
University of Verona
Department of Computer Science

Graduate School of Natural Science and Engineering

Doctoral Program in Computer Science

Cycle 35

Decomposition of sequential and concurrent
models

S.S.D. ING-INF/05

Coordinator:
Prof. Ferdinando Cicalese

Tutor:
Prof. Tiziano Villa

Doctoral Student:
Dott. Viktor Teren

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License, Italy. To read a
copy of the licence, visit the web page:

http://creativecommons.org/licenses/by-nc-nd/3.0/

b Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may
do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

e NonCommercial — You may not use the material for commercial purposes.

d NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

Decomposition of sequential and concurrent models— Viktor Teren
PhD Thesis

Verona, 28 dicembre 2023

http://creativecommons.org/licenses/by-nc-nd/3.0/

Abstract

Finite State Machines (FSMs), transition systems (TSs) and Petri nets (PNs) are
important models of computation ubiquitous in formal methods for modeling systems.
Important problems involve the transition from one model to another. This thesis ex-
plores Petri nets, transition systems and Finite State Machines decomposition and op-
timization. The first part addresses decomposition of transition systems and Petri nets,
based on the theory of regions, representing them by means of restricted PNs, e.g., State
Machines (SMs) and Free-choice Petri nets (FCPNs). We show that the property called
“excitation-closure" is sufficient to produce a set of synchronized Petri nets bisimilar
to the original transition system or to the initial Petri net (if the decomposition starts
from a PN), proving by construction the existence of a bisimulation. Furthermore, we
implemented a software performing the decomposition of transition systems, and re-
ported extensive experiments. The second part of the dissertation discusses Multiple
Synchronized Finite State Machines (MSFSMs) specifying a set of FSMs synchronized
by specific primitives: Wait State and Transition Barrier. It introduces a method for con-
verting Petri nets into synchronous circuits using MSFSM, identifies errors in the initial
approach, and provides corrections.

I

Abstract (italian)

Le macchine a stati finiti (FSM), sistemi di transizioni (TS) e le reti di Petri (PN) sono impor-
tanti modelli formali per la progettazione di sistemi. Un problema fodamentale è la conversione
da un modello all’altro. Questa tesi esplora il mondo delle reti di Petri e della decomposizione di
sistemi di transizioni. Per quanto riguarda la decomposizione dei sistemi di transizioni, la teoria
delle regioni rappresenta la colonna portante dell’intero processo di decomposizione, mirato
soprattutto a decomposizioni che utilizzano due sottoclassi delle reti di Petri: macchine a stati e
reti di Petri a scelta libera. Nella tesi si dimostra che una proprietà chiamata “chiusura rispetto
all’eccitazione" (excitation-closure) è sufficiente per produrre un insieme di reti di Petri la cui
sincronizzazione è bisimile al sistema di transizioni (o rete di Petri di partenza, se la decomposi-
zione parte da una rete di Petri), dimostrando costruttivamente l’esistenza di una bisimulazione.
Inoltre, è stato implementato un software che esegue la decomposizione dei sistemi di transi-
zioni, per rafforzare i risultati teorici con dati sperimentali sistematici. Nella seconda parte della
dissertazione si analizza un nuovo modello chiamato MSFSM, che rappresenta un insieme di
FSM sincronizzate da due primitive specifiche (Wait State - Stato d’Attesa e Transition Barrier
- Barriera di Transizione). Tale modello trova un utilizzo significativo nella sintesi di circuiti
sincroni a partire da reti di Petri a scelta libera. In particolare vengono identificati degli errori
nell’approccio originale, fornendo delle correzioni.

II

Acknowledgments

I want to express my deep gratitude for the support and encouragement that I received during
my PhD journey. Without the guidance, patience, and expertise of many who supported me,
completing this thesis would not have been possible.

I am profoundly thankful to my supervisor, Tiziano Villa, whose expertise, understanding,
and especially patience were fundamental during these years and significantly enriched my
experience. I extend my deepest gratitude to Jordi Cortadella, my supervisor at Universitat
Politècnica de Catalunya. His profound knowledge and guidance were not only crucial during
my time there, but also significantly influenced my work before and after my stay abroad. I also
extend my gratitude to the reviewers, Alex Yakovlev and Luciano Lavagno, for their insightful
and valuable suggestions during the thesis revision. Special thanks to Valentina Napoletani for
her contributions to my research on MSFSM.

I express my sincere thanks to the University of Verona for providing an excellent research
environment and financial support during my Ph.D. studies.

Despite facing the challenges of remote work due to the Covid-19 pandemic for a significant
portion of my Ph.D., I am grateful to the wonderful colleagues for all the fun we had in the last
years.

My deepest gratitude goes to my mother for her unwavering support and continuous encour-
agement throughout my years of study and the thesis-writing process. This achievement would
not have been possible without her. Thank you. I also want to thank other family members, in
particular my brothers, for believing in me during these years.

I extend my thanks to my friends. Michael for for having been my moral support for a very
long time. Nadir, Victor, and Derrick for the fun times we shared. Christian, thank you for
our endless and stimulating dialogues. I also want to express my appreciation to Lia, Diana,
Francesca, and many others.

Lastly, I want to acknowledge my roommate and friend, Milana, for bringing brightness and
enthusiasm into my life during my stay in Barcelona.

With heartfelt thanks,
Viktor

III

Contents

Part I Introduction and preliminaries

1 Introduction . 3
1.1 Practical application of Petri net decomposition . 3
1.2 Overview . 8

2 Preliminaries . 13
2.1 Finite State Machines and Transition systems . 13
2.2 Petri Nets and Signal Transition Graphs . 15
2.3 Region theory and Petri net synthesis . 19

2.3.1 Definitions and conversion flow overview . 19
2.3.2 Petri net synthesis . 21
2.3.3 Minimal pre-regions generation . 21
2.3.4 Label Splitting . 24
2.3.5 Redundant pre-regions removal . 25
2.3.6 Minimal pre-regions merging . 26

2.4 Binary Decision Diagram (BDD) . 26

Part II Decomposition based on regions theory

3 Decomposition into sets of synchronizing PNs . 31
3.1 Evolution of the decomposition . 31
3.2 Decomposition based on theory of regions . 32
3.3 Composition of PNs and equivalence to the original TS/PN 34

3.3.1 Safe composition of unsafe PNs . 34
3.3.2 Proof of Theorem 4 . 37

3.4 What happens if excitation-closure is not satisfied? . 39
3.5 What about the decomposition into sets of synchronizing Marked Graphs? 40

4 Transition System decomposition into sets of synchronizing SMs 43
4.1 Sequential SM search . 44

4.1.1 Generation of a set of SMs with excitation closure . 45
4.1.2 Removal of the redundant SMs . 47
4.1.3 Merge between regions preserving the excitation closure 48

5 Transition System decomposition into sets of synchronizing FCPNs 53
5.1 Overview . 53
5.2 Sequential FCPN search . 55
5.3 Decomposition into k FCPNs simultaneously . 56

5.3.1 Example of k FCPN simultaneous decomposition . 57
5.4 Additional constraint: safeness for each FCPN . 61
5.5 Decomposition optimization . 62
5.6 Decomposition into a set of synchronizing ACPNs . 65

6 Experimental results . 67
6.1 SMs . 67

6.1.1 Creation of a new mixed strategy . 71
6.1.2 Simultaneous SM search . 72
6.1.3 SMs without guarantee the safeness of single components 73

6.2 FCPNs . 73
6.2.1 FCPNs without guarantee the safeness of single components 73
6.2.2 Safe FCPNs . 75
6.2.3 Reset of the learned clauses . 79

Part III Multiple Synchronized FSMs

7 MSFSM model . 83
7.1 Other models of concurrency . 85

7.1.1 Communicating Sequential Processes (CSP) . 85
7.1.2 Synchronous Languages and their representations . 86
7.1.3 Why MSFSMs? . 88

7.2 Creation of synchronous circuits with MSFSMs . 89
7.2.1 PN to MSFSM transformation flow . 90
7.2.2 Original models with the addition of the clock . 94

7.3 Synchronous elastic circuits . 98
7.4 MSFSM to PN conversion flow . 98

7.4.1 MSFSM to S-component mapping . 98
7.4.2 S-component merging to PN conversion . 99

7.5 The role of the Wait State synchronization primitive . 101
7.5.1 Issues with the MSFSM to PN conversion flow . 101
7.5.2 Revised Wait State in the MSFSM to PN conversion flow 101

VI

7.5.3 Self-loops in the PN to MSFSM conversion flow . 103
7.6 A simple use case . 104

Part IV Conclusion

8 Final considerations . 109
8.1 Main contributions of this thesis . 109
8.2 Considerations about the decomposition based on regions theory 109
8.3 Considerations about MSFSM model . 110
8.4 PN decomposition: MSFSM vs. Regions Theory . 111

References . 115

List of Figures . 119

List of Tables . 123

List of Acronyms . 125

VII

Part I

Introduction and preliminaries

1

Introduction

In the realm of system design, verification, and synthesis, Petri nets have emerged as a pivotal
model, supporting a wide range of methodologies and applications. Their graphical nature,
combined with their mathematical rigor, offers a unique blend of intuitiveness and precision,
making them an invaluable tool for capturing and analyzing the dynamic behavior of systems.
The ability of Petri nets to represent concurrency, synchronization, and conflicts gives them a
distinct advantage in modeling complex systems, especially in today’s era, where parallelism
and interaction are at the heart of most technological advancements.

The significance of Petri nets extends beyond providing specifications; they serve as a foun-
dation for various algorithms and techniques aimed at ensuring the correctness, reliability, and
efficiency of systems. From the early stages of design, when conceptual models are crafted,
to the advanced phases of verification and synthesis, when the system’s behavior is rigorously
tested and optimized, Petri nets play a crucial role in guiding the process and ensuring its suc-
cess.

Recognizing the profound influence and adaptability of Petri nets in these domains, I focu-
sexd this thesis on the decomposition of Petri nets and transition systems. For those who are not
familiar with Petri nets and transition systems, please read the chapter on preliminaries. One
may ask: “Why is decomposition very important?” The reasons are numerous: e.g., simpler
analysis and optimization of single components and reusability. If we start the decomposition
from a transition system, the identification of parallel operations is also done automatically.

1.1 Practical application of Petri net decomposition

To better grasp the relevance of decomposition, let us delve into an example: a car-producing
factory. Fig. 1.1 represents the initial sketch with a transition system representing the main flow
for the production of only one car and with revenues that match the expenses for production
and shipment: a comprehensive representation for a high-level description of a sequential flow.
Increasing the level of detail, we have the transition system in Fig. 1.2, with the representa-
tion of different parts and materials. Here, we can see how the number of states explodes since
we have some highly concurrent parts, indeed, the PN representation perfectly fits in this case
(Fig. 1.3). In particular, we can avoid a huge state explosion if we adopt the model to represent

4 1 Introduction

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

Produce materials

Assemble parts

Check quality

Quality control passed
Quality control not passed

Disassemble parts

Paint the car

Check painting quality

Painting quality check passed
Painting quality check not passed

Remove the painting

Repair the painting

Sell the car

Ship the car

Fig. 1.1: Transition system representing a car manufacturing system with a low level of detail.

the concurrent manufacture of n cars. Thanks to the PN structure, it is sufficient to increase the
number of initial tokens. If we further expand our model with new features that expand the size
of the PN, like: n different types of cars, different painting colors, the allocation of earnings
from car sales to reward investors and expand the factory, then the PN would become quite dif-
ficult to analyze. To address this problem of state explosion, the decomposition of the Petri net
would be essential. Fig. 1.4 represents a decomposition, divided into the different views of the
manufacturing process, with the possibility of easily modifying or expanding different aspects
of the entire system, without having to directly understand the PN representing the overall be-
havior with an intricate “spaghetti" structure. The components derived from the decomposition
are synchronized following the rules of parallel composition “||" of reachability graphs1: given
two Petri nets with a common label, the two PNs can evolve independently until they reach the
common event, which should fire at the same time in both PNs (a formal description is provided
in the chapter on preliminaries). Looking at the decomposition result in Fig. 1.4(a), we can see
a simplified flow for the production and shipment of a generic car. Fig. 1.4(b) shows the parts
composition of a “Model 1" car. As mentioned previously, analysis becomes easier; by reusing
parts, we can add a new car model by slightly changing the PN representing the composition
of the “Model 1" car, while keeping unchanged the other PNs, if we already modeled the pro-
duction of the required car components. Fig. 1.4(c) shows the color configurability for each car
model, isolating this aspect from the others, which could be considered as part of the user con-
figuration experience. Figs. 1.4(d) and 1.4(e) describe the parts production processes. Fig. 1.4(f)
represents the resource management aspect, integrating also the activation of “Energy supply"

1 The reachability graph of a Petri net is a directed graph, G = (V, E), where each node, v ∈ V, represents a
reachable marking and each edge, e ∈ E, represents a transition between two reachable markings. The set of
reachable markings can be infinite. [1]

1.1 Practical application of Petri net decomposition 5

s0

s1 s2

s3

s4 s5

s6

s7

s8

s9

s10

s11 s12

s13

s14

s15

s16

s17

s18

s19s20

s21

s22

s23

m1

m1

m1

m1

m1

m1

m2

m2 m2

m2 m2

m2

m3

m3

m3

m3

m3

p1

p1

p1

p2

p2

p2

p2

p2

Assemble car

Check quality

Quality control passed

Quality control not passed

Fix

Paint the car

Check painting quality

Painting quality control passed

Painting quality control not passed

Remove the painting

Repair the painting

Sell the car

Ship the car

Fig. 1.2: Transition system representing a car manufacturing system with a higher level of detail, representing the
production of single materials and car parts where m1, m2 and m3 represent the production of three different materials
and p1 and p2 represent the production of car parts.

6 1 Introduction

Resource distribution

Produce m1

Produce m2

Produce m3

Produce p2Produce p1

Assemble car

Check quality

Quality control passed

Quality control not passed

Fix

Paint the car

Check painting quality

Painting
check not

passed

Remove the
painting

Repair the
painting

Check painting quality passed

Sell the car

Ship the car

Fig. 1.3: Petri net representation of the car factory of Fig. 1.2.

1.1 Practical application of Petri net decomposition 7

Assemble car
Quality control

passed

Painting quality
control passed

Sell
Ship

(a) Base production flow for a generic
car

Model 1

p1 p2

Assemble car

(b) Part composition of “Model 1" car

Model 1
Model 2

Model 3

Color 3Color 1
Color 2

Paint

(c) Painting color distribution for different car mod-
els

m1 m2

p1

(d) Production of car part p1

m3 m4

p2

(e) Production of car part p2

Sell

ShipPay shares

Resource
distribution

m1 m2 m3 m4
Energy
supply

(f) Resource distribution for the production of “Model 1" car

Check
quality

Quality
control
passed

Quality control not
passed

Fix

(g) Quality control process

Paint

Check
painting
quality

Remove the
painting

Painting
check not

passed

Repair
the

painting

Painting quality control passed

(h) Painting quality control

Fig. 1.4: Petri net decomposition representing an extended version of the car factory in Fig. 1.3.

8 1 Introduction

Model 1

Assemble car

m1

m2

m3

m4

p1 p2

Fig. 1.5: Petri net representing the composition of PNs in Figs. 1.4(b), 1.4(d) and 1.4(e).

transition, to be synchronized with an additional PN managing the energy supply in all parts of
the factory. Lastly, Figs. 1.4(g) and 1.4(h) represent two quality control processes.

Looking at the decomposition result, we can easily find an analogy with relational databases:
usually instead of creating a database with only one table containing everything, the informa-
tion is split into different tables searching to minimize the information redundancy which is
inevitable for a correct database design. PN decomposition is similar: instead of keeping a sin-
gle PN containing everything, we perform a decomposition. The size of the decomposition is
larger than the original PN because of the inevitable redundancy necessary to synchronize the
derived components. From the other side, like in relational databases, the entire picture results
more comprehensible; performing changes, and gathering information with respect to a certain
aspect results easier, since we can synchronize only the PNs of our interest to gather high-level
information, exactly as in case of relational databases. If everything is working, a further check
could be done on the PN representing the composition of all components. As long as we com-
pose a couple of small PNs, the operations could be done manually, but when all the derived
components are involved, it is time to adopt a software for the verification process. Looking
at Fig. 1.4 suppose that we want a detailed flow of the steps to assemble a car of “Model 1",
considering only the materials used for the car part production: it is sufficient to combine the
PNs of Figs. 1.4(b), 1.4(d) and 1.4(e). The result can be observed in Fig. 1.5. In this case we
can appreciate the possibility to keep only the meaningful information, removing everything
unnecessary in the current circumstances.

1.2 Overview

The recently discussed example underscores the critical role of the Petri net decomposition in
Business Process Management (BPM)2, as evidenced by multiple studies, especially those of
Van Der Aalst [3–7], calling BPM the “Killer App" for Petri nets [8]. A concrete application
that should benefit from PN decomposition in BPM is process mining [9–14]. The aim is to

2 Business process management (BPM) is a discipline that uses various methods to discover, model, analyze, mea-
sure, improve and optimize business processes. A business process coordinates the behavior of people, systems,
information, and things to produce business outcomes in support of a business strategy. Processes can be struc-
tured and repeatable, or unstructured and variable. Though not required, technologies are often used with BPM.
BPM is the key to aligning IT (Information technology) / OT (Operational technology) investments with business
strategy. [2]

1.2 Overview 9

mine comprehensive Petri nets for a better visualization of spaghetti models obtained by pro-
cess mining. Creating a transition system from logs allows one to better understand a process,
giving also the possibility to parallelize the latter. Say that we mined some traces and repre-
sented them as a transition system, then the decomposition of the transition system (presented
in the first part of my thesis) splits the TS as different concurrent flows, which can be analyzed
separately. Furthermore, since each derived PN is concurrent with the others, parallelization of
concurrent processes becomes easier. In most cases, the decomposition starts from a Petri net
that represents the whole behavior of the system [9–11]. Instead of creating a PN from event
logs, we can easily create a transition system [15, 16] and directly decompose it with the soft-
ware that I created during my Ph.D.: “Seto"3 [17]: a C++ based software, incorporating different
external libraries like networkx [18] for graph analysis, used to calculate Maximal Independent
Sets (MIS)4, PBLib [19] allowing the resolution of the Boolean satisfiability problem (SAT)5

constraints, Petrify [20] for further synthesis analysis, mcrl2 [21] for bisimulation check, and
finally other utilities (e.g., for the export or import of files compatible with graphviz6 [22] open
source software, used for PN/LTS visualization).

The purpose of the decomposition algorithms provided by our software is not to replace
the current methods, since the decomposition result does not always give additional useful data
with respect to monolithic models, but often it does. It is a new tool that should be used in
synergy with established process mining techniques, without replacing them. The application
of the proposed decomposition algorithms to process mining is still an open question, left as a
suggestion for future research.

The minimization process has substantial importance in enhancing efficiency and clarity
in various domains, particularly in process mining and circuit design. In the field of process
mining, minimization of PN decompositions is crucial. Process mining inherently deals with
complex, real-world data and event logs, translating them into comprehensive models. As these
models often represent intricate system behaviors, they can become extremely convoluted. By
minimizing PN decompositions, we can distill these complex structures into more manageable,
simplified forms without losing essential information. This practice not only makes the models
easier to understand and analyze, but also significantly reduces computational overhead, facili-
tating more efficient data processing and analysis. Additionally, minimized PNs help to identify
and eliminate redundancies and inefficiencies within the system, providing clearer insight into
process optimization opportunities.

However, in the realm of circuit design, the importance of minimization cannot be over-
stated. The design and operation of electronic circuits require high precision, efficiency, and
reliability. In this thesis, the MSFSM7 model [23–25] was analyzed with the purpose of de-

3 Available at https://github.com/viktorteren/Seto.
4 Given an undirected graph G = (V, E), an independent set is a subset of nodes U ⊆ V such that no two nodes in

U are adjacent. An independent set is maximal if no node can be added without violating independence.
5 Boolean Satisfiability or simply SAT is the problem of determining if a Boolean formula is satisfiable or unsatis-

fiable. Satisfiable: If the Boolean variables can be assigned values such that the formula turns out to be true, then
we say that the formula is satisfiable, otherwise it is unsatisfiable, also called UNSAT.

6 Available at https://graphviz.org/.
7 Multipe Synchronized Finite State Machine

https://github.com/viktorteren/Seto
https://graphviz.org/

10 1 Introduction

signing synchronous circuits. By engaging in the minimization of this structure, designers can
achieve more streamlined, cost-effective, and efficient circuit designs. This reduction directly
impacts on the physical space required for hardware, material costs, and energy consumption,
while maintaining the functional integrity and performance of circuits. In addition, simplified
models are more accessible for future troubleshooting and scalability, making them preferable
in rapidly evolving technological applications.

In both contexts, the underlying goal remains consistent: to enhance the clarity, efficiency,
and maintainability of complex systems. Whether by facilitating a detailed analysis of the data
obtained by process mining or by optimizing the physical and functional aspects of circuit
design, the minimization of PN decompositions and MSFSMs serves as a foundational strategy
in managing complexity across disciplines.

This thesis is structured into two primary parts, each focusing on distinct but interconnected
aspects of Petri nets and their applications. The initial segment delves into the decomposition
of transition systems and Petri nets into a synchronous product of Petri nets, applying specific
constraints. The constraints most frequently analyzed concern various subclasses of Petri nets,
notably State Machines (SMs) and Free-Choice Petri nets (FCPNs) (see the preliminaries). The
decomposition process is based on the theory of regions [26], a cornerstone of the Petri net
synthesis for decades. This approach not only facilitates a versatile decomposition process,
but also enables to prove the existence of a bisimulation between the synchronized Petri nets
derived and the original LTS or Petri net. This method proves to be more robust compared to
the relations between languages, as documented in previous studies [27].

One notable advantage of this methodology is the simplification that it brings to the visual-
ization and analysis of highly complex Petri nets, especially Free-choice Petri nets. These nets,
characterized by their structural properties, simplify the representation by capturing essential el-
ements like causality, choice, and concurrency, thus avoiding convoluted intertwined represen-
tations. This clarity in visualization, coupled with the ability to depict more complex sequential
behaviors than standard State Machines, enhances their analytical accessibility, keeping the
complexity moderate since several important problems can be solved in polynomial time [28, p.
403]. In our pursuit of efficiency and minimality, the proposed flow inherently incorporates dual
minimization procedures (removal of redundant components and minimization of those remain-
ing). Although some redundancy can aid component readability, excessive repetition can clutter
the representation with superfluous information. Our strategy prioritizes minimality, accepting
slightly more challenging readability to avoid unnecessary redundancy.

The subsequent part of the thesis transitions to the exploitation of the MSFSM model, en-
abling the construction of synchronous circuits from Petri nets through the continued applica-
tion of PN decomposition. Indeed, the decomposition of Petri nets is ready to make significant
contributions to the fields of circuit analysis and design. The MSFSM model is designed to
initiate a polynomial synthesis flow originating from Free-Choice or Asymmetric-Choice Petri
nets (ACPNs)8. This phase of research led to the identification of an inconsistency within the
established model, leading to the suggestion of a solution that currently stands as a conjecture.

8 For ACPN definition see the preliminaries chapter.

1.2 Overview 11

First part of the thesis Second part of the thesis

Synchronizing
PNs

TS

PN
prova
prova

STG labeled
FCPN/ACPN MSFSM

Interacting
FSMs

Synchronous
circuit

Theory of regions

Reachability
Graph

extraction Synchronization
primitive extracton

PN to MSFSM
transformation

MSFSM to PN
transformation

TS decomposition

Synchronous
product of

Reacahability
graphs

RTL description of
MSFSM

Fig. 1.6: Relationships among the models discussed in this thesis.

Complementing the text, Fig. 1.6 offers a concise visual representation of the multifaceted
flows of the thesis. The left half of the picture highlights the TS decomposition, integral to
the research, within a broader flow that encompasses the reachability graph extraction from a
Petri net. Interestingly, the decomposition process is reversible. By executing the synchronous
product of the reachability graphs of the synchronizing Petri nets, we can revert to a bisimilar
transition system (potentially distinct from the original). Subsequently, the theory of regions
facilitates the derivation of a singular, bisimilar Petri net. The figure’s right half illustrates the
two principal transformation flows pertinent to the second part of the thesis. The main flow
initiates from an STG9 labeled ACPN or FCPN, culminating in a synchronous circuit, while the
alternative flow merges a set of interacting FSMs into a coherent Petri net.

9 A Signal Transition Graph (STG) G = (V, E) is an interpreted subset of marked graphs, i.e. Petri net such that
each place has exactly one incoming and one outgoing arc, wherein each transition represents either the rising
(x+) or falling (x−) of a signal x which has signal levels high and low. V is the set of transitions, and E is the set
of edges corresponding to the places of the underlying marked graph.

2

Preliminaries

This chapter provides the background material for the thesis.

2.1 Finite State Machines and Transition systems

Definition 1 (FSM). An FSM, M, is a five-tuple, M = (I,O, S , s0, δ, λ), where I is a finite,
nonempty set of inputs, O is a finite, nonempty set of outputs, S is a finite nonempty set of states,
s0 is the initially active state, δ: I × S → S is the next state function, and λ: I × S → O (for a
Mealy machine), or λ: S → O (for a Moore machine) is the output function.

An example of FSM is represented in Fig. 2.1.

Definition 2 (TS/LTS [26]). A labeled transition system (LTS, or simply TS) is defined as a
4-tuple (S , E, ∆, s0) where:

• S is a non-empty set of states,
• E is a set of events,
• ∆ ⊆ S × E × S is a transition relation,
• s0 ∈ S is an initial state.

p0

p1 p2

p3

a/x+

c/x− b/y+

d/y−

b/y+

d/y− a/x+

c/x−

(a)

x = 0
y = 0

p0

x = 1
y = 0

p1
x = 0
y = 1

p2

x = 1
y = 1

p3

a

c b

d

b

d a

c

(b)

Fig. 2.1: Two different FSM representations of the same system.

s0

s7

s9 s1

s2 s8

s4

s3s6

s5

a

b
c

b
c

d
a

fe

e
fd

Fig. 2.2: Example of transition
system.

14 2 Preliminaries

Henceforth, s
e
→ s′ will denote the fact that (s, e, s′) ∈ ∆. Every transition system is assumed

to meet the following properties:

• Self-loops are not admitted, i.e., s
e
→ s′ =⇒ s , s′.

• Each event has at least one occurrence, i.e., ∀e ∈ E : ∃s
e
→ s′.

• Every state s ∈ S is reachable from the initial state, i.e., there is a sequence s0
e1
→ s1, s1

e2
→

s2, . . . , sn−1
en
→ sn such that sn = s.

• It is deterministic, i.e., s
e
→ s′, s

e
→ s′′ =⇒ s′ = s′′.

An example of a transition system can be seen in Fig. 2.2
We denote the initial state of FSMs by a double circle (Fig. 2.1) and the initial state of

transition systems by a pointing arrow (Fig. 2.2).

