = f € Ig, then
&((So; No) ... (Si; Ny), f) = X € S; UN;, because contraction applies clauses
in S to reduce clauses in N; and w((S;; N;)) = true if O € S; UN,.

Given a theorem-proving problem S, an expansion-oriented strategy C =
(I,X), with ¥ =< {,£,w >, generates the derivation

(SO7NO)IE(517N7,)IE

where Sop = S, No =0, and Vi > 0, if w((S;; V;)) = false,
C((So; No) - (Sis N3)) = f, and £((So; No) - (Sis Ny), f) = X, then

(Si;NiUﬂ'l(f(X))) if felg,
(Si @] Wl(f(X)), N; — Wg(f(X))) if f € Ig and m1(f(X)) is the
Si-normal form of m2(f(X)),

(Si; N; Um (f(X)) — m2(f(X))) otherwise.

(Sit1;Nig1) =

While expansion-oriented strategies allow a limited amount of contraction,
at the other extreme there are contraction-based strategies, which not only allow
both forward and backward contraction, but require contraction to be eager:

A derivation Syk¢...S;Fc ... has eager contraction, if for all ¢ > 0 and ¢ € 5,
if there are f € Ig and X C 5;, such that mo(f(X)) = {¢}, then there exists
an [ > ¢ such that S; - S;y; deletes ¢, and Vj,¢ < j <[, S; - Sj41 is not an
expansion inference, unless the derivation succeeds sooner.

A search plan X is an eager-contraction search plan, if all derivations controlled
by X have eager contraction. A strategy C is contraction-based, if its inference
system includes contraction rules and its search plan is eager-contraction.



The component of the search plan which is mostly responsible for eager con-
traction is the rule-selecting function {. For instance, the given-clause search
plan of Otter that was described in Section 2.2 has eager forward contraction,
because each raw clause v is reduced by forward contraction to its normal form 1’
immediately after generation, but it does not have eager backward-contraction,
because 1)’ is not used to contract other clauses, until after all clauses that
can be generated by the current given clause have been generated, forward-
contracted and appended to sos. The search plans of EQP also have eager
backward-contraction: regardless of whether 1) was generated by the given-clause
algorithm or the pair algorithm (see Section 2.2), ¢’ is applied to contract other
clauses right after its generation. If ¢’ backward-simplifies an existing clause ¢
to a new form ¢’, also ¢’ is applied to do backward contraction as soon as possi-
ble. Thus, the cycle of expansion inferences does not restart until all applicable
backward contraction has been performed. It may happen that this prevents the
generation of clauses generated by the Otter’s search plan.

Remarks and further reading Early forward-reasoning strategies were typi-
cally expansion-oriented (e.g., based primarily on expansion by resolution). The
merging of the resolution-paramodulation paradigm with the term-rewriting and
Knuth-Bendix paradigm has led to contraction-based strategies. Most ordering-
based provers developed in recent years (e.g., Otter [97], RRL [76], Reveal [3],
SNARK [134], EQP [98], SPASS [142], Barcelona [104], and daTac [138]) are
based on contraction-based strategies, and also thanks to them succeeded in
solving challenge problems (e.g., [3,2,75,134,99,138]).

2.5 Target-oriented strategies

The question of how to make contraction-based strategies more goal-sensitive
has long been a challenge to the automated deduction community. The situa-
tion of equational reasoning has been peculiar in this respect: the problem of
goal-sensitivity was ignored for a long time, because the strategies based on
the term-rewriting and Knuth-Bendix paradigm were regarded as completion
procedures to generate confluent (or saturated) rewrite systems, rather than
theorem-proving strategies. This view is not practical, because most theories
have infinite saturated systems, so that it is impossible to compile first the the-
ory into a saturated system and then use the latter as a decision procedure for
the theory. Furthermore, since completion procedures do not have a goal, the
issue of goal-sensitivity for theorem-proving applications was not considered.
Nonetheless, working with a simpler logic has some advantages in this respect,
and some progress was made.

In the purely equational case, H is a set of equations E, and ¢ has the
form VZ s ~ t, so that = has the form § # ¢, where the hat denotes that
all variables have been replaced by Skolem constants. Since the negation of
the target theorem is the only negative clause, it is trivial for the strategy to
identify it. Furthermore, the negation of the target theorem is ground, so that



unification involving a target term reduces to matching, and inferences on the
target are simpler than general inferences. Therefore, it is possible to characterize
contraction-based strategies for equational theories as target-oriented strategies.
States is the set of pairs in the form (F; ), where E is the presentation and ¢
is the target theorem, which may be a ground equality 3 ~ ¢ (e.g., in strategies
based on Unfailing Knuth-Bendixz completion and some of its extensions [69, 10,
36]), or a disjunction of ground equalities (e.g., in the extension of UKB of [3],
called Inequality Ordered Saturation or I0S-strategy in [36]), or a disjunction of
equalities with existentially quantified variables (e.g., in the S-strategy of [69]).

Accordingly, one can distinguish inference rules that apply to the presenta-
tion (forward reasoning) and inference rules that apply to the target (backward
reasoning):

— Presentation inference rules:

e FEzpansion inference rules: f: (B p) where E C E' and F <, E'.

(E'; )
e Contraction inference rules: f: (g,’i)) where E € E' and E' <, E.
— Target inference rules: 7
o Ezxpansion inference rules: f: ((5’5,)) where ¢ implies ¢'.
02%)

e (Contraction inference rules: f: where ¢ does not imply ¢'.

(E:¢)
An example of target contraction inference rule is simplification of the target,
where the old target alone obviously does not imply its reduced form. An example
of target expansion inference rule is the ordered saturation of the IOS-strategy:
(EU{l~r i, NU{3~1t}) du=lo 3[rol,—5s t-pt
(EU{l~r};NU{s§~1§ ~#}) {5} Fnulddt Vo~de NU{s~1}

where E is a set (meaning a conjunction) of equations, N is a set (meaning
a disjunction) of ground equalities, and clearly the old target logically implies
the new one. Ordered saturation applies if § < §[ro],, since if § = §[ro], held,
simplification would apply. The target equality §' ~ ¢ might have a shorter proof
than the other target equalities: the strategy keeps multiple target equalities to
broaden the chance of reaching a proof as soon as possible.

The characterization of expansion and contraction of Section 2.1 applies to
these rules as well: it is sufficient to negate the target and move it into the main
set (e.g., if the disjunction of ground equalities that form the target of the I0S-
strategy is negated and moved to the main set, it becomes a conjunction, or a
set, of ground inequalities).

