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a b s t r a c t 

This paper proposes a novel method for antiresonance assignment and regional pole place- 

ment in linear time-invariant vibrating systems, by means of state feedback control. The 

method also handles asymmetric systems and unstable ones too. Additionally, it works 

with both point and cross-receptances and handles the simultaneous assignment of more 

antiresonances in the same receptance. 

The method relies on two stages. In the first stage, the desired pairs of closed-loop 

zeros of a prescribed receptance are exactly assigned. In the second stage, all the closed- 

loop system poles are placed within the desired region of the complex plane. This feature 

allows the controller to impose the system stability and to feature the desired dynamic 

properties through a regional pole placement. Since the gain correction computed in the 

second stage is obtained as a solution of the homogeneous system related to the zero- 

assignment problem, it does not cause any spillover on the assigned zeros. The first step 

exploits the receptance method for gain computing, while the second step uses the first- 

order model formulation to exploit all the benefits of the Linear Matrix Inequality theory, 

by formulating a bilinear matrix problem solved as a semidefinite optimization aimed at 

reducing the control effort. 

The chief original contribution of the proposed method is that it embeds an a-priori 

imposition of both the closed-loop stability and the pole clustering in the desired re- 

gions, by overcoming the limitations of most of the methods appeared in the literature. 

The method effectiveness is demonstrated through five meaningful test cases. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

1. Introduction 

1.1. Motivations and general introduction 

Antiresonance assignment, often denoted as zero assignment, is a powerful technique for vibration control since it allows 

local vibration absorption by imposing one or more antiresonances (i.e. a pair of complex conjugate zeros) in the receptance 

from the force exciting the c -th degree of freedom (DOF) to the displacement of the r -th coordinate. In such a way, when

the system is excited at the c -th DOF by a harmonic force matching the antiresonance frequency, the steady state vibration
at the r -th coordinate vanishes. 
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Passive and active approaches have been developed over the decades to cope with this task. The formers exploit the 

use of passive devices such as masses, inerters, dampers or springs, to modify the system inertial, damping and elastic 

properties, either by increasing the number of DOFs (see e.g. [1–3] ) or by preserving it ( [4–8] ). In contrast, active control

techniques ( [9–14] ) exploit active devices such as actuators that supply the desired control forces based on the measures

provided by sensors and feed back to the controller. Semi-active approaches have been also developed, where active devices 

are adopted to adapt the antiresonance frequency ( [15–17] ). 

The effect of the control can be thought of as an “active modification” of the system inertial, damping and elastic prop-

erties, although passive or active approaches are not equivalent in term of symmetry of the modifications. Indeed, in the 

case of passive approaches to antiresonance assignment, the additive modifications of the system matrices are symmetric 

and semi-definite positive, in accordance with the well-known reciprocity law. Hence, the modified system will preserve the 

symmetry and positive semidefiniteness of the original one, as well as its asymptotic stability. In contrast, if active control 

is adopted, the additive modifications of the open-loop system matrices are usually asymmetric, unless co-located control 

is performed. Hence, the closed-loop system matrices can become asymmetric and negative definite. Therefore, placing the 

system zeros by means of active control, can lead to system instability if the pole spillover is not properly accounted for in

the controller design. 

1.2. State of the art on zero assignment through active control 

Antiresonance assignment through active control has been studied by the most eminent researchers in the field of dy- 

namic structural modification, that have proposed some meaningful results for linear time-invariant (LTI) systems. One of 

the first works addressing active antiresonance assignment in vibrating systems has been proposed by Ram in [9] , where the

author proposed a state feedback method to assign the zeros of a receptance together with two poles, while the remaining

poles match those of the open-loop system. The method computes the position feedback gain and the force distribution vec- 

tor for the case of rank-one control, by admitting also sparse vectors, and has been developed with reference to symmetric,

undamped systems, with no possibility of modifying damping of pole or zero and zeros. 

A milestone in the field of active control of LTI vibrating systems is the work [10] proposed by Mottershead and Ram.

This work introduces the receptance method to active vibration control and applies it to assign a set of zeros, as well as

to concurrently assign a set of poles and zeros in the case of full state-feedback control of symmetric LTI systems. Such

a method does not account for spillover on the unassigned poles due to zero assignment, and hence does not ensure the

asymptotic stability of the controlled system for any arbitrary system and set of desired zeros. The risk of instability has

been overcome in [11] where Mottershead et al. focused on assigning the zeros of a point-receptance, together with the 

poles in the case of co-located output feedback in symmetric LTI vibrating systems. Hence, stability is always ensured for 

negative feedback due to the pole-zero interlacing properties of co-located systems. 

Active antiresonance assignment for symmetric LTI systems with time delay has been investigated by Singh et al. in 

[12] and [13] , where the authors exploited the Taylor series in order to compute the control gains for the assignment of one 

pair of complex conjugate zeros of a receptance, in the case of single-input and single-output control. The limitation of this

method is that it does not introduce any a-priori condition to ensure the asymptotic stability of the controlled system. 

1.3. Contributions of this paper 

The literature review highlights that the methods available in the literature are focused on the assignment of the zeros, 

while do not include any a-priori condition for the proper placement in the complex plane of the unassigned closed-loop 

poles. In the light of this limitation, the goal of this paper is to include specifications on all the closed-loop poles to ensure

stability and to ensure the desired transient properties such as damping, settling time, decay rate. This is here achieved

by clustering the poles in some suitable sub-regions of the left-hand half-plane. This approach is denoted as “regional pole 

placement” by contrast with usual pole placement that is pointwise and requires each pole to lie in an exact point of the

complex plane. Relaxing the specification on the poles allows for imposing the antiresonances while clustering all the poles. 

A two-stage strategy is adopted. In the first stage, pointwise assignment of the desired pairs of zeros is done in the

receptance of interest, by solving an underdetermined linear system formulated by means of the receptance approach pro- 

posed in [10] . The degrees of freedom in the solution of such a system of linear equations are then exploited in the second

stage to cluster all the poles in the region of interest, while avoiding spillover on the assigned zeros. In the second stage,

the theory of Linear Matrix Inequality (LMI) is adopted. 

The convenience of exploiting two-stage approaches in vibration control has been already shown in the field of pole 

placement (see e.g. [ 18 , 19 ]) In the less-investigated case of antiresonance assignment, it is enforced by the fact that the

methods based on just the first-order models of the system are usually not suitable for several reasons. First, they usually 

require the inversion of the mass matrix of the adjunct system which can be ill-conditioned or even singular (as often hap-

pens for cross-receptances). Additionally, the adjunct system is often nearly uncontrollable. In the light of these limitations, 

ad-hoc methods have been developed for antiresonance assignment in vibrating systems, as those exploited in the first stage 

of the proposed paper, although these methods have the limitations discussed in Section 1.2 . 

As for the use of the LMI theory, several papers have already successfully exploited it in the field of pole assignment.

Indeed, it has been widely proved that LMI is effective in accomplishing other secondary tasks for the control, besides place-
2 
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ment of the poles; additionally, LMIs can be solved numerically through well-established and reliable numerical optimization 

algorithms. A common secondary task of LMIs is enhancing the closed-loop system robustness by assuming different struc- 

tures of the uncertainties (see e.g. [20–24] ). Indeed, with some conservatism, the robust assignment of the closed-loop poles 

can be solved through LMI optimization [20] . Robust pole placement of linear systems using state-derivative feedback has 

been also solved through LMI in [25] . Mixed H 2 /H ∞ 

control synthesis with regional pole placement is also solved through

LMI in [20] . Constraints on the size of feedback gain can be catered naturally through LMI, to find the minimum feed-

back gain with respect to different norms, to perform pole placement [26] . The use of LMI regions to prescribe the system

transient dynamics has been also successfully applied to partial eigenvalue assignment, by also exploiting left-eigenvectors 

parametrization [27] . LMIs have been attractive for the analysis of stability of systems affected by time delays too [28] . For

example, in [18] the formulation of LMI regions for retarded systems are exploited to ensure stability of the secondary poles

due to the time delay. 

The literature review, summarized through the aforementioned papers, shows the great attention gained by pole place- 

ment in the control community; on the other hand, it reveals the lacks in the field of antiresonance assignment and the

need to new methods to solve this relevant control problem. 

The paper proposes the technique with its mathematical background (Section 2), and its validation by means of five 

different numerical test cases (Section 3). The examples are developed for the case of rank-one control, although the idea 

can be extended to higher-rank control with just some minor adaptations. 

2. Method description 

2.1. Problem statement 

Let us consider a N-DOF LTI vibrating system modelled through its mass, damping, stiffness and input matrices, denoted 

respectively M , C , K ∈ R 

N×N , b ∈ R 

N×N b ( N b is the number of independent control forces). The displacement vector is q ∈ R 

N ,

while the control forces are collected in vector u ∈ R 

N b . It is assumed that the system is controllable and that the full state

feedback is available. The control forces are computed through the feedback gain matrices f , g ∈ R 

N×N b , to be computed to

assign the desired dynamic behavior to the controlled system. The model of the controlled system in the time domain t is

therefore: {
M ̈q ( t ) + C ̇ q ( t ) + Kq ( t ) = bu ( t ) 
u ( t ) = −f T ˙ q ( t ) − g 

T q ( t ) 
(1) 

The poles of the system are the roots of the characteristic equation P p (s ) : 

P p ( s ) = det 
(
s 2 M + s C + K 

)
(2) 

The zeros of the receptance h rc (s ) , from the force exciting the c -th DOF to the displacement of the r -th DOF, are the roots

of the characteristic equation P rc 
z (s ) : 

P rc 
z ( s ) = det 

(
s 2 M rc + s C rc + K rc 

)
(3) 

Matrices M rc , C rc , K rc ∈ R 

( N−1 ) ×( N−1 ) are obtained by removing the r-th column and the c-th row from the original system 

matrices M , C , K ∈ R 

N×N and lead to the so-called adjunct system. 

Given a self-conjugate set of N z ≤ 2( N − 1 ) zeros, μ1 , ..., μN z ∈ C , the aim of the control design is to compute the feedback

gains such that N z closed-loop zeros are exactly assigned for an arbitrary receptance h rc (s ) (from the c -th force to the

response of the r -th coordinate) while the poles λ1 , ..., λ2 N ∈ C preserve asymptotic stability by lying in the left half of the

complex plane or in some prescribed locations of the stable half-plane. Two problems can be therefore stated and will be

solved within the same mathematical frame. In all the problems, the system matrices M , C , K , b are assumed as fixed and

known. 