Definition 3 (Isomorphism). Two transition systems TS1 = (S 1, E,T1, s0,1) and TS2 = (S 2, E,
T2, s0,2) are said to be isomorphic (i.e., there is an isomorphism between TS1 and TS2) if there
is a bijection bS : S 1 → S 2, such that:

• bS (s0,1) = s0,2,
• ∀(s, e, s′) ∈ T1: (bS (s), e, bS (s′)) ∈ T2,
• ∀(s, e, s′) ∈ T2: (b−1

S (s), e, b−1
S (s′)) ∈ T1.

Definition 4 (Bisimulation). Given two transition systems TS1 = (S 1, E,T1, s0,1) and TS2 = (S 2,

E,T2, s0,2), a binary relation B ⊆ S 1 × S 2 is a bisimulation, denoted by TS1 ∼B TS2, if (s0,1,

s0,2) ∈ B and if whenever (p, q) ∈ B:

• ∀(p, e, p′) ∈ T1 : ∃q′ ∈ S 2 such that (q, e, q′) ∈ T2 and (p′, q′) ∈ B,
• ∀(q, e, q′) ∈ T2 : ∃p′ ∈ S 1 such that (p, e, p′) ∈ T1 and (p′, q′) ∈ B.

Two TSs are said to be bisimilar if there is a bisimulation between them.

The operation Ac removes from a TS all the states that are not reachable or accessible from
the initial state and all the transitions attached to them.

Definition 5 (Synchronous product). Given two transition systems TS1 = (S 1, E1,T1, s0,1)
and TS2 = (S 2, E2, T2, s0,2), the synchronous product is defined as TS1||TS2 = Ac(S , E1 ∪

E2,T, (s0,1, s0,2)) where S ⊆ S 1 × S 2, (s0,1, s0,2) ∈ S , T ⊆ (S 1 × S 2) × E × (S 1 × S 2) is
defined as follows:

• if a ∈ E1 ∩ E2, (s1, a, s′1) ∈ T1 and (s2, a, s′2) ∈ T2 then ((s1, s2), a, (s′1, s
′
2)) ∈ T,

• if a ∈ E1, a < E2 and (s1, a, s′1) ∈ T1 then ((s1, s2), a, (s′1, s2)) ∈ T,
• if a < E1, a ∈ E2 and (s2, a, s′2) ∈ T2 then ((s1, s2), a, (s1, s′2)) ∈ T,
• nothing else belongs to T .

The synchronous product is associative, so we can define the product of a collection of n
TSs: TS1||TS2|| . . . ||TSn = ((TS1||TS2) . . .)||TSn; as an alternative, we can directly extend the
previous definition to more than two TSs.

An example of a synchronous product is shown in Fig. 2.3.

2.2 Petri Nets and Signal Transition Graphs 15

p1

p2 p3b

yd

z

(a) TS1

p4

p5 p6

x

y

z

(b) TS2

p1 p4

p2 p4 p1 p5

p2 p5

p3 p6b

x
d

x b

d
y

z

(c) TS1||TS2

Fig. 2.3: Example of synchronous product.

2.2 Petri Nets and Signal Transition Graphs

This section introduces the relevant terminology on Petri nets. For a deeper insight into them,
we refer to [29].

Definition 6 (Ordinary Petri net [29]). An ordinary Petri net is a 4-tuple, N = (P,T, F,M0)
where:

• P = {p1, p2, ..., pm} is a finite set of places,
• T = {t1, t2, ..., tn} is a finite set of transitions,
• F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),
• M0: P→ {0, 1, 2, 3, ...} is an initial marking,
• P ∩ T = ∅ and P ∪ T , ∅.

The previous definition corresponds to what is known as ordinary Petri net (no weights on
the arcs) [29]. In this thesis, all Petri nets are assumed to be ordinary.

Definition 7 (Pre-set/post-set). For any x ∈ P ∪ T, •x = {y | (y, x) ∈ F} is called the pre-set of
x, and x• = {y | (x, y) ∈ F}, is called the post-set of x.

Definition 8 (Firing rule). Let N = (P,T, F,M0) be a Petri net. A transition t ∈ T is enabled in
marking M, represented as M[t⟩, if M(p) > 0,∀p ∈ •t. If t is enabled in M, then t can be fired

p0 p1

p2 p3

t1

t2

t3

Fig. 2.4: Petri net example

(p0, p1)

(p2, p1) (p0, p3)

(p2, p3)

t1
t3

t3 t1t2

Fig. 2.5: Reachability graph of Petri net in Fig. 2.4.

16 2 Preliminaries

leading to another marking M′, denoted as M[t⟩M′, such that:

M′(p) =

M(p) − 1 if p ∈ •t\t•

M(p) + 1 if p ∈ t•\•t

M(p) otherwise

We call [M⟩ the set of reachable markings from M by firing sequences of enabled transitions.

Definition 9 (Bounded Petri net). A Petri net N = (P,T, F,M0) is said to be k-bounded or
simply bounded if the number of tokens in each place does not exceed a finite number k for any
marking reachable from M0, i.e., M(p) ≤ k for every place p and every marking M ∈ [M0⟩.

Definition 10 (Safe Petri net). A Petri net N = (P,T, F,M0) is said to be safe if it is 1-bounded.

Definition 11 (Reachability graph [30, p. 20]). Given a safe Petri net N = (P, T, F,M0),
the reachability graph of N is the transition system RG(N) = ([M0⟩,T, ∆,M0) defined by
(M, t,M′) ∈ ∆ if M ∈ [M0⟩ and M[t⟩M′.

Definition 12 (State Machine, SM [29]). A state machine is a Petri net N = (P,T, F,M0) such
that each transition t ∈ T has exactly one incoming and one outgoing arc, i.e., |•t| = |t•| = 1.

An SM with only one token in the initial marking cannot model concurrency, but it can
model choice.

SM MG

FC

EFCACPN

PN = Petri Net
AC = Asymmetric Choice

EFC = Extended Free Choice

FC = Free Choice

SM = State Machine
MG =Marked Graph

Fig. 2.6: PN hierarchy.

2.2 Petri Nets and Signal Transition Graphs 17

It has been observed in [30, p. 49] that a state machine M = (P,T, F,M0) can be interpreted
as a transition system TS = (P,T, ∆, s0), where the places correspond to the states, the transitions
to the events, s0 corresponds to the unique marked initial place, and (p, t, p′) ∈ ∆ iff •t = {p}
and t• = {p′} (in a SM by definition |•t| = |t•| = 1). Therefore the reachability graph of M is
isomorphic to the transition system TS, i.e., RG(M) is isomorphic to TS.

Definition 13 (Marked Graph, MG (or Event Graph, EG) [29]). A Marked Graph is a Petri
net N = (P,T, F,M0) such that each place p ∈ P has exactly one incoming and one outgoing
arc, i.e., |•p| = |p•| = 1.

Definition 14 (Free-Choice Petri net, FCPN [29]). A Free-Choice Petri net is an ordinary
Petri net N = (P,T, F,M0) such that every arc from a place is either a unique outgoing arc or a
unique incoming arc to a transition, i.e.,

for all p ∈ P, |p•| ≤ 1 or •(p•) = {p}; equivalently,
for all p1, p2 ∈ P, p•1 ∩ p•2 , ∅ ⇒ |p

•
1| = |p

•
2| = 1.

Definition 15 (Extended Free-Choice Petri net, EFCPN [29]). An Extended Free-Choice
Petri net is an ordinary Petri net N = (P,T, F,M0) such that given a transition in the post-
set of two different places both places have the same post-set, i.e.,

for all p1, p2 ∈ P, p•1 ∩ p•2 , ∅ ⇒ p•1 = p•2.

Definition 16 (Asymmetric-choice Petri net, ACPN [29]). An Asymmetric-choice Petri net is
an ordinary Petri net N = (P,T, F,M0) such that for every pair of places p1, p2 ∈ P with at
least one common transition in their post-sets, one of the post-sets contains the other i.e.,

for all p1, p2 ∈ P, p•1 ∩ p•2 , ∅ ⇒ p•1 ⊆ p•2 or p•1 ⊇ p•2.

Definition 17 (Saturated Petri net). A PN is called saturated net, if no place can be added
without changing the reachability space.

Definition 18 (Place-irredundant net). A Petri net N = (P,T, F,M0) is called place-irredundant,
if for each N′ = (P′,T ′, F′,M′0) such that P′ ⊆ P,T ′ ⊆ T, F′ ⊆ F,M′0 ⊆ M0 and N′ , N,
RG(N′) /B RG(N), i.e. no place can be removed from N without losing the bisimilarity of the
reachability graph.

Definition 19 (Place-minimal net). A Petri net is place-minimal if any other bisimilar PN con-
tains a greater or equal number of places.

Definition 20 (Siphon and Trap). Let N = (P,T, F,M0) be a net. A set of places of a net N,
D ⊆ P, is a siphon (trap), if and only if D , ∅∧ •D ⊆ D• (D , ∅ ∧ D• ⊆ •D). A siphon D (trap)
is minimal if and only if there exists no siphon or trap D′ such that D′ ⊆ D.

Definition 21 (Strongly connected State Machine). Let N = (P,T, F,M0) be a State Machine.
It is strongly connected if every place is reachable from every other place of the SM.

18 2 Preliminaries

FC and SM noEG

(a) Conflict

FC and EG noSM

(b) Sync. para.

EFC noFC

(c) Symmetric choice

AC noEFC

(d) Asymmetric choice

PN noAC

(e) Confusion

Fig. 2.7: Modelling power of different Petri Net classes [31].

Definition 22 (S-component). Let N′ = (P′,T ′, F′,M′0) be a subnet of a net N = (P,T, F,M0).
N′ is an S-component of N if and only if T ′ = •P′ ∩ P′• and N’ is a strongly connected State
Machine.

Definition 23 (Choice place and return from choice place). A place p is a choice place if
|p•| > 1. A place p′ is a return from choice place if |•p′| > 1. If both properties hold, the place
is defined as a choice-return from choice place.

Theorem 1 (Commoner’s Theorem). Every proper siphon of a Free-choice system includes
an initially marked trap if and only if the system is live.

Theorem 2 (Commoner’s Theorem for Asymmetric-choice systems). If every proper siphon
of an asymmetric-choice system includes an initially marked trap, then the system is live.

Theorem 3 (S-Coverability Theorem). Well-formed nets are covered by S-components.

Definition 24 (Signal Transition Graph, STG). A Signal Transition Graph (STG) G = (V, E)
is an interpreted subset of marked graphs wherein each transition represents either the rising

2.3 Region theory and Petri net synthesis 19

(x+ or x+) or falling (x− or x−) of a signal x which has signal levels high and low. V is the set
of transitions and E is the set of edges corresponding to places of the underlying marked graph.

2.3 Region theory and Petri net synthesis

In this section we survey the existing theory of regions [26] on which the synthesis tool Pet-
rify [20] and a susbtantial part of the presented work is based.

2.3.1 Definitions and conversion flow overview

Definition 25 (Region). Given a TS = (S , E,T, s0) a region is defined as a set of states r ⊆ S
such that for each event e ∈ E the following properties hold:

enter(e, r) =⇒ ¬in(e, r) ∧ ¬out(e, r) ∧ ¬exit(e, r),

exit(e, r) =⇒ ¬in(e, r) ∧ ¬out(e, r) ∧ ¬enter(e, r),

no_cross(e, r) =⇒ ¬enter(e, r) ∧ ¬exit(e, r),

where:
in(e, r) ≡ ∃(s, e, s′) ∈ T : s, s′ ∈ r,

out(e, r) ≡ ∃(s, e, s′) ∈ T : s, s′ < r,
enter(e, r) ≡ ∃(s, e, s′) ∈ T : s < r ∧ s′ ∈ r,

exit(e, r) ≡ ∃(s, e, s′) ∈ T : s ∈ r ∧ s′ < r,
no_cross(e, r) ≡ in(e, r) ∨ out(e, r).

s0

s1

s2s4 s6

s5 s3

a

b
c

c

b

d

d

d

d

e

e

(a) enter property

s0

s1

s2s4 s6

s5 s3

a

b

b

c

c
d

d

d

d

e

e

(b) exit property

s0

s1

s2s4 s6

s5 s3

a

b

b

c

c
d

d

d

d

e

e

(c) no_cross property

Fig. 2.8: Example of enter property for event a, exit property for event d and no_cross property for event b respect
to the highlighted region.

Fig. 2.8 shows an example with enter, exit and no_cross properties.

20 2 Preliminaries

Table 2.1: Minimal regions of the TS in Fig. 2.2.

Region States of the TS

r1 {s0, s8}

r2 {s0, s1, s3, s5, s7}

r3 {s0, s5, s6, s7, s9}

r4 {s1, s2, s3, s4, s8}

r5 {s1, s2, s3, s5}

r6 {s1, s4, s6, s7}

r7 {s2, s4, s6, s8, s9}

r8 {s2, s5, s6, s9}

r9 {s3, s4, s7, s9}

r10 {s0, s1, s5, s6, s7}

r11 {s0, s3, s5, s7, s9}

r12 {s1, s2, s4, s6, s8}

r13 {s1, s2, s5, s6}

r14 {s1, s3, s4, s7}

r15 {s2, s3, s4, s8, s9}

r16 {s2, s3, s5, s9}

r17 {s4, s6, s7, s9}

Table 2.2: Pre-regions and ESs for each event of the
TS in Fig. 2.2.

Event Pre-regions ES(event)

a {r1} {s0, s8}

b {r3, r9, r11, r17} {s7, s9}

c {r2, r6, r10, r14} {s1, s7}

d {r5, r8, r13, r16} {s2, s5}

e {r4, r9, r14, r15} {s3, s4}

f {r6, r7, r12, r17} {s4, s6}

Definition 26 (Minimal region). A region r is called minimal if there is no other region r′

strictly contained in r (∄r′ | r′ ⊂ r).

The minimal regions of the TS in Fig. 2.2 are shown in Table 2.1.

Definition 27 (Pre-region (Post-region)). A region r is a pre-region (post-region) of an event e
if there is a transition labeled with e which exits from r (enters into r). The set of all pre-regions
(post-regions) of the event e is denoted by ◦e (e◦).

By definition if r ∈ ◦e (r ∈ e◦) all the transitions labeled with e are exiting from r (entering
into r), furthermore, if the transition system is strongly connected, all the regions are also pre-
regions of some event.

Definition 28 (Excitation set / Switching set). The excitation (switching) set of event e, ES(e)
(SS(e)), is the maximal set of states such that for every s ∈ ES(e) (s ∈ SS(e)) there is a transition
t ∈ T such that t = (s′, e, s) (t = (s, e, s′)).

The excitation sets of the TS in Fig. 2.2 are reported in Table 2.2.

Definition 29 (Excitation-closed transition system (ECTS)). A TS with the set of labels E and
the pre-regions ◦e is an ECTS if the following conditions are satisfied:

• Excitation-closure: ∀e ∈ E :
⋂

r∈◦e r = ES(e)
• Event effectiveness: ∀e ∈ E : ◦e , ∅

The EC property also ensures that if two states s1 and s2 cannot be separated by any region,
i.e., there is no minimal region r such that s1 ∈ r and s2 < r, then s1 and s2 are bisimilar.

If the initial TS does not satisfy the excitation-closure (EC) or event effectiveness property,
label splitting (Sec. 2.3.4) can be performed to obtain an ECTS.

2.3 Region theory and Petri net synthesis 21

2.3.2 Petri net synthesis

Definition 30 (Minimal Saturated Petri net). The Petri net derived from all minimal regions
is called Minimal Saturated PN.

Fig. 2.9: Framework for Petri net synthesis

After having found from the ECTS the min-
imal pre-regions, a minimal saturated PN is ob-
tained using the following steps:

• Each minimal pre-region becames a place
• For each event e a transition labeled with e is

created
• Tokens in the initial marking lie in places

formed by regions that contain initial states of
ECTS.
• There is a flow relation (r, e) from a place r to

a transition e if r belongs to pre-regions of e
(r ∈ ◦e) and there is a flow (e, r) if r belongs
to post-regions of e (r ∈ e◦).

The removal of the redundant regions guaran-
tees to get a place-irredundant PN; then a quasi-
place-minimal PN is obtained from an irredundant
one by the greedy algorithm that merges some dis-
joint minimal pre-regions into a minimal set of
non-minimal ones.

The basic synthesis method can be easily
adapted in order to guarantee different classes of
Petri nets as follows:

• Free-choice net: this property can be enforced by splitting labels until all choice regions
become the only pre-regions of their post-events.
• Asymmetric-choice net: the method to enforce this property is the same as for the Free-

choice nets.
• State-machine decomposable net: these nets are those that are decomposable into S-

components, in which any transition of the subnet has only one predecessor place and one
successor place. This approach is based on the fact that a partition of the set of states into
regions corresponds to an S-component in the Petri net [32].

Next, the main steps of the synthesis are described more in-depth.

2.3.3 Minimal pre-regions generation

In the first phase of the algorithm the excitation set is the starting set to expand in order to find all
regions for one event, i.e to find the subset of all states for which all the transitions labeled with

22 2 Preliminaries

the same event will have the same property (enter/exit/no_cross). Starting from the excitation
set of each event, a tree is created consisting of all possible expansions that legalise a property
at each level, for an event chosen among those in violation, until the regions are obtained in the
leaves.

Table 2.3: Possible expansions given a set of states with a
combination of properties respect to a given event.

Combination of properties Possible expansions

exit-enter no_cross
exit-in no_cross

exit-out no_cross or exit
enter-in no_cross

enter-out no_cross or enter

For each set of states S that belongs to the
expansion tree, one or more events can vio-
late the aforementioned properties. Table 2.3
shows the combinations of different prop-
erties and which expansion could be made.
N.B., the combination in-out does not appear
since it does not represent a violation and cor-
responds to the no_cross property.

In order to ensure a decrease in the num-
ber of tree branches, if among all events there
is one for which the only possible expansion
is no_cross, it is chosen first for legalization. Since the search is monotonic, i.e each “father”
node is a subset of the “child” one, once a region is found, the research on that branch is cut
off. In fact, by continuing the expansion of a minimal region, it is not possible to find a minimal
region again.

Furthermore, if a set of states candidate for becoming a region is explored for an event a
and it also appears in the exploration tree of another event b, the expansion in that branch is not
continued, since the region created from it is already known.

Once the expansion trees of all the events are completed and the regions on the leaves are
found, the minimum pre-regions (R = {r | r ∈ ◦a}) are calculated, starting from the non-banal
regions (the empty region and the one that consists of all states are ruled out).

Fig. 2.10 shows an example with the expansion tree for event b of TS in Fig. 2.2. For each
level except the leaves, we show the events in violation and the type of violation. For leaves,
instead, we show the name of the resultant region visible in Table 2.1. The label on each edge
connecting two different levels of the tree explains how a violation was resolved, and in case
of multiple events in violation, the involved event is specified. In this example, we can see two
interesting facts:

• solving the violation for an event could solve further violations even if it is not always the
case: when the violation involves both events e and f , the resolution of the violation for one
event solves also the violation for the other event;
• the expansion tree produces minimal regions for this tree, therefore continuing the search

would produce non-minimal regions, but it does not guarantee that the obtained regions are
minimal with respect to all possible obtainable regions: regions {s0, s3, s4 s7, s8, s9} and
{s0, s4, s6, s7, s8, s9} are minimal for the expansion tree of b but they are not minimal
with respect to the region r1 = ES(a) = {s0, s8}, furthermore it is possible to see that even
without the aforementioned regions excitation-closure for event b is still achievable, indeed
r3 ∩ r9 ∩ r11 ∩ r17 = ES(b).

2.3
R

egion
theory

and
Petrinetsynthesis

23

ES(b) ={s7, s9}

{s4, s7, s9}

{s4, s6, s7, s9}

no_cross for e

{s3, s4, s7, s9}

exit for e

enter

{s0, s7, s9}

{s0, s5, s7, s9}

{s0, s3, s5, s7, s9}

no_cross for e

{s0, s5, s6, s7, s9}

enter for e

no_cross

{s0, s7, s8, s9}

{s0, s4, s7, s8, s9}

{s0, s3, s4, s7, s8, s9}

exit for e

{s0, s4, s6, s7, s8, s9}

no_cross for e

no_cross

enter

no_cross

event violation
a enter-out

event violation
d enter-out

event violation
e exit-out
f exit-out

r17 r9

event violation
e enter-out
f enter-out

r3r11

event violation
e exit-out
f exit-out

valid region
but removed
because of r1

valid region
but removed
because of r1

event violation
a exit-in

Fig. 2.10: Example of expansion tree for event b of TS in Fig. 2.2.

24 2 Preliminaries

Definition 31 (Minimal pre-region). A region r is a pre-region for an event e if there exists an
outgoing transition (of type exit) labeled with e from r. It is also minimal if there does not exist
another region r′ that is a sub-region of r.

2.3.4 Label Splitting

After computing the set of minimal pre-regions, for each event it is necessary to verify that the
following condition of excitation closure holds:

∀a :
⋂

r∈◦a r = ES (a) ∧ ◦a , ∅

In order to produce an excitation closed transition system (ECTS), if the excitation closure
property does not hold, label splitting must be applied. The strategy is to split labels to turn a
set of states into a region. A candidate region is chosen from sets of states that belong to the
expansion tree for each event. The attention is focused on sets S ′ such that:

ES (a) ⊆ S ′ ⊂
⋂

r∈◦a r

From each set of states of S ′ the one with fewer events that violate one of the region condi-
tions is selected. If more states have the same number of “in violation” events, the smallest is
selected. The latter set of states is forced to be a region by informally splitting those events that
do not satisfy the region conditions.

Once events are split, the steps of region computation and label splitting are iterated until
convergence, that is, until the excitation closure is satisfied, generating a split-morphic ECTS
compared to the initial TS.

At every step, completely new regions can be produced, in most cases label splitting in-
volves only the separation of the precalculated regions: if for instance there was a region
r1 = {s1, s2, s3, s4} and a candidate region s′ = {s1, s2}, as a result, regions r1 = {s1, s2} and
r′1 = {s3, s4} would be generated.

The worst case is when label splitting is performed on all events, and so every region con-
tains only one state. Therefore, the final Petri net cannot have fewer places than the original
transition system.

An example of label splitting can be seen in Fig. 2.11: the initial TS has two regions
r1 = {s0, s1, s2} and r2 = {s3}. Label a satisfies the no-cross property, and so it is not an ECTS,
because e.g., event effectiveness is not satisfied for the event a: ◦a = ∅. Also excitation-closure
is not satisfied for the event b:

⋂
r∈◦b r = r1 , ES(b). After label splitting, label a is split into

a and a′ yielding the following smaller minimal regions: r0 = {s0}, r1 = {s1}, r2 = {s2} and
r3 = {s3}. After label splitting, both excitation-closure and event effectiveness are satisfied.

s0 s1 s2 s3
a a b

c

s0 s1 s2 s3
a a′ b

c

(a) TS (b) ECTS
Fig. 2.11: TS before label splitting (a) and ECTS after label splitting (b).

2.3 Region theory and Petri net synthesis 25

N.B., during the PN synthesis process, if label splitting is not performed for each distinct
ECTS event, a transition with the same event is created, therefore, the resultant minimal sat-
urated PN also has the minimal number of events, and, furthermore, any derived PN has only
one occurrence of each event. In case of label splitting, usually the splitting algorithm does
not ensure the minimal number of resulting labels since an approximate approach is used, it is
possible to perform the exhaustive search but it would be too complex. Consequently, the Petri
net obtained may not have the fewest possible number of transitions, as this would equate to
the number of unique labels produced post-label splitting. In this case, the PN would have at
least one event with multiple occurrences, but each instance of that would have a unique label,
e.g. e/1 and e/2. Fig. 2.12 presents a comparison between a Petri net obtained through optimal
label splitting and one resulting from a suboptimal procedure. This example highlights the re-
dundancy in Petri net’s transitions, where the number of transitions directly correlates with the
number of derived labels, leading to an unnecessary additional transition c/1 in Fig. 2.12(d).

s0

s2 s1

s3s4

s5

s6

b
a

b
a

c

d
c

d′

d′

(a) Transition system with optimal
label splitting.

s0

s2 s1

s3s4

s5

s6

b
a

b
a

c

d
c′

d′

d′

(b) Transition system with redun-
dant label splitting on event c.

p2 p3

p1

p4 p5

d/1

a d b

c

(c) Petri net derived from (a)

p2 p3

p1

p4 p5p6

d/1

a d

c/1

b

c

(d) Petri net derived from (b)

Fig. 2.12: Example showing the different Petri nets derived from optimal and sub-optimal label splitting.

2.3.5 Redundant pre-regions removal

In order to remove redundant regions, as a preliminary step, essential regions are found. Sub-
sequently, the minimum set of non-essential and irredundant regions is found and the regions
that are not part of the two cited groups are removed.

26 2 Preliminaries

Definition 32 (Essential region). A region r is essential if there exists a state s and an event e
such that r ∈ ◦e, s ∈ r and ∀r′ ∈ ◦e | r′ , r, we have s < r′, i.e., if r is the only region that
covers one or more states for an event, its removal leads to the violation of the excitation-closure
property.

Definition 33. A set of regions R is called redundant if there is a region r ∈ R such that R − r
still satisfies the excitation closure condition. Otherwise, R is called irredundant.

The search for the irredundant set of regions aims to find minimal covers of complete states
that also satisfy the excitation closure property. Finding a minimum cost cover is equivalent
to finding a minimum-cost solution of a Boolean equation describing the covering conditions,
assigning to each region a cost, depending on the application. For instance, to minimize the
number of places in the resultant Petri net, one may assign to each region a cost equal to the
number of states belonging to it.

2.3.6 Minimal pre-regions merging

In order to generate a place-minimal Petri net, it is necessary to merge at least once two pre-
regions. The algorithm consists in an exhaustive search of pairs of disjoint pre-regions, checking
if merging these regions the excitation-closure property remains satisfied. When such a pair is
found, a new region, formed by the union of those that belong to it, replaces the old ones. To find
the optimal solution, all possible irredundant Petri nets must be computed as the starting point
for merging. To save computing time, a suboptimal solution may be found. Merging minimal
pre-regions allows merging places in the corresponding irredundant Petri net.

2.4 Binary Decision Diagram (BDD)

Given a function, for example f = a ∗ b + c, this function can be represented by a truth table
(see Table 2.13). If we read the truth table, each row represents a set of assignments of true
or false value to each variable, in our case a, b, and c. The same decisions can be represented
graphically by a Binary Decision Tree (BDT) where each level of the tree represents one of
the variables and the leaves represent the final assignment result. There are two output edges
for each node: the first represents the false assignment of the variable, and the edge is usually
dashed. The second represents the true assignment of the same variable (see Fig. 2.14).

