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ABSTRACT

Industrial Control Systems (ICS) are critical infrastructure components, and
successful cyberattacks can have devastating consequences, causing economic
losses, disrupting vital services, and even endangering public safety. Honeypots
offer a promising approach to study attacker behavior and improve ICS secu-
rity. However, existing honeypots often suffer from limited interaction capa-
bilities, low configurability, poor scalability, and inadequate physics-awareness,
limiting their effectiveness. This thesis addresses these limitations by proposing
HoneyICS, a high-interaction and physics-aware honeynet architecture specifi-
cally designed for ICS. HoneyICS provides a realistic environment for attackers
while capturing valuable data on their behavior and intentions. Furthermore,
the dissertation investigates the impact of different HoneyICS configurations on
attacker behavior and the types of information captured. Additionally, a dedi-
cated attack tool capable of executing various attack scenarios, including Man-
in-the-Middle (MITM), Denial-of-Service (DoS), and actuator manipulation via
Modbus, has been developed. This tool facilitates the evaluation of HoneyICS’s
effectiveness against real-world attack techniques.
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Chapter 1
INTRODUCTION

In the dynamically evolving landscape of cybersecurity, the threats to Industrial
Control Systems (ICS) have emerged as a growing critical concern. The thesis
titled “Design, implementation and evaluation of a physics-aware honeynet for
Industrial Control Systems” aims to propose a framework, called HoneyICS, for
understanding and capturing the dynamics of these attacks. This exploration is
not just a theoretical excursion but is firmly grounded in practical investigations.
Leveraging a realistic honeypot infrastructure as a pivotal tool for study, we
adopt a hands-on approach to understanding potential cyber-physical attacks
on ICS. Additionally, we implement an automated tool for executing the attacks
and a dedicated pipeline for their thorough analysis.

Recent trends and incidents demonstrate the increasing prevalence of ICS
attacks. For instance, in the second half of 2020, 33.4% of ICS computers glob-
ally were attacked, with significant increases across multiple sectors, including
building automation, oil & gas, and engineering [54]. These attacks encompass
a variety of threats such as backdoors, spyware, and other types of Trojans,
indicating the evolving complexity of cyber threats to ICS. The year 2021 saw
a significant increase in groups targeting ICS, with high-profile incidents like
the Colonial Pipeline and JBS ransomware attacks gaining global attention.
Dragos OT Cybersecurity INC.’s [26] 2021 report highlighted the emergence
of three new threat groups: Kostovite, Erythrite and Petrovite, each with dis-
tinct tactics and targets, demonstrating the diversification in cyber adversaries’
approaches [33].

In the first half of 2023, malicious activities were detected on 34% of ICS
computers, marking the highest level of global threats since 2019 [4]. The diver-
sity of malware families used in these attacks increased, with denied Internet
resources and malicious scripts being the most prevalent threats. Remarkably,
even regions traditionally considered safer, such as Australia, New Zealand, the
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United States, Canada, and parts of Europe, witnessed increases in attacked
ICS computers during this period.

The thesis also aims to leverage the proposed infrastructure to capture and
analyze these attacks, providing valuable insights into the techniques and objec-
tives of cyber adversaries. Through this approach, the research will contribute
to understanding the current threat landscape in ICS, offering a unique per-
spective on how these systems are targeted and compromised. This study is not
only timely but also critical in addressing the ever-evolving threats to critical
infrastructure and industries globally.

1.1 Motivation

The motivation behind this research arises from the escalating sophistication
and frequency of cyber-attacks targeting ICS. While traditional honeypots offer
valuable insights into general cyber threats, they often struggle to mimic real-
world ICS environments, particularly in simulating process control and diverse
network protocols. Additionally, inaccurate modeling of physical processes can
tip off attackers. This gap hinders our ability to effectively study attacker be-
havior and develop robust defense mechanisms for these critical systems. This
thesis has three main goals:

1. Create a Robust Honeypot Framework: Develop a resilient and effective hon-
eypot framework capable of emulating industrial environments to attract
and analyze cyber threats.

2. Study the Data Collected and Attack Patterns Received: Conduct an in-depth
analysis of the data collected through the honeypot framework, focusing on
understanding the patterns and tactics employed by attackers targeting ICS.

3. Provide an Automated Tool for Attacks: To validate the honeypot’s ability to
capture real-world attacks, we will develop an automated tool for simulating
a controlled set of ICS cyber-attacks. By analyzing attacker interactions with
these simulated attacks, we can identify areas for improvement and refine
the honeypot’s effectiveness in capturing and mimicking real-world threats.

1.2 Contribution

This thesis makes three contributions to the field of cybersecurity, particularly
in the context of ICS. The key contributions are as follows:

Development of HoneyICS: The design and implementation of HoneyICS, a
physics-aware honeynet. This system is capable of simulating real-world indus-
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trial environments with a high degree of realism, incorporating both cyber and
physical process elements. This enhances the ability to attract and analyze cy-
ber threats but also improves understanding of how these threats interact with
physical industrial processes.

Insightful Data Analysis: The deployment of HoneyICS provided a rich
dataset of cyber attack attempts on ICS. The comprehensive analysis of this
data has led to a deeper understanding of the tactics, techniques, and proce-
dures used by adversaries in targeting ICS.

Creation of a Specialized Attack Tool: A contribution of this thesis is the
development of an attack tool designed to test the authenticity and resilience
of HoneyICS. This tool not only serves as a benchmark for the honeynet’s ef-
fectiveness but also demonstrates the potential real-world applicability of such
tools in cybersecurity.

The thesis bridges the gap between theoretical cybersecurity concepts and
practical applications in industrial settings. It offers a framework that can be
adapted and extended by future researchers and practitioners.

1.3 Thesis Outline

The thesis begins by describing the motivation behind the research, its contri-
butions, and an overview of the topics.

Transitioning into Chapter 2, the focus shifts to ICS. This chapter explores
the Operational Technology involved, dissecting the Purdue Enterprise Refer-
ence Architecture to provide a structured and granular understanding. It also
provides a summary of the notable security issues plaguing ICS, drawing a
comparative analysis between Operational Technology (OT) and Information
Technology (IT), highlighting their distinct characteristics and implications for
security.

In Chapter 3, an overview of the literature on existing honeypots is provided,
honeypots specifically designed for Industrial Control Systems. The chapter pro-
vides a comprehensive overview of the current state of ICS honeypots, touching
upon various implementations and advancements. It also addresses the chal-
lenges and desiderata in modern ICS honeypots, discussing also the legal impli-
cations entailed in running such honeypots.

Chapter 4 introduces the reader to the core of the thesis: a new physics-aware
and high-interaction ICS honeynet called HoneyICS. Here, the thesis presents
a detailed architecture of this honeynet, elaborating on its hybrid nature. The
chapter further explores the attacker model, providing insightful perspectives
on potential threats and vulnerabilities.
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The thesis progresses to Chapter 5, where it illustrates the prototype imple-
mentation of the honeynet, from the plant: a Secure Water Treatment system, to
the controllers. This chapter is a deep dive into the technical aspects, detailing
the honeypot’s technology stack and various components of the implementation
process. It’s a practical application of the theoretical concepts discussed earlier.

Chapter 6 of the thesis offers a comprehensive analysis of the data captured
during months of exposing HoneyICS to the Internet. This chapter is methodi-
cal in its approach, discussing the research questions posed, methodologies em-
ployed, and the results produced from the data analysis. It’s a chapter that ties
the practical findings back to the theoretical underpinnings of the thesis.

Chapter 7 explores the types of cyber-attacks that the honeynet is equipped
to handle. It also introduces an automated tool designed for executing these
attacks. This chapter offers a critical evaluation of the honeynet’s efficacy in a
real-world scenario.

Finally, Chapter 8 wraps up the thesis with discussions, concluding remarks,
and future work. It synthesizes the research findings, reflecting on their implica-
tions and charting a course for future exploration in the realm of cybersecurity
for Industrial Control Systems.



Chapter 2
BACKGROUND ON ICS

Before starting with the main results of this thesis, this chapter, alongside the
next, revisits some fundamental concepts. We start with a comprehensive ex-
ploration of Industrial Control Systems (ICS) and their elements in Section ??,
we proceed to examine Operational Technology (OT). This involves an in-depth
analysis of the architecture of ICSs as per the Purdue Enterprise Reference Ar-
chitecture (PERA) [142] and the industrial protocols utilized, as outlined in
Section 2.1.

Industrial Control Systems (ICS) [128] represent a diverse set of control sys-
tems and instrumentation used across various industries to manage and auto-
mate industrial processes. These systems include a wide range of devices, net-
works, and controls that work together to manage and automate industrial tasks.
Depending on the specific industry, each ICS is designed to operate uniquely and
efficiently in electronic management of processes.

The devices and protocols employed in ICS have become pervasive in almost
every industrial sector, playing crucial roles in critical infrastructure such as
manufacturing, transportation, energy production, and water treatment indus-
tries. These systems are instrumental in ensuring smooth and reliable operations,
enhancing productivity and performance of industrial processes.

As shown in Figure 2.1, there exist three primary types of architectures
[115]: Standalone Control Systems, Distributed Control Systems (DCS), and
Supervisory Control and Data Acquisition (SCADA) systems.

• The Standalone Control System, a simplistic design that efficiently man-
ages processes such as escalators and elevators, primarily employing analog
and digital inputs. However, with the advent of greater connectivity, these
systems are now being connected to the Internet, arising new security chal-
lenges.
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Figure 2.1: Difference between SCADA, DCS and Standalone systems

• The Distributed Control System (DCS) is more complex and commonly
found in power plants, refineries, and manufacturing facilities. It comprises
multiple components, such as PLCs, controlling various processes like tur-
bines and pressure vessels. Redundant network connectivity to ensure max-
imum uptime. Moreover, multiple Human-Machine Interfaces (HMIs) could
be used to allow operators to oversee and regulate processes.

• The SCADA system is prominent in power grids and water plants. It covers
vast geographical areas with operators overseeing multiple regions through
a centralized architecture. It usually consists of Remote Terminal Units
(RTUs), Programmable Logic Controllers (PLCs), Human-Machine Inter-
face (HMIs), communication infrastructures using industrial protocols and
Supervisory Computers.

In the realm of organizational infrastructure, IT (Information Technology)
and OT (Operational Technology) serve distinct purposes and have key differ-
ences in their functions and applications.

IT acts as the technological foundation of any organization, catering to front-
end informational activities. Its primary role encompasses the monitoring, man-
agement, and security of core functions, including email, finance, human re-
sources (HR), and various other applications housed in data centers and the
cloud. Essentially, IT ensures the smooth functioning of administrative and com-
munication processes, supporting the overall efficiency of an organization.

On the other hand, OT is specifically designed for the connectivity, mon-
itoring, management, and security of an organization’s industrial operations.
Industries engaged in manufacturing, mining, oil and gas, utilities, transporta-
tion, and more heavily rely on OT. It operates behind the scenes, dealing with
the production and operation of machinery and automation systems.
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2.1 Overview

Operational Technology encompasses a wide range of technologies, including
industrial control systems (ICS), Supervisory Control and Data Acquisition
(SCADA) systems, Programmable Logic Controllers (PLCs), Remote Termi-
nal Units (RTUs), Human-Machine Interfaces (HMIs), and various industrial
sensors and actuators. These technologies work together to collect data from
sensors, analyze it, and initiate actions to control and optimize industrial pro-
cesses.

The convergence of IT and OT has become a prominent trend, leading to
what is often referred to as the Industrial Internet of Things (IIoT). This inte-
gration enables enhanced data analysis, real-time monitoring, predictive main-
tenance, and overall improved efficiency and productivity in industrial settings.
However, the increased connectivity also poses cybersecurity challenges, as se-
curing OT systems becomes essential to protect critical infrastructure and in-
dustrial processes from potential cyber threats.

2.1.1 Purdue Enterprise Reference Architecture

The Purdue Enterprise Reference Architecture (PERA), also known as the Pur-
due model, is an influential enterprise architecture reference model from the
1990s. It was conceptualized and developed by Theodore J. Williams in collab-
oration with members of the Industry-Purdue University Consortium for Com-
puter Integrated Manufacturing [142].

PERA provides a structured framework for designing and organizing OT sys-
tems, helping enterprises efficiently manage complex industrial processes. It fa-
cilitates seamless integration of various components, including industrial control
systems (ICS), Supervisory Control and Data Acquisition (SCADA) systems,
Programmable Logic Controllers (PLCs), Human-Machine Interfaces (HMIs),
and industrial sensors and actuators.

The architecture consists of five layers [141]:

Level 0 — The physical process

This level defines the actual physical processes, it’s the actual processes used
to create or support the creation of the product the company sells. This could
include various manufacturing or production processes [42] .

For instance, in a SWAT (water treatment) system, Level 0 encompasses the
tangible processes essential for water purification. These processes are the fun-
damental steps where raw water is treated and transformed into clean, potable
water that meets regulatory standards. The operations at this level involve vari-
ous treatment techniques such as filtration, chemical dosing, sedimentation, and
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Figure 2.2: Purdue model

disinfection, all aimed at ensuring the quality and safety of the final water prod-
uct. In this context, Level 0 serves as the foundation where the actual work
occurs, turning source water into a finished product ready for distribution and
consumption.
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Level 1 — Intelligent devices

This level involves sensing and manipulating the physical processes, employing
various components such as process sensors, analyzers, actuators, and related
instrumentation, including Programmable Logic Controllers (PLCs), Remote
Terminal Units (RTUs), or Intelligent Electronic Devices (IEDs).

PLC

A Programmable Logic Controller (PLC) is a specialized industrial computer
that possesses the ability to control complex industrial and manufacturing pro-
cesses [128]. PLCs are optimized for control tasks in harsh industrial environ-
ments. They are ruggedly designed to withstand conditions such as dust, vibra-
tions, humidity, and temperature, ensuring a higher level of reliability compared
to commercial computers that are more susceptible to faults and crashes.

Moreover, PLCs have built-in I/O interfaces, simplifying the expansion pro-
cess with additional I/O modules to manage more inputs and outputs without
the need for hardware reconfiguration.

The control programs can be written using a simple and intuitive language
called Ladder Diagram (LD) based on logic and switching operations, as opposed
to requiring expertise in general-purpose programming languages like C or C++.

The PLC architecture comprises several essential elements [140]. The Proces-
sor Unit (CPU) serves as the core of the system, containing the microprocessor
responsible for interpreting input signals from I/O modules, executing the con-
trol program stored in the Memory Unit, and sending output signals to the
I/O Modules. It relies on two types of memory: RAM memory stores data from
inputs, while ROM memory houses the operating system, firmware, and user
program to be executed by the CPU.

The Power Supply Unit is responsible for converting AC voltage to DC volt-
age to power the system.

The I/O Modules play a crucial role in providing the interface between sen-
sors and final control elements (actuators).
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Lastly, the Communications Interface enables the PLC to send and receive
data on a network from/to other PLCs, facilitating interconnectivity and com-
munication in industrial automation systems.

Within a PLC, two distinct programs are executed: the operating system
and the user program. The operating system performs several essential tasks,
including executing the user program and managing memory areas, as well as
the process image table. This table acts as a collection of memory registers
where inputs from sensors and outputs for actuators are stored. To run the user
program, it must first be uploaded onto the PLC via the programming device.
As shown in Figure 2.4 the program operates within scan cycles, each consisting
of three phases [145]:

• Reading inputs from the process image table.
• Executing the control code and computing the physical process evolution.
• Writing output to the process image table to impact the physical process.
The CPU refreshes the process image table at the end of each cycle.

IEC 61131-3 [25] standardized programming language for industrial automa-
tion. It defined the following programming languages for PLCs Instruction List
(IL), Structured Text (ST), Ladder Diagrams (LD), Function Block Diagram
(FBD), and Sequential Function Chart (SFC).

Level 2 — Control systems

This level involves the supervision, monitoring, and control of the physical pro-
cesses. It involves the implementation of real-time controls and software, includ-
ing Distributed Control Systems (DCS), Human-Machine Interface (HMI), and
Supervisory Control and Data Acquisition (SCADA) software.
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Human-Machine Interface

A Human-Machine Interface (HMI) is a user interface or dashboard that con-
nects a person to a machine, system, or device. While the term can technically
be applied to any screen that allows a user to interact with a device, HMI is
most commonly used in the context of an industrial process [62].

In essence, an HMI is a specialized device or software that allows operators
to communicate with and control machines or production systems. It achieves
this by translating complex data into a user-friendly format, providing operators
with the necessary information and tools to monitor and manage the production
process effectively [61].

HMIs are the virtual access to the process data and configuration. They
allow programmers to make interface changes on the fly and can restrict access
to details based on user privileges.

HMIs essentially offer virtual access to process data and configuration. They
empower programmers to make real-time interface adjustments and restrict ac-
cess based on user privileges. In simpler terms, HMIs allow operators to monitor
and control devices through a user-friendly interface.

Several open-source HMI applications are available, including ScadaBR and
OpenSCADA:

• ScadaBR is a SCADA (Supervisory Control and Data Acquisition) system
with applications in Process Control and Automation. It is being developed
and distributed using the open source model [45]. ScadaBR has the capability
to communicate with a variety of PLCs, including OpenPLC. It is based
on a Tomcat web server, specifically version 6. Tomcat uses WAR (Web
Application Archive) files to define a project. Within this file, which is a
special type of Java archive, it contains the ScadaBR template, encompassing
all the essential functionalities of ScadaBR.

• OpenSCADA: OpenSCADA is an open source HMI. It is platform indepen-
dent and based on a modern system design that provides security and flexibil-
ity at the same time. But it could also serve for: acquisition, archiving (con-
duct history), visualisation of the information, issuing control actions, and
also for other related operations, which are characteristic for full-featured
SCADA or HMI systems [39].

Both of these systems are written in Java and are designed to be platform
independent, providing flexibility and security for your SCADA needs.

Level 3 — Manufacturing operations systems

At this level, the focus is on efficiently managing the production workflow to
achieve the desired products. This entails batch management, the utilization of
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manufacturing execution/operations management systems (MES/MOMS), and
the integration of laboratory, maintenance, and plant performance management
systems, alongside data historians and associated middleware.

Level 4 — Business logistics systems

This level is responsible for overseeing the business-related activities of the man-
ufacturing operation. The primary system used for this purpose is Enterprise
Resource Planning (ERP), which plays a key role in establishing the fundamen-
tal plant production schedule, material usage, shipping, and inventory levels.

2.1.2 Industrial communication protocols

The establishment of efficient and reliable communications plays a pivotal role
in facilitating seamless data exchange among diverse devices and systems at
the different levels of the PERA architecture. In this section, we embark on an
exploration of the most prevalent and fundamental industrial network protocols
that have become ubiquitous in various industrial sectors.

The most common industrial network protocols [125] used in industrial au-
tomation and control systems include:

• Modbus: Modbus [36] is a simple and widely adopted communication pro-
tocol used for connecting various devices, including programmable logic con-
trollers (PLCs), sensors, and actuators. Originally it was a serial communica-
tion protocol, but in later updates it has been incapsulated into a TCP packet
making it suitable for industrial Ethernet applications. The well-known TCP
port for Modbus traffic is 502.

• EtherNet/IP: EtherNet/IP [17] is an industrial Ethernet protocol most
commonly used in North America. It’s based on Common Industrial Pro-
tocol (CIP), which is an object-oriented protocol where devices are viewed
as a collection of objects. Ethernet/IP employs an open, standards-based
approach, making it compatible with a wide range of industrial equipment.
This protocol enables the exchange of data, control commands, and infor-
mation among various components, facilitating efficient manufacturing pro-
cesses and improving system interoperability. The well-known TCP port for
EtherNet/IP traffic is 44818.

• DNP3 (Distributed Network Protocol 3): DNP3 [40], was developed
by Westronic, Inc. (now GE-Harris Canada) in the early 1990s, serves as the
primary SCADA protocol in the electrical power grid domain. It enables con-
trol and data communication between SCADA system components using a
master-slave architecture. Utility companies typically employ a central con-
trol station as the top-level DNP3 master, gathering data from substations,
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displaying it, and making control decisions. DNP3 supports three communi-
cation modes: unicast transactions (e.g., read or write commands) between
the master and a specific outstation device, broadcast transactions to all
outstation devices, and unsolicited responses from outstation devices. The
well-known TCP port for DNP3 traffic is 20000.

• OPC UA (Open Platform Communications Unified Architecture):
OPC UA [57] is an open and platform-independent protocol, facilitating se-
cure data exchange between industrial devices and systems. It is the successor
to the widely adopted OPC Classic and has established itself as a significant
choice for adaptable communication in industrial contexts without stringent
real-time demands. OPC UA functions as a client-server communication pro-
tocol, supporting a service-oriented architecture (SOA) for industrial use
cases, spanning from devices on the factory floor to enterprise-level applica-
tions. It unifies the various iterations of previous OPC specifications into a
coherent address space, which is accessible through a comprehensive array
of standardized services. For each service, a pair of request-response data
structures is clearly defined. Furthermore, OPC UA incorporates a range
of robust security features. The well-known TCP ports are: 4840 for unen-
crypted communication and 4843 for TLS encrypted communications.

• S7comm: S7comm [41] is a proprietary communication protocol developed
by Siemens for use with their PLCs. It is widely used in industrial automation
and control systems, particularly in Europe. S7comm supports a wide range
of I/O modules, making them suitable for a variety of applications. It is
used for PLC programming, exchanging data between PLCs, accessing PLC
data from SCADA (supervisory control and data acquisition) systems, and
diagnostic purposes. The S7comm data comes as a payload of COTP data
packets. The well-known TCP port for S7comm traffic is 102.

Among these protocols, one that stands out for its ubiquity and historical
significance is Modbus. The next paragraph will explore the intricacies of the
Modbus protocol and gain a deeper understanding of its key features, applica-
tions, and advantages.

Modbus

Modbus, a serial communications protocol, was conceived by Modicon, presently
a subsidiary of Schneider Electric, in 1979. Its primary design objective was to fa-
cilitate an open, straightforward communication channel between programmable
logic controllers (PLCs) and an array of devices, encompassing sensors, actua-
tors, and supervisory control and data acquisition (SCADA) systems. [35]

Modbus is available in two distinct versions: the original Modbus RTU (Re-
mote Terminal Unit), which initially constituted a straightforward serial com-
munication protocol. Over time, the industry witnessed an escalating demand
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for a standardized framework capable of accommodating more intricate func-
tionalities and seamless integration with prevalent transport protocols such as
the Transmission Control Protocol/Internet Protocol (TCP/IP) and the User
Datagram Protocol (UDP). To meet this evolving need, Modbus TCP was in-
troduced in 1999. This variant was specifically designed to address the burgeon-
ing requirements for extended capabilities and wider interoperability within the
Modbus communication standard. Modbus RTU primarily utilizes RS-232 or
RS-485 ports, depending on the specific implementation. RS-232 is suitable for
short-distance connections, while RS-485 is favored for longer distances and
multi-device networks. On the other hand, for Modbus TCP, which is designed
for Ethernet-based communication, it relies on port 502 for communication [64].
MODBUS TCP is byte-oriented and has established itself as a de facto open
standard. Polling communications adhere to the request-response mechanism,
wherein a client initiates queries with the server to request specific data or
execute commands within the server1. The server responds to client queries by
transmitting a byte frame, which may contain either sensor measurement data or
confirmation of command execution. Measurement values are stored in sixteen-
bit data registers, while the status of ON and OFF switches is maintained in
coils [101].

Modbus facilitates the mapping of temporary memory within a Programmable
Logic Controller (PLC) program into four distinct categories of registers: (i) dis-
crete output coils, (ii) discrete input contacts, (iii) analog input registers, and
(iv) analog output holding registers. Notably, the latter registers also serve as
general memory registers of varying sizes, including 16, 32, and 64 bits. Table 2.1
offers a comprehensive overview of the register information. The operations per-
formed on these registers are executed through specific commands referred to as
function codes, which are encapsulated within a Modbus frame. These function
codes enable operations such as reading coils (FC01), querying discrete inputs
(FC02), accessing multiple holding registers (FC03), retrieving input registers
(FC04), writing to single coils (FC05), updating single holding registers (FC06),
modifying multiple coils (FC15), and manipulating multiple holding registers
(FC16) [1]. Table 2.2 offers a summary of the main function codes [81].

Figure 2.5 illustrates an example of a Modbus communication, using a func-
tion code (0x04) to read three continuous input registers in a remote device.
The function can read from 1 to a manufacturer-defined maximum number of
contiguous input registers. In this scenario, a client query requests a server
to read the values of three continuous input registers: register address “14”
(0x000E), register address “15” (0x000F), and register address “16” (0x0010).

1 In accordance with the Modbus press release dated July 9, 2020 [3], and following the
recommendation by ACM.org’s “Words Matter” initiative [65], the terminology ”client-
server” has been employed in lieu of ”master-slave.”
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Consequently, the client sends a single message, and the server responds by
sending one frame containing the values of the three continuous registers1 [101].

The Modbus protocol, by design, lacks inherent security features, making it
vulnerable to a range of specific threats as stated by [123]. These vulnerabilities
include the potential for unauthorized parties to disclose confidential information
through unauthorized read coil or read register requests, jeopardizing the confi-
dentiality of sensitive data. Moreover, the integrity of data can be compromised
when unauthorized write register or write coil requests are executed, allowing
malicious actors to tamper with critical information. Additionally, the proto-
col is susceptible to availability compromise through denial-of-service (DOS)
attacks, particularly those involving multiple write requests that overload the
system. Furthermore, there are risks of authentication bypass through scan UID
or scan discover requests, enabling unauthorized access to the network. Another
significant finding, as highlighted by the research conducted by [139], is that
certain vulnerabilities in Modbus systems may be attributed to the specific im-
plementations rather than inherent flaws in the protocol itself. In their study,
they developed a Modbus/TCP Fuzzer to assess eight different Modbus protocol
implementations. Their investigations uncovered a range of bugs and vulnera-
bilities within these implementations, some of which had the potential to crash
the system’s execution, effectively leading to a denial-of-service scenario.

Table 2.1: Modbus Register Information

Data Type Usage PLC Addr. Data Size Access

Discrete Out. Coils Digital Outputs %QX0.0 – %QX99.7 1 bit RW
Discrete Input Digital Inputs %IX0.0 – %IX99.7 1 bit R
Analog Input Reg. Analog Input %IW0 – %IW1023 16 bits R
Holding Reg. Analog Outputs %QW0 – %QW1023 16 bits RW
Holding Reg. Memory (16-bits) %MW0 – %MW1023 16 bits RW
Holding Reg. Memory (32-bits) %MD0 – %MD1023 32 bits RW
Holding Reg. Memory (64-bits) %ML0 – %ML1023 64 bits RW

2.2 ICS security

Since Industrial Control Systems (ICS) represent specialized industrial com-
puters that play a pivotal role in managing critical infrastructure and process
automation systems that find application in diverse sectors such as the power
grid, water and wastewater management, transportation, and natural gas, as
well as in process-intensive industries like nuclear power plants, oil refineries,
steel mills, and factories. The potential consequences of a cyberattack on indus-
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Table 2.2: Data Access Type and Function Codes in Modbus

Data Access Type Function Code Meaning

1 bit physical discrete input 0x02 Read discrete inputs
1 bit internal bits, physical coils 0x01 Read coils
1 bit internal bits, physical coils 0x05 Write single coil
1 bit internal bits, physical coils 0x0F Write multiple coils
16 bit physical input registers 0x04 Read input registers

16 bit internal and physical output reg. 0x03 Read holding registers
16 bit internal and physical output reg. 0x06 Write single register
16 bit internal and physical output reg. 0x10 Write multiple registers
16 bit internal and physical output reg. 0x16 Mask write register
16 bit internal and physical output reg. 0x17 Read/write registers
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Figure 2.5: Modbus frame

trial control systems are far-reaching and catastrophic. A compromised power
grid could lead to widespread outages and jeopardize critical services such as
healthcare facilities, while contamination of water supplies could result in mass
illnesses. Similarly, disruptions in transportation systems could cause chaos and
pose grave risks to public safety. Consequently, the significance of cybersecurity
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in protecting these systems from exploitation and malicious intent cannot be
overstated.

2.2.1 Cyber-physical attacks: a threat model based on STRIDE

In this section, we leverage existing literature to define a comprehensive threat
model related to cyber-physical attacks. This exploration enables us to delin-
eate the key distinctions and vulnerabilities that characterize the threat model,
providing a solid foundation for comprehending the intricacies of these attacks
and their potential ramifications on OT systems. According to Xiong et al. [144]
”Threat modelling is proposed as a solution for secure application development
and system security evaluations. Its aim is to be more proactive and make it
more difficult for attackers to accomplish their malicious intents.”. After analyz-
ing the available literature they discovered that threat modelling often involves
the following steps:

1. System Representation: This involves creating a detailed representation of
the system, often using diagrams or other visual aids. This can include data
flow diagrams, architectural diagrams, and component diagrams.

2. Identification of Threats: Using the system representation, potential threats
are identified. Common methodologies for this include STRIDE (Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service, and El-
evation of Privilege) and PASTA (Process for Attack Simulation and Threat
Analysis).

3. Vulnerability Analysis: Once threats are identified, the system is analyzed to
determine potential vulnerabilities that could be exploited by these threats.

4. Risk Assessment : Each identified threat is then evaluated based on its po-
tential impact and the likelihood of it being exploited. This often involves
creating a risk matrix.

5. Mitigation Strategies: For each identified threat, countermeasures are pro-
posed to mitigate the risk. This could involve changes in the system architec-
ture, implementing additional security controls, or other protective measures.

6. Documentation: The findings from the threat modelling process, including
identified threats, vulnerabilities, risks, and proposed countermeasures, are
documented. This documentation serves as a guide for developers, security
professionals, and other stakeholders.

7. Review and Iteration: As systems evolve and new threats emerge, the threat
model should be periodically reviewed and updated.

The STRIDE framework offers a well-established approach for identifying
and categorizing potential security threats in systems. Its strengths include:

• Systematic analysis: STRIDE provides a structured way to analyze vulner-
abilities at the component level.
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• Effectiveness in identifying threats: STRIDE has proven effective in uncov-
ering various threats in software systems.

