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ABSTRACT
Gaze target detection aims at determining the image location where
a person is looking. While existing studies have made significant
progress in this area by regressing accurate gaze heatmaps, these
achievements have largely relied on access to extensive labeled
datasets, which demands substantial human labor. In this paper,
our goal is to reduce the reliance on the size of labeled training data
for gaze target detection. To achieve this, we propose AL-GTD, an
innovative approach that integrates supervised and self-supervised
losses within a novel sample acquisition function to perform active
learning (AL). Additionally, it utilizes pseudo-labeling to mitigate
distribution shifts during the training phase. AL-GTD achieves the
best of all AUC results by utilizing only 40-50% of the training data,
in contrast to state-of-the-art (SOTA) gaze target detectors requiring
the entire training dataset to achieve the same performance. Im-
portantly, AL-GTD quickly reaches satisfactory performance with
10-20% of the training data, showing the effectiveness of our acquisi-
tion function, which is able to acquire the most informative samples.
We provide a comprehensive experimental analysis by adapting sev-
eral AL methods for the task. AL-GTD outperforms AL competitors,
simultaneously exhibiting superior performance compared to SOTA
gaze target detectors when all are trained within a low-data regime.
Code is available at https://github.com/francescotonini/al-gtd.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing; • Computing methodologies→Machine learn-
ing.
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1 INTRODUCTION
Human communication relies on a range of multimodal cues, in-
cluding speech and gestures. Among these cues, the gaze holds
significant importance as it reveals a person’s visual focus of at-
tention, enabling us to comprehend the interests, intentions, or
(future) actions of individuals [21]. Gaze analysis has been exten-
sively utilized across various fields, including human-computer
interaction [6, 49], neuroscience [16, 52], social robotics [1], and
social and organizational psychology [9, 19]. Automated gaze be-
havior analysis has been addressed through two tasks: gaze estima-
tion and gaze target detection. Gaze estimation involves discerning
the direction of a person’s gaze, usually within a 3D space, when
provided with a cropped human head image as input. This encom-
passes estimating the horizontal and vertical angles of the gaze,
as well as determining the depth or distance at which the gaze is
focused [11, 31, 36]. On the other hand, gaze target detection (or
gaze-following) is the process of identifying the specific point or
area within a scene that a person is looking at [15, 33, 60]. This
involves analyzing visual cues such as head orientation, and other
contextual information to determine the focal point of a person’s
gaze [4, 14, 15, 23, 34, 41, 47, 53, 59–61].

In this study, we focus on the gaze target detection task. Our
multimodal gaze network, namely GTN, integrates the head crop
of the person of interest with RGB and depth data. We employ two
separate backbones for processing scene RGB and depth data to
extract meaningful features indicating areas of interest. A third
backbone is used for head processing to predict an attention map
projected into the scene features, which identifies image areas
where the person is more likely to look. Then, the fusion of head,
scene and depth features generates the final gaze heatmap, centered
on the person’s visual focus of attention.
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Figure 1: The performance of our AL-GTD compared to coun-
terpart active learning approach AL-SSL [20] and SOTA gaze
target detectors: Tu et al. [61] and Tonini et al. [59, 60] on
the GazeFollow dataset [54]. Our method consistently per-
forms better than competitors and achieves SOTA AUC per-
formance with half of the training data, proving the effec-
tiveness of our acquisition function.

The training and evaluation of the gaze target detection task
are carried out using manually human-annotated data. In certain
instances, collecting a gaze target detection dataset proves to be
challenging, leading to low consensus among annotators, as shown
in [47, 60]. Moreover, manual labeling is a highly tedious and time-
consuming process. Some studies have reported labor times ranging
from ten seconds to one minute for every second of gaze data [3, 17].
Another study [22] revealed that an experienced human annotator
may require two to more than ten times the duration of a video to
accurately label the gaze. Unfortunately, the performance of state-
of-the-art (SOTA) gaze target detectors, especially those relying on
a Transformer architecture [60, 61], mainly depends on the size of
the labeled training set.

In this paper, our objective is to explore solutions for reducing
reliance on the size of labeled training data in gaze target detection.
In essence, given our method GTN, we aim to find ways to achieve
accurate performance even with a smaller amount of labeled train-
ing data. The key is to effectively select a subset of the data that
optimizes model training. In this vein, researchers have delved into
various strategies for choosing the most informative samples in a
dataset for labeling, a methodology commonly referred to as Active
Learning (AL). Our study focuses on AL’s pioneering application in
gaze target detection. We opt to keep our gaze detector relatively
simple (e.g., we do not include body pose and scene point clouds [4]
that can potentially improve the results, or perform extra tasks like
retrieving the gazed-object’s location [60]), yet we still prove our
GTN’s effectiveness, particularly in a low data regime.

Usually, AL is achieved by developing a scoring function, i.e. the
AL acquisition function, that selects the most informative samples,
which are the ones contributing the most to the effectiveness of
the model. This function, for example, can prompt the labeling of

samples for which the network exhibits the highest uncertainty,
indicating its lowest confidence in predictions [5, 26, 38, 58, 65].
Other popular AL acquisition functions are based on diversity [18,
56] or ensemble of multiple learning models [5]. Instead, we present
a novel AL acquisition function, which is integrated into our GTN.