By simplifying the Binary Decision Tree, a graph can be created: Binary Decision Diagram
(BDD). Usually, Reduced-Ordered Binary Decision Diagrams (ROBDD) are used. In particular,
a BDD is “Ordered" if the variables appear in the same order on all paths from the root and the
BDD is “Reduced" if all isomorphic subgraphs are merged and nodes with isomorphic children
are removed. The peculiarity of ROBDDs is their uniqueness, given a function and a variable
order. N. B.: the order of the variables changes the resultant ROBDD, indeed, the BDDs in
Figs. 2.15 and 2.16 are completely different even if both represent the same function.

In this chapter, preliminary information was provided including fundamental models used
throughout the thesis, such as Petri nets and transition systems. Some key concepts regarding the

2.4 Binary Decision Diagram (BDD) 27

Fig. 2.13: Truth
table for the
function f .

a b c f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

a

b

c

0

false

1

true

false

c

0

false

1

true

true

false

b

c

1

false

1

true

false

c

0

false

1

true

true

true

Fig. 2.14: Binary Decision Tree for the function f .

a

b

c

0 1

Fig. 2.15: Reduced Ordered Binary Decision Diagram
for the function f .

c

b

a

0 1

Fig. 2.16: Reduced Ordered Binary Decision Diagram
for the function f created with a different variable order
with respect to the ROBDD in Fig. 2.15.

theory of regions were provided since the first part of the thesis is based on the aforementioned
theory. Finally, a reference to BDDs was made.

Part II

Decomposition based on regions theory

3

Decomposition into sets of synchronizing PNs

Exploiting concurrent models, a key question has been: how can we split a PN into different
synchronizing PNs? The theory of regions [26], already used for decades in PN synthesis, allows
us not only to answer this question, but also to perform the decomposition of transition systems
into a set of desired subclass PNs (a recap on the theory of regions can be found in Section 2.3).
The theory of regions allows us not only to create a versatile decomposition framework, but also
to prove the existence of a bisimulation between the set of derived synchronized PNs and the
initial LTS (Section 3.3.2) or PN (the latter, if we consider as a starting point the reachability
graph of the desired Petri net). But before proceeding to the proposed method based on the
theory of regions, let us first explore some significant techniques for decomposing Petri nets
and transition systems that have been suggested in the past.

3.1 Evolution of the decomposition

Next, a chronological list with some meaningful works about Petri net decomposition is pro-
vided:

1974: The first attempt to decompose a net was due to M. Hack [33], in order to extend results
about liveness of Free-choice Petri Nets, where the decomposition was performed extracting
S-components (which actually can be seen as decomposition into a set of synchronizing
State Machines);

1981: in [34] the usage of invariants for the Petri net decomposition was introduced;
1989: in [29] Murata consolidated the concept of live and safe Free-Choice Petri net as a combi-

nation of State Machines;
1994: in [35] Kemper proposed an algorithm for the Cover of S-Components for Extended Free-

Choice Petri nets in O(PT).

Moving towards more recent times, there were different attempts focused on transition sys-
tem decomposition. In [36], a transition system is decomposed iteratively into an interconnec-
tion of n component transition systems with the objective of extracting a Petri net from them.
This can be seen as a special case of the problem solved in this chapter, because in [36] the
decomposition allows the extraction of a Petri net, but the decomposed set of transition systems

32 3 Decomposition into sets of synchronizing PNs

cannot be used as an intermediate model. Their approach is flexible in choosing how to split the
original transition system, but it does not provide any minimization algorithm, so that the redun-
dancy due to overlapping states in the component transition systems translates into redundant
places of the final Petri net. Another method presented in [12] is based on the decomposition
of transition systems into “slices", where each TS is synthesized separately into a Petri net,
and in case of Petri nets “hard" to understand the process can be recursively repeated on one
or more “slices" creating a higher number of smaller PNs. With respect to the aforementioned
methods, our approach yields by construction a set of PNs restricted to the desired subclass and
applies minimization criteria to them. Instead, the results of [37] show how complex processes
can be formally represented by process windows, where each window covers part of the overall
process behavior. In our case, each PN could be interpreted as a window that represents a part
of the entire process.

3.2 Decomposition based on theory of regions

In order to decompose a PN or a transition system into a set of synchronized PNs which generate
the same behavior of the original one, the properties of Def. 34 have to be satisfied, considering
LTS TS = RG(PN0), where PN0 is the initial Petri net, or starting directly from TS .

Definition 34 (Excitation-closed set of Petri nets derived from an ECTS). Given a set of PNs
N derived from an ECTS TS, the set of all regions R of N, the set of labels E of TS, the sets of
pre-regions •e of the TS for all e ∈ E, the set of events Ek and regions Rk of PN k:

N is excitation-closed with respect to TS if the following conditions are satisfied:

• Excitation closure: ∀e ∈ E :
⋂

r∈(•e∩R) r = ES(e)
• Event effectiveness: ∀e ∈ E : ∃r ∈ R | r ∈ •e
• Place-connectedness: ∀r ∈ R : (r ∈ Rk, ei ∈ (•r ∪ r•)) =⇒ ei ∈ Ek

The first property guarantees that for each event of the original PN there is a sufficient
number of its pre-regions across the derived PNs, so that, given a marking in the decomposed
set of PNs, a transition representing the event can fire if and only if a transition with the same
event fires in the original PN. An insufficient number of pre-regions of an event would relax the
constraint allowing the activation of events whose activation is not allowed in the original PN.

The second property guarantees that for each event of the original PN there is a region from
which the event is enabled to fire.

The third property guarantees that, if a region represents a place in one of the derived PNs,
this place will keep the connections of the region to all events for which the region is a pre-
region or a post-region.

Next we will list the main steps to obtain a set of synchronized PNs:

1. Transformation of the PN into an LTS: reachability graph extraction
2. If LTS is not an ECTS label splitting is performed
3. Computation of all minimal regions

3.2 Decomposition based on theory of regions 33

4. Generation of a set of PNs with desired constraints and EC property
5. Optional: removal of redundant PNs
6. Optional: merge between regions preserving EC

The first three steps of the flow can be easily found in the literature, and they are summarized
in Sec. 2.3. Instead, the other steps are explained in this chapter.

To decompose an LTS/PN in a set of synchronized PNs, the excitation closure property is
necessary and sufficient to guarantee an equivalent behavior of the decomposed PN. However,
the decision on how to choose the regions for each PN can affect the size of the result. In the next
section we will show how an additional constraint can be propagated to obtain a decomposition
into a set of Petri nets of a certain class. The result can have a lot of redundancy, especially
because the most efficient flows present approximated steps and pass through Minimal Saturated
Petri nets, which describe the maximally redundant set of places derived from regions. For this
reason, after decomposition, redundant PNs can be removed. In some cases, it is not possible to
remove entire Petri nets but only redundant parts of them.

p0

p1

p2

p3

p4

p5

t1: a

t25: b

t36: c

t1: a

t4: d t7: e

(a) PN0

p0

p1

p2

p3

t1: a

t2: b

t3: c

t4: d

(b) PN1

p4

p2

p5

t5: b

t6: c

t7: e

(c) PN2

Fig. 3.1: Example of decomposition: PN1 and PN2 are derived from PN0.

Taking into account the PN in Fig. 3.1(a) as the original PN, the Petri nets in Figs. 3.1(b)
and 3.1(c) can be considered as random choices of pairs of PNs that satisfy the excitation closure
property. In this case, no PN and no place can be removed with further steps.

N.B. Since our decomposition algorithm is based on the theory of regions, as in the case of
PN synthesis, the resulting PNs cannot have multiple occurrences of the same event, unless the
event is identified with two different labels, for example a and a/1.

34 3 Decomposition into sets of synchronizing PNs

There is not only one way to generate a set of synchronizing PNs from an LTS, especially if
we restrict the Petri nets to a specific subclass, since each approach has different pros and cons.
In the next sections, the following approaches will be presented:

• Exact sequential search: explores all possible SMs and returns the smallest subset of them,
not scalable at all.
• Approximate sequential search (e.g., of SMs and FCPNs): based on a heuristic search, scal-

able.
• Mixed strategy: a partial combination of the approximated sequential search followed by an

exhaustive removal of redundant PNs, yielding a better result than the approximate sequen-
tial search.
• Simultaneous search: guarantees the minimality of the number of PNs, but its performance

depends heavily on the subclass of PNs used in the decomposition.

Tests were performed especially on FCPNs and SMs.

3.3 Composition of PNs and equivalence to the original TS/PN

In this section, we prove a structural equivalence between the original TS and the synchronous
composition of the reachability graphs of the PNs, by defining a bisimulation relation between
them, under the assumptions of excitation-closure and place-connectedness of the PNs. This re-
sult is part of the contributions of our paper accepted at Digital System Design (DSD2023) [17].

Theorem 4. [17] Given a set {PN1, . . . ,PNn} of PNs derived from the ECTS TS, there is a
bisimulation B such that TS ∼B ||i=1,...,nRG(PNi) iff:

1. the set {PN1, . . . ,PNn} of PNs satisfies excitation closure over the events of TS;
2. each component satisfies place-connectedness.

Proof. See Section 3.3.2.

If we start our flow from a transition system T , we can see that the set of derived PNs
represents the same behavior of T .

In Fig. 3.3 we can observe the FCPNs obtaining decomposing TS in Fig. 3.2, with the
respective reachability graphs in Fig. 3.4. Fig. 3.5 instead shows the synchronous product of the
reachability graphs in Fig. 3.4, which is bisimilar to the original ECTS.

Notice that the proof presented in Section 3.3.2 is constructive, i.e. it builds the bisimulation
relation by defining the structural mapping. One could take a behavioral approach showing a re-
lation between languages using the theory in [27] (which implies the existence of a bisimulation
for deterministic systems), but this would not yield the actual bisimulation.

3.3.1 Safe composition of unsafe PNs

Given a set of PNs from a decomposition, even if the composition of PNs is safe, single PNs
considered without synchronizations could be unsafe, still keeping the bisimulation with the

3.3 Composition of PNs and equivalence to the original TS/PN 35

s0

s1 s2

s3 s4

s5

s6

s7 s8

s9

s11

s10

s12

x

x

x

x

a

a

a

y
y

z

z

z

b

b
c

c
d

d

x

y

d

d

c

c

c

Fig. 3.2: Transition system example.

p0

p3 p4

p1 p2

a

b

dc

(a) FCPN0

p5

p4 p7

b y

d z

(b) FCPN1

p8

p6

p7

x

y

z

(c) FCPN2

Fig. 3.3: Three FCPNs distilled from the TS in Fig. 3.2

p1 p2

p0

p3 p4

p1 p3 p2 p3

a

b
c d

d c

(a) RG(PN0)

p5

p4 p7b

yd

z

(b) RG(PN1)

p8

p6 p7

x

y

z

(c) RG(PN2)

Fig. 3.4: Reachability graphs of the FCPNs in Fig. 3.3.

36 3 Decomposition into sets of synchronizing PNs

(p1 p2, p5, p8)

(p0, p5, p8) (p1 p2, p5, p6)

(p0, p5, p6) (p1 p2, p7, p7)

(p0, p7, p7)

(p3 p4, p4, p8)

(p1 p4, p4, p8) (p3 p4, p4, p6)

(p1 p4, p4, p6)

(p2 p3, p5, p6)

(p2 p3, p5, p8)

(p2 p3, p7, p7)

x

x

x

x

a

a

a

y

y

z

z

z

b

bc

c

d

d

x

y

d

d

c

c

c

(a) RG(PN0)||RG(PN1)||RG(PN2)

Fig. 3.5: Synchronous product of reachability graphs in Fig. 3.4.

original ECTS. Fortunately, in [38] the authors proved the existence of a safe PN starting from
an ECTS. In our case, the decomposition into sets of PNs can be seen as a special case, for
example, the decomposition into a set of synchronized SMs can be interpreted as the S-covering
of a PN, which is proven to be safe. For other subclasses such as FCPNs or ACPNs, the existence
of a safe SM decomposition implies also the existence of a decomposition by means of the
aforementioned PN subclasses, where in the worst case all components would be SMs.

Let’s see an example of a safe composition of unsafe PNs. In Fig. 3.6 we have two unsafe
Free-choice Petri nets. An example of a sequence that produces an unsafe marking is “abce"
in the first FCPN and “abec" in the second. If we examine the two FCPNs, the second one has
the same structure as the first, with the transitions containing events c and e exchanged between
themselves with respect to the first FCPN. Both FCPNs are unsafe, but, with synchronization,
the different event sequence between the two PNs creates a lock between them, disabling the
firing of both aforementioned events and keeping unsafe markings unreachable. Indeed, Fig. 3.7
represents the composition of the reachability graphs of the PNs, which never reaches an unsafe
marking.

In the next sections, we will see different ways to decompose an LTS into distinct PN subsets,
in some cases like for SMs it is sufficient to avoid multiple initial places to keep safe a State
Machine. For more complex PN subsets, a direct safeness check will be needed.

3.3 Composition of PNs and equivalence to the original TS/PN 37

p0

p1 p2

p3

p4

p5

a

b

e

dc

f

(a) FCPN0

p6

p7 p8

p9

p10

p11

a

b

c

de

f

(b) FCPN1

Fig. 3.6: Two unsafe Free-choice Petri nets with a safe synchronization.

(p0, p6) (p1 p2, p7 p8)

(p2 p3, p8 p9) (p1 p5, p7 p11)

(p3 p5, p9 p11)

b
d

a

d
bf

Fig. 3.7: Synchronous product of the reachability graphs of FCPNs in Fig. 3.6.

3.3.2 Proof of Theorem 4

Place connectedness is a property which consists in keeping all connections of a region (ex-
it/enter) passing from regions to the place representation in PNs. This fundamental property,
previously left implicit, enables us to use regions in the bisimulation, as it will be described
soon. The lack of place connectedness means the loss of connections passing from a region r
to a place p. As result p does not represent r anymore, but it represents an invalid region or a
different region r′ which has a no cross relation (neither enter nor exit) with the missing event.
A region could be represented by different instances of places in two or more different PNs, but
each of these places still preserves the same connections to the events of the represented region.

In this proof the following nomenclature will be used:

R is the total set of regions;
Ri ⊆ R is the set of regions represented by places of PNi;
R(s) is the set of regions that contain state s;
Ri(s) = R(s) ∩ Ri is the set of regions represented by places of PNi that contain state s;
R(s) = (R1(s), . . . ,Rn(s)), this alias will be used for improved readability.

The equivalence between an ECTS and the derived set of PNs is proved by defining a
bisimulation between the original TS, defined as TS = (S , E,T, s0), and the synchronous prod-
uct of the reachability graphs of the derived Petri nets RG(PN1)||RG(PN2)|| . . . ||RG(PNn), de-

38 3 Decomposition into sets of synchronizing PNs

noted by ||i=1,...,nRG(PNi) = (S ||, E,T||, s0,||). Notice that each RG(PNi) = (Ri, Ei,Ti,Ri(s0)), with
Ti ⊆ Ri × Ei ×Ri, is defined on a subset Ei of events of TS, its states Ri correspond to regions or
sets of regions derived from TS represented by the markings [M⟩ of PNi.

The initial state of RG(PNi) is represented by Ri(s0): one or more regions containing the
initial state s0 of TS .

Excitation closure is another fundamental property. Indeed to prove the existence of a
bisimulation we require that the regions contained in the set of PNs satisfy EC, where event-
effectiveness guarantees that ∪Ei = E. The excitation closure property is crucial to prove the
steps 1 and 3 of the proof.

Proof. We define the binary relation B as follows:

(s,R(s)) ∈ B ⇐⇒ s ∈
n⋂

i=1

r | r ∈ Ri(s) (3.1)

where:

• s ∈ S ;
• R(s) or (R1(s), . . . ,Rn(s)) is a tuple of markings where each marking Ri(s) contains s.

Notice that writing (s,R(s)) ∈ B ⇐⇒ {s} =
⋂n

i=1 r | r ∈ Ri(s) would be wrong, because the
intersection of regions could have two or more bisimilar (i.e., behaviourally equivalent) states,

as in the TS s0
a
→ s1

b
→ s2

a
→ s3

b
→ s0.

Now we prove that B is a bisimulation in three steps:

1. (s0,R(s0)) ∈ B.
2. If (s j,R(s j)) ∈ B and (s j, e, sk) ∈ T , then there is R(sk) ∈ S || such that (R(s j), e,R(sk)) ∈ T||

and (sk,R(sk)) ∈ B.
3. If (s j,R(s j)) ∈ B and (R(s j), e,R(sk)) ∈ T||, then there is sk ∈ S such that (s j, e, sk) ∈ T and

(sk,R(sk)) ∈ B.

Let us now proceed with the proofs.

1. Since TS has a unique initial state s0, each PN PNi has at least one initial region r ∈ Ri(s0)
such that s0 ∈ r because the regions of a PN cover all the states of initial TS (otherwise
excitation closure would not be satisfied). Therefore, s0 ∈

⋂n
i=1 r | r ∈ Ri(s0) and we have

that (s0,R(s0)) ∈ B.
2. Since (s j, e, sk) ∈ T and (s j,R(s j)) ∈ B, then s j ∈

⋂n
i=1 r | r ∈ Ri(s j). Now we will prove

that there is sk such that sk ∈
⋂n

i=1 r | r ∈ Ri(sk), so that we can have (sk,R(sk)) ∈ B.
Notice that PNis may share places, but the property of place-connectedness guarantees that
shared places have the same marking, i.e. if place p occurs in more than one PNi and an
event e is entering or exiting in one occurrence of p then e will be entering or exiting in all
occurrences of p.
Since e is enabled in s j, no region Ri(s j) can be a post-region of e. If one r ∈ Ri(s j) ∈ R(s j)
would be a post-region, then s j <

⋂n
i=1 r | r ∈ Ri(s j). Therefore, the following cases can be

distinguished for each r ∈ Ri(s j) ∈ R(s j):

3.4 What happens if excitation-closure is not satisfied? 39

• e is not an event of PNi. Thus, Ri(sk) = Ri(s j).
• e is an event of PNi,

– and all regions r ∈ Ri(s j) are no-cross regions for e. Thus, Ri(sk) = Ri(s j). Explana-
tion: say that each of the n places of the current marking Ri(s j) represents a region.
By place-connectedness each place is connected to all events of the corresponding
region. So, if e is no-cross with respect to all regions, then no place of the PN will
be connected to e, and firing e cannot remove tokens from any place of Ri(s j), and
so Ri(sk) = Ri(s j).

– and all regions r ∈ Ri(s j) are pre-regions of e. Thus, Ri(sk) , Ri(s j) and each region
r ∈ Ri(sk) is a post-region of e. By place-connectedness.

– and some regions of Ri(s j) are pre-regions of e. Thus, Ri(sk) , Ri(s j) and each
region r ∈ Ri(sk) \ Ri(s j) is a post-region of e. By place-connectedness.

For the first and second case, PNi will not change marking and TS will not change region
when moving from s j to sk. Therefore, sk ∈ r ∈ Ri(s j) = Ri(sk).
For the third and fourth case, e will exit r ∈ Ri(s j) in at least one PN and will enter r ∈ Ri(sk)
in TS, which means that sk ∈ r ∈ Ri(sk). Therefore, (R(s j), e,R(sk)) ∈ T||.
For all cases we have that sk ∈ r ∈ Ri(sk) and therefore sk ∈

⋂n
i=1 r | r ∈ Ri(sk).

3. Since (s j,R(s j)) ∈ B, it holds that s j ∈
⋂n

i=1 r | r ∈ Ri(s j). Given the existence of the transi-
tion (R(s j), e,R(sk)), and knowing that the excitation closure property holds, we know that
s j ∈
⋂n

i=1 r | r ∈ Ri(s j) ⊆ ES(e). The latter inequality holds because we have 1) by PN con-
struction, ∀i, i = 1, . . . , n, label e appears once in PNi or it does not appear, and 2) being all
states covered by at least one region of the set of PNs, ∀i, i = 1, . . . , n, if label e appears in
PNi then r ∈ Ri(s j) could be a no-cross region, otherwise r ∈ Ri(s j) ∈ (•e ∩ R), by which⋃n

i=1 r | r ∈ Ri(s j) ⊇
⋃

r∈(•e∩R){r} and so by intersection of the regions seen as sets of states⋂n
i=1 r | r ∈ Ri(s j) ⊆

⋂
r∈(•e∩R) r = ES(e).

Therefore, there is sk such that (s j, e, sk) ∈ T . We can also see that sk ∈
⋂n

i=1 r | r ∈ Ri(sk),
using the same reasoning as in step 2, since all the pre-regions r ∈ Ri(s j) of e in R(s j) are
exited by entering r ∈ Ri(sk), whereas the no-crossing regions remain the same. We can
then conclude that (sk,R(sk)) ∈ B.

3.4 What happens if excitation-closure is not satisfied?

Starting from Fig. 3.8 let us consider a decomposition which does not satisfy excitation-closure.
Table 3.1 lists the regions obtained from the transition system in Fig. 3.8. from which we notice
that for events a and b excitation closure is not satisfied and label splitting should be performed.
In particular r3 = {s1, s3, s5, s7} is the only pre-region for event a, and ES (a) = {s1, s3, s5} ,

r3. The region r2 = {s1, s2, s5, s6} instead is the only pre-region for event b, and ES (b) =
{s1, s2, s5} , r2. Continuing with the decomposition without having performed label splitting,
we obtain the set of SMs in Fig. 3.9, which is one of the different possible decomposition results
that can be obtained. The composition of the reachability graphs of the SMs in Fig. 3.8 is shown
in Fig. 3.10. We can immediately notice an additional state with respect to the initial transition

40 3 Decomposition into sets of synchronizing PNs

s1

s2 s3

s4

s5

s6 s7

s8

a

a

a

b

b

b

c

d
e

f

Fig. 3.8: Example of transition system with label splitting re-
quired for the decomposition based on regions theory.

Table 3.1: Regions derived from TS in Fig.
3.8.

Region States of the region

r1 {s1, s2, s3, s4}

r2 {s1, s2, s5, s6}

r3 {s1, s3, s5, s7}

r4 {s2, s4, s6}

r5 {s3, s4, s7}

r6 {s5, s6, s7}

r7 {s8}

system. This “error" state is reached exactly with two of the events involved in the violation
of excitation-closure because without label splitting it is not possible to distinguish different
instances of the aforementioned events: the marking (r1, r2, r4) cannot be distinguished with
(r6, r2, r4), allowing the firing of event b from (r6, r2, r4) and the marking (r1, r5, r3) cannot be
distinguished with (r6, r5, r3), allowing the firing of a from (r6, r5, r3). In fact, the excitation
closure property is necessary and sufficient in order to maintain the behavior of the original
LTS.

r1

c

f

r6

d e

r7

(a) SM0

r2

b c

d f

e

r5

r7

(b) SM1

r3

a c

e f

d

r4

r7

(c) SM2

Fig. 3.9: SM decomposition derived from TS in Fig. 3.8.

3.5 What about the decomposition into sets of synchronizing Marked Graphs?

Previously we described an algorithm for the decomposition of a TS/PN in a set of synchronized
SMs, so the following questions come next: “Is it possible to find a decomposition into a set
of marked graphs?" and especially “Is it always possible to obtain such a decomposition?".
Remember that marked graphs are dual of state machines, where each place has exactly one
entering edge and one exiting edge.

3.5 What about the decomposition into sets of synchronizing Marked Graphs? 41

(r1, r2, r3)

(r1, r2, r4) (r1, r5, r3)

(r1, r5, r4)

(r6, r2, r3)

(r6, r2, r4) (r6, r5, r3)

(r7, r7, r7)

(r6, r5, r4)

a

a

a

b

b

b

c

d
e

f

b a

Fig. 3.10: Synchronous product of the reachability graphs of SMs in Fig. 3.9.

s1

s2 s3

a b

Fig. 3.11: Example of a TS which
cannot be transformed into an MG.

It has been observed in [39] that starting from a transition
system it is not always possible to derive a marked graph with
the same behavior, and sufficient conditions were provided for
marked graph realizability. An example of a transition system
that cannot be transformed into a marked graph is shown in
Fig. 3.11.

If we want to decompose a transition system into a set of Marked Graphs, how should the
MG structure be encoded? Since in Marked Graphs the choice structure is forbidden, given the
set of regions derived from a transition system, only regions with exactly one entering and one
outgoing event should be allowed (actually the constraint on only outgoing events would be
sufficient), to force the derived PNs to be Marked Graphs.

Fig. 3.12 shows an ECTS containing a choice starting from s4 (the choice on s0 actually
represents the start of a diamond with two concurrent flows, involving events a and b). Given
the excitation sets of the events of the TS (Table 3.3), we can see that all minimal regions
(Table 3.2) are necessary: ES (a) = r0, ES (b) = r1, ES (c) = r2 ∩ r3 and ES (d) = r4. Since both
r2 and r3 have multiple outgoing events, the two regions cannot be used for MG decomposition.
Since every region is necessary for the achievement of excitation-closure, the absence of r2 and
r3 clearly shows the impossibility of executing a decomposition that has a bisimulation between
reachability graphs of the derived MGs and the initial transition system.

42 3 Decomposition into sets of synchronizing PNs

s0

s1 s2

s3

s4

a

a
b

b

d

c
e

Fig. 3.12: Example ECTS

Table 3.2: Minimal regions de-
rived from ECTS in Fig. 3.12.

Region States of the region

r0 {s0, s2}

r1 {s0, s1}

r2 {s1, s3}

r3 {s2, s3}

r4 {s4}

Table 3.3: Excitation sets for each
event of ECTS in Fig. 3.12.

Event ES(event)

a {s0, s2}

b {s0, s1}

c {s3}

d {s4}

In this chapter, we introduced the decomposition of Transition Systems into synchronized
Petri nets, performing the decomposition with the theory of regions. We highlighted the critical
role of excitation closure, a vital condition for a correct decomposition, and demonstrated it,
showing the consequences when it is not met. We also touched on the safety of the resulting
model, even when unsafe PNs are part of the decomposition result. Additionally, we illustrated
the challenges in decomposing a Transition System using Marked Graphs.

4

Transition System decomposition into sets of synchronizing SMs

Suppose that we want to decompose an LTS in a restricted set of Petri nets, for example, state
machines. Each SM represents a flow of the original PN with only one token. In this chapter, we
will present a possible application of the flow presented in the previous chapter and restricted
to SMs.The generation of the regions is well known in PN synthesis; the subsequent steps,
instead, represent our contribution, published at the 24th Conference on Digital System Design
(DSD2021) [40].

For the generation of SMs only minimal regions are needed. A set of regions represents
a State Machine if and only if the set covers all the states of the transition system and all the
regions are disjoint, i.e., given an LTS with set of states S , a set of regions R represents a state
machine iff:

1. ∀r ∈ R ∄r′ ∈ R | r ∩ r′ , ∅
2. ∀s ∈ S ∃r ∈ R | s ∈ r

Given a set of regions satisfying the previous properties, we get a state machine whose states
correspond to the regions, with a transition from state ri to state r j under event e when ri is a pre-
region of e with post-region r j. The initial state of the SM corresponds to the region including
the initial state of the LTS,

The first step to decompose a transition system is to enumerate all the minimal regions of
the original TS. Each collection of disjoint regions covering all the states of the TS represents
a state machine, such that the regions are mapped to places of the SM, i.e., each such SM
includes a subset of regions of the original TS and represents only the behavior related to the
transitions entering into these regions or exiting from them (instead, internal and external events
are missing).