Since the negation of the target is not added to the presentation, success is
not marked by the generation of the empty clause, but by the reduction of the
target to true, as in the target deletion rule of the IOS-strategy:

(E;NU{s~3s})
(E; true)




If the target were negated and added to E, § # § would generate an empty
clause by resolving with = x (e.g., as done by the unit conflict in Otter, which
needs = z in the input [97]), or because the theorem prover detects that the
two sides of the inequality are equal (e.g., as done by the unit conflict in EQP
which does not need x = x in the input [98]). Accordingly, w((E;; ¢;)) = true if
and only if ¢; is true.

Given a theorem-proving problem (Fjy; @), a target-oriented strategy C =
(I,X), with ¥ =< (,£,w >, generates the derivation

(EONPO)E---(Ei;@i)E---

such that Vi > 0, if w((E;,¢;)) = false, (((Eo;¥0)--.(Ei;vi)) = f, and

(Ei; ") if p; € X, m(f(X)) ={¢'}
(Bit1;0i41) = and ma2(f(X)) = {i},
(B; U (f(X)) — ma(f(X)); @:i) otherwise.

A target-oriented strategy does not need monotonicity, but only relevance: if
(E;@)Fe(E';¢"), then ¢ € Th(E') if and only if ¢ € Th(E).

Remarks and further reading Equational contraction-based strategies have
been called rewriting-based, Knuth-Bendix-based, or completion-based. Their
full characterization as target-oriented strategies was given in [36]. These strate-
gies may take advantage of target-oriented heuristics, such as those of [3,1,51].
For instance, the combination of target inference rules, target-oriented heuris-
tics, and inference rules for cancellation [71] in the IOS-strategy made possible
to obtain results — the proofs of the Moufang identities [3] — that do not seem
to have been reproduced by other theorem provers.

2.6 Semantic and supported strategies

In resolution-based theorem proving, the question of adding some backward rea-
soning to forward-reasoning strategies has been intertwined with the issue of
limiting the generative power of expansion inference rules. In addition to restric-
tions based on redundancy criteria, restrictions that take knowledge about the
problem into account have been investigated.

Since knowledge about the problem is semantic knowledge, semantic resolu-
tion [124] controls resolution by an interpretation Z: the given set of clauses S
is partitioned into the subset T of all clauses in S that are satisfied by Z and
its complement S — T'. Resolution is restricted in such a way that the consistent
subset T is not expanded; only resolution steps with at most one premise from
T are allowed: a clause in either T or S — T, called nucleus, resolves with one or
more clauses in S — T, called electrons, until a resolvent that is false in Z, and
therefore belongs to S —T, is generated. Semantic resolution may also assume an



ordering on predicate symbols, and then require that the literal resolved upon
in an electron contains the greatest predicate symbol in the electron.

If the interpretation Z is defined based on sign, one obtains hyperresolution
[117]: in positive hyperresolution, Z contains all the negative literals, T' contains
the non-positive clauses, S — T contains the positive clauses, and the electrons
are positive clauses (from S — T') that resolve away all the negative literals in
the nucleus (from T') to generate a positive hyperresolvent. Dually, in negative
hyperresolution, Z contains all the positive literals, T' contains the non-negative
clauses, S—1T contains the negative clauses, and the electrons are negative clauses
(from S —T') that resolve away all the positive literals in the nucleus (from T') to
generate a negative hyperresolvent. Hyperresolution can be more restrictive than
semantic resolution with other interpretations, because hyperresolution excludes
steps where both nucleus and electron are in S — T (e.g., two negative clauses
cannot resolve).

The intention of orienting the strategy towards backward-reasoning is more
explicit in resolution with set of support [143]: a set of support (SOS) is a subset
of S such that S — SOS is consistent; only resolution steps with at most one
premise from S — SOS are allowed and all resolvents are added to SOS. The
set-of-support strategy of [143] prescribed to put in SOS the goal clauses (those
obtained from the transformation into clausal form of the negation of the target
theorem), while S—SOS contains the input assumptions, which form a consistent
set, barring errors. Thus, the effect of working with a set of support is that most
of the work done by the strategy is backward reasoning from the goal clauses.

Resolution with set of support fits in the paradigm of semantic resolution,
with T'= 5 —S0S as the consistent subset and SOS = S —T as its complement.
Accordingly, the inferences allowed by the strategy, i.e., those with the electrons
in SOS, are called supported inferences. However, resolution with set of support
is less restrictive than semantic resolution, because it has the same condition on
the choice of the premises (at most one from T'), but it does not require that
only resolvents that are false in Z are generated. For instance, if SOS initially
contains the positive clauses, resolution with set of support will generate and add
to SO.S also non-positive clauses, whereas positive hyperresolution will generate
only positive clauses. Resolution with set of support can be seen as semantic
resolution assuming an ad-hoc interpretation that makes all clauses in T' true,
and the clauses in SOS and all their descendants false.

Positive resolution [117] is binary resolution where one of the premises must
be a positive clause (one where all literals are positive). Dually, negative reso-
lution requires that a premise is a negative clause (one where all literals are
negative). These strategies are considered sometime supported strategies where
SOS contains the positive or negative clauses, respectively. Actually, positive
resolution is more restrictive than resolution with set of support where SOS
originally contains the positive clauses, because the former only allows steps
with a positive premise, whereas the latter also allows resolutions between gen-
erated non-positive premises, as long as at least one of them is in SOS. On the
other hand, positive hyperresolution is more restrictive than positive resolution,



because the latter does not guarantee that only positive resolvents are generated.
In essence, positive resolution and negative resolution are not semantic strate-
gies, because they do not assume an interpretation with the provision that only
clauses false in the interpretation are derived.

Since these semantic (or supported) strategies work by generating and keeping
clauses, it is natural to enhance them with contraction rules (e.g., tautology
deletion, subsumption, clausal simplification). For instance this combination is
available in Otter [97]. In order to preserve completeness, however, it is necessary
to apply contraction rules that replace clauses by other clauses, such as clausal
simplification, in a way that respects the partition based on the interpretation:
reduced forms of SOS-clauses stay in SOS, whereas reduced forms of T-clauses
can stay in T only if they are true in the interpretation, and move to SOS
otherwise [38].