Our method, namedAL-GTD, utilizes three metrics to assess the
informativeness of the network predictions on unlabeled samples.
These scores measure (a) the discrepancy and (b) scatteredness be-
tween the network’s intermediate attention map and predicted gaze
heatmap, as well as (c) the scene content described by an object
detector. To further enhance the performance, we incorporate a self-
supervised learning (SSL) strategy that measures the consistency
of network predictions against image augmentations. Furthermore,
inspired by [20], we include pseudo-labeling in our pipeline, and
automatically annotate unlabeled samples using the prediction of
GTN. Pseudo-labeling enables us to expand the training dataset
without incurring additional labeling costs while also handling dis-
tribution shifts resulting from the acquisition function’s objective.

Given that this study marks the initial endeavor of integrating
gaze target detectionwithin AL, we also incorporate several existing
AL acquisition functions applied to other tasks to conduct a com-
parative study to evaluate the effectiveness of our AL-GTD. To this
end, we leverage the gaze target detection datasets GazeFollow [53]
and VideoAttentionTarget [15] to benchmark the AL methods: En-
tropy [57], MC-Dropout [26], Learning Loss [65], VAAL [58], AL-
SSL [20] and our AL-GTD. Additionally, we refine the uncertainty
definition introduced in UnReGa [8], which is used to improve
source-free gaze estimation by minimizing uncertainty, and uti-
lize these refinements as an AL acquisition function, establishing
another novel AL methodology for gaze target detection.

Experiments show that AL-GTD can reduce the reliance on the
size of labeled training data. For example, it can perform SOTAAUC
results with only 50% of the GazeFollow [53] dataset’s training split.
Notably, it demonstrates promising results, i.e., nearing SOTA AUC,
even when trained on only 20% of the full training set, indicating
its proficiency in selecting highly informative training samples.
Furthermore, our AL-GTD remarkably surpasses the SOTA gaze
target detectors [59–61] when all are trained within a low-data
regime (see Fig. 1 reflecting all these results). Comprehensive anal-
yses confirm that our AL-GTD consistently outperforms other AL
approaches and the ablation study proves the importance of each
component of the proposed method.

The main contributions can be summarized as follows.
(1) This paper is the first attempt to achieve effective gaze target
detection under the condition of limited training data.
(2) We introduce a novel deep AL approach for gaze target detec-
tion, outperforming its competitors and yielding robust results with
fewer labeled training data. Our method achieves SOTA AUC per-
formance by utilizing significantly less labeled training data, which
is a performance level reached by [59–61] only when trained on
the complete training dataset.
(3) We benchmark AL for gaze target detection by re-purposing
several SOTA AL methods. We also present an additional AL acqui-
sition function different from the proposed method by adjusting
the approach in [8]. Such evaluations can be used as a reference by
researchers interested in tackling the same task in the future.
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2 RELATEDWORK
Gaze Target Detection. This task aims to determine the location

that a person is looking at in a scene captured from a third-person
perspective. The typical output of this task is a 2D heatmap, indicat-
ing the probability of where the person is looking in the scene while
the gaze target is determined by the pixel coordinates correspond-
ing to the highest value in the heatmap. To this end, [53] introduced
the GazeFollow dataset and proposed a two-pathway approach. In
that approach, one CNN-based pathway concentrates on extracting
features from the head crop of the individual whose gaze is to be de-
tected, while the other CNN-based pathway extracts features from
the RGB scene image, with subsequent fusion of these features. The
aforementioned two-pathway methodology is further advanced in
[15], integrating spatiotemporal modeling for video-based gaze tar-
get prediction as well as introducing VideoAttentionTarget dataset.
This concept is refined in subsequent works [4, 23, 34, 47, 59], some
of which introduce a third pathway to incorporate the depth map
of the scene image, which is estimated using a monocular depth
estimator [23, 34, 47, 59]. Recently, Transformer-based methods
are introduced [60, 61]. Such methods can simultaneously detect
the gaze targets of multiple individuals in a scene. However, these
models rely on larger training datasets, leading to performance
degradation in low-data scenarios. To tackle this issue, we intro-
duce AL-GTD, an innovative multimodal (RGB + depth) gaze tar-
get detection model specifically designed to facilitate Deep Active
Learning in settings constrained by the amount of labeled training
data.

Deep Active Learning. AL aims to optimize labeling costs by
iteratively annotating (i.e., querying a human) [48] only those most
informative samples from a large pool of unlabeled data. In recent
years, special attention has been given to AL for a variety of tasks,
with works addressing image classification [5, 10, 18, 25, 26, 28, 37–
39, 48, 56, 58], object detection [13, 20, 35, 45, 55, 63], semantic
segmentation [7, 27, 30, 37, 64], pedestrian detection in videos [2],
person re-identification [43, 62], human hand pose estimation [29],
video action detection [50], and temporal action localization [32].

These works can be categorized based on their acquisition func-
tion as: i) uncertainty-based, ii) diversity-based, or iii) committee-
based, with also the possibility of hybrid methods [13, 20, 45, 47].
Uncertainty-based methods primarily depend on entropy [13, 20,
32, 45, 63, 64]. A clustering-based selection criterion was proposed
in [50] to ensure diversity across samples while [65] introduced
a Learning Loss module to predict the losses of unlabeled sam-
ples, which was later refined in subsequent works [10, 37]. On
the other hand, Gal et al. [25, 26] presented deep Bayesian AL,
which involves training a model with dropout layers and employ-
ing Monte Carlo dropout to approximate the sampling from the
posterior. This method later became a mainstream baseline, as ev-
idenced in [5, 13, 18, 20, 28, 38, 39, 45, 48, 56, 58]. Furthermore,
Sinha et al. [58] integrated a Variational AutoEncoder (VAE) and a
discriminator to establish an AL metric. Committee-based models,
where ensembles are typically employed for sample set selection,
also utilize a separate task classifier trained in a fully supervised
manner [5, 29, 39, 48]. Recently, [20, 45] introduced a robustness
score measuring an image’s consistency and its augmented version.
Using pseudo-labels is also very beneficial, as seen in [20]. However,

the primary focus of such solutions lies in the classification head,
overlooking regression problems such as gaze target detection. It
is imperative to highlight that the domain of AL for gaze target
detection remains unexplored.