However, it’s important to acknowledge that STRIDE was originally devel-
oped for IT systems. While Jelacic et al. [103] and Khan et al. [105] advocate
for its use in CPS, limitations exist:

• Software-centric approach: STRIDE’s focus on software elements might not
fully capture the unique vulnerabilities of physical processes integrated with
CPS

• Limited physical domain consideration: The framework might not adequately
address threats that directly manipulate or disrupt physical components
within a CPS.

The STRIDE framework was developed by Microsoft to identify and cat-
egorize potential security threats in a system. The acronym STRIDE stands
for:

• Spoofing : Masquerading of a legitimate user, process, or system element.
• Tampering : Modification or editing of legitimate information.
• Repudiation: Denying or disowning a certain action executed in the system.
• Information Disclosure: Data breach or unauthorized access to confidential
information.

• Denial of Service (DoS): Disruption of service for legitimate users.
• Elevation of Privilege: Gaining higher privilege access to a system element
by a user with restricted authority.

When applying the STRIDE methodology to Cyber-Physical Systems (CPS),
[105] proposes the following steps:

• Decompose System into Components: Break down the system into its logical
or structural components. Components can be internal processes/elements
communicating internally within the system or external elements communi-
cating with the system.

• Plot Data Flow Diagram (DFD) for System Components: Visualize the func-
tionalities of each system component within or external to the system using
DFD. The DFD uses four standard symbols:
– External Entity (EE): End-points of the system.
– Process (P): Units of functionality.
– Data Flow (DF): Communication data.
– Data Store (DS): Database.

• Analyze Threats in the DFD: Identify potential threats in the data flow dia-
gram. It was observed that certain STRIDE threats impact a group of DFD
elements. Spoofing and tampering are especially critical and they impact the
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operations of other elements, particularly in the physical domain, resulting
in more severe consequences for the system.

• Identify Vulnerabilities: Recognize vulnerabilities against each system com-
ponent which could be exploited by an attacker to compromise the entire
system. Due to inter-dependencies between system components, the entire
system security can only be ensured by addressing vulnerabilities of each
system component.

• Plan Mitigation Strategies: Develop strategies to counter the identified
threats and vulnerabilities.

However, it’s important to note that threat modelling is an ongoing process,
and as CPS evolve and new threats emerge, it is imperative to periodically review
and update the threat model. This iterative approach ensures that the security
of CPS remains robust and adaptive to the ever-changing threat landscape.

2.2.2 Vulnerabilities of ICSs

In this section, we investigate a critical aspect of modern industrial systems. We
will examine how attackers gain access to these environments, gather critical in-
formation, exert control over industrial processes, inflict damage, and attempt
to conceal their activities. Additionally, we will elucidate the multitude of at-
tack vectors that adversaries may employ to compromise ICSs, ranging from
exploiting vulnerabilities within Programmable Logic Controllers (PLCs) and
Human Machine Interfaces (HMIs) to infiltrating Engineering workstations and
leveraging weaknesses in network security.

Anatomy of a cyber-physical attack targeting an Industrial Control
System

A cyber-physical attack is composed of different stages [94], each playing a
crucial role in achieving the attacker’s objectives:

1. Access Stage: At the Access Stage, the attack initially resembles traditional
IT hacking. The attacker’s goal is to execute code within the victim’s net-
work, gaining a foothold to manipulate critical processes. This stage serves
as the entry point into the targeted system. There are two possible ways
to achieve this: either through compromising the IT network, possibly ex-
ploiting a vulnerable device or an unprotected VPN, or by infiltrating an
Internet-facing device that might be vulnerable due to network misconfig-
uration (e.g., UPnP [63] activation), or simply out of necessity to access a
remote device that lacks built-in VPN support because of its age.
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2. Discovery Stage: The Discovery Stage revolves around gathering information
about the industrial plant from available documentation. Without compre-
hensive knowledge, an attacker is limited to causing nuisance rather than
significant damage. This phase underscores the importance of understanding
the system’s intricacies. It can be executed using a variety of tools. Initially,
the attacker must gain an understanding of the devices within the network,
including PLCs, HMIs, and other components. To achieve this, they may
choose to employ network discovery tools such as Nmap [37]. Nmap is also
valuable for identifying known vulnerabilities in the discovered devices. Sub-
sequently, the attacker can transition to the analysis of the physical system’s
behavior. This can be accomplished using tools like the one introduced by
Ceccato et al. [81], which is designed to capture register values and to collect
them into a dataset for acquiring additional insights.

3. Control Stage: Within the Control Stage, intricate knowledge of the indus-
trial system’s dynamics is essential. In dynamic systems like cyber-physical
systems, process variables evolve over time according to physical laws. Here,
the attacker studies the functions of each actuator and assesses potential side
effects. For instance, disabling a pump may lead to rapid pressure buildup
in an upstream pipe. Timing is also a critical aspect of this stage, as precise
coordination may be required to manipulate the system effectively.

4. Damage Stage: The Damage Stage, while less familiar to traditional IT hack-
ers, poses profound challenges. It often necessitates the input of subject mat-
ter experts to comprehend the full spectrum of possibilities. This phase is
where the attacker inflicts substantive harm to the industrial process, po-
tentially resulting in equipment damage or financial losses.

5. Clean-up Stage: In contrast to traditional IT hacking, where stealth is
paramount, the Clean-up Stage in process control scenarios does not per-
mit going undetected. Any equipment damage or sudden profit reduction
prompts investigation. Therefore, the Clean-up Stage focuses on creating
a forensic footprint that misleads investigators. This involves manipulating
the process and log data to lead analysts to incorrect conclusions. For ex-
ample, showing the operator an out-of-control process and coercing specific
actions can be part of the cleanup phase. The goal here is to obfuscate the
true nature and origin of the attack, diverting attention from the actual
perpetrator.

Attack vectors leading to an ICS compromise

ICS are susceptible to attacks through various vectors. These attack vectors
can involve multiple elements and allow for diverse combinations, making them
complex to defend against. The attacker can potentially exploit various points of



2.2 ICS security 21

entry [129], including PLCs, Remote Terminal Units (RTUs), Intelligent Elec-
tronic Devices (IEDs), Engineering workstations, HMIs, and the IT network.
Vulnerabilities within PLCs could include buffer overflows, backdoors, weak au-
thentication and encryption, which could allow attackers to take control of the
device and interfere with or halt the process it controls.It could also occur that
vulnerabilities do not result from the manufacturer introducing bugs but from
the client’s actions, such as failing to set up a password, as highlighted by a
study conducted by Claroty [8]. The study revealed that 62.5% of TBox RTUs
exposed to the Internet did not require authentication. Additionally, the po-
tential for remote code execution via HMIs introduces an additional layer of
complexity to the threat landscape, facilitating lateral movement within opera-
tional technology networks.

2.2.3 Goals of the attackers

Cyberattacks on ICS have increased over time, with notable incidents such as the
infamous Stuxnet attack in 2010, followed by attacks on steel mills [110], power
grids [80], petrochemical plants, gas pipelines, and water treatment facilities.
The motivations behind such attacks vary, ranging from political gain by nation-
states [55,89] to financial gains by organized cybercrime groups [95].

In the context of politically motivated attackers, the likelihood of observ-
ing zero-day exploits increases significantly due to the strategic nature of their
actions. These attackers, often nation-state actors or highly organized groups,
invest considerable time and resources into their campaigns, driven by the need
to achieve specific political objectives or disrupt critical infrastructures. Zero-
day vulnerabilities are weaknesses in software or hardware that are unknown to
the vendor and for which no patch or other fix is yet available. Because these
vulnerabilities are undetected, attackers can exploit them to gain unauthorized
access to systems. Zero-day exploits are malicious programs specifically designed
to take advantage of these unknown vulnerabilities.Given the precision required
to infiltrate well-protected systems associated with government agencies or po-
litically significant entities, these attackers are more inclined to utilize previously
unknown vulnerabilities (zero-day exploits). These exploits offer a distinct ad-
vantage by bypassing existing security measures, enhancing the efficacy of their
targeted attacks, and allowing them to maintain a covert and persistent presence
within the compromised systems.

These targeted attacks can be divided into three classes, as proposed by
Gollmann et al. [94].

Firstly, the class of Equipment Damage seeks to inflict physical harm on vital
equipment and infrastructure components, such as pipes and valves. Overstress
of Equipment, a subcategory within this class, can accelerate the wear and tear
of machinery, posing a severe threat to industrial processes. Notably, historical
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instances like the wear-off attacks on valves in the second version of the Stuxnet
worm underscore the destructive potential of this approach. Additionally, Vio-
lation of Safety Limits can lead to equipment damage, as demonstrated by the
remote destruction of a power generator at Idaho National Labs [5].

Secondly, Production Damage shifts the focus from equipment destruction
to disrupting the production process itself, aiming to spoil products or increase
production costs. Within this category, sub-groups encompass attacks on Prod-
uct Quality and Production Rate, Operating Costs, and Maintenance Efforts, all
of which can significantly impact industrial efficiency and economic outcomes.

Lastly, Compliance Violation, can have significant consequences for industries
that are heavily regulated. These violations are categorized into three categories:

• (i) “Safety,” focuses on attacks that endanger occupational and environ-
mental safety, potentially leading to catastrophic accidents and long-lasting
environmental harm;

• (ii) “Environmental Pollution,” encompasses attacks breaching regulatory
pollution thresholds, encompassing concerns related to emissions, water and
soil contamination, with consequences including financial penalties, plant
shutdowns, and reputation damage for non-compliance with environmental
regulations;

• (iii) “Contractual Agreements,” with a specific focus on production sched-
ules and commitments.

On the other hand, as stated by Chen et al. in [82] “financially motivated at-
tacks target IT systems more than industrial systems, poor network architecture
management can result in the spread of malware from IT systems to industrial
systems.”. The Air Canada attack of 2003 is a compelling demonstration of how
malware initially targeting IT systems can infiltrate industrial systems due to
inadequate network architecture management. This incident was caused by the
Welchia worm which was designed to remedy the havoc caused by the Blaster
worm by downloading patches directly from Microsoft. However, its infiltration
into Air Canada’s network systems disrupted the airline’s passenger processing
operations at reservation and call centers, contrary to its intended purpose of
neutralising the Blaster worm’s threat [58,77].

2.2.4 Notable cyber-physical attacks

This section lists a series of notable cyberattacks that have struck at the heart
of industrial control systems, serving as stark reminders of the vulnerabilities
inherent in these complex environments. These attacks are an image of the evolv-
ing tactics employed by malicious actors and the growing importance of safe-
guarding ICS against digital threats. Miller et al. [82] present a comprehensive
chronological overview of ICS malware incidents. In Figure 2.6, you can observe
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Figure 2.6: Thread landscape

the chronological order of many significant incidents that will be discussed in
the following pages.

• Stuxnet (2011) [89]: A highly sophisticated worm that marked a turning
point in ICS security, targeting Iran’s nuclear facilities and exploiting vul-
nerabilities in Siemens industrial control systems.

• Flame/Gauss/Duqu (2012) [78]: A trio of malware campaigns linked to
nation-state actors, with Flame being one of the most complex espionage
tools ever discovered. Through binary analysis, it was found that Gauss
shares some features with Stuxnet and Flame, such as the use of object-
oriented structures, which are utilized due to the complex logic of these
threats. However, there are distinctions in their implementations, like differ-
ent injection techniques and configuration information storage. Despite some
similarities, Gauss is a standalone malware, possibly developed by the same
individuals behind Stuxnet and Flame, but it doesn’t directly build upon
either of the two frameworks.

• New York Dam Attack (2013) [28]: An attempt to gain control over a small
dam’s systems in Rye, New York, carried out by Iranian hackers in 2013.
According to the U.S. Justice Department, this cyber attack involved the
infiltration of the computerized controls of the dam, and was part of a coor-
dinated effort by seven Iranian hackers who not only targeted the dam but
also conducted cyber attacks on dozens of U.S. banks, causing substantial
financial loss.

• BlackEnergy (2014) [22]: Cyberattack on western Ukraine’s
Prykarpattyaoblenergo utility, which led to a power outage for 80,000 cus-
tomers, marking it as the first known instance of a power outage induced
by a cyberattack. Ukraine’s state security service attributed this attack to
state-sponsored hackers from Russia.
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• Ukraine Power Grid Attacks (2015, 2016-2017)
– Ukraine Power Grid First Attack (2015) [10]: A cyberattack that resulted
in widespread power outages, showcasing the real-world impact of ICS
breaches.

– Ukraine Power Grid Second Attack (2016-2017) [10]: A follow-up attack
that targeted the Ukrainian power grid once again, highlighting the per-
sistence and evolving tactics of threat actors.

• Crashoverride (2016-2017) [9]: The first known malware framework designed
specifically to disrupt electric grid operations. It is a highly capable plat-
form designed to target Industrial Control Systems (ICS), notably used in
a cyberattack against Ukraine’s critical infrastructure in 2016, attributed to
Russian nation-state cyber actors. CrashOverride malware exploits a known
issue in Siemens Siprotec digital relay to manipulate circuit breakers.

• Oldsmar Plant Attack (2021) [11]: Hackers allegedly infiltrated the water
treatment system of Oldsmar, Florida, and attempted to poison the local
water supply by significantly increasing the levels of sodium hydroxide (lye)
in the water. A recent controversy [21] suggests was, in fact, the result of an
employee error.

These incidents serve as case studies, offering valuable insights into the method-
ologies, motivations, and consequences of attacks on industrial control systems.
It is now crucial to better explore one that marked a significant turning point in
cyber-attacks on industrial systems: Stuxnet and as stated by [78] its variants:
Duqu, Flame and Gauss.

Stuxnet

Stuxnet had two main technological components: a computer worm that spread
the malware on Windows networks and a digital payload that infected Windows
hosts and controlled Siemens PLCs. The worm component used several 0-days
to propagate the virus: CVE-2010–2568 and CVE-2008–4250.

Firstly, it spread through USB devices by crafting specific .LNK files. These
files leveraged a vulnerability in Microsoft Windows LNK File Execution Short-
cuts (CVE-2010–2568), allowing the virus to execute automatically when the
USB device’s contents were accessed, even if AutoRun and AutoPlay were dis-
abled. This method was believed to breach ”air gap” network defences, possibly
through the unwitting actions of an Iranian facility operator or a double agent
within the facility. Secondly, the virus could execute and exploit certain requests,
enabling remote code execution on the local host. It exploited vulnerabilities in
Microsoft Windows Print Spooler Server (CVE-2010–2779) and Microsoft Win-
dows RPC Server (CVE-2008–4250) for this purpose. Moreover, it had the capa-
bility to copy itself to network folders shared on the local computer, using local
users found on the computer, within the Windows domain, or through WMI
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Explorer impersonation. Lastly, the virus searched for Siemens SIMATIC Step7
projects (identified by .s7p file extensions) on the infected system. When found,
it infiltrated these project folders, modifying the main index files.

Remarkably, Stuxnet’s rootkit employed a method to load dynamic link li-
braries (DLLs) that evaded behavior blocking and intrusion-detection technolo-
gies. It manipulated Windows kernel’s NTDLL.DLL, intercepting commands
and injecting code into trusted OS processes, like svchosts.exe and security pro-
grams like avp.exe (Kaspersky) and mcshield.exe (McAfee).

Once established as a service, Stuxnet sought Siemens SIMATIC Step7 soft-
ware, altering the original S7OTBXDX.DLL with a modified version that re-
tained the same exports but contained critical code changes affecting PLC func-
tions. It acted as a Man-in-the-Middle, intercepting and modifying data between
the compromised host and the PLC, facilitating control manipulation. Impor-
tantly, if Siemens Step7 software was absent, Stuxnet refrained from further
malicious actions.

To maintain communication with a remote server, Stuxnet conducted connec-
tivity tests using non-malicious URLs such as windowsupdate.com or msn.com.
Upon successful testing, it connected to remote servers (mypremierfutbol.com,
todaysfutbol.com) to send and receive commands, employing XOR-encrypted
data containing system information and installation status. The server could
respond with updated malware versions or data exfiltration commands.

Lastly, if Siemens software was detected, Stuxnet accessed connected PLCs
through S7OTBXDX.DLL and WinCC’s default MSSQL database credentials.
It identified the CPU type and monitored connected field devices, specifically
Vacon or Fararo Paya frequency driver converters operating within a specific
frequency range. At periodic intervals, Stuxnet altered the output frequency
of these converters, causing mechanical stress to centrifuges and increasing the
likelihood of failure and reduced uranium processing quality. Stuxnet also ma-
nipulated visual SCADA components to conceal its actions from operators.

Duqu, Flame and Gauss

”The Cousins of Stuxnet: Duqu, Flame, and Gauss” [78] is a technical report
that provides an in-depth analysis of the malware samples that belong to the
Stuxnet family. The report discusses the similarities and differences between
Duqu, Flame, and Gauss.

Duqu is an information-collecting malware that was first detected in 2011.
It is believed to have been used in state-sponsored cyber espionage operations
mainly in the Middle East. Duqu is designed to collect sensitive information from
infected systems, including keystrokes, network traffic, and system information.
It is also capable of communicating with command and control servers to receive
additional instructions. Duqu is similar to Stuxnet in that it uses a modular
design and exploits zero-day vulnerabilities to infect systems.
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Flame is an advanced information-gathering malware that was discovered in
2012. It is also believed to have been used in state-sponsored cyber espionage
operations. Flame is unique in the sense that it used advanced cryptographic
techniques to masquerade as a legitimate proxy for the Windows Update ser-
vice . It is designed to collect a wide range of sensitive information from infected
systems, including keystrokes, screenshots, and audio recordings. Flame is also
capable of communicating with command and control servers to receive addi-
tional instructions.

Gauss is a malware sample that was discovered in 2012. It is also believed to
have been used in state-sponsored cyber espionage operations. Gauss is unique
in the sense that one of its modules is encrypted such that it can only be de-
crypted on its target system. This makes it difficult for researchers to analyze the
module and understand its functionality. Gauss is designed to collect sensitive
information from infected systems, including browser history, cookies, and pass-
words. It is also capable of communicating with command and control servers
to receive additional instructions .



Chapter 3
RELATED WORK ON ICS
HONEYPOTS

In this section, we explore the world of ICS honeypots, examining their funda-
mental concepts and the motivations behind their deployment. We analyze the
current state of ICS honeypots, their inherent limitations, and the contempo-
rary challenges they face. Finally, we address the legal implications and ethical
considerations associated with the operation of honeypots in the pursuit of cy-
bersecurity.

3.1 An introduction to honeypots

Honeypots are a unique type of cybersecurity tool designed to deliberately at-
tract and deceive attackers. They act as strategically placed, vulnerable systems
that appear legitimate to intruders [132]. This intentional deception allows hon-
eypots to observe attacker behavior, gather valuable intel, and ultimately im-
prove an organization’s overall security posture. Honeypots can be categorized
based on their level of interaction with attackers:

• High-Interaction Honeypots: These honeypots mimic real systems and ser-
vices in great detail, providing attackers with an authentic environment to
interact with. This type allows for extensive observation of attacker tactics,
techniques, and procedures (TTPs) but requires significant resources and
poses a higher risk if compromised.

• Medium-Interaction Honeypots: These offer a balance between realism and
safety. They simulate certain aspects of a real system, providing enough
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interaction to engage attackers without the complexity and risk associated
with high-interaction honeypots.

• Low-Interaction Honeypots: These are simpler and simulate specific services
or ports. They are easier to deploy and maintain, offering a basic level of
engagement with attackers but providing limited information about their
behavior.

• Physics-Aware Honeypots: These are specialized honeypots designed for en-
vironments where physical processes are involved, such as industrial control
systems (ICS) or Internet of Things (IoT) devices. They simulate the phys-
ical behaviors and responses of these systems, enabling the detection and
study of attacks that target physical processes.

The core value of a honeypot lies in its ability to:

• Facilitate Attack Observation: By mimicking real systems, honeypots lure
attackers into attempting exploits or malicious actions. This controlled en-
vironment allows security teams to observe attacker tactics, techniques, and
procedures (TTPs) without risking damage to production systems.

• Enhance Intrusion Detection: Honeypots can function similarly to Intrusion
Detection Systems (IDS) by detecting and logging suspicious activity within
the honeypot environment. Thus, providing valuable early warnings of po-
tential threats targeting the network.

While both honeypots and traditional IDS serve intrusion detection purposes,
a key distinction exists. Traditional IDS typically monitor network traffic for
patterns indicative of malicious activity. Honeypots, on the other hand, take a
more proactive approach. They actively “bait” attackers by presenting a seem-
ingly attractive target, allowing for deeper analysis of attacker behavior and the
collection of in-depth threat intelligence.

3.2 State of the art of ICS honeypots

In this section, we explore into the ’State of the Art of ICS Honeypots,’ since
the literature is pretty rich we use a classification method based on the under-
lying technology employed by these honeypots [113]. Our primary focus lies on
two significant frameworks that have shaped the landscape of ICS honeypots:
Honeyd [127] and Conpot.

These two foundational honeypot architectures, Honeyd and Conpot, have
contributed profoundly to the study and defense of ICS environments. We struc-
ture our analysis around these key distinctions: honeypots based on Honeyd,
those based on Conpot, and those that are not based on either of them. This cat-
egorization allows us to comprehensively examine the development and utiliza-
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tion of ICS honeypots, shedding light on the unique characteristics and strategies
employed by each group.

Furthermore, our exploration extends beyond the surface, exploring the
methodologies employed for the evaluation and analysis of these honeypots.
We scrutinize the assessment criteria, data analysis techniques, and the insights
generated by each work. By doing so, we aim to provide a better understanding
of the effectiveness and limitations of ICS honeypots.

3.2.1 ICS honeypots based on Honeyd

Honeyd is a virtual honeypot framework that was developed by Niels Provos
[127], which aim was to provide a flexible and scalable solution for creating
honeypots. The initial release of the project was made on February 15, 2003,
while the most recent update was made on May 27, 2007 [23], despite its age
Honeyd is still used in recent and prominent works such as [112]. This framework
allows for the creation of thousands of virtual honeypots (up to 65536).

Honeyd’s architecture is based around various components, as illustrated in
Figure 3.1. These components include a configuration file where the user sets the
personality, ports and services to use, a personality database file called nmap-
os-db with all the available personalities, a central packet dispatcher, protocol
handlers, a personality engine, and an optional routing element. Honeyd’s archi-
tecture was designed to emulate various routing topologies to confuse potential
adversaries and network mapping tools. This purpose differs from the discrete
event network (NS-based) simulators [88], which aim for an accurate represen-
tation of network behavior. In Honeyd’s approach, the simulation is designed to
deceive adversaries rather than precisely replicate network behavior. The vir-
tual routing topology resembles a tree structure, with the root at the point of
packet entry. Each interior node represents a router, and each edge is a link
with a defined latency and packet loss number. Terminal nodes correspond to
the emulated devices or network.

Listing 3.1: Sample config file for Honeyd

create windows

set windows personality "Microsoft Windows XP Professional SP1"

set windows uptime 1728650

set windows maxfds 35

add windows tcp port 80 "scripts/web.sh"

add windows tcp port 135 open

add windows tcp port 139 open

add windows tcp port 445 open

set windows ethernet "dell"

set windows default tcp action closed

create avaya
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Figure 3.1: Honeyd’s architectural overview

set avaya personality "Avaya G3 PBX version 8.3"

set avaya default tcp action reset

add avaya tcp port 4445 open

add avaya tcp port 5038 open

In listing 3.1, a sample configuration file for Honeyd is shown. The config-
uration file showcases how Honeyd can be written to mimic specific devices,
operating systems, and network services. In this scenario, two distinct honey-
pots are configured with unique characteristics, a network diagram is shown in
Figure 3.1. The first honeypot is configured to mimic a system with the person-
ality of Microsoft Windows XP Professional SP1. This simulated system opens
ports 80, 135, 139, and 445, and when an attacker accesses port 80, it triggers
the execution of the web.sh script. Furthermore, this honeypot is configured to
emulate a network interface with a MAC address associated with the manufac-
turer Dell. The second honeypot, on the other hand, is designed to replicate an
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Attacker

Internet
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IP: 192.168.1.1

Firewall Honeyd server

Windows XP
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IP: 192.168.1.24
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honeypot

IP: 192.168.1.25

Figure 3.2: Network Diagram for Honeyd’s config file in Listing 3.1

Avaya G3 PBX system with version 8.3, typically employed in private telephone
networks within corporate or organizational settings.

One of the key features of Honeyd is its ability to mimic the network stack
behavior of operating systems to deceive fingerprinting tools like Nmap [37].
Nmap’s fingerprinting technique allows to identify the operating system and
other characteristics of a remote host by analyzing its responses to specially
crafted packets. Nmap fingerprinting works by sending different types of probes
to the target and comparing the results with a database of known fingerprints,
namely nmap-os-db. The probes can vary in protocol, port, flags, options, pay-
load, and timing. As shown in Listing 3.2, a fingerprint entry associates a name
with specific behavior. This information helps identify the type of device being
scanned, such as Allen Bradley MicroLogix 1100 PLC. It includes information
on open and closed TCP ports (OT and CT), closed UDP port (CU), private
IP space (PV), network distance (DS), distance calculation method (DC) and
target MAC prefix (M). OT and CT are printed in decimal format, while CU is
the same as CT but for UDP.

Listing 3.2: Sample Entry from the nmap-os-db Database

# Allen Bradley MicroLogix 1100 PLC

Fingerprint Allen Bradley MicroLogix 1100 PLC

Class Allen-Bradley | embedded || specialized

CPE cpe:/h:allen-bradley:micrologix_1100

SEQ(SP=82-8C%GCD=1-6%ISR=99-A3%TI=I%CI=I%II=I%SS=S%TS=U)

OPS(O1=M4000NNS%O2=M4000NNS%O3=M4000NNS%O4=M4000NNS%O5=M4000NNS%O6=M4000NNS)

WIN(W1=800%W2=800%W3=800%W4=800%W5=800%W6=800)

ECN(R=Y%DF=N%T=7B-85%TG=80%W=800%O=M4000NNS%CC=N%Q=)

T1(R=Y%DF=N%T=7B-85%TG=80%S=O%A=S+%F=AS%RD=0%Q=)

T2(R=Y%DF=N%T=7B-85%TG=80%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)

T3(R=Y%DF=N%T=7B-85%TG=80%W=800%S=O%A=S+%F=AS%O=M4000NNS%RD=0%Q=)

T4(R=Y%DF=N%T=7B-85%TG=80%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)

T5(R=Y%DF=N%T=7B-85%TG=80%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)
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T6(R=Y%DF=N%T=7B-85%TG=80%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)

T7(R=Y%DF=N%T=7B-85%TG=80%W=0%S=A%A=Z%F=R%O=%RD=0%Q=)

U1(R=N)

IE(DFI=N%T=7B-85%TG=80%CD=Z)

Nmap fingerprinting can be performed in two modes: active and passive.
Active mode requires sending probes to the target, while passive mode only
observes the traffic between the target and other hosts. Using the personality
engine Honeyd can modify packets to match the fingerprints of other operating
systems. This makes it difficult for attackers to identify the honeypot as a fake
system, as it appears to be a legitimate system running a specific operating
system.

In addition to its ability to mimic operating systems, Honeyd can also be set
to selectively proxy connections to services in the backend. This feature is called
subsystem virtualisation and leverages dynamic library preloading [30] to effec-
tively substitute the original networking functions of OpenPLC with Honeyd
code. This feature complements its capacity to selectively proxy connections to
backend services. This allows for the creation of more complex honeypot envi-
ronments that can emulate entire networks. Moreover, Honeyd has been shown
to support 30 MBit/s aggregate bandwidth and sustain over two thousand TCP
transactions per second. This makes it a scalable solution that can be used in
large-scale deployments.

Cisco Systems’ SCADA HoneyNet Project [135]

The first honeynet relying on Honeyd was Cisco Systems’ SCADA HoneyNet
Project [135], in 2004. It can emulate routers, wireless access points, serial inter-
faces, and SCADA protocols. The project is based around Honeyd to emulate
diverse applications on SCADA devices, including web servers and management
applications. It has an open-source Python module that facilitates serial inter-
face programming, which can be used to emulate serial communication between
a PC and a SCADA device or serial network, even emulating serial protocols like
MODBUS and DNP3. Additionally, the project utilizes the HostAP Driver, that
converts a client adapter into an access point, allowing for the emulation of an
access point within a SCADA network. It can respond to 802.11b management
packets and use proprietary wireless protocols. In addition to the tools described
above, the project also has keystroke loggers to capture the keystrokes of attack-
ers who access the web interfaces of emulated devices, employs Java applets to
communicate with the attacker’s web browser, replicates Remote Desktop Ac-
cess (RDP) and HMIs, that typically provide remote access through methods
like VNC or RDP and finally, the tool also emulated a network access server that
permits dial-in access to the network using PPP and authentication via a PPP
password.Where, once authenticated, it provides direct access to the industrial
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device or network. To achieve this, the authors describe potential deployment
scenarios for the honeypot and scripts, including the placement in a subnet
near an actual industrial network, assigning a phone number associated with
a SCADA plant, or connecting to a remote access server linked to industrial
devices.

Winn et al. [143]

Winn et al. proposed Honeyd+ [143], which is able to build up to 75 high-
interaction honeypots using a proxying technique with a single physical PLC
device. The technique allows multiple high-interaction honeypots to be created
using a single programmable logic controller (PLC), which reduces the hard-
ware and maintenance costs. The technique also enhances the authenticity and
targetability of the honeypots by using search and replace functions to modify
the network identifiers and protocol responses of the PLC. The main features of
the project are:

• Proxy functionality : Honeyd+ uses Honeyd’s built-in proxy capability to
forward incoming connections to a physical PLC. This enables Honeyd+ to
simulate realistic behavior.

• Search and replace functionality : Honeyd+ modifies the Honeyd source code
to add search and replace functions that can dynamically change the network
identifiers and protocol responses of a PLC. This makes each honeypot host
unique and consistent. The search and replace terms are specified in the
Honeyd+ configuration file using a custom plug-in module called icsproxy.

• Protocol independence: Honeyd+ supports any protocol that uses length-
based error checking, such as EtherNet/IP. However, Honeyd+ cannot sup-
port encrypted or compressed protocols.

• Scalability : Honeyd+ can advertise multiple honeypot hosts that share a
single underlying PLC, creating a large surface to attract attackers. The
number of hosts is limited only by the IP address space and the performance
of the PLC. The cost of deploying Honeyd+ is slightly more than the cost of
a single PLC, making it an economical solution. However, according to the
authors, Honeyd+ suffers performance drops in the presence of more than
five simultaneous attacks.