A derivation by these strategies can be described as follows: States is a set
of pairs (T'; SOS), & selects the nucleus, & selects the electrons from SOS, and
w((T;S0S)) = true if SOS contains O. Given a theorem-proving problem S,
and an interpretation Z, let To = {¢ | ¥ € S, T = ¢} and SOSy = S — Tp.
The derivation generated by a semantic (or supported) strategy C = (I, X), with
XY =< (,&w >, is the sequence

such that Vi > 0, if w((T;,S0S;)) = false, (((To; SOSy) ... (Ti; SOS;)) = f,
and f((TQ, SOSO) ce (Tl, SOSZ), f) = X, then

(Tl,SOleJ?Tl(f(X))) iffEIE;

(TZ,SC)SZ @] Wl(f(X)) - Fg(f(X))) if f € Ir and
Wz(f(X)) € SOS;;

(Tz @] Wl(f(X)) - WQ(f(X)), SOSl) if felrand X C T3

(T, — o (F(X)): SOS, Uma(F(X))) i 1 € In, ma(f(X)) € T,
X — m(f(X)) € SOS.,
and T  m(F(X));

(Tz @] Wl(f(X)) - WQ(f(X)), SOSl) if f € Ir, m(f(X)) € T,
X —Wg(f(X)) g SOS“
and Z E m1(f(X)).

(Ti41;808i41) =

The general definitions of semantic resolution and resolution with set of sup-
port imply neither backward reasoning nor forward reasoning. The type of rea-
soning produced by the strategy depends on the interpretation and the form of
the problem. For instance, if the assumptions are non-negative clauses and the
goal clauses are negative clauses, positive hyperresolution is a forward-reasoning
strategy and negative hyperresolution is a backward-reasoning strategy compa-
tible with the set-of-support strategy of [143]; this is the case in Horn logic. In
general, the partition of S into T and SOS based on the distinction between
assumptions and goal clauses may not agree with the partition based on sign
(e.g., the goal clauses may not be negative clauses), so that hyperresolution and
the set-of-support strategy are not always compatible.



In essence, if the set of support contains assumptions, supported inferences
are forward inferences, and the semantic strategy is a forward strategy; if the set
of support contains goal clauses, supported inferences are backward inferences,
and the semantic strategy is a backward strategy. For instance in Otter or EQP
[98], the sos list can be seen as SOS and the usable list as T'. If one puts in sos
only the goal clauses, the resulting strategy is a backward-reasoning strategy
(i.e., the set-of-support strategy of [143]). By putting more input clauses in sos,
one increases the forward character of the resulting strategy: for example, if the
formulation of the problem includes fundamental axioms, special assumptions
and the goal clauses, one can put the axioms in usable and the rest in sos. If
all input clauses are in sos, the outcome is a pure forward-reasoning strategy.
The latter is often the best choice for purely equational problems: based on this
experience, the auto mode of Otter (the mechanism for automated choice of the
strategy) places all input clauses in sos if equality is the only predicate in the
input. Table 2 summarizes the considerations made so far on the issue of forward
and backward reasoning.

|| || Forward reasoning | Backward reasoning ||
Expansion-oriented all inferences
Contraction-based all inferences
Target-oriented ||inferences on the presentation|inferences on the target
Supported if SOS contains assumptions | if SOS contains goals

Table 2. Classification of ordering-based strategies in terms of forward and backward
reasoning

Semantic strategies can be enriched with controlled forms of lemmatization,
where lemmas are the product of selected unsupported inferences [38]. If the
set of support contains assumptions, lemmatization adds backward reasoning
to a forward strategy; if the set of support contains goal clauses, lemmatization
adds forward reasoning to a backward strategy. Thus, lemmatization is a general
technique to combine forward and backward reasoning.

Remarks and further reading Much work has been done on trying to com-
bine restrictions of resolution. The semantic resolution of [124] is compatible
with assuming an ordering on predicate symbols, and establishing that the lite-
ral resolved upon in an electron contains the greatest predicate symbol in the
electron. In propositional logic, an ordering on predicate symbols is also an or-
dering on literals; in first-order logic the two are different. Thus, semantic or
supported strategies for ordered resolution have been investigated. The combi-
nation of semantic resolution with the early formulations of ordered resolution
(with clauses treated as lists, hence an arbitrary ordering on literals) was not
complete: this early work is presented in Section 6.6 of [45], which we refer to



for references. With ordered resolution based on a complete simplification or-
dering on literals, the positive ordered strategy (positive ordered resolution and
paramodulation) and positive unit strategy (for Horn logic) were proved complete
in [70]. The mazimal-literal unit strategy of [54] combines the unit restriction for
Horn logic with the ordering. Many refinements of resolution are revisited in [13],
including positive ordered resolution, ordered resolution with maximal selection
(similar to positive ordered hyperresolution), and ordered resolution with set of
support. Hyperresolution and the positive ordered strategy are used to design
model-building methods in [58, 59].

2.7 Instance-based strategies

The principle of instance-based strategies is to implement directly the Herbrand
Theorem (e.g., [45]): prove the unsatisfiability of S by generating sets of ground
instances of its clauses, and applying an algorithm for propositional satisfiability
to detect that one such set is unsatisfiable. Different methods differ in how they
generate instances and test ground unsatisfiability.

The method of [84] interleaves instance generation by hyperlinking and unsa-
tisfiability test by the Davis-Putnam algorithm [50]. A hyperlink involves a clause
Ny V... Ng, called nucleus, and clauses E1,... Ey, called electrons, to generate
an instance of the nucleus:

SU{N1V...Ny, Er,...Ex} Vi,1<i<k3L; € E;
SU{N1V...Ny,E1,...Ex,(N1 V... Np)o} Nioc =-Lioc (0 mgu)

Variants of a same clause may be used in a hyperlink, and all literals of the
nucleus are linked, since the purpose is not to generate a resolvent, but to instan-
tiate the nucleus as much as possible. Contraction is limited to unit subsumption
and clausal simplification, because unrestricted subsumption would delete all in-
stances and defeat the purpose of the strategy. In this regard, instance-based
strategies are expansion-oriented strategies (see Section 2.4), with state (S; N),
where N contains the generated instances. After all hyperlinks in S; have been
considered, and contraction has been applied, all clauses in S; U N; are made
ground, by replacing all variables by a constant, and the Davis-Putnam algorithm
is applied to the resulting ground set: if it is unsatisfiable, the procedure halts
successfully; otherwise, the next phase of hyperlinking starts on S;11 = 5; U N;.

The Davis-Putnam algorithm [50] decides satisfiability of a set of ground
clauses by trying all possible interpretations by case analysis (implemented as
splitting) [45]. The case analysis is enhanced with tautology deletion, purity dele-
tion and unit propagation (equivalent to unit resolution and unit subsumption),
and these operations can be made very efficient by using fast data structures

(e.g., [149)).

Remarks and further reading The idea of instance-based strategies dates
back to the first implementations of Herbrand theorem, and has regained po-
pularity as the efficiency of propositional methods has improved: a summary



of the early work can be found in Section 7 of [84]. Hyperlinking has been
applied also to model generation [48]; it can be augmented with interpretations
to produce semantic strategies [47], and combined with orderings, and forms of
paramodulation and simplification, to handle equality (e.g., [114]).