3 METHOD
Gaze target detection aims to predict the image coordinates where
a person is looking in a scene captured from a third-person per-
spective. As outlined in previous works [23, 34, 47, 59], multi-
modal information (e.g. the depth map) substantially enriches the
gaze target detection performance. To accomplish this, we define
a model 𝐺𝑇𝑁 that is fed with an input I = {𝐼𝑅𝐺𝐵, 𝐼𝐷 , 𝐼𝐻 }, where
𝐼𝑅𝐺𝐵 ∈ R𝑊 ×𝐻×3 and 𝐼𝐷 ∈ R𝑊 ×𝐻 represents the RGB and depth
image of the scene, and 𝐼𝐻 ∈ R𝑤×ℎ×3 denotes a𝑤 ×ℎ crop centered
on the person’s head whose gaze is subject to be predicted. The
output 𝐻 ∈ R𝑊 ×𝐻 is the predicted gaze heatmap, where higher
activation areas correspond to the area where the person is looking.

Our gaze target detector𝐺𝑇𝑁 works within active learning such
that, given an unlabeled dataset 𝑈 and a labeling budget 𝛽 , the
objective is to iteratively select the most informative samples from
𝑈 and annotate them using an oracle (i.e., human) to create a new
labeled set 𝐿 that maximizes the performance of 𝐺𝑇𝑁 . Initially, a
small random set of samples 𝐿0 ∈ 𝑈 are labeled and are used to train
a prior model 𝐺𝑇𝑁0. Following this, 𝐿 is progressively populated
over 𝑁 AL iterations. Thus, for each iteration 𝑖 ∈ [1, 𝑁 ], 𝐺𝑇𝑁𝑖−1
processes 𝑈𝑖−1 = 𝑈 \ 𝐿𝑖−1 and the predictions are evaluated by an
acquisition function to determine the most informative samples,
which are then labeled by an oracle. Meanwhile, we also pseudo-
label the samples with the highest confidence, assuming that they
are less informative samples or, in other words, the ones our 𝐺𝑇𝑁
can perform accurate gaze predictions. Both pseudo-labeled and
human-annotated samples are added to the labeled set 𝐿𝑖 . Finally, a
new model 𝐺𝑇𝑁𝑖 is trained on 𝐿𝑖 , and the process is repeated until
the labeling budget 𝛽 is exhausted. This method, namely, AL-GTD,
integrates supervised and self-supervised losses within a novel AL
acquisition function to enable the usage of our gaze target detector
under low-data regimes. An overview of AL-GTD is depicted in
Fig. 2, along with the associated pseudocode. Detailed explanations
of its components, including 𝐺𝑇𝑁 (Fig. 3), are provided below.

3.1 Our Gaze Target Detector
Tomake the model more robust and impose a self-supervised consis-
tency, which is used during AL, we also define a set of augmented in-
puts of I as A = A(I), with A being standard augmentations (e.g.
random cropping, horizontal flipping, contrast/brightness changes,
etc...). I is processed by different branches which interact with
each other to generate the output 𝐻 . The scene branch S processes
the image 𝐼𝑅𝐺𝐵 while the depth branch D processes the depth map
𝐼𝐷 . Both inputs are enriched with the head mask 𝐼𝑀 , which encodes
the head’s position in the image. The crop of the head of the person
of interest 𝐼𝐻 is processed by a separate head branch H , which
extracts high dimensionality features 𝑓𝐻 about the head pose and
gaze of the person. Furthermore, a separate module 𝐷𝐴 projects
the concatenation of 𝑓𝐻 and 𝐼𝑀 into the attention map𝑀𝐴 , which
encodes the probability of areas of the scene being gazed at by the
person with only the head features and its position in the image.
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Figure 2: The illustration and the pseudocode of our AL-GTD. We begin by obtaining the augmented version A from the
original version I of unlabeled samples𝑈𝑖 at the current AL cycle 𝑖. OD extracts relevant objects 𝑂 in the scene from 𝐼𝑅𝐺𝐵 ,
while𝐺𝑇𝑁 processes both 𝐼𝑅𝐺𝐵 and 𝐼𝐷 of the scene and the crop of the head of the person of interest 𝐼𝐻 . From𝐺𝑇𝑁 , the attention
map 𝑀𝐴 and gaze heatmap 𝐻𝐺 are obtained. The outputs of OD and 𝐺𝑇𝑁 are used to build the acquisition function (Eq. 6),
composed of the objectness Γ, the scatteredness Σ, and the discrepancy Δ scores. The oracle annotates the most informative
samples, while those with the lowest scatteredness (Eq. 7) are pseudo-labeled. Both the manually labeled samples by the oracle
and the pseudo-labeled samples are added to the pool 𝐿𝑖+1, and𝐺𝑇𝑁 is trained on the updated set. This process is repeated for a
fixed number of iterations 𝑁 until the exhaustion of the labeling budget 𝛽 .

0

0

Figure 3: Our proposed𝐺𝑇𝑁 . S and D process the scene RGB
image 𝐼𝑅𝐺𝐵 and depth map 𝐼𝐷 , respectively. The crop of the
head of the person of interest 𝐼𝐻 is processed by a separate
head branch H , and 𝐷𝐴 projects the head features into the
attention map 𝑀𝐴. The scene 𝑓𝑆 and depth 𝑓𝐷 features are
multiplied by the attentionmap𝑀𝐴 and processed by two sep-
arate encoders, ES and ED , along with the head features 𝑓𝐻 .
Finally, the decoder𝐷𝐻 processes the features of the encoders
and generates the gaze heatmap 𝐻𝐺 . To alleviate prediction
inconsistency, we train on both the original version I and
the augmented version A of each labeled sample.