Problem 1. Given a receptance h rc (s ) and a self-conjugate set of N z ≤ 2( N − 1 ) desired zeros 
∑ 

d = { μ1 , μ2 , ..., μN z } , finding

the gain matrices f and g such that: 

1 The closed-loop system receptance h rc (s ) has the desired zeros; 

2 The set of the closed-loop system poles { λ1 , λ2 , ..., λ2 N } ensures asymptotic stability, i.e. Re (λ) < 0 for any λ. 

Problem 2. Given a receptance h rc (s ) and a self-conjugate set of N z ≤ 2( N − 1 ) desired zeros 
∑ 

d = { μ1 , μ2 , ..., μN z } , finding

the gain matrices f and g such that: 

1 The closed-loop system receptance h rc (s ) has the desired zeros; 

2 The closed-loop poles { λ1 , λ2 , ..., λ2 N } lies in a prescribed subregion of the complex plane, denoted D . 

The solving strategy proposed in this paper for the two problems is a two stages approach. In the first stage, the gains en-

suring the correct placement of the desired zeros are computed by exploiting and adapting some reliable methods proposed 

in the literature, such as those using the system receptances. In the second stage, by exploiting the no-spillover condition 

on such zeros and LMI constraints, the poles are assigned in accordance with the requirement of each problem. 
3 
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2.2. Formulation of the closed-loop zero assignment problem 

The placement of the N z desired closed-loop zeros μ1 , μ2 , ..., μN z can be performed by any of the methods proposed in

the literature, whenever it is numerically reliable. An effective way is exploiting the receptance matrix of the system. Indeed, 

although the method proposed in this paper will require the system matrices in the second stage, the use of receptance in

the zero-assignment stage is convenient to handle possible numerical ill conditionings. For example, the well-established 

receptance method proposed in [10] is here adopted, and briefly recalled in this Section, to handle the case of rank-one

control, i.e. N b = 1 . Nonetheless, the idea proposed in this work can be extended to an arbitrary number of control inputs, by

adopting proper methods for solving the zero-assignment problem in the first stage, or just through a recursive application 

of the first stage of the proposed method [29] . 

In the case of rank-one control, the receptance matrix of the open-loop, H (s ) , and closed-loop 

˜ H (s ) systems are defined

as: 

H ( s ) = 

(
s 2 M + s C + K 

)−1 ∈ C 

N×N (4) 

and 

˜ H ( s ) = 

(
s 2 M + s 

(
C + b f T 

)
+ 

(
K + b g 

T 
))−1 ∈ C 

N×N (5) 

The rc-th term in the receptance matrix of the closed-loop system can be computed by exploiting the Sherman-Morrison 

formula and some algebraic manipulations: 

˜ h rc ( s ) = 

e T r 

[(
1 + ( s f + g ) 

T 
H ( s ) b 

)
H ( s ) − H ( s ) b ( s f + g ) 

T 
H ( s ) 

]
e c 

1 + ( s f + g ) 
T 
H ( s ) b 

(6) 

where e r and e c are the unit vector obtained by extracting respectively the r-th and the c-th column from the identity 

matrix. 

The zeros of the system are the roots of the numerator of Eq.(6). Therefore, for a desired zero μi , the control synthesis

problem is finding the gains f and g ensuring that: 

e T r 

[(
1 + ( μi f + g ) 

T 
H ( μi ) b 

)
H ( μi ) − H ( μi ) b ( μi f + g ) 

T 
H ( μi ) 

]
e c = 0 (7) 

Once μi , H ( μi ) and b are known, Eq.(7) is a linear problem in the unknown f and g . 

By defining the following auxiliary complex vector t i as follows: 

t i = h rc ( μi ) H ( μi ) b −
[
e T r H ( μi ) b 

]
H ( μi ) e c (8) 

and by collecting all the N z assignment problems, it is possible to write the linear system for i = 1 , ..., N z in matrix form: ⎡ 

⎢ ⎢ ⎣ 

μ1 t 
T 
1 t T 1 

μ2 t 
T 
2 t T 2 

. . . 
. . . 

μN z t 
T 
N z 

t T N z 

⎤ 

⎥ ⎥ ⎦ 

{
f 
g 

}
= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

−h rc ( μ1 ) 
−h rc ( μ2 ) 

. . . 
−h rc ( μN z ) 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(9) 

An extension for the case of asymmetric matrices is provided in Section 3.5.2. 

2.3. Assignment of the desired closed-loop zeros 

Eq.(9) reveals that the zero-assignment problem is a linear problem and each desired antiresonance frequency for one 

receptance leads to a pair of equations. The zero assignment condition can be therefore written in the compact notation of

a linear system, with the obvious meaning of matrix G ∈ C 

N z ×2 N and vector y ∈ C 

N z : 

Gk = y (10) 

k = 

{
f 

g 

}
∈ R 

2 N×1 is the gain vector for state feedback control. 

Linear systems are also obtained for arbitrary rank and dimension of the input matrix b . 

Since the antiresonances are the roots of the characteristic equation of the adjoint system, their number is always smaller 

than N, and therefore the system Eq.(10) is underdetermined and has infinite solution. All these solutions lead to exactly ful-

fill the specifications on the zeros, while lead to different poles. Hence the computation of k should be performed carefully.

A novel approach to tackle this problem is proposed in this paper. 

To correctly solve the Problems 1 and 2 the complete solution k of Eq.(10) should be chosen within a subspace of di-

mension 2 N − N z and defined as the sum of the particular solution of the non-homogeneous equation, denoted k 0 , and a

solution k h of the homogeneous system G k h = 0 : 

k = k 0 + k (11) 
h 

4 
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A more convenient way to formulate the solution of the homogeneous system is through the matrix V whose dimension 

is 2 N × ( 2 N − N z ) and whose columns span the nullspace (kernel) of G , i.e. V ∈ span ( ker (G ) ) , and through vector which k r 

represents a ( 2 N − N z ) -dimensional vector of coefficients: 

k = k 0 + V k r (12) 

Since 
∑ 

d is closed under conjugation, then matrix V can be conveniently chosen to be real, thus leading to a real vector

k r . 

Eq. (12) allows outlining the proposed method: 

1. In the first stage, it is computed k 0 to correctly place the desired pair of zeros. The pointwise pre-allocation of some

poles can be also exploited in this stage to find a convenient solution that improves the numerical solution of the

second stage or increase the robustness of the closed-loop system. The description of this stage is provided in Section 

2.4. 

2. In the second stage, it is computed k h to place the poles. Since k h is a solution of the homogeneous system related

to the zero-assignment problem, k h will not cause any spillover on the assigned zeros. On the other hand, it can 

correctly place the poles if properly computed. Details of the second stage are provided in Section 2.5. 

2.4. First stage: assignment of the zeros 

The particular solution k 0 can be computed in several ways since the system in Eq.(10) will be always underdetermined. 

As a matter of fact, G ∈ C 

N z ×2 N with N z ≤ 2( N − 1 ) . 

The easiest way is to solve the linear system by looking for the minimum norm solution, which is an effective approach

to reduce the control effort. Since k 0 should be real, the system in Eq. (10) can be transformed into the following one, to

get a simpler numerical solution: [
Re ( G ) 
Im ( G ) 

]
k 0 = 

[
Re ( y ) 
Im ( y ) 

]
(13) 

It should be noted that there will be only two linearly independent equations for each pair of complex conjugate desired

zeros, and therefore Eq.(13) is still an underdetermined system. 

An improved solution can be adopted if N z < 2( N − 1 ) , by temporarily placing 2 N − N z poles in some arbitrary locations

ensuring that Re (λ) < 0 , in the case of Problem 1 , or belonging to the desired subregion D , that is a smaller region of the

left-hand side complex plane, in the case of Problem 2 . These poles will be perturbed by the term k h in the second stage,

still remaining in the desired subregion of the complex plane. The reason of this choice is selecting, among the infinite gain

matrices placing the zeros, the one that fulfills the requirement on some poles too. Additionally, a wise choice of such poles

is effective to increase the robustness of the closed-loop system too, as will be shown in the example in Section 3.4. 

The system for the concurrent pole-zero assignment can be formulated, again, as an underdetermined or determined 

linear system, depending on the number of assigned poles and zeros: [
G z 

G p 

]
k 0 = 

{
y z 
y p 

}
(14) 

where G p k 0 = y p represents the undetermined linear system for the assignment of 2 N − N z poles. The formulation of G p and 

y p can be, for example, obtained through the already mentioned receptance method [10] and are here omitted in this paper

for brevity. 

2.5. Second stage: assignment of the poles within the desired feasible region 

2.5.1. Definitions and preliminaries 

Differently to the first stage of the method that can rely on receptances, this stage adopts the first-order realization of

the dynamic model, to take advantage of the well-established mathematical frame of the LMIs. 

By assuming that M is invertible, the system model in Eq.(1) can be cast in the first-order form: 

˙ x ( t ) = Ax ( t ) + Bu (t) (15) 

The state vector is x ∈ R 

2 N , A ∈ R 

2 N×2 N is the state transition matrix and B ∈ R 

2 N×N b is the input matrix: 

x = 

{
˙ q 

q 

}
A = 

[
−M 

−1 C −M 

−1 K 

I 0 

]
B = 

[
M 

−1 b 

0 

]
(16) 

If M is not invertible, a similar problem formulation could be adopted by exploiting the descriptor-form of the first-order 

representation, and the suitable LMIs. This topic is, however, out of the scope of this paper. 

The pole specifications of both Problems 1 and 2 can be tackled by defining a subregion of the complex plane, henceforth

denoted D , where the poles should lie. A first-order dynamical system ˙ x = Ax is called D -stable if all the eigenvalues of A ,
5 
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i.e. the system poles, belong to D . A simple characterization of the D -stability can be obtained through the LMI regions. An

LMI region is characterized by the characteristic matrix �D ( A , X ) : 

�D ( A , X ) = R � X + Z � ( AX ) + Z 

T 
� ( AX ) 

T (17) 

where � denotes the Kronecker product, R is a symmetric matrix and Z is a matrix that are used to define the subset of

the complex plane D ⊆ C as D = { c ∈ C : f D (c) ≺ 0 } and f D (c) = R + cZ + c̄ Z 

T . LMI regions are convex and symmetric with

respect to the real axis. For instance, the left-half plane is an LMI region obtained by setting R = 0 and Z = 1. LMI regions with

different shapes such as conic sectors, vertical half-planes, horizontal strips, disks, ellipses, parabolas and hyperbolic sectors 

can obtained too by adopting suitable values of R and Z [20] . Section 3.2 provides some examples of LMI with the related

definitions of R and Z . Robustness of the solution can be also handled by LMI theory, by modifying �D to include stability

conditions under uncertainty, such as those proposed in [21] or [30] . LMIs can be intersected too, to generate manifold

LMI regions. Indeed, given two LMI regions D 1 and D 2 , together with their characteristic matrices �D 1 
( A , X ) and �D 2 

( A , X ) ,

the intersection D = D 1 ∩ D 2 is an LMI region too, whose characteristic matrix is �D 1 ∩ D 2 ( A , X ) = diag ( �D 1 
( A , X ) , �D 2 

( A , X ) ) .