• Flexibility : Honeyd+ can also be configured to emulate different types of
PLCs by changing the search and replace terms. Other industrial control
system components, such as human-machine interfaces, sensors and actua-
tors, could be added.

The authors also present the results of functional and performance testing of
Honeyd+, using two types of PLCs (Omron CP1L and Allen-Bradley L61) and
two types of platforms (Raspberry Pi and laptop). The functional testing shows
that Honeyd+ can successfully represent 75 authentic PLCs on both platforms,
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with five search terms each. The performance testing shows that Honeyd+ can
handle multiple simultaneous connections with reasonable error rates for Ether-
Net/IP protocol, but not for HTTP protocol. Honeyd+ is a feasible and reduced-
cost technique for deploying multiple physical honeypots of the same size, and
that it has applications as a research or production honeypot.

Buza et al. [86]

Buza et al. proposed CryPLH [86], a medium interaction ICS honeypot simu-
lating Siemens Simatic 300 PLC devices. It simulates the behavior of real PLCs
without any consistent physical process simulation. CryPLH is implemented as
a virtual machine that emulates a real PLC device. The virtual machine runs
on a host computer and is connected to the network through a virtual network
interface card (NIC). The virtual machine is configured to respond to Simple
Network Management Protocol (SNMP) requests and other requests that are
typical for PLC devices.

Morales et al. [112]

Morales et al. presented HoneyPLC [112], an extensible honeypot able to emu-
late a broad spectrum of PLCs models. All requests coming from attackers are
handled by Honeyd, running a profile generated through the HoneyPLC Pro-
filer Tool. The authors also added an S7comm server based on the Snap7 [51]
project to accept connection and commands from the Siemens Step7 Manager
software, they used PLCinject to inject a sample program into HoneyPLC and
verify that the program is correctly saved in the honeypot file system. It is worth
noting that no specification of the S7comm protocol has been officially released
from Siemens, therefore all the information available has been inferred through
reverse engineering techniques. The tool to create PLC profiles for different
models of PLCs, helped the authors to create three profiles for Siemens S7-300,
Siemens S7-1200, Allen-Bradley Micrologix 1100 and ABB PLCs. The profiles
contain information about the web pages of the real PLCs. HoneyPLC was also
tested with Nmap and PLCScan, two reconnaissance tools commonly used by
attackers. The results show that HoneyPLC achieves a confidence level similar
to those of the real PLCs, even Shodan Honeyscore identified the honeypot as
a real system. The authors also evaluate the compatibility of HoneyPLC with
Step7 Manager, a proprietary software by Siemens, showing that the honey-
pot can establish a stable connection and interact with Step7 Manager without
errors. HoneyPLC was exposed to the Internet for a period of 5 months and
recorded more than 5 GB of data. The data show that they received various
S7comm functions, HTTP conversations, login attempts and SNMP requests.
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Conti et al. [83]

ICSpot [83] is a Honeyd based honeypot that simulates a realistic and interac-
tive physical process of a water tank. It integrates a physical process simula-
tion using MiniCPS [76], a toolkit that uses Mininet [34] to emulate network
communications and physical layer interactions in cyber-physical systems. It al-
lows researchers to create, investigate, and exchange realistic and reproducible
CPS network topologies, and to test attacks and defenses that are applicable
to real systems. MiniCPS also supports software-defined networking and indus-
trial protocols such as EtherNet/IP and Modbus/TCP.. ICSpot simulation is
based on the IHS project [7], which mimics a simplified water treatment pro-
cess. The physical process can be controlled and monitored by the attacker
through the S7comm protocol, which allows reading and writing PLC memory
blocks. ICSpot also provides a web interface (HMI) that shows the status and
evolution of the physical process in real-time. ICSpot exposes various industrial
services and protocols, such as HTTP, SNMP, Modbus, and S7comm. These ser-
vices are implemented using different open-source tools, such as Honeyd, snap7,
and SCADA Honeynet. The services are designed to emulate the behavior and
features of a Siemens Simatic S7-300 PLC, one of the most widely used PLCs
in ICSs. ICSpot also enables the capture and analysis of the programs injected
by the attackers through the S7comm protocol. It records and stores all the
interactions that occur with the honeypot in a log file. The log data can be
imported into a MySQL database using Honeyd2MySQL, and then visualized
using Honeyd-viz, a web interface that shows useful statistics and graphs about
the collected data, such as the number of connections, the IP addresses of the
attackers, and their origin.

3.2.2 ICS honeypots based on Conpot

Conpot [108] is an open-source low-interaction honeypot developed under the
Honeynet Project [24], and is still being maintained nowadays. Conpot sup-
ports several industrial protocols including IEC 60870-5-104, Modbus, S7comm,
EtherNet/IP, HTTP, FTP, and BACnet. It provides a user-friendly web-based
interface for real-time monitoring of its activity, analysis of captured traffic,
and the generation of alerts in response to suspicious behavior. Conpot is built
upon the Twisted networking framework [56] and utilizes Python for the proto-
col handlers. The authors of ”Industrial Control Systems Honeypot: A Formal
Analysis of Conpot” proposed a test of Conpot behaviour in the presence of
deadlock and livelock states using Coloured Petri Net (CPN). The analysis un-
covered that Conpot has the potential to induce a deadlock state when attackers
reach specific points, impeding the generation of attack trails. Conpot can en-
gage attackers in infinite loops, effectively ensnaring them within the honeypot.
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These findings confirmed the effectiveness of Conpot in entrapping and engag-
ing attackers, preventing them from infiltrating real-time active systems and
services.

Zhao and Qin [146] improved Conpot honeypots by introducing additional
Siemens S7comm protocol functions and a dynamic Human Machine Interface
(HMI) in order to better evaluate threats. The authors state that their study
improved the interaction level of Conpot and provided better support for the
simulation of Siemens S7 class PLCs. During their extensive 43-day deployment,
their honeypots interacted with traffic originating from 244 valid IP addresses
from 34 different countries.

Abe et al. [70]

Abe et al. [70] proposed an ICS honeypot system that is based on both Honeyd
and Conpot, it also adds a traceback capability, that performs a counter-scan
to the source of scan in order to gain more information about attackers (OS,
open ports, etc). The proposed system emulates ICS protocols and devices by
using Conpot framework, and performs basic honeypot functions by means of
Honeyd (webserver interfaces, FTP, TELNET, etc.). The authors implemented
Nmap in the Honeyd to perform a reverse scan to the attackers and obtain useful
information regarding the attack. The authors developed a data analysis system
that collects and processes logs and payloads acquired from both the traceback
system and the deception network system. They later assess the effectiveness
of the deception network system through two distinct attack scenarios: Havex
RAT, a malware targeting OPC servers in ICS networks, and Modbus Stager,
an exploit that embeds malware in Modbus-enabled PLCs. The project demon-
strates that the honeypot successfully detects and gathers information about
these attacks while prolonging attackers’ engagement with the honeypots.

Cao et al. [100]

Dipot is a distributed Conpot based honeypot system engineered to monitor
and analyse Internet-based scanning and attack activities directed at industrial
control systems (ICS). What sets DiPot apart from existing honeypot systems
is its array of advanced functionalities, including attack clustering, visualization
services, high-fidelity simulation, and in-depth data analysis. Dipot is based
around three key components: Honeypot Node (HN), Data Processing Node
(DPN): this element assumes the role of clustering and analyzing data gathered
by HNs, utilizing algorithms such as k-center clustering to differentiate various
attack types, and Management Node (MN). Over the course of six months, DiPot
accumulated 317,484 access sequences and identified 4,827 suspicious IPs.
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Lau et al. [130]

Xpot simulates Siemens S7-300 series PLCs in which the attacker may upload
code in MC7 format under some constraints (the authors did reverse engineering
of a set of MC7 instructions). To trick OS fingerprinting attempts,the proposed
solution adopts a unique approach, it emulates the network stack associated
with the Siemens S7-300 series PLCs. This strategy ensures that the honeypot
remains indistinguishable from a genuine PLC when subjected to such finger-
printing techniques. Xpot supports the execution of PLC programs that adver-
saries may attempt to load onto the system, it interprets the bytecode until the
compilation process is complete, leveraging the capabilities of LLVM [31] to en-
sure the accurate execution of these programs. During the exposure, the authors
observed several full S7comm handshakes and queries. However, no significant
suspicious activity was detected. This suggests that the honeypot has the po-
tential to blend in effectively when deployed in real-world scenarios. However,
the proposed honeypot is physics-less, and no physics feedback is provided to
the attacker.

Pliatsios et al. [85]

Pliatsios et al. [85] present a low-interaction proof-of-concept honeypot, which
is configured to emulate a hydro power plant’s Saitel Remote Terminal Unit
(RTU) device, facilitating interactive communication with the Human-Machine
Interface (HMI) located at the plant’s control center. To increase the level of
emulation and thus, the realism of the honeypot, they simulate the interactions
between the HMI and the Conpot honeypot based on the traffic data from the
real RTU. Conpot uses the traffic data from the real RTU (by feeding pcap files
from the real RTU), and the virtual HMI generates requests for the Conpot
honeypot. Architecturally, the honeypot is rooted in the Conpot framework,
offering support for various ICS communication protocols, and it boasts a mod-
ular design with components encompassing the ICS system module, simulation
system, and a monitoring system. While it excels in emulating complex systems
under a constant load, as stated by the authors, the honeypot’s performance in
diverse operational scenarios may exhibit variability.

Kuman et al. [107]

Kuman et al. [107] present a honeynet that is designed to be easy to use and
customizable, allowing users to create honeypot networks that are tailored to
their specific needs. In order to achieve this goal, the authors use IMUNES, a
network simulator that allows users to define and simulate networks of almost
arbitrary complexity on a single physical or virtual machine. The nodes of the
emulated/simulated network are made of virtual nodes on Docker, which can
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be customized to emulate a wide range of devices and protocols. The Conpot
honeypot is used to emulate PLCs in the simulated network, and the OSSEC
tool is used to monitor all activities on the honeypots and alert the owner of
the honeynet when something interesting is happening. The architecture of the
honeynet system integrates three core components: IMUNES for network emu-
lation, Conpot for ICS device simulation, and OSSEC for intrusion detection.
IMUNES is utilized to create a virtual network topology that closely resembles
a typical ICS environment, specifically emulating Siemens S7 PLCs. The Con-
pot honeypot is employed to simulate the ICS devices, including the emulation
of a known vulnerability in the Siemens S7-300 PLCs to attract potential at-
tackers. OSSEC HIDS is configured to monitor and alert on changes within the
honeynet, providing real-time detection of intrusion attempts. The architecture
is designed to be lightweight, using virtual nodes within IMUNES to minimize
resource usage while maintaining a high degree of realism in the emulation. The
Conpot honeypots are strategically configured to log all interactions, which are
then monitored by OSSEC to detect any unauthorized access or attack patterns.

Ferretti et al. [90]

Ferretti et al. [90] deployed a set of Conpot-based honeypots, emulating the
behavior of different types of ICS devices and ICS protocol. They improved
the implementation of some of the ICS protocols supported by Conpot such as
BACnet, EtherNet/IP, IEC-104, and Siemens S7. They also created accurate
profiles of ICS devices based on data collected from real devices. Each honeypot
instance was deployed in a dedicated Docker container and was configured with
a different device profile and ICS protocol. All instances were deployed behind a
remote endpoint and connected through it over a VPN. The honeypots attracted
around 5000 connections but the majority of the connections were from public
scanners such as Shodan.

3.2.3 Other relevant ICS honeypots

In addition to Conpot and Honeyd, there exists a diverse array of ICS honey-
pots and honeynets that contribute significantly to the literature of industrial
control system honeypots. These noteworthy solutions stand out by addressing
critical concerns, including the integration of physical awareness. This section
introduces such ICS honeypots that offer unique capabilities, exploring their
distinct approaches.

Vasilomanolakis et al. [137]

HosTaGe [137] is a low-interaction honeypot capable of generating signatures for
Intrusion Detection Systems (IDSs) to recognise future similar attacks. Its archi-
tecture is centered around its ability to emulate various ICS-specific protocols,
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such as Modbus, S7, SNMP, HTTP, Telnet, SMB, and SMTP. The detection
mechanism is defined using an Extended Finite State Machine (EFSM) [19],
which allows for the transition between states based on specific conditions. This
EFSM model enables HosTaGe to detect attacks by transitioning from a normal
behavior state to an attack state upon protocol communication detection. The
honeypot can identify multi-stage attacks by observing attacks originating from
different protocols but the same host. One of the key limitations of HosTaGe is
its low-interaction nature, which might limit the depth of interaction with at-
tackers, potentially affecting the richness of collected data. Additionally, while it
can generate signatures for detected attacks, these signatures are primarily use-
ful for misuse analysis and may not be as effective for anomaly-based detection
systems.

Litchfield et al. [111]

Litchfield et al. introduced HoneyPhy [111], which is a physic-aware honeypot
designed to improve security in networked control systems. The architecture of
HoneyPhy includes three main modules:

• Internet Interface(s) Module: This module manages the network interfaces,
allowing for communication between the CPS and external networks.

• Process Model(s) Module: It simulates the physical processes of the CPS,
using empirical data to create accurate models based on Newton’s Law of
Cooling.

• Device Model(s) Module: This module contains models of the physical de-
vices interacting with the CPS, which can be created using either black box
(empirical) or white box (theoretical) modeling techniques.

The configuration of the honeypot is managed through a XML file, which defines
the contents, permissions, interfaces, controllable variables, and metadata for
each module. The authors also discuss the importance of accurately modelling
the physical processes and device interactions to avoid detection by attackers.
They developed a proof-of-concept implementation which involves a heating
system simulation to provide a realistic simulation for potential attackers.

Wilhoit et al. [104]

GasPot is a honeypot designed to simulate a gas-tank monitoring system. It
is a Python script that logs connections and attempts at compromise, with
each instance being unique to prevent attackers from easily identifying and fin-
gerprinting it. GasPot supports six different commands, including those that
provide tank information and status reports, and can simulate attack vectors
observed in actual systems. Its architecture is straightforward, consisting of a
single Python script that functions as a honeypot, logging connections and com-
promise attempts. It is unique in that each instance of GasPot is distinct, making
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it more challenging for attackers to fingerprint. The system logs activities locally
on the device running it, without requiring additional services, thus maintain-
ing the appearance of an authentic gas-tank monitoring system. The logs are
timestamped in Coordinated Universal Time (UTC) to facilitate synchroniza-
tion across multiple instances. It was deployed globally, with instances in the
United States, Brazil, the United Kingdom, Jordan, Germany, the United Arab
Emirates, and Russia.

Hilt et al. [99]

The honeypot created by Trend Micro Research was designed to mimic a small
fictitious company whose business was to serve clients in critical industries but
had inadequate security defenses. This setup was intended to attract cybercrimi-
nals and allow researchers to monitor and analyze the attacks. The infrastructure
comprised a Raspberry Pi 3, USB Ethernet adapters, SharkTap Ethernet taps,
and a large external drive. Ethernet taps were inserted at specific network points
to capture data traffic. The honeypot also featured a realistic Human-Machine
Interface (HMI) and used various tactics to lure threat actors, including posting
information on Pastebin to attract attackers and creating a believable company
backstory with employee names, working phone numbers, and email addresses.
The system included various components such as industrial and consumer cel-
lular routers, Omron PLCs, proxy routers, protocol gateways, a Dell Precision
M4800 for the Human-Machine Interface (HMI), and virtual machines (VMs)
for different services and controllers like Siemens S7-1200 and Allen-Bradley
MicroLogix 1100. The honeypot aimed to mimic a realistic factory setting. The
honeypot was successful in attracting several attacks, including a malicious cryp-
tocurrency mining campaign, two ransomware attacks, and various scanning
attempts.

Antonioli et al. [84]

Antonioli et al. proposed a high-interaction, server-based ICS honeypot that
uses the MiniCPS [76] framework to simulate a water treatment testbed. Its
architecture consists of the following components:

• Vulnerable VPN endpoint: A device that runs an OpenConnect VPN server
with weak credentials, allowing the attacker to access the internal network.

• Vulnerable gateway device: A device that runs ssh and telnet servers with
weak credentials, allowing the attacker to get a command shell on the device.

• Network emulation: A virtual network that reproduces the same topology,
addresses, and link characteristics as the real ICS network, using Mininet [34]
and Linux network namespaces.
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• Physical process and devices simulation: A collection of python scripts that
simulate the hydraulic part of the water treatment process, the control logic
of four PLCs, and an HMI, using MiniCPS API and Ethernet/IP protocol.

• Data collection: A subsystem that logs the attacker’s activities, such as
keystrokes, network traffic, and device commands, using a keylogger, tcp-
dump, and MiniCPS API.

A preliminary evaluation of the honeypot was done in the context of a Capture-
The-Flag (CTF) competition. The competition was a part of a broader ICS
security event called SWaT Security Showdown (S3) [75], hosted by Singapore
University of Technology and Design (SUTD) in July 2016. The honeypot was
also evaluated using qualitative metrics that include:

• Physical layer interaction
• Network layer interaction
• Data collection
• Realistic system configuration
• Realistic system behavior
• Attack detection and recording

According to the authors, the proposed ICS honeypot provides all of the features
listed, showing that it is effective in detecting and recording attacks while also
providing a realistic representation of an ICS system.

Murillo et al. [69]

The honeynet proposed is a virtualized environment that mimics a large elec-
trical substation network, with realistic devices, protocols, and traffic. The hon-
eynet uses Mininet [34], a lightweight virtualization tool, to create a network
topology with multiple nodes that represent intelligent electronic devices (IEDs)
in a substation. Each node runs a traffic mirroring service that redirects the
packets to a separate machine running SoftGrid [97], a software platform for
IED emulation. PowerWorld power system simulation: The honeynet also uses
PowerWorld, a commercial software for power system analysis, to simulate the
physical behavior of the electrical grid. PowerWorld communicates with Soft-
Grid through a TCP/IP interface, and provides feedback to the IEDs based
on the network state and control actions. Attack scenarios and data collection:
The honeynet implements two attack scenarios: a denial-of-service attack that
disrupts the communication between IEDs, and a false data injection attack
that alters the measurements and control commands of the IEDs. The honeynet
collects network traffic data, power system data, and attacker behavior data for
further analysis and evaluation.
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Bernieri et al. [93]

MimePot [93] aims to detect complex cyber-physical attacks in industrial net-
works by simulating the physical processes in order to mislead attacks and study
their behavior. The authors chose a model-based (mathematical and computa-
tional) approach to simulate the physical process. They use Software Defined
Networking (SDN) technology to provide:

• Traffic Redirection: SDN allows for dynamic redirection of network traffic.
Malicious traffic can be sent to the honeypot, while legitimate traffic contin-
ues to the real network.

• Network Address Camouflaging: SDN can mask the network addresses of
real devices, making it appear to the attacker that they are targeting the
actual control systems when they are actually interacting with the honeypot.

• Granular Control: SDN provides a high level of detail in traffic management.
It can apply specific rules to manage how traffic is handled, making the
honeypot more effective at engaging attackers.

• Scalability and Flexibility: SDN’s centralized control plane makes it easier
to scale and adapt the network architecture as needed.

MimePot has the capability to capture behaviors of complex cyber-physical at-
tacks, such as Zero Dynamics Attacks [134].This kind of attack refer to the
behavior of a system’s internal states when its output is artificially constrained
to zero, which can be exploited in sophisticated attacks to alter the system’s
state without changing the observable outputs, thereby evading detection. The
architecture of MimePot comprises two main modules: Mime Plant that is re-
sponsible for simulating physical plant processes and can be considered as a PLC
interacting with physical plants and Mime E&C (Estimation and Control), de-
signed for control routines computation, similarly to a SCADA workstation.
MimePot’s physical components simulate a subset of physical processes using
Linear Time Invariant (LTI) models. The cyber components are implemented
in virtualized environments where Mime Plant and Mime E&C communicate
using industrial protocols.

Navarro et al. [124]

iHoney [124] honeypot replicates the operations of a water treatment plant.
It integrates a concealed monitoring infrastructure that remains nearly imper-
ceptible to attackers. This covert surveillance employs both Network Intrusion
Detection Systems (NIDS) and Host-based Intrusion Detection Systems (HIDS)
to scrutinize activities, amassing invaluable intelligence in the process. The core
of iHoney is composed of a SCADA server/HMI, a control network featuring
PLCs, and various industrial communication protocols. In real-time, the simu-
lation system evaluates the status variables of the physical processes, dynam-
ically interacting with ICS inputs and generating corresponding outputs. This
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ensures a coherent and convincing simulation. To effectively capture and analyze
network traffic, iHoney deploys TAP devices as in [99] for passive transmission
to a monitoring system. This surveillance infrastructure incorporates SNORT
NIDS and protocol dissecting agents for Modbus and S7Comm. Additionally,
a custom-built HIDS is deployed on the SCADA server to enhance threat de-
tection capabilities. iHoney garnered immediate attention upon exposure to the
Internet, with continuous and regular attacks highlighting its potential to allure
attackers. For the most part, attacks targeted the IT components of the SCADA
system and were characterized by automation, underscoring the persistent threat
posed by automated cyber-attacks.

3.3 Desiderata and limitations in ICS Honeypots

From our previous exploration of related work 3.2 and a thorough review of the
existing literature, we have identified a set of desiderata for the development of
an effective ICS honeypot. In this section, we will outline and discuss these key
requirements that guide the design and implementation of honeypots tailored
to industrial control systems (ICS). These desiderata are important in order to
make sure that the honeypot can convincingly mimic a real system, attract-
ing potential attackers while providing valuable insights into their tactics and
strategies.

3.3.1 Level of interaction

Honeypots and honeynets are typically categorized based on the level of interac-
tion they offer to attackers. Low-interaction honeypots replicate basic services
with limited functions, while high-interaction ones accurately mimic real devices,
enabling comprehensive data collection about an attacker’s actions. For an ICS
honeypot to be effective, it must emulate an industrial network connecting mul-
tiple PLCs, potentially supervised via HMI interfaces, and facilitate observable,
accessible network traffic involving PLCs and HMIs. Therefore, an ICS honeypot
should not only provide precise fingerprints of the involved devices and ICS net-
works, as seen in low-level interaction ICS honeypots, but also grant attackers
the ability to interact with the honeypot extensively. This includes inspecting
and modifying PLC registers, uploading malicious PLC code, examining and
exploiting HMI interfaces, effectively gaining full control over the OT network.
Furthermore, as highlighted in studies like [111] and [106], physics-awareness is
a vital component in creating convincing and deceptive ICS honeypots. This
means attackers should receive consistent feedback from a possibly simulated
but manipulated physical process, enhancing the honeypot’s authenticity and
effectiveness.
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3.3.2 Configurability

The honeypot should provide the flexibility to modify the attack surface ex-
posed to attackers, enabling it to adapt to the ever-evolving exploit tools and
techniques employed by attackers. This adaptability is essential to suit the spe-
cific ICS network it is intended to protect. Thus, the honeypot should have
the capability to support various industrial network protocols, depending on
the operational context. Additionally, it should be extensible, allowing for the
emulation of PLCs from different manufacturers and models, ensuring compre-
hensive coverage.

3.3.3 Scalability

To emulate real-world ICSs, the honeypot must have the capability to scale effec-
tively, accommodating middle-sized ICS environments with hundreds of diverse
PLCs and HMIs without compromising performance. This scalability is crucial
to accurately emulate real-world ICS networks and to ensure that the honeypot
can handle the complexities of such systems. Utilizing virtual resources, rather
than physical devices, is a fundamental prerequisite for achieving scalability in
ICS honeypots. However, it is important to note that the mere adoption of
virtual resources is not sufficient, practical testing is essential to assess the hon-
eypot’s response time at varying numbers of PLCs and HMIs, thereby validating
its true scalability.

3.3.4 Entry Point

A robust ICS honeypot should be designed to withstand attacks that target the
availability and integrity of the target system. When an attacker gains access
to the honeypot via the Internet, they may attempt to manipulate the exposed
PLCs and HMI interfaces, potentially after a brute-force attack on their authen-
tication. Conversely, if the attacker manages to compromise the VPN underpin-
ning the honeypot, they can use ARP poisoning to perform a Man-in-the-Middle
(MITM) attack, intercepting network traffic on the supervisory control network
and launching such attacks between various PLCs or between a PLC and its
associated HMI.

3.3.5 Attack Monitoring

The honeypot should be capable of gathering extensive data on the behavior of
the attackers. This data should include network interaction logs to detect scan-
ning attacks as well as logs of system events that capture the methods attackers
employ when interacting with the OS of the targeted ICS devices. Furthermore,
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Figure 3.3: Attacker outcomes on a well-modeled and on a poorly modeled sys-
tem

the honeypot should support real-time data analysis and the visualization of
attack-related information as it unfolds. It should also support retrospective
data analysis of the logs to identify attack patterns. These patterns can be uti-
lized, for example, to generate attack signatures for configuring network and
host intrusion detection systems.

3.3.6 Limitations of current ICS honeypots

In Table 3.1, we present a comprehensive comparison of related works, which will
serve as a basis for evaluating our own honeypot, HoneyICS. We will introduce
and discuss HoneyICS in Chapter 4, aligning its features with the desiderata
outlined in this section. This comparative analysis will help in assessing the
effectiveness of our ICS honeypot.
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Level of interaction.

Current approaches mostly provide limited functionality when it comes to
TCP/IP stack simulations, as well as native ICS network protocols. This poses
serious limitations in the actions an attacker can perform within the honey-
pot and, thus, in the understanding of adversarial interactions and malware.
Most of the reviewed honeypots and honeynets support only some of the net-
work protocols and services specific to ICSs. This requires an attacker capable
of accessing the supervisory control network, possibly protected via VPN. In
this respect, Antonioli et al. [84] provide the possibility to build up a com-
munication network between PLCs and/or HMIs, while HoneyPhy [111] only
propose an ideal architecture where such communication is possible. As a con-
sequence, only Antonioli et al. [84] support non-trivial MITM attacks between
PLCs and/or HMIs; more limited forms of MITM attacks, between PLCs and
their plant, can be simulated in [69,85,93,111]. In the previous section, we have
seen a number of ICS honeypots providing different levels of emulation/ab-
straction of the underlying physical processes. However, all of them, except for
HoneyPhy [111], Gaspot [104], iHoney [124] and MimePot [93], fail to perform
an accurate emulation of the underlying physical process. Among the reviewed
honeypots, only [70,85,93,137] explicitly support some form of register manipu-
lation, and only [84–86,111] explicitly support some form of HMI manipulation.
As regards physics-awareness, only the works in [69, 84, 93, 111] provide some
form of simulation of the underlying physical industrial processes. As shown in
Figure 3.3, it’s important to note that a simulation should be realistic, as any
inconsistencies could potentially confuse the attacker. On the left, the scenario
portrays an attacker interacting with a CPS honeypot that doesn’t simulate
process behaviors and device delays. The absence of these delays and deviations
from expected process behavior serves as an alert to the attacker. In the right
scenario, an attacker interacts with a CPS honeypot capable of modeling both
process behavior and device delay, resulting in realistic responses, leading the
attacker to perform an attack. Moreover, only HoneyPLC [112] is able to simu-
late the upload of malicious user programs, although the injected code is only
stored by the honeypot but not executed. While capturing the code is a first
important step to support PLC malware analysis, the execution of the injected
code together with consistent physical feedback is crucial to deceive the attacker.

Configurability.

All honeypots discussed in Section 3.2, except for [70, 108, 112], have limited
extensibility, as they can only mimic one or two PLC models and provide
the associated fingerprints when scanned using tools like Nmap. Likewise, the
majority of existing research works, with, of course, some notable exceptions
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like [100,108,137,143], tend to provide support for only a limited subset of Indus-
trial Control System (ICS) network protocols. This constraint poses a significant
limitation, particularly in the face of sophisticated attacks such as Stuxnet [89],
which may specifically target diverse types of Programmable Logic Controllers
(PLCs). Consequently, this limitation has far-reaching implications, significantly
restricting the scope of ICS networks these honeypots can authentically emulate
and, consequently, the diverse contexts in which they can be effectively deployed.

Scalability.

The adoption of virtual resources over physical devices is an essential condition
for achieving scalability. However, it is imperative to recognize that the mere
utilization of virtualization does not universally guarantee scalability; rather, its
efficacy is bound to the specific implementation approach employed. While many
of the reviewed ICS honeypots incorporate scalable designs through the adop-
tion of virtual resources and lightweight virtualization techniques like Docker
containers [118], only Honeyd+ [143] stands out by explicitly evaluating the pro-
posed honeypot’s scalability, particularly in terms of the number of supported
virtual PLCs.

Attacker Entry Point.

Our review of the literature reveals that existing honeypots have followed two
predominant approaches: they have either been openly exposed on the Internet
[70, 86, 100, 108, 135, 137, 143], or they have been protected through a VPN,
as demonstrated by [69, 84, 85, 93]. The decision to expose a honeypot on the
Internet offers attackers a more accessible target but constrains the range of
interactions they can initiate with it, as discussed in Section 3.3. Conversely,
employing a VPN not only provides valuable insights into potential attacker
strategies for compromising ICS networks but may also act as a deterrent by
introducing an additional layer of defense. We advocate for the implementation
of honeypots that support both entry points, thus enabling a broader spectrum
of adversarial interactions. In this regard, HoneyPhy [111] stands out as the only
honeypot designed to accommodate both entry modes.

By addressing these limitations, future research can pave the way for the
development of next-generation ICS honeypots that offer a more comprehensive
and realistic deception environment for attackers.

Unveiling some of the issues of Honeyd

It is worth noting that Honeyd has not been updated since 2013, lacking any
official support from the original authors or DataSoft, although the company
could have integrated Honeyd into its product NOVA and continued the de-
velopment privately. This lack of updates and support raises questions about
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Figure 3.4: Nmap scan of a Honeyd honeypot

the software’s compatibility with modern operating systems, particularly newer
versions of Ubuntu and various Linux distributions. Users have reported issues,
such as difficulties obtaining DHCP for emulated hosts, which can hinder its
functionality. Additionally, Honeyd relies on outdated fingerprint files that no
longer align with the latest nmap algorithms [29]. This discrepancy in fingerprint
data can impact the accuracy and realism of the honeypots it creates, since it
is relying on this file to send appropriate TCP responses during an nmap scan.
Therefore this functionality may not always work seamlessly, as new versions of
nmap are continually released. The effectiveness of Honeyd’s responses, as well
as its reliance on nmap.prints, can vary depending on the specific nmap version
used for scanning as shown in Figure 3.4. To address this, a practical strategy
is to open ports commonly associated with specific device types. For instance,
devices like Linux and Solaris typically have port 22 open, whereas routers and
switches are likely to have port 161 open for SNMP.