The RGB and depth features of the scene, denoted as 𝑓𝑆 and 𝑓𝐷 ,
respectively, are combined with𝑀𝐴 to prioritize areas where the
gaze is likely to occur. These features are then processed by parallel
encoders 𝐸𝑆 and 𝐸𝐷 , projecting scene and head cues into two latent
spaces. Finally, a decoder 𝐷𝐻 fuses the latent spaces above and
produces the gaze heatmap 𝐻𝐺 focused on the person’s gaze point.

3.2 Our Active Learning
Our AL pipeline comprises a novel acquisition function (Sec. 3.2.1),
which evaluates the objectness determined by leveraging an ob-
ject detector, the scatteredness of heatmap activations, and the
discrepancy between 𝑀𝐴 and 𝐻𝐺 . Additionally, we incorporate
pseudo-labeling (Sec. 3.2.2) and self-supervised learning (Sec. 3.2.3)
into our approach.

3.2.1 Acquisition function. Recall that the objective of an acquisi-
tion function is to identify which samples are the most informative
and can enhance the network’s predictions. AL literature [13, 20,
32, 45, 63, 64] shows that high entropy samples (representing low-
confidence) are expected to provide more information than low
ones. However, in the context of gaze target detection, highly confi-
dent low entropy predictions can result in incorrect gaze heatmaps,
particularly in complex scenes where multiple people and objects
exist. Conversely, images with low confident predictions and high
entropy may indicate poor model robustness and, if labeled, they
might not bring new information to the existing network. There-
fore, an acquisition function for gaze target detection must address
several perspectives. We propose three properties that determine
the informativeness of images to be labeled, described as follows.

Objectness. Inspired by studies demonstrating that individuals
often gaze at living or non-living objects during social and phys-
ical interactions [12, 40, 46], we incorporate the use of an object
detector OD under the assumption that it could enhance the infor-
mativeness of samples for gaze target detection within AL. Due to
how the scene branch S is pre-trained, elements in the scene can in-
fluence 𝐷𝐻 to predict the gaze heatmap onto objects. This behavior
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potentially leads to poor generalization, especially when many ob-
jects are visible but the person is looking elsewhere. We empirically
find that objects in the foreground shift the activation of the gaze
heatmap toward the object’s center, ignoring cues provided by the
attention map. This detector takes the scene image as input and pre-
dicts a set of objects 𝑂 = OD(𝐼𝑅𝐺𝐵). Each object prediction 𝑜 ∈ 𝑂
consists of a bounding box 𝑏 =

{
𝑐𝑥 , 𝑐𝑦, 𝑤, ℎ, 𝑘

}
, with 𝑐𝑥 , 𝑐𝑦, 𝑤, ℎ

denoting the center coordinates, width, and height of the object,
respectively, while 𝑘 ∈ R𝐾 represents the probability distribution
across the 𝐾 classes considered. To discourage the network from
taking shortcuts into foreground objects, we detect objects being
targeted by the gaze heatmap and calculate the max confidence

𝛾 (𝑂,𝐻𝐺 ) = max({𝑐𝑜 1𝑂𝐻
(𝑜) : 𝑜 ∈ 𝑂}), (1)

where 𝑂𝐻 ⊆ 𝑂 is the set of objects such that the peak activation
𝑃𝐻 of the heatmap 𝐻𝐺 lies inside their bounding boxes, 𝑐𝑜 is the
confidence of the object, and 1 is the indicator function of𝑂𝐻 . The
objectness score is calculated as the maximum confidence across
multiple augmentations of the same scene, i.e.:

Γ(A) = max({𝛾 (𝑂𝑎, 𝐻𝑎𝐺 ) : 𝑎 ∈ A}), (2)

where (·)𝑎 represents the prediction for sample 𝑎.

Heatmap activation scatteredness estimation. The peak activation
points of the gaze heatmap𝐻𝐺 should ideally be densely positioned
on a small region, with values progressively increasing as we reach
the peak of the heatmap. Conversely, sparse peak activation points
indicate network uncertainty. Let 𝜌 :R𝑛×𝑛 → R𝑛2×2 be the function
that takes a positive-defined matrix and ranks in descending order
its elements and returns the coordinates of the cells. We discretize
the heatmap into 𝐵 bins, obtain the heatmap peaks coordinates in
descending order as 𝜋 = 𝜌 (·), and compute the scatteredness of the
activations as:

𝜎 (𝜋) = 1
𝑃

𝑃∑︁
𝑝=1

| |𝜋1 − 𝜋𝑝+1 | |2, (3)

where 𝜋1 is the maximum activation point of the heatmap and 𝜋𝑝+1
are the coordinates of the 𝑝-most highest and farthest activation
point from 𝜋1. The scatteredness function iteratively finds the high-
est 𝑃 activation points farthest from the peak and calculates their
distance from it. The final scatteredness score is calculated as:

Σ(A) = max({𝜎 (𝜌 (𝐻𝑎𝐺 )) : 𝑎 ∈ A}), (4)

with high values indicating network uncertainty in at least one of
the augmentations 𝑎.