While instance-based strategies may be considered radically different than
other ordering-based strategies, because they generate instances instead of re-
solvents, from the point of view of this classification they belong to the same
class, because they work on a set of objects (clauses), build many proof attempts
(the ground sets), do not backtrack, and feature some contraction. The analysis
in [113] emphasizes the difference between generating resolvents and generating
instances, and compares instance-based strategies, other ordering-based strate-
gies and subgoal-reduction strategies in terms of measures of duplication in the
total search space. Intuitively, a strength of instance-based strategies is that
they do not duplicate literals by combining the literals of the parents in each
resolvent.

The Davis-Putnam algorithm is the basis for efficient theorem provers or
model finders for ground problems, with extensions for finding small finite models
of first-order inputs”. Two such systems are SATO [146, 148] and MACE [96],
while FINDER is related to Davis-Putnam but better understood in terms of
tableaux [125], and SEM combines Davis-Putnam with other techniques [150].

3 Subgoal-reduction strategies

Supported strategies may be more goal-sensitive than general ordering-based
strategies, but they belong to the same category, because they work by generating
and keeping clauses, so that their States are multisets of clauses like for general
ordering-based strategies. Subgoal-reduction strategies single out a goal object
and work by reducing the goal to subgoals: one can distinguish classes of subgoal-
reduction strategies as in Figure 2.

The rest of this section covers first linear and linear-input clausal strategies,
and then tableau-based strategies.

3.1 Linear clausal strategies

Ordering-based strategies generate a portion of the search space (e.g., Gy if
the derivation succeeded at stage k), and then extract the generated proof (the
ancestor-graph of O contained in Gj}). The idea of linear strategies is to restrict
the search to search only for ancestor-graphs of O in a certain form, with the
advantage of keeping in memory only the current proof attempt.

Linear resolution (e.g., [82,90]) starts with a set of clauses S = T U {¢o},
where clause ¢ has been selected as the top clause. At each step i of the deriva-
tion, the strategy generates clause ¢; 1 by resolving the center clause p; with a
side clause, either a clause in T (an input clause), or a clause ¢; such that j < i

" Finite/infinite model means model with finite/infinite domain.
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(an ancestor clause). The strategy succeeds at stage k if ¢ is the empty clause,
and the g ... ¢ together with the side clauses form a comb-like ancestor-graph
of O. Such an ancestor-graph is a linear deduction tree, and furthermore a linear
refutation, because it is a deduction tree of 0. Linear resolution is refutationally
complete, in the sense that if S = T U {0} is unsatisfiable and T is consis-
tent, there exists a linear refutation of S with ¢ as the top clause. In other
words, there exists in the search space a comb-like ancestor-graph of O made
of resolution steps with ¢ as top clause and side clauses defined as above. It
is sufficient to consider the center clauses as goals to see that linear resolution
is a subgoal-reduction strategy: the most recently generated center clause is the
current goal, each step consists in reducing the current goal to a subgoal, and
the previous center clauses are ancestors of the current goal.

Refutational completeness guarantees the existence of a linear refutation, but
the strategy needs to search for one. An ordering-based strategy is not looking
for a proof of a specific form, and therefore it accumulates whatever it generates
that is not redundant. A linear strategy, on the other hand, is looking for a linear
refutation, and if it emerges that the deduction tree built so far cannot become
a linear refutation, it needs to backtrack, that is, undo the last step and try a
different continuation of the deduction tree. Therefore, search plans for linear
strategies work by backtracking.

The set of States for these strategies contains triples (T;¢; A), where ¢ is
the current center clause, and A is the set of its ancestors. The search plan
Y ={(,&1,&,w) operates as follows:

— Since the primary premise is the current goal, the task of &;: States™ — Lg
is to select a literal in the current goal:

§1((T5 005 Ao) - - - (T 045 Ai)) = L € i3



— (: States* x Lo — TU{backtrack} accounts for the selection of the inference
rule, and the decision to backtrack;

— & States™ x Lo x I — Lg chooses the secondary premise among clauses in
T or ancestors of the current goal:
§2((T5 po; Ao) - . (T 043 Ai), L, f) = € TU A;

— w((T;p; A)) = true if and only if ¢ = O.

Note how the definition of search plan for subgoal-reduction strategies fits in the
same ((, &1, &2, w) template used for ordering-based strategies.

Given a theorem-proving problem S = TU{¢}, a linear strategy C = (I, X},
with X' =< (,&1,&,w >, generates the derivation

(To;wo;Ao)E---(Tz-;sai;Ai)E---

such that Top = T, A9 = 0, and for all i« > 0, if w((T;;¢i;Ai)) = false,
§1((Tos po; Ao) - - - (Tis 43 Ai)) = L, then

(Ti; 1 (f (i, ) Ai U {pi})
if C((To; o5 Ao) - .. (Tispi; Ai), L) = f €1
(Tisr; pipr; Aigr) = 4 09 €2((To; o3 Ao) - .. (Tis pi; Ai), L, f) = ¢
(Tiz1;0i—1; Ai—1)
if ¢((To; o; Ao) .. (T3; i3 As), L) = backtrack.

A characterization of inference rules other than the one in Section 2.1 is not
necessary: the differences are that there is no contraction (m2(f(X)) = 0), and
the generated clause (m1(f(X))) is not added to a set, but used to replace its
predecessor. The depth-first search of the subgoal-reduction strategy is captured
by the form of the derivation itself, where the current goal is the most recently
generated goal. Depth-first search with backtracking, however, is not fair, so that
depth-first search with backtracking and iterative deepening (DFID) [80,130] is
used instead.

Linear resolution can be regarded as a refinement of resolution with set of
support: the center clauses form the set of support, and the only needed reso-
lution steps between clauses in SOS are the resolutions with ancestors. Linear
resolution is obviously compatible with the set-of-support strategy of [143], if
one chooses as top clause a goal clause. In such a case, linear resolution per-
forms backward reasoning. However, like resolution with set of support performs
forward or backward reasoning depending on what one puts in the set of sup-
port, a linear strategy may perform forward or backward reasoning depending
on the choice of the top clause. Selecting a goal clause is natural and common,
although not necessary. Any input clause ¢y can be chosen as top clause as long
as T =5 — {go} is consistent.

Remarks and further reading Many authors contributed to linear resolution:
see Section 7.1 of [45] for a summary and the relevant references. Other inde-
pendently developed subgoal-reduction strategies include the problem reduction
format strategies of [109], which also yield semantic strategies [103].



3.2 Linear-input clausal strategies

Linear resolution requires to keep the ancestors around; this is not necessary in
linear input strategies, where all side clauses are input clauses. This class includes
linear input resolution, which is complete for Horn logic, and model elimination,
which is complete for first-order logic.