Intuitively, the SM obtained as the synchronous product of two or more SMs models their
interaction. For example, consider the SMs in Fig. 4.3, then the composition of the reachability
graphs of the first two SMs (SM4 and SM5) yields the LTS in Fig. 4.4, which generates a subset
of behaviors of the original TS (for example, the sequence “acbdae f d"), but it can exhibit also
new behaviors (e.g., sequences that start by firing the event b) because some constraints of the
original TS are missing; indeed, these two SMs are not enough to satisfy the excitation-closure
property, whereas event effectiveness is satisfied by them because all events are included in the

44 4 Transition System decomposition into sets of synchronizing SMs

composition. In this example, by considering a single SM, even event effectiveness may fail,
when some events are hidden because they are completely inside or outside some regions: e.g.,
considering only SM4, event effectiveness is not satisfied because the events b and f are missing
(in this case sequences containing the aforementioned events cannot be produced, for example
the previously cited sequence “acbdae f d"). The composition of SMs can exhibit these hidden
behaviors by including new regions: for example, the composition of SM4 with SM5 includes
two new regions r11 and r12 so that the events b and f show up in the composition.

In Sec. 3.3.2 we proved that, given a set of PNs (therefore also SMs), the excitation closure
and event effectiveness of the union of their regions, in combination with place connectedness
is a necessary and sufficient condition to guarantee that their synchronous product is equivalent
to the original transition system. As an example, it can be verified that the composition of the
four SMs in Fig. 4.3, which satisfy the excitation closure and event effectiveness properties,
yields the original TS.

The previous example also shows that we do not need all the SMs to reconstruct the original
TS, so the question is how many of them do we need and which is the “best” (in some sense)
subset of SMs sufficient to represent the given TS. Therefore, we may set up a search to ob-
tain a subset of SMs, which are excitation-closed and cover all events, to yield a composition
equivalent to the original TS.

Since well-formed State Machines with only one token in the initial marking are guaranteed
to be safe, the method presented next will produce only safe SMs.

4.1 Sequential SM search

A strategy to guarantee the complete coverage of all events is to add new SMs until all regions
are used. However, the resulting collection of SMs may contain completely or partially redun-
dant SMs (see Secs. 4.1.2 and 4.1.3), which can be removed exactly or greedily by verifying the
excitation-closure property. Moreover, the size of the selected SMs can be reduced by removing
redundant labels by merging regions.

The first step of the algorithm can be achieved by a greedy algorithm from the literature,
which checks minimality while creating regions (Section 2.3.3).

Definition 35 (Independent Set). Given an undirected graph G = (V, E), an independent set is
a subset of nodes U ⊆ V such that no two nodes in U are adjacent.

Definition 36 (Maximal Independent Set, MIS). An independent set is maximal if no node
can be added without violating independence.

The second step of the decomposition algorithm is performed by reducing it to an instance
of maximal independent set (MIS), and by calling an MIS solver on the graph whose vertices
correspond to the minimal regions with edges connecting regions that intersect. Each maximal
independent set of the aforementioned graph corresponds to a set of disjoint regions that define
an SM. Algorithm 1 shows the detailed pseudocode.

4.1 Sequential SM search 45

A greedy algorithm is used for the computation of the third step: starting from the SM with
the highest number of regions, one removes each SM whose removal does not invalidate the
ECTS properties.

The last step of merging is reduced to an SAT instance, by encoding all the regions of each
SM and also the events implied by the presence of one or more regions. By solving this SAT
instance with an SAT solver, the number of labels can be minimized by merging the regions that
occur multiple times in different SMs.

4.1.1 Generation of a set of SMs with excitation closure

Given a set of minimal regions of an excitation-closed TS, Algorithm 1 returns an excitation-
closed set of SMs, by associating sets of non-overlapping regions to SMs as detailed below.

Initially, Algorithm 1 converts the minimal regions of the TS into a graph G, where inter-
secting regions define edges between the nodes of G (line 1). A copy G0 of G is created (line 2),
to save the original graph because G is modified during the execution of the algorithm. Then an
empty set M is defined, whose elements are the outputs of the MIS procedure, i.e., each element
of M is a maximal independent set of nodes of G; similarly, the set F is defined to store the re-
sulting state machines (line 3). At this point, as long as G is not empty, the search for maximal
independent sets is performed on it by invoking the MIS procedure on G (MIS (G), line 5), stor-
ing the results in M (line 6) and removing the vertices selected at each iteration (line 7). In this
way, each vertex will be included in one MIS solution. Notice that the maximal independent
sets computed after the first one are not maximal with respect to the original graph G0, because
the MIS procedure is run on a subgraph of G0 without the previously selected nodes. To en-
sure that we obtain maximal independent sets with respect to the original G0, we expand the
independent sets to maximality in M, by invoking the MIS procedure on each independent set
m ∈ M constrained to obtain a maximal independent set m̃ ⊃ m in G0 (from line 9). Then from
the maximal independent sets we obtain the induced state machines to be stored in F (from
line 12). The motivation of this step to enlarge the independent sets is to increase the number of

Algorithm 1: Excitation-closed SM set generation
Input: Set of minimal regions of an ECTS
Output: An excitation-closed set of SMs

1 Create the graph G where each node is a region and there is an edge between intersecting regions
2 G0 ← G
3 M ← ∅, F ← ∅
4 do
5 Compute m = MIS (G)
6 M ← M ∪ {m}
7 G ← G↓M
8 while G , ∅;
9 for m ∈ M do

10 Compute m̃ = MIS (G0) with the constraint m̃ ⊇ m
11 Build state machine ˜sm induced by set of regions m̃
12 F ← F ∪ { ˜sm}

13 return F

46 4 Transition System decomposition into sets of synchronizing SMs

regions for each SM, in order to widen the space of solutions for the successive optimizations
of redundancy elimination and merging.

With respect to Def. 34, the set of SMs derived from Algorithm 1 satisfies the EC property
because, by construction, each region is included in at least one independent set, therefore
starting from the set of all minimal regions the condition ∀e ∈ E :

⋂
r∈◦e r = ES (e) is satisfied;

otherwise, if there would be an event which does not satisfy the EC, the initial TS would not be
an ECTS either. Also, event effectiveness holds because, starting from all the minimal regions
of the initial ECTS, for each event e there is at least one region r ∈ ◦e , ∅ that is also in at
least one SM. Finally, the place-connectedness property also holds because the choice of a MIS
does not allow splitting two or more different paths outgoing from a region because alternative
paths will always have independent regions and therefore all these regions will be included in
the same MIS result.

Consider a step-by-step execution of Algorithm 1 on the TS in Fig. 4.1. Initially one builds
the graph G connecting the regions with common states (see the adjacency matrix1 in Table 4.1).
The adjacency matrix of Table 4.1 does not contain couples (ri, ri) since G does not contain self
loops and all the occurrences of (ri, ri) would be 0. Then the set of independent sets M is
populated by the first cycle starting at line 5 as follows:

1. mis = {r1, r6, r16}

M = {{r1, r6, r16}}

Nodes(G) = {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17} \ {r1, r6, r16} =

{r2, r3, r4, r5, r7, r8, r9, r10, r11, r12, r13, r14, r15, r17}

2. mis = {r2, r7}

1 The adjacency matrix, sometimes also called the connection matrix, of a simple labeled graph is a matrix with
rows and columns labeled by graph vertices, with a 1 or 0 in position (vi, v j) according to whether vi and v j are
adjacent or not.

s0

s7

s9 s1

s2 s8

s4

s3s6

s5

a

b
c

b
c

d
a

fe

e
fd

Fig. 4.1: Transition system of the
current example.

Table 4.1: Adjacency matrix representing the edges (value 1) between ver-
tices of the Graph G created from the regions of the TS in Fig. 4.1.

r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17

r1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1

r2 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

r3 0 1 1 1 1 1 1 1 0 1 1 1 1 1

r4 1 1 1 1 1 0 1 1 1 1 1 1 1

r5 1 1 1 1 1 1 1 1 1 1 1 0

r6 1 1 1 1 1 1 1 1 1 0 1

r7 1 1 1 1 1 1 1 1 1 1

r8 1 1 1 1 1 0 1 1 1

r9 1 1 1 0 1 1 1 1

r10 1 1 1 1 0 1 1

r11 0 1 1 1 1 1

r12 1 1 1 1 1

r13 1 1 1 1

r14 1 1 1

r15 1 1

r16 1

4.1 Sequential SM search 47

M = {{r1, r6, r16}, {r2, r7}}

Nodes(G) = {r2, r3, r4, r5, r7, r8, r9, r10, r11, r12, r13, r14, r15, r17}\{r2, r7} = {r3, r4, r5, r8, r9, r10,

r11, r12, r13, r14, r15, r17}

3. mis = {r3, r4}

M = {{r1, r6, r16}, {r2, r7}, {r3, r4}}

Nodes(G) = {r3, r4, r5, r8, r9, r10, r11, r12, r13, r14, r15, r17}\{r3, r4} = {r5, r8, r9, r10, r11, r12, r13,

r14, r15, r17}

4. mis = {r8, r14}

M = {{r1, r6, r16}, {r2, r7}, {r3, r4}, {r8, r14}}

Nodes(G) = {r5, r8, r9, r10, r11, r12, r13, r14, r15, r17}\{r8, r14} = {r5, r9, r10, r11, r12, r13, r15, r17}

5. mis = {r11, r12}

M = {{r1, r6, r16}, {r2, r7}, {r3, r4}, {r8, r14}, {r11, r12}}

Nodes(G) = {r5, r9, r10, r11, r12, r13, r15, r17} \ {r11, r12} = {r5, r9, r10, r13, r15, r17}

6. mis = {r5, r17}

M = {{r1, r6, r16}, {r2, r7}, {r3, r4}, {r8, r14}, {r11, r12}, {r5, r17}}

Nodes(G) = {r5, r9, r10, r13, r15, r17} \ {r5, r17} = {r9, r10, r13, r15}

7. mis = {r9, r13}

M = {{r1, r6, r16}, {r2, r7}, {r3, r4}, {r8, r14}, {r11, r12}, {r5, r17}, {r9, r13}}

Nodes(G) = {r9, r10, r13, r15} \ {r9, r13} = {r10, r15}

8. mis = {r10, r15}

M = {{r1, r6, r16}, {r2, r7}, {r3, r4}, {r8, r14}, {r11, r12}, {r5, r17}, {r9, r13}, {r10, r15}}

Nodes(G) = {r10, r15} \ {r10, r15} = ∅

The last cycle of the procedure checks, for each element m of M, if there is a larger inde-
pendent set m̃ ⊇ m in G0. The only independent sets which are extended are:

SM4 = {r1, r8, r14} because {r8, r14} is not a mis on G0.
SM6 = {r1, r5, r17} because {r5, r17} is not a mis on G0.
SM7 = {r1, r9, r13} because {r9, r13} is not a mis on G0.
The final set of SMs is represented by Fig. 4.2.
Sometimes a set of regions given from the MIS solver could actually represent two (or more)

SMs, since no constraint on the complete connection of all regions has been added. That is not
a problem, since we can split the disconnected sets of regions as separate SMs, forbidding the
smallest ones. In this way sooner or later a solution with only one SM will be found, and it will
be the biggest available SM. A solution with also smaller SMs could be valid, but heuristically
without these SMs the procedure is more likely to find a solution with fewer components.

4.1.2 Removal of the redundant SMs

The set of SMs generated by Algorithm 1 may be redundant, i.e., it may contain a subset of SMs
which still define an ECTS. We describe a greedy search algorithm to obtain an irredundant set
of SMs: we order all the SMs by size and try to remove them one by one starting from the
largest to the smallest, by checking that the union of the remaining regions satisfies excitation-
closure and event effectiveness. If excitation closure and event effectiveness are preserved, then

48 4 Transition System decomposition into sets of synchronizing SMs

r1

a

d

r6

c f

r16

(a) SM1

r2

f c

r7

(b) SM2

r3

e b

r4

(c) SM3

r1

a

d

r14

c e

r8

(d) SM4

r11

f b

r12

(e) SM5

r1

a

d

r17

b f

r5

(f) SM6

r1

a

d

r9

e b

r13

(g) SM7

r10

e c

r15

(h) SM8

Fig. 4.2: All SMs created from TS in Fig. 2.2.

the given SM can be removed. This algorithm is not optimal, because the removal of an SM may
prevent the removal of a set of smaller SMs whose sum of states is greater than the number of
states of the removed SM. However, this approach guarantees good performance, having linear
complexity in the number of SMs.

To check if the excitation closure property is still valid after the removal of an SM, we
consider the excitation sets and the pre-regions (see Table 2.2) for each event of the original
transition system. We notice that SM2 (whose nodes are {r2, r7}) affects only the events c and f
(see Fig. 4.2(b)). Indeed, in the graph of SM2 there is an edge from r2 to r7 under c because r2

is a pre-region of c since c exits from {s1, s7} ⊆ r2 = {s0, s1, s3, s5, s7}, and r7 is a post-region of
c since c enters into {s2, s9} ⊆ r7 = {s2, s4, s6, s8, s9} ; similarly, there is an edge from r7 to r2

under f because r7 is a pre-region of f since f exits from {s4, s6} ⊆ r7, and r2 is a post-region of
f since f enters into {s3, s5} ⊆ r2. After the removal of event c, the intersection of the pre-regions
is: r6 ∩ r10 ∩ r14 = {s1, s4, s6, s7} ∩ {s0, s1, s5, s6, s7} ∩ {s1, s3, s4, s7} = {s1, s7} = ES (c); after
the removal of event f it is: r6 ∩ r12 ∩ r17 = {s1, s4, s6, s7} ∩ {s1, s2, s4, s6, s8} ∩ {s4, s6, s7, s9} =

{s4, s6} = ES (f). For the other events, the intersection of pre-regions is unchanged. Thus, SM2

can be removed. Subsequently, following the same reasoning for the other events, SM1, SM3,
and SM7 can also be removed. The final result is shown in Fig. 4.3.

4.1.3 Merge between regions preserving the excitation closure

We will use the transition system in Fig. 4.5 as a running example to illustrate this subsection.
By the procedure discussed so far, it can be decomposed as the synchronous product of two
SMs shown in Fig. 4.6.

4.1 Sequential SM search 49

r1

a

d

r14

c e

r8

(a) SM4

r11

f b

r12

(b) SM5

r1

a

d

r17

b f

r5

(c) SM6

r10

e c

r15

(d) SM8

Fig. 4.3: Excitation-closed subset of state machines selected from the SMs in Fig. 4.2 as result of the greedy algo-
rithm.

r1r11

r8r11 r14r11

r1r12

r8r12 r14r12

ad

c

e
ad

c

e

b

b b

f

f f

Fig. 4.4: LTS representing the composition RG(SM4)||RG(SM5) of SMs in Fig. 4.3.

s1

s2

s3

s4 s5 s6

s7 s8
b′

a
b′

a
c a

b d

e
f

Fig. 4.5: ECTS.

The third step of the procedure merges pairs of regions
with the objective of minimizing the size of the sets of SMs:
edges carrying labels are removed, and by consequence the
two nodes connected to them are merged, decreasing their
number. For example, in Fig. 4.6, both SMs contain an in-
stance of label e connected by regions r3 and r4. This means
that an edge carrying label e can be removed in one of the
SMs. The result of removing the edge with the label e in SMb and merging the regions r2

3 and
r2

4 replacing them with the region r34 is shown in Fig. 4.7.

Table 4.2: Minimal regions of the transition system in
Fig. 4.5.

Region States of the TS
r1 {s1, s3, s5}

r2 {s2, s4, s6}

r3 {s7}

r4 {s8}

r5 {s1, s2}

r6 {s3, s4}

r7 {s5, s6}

Table 4.3: Pre-regions for each event of the transition
system in Fig. 4.5

Event Pre-regions
a {r1}

b {r1, r7}

b′ {r5}

c {r2, r6}

d {r2, r7}

e {r3}

f {r4}

In general, one can remove all instances of a region except one, because removing all of
them would change the set of regions used for checking the excitation-closure property, whereas
keeping at least one guarantees the preservation of the property.

50 4 Transition System decomposition into sets of synchronizing SMs

r1

c a f

r2

d r4

e

b

r3

(a) SMa

r5

f

r4

e r3 b

r7

d c

r6b′

(b) SMb

Fig. 4.6: SMs obtained with the MIS solver from the TS of Fig. 4.5.

r1

c a f

r2

d r4

e

b

r3

(a) SMa

r5

f

r34

b

r7

d c

r6b′

(b) SMb

Fig. 4.7: SMs of Fig. 4.6 after the removal of label e in SMb.

We formulated the merging problem as solving an instance of SAT. We now describe the
encoding of the problem. We introduce next three types of SAT clauses required to represent
the problem.

1. A set of SAT clauses states that we cannot remove all instances of a given region r from
all the SMs where it appears. If we define rk

i to be true if region ri appears in SMk, the
constraint that each region must appear in at least one SM is modeled by the inequality 4.1
which is then encoded with SAT clauses:

∀i∃k rk
i = 1. (4.1)

So the SAT model will contain a clause for each region ri to represent all instances of a
given ri in all SMs. In the running example the clauses will be:

r1
1 ∧ r1

2 ∧ (r1
3 ∨ r2

3) ∧ (r1
4 ∨ r2

4) ∧ r2
5 ∧ r2

6 ∧ r2
7.

2. Another set of SAT clauses states, for each SM, that if a label on a given edge is removed
then also the two regions connected by the edge are removed, i.e., if label l is on the edge
connecting regions r1 and r2, the clause template is (r1 ∨ r2) → l, i.e., (¬r1 ∧ ¬r2) ∨ l, i.e.,

4.1 Sequential SM search 51

(¬r1∨l)∧(¬r2∨l). In the running example, the clauses for SMa are the following (l replaced
by the actual labels):

(¬r1
1 ∨ a) ∧ (¬r1

2 ∨ a) ∧ (¬r1
1 ∨ b) ∧ (¬r1

3 ∨ b) ∧ (¬r1
1 ∨ c) ∧ (¬r1

2 ∨ c) ∧
(¬r1

2 ∨ d) ∧ (¬r1
4 ∨ d) ∧ (¬r1

3 ∨ e) ∧ (¬r1
4 ∨ e) ∧ (¬r1

1 ∨ f) ∧ (¬r1
4 ∨ f);

the clauses for SMb are (l replaced by the actual labels):

(¬r2
5 ∨ b) ∧ (¬r2

6 ∨ b) ∧ (¬r2
6 ∨ c) ∧ (¬r2

7 ∨ c) ∧ (¬r2
4 ∨ d) ∧

(¬r2
7 ∨ d) ∧ (¬r2

3 ∨ e) ∧ (¬r2
4 ∨ e)∧ (¬r2

4 ∨ f) ∧ (¬r2
5 ∨ f).

3. Finally, we must express the optimization objective: keep the minimum number of labels
needed to satisfy the excitation-closure property. This is expressed by Eq. 4.2, where lkj is
true if there is an instance of label j in SMk:

min(
∑
∀k∀ j

lkj). (4.2)

Setting x as the number of labels there are in all SMs (in the running example, x =
∑

lkj =
6 + 6 = 12), this constraint is rewritten as:∑

∀k∀ j

lkj ≤ x. (4.3)

Then Eq. 4.3 is converted into a set of SAT clauses using the library PBLib [19]. The first
assignment of x yields a trivially true SAT instance because it corresponds to the initial
situation, as stated by Eq. 4.4. ∑

∀k∀ j

lkj = x. (4.4)

Therefore, a solution of Eq. 4.2 can be found by solving a sequence of SAT instances whose
clauses are the ones previously defined (clauses to represent regions, clauses encoding the re-
lation between regions and labels, and clauses from the conversion of Eq. 4.3), and where x
decreases from the initial largest value down, until when an UNSAT model is reached. The so-
lution of the last satisfiable SAT instance encountered represents the best decomposition of the
initial transition system. As a matter of fact, the linear search on x is sped up by transforming it
into a logarithmic binary search on x (in the running example, we solve for x = 12, x = 6, x = 9
until we converge for x = 11).

In the end, according to the SAT solution, the SMs are restructured by removing arcs and
nodes to be deleted, adding merged nodes, and redirecting arcs as appropriate. In the running
example, in SMb we merge the nodes r3, r4 into node r34, remove the edge labeled e between
the deleted nodes r3 and r4, and redirect to r34 the edges that point to r3 or r4.

In this chapter, a specific application of the decomposition algorithm based on the theory
of regions was proposed, producing a set of Synchronizing SMs from a transition system. It
was shown that by encoding the problem into Maximal Independent Set, each independent set

52 4 Transition System decomposition into sets of synchronizing SMs

represents a State Machine. Continuing the search until all regions are used automatically en-
sures the excitation closure property, even if there is a high probability of having completely or
partially redundant components. Indeed, the proposed flow natively includes two minimization
algorithms: a greedy algorithm removing completely redundant components and an algorithm
based on the merging of adjacent regions for the minimization of the components left after
the previous minimization. This final step was proposed by encoding the regions into clauses,
allowing for a SAT solver-based solution.

5

Transition System decomposition into sets of synchronizing FCPNs

-
The main limitation of the restriction to SMs is their sequential nature (SMs model only

causality and choice), i.e., do not capture concurrency, and concurrent events must be split into
different components. This chapter mitigates such restriction by allowing concurrent events to
be in the same component, under the constraint that the component must be free-choice. With
the new approach, the number of components is reduced, trading-off number vs. complexity of
components. The step from SMs to FCPNs requires the introduction of a more complex set of
constraints on the decomposition process, as explained in detail in the following sections.

In this chapter, two different approaches for the decomposition into a set of synchronized
FCPNs will be presented, one based on a sequential search similar to the approach used for
SMs, and another novel approach which allows finding directly k FCPNs. The first method was
presented at the 31st International Workshop on Logic & Synthesis (IWLS2022) and published
at the 25th Euromicro Conference on Digital System Design (DSD2022) [41], the second one at
the 26th Euromicro Conference on Digital System Design (DSD2023) [17], together with our
software that performs the decomposition.

5.1 Overview

We start by an overview of the method proposed in this chapter and by a simple example to
illustrate the main ideas.

Fig. 5.1 shows a TS and a PN net with equivalent behavior. A concurrent system often
represents the cooperation of different subsystems that interact through common events. It is in-
teresting to identify and distill the components of the system in a way that they can be visualized
and analyzed individually, thus hiding the other components.

This work is an attempt to perform a distillation without prior knowledge of the components,
with two goals: (1) extract subsystems with nice structural properties, i.e., easy to visualize and
analyze, and (2) guarantee that their composition reproduces the original behavior of the system.

Fig. 5.2 shows an SM-decomposition as proposed in [40]. Due to the inherent concurrency
of the system, the decomposition requires four SMs to fully capture the behavior.

54 5 Transition System decomposition into sets of synchronizing FCPNs

s0

s1 s2

s3 s4

s5

s6

s7 s8

s9

s11

s10

s12

x

x

x

x

a

a

a

y
y

z

z

z

b

b
c

c
d

d

x

y

d

d

c

c

c
p0

p3 p4

p1 p2

p5

p8

p6 p7

a

b

dc
x

y

z

Fig. 5.1: Transition system of Fig. 3.2 and a bisimilar Petri net.

p2

p9

a d

(a) SM0

p1

p0

p3

a

b

c
(b) SM1

p5

p4 p7

b y

d z

(c) SM2

p8

p6

p7

x

y

z

(d) SM3

Fig. 5.2: Four SMs distilled from the TS in Fig. 5.1.

p0

p3 p4

p1 p2

a

b

dc

(a) FCPN0

p5

p4 p7

b y

d z

(b) FCPN1

p8

p6

p7

x

y

z

(c) FCPN2

Fig. 5.3: Three FCPNs distilled from the TS in Fig. 5.1.

5.2 Sequential FCPN search 55

In this case study, incorporation of concurrency in components is allowed by extending their
structural properties. Fig. 5.3 shows three components extracted from the TS in Fig. 5.1. It can
be seen that the system models the interaction of two components with alphabets {a, b, c, d} and
{x, y, z}, respectively, shown on the left (a) and right (c) of the picture. In the middle, there is an
arbitration process (b) that creates a mutual exclusion between {b, d} and {y, z}.

This example illustrates the purpose of this work: extract hidden knowledge from complex
systems. In this case, we enforce the components to have structural properties that are formally
captured by the concept of FCPN, which combines causality, concurrency, and choice with
simple structural rules.

The example also illustrates the main contribution of this work with respect to the SM de-
composition proposed in [40]. The use of FCPNs allows the number of components to be re-
duced while preserving nice structural properties.

5.2 Sequential FCPN search

In this case, as a starting point we could take the flow presented for the state machines, which
already satisfies also the constraints for the FCPNs, but we could do even better: since the
FCPNs are less restrictive than SMs allowing concurrency inside them, one could improve the
previous flow by adopting some changes. First, the properties that are satisfied when a set of
regions P̂ represents a Free-choice Petri net are shown:

• Place connectedness. If a region r ∈ P̂, then all incoming and outgoing events are also
present in the FCPN.
• Event connectedness. If an event e is present, at least one pre-region and one post-region of

e must belong to P̂.
• Free-choiceness. if r is a choice present in the FCPN, then r must be the only selected pre-

region of its post-events. Formally, if r ∈ P̂, |r•| > 1, e ∈ r•, r′ ∈ •e, and r , r′, then
r′ < P̂.

In order to create a restricted set of FCPNs also the following constraints have to be taken
into account during the creation of a new FCPN:

• Maximization function: given the set of minimal regions, during the creation of a new FCPN,
maximize the usage of regions which does not take part of the previously created FCPNs;
• (Optional) Minimization function: minimize the number of the total used regions in the new

FCPN, keeping constant the maximum number of new used regions.

The purpose of the first functions is to create as few FCPNs as possible: the maximization
function forces the creation of largest possible FCPNs; in this way the number of sufficient
regions in order to achieve a set of synchronized FCPNs can be reached reducing the number of
used FCPNs. Instead, the second function is used to minimize the number of redundant regions
during the creation of the new FCPN, keeping constant the result obtained by the previous
constraint.

56 5 Transition System decomposition into sets of synchronizing FCPNs

Looking into the implementation of this kind of decomposition, differently from the SMs,
in this case, in order to find a set of synchronized FCPNs a SAT solver is used. Each of the
previously described properties was encoded into a set of CNF clauses, and then, by performing
a binary search in the range [0, n], instances of SAT problems were solved trying to find a
new FCPN with i ∈ [0, n] new regions, where the maximum number of unused regions is n.
Afterward, keeping the obtained number of FCPNs fixed, single FCPN minimization can be
performed (merging algorithm).