Discrepancy between attention map and gaze heatmap. The dif-
ference between the attention map 𝑀𝐴 and gaze heatmaps 𝐻𝐺
is a useful measure of model uncertainty. In effective gaze tar-
get detection networks, 𝑀𝐴 and 𝐻𝐺 must agree in the direction
(orientation) and location of gaze, with the latter being a more re-
fined version of the former. To estimate the differences between
them, we compute the distance among the peak activation points
𝛿 (𝑀𝐴, 𝐻𝐺 ) = | |𝑃𝐴 − 𝑃𝐻 | |2, where 𝑃𝐴 and 𝑃𝐻 are the positions in
the 2D image space of the highest activation point of the attention
map and gaze heatmap, respectively.

To address model robustness, we estimate the disagreement
across multiple augmentations of the same scene and calculate the
maximum distance among augmentations as:

Δ(A) = max({𝛿 (𝑀𝑎
𝐴, 𝐻

𝑎
𝐺 ) : 𝑎 ∈ A}) . (5)

Informative samples have a high value for Δ(A), and labeling them
allows the network to reduce the discrepancy between the saliency
map and gaze heatmap.

The three above criteria are aggregated to identify those samples
whose attention maps differ from the predicted gaze heatmap, that
contain objects with high confidence included in the heatmap, and
whose activation points are sparse. The final 𝑆𝑐𝑜𝑟𝑒 of a sample is
calculated as:

𝑆𝑐𝑜𝑟𝑒 (A) = 𝜆1Γ(A) + 𝜆2Σ(A) + 𝜆3Δ(A), (6)

where 𝜆1, 𝜆2, and 𝜆3 are the learnable weights.
After assigning scores to all samples in the unlabeled set, we

label the top 𝛽/𝑁 samples with the highest scores. The process is
repeated for 𝑁 active learning iterations.

3.2.2 Gaze heatmap pseudo-labeling. We contend that it is essen-
tial for the gaze network to come across representative and easily
detectable samples in order to avoid distribution shifts. At the same
time, our goal is to avoid labeling confident samples to save label-
ing resources. As a solution, we suggest utilizing a pseudo-labeling
technique, where the network trained in the previous AL cycle gen-
erates pseudo-labels for the network currently undergoing training.
We calculate a labeling score for each unlabeled sample as

𝑃𝑠𝑒𝑢𝑑𝑜𝑆𝑐𝑜𝑟𝑒 (A) = 𝐻𝑃𝐻
𝐺

(1 − Σ(A)), (7)

where 𝐻𝑃𝐻
𝐺

is the peak value of the gaze heatmap, and we pseudo-
label samples with the highest scores up to a fixed percentage per
iteration.

3.2.3 Supervised and self-supervised training. The network is end-
to-end trained on both labeled and pseudo-labeled samples by mini-
mizing the Mean Squared Error loss between the predicted heatmap
𝐻𝐺 and 𝐻𝐺 ∼ N( ˜𝑃𝐻 ,Σ), with ˜𝑃𝐻 being the ground-truth/pseudo-
labeled gaze point and Σ being a positive covariance matrix. In ad-
dition to this supervised loss, we incorporate also a self-supervised
loss to ensure consistency across multiple augmentations A of
the input. The self-supervised learning (SSL) between augmen-
tations of the same image allows us to increase the robustness
of the network and reduce the probability of assigning a high
𝑆𝑐𝑜𝑟𝑒 (A) to easy, non-informative samples, whose discrepancy
and scatteredness scores are high because of poor network gen-
eralization. We define the consistency loss 𝐿𝑐 among predictions
as 𝐿𝑐 (𝑎, 𝑎′) = | |𝐻𝑎

𝐺
− A−1 (𝐻𝑎′

𝐺
) | |2 where A−1 is the inverse aug-

mentation function that aligns the predictions and allows us to
effectively calculate the localization error among augmentations.
After predicting the gaze heatmap 𝐻𝐺 for all 𝑎 ∈ A, we compute
the supervised loss with the ground-truth gaze heatmap 𝐻𝐺 as
𝐿ℎ (𝑎) = | |𝐻𝑎

𝐺
− 𝐻𝑎

𝐺
| |2. We then compute the total loss as:

𝐿𝑡𝑜𝑡𝑎𝑙 (A) =
∑︁
𝑎∈A

∑︁
𝑎′∈A\𝑎

𝐿𝑐 (𝑎, 𝑎′) +
∑︁
𝑎∈A

𝐿ℎ (𝑎). (8)
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Figure 4: Comparisons among AL methods on the GazeFollow [53] dataset. Left: Area Under the Curve (AUC) of the predicted
gaze heatmap w.r.t. the ground truth (GT). Center and right: average and minimum distance between GT and the predicted
gaze point. Our method, AL-GTD, consistently surpasses random sampling and other AL methods, demonstrating superior
performance even with a small initial training dataset (3.7K samples, ∼3% of the original train split).
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Figure 5: Comparisons among AL methods on the VideoAt-
tentionTarget [15] dataset. Left: Area Under the Curve (AUC)
of the predicted gaze heatmap w.r.t. the GT. Right: average
distance between GT and predicted gaze point.

4 EXPERIMENTS
We evaluate all methods using the standard gaze target detection
benchmarks GazeFollow [53] and VideoAttentionTarget [15].Gaze-
Follow is a large-scale image dataset comprising over 122K images,
featuring annotations for gaze and head locations for more than
130K individuals. On the other hand, VideoAttentionTarget con-
sists of YouTube video clips, each up to 80 seconds long, with 110K
frame gaze annotations and their corresponding head locations. For
this dataset, we follow the common practice of sampling one image
every 20 frames [4, 15, 23, 34, 59–61]. To measure the performance
of the algorithms, we use the standard evaluation metrics for
gaze target detection [14, 15]. The Area Under the Curve (AUC)
evaluates the confidence of the predicted gaze heatmap w.r.t. the
ground truth (GT), while Distance (Dist.) represents the L2 dis-
tance between the GT gaze point and the location on the predicted
gaze heatmap with maximum confidence. For GazeFollow, it is cus-
tomary to report both the minimum and average distances, while
for VideoAttentionTarget, only the average distance is reported due
to the presence of a single GT point during evaluation.