3.4 Legal implications of operating honeypots

As stated in [133], operating honeypots entails a range of legal and ethical con-
siderations that are important in ensuring that honeypot deployment complies
with the law, respects privacy, and adheres to ethical principles. Here, we address
key legal and ethical aspects associated with honeypot operations.
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• Legal Right to Monitor: It is important to acknowledge that ownership of
a computer network does not automatically confer a legal entitlement to
monitor all activities of system users. The field of monitoring activities is
complex and is subject to diverse legal constraints, encompassing statutes,
privacy regulations, employment policies, terms-of-service agreements, and
contractual obligations. Deviation from these legal parameters may poten-
tially entail legal repercussions, encompassing civil liability and the prospect
of criminal sanctions.

• Risk of Misuse: Neglected or unmonitored honeypots carry the risk of be-
ing exploited by malicious actors for unlawful activities. These activities
can include storing stolen credit card data or distributing prohibited con-
tent. Honeypot operators have the responsibility of actively monitoring and
controlling their honeypots to prevent inadvertent involvement in unlawful
undertakings.

• Entrapment Concerns: Within the honeypot community, the concept of en-
trapment is occasionally contemplated. Entrapment, in criminal defense law,
is a situation where the government induces an individual to commit a crime
they would not have otherwise committed. Private honeypot operators are
less likely to encounter entrapment concerns, as this law primarily applies
to government actions.

• Fourth Amendment: Honeypot operators associated with government agen-
cies must be aware of potential Fourth Amendment constraints on their
monitoring activities. The Fourth Amendment restricts government agents
from conducting searches or seizing evidence without a proper warrant. Ev-
idence obtained in violation of this constitutional provision can be legally
challenged.

• Patriot Act: The USA Patriot Act features a ”computer trespasser” excep-
tion, permitting government agencies to conduct warrantless monitoring of
hackers under specific circumstances. This exception typically applies when
the network owner has authorized interception, and the monitoring aligns
with a lawful investigation.

• Consent to Monitoring: It can be argued that hackers accessing a system
with a clear banner indicating monitoring consent have implicitly provided
consent to be monitored. However, this implied consent may not extend to
cases where hackers access the system through ports that do not offer a
banner.

• Moral and Ethical Considerations: In addition to complying with legal re-
quirements, honeypot operators must address moral and ethical concerns.
These ethical considerations include the potential invasion of privacy, the
responsibility to prevent honeypots from being exploited for malicious pur-
poses, and the ethical use of collected information to enhance security rather
than for malicious ends.
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• Europe regulations: The GDPR aims to protect personal data and privacy
of individuals within the European Union. According to Recital 30 of the
GDPR [44], IP addresses are considered personal data if they can be used
to identify an individual. This includes scenarios where IP addresses are
logged by honeypots, as these logs could potentially link back to specific
individuals, especially if combined with other data. Under GDPR, the pro-
cessing of personal data must adhere to principles of lawfulness, fairness,
and transparency. There must be a clear legal basis for data processing,
such as consent, necessity for contract performance, compliance with legal
obligations, protection of vital interests, tasks carried out in the public in-
terest, or legitimate interests pursued by the data controller. Setting up a
honeypot and logging malicious attempts could fall under the “legitimate
interests” clause, as it is crucial for ensuring network and information secu-
rity. This includes preventing unauthorized access and cyberattacks, which
aligns with the GDPR’s provisions for protecting public security and pre-
venting criminal activities. However, publishing the collected IP addresses
is more contentious. Even if the collection is justified under legitimate in-
terests, disseminating the data publicly without further analysis might not
meet GDPR requirements. Factors such as the necessity of publication, its
effectiveness in achieving security goals, and the potential adverse impacts
on individuals whose IP addresses are published must be carefully weighed.

Understanding these legal and ethical dimensions is fundamental for a respon-
sible and effective honeypot deployment, ensuring that it serves its intended
purpose while respecting legal and ethical boundaries.
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Chapter 4
A PHYSICS-AWARE AND
HIGH-INTERACTION ICS
HONEYNET

4.1 A hybrid architecture

Our honeynet architecture consists of various components, ensuring the fulfill-
ment of the features outlined in Section 3.3. HoneyICS is capable to emulate to
key components within Operational Technology (OT) network, including Pro-
grammable Logic Controllers (PLCs), Human-Machine Interfaces (HMIs), com-
munication networks, and even a simulated physical plant. Implementation flex-
ibility is a key feature of our project, as each component can be implemented
either using actual physical devices or emulation and simulation software.

As illustrated in Figure 4.4, our honeynet’s architecture seamlessly integrates
these diverse components. As shown, the inbound connections are able to con-
tact directly the HMIs and PLCs, while the field communication network and
the plant are not accessible from the outside. Through the supervisory control
network, PLCs communicate with each other and with the HMIs using Indus-
trial Network Protocols such as Modbus. ”The probes, responsible for collecting
network and system data, are deployed on every device or network directly ac-
cessible to the attacker. It’s worth noting that the honeynet configuration allows
accessibility through a compromised Virtual Private Network (VPN) or by ex-
posing specific devices such as PLCs or HMIs directly to the Internet. In the
former scenario, an attacker gains comprehensive control over the supervisory
control network interconnecting PLCs and HMIs, albeit without direct access to
the field communications network linking PLCs to sensors and actuators. Con-
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versely, in the latter case, the attacker’s capabilities hinge on the vulnerabilities
specific to the exposed physical devices (refer to, for instance, the vulnerability
in the HMI interface detailed in our subsequent implementation section 5.3).

Lastly, the entire honeynet framework is orchestrated and overseen through a
dedicated management dashboard, providing a centralized interface for efficient
control and monitoring. This comprehensive architecture ensures a versatile and
robust platform for the emulation and analysis of potential cyber threats in OT
environments.

In summary, our honeynet architecture aligns with the Purdue Enterprise
Reference Architecture (PERA) up to the second level. On Level 0 we have
the plant with sensor producing values based on the physical process, that are
then sent to level 1 where the PLCs interpret them and their logic sends back
commands to the actuators on level 0. On level 2 we have the HMI overseeing
the operation of the PLCs.

4.1.1 Discussion on honeynet architectural design

Before arriving at the design depicted in Figure 4.4, many iterations have been
made, each representing a valuable exploration of different architectural possi-
bilities, considerations, and lessons learned. The evolution of HoneyPLC’s ar-
chitecture is summarized in Table 4.1.

First iteration

The first attempt is illustrated in Figure 4.1. The frontend responder functioned
similarly to a load balancer, directing traffic either to the PLC scan responder,
designed to respond to nmap OS fingerprinting attempts, or to the software PLC.
If the query was directed to the HMIs, the frontend responder would allow the
query to pass through directly. Thus, the front-end responder’s role also involved
unpacking traffic to determine whether the query directed to the PLC was a scan
or a legitimate request. Having a frontend responder meant we could switch the
PLCs as we wanted adhering to our configurability requirement (cf. Section
3.3.2). However, it constrained us to a single entry point for the attacker (cf.
Section 3.3.4). The option of using a VPN was ruled out since the attacker could
never be in the same network as the PLCs. Without the frontend responder
managing requests, the honeynet would not function properly. Allowing the
attacker into the same network as the PLCs posed a risk of them discovering
additional elements, such as the scan responder, which were not intended to be
revealed. Moreover, the frontend responder would not align with our scalability
requirement (cf. Section 3.3.3), as it would present a significant bottleneck with
the increasing number of PLCs and HMIs.
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Figure 4.1: HoneyICS First architecture

Second iteration

Wanting to address also the scalability requirement we thought of the architec-
ture illustrated in Figure 4.2. In this design, we replaced the frontend responder
with a block of code within each container, incorporating the software PLC, the
Scan responder, and a smaller handler. This handler efficiently redirected queries
to either the Scan responder or the PLC based on the nature of the request. This
adjustment significantly enhanced scalability by resolving the bottleneck issue
associated with the frontend responder. While it might seem like a compromise
on the configurability requirement, the consolidated scan responder and software
PLC proved to be more straightforward to configure and manage. Moreover, this
setup retained the flexibility to be replaced by a real PLC at any time.

Third iteration

Subsequently, we introduced a ”Broker Container” to allow communication be-
tween software PLCs, a capability not initially supported and between the PLCs
and the plant. While this addition was a step in the right direction for enhanc-
ing the configurability of the honeynet, it also introduced a new bottleneck,
thereby somewhat reducing the scalability potential of HoneyICS. Additionally,
we implemented a management dashboard capable of displaying collected logs,
addressing the attack monitoring requirement.



56 Chapter 4. A physics-aware and high-interaction ICS honeynet

Field
Communications

Network

Supervisory
Control
Network

Container PLC1

Plant

Request Flow

Response Flow

Legend

Scan
responder

Container HMI1
PLC

Container PLCn

Scan
responder

PLC

Container HMIk

Interaction
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Final iteration

The final iteration of the design of the architecture is the latest HoneyICS ver-
sion (Figure 4.4). To tackle the scalability concern, we resolved it by embedding
the communication code for the PLCs within their respective containers. Ad-
ditionally, for communication with the plant, we containerized the plant and
directly inserted the code into the plant container, further improving the scala-
bility of the whole honeynet. By adding a firewall, we also manage to seamlessly
integrate VPN access into our honeynet. Furthermore, to facilitate the seamless
integration of new physical or virtual devices, therefore further addressing the
Configurability desiderata, we crafted a reverse proxy designed to shield each
device effectively. This not only gives the possibility of adding new devices but
also enhances the security and thwarts potential lateral movements by attackers.

4.2 Attacker model

As illustrated in Fig. 4.4, our honeynet offers two primary entry points:
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Figure 4.3: HoneyICS third architecture

Figure 4.4: HoneyICS Architecture

Table 4.1: HoneyICS evolution

HoneyICS
version

Level of in-
teraction

Configurability Scalability Honeypot
entry point

Attack
monitoring

First 4.1  G# # # #
Second 4.2  G# G# # #
Third 4.3   # #  
Final 4.4      

• Direct internet access to specific services: Attackers can discover our honey-
pot by searching for internet-facing PLC services on common search engines
or platforms like Shodan [49]. These services might include:
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– Modbus/TCP on port 502 (TCP). This communication protocol itself is
not inherently secure, and attackers on the same network segment could
potentially leverage common Modbus functions to manipulate connected
devices.

– Static HTML information pages of the PLCs on port 80 (TCP).
– Web interface of the HMI on port 9090 (TCP). We specifically introduced
a vulnerability within this HMI web interface, leveraging the CVE-2021-
26828 ScadaBR Remote Code Execution flaw. This vulnerability allows
attackers to upload and execute malicious code if they can obtain valid
user credentials.

• VPN access: By gaining access to the VPN the honeypot is connected to,
attackers can infiltrate the supervisory control network connecting PLCs and
HMIs. This grants them more extensive control compared to internet access,
although they still wouldn’t have direct access to the field communication
networks.

We attempted to introduce a third entry point that bridged the gap between
direct internet access and VPN access. This involved incorporating a vulnera-
bility into an internet-facing device, allowing attackers to pivot into the network
and achieve a level of control similar to a VPN compromise. This scenario will
be explored further in Section 7.1.

In both cases after gaining access, the intruder can use tools like Nmap [46]
to fingerprint the targeted PLCs, extracting basic system information, including
the PLC model and brand, open and filtered ports, the services operating on
those ports, and the supported industrial protocol. Subsequently, the attacker
may proceed to read and/or write PLC memory registers and attempt to upload
and execute a malicious PLC user program. The effects of program execution
on the physical process can be observed by inspecting the values of the PLC
registers or through a compromised HMI. Similarly, another possible attack in
both entry points is to fingerprint and then exploit weak or default credentials
on HMI interfaces through brute-force attempts. This could potentially allow
attackers to tamper with the physical state of the system by issuing commands
directly through the compromised HMI interfaces.

Furthermore, if the attacker successfully compromises the VPN under which
the honeypot operates, they gain the capability to: (i) conduct network traf-
fic sniffing on the supervisory control network, and (ii) establish Man-in-the-
Middle (MITM) attacks between two PLCs or between a PLC and its associated
HMI. In the latter scenario, the attacker may achieve a dual objective: firstly,
manipulating PLC registers (e.g., those storing actuator commands or sensor
measurements) to compromise the physical process, and secondly, transmitting
false measurements to the corresponding HMI. These manipulated measure-
ments may originate from previous recordings made during an eavesdrop phase
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on the genuine system. This replay of data allows the attacker to remain stealthy,
leveraging previously captured information to maintain a semblance of normalcy
in their activities as happened in the notorious Stuxnet attack [89]. Lastly, it is
worth noting that by gaining access to the network, the attacker can read the
MAC address of the PLC. Therefore, it becomes crucial to align the person-
ality of the PLC with the corresponding MAC address, as each manufacturer
possesses its unique identifier.

4.3 Honeypot design novelties

This section discusses the key novelties of our HoneyICS design, focusing on its
physics-aware and high-interaction capabilities. These features address critical
limitations in existing ICS honeypots and enable a more realistic deception
environment for attackers.

Physics-Aware Design:

Traditional honeypots often lack a realistic representation of the underlying
physical process that the ICS system controls. This discrepancy can raise sus-
picion among attackers. HoneyICS incorporates a simulated physical plant, al-
lowing for:

• Feedback loop: The honeypot mimics the behavior of a real system by pro-
viding feedback from the simulated plant to the PLCs. This feedback loop
influences the PLC’s outputs based on the process dynamics, creating a more
realistic response to attacker actions.

• Attack impact visualization: By simulating the physical process, HoneyICS
allows defenders to observe the potential consequences of an attack on real-
world parameters like temperature, pressure, or flow rates. This facilitates a
deeper understanding of attacker intent and potential damage.

High-Interaction Design:

Many honeypots limit the level of interaction attackers can have with the system.
HoneyICS prioritizes high interaction, enabling attackers to perform actions that
closely resemble real-world attacks on ICS environments. This includes:

• Extensive memory access: Attackers can interact with a broad range of PLC
memory registers, allowing them to read, write, and modify process control
values. This level of access reflects the potential for manipulating critical
control parameters within a real ICS system.
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• HMI exploitation: The honeypot incorporates a vulnerable HMI interface,
mirroring potential weaknesses in real-world HMI systems. Attackers can
exploit this vulnerability to gain unauthorized access and potentially ma-
nipulate the human operator’s view of the process.

• VPN access: HoneyICS offers a VPN entry point, enabling attackers to com-
promise the network and conduct activities like sniffing traffic or launching
Man-in-the-Middle attacks between PLCs and HMIs. This feature provides
a more comprehensive attack surface, reflecting the growing use of VPNs in
industrial control systems.



Chapter 5
PROTOTYPE IMPLEMENTATION

5.1 Case study: a water treatment system

In this section, we outline the case study used for our project, presenting a
model of a water treatment plant structured into three distinct stages [109].
The control and monitoring of this system are overseen by three PLCs. It’s
essential to note that this model serves as a simplified representation inspired
by the Secure Water Treatment system (SWaT) [117].

The Secure Water Treatment (SWaT) system, as originally presented by
Mathur et al. [117], was intended to be a sophisticated testbed designed for the
study and training in security aspects of industrial control systems, with a spe-
cific focus on water treatment processes. It serves as a platform to understand
the impact of cyber and physical attacks on water treatment systems, assess the
effectiveness of attack detection algorithms, and explore the cascading effects of
failures in interconnected ICS. The SWaT system incorporates a six-stage water
treatment process, each autonomously controlled by a dedicated Programmable
Logic Controller (PLC). In terms of communication, SWaT employs local field-
bus communications between sensors, actuators, and PLCs through both wired
and wireless channels. The network architecture is based on a conventional
Ethernet star topology, integrating all process stages, Human-Machine Inter-
face (HMI), SCADA system, and historian through an industrial switch. Key
communication protocols include EtherNet/IP (ENIP) and Common Industrial
Protocol (CIP). The control structure of SWaT is characterized by distributed
control, where each stage of the process is independently managed by its PLCs,
each having a primary and a backup. These PLCs are networked for seamless
communication and data sharing. Operators have the ability to manually control
all actuators via the HMI and the SCADA system. The integration of sensors
and actuators is a critical aspect, with various sensors providing real-time data
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Figure 5.1: Lanotte et al. Simplified SWaT System: Three-Stage Water Treat-
ment Plant with PLC and HMI Control

(MicroLogix 1100)

Figure 5.2: Our simplified SWaT System: Three-Stage Water Treatment Plant
with PLC and HMI Control

to PLCs for controlling actuators like pumps and valves, using an Ethernet-
based ring topology with Device Level Ring (DLR) protocol. The six stages of
SWaT involve different processes such as inflow control, chemical dosing, ultra-
filtration, reverse osmosis, and membrane cleaning. Each stage is equipped with
specific sensors and actuators for monitoring and control purposes.
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Figure 5.3: Simulink model

Lanotte et al. [109] proposed a scaled-down version of the original SWaT
system, shown in Figure 5.1. Unlike the original SWaT’s six-stage process, the
simplified system narrows its scope to just three stages. These stages primarily
involve the chemical dosing pump and raw water pump that let the water flow
into a tank T1, followed by filtration and reverse osmosis processes. In the sim-
plified system the design assumes specific flow dynamics: the first stage involves
chemically dosing and pumping raw water into a tank (T1) using two pumps.
The second stage includes a filtration unit that releases treated water into a
second tank (T2). The third stage involves a reverse osmosis unit to reduce
inorganic impurities. The treated water is either distributed as clean water or
stored in a backwash tank (T3) and pumped back to the filtration unit. The
authors assume that the flow of incoming water in tank T1 is greater than the
outgoing flow through the valve, and tank T2 is large enough to receive the
entire content of tank T3 at any moment.

We maintained the core structure of the simplified SWaT system proposed
by Lanotte et al., introducing subtle modifications to enhance its functionality.
As illustrated in Figure 5.2, we simplified the system by reducing the number of
pumps for the incoming water in tank T-201 to a single pump (P-101 ) for clar-
ity. Additionally, we improved system efficiency by adjusting the reverse osmosis
unit to raise the cleanliness threshold, resulting in a larger volume of contam-
inated water to accelerate the filling of T-203. In terms of communication, we
refined the system to employ an industrial protocol, as elaborated in Section ??.
Alongside these modifications, we introduced an HMI to monitor the evolution
of the physical process, through the registers of the PLCs.

5.1.1 Plant

In Figure 5.3, the model used in the Simulink container’s is presented. Beginning
from the top left, the sub-model Tank 1 manages the first tank. In Figure 5.4,
a detailed view of the sub-model is provided. As shown in Figure 5.5, water
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Figure 5.4: Simulink sub-model system: Tank 1

Figure 5.5: Simulink sub-model tank

enters the tank at a rate correlated to the voltage V supplied to the pump. In
the PLC logic implementation, we restrict the pump to operate in either an on
or off state, therefore the voltage values are 0 or 1. The water exits from the
base and flows to the next tank as input, and the outflow rate is associated
with the square root of the water height H, this introduces a nonlinear element,
making the whole system nonlinear. The other variables shown in the picture
include H for water height and Vol for volume, while system parameters are the
tank’s cross-sectional area A, and constants b and a for inflow and outflow rates.
The system dynamics are expressed through the differential equation: d

dtVol =

AdH
dt = bV − a

√
H, with water height H as both the state and output, and
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Figure 5.6: Reverse osmosis filter

Figure 5.7: UDP receiver and sender

voltage V as the input. Tank 2 and Tank 3 are using the same exact equation
as Tank 1 and also the same sub-model.

The reverse osmosis filter, positioned at the output of Tank 2, is depicted in
Figure 5.6. The water level outputted from Tank 2 is categorized as 99% clean
water and 1% dirty water. The 1% dirty water is reintroduced into the loop
through Tank 3. When the water level of dirty water in Tank 3 reaches 10, the
PLC logic activates the pump linked to the Tank 3 sub-model, initiating the
transfer of water into Tank 2.
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The sub-model Tank 1 takes two input signals through a UDP receiver block:
one for the voltage level (on/off) to activate the pump and the other for the
valve’s voltage value (on/off). It produces an unsigned integer representing the
current water level inside the tank. This water level value is sent to the subse-
quent tank and is also transmitted through a UDP sender block, as illustrated
in Figure 5.7.

Tank 2 has a single output representing the water level, as it lacks any linked
actuators.

Regarding Tank 3, it takes the voltage level (on/off) for pump activation as
input and produces the water level as an output.

5.1.2 Controllers

Each PLC is assigned to manage one of the three stages within the simplified
water treatment plant. The code dedicated to the PLC overseeing the initial
stage, which involves controlling the pump, valve, and level sensor, is provided
in Listing 5.1 and the flow chart of the code is illustrated in Figure 5.8. This
code, written in Structured Text (ST), is designed to regulate the pump and
valve based on the real-time level of the tank.

The variables: level, requestValve, pumpStatus, and valveStatus are declared
to represent the tank level, requests for valve operations, pump status, and
valve status, respectively. Additionally, internal boolean variables such as isLow
and isHigh are introduced to determine if the tank level is below the specified
threshold of 40 or above 80. Internal requests for valve operations, denoted by
openRequest and closeRequest, are controlled based on external requests com-
ing from PLC2 and written into the requestValve register. Conditions are then
evaluated, for instance, the status of the pump is adjusted based on the tank
level, ensuring the pump is activated when needed. Similarly, the valve status
is updated according to internal requests, external requests, and the tank level.
The CONFIGURATION section at the end of the code plays a crucial role in
setting up the PLC. It specifies the presence of a resource named Res0 that
executes a task named task0 at regular intervals. This task, in turn, ensures the
execution of the PLC1 program every 20 milliseconds.

The code running on PLC2 is presented in Listing 5.2 and its logic is illus-
trated in Figure 5.9. The program controls a pump based on the water level.
The level variable represents the current water level. The initially defined vari-
ables include the water level (level), the request to alter the valve’s status to
PLC1 (valveRequest), the request to open the valve (valveOpenRequest), and
the request to close the valve (valveCloseRequest). The constants LOW LEVEL
and HIGH LEVEL denote the thresholds for low and high water levels. The
valveOpenRequest is activated when the water level is at or below the low level
threshold, while the valveCloseRequest is triggered when the water level reaches
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Figure 5.8: PLC1 logic flow chart

or exceeds the high level threshold. The pumpRequest is sent to PLC1 when the
valve is not in the process of closing, and either the valve is opening or there is
a request for valve operation.

The code running on PLC3 is provided in Listing 5.3 and its logic is illustrated
in Figure 5.10. The purpose of this code is to regulate the operation of the pump
P-102 based on the water level of tank T-203 within a specified range. The
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Figure 5.9: PLC2 logic flow chart

variable level stores the current water level, while the boolean variables isLow
and isHigh are utilized to determine whether the water level falls below 0 or rises
above 10 which are the predefined thresholds. These thresholds are established
by the constants LOW LEVEL and HIGH LEVEL. If the water level is less than
or equal to LOW LEVEL, the variable isLow is set to true. Conversely, if the
water level is greater than or equal to HIGH LEVEL, isHigh is set to true.

The status of the pump is determined by the line of code: pump := NOT(isLow)
AND (isHigh OR pump);. This implies that the pump will be activated if the
water level is not deemed low and is considered high, or if the pump is already
in an active state. In summary, the pump will be activated when the water
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Figure 5.10: PLC3 logic flow chart

level surpasses the high threshold and will remain active until the water level
decreases to the low threshold. If the water level resides within the specified
range, the pump will maintain its existing state.

Listing 5.1: PLC1 Structured Text code

PROGRAM PLC1

VAR

level AT %IW0 : INT; // Water level

requestValve AT %QX0.2 : BOOL; // Request to open/close the valve

pumpStatus AT %QX0.0 : BOOL; // Current status of the pump

valveStatus AT %QX0.1 : BOOL; // Current status of the valve

isLow AT %MX0.0 : BOOL; // Flag to indicate if level is low
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isHigh AT %MX0.1 : BOOL; // Flag to indicate if level is high

openRequest AT %MX0.3 : BOOL; // Internal request to open the valve

closeRequest AT %MX0.4 : BOOL; // Internal request to close the valve

LOW_LEVEL : INT := 40; // Low level threshold

HIGH_LEVEL : INT := 80; // High level threshold

END_VAR

// Check if level is low or high

isLow := LE(level, LOW_LEVEL);

isHigh := GE(level, HIGH_LEVEL);

// Set open and close requests based on valve request

openRequest := requestValve;

closeRequest := NOT(requestValve);

// Update pump status: turn off if level is high, turn on if level is low or

keep current status

pumpStatus := NOT(isHigh) AND (isLow OR pumpStatus);

// Update valve status: close if close request is true, open if open request

is true and level is not low, or keep current status

valveStatus := NOT(closeRequest) AND (openRequest AND NOT(isLow) OR

valveStatus);

END_PROGRAM

CONFIGURATION Config0

RESOURCE Res0 ON PLC

TASK task0(INTERVAL := T#20ms,PRIORITY := 0); // Task to run the program

PROGRAM instance0 WITH task0 : PLC1; // Assign the program to the task

END_RESOURCE

END_CONFIGURATION

Listing 5.2: PLC2 Structured Text code

PROGRAM PLC2

VAR

level AT %IW0 : INT; // Water level

pumpRequest AT %QX0.0 : BOOL; // Pump request status

pumpOpenRequest AT %MX0.0 : BOOL; // Pump open request status

pumpCloseRequest AT %MX0.1 : BOOL; // Pump close request status

LOW_LEVEL AT %MW1 : INT := 10; // Low water level threshold

HIGH_LEVEL AT %MW2 : INT := 20; // High water level threshold

END_VAR

// Set pump open request if water level is less than or equal to low level

pumpOpenRequest := LE(level, LOW_LEVEL);

// Set pump close request if water level is greater than or equal to high

level

pumpCloseRequest := GE(level, HIGH_LEVEL);
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// Set pump request if pump close request is not set and either pump open

request is set or pump request is already set

pumpRequest := NOT(pumpCloseRequest) AND (pumpOpenRequest OR pumpRequest);

END_PROGRAM

CONFIGURATION Config0

RESOURCE Res0 ON PLC

TASK task0(INTERVAL := T#20ms,PRIORITY := 0); // Task running at 20ms

interval

PROGRAM instance0 WITH task0 : PLC2; // Assigning PLC2 program to the task

END_RESOURCE

END_CONFIGURATION

Listing 5.3: PLC3 Structured Text code

PROGRAM PLC3

VAR

level AT %IW0 : INT; // Water level

pump AT %QX0.0 : BOOL; // Pump status

isLow : BOOL; // Is water level low?

isHigh AT %QX0.1 : BOOL; // Is water level high?

LOW_LEVEL : INT := 0; // Low water level threshold

HIGH_LEVEL : INT := 10; // High water level threshold

END_VAR

// Check if water level is lower than low level threshold

isLow := LE(level, LOW_LEVEL);

// Check if water level is higher than high level threshold

isHigh := GE(level, HIGH_LEVEL);

// Pump should be on if water level is not low and (water level is high or

pump is already on)

pump := NOT(isLow) AND (isHigh OR pump);

END_PROGRAM

CONFIGURATION Config0

RESOURCE Res0 ON PLC

TASK task0(INTERVAL := T#20ms,PRIORITY := 0); // Task running every 20ms

PROGRAM instance0 WITH task0 : PLC3; // Assign PLC3 program to task0

END_RESOURCE

END_CONFIGURATION

Table 5.1 provides a comprehensive overview of the registers employed in our
use case, detailing their specific functions. The table summarizes the mapping
between physical devices (including sensors and actuators) and their correspond-
ing PLC registers, along with the range of values for each register.
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Table 5.1: Intended use of PLC registers in our use case

PLC physical device/variable Range PLC register

PLC1

level sensor of tank T-201 [40,80] InputRegisters IW0

actuator of pump P-101 {0,1} Coils QX00

actuator of valve MV-301 {0,1} Coils QX01

request from PLC2 {0,1} Coils QX02

low setpoint of tank T-201 40 MemoryRegisters MW0

high setpoint of tank T-201 80 MemoryRegisters MW1

PLC2

level sensor of tank T-202 [10,20] InputRegisters IW0

request to PLC1 {0,1} Coils QX00

low setpoint of tank T-202 10 MemoryRegisters MW0

high setpoint of tank T-202 20 MemoryRegisters MW1

PLC3

level sensor of tank T-203 [0,10] InputRegisters IW0

actuator of pump P-102 {0,1} Coils QX00

low setpoint of tank T-203 0 MemoryRegisters MW0

high setpoint of tank T-203 10 MemoryRegisters MW1

5.2 Honeypot Technology Stack

This section provides a summary of the core technologies that underpin our
HoneyICS design. These components were carefully chosen to create a robust,
scalable, and realistic deception environment for attackers.

• Docker and Containerization: Docker serves as the foundation for our con-
tainerized deployment approach. Each element of the honeynet leverages
a dedicated Docker container, offering modularity, scalability, and efficient
resource utilization. This allows for easy deployment across various environ-
ments and simplifies maintenance.

• Nginx and Iptables: Nginx functions as a web server, reverse proxy server,
and load balancer within the honeynet. It efficiently delivers static content
and manages incoming client requests, enhancing overall responsiveness. Ipt-
ables, a powerful firewall tool, provides granular control over network traffic
flow within the honeynet. We leverage Iptables to establish rules that gov-
ern incoming and outgoing traffic based on predefined criteria, ensuring the
security and integrity of the honeypot environment.

• Matlab and Simulink : They play a vital role in simulating the physical pro-
cesses controlled by the honeypot PLCs. Matlab offers a versatile platform
for numerical computation, facilitating the creation and analysis of math-
ematical models. Simulink, a graphical programming environment built on
top of Matlab, enables the design and simulation of these models. By incor-
porating a physics-aware simulation layer, HoneyICS provides attackers with
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a more realistic representation of the underlying industrial control system,
enhancing the deception capabilities of the honeypot.