5.3 Decomposition into k FCPNs simultaneously

In this section, we present a novel method for the decomposition of LTSs into sets of synchro-
nized FCPNs. This method has many similarities to the previous one, but the approach is dif-
ferent since the search is performed simultaneously on k FCPNs. This allows one to encode the
excitation-closure property using the set of minimal regions obtained from the LTS. To encode
the excitation-closure, for each event, all possible sets of minimal regions that satisfy EC are
found. The complexity of this step is O(2n), where n is the number of pre-regions of the event.
Fortunately, the maximum number of pre-regions for an event hardly exceeds a dozen. Once all
possible sets of pre-regions that satisfy EC for each event were found, using the CUDD pack-
age [42] these sets are encoded into binary decision diagrams (BDDs). Each BDD represents a
set of choices of regions to satisfy excitation closure for the given event. It is important to note
that each BDD is composed of pre-regions for the given event and not all regions of an LTS.
The path from the root to a leaf represents a set of choices of the pre-regions of the given event,
which can bring to the satisfaction of excitation closure or not. Taking all paths that satisfy EC,
a set of DNF clauses which represents the EC satisfaction can be created. In our case, we need
them in CNF form to be fed to a SAT solver, therefore, the complement is taken: all paths that
do not satisfy EC. In detail: a path root-leaf can be represented as a clause where each literal
is a region which could be true or false, i.e., according to whether the region is taken or not,
for example, (r1 ∧ r2 ∧ r3) represents a set of three pre-regions for an event where r1 and r2 are
taken and r3 not. This path could bring to an unsatisfied excitation-closure, as many other paths.
For the satisfaction of the EC property, it is sufficient to avoid each of these unsatisfiable paths.
Given the set of clauses C where each clause represents a set of region assignments that bring
to unsatisfied excitation-closure, a set of clauses

∧
ci∈C ci is created to represent that each clause

ci ∈ C has to be avoided. Being each clause ci a conjunction of literals, ci becomes a disjunction
of literals, bringing the entire set of clauses into CNF form. N.B.: the aforementioned method
works with any number of clauses, but we can do better: sometimes there is a special case with
only one set of regions satisfying excitation closure, in this case not all possible unsatisfiable
paths should be visited, since a set of CNF clauses representing the usage of all involved re-
gions can be directly created. For example, if for a given event e two pre-regions r1 and r2 are
sufficient to ensure EC, it is possible to create a set of two clauses: (r1) ∧ (r2).

Combining the new EC encoding procedure with the previously presented decomposition
flow we obtain the following set of constraints which has to be satisfied:

5.3 Decomposition into k FCPNs simultaneously 57

1. Excitation-closure;
2. Place connectedness: if a region r is used in an FCPN, then all events with incoming or

outgoing edges with respect to r must appear in it;
3. Event connectedness: structural connection between events and regions; if an event is taken,

at least one pre-region and one post-region of this event should be in the FCPN, this con-
straint guarantees structurally simple FCPNs;

4. Free-choiceness: prohibits symmetric choice, asymmetric choice and conflict structures;
5. (Optional) Event usage: each event has to be taken at least once: this constraint can be

derived from the combination of constraints 1 and 2 but the usage of clauses with only one
literal can speed up the computation.

Having the excitation closure encoded into a set of clauses also all remaining constraints for
a set of k FCPNs can be encoded, and with k = 1 a linear search can start, increasing k until
a SAT result is found. Also in this case, once a SAT result is found, a minimization function
can be used, minimizing the number of used regions, and keeping the result satisfiable with the
fixed number of FCPNs.

As has been seen for SMs, also in case of FCPNs, a satisfiable set of regions could actually
represent two (or more) FCPNs, even if a MIS solver is not used anymore. It means that given
the solution of the simultaneous method, the disconnected sets of regions can still be divided
as separate FCPNs and reach a suboptimal result. To ensure that the result achieved is optimal,
it is possible to sign the set of regions representing more than one FCPN as a forbidden result,
continuing the search for the optimal solution. This method is very simple, but it is not applied
really often and does not produce a drastic performance drop.

5.3.1 Example of k FCPN simultaneous decomposition

s0

s1 s2 s3 s4 s5

s6s7s8s9

a

g b d a

f

cbed

Fig. 5.4: Current example ECTS.

Let us see the simultaneous FCPN decomposition per-
formed on the ECTS in Fig. 5.4. The minimal regions
are shown in Table 5.1 and excitation sets with pre-
regions in Table 5.2. Let us see how the initial SAT
clauses for the creation of the FCPNs are encoded.

First of all, the search of minimal sets of pre-regions
that satisfy EC for each event is performed. This part is
always exhaustive, but fortunately the maximum num-
ber of pre-regions for an event is always small. The sets of regions that satisfy EC are shown
in Table 5.4. For each set, a Binary Decision Diagram is created (it is possible to see the
case related to event f with the truth table in Table 5.3, the derived Binary Decision Tree
in Fig. 5.5 and the BDD in Fig. 5.6). Since the SAT clauses should be in CNF form, the
cases where an event has only one set of pre-regions satisfying EC were directly transformed
into a set of CNF clauses, only in case of f there was the need to use conjunction of all
paths unsatisfying EC (Table 5.4). In case of event f there are two sets of regions satisfy-
ing EC: {r1, r7} and {r7, r8}. The paths leading to an unsatisfiable result are the following:
{r1, r7, r8}, {r1, r7, r8}, {r1, r7, r8}, {r1, r7, r8}, {r1, r7, r8} (see Fig. 5.5 or Fig. 5.6). Each set should

58 5 Transition System decomposition into sets of synchronizing FCPNs

Table 5.1: Minimal regions
of TS in Fig. 5.4.

Region States

r0 {s0, s4}

r1 {s3, s4, s5, s8}

r2 {s7, s8}

r3 {s2, s7}

r4 {s6}

r5 {s2, s3, s9}

r6 {s3, s8, s9}

r7 {s1, s5}

r8 {s2, s3, s4, s5}

r9 {s0, s1, s9}

Table 5.2: Excitation sets, pre-regions and post-
regions for each event of TS in Fig. 5.4.

Event ES(event) Pre-regions Post-regions

a {s0, s4} {r0} {r7}

b {s2, s7} {r3} {r1, r6}

c {s6} {r4} {r2, r3}

d {s3, s9} {r5, r6} {r0}

e {s8} {r1, r2} {r5, r9}

f {s5} {r1, r7, r8} {r4}

g {s1} {r7, r9} {r3, r5, r8}

Table 5.3: Truth table for
EC of event f of TS in
Fig. 5.4.

r1 r7 r8 EC(f)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

r1

r7

r8

0

false

0

true

false

r8

0

false

1

true

true

false

r7

r8

0

false

0

true

false

r8

1

false

1

true

true

true

Fig. 5.5: Binary Decision Tree for EC of event f of TS in Fig. 5.4 representing the choice of the regions in the
following order: r1, r7, r8.

r1

r7 r7

r8

0 1

Fig. 5.6: Binary Decision Diagram for EC of event f of TS in Fig. 5.4, following the same variale order of BDT in
Fig. 5.5.

5.3 Decomposition into k FCPNs simultaneously 59

Table 5.4: Sets of clauses to satisfy excitation-closure for each event of TS in Fig. 5.4.

Event Sets of regions Set of clauses (not simplified)

a {r0} (r0)
b {r3} (r3)
c {r4} (r4)
d {r5, r6} (r5) ∧ (r6)
e {r1, r2} (r1) ∧ (r2)
f {r1, r7}, {r7, r8} (r1 ∨ r7 ∨ r8) ∧ (r1 ∨ r7 ∨ r8) ∧ (r1 ∨ r7 ∨ r8) ∧ (r1 ∨ r7 ∨ r8) ∧ (r1 ∨ r7 ∨ r8)
g {r7, r9} (r7) ∧ (r9)

be considered as a conjunction, and there is a disjunction between different sets. Since we
want to avoid all these paths, we complement each set by creating a conjunction of clauses:
(r1 ∨ r7 ∨ r8) ∧ (r1 ∨ r7 ∨ r8) ∧ (r1 ∨ r7 ∨ r8) ∧ (r1 ∨ r7 ∨ r8) ∧ (r1 ∨ r7 ∨ r8). Since each
clause represents an unsatisfiable path, the resultant set of clauses is not minimized, indeed the
previous set of clauses can be minimized becoming: r7 ∧ (r1 ∨ r8).

Targeting only one FCPN, the following are the clauses encoded for the SAT solver:

• Excitation closure:

r0 ∧ r3 ∧ r4 ∧ r5 ∧ r6 ∧ r1 ∧ r2 ∧ (r7 ∨ r8) ∧ (r7 ∨ r8) ∧ (r1 ∨ r7 ∨ r8) ∧ r7 ∧ r9

minimizing, these clauses become

r0 ∧ r1 ∧ r2 ∧ r3 ∧ r4 ∧ r5 ∧ r6 ∧ r7 ∧ r9

• Place connectedness:
– clauses related to events for which the regions are post-regions

(r0 ∨ d) ∧ (r1 ∨ b) ∧ (r2 ∨ c) ∧ (r3 ∨ c) ∧ (r3 ∨ g) ∧ (r4 ∨ f) ∧
(r5 ∨ e) ∧ (r5 ∨ g) ∧ (r6 ∨ b) ∧ (r7 ∨ a) ∧ (r8 ∨ g) ∧ (r9 ∨ e)

– clauses related to events for which the regions are pre-regions
(r0 ∨ a) ∧ (r1 ∨ e) ∧ (r1 ∨ f) ∧ (r2 ∨ e) ∧ (r3 ∨ b) ∧ (r4 ∨ c) ∧
(r5 ∨ d) ∧ (r6 ∨ d) ∧ (r7 ∨ f) ∧ (r7 ∨ g) ∧ (r8 ∨ f) ∧ (r9 ∨ g)

• Event connectedness:
– clauses related to pre-regions of the events:

(a∨ r0)∧ (b∨ r3)∧ (c∨ r4)∧ (d∨ r5∨ r6)∧ (e∨ r1∨ r2)∧ (f ∨ r7∨ r8∨ r1)∧ (g∨ r7∨ r9)
– clauses related to post-regions of the events:

(a∨ r7)∧ (b∨ r1∨ r6)∧ (c∨ r2∨ r3)∧ (d∨ r0)∧ (e∨ r5∨ r9)∧ (f ∨ r4)∧ (g∨ r3∨ r5∨ r8)
• FCPN structure: no clauses were produced;
• Event usage:

a ∧ b ∧ c ∧ d ∧ e ∧ f ∧ g

After the first cycle with the given clauses, an unsatisfiable result was produced. Increasing
the total number of FCPNs to two, we introduce the bindings between symbolic regions/events
and actual ones. The bindings reduce the total number of clause: for each symbolic region sri

there is an implication to the different instances of the region rk
i where i represents the actual

region index and k represents the actual FCPN index (0 or 1) since there are two FCPNs. In case

60 5 Transition System decomposition into sets of synchronizing FCPNs

of events, there is the same type of constraint between symbolic events and actual events of the
different FCPNs. The constraints for regions are the following:

sri =⇒ (r0
i ∨ r1

i) with i ∈ [0 − 9]

In case of events the constraints are:

s(ev) =⇒ ((ev)0 ∨ (ev)1) with ev ∈ {a, b, c, d, e, f , g} and i ∈ [0, 1]

Next are represented the CNF clauses for the second iteration searching a result with two
FCPNs:

• Symbolic regions: converting the symbolic region constraints into CNF form the result is:

sri ∨ r0
i ∨ r1

i with i ∈ [0 − 9]

• Symbolic events: converting the symbolic event constraints into CNF form the result is:

s(ev) ∨ (ev)0 ∨ (ev)1 with ev ∈ {a, b, c, d, e, f , g}

• Excitation closure: this constraint remains the same as in the previous cycle but it is applied
to symbolic regions because it remains unchanged and represents a property that should be
satisfied globally and not on a single FCPN:

sr0 ∧ sr1 ∧ sr2 ∧ sr3 ∧ sr4 ∧ sr5 ∧ sr6 ∧ sr7 ∧ sr9

• Place connectedness: in this case we have doubled the number of clauses since the entire
set has to be proposed for each FCPN:

– clauses related to events for which the regions are post-regions
(ri

0 ∨ di) ∧ (ri
1 ∨ bi) ∧ (ri

2 ∨ ci) ∧ (ri
3 ∨ ci) ∧ (ri

3 ∨ gi) ∧ (ri
4 ∨ f i) ∧

(ri
5 ∨ ei) ∧ (ri

5 ∨ gi) ∧ (ri
6 ∨ bi) ∧ (ri

7 ∨ ai) ∧ (ri
8 ∨ gi) ∧ (ri

9 ∨ ei)
where i ∈ [0, 1]

– clauses related to events for which the regions are pre-regions
(ri

0 ∨ ai) ∧ (ri
1 ∨ ei) ∧ (ri

1 ∨ f i) ∧ (ri
2 ∨ ei) ∧ (ri

3 ∨ bi) ∧ (ri
4 ∨ ci) ∧

(ri
5 ∨ di) ∧ (ri

6 ∨ di) ∧ (ri
7 ∨ f i) ∧ (ri

7 ∨ gi) ∧ (ri
8 ∨ f i) ∧ (ri

9 ∨ gi)
where i ∈ [0, 1]

• Event connectedness: as in case of place connectedness the constraint is local to each FCPN
therefore it should be repeated for each FCPN:

– clauses related to pre-regions of the events:
(ai ∨ ri

0) ∧ (bi ∨ ri
3) ∧ (ci ∨ ri

4) ∧ (di ∨ ri
5 ∨ ri

6) ∧

(ei ∨ ri
1 ∨ ri

2) ∧ (f i ∨ ri
7 ∨ ri

8 ∨ ri
1) ∧ (gi ∨ ri

7 ∨ ri
9)

where i ∈ [0, 1]
– clauses related to post-regions of the events:

(ai ∨ ri
7) ∧ (bi ∨ ri

1 ∨ ri
6) ∧ (ci ∨ ri

2 ∨ ri
3) ∧ (di ∨ ri

0) ∧

(ei ∨ ri
5 ∨ ri

9) ∧ (f i ∨ ri
4) ∧ (gi ∨ ri

3 ∨ ri
5 ∨ ri

8)
where i ∈ [0, 1]

• FCPN structure: no clauses were produced;

5.4 Additional constraint: safeness for each FCPN 61

• Event usage: in this case the constraint is passed to symbolic events since the constraint is
global, indeed we don’t have repetitions for each FCPN:

sa ∧ sb ∧ sc ∧ sd ∧ se ∧ s f ∧ sg

This time the result is satisfiable, returning the FCPNs in Fig. 5.7.

r0

r7

r3 r5

r1r6

r4

a

gf

c
b e

d

(a) FCPN0

r9

r8

r4

r2

g

f

c

e

(b) FCPN1

Fig. 5.7: Free-choice Petri nets derived from LTS in Fig. 5.4.

5.4 Additional constraint: safeness for each FCPN

Even if in most cases the decomposition obtains only safe FCPNs, in rare cases unsafe FCPNs
may appear. Actually, it is not a problem since the result of the synchronization between FCPNs
is guaranteed to be safe, but taking the FCPNs separately this property is not guaranteed (dif-
ferently from SMs). It means that to satisfy the safeness of each component, additional checks
have to be performed.

Different solutions were tested for both sequential and simultaneous approaches (see Sec-
tion 6.2.2). From these two main approaches arise.

The first is very simple, consists of the simultaneous FCPN search, in the case of at least one
unsafe FCPN, SM search is performed. This method is trivial, but it has the best performance,
sacrificing the size of the derived model.

The other approach is a little more complex and aims to minimize the number of derived
components. This method is based on the sequential FCPN search, adding a counter for each
region. If the region is used in an unsafe FCPN, we check whether the region is a post-region of

62 5 Transition System decomposition into sets of synchronizing FCPNs

a fork transition. In the positive case, the counter of the region is increased, and the search for
new FCPNs is performed, searching for the maximal number of unused regions, minimizing the
sum of the new counters. All performed methods are explained in Section 6.2.2, also showing
the experimental results.

5.5 Decomposition optimization

Once a set of synchronized FCPNs is obtained, in the case of sequential FCPN search, as in the
case of SMs, we can improve our result trying to minimize the number of the obtained FCPNs;
indeed, the greedy algorithm is performed in the same way as in the case of State Machines.
In the case of optimal simultaneous FCPN search, there is no need for greedy FCPN removal,
since we know that there is no solution with fewer FCPNs: imagine that there exists a solution
with n FCPNs where n < k, which means that the SAT solver had to return a solution with n. If
instead we are not sure about the minimality of the solution because a set of regions probably
represents two or more FCPNs, the greedy algorithm could be performed.

In addition to minimization of the number of FCPNs, as we have seen with SMs, we can
further reduce the size of each FCPN merging adjacent regions. In this case, optimization is
useful independently of the number of FCPN chosen by the decomposition algorithm. In case
of FCPNs, regions merge is slightly different from the merge performed on SMs: a set of con-
straints was added in order to maintain the correct behavior and FCPN property. The following
SAT constraints are needed to encode the merge of regions:

1. Preservation of excitation closure: all occurrences of each used region can be removed
except one occurrence (which preserves excitation closure).

2. Effective merge: removing a label the connected regions are removed.
3. Structural constraint: the merging regions have to be disjoint or the intersection of the

merging regions has to be a region.
4. Free-choice structure preserving constraint: giving a couple of merging regions r1 and r2

where the removing event is e and r1 is a pre-region for e, r2 is a post-region for e, if r1 is a
pre-region for an event e′ where e , e′ and r2 is a pre-region for an event e′′ where e′′ , e
and there exists a pre-region of e′′ called r3 i.e. r3 , r2 then the merge between r1 and r2

cannot be done in order to preserve free-choice structure.
5. Minimization function: number of events.

The constraints 1, 2 and 5 are the same constraints seen for SMs, let’s see in detail the others.
Constraint 3 is implicit in the case of SMs because an SM by construction is composed of a set
of disjoint regions. In case of FCPNs we could have non-disjoint regions; therefore, this kind
of constraint has to be specified explicitly in order to guarantee that the merging regions will
create still a valid region: in case of a set of non-disjoint regions sometimes the merge creates a
region.

Theorem 5 ([41]). If r1 and r2 are non-disjoint regions, then r1 ∪ r2 is a region iff r1 ∩ r2 is a
region.

5.5 Decomposition optimization 63

Proof. Suppose that r1 and r2 are non-disjoint regions and r1 ∩ r2 is also a region. Then r1 \

(r1 ∩ r2) = r1 \ r2 is a region, since r1 and r1 ∩ r2 are regions, and (r1 ∩ r2) ⊆ r1 (by Prop. 1.50,
p. 43, [30]). Then r1 \ r2 and r2 are two disjoint regions and therefore (r1 \ r2) ∪ r2 = r1 ∪ r2 is
a region, since the union of two disjoint regions is also a region (by Prop. 1.64, p. 50, [30]).

Suppose that r1 and r2 are non-disjoint regions and r1 ∪ r2 is a region, then (r1 ∪ r2) \ r1 and
(r1 ∪ r2) \ r2 are regions, as differences of regions. So ((r1 ∪ r2) \ r1)∪ ((r1 ∪ r2) \ r2) is a region
as a union of disjoint regions. Then r1 ∩ r2 = (r1 ∪ r2) \ (((r1 ∪ r2) \ r1) ∪ ((r1 ∪ r2) \ r2))) is a
region as a difference of regions.

Theorem 5 represents a contribution of our DSD2022 publication [41], which allows per-
formance improvement during constraint creation. This theorem also shows that using only
minimal regions, the result of the merge of two non-disjoint minimal regions may be an in-
valid region, but after some iterations, having created non-minimal regions, merges between
non-disjoint regions become possible.

Even if it is not the case of FCPNs, for generic PNs we can see that Constraint 3 is impor-
tant also for a second purpose: safeness of the entire composition, considering a composition of
unsafe PNs. If we are performing the decomposition allowing unsafe PNs, after the last mini-
mization step the unsafeness can be propagated from single components to the PN composition
by merging non-disjoint regions. In Fig. 5.8(a) we can see an unsafe PN (the sequence “ab"
produces an unsafe marking), but considering it a part of a decomposition which prevents the
unsafe sequence by always clearing the place p2 before the firing of b and other unsafe com-
binations we can still keep safe the synchronization between PNs. We know that p1 and p2 are
not disjoint, since both are post-regions for event a which means that there exists at least one
state reachable from a which is contained in both p1 and p2 and therefore the two regions are
not disjoint. Suppose that the merge algorithm removes event b by merging exactly p1 and p2,
producing the result in Fig. 5.8(b). In this case, it is impossible to prevent unsafe markings if
the firing of event a is allowed since it directly produces an unsafe marking.

p0

p1

p2

p3

a

c

b

d
e

(a)

p0 p1 p2

p3

a

c

d e

(b)

Fig. 5.8: Example with merge of two not disjoint regions.

64 5 Transition System decomposition into sets of synchronizing FCPNs

p0

p2

p3

p1 p4

b

c

a

(a)

p0 p2

p3p1

p4

ca

(b)

Fig. 5.9: Example of the loss of free-choice property after the removal of event b.

Constraint 4 is fundamental in order to maintain the free-choice property: merging a couple
of regions, the PN structure is modified and could contain forbidden structures for the chosen
subclass of PNs e.g. a free-choice Petri net which becomes an asymmetric-choice PN (Fig. 5.9).

Theorem 6. The example in Fig. 5.9 is the simplest case of violation of the free-choice structure.
It can be extended to more complex cases with the same structure but more intricate patterns of
places/transitions, and it represents the only way to loose the free-choice property by merging.

Proof. The merge operation does not create new structures but by removing labels it becomes
closer to the already existing structure, which means that given an already existing structure in
order to create an asymmetric choice, a choice and a join must overlap as a result of a merge.
Initially, the choice and the join structures cannot have in common a transition because it would
mean that we already have an asymmetric choice. If the two structures do not have anything in
common, the merge on one of them does not affect the structure of the other; therefore, in this
case the merge is safe. But what happens if the two structures have one or more common places?
Considering only the simplest structures, we cannot have three common places (overlapping
the two structures, we can have at most two common places). Let’s see the other possible cases
considering a choice containing places p1, p2 and p3 and a join containing places p4, p5 and p6

(Fig. 5.10).
Let us see the cases with initially two common places:

• p1 = p4 or p1 = p5 and p2 = p6 or p3 = p6: this case is not possible because it represents
already an asymmetric choice;
• p2 and p3 match p4 and p5: this case is possible and the removal of each event among a, b

and c is safe.

Lastly, there are cases with only one common place:

• p1 = p6: each merge is safe;
• p1 matches with p4 or p5: this case is not possible because it already represents an asym-

metric choice;
• p6 matches with p2 or p3: each possible merge on a, b or c is safe;

5.6 Decomposition into a set of synchronizing ACPNs 65

p1

p3p2

ba

(a)

p4

p6

p5

c

(b)

Fig. 5.10: Choice (a) and join (b) used in the proof.

p0

p1 p2 p3

p4

a

b c d e

Fig. 5.11: Removing events b, c, d and e as a collateral effect also event a is removed.

• p2 or p3 is equal to p4 or p5: merge on c is safe and the same for the event a or b if it
is not connected neither to p4 nor p5, otherwise, if the merging transition which does not
correspond to c is connected to p4 or p5 we have the forbidden case which is represented
also in Fig. 5.9.

When the SAT computation is finished, not all merges are performed directly, so an ad-
ditional check is done in order to avoid the unexpected removal of events: suppose that the
SAT solver got as result a sequence of merges where each merge is valid, but the final result
is the removal of an entire choice branch, if the choice on the other side does not contain any
place but only one or more events, these events would be removed merging the entire set of
places (Fig. 5.11). In this case, given a sequence of merging regions, at least one merge is not
performed in order to maintain both branches.

5.6 Decomposition into a set of synchronizing ACPNs

The decomposition of a TS/PN into a set of synchronizing Asymmetric-Choice Petri Nets could
be seen as a special case of the flow described previously for FCPNs. In this case the flow is the
same, except for adding the following property which has to be satisfied so that a set of regions
define an ACPN instead of a FCPN:

• Given two events e1 and e2, if r ∈ ◦e1 and r ∈ ◦e2 if there is a region r′ , r being r′ ∈ ◦e1 or
r′ ∈ ◦e2 then |r′•| = 1.

This example shows how versatile the decomposition flow is, allowing for plenty of other
different constraints for the final model.

In this chapter, we introduced a technique based on the theory of regions to break down a
transition system into a set of Synchronizing FCPNs. This process is illustrated by translating

66 5 Transition System decomposition into sets of synchronizing FCPNs

the decomposition constraints into a Boolean Satisfiability problem. The search, based on a
SAT solver, continues until the excitation closure property is met, even if there is a significant
likelihood of encountering fully or partially redundant components. As with SMs (Sec. 4), the
suggested method inherently integrates two minimization techniques: one is a greedy algorithm
that eliminates entirely redundant components, and the other focuses on merging neighbor-
ing regions to reduce the remaining components after the initial minimization. Furthermore,
an enhanced FCPN decomposition version is presented, which incorporates the encoding of
excitation-closure into the SAT constraints using BDDs. This refined methodology improves
both the average component count and the decomposition duration compared to its predecessor.
Furthermore, the possibility of extending the presented approach to Asymmetric-Choice Petri
nets is presented.

6

Experimental results

6.1 SMs

The procedure described in Sec. 3 was implemented and experiments were performed on an
Intel Core running at 2.80GHz with 16 GB of RAM. The software is written in C++ and uses
PBLib [19] for SAT resolution. The resolution of the MIS problem is performed by the Net-
workX library [18, 43]. For the tests, two sets of benchmarks were used, both from the world
of asynchronous controllers: the first set (the same as in [44]), with smaller transition systems
is listed in the first rows of Table 6.1 and denoted as “Miscellaneous benchmarks"; the sec-
ond one containing large transition systems is listed in the second part of Table 6.1, denoted
as “Parametrized controllers". “Parametrized controllers" represents benchmarks from [45, 46]
including indeed parametrized controllers art_m_n, sequencer seq_40 and parametrized con-
trollers pparb_m_n. Unlike the small and miscellaneous benchmarks, the large set mainly con-
tains controllers with m pipelines (art_m_n, pparb_m_n), a suitable type of input for our al-
gorithm, being highly concurrent. However, there is also a case with a completely sequential
circuit (seq_40) in order to show also the worst case where each region contains only one state.

The software used for the synthesis of Petri nets is Petrify1 [20]. Even if the core of this
software did not change for many years, it is still a reference point for PN synthesis using the
theory of regions. Genet [47] is the only alternative used nowadays (still based on the theory of
regions).

Table 6.1 shows the absolute and relative runtimes of the flow steps: region generation,
decomposition into SMs, irredundancy, and place merging. The generation of minimal regions
is the dominating operation, taking more than 45% of the overall time spent; it is exponential in
the number of events and with the increase of the input dimensions it becomes the bottleneck
shadowing the remaining computations (see “Parametrized controllers"). However, it is still
possible to decompose quite large transition systems with about 106 states and 3·106 transitions.