Therefore, by exploiting LMIs it is possible to represent several regions of the complex plane ensuring the desired damping, 

overshoot, natural frequencies, rise time or settling time [20] . 

Given D , the system ˙ x = Ax is D -stable if and only if there exists a symmetric matrix X such that [20] : 

�D ( A , X ) ≺ 0 , X = X 

T 	 0 (18) 

2.5.2. Application of LMI regions to the placement of the closed-loop poles 

Once k 0 has been computed such that a set of closed-loop zeros have been properly assigned, for the receptance of 

interest, the closed-loop poles can be clustered into LMI regions exploiting the degree of freedom in the choice of the

solution k provided by the term V k r in Eq.(12). Indeed, the first order realization of the controlled system is: 

˙ x = 

(
A − B ( k 0 + V k r ) 

T 
)
x (19) 

that can be written in the following form by introducing the dynamic matrix of the system after the first stage of the control

synthesis, denoted A 1 = A − Bk 

T 
0 : 

˙ x = 

(
A 1 − Bk 

T 
r V 

T 
)
x (20) 

Matrix �D of the LMI in Eq.(18) is recast in this case as follows: 

�D ( A 1 , k r , X ) = R � X + Z �

((
A 1 − Bk 

T 
r V 

T 
)
X 

)
+ Z 

T 
�

((
A 1 − Bk 

T 
r V 

T 
)
X 

)T 
(21) 

Hence, to achieve D -stability, for an arbitrary definition of D , it is necessary to compute k r and X such that: 

�D ( A 1 , k r , X ) ≺ 0 , X = X 

T 	 0 (22) 

The assignment problem for the closed-loop poles can be solved through the non-linear SDP optimization in Eq.(23): 

min ‖ 

V k r ‖ 

2 

subj �D ( A 1 , k r , X ) ≺ 0 

X = X 

T 	 0 

(23) 

Since both k r and X are unknown, Eq.(23) is a bilinear matrix inequality (BMI). Solving BMIs is not always trivial since

BMIs are non-linear and non-convex function. Solution methods for BMIs are currently subject of wide researches in the 

mathematical research community and several software for solving them are now available. A simpler solution approach, 

that fits with the case under investigation, is also proposed in this paper by recasting the nonlinear problem in Eq.(23) into

a linear one to be solved within the frame of LMI. The numerical tests will exploit it and will compare its results with those

provided by a commercial BMI solver. 

2.5.3. Transformation of the BMI into a LMI 

Let us introduce an auxiliary unknown vector d = V k r and define p = Xd . After some manipulations, Eq.(21) becomes a

LMI with respect to p and X : 

�D ( A 1 , p , X ) = R � X + Z �

(
A 1 X − B p 

T 
)

+ Z 

T 
�

(
A 1 X − B p 

T 
)T 

(24) 

The D -stability condition in Eq.(18) is translated into the following one, with p and X as the unknowns: 

�D ( A 1 , p , X ) ≺ 0 , X = X 

T 	 0 (25) 

The solution of the LMI in Eq.(25) can be handled with a convex semidefinite programming (SDP), that is easily solvable

with interior-point techniques. In this work it is proposed to compute the gains by solving the following SDP minimization: 

min ‖ 

p ‖ 

2 

subj �D ( A 1 , p , X ) ≺ 0 

X = X 

T 	 0 

(26) 
6 
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Table 1 

Summary of the five test cases. 

Test case section 3.2 3.3 3.4 3.5 3.6 

System matrices M, C, K Symmetric M, C, K Symmetric M, C Symmetric 

K Asymmetric 

M, C, K Symmetric M, C, K Symmetric 

Number of DOFs 3 5 6 4 13 

Model of the system LP LP FEM LP FEM and LP 

Number of assigned 

μz 

1 complex conjugate 

pair 

2 complex conjugate 

pairs 

1 complex conjugate 

pair 

1 complex conjugate 

pair 

3 complex conjugate 

pairs 

Point/Cross- 

receptance 

Cross-receptance Point-receptance Point-receptance Cross-receptance Cross-receptance 

Particular solution k 0 Underdetermined 

system: Assigns μz 

Underdetermined 

system: Assigns μz 

Underdetermined 

system: Assigns μz 

and some λp 

Fully determined 

system: Assigns μz 

and some λp 

Underdetermined 

system: Assigns μz 

LMI constraint on 

the poles 

Real part and 

minimum damping 

Real part Real part Real part Minimum damping 

 

 

 

 

This choice of the objective function enables to reduce the control gains in some sense, since: 

‖ 

p ‖ 

2 = ‖ 

XV k r ‖ 

2 = ‖ 

V k r ‖ 

2 
X (27) 

To improve the numerical reliability of the solution of problem in Eq.(26), it is often useful to approximate the negative

definiteness condition of �D ( A 1 , p , X ) and the positive definiteness condition of X by means of two scalar values ε 1 and ε 2 
that multiply identity matrices I (each one with its proper dimension). Hence, the optimization in Eq.(26) is recast as: 

min ‖ 

p ‖ 

2 

subj �D ( A 1 , p , X ) ≺ −ε 1 I 
X = X 

T 	 ε 2 I 
(28) 

The theoretical value of scalars ε 1 and ε 2 is 0. However, in practice they approach zero and should be slightly tuned 

depending on the numerical scaling of the system matrices, on the solver, on the accuracy parameters of the numerical 

solutions and of the CPU. Indeed, the solution of SDP problems is numerically cumbersome when non-strict inequalities 

should be tackled. For example, the widely adopted interior-point solvers return a warning if strict inequalities have been 

implemented and often an error message that stops the algorithm is returned. Therefore, to satisfy strict inequalities it is 

necessary to define and satisfy non-strict inequalities and sometimes to relax them. 

2.5.4. Computation of k r 

Once Eq. (28) is solved and the optimal value X opt , p opt are computed, k r should be computed. Two approaches are 

suggested in this work. 

The variable change that morphs the BMI in Eq.(21) into the LMI in Eq.(24) is exploited to compute vector k r as: 

k r = UX 

−1 
opt p opt (29) 

where matrix U is the left pseudoinverse of V , i.e. UV = I . 

The second approach is numerical and is suitable whenever the ill-conditioned computation of the pseudoinverse makes 

k r violate the LMI constraints. Following this second approach, k r is computed by solving a norm minimization problem 

looking for k r that ensures that X opt V k r is the closest to p opt , in the presence of the LMI constraint obtained by imposing

X opt in the BMI in Eq.(21): 

�D,lin ( A 1 , k r ) = R � X opt + Z �

((
A 1 − Bk 

T 
r V 

T 
)
X opt 

)
+ Z 

T 
�

((
A 1 − Bk 

T 
r V 

T 
)
X opt 

)T 
(30) 

The following formulation is finally suggested: 

min 

∥∥V k r −X 

−1 
opt p opt 

∥∥2 

subj �D,lin ( A 1 , k r ) ≺ −ε 3 I 
(31) 

Preconditioning techniques, as those widely developed in the literature on linear algebra [31] , could be adopted to boost

convergence. The parameter ε3 is a small scalar that is adopted to define non-strict inequalities and to relax them if neces-

sary. 

3. Numerical results 

3.1. General description and implementation details 

Five numerical test cases with rank-one control, are proposed for validating the method, by adopting different systems, 

also taken from the recent literature, and different assignment requirements. Table 1 summarizes the features of the test 

cases (LP denotes lumped parameter models). 
7 
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Fig. 1. Pole-zero map of h 32 ( j ω ) and ̃  h 32 ( j ω ) (test-case 1). 

 

 

 

 

 

 

 

 

 

The least-square problem for the assignment of the zeros (see Eqs.(13) and (14)) have been solved exploiting the MATLAB 

mldivide function that effectively solves the underdetermined linear systems. The LMIs have been implement using the 

Yalmip interface for modeling optimization problems in MATLAB [32] . The linear SDP programming have been solved using 

the Mosek solver. 

In the first test case, the outcomes of three different approaches for the computation of k r are also shown: the linear SDP

in Eq. (28) together with Eq. (29), the linear SDP in Eq. (28) together with the numerical method in Eq. (31), and the direct

solution of the BMI in Eq. (23). In the latter case, The BMI optimization problem has been solved exploiting the PENLAB

solver [33] . 

In the other test cases (Sections 3.3–3.6), only the results of the assignment obtained through the linear SDP in Eq.(28)

together with Eq.(29) are reported, for brevity. 

3.2. Case 1 – assignment of a pair of zero to a cross-receptance 

The aim of this simple test case is to compare the results obtained by three different solution methods. The test case

consists of a three-DOF lumped system whose matrices are: 

M = diag ( 1 , 1 , 1 ) C = 0 . 01 

[ 

2 −1 0 

−1 3 −1 

0 −1 3 

] 

K = 

[ 

6 −3 0 

−3 9 −3 

0 −3 9 

] 

b = [ 1 , 0 , 0 ] 
T (32) 

The assignment task consists in assigning a pair of complex conjugate zeros of the cross-receptance h 32 ( j ω ) to μ1 , 2 =
−0 . 0 0 05 ± j2 while the closed-loop poles λi must belong to the region D defined as the intersection of two LMI regions D 1 

and D 2 : 

• D 1 is a region in the left-half of the complex plane such that Re ( λi ) ≤ −σ, i = 1 , ..., 6 , with σ = 0 . 001 . Matrix �D 1 in

Eq.(24) is obtained by setting R = 2 σ and Z = 1 in Eq.(17): 

�D 1 ( A 1 , p , X ) = A 1 X − B p 

T + XA 

T 
1 − p B 

T + 2 σX ≺ 0 (33) 

• D 2 is a conic sector with magnitude 2 θ such that the minimum damping of the poles is at least ξmin = 0 . 001 , since

ξ = cos (θ ) . Matrix �D 2 is obtained by imposing R = 

[
0 0 

0 0 

]
and Z = 

[
sin θ cos θ

− cos θ sin θ

]
: 

�D 2 ( A 1 , p , X ) = 

[
sin θ

(
A 1 X − B p 

T + XA 

T 
1 − p B 

T 
)

cos θ
(
A 1 X − B p 

T − XA 

T 
1 + p B 

T 
)

cos θ
(
XA 

T 
1 − p B 

T − A 1 X + B p 

T 
)

sin θ
(
A 1 X − B p 

T + XA 

T 
1 − p B 

T 
)] (34) 

The LMI region bounds for both D 1 and D 2 are shown in Fig. 1 with a dashed line. The mathematical formulation of

intersection of the two LMI regions is: 

�D ( A 1 , p , X ) = diag ( �D 1 ( A 1 , p , X ) , �D 2 ( A 1 , p , X ) ) (35) 
8 
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Table 2 

Gains (test-case 1). 