4.1 Implementation Details
The scene S and depth D branches consist of a ResNet50 pre-
trained on RGB and depth scene classification [66], respectively.

The object detector OD is based on DETR [67] and pretrained on
the COCO [42] dataset. Following earlier works [4, 23, 34, 59, 60],
we employ a monocular depth estimation network [51] to extract
depth maps from the input images. The head branch H is built
upon a ResNet50 backbone pretrained on the Eyediap dataset [24]
and includes a feature projector 𝐷𝐴 to produce the attention map
𝐻𝑐 from head features 𝑓𝐻 . We train S, D, and H , as well as 𝐷𝐴 ,
𝐸𝑆 , 𝐸𝐷 , and 𝐷𝐻 with an Adam optimizer and a 2.5 × 10−4 learning
rate while keeping OD frozen. On GazeFollow [53], we bootstrap
our prior model 𝐺𝑇𝑁0 with 3.7K randomly sampled images from
the training set (∼3% of the original training split). Subsequently,
we conduct five AL iterations using AL-GTD, where we label 2.5K
images (∼2% of the original training split) and pseudo-label 2.5K
additional images per iteration. On VideoAttentionTarget [15], we
bootstrap 𝐺𝑇𝑁0 with 932 randomly selected images and label 932
frames per iteration. We perform four AL iterations and use the
pseudo-labeling setup of the GazeFollow experiments.

Other Methods.We compare AL-GTD with random sampling
as well as AL methods such as Entropy [57], LL4AL [65], VAAL [58],
AL-SSL [20],MC-Dropout [26], and the committee-based UnReGa [8].
The implementation details of the baselines are given in Supp. Mat.
All baselines are trained and evaluated using the same configura-
tions employed for AL-GTD, including the optimizers, learning rate,
AL budget, and the initial subset randomly selected for training.
At the start of each AL iteration, we reload the initial pre-trained
weights to encourage the model to generalize on the updated data
distribution, following common implementation, e.g., [13, 20, 45].

4.2 Results
The main objective of this work is to decrease reliance on extensive
amounts of labeled training data for gaze target detection. Our
method, AL-GTD, accomplishes SOTA results of 92.2% AUC for
GazeFollow dataset [53] using only 50% of the total training sam-
ples, rather than utilizing the entire training dataset, as in [59–61].
This is also illustrated in Fig. 1 in detail. Furthermore, this percent-
age decreases to 40% of the training set for VideoAttentionTarget
dataset [15], in which AL-GTD achieves 93.5% AUC, once again
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Table 1: Ablation study on GazeFollow [53] in terms of AUC
(best in bold) for the effect of SSL, and the components of the
AL acquisition function: objectness (Γ), discrepancy (Δ), and
scatteredness (Σ). We also report the results of random sam-
pling and AL-SSL [20] for the reader’s reference. Note that
the cycle with 3.7K samples represents the initial training,
where no AL is applied. Therefore, the results are equal for
all (𝐴𝑈𝐶 = 82.64 ± 0.00).

SSL 𝚪 𝚫 𝚺 6.2K 8.7K 11.2K 13.7K

✗ ✓ ✓ ✓ 83.18 ± 0.22 84.85 ± 0.43 84.98 ± 0.51 85.60 ± 0.35
✓ ✗ ✓ ✓ 83.65 ± 0.14 85.32 ± 0.58 86.52 ± 0.31 87.20 ± 0.07
✓ ✓ ✗ ✓ 83.85 ± 0.46 85.74 ± 0.24 86.68 ± 0.28 86.91 ± 0.16
✓ ✓ ✓ ✗ 84.39 ± 0.72 85.47 ± 0.41 86.83 ± 0.64 87.37 ± 0.49
✓ ✓ ✗ ✗ 84.10 ± 0.62 85.42 ± 0.30 86.81 ± 0.11 86.82 ± 0.85
✓ ✓ ✓ ✓ 85.10 ± 0.74 85.81 ± 0.23 87.14 ± 0.21 87.67 ± 0.31

Random 83.49 ± 0.17 85.18 ± 0.39 85.95 ± 0.25 86.46 ± 0.29
AL-SSL [20] 83.45 ± 0.49 85.32 ± 0.15 85.71 ± 0.23 86.62 ± 0.11

proving the effectiveness of our AL acquisition function. Impor-
tantly, AL-GTD can reach satisfactory results, i.e., 90.3% AUC in
GazeFollow [53] by being trained only 20% of the training data
while this percentage is 10% of the training data for VideoAttention-
Target [15] in which AL-GTD yields 92.5% AUC. We compare the
performance of our AL-GTD against other AL methods in Sec. 4.2.1.
We present an ablation study demonstrating the importance of each
component of our AL acquisition function (Sec. 4.2.2) and examine
the effect of pseudo-labeling (Sec. 4.2.3). Additionally, we provide
comparisons between AL-GTD and other AL methods when semi-
supervised learning (SSL) is adapted to them (Sec. 4.2.4). Following
that, we compare AL-GTD with SOTA gaze target detectors un-
der the condition of limited training data in Sec. 4.2.5. Finally, we
display some qualitative results in Sec. 4.2.6.