Table 6.2 compares the impact of each optimization step with respect to places and transi-
tions in the examples of “Small-sized set". The table represents the percentage of places and
transitions removed with respect to the execution of the same decomposition without perform-
ing minimization steps, which are "Greedy SM removal" and "Places merge". After the opti-

1 Version 5.2, May 2019.

68 6 Experimental results

Table 6.1: TS statistics and CPU time for each decomposition step including the time spent to generate the regions.

Input States Transitions Events Regions

Time
region

generation
[s]

Time
decomp.

[s]

Time
Greedy

[s]

Time
Merge

[s]

Total
time
[s]

Time
region
gen.
[%]

Time
decomp.

[%]

Time
Greedy

[%]

Time
Merge

[%]

“M
is

ce
lla

ne
ou

s
be

nc
hm

ar
ks

"

alloc-outbound 17 18 14 15 0.00 0.25 0.00 0.06 0.31 0.36 80.36 0.07 19.21
clock 10 10 4 11 0.01 0.20 0.00 0.03 0.24 3.02 85.71 0.13 11.14
dff 20 24 7 20 0.29 0.20 0.00 0.77 1.27 23.28 15.50 0.08 61.14
espinalt 27 31 20 23 0.00 0.21 0.00 0.49 0.70 0.37 29.54 0.07 70.02
fair_arb 13 20 8 11 0.02 0.20 0.00 0.03 0.25 8.80 80.41 0.04 10.74
future 36 44 16 19 0.03 0.21 0.00 0.11 0.35 9.40 60.35 0.20 30.05
intel_div3 8 8 4 8 0.00 0.23 0.00 0.01 0.24 0.75 94.73 0.04 4.48
intel_edge 28 36 6 27 1.60 0.20 0.00 1.30 3.11 51.58 6.41 0.14 41.86
isend 53 66 15 128 57.67 0.31 0.32 1.04 59.33 97.21 0.51 0.53 1.75
lin_edac93 20 28 8 10 0.00 0.19 0.00 0.01 0.21 1.16 93.38 0.10 5.36
master-read 8932 36 26 33 6.71 0.53 0.12 1.03 8.39 80.00 6.28 1.45 12.28
pe-rcv-ifc 46 62 16 7 8.80 0.19 0.00 1.21 10.21 86.20 1.90 0.01 11.90
pulse 12 12 6 33 0.00 0.19 0.00 0.01 0.19 0.36 96.62 0.05 2.96
rcv-setup 14 17 10 11 0.00 0.19 0.00 0.04 0.23 1.41 81.36 0.09 17.14
vme_read 255 668 26 44 0.53 0.20 0.01 15.17 15.91 3.36 1.23 0.04 95.37
vme_write 821 2907 30 51 2.78 0.24 0.03 30.03 33.08 8.39 0.73 0.10 90.77

“P
ar

am
et

ri
ze

d
co

nt
ro

lle
rs

" art_3_05 4000 11300 30 34 3.57 0.26 0.03 0.04 3.90 91.54 6.67 0.77 1.03
art_3_10 32000 93200 60 64 154.96 2.02 0.07 1.18 158.23 97.93 1.28 0.04 0.75
art_3_15 108000 317700 90 94 2240.17 10.20 0.77 4.11 2255.25 99.33 0.45 0.03 0.18
art_3_20 256000 756800 120 124 11 915.93 30.30 1.97 0.65 11 948.85 99.72 0.25 0.02 0.01
art_4_03 10368 37152 24 30 8.10 0.51 0.09 0.03 8.73 92.78 5.84 1.03 0.34
art_4_09 839808 3242592 72 78 4293.87 57.98 4.95 2.07 4358.87 98.51 1.33 0.11 0.05
seq_40 164 164 164 164 0.04 0.23 0.00 1.47 1.75 2.54 13.19 0.01 84.26
pparb_2_3 1088 3392 22 42 1.87 0.21 0.11 0.09 2.28 82.02 9.21 4.83 3.95
pparb_2_6 69632 321536 34 77 886.54 25.51 30.27 8.32 950.65 93.26 2.68 3.18 0.88
AVERAGE 45.33 31.04 0.53 22.70

mization steps, more than 25% of places and transitions are removed. In case of miscellaneous
benchmark set 30% is exceeded: the average percentage is decreased because of the “art_m_n"
benchmarks, which do not need further minimization after the initial decomposition.

Table 6.3 compares the states and transitions of transition systems vs. the places/transition-
s/crossing arcs of the Petri nets derived by Petrify (columns under PN), and vs. our product of
state machines for the first benchmark set. The number of crossing arcs is reported by the dot al-
gorithm of graphviz [48] and can be considered as a metric of structural simplicity of the model
(i.e., fewer crossings implies a simpler structure). Our results from synchronized state machines
have similar sizes compared to those from Petri nets, but they have fewer crossings, which is a
significant advantage in supporting a visual representation for “large systems". Therefore, the
plots, in a two-dimensional graphical representation of synchronizing SMs, are substantially
more readable than the ones of Petri nets: see the inputs intel_edge and pe-rcv-ifc witnessing
that peaks of edge crossings are avoided. The example master-read instead is an impressive case
of how our decomposition tames the state explosion of the original transition system derived
from a highly concurrent environment, since from 8932 states we go down to 8 SMs with an
average number of 5 states each.

We also implemented an exact search of all SMs derived from the original TS (Table 6.4),
to gauge our heuristics, when it is possible to find a nearly exact solution. The solution is nearly

6.1 SMs 69

Table 6.2: Impact of each optimization step in terms of places (P) and transitions (T)

Input
Size after
decomp.

[P]

Size
after

Greedy
algorithm

[P]

Final
size
[P]

Removed
places

Greedy
[%]

Removed
places
Merge

[%]

Total
removed

places
[%]

Size after
decomp.

[T]

Size
after

Greedy
algorithm

[T]

Final
size
[T]

Removed
transitions

Greedy
[%]

Removed
transitions

Merge
[%]

Total
removed

transitions
[%]

Final
size

[P+T]

alloc-outbound 21 21 16 0.00 23.81 23.81 25 25 21 0.00 16.00 16.00 37
clock 18 14 11 22.22 16.67 38.89 22 18 15 18.18 13.64 31.82 26
dff 50 38 26 24.00 24.00 48.00 72 55 41 23.61 19.45 43.06 67
espinalt 44 44 26 0.00 40.91 40.91 50 50 33 0.00 34.00 34.00 59
fair_arb 12 12 12 0.00 0.00 0.00 18 18 18 0.00 0.00 0.00 30
future 41 29 21 29.27 19.51 48.78 43 30 22 30.23 18.61 48.84 43
intel_div3 12 12 10 0.00 16.67 16.67 13 13 11 0.00 15.38 15.38 21
intel_edge 91 51 26 43.96 27.47 71.43 152 88 64 42.11 15.78 57.89 90
isend 958 165 75 82.78 9.39 92.17 1413 249 166 82.38 5.87 88.25 241
lin_edac93 13 13 13 0.00 0.00 0.00 14 14 14 0.00 0.00 0.00 27
master-read 48 48 38 0.00 20.83 20.83 48 48 38 0.00 20.83 20.83 76
pe-rcv-ifc 47 47 35 0.00 25.53 25.53 66 66 57 0.00 13.64 13.64 92
pulse 7 7 7 0.00 0.00 0.00 10 10 10 0.00 0.00 0.00 17
rcv-setup 18 18 12 0.00 33.33 33.33 22 22 14 0.00 36.36 36.36 26
vme_read 116 102 53 12.07 42.24 54.31 136 121 69 11.03 38.23 49.26 122
vme_write 142 142 67 0.00 52.82 52.82 164 164 81 0.00 50.61 50.61 148
art_3_05 34 34 34 0.00 0.00 0.00 34 34 34 0.00 0.00 0.00 68
art_3_10 64 64 64 0.00 0.00 0.00 64 64 64 0.00 0.00 0.00 128
art_3_15 94 94 94 0.00 0.00 0.00 94 94 94 0.00 0.00 0.00 188
art_3_20 124 124 124 0.00 0.00 0.00 124 124 124 0.00 0.00 0.00 248
art_4_03 30 30 30 0.00 0.00 0.00 30 30 30 0.00 0.00 0.00 60
art_4_09 78 78 78 0.00 0.00 0.00 78 78 78 0.00 0.00 0.00 156
seq_40 164 164 164 0.00 0.00 0.00 164 164 164 0.00 0.00 0.00 328
pparb_2_3 57 40 40 29.82 29.82 59.65 68 46 46 32.35 32.35 64.71 86
pparb_2_6 82 74 69 29.82 29.82 59.65 91 81 76 32.35 32.35 64.71 86
AVERAGE 10.96 16.51 27.47 10.89 14.52 25.41

exact because the exact computation is performed only by the MIS solver, searching all possible
SMs from the given set of region, but the next optimization steps, i.e., removal of redundant SMs
and merging algorithm, are still kept approximate.

0 5 10 15 20
0

500

1,000

1,500

2,000

№ of regions of the original LTS

Ti
m

e
[s

]

Exact decomposition
Approximate decomposition

Fig. 6.1: Trend of the exact algorithm for the decomposition of a TS
compared to the approximate version.

We compare the times taken
by the exact and heuristic SM
generation steps: the exponential
behaviour of the exact algorithm
makes it hardly affordable for about
15 regions and runs out of 16 GB
of memory for more than 20 re-
gions (Fig. 6.1) . Instead, the ap-
proximate algorithms presented in
Sec. 3 can handle very large tran-
sition systems. Even though the re-
sult is not guaranteed to be a min-
imum one, the irredundancy proce-

70 6 Experimental results

Table 6.3: Number of places (P), transitions (T) and arc crossings (C) of the original transition systems vs. derived
Petri nets vs. product of SMs and SM details.

Size comparison SM details

Input TS PN PN*2 Synchronizing Number
of SMs

Avg. Avg. Places Alphabet
SMs places alphabet largest largest

States T P T C P T C P T C per SM per SM SM SM
alloc-outbound 21 18 14 14 3 17 18 0 17 21 0 2 8.50 10.50 10 11
clock 10 10 8 5 4 10 10 0 11 15 0 3 3.67 5.00 4 4
dff 20 24 13 14 21 20 20 0 25 41 0 3 8.33 13.33 13 7
espinalt 27 31 22 20 5 27 25 1 29 32 0 3 9.33 11.00 11 13
fair_arb 13 20 11 10 4 11 10 4 12 18 0 2 6.00 9.00 6 6
future 36 44 18 16 1 30 28 0 21 22 0 3 7.00 7.33 13 14
intel_div3 8 8 7 5 2 8 8 0 10 11 0 2 5.00 5.50 6 4
intel_edge 28 36 11 15 22 21 30 56 35 68 1 4 8.50 16.75 13 6
isend 53 66 25 27 106 54 43 5 80 138 4 13 6.31 11.85 12 11
lin_edac93 20 28 10 8 1 14 12 0 13 14 0 3 4.33 4.67 5 6
master-read 8932 36226 33 26 0 33 26 0 38 38 0 8 4.75 4.75 10 10
pe-rcv-ifc 46 62 23 20 96 43 37 13 39 57 2 2 19.00 28.50 21 13
pulse 12 12 7 6 2 12 12 0 7 10 0 2 3.50 5.00 3 6
rcv-setup 14 17 10 10 5 14 14 4 12 14 0 2 6.00 7.00 9 10
vme_read 255 668 38 29 18 41 32 2 50 67 1 9 6.11 7.67 12 13
vme_write 821 2907 46 33 31 49 36 6 57 74 1 11 6.18 7.36 9 11

Table 6.4: CPU time and results of the exact decomposition algorithm.

Input Decomposition
[s]

Greedy
[s]

Merge
[s]

States
after

decomposition

States
after

greedy

States
after

merge

Trans.
after

decomposition

Trans.
after

greedy

Trans.
after

merge

Number
of regions

TS
alloc-outbound 14.01 0.0009 0.06 42 21 17 50 25 21 15
clock 0.55 0.0003 0.02 18 14 11 22 18 15 11
fair_arb 0.58 0.0007 0.03 24 12 12 36 18 18 11
future 1881.00 0.0012 0.10 41 29 22 43 30 23 19
intel_div3 0.21 0.0001 0.01 12 12 10 13 13 11 8
lin_edac93 0.33 0.0002 0.01 13 13 13 14 14 14 10
pulse 0.20 0.0000 0.01 7 7 7 10 10 10 7
rcv-setup 0.36 0.0002 0.04 18 18 12 22 22 14 11

dure guarantees a form of minimality, yielding a compact representation that avoids state ex-
plosion and exhibits concurrency explicitly.

Another experiment consists in the execution of the exact algorithm for both phases: search
of the new SMs and the removal of redundant ones. As previously reported, the execution of the
exact algorithm for this task followed by an approximate removal of SMs requires a lot of effort
without bringing interesting results. The removal of redundant SMs with an exact algorithm
too, provides a lower bound of the decomposition (in terms of number of final SMs), since
both steps are performed with an exact algorithm; moreover, it hits the scalability threshold of
the exact algorithm, since the computation of many benchmarks does not finish. Therefore, the
fully exact computation can be performed only on very tiny benchmarks where the number of
SM combinations is very restricted. Notice that for each available result of the completely exact
flow, the same number of SMs was found also by the completely approximate one, and by the
combination of exact SM search and approximate SM removal.

6.1 SMs 71

6.1.1 Creation of a new mixed strategy

In this section are presented just published results at the International Journal of Applied Math-
ematics and Computer Science (AMCS) [49]. Two experiments were performed in addition to
those reported in the previous section.

The first experiment consists of the execution of the approximate SM search followed
by an exact algorithm for SM removal (column “Exact algorithm” on Table 6.5). For some
benchmarks we got better results compared to a completely approximate approach (intel_edge,
vme_write), but in other cases (isend) the computation did not finish due to the high number
of SMs available for the removal algorithm (more than 50). Indeed, the complexity of exact
removal of redundant SMs is O(2n), where n is the number of SMs.

Table 6.5: Number of final SMs derived using an approx-
imate algorithm for the search of new SMs and different
approaches for the removal of redundant SMs, i.e. greedy,
exact and a mixed approach.

Greedy
algorithm

(approximate)

Exact
algorithm

Mixed
strategy

alloc-outbound 2 2 2
clock 3 3 3
dff 3 3 3
espinalt 3 3 3
fair_arb 2 2 2
future 3 3 3
intel_div3 2 2 2
intel_edge 4 3 3
isend 13 - 13
lin_edac93 3 3 3
master-read 8 8 8
pe-rcv-ifc 2 2 2
pulse 2 2 2
rcv-setup 2 2 2
vme_read 9 9 9
vme_write 11 10 10

AVERAGE 4.50 4.38

The second experiment explored a mixed
strategy and represents the main algorith-
mic improvement compared to the previous
version presented in [40]. This approach is
based on the number of derived SMs after
the approximate search, given that between
the two computation steps we know the exact
number of derived SMs. The mixed strategy
works as follows: let n be the initial number
of SMs found with the approximate search;
then, when n is “small” we apply the exact re-
moval algorithm whose computational times
are affordable; otherwise we apply the ap-
proximate removal algorithm. In our exper-
iments, we have chosen n = 20. The col-
umn “Mixed strategy” in Table 6.5 represents
the result of this combination between the ex-
act and approximate algorithm to remove re-
dundant SMs. On average, this combination
obtains slightly better results than the previ-
ously proposed completely approximate solu-
tion (column “Greedy algorithm"), but with-
out significant improvements.

We did not report the computational times
for the mixed strategy, as the results do not deviate significantly from the previous approach
because we ran the exact algorithm only on small ns, and the computational overhead of SM re-
moval with the approximate algorithm or the controlled exact algorithm represents less than 1%
with respect to the overall computational time. Moreover, “Large-sized benchmarks" were not
added since from the number of components point-of-view the approximate approach always
achieved the optimal result of 5 SMs, without further possible optimization.

72 6 Experimental results

Table 6.6: Comparison between sequential SM search using previously created heuristics (sequential version) and
the new approach (simultaneous version) directly encoding excitation-closure property.

Number of derived SMs Decomposition time [s]
sequential version simultaneous version sequential version simultaneous version

alloc-outbound 2 2 0.12 0.03
art_3_05 5 5 0.36 0.04
art_3_10 5 5 2.26 8.29
art_3_15 5 5 10.51 45.22
art_3_20 5 5 31.30 146.27
art_4_03 7 7 0.63 1.62
art_4_09 7 7 62.98 456.23
clock 3 3 0.12 0.02
dff 3 3 0.25 0.18
espinalt 3 3 0.21 0.13
fair_arb 2 2 0.12 0.02
future 3 3 0.13 0.04
intel_div3 2 2 0.13 0.02
intel_edge 3 3 0.39 0.38
isend 7 5 0.68 0.40
lin_edac93 3 3 0.11 0.02
master-read 8 8 1.04 1.70
pe-rcv-ifc 2 2 0.35 0.31
pparb_2_3 12 10 0.56 0.28
pparb_2_6 18 17 41.24 47.02
pulse 2 2 0.12 0.02
rcv-setup 2 2 0.17 0.02
seq_40 1 1 0.75 1.42
vme_read 8 8 0.34 0.44
vme_write 10 10 0.75 1.00
AVERAGE 5.12 4.92 6.22 28.44

6.1.2 Simultaneous SM search

We implemented the method presented in Section 5.3 changing the structure constraint from
FCPN to SM. In order to ensure only safe SMs, an additional constraint was added: limit to
only one initially marked place, since multiple marked places could bring to unsafe markings.
Table 6.6 compares the results with the sequential SM search. We did not present the variant of
this method for SMs, mainly because it represents exactly the same approach with the variation
of only the structural constraint. As for FCPNs, the new method achieves the minimal number
of components. Even having this property, in most cases the number of components remains
unchanged with respect to the results of the sequential method (only benchmarks in bold have a
reduced number of components), showing how the sequential approach is close to the optimal
result. The average decomposition time spent is about five times higher with respect to the
sequential approach; therefore, the new method cannot directly compete with the previous one,
but in the few cases with a reduced number of components, the decomposition time is also
reduced with respect to the sequential FCPN search. It means that it is still possible to run both
methods in parallel, and probably the first method to finish will also present the better result.

6.2 FCPNs 73

6.1.3 SMs without guarantee the safeness of single components

Although the new method based on excitation-closure encoding did not achieve good results, it
is witnessed that the EC property is sufficient to ensure the existence of a safe decomposition,
even if the single components are not constrained to be safe. Thanks to a completely different
way to search SMs by means of a SAT solver, we may obtain SMs containing multiple initial
places (removing the newly added constraint), while keeping the synchronization of the State
Machines always safe. We are sure that there exists a safe solution from the combination of [38]
and [29]. In [38] is proven that there exists a safe PN derived from any ECTS. In [29] instead,
it is shown that each safe and live FCPN can be covered by strongly connected SMs. In our
case, we can think of the decomposition as the coverability problem applied to the safe PN
guaranteed to exist [38], which is a superset of FCPN, or it is directly a single SM, in which
case the result consists of only one component.

Even when trying to find unsafe SMs, the result of the decomposition was still almost always
safe. It was possible to find only two benchmarks that contained unsafe SMs. One of these is
“pparb_2_3": it was possible to further reduce the number of components, allowing unbounded
ones, passing from 10 to 7 SMs. The other benchmark comes from the same set of parametrized
controllers “pparb_m_n": “pparb_2_6", passing from 17 safe SMs to 15, containing a combi-
nation of safe and unsafe components.

6.2 FCPNs

For the FCPN decomposition we used the same setup as for the SM decomposition, with the
same set of benchmarks.

6.2.1 FCPNs without guarantee the safeness of single components

Since for FCPNs, limiting the initial markings is not a solution to guarantee safeness, many tests
were made on potentially unsafe FCPNs while keeping the synchronization safe. After that,
additional constraints were added to guarantee safeness of the single components, as explained
in the next section.

Table 6.7 shows the comparative results between the two main methods to extract FCPNs:
sequential vs. simultaneous decomposition and also the optimal version of the simultaneous
approach. Differently from SMs, in case of FCPNs the simultaneous approach achieved good
results: it was possible to dramatically decrease the average number of components while keep-
ing the decomposition time at the same level as before, even improving it a bit. Having also per-
formed the optimal decomposition, it is possible to see how the simultaneous version is close to
the optimal result (1.96 FCPNs on average vs 1.92 FCPNs in the optimal case) and furthermore
we can see that the average time to perform the optimal simultaneous decomposition requires
more than twice the time required by the simultaneous version only to ensure the optimality
(31.88 s vs 73.07 s). All the aforementioned statements show how simultaneous FCPN decom-
position achieves the best trade-off between minimality of the number of derived components

74 6 Experimental results

Table 6.7: Comparison between sequential and simultaneous FCPN search.

Input
Maximum number

of pre-regions
for an event

Number of derived FCPNs Decomposition time [s]

sequential
version

simultaneous
version

simultaneous
version

(optimal)

sequential
version

simultaneous
version

simultaneous
version

(optimal)
alloc-outbound 2 2 2 2 0.03 0.03 0.03
art_3_05 3 2 1 1 0.64 0.46 0.44
art_3_10 3 2 1 1 10.11 8.50 9.87
art_3_15 3 2 1 1 45.42 43.94 45.23
art_3_20 3 2 1 1 151.09 143.00 1142.90
art_4_03 3 2 1 1 1.60 1.40 1.40
art_4_09 3 2 1 1 480.48 539.80 534.60
clock 3 2 2 2 0.01 0.02 0.01
dff 3 3 3 3 0.23 0.27 0.28
espinalt 2 2 2 2 0.07 0.06 0.06
fair_arb 2 2 2 2 0.01 0.02 0.02
future 2 2 2 2 0.01 0.02 0.02
intel_div3 2 2 2 2 0.01 0.02 0.02
intel_edge 4 3 3 3 0.41 0.47 0.39
isend 8 6 4 4 40.97 1.73 1.56
lin_edac93 2 3 2 2 0.01 0.01 0.01
master-read 3 2 1 1 1.85 1.42 1.53
pe-rcv-ifc 2 3 2 2 43.06 0.32 0.36
pparb_2_3 4 3 2 2 0.40 0.20 0.20
pparb_2_6 4 3 4 3 49.78 52.78 85.23
pulse 2 2 2 2 0.01 0.01 0.01
rcv-setup 2 1 1 1 0.02 0.01 0.01
seq_40 1 1 1 1 1.30 1.27 1.26
vme_read 5 3 3 3 0.45 0.46 0.49
vme_write 5 3 3 3 0.88 0.90 0.93
AVERAGE 2.40 1.96 1.92 33.15 31.88 73.07

and the decomposition time. All of this is possible thanks to a reduced number of pre-regions
for each event. As we can see in the second column (“Maximum number of pre-regions for an
event") of Table 6.7, it never exceeds a dozen, therefore even if the excitation-closure encoding
is exponential, it never causes problems.

Furthermore, from Table 6.7 different statistics can be gathered: looking at the number of
FCPNs produced by the optimal simultaneous version, we notice that many cases generate only
one FCPN. This result means that the classic PN creation flow based on the theory of regions
could also directly create a PN restricted to the Free-choice subclass. There may also be the
opposite situation: isend creates a set of four FCPNs. This result is caused by a very com-
plex structure, indeed, the PN created directly without the FCPN constraints has 106 crossings,
unlikely to be an FCPN having only 25 places (Table 6.3).

The decomposition times for FCPNs have still the same order of magnitude of SM decom-
position; often the times are smaller because of the usage of a SAT solver during FCPN creation
and the merge procedure. There are still some cases which have a higher order of magnitude
than others because of a high number of regions extracted from the initial transition system. But
it should be noted that FCPNs are not guaranteed to be safe, meanwhile SMs are.

6.2 FCPNs 75

The time spent for the generation of regions is still the same as the one of SMs, therefore
it was not reported in the new table and still represents the bottleneck of the decomposition
algorithm.

Due to a bug in the initial versions of code, it was possible to observe a very interesting
result. After the creation of the regions only minimal regions are kept, otherwise the computa-
tional time grows exponentially. But it was possible to see the power of non-minimal regions:
keeping some of them, it was possible to find a solution with only one FCPN directly with the
sequential search for one of the presented benchmarks: “master-read", a benchmark which oth-
erwise would produce a solution with two FCPNs. A wider search space would help to improve
the decomposition result, but it would dramatically slow down the computation, especially with
the simultaneous version because the usage of non-minimal regions would highly increase the
maximum number of pre-regions.

6.2.2 Safe FCPNs

Even if the methods shown in the previous section do not guarantee the safeness of the de-
rived FCPNs, actually only three benchmarks were able to produce unsafe FCPNs, which are:
“vme_write", “pparb_2_3" and “pparb_2_6". Only these benchmarks will be shown to compare
the different methods to ensure safeness of the single components.

Different methods were tested to ensure FCPN safeness. Some results can be seen in Ta-
ble 6.8. This table shows the number of regions of the few cases that produce unsafe FCPNs
and the comparison between different methods to create a set of safe FCPNs.The presented
heuristics are the following:

Table 6.8: Comparison of different techniques to ensure safe FCPNs or a combination of safe SMs and FCPNs.

Trivial safe
search

Simultaneous
FCPN search

with
safeness checks

Sequential safe
FCPN search

with addition of SMs

Before greedy algorithm After greedy algorithm

Input
#

comp.
before
greedy

alg.

#
comp.
after

greedy
alg.

decomp.
time [s]

#
FCPNs

decomp.
time [s]

#
comp.

#
FCPNs

#
SMs

#
comp.

#
FCPNs

#
SMs

decomp.
time [s]

pparb_2_3 - - - 6 1257.92 17 2 15 12 1 11 17.13
pparb_2_6 - - - - - 49 1 48 19 0 19 1591.00
vme_write 7 6 480.31 4 6773.85 5 1 4 5 1 4 1.93

Simultaneous FCPN sarch
followed by sequential SM search

Unsafe simultaneous FCPN
search eventually followed
by sequential SM search

Before greedy algorithm After greedy algorithm
Input

#
comp.

#
FCPNs

#
SMs

#
comp.

#
FCPNs

#
SMs

decomp.
time [s]

comp.
(SMs)

decomposition
time [s]

pparb_2_3 20 4 16 11 0 11 10.00 10 0.62
pparb_2_6 34 6 28 18 3 15 649.92 16 81.81
vme_write 18 6 12 11 0 11 59.99 10 1.70

76 6 Experimental results

• “Trivial safe search": sequential FCPN search, getting rid of unsafe FCPNs when they are
found;
• “Simultaneous FCPN search with safeness checks": method based on the encoding of ex-

citation closure searching simultaneously k FCPNs, in case of unsafe FCPNs these are
marked as forbidden and the search continues until when a set of safe FCPNs which satisfies
excitation-closure is found;
• “Sequential safe FCPN search with addition of SMs": sequential search of FCPNs checking

if every newly found FCPN is safe; then safe FCPNs are saved, otherwise after having found
an unsafe FCPN a safe SM is searched, and afterwards FCPN search resumes;
• “Simultaneous FCPN search followed by sequential SM search": combination of the best

approaches for FCPNs and SMs to guarantee a set of safe FCPNs, initially k FCPNs are
found simultaneously; unsafe components are removed, and the sequential SM search con-
tinues;
• “Unsafe simultaneous FCPN search eventually followed by sequential SM search": after

the end of the computation with the simultaneous FCPN search a check on safeness of the
derived components is done; if all components are safe the computation stops, otherwise
the sequential SM search starts without using information from the previous computation.