• OpenPLC : This open-source software PLC serves as the core element of
our honeypot PLCs. OpenPLC offers a versatile platform for executing PLC
programs, supporting various platforms and industry-standard programming
languages defined in the IEC 61131-3 standard. By leveraging OpenPLC, we
can create realistic honeypot PLCs that mimic the behavior of real-world
industrial controllers.

• ScadaBR: As an open-source SCADA system, ScadaBR is used to create
the HMI for our honeypot PLCs. ScadaBR allows for the visualization of
variables, alarms, and other critical data points, mimicking the functionality
of real-world HMI systems. This inclusion provides attackers with a familiar
interface and increases the believability of the honeypot environment.

• Elasticsearch, Logstash, and Kibana (ELK Stack): This forms the backbone
of our log analysis and visualization system. Elasticsearch, a distributed
search and analytics engine, stores and retrieves log data generated by
the honeypot components. Logstash acts as a pipeline, collecting, parsing,
and transforming log data before feeding it into Elasticsearch. Kibana, an
open-source data visualization platform, empowers defenders with interac-
tive dashboards to explore and analyze the collected log data. This compre-
hensive logging and analysis suite provides valuable insights into attacker
behavior and facilitates post-incident analysis.

• Zeek and eBPF : Our approach to log collection and processing leverages
a dual-technology strategy. Zeek, a passive network traffic analyzer, cap-
tures and analyzes network traffic flowing through the honeypot. Meanwhile,
eBPF (extended Berkeley Packet Filter) offers a powerful mechanism for in-
kernel data capture, providing deep visibility into network activity within
the honeypot environment. The combined capabilities of Zeek and eBPF en-
sure comprehensive network traffic analysis and facilitate the detection of
malicious activities.

By combining these technologies, we create a robust and feature-rich Honey-
ICS that effectively deceives attackers, gathers valuable threat intelligence, and
strengthens the overall security posture of industrial control systems.

5.2.1 Docker and containerization

Docker is an open-source project [12], that completely revolutionised the land-
scape of software development, offering an efficient and portable approach to
containerization. Born out of the necessity to address challenges associated with
deploying applications across diverse environments, Docker has reshaped how
developers build, ship, and run software. Docker was originally named dot-
Cloud [15], founded by Solomon Hykes in 2010. The initial focus was on creating
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Figure 5.11: Virtual Machine vs. Docker

an internal platform-as-a-service (PaaS). However, recognizing the broader im-
plications of their work, the team open-sourced the project in 2013, officially
naming it Docker. At its core, Docker utilizes containerization, a lightweight,
stand-alone, and executable package that includes everything needed to run a
piece of software, including the code, runtime, libraries, and system tools. Un-
like Virtual Machines (VMs), which emulate entire operating systems and are
resource intensive, Docker containers share the host OS kernel as shown in Figure
5.11, resulting in a more efficient and resource-optimized solution. VMs require a
hypervisor, hosted or bare metal, in order to manage the resources and emulate
the entire operating system, on the other hand Docker containers leverage the
host OS kernel directly. This results in faster startup times, reduced resource
overhead, and enhanced scalability. To create a Docker container, developers use
Docker images. These images are built using Dockerfiles, which contain a series
of instructions for the Docker engine to follow. Dockerfiles automate the pro-
cess, making image creation reproducible and efficient. Once an image is built, it
serves as a template for launching containers. One of Docker’s main advantages
lies in its ability to encapsulate an application and its dependencies, eliminating
environmental inconsistencies as it creates a new clean environment every time.
It helps accelerate development cycles and optimizes resource utilization.

The anatomy and functionality of Dockerfile

The cornerstone of a Docker container is the Dockerfile [13], which is composed
of a series of instructions along with their corresponding arguments. Every Dock-
erfile starts with the FROM instruction, followed by the name of a base image
upon which all subsequent instructions will be executed. Any valid image can be
used as a base image and can be easily retrieved from public repositories [14].
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After each instruction is executed, a temporary image is generated, which is
then passed to the next instruction in the Dockerfile, progressively constructing
the final image step by step. The RUN instruction executes one or more com-
mands on the current image and verifies the outcome. The commands provided
as arguments to RUN are specific to the base image’s operating system and are
executed as if they would if they were manually inputted into the shell. For ex-
ample, if a container requires the installation of specific programs like Python,
using the command:

RUN apt install python

the built image would have Python installed, unless errors occur during the
execution of the install command.

The EXPOSE instruction indicates on which ports the container will listen
and the respective protocol, by default TCP. However, the EXPOSE command
doesn’t actually expose the ports; it configures them internally to enable commu-
nication between the host and the container. To concretely publish a container’s
port, it must be specified when starting the container (docker run) using the
”-p” flag.

The USER instruction sets the user performing the RUN operations, allowing
Docker to retrieve their rights. This enables operations to be executed either as
an administrator, using the root user, or to configure the container differently
if there’s a need to separate functionalities for different users.

The WORKDIR instruction allows navigation within folders and selecting
the active folder for executing operations.

The COPY instruction is used to copy a file from the host machine to the ac-
tive directory of the container, previously set with WORKDIR. This command
can also be used repeatedly based on needs. The format is COPY <source-
folder> <destination-folder>. The ADD instruction has the same functionality
as COPY, except it allows using an URL as ¡source-folder¿ parameter, down-
loading its content.

The CMD and ENTRYPOINT instructions are used to set a command that
will be executed when the container starts. The main difference is that the com-
mand passed as an argument to CMD, unlike ENTRYPOINT, can be overridden
if command-line parameters are specified during the container startup.

Docker networking

A crucial aspect for container orchestration is networking, to allow communica-
tion between containers and external systems. Docker supports various network
drivers, each serving different purposes. This includes:

• Bridge Network : The default network driver, creating an internal network
for communication between containers on the same host.
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• Host Network : Directly uses the host network stack, offering maximum per-
formance but limiting isolation.

• Overlay Network : Enables communication between containers across differ-
ent Docker hosts.

• Macvlan and IPvLAN : Provide options for connecting containers directly to
physical networks.

Docker leverages on technologies like iptables, namespaces, and virtual inter-
faces to implement network isolation and routing for containers. Docker provides
the following set of commands to manage networks:

• docker network create my-network : Creates a new Docker network called
”my-network”.

• docker network ls: Lists all available Docker networks on the host. The net-
work called ”my-network” we previously created will appear here.

• docker network inspect my-network : Offers detailed information about the
Docker network called ”my-network”.

• docker network connect my-network my-container and docker network dis-
connect my-network my-container : Connects and disconnects the container
called ”my-container” from Docker network ”my-network”.

5.2.2 Nginx and Iptables

Nginx [2] is an open-source web server, reverse proxy server, and load balancer.
Originally created by Igor Sysoev, it has gained popularity for its efficiency,
performance, and versatility.

Nginx can be used as a standalone web server, since it excels in delivering
static content directly to clients, showcasing its efficiency in handling static files.
Additionally, Nginx can function as a reverse proxy, managing and distributing
incoming client requests to backend servers. This reverse proxy capability is use-
ful for load balancing, optimizing resource utilization, and enhancing the overall
responsiveness of web applications. As a load balancer, Nginx distributes incom-
ing network traffic across multiple backend servers, preventing any single server
from becoming a bottleneck. Nginx’s versatility extends to SSL/TLS termina-
tion, where it handles encryption and decryption, serving as a termination point
for secure connections. This enhances security but also offloads the resource-
intensive task of encryption from backend servers. Furthermore, Nginx supports
WebSocket as a reverse proxy, making it suitable for applications requiring real-
time communication. Its caching mechanisms add another layer of efficiency by
storing and serving frequently requested content directly, thereby reducing the
load on backend servers and improving response times. Lastly, Nginx prioritizes
security with various features, including access controls, rate limiting, and the
capability to mitigate common web vulnerabilities.
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Iptables [27] is a versatile and powerful tool for managing packet filtering
rules in a Linux-based firewall. It provides a set of rules to govern the flow
of incoming and outgoing network traffic based on predefined criteria such as
the protocol used, source and destination ports, and the desired action to be
performed once a match is found. Listing 5.4 provides a set of Iptables rules to
exemplify its usage.

Listing 5.4: Iptables usage

# Allow incoming traffic on port 80 (HTTP)

iptables -A INPUT -p tcp --dport 80 -j ACCEPT

# Drop all incoming traffic on port 22 (SSH)

iptables -A INPUT -p tcp --dport 22 -j DROP

# Allow outgoing DNS requests

iptables -A OUTPUT -p udp --dport 53 -j ACCEPT

Using the -A INPUT and -A OUTPUT flags the tool is appending the newly
created rules to the INPUT and OUTPUT chains, respectively. The former is
responsible for dealing with incoming packets destined for the system, while the
latter manages outgoing packets from the system. The -p tcp and -p udp options
specify the transport protocol as TCP or UDP. The –dport flag designates the
destination port for the rule. Lastly, the -j ACCEPT and -j DROP flags indicate
whether to accept or discard packets matching the specified criteria.

5.2.3 Matlab and Simulink

Matlab is a programming platform developed by MathWorks Inc., made for en-
gineers and scientists, that provides an environment for the analysis and design
of systems. Specialized in numerical computation, it facilitates matrix manipula-
tion, function, and data visualization, along with seamless interaction with other
programs. Its utility extends to creating models and employing mathematical
equations for simulations, enabling a profound understanding of complex phys-
ical phenomena and predicting system behavior.

The Matlab environment has four primary windows:

• Command Window: Allows the input of commands and real-time result vi-
sualization.

• Workspace: A memory space enabling variable allocation and displaying cur-
rent allocations.

• Current Directory: Facilitates folder exploration in memory, supporting var-
ious operations such as opening and consulting other MATLAB files.

• Command History: Maintains a list of recently used commands for re-
execution or reviewing executed instructions.
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Figure 5.12: Example of a Simulink model

Simulink is a graphical programming environment also developed by Math-
Works that allows engineers and scientists to model, simulate, and analyze mul-
tidomain dynamical systems. It is a block diagram environment that enables the
design of systems with multidomain models, simulation before moving to hard-
ware, and deployment without writing code. It supports system-level design,
simulation, automatic code generation, and continuous test and verification of
embedded systems. It can be used for a range of applications, including wireless
communications, electrification and control systems. An example of a Simulink
model is illustrated in Figure 5.12. It replicates the dynamic interaction be-
tween a car’s motion and the operation of a proximity sensor. Beginning with
the generation of an input signal representing accelerator pedal pressure, the
model distinguishes between a value of 1 when the pedal is pressed and 0 when
released. This signal is then multiplied by a constant factor to determine its
impact on the car’s acceleration. The model uses successive integrations to com-
pute the car’s position based on the calculated acceleration. One of the model’s
outputs provides the resulting position of the car. The model then calculates
the actual distance between the car and an obstacle situated 10 meters away
by subtracting the car’s position from the obstacle’s position. To emulate real
sensor measurement errors, random noise is introduced to the actual distance.
The model further emulates a digital sensor operating at discrete time intervals
by sampling the noisy distance. The measured distance is then fed to the other
output of the model.

5.2.4 OpenPLC: an open-source software PLC

Software PLCs, like OpenPLC, offer an alternative to traditional hardware-
based PLCs. OpenPLC is an open-source PLC suite designed for industrial au-
tomation and research. It supports various platforms, including Arduino, Rasp-
berry Pi, Windows, and Linux, making it versatile for diverse applications. The
suite comprises of two main components: (i) The runtime: which is the core
part of OpenPLC, it is installed on a device that can be either physical or vir-
tual, to execute PLC programs and (ii) the editor : which is used for creating
PLC programs. The editor in OpenPLC is based on the Beremiz project [6] and
supports all five programming languages defined in the IEC 61131-3 standard,
which include Ladder Logic (LD), Function Block Diagram (FBD), Instruction
List (IL), and Structured Text (ST). Internally, like any PLC, OpenPLC man-
ages data through input, system, and output registers, which can vary in size



5.2 Honeypot Technology Stack 79

depending on the contained data. To access a register, its address is required.
In OpenPLC, an address consists of:

• the % character;
• letter from the set I, Q, M, specifying whether the register is designated for
input, output, or system;

• a letter from the set X, B, W, D, L, signifying the data size (Bit, Byte, Word,
Double Word, Long Word);

• a hierarchical address that differentiates addresses that would otherwise be
equivalent. Bit addresses follow a hierarchical structure consisting of two
parts separated by a dot: the left part signifies the register number ranging
from 0 to 1023, while the right part indicates the specific bit within that
register. Since only one bit is required, a register can accommodate up to 8
binary values. Conversely, for addresses of different types, only one number
is used, denoting the left part.

OpenPLC features a user-friendly web interface, where through a login page, the
user logs into OpenPLC and can navigate through various sections: the Dash-
board provides an overview of the running program and a log table; Programs
allows the insertion and compilation of .st files for execution by the PLC; Slave
Device enables the addition of additional devices; Monitoring displays variable
values, inputs, and outputs; Hardware configures the hardware on which Open-
PLC is installed; Users defines users with respective privileges; Settings manages
various configurations, such as communication protocols, their ports, and time-
out periods; and finally, Logout disconnects the user from the interface.

5.2.5 ScadaBR: an open-source software HMI

ScadaBR is an open-source, Java-based, cross-platform application designed to
serve as supervision and control system software. Offering a comprehensive set of
features, it provides visualization capabilities for variables, graphics, statistics,
protocol configurations, alarms, and facilitates the creation of HMI-like screens,
along with an array of configuration options. Upon configuring communication
protocols with the equipment and defining inputs and outputs for an automated
application, ScadaBR enables the construction of web-based interfaces directly
through the browser. Furthermore, ScadaBR offers the flexibility to develop cus-
tom applications in any modern programming language. Users can leverage the
provided source code or utilize the ”web-services” API, enabling the creation
of tailored solutions that align with specific requirements. ScadaBR relies on
data sources, these are its atomic entities that serve as the origin points for
incoming data (inputs and outputs). The received data values are then stored in
data points. ScadaBR’s Graphical Representation feature can be used to craft
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visualizations of this data. The creation process involves selecting the Graphi-
cal Representation option, naming the representation, choosing an image, and
adding components such as Simple Data Point, Text, Image, and Shape. Con-
figuration options for these components, including font size, color, and position,
allow users to tailor the visual representation. Furthermore, ScadaBR extends
its functionality with statistical analysis, configurable alarms and a versatile web
services API supporting custom applications.

Selenium

A significant hurdle in deploying our honeypot system lies in ScadaBR’s lack of
an Application Programming Interface (API) for automated configuration. This
absence necessitates manual configuration by users for each honeypot instance,
a tedious and error-prone process. To overcome this limitation, we leverage Sele-
nium [20], a powerful web automation framework. By scripting interactions with
ScadaBR’s user interface through Selenium, we can automate the configuration
process.

At the heart of Selenium lies WebDriver, a potent API and protocol. It estab-
lishes a language-agnostic interface, enabling communication between Selenium
and a multitude of web browsers. Each browser leverages a dedicated WebDriver
implementation, known as a driver, to facilitate this communication. The driver
acts as a bridge, translating Selenium commands into actions within the specific
browser environment.

5.2.6 Elasticsearch Logstash and Kibana stack

ELK is an acronym for three very well known projects: Elasticsearch, Logstash
and Kibana. It is used for log data analysis, document search, security informa-
tion and event management, and observability.

Elasticsearch stands out as a distributed, RESTful search, and analytics en-
gine with the capability to store and retrieve data in real time. Logstash acts as
an event and log management tool, enabling the collection, parsing, and storage
of logs for subsequent analysis. On the visualization front, Kibana, an open-
source platform from Elastic, provides an intuitive and interactive web interface
for data exploration. Together, these components form a cohesive framework,
empowering users with robust tools for comprehensive data analysis and visu-
alization tasks.

Kibana is based on a versatile search language known as the query domain-
specific language (DSL). This language uses a JSON interface to allow users to
articulate intricate search queries efficiently. Every single table in the dashboard
is built using DSL queries. An elementary search in OpenSearch is shown in
Listing 5.5 utilizes the match all query, which, as the name implies, matches all
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documents within a specified index, somewhat like the SELECT * FROM table
query in SQL.

Listing 5.5: Basic Match-All Query

GET testindex/_search

{

"query": {

"match_all": {

}

}

}

A query can be composed of multiple query clauses, categorised into leaf queries
and compound queries. Leaf queries, are atomic and can function autonomously,
they are designed to search for specific values in designated fields. They encom-
pass full-text queries for text document searches, term-level queries for exact
term searches, geographic and xy queries for spatial data searches and special-
ized queries encompassing various types. On the other hand, compound queries
act as wrappers for multiple leaf clauses, combining results or modifying behav-
ior.

5.2.7 Zeek and eBPF

For log collection and processing, we employ a dual-technology approach, uti-
lizing eBPF for collection and Zeek for data processing and loading into Elas-
ticsearch.

eBPF, or extended Berkeley Packet Filter, represents a groundbreaking tech-
nology within the Linux kernel. This project allows the execution of sandboxed
programs in privileged contexts, such as the kernel itself. It is useful for extend-
ing kernel capabilities without the need for modifying source code or loading
new kernel modules and serves a range of purposes, including high-performance
networking, security observability, and application tracing. One of its key ad-
vantages lies in its ability to enhance kernel functionalities dynamically.

Zeek is a passive, open-source network traffic analyzer which is used as a
Network Security Monitor (NSM) for investigating potentially malicious and/or
suspicious activities. Zeek also supports various traffic analysis tasks such as
performance measurement and troubleshooting. Zeek collects all the information
captured into JSON log files, facilitating post-processing with external software
such as uploading to a third party software like Elasticsearch. It also offers
the option to integrate external Security Information and Event Management
(SIEM) products to store and process the data. Zeek is also capable, among the
other functionalities, of extracting files from HTTP sessions, interfacing with
external registries for malware detection, reporting vulnerable software versions
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observed on the network, detecting SSH brute-forcing, validating SSL certificate
chains, and more.

5.3 Docker implementation

In this section, we describe the details of the implementation, unraveling the key
components and methodologies that constitute the foundation of our honeynet
architecture. In the implementation of our use case, we decided not to utilize
any physical hardware or devices. Instead, we leveraged on well-established sim-
ulation frameworks such as HoneyPLC [112], OpenPLC [1], ScadaBR [45], and
Simulink [50]. As for industrial network protocols we emulate Modbus [102]. To
ensure scalability and reconfigurability, each element of our honeynet is deployed
within dedicated Docker containers [118], running on either Ubuntu 18.04 LTS
or NGINX base images. This containerized approach provides a modular and
adaptable deployment environment, aligning seamlessly with the dynamic needs
of our honeynet architecture.

5.3.1 PLC container

Our honeynet incorporates three distinct PLCs, all implemented as software
PLCs. Each PLC is implemented using a dedicated container, utilizing the
Ubuntu 18.04 LTS as base image, and houses both the low-interaction and
physics-aware high-interaction part of the honeypots.

Initially, we employed Honeyd [127] for our low-interaction honeypot. Honeyd
allows the creation of a ”personality engine” that emulates the TCP/IP stack of
target devices, such as PLCs. When a scan request is sent from a fingerprinting
tool like Nmap, Honeyd selects the relevant PLC fingerprint from an extensive
database and responds to the scanning tool. To accommodate a diverse range of
PLC models, we seamlessly integrated PLC profiles from HoneyPLC [112] into
Honeyd. Currently, HoneyPLC can respond to fingerprint requests for notable
PLC models, including ABB PM554-TP-ETH, Allen-Bradley MicroLogix 1100,
Siemens S7-300, S7-1200, and S7-1500. For the execution of PLC functionalities,
such as code execution, we utilized Honeyd’s subsystem virtualization (detailed
in Section 3.2.1) to run OpenPLC [74] and route the packets to the runtime.

However, in light of the challenges detailed in Section 3.3.6, where Honeyd
struggled to generate desired fingerprints, we decided to discontinue its use.
Consequently, we shifted our focus to developing alternative features to enhance
the precision of fingerprints.

To this end, we developed web interfaces for the Allen-Bradley MicroLogix
1100, Siemens S7-300, and S7-1200, starting from real PLCs, as illustrated in
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Figure 5.13: Web interfaces for: Allen-Bradley MicroLogix 1100, Siemens S7-
300, S7-1200

Figures 5.13. We also added the modified version of Snap7 [51] provided by
HoneyPLC to add S7comm capabilities to our honeynet. Snap7 is an open-
source communication library for Siemens PLCs. It provides a set of functions
for communicating with Siemens S7 PLCs, including reading and writing data,
and handling alarms and events. The S7 protocol is used to communicate with
Siemens PLCs and is mainly used to connect the PLCs to the PC stations.
The communication follows the traditional client-server model, where the PC
(client) sends S7 requests to the field device (server). These requests are used to
query from or send data to the device or issue certain commands. The library is
useful for making realistic honeypots of Siemens PLCs. The authors of Honey-
PLC extended the Snap7 Server module to support program block upload and
download, added a specific banner for the emulated PLC model, and included
additional features. Every Siemens PLC container has its own libsnap7 profile,
which displays the banner once a nmap scan is performed using the s7-info.nse
script to collect device information. The banner produced is shown in Listing
5.6, as demonstrated in Listing 5.7 on line:

RUN cp /home/honeyplc/snap7/build/bin/x86_64-linux/libsnap7-

.so-300 /usr/lib/libsnap7.so

the appropriate profile is built into each container.
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Listing 5.6: Honeypot response to a ”nmap –script s7-info.nse” scan

Details

System

PRODUCTION S7-300

Module

CPU 315-2 PN/DP

Copyright

Original Siemens Equipment

Serial Number

S C-U2A203512011

Module Type

CPU 315-2 PN/DP

Reserved For OS

MMC 276FA33B

Module ID

6ES7 315-2AG10-0AB0

Listing 5.7: Dockerfile for the PLC container

# Base image

FROM ubuntu:18.04

# Install necessary tools and libraries

RUN apt-get update && \

apt-get -y install lighttpd git python-pip autoconf bison build-essential

pkg-config bison flex autoconf automake libtool make git python2.7

python-pip sqlite3 cmake sudo \

&& apt-get clean

# Install additional dependencies

RUN apt-get update \

&& apt-get install -y wget gcc make openssl libffi-dev libgdbm-dev

libsqlite3-dev libssl-dev zlib1g-dev \

&& apt-get clean

# Clone and setup HoneyPLC

WORKDIR /home/

RUN git clone https://github.com/sefcom/honeyplc.git

# Clone and install OpenPLC

WORKDIR /home/

RUN git clone https://github.com/thiagoralves/OpenPLC_v3.git

WORKDIR /home/OpenPLC_v3/

RUN sudo chmod +x install.sh \

&& sudo ./install.sh linux \

&& mkdir /home/OpenPLC_v3/scripts

# Copy OpenPLC scripts and configurations

COPY run.sh PLC2.st launch.sh /home/OpenPLC_v3/

RUN sudo chmod +x run.sh launch.sh
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# Setup Lighttpd

COPY ./profile /var/www/html

COPY lighthttpd.conf /etc/lighttpd/lighttpd.conf

# Setup Snap7

RUN cp /home/honeyplc/snap7/build/bin/x86_64-linux/libsnap7.so-300

/usr/lib/libsnap7.so

# Expose necessary ports

EXPOSE 502 6668/udp 8080 8081 47 67 68 80 102

# Finalize setup

COPY init.sh /home/init.sh

RUN sudo chmod +x /home/init.sh

CMD /home/init.sh

By leveraging SNMPsim library [18] and incorporating the MIB files from
HoneyPLC (with a minor fix), we successfully configured the SNMP server to
respond as if it were a Siemens S7-300. Listing 5.8 presents the Dockerfile used
to establish a honeypot that mimics the response of a Siemens S7-300 PLC to
an snmpwalk request. Additionally, Listing 5.9 includes the provided MIB file.

Listing 5.8: SNMP Dockerfile

# Use Ubuntu 20.04 as base image

FROM ubuntu:20.04

# Update the package lists for upgrades and new package installations

RUN apt update

# Install vim and software-properties-common for managing software repositories

RUN apt install -y vim software-properties-common

# Add deadsnakes PPA to get different Python versions

RUN add-apt-repository ppa:deadsnakes/ppa

# Install Python 3.7

RUN apt install python3.7 -y

# Make Python 3.7 the default Python version

RUN echo "alias python=python3.7" >> ~/.bashrc && \

export PATH=${PATH}:/usr/bin/python3.7 && \

/bin/bash -c "source ~/.bashrc"

# Install pip for Python 3

RUN apt install python3-pip -y && \

python3 -m pip install --upgrade pip

# Install specific versions of snmpsim and pyasn1
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RUN pip install snmpsim==0.4.7 pyasn1==0.4.8

# Copy data from local ’data’ directory to ’/data’ in the container

COPY ./data /data

# Create a new user and switch to it

RUN useradd -ms /bin/bash newuser

USER newuser

# Set the entrypoint for the container

ENTRYPOINT ["snmpsimd.py", "--data-dir=/data",

"--agent-udpv4-endpoint=0.0.0.0:1024", "--v2c-arc"]

Listing 5.9: MIB file

.1.3.6.1.2.1.1.2.0 = OID: .1.3.6.1.4.1.9.1.516

.1.3.6.1.2.1.1.1.0 = STRING: "Siemens, SIMATIC, S7-300"

.1.3.6.1.2.1.1.2.0 = OID: .0.0

.1.3.6.1.2.1.1.3.0 = 194500870

.1.3.6.1.2.1.1.4.0 = ""

.1.3.6.1.2.1.1.5.0 = ""

.1.3.6.1.2.1.1.6.0 = ""

.1.3.6.1.2.1.1.7.0 = INTEGER: 72

.1.3.6.1.2.1.2.1.0 = INTEGER: 1

.1.3.6.1.2.1.2.2.1.1.1 = INTEGER: 1

.1.3.6.1.2.1.2.2.1.2.1 = STRING: "Siemens, SIMATIC NET, CP343-1 PN, 6GK7

343-1EX21-0XE0, HW: Version 2, FW: Version V1.1.13, Fast Ethernet Port 1,

Rack 0, Slot 4, 100 Mbit, full duplex, autonegotiation"

.1.3.6.1.2.1.2.2.1.3.1 = INTEGER: 6

.1.3.6.1.2.1.2.2.1.4.1 = INTEGER: 1500

.1.3.6.1.2.1.2.2.1.5.1 = Gauge32: 100000000

.1.3.6.1.2.1.2.2.1.6.1 = Hex-STRING: 00 0E 8C 82 38 A9

Although working perfectly, we choose not to add a Simple Network Manage-
ment Protocol (SNMP) functionality to our honeypots. This decision stems from
the acknowledgment of a vulnerability (CVE-2018-18065 ) affecting all Siemens
S7 devices, specifically a potential Denial of Service (DOS) attack through
SNMP [126]. Siemens recommends disabling SNMP as a mitigation strategy
for this vulnerability, fully addressing the risks. Considering that the activation
of a SNMP server on our PLC could potentially reveal the nature of our hon-
eypot, given that a genuine device with SNMP active would be vulnerable to
the identified risk, we chose to prioritize the realism of our honeynet by refrain-
ing from implementing support for SNMP. This strategic decision aligns with
Siemens’ suggested precautions, as it is common to find SNMP disabled on real
devices as well.
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Communication module

In order to enable communication between PLC2 and PLC1 and allow PLC2
to send requests for opening the valve to PLC1, we developed a dedicated com-
munication module. This module serves as an intermediary, allowing the two
PLCs to exchange Modbus commands seamlessly. In the evaluation of Modbus
libraries for our specific use case, we conducted a thorough analysis of three
prominent options:

• MinimalModbus, pymodbus, and modbus-tk. Each library has its own set of
advantages and drawbacks. MinimalModbus is a lightweight module suitable
for applications that require reading around 10 registers. However, its perfor-
mance becomes unacceptable when dealing with approximately 64 registers,
exhibiting relatively high CPU load.

• pymodbus, on the other hand, distinguishes itself by relying on a serial
stream. It offers low CPU load and acceptable performance when the serial
timeout is dynamically set. However, there are challenges, such as perfor-
mance being two times lower compared to modbus-tk even with dynamic
timeout adjustment. Additionally, it may experience issues with responses
when different reads or reads/writes are performed frequently.

• modbus-tk stands out for its quick response assembly, resulting in the best
overall performance. While its CPU load is higher compared to pymodbus,
improvements have been made to address this through modifications in the
library. The code in modbus-tk may not be as elegant as pymodbus, but it’s
optimized performance makes it a favorable choice.

After extensive testing, we found out that Pymodbus offers certain advan-
tages that align with our specific requirements. We were aiming at lower CPU
load and acceptable performance, since we had to keep the system scalable, the
resource usage was our main priority.

5.3.2 HMI container

We containerized a ScadaBR instance, incorporating a Python script utilizing
the Selenium WebDriver library [47] to load the data source and graphical inter-
face onto ScadaBR. Selenium, a web framework, facilitates web page navigation.
The Dockerfile shown in Listing 5.10, begins by installing the necessary depen-
dencies using the Ubuntu 18.04 image, followed by the cloning and installation
of ScadaBR. Finally, the startup script is copied with execution rights. After
changing the directory, the driver, the Python script, the HMI configuration file
(exported from ScadaBR), and the package to install Google Chrome (used by
Selenium as a web browser) are copied into the container. Finally, the automated
ScadaBR configuration script is run, and ports 502 for Modbus, 8080, and 9090
for web interfaces are exposed.
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Listing 5.10: HMI Dockerfile part 1

# Use Ubuntu 18.04 as base image

FROM ubuntu:18.04

# Set root as user

USER root

# Update and install necessary packages

RUN apt-get update && apt-get -y install sudo git python-pip autoconf bison

build-essential pkg-config bison flex autoconf unzip automake libtool make

git python2.7 python-pip sqlite3 cmake python3 python3-pip wget \

adwaita-icon-theme at-spi2-core dconf-gsettings-backend dconf-service

fontconfig fontconfig-config fonts-liberation glib-networking

glib-networking-common glib-networking-services

# Install Python packages

RUN pip install flask flask-login pyserial pymodbus

# Clone ScadaBR_Installer repository

WORKDIR /home/

RUN git clone https://github.com/thiagoralves/ScadaBR_Installer.git

# Install ScadaBR

WORKDIR /home/ScadaBR_Installer/

RUN sudo ./install_scadabr.sh linux

# Copy and set permissions for run.sh

COPY run.sh /home/ScadaBR_Installer/

RUN sudo chmod +x run.sh

# Create selenium directory

RUN mkdir selenium

# Copy nginx configuration

COPY default /etc/nginx/sites-available/default

# Set working directory

WORKDIR /home/selenium

# Expose ports for Modbus, ScadaBR and some other service

EXPOSE 502 8080 9090

# Run init.sh script and start nginx in foreground when a container is started

CMD /bin/bash -c "/home/selenium/init.sh && nginx -g ’daemon off;’"

To make the process of deployment as smooth as possible, we went ahead and
created a script to preload the environment on the HMI. Leveraging Selenium,
we successfully automated the entire process, from the creation of the graphical
interface for end-users, to the linking of datapoints to the corresponding registers
on the PLCs.
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Figure 5.14: ScadaBR HMI graphical view

The web interface displayed on port 9090 TCP is shown in Figure 5.14 for
reference.