Inference rules Model elimination [89] proves that S = TU{¢y} is unsatisfiable
by showing that no model of T satisfies g as follows. It works on chains, that
can be seen as clauses made of plain literals, called B-literals, and framed literals,
called A-literals. A chain encodes a stage of model construction: the A-literals
are those that are true in the current candidate model, whereas the B-literals
are those that still need to be considered. A model elimination strategy picks
an input clause g to be the initial chain, and T =S — {¢o} contains all other
input clauses. If T contains Ly V D, ¢qg is Ly V C, and the literals L1 and Lo
have opposite sign and unify, the ME-extension rule applies:

(TU{L1VvD};LyVvC)

Lioc=-L t L unifi
T UL, v DL (DV [La]v C)o) 10 20 (0 most general unifier)

With this step, the procedure tries to build a T-model that makes Lyo true;
since L1o = —=L9o, such a model makes Lo false. Therefore, in order to satisfy
(L1 V D)o it is necessary to satisfy Do by more ME-extension steps. Should this
fail, it will be necessary to remove Loo from the candidate model and try to
satisfy C'o. The literals in Do are subgoals of Loo, because in order to satisfy
Loo, the procedure needs to satisfy Do, or, dually, in order to refute Loo (and
exclude it from the candidate model), the procedure needs to refute Do.

If satisfying a subgoal would make the current candidate model inconsistent,
the subgoal is eliminated by the MFE-reduction rule:

(T;LvDVI[L]VvC)

TV L]V Ojo) Lo LY

If Lo = =L'c and L’ is already in the model, L cannot be part of it.

If the candidate model that makes an A-literal true fails to satisfy its subgoals
(i.e., it is not a T-model), the A-literal must be removed from the candidate
model. This is detected by the ME-contraction rule when all literals on the left
of an A-literal have been eliminated:

(T;[L] v O)
(T;0)

This means that L has been refuted (no T-model includes it), or, equivalently, =L
has been proved. The inference system is completed by factoring on B-literals.
If the current chain becomes empty, it means that no T-model satisfies g, or
T U {po} is unsatisfiable.

Because it works on one chain at a time, and has a natural notion of subgoal-
ing, model elimination fits in the template of subgoal-reduction strategies with



the current chain as the current goal. Furthermore, model elimination may also
be presented as a refinement of linear resolution (e.g., [90, 82, 45]): the succession
of chains corresponds to the succession of center clauses. ME-extension inferences
can be interpreted as input-resolution inferences, modified by saving the literal
resolved upon in the goal as an A-literal in the successor goal. ME-reduction
inferences can be interpreted as what replaces ancestor-resolution inferences. In
this interpretation, the mechanism of saving literals resolved upon as A-literals
is the refinement that makes ancestor-resolution inferences unnecessary: the A-
literals are precisely the ancestor literals that is necessary to keep to complete
the refutation.

Search plans Since each step involves either the current goal and an input
clause or the current goal only, the set of States for these strategies contains
pairs (T;¢), where ¢ is the current goal, and the component A of the an-
cestors is no longer needed. The search plan X = ((,&1,&,w) works as for
linear strategies, except that & selects the secondary premise from T only:
&((T5¢0) ... (Ti:), L, f) = € T.

In the first formulation of model elimination, &; selected literals in right to left
order [89]. The typical choice for & became left to right order (implictly assumed
in the above presentation of the inference rules), in Prolog Technology Theorem
Proving [130,132], when it was discovered that model-elimination strategies can
be implemented efficiently on top of a Prolog engine, such as the Warren Abstract
Machine [140]. Since the set T of “axioms” — from a theorem proving point
of view — or “program rules” — from a logic programming point of view — is
static, it can be compiled at compile-time, and the strategy works on a stack of
goals, operating at each step on the current goal, on top of the stack. In logic
programming terminology, £ corresponds to the AND computation rule, and &
to the OR computation rule.

Given a theorem-proving problem S = T U {¢g}, a linear input strategy
C =(I,X), with X =< (,&1,&,w >, generates the derivation

] ... Qs il—...
(TO’SOO)C (T SO)C

then

(Tis w1 (f (i ¥))) if C((Tos o) -+ (Tis ), L) = f* € 1
(Tip1; pin1) = and &((To; po) .. (Ti; i), L, f*) = 3
T (Tismi(f(9:))) i C((To;wo) - (T i), L) = f* € I
(Ti-1;0i-1) if C((To;%0) ... (Ty; i), L) = backtrack.

The three cases cover, respectively, inferences involving the goal and an input
clause, inferences on the goal only, and backtracking.

If the search plan is depth-first search with iterative deepening, ¢ maintains
the information of what is the depth bound of the current round of iterative
deepening, say k, and associates to each goal ¢; a depth bound n; (0 < n; < k;),



meaning that k — n; steps were used to reduce ¢g to ¢;, and n; more steps are
allowed to try to reduce ¢; to O. If n;, = 0, ¢ orders to backtrack, because no
more steps are available for ;. If at stage 7 — 1 the search space down to depth
k has been exhausted, ¢ resets the depth bound to k + m, for some m > 0, and
starts the next round of iterative deepening in state (7};¢;), where T, = T and
wj = o, with n; =k +m.

In addition to strategies for theorem proving and logic programming, strate-
gies for functional programming and term rewriting can be seen as linear-input
subgoal-reduction strategies. For instance, in term rewriting, 7" is a set of rewrite
rules, ¢g is the input term to be normalized, &; selects the subterm to be rewrit-
ten, and & selects the rewrite rule to be applied. A main difference is that in
term rewriting or functional programming there is only reduction, not search,
and therefore no need for backtracking.

Refinements Subgoal-reduction strategies concentrate only on the current goal,
and have no memory of previously solved goals. If the same subgoals, or instances
thereof, are generated at different stages, the strategy solves them independently,
repeating the same steps. While ordering-based strategies may run out of mem-
ory if they keep too many clauses, so that their set of clauses becomes too large,
subgoal-reduction strategies may run out of memory if they repeat too many
subgoals, so that their stack of goals becomes too large. Ordering-based strate-
gies use contraction rules and restrictions to expansion rules to try to avoid the
space explosion. Subgoal-reduction strategies try to avoid repetitions by using
pruning rules and lemmatization.

Pruning rules affect backtracking, and therefore are part of the search plan.
Identical ancestor pruning causes the procedure to backtrack if the current goal
has the form LV DV [L] V C: if L has been inserted already in the candidate
model, or, dually, if the procedure is trying already to refute L, it is useless to
do it again.