In the table, the columns are ordered with the complexity of approaches increasing from right
to left, except for the last approach.

Comparing the new methods to achieve a set of safe FCPNs, we can immediately notice
how the trivial approach, which discards all unsafe results and continues the search, yields
unacceptable results and in most cases cannot find a solution (columns “Trivial safe search" and
“Simultaneous FCPN search with safeness checks"). It should also be considered that each of
the presented benchmarks has at least 40 regions. “Sequential safe FCPN search with addition
of SMs" presents better results from a performance point of view, but it is still too slow and
produces too many components. Unexpectedly also “Simultaneous FCPN search followed by
sequential SM search" does not achieve good results, even if it represents the best of both the
FCPN and SM heuristics. The reason is that reducing the number of components but still being
far from the optimal result can have a negative impact on the final number of components. As an
example, we observe the initial number of components of “pparb_2_3" with “Sequential safe
FCPN search with addition of SMs" and “Simultaneous FCPN search followed by sequential
SM search". In the first case we have fewer components with respect to the second one, but after
having performed the greedy FCPN removal the situation is reversed. It can be seen also that in
all approaches involving FCPNs and SMs, FCPNs were almost totally removed by the greedy
algorithm (because of their larger size), leaving mostly SMs in the final result.

Next, a further investigation of the trivial approach was done. Table 6.9 shows the safe and
unsafe FCPNs found until reaching a timeout of one or two hours. From the table, it can be
seen that by increasing the timeout, no safe FCPN were found, continuing to find only unsafe
ones. This means that the optimization objective, which consists in maximization of the usage
of regions still not used in accepted safe FCPNs, is not used at all since the number of found
FCPNs remains unchanged, resulting in a “blind" search. In order to improve the search, an

6.2 FCPNs 77

Table 6.9: Trivial safe search performed with timeouts.

Input
Trivial safe search with 1 hour timeout Trivial safe search with 2 hours timeout
Unsafe

FCPNs found
Safe

FCPNs found
Timout reached?

Unsafe
FCPNs found

Safe
FCPNs found

Timout reached?

pparb_2_3 1716 0 yes 2408 0 yes
pparb_2_6 3310 0 yes 4856 0 yes
vme_write 1124 7 no 1124 7 no

additional heuristic was added. The heuristic consists in the introduction of counters: each time
a region is used in an unsafe FCPN, the counter is increased. In this way, once a SAT solution
with the maximum number of unused regions is found, the search continues, also minimizing
the sum of the new counters. The idea is to avoid using always the same regions, which usually
occur in unsafe FCPNs. Table 6.10 shows the results obtained trying two different variants: one
which resets the counters every time a safe FCPN is found and another without resetting the
counters. The table shows a huge improvement in the case of “pparb_m_n" benchmarks, but on
the other side “vme_write" had a performance drop. During the execution of “vme_write" a good
performance improvement was noticed searching first safe FCPNs, but after some iterations the
search got stuck, showing that the new heuristic ceased to be productive. Consequently, at the
end of the computation, we have more unsafe FCPNs with respect to the basic trivial safe search.

Table 6.10: Results achieved on sequential safe search with the usage of counters.

Input
Trivial safe search with counters

and counter reset
Trivial safe search with counters

Unsafe
FCPNs
found

Safe
FCPNs
found

FCPNs after
greedy

decomp.

Decomp.
time [s]

Unsafe
FCPNs
found

Safe
FCPNs
found

FCPNs after
greedy

decomp.

Decomp.
time [s]

pparb_2_3 84 9 7 21.98 16 7 7 6.22
pparb_2_6 363 19 12 3976.76 33 11 11 276.41
vme_write 1287 7 7 1260.65 3571 6 6 9964.57

Since the new approach did not turn out to be very precise, finding a lot of unsafe FCPNs in
the example “vme_write", a new version of the heuristics was proposed. Given that counting all
regions used in an unsafe FCPN counts also regions probably not involved in the reachability of
unsafe markings, there was the need to count only the regions that are more involved. The idea
is to count only the post-regions of fork transitions. In particular, we considered the fork transi-
tions of the newly found unsafe FCPNs and not the entire set of regions, since two concurrent
flows could start, but the flows would split into different FCPNs without creating boundedness
problems. Table 6.11 shows the results achieved with this last change, resulting in an acceptable
approach for all available benchmarks if counter reset is not performed.

From the different approaches, it turns out that the fastest way to ensure a set of safe FCPNs
is to use the simultaneous FCPN decomposition, checking at the end the safeness of each FCPN.
In the case of at least one unsafe FCPN, it’s faster to perform the previously presented sequential
SM decomposition, with SMs also being FCPNs. This approach suffers from the minimization
point of view, since at the end we search for a set of SMs. If minimization is important, the se-

78 6 Experimental results

Table 6.11: Results achieved on sequential safe search with the usage of improved counters.

Input
Trivial safe search with improved

counters and counter reset
Trivial safe search with improved counters

Unsafe
FCPNs
found

Safe
FCPNs
found

FCPNs after
greedy

decomp.

Decomp.
time [s]

Unsafe
FCPNs
found

Safe
FCPNs
found

FCPNs after
greedy

decomp.

Decomp.
time [s]

pparb_2_3 141 6 6 58.28 41 5 5 19.67
pparb_2_6 568 17 9 16908.00 99 10 10 1092.79
vme_write 214 12 8 38.99 40 7 7 4.60

quential FCPN search with the addition of the improved counters seems to be the best solution,
reporting acceptable times for each benchmark with a reduced number of components.

How much does the safeness of single components cost? All previously presented tables
represent the results in the worst-case scenario where the simultaneous FCPN search finds at
least one unsafe FCPN. Actually, these cases are very rare, indeed, in Table 6.12 it is possible
to see the actual impact of the safeness check, and eventually the SM search, on the entire set of
benchmarks. This table shows two approaches to guarantee a set of safe FCPNs: one oriented
on the performance, actually searching SMs, and the second approach (size oriented) trying to

Table 6.12: Comparison between the best approaches to decompose an LTS into a set of synchronizing FCPNs with
and without guarantee on the safeness of the components.

Unsafe FCPN search
Safe FCPN search

(performance oriented)
Safe FCPN search

(size oriented)
#

components
decomp.
time [s]

#
components

decomp.
time [s]

#
components

decomp.
time [s]

alloc-outbound 2 0.03 2 0.03 2 0.03
art_3_05 1 0.46 1 0.46 1 0.46
art_3_10 1 8.50 1 8.50 1 8.50
art_3_15 1 43.94 1 43.94 1 43.94
art_3_20 1 143.00 1 143.00 1 143.00
art_4_03 1 1.40 1 1.40 1 1.40
art_4_09 1 539.80 1 539.80 1 539.80
clock 2 0.02 2 0.02 2 0.02
dff 3 0.27 3 0.27 3 0.27
espinalt 2 0.06 2 0.06 2 0.06
fair_arb 2 0.02 2 0.02 2 0.02
future 2 0.02 2 0.02 2 0.02
intel_div3 2 0.02 2 0.02 2 0.02
intel_edge 3 0.47 3 0.47 3 0.47
isend 4 1.73 4 1.73 4 1.73
lin_edac93 2 0.01 2 0.01 2 0.01
master-read 1 1.42 1 1.42 1 1.42
pe-rcv-ifc 2 0.32 2 0.32 2 0.32
pparb_2_3 2 0.20 10 0.62 5 19.67
pparb_2_6 4 52.78 16 81.81 10 1092.79
pulse 2 0.01 2 0.01 2 0.01
rcv-setup 1 0.01 1 0.01 1 0.01
seq_40 1 1.27 1 1.27 1 1.27
vme_read 3 0.46 3 0.46 3 0.46
vme_write 3 0.90 10 1.70 7 4.60
AVERAGE 1.96 31.88 3.04 33.09 2.48 74.41

6.2 FCPNs 79

find only FCPNs at the expense of the decomposition time. Since searching for safe FCPNs
represents the addition of a new constraint, there is a drawback, which can be the number
of derived components or the decomposition time. Keeping the decomposition time more or
less the same as in the case of unsafe FCPNs, the average number of derived components is
increased from 1.96 to 3.04. Searching a solution with a reduced number of components, the
decomposition time is more than doubled, scoring an average of 2.48 components. As expected,
we observe an inverse relationship between the number of components and the decomposition
time.

6.2.3 Reset of the learned clauses

During the search of new FCPNs sometimes it happens that a solution represents a set of FCPNs,
therefore, the smallest nets are forbidden in order to allow finding the best result with a sin-
gle FCPN. Since the forbidden results could represent FCPNs necessary to achieve excitation-
closure, once a single FCPN is found the clauses related to smaller FCPNs are forbidden, again
allowing us to find a solution with one of these. Table 6.13 shows the experiment that runs the
sequential FCPN search without resetting the learned clauses. This experiment was done to see
if there is an improvement in the decomposition time, since an extended set of clauses should

Table 6.13: Comparison between standard sequential FCPN search and a variation of the same algorithm without
resetting the set of learned clauses related to the FCPNs forbidded because part of a solution with multiple FCPNs.

Number of derived FCPNs Decomposition time [s]
(standard version) (without clause reset) (standard version) (without clause reset)

alloc-outbound 2 2 0.03 0.03
art_3_05 2 2 0.64 0.53
art_3_10 2 2 10.11 8.80
art_3_15 2 2 45.42 49.24
art_3_20 2 2 151.09 144.36
art_4_03 2 2 1.60 1.52
art_4_09 2 2 480.48 467.64
clock 2 2 0.01 0.01
dff 3 3 0.23 0.23
espinalt 2 2 0.07 0.07
fair_arb 2 2 0.01 0.01
future 2 2 0.01 0.04
intel_div3 2 2 0.01 0.01
intel_edge 3 3 0.41 0.39
isend 6 6 40.97 39.47
lin_edac93 3 3 0.01 0.01
master-read 2 2 1.85 1.62
pe-rcv-ifc 3 3 43.06 17.43
pparb_2_3 3 3 0.40 0.37
pparb_2_6 4 3 55.83 46.00
pulse 2 2 0.01 0.00
rcv-setup 1 2 0.02 0.02
seq_40 1 1 1.30 1.32
vme_read 3 5 0.45 1.57
vme_write 3 3 0.88 0.66
AVERAGE 2.44 2.52 33.40 31.25

80 6 Experimental results

converge faster to a solution. Moreover, the following limit case may occur: the inability to
achieve EC because all possible FCPNs that extend the usage of the unused regions are forbid-
den. Only when the deadlock situation was reached, the learned clauses were reset. Contrary to
expectations, the decomposition time remains similar to the previous version, but we had three
cases with a different number of final FCPNs: “pparb_2_6" reduced the number of FCPNs from
4 to 3, “rcv-setup" and “vme_read" instead has increased the number of components, from 1
to 2 and from 3 to 5, respectively. This test has shown that the new variation of the standard
sequential FCPN search does not exhibit significant improvements, when avoiding resetting the
learned clauses.

Part III

Multiple Synchronized FSMs

7

MSFSM model

Developing my research in the field of Petri net decomposition, I became interested in the
MSFSM model, proposed by Pavlos Mattheakis [23, 50]. This model aims to bridge the Petri
net world with the one of Interacting FSMs, avoiding in the meantime the usual state explosion
of FSMs, by means of a polynomial time algorithm with two constraints on the initial model:
the PN has to be Free-Choice or Asymmetric-Choice and the labels have to respect the syntax
of the STG. This is a good prerequisite for a deeper analysis of this model, especially having to
deal with FCPNs and ACPNs, explored in the first part of the thesis. Additionally, the MSFSM
model allows for analysis centered on the FSM content rather than on FSM synchronizations, as
it expresses synchronizations using synchronization primitives. Next, the notions of Interacting
FSMs, MSFSMs and synchronization primitives (Wait State and Transition Barrier) will be
shown.

Definition 37 (Interacting FSMs). A set of Interacting FSMs {M1,M2, . . . ,Mn} is a system in
which each FSM communicates with other FSMs, by exchanging inputs and outputs.

Definition 38 (Multiple Synchronized Finite State Machine (MSFSM) Set [23]). An MS-
FSM set, MS , is a five-tuple (I,O,M, ∆, Λ), where I is a finite, nonempty set of global inputs,
O is a finite, nonempty set of global outputs, M is a finite nonempty set of N FSMs Mi, with
state sets Si and corresponding local output sets, λi : I× Si → Oi (if Mi is a Mealy machine), or
λi : Si → Oi (if Mi is a Moore machine), ∆ is a set of next state functions, one per FSM i, where
∆i: I × O1 × O2 × . . . × Si × . . . × ON → Si, andΛ: I × O1 × O2 × . . . × Si × . . . × ON → O is the
global output generation function.

The FSMs change their state or produce the output function (according to whether they are
Mealy or Moore machines) relying on global inputs and state-dependent outputs of other FSMs
of the set. Local outputs of the FSMs are combined to produce the global output of the system.
The initial state of the MSFSM set corresponds to the set of initial states of its machines.

Fig. 7.1 shows an example of a synchronous architecture based on MSFSM. Signals In and
Out represent inputs and outputs of single FSMs. We can notice that sometimes the output of an
FSM can represent the input of another. PIs and POs are primary inputs and primary outputs,
which actually represent the interface between the controller and the environment.

84 7 MSFSM model

Fig. 7.1: Example of synchronous MSFSM architecture [23].

Definition 39 (MSFSM Wait State [23]). In an MSFSM set, MS , a Wait State W is a state of a
machine M, which belongs to MS , where the next state function for state W, ∆i(W), depends on
a combinational function f of the global inputs I, and on a product of local outputs of a subset
J ⊆ {1, . . . ,N} of the FSMs of MS , i.e. is of the form: ∆i(W) = f (I).

∏
k∈J Ok.

A Wait State can also be represented as a tuple (si, f ,wδi) where si represents the current
state, f is the combinational function of the global input I and wδi is the set of awaited states.
This representation omits the state reachable from si by f since it is used essentially to represent
the relations between the waiting and the awaited states.

s1

s2

s3

s4

s5

t1: f (I).s4 t2

t3

FSM 1 FSM 2

MSFSM

Fig. 7.2: Wait State example.

Fig. 7.2 illustrates an example of Wait
State. It can be seen that the first FSM waits
the second one. In particular, t1 cannot be ac-
tivated until the second FSM has reached the
state s4. It is important to notice that since
the Wait State definition is based on the out-
puts generated by reaching a certain place, it
means that the output is high when the FSM
is currently in the awaited state, otherwise it
is “low" not allowing the activation of the
waiting transition. Looking to the example:
if FSM 2 reaches s5 without having activated
t1 when FSM 2 was in s4, then FSM 1 is not
able to activate t1 anymore since the output of
s4 is “low". Furthermore from the WS defini-
tion we notice that each awaited output has its
own index j representing one of the different FSMs, which means that it is possible to wait for
more than one state but that each state should belong to a different FSM. Of course a transition

7.1 Other models of concurrency 85

cannot wait for a state of the same FSM, since it would represent a transition which is never
activated.

Definition 40 (MSFSM Transition Barrier [23]). In an MSFSM set, MS , a Transition Barrier
T , is a set of Wait State transitions of different FSMs of MS , with identical combinational
function f (I), and an equivalent output product in the respective ∆i’s, i.e. each transition of the
synchronization barrier T and corresponding wait state local output product,

∏
j∈N O j, includes

all other wait states of T .

Fig. 7.3 illustrates an example of Transition Barrier that represents a set of Wait States that
are activated simultaneously. It can be seen that the two FSMs are mutually dependent, since t1
is activated by s3 and t2 is activated by s1. Since states s1 and s3 share the same combinational
function f (I), one FSM waits for the other, and vice versa, furthermore they have to be activated
simultaneously, e.g. we pass from a “global state" (s1, s3) to (s2, s4) without the possibility of
having combinations derived from activation of f (I) in only one of the FSMs, in our case (s1,
s4) and (s2, s3).

s1

s2

s3

s4 s5

t1: f (I).s3 t2: f (I).s1

FSM 1 FSM 2

MSFSM

Fig. 7.3: Transition Barrier example.

The MSFSM model separates the synchronization between the FSMs from their function-
ality, and it could be usefully adopted as a control model for the synthesis of Petri Nets and
verification of concurrent systems.

7.1 Other models of concurrency

Before presenting the MSFSM-based decomposition flows, we will provide a brief overview of
comparable models.

7.1.1 Communicating Sequential Processes (CSP)

In 1978, one of the earliest models introduced for modeling concurrent systems was “Commu-
nicating Sequential Processes," commonly referred to by its abbreviation CSP [51]. CSP had
many extensions over time, among them:

• Timed CSP or TCSP [52]: integration of the real-time concept in CSP;

86 7 MSFSM model

• CSP# [53]: introduction of shared variables in CSP;
• Probabilistic CSP or PCSP [54]: models systems with probabilistic behaviours;
• CSP-CASL [55]: combination of Common Algebraic Specification Language (CASL) with

CSP;
• CSPm [56]: a machine readable version of CSP compatible with tools such as FDR [57];
• Circus [58]: based on Z1 notation and allows the description of states and behaviours of the

systems;
• CSP-OZ [60]: combination of CSP with Object-Z2 allowing the representation of both state-

based and event-based behaviours.

In each of the listed variants of CSP the synchronizations between concurrent processes are
obtained through parallel composition.

7.1.2 Synchronous Languages and their representations

Fig. 7.4: Evolution of the synchronous approach.

1 The Z notation (often simply referred to as “Z") is a formal specification language used for describing and
modeling computing systems. In the Z notation there are two languages [59]:

– Mathematical Language: The mathematical language is used to describe various aspects of a design: objects
and the relationships between them by using propositional logic, predicate logic, sets, relation, and functions.

– Schema Language: The schema language is used to structure and compose descriptions: collecting pieces of
information, encapsulating them, and naming them for reuse.

2 Object-Z is an extension of the Z formal specification language that introduces object-oriented features [61].

7.1 Other models of concurrency 87

During the years different synchronous languages were developed. Fig. 7.4 represents the
dependencies between the most important synchronous languages, their evolution, and repre-
sentation models. This figure is an expansion of the representation presented in [62]. From
the different languages mentioned in the figure we can select two with a visual representation
similar to MSFSMs: SyncChart [63] and Argos [64], a graphical synchronous language for
reactive systems representation, where a system is reactive if there is a continuous interaction
between the system and the surrounding environment [65]. Also SCADE (Safety Critical Appli-
cation Development Environment) [66, 67] exhibits a similar visual representation, even if it is
a software development environment allowing different levels of precision during the modeling
process. Next, these models will be compared with MSFSMs.

SyncChart is a formalism that is used to specify and design reactive systems. This model is
an extension of StateCharts [68], which is a visual formalism introduced by David Harel in the
1980s to design reactive systems. SyncCharts have been introduced as a graphical form of the
Esterel language [69] that inherits its mathematical semantics [70].

Fig. 7.5: SyncChart FSM notations [71].

Fig. 7.5 represents the description of the different parts of a basic SyncChart. Here, we
can notice that each state has an effect associated with it; the same happens also in the case
of MSFSMs but the effect represents the condition of reaching the state, without an explicit
representation. This effect is not represented explicitly since it is valid for each state, and we will
see that it is used for the extraction of synchronization primitives. A substantial difference from
MSFSMs is the presence of two types of transitions in SyncCharts: weak abortion transitions
and strong abortion transitions. It is possible to combine these two features of the model thanks
to model preemption: strong abortion transitions produce as output the effect associated to the
arrival state; in case of weak abortion transitions also the effect of the state from which the
transition starts is activated.

Fig. 7.6 represents an example of hierarchy in the SyncChart model, where the transition
containing the green triangle allows to exit from a SyncChart and go to a state in the parent

88 7 MSFSM model

Fig. 7.6: Hierarchy representation example with
SyncCharts [71].

Fig. 7.7: Concurrency representation example with
SynchCharts (2-bit binary counter) [71].

SyncChart. The only form of hierarchy supported by MSFSMs is like the one, e.g., in Fig. 7.3,
which shows an MSFSM model containing different FSMs.

but actually this is the only type of hierarchy which can be represented by MSFSMs.
In Fig. 7.7 we can observe the representation of concurrency with SyncCharts, where two

concurrent FSMs are divided by a dashed line. Here, we can see the main difference between the
two models and understand why SyncCharts cannot be seen as an extension of MSFSMs with
a different representation. Taking into account two concurrent FSMs, SyncCharts synchronize
the two with parallel composition. In the case of MSFSMs, the synchronization constraint is
much tighter: the synchronization is done on the transition with the same f (I) input function
(it is not sufficient to contain the same signal events as in the synchronizations of Fig. 7.7,
where the synchronizing f (I) function is always different since C0 on the right FSM is always
an output, where the left FSM was designed in cascade with the right FSM). Here we can see a
first limitation of the MSFSM model: the concurrent FSMs are supposed to be synchronized by
common input signals, which is not the case of the current example.

7.1.3 Why MSFSMs?

MSFSMs at first sight could be seen as a simplified version of SyncCharts, but it is not so.
SynchCharts are a very versatile model, able to represent preemption, hierarchy and concur-
rency. Excluding the aspects of preemption and hierarchy, which are beyond the modeling capa-
bilities of MSFSMs, the representation of concurrency is similar to that of MSFSMs. However,
the method employed for synchronizing the FSMs differs significantly.

7.2 Creation of synchronous circuits with MSFSMs 89

off1 on1 off0 on0

t0: C0.on0/B1

t1: C0.on0/C

t2: T/B0

t3: T.off1

t4: T.on1

Transition barriers
tb0 = {t0, t3}
tb1 = {t1, t4}

Fig. 7.8: 2-bit binary counter MSFSM.

If we would represent the same example of Fig. 7.7 with an MSFSM, we would get the result
in Fig. 7.8. We notice immediately an additional transition in the right FSM caused by a different
synchronization mechanism based on the Wait State and Transition Barrier synchronization
primitives. To ease understanding, we show next the evolution of the MSFSM in Fig. 7.8:

1. We start from {off1, off0}.
2. Only transition t2 can fire.
3. We arrive in {off1, on0}.
4. Only the transition barrier tb0 = {t0, t3} can be activated.
5. We arrive in {on1, off0}.
6. Only the transition t2 can be activated.
7. We arrive in {on1, on0}.
8. Only the transition barrier tb1 = {t1, t4} can be activated.
9. We arrive to the initial situation: {off1, off0}.

This is the main difference between MSFSMs and SyncCharts. Moreover, all previous mod-
els, including Communicating Sequential Processes with their variants and the models of Syn-
chronous Languages, use synchronizations based on parallel composition: the most intuitive
way to synchronize FSMs and processes. MSFSMs use a less intuitive way to synchronize
FSMs, inspired from Free-Choice Petri nets, introducing additional constraints, but at the same
time admitting a polynomial flow for circuit synthesis. Since Petri nets are the core model of
my thesis, this combination of positive and negative aspects was a sufficient motivation for me
to analyze more in depth the MSFSM model.

7.2 Creation of synchronous circuits with MSFSMs

In [23] a flow for the implementation of synchronous circuits was presented, starting from a PN
specification. This flow is based on the creation of an MSFSM model, but the model itself is
not enough, since the design of a synchronous circuit requires the addition of a clk signal, so
that both PN and MSFSM models are synchronized with the clock. Next, a transformation flow
from PNs to MSFSMs will be presented, and later the integration of the clock signal will be
shown.

90 7 MSFSM model

4 to 2 converter

Req4

Ack4

Req2

Ack2

C
L

IE
N

T

SE
RV

E
R

(a) Input/output representation of the converter

Req4

Ack4

Req2

Ack2

4-phase
handshake

protocol

2-phase
handshake

protocol

(b) Synchronization between signals

p0

p1

p2

p3

p8
p5

p9

p7

p6

p4

Req2+

Ack4−

Req4+

Ack2+

Ack2−

Ack4+

Req4− Req2−

(c) Petri net representing the behaviour of the converter

Fig. 7.9: 4-phases to 2-phases handshake converter.

7.2.1 PN to MSFSM transformation flow

In this section, the conversion flow from Petri nets to MSFSMs will be discussed. In particular,
two subclasses of Petri nets are considered: Free-Choice nets and its extension to Asymmetric-
Choice, whereas for arbitrary Petri nets the synthesis algorithms would suffer from high com-
plexity. In both cases, only safe Petri nets are considered.

To explain this transformation flow, the 4-phase to 2-phase handshake protocol converter in
Fig. 7.9 will be analyzed. 4-phase handshake converter, as indicated by its name, is based on
four key steps:

1. Req4+: client requests the data transfer;
2. Ack4+: server has made available the data and acknowledges receipt of the initial request;
3. Req4−: client confirms the completion of the data transfer;
4. Ack2−: server then informs client of its readiness for the next data transfer.

2-phase handshake protocol involves two primary phases, with an optional reset phase:

1. Req2+ (or Req2−): client requests the data changing Req2 value;
2. Ack2+ (or Ack2−): server makes available the data and acknowledges client about it, chang-

ing Ack2 value.

The benefit of the 2-phase protocol lies in its ability to initiate a new request without needing to
reset both the Req (Request) and Ack (Acknowledgement) signals to a low level. In contrast, the
4-phase protocol requires a return to the initial state before starting a new transfer. As a result,
the 2-phase protocol is faster but less robust.

The controller illustrated in Fig. 7.9 facilitates communication between these two protocols
by adapting the 4-phase sequence to align with the 2-phase protocol.