4.2.1 Comparisons with other AL methods. Figs. 4 and 5 compare
AL-GTD against its counterparts and random sampling for GazeFol-
low [53] and VideoAttentionTarget [15], respectively. These results
together with the number of parameters and the elapsed times for
training and inference, are available in tabular format in the Supp.
Mat. The results demonstrate that AL-GTD consistently outper-
forms the random sampling and all other methods even from the
initial cycle of AL in which the used training data is really small.
Overall, the second-best performing method is AL-SSL [20]. While
it is challenging to pinpoint a clear winner between AL-SSL [20]
and other methods, AL-SSL [20] tends to outperform them as the
size of the training data increases. However, it never manages to
surpass our method, as evidenced in Fig. 1. On average, the worst
performing methods are VAAL [58] and LL4AL [65].

4.2.2 Ablation Study. The contributions of the components of our
AL acquisition function (i.e., discrepancy Δ, scatteredness Σ, and
objectness Γ) and SSL are reported in Tab. 1 in terms of AUC for
the GazeFollow dataset. Refer to the Supp. Mat. for the Dist. results,
which back up the conclusions drawn from the AUC-based analysis.

Our first objective is to understand the effect of SSL by removing
it from our pipeline (Row 1 vs. Row 6), which results in a decrease in
performance (sometimes even slightly more than 2% AUC) in every
AL cycle. We then assess the impact of each acquisition component
by removing them one at a time while keeping SSL (Rows 2-4). In
these instances, the results reveal that there is no clearly superior

Table 2: Performance of AL-GTD associated with different
numbers of samples pseudo-labeled. The results correspond
to 13.7K manually annotated samples from the GazeFol-
low [53] dataset.

Percentage AUC ↑ Avg. Dist. ↓ Min. Dist. ↓

0% 87.19 ± 0.11 0.210 ± 0.005 0.141 ± 0.005
0.1% 87.49 ± 0.34 0.213 ± 0.003 0.144 ± 0.003
2% 87.67 ± 0.31 0.208 ± 0.002 0.140 ± 0.006
5% 86.57 ± 0.34 0.223 ± 0.008 0.153 ± 0.007

Table 3: AUC scores of AL-GTD on GazeFollow [53] based on
pseudo-labeling criteria used. Note that the cycle with 3.7K
samples represents the initial training stage, where no AL is
applied. Therefore, the results are equal for all.

Criteria 3.7K 6.2K 8.7K 11.2K 13.7K

𝑆𝑐𝑜𝑟𝑒 (A) 82.64 ± 0.00 84.68 ± 0.03 85.65 ± 0.07 86.68 ± 0.45 87.28 ± 0.36
Γ(A) 82.64 ± 0.00 83.51 ± 0.04 86.53 ± 0.01 86.82 ± 0.56 87.53 ± 0.35
Δ(A) 82.64 ± 0.00 84.14 ± 0.43 85.11 ± 0.34 86.70 ± 0.23 87.27 ± 0.37
Σ(A) 82.64 ± 0.00 85.10 ± 0.74 85.81 ± 0.23 87.14 ± 0.21 87.67 ± 0.31

criterion among the three. However, on average, the removal of
the objectness (Γ) criterion results in a slightly greater decrease in
performance compared to the removal of the others one at a time.
Consequently, we also tested retaining the SSL and Γ criteria while
removing all other criteria (Row 5). Also, in this case, performance
drops in every AL cycle. Therefore, we can conclude that each
criterion contributes importantly and using them together yields
the best gaze target detection results. Furthermore, it is noteworthy
that all combinations still outperform the runner-up method [20]
and random sampling.

4.2.3 The effect of pseudo-labeling. Tab. 2 presents the perfor-
mance of AL-GTD across various numbers of samples pseudo-
labeled. These results correspond to 13.7K manually annotated
samples from the GazeFollow dataset [15], while the percentages for
pseudo-labeling are relative to the full size of the training data. One
can observe that pseudo-labeling overall contributes to performance
enhancement. For instance, with 0.1% or 2% pseudo-labeling, im-
provements are noticeable compared to not using pseudo-labeling.
Conversely, increasing the percentage of pseudo-labeling, such as
up to 5%, may lead to performance decreases in the low data regime
training. Based on these findings, we choose to conduct our main
experiments with 2%, which is equal to the amount of data we
request human annotators to manually label.

Furthermore, as explained in Sec. 3.2.2 and Eq. 7, the samples
to be pseudo-labeled are chosen based solely on the Σ criterion,
which has been empirically found to be the most effective in low-
data regimes. The corresponding results are provided in Tab. 3,
indicating that when we use a 𝑆𝑐𝑜𝑟𝑒 (A) equivalent to the criterion
for selecting samples to be manually labeled or replace Σ in Eq. 7
with Γ or Δ, the AUC values decrease.

4.2.4 The effect of SSL. We injected our SSL to Entropy [57], Un-
ReGa [8] and MC-Dropout [26] and compare them with SSL-based
methods: AL-GTD and AL-SSL [20] in Tab. 4 in terms of AUC. One
can observe that it is possible for SSL-based Entropy, MC-Dropout
and UnReGa to surpass AL-SSL [20] while AL-GTD still performs
the best out of all. The results from other metrics and AL cycles
consistently confirm the performance of AL-GTD (see Supp. Mat.).
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Table 4: Comparisons among SSL-basedmethods for different
cycles of AL. Note that the cycle with 3.7K samples represents
the initial training stage, where no AL is applied. Thus, the
results are equal formethodswhose loss function is the same.