5.3.3 Networking container

We implemented a proxying technique with dual objectives. First, to act as a
shield for each device/component in the honeynet, preventing attackers from
infiltrating other containers through alternative ports or services, as the proxy
actively rejects such unauthorized attempts.

In more detail, for each PLC container, we deploy a dockerized NGINX proxy
serving a dual role: acting as a reverse proxy for external and HMI-originating
connections and as a gateway for connections originating from the associated
PLC container.

This solution addresses two critical challenges. Firstly, by utilizing the proxy
as a gateway, we transparently redirect the traffic generated by attackers, simul-
taneously deceiving them by presenting a facade that mimics a genuine system.
Secondly, it ensures the isolation of honeynet components, mitigating the risk
of lateral movements within the supervisory control network in the event of an
attacker compromising a device (PLC or HMI).

To fulfill both objectives, each PLC component is logically connected to the
supervisory control network through a dedicated proxy (refer to Fig. 4.4).
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Precisely, every PLC is associated with a private macvlan docker net-
work [32], accompanied by a corresponding proxy component situated in front
of the PLC. This proxy serves a dual purpose: (i) as a reverse proxy for connec-
tions from the Internet and the supervisory control network; (ii) as a gateway for
connections originating from the PLCs. Importantly, proxies can communicate
with each other via a shared secondary docker macvlan network, facilitating
controlled connections between two potentially compromised PLCs.

We implemented the reverse proxy functionality of the proxy component
using NGINX, coupled with iptables post-routing commands for the gateway
aspect. This enables us to alter the source address of connections from the
associated PLC, ensuring proper routing.

This proxying technique creates the illusion of a flat supervisory control
network to the attacker, facilitating potentialMITM attacks. The proxies appear
transparent to the attacker, resembling real PLCs exposing their interfaces on
the control networks.

Furthermore, the use of proxies enables the concealment of details about
the true nature (virtual/physical) of the PLC from entities connecting to the
supervisory control network. It also provides the flexibility to enforce security
or filtering policies on the flowing traffic if necessary.

In order to achieve the implementation shown in Figure 5.15 we had to
configure Nginx as follows. We set the user that Nginx runs as ‘user nginx;‘
and the number of worker processes ‘worker processes auto;‘. By utilizing the
auto value for worker processes, we allow Nginx to dynamically determine an
optimal value based on the available CPU cores. However, to enhance security
and ensure availability, we also define the maximum number of simultaneous
connections that a worker process can open. We then defined the ‘stream‘ block
which is used for configuring TCP and UDP proxying. Inside this block, there
are multiple ‘server‘ blocks, each representing a different server configuration.

For example, consider this ‘server‘ block:

Listing 5.11: Example of a server block in the nginx.conf file

properties

server {

listen 192.168.10.111:502;

proxy_pass 172.21.0.2:502;

}

The block in Listing 5.11 is for PLC 1 and tells Nginx to listen on IP address
192.168.10.111 and port 502. Any incoming connections on this address and
port will be forwarded to 172.21.0.2:502, which is the address and port of the
upstream server.



5.3 Docker implementation 91

Supervisory control network

HMI Switch

Attacker

PLC 1

PLC 2

PLC 3

Proxy 1

Proxy 2

Proxy 3

Proxy private networks

Simulink

Plant private network

Figure 5.15: Implementation of the supervisory control network

5.3.4 Plant container

In our implementation, we used a container with Simulink to emulate the phys-
ical plant. . However, it is also feasible to integrate a real plant into our ar-
chitecture. This container is built upon the MathWorks Matlab r2021a base
image, where some components like Simulink, Signal Processing Toolbox, and
DSP System Toolbox were installed. These tools are indispensable for executing
our simulink model accurately. The Dockerfile is very simple, it copies three
local files (‘plc.slx‘, ‘init.m‘, ‘reset.sh‘ ) to the ‘/usr/local/src/‘ directory. These
files contain respectively the Simulink model, the script for initializing environ-
ment variables, and the script for periodically resetting the simulation. Notably,
reset.sh is executed once every six hours to free up RAM and ensure availability.

Following this, the script updates the package lists for potential upgrades and
new arrivals in the repositories. It then installs ‘wget‘, a tool for non-interactive
file downloads from the web.

After that, it acquires the MATLAB Package Manager (mpm) from the MAT-
LAB website, granting it executable status. This tool is used to install additional
MATLAB toolboxes.

Next, it installs through mpm the components mentioned earlier: Simulink,
Signal Processing Toolbox, and DSP System Toolbox.

The Dockerfile concludes by opening UDP ports 10001 to 10006 within the
Docker container. These ports are going to be used by the model to send and
receive data about the sensors and actuators.

Field communication network

To establish the connection between the plant and the controllers (PLCs), we
adapted a script named Simlink written by the OpenPLC developer [53]. We
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modified the C++ script in order to suit the requirements of a Docker environ-
ment.

The code uses threads and sockets to send and receive data to and from each
station (also known as PLC) and the simulink simulation over UDP. The data
received from either the simulation or the PLC is organized and stored in a des-
ignated structure named plcData. Prior to transmission, this data is duplicated
into a local buffer and subsequently dispatched to either the simulation or the
PLC. The code also includes error checking to ensure data is sent and received
correctly. After successfully receiving data, it copies the data back to the main
data structure.

We are going to explore the key functions in Simlink, emphasizing their
roles in establishing and managing communication between network stations,
and Simulink, and ensuring accurate transmission through error-checking mech-
anisms.

The function, parseConfigFile, processes the configuration file by reading it
line by line. For each line, the function verifies that it is neither a comment
(lines beginning with # are treated as comments) nor empty. The function then
identifies the Simulink IP address, the number of stations, the ip address of the
station and UDP port for each station and finally the communication delay.
The structures plcData and stationInfo are used to store details about each
station. Specifically, plcData captures analog and digital input/output data,
while stationInfo stores IP addresses, ports, and analog/digital input/output
configurations for each station.

The connectToPLCStations function creates a new thread for each station,
managing the exchange of data. The main function initiates the data exchange
process and periodically outputs the data from each station. This data encom-
passes variables such as pressure, tank levels, pump status, and valve positions.
The code implements mutex locks to guarantee data consistency when accessing
shared data.

The function named receiveSimulinkData is crafted to receive data from the
Simulink model via a UDP connection. This function expects a pointer to an
integer array as argument, with three information: the station number, variable
type, and variable index. Upon receiving the argument, the function casts it to
an integer pointer, assigning values to variables such as stationNumber, varType,
and varIndex. Subsequently, the function determines the type of data to receive
(analog or digital) based on the varType variable. Depending on the type, it
sets the port variable to the appropriate port number, and the analogPointer or
digitalPointer points to the relevant location in the array. The function proceeds
to establish a UDP server on the specified port using the createUDPServer func-
tion. This auxiliary function initiates a socket, initializes a sockaddr in structure
with server details, binds the socket to the specified port, and then returns the
socket file descriptor. Entering an infinite loop, the function awaits data recep-
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tion on the socket. Upon receiving data, it checks for errors, and if none are
found, it converts the received data from the buffer to a double using the con-
vertBufferToDouble function. To maintain data integrity, the function locks a
mutex, updates the value pointed to by analogPointer or digitalPointer with the
received value, and subsequently unlocks the mutex.

The sendSimulinkData function is a threaded function responsible for trans-
mitting data to Simulink using the UDP protocol. Receives a void pointer as an
argument, it casts it to an integer pointer to extract crucial information like the
station number, variable type, and variable index. The function then establishes
a UDP socket, determining the port and data pointer based on the variable type.
The function enters an infinite loop, employing mutexes to secure data integrity.
It retrieves the data value, unlocks the mutex, and sends the data to the server.
In case of transmission errors, the function issues an error message. Following
each iteration, the function sleeps for a specified delay before resuming the loop.

The exchangeDataWithSimulink function manages the exchange of data with
the Simulink model and multiple stations. For each station, it dynamically cre-
ates threads for both sending and receiving operations. The sendSimulinkData
function manages the data transmission, while receiveSimulinkData handles data
reception.

The exchangeDataWithPLC function manages the data interchange with the
PLC (station). It initiates a UDP socket connection with the PLC and enters
an infinite loop for bidirectional data transfer. The exchange involves plcData
structures, with mutex locking implemented for thread-safe access to the shared
data buffer. A controlled data exchange rate is maintained through a delay
(specified in the configuration file) between each send-receive cycle.

5.3.5 Probes

In order to collect network logs and the system call used on the device, we used
a data collection component developed using Aquasecurity Tracee [67], an ad-
vanced runtime security forensics tool designed for Linux-based systems. This
tool is based upon the extended Berkeley Packet Filter (eBPF) framework [68].
In our specific implementation, we inject the probes into each container to mon-
itor various aspects, including network traffic, system call executions, kernel
functions, and alterations to the filesystem. This approach ensures thorough
surveillance of the runtime environment, enabling detailed insights into the sys-
tem’s behavior and security posture.

5.3.6 Management and monitoring dashboard

The management and monitoring dashboard offers a GUI Interface function-
ing as a Command & Control (C&C) Server. Tailored for user interaction, this
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interface provides a graphical platform for seamless management and control
of the honeynet. Serving as an intermediary, it enables the communication be-
tween the honeypots and the operator through the Docker API. This streamlines
the oversight and manipulation of various components within the honeynet. Its
importance is underscored by the fact that, without this component, the oper-
ator would have been compelled to engage directly through the command-line
interface, adding complexity to the management process.

The dashboard allows the user to manage the resources within the internal
network, controlling the Docker engine and overseeing various components, in-
cluding OpenPLC and ScadaBR. To monitor the activity, the main page of the
dashboard as shown in Figure 5.16, displays both the real-time Simulink simu-
lation and the HMI evolution, ensuring that the physical evolution of the sys-
tem aligns with its simulation in Simulink. The real-time graphics are achieved
through an API interface that fetches data from the Simulink model and the
ScadaBR web interface, seamlessly embedding them onto the webpage using an
iframe.

Figure 5.16: Monitoring of the simulink simulation and of the HMI evolution on
the dashboard

To showcase the devices and internal networks, the server leverages Docker’s
API. The Python Docker library is employed to instantiate the Docker client,
enabling seamless interaction with the Docker daemon. Figure 5.17 illustrates
the devices page, presenting a comprehensive list of active and/or inactive hon-
eypots, including their names, connected ports and links for accessing HTML
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pages. Users can initiate and halt honeypots, as well as access raw Docker logs.
The interface enables the operator to deploy new honeypots and seamlessly
integrate them into an existing network.

Figure 5.17: Device management interface: active and inactive honeypots with
start and stop controls

The Networks Information page, depicted in Figure 5.18, is accessible from
the server’s main menu, offering a comprehensive view of the networks configured
within the Docker environment. Users can gain insights into existing networks
and also can add new networks, customising IP classes based on the planned
deployment of devices on each network.

Figure 5.18: Network management interface: list of all the networks
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Log monitoring dashboard

In order to analyze the logs collected by the probes, we ran the pipeline dis-
played in Figure 5.19. Once the probes collect data, it undergoes processing
through Zeek. Zeek utilises protocol analyzers, similar to Wireshark’s dissec-
tors, to generate JSON files containing organized logs. Subsequently, the script
uploads these JSON files to Elasticsearch through an API call.

eBPF
(system and network

logs)

Zeek
(log processing,

dissectors)

Elasticsearch
(upload through API)

Figure 5.19: System and network logs flow

As shown in Figure 5.20, the Kibana dashboard is meant to display and
analyze the logs in real-time. Each table shown in the dashboard was crafted to

Figure 5.20: Kibana dashboard
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address the research questions that will be later discussed in Section 6.3.
Given that our primary focus wasn’t to maintain real-time fidelity at 100%,

we had the flexibility to incorporate additional analyses. Through a pre-processing
script (middle block in Figure 5.19), we enhanced the original captured data with
insights from tools like GreyNoise and VirusTotal. This enhancement enriched
the information presented in the dashboard tables, allowing us to include de-
tails about the interaction’s country of origin, involved actors, the malignancy
or benign nature of these actors, Autonomous System information, and other
relevant data sourced from public datasets. This integration was made possible
by associating the IP addresses with the ones contained in the datasets.

Tuning Elasticsearch for precision and real-time performance

Elasticsearch is primarily designed for maintaining real-time performance, which
can sometimes lead to imprecise calculations. To address this, we manually
crafted SDL queries and adjusted the precision threshold parameter to 100,
ensuring a balance between real-time responsiveness and data accuracy.

5.4 Innovative contributions and added value

This section explores the unique contributions of our honeypot implementation
and its advancements compared to existing solutions in the field of ICS security
and honeypot technology.

5.4.1 Communication protocols

Our system utilizes an industrial protocol to create noise on the network (elab-
orated on in Chapter 4). This integration creates a more realistic simulation
environment, reflecting actual industrial communication standards and enhanc-
ing the fidelity of the honeypot for attacker behavior analysis.

5.4.2 Use of docker for containerization

While Docker is widely used for software deployment, our approach leverages it
for several novel purposes:

• Isolated ICS Components: Each component of the honeypot, including PLCs,
HMI, networking elements, and the physical plant simulation, is container-
ized. This isolation not only enhances security by preventing lateral move-
ment within the honeypot but also allows for the easy replication and scaling
of the testbed environment.
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• Simulating Realistic Attack Scenarios: By leveraging Docker, we create a
flat supervisory control network that appears transparent to attackers. This
setup facilitates realistic man-in-the-middle (MITM) attacks, providing valu-
able insights into attacker behavior and potential defense mechanisms.

5.4.3 Integration of advanced monitoring tools

Our implementation integrates cutting-edge monitoring tools to provide com-
prehensive visibility into honeypot activity:

• Aquasecurity Tracee: Utilizing eBPF technology, Tracee collects detailed net-
work logs and system calls in real-time. This deep visibility enables precise
detection and analysis of attacks within the honeypot.

• ELK Stack for Real-Time Data Analysis: The Elasticsearch, Logstash, and
Kibana stack is fine-tuned for precision and real-time performance. By ad-
justing the SDL queries and precision threshold, we ensure accurate and
timely insights into honeypot activity, allowing for faster response to poten-
tial security incidents.

5.4.4 User-friendly management and monitoring interface

Our Command & Control (C&C) Server offers a user-friendly graphical user
interface (GUI) that significantly enhances the usability of the honeypot:

• Network Configuration and Management: The GUI allows users to easily
configure and manage networks within the Docker environment, customiz-
ing IP classes and adding new networks as needed. This streamlines the
deployment and management process.

• Real-Time Monitoring and Control: Operators can interact with the hon-
eypots through the Docker API, gaining real-time insights and control over
the system. This facilitates a proactive approach to security by enabling
operators to respond to suspicious activity promptly.

5.5 Deployment

The deployment of the honeynet is a crucial step, because if done wrong it could
ruin the attractiveness of the honeypot and therefore make a well designed hon-
eypot useless. As an example, a very important aspect to take into account is the
public IP address the honeypot will use, as it serves as an identifier to extract
valuable information. Utilizing tools like WHOIS, geolocation searches, and net-
work location queries, attackers can glean insights into the origin and potential
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affiliations of the IP address. It is mandatory for a honeypot environment to mir-
ror a realistic network scenario. For instance, in the deployment of an Industrial
Control System (ICS) device honeypot such as a PLC, it is imperative to avoid
associating it with an IP address belonging to a cloud provider like Amazon
AWS for example. By carefully considering the information retrieved from an
IP address, honeypot configurations can be tailored to emulate specific network
conditions in order to enhance the authenticity of the simulated environment.

HoneyICS was deployed on a Dell PowerEdge T620 server, with an Intel
Xeon E5-2640 v2 processor, featuring 16 CPUs, 128 GB of RAM. On the server
was installed the VMware ESXi virtualization platform.

Three distinct virtual machines were configured. While Docker can run na-
tively on the server, we opted for a virtualized approach for the following rea-
sons: (i) Isolation and Security : Virtual machines provide an additional layer
of isolation between the honeypot environment and the underlying server. This
isolation enhances security by preventing potential compromises within the hon-
eypot from affecting the host system. (ii) Resource Management : Utilizing sep-
arate VMs allows for efficient resource allocation. We can assign specific CPU,
RAM, and storage resources to each VM based on its specific requirements.

The first virtual machine runs Docker, hosting the PLC, HMI, and proxy
containers. This VM was equipped with 4 vCPUs, 8 GB of RAM, a disk of
200 GB, and 5-network adapter. The second virtual machine is dedicated to
running Docker with the Matlab Simulink container, 4 vCPUs, 8 GB of RAM,
a 200 GB disk, and a single-network adapter. Finally, the third virtual machine
hosts Elasticsearch and Kibana. This system features 4 vCPUs, 12 GB of RAM,
500 GB disk, and a singular network adapter.

More precisely, ten docker containers were deployed over the first two VMs:

• a PLC container with an Allen-Bradley MicroLogix 1100 profile, with a web
interface on port 8080 TCP (shown in Figure 5.13) and a Modbus server on
port 502 TCP

• a PLC container with a Siemens S7-300 profile, with a web interface on port
8080 TCP (shown in Figure 5.13), a Modbus server on port 502 TCP and a
S7comm server (using SNAP7 [51]) on port 102 TCP

• a PLC container with a Siemens S7-1200 profile, with a web interface on
port 8080 TCP (shown in Figure 5.13), a Modbus server on port 502 TCP
and a S7comm server (using SNAP7 [51]) on port 102 TCP

• three NGINX proxy containers, one for each PLC, these dedicated proxies
offer several advantages such as security enhancements, NGINX proxies can
be configured with additional security features to add an extra layer of pro-
tection for the honeypot and flexibility, independent proxies allow for finer-
grained configuration and potential future modifications tailored to specific
PLC profiles
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• a container running an instance of ScadaBR (shown in Figure 5.16 )
• a container running the simulated plant in Simulink (shown in Figure 5.3)
• a container running Kibana (shown in Figure 5.20)
• a container running Elasticsearch.

The three PLC containers were connected to our management dashboard
for management purposes while the logs were uploaded to Elasticsearch and
displayed on the Kibana dashboard using the pipeline described in Figure 5.19.

For each emulated ICS device (PLC or HMI) there is a specific image that
is deployed in a dedicated Docker container for easy scalability and reconfigura-
bility (several instances of the same image could be easily deployed in different
containers). Images of PLCs share the same base structure and are differenti-
ated by loading templates and configurations from mounted volumes. On the
other hand, there is a unique device image for HMIs. In particular, the deployed
honeynet instance comprises the following templates:

• a PLC Allen-Bradley MicroLogix 1100;
• a PLC Siemens S7-300;
• a PLC Siemens S7-1200;
• a ScadaBR HMI.

While a real industrial plant might primarily use PLCs from a single brand, our
decision to include three different PLC profiles (Allen-Bradley, Siemens S7-300,
Siemens S7-1200) was made to possibly expand the potential attacker pool. This
broader range should cater to attackers targeting diverse ICS environments,
potentially attracting a wider range of adversaries for a more comprehensive
analysis of attacker behavior.

Table 5.2 summarizes all the configurations described before for the device
instances within our deployment.

A diagram illustrating the deployed honeynet is presented in Figure 5.21,
while Figure 5.22 details the individual elements used.

Device images run on a centralized host (main host) and are exposed through
four remote hosts, each accessible via a different public IP address. It is worth
noting that we exposed two different instances of the same HMI image on two
different IP addresses, a dedicated IP address called IP4 and an IP address
in which a PLC is also exposed called IP2 (see Table 5.2). This allows us to
evaluate whether different deployment strategies have distinct outcomes in terms
of attractiveness. The remote hosts are connected to the main host via a VPN; all
traffic received on the public IP addresses is redirected via IPtables to the VPN
interface, and directed to the IP addresses assigned to the Docker containers
of the devices exposed on that IP. As an example, consider the scenario where
PLC1 is exposed on IP1. When an attacker sends a packet to IP1, the packet
first enters the remote host interface named vmbr0. Subsequently, IPtables rules
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Table 5.2: Device instances in the deployment

Instance Model Module type Service Port IP

PLC1 AB M.logix 1100 1763-L16DWD Modbus/TCP 502
IP1Webserver 8080

PLC2 Siemens S7-300 CPU315-2PN/DP Modbus/TCP 502
IP2Webserver 8080

Snap7 102

PLC3 Siemens S7-1200 CPU 1212C Modbus/TCP 502
IP3Webserver 8080

Snap7 102

HMI1 ScadaBR – Webserver 8080 IP4

HMI2 ScadaBR – Webserver 9090 IP2

HMI1

PLC3

PLC2
HMI2

Device images

PLC1: AB M.logix

PLC3: S7-1200

HMI: ScadaBR

PLC2: S7-300

Main host

PLC1

Monitoring

Physical
process

VPN
Remote hosts

IP4

IP3

IP2

IP1

Figure 5.21: Deployment of the honeynet

guide the packet through the VPN virtual network interface, called utun1. The
packet is then delivered to the internal IP address of PLC1. The response from
PLC1 follows the same path but in reverse. The main host also comprises the
monitoring system of the honeynet and runs a simulation of the physical process.

The honeynet instance has been deployed on four contiguous IP addresses
across the Italian Academic Consortium GARR [66]. GARR was chosen over
more widely recognized cloud service providers, such as Amazon AWS, for two
key reasons. First, universities and research institutions often legitimately uti-
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Monitoring
(ELK stack)

HMI: ScadaBR

Main host

PLC2: S7-300
(OpenPLC)

PLC3: S7-1200
(OpenPLC)

Proxy 2
(NGINX)

Proxy 1
(NGINX)

Proxy 3
(NGINX)

Physical
process

(Simulink)

PLC1: AB M.logix
(OpenPLC)

Modbus
(ModbusTK)

HMI1 PLC3PLC2
HMI2

PLC1
IP4 IP3IP2 IP1

Remote hosts

Physical plant networkProxy network

Monitoring network

Figure 5.22: Block diagram of the honeynet’s elements

Figure 5.23: Shodan results for one of the PLCs

lize PLCs within their networks. Second, GARR’s lesser-known status compared
to AWS makes it appear more like a residential or industrial network to an
untrained attacker. After a few days since the deployment, the first three IP
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addresses have been tagged as ICS by Shodan 5.23 and Scada by Censys. Both
Shodan and Censys assigned a generic tag to the fourth IP address. This cate-
gorization is due to the fact that the IP address exposes only a standard port
(9090 TCP) running an HTTP service. This service, based on the port alone,
could be associated with any web server and may not necessarily indicate the
presence of a Scada HMI.





Chapter 6
DATA ANALYSIS

In this chapter, our analysis of the data collected by HoneyICS over three months
of continuous Internet exposure is primarily drawn by the paper titled ”ICS Hon-
eypot Interactions: A Latitudinal Study” [114]. This work conducts a latitudinal
study on a dataset encompassing both IT and OT interactions obtained from
an ICS honeynet emulating OT devices exposed on the Internet.

Our exploration begins with an in-depth review of existing literature, seeking
insights into previous instances of similar research, including the methodologies
employed and the results obtained. It’s worth noting that, we distinguish be-
tween IT interactions, involving protocols like HTTP, HTTPS, FTP, SSH, and
others, and OT interactions, which revolve around protocols such as Modbus,
S7Comm, Ethernet/IP, and the like. Our exploration of data analysis is guided
by a set of research questions. The results section presents the findings derived
from our data analysis. We report the patterns, anomalies, and trends identified
within the attacks our honeynet received providing a comprehensive overview
of the implications for security and potential areas of concern.

6.1 Related work

In the related works presented in Section 3.2, our focus was primarily directed
towards the details of honeypot architecture and implementation, exploring the
methodologies employed in their development. However, the scope of our explo-
ration has now shifted to a distinct facet of our research: the analysis of the data
these honeypots have collected. This discussion will revolve around a thorough
examination and interpretation of the voluminous data collected over several
days of continuous exposure to Internet traffic by various works. Additionally,
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Table 6.1: Qualitative analysis of works affording data analysis on OT data.
Legend:  = Present, G#= Partially present, #= Not present

ICS honeypot Type Interaction Origin Pattern Duration Dataset size

Dodson et al. [87] OT G# # # 13 months ∼200K
Ferretti et al. [91] OT/IT G#  # 4 months 4986
Cabana et al. [79] OT G# G# G# 1 year 1G
Mirian et al. [120] OT # G# # 10 weeks 5252
Serbanescu et al. [131] OT/IT G#  # 4 weeks -
Vasilomanolakis et al. [136] OT/IT # # G# 12 weeks -
Hilt et al. [98] OT/IT  G# G# 7 months -
Navarro et al. [122] OT/IT G# # G# 2 years -

we will analyze the methodologies used by these works to conduct the analysis,
exploring the diverse approaches utilized in studying the data gathered.

While a significant number of ICS honeypot designs have been proposed in
recent years (e.g., [71,92]), few studies delve deeply into analyzing the data these
honeypots capture. This gap exists despite the potential for rich insights from
network traffic monitors, such as honeypots, or network telescopes [121] deployed
in unused portions of the internet address space. This limited coverage restricts
our understanding of the impact that design and deployment decisions have
on collected data and the dynamics of attackers’ interactions with honeypots.
Such analyses often rely on the specific properties of the deployed honeypot.
It’s important to emphasize that in this work, our central focus revolves around
examining network communication protocols associated with the IT world and
those associated with the OT world within the context of industrial control
systems.

Specifically, our examination encompasses three orthogonal aspects of these
interactions:

• Level of Interaction: We try to address how design choices, such as the sup-
ported protocols, the types of devices supported (PLCs and/or HMIs), the
brands of devices utilized in the honeypot, and other deployment strategies,
influence the honeypot’s attractiveness in terms of the number of interactions
received.

• Origin of Interactions: We scrutinize the geographic regions from which in-
teractions originate, the actors involved, and explore possible associations
between geographic regions and the nature of interactions.

• Interaction and Attack Patterns: Our focus extends to the identification of
interaction and attack patterns within the honeypot data.

The detailed comparison and comprehensive overview of related works, con-
sidering these aspects, along with specific details about the datasets under con-
sideration, are presented in Table 6.1.
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6.1.1 Interaction analysis

While some studies [79,87,120] focus solely on examining OT interactions, oth-
ers [91, 98, 122, 131, 136] conduct a comprehensive analysis analysing both OT
and IT interactions, enabling a unified quantitative comparison between these
two interaction types. For example, Serbanescu et al. [131] explored the attrac-
tiveness of various protocol combinations, including both industrially specific
and those from the conventional IT realm. These investigations consistently re-
veal a substantial prevalence of IT interactions over OT interactions, typically
around 10 times more. However, certain design choices remain underexplored.
For instance, only a limited number of works [79,87,91,98] have tried to compare
the attractiveness of different brands and/or models of controllers. Additionally,
only works such as [98, 122] have considered HMIs among the exposed ICS de-
vices.

6.1.2 Origin of interactions

The origin of interactions is explored thoroughly in [91,131]. In [91], IP addresses
are categorized into distinct actors using DNS PTR records and Autonomous
Systems. DNS PTR records, or Pointer records, are a type of Domain Name
System (DNS) resource record that associates an IP address with a domain or
hostname. These records are used in reverse DNS lookups, providing a map-
ping from an IP address to a corresponding domain or hostname. While an
Autonomous System (AS) is a collection of IP networks and routers under the
control of a single organization or entity that presents a common routing policy
to the Internet.

For unknown actors, aggregation by country provides valuable insights. Sim-
ilarly, Serbanescu et al. [131] analyze the IP addresses, associated GeoIP source
country information (when available), and corresponding DNS PTR records
(if any) for each peer interacting with their honeynet. In contrast, Miriam et
al. [120] focus their analysis on identifying scanners within their honeypots. Hilt
et al. [98] go a step further by deriving the reverse DNS of interacting IPs and
conducting GeoIP lookups. Navarro et al. [122] contribute a unique perspective
by providing a heat map of interactions and investigating IPs that potentially
belong to the same actor.

6.1.3 Interaction and Attack patterns

Vasilomanolakis et al. [136] conducted an analysis of multi-stage attacks char-
acterized by two or three requests within the same interaction, all originating
from the same actor. In [98], the targeted honeypot faced complex IT attacks,
encompassing malware designed for cryptocurrency mining and various forms
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of ransomware. Although the (physical) PLCs received valid command requests
related to CPU functions from scanning tools, no discernible ICS-specific at-
tack pattern was identified. Cabana et al. [79] employed machine learning, to
classify the sources behind collected interactions and to identify threat actors
such as botnets or malicious attackers. Meanwhile, Navarro et al. [122] focused
on identifying coordinated attacks from different IPs associated with the same
attacker. On a different note, a few works [87,91,122] solely tried to investigate
actor behavior, including requests made in interactions and campaigns over time,
without specifically exploring patterns associated with the identified attacks.

6.2 Thread intelligence services

From the table 6.2, we can observe that GreyNoise provides the most complete
and diverse set of information about IP addresses such as on whether an IP
address is malicious or not (classification), whether it is a registered Tor Exit
Node (TOR), or whether it is part of a VPN provider service (VPN ). In ad-
dition, GreyNoise provides information about the actor associated with an IP
address, which can be a company, a search engine, or an individual and its ge-
ographic location. Information about the actor associated with an IP address is
also provided by VirusTotal but this information is limited to the organization.
VirusTotal provides other detailed information about the IP address, such as
Whois metadata, which includes the Autonomous System Number and country,
thus offering an accurate representation of the geographical location.