Stage 1: k 0 Stage 2: k = k 0 + V k r 

BMI Eq.(23) LMI Eq.(28) and Eq.(29) LMI Eq.(28) and Eq.(31) 

f 0 g 0 f g f g f g 

−0.0190 −2.0000 −0.0190 −2.0000 −0.0190 −2.0000 −0.0190 −2.0000 

0.0000 0.0000 0.0087 0.0000 0.0091 0.0002 0.0043 0.0002 

0.0000 0.0000 0.0039 0.0000 0.0040 0.0001 0.0012 0.0001 

Table 3 

Open-loop and closed-loop poles of the system, and zeros of h 32 ( j ω ) and ˜ h 32 ( j ω ) , computed through Eq. (28) and 

Eq.(29) (test-case 1). 

Open-loop zeros Desired closed-loop zeros Closed-loop zeros with k 0 Closed-loop zeros with k 

μ1 , 2 = −0 . 01 ± j2 . 45 μd 
1 , 2 = −0 . 0 0 05 ± j2 μ1 , 2 = −0 . 0 0 05 ± j2 μ1 , 2 = −0 . 0 0 05 ± j2 

Open-loop poles Desired closed-loop poles Closed-loop poles with k 0 Closed-loop poles with k 

λ1 , 2 = −0 . 0060 ± j1 . 90 
Re ( λ1 , 2 ) ≤ −0 . 001 

ξ ( λ1 , 2 ) ≥ 0 . 001 
λ1 , 2 = +0 . 0 0 06 ± j1 . 52 λ1 , 2 = −0 . 0016 ± j1 . 52 

λ3 , 4 = −0 . 0128 ± j2 . 77 
Re ( λ3 , 4 ) ≤ −0 . 001 

ξ ( λ3 , 4 ) ≥ 0 . 001 
λ3 , 4 = −0 . 0106 ± j2 . 67 λ3 , 4 = −0 . 0089 ± j2 . 67 

λ5 , 6 = −0 . 0212 ± j3 . 57 
Re ( λ5 , 6 ) ≤ −0 . 001 

ξ ( λ5 , 6 ) ≥ 0 . 001 
λ5 , 6 = −0 . 0205 ± j3 . 55 λ5 , 6 = −0 . 0200 ± j3 . 55 

Fig. 2. Sketch of the five-mass system (test-case 2). 

 

 

 

 

 

 

 

 

 

 

To provide evidence of the hazard of pole spillover, and hence of the relevance and effectiveness of the second stage,

k 0 has been computed as the minimum norm vector ensuring the achievement zeros, without taking care of any pole. The 

least-square solution of the zero assignment leads to the gains reported in Table 2 , which cause an unstable pair of complex

conjugate poles, as reported in Table 3 . 

The modification of such gains performed in the second stage, by exploiting the D -stability constraints, ensures the sta- 

bilization of the system. 

The comparison of the gain vector computed through the three solution strategy of the second step is proposed in 

Table 2 . It should be noted that, solving the non-linear SDP (BMI) in Eq.(23) leads to slightly different gains, compared to

those obtained solving the linear SDP. Nonetheless, the prescribed closed-loop poles and zeros are obtained for all the tests 

(see Table 3 , where the results obtained through Eq.(28) and Eq.(29) are proposed). The solution of the BMI optimization,

through a 64bit PC equipped with an Intel® Core i7–6500 U processor (2.50 GHz) and an 8 GB RAM took an average CPU

time of 10.9 s. On the other hand, solving the linear SDP in Eq.(28), with ε 1 = ε 2 = 1e−5 , which has led to better numerical

conditioning in the SDP solution and faster convergence, the average CPU time is just 0.9 s. The computation of k r through

the SDP in Eq.(31) (with ε 3 equal to - 1e−3 ) required an average CPU time equal to 0.7 s. 

Regardless of the approach used to compute k r the resulting gains enable to obtain a set of closed-loop poles that 

features the desired dynamic properties set through the poles (i.e. stability, damping and settling time), and the assigned 

zero. The pole-zero map for the closed-loop system controlled with the gains obtained through the linear SDP by means 

of Eqs.(28) and (29) is reported in Fig. 2 and corroborates this statement. The pole-zero map for the other two solution

approaches are almost identical and omitted for brevity. 

3.3. Case 2 – assignment of two pair of zeros to a point-receptance of a five-mass system 

The second test case applies the method to a widely-used testbed (see e.g. [ 34 , 35 ]), which consists of five simply-

connected masses, which are in turn connected to the frame through grounding springs. A sketch of the system is reported

in Fig. 2 . The actuation force distribution vector is here assumed to be b = [ 1 , 0 , 1 , 0 , 0 ] T . 
9 
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Fig. 3. Pole-zero map of h 22 ( j ω ) and ̃  h 22 ( j ω ) (test-case 2). 

Table 4 

Open-loop and closed-loop poles of the system, and zeros of h 22 ( j ω ) and ̃  h 22 ( j ω ) (test-case 2). 

Open-loop zeros Desired closed-loop zeros Closed-loop zeros with k 0 Closed-loop zeros with k 

μ1 , 2 = ±j155 . 1 μd 
1 , 2 = ±j100 μ1 , 2 = ±j100 μ1 , 2 = ±j100 

μ3 , 4 = ±j404 . 4 μd 
3 , 4 = −5 ± j405 μ3 , 4 = −5 ± j405 μ3 , 4 = −5 ± j405 

Open-loop poles Desired closed-loop poles Closed-loop poles with k 0 Closed-loop poles with k 

λ1 , 2 = ±j137 . 4 Re ( λ1 , 2 ) ≤ −3 λ1 , 2 = +1 . 1 ± j67 . 2 λ1 , 2 = −21 . 7 ± j75 . 0 

λ3 , 4 = ±j201 . 9 Re ( λ3 , 4 ) ≤ −3 λ3 , 4 = +1 . 1 ± j205 . 4 λ3 , 4 = −10 . 3 ± j208 . 4 

λ5 , 6 = ±j266 . 9 Re ( λ5 , 6 ) ≤ −3 λ5 , 6 = +8 . 9 ± j265 . 6 λ5 , 6 = −21 . 2 ± j264 . 1 

λ7 , 8 = ±j329 . 5 Re ( λ7 , 8 ) ≤ −3 λ7 , 8 = +5 . 0 ± j326 . 1 λ7 , 8 = −5 . 4 ± j342 . 3 

λ9 , 10 = ±j404 . 4 Re ( λ9 , 10 ) ≤ −3 λ9 , 10 = −5 . 4 ± j405 . 2 λ9 , 10 = −5 . 8 ± j406 . 4 

 

 

 

 

 

The system is undamped and its mass and stiffness matrices are: 

M = diag ( m 1 , m 2 , m 3 , m 4 , m 5 ) 

K = 

⎡ 

⎢ ⎢ ⎣ 

k g + k 12 −k 12 0 0 0 

−k 12 k g + k 12 + k 23 −k 23 0 0 

0 −k 23 k g + k 23 + k 34 −k 34 0 

0 0 −k 34 k g + k 34 + k 45 −k 45 

0 0 0 −k 45 k g + k 45 

⎤ 

⎥ ⎥ ⎦ 

(36) 

The values of the parameters are: m 1 = 1 . 727 kg , m 2 = 5 . 123 kg , m 3 = 8 . 214 kg , m 4 = 2 . 609 kg , m 5 = 1 . 339 kg , k 12 =
75 . 14 kN m 

−1 , k 23 = 67 . 74 kN m 

−1 , k 34 = 75 . 47 kN m 

−1 , k 45 = 83 . 40 kN m 

−1 and k g = 94 . 26 kN m 

−1 . 

The goal of the control design is to assign two pairs of complex conjugate zeros of the point-receptance h 22 ( j ω ) to

μ1 , 2 = ± j100 and μ3 , 4 = −5 ± j405 while the closed-loop poles λ1 , ..., λ10 ∈ C must ensure that Re ( λi ) ≤ −3 , i = 1 , ..., 10 .

Computing the minimum norm solution of Eq.(13), by discarding any requirement on the poles, leads to the following gains: 

f 0 = [ −9 . 39 , 0 , −132 . 01 , 0 , 673 . 38 ] T and g 0 = [ 0 , 0 , −1 . 25e5 , 0 , 0 ] T . The closed-loop system exactly features the desired ze- 

ros of h 22 ( j ω ) , but is unstable since some poles lie on the right-half of the complex plane, as show in Fig. 3 . 

The solution of the semidefinite programming in Eq. (26) with the imposed LMI constraint, with ε 1 = ε 2 = 1e − 8 , leads

to the gains f = [ 79 . 5 , 528 . 0 , 679 . 1 , −1623 . 7 , −389 . 0 ] T and g = [ 2 . 55e4 , 0 . 19e4 , −7 . 75e4 , −2 . 06e5 , 7 . 89e4 ] T . 

Fig. 3 and Table 4 reveal that all the control specifications are correctly fulfilled. As a further proof of the correct assign-

ment, magnitude plots of h ( jω ) before and after the modification are compared in Fig. 4 . 
22 
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Fig. 4. Magnitude of h 22 ( j ω ) before and after the modification (test-case 2). 

Fig. 5. Sketch of the cantilever beam (test-case 3). 

 

 

 

 

 

 

3.4. Case 3 – assignment of a pair of zeros to a point-receptance of a cantilever beam 

In the third test case, a continuous system modeled though finite elements is proposed. The system is a cantilever beam

with rectangular cross-section area, modeled by means of three Euler-Bernoulli beams with equal lengths. The system is 

sketched in Fig. 5 and the following parameters have been adopted: Young modulus 70 GPa , mass density 2400 kg m 

−3 , area

moment of inertia 2 . 13e − 10 m 

4 , transversal area 1 . 6e − 4 m 

2 . The system is undamped and is actuated by a single force

that excites the translation of the first and the third node (DOFs number 1 and 5), leading to b = [ 1 , 0 , 0 , 0 , 1 , 0 ] T . 