Method + SSL 3.7K 6.2K 8.7K 11.2K 13.7K

Entropy [57] 82.64 ± 0.00 84.09 ± 0.47 85.41 ± 0.15 86.23 ± 0.49 86.48 ± 0.96
MC-Dropout [26] 82.64 ± 0.00 83.77 ± 0.32 85.66 ± 0.33 86.46 ± 0.26 86.79 ± 0.27
UnReGa [8] 81.79 ± 0.00 83.73 ± 0.44 85.57 ± 0.09 86.25 ± 0.13 87.06 ± 0.02
AL-SSL [20] 82.64 ± 0.00 83.46 ± 0.49 85.32 ± 0.15 85.71 ± 0.24 86.62 ± 0.12
AL-GTD (Ours) 82.64 ± 0.00 85.10 ± 0.74 85.81 ± 0.23 87.14 ± 0.21 87.67 ± 0.31

Table 5: Comparisons between our AL-GTD and SOTA gaze
target detectors trained under low data regimes (i.e. 13.7K
and 62K samples, which correspond to ∼10% and ∼50% of the
dataset, respectively) on GazeFollow [53] using our AL-GTD’s
sample selection. ★ denotes random sample selection.

AUC ↑ Avg. Dist. ↓ Min. Dist. ↓
10% 50% 10% 50% 10% 50%

[59] (ICMI 2022)★ 85.88 90.51 0.225 0.157 0.154 0.099
[59] (ICMI 2022) 86.72 91.04 0.222 0.153 0.150 0.090
[61] (CVPR 2022) 67.30 80.30 0.299 0.213 0.226 0.151
[60] (ICCV 2023) 77.00 84.10 0.250 0.160 0.183 0.105
AL-GTD (Ours) 87.67 92.21 0.208 0.147 0.140 0.084

4.2.5 Comparisons with SOTA Gaze Target Detectors. We compare
the performance of AL-GTD and SOTA gaze target detectors [59–
61] under the limited training data regime in Tab. 5. In this context,
we present results obtained from two sets of samples: one com-
prising 13.7K samples (∼10% of the entire training data), which
we deem manageable for annotation in real-world scenarios; and
another comprising 62K samples (∼50% of the whole training set),
corresponding to the set on which AL-GTD achieves SOTA AUC
performance. These 13.7K and 62K samples are drawn from the
GazeFollow dataset [53] selected by AL-GTD’s acquisition function.

The corresponding results demonstrate that Transformer-based
models [60, 61] consistently exhibit remarkably lower performance
across all metrics and subset sizes compared to AL-GTD. Such dif-
ferences are attributed to the high volume of training data required
by Transformers. Instead, CNN-based SOTA [59] demonstrates bet-
ter performances compared to [60, 61], although it still falls short
of AL-GTD’s performances. We assert that while all other methods
may encounter challenges with limited training data, AL-GTD’s
SOTA AUC performance with 50% of the training data represents
an important success. Such achievement is attainable by others
only with access to the full training dataset. In terms of Dist. met-
rics AL-GTD trained with 50% of the training data surpasses [59]’s
performance when trained on the full training set. However, all
methods require more data to achieve significantly low Dist. scores.

We also investigate the quality of the data selected by AL-GTD by
comparing the performance of [59] on an equal amount of randomly
selected data (shown with ★ in Tab. 5). Such results demonstrate
that the data selected by AL-GTD is more informative for [59],
showing that AL-GTD can be used for training data curation.

4.2.6 Qualitative Results. We visualize gaze heatmaps generated
by AL-GTD, the best-performing AL counterpart [20], and random
selection in Fig. 6. For additional qualitatives, refer Supp. Mat.

Figure 6: Gaze heatmaps produced by AL-GTD and others.

5 DISCUSSIONS AND CONCLUSIONS
We have presented AL-GTD, a novel multimodal gaze target de-
tection model that incorporates active learning (AL). Our proposal
achieves SOTA AUC performance with just 40-50% of the usual
training data and is competitive w.r.t. the current best-performing
models even when trained on a mere 10-20% of the full training
dataset. This highlights the ability of AL-GTD to effectively choose
highly informative samples during training. AL-GTD integrates
supervised and self-supervised losses (SSL) within a novel AL acqui-
sition function while also employing pseudo-labeling to effectively
mitigate potential distribution shifts during training. It demon-
strates superior performance over all SOTA AL methods, even
when those AL methods are combined with the same SSL strategy
and pseudo-labeling employed by ours. This shows the effective-
ness of our primary technical novelty, the AL acquisition function,
in enabling rapid learning.

Despite setting a new SOTA in gaze target detection within a
reduced labeled data setting, we still believe that the Distance met-
ric can be improved. One way to tackle this is by integrating a loss
function specifically optimized for calculating the distance between
the ground truth and predicted gaze points. An effective strategy
could entail estimating the peak from the predicted heatmap in
a differentiable manner [44] and computing the 𝐿1 distance w.r.t.
the ground truth. Furthermore, Transformer-based gaze target de-
tectors have shown limited effectiveness in low-data scenarios, as
demonstrated in our study. Surprisingly, there are currently no
Deep AL methods that utilize Transformer-based backbones. A
potential avenue for further research could involve replacing the
𝐺𝑇𝑁 in AL-GTD with a Transformer-based gaze target detector,
incorporating additional modules to enhance the Transformer’s
performance in low-data environments. Lastly, while our gaze tar-
get detection model incorporates both scene features and depth
map features equally to establish the scatteredness and discrepancy
criteria, we aim to further capitalize on the consistencies between
these modalities. We will investigate the definition of explicit rules
that govern the relationships across these different modalities, aim-
ing to incorporate these rules into our AL acquisition function for
improved performance.
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