Lemmatization is an extension of the inference system: when ME-contraction
removes [L], it means that no model of T satisfies L, hence T' = =L, and =L
can be added to T as a lemma. This holds, however, only if all subgoals of
L were eliminated without recurring to ME-reduction by ancestors of L (i.e.,
A-literals on the right of [L]). If an ME-reduction step with ancestor [A] was
used, the lemma being proved is =L V —A (no model of T satisfies L A A, hence
T | —LV—A). If a subgoal of L was eliminated by factoring® with a B-literal B
(on the right of [L]), the lemma being proved is =L V B (no model of T satisfies
L A-B, hence T |=-LV B).

For reasons of efficiency, lemmatization may be restricted to the generation
of unit lemmas, which are advantageous because a step with a unit lemma re-
duces the length of the goal. In Horn logic, all lemmas are unit lemmas, because
ME-reduction is not necessary. Therefore, unit lemmatization can be replaced
by caching, including success caching, where solutions are stored in a fast cache,

8 In a typical ME-derivation ME-reduction applies more frequently than factoring.



rather than being turned into lemmas, and failure caching, which saves the infor-
mation that a goal failed in order to avoid trying to solve it again (e.g., [110, 6]).
Caching has the same logical justification as lemmatization, but it is different
operationally: lemmas are used as premises for the regular inference mechanism
of the subgoal-reduction strategy; the information stored in the cache is used to
solve/fail a subgoal literal L without further inferences, based on the fact that
the cache contains a more general subgoal L’ that was solved or failed already.

Since it assumes that all lemmas are unit lemmas, caching is not consistent
with inference systems for first-order logic, which need ME-reduction and fac-
toring. It is not correct to solve a subgoal literal L by matching it with a cached
solution L’p of L', if the generation of this solution involved eliminating subgoals
of L' by ME-reduction or factoring, because in such a case not —L’p but some
non-unit lemma (=L’ V =A; ...V —A,)p was proved.

Both lemmatization and caching are enhancements of strategies that are
already complete. Since cache retrieval replaces the regular inference mechanism,
it is necessary to cache all the solutions in order to retain completeness. Also,
caching is incomplete in the presence of identical ancestor pruning, because if
identical ancestor pruning was used to prune the search of solutions of L’, there
is no guarantee that all solutions of L are instances of the cached solutions of L’
[6]. Lemmatization obviously does not affect completeness.

In a strategy with lemmatization the 7' component is no longer static, because
lemmas are added to T'. Since clauses are generated and kept, it becomes possible
to apply forms of contraction such as lemma subsumption or cache subsumption
(e.g., [6,129,38]). Similar to linear resolution, model elimination does backward
or forward reasoning depending on whether ¢y is a goal clause or not. Assume the
natural choice of picking as ¢ a goal clause: then lemmatization adds forward
reasoning to a backward-reasoning subgoal-reduction strategy. If the subgoal-
reduction mechanism is interpreted as eliminating models, dually lemmatization
can be interpreted as generating models, since a lemma is a logical consequence
of T. Systems such as SATCHMO [93] and MGTP [66] use Prolog technology
theorem proving as a basis for model generation.

Remarks and further reading Lemmatization was introduced with model
elimination in [89]. At the time of its first implementation [61], unrestricted
lemmatization generated more lemmas than the procedure could handle ef-
ficiently. This led to investigate weaker forms of lemmatization, such as C-
reduction [121]. After the inception ([130,132] and the MESON strategy in [91])
and maturation (e.g., [4,19]) of Prolog technology theorem proving, lemmatiza-
tion has been reintroduced, as in the METEOR theorem prover [5]. The analysis
in [113] discusses how lemmaizing and caching may reduce from exponential to
quadratic, or, at best, linear, certain measures of duplication in the search spaces
of model elimination for problems in propositional Horn logic. A general treat-
ment of lemmatization in supported strategies, covering lemmatization in model
elimination as a special case, was given in [38]: it includes a formalization of
caching and depth-dependent caching in iterative deepening strategies, and a



discussion of contraction and caching as ways of reducing redundancy. Improve-
ments of depth-first search with iterative deepening are proposed in [65].

The research on linear input resolution contributed to the invention of Pro-
log and logic programming: a theory-oriented introduction that emphasizes the
connections with automated deduction can be found in [88]. A main conceptual
difference is that in theorem proving one is interested in a refutation, whereas
in logic programming one is interested in all the answer substitutions. This af-
fects termination: in a theorem-proving problem, if the search space contains
linear refutations, depth-first search with iterative deepening is guaranteed to
find one and halt; in a logic programming problem, depth-first search with iter-
ative deepening will reach all solutions eventually, but may still fail to terminate
if the search space is infinite, because it deepens forever to look for more so-
lutions. Subsumption-based techniques to enhance termination in Prolog were
studied in [30]. Linear Completion is a linear strategy for logic programming
with rewrite systems (e.g., [53,33]). The effect of simplification on the termina-
tion of these programs was studied in [33], whose Linear Completion strategy
also features a form of lemmatization (answer rules are added to the program to
act as simplifiers). Section 8 in [33] contains comparisons with the subsumption-
based techniques of [30], and the earlier work on Linear Completion. The relation
between model elimination and computing answers in logic programming is in-
vestigated in [20]. Techniques similar to caching, called memoing, tabling, or
OLDT-resolution, have been developed independently in logic programming to
add a bottom-up component (logically, lemmas from the program) to top-down
evaluations. Symmetrically, magic sets add a top-down component (logically,
lemmas from the goal) to bottom-up evaluations in deductive databases. A sur-
vey of these areas was presented in [141], where more references can be found.

3.3 Tableaux-based strategies

While ordering-based strategies build implicitly many proof attempts, linear
strategies build a proof attempt at a time, and backtrack to try another one.
However, in clausal linear strategies the proof attempt is still implicit, because
the strategy works on a stack of clauses and reconstructs at the end the pro-
duced linear refutation. Tableau-based strategies are subgoal-reduction strategies
that inherit from natural deduction methods (e.g., analytic tableaux [126]) the
property of working explicitly on the proof attempt. The inference system of
the strategy is used to build a tableau: in essence, a tableau is a survey of the
possible interpretations of S, with each branch representing an interpretation.
If a branch contains a contradiction, the branch is closed, because it cannot be
a viable interpretation. The purpose of the strategy is to develop the tableau
to close all its branches, and show that S is unsatisfiable; the resulting closed
tableau is the proof. The refutational completeness of the inference system guar-
antees the existence of a closed tableau if S is unsatisfiable. The search plan
tries one tableau at a time: during the search an open tableau is a proof at-
tempt, and if the current tableau cannot be closed, the search plan backtracks
to try a different tableau. A fair search plan guarantees that a closed tableau will



be generated if one exists. In propositional logic complete tableaux are finite, so
that if the strategy terminates with a complete open tableaux its open branches
represent models of S. In first-order logic the process of completing a tableau is
infinite in general, but in some cases it is possible to extract a finite model from
an open tableau.