The system matrices have been scaled to improve the numerical conditioning of the problem, by means of two scalar 

scaling parameters γ and β . The scaled system matrices are therefore defined as: 

˜ M = β−2 γ −1 M 

˜ K = γ −1 K (37) 

The solution of the first stage of the proposed method should be performed by calculating the scaled system receptances 

as: 

˜ H ( j ̃  ω ) = 

(
˜ ω 

2 ˜ M + 

˜ K 

)−1 
with ˜ ω = βω (38) 

The computed gains for the scaled system are therefore 

˜ k 0 = 

[
˜ f 0 ˜ g 0 

]T = 

[
β−1 γ −1 f 0 γ −1 g 0 

]T 
(39) 

which are then transformed to the gains of the unscaled system as follows: 

f 0 = βγ ˜ f 0 , g 0 = γ ˜ g 0 . (40) 

In the same way, the second stage of the method uses scaled state-space matrices. 

The problem specification is to assign a pair of complex conjugate zeros of the point-receptance h 33 ( j ω ) to μ1 , 2 = −3 ±
j900 , where the third DOF is the displacement y 2 of the cantilever beam, as shown in Fig. 5 . Moreover, it is required that

Re ( λi ) ≤ −5 , i = 1 , ..., 12 . The following scaling parameters have been adopted: γ = 1e3 and β = 1e − 4 . 

In the solution of the first stage, two different pre-allocations of the closed-loop poles are compared to show the bene-

fits in term of robustness. In the strategy denoted as “A”, three pairs of complex conjugate poles are temporarily assigned
11 
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Table 5 

Gains (test-case 3). 

Strategy A 

Stage 1: k 0 , A Stage 2: k A = k 0 , A + V k r , A 

f 0 , A g 0 , A f A g A 

0.0000 0.00 −0.2369 −97.82 

0.0977 700.38 0.0279 668.57 

0.4061 −4682.40 1.0901 −4343.40 

0.0434 2235.80 0.0002 2224.60 

0.0000 0.00 −0.0405 −128.95 

0.0586 −77.71 0.0806 −54.93 

Strategy B 

Stage 1: k 0 , B Stage 2: k B = k 0 , B + V k r , B 

f 0 , B g 0 , B f B g B 

12.9048 −352,630 10.5741 46,256 

2.5810 −45,498 −0.0196 9083.40 

−64.4526 −125,100 68.4822 −60,342 

−0.6984 −89,955 0.7763 13,042 

46.0460 58,048 39.2278 2760.40 

−5.9006 −47,709 1.2130 8141.80 

Table 6 

Open-loop and closed-loop poles of the system, and zeros of h 33 ( j ω ) and ˜ h 33 ( j ω ) (test-case 3): with the pre- 

allocation strategy “A”. 

Open-loop zeros Desired closed-loop zeros Closed-loop zeros with k 0 , A Closed-loop zeros with k A 

μ1 , 2 = ±j436 . 8 μd 
1 , 2 = −3 ± j900 μ1 , 2 = −3 ± j900 . 0 μ1 , 2 = −3 ± j900 . 0 

Open-loop poles Desired closed-loop poles Closed-loop poles with k 0 , A Closed-loop poles with k A 

λ1 , 2 = ±j89 . 5 Re ( λ1 , 2 ) ≤ −5 λ1 , 2 = −5 . 0 ± j300 . 0 λ1 , 2 = −5 . 8 ± j300 . 0 

λ3 , 4 = ±j562 . 6 Re ( λ3 , 4 ) ≤ −5 λ3 , 4 = −5 . 0 ± j700 . 0 λ3 , 4 = −5 . 5 ± j700 . 0 

λ5 , 6 = ±j1589 . 8 Re ( λ5 , 6 ) ≤ −5 λ5 , 6 = −5 . 0 ± j1500 . 0 λ5 , 6 = −5 . 9 ± j1501 . 3 

λ7 , 8 = ±j3580 . 2 Re ( λ7 , 8 ) ≤ −5 λ7 , 8 = −23 . 3 ± j3495 . 0 λ7 , 8 = −24 . 0 ± j3495 . 5 

λ9 , 10 = ±j6737 . 9 Re ( λ9 , 10 ) ≤ −5 λ9 , 10 = +10 . 7 ± j6633 λ9 , 10 = −30 . 6 ± j6637 . 0 

λ11 , 12 = ±j1 . 34 e4 Re ( λ11 , 12 ) ≤ −5 λ11 , 12 = −296 ± j1 . 36 e4 λ11 , 12 = −296 ± j1 . 36 e4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to three sample locations within the LMI, whose real parts matches the bound of the LMI: λ1 , 2 = −5 . 00 ± j300 . 00 , λ3 , 4 =
−5 . 00 ± j700 . 00 and λ5 , 6 = −5 . 00 ± j1500 . 00 . In the second strategy, denoted as “B”, five complex conjugate poles are as-

signed within the LMI and far away from the imaginary axis, while their imaginary parts are is kept unchanged with respect

to the open-loop: λ1 , 2 = −100 . 00 ± j89 . 50 , λ3 , 4 = −200 . 00 ± 562 . 50 , λ5 , 6 = −400 . 00 ± j1589 . 80 , λ7 , 8 = −800 . 00 ± j3580 . 20

and λ9 , 10 = −1600 . 00 ± j6737 . 90 . This choice is expected to ensure higher robustness. After the first step (solved through

Eq.(14) and leading to k 0 , A and k 0 , B displayed in Table 5 ), the closed-loop system features the poles and the zeros reported

in Table 6 . In both the cases, however, the controlled system is unstable since some of the unassigned poles have a pos-

itive real part. By applying the second step of the proposed method, all the real parts of the closed-loop poles become

negative and lie within the LMI. Compared to those obtained through k 0 , A and k 0 , B , all the poles have been modified to

ensure D -stability, although they are still quite close to the pre-allocated locations. The gains that ensure the placement of

the poles in the prescribed LMI region are reported in Table 5 , and have been obtained by setting ε 1 = ε 2 = 1e − 8 in the

solution of the SDP. The closed-loop system features the poles and the zeros reported in Tables 6 and 7 for strategy A and

B respectively, the pole-zero map of h 33 ( j ω ) is shown in Fig. 6 just for strategy A, for brevity of representation. 

The positive effect on robustness of the pole pre-allocation in the first stage is here evaluated through the H-infinity

norm of the transfer function H ZW 

from the model uncertainty to the nominal state x . By assuming the common structure

of a state-multiplicative perturbation, H ZW 

is defined through the following state space realization [ 19 , 36 ]: [
A − B k 

T −B k 

T 

I 0 

]
(41) 

In accordance with the Small Gain Theorem, smaller values of ‖ H ZW 

‖ ∞ 

mean higher robustness with respect to the 

uncertainty. The application of such a theory to the example under investigation shows that Strategy B leads to higher 

robustness with respect to Strategy A. Fig. 7 corroborates this result, by comparing the maximum singular values for both 

the controllers and showing that max { ̄σ ( H ZW 

( k A ) ) } > max { ̄σ ( H ZW 

( k B ) ) } , as expected by the wise pre-allocation of the 

closed-loop poles in the first stage. 
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Table 7 

Open-loop and closed-loop poles of the system, and zeros of h 33 ( j ω ) and ˜ h 33 ( j ω ) (test-case 3): with the pre- 

allocation strategy “B”. 

Open-loop zeros Desired closed-loop zeros Closed-loop zeros with k 0 , B Closed-loop zeros with k B 

μ1 , 2 = ±j436 . 8 μd 
1 , 2 = −3 ± j900 μ1 , 2 = −3 ± j900 . 0 μ1 , 2 = −3 ± j900 . 0 

Open-loop poles Desired closed-loop poles Closed-loop poles with k 0 , B Closed-loop poles with k B 

λ1 , 2 = ±j89 . 5 Re ( λ1 , 2 ) ≤ −5 λ1 , 2 = −100 . 0 ± j89 . 5 λ1 , 2 = −68 . 3 ± j380 . 4 

λ3 , 4 = ±j562 . 6 Re ( λ3 , 4 ) ≤ −5 λ3 , 4 = −200 . 0 ± j562 . 5 λ3 , 4 = −136 . 3 ± j840 . 4 

λ5 , 6 = ±j1589 . 8 Re ( λ5 , 6 ) ≤ −5 λ5 , 6 = −400 ± j1589 . 8 λ5 , 6 = −275 . 8 ± j2638 . 2 

λ7 , 8 = ±j3580 . 2 Re ( λ7 , 8 ) ≤ −5 λ7 , 8 = −800 ± j3580 . 2 λ7 , 8 = −559 . 1 ± j4068 . 8 

λ9 , 10 = ±j6737 . 9 Re ( λ9 , 10 ) ≤ −5 λ9 , 10 = −1600 ± j6737 . 9 λ9 , 10 = −1005 ± j6608 . 7 

λ11 , 12 = ±j1 . 34 e4 Re ( λ11 , 12 ) ≤ −5 λ11 = −156 . 0 λ11 , 12 = −9053 ± j10492 

λ12 = 4 . 94e4 

Fig. 6. Pole-zero map of h 33 ( j ω ) and ̃  h 33 ( j ω ) (test-case 3): with strategy A. 

 

 

 

3.5. Case 4 – assignment of a pair of zeros to a cross-receptance in an asymmetric system 

3.5.1. Test case description 

The fourth test case exploits the asymmetric model of a slider–belt system with friction, proposed in [37–40] . This system

is here adopted to show that the proposed method handles asymmetric systems too, as well as the presence of unstable

(or marginally stable) poles. The system has 4-DOFs that represent the allowed translations of the three masses along the 

horizontal and vertical axes: q = [ x 1 , y 3 , x 2 , y 2 ] 
T . The system is sketched in Fig. 8 . The system matrices are reported in

Eq.(42). 