Although all services provide a classification of IP addresses, this informa-
tion is provided in different forms. GreyNoise classifies IP addresses as benign,
malicious, or unknown. In contrast, the other services provide numeric measure-
ments or the amount of evidence collected by the service, which is difficult to
interpret. For instance IBM X-Force Exchange provides a risk score from 0 to
10 based on the amount of spam coming from the IP address and other poten-
tially malicious activities performed from the IP address, AlienVault provides
the number of suspicious observations (called “pulses”) in combination with in-
formation on the presence of the IP on whitelists, and VirusTotal provides
the number of services that observed suspicious, malicious or harmless activities
originating from the IP address.
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Table 6.2: Data provided by top threat intelligence services
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GreyNoise [96]   # #      
AlienVault [72]  # #   # # # #
IBM X-Force Exchange [72]  # # #    # #
VirusTotal [138]       # # #

6.3 Research questions

Several honeypots have been proposed and deployed to investigate attack pat-
terns within ICSs [92]. However, the focus of existing studies is mainly to demon-
strate the credibility and attractiveness of proposed honeypots, while under-
standing and characterization of the observed interactions with the honeypot
and attack patterns is still unclear. Moreover, the attack surface exposed by
several honeypots is rather limited, narrowing the scope of the interactions that
can be studied. To address this gap, we analyze the network traffic gathered
using HoneyICS. This analysis is guided by the following research questions
(summarized in Table 6.3), which delve into three key areas: the level of inter-
action with the honeypot, the origin of these interactions, and the interaction
and attack patterns observed.

6.3.1 Level of interaction

Although an analysis of the requests captured by the honeypot can provide use-
ful information about the entities interacting with the honeypot, several requests
might come from the same entity as part of the same interaction with the hon-
eypot. Capturing these interactions as a whole can give additional information
about the goals of the entity interacting with the honeypot. For instance, the
size and patterns of a single interaction can tell us whether it is a single request
to check service availability, a script executing some specific routine, a human
user manually trying various actions, etc. Our first question aims to provide a
first indication of the level of engagement with the honeynet, distinguishing be-
tween OT interactions, via the industrial protocols Modbus/TCP and S7comm,
and IT interactions, via the protocol HTTP.

RQ1: To what extent are ICS honeypots involved in OT interactions compared
to IT interactions?
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Our second research question aims to understand whether OT interactions
carried via Modbus/TCP or S7Comm have a different level of complexity (mea-
sured in terms of the number of requests forming the interaction) compared to IT
interactions via HTTP. For instance, cyber-physical attacks aiming at altering
the runtime evolution of the physical process may require extensive interac-
tions with PLCs to manipulate actuator commands and monitor the process by
accessing sensor measurements. We therefore ask:

RQ2: To what extent do ICS honeypots attract complex OT interactions com-
pared to IT interactions?

The deployment strategy of a honeynet (e.g., IP address configuration, net-
work topology) might affect the quantity and nature of the interactions it at-
tracts. A critical choice for the believability of a honeynet concerns the deploy-
ment of the HMI. Indeed, the HMI is typically accessed via HTTP, which does
not necessarily characterize the corresponding IP as part of an ICS. To evaluate
such a choice, in our deployment, we exposed the HMI both on an IP address
in which a PLC was also exposed and on a dedicated IP address without any
ICS-specific tag from Shodan or Censys (cf. Section 5.5). The following question
aims to understand whether an HMI exposed on an “ICS” or “Scada” IP ad-
dress is more or less attractive when compared to an HMI exposed on a generic
IP address.

RQ3: To what extent does an HMI exposed on the same IP address of a PLC
attract IT interactions compared to an HMI exposed on a dedicated IP address?

Another relevant choice regards the PLCs to be employed in a honeypot
as different brands/models of PLCs might have different attractiveness. For
instance, certain models of specific brands could have known unpatched vulner-
abilities (e.g., Siemens S7-300 involved in the Stuxnet attack [89]) and, thus, be
more attractive for an attacker.

RQ4: To what extent does a specific brand of PLC attract interactions compared
to other brands?

6.3.2 Origin of interactions

Characterizing the origin of interactions can shed light on the entities targeting
ICSs and, consequently, on the potential threat landscape [92]. We aim to un-
derstand whether there is an interest in both IT and OT systems or whether
these two types of technology are targeted by different actors. The following two
questions aim to characterize the origin of OT and IT interactions in terms of
geographic location and actors initiating those interactions.

RQ5: From which geographic regions do the observed OT interactions originate
compared to IT interactions?
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RQ6: From which actors do the observed OT interactions originate compared to
IT interactions?

By leveraging the increased connectivity between IT and OT systems, a
cyber-attack on one system can potentially impact the other [92]. For example,
a cyber-attack on an IT system could cause disruptions in the OT network con-
trolling the physical process. The next question aims to explore the relationship
between OT and IT interactions, categorizing these interactions by the actors.
This allows us to detect whether attackers pursue various paths to infiltrate an
OT system or potential movement from one system to the other [71].

RQ7: To what extent actors originating from the same IP address perform both
OT and IT interactions?

6.3.3 Interaction and attack patterns

The growing convergence of OT and IT systems emphasizes the need to under-
stand the patterns and characteristics of their interactions. Gaining such insights
can shed light on potential vulnerabilities, threats, and the behavior of cyber
actors when targeting these systems. The following research questions delve into
the specific patterns emerging from the observed OT and IT interactions, point-
ing out possible exploits in the OT setting.

RQ8: Which pattern or characteristic do the observed IT interactions exhibit?
RQ9: Which pattern or characteristic do the observed OT interactions exhibit?
RQ10: To what extent the observed OT and IT interactions exploit known vul-
nerabilities?

6.4 Methodologies

This section presents the methodology employed in addressing the research ques-
tions presented in Section 6.3. A robust and well-structured methodology is cru-
cial in ensuring the reliability and validity of our findings. We outline the steps
taken to gather, analyze, and interpret the data, emphasizing the rationale be-
hind each choice.

6.4.1 Dataset

The dataset was built using all the requests directed at the deployed instance
of HoneyICS, as detailed in Section 5.5, spanning a three-month duration from
June 4 to September 4, 2023. We collected a dataset encompassing a total of
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6324 OT requests. Notably, within this dataset, we observed 4216 requests cat-
egorized as S7comm interactions, 2108 requests as Modbus/TCP interactions
and a substantial count of 36486 requests on HTTP.

Table 6.5 provides a detailed breakdown of the number of requests received
for each PLC and HMI in our honeynet. The table is organized into two main
categories: ”well-formed” and ”bad” requests, further subcategorized by the type
of interaction, including HTTP, Modbus/TCP, and S7.

We consider well-formed requests those that align with the protocol assigned
to the destination port and bad requests, which deviate from the expected proto-
col for the designated port. For instance, a well-formed request for Modbus/TCP
adheres to the appropriate protocol for the assigned port, whereas a bad request
in this context might involve an HTTP request directed to the Modbus/TCP
port 502.

Our analysis focused exclusively on well-formed requests, as bad requests, by
definition, do not constitute valid interactions with the honeynet. By excluding
bad requests, which deviate from the expected communication protocols assigned
to the destination ports, we ensure that our evaluation centers on genuine and
protocol-compliant interactions.

Each request in our dataset is characterized by a set of common features,
including source IP, destination IP, timestamp, source port, and destination
port. Additionally, to provide a detailed understanding of the interactions, we
considered specific features tailored to the respective protocols:

• For S7comm interactions:
– Function codes
– Data addresses

• For Modbus/TCP interactions:
– Unit identifiers
– Function codes

• For HTTP interactions:
– Request methods
– Body content
– URL paths

6.4.2 Threat Intelligence Gathering

To enhance our dataset, we integrated threat intelligence data from two widely
used services: GreyNoise [96] and VirusTotal [138], as described in Section 6.2.
Specifically, GreyNoise was employed to gather information about the requests
and the IP addresses’ origins, including details about the actor, organization,
country, and Virustotal for whois metadata. This data allows for the genera-
tion of a detailed profile of threats. The threat intelligence data were retrieved
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using the public APIs provided by GreyNoise, along with the VirusTotal aca-
demic API.

From GreyNoise, we obtained information about the actor associated with
an IP address, which could be a company, search engine, or individual, along
with its geographic location. While VirusTotal provided information about the
organization associated with an IP address, it also offered additional details
through its Whois metadata, including the Autonomous System Number and
country, providing an accurate representation of the geographical location.

Classification

To determine whether an IP address belongs to a malicious actor, we relied on
the classification provided by GreyNoise since it is based on concrete evidence
of malicious and benign activities. Moreover, this service periodically audits and
reevaluates its classifications to ensure it matches the actual behavior observed
on the Internet [96]. Thus, GreyNoise provides a solid foundation for classifying
the IP addresses in our dataset.

The requests in our datasets originated from 4874 unique IP addresses. Ta-
ble 6.4 reports the classification of these IP addresses based on the information
retrieved from GreyNoise.

It is worth noting that GreyNoise did not provide a clear-cut classification
for all IP addresses, where 779 were classified unknown, indicating that no con-
crete evidence of either malicious or benign behavior was observed for those
IP addresses. In addition, we did not obtain any information for other 330 IP
addresses (blank), indicating that they have not been captured by the sensors
used by GreyNoise to monitor the Internet. We did not use the other services
to fill GreyNoise’s lack of information as they provide numeric measurements or
the amount of evidence collected by the service, which is difficult to interpret.
Thus, in our analysis, we answer the research questions presented in Section 6.3
with respect to the overall IP addresses.

Actor

We retrieved the information about the actor associated with an IP address
from GreyNoise. According to GreyNoise, an actor can be a company, a search
engine, or an individual. In case this information was not available for an IP
address, we extracted the organization associated with that IP address from
VirusTotal.

6.5 Results

Our analysis yields key insights, summarized as follows:
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• Dominance of IT Interactions: IT interactions significantly outnumber OT
interactions, emphasizing their prevalence. Despite this, OT interactions ex-
hibit greater complexity.

• Specialized Actors in OT interactions: Actors specifically engaging with OT
devices using industrial protocols demonstrate a higher level of knowledge
and sophistication. These individuals leverage tools like Nmap to gather
valuable information, suggesting the potential for targeted attacks.

• Protocol-Dependent Patterns: The patterns of OT interactions and attacks
are strongly influenced by the characteristics of the targeted industrial net-
work protocol. These patterns notably differ from those commonly observed
in the IT-C realm.

• Prompt Exploitation of ICS Vulnerabilities: Skilled actors swiftly exploit
vulnerabilities specific to OT devices, such as HMI, aiming to take control
of the targeted OT devices.

Therefore, based on these discerned IT/OT patterns, we assert the imperative
need for a multi-faceted defense approach to enhance OT security, as further
discussed in Section 8.

6.5.1 Level of Interaction

RQ1: To what extent are ICS honeypots involved in OT interactions compared
to IT interactions?

Table 6.6 (last column) reports the number of IT and OT interactions observed
in the data collection period, where IT interactions include the HTTP requests
targeting the HMIs and the PLCs’ web interfaces and OT interactions include
the Modbus and S7comm requests received by the PLCs. We can observe that
IT interactions are roughly ten times more than OT interactions (299 IT in-
teractions per day vs. 30 OT interactions per day on average). Among these
interactions, 51% of the observed IT interactions are malicious (154 interactions
per day), whereas only 27% of the OT interactions are malicious (8 interactions
per day). This suggests that IT interactions are still predominant compared to
OT ones even in an industrial control system setting.

In the context of Table 6.6, we define a malicious interaction as one classified
as malicious by GreyNoise based on its associated tags. These tags capture
behaviors GreyNoise has directly observed an IP address engage in. Some of
these tags are classified as “malicious” for demonstrably harmful behaviors.

GreyNoise [96] classifies IPs into two categories:

• Malicious Classification: An IP address is classified as malicious if it has at
least one malicious tag associated with it and is not classified as benign.
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• Benign Classification: GreyNoise assigns a benign classification to IPs asso-
ciated with legitimate entities such as search engine crawlers, universities,
or security research organizations. A benign classification overrides all asso-
ciated malicious tags.

GreyNoise’s classification system offers valuable insights into the potential
maliciousness of interacting IPs. However, it’s crucial to acknowledge inherent
limitations. GreyNoise might not have observed all malicious IPs or the full
spectrum of their activities. Additionally, the classification can generate false
positives, where seemingly suspicious activity from a specific IP could be benign,
such as a legitimate security researcher performing a scan. Therefore, while
GreyNoise classification informs our analysis, it’s essential to recognize these
limitations.

RQ2: To what extent do ICS honeypots attract complex OT interactions
compared to IT interactions?

From Table 6.6, we can observe that IT interactions typically comprise a single
request, although there are a few IT interactions comprising up to 100 requests.
On the other hand, OT interactions are, in general, more complex, with 25%
comprising at least 6 requests. Malicious interactions follow a similar trend,
although they appear to be less complex.

RQ3: To what extent does an HMI exposed on the same IP address of a PLC
attract IT interactions compared to an HMI exposed on a dedicated IP address?

Table 6.7 shows the number of interactions with the PLCs and HMIs. We ob-
served that the HMI exposed on a dedicated IP (HMI1) attracted more inter-
actions than the HMI exposed together with a PLC (HMI2). In the first case,
HMI1, we observed 9623 interactions, whereas for HMI2, we observed 2710 in-
teractions. It is worth noting that the number of malicious interactions is signifi-
cantly higher (ten times more) in the first setting, i.e., when the HMI is exposed
on an IP address with no “ICS” or “Scada” tag. This suggests that malicious
IT actors show less interest in IPs with ICS/Scada tags.

RQ4: To what extent does a specific brand of PLC attract interactions compared
to other brands?

From Table 6.7, we observe that the PLCs in the honeynet attracted a compa-
rable number of IT interactions, regardless of the brand. As regards OT interac-
tions, Siemens PLCs (PLC2 and PLC3), which support both Modbus/TCP and
S7comm protocols, generally received more interactions than the Allen-Bradley
MicroLogix 1100, which only supports Modbus/TCP. Notably, when focusing
on Modbus/TCP, the Micrologix 1100 received approximately 20% more inter-
actions when compared to the two Siemens PLCs.
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6.5.2 Origin of Interactions

RQ5: From which geographic regions do the observed OT interactions originate
compared to IT interactions?

Table 6.8 and Table 6.9 present an overview of the countries with the largest
number of IT and OT interactions, respectively. We observe that the United
States is the predominant source of IT interactions, with 1421 unique IP ad-
dresses (including 602 malicious ones) contributing to a total of 8978 interac-
tions. Other significant contributors include the Netherlands, China, Germany
and Romania. Similarly, the United States is the primary source of OT inter-
actions, with 512 IP addresses (including 213 malicious ones) generating 1602
interactions. Notably, the total number of IP addresses involved in OT inter-
actions is significantly lower, indicating that IT actors are still predominant.
A small number of IP addresses (mostly malicious ones) from Hong Kong and
India are responsible for a significant number of interactions. Notice that while
the tables focus on the top 10 countries with more interactions, regional data
provide extra insight. For instance, in Lithuania 5 IP addresses (3 of which ma-
licious) were responsible for 443 IT interactions (260 from malicious IPs); in
California 11 IP addresses were responsible for 417 interactions (both OT and
IT ones); a single IP in South Korea was responsible for 58 IT interactions.

RQ6: From which actors do the observed OT interactions originate compared
to IT interactions?

Table 6.10 and Table 6.11 present an overview of the actor that had the largest
number of IT and OT interactions, respectively. Among those actors, Aggros
Operations Ltd. stands out as the most active actor involved in IT interactions,
contributing to around 30% of the interactions in the top 10 IT actors. It is
worth noting that the IPs associated with Aggros Operations Ltd., China Mobile
Comm. Group, DigitalOcean LLC, and Stretchoid are predominantly malicious.
On the other hand, Stretchoid emerges as the most active actor involved in OT
interactions, contributing to about 38% of the interactions of the top 10 OT
actors; this actor is also responsible for a significant number of IT interactions
from malicious IPs. Censys is the second most common actor for both IT and
OT interactions, accounting respectively for approximately 15% and 13% of the
total interactions.

RQ7: To what extent actors originating from the same IP address perform both
OT and IT interactions?

Table 6.12 provides an overview of actors involved in both IT and OT interac-
tions, highlighting malicious interactions. While Table 6.6 indicates that in gen-
eral IT interactions are ten times more than OT interactions, Table 6.12 shows
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that this ratio is significantly lower when focusing on IP addresses involved
in both kinds of interactions. The analysis reveals a balanced engagement by
some actors originating from the same IP address, with approximately 50% of
their interactions categorized as both OT and IT. This observation is especially
true for those actors involved in malicious interactions only, such as Stretchoid,
CT-HangZhou-IDC, and Hurrican Elec.

6.5.3 Interaction and Attack Patterns

RQ8: Which pattern or characteristic do the observed IT interactions exhibit?

Table 6.13 presents a summary of the observed attack patterns in the recorded IT
interactions, categorized by vulnerability class, along with examples of detected
payloads pertinent to each class. The majority of detected patterns are HTTP
Connect Proxy attacks. More precisely, we observed 6642 interactions directed
towards both the web interface of PLCs and the HMI’s ScadaBR software, aim-
ing to exploit an HTTP Connect Proxy attack for unauthorized tunneling and
denial of service. Notably, these interactions did not originate from a single mali-
cious actor but were initiated by a diverse group of actors, each attempting to es-
tablish connections to various external domains such as myipb1a.mrrage.xyz:80,
www.shadowserver.org:443 and ip138.com. The other recorded interactions en-
compass a wide range of attack types, including command injections, file inclu-
sions, SQL injections (SQLi), and Server-side template injections (SSTI). Inter-
estingly, these attack patterns were rarely specifically tailored for the webservers,
indicating that adversaries often engage in blind attacks without checking what
web application is installed. Nonetheless, we did identify a small number of at-
tempts to exploit a very well-known vulnerability of the ScadaBR software and
other known vulnerabilities, which are discussed later on.

RQ9: Which pattern or characteristic do the observed OT interactions exhibit?

An analysis of Modbus/TCP interactions shows that only 32 out of 1927 the
observed interactions (cf. Table 6.7) were composed of requests with legal func-
tion codes as also observed in other works [91, 120]. These 32 interactions in-
clude exactly one request; an overview of the identified patterns is reported in
Table 6.14. Even though the set of interactions under consideration is rather
small (32 interactions of length 1), we observed some interesting cases. For in-
stance, we noticed an interaction originating from Constantine Cybersecurity
Ltd. (AS211298) comprising a Write Single Register request on PLC3 executed
immediately after an IT interaction with the associated PLC web interface. Such
interaction is relevant because, within this context, the Write Single Register is
used as a fuzzing technique. The actor submits a purposely malformed input
(e.g., an illegal data address packet) to the system aiming to induce a crash.
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Moreover, we observed 18 interactions using the Read Holding Registers and
Read Input Registers functions, which allow an actor to access the internal reg-
isters of PLCs, thereby providing insights into the current state of the system.
We also noticed three interactions comprising a single Read Coils request; these
interactions originated from a malicious IP address linked to Alibaba.com Sin-
gapore E-Commerce Private Ltd. (AS45102) and targeted all PLC devices of our
honeynet. Finally, we observed an interaction using the Read Coils function from
a malicious IP linked to ”Linode.com” (AS63949) addressed to PLC1. Interac-
tions that exploit Read Coils are interesting since they indicate that these actors
engage in reconnaissance and scanning activities. After a successful attack, the
actor might use the acquired knowledge to manipulate coil statuses leading to a
denial of service. For completeness, note that we identified 1895 Modbus/TCP
interactions with illegal function codes. Most of them (95%) were composed
of a single illegal request with function code 43 and subcode 14 (Read Device
Identification). This specific code denotes an Encapsulated Interface Transport
Modbus function with MEI type equal to Read Device Identification and could
be the result of a Nmap scan using the modbus-discover.nse script. The remain-
ing interactions are more complex (up to four requests) and include requests
with function code 17 (Report Slave ID) as well as function code 90 (Unity),
which is proprietary to Schneider Electric devices. These kinds of interactions
had targeted all exposed PLCs, indiscriminately.

The analysis of the S7comm protocol (reported in Table 6.15) shows two
consistent patterns for the two PLCs of our honeynet supporting the protocol.
We received 42 interactions with one S7 Communication Setup request (used
to establish an S7 connection) followed by three consecutive Read SZL requests
(used to collect information about the device) and 419 interactions exhibiting
one Communication Setup request and two consecutive Read SZL requests. The
analysis of the pattern shows that the actors systematically attempted to retrieve
the status of the Siemens PLCs and to collect information about the firmware
version, module type, hardware specifications, and system name. All interactions
targeting our PLCs that did not originate from a known scanner service were
performed using the script s7-info.nse, a Nmap script used to enumerate Siemens
S7 PLC devices.

RQ10: To what extent the observed OT and IT interactions exploit known
vulnerabilities?

We observed attempts of vulnerability exploitation only related to IT inter-
actions. An analysis of the IT interactions targeting the HMI1’s web interface
revealed 19 interactions that exploited the ScadaBR CVE-2021-26828. This vul-
nerability allows remote authenticated users to upload and execute arbitrary
JSP files via view edit.shtm, leading to a remote code execution. Among these
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interactions, 12 were traced back to an IP address affiliated with ”Mullvad.net”
(AS6233), 5 to ”PenTeleData House Account” (AS3737), and the remaining two
to ”Datacamp Limited” (AS212238). Interestingly, both the first and third ac-
tors used a VPN connection. Next, another interesting common characteristic of
these two actors was their attempt to connect to a specific IP address associated
with ”ALEXHOST SRL” (AS200019) to download malware. In the context of
the exploitation process, it is crucial to note that the ScadaBR CVE-2021-26828
vulnerability requires successful authentication. Consistent with this prerequi-
site, we registered seven login attempts from the three actors in question, who
exploited a weak credentials vulnerability to get the JSESSIONID token neces-
sary for executing the RCE. In another case, we observed four different inter-
actions from “Neterra Ltd.” (AS44477) that targeted our exposed devices on
HTTP. Specifically, the attack pattern was a blind attempt to exploit a very old
php-CGI injection known vulnerability against PHP web servers and associated
with CVE-2012-2336. Additionally, we observed a pattern occurring in 74 in-
teractions targeting all devices through HTTP. These interactions attempted to
upload files such as ”Mozi.m” and ”Mozi.a”, which are associated with the well-
known Mozi malware family and CVE-2018-10561, CVE-2018-10562 targeting
GPON Routers. Similarly, we discovered eight interactions originating from ”In-
terserver, Inc” (AS19318) and exploiting a recent remote command execution
vulnerability, specifically CVE-2023-1389, which targets TP-Link routers.

6.5.4 Contributions to ICS Honeypot Data Analysis

Building upon the foundation established by prior research (as outlined in Sec-
tion 6.1), this work makes several key contributions that advance the state-of-
the-art in ICS honeypot data analysis.

We analyze the complexity of ICS interactions (RQ2), revealing that they
often involve multiple requests, which provide valuable insights into potential
attacker strategies.

Additionally, we investigate the influence of HMI placement on IT inter-
actions (RQ3). Our findings demonstrate that isolating HMIs on dedicated IP
addresses reduces interactions compared to co-locating them with PLCs, offering
a crucial step towards hardening industrial control system security.

Finally, we move beyond the focus on interaction volume seen in prior re-
search by examining brand-specific interaction patterns for PLCs (RQ4). This
analysis highlights that Siemens PLCs supporting both Modbus/TCP and
S7comm protocols attract more interactions, and the brand itself can influence
the type of interactions observed. These findings offer valuable insights that go
beyond simply confirming the dominance of IT interactions. They shed light on
the evolving tactics of attackers targeting industrial control systems, empha-
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sizing the need for a multi-faceted defense strategy that considers interaction
complexity, HMI placement, and brand-specific vulnerabilities.
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Table 6.3: Research Questions

Category Research Question Description

Level of In-
teraction

RQ1: To what extent are ICS
honeypots involved in OT in-
teractions compared to IT in-
teractions?

Quantifies OT vs. IT in-
teractions for initial en-
gagement level assess-
ment.

RQ2: To what extent do
ICS honeypots attract com-
plex OT interactions com-
pared to IT interactions?

Investigates complexity
(number of requests) in
OT vs. IT interactions.

HMI De-
ployment

RQ3: To what extent does an
HMI exposed on the same IP
address of a PLC attract IT
interactions compared to an
HMI exposed on a dedicated
IP address?

Evaluates the impact of
HMI deployment strat-
egy on IT interaction
attraction.

PLC Brand RQ4: To what extent does
a specific brand of PLC at-
tract interactions compared to
other brands?

Analyzes brand-specific
attractiveness for po-
tential vulnerabilities.

Origin of
Interactions
(Geogra-
phy)

RQ5: From which geographic
regions do the observed OT
interactions originate com-
pared to IT interactions?

Characterizes geo-
graphic distribution of
actors targeting OT vs.
IT systems.

Origin of
Interactions
(Actors)

RQ6: From which actors do
the observed OT interactions
originate compared to IT in-
teractions?

Identifies potential dif-
ferences in actors tar-
geting OT vs. IT sys-
tems.

Relationship
between
OT and IT
Interactions

RQ7: To what extent do ac-
tors originating from the same
IP address perform both OT
and IT interactions?

Examines potential co-
ordinated attacks in-
volving both OT and IT
interactions.

Interaction
and Attack
Patterns
(IT)

RQ8: Which pattern or char-
acteristic do the observed IT
interactions exhibit?

Analyzes specific pat-
terns and characteris-
tics of observed IT in-
teractions.

Interaction
and Attack
Patterns
(OT)

RQ9: Which pattern or char-
acteristic do the observed OT
interactions exhibit?

Analyzes specific pat-
terns and characteris-
tics of observed OT in-
teractions.

Exploit De-
tection

RQ10: To what extent do the
observed OT and IT interac-
tions exploit known vulnera-
bilities?

Identifies potential ex-
ploit utilization within
the captured interac-
tions.
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Table 6.4: GreyNoise classification of the observed IP addresses

Classification #IPs #Requests

benign 1433 21916
malicious 2332 14629
unknown 779 8360
blank 330 17874

Total 4874 62779

Table 6.5: Requests received per device

Devices well-formed bad

HTTP Modbus/TCP S7 HTTP Modbus/TCP S7

PLC 1 5408 688 – 0 25 –
PLC 2 5198 691 1951 0 24 136
PLC 3 6640 660 2005 0 20 124
HMI 1 11389 – – 0 – –
HMI 2 7851 – – 0 – –

Total 36486 2039 3956 0 69 260

Table 6.6: IT and OT interactions and their complexity

Interactions Min Q1 Median Q3 Max Count

IT (total) 1 1 1 1 100 27525
IT (malicious) 1 1 1 1 20 14194
OT (total) 1 1 1 6 10 2561
OT (malicious) 1 1 1 2 10 696

Table 6.7: Number of interactions on the exposed devices

Devices Total Malicious

HTTP Modbus/TCP S7 HTTP Modbus/TCP S7

PLC1 5187 721 – 2884 189 –
PLC2 5004 602 333 2714 202 84
PLC3 5001 604 344 2660 174 92
HMI1 9623 – – 5380 – –
HMI2 2710 – – 556 – –

Total 27525 1927 677 8814 565 176
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Table 6.8: Top 10 countries for IT interactions

Country Total Malicious

#IP #Interactions #IP #Interactions

United States (US) 1421 8978 602 3356
Netherlands (NL) 201 4550 113 3436
China (CN) 333 2753 257 2569
Germany (DE) 116 1201 56 375
Romania (RO) 17 934 11 687
United Kingdom (GB) 285 903 34 207
Italy (IT) 77 822 21 71
Hong Kong (HK) 155 642 139 316
India (IN) 253 573 131 343
Ukraine (UA) 59 530 45 93

Table 6.9: Top 10 countries for OT interactions

Country Total Malicious

#IP #Interactions #IP #Interactions

United States (US) 512 1602 213 564
United Kingdom (GB) 138 263 – –
Germany (DE) 29 143 2 5
Netherlands (NL) 22 105 6 26
Taiwan (TW) 63 91 – –
Brazil (BR) 62 88 – –
Belgium (BE) 55 87 – –
China (CN) 17 86 15 59
France (FR) 14 35 1 9
Singapore (SG) 6 20 2 13

Table 6.10: Top 10 actors/org involved in IT interactions

Actor/org Total Malicious

#IP #Inter. #IP #Inter.

Aggros Operations Ltd. 51 3007 47 2996
Censys 65 2826 - -
China Mobile Comm. Group 73 1903 72 1902
FranTech Solutions 38 1285 16 1152
ShadowServer.org 449 1263 - -
DigitalOcean LLC 268 1087 170 783
Unmanaged LTD 12 899 7 656
Academy for Internet Research 6 888 - -
Cortex Xpanse 382 797 - -
Stretchoid 279 782 277 777
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Table 6.11: Top 10 actors/org involved in OT interactions

Actor/org Total Malicious

#IP #Inter. #IP #Inter.

Stretchoid 185 502 180 488
Censys 63 462 - -
Cortex Xpanse 231 345 - -
ShadowServer.org 127 306 - -
Driftnet 132 233 - -
Shodan.io 35 196 - -
Hurricane Electric LLC 18 40 18 40
CT-HangZhou-IDC 2 38 2 38
CriminalIP 1 38 - -
bufferover.run 16 37 - -

Table 6.12: Top 10 actor/org involved in both OT and IT interactions

Actor/org #IP OT interactions IT interactions

Total Malicious Total Malicious

Censys 58 449 - 2776 -
Cortex Xpanse 183 278 - 428 -
ShadowServer.org 105 265 - 392 -
Driftnet 62 98 - 123 -
Shodan.io 13 67 - 58 -
Stretchoid 19 50 50 62 62
CT-HangZhou-IDC 2 38 38 143 143
bufferover.run 16 37 - 222 -
Acad. Int. Res. 4 32 - 667 -
Hurricane Elec. 13 32 32 30 30

Table 6.13: A summary of observed IT patterns by vulnerability class

Vulnerability class #Interactions Payload example

HTTP Connect Proxy 6642 CONNECT myipb1a.mrrage.xyz:80

Command injection 139 /cgi-bin/luci/...&country=$(cd /tmp;rm zizuo.sh...