Inference rules In model elimination tableauz [87,86], the tableaux are built
by using the inference rules of model elimination. A tableau is a tree with nodes
labelled by literals. Given S, the strategy selects a clause @9 = L1 V...V L, to
form the initial tableau Xp, while T = S — {¢pg} contains the remaining input
clauses. Xy is a tree with no label at the root and n leaves labelled by the
literals Ly ... Ly, so that the branches represent all the ways of satisfying ¢q. If
T contains a clause F1 V...V Fj such that Fio = —~L;0, ME-extension expands
node L with children F ... F}y, closes node F; and applies o to all literals in the
resulting tableau. ME-reduction closes a leaf L if it has an ancestor L’ such that
Lo = —L'o, and applies the unifier to all literals in the tableau. Factoring is also
called merging, or forward merging, in tableaux terminology [139]: it closes a leaf
L if there is an open node L’ (e.g., sibling of an ancestor of L) such that Lo = L',
and applies o to the tableau. When all the children of a node are closed, the
node itself is closed (this corresponds to ME-contraction), and a tableau is closed
when all its nodes are. Roughly speaking, open leaves in a tableau correspond
to B-literals in a chain, while open internal nodes correspond to A-literals. A
structural difference between the two is that ME-reduction and ME-contraction
on chains remove literals, whereas in a tableau nodes are closed but not removed.
The precise correspondence between model elimination operating on chains and
model elimination operating on tableaux can be found in [18].

Assuming that Lg is the language of clauses and tableaux on signature O,
the characterization of inference rules as functions f: P(Lg) — P(Leo) x P(Le)
still holds. For instance, ME-extension takes a tableau and a clause and gener-
ates a tableau, while the other rules take a tableau and produce another tableau.
Putting clauses and tableaux in Lg is acceptable, considering that clauses and
literals are terms, hence trees, and tableaux are trees. The rules in a basic
subgoal-reduction strategy are expansion rules (regardless of whether the stra-
tegy works on clauses, or chains or tableaux), and what they generate is used to
replace the previous goal, rather than being added to a set as in ordering-based
strategies.

Search plans The elements of States have the form (T; X'), where X is the
current tableau. The search plan X = ((, &1, &2, w) works similarly to those for
clausal linear-input strategies: £; selects an open leaf in the current tableau
(i.e., if open(X) denotes the open leaves in X, & ((To; Xp) ... (Ti; X;)) = L €
open(X;)); ¢ selects the inference rule and decides backtracking; &, selects a
premise from T if needed; and w((T; X)) = true if X is closed. Chains induce
to think of left-to-right or right-to-left as the natural choices for &. Working
with tableaux, on the other hand, & can be any rule to visit a tree. The rule



corresponding to selecting the leftmost literal in a chain is to select the leftmost
open node in a tableau.

Given a theorem-proving problem S = T U {po}, a tableau-based strategy
C =(I,%), with ¥ =< (,&,&,w >, generates the derivation

(To;Xo)E--'(Ti;Xi)'E

such that Ty = T, Xy is the tableau for ¢, and Vi > 0, if w((T;X;)) = false,
51((To; XQ) e (T’l, Xl)) = L, then

(Ts; (X, ) if C((To; Xo) - .- (Ti; ), L) = f> e 1

(To1: Xit) = and &((To; Xo) - .. (133 X5), L, f) =4

cHb (Ty; f(X:) i C(Tos Xo) ... (T35 X5), L) = fr e ]
(Tifl; Xifl) if C((To, XQ) NN (T’l, XZ), L) = backtrack.

Refinements The refinements of Section 3.2 apply also in the context of ta-
bleaux. Identical ancestor pruning is replaced by equal predecessor fail, or reg-
ularity: if a node is identical to one of its ancestors, the tableau is said to be
irregular; if the strategy generates an irregular tableau, it discards it and back-
tracks.

When all the children of a node L are closed, L itself is closed, and a lemma
=L is proved. Since closed nodes are not removed, it is not necessary to add —L to
T': the information about the lemma is encoded in the tableau. Lemmatization in
tableaux [87,86] is also known as regressive merging or backward merging [139],
because in the context of tableaux, and from an operational point of view, it
has the appearance of the dual operation of merging. Applying a merging step
consists in closing an open leaf L that unifies with another open leaf L’. Since
L' is an open leaf, the strategy has not selected it yet, and this gives an idea of
merging forward (collapsing a node on a node that will be selected). Applying a
lemma consists in closing an open leaf L that unifies with a closed node L’ (i.e.,
a lemma —L'). Since L' is closed, it has been selected already, and this gives an
idea of merging backward (collapsing a node on an already selected node).

If the problem is first-order, not all lemmas are unit lemmas: if nodes below
L were closed by ME-reduction steps with ancestors of L (e.g., Ay ... A,), the
lemma attached to the closing of L is a non-unit lemma (e.g., 7LV-A4; ... V-2A,).
Non-unit lemmatization can be implemented as folding-up [86,139], which is a
way of encoding the non-unit lemma in the tableau. Symmetrically, folding-down
implements merging [64].

If lemmas are not generated explicitly, it may be more complicated to use
them for contraction (e.g., subsumption) within 7. The tableau-based prover
Setheo [87,64] uses subsumption, tautology deletion and purity deletion during
the pre-processing of the input. If the Delta pre-processor [120] is invoked, the
subgoal-reduction phase in Setheo is preceded by a phase where UR-resolution
(Unit-Resulting resolution: unit electrons resolve against all but one literal in
the nucleus to produce a unit resolvent [94]) and other restricted forms of res-
olution are applied to expand the set T', and the contraction rules are applied



throughout this phase. The principle that makes expansion by resolution useful
is essentially the same that makes lemmatization useful: it makes T" more po-
werful for the subgoal-reduction phase, and it provides an integration of forward
reasoning (hence contraction) and backward reasoning (hence goal-sensitivity).
A difference is that unit lemmas are often less general than UR-resolvents, ex-
actly because they are generated during the subgoal-reduction phase. On some
problems unit lemmas are advantageous, because intuitively in terms of search
they are “closer” to the solution. On other problems, unit-resolvents are more
useful: exactly because they are more general, they are more powerful for unit
subsumption and the subgoal-reduction inferences themselves. Another feature
of Setheo are anti-lemmas, which is basically a form of depth-dependent failure
caching.