M = diag ( m 1 , m 3 , m 2 , m 2 ) C = 

⎡ 

⎢ ⎣ 

c 1 0 −c 1 0 

0 0 0 0 

−c 1 0 c 1 0 

0 0 0 c 0 

⎤ 

⎥ ⎦ 

b = [ 0 , 0 , 0 , 1 ] 
T 

K s = 

⎡ 

⎢ ⎣ 

k 1 + k 2 0 −k 2 0 

0 k 4 + k 5 0 −k 4 
−k 2 0 k 2 + 0 . 5 k 3 −0 . 5 k 3 

0 −k 4 −0 . 5 k 3 k 4 + 0 . 5 k 3 + k c 

⎤ 

⎥ ⎦ 

K a = 

⎡ 

⎢ ⎣ 

0 0 0 0 

0 0 0 0 

0 0 0 ηk c 
0 0 0 0 

⎤ 

⎥ ⎦ 

(42) 
13 
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Fig. 7. Maximum singular value with k A and k B . 

Fig. 8. Sketch of the four-DOFs slider–belt system with friction (test-case 4). 

 

 

 

 

 

 

The stiffness matrix is written as the sum of two parts, K = K s + K a . K s is its symmetric part, while the asymmetric

part K a is due to the friction force and the pre-compression normal force acting at the slider–belt interface. The system 

parameters are: m 1 = m 2 = m 3 = 1 kg , k 1 = k 2 = k 3 = k 4 = k 5 = 100 N m 

−1 , k c = 2 k 1 , c 0 = c 1 = 0 . 5 Ns m 

−1 . The friction coeffi-

cient value is assumed to be η = 0 . 3868 . Indeed, at this point the flutter instability sets in, as stated in [38] , and a pair of

poles with positive real parts is obtained (i.e. λ1 , 2 = 0 . 00 ± j8 . 73 ). 

The assignment task consists in imposing a pair of complex conjugate zeros of the cross-receptance h 21 ( j ω ) to μ1 , 2 =
−0 . 5 ± j16 while the closed-loop poles λ1 , ..., λ8 ∈ C are required to ensure the settling time specification defined through

Re ( λi ) ≤ −0 . 25 , i = 1 , ..., 8 . The LMI region bound is shown in Fig. 8 with a dashed line. It should be noted that h 21 ( j ω ) has

no zeros. Hence, active control is effective to create new antiresonances in cross-receptances. 

3.5.2. Method extension for systems with asymmetric stiffness matrix 

The pole-zero method proposed in this paper can be applied to asymmetric systems too. Indeed, no assumption on 

matrix symmetry and on the stability of the open-loop system is done. The method implementation for asymmetric sys- 
14 
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Table 8 

Gains (test-case 4). 

Stage 1: k 0 Stage 2: k = k 0 + V k r 

f 0 g 0 f g 

−15.456 −46.194 −20.110 −42.593 

2.532 84.232 3.330 75.095 

−16.406 −0.299 −21.351 3.154 

4.873 −23.344 5.53 7.115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tems just requires some adaptations of the equations defining the zero-assignment conditions through the receptance-based 

method, which is here extended in the case of rank-one control to account for the presence of asymmetric system matrices.

As shown in [39] , the receptance matrix of the closed-loop system 

˜ H (s ) can be written in term of the receptance matrix

of the open-loop system, H (s ) : 

˜ H ( s ) = H ( s ) − H ( s ) b ( s f + g ) 
T 
H ( s ) 

1 + ( s f + g ) 
T 
H ( s ) b 

(43) 

In turn, the receptance matrix of the open-loop system, H (s ) , can be written in terms of the receptance matrix of the

symmetric part of the open-loop system, denoted H s (s ) , as follows: 

H ( s ) = ( I + H s ( s ) K a ) 
−1 H s ( s ) (44) 

where H s (s ) is defined as follows: 

H s ( s ) = 

(
s 2 M + s C + K s 

)−1 ∈ C 

N×N (45) 

The denominator of ˜ H (s ) in Eq.(43) has been widely investigated in [38] and [39] to tackle the problem of the pole

assignment. In contrast, the issue of zero-assignment, by developing its numerator, has not been considered yet in the 

literature. In this paper, the solution to the zero assignment through the receptance method in the case of rank-one control

and full state feedback is discussed for systems with asymmetric stiffness matrix. The extension to asymmetric damping 

matrix is straightforward. 

Let us compute once again, as proposed in Eq. (6), the rc-th term of the receptance matrix of the closed-loop system
˜ H (s ) : 

˜ h rc ( s ) = 

e T r 

[(
1 + ( s f + g ) 

T 
H ( s ) b 

)
H ( s ) − H ( s ) b ( s f + g ) 

T 
H ( s ) 

]
e c 

1 + ( s f + g ) 
T 
H ( s ) b 

(46) 

By following some mathematical manipulations similar to those in Section 2.2, the assignment of the desired zeros of 
˜ h rc , μi , i = 1 , ..., N z , is performed by finding the gains f and g that solve the following linear system: ⎡ 

⎢ ⎢ ⎣ 

μ1 t 
T 
1 t T 1 

μ2 t 
T 
2 t T 2 

. . . 
. . . 

μN z t 
T 
N z 

t T N z 

⎤ 

⎥ ⎥ ⎦ 

{
f 
g 

}
= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

−h rc ( μ1 ) 
−h rc ( μ2 ) 

. . . 
−h rc ( μN z ) 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(47) 

where the auxiliary complex vector t i in the case of asymmetric systems is defined as: 

t i = h rc ( μi ) H ( μi ) b −
[
e T r H ( μi ) b 

]
H ( μi ) e c (48) 

3.5.3. Solutions 

In this test case, the first stage exploits the enhanced formulation, as proposed in Eq.(14), by temporarily placing three 

pairs of complex conjugate poles within the desired LMI region. In particular, the same values assumed in [38] are adopted:

λ1 , 2 = −1 ± j9 , λ3 , 4 = −1 ± j13 . 5 , λ5 , 6 = −1 ± j18 . The concurrent pole-zero assignment for asymmetric systems can be re-

cast in the same form of Eq.(14). The expression of G z and y z have been proposed in Eq.(47), while for brevity the formula-

tion of G p is omitted since it can be inferred from [39] . 

The solution of the determined linear system for the assignment of both the zeros and three pair of poles leads to the

gain vector k 0 reported in Table 8 , while the correctness of the assignment can be inferred through Table 9 . It should be

noted that the unassigned pair of poles ( λ5 , 6 = −0 . 19 ± j16 . 66 ) goes outside the LMI. Hence, the second stage is necessary. 

The semidefinite optimization at the second stage has been solved with ε 1 = ε 2 = 1e − 5 and the resulting gains are

reported in Table 8 . The poles of the closed-loop system and the zeros of receptance h 21 ( j ω ) are shown in Fig. 9 and

reported in Table 9: it is evident that all the pair of poles lie within the desired LMI, while no spillover on the zero occurs.

Clearly, a small change on the three pre-assigned pair of poles is obtained within the feasible region, to ensure that λ5 , 6 lie

within the LMI too. 
15 
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Table 9 

Open-loop and closed-loop poles of the system, and zeros of receptance h 21 ( j ω ) and ̃  h 21 ( j ω ) (test-case 4). 

Open-loop zeros Desired closed-loop zeros Closed-loop zeros with k 0 Closed-loop zeros with k 

μd 
1 , 2 = −0 . 50 ± j16 . 00 μ1 , 2 = −0 . 50 ± j16 . 00 μ1 , 2 = −0 . 50 ± j16 . 00 

Open-loop poles Desired closed-loop poles Closed-loop poles with k 0 Closed-loop poles with k 

λ1 , 2 = 0 . 00 ± j8 . 73 Re ( λ1 , 2 ) ≤ −0 . 25 λ1 , 2 = −1 . 00 ± j9 . 00 λ1 , 2 = −1 . 22 ± j8 . 97 

λ3 , 4 = −0 . 05 ± j12 . 19 Re ( λ3 , 4 ) ≤ −0 . 25 λ3 , 4 = −1 . 00 ± j13 . 50 λ3 , 4 = −0 . 97 ± j13 . 33 

λ5 , 6 = −0 . 51 ± j16 . 75 Re ( λ5 , 6 ) ≤ −0 . 25 λ5 , 6 = −0 . 19 ± j16 . 66 λ5 , 6 = −0 . 26 ± j16 . 70 

λ7 , 8 = −0 . 19 ± j19 . 86 Re ( λ7 , 8 ) ≤ −0 . 25 λ7 , 8 = −1 . 00 ± j18 . 00 λ7 , 8 = −1 . 06 ± j18 . 84 

Fig. 9. Pole-zero map of h 21 ( j ω ) and ̃  h 21 ( j ω ) (test-case 4). 

Fig. 10. Sketch of the system (test-case 5). 

 

 

 

 

 

 

3.6. Case 5 – assignment of a zero to a cross-receptance in a system with lumped and distributed flexibility 

The last test case exploits the simplified model similar to the one proposed in [35] . The system has 13-

DOFs, that include 8 translational ( y i ) and 5 rotational ( ϕ i ) coordinates of the four Euler-Bernoulli finite ele-

ments (each one with length 0 . 325 m ) and the three vertical translation of the suspended lumped masses: q =
[ y 1 , ϕ 1 , y 2 , ϕ 2 , y 3 , ϕ 3 , y 4 , ϕ 4 , y 5 , ϕ 5 , y 6 , y 7 , y 8 ] 

T . The system is sketched in Fig. 10 , and its parameters are: flexural rigidity 

EJ = 5 . 1e3 N m 

2 , linear mass density ρA = 4 . 97 kg m 

−1 , k a, 1 = k a, 2 = k a, 3 = 8 . 7 e5 N m 

−1 , k l = k r = 1e3 N m 

−1 and m a, 1 = m a, 2 =
m a, 3 = 25 kg . System damping is modeled through the Rayleigh damping model: C = a M + bK with a = 1 e -2 and b = 1 e -5. The

actuation is assumed to be described by b = [ 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 ] T , to ensure the controllability of the system. 

The system matrices are normalized to have approximately the same order of magnitude through γ = 1e4 and β = 1e − 3

(see Section 3.4 for the meaning of symbols). The damping matrix is scaled as ˜ C = β−1 γ −1 C . 
16 
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Table 10 

Gains (test-case 5). 

Stage 1: k 0 Stage 2: k = k 0 + V k r 
f 0 g 0 f g 

0 0 −0.879 −54,875.0 

0 −14,202.3 0.118 −12,945.4 

0 0 15.760 −150,550.1 

−1.306 0 2.773 −7880.4 

0 0 −5.166 −34,636.0 

5.614 40,650.8 2.436 53,787.7 

0 0 −22.254 −106,717.3 

0 0 1.676 −10,119.0 

0 0 7.219 39,974.9 

−0.468 57.493 −1.550 −599.1 

0 0 −13.413 −31,928.6 

0 0 3.443 7676.0 

0 0 14.273 29,054.3 

Fig. 11. Pole-zero map of h 19 ( j ω ) and ̃  h 19 ( j ω ) , poles and zeros closest to the origin of the complex plane (test-case 5). 