File inclusion 60 /cgi-bin/../../../../etc/passwd

SSTI 2 id=%{{{11}}*{{11}}}

SQLi 1 ’+union+select+(select+concat(0x223e3...

Table 6.14: Observed Modbus/TCP interaction patterns

Legal function codes #Interactions

Total Malicious

Read Holding Registers 14 5
Read Discrete Inputs 9 0
Read Input Registers 4 0
Read Coils 4 4
Write Single Register 1 0
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Table 6.15: Observed S7 interaction patterns

S7comm Function Pattern #Interactions

Total Malicious

Comm. Setup + 3 Consecutive Req. Read SZL 42 5
Comm. Setup + 2 Consecutive Req. Read SZL 419 145





Chapter 7
SUPPORTED ATTACKS

In this chapter, we explore a series of proof-of-concept cyber-physical attacks
designed to exploit vulnerabilities in our honeynet, specifically targeting the
PLCs and HMIs. Each attack scenario is crafted to showcase potential risks and
vulnerabilities within the deployed system. Each scenario provides a detailed
narrative of the attack methodology and its potential impact on the system.

Additionally, we introduce an automated tool developed to execute the out-
lined attacks. This tool utilizes specific technologies for crafting Modbus and
ARP packets, enabling sophisticated attacks on the ICS. We describe the func-
tionalities of the tool, such as the tool’s ability to modify inputs, outputs, and
other register data within the PLC, as well as its integration with interception
tools for Modbus request frames.

7.1 Proof of concept attacks

In our evaluation of HoneyICS against the attacker model outlined in Section
4.2, we conducted a set of simulations replicating three distinct attacks, drawing
inspiration from the annual Critical Infrastructure Security Showdowns (CISS)
on the SWaT system. Our use case implementation relies on the Modbus pro-
tocol as the underlying ICS communication protocol. Modbus maps temporary
memory within PLC programs to discrete output coils, discrete input contacts,
analog input registers, and analog output holding registers. Our methodology
was based around the execution of three attacks, summarized in Table 7.1, each
characterized by specific parameters, including the attack vector, the intended
goals of the attacker, specific targets, and the level of observability or stealth-
iness when scrutinizing SCADA Human Machine Interface (HMI) interfaces.
To assess the impact and efficacy of these attacks, we used our management
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Table 7.1: Summary of Attacks

Attack Type Target Objective

DoS on Pump P-
101

Pump P-101 (gov-
erned by PLC-1)

Achieve tank over-
flow of T-201

MITM Attack
with HMI Com-
promise

HMI (ScadaBR) Drag the system
into a deadlock

Stealthy DoS on
Pump P-102

Pump P-102 (gov-
erned by PLC-3)

Achieve pump fail-
ure

Table 7.2: Summary of Attack 1

Attack Type Denial of Service (DoS)

Target Pump P-101 (governed by PLC-1)

Objective Achieve Tank Overflow of T-201

Exploited Modbus TCP

Function Codes - Read Analog Input Register (0x04)
- Write Single Discrete Output Coil (0x05)

Steps 1. Continuously transmit Modbus packets to read
tank T-101 level.
2. When level reaches high1, transmit Modbus
packet to manipulate pump P-101.
3. Achieve tank overflow independently of valve
MV-301 state.

and monitoring dashboard. This tool helped us to visualise simultaneously the
HMI interface and the real-time dynamics of the simulated system under attack.
Additionally, we collected and analyze the logs from the probes within the hon-
eynet, to provide insights into the sequential progression of malicious activities.
This evaluation framework sets the stage for the subsequent detailed explo-
ration of the three supported attacks, shedding light on HoneyICS’s robustness
and detection capabilities.

7.1.1 Tank overflow via DoS attack on a pump

In this attack scenario, summarised in Table 7.2, we make the assumption that
both PLCs and HMIs are openly accessible on the Internet, thereby providing
potential entry points for malicious actors. The primary objective of this attack
is to execute a Denial-of-Service (DoS), once a certain condition is met, on an
actuator, specifically aimed at pump P-101, which is under the control of PLC-1,
ultimately leading to the tank T-201 to overflow.
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The attack unfolds as follows: The attacker uses a script that continually
transmits Modbus packets to the TCP port 502 of the PLC. The initial phase
involves sending Modbus packets with the function code ”read analog input reg-
ister” (0x04). These packets target the PLC register associated with monitoring
the level of tank T-201. The attacker monitors this value until the tank’s level
is equal to the predefined high setpoint (high1), set at 80 gallons.

Upon reaching the specified threshold, the attacker seamlessly transitions
to the next phase, initiating the transmission of a different Modbus packet.
This packet is crafted with the function code ”write single discrete output coil”
(0x05). The purpose of this packet is to manipulate the PLC register linked to
the operation of pump P-101. The attacker forces the pump to remain in an
active state.

The end result of this attack is the achievement of tank overflow in T-201.
This occurs due to the continuous operation of pump P-101, driven by the at-
tacker’s manipulation of the PLC register. Importantly, the attacker can achieve
this outcome independently of the valve MV-301’s state, showcasing the potency
of the attack in circumventing traditional control mechanisms. This scenario un-
derscores the critical importance of securing and monitoring industrial control
systems to thwart such malicious exploits.

7.1.2 System deadlock based on a shell intrusion

In this attack scenario, summarised in Table 7.3, the adversary targets the HMI,
which is exposed on the Internet. The HMI container specifically hosts ScadaBR,
version 1.0CE. The attacker leverages the authenticated arbitrary file upload
vulnerability (CVE-2021-26828 [38]) within ScadaBR to exploit and compromise
the HMI, leading to the establishment of a reverse shell on the container.

Once executed the reverse shell, the attacker gains the capability for remote
command execution. The attacker identifies the network topology and the de-
vices involved, particularly the target devices like PLC-2 and PLC-1. Using this
command channel, the attacker proceeds to upload a statically linked binary.
This binary facilitates the following malicious activities:

1. continuously transmitting a Modbus packet with function code read discrete
output coil (0x01) to read the PLC register associated with valve MV-301

2. sending a second Modbus packet with function code read analog input reg-
ister (0x04) to read the PLC register linked to the level of tank T-101.

ARP is a protocol used to map IP addresses to MAC addresses in a local net-
work. The attacker takes advantage of the fact that ARP does not have built-in
security mechanisms, making it susceptible to manipulation. The attacker sends
ARP spoofed packets to both PLC-2 and PLC-1, providing false MAC address
mappings. PLC-2 is tricked into associating the attacker’s MAC address with
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Table 7.3: Summary of Attack 2

Attack Type Remote compromise and Denial of
Service

Target HMI

Objective Establish a deadlock state in the
physical process

Exploited Vulnerability Authenticated arbitrary file upload
(CVE-2021-26828)

Exploited Protocols Modbus TCP, ARP Spoofing

Exploited Function Codes - Read Discrete Output Coil (0x01)
- Read Analog Input Register (0x04)

Attack Steps 1. Exploit CVE-2021-26828 to gain
control and establish reverse shell.
2. Identify network topology and tar-
get PLC-2 and PLC-1.
3. Upload a binary for malicious ac-
tivities via the reverse shell.
4. Continuously transmit Modbus
packets to read PLC register of valve
MV-301.
5. Send Modbus packets to read PLC
register associated with tank T-101’s
level.
6. Execute ARP Spoofing to inter-
cept communication between PLC-2
and PLC-1.
7. Drop Modbus packets from PLC-
2 to PLC-1 when tank’s level nears
high1.
8. Induce a deadlock state by pre-
venting the opening of valve MV-301.

the IP address of PLC-1, and vice versa. With the ARP cache poisoned, PLC-2
and PLC-1 unknowingly send their network traffic to the attacker, thinking the
attacker’s machine is the legitimate destination. When the tank’s level nears the
predefined threshold of high1 (80 Gal.) and the targeted valve MV-301 remains
closed, the attacker intervenes by dropping all Modbus packets transmitted from
PLC-2 to PLC-1. This interception disrupts the communication to open valve
MV-301. Consequently, the valve remains closed, leading the system into a pro-
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Table 7.4: Summary of Attack 3

Attack Type Stealthy Denial of Service

Target Pump P-102 (governed by PLC-3)

Objective Sabotage Pump P-102 without immediate detec-
tion

Exploited Modbus TCP

Function Codes - Read Analog Input Register (0x04)
- Write Single Discrete Output Coil (0x05)

Steps 1. Continuously transmit Modbus packets to read
tank T-203 level.
2. When level reaches low3, transmit Modbus
packet to manipulate pump P-102.
3. Set up MITM attack on HMI interface to con-
vey false pump state.
4. Deceptively communicate to HMI that the
pump is off while it is still operational.

longed deadlock state. In this state, tank T-201 becomes full without overflowing,
while tanks T-202 and T-203 both experience underflow conditions.

7.1.3 Stealthy DoS on a pump with deceptive HMI communication

We consider a scenario where the attacker enters the network through a breached
VPN, allowing an attacker to conduct a stealthy Denial of Service attack on
pump P-102, controlled by PLC-3. This attack is designed to be subtle and
aims to sabotage the pump without raising immediate alarms.

The attack unfolds when tank T-203’s level falls to the predetermined low
setpoint low3 (0 Gal.). At this point, the attacker initiates the first phase of
the attack by sending Modbus packets with the function code read analog input
register (0x04) to query the PLC register associated with the water level of tank
T-203. Once the water level reaches low3, the attacker proceeds to the second
phase.

In the second phase, the attacker switches to transmitting a different Modbus
packet, this time with the function code write single discrete output coil (0x05).
This packet manipulates the PLC register linked to pump P-102, forcing the
pump to remain active even in the absence of water. The continuous operation
without water eventually leads to the pump’s malfunction or breakdown.

To maintain stealthiness and disguise the ongoing malicious activity, the at-
tacker orchestrates a Man-in-the-Middle (MITM) attack on the HMI interface.
The attacker starts a Modbus server replaying an old state of the PLC to falsely



132 Chapter 7. Supported attacks

convey to the HMI that pump P-102 is turned off when, in reality, it is still
operational. This deceptive communication aims to mislead operators and mon-
itoring systems, creating a false sense of normalcy despite the compromised state
of the pump. This attack has been summarised in Table 7.4

7.2 An automated tool to perform cyber physical
attacks

This section explores the creation and deployment of an automated attack tool
designed to evaluate the effectiveness of our ICS honeypot (described in previous
sections). By simulating real-world attacker behavior, this tool enables us to
assess the honeypot’s ability to:

• Detect and record attack attempts: Can the honeypot identify malicious
activity launched by the tool?

• Mimic realistic industrial environments: Does the honeypot provide a believ-
able target for attackers, enticing them to interact and reveal their tactics?

• Collect valuable forensic data: Can the honeypot capture valuable informa-
tion about attack methods for further analysis?

By incorporating features like Modbus communication and PLC behavior
emulation, the attack tool creates a realistic scenario that tests the honeypot’s
ability to withstand and reveal insights into various attack types. These include
Man-in-the-Middle (MITM) attacks, where the honeypot’s ability to detect at-
tempts to intercept communication and manipulate data between devices is as-
sessed. The tool can also simulate Denial-of-Service (DoS) attacks, allowing us
to evaluate how the honeypot handles efforts to overload specific PLC functions
or disrupt communication. Furthermore, the attack tool can mimic state manip-
ulation attempts, enabling us to determine if the honeypot can identify efforts to
alter critical process variables stored in PLC registers. The detailed evaluation
process using this attack tool is described in a later section (section 7.2.5).

7.2.1 Related works

To address the context of developing an automated tool for performing cyber-
physical attacks on Industrial Control Systems (ICS), it is important to explore
related work focusing on tools and methodologies targeting ICS in the literature.
Two notable studies offer insights into the landscape of threats and defenses in
OT environments, providing a comprehensive background for understanding the
dynamics of cyber-physical attacks.
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The work titled ”Vulnerabilities and Attacks Against Industrial Control Sys-
tems and Critical Infrastructures” [116] presents an extensive survey of the most
prominent threats against ICS, emphasizing the integration of modern Informa-
tion Technology (IT) elements into Operational Technology (OT) architectures.
This study highlights the ever increasing interest towards OT for various groups
of adversaries due to their interconnectedness and inherent complexity. It cat-
egorizes threats and vulnerabilities, providing a detailed overview to guide the
development of an automated attack tool.

One notable tool that exploits vulnerabilities in Siemens S7 PLCs is PLCIn-
ject [73], which leverages a novel approach by injecting a Time-of-Day (TOD)
interrupt code to activate malicious operations at a predetermined time, without
requiring persistent access to the target system. This method allows external ad-
versaries to patch their malicious codes once they gain access to exposed PLCs,
keeping their attack idle inside the infected device, and then activate the at-
tack at a later time without being connected to the target. This approach does
not require continuous access to the target system at the attack’s zero point,
allowing attackers to compromise PLCs when they are offline.

PLCInject is an interesting project that enables the uploading of malicious
code to Siemens PLCs, a capability our tool does not possess. Instead, our tool
adopts a broader strategy, focusing on attacking the physical process rather than
the PLC itself. This means our tool supports a non-proprietary and general in-
dustrial protocol, allowing it to interface with a wider range of PLC models and
manufacturers. While we do not incorporate code injection, since that would
limit our tool’s applicability and necessitate dealing with each PLC model in-
dividually, our approach offers versatility in addressing security within diverse
industrial environments.

7.2.2 Desiderata

Drawing inspiration from [119] where the authors explores the use of SCADA
honeypots for detection of malicious tampering within SCADA networks, we
were able to derive strategies and desiderata for the tool. We delineated four
specific requirements for our tool, ensuring its functionality aligns with a real
world attack scenario. These requisites are:

1. Portability and Seamless Installation: The tool necessitated effortless distri-
bution and installation, prioritizing accessibility for potential attackers, even
in environments without Internet connectivity.

2. Industrial Protocol Support : An imperative desiderata was the tool’s ability
in sending Modbus commands. Furthermore, it was essential for the tool to
emulate a PLC convincingly, complete with the ability to replicate collected
register values during attacks.
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3. Uninterrupted Operation and Modularity : Recognizing the dynamic nature
of attacks, our tool needed to combine multiple operations. Using this non-
blockable nature and modular structure ensure adaptability to diverse attack
scenarios, accommodating varied objectives an attacker might pursue.

4. Suite of attacks: The tool should be able to execute various attacks, including
sending arbitrary commands to the coils/memory registers, initiating DoS on
coils/memory registers, and implementing chattering of coils/memory regis-
ters (chattering involves rapidly changing the state of a control element). To
facilitate Man-in-the-Middle attacks, the tool should also have the capabil-
ity to broadcast unsolicited ARP replies. This strategic feature enables the
interception of communication between devices, a critical component of our
tool’s functionality.

Portability and Seamless Installation

This tool is based around setuptools [48], a Python package that serves as an
enhancement of the distutils (Distribution Utilities) standard for building and
distributing Python packages. It was chosen as it allows to easily package Python
projects and distribute them via the Python Package Index (PyPI) and also
because it aligns with the need for easy distribution and installation, even in
environments lacking Internet connectivity.. Setuptools can automatically down-
load and install dependencies specified by a package. This feature simplifies the
installation process for end-users, as they don’t have to manually install each
required package.

Industrial Protocol Support

We integrated pymodbus [59] to address the requirement of Industrial Protocol
Support, particularly for sending Modbus commands and emulating a Mod-
bus server. Pymodbus is a comprehensive Modbus protocol implementation in
Python, offering client and server functionalities along with asynchronous and
synchronous APIs. It also includes simulators for various scenarios. With py-
modbus, we were able to create a ModbusTcpClient, connect to a device, and
perform actions like writing to a coil or reading from it. Furthermore, pymod-
bus is instrumental in emulating a PLC. This capability is critical in our attack
scenario where the tool must generate a new Modbus server to replay the values
of registers that were previously captured.

Uninterrupted Operation and Modularity

Our tool’s design focuses on ensuring uninterrupted operation and modularity,
which are important features for adapting to the dynamic and unpredictable
nature of cyber attacks, particularly in OT. To achieve this, we have employed
a multi-threaded architecture, which is instrumental in maintaining continuous
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operation and enabling the tool to manage multiple tasks simultaneously. The
utilization of threads in our tool’s architecture allows for parallel processing
of different functionalities. It enables the tool to simultaneously execute diverse
operations such as monitoring, data manipulation, and communication intercep-
tion without hindering each other’s performance. The threads operate indepen-
dently but share common resources, ensuring efficient use of system resources.
Modularity, another key aspect of our tool, is achieved through a well-designed,
component-based architecture. Each module in our tool is designed to perform
a specific function and can be independently used. This structure enhances its
adaptability.

Suite of Attacks

Thanks to the library pyModbus [59] the tool possesses the capability to send
arbitrary commands to coils and memory registers, initiate Denial of Service
attacks on coils and memory registers, simulating chattering behavior on coils
and memory registers. To facilitate MITM attacks, the tool incorporates the
capability to broadcast unsolicited ARP replies. This feature allows the tool to
intercept communication between devices within the network, enabling attackers
to manipulate and monitor data exchanges. We leveraged arpspoof, a component
of the dSniff package [16], by incorporating it into our tool’s architecture. To
integrate this binary, we implemented a subprocedure specifically designed to
invoke arpspoof, ensuring its execution on a separate thread. This strategic
design enhances the tool’s efficiency and agility, allowing it to perform ARP
spoofing attacks in combination with other attacks offered by the tool.

7.2.3 Phases

In the forthcoming sections, we delineate the key phases of our tool, providing
insights into the preliminary steps and configurations necessary for its deploy-
ment and operation. While the attack tool we developed focuses on established
attack techniques within the Modbus protocol, it offers the capability to explore
new combinations of these attacks. This allows us to assess the honeypot’s abil-
ity to handle unforeseen attack scenarios that combine existing methods in novel
ways. For instance, the tool could be used to simulate a DoS attack targeting
specific PLC functions while simultaneously manipulating critical process vari-
ables. However, it’s important to acknowledge that the tool itself is not designed
to discover entirely new attack vectors beyond the Modbus protocol.

Tool configuration: network reconnaissance

The tool requires proper configuration with specific device details, as demon-
strated in Listing 7.1. In this configuration, assigning human-readable device
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names are encouraged for improved clarity in the tool’s interface, replacing raw
IP addresses. As exemplified in Listing 7.1, the IP address 172.17.0.5 is repre-
sented as ”HMI.” Additionally, the tool is designed to handle situations where
security practices involve altering the default port of the network protocol (for
Modbus, typically 502 TCP in our use case). Users should specify a port for
each device, with the tool defaulting to the standard port associated with the
chosen protocol if none is provided.

Listing 7.1: Configuration file: config.ini

[hmi]

ip = 172.17.0.5

port = 502

[plc1]

ip = 172.17.0.2

port = 502

In order to obtain this information, the tool user must conduct a comprehen-
sive network scan, identifying devices and the associated protocols. Typically,
this process involves determining the network mask and employing tools like
Nmap to scan the entire network. Activation of the service discovery flag within
Nmap facilitates the identification of the protocols the devices utilize.

nmap -sV <target_IP_range>

Sniffing of PLCs’ registers values

The tool can effectively emulate a Modbus server, a valuable feature for covert
attacks aiming to conceal the ongoing attack on a PLC. In such scenarios, the
attacker initiates a server that the HMI queries instead of the actual PLC. Mean-
while, the attacker gains control over the authentic PLC, inducing anomalous
states, while the HMI displays a seemingly normal situation.

To achieve this, we require a dataset containing the values to be served
by the emulated Modbus server. In Ceccato et al. [81] we propose a tool that
produces a dataset containing the values associated with the registers of the
target PLC within a specified time interval. We utilized the IP Protocol Scan
feature provided by the Nmap Python module [43] to identify the target PLC
within a range of IP addresses. It is noteworthy that our scanning approach
extends beyond the conventional Modbus TCP port 502, acknowledging that
in many ICSs, the Modbus protocol may operate on different ports for security
through obscurity. Once both the IP address of the PLC and the Modbus port
are determined, the tool initiates the capture of register values.
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To efficiently handle the reading of register values, we employ the Ray module
[60] to parallelize and distribute the task. Our tool systematically reads and
records the values of all PLC registers within a specified time frame, with a
user-defined time granularity. The data collected during our scans encompass
crucial information, as illustrated in Listing 7.2:

Listing 7.2: Example of a Registers capture

"127.0.0.1/8502/2022-05-03 12_10_00.591": {

"DiscreteInputRegisters": {"%IX0.0": "0"},

"InputRegisters": {"%IW0": "53"},

"HoldingOutputRegisters": {"%QW0": "0"},

"MemoryRegisters": {"%MW0": "40", "%MW1": "80"},

"Coils": {"%QX0.0": "0"}

}

The captured details include:

• IP addresses of the scanned PLCs,
• Port used by the Modbus protocol,
• Timestamps of the scan,
• Values saved in each PLC register.

7.2.4 Tool interface

The user interacts with the tool through the interface depicted in Figure 7.1. In
this interface, the user can choose the type of attack they intend to launch. Once
a specific attack is selected, the tool prompts the user for additional details, as
illustrated in Figure 7.2.

7.2.5 Evaluation on a proof of concept attack

Establishing the context for the attack: as outlined in Table 7.3, the goal of
attack 2 is to successfully execute a reverse shell, carry out a MITM attack, and
induce a Denial of Service by causing the physical process to enter a deadlock
state. In Figure 7.3 is displayed the monitoring tab of the three PLCs, which is
displaying the state of all the register in a plc at a given point in time.

The targeted victim in this scenario is the operator of the HMI. The tool will
be configured to launch an attack on the HMI’s ARP table, directing queries
to our machine functioning as a Modbus server rather than the actual PLC 1.
Concurrently, the tool will intercept and discard the Modbus packets from PLC
1 to PLC 2, which would normally request the opening of the valve facilitating
the flow of water from tank 1 to tank 2.

In pursuit of network pivoting [52], we leverage the CVE-2021-26828 vulner-
ability to establish a shell on the HMI machine. This move enables us to pivot
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Figure 7.1: Main tool interface

Figure 7.2: Attack configuration

inside the network, granting the capability to execute a man-in-the-middle at-
tack effectively.

To execute network pivoting through Remote Code Execution (RCE), the
attacker exploits vulnerabilities within the targeted system to gain unautho-
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Figure 7.3: PLC 1, PLC 2 and PLC 3 monitoring tab, showing the current state
of the registers

rized access. This method enables the execution of arbitrary code on a remote
machine, providing the attacker with a foothold to navigate and manipulate net-
work environments. Once an RCE vulnerability is successfully exploited on the
system, it serves as a pivot point for lateral movement within the network, al-
lowing the attacker to compromise additional systems. This technique facilitates
the exploration and exploitation of interconnected systems, potentially enabling
privilege escalation, sensitive information gathering, and persistent access within
the compromised network.

The attacker obtains the information presented in Table 7.5 by executing a
Nmap scan.

Name IP Address MAC Address

HMI 172.17.0.2 02:42:ac:11:00:02
PLC 1 172.17.0.5 02:42:ac:11:00:05
PLC 2 172.17.0.4 02:42:ac:11:00:04
PLC 3 172.17.0.6 02:42:ac:11:00:06
Attacker 172.17.0.7 02:42:ac:11:00:07

Table 7.5: Network Devices Information

Leveraging this information, the attacker initiates the process of capturing
the values of PLC 1’s registers. Once a sufficient number of values are stored,
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the attacker configures the tool on the designated page. As depicted in Figure
7.4, the attack is configured to target the HMI at IP 172.17.0.2 and PLC 1 at
IP 172.17.0.5 for a duration of 5 minutes. The attack starts when the condition
IW0 reaches or exceeds 80.

Figure 7.4: Attack tool configuration

Illustrated in Figure 7.5, the genuine physical process is depicted in the bot-
tom right, while the values read from the actual PLC are displayed on the tool
at the top right.

In Figure 7.6, what is presented to the HMI operator is depicted. The level
61 is falsified, originating from the previous capture. As illustrated at the bot-
tom right, the authentic level of the tank is 41. Displaying that the attack is
successful.
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Figure 7.5: System under attack: real process

Figure 7.6: System under attack: replaying old register values





Chapter 8
DISCUSSION, CONCLUDING
REMARKS AND FUTURE WORK

Our investigation into the deployment and analysis of HoneyICS, a high-
interaction, physics-aware honeynet for Industrial Control Systems (ICS), has
yielded valuable insights into the effectiveness of honeynet and honeypots con-
figurations, attack patterns, and potential avenues for future research.

8.1 Discussion

8.1.1 Honeynet Deployment

Our analysis of HoneyICS deployment revealed several key lessons for optimizing
honeynet effectiveness. Notably, different industrial protocols exhibited varying
levels of attractiveness based on factors such as protocol vulnerabilities, indus-
trial domain, and geographic location. To thoroughly explore these dimensions,
deploying similar honeynets in diverse geographic regions supporting different
industrial protocols becomes essential. Interestingly, exposing an HMI in the
same IP alongside a PLC may reduce attractiveness for actors interacting with
the honeynet. Most interactions and exploits targeting HMIs were observed when
the HMI was the sole exposed device, suggesting that actors in the IT domain
may not prioritize targeting OT/Scada IPs.

8.1.2 Attack Patterns

The analysis of IT interactions highlighted a prevalence of automated and in-
discriminate attacks, showcasing a ’blind’ approach where adversaries exploit
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well-known vulnerabilities across diverse systems. In contrast, OT interactions
displayed a more targeted and sophisticated nature. Actors engaged in OT inter-
actions demonstrated a higher level of knowledge, employing utilities like Nmap
for information gathering, indicative of potential development of refined attack
patterns. Differentiation between IT and OT interactions emphasizes the need
for a multi-faceted defense approach, tailoring responses to the observed level
of sophistication.

8.1.3 Ethical Considerations

To address ethical concerns, strict controls have been implemented in HoneyICS,
including firewall rules, strong authentication for the management dashboard,
and limitations on egress traffic. The honeypot is designed to simulate realistic
scenarios without exposing sensitive data or allowing interactions with cross-
domain destinations.

8.1.4 Security Measures

While the high-interaction requirement introduces potential security risks, the
containerization of HoneyICS components, namespace isolation, and firewall
rules mitigate these concerns. Access to the management dashboard is regulated
and protected through strong authentication, further securing the honeypot en-
vironment. Egress traffic is restricted to prevent unauthorized communication.

8.2 Concluding Remarks

In conclusion, our work provides valuable insights into effective honeynet de-
ployment, attack patterns, and the nuanced differences between IT and OT
interactions. The study underscores the importance of tailored defense strate-
gies based on the nature of interactions observed. The deployment of HoneyICS
and the analysis of resulting data contribute to the broader understanding of
cybersecurity challenges in the realm of Industrial Control Systems.

8.3 Future Work

Moving forward, there are several promising directions for future research that
could significantly enhance the capabilities and impact of HoneyICS. The inte-
gration of additional threat intelligence data could enhance the identification of
attacker tactics and techniques, providing a more comprehensive understanding
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of the attack process. This could involve developing more sophisticated algo-
rithms to correlate observed behaviors with known threat actors or emerging
attack patterns. Further research is needed to explore how attackers traverse
between IT and OT networks, identifying combinations of IT and OT interac-
tions. This could involve developing more complex honeypot architectures that
simulate both IT and OT environments, allowing for a deeper understanding of
lateral movement techniques.

Leveraging lightweight simulation methods for physical processes is crucial
for expanding the realism of HoneyICS. This could include developing more
sophisticated models that can simulate complex industrial processes in real-
time, potentially incorporating machine learning techniques to adapt to different
scenarios. Supporting other industrial network protocols, such as OPC-UA and
Ethernet/IP, is critical for expanding the capabilities of HoneyICS. This would
allow the system to attract a wider range of potential attackers and provide
insights into protocol-specific vulnerabilities.

As we consider larger deployments, it’s important to investigate potential
scalability limitations of HoneyICS. Future work could focus on optimizing the
system architecture to handle a significantly larger number of simulated devices
and more complex attack scenarios, potentially leveraging cloud technologies or
distributed computing approaches. Incorporating more sophisticated attacker
behavior models could provide deeper insights into adversary tactics. This might
involve developing machine learning algorithms that can predict attacker inten-
tions based on observed behaviors, or creating more nuanced simulations of
different attacker profiles.

Exploring advanced data analysis and visualization techniques could help
extract more valuable insights from the vast amounts of data collected by Hon-
eyICS. This could include applying big data analytics, developing new metrics
for quantifying attack sophistication, or creating more intuitive visualization
tools for security analysts. Investigating the potential for applying HoneyICS
principles beyond ICS could significantly broaden the impact of this research.
Future work could explore how the core concepts of HoneyICS could be adapted
to secure other critical infrastructure systems, such as smart grids, transporta-
tion systems, or healthcare networks.

Research into seamlessly integrating HoneyICS with existing security infor-
mation and event management (SIEM) systems and security orchestration, au-
tomation, and response (SOAR) platforms could enhance its practical value for
organizations. As honeypot technologies become more sophisticated, there’s a
need for ongoing research into the ethical and legal implications of their deploy-
ment, particularly in critical infrastructure contexts.

By pursuing these research directions, we can continue to advance the state-
of-the-art in ICS security, develop more robust defense strategies, and ultimately
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contribute to the protection of critical infrastructure against evolving cyber
threats.

8.4 Extensions

HoneyICS, initially based on software PLCs, can support real PLCs (hardware)
with minimal modifications, expanding the applicability of the framework. Ex-
tensions to support additional industrial network protocols, such as DNP3, and
the adoption of lightweight simulation methods for physical processes, such as
finite state machines or pre-recorded sensor data playback, are planned. Fur-
thermore, integrating the snap7 library for S7comm server implementation and
SNMP protocol support are envisioned extensions to enhance HoneyICS capa-
bilities. HoneyICS can further enhance its realism and introduce an additional
attack surface by integrating APIs capable of dynamically updating the web
page exposed on port 8080 TCP for the PLCs. Currently, the web page is static
HTML; however, incorporating an API gateway that interfaces with OpenPLC
core functions would not only make the honeypots more believable but also
expand the potential attack vectors.
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detection and signature generation with ICS honeypots. In IEEE/IFIPNOMS, pages
1227–1232, 2016.

137. Emmanouil Vasilomanolakis, Shreyas Srinivasa, Carlos Garcia Cordero, and Max
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