A different approach to enhancing tableau-based methods with contraction
is tableau subsumption [86,16], which is based on defining a subsumption order-
ing among tableaux, and using tableaux to subsume others, similar to clausal
subsumption. There are two main difficulties with defining a practical notion
of tableau subsumption [16]. First, comparing entire tableaux seems inefficient.
Thus, one would like to compare only open leaves (e.g., X; subsumes Xy if
open(X) subsumes open(Xs)). However, a subsumption rule that compares only
leaves destroys completeness, because completeness requires remembering ances-
tors for ME-reduction. Roughly speaking, for &X; to subsume Ab, it is also nec-
essary that all ancestors of open leaves in X5 appear as ancestors of open leaves
in &X;. Therefore, one would like a notion of tableau subsumption that preserves
completeness without imposing to compare entire tableaux. The approach of [16]
consists in defining a complete restriction of model elimination, called disjunctive
positive model elimination (DPMEFE), which is a refinement of the positive model
elimination of [112]: in DPME the only ancestors needed for ME-reduction are
disjunctive positive ancestors, that is, positive ancestors coming from non-Horn
clauses.

Then, a subsumption relation among tableaux is defined based on open leaves
and disjunctive positive ancestors only. The potential downside of this approach
is that the advantage of tableau subsumption may be outweighted by the dis-
advantage of restricting ME-reduction to disjunctive positive ancestors. In prac-
tice, ME-reduction is very important to keep the stack of goals from growing too
large. The solution of the Mission prover [16], where disjunctive positive model
elimination with tableau subsumption is implemented, is to use unrestricted
ME-reduction, while considering only disjunctive positive ancestors in tableau
subsumption.

The second issue is that in order to apply tableau subsumption the strategy
needs to generate and save tableaux. In other words, one needs to abandon
the subgoal-reduction framework, where only one tableau is kept in memory,
and adopt the style of ordering-based strategies, envisioning a strategy that
generates all possible tableaux, and applies forward and backward subsumption
among tableaux [16]. Such a strategy is an ordering-based strategy that works
with a set of tableaux, instead of a set of clauses. It is quite natural, however,



to translate tableaux into clauses, and define such a strategy to work on clauses
of A-literals and B-literals.

A less radical option is to maintain the subgoal-reduction framework, but
save the predecessors of the current tableau, and use them for forward tableau-
subsumption. The result is a linear tableau-based strategy with derivations in
the form (Ty; Xo; Ao)Fe ... (Ty; Xi; A;) e . .., where A; contains the predecessor
tableaux Xy ...X;_1. If a newly generated tableau is forward-subsumed by one
of its predecessors, the strategy backtracks.

Table 3 summarizes some refinements of subgoal-reduction strategies (the
distinction between clausal and tableaux model elimination in the table is mostly
one of terminology, since almost everything that can be done in one can be done
in the other).

Combination of forward Contraction Pruning
and backward reasoning
Model lemmatization lemma subsumption |identical ancestor
elimination C-reduction pruning
success caching cache subsumption | failure caching
Prolog tabling/memoing cut
Datalog magic sets
Tableaux regressive merging  [tableau subsumption| irregularity
folding up anti-lemmas
UR-resolution subsumption
hyperlinking tautology deletion
purity deletion

Table 3. Refinements of subgoal-reduction strategies

Remarks and further reading General treatments of tableaux-based strate-
gies and their relations with other strategies can be found in [27,49].

Equality has long been a weak point of subgoal-reduction strategies, because
for reasoning with equalities it is natural to generate and keep equations, and use
them to rewrite other equations. In [21], approaches to equip analytic tableaux
to handle equality include adding expansion rules for equality, or using forms of
E-unification. Exactly because forward-reasoning with equalities is not a native
feature of tableaux, in this context equality reasoning is considered as a form
of theory reasoning, to be handled by a specialized component of the theorem
prover: a general treatment of this topic can be found in [15]. E-Setheo is a
version of Setheo with equality, continuing in the spirit of [120] of combining
forward-reasoning and subgoal-reduction.

In addition to Setheo and Mission, other model-elimination tableau provers
include Protein [17] and KoMeT [26], while provers based on analytic tableaux



include TAP [23,22] and Tatzelwurm [29]. Protein extends Prolog technology
theorem proving with theory reasoning; KoMeT has lemmatization together with
lemma subsumption, depth-dependent failure caching and some theory reason-
ing; Tatzelwurm enhances tableau-based strategies with UR-resolution and in-
stance generation by hyperlinking [84].

4 Discussion

An advantage of subgoal-reduction strategies is that at each stage of the deriva-
tion, they need to keep in memory only the current proof attempt (e.g., the
current goal and its ancestors, or the current tableau), whereas ordering-based
strategies need to keep in memory all generated clauses not deleted by con-
traction (e.g., G at stage i). Thus, if we call active search space what is held
in memory, subgoal-reduction strategies tends to have a smaller active search
space than ordering-based strategies. It is a fallacy, on the other hand, to con-
clude that the search space generated by subgoal-reduction strategies is also
small. This fallacy is due to a confusion of active search space and generated
search space. Because the subgoal-reduction strategy searches by backtracking,
its generated search space is equal to the union of all the partial proofs it has
attempted. Thus, the generated search space may be large, even if the active
search space is small.

Another misconception is to say that ordering-based strategies search for a
clause — the empty clause — whereas tableau-based strategies search for a proof.
All theorem-proving strategies search for a proof. The difference is that ordering-
based strategies build their proof attempts implicitly, and when an empty clause
is generated, extract the completed proof from the generated search space (e.g.,
G3). On the other hand, tableau-based strategies generate explicitly one proof
attempt at a time, backtrack to modify it, and succeed when it is completed.
A related error is to blame ordering-based strategies for generating huge proofs:
this is based on mistaking the generated search space for the computed proof.
Table 4 clarifies these points.

|| || Ordering-based | Subgoal-reduction ||

Generated search space|| all generated clauses | all tried tableaux
Active search space all kept clauses the current tableau
Generated proof the ancestor-graph of O| the closed tableau

Table 4. Two main classes of strategies (revisited)

If small active search space is an advantage of subgoal-reduction strategies,
a main advantage of ordering-based strategies is contraction, which not only
deletes existing redundant clauses, but also prevents their descendants in the
search space from being generated. The study in [39] analyzes this behavior in



term of bounded search spaces defined over the infinite search spaces of theorem-
proving problems, and shows that in a contraction-based derivation the bounded
search spaces are monotonically decreasing. In summary, the generated search
space is typically large and the computed proof represents a small portion of it
for both classes of strategies. The difference is in how the search proceeds, as
reflected by small active search space on one hand, and monotonically decreasing
bounded search spaces on the other.
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