 

 

 

 

 

The assignment consists in imposing three pairs of complex conjugate zeros of h 19 ( j ω ) , while the closed-loop poles

λ1 , ..., λ26 ∈ C are required belong to a conic sector with magnitude 2 θ such that the minimum damping of the poles is at

least ξλ
min 

= 0 . 001 . 

The complex conjugate zeros to impose are respectively: μ1 , 2 = −ξz1 ω n,z1 ± j ω n,z1 

√ 

1 − ξz1 , with ξz1 = 0 . 001 and ω n,z1 = 

2 π5 rad s −1 along with μ3 , 4 = −ξz2 ω n,z2 ± j ω n,z2 

√ 

1 − ξz2 , with ξz2 = 0 . 01 , ω n,z2 = 2 π20 rad s −1 and μ5 , 6 = −ξz3 ω n,z3 ±
j ω n,z3 

√ 

1 − ξz3 , with ξz3 = 0 . 01 and ω n,z3 = 2 π35 rad s −1 . 

The resulting k 0 that assigns the zeros in the first stage are reported in Table 10 . The Semi-Definite optimization at the

second stage has been solved with ε 1 = 1e − 7 and ε 2 = 1e − 9 and the obtained gains are reported in Table 10 . The poles

and the zeros closest to the origin are shown in Fig. 11 and reported in Table 11 . The magnitude of receptance h 19 ( j ω ) both

open-loop and closed-loop with gain k is shown in Fig. 12 . 
17 
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Table 11 

Open-loop and closed-loop dominant poles of the system, and zeros of receptance h 19 ( j ω ) and ̃  h 19 ( j ω ) (test-case 5). 

Open-loop zeros Desired closed-loop zeros Closed-loop zeros with k 0 Closed-loop zeros with k 

μ1 , 2 = −0 . 2 ± j195 . 3 μd 
1 , 2 = −0 . 03 ± j31 . 4 μ1 , 2 = −0 . 03 ± j31 . 4 μ1 , 2 = −0 . 03 ± j31 . 4 

μ3 , 4 = −0 . 7 ± j383 . 1 μd 
3 , 4 = −1 . 3 ± j125 . 0 μ3 , 4 = −1 . 3 ± j125 . 0 μ3 , 4 = −1 . 3 ± j125 . 0 

μ5 , 6 = −2 . 7 ± j735 . 5 μd 
5 , 6 = −2 . 2 ± j218 . 8 μ5 , 6 = −2 . 2 ± j218 . 8 μ5 , 6 = −2 . 2 ± j218 . 8 

Open-loop poles Desired closed-loop poles Closed-loop poles with k 0 Closed-loop poles with k 

λ1 , 2 = −0 . 005 ± j4 . 9 ξ ( λ1 , 2 ) ≥ 0 . 001 λ1 , 2 = −0 . 005 ± j4 . 9 λ1 , 2 = −0 . 005 ± j4 . 9 

λ3 , 4 = −0 . 006 ± j11 . 6 ξ ( λ3 , 4 ) ≥ 0 . 001 λ3 , 4 = −1 . 3 ± j120 . 7 λ3 , 4 = −1 . 4 ± j121 . 4 

λ5 , 6 = −0 . 1 ± j141 . 9 ξ ( λ5 , 6 ) ≥ 0 . 001 λ5 , 6 = −0 . 6 ± j152 . 9 λ5 , 6 = −0 . 4 ± j151 . 8 

λ7 , 8 = −0 . 9 ± j424 . 6 ξ ( λ7 , 8 ) ≥ 0 . 001 λ7 , 8 = −5 . 9 ± j390 . 7 λ7 , 8 = −3 . 5 ± j360 . 3 

λ9 , 10 = −0 . 9 ± j432 . 7 ξ ( λ9 , 10 ) ≥ 0 . 001 λ9 , 10 = −1 . 6 ± j437 . 9 λ9 , 10 = −0 . 9 ± j435 . 0 

λ11 , 12 = −3 . 2 ± j802 . 7 ξ ( λ11 , 12 ) ≥ 0 . 001 λ11 , 12 = −2 . 4 ± j777 . 1 λ11 , 12 = −4 . 0 ± j783 . 8 

λ13 , 14 = −9 . 1 ± j1348 . 0 ξ ( λ13 , 14 ) ≥ 0 . 001 λ13 , 14 = +25 . 2 ± j1087 λ13 , 14 = −53 . 1 ± j1202 

λ15 , 16 = −30 . 3 ± j2463 ξ ( λ15 , 16 ) ≥ 0 . 001 λ15 , 16 = −30 . 6 ± j24 4 4 λ15 , 16 = −35 . 7 ± j2450 

λ17 , 18 = −89 . 9 ± j4239 ξ ( λ17 , 18 ) ≥ 0 . 001 λ17 , 18 = +67 . 8 ± j3956 λ17 , 18 = −199 ± j3357 

Fig. 12. Magnitude of h 19 ( j ω ) before and after the modification (test-case 5). 

 

 

 

4. Conclusions 

This paper develops a full-state feedback method for active antiresonance assignment, while performing regional place- 

ment in the desired Linear Matrix Inequality (LMI) regions that set some dynamic properties such as settling time, decay 

rate, damping. Linear time-invariant vibrating systems are considered. The method is also extended to systems with asym- 

metric matrices, by proposing a more general formulation of the receptance-based zero-assignment method in the case of 

rank-one control. 

A two-stage approach is proposed. In the first stage, that exploits the good numerical conditioning of the receptance- 

based formulations, the desired pairs of zeros of a prescribed closed-loop receptance are exactly assigned through the par- 

ticular solution of an underdetermined linear system. 

The freedom in the choice of the solution of the underdetermined system, i.e. of the gains, is the leverage of the second

stage of the method that uses a first-order formulation of the model to take advantage of the powerful theory of LMI. In this

stage, an additive gain correction is computed by solving the homogeneous system related to the zero-assignment problem, 

thus ensuring that such a correction does not cause spillover on the assigned zeros. The goal of this term is to assign all

the closed-loop poles within the region of the complex plane that ensures the desired response. Since the pole assignment 
18 
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problem with the no-spillover condition leads to a Bilinear Matrix Inequality, a change of variables has been exploited to 

cast the problem as a standard LMI. The regional pole assignment problem is finally recast as a semidefinite optimization 

and a solution that reduces the control effort is calculated. 

A great advantage of this approach is that it enlarges the performances of the state-of-the-art active control approaches 

to antiresonance assignment that usually neglect the spillover on the poles, that might cause slow and undamped tran- 

sient response and instability too. A second advantage is related to the use of LMI, that easily allows imposing the desired

properties through shifted half planes, strips, ellipses, disks, conic sectors, as well as any intersection of the above regions 

of the complex plane. Finally, the availability of interior-point optimization algorithms, together with some numerical tools 

here suggested for improving the solution (such as the model matrix scaling, and the use of strict inequalities in the SDP),

enables the use of the method for several systems. 

Numerical validation is provided in five different test cases, also taken among the existing literature, which include a 

meaningful set of samples where the method can be applied. The five examples refer to the case of rank-one control, which

is the one where the use of receptance approach is more straightforward due to a simple formulation of the zero-assignment

problem. Nonetheless, the proposed idea of the two-stage approach can be extended to higher-rank control by exploiting 

suitable methods for gain computing in the first step. In all the test cases, the exact placement of the desired zeros in

the desired locations together with the clustering of all the poles within the desired regions prove the correctness and the

effectiveness of the proposed approach. 

CRedit authorship contribution statement 

Dario Richiedei: conceptualization, theoretical development, formal analysis, verification of the results and writing of the 

paper. 

Iacopo Tamellin: conceptualization, theoretical development, formal analysis, software development, verification of the 

results and writing of the paper. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

Acknowledgment 

The second author acknowledges the financial support of the Cariparo foundation (“Fondazione Cassa di Risparmio di 

Padova e Rovigo”) through a Ph.D. scholarship. 

References 

[1] H. Frahm , Device for damping vibrations of bodies, U.S. Pat. (1911) https://doi.org/989-95 . 

[2] Y.M. Ram, S. Elhay, The theory of a multi-degree-of-freedom dynamic absorber, J. Sound Vib. 195 (1996) 607–615, doi: 10.1006/jsvi.1996.0449 . 
[3] D. Richiedei, I. Tamellin, A. Trevisani, A general approach for antiresonance assignment in undamped vibrating systems exploiting auxiliary systems, 

Mech. Mach. Sci. (2019), doi: 10.1007/978- 3- 030- 20131- 9 _ 407 . 

[4] J.E. Mottershead, Structural modification for the assignment of zeros using measured receptances, J. Appl. Mech. Trans. ASME. 68 (2001) 791–798, 
doi: 10.1115/1.1388616 . 

[5] J.E. Mottershead, Y.M. Ram, Inverse eigenvalue problems in vibration absorption: passive modification and active control, Mech. Syst. Signal Process. 
20 (2006) 5–44, doi: 10.1016/j.ymssp.2005.05.006 . 

[6] S.H. Tsai, H. Ouyang, J.Y. Chang, Inverse structural modifications of a geared rotor-bearing system for frequency assignment using measured recep-
tances, Mech. Syst. Signal Process. 110 (2018) 59–72, doi: 10.1016/j.ymssp.2018.03.008 . 

[7] R. Belotti, D. Richiedei, I. Tamellin, Antiresonance assignment in point and cross receptances for undamped vibrating systems, J. Mech. Des. 142 (2019)

022301, doi: 10.1115/1.4044329 . 
[8] D. Richiedei, I. Tamellin, A. Trevisani, Simultaneous assignment of resonances and antiresonances in vibrating systems through inverse dynamic struc- 

tural modification, J. Sound Vib. 485 (2020) 115552, doi: 10.1016/j.jsv.2020.115552 . 
[9] Y.M. Ram, Pole-zero assignment of vibratory systems by state feedback control, JVC/J. Vib. Control. 4 (1998) 145–165, doi: 10.1177/ 

10775463980 040 0204 . 
[10] Y.M. Ram, J.E. Mottershead, Receptance method in active vibration control, AIAA J. 45 (2007) 562–567, doi: 10.2514/1.24349 . 

[11] J.E. Mottershead, M.G. Tehrani, S. James, Y.M. Ram, Active vibration suppression by pole-zero placement using measured receptances, J. Sound Vib. 311

(2008) 1391–1408, doi: 10.1016/j.jsv.2007.10.024 . 
[12] K.V. Singh, B.N. Datta, M. Tyagi, Zero assignment in vibration: with and without time delay, in: 2007 Proc. ASME Int. Des. Eng. Tech. Conf. Comput.

Inf. Eng. Conf. DETC2007, 2008, doi: 10.1115/DETC2007-34819 . 
[13] K.V. Singh, B.N. Datta, M. Tyagi, Closed form control gains for zero assignment in the time delayed system, J. Comput. Nonlinear Dyn. 6 (2011) 021002,

doi: 10.1115/1.4002340 . 
[14] G. Cazzulani , F. Resta , F. Ripamonti , Active modal tuned mass damper for smart structures, Eng. Lett. 19 (2011) 1–10 . 

[15] S. Cinquemani, F. Braghin, F. Resta, Act. Passiv. Smart Struct. Integr. Syst, 2017, p. 2017, doi: 10.1117/12.2259987 . 

[16] B. Boudon, F. Malburet, J.C. Carmona, Bond graph modeling and simulation of a vibration absorber system in helicopters, Bond Graphs Model. Control
Fault Diagnosis Eng. Syst. Second Ed, 2016, doi: 10.1007/978- 3- 319- 47434- 2 _ 11 . 

[17] B. Boudon, F. Malburet, J.C. Carmona, Simulation of a helicopter’s main gearbox semiactive suspension with bond graphs, Multibody Syst. Dyn. 40
(2017) 375–405, doi: 10.1007/s11044- 016- 9536- 5 . 

[18] R. Belotti, D. Richiedei, Pole assignment in vibrating systems with time delay: an approach embedding an a-priori stability condition based on Linear
Matrix Inequality, Mech. Syst. Signal Process. 137 (2020) 106396, doi: 10.1016/j.ymssp.2019.106396 . 
19 

https://doi.org/10.13039/100007479
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0001
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0001
https://doi.org/10.1006/jsvi.1996.0449
https://doi.org/10.1007/978-3-030-20131-9_407
https://doi.org/10.1115/1.1388616
https://doi.org/10.1016/j.ymssp.2005.05.006
https://doi.org/10.1016/j.ymssp.2018.03.008
https://doi.org/10.1115/1.4044329
https://doi.org/10.1016/j.jsv.2020.115552
https://doi.org/10.1177/107754639800400204
https://doi.org/10.2514/1.24349
https://doi.org/10.1016/j.jsv.2007.10.024
https://doi.org/10.1115/DETC2007-34819
https://doi.org/10.1115/1.4002340
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0014
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0014
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0014
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0014
https://doi.org/10.1117/12.2259987
https://doi.org/10.1007/978-3-319-47434-2_11
https://doi.org/10.1007/s11044-016-9536-5
https://doi.org/10.1016/j.ymssp.2019.106396


D. Richiedei and I. Tamellin Journal of Sound and Vibration 494 (2021) 115858 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[19] R. Belotti, D. Richiedei, I. Tamellin, Pole assignment for active vibration control of linear vibrating systems through linear matrix inequalities, Appl. Sci.
10 (2020) 5494, doi: 10.3390/app10165494 . 

[20] M. Chilali, P. Gahinet, H ∞ design with pole placement constraints: an LMI approach, IEEE Trans. Automat. Contr. 41 (1996) 358–367, doi: 10.1109/9.
486637 . 

[21] M. Chilali, P. Gahinet, P. Apkarian, Robust pole placement in LMI regions, IEEE Trans. Automat. Contr. 44 (1999) 2257–2270, doi: 10.1109/9.811208 . 
[22] D. Henrion, M. Šebek, V. Kucera, Robust pole placement for second-order systems: an LMI approach, IFAC Proc. (2003) 419–424 Vol., doi: 10.1016/

S1474-6670(17)35700-2 . 

[23] D. Henrion, M. Šebek, V. Ku ̌cera, V. Kucera, Robust pole placement for second-order systems: an LMI approach, Kybernetika 41 (2005) 1–14, doi: 10.
1016/S1474-6670(17)35700-2 . 

[24] Z. Li, J. Lam, Multiobjective controller synthesis via eigenstructure assignment with state feedback, Int. J. Syst. Sci. (2016), doi: 10.1080/00207721.2015.
11124 4 4 . 

[25] F.A. Faria, E. Assunção, M.C.M. Teixeira, R. Cardim, N.A.P. Da Silva, Robust state-derivative pole placement LMI-based designs for linear systems, Int. J.
Control. (2009), doi: 10.1080/00207170801942188 . 

[26] H.K. Tam, J. Lam, Robust deadbeat pole assignment with gain constraints: an LMI optimization approach, Optim. Control Appl. Methods. (20 0 0),
doi: 10.1002/oca.676 . 

[27] M.O. de Almeida, J.M. Araújo, Partial Eigenvalue Assignment for LTI Systems with D -Stability and LMI, J. Control. Autom. Electr. Syst. 30 (2019) 301–

310, doi: 10.1007/s40313- 019- 00457- y . 
[28] S. Xu, J. Lam, A survey of linear matrix inequality techniques in stability analysis of delay systems, Int. J. Syst. Sci. (2008), doi: 10.1080/

0 020772080230 0370 . 
[29] Y.M. Ram, S. Elhay, Pole assignment in vibratory systems by multi-input control, J. Sound Vib. (20 0 0), doi: 10.1006/jsvi.1999.2622 . 

[30] D. Peaucelle, D. Arzelier, O. Bachelier, J. Bernussou, A new robust script D sign-stability condition for real convex polytopic uncertainty, Syst. Control
Lett. (20 0 0), doi: 10.1016/S0167-6911(99)00119-X . 

[31] K. Chen , Matrix preconditioning techniques and applications, Cambridge University Press, Cambridge, UK, 2005 . 

[32] J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in: Proc. IEEE Int. Symp. Comput. Control Syst. Des., 2004, doi: 10.1109/cacsd.
2004.1393890 . 

[33] J. Fiala , M. Ko ̌cvara , M. Stingl , PENLAB: a MATLAB solver for nonlinear semidefinite optimization, ArXiv (2013) 5240 . 
[34] Z. Liu, W. Li, H. Ouyang, D. Wang, Eigenstructure assignment in vibrating systems based on receptances, Arch. Appl. Mech. 85 (2015) 713–724, doi: 10.

10 07/s0 0419- 015- 0983- x . 
[35] R. Belotti, D. Richiedei, A. Trevisani, Optimal design of vibrating systems through partial eigenstructure assignment, J. Mech. Des. Trans. ASME. 138

(2016) 071402, doi: 10.1115/1.4033505 . 

[36] H. Ouyang, D. Richiedei, A. Trevisani, Pole assignment for control of flexible link mechanisms, J. Sound Vib. (2013), doi: 10.1016/j.jsv.2013.01.004 . 
[37] H. Ouyang, Pole assignment of friction-induced vibration for stabilisation through state-feedback control, J. Sound Vib. 329 (2010) 1985–1991, doi: 10.

1016/j.jsv.2009.12.027 . 
[38] H. Ouyang, A hybrid control approach for pole assignment to second-order asymmetric systems, Mech. Syst. Signal Process. 25 (2011) 123–132, doi: 10.

1016/j.ymssp.2010.07.020 . 
[39] M.G. Tehrani, H. Ouyang, Receptance-based partial pole assignment for asymmetric systems using state-feedback, Shock Vib. 19 (2012) 564061, doi: 10.

1155/2012/564061 . 

[40] Y. Liang, H. Yamaura, H. Ouyang, Active assignment of eigenvalues and eigen-sensitivities for robust stabilization of friction-induced vibration, Mech. 
Syst. Signal Process. 90 (2017) 254–267, doi: 10.1016/j.ymssp.2016.12.011 . 
20 

https://doi.org/10.3390/app10165494
https://doi.org/10.1109/9.486637
https://doi.org/10.1109/9.811208
https://doi.org/10.1016/S1474-6670(17)35700-2
https://doi.org/10.1016/S1474-6670(17)35700-2
https://doi.org/10.1080/00207721.2015.1112444
https://doi.org/10.1080/00207170801942188
https://doi.org/10.1002/oca.676
https://doi.org/10.1007/s40313-019-00457-y
https://doi.org/10.1080/00207720802300370
https://doi.org/10.1006/jsvi.1999.2622
https://doi.org/10.1016/S0167-6911(99)00119-X
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0031
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0031
https://doi.org/10.1109/cacsd.2004.1393890
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0033
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0033
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0033
http://refhub.elsevier.com/S0022-460X(20)30686-6/sbref0033
https://doi.org/10.1007/s00419-015-0983-x
https://doi.org/10.1115/1.4033505
https://doi.org/10.1016/j.jsv.2013.01.004
https://doi.org/10.1016/j.jsv.2009.12.027
https://doi.org/10.1016/j.ymssp.2010.07.020
https://doi.org/10.1155/2012/564061
https://doi.org/10.1016/j.ymssp.2016.12.011

	Active control of linear vibrating systems for antiresonance assignment with regional pole placement
	1 Introduction
	1.1 Motivations and general introduction
	1.2 State of the art on zero assignment through active control
	1.3 Contributions of this paper

	2 Method description
	2.1 Problem statement
	2.2 Formulation of the closed-loop zero assignment problem
	2.3 Assignment of the desired closed-loop zeros
	2.4 First stage: assignment of the zeros
	2.5 Second stage: assignment of the poles within the desired feasible region
	2.5.1 Definitions and preliminaries
	2.5.2 Application of LMI regions to the placement of the closed-loop poles
	2.5.3 Transformation of the BMI into a LMI
	2.5.4 Computation of 


	3 Numerical results
	3.1 General description and implementation details
	3.2 Case 1 - assignment of a pair of zero to a cross-receptance
	3.3 Case 2 - assignment of two pair of zeros to a point-receptance of a five-mass system
	3.4 Case 3 - assignment of a pair of zeros to a point-receptance of a cantilever beam
	3.5 Case 4 - assignment of a pair of zeros to a cross-receptance in an asymmetric system
	3.5.1 Test case description
	3.5.2 Method extension for systems with asymmetric stiffness matrix
	3.5.3 Solutions

	3.6 Case 5 - assignment of a zero to a cross-receptance in a system with lumped and distributed flexibility

	4 Conclusions
	CRedit authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