7.2 Creation of synchronous circuits with MSFSMs 91

In this conversion, the input signals are represented as white PN transitions, and the output
signals are represented as black ones (Fig. 7.9(c)). We can notice how Req is an input signal for
the sender and output signal for the receiver, vice versa for Ack signal (Fig. 7.9(a)). Analyzing
Fig. 7.9(b), we can notice black and red arrows. Black arrows represent the communication
between the signals Req and Ack of each handshake protocol. Observing the PN in Fig. 7.9(c)
we can notice the same signal sequences of the signal diagram: the sequence of signals for
the 4-phase handshake protocol on the left part of the PN (a closed loop between transitions
Req4+, Ack4+,Req4− and Ack4−) and the sequence for the 2-phase handshake protocol on
the right part (a closed loop between transitions Req2+, Ack2+,Req2− and Ack2−). The red
arrows in Fig. 7.9(b) represent the synchronizations for the conversion from one protocol to
the other; in particular, we can notice the connections between the left and right parts of PN in
Fig. 7.9(c) by places p8 and p9: the arrows going from Req4+ of the 4-phase handshake protocol
to Req2+ and Req2− of the 2-phase handshake protocol are represented by the connections
of the place p8 in Fig. 7.9(c), whereas p9 with the connected arcs instead represents the red
arrows between Ack2+ and Ack2− of the 2-phase handshake protocol and Ack4− of the 4-phase
handshake protocol in Fig. 7.9(b). Observe, for instance, the sequence Ack2+,Req2−. Under
normal circumstances, this sequence would be able to progress more quickly. However, due to
the required synchronization with the 4-phase handshake, the Req2− step is delayed, waiting
for Req4+ since the client communicates with the 4-phase protocol (as indicated by the red
arrow in Fig. 7.9(b)). Furthermore, in Fig. 7.9(b) we observe two data transmission cycles. In
the 4-phase protocol, both cycles are identical. However, in the 2-phase protocol, the first cycle
features both signals Req2 and Ack2 rising to a high level, while in the second cycle, they fall
to a low level. The dependencies with the 4-phase protocol remain consistent in both scenarios,
as indicated by the red arrows: in the first cycle, Req4+ triggers Req2+, and similarly, in the
second cycle, Req4+ leads to the signal change of Req2−. What does this imply? Essentially,
the red arrows symbolize the protocol transition executed by the controller. Since the client
operates on a 4-phase protocol, the Req4+ signal must be transmitted before it can be converted
into Req2+ (or Req2−, depending on the cycle). The same principle applies to the Ack signal,
which originates from the server as Ack2+ (or Ack2−, varying by cycle) in the 2-phase protocol
and is transformed into Ack4− in the 4-phase protocol. These dependencies are also evident in
the Petri net; for instance, the Req2− transition can occur if there are tokens in p6 and p8: p6

indicates that Ack2+ was activated (thus the next cycle starts with Req2− and not Req2+), and
p8 signifies that Req4+ was activated (representing the initial 4-phase protocol request).

The conversion from PN to MSFSM consists of the following steps [23, 50]:

1. Minimal S-Covering [35, 72–74].
2. S-Component to Non-Interactive FSM mapping.
3. Synchronization Primitive Extraction and Integration into an MSFSM.

Minimal S-Covering

A bounded Free Choice Petri net (or Asymmetric-choice Petri net) satisfies the conditions of the
Commoner’s theorem (Theorem 1), or Commoner’s Theorem for Asymmetric-choice systems

92 7 MSFSM model

(Theorem 2), consequently the net is well-formed, i.e live and bounded. Therefore, by the S-
Coverability theorem (Theorem 3), it is possible to obtain a minimal S-cover, decomposing the
net into a set of S-components (strongly connected state machines).

An S-component S of a net N = (P,T, F,M0) can be obtained by a minimal siphon D ⊆ P if
it is strongly connected and ∀t ∈ S : |•t ∩ D| = |t• ∩ D| = 1.

Algorithm 2: S-components decomposition [75]
Input: An FCPN N = (P,T, F,M0)
Output: A set of S-component S = {N′ | N′ = (P′, T ′, F′, M′

0)}
1 S ← ∅
2 while ∃p ∈ P ∧ p < P′ ; // An uncovered place exists
3 do
4 P′ ← {p}
5 T ′ ← ∅
6 while ∃p ∈ P′ | t ∈ •p ∧ t < T ′ ; // An uncovered transition exists
7 do
8 H ← get-Handle(P ∪ T , P′ ∪ T ′, F, t)
9 P′ ← P′ ∪ (H ∩ P)

10 T ′ ← T ′ ∪ (H ∩ T)

11 M′
0 = M0 ∩ P′

12 N′ = (P′, T ′, F′, M′
0)

13 S = S ∪ N′

Applying Algorithm 2, we find the set of S-components that covers the Petri net. The algo-
rithm calls the get − Handle method, which consists in a DFS starting from a place p ∈ P′ and
searching backward for transitions and places until it reaches a place p′ ∈ P′. The navigation
can proceed only through places and transitions that do not belong to P′, and every place can be
checked only once because a handle does contain each node exactly once. The algorithm ends
if all places in P′ have handles covering all of their input transitions and when all places in the
net are covered by at least one S-component.

If the original Petri net is Free-Choice, the complexity to achieve the minimal S-cover is
O(PT + P2) [73], whereas for an Asymmetric-Choice Petri Net the aforementioned step is
NP-Complete [74].

An example of this S-component decomposition starting from the net in Fig. 7.9 is visible in
Fig. 7.10. The set of S-components, built from the minimal siphons of the net ({p0, p1, p2, p3},
{p4, p5, p6, p7} and {p0, p5, p7, p8, p9}), witnesses the S-coverability of the initial net since all
places and transitions are covered by them. The first S-component covers signals Req4 and
Ack4, covering places p0, p2, p3 and p4. The second S-component covers signals Req2 and
Ack2 and places p4, p5, p6 and p7. Lastly, the third S-component covers some transition already
available in the previous S-components (Req4+,Req2+, Ack2+, Ack4+,Req2− and Ack2−), and
the places p0, p5, p7, p8 and p9, so that the place coverage is now complete (places p8 and p9

were not covered by the first two S-components).

7.2 Creation of synchronous circuits with MSFSMs 93

p0

p1

p2

p3

Req4+

Ack4+

Req4−

Ack4−

p4

p5

p6

p7

Req2+

Ack2+

Req2−

Ack2−

p0

p8 p5

p9

p7

Req4+

Ack4−

Req2+

Ack2+

Req2−

Ack2−

Fig. 7.10: S-component of 4-phases to 2-phases handshake converter.

S-Component to Non-Interactive FSM mapping

The conversion from an S-Component to an FSM is a 1:1 method split in the following steps:

1. Each place pi is converted to a state si: if pi is part of the initial marking, si becomes an
initial state.

2. Each transition t is converted to an edge (si, s j) where si is the state extracted from •t and s j

from t•. When creating the next state and output functions, δ: I × S → S and λ: I × S → O
(for a Mealy machine), or λ: S → O (for a Moore machine), the type of transition (input /
output) is kept.

The obtained FSMs preserve the implicit synchronizations inherited from the starting FCPN
semantics. The aim of the next step will be to expose such synchronizations through the Wait
State and Transition Barrier primitives.

Non-Interactive FSMs of the current example are shown in Fig. 7.11.

Synchronization Primitive Extraction and Integration

The Transition Barrier primitive is extracted by analyzing the flow relations of the S-components:
if there is a common place p between different S-components, then •p and p• join the same bar-
rier tb. In case of a common transition between two S-components (which is not in any fork or
join in the initial PN), the places connected to the aforementioned transition will belong to at
least two S-components and will be in the same transition barrier.

Occasionally, we might encounter situations where there is only a single transition barrier
or multiple barriers, lacking common adjacent states. When extracting S-components and tran-
sition barriers from a Petri net (PN), each transition barrier of this kind essentially signifies a
transition in the PN that involves both a join and a fork. In such scenarios, no common place

94 7 MSFSM model

exists between different S-components. As a result, it becomes essential to examine the tran-
sitions in the original PN to identify and take care of any transition barriers that might have
been overlooked. An example can be seen in Fig. 7.12: event b is in the transition barrier tb
(Fig. 7.12(c)) and the transition barrier is created from an event in two S-components without
common places (Fig. 7.12(b)). Similar cases can be observed with x and x in Fig. 7.15(a) and a
in Fig. 7.19(b).

In Fig. 7.13 the states derived from the common places are (s0, q0), (r5, q5), and (r7, q7). The
pre and post transitions of the original places constitute six transition barriers:

• tbReq4+ = (t0, t8)
• tbAck4− = (t3, t12)

• tbReq2+ = (t4, t9)
• tbAck2− = (t7, t13)

• tbAck2+ = (t5, t11)
• tbReq2− = (t6, t10)

After the synchronization primitive extraction, the δi and λ functions of the FSMs need to
be transformed to the ∆i and Λ functions of the MSFSM. So the Transition Barriers previously
defined can be represented as a set of Wait State transitions of different FSMs, which, to activate
the next state function, share the same interlocked states sk ∈ i-th FSM and s j ∈ n-th FSM.

Therefore, in order to represent the synchronization constraint, the next state function of sk

and s j (δ: I × sk → sp and δ: I × s j → sm), respectively contribute to create the next state
functions of the i-th and n-th FSM: ∆i: I × s j → sp and ∆n: I × sk → sm.

In the handshake protocol converter, for instance, the barrier tbReq4+ corresponds to W1 =

(s0, Req4+, q0) and W2 = (q0,Req4+, s0). So, considering the input Req4+, the next state func-
tions of the MSFSM (one for each interacting FSM) are the following ones:

• ∆1: (Req4+) × q0 → s1

• ∆3: (Req4+) × s0 → q8

7.2.2 Original models with the addition of the clock

Introducing the clock signal, the FSMs of the MSFSM model are considered synchronous with
the assumption that a state can be activated only at a global clock edge. Also, the Petri nets

s0

s1

s2

s3

Req4+/ϵ

ϵ/Ack4+

Req4−/ϵ

ϵ/Ack4−

r4

r5

r6

r7

ϵ/Req2+

Ack2+/ϵ

ϵ/Req2−

Ack2−/ϵ

q0

q8 q5

q9 q7

Req4+/ϵ

ϵ/Req2+

ϵ/Req2−

Ack2+/ϵ

ϵ/Ack4−

Ack2−/ϵ

Fig. 7.11: 4-phase to 2-phase handshake converter after the creation of Non-Interactive FSMs.

7.2 Creation of synchronous circuits with MSFSMs 95

p0 p2

p1 p3

a b c

(a) Petri net

p0 p2

p1 p3

a b cb

S-component 1 S-component 2

(b) S-components

s0 s1 s2 s3

t0: b.s2

t1: a

t2: b.s0

t3: c
FSM 1 FSM 2

MSFSM

Transition barriers
tb = {t0, t2}

(c) MSFSM

Fig. 7.12: Example showing MSFSM extraction from a Petri net.

s0

s1

s2

s3

t0: Req4+.q0/ϵ

t1: ϵ/Ack4+

t2: Req4−/ϵ

t3: q9/Ack4−

r4

r5

r6

r7

t4: q8/Req2+

t5: Ack2+.q5/ϵ

t6: q8/Req2−

t7 : Ack2−.q7/ϵ

q0

q8 q5

q9 q7

t8: Req4+.s0/ϵ

t9: r4/Req2+

t10 : r6/Req2−

t11: Ack2+.r5/ϵ

t12: s3/Ack4−

t13: Ack2−.r7/ϵ

Transition barriers
tb1 = {t0, t8}
tb2 = {t3, t12}

tb3 = {t4, t9}
tb4 = {t5, t11}

tb5 = {t6, t10}

tb6 = {t7, t13}

Fig. 7.13: MSFSM.

96 7 MSFSM model

clk

Req4

Ack4

Req2

Ack2

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

clk
cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(a) PN execution

clk

Req4

Ack4

Req2

Ack2

s0

s1

s2

s3

r4

r5

r6

r7

q0

q5

q7

q8

q9

clk
cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b) MSFSM execution

Fig. 7.14: Example of a synchronous execution of the PN representing 4-phase to 2-phase handshake protocol
controller (a) and the execution of synchronous MSFSM (b).

follow the same assumption, therefore the PN’s places that hold the current state of the system
can be activated at a global clock edge, thus there cannot be firing concurrency between the
activated transitions.

Fig. 7.14 shows a possible execution of the current 4-phase to 2-phase handshake protocol
example seen both as a PN and as a derived FSM, representing its evolution with the signal clk
from the initial marking until it is reached again. Handshake protocol is usually used in an asyn-
chronous environment, but for example purpose, we can bring the model into a synchronous en-
vironment, assuming a clock slow enough to support communication between client and server.
Note how MSFSM states evolve in the same way as the places of the initial PN (e.g. p1 and
s1, or p9 and q9). Additionally, the figure demonstrates that states in different FSMs, which are
derived from the same place in the PN (indicated by matching indices), exhibit identical behav-
iors. For example, this can be seen in states such as s0 and q0, or r5 and q5. As a result, we have

7.2 Creation of synchronous circuits with MSFSMs 97

cases like p0 = s0 = q0, with the same behavior between a PN’s place and different states of the
derived FSMs.

Fig.7.15 presents another example that includes a Petri net, its corresponding MSFSM, and a
potential evolution of signals. This example illustrates a C-Element, as described in [76], which
is a sequential gate featuring m inputs and a single output. The behavior of this gate is such
that when all inputs are asserted (or de-asserted), the output follows suit, becoming asserted (or
de-asserted) as well.

p0 p1

p2 p3

p4 p5

p6 p7

x

a b

x

a b

(a) Synchronous PN operation example.

s0

s2

s4

s6

t0: /x

t2: a/

t4: /x

t6: a/

s1

s3

s5

s7

t0: /x

t2: a/

t4: /x

t6: a/

tb1

tb2

(b) Synchronous MSFSM operation example.

Fig. 7.15: PN to MSFSM transformation representing a synchronous behaviour [23].

Once the MSFSM is created, a synchronous MSFSM architecture can be designed (as it was
shown in Fig. 7.1) since a method for the RTL description of MSFSMs was proposed. This part

98 7 MSFSM model

will not be presented in this thesis; if the reader is interested in the RTL code, it can be found
in [23, Section 6.3].

7.3 Synchronous elastic circuits

Since one of the purposes of the MSFSM model is the creation of synchronous circuits, we can
consider that the proposed flow can also be used for synchronous elastic circuits [77].

Synchronous elastic circuits are tolerant to variations in computation and communication
delays, combining synchronous discipline with the flexibility of elastic systems. Synchronous
elastic systems are characterized by:

• Global clock: asynchronous elastic systems do not present a clock signal;
• Elasticity with clock: since there could be delays caused by unpredictable data arrival

times or computation times, these variations can still be handled without the need to pass to
asynchronous circuits;
• Elastic buffers: if the data arrives slowly the buffer can be stretched and vice versa.

7.4 MSFSM to PN conversion flow

In this section, the conversion flow from MSFSM to PN, originally proposed in [23], will be
presented. This section is essential to understand the next one, where we will discuss some
problems noticed in the aforementioned flow. The flow is based on the following two steps:

1. MSFSM to S-component mapping.
2. S-component merging to PN conversion.

Fig. 7.16 will be used as a current example of the conversion flow.

s0 s1 s2 s3

a.s3 + a.s2

a

a.s0

a
FSM 1 FSM 2

MSFSM

Fig. 7.16: Initial MSFSM.

7.4.1 MSFSM to S-component mapping

The purpose of this step is the conversion of the FSMs of a given MSFSM into a set of
S-Components (Definition 22).

This conversion is always possible due to the following theorem.

7.4 MSFSM to PN conversion flow 99

Theorem 7. [23] An FSM, represented by a strongly-connected State Machine, is trans-
formable to an S-Component.

Proof. Each triple (s1, t, s2) of FSM’s δ is transformed to (s, t) and (t, s′) tuples or (s, t), (t, so),
(so, o) and (o, s′) tuples, according to whether an element with (s, t) does not exist in λ or it
exists. In both cases, there is a path from place s to place s′ for each transition connecting them.
Thus, the Petri net’s connectivity follows the FSM’s connectivity and the Petri net is strongly
connected.

The Moore type output signals depend only on next state functions, so that they are directly
linked with places of the resultant Petri net, without the need to use transitions to be represented
in the resultant S-component.

The transformation from a single FSM into an S-component is described in the following
steps:

1. Conversion of each state si to a place of the S-component pi: places related to initial states
contain a token.

2. Each next state function ∆i containing only input or output signals is used to create transi-
tions, represented in the form (pk, t, p j). If the ∆i function connects two states sk and s j and
contains both input and output signals, a place po is created and two transitions are created.
The first transition is labeled with the input signal f (I) and connected to pk and po, being
represented by (pk, ti, po); the second one takes the output signal f (O) and is represented in
the form (po, to, p j).

This method can be used for both Mealy and Moore machines: we can see the variant for
Moore machines as a simplification with only input signals.

Fig. 7.17 shows the resultant S-components obtained from the MSFSM in Fig. 7.16.

p0 p2

p1 p3

a/1
t0

a
t2

a
t3

a/2
t4

a
t1

S-component 1 S-component 2

Fig. 7.17: S-components after the MSFSM to S-component mapping.

7.4.2 S-component merging to PN conversion

The last part of the conversion connects S-components in order to create the resultant Petri net.
In case of transitions that belong to a Transition Barrier, they are merged into one transition.

100 7 MSFSM model

p0 p2

p1 p3

pw

a/1
t0

a
t2

a
t13

a/2
t4

Fig. 7.18: Petri net derived from MSFSM in Fig. 7.16.

In the case of Wait State W = (si, t, si+1, ..., s j), the transformation consists in the addition of a
new place pw in the resultant PN, such that pw ∈

•t and for each sk ∈ {si+1, ..., s j} : pw ∈ (•sk)•.
In Fig. 7.18 we can see the representation of the PN derived from the MSFSM in Fig. 7.16

after merging the S-component into a PN. Here we can observe the implementation of the Wait
State (thanks to the addition of the place pw in the final PN), and also the presence of a transition
barrier connecting the two S-components (thanks to the transition t13 derived from the union of
transitions t1 and t3, both labeled by a).

s0 s1 s2 s3

a.s2/ϵ

a/b

a.s0/ϵ

a/b
FSM 1 FSM 2

MSFSM

(a)

p0 p2

p1po p3 p′o

b b

a

a

a/2

(b)

Fig. 7.19: Example of transformation of an MSFSM with Mealy FSMs (a) into a Petri net (b).

Fig. 7.19 represents an example of transformation starting from an MSFSM containing
Mealy FSMs. In this case we see the transformation of the outputs in PN transitions, where
filled transitions represent the outputs and empty ones represent the inputs.

7.5 The role of the Wait State synchronization primitive 101

7.5 The role of the Wait State synchronization primitive

7.5.1 Issues with the MSFSM to PN conversion flow

The Wait State synchronization primitive represents a critical part of the MSFSM model, raising
some issues for the correctness of the conversion. The focus of [23] was on the flow from PN to
MSFSM where we never have the creation of a Wait State which is not interlocked with another
one: we have always interlocked Wait States designed to become Transition Barriers, leaving
the usage of single Wait States rarely exploited.

Given the definition of WS, the awaited state is represented as a signal which is set to “1"
when the FSM containing the awaited state is currently in it, “0" otherwise. This is an expected
semantics. The problem arises when we perform the MSFSM to PN conversion flow originally
presented. Fig. 7.21 represents the PN derived from MSFSM in Fig. 7.20, where we notice
that the original flow that introduces a new place pw in the resultant PN represents different
semantics. Specifically, the generated PN represents the Wait State as an unlimited buffer that
counts how many times the PN was in p3, each time storing a token in pw and consuming these
tokens activating the transition a. Differently from the MSFSM semantics, in the Petri net we are
able to produce the sequence “bda". Furthermore, transforming the PN back into an MSFSM
(Fig. 7.22), we can see an additional third FSM containing the state sw derived from pw and in
this case the sequence forbidden in the original MSFSM is allowed: firing the transition barrier
containing t2 and t6 and thus activating the event b, followed by t4 and t0. Transition t0 can be
activated because after firing the transition barrier with t6, the third FSM is in sw.

s0

s1

s2

s3

s4

a.s3 e.s4

b

c

d

e.s1

Fig. 7.20: MSFSM example.

p0 p2

p1 p3

p4pw

a e

c

d

b

Fig. 7.21: Petri net derived from MSFSM in Fig. 7.20 with a Wait State
represented by the place pw.

7.5.2 Revised Wait State in the MSFSM to PN conversion flow

Since the current transformation of the Wait State synchronization primitive seems to be wrong,
I present a conjecture with an alternative transformation for the aforementioned structure, in
particular, each Wait State will be transformed into a PN self-loop.

Starting from the originally proposed flow, I propose to perform these three steps:

102 7 MSFSM model

s0

s1

s2

s3

s4

s′2

sw

s′1

t0: a.sw t1: e.s4.s′1

t2: b.s′2

t3: c

t4: d

t5: e.s1.s′1

t6: b.s2

t7: s.s0

t8: e.s1.s4

Transition barriers
tb0 = {t0, t7}

tb1 = {t1, t5, t8}
tb2 = {t2, t6}

Fig. 7.22: MSFSM derived from PN in Fig. 7.21.

1. MSFSM to S-component mapping.
2. Enrichment of the S-components.
3. S-component merging to PN conversion.

The first step is the same as in Section 7.4.1. The second step represents a new integration
of Wait States, and the last step is still the same as in the original flow, but without considering
Wait States since they were already transformed in the second step.

Enrichment of the S-components

Until now, each FSM was transformed into an S-component but the synchronization primi-
tives were left unused. In this section we will integrate the Wait States. Given a Wait State
W = (si, t, s j) we have a transition t waiting for another FSM to be currently in the state s j.
Creating the Petri net, this constraint can be represented as a self-loop on the place p j derived
from the state s j with the transition t in the self-loop. This self loop should be added to the
S-component containing the place p j. Furthermore we are sure that the addition of a self-loop
to an S-component will not damage the S-component structure, since all places will remain
strongly connected, keeping also |•t| = |t•| = 1 for each transition of the S-component.

In this section we will still use the running example of Section 7.4 (Fig. 7.16): in particular,
before performing this new step, we have the two S-components in Fig. 7.17. In Fig. 7.23 we
can see the evolution of the current example with the introduction of the self-loop in the second
S-component representing the Wait State W = (s0, a, s3), i.e. the transition a, starting from s0

and waiting for s3.

S-component merging to PN conversion

This part of the conversion connects S-components in order to create the resultant Petri net. In
case of transitions that belong to a Transition Barrier, they are merged into a single transition
with a common label. Since the Wait States were added in the previous step, we do not need to
add them anymore, avoiding the procedure presented in the original work.

Fig. 7.24 shows the final result: the transitions t1 and t3, being in the same Transition Barrier,
are merged in a single fork-join transition common to the two S-components. This transition
cannot fire if both S-components do not have a token, respectively, in states p0 and p2, i.e., it

7.5 The role of the Wait State synchronization primitive 103

p0 p2

p1 p3

a/1
t0

a
t2

a/1
t0

a
t3

a/2
t4

a
t1

S-component 1 S-component 2

Fig. 7.23: S-components after the integration of the self loops.

p0 p2

p1 p3

a/1
t0

a
t2

a
t13

a/2
t4

Fig. 7.24: Petri net after the complete conversion flow, starting from Fig. 7.16.

may fire only when both signals representing the states s0 and s2 in the MSFSM have value “1".
It is important to observe that the transition represents simultaneously a join and a fork, since it
is a transition that synchronizes two concurrent paths. Moreover, in the final Petri net there are
two self-loop flows (t0, p3) and (p3, t0), representing a Wait State: t0 cannot fire if there is no
token in p3, i.e., t0 cannot fire if the corresponding FSM is not in the state s3.

7.5.3 Self-loops in the PN to MSFSM conversion flow

Considering the originally proposed PN to MSFSM transformation flow, the initial PNs never
had self-loops. The reason probably is the concentration of the research on Free-Choice Petri
nets, overshadowing Asymmetric-choice Petri nets, a PN subclass which may present self-loops
and which was considered as a valid starting point for MSFSM generation. It is possible to
have also an FCPN with a self-loop, but the self-loop is trivial, modeling the possibility of
firing an event an infinite number of times (Fig. 7.25). Usually, self-loops represent a constraint,
involving a place of one S-component and a transition in two different S-components (transition
a in Fig. 7.26, better seen after the S-component extraction). The fact that the transition is in
two different S-components implies the presence of an Asymmetric-choice structure, denying
the possibility to have an FCPN. In Fig. 7.26 the Asymmetric-choice structure is created by
places p0 and p3, and events a and b, where the event a is in the post-set of both places.

104 7 MSFSM model

p0

p1a

b c

Fig. 7.25: Example of self-loop
with the transition belonging
to a single S-component where
event a can be fired an infinite
number of times before firing
event c.

p0 p1

p2 p3

a

b

c

(a) Initial PN

p0

p2

p1

p3

a

b b

c
a

(b) S-components

Fig. 7.26: Example of Petri net with self-loop.

7.6 A simple use case

Consider a warehouse with dozens of autonomous robots, where each robot moves dangerous
packages. Robots are autonomous, knowing from where the package should be taken and where
it must be delivered in the warehouse. Each robot has sensors, but for security reasons an ad-
ditional mechanism is going to be implemented, especially because the robots move very fast.
Thanks to sensors placed across the warehouse it is possible to give additional information to
the robots, in particular, when a robot is moving to a crossroad. a signal is sent to the control
system, which checks if other robots are going to cross the same point, and if so a stop signal is
sent for all robots in one of the two perpendicular directions.

Fig. 7.27 represents the Petri net modeling the controller which activates the stop lights of
a crossing. Say that the two perpendicular ways are called “A" and “B", initially empty (places
“A_EMPTY" and “B_EMPTY"). The places of the Petri net “A_GREEN" and “B_GREEN"
represent the possibility of crossing the intersection in both ways. Once the token in one of
the two places is removed, we suppose that in the related direction the intersection cannot be
crossed. In case of incoming robots in both directions, in the first case the robot in direction B
will intersect the crossroad. Next, the priority will alternate between the two roads. Let us see
two possible executions analyzing the behavior when a robot arrives on the way A. First, the
sensors capture the arrival of the robot activating the event “A_INCOMING_VEHICLE". If way
B is empty (token in “B_EMPTY"), the internal signal “FREE_ROAD_A" can be activated,
to represent the robot intersecting the crossroad and returning back to the initial situation by
means of a token in the place “A_EMPTY". If there is a robot on the way B when a robot
on the way B is arriving, the transition “A_RED" or “B_RED" will be activated, depending
on the precedence, by removing the token from one of the places representing the “green light"
(“A_GREEN" and “B_GREEN"). Only once all the vehicles passed, the green light on the other
direction is activated. To manage the effective connections to the lights (in case of way A), it
is enough to use the signals “A_RED" and “B_PASSED": initially the green light is active and
we have a token in “A_GREEN", in case of the deactivation of the light, the event “A_RED" is
activated, and once “B_PASSED" has been activated the green light turns back on.

7.6 A simple use case 105

A_EMPTY

A_NOT_EMPTY

A_PASSING

TURN_OF_B

B_EMPTY

B_NOT_EMPTY
TURN_OF_A

A_GREENB_GREEN

B_PASSING

/B_RED

/A_RED

A_INCOMING_VEHICLE/ B_INCOMING_VEHICLE/

A_PASSED/ B_PASSED/

/FREE_ROAD_A

/FREE_ROAD_B

Fig. 7.27: Petri net representation of the controller managing crossroads warehouse.

A_EMPTY A_NOT_EMPTY

t0: A_INCOMING_VEHICLE/

t1: ϵ.B_EMPTY/FREE_ROAD_A

(a) FSM1

B_EMPTY B_NOT_EMPTY

t2: B_INCOMING_VEHICLE/

t3: ϵ.A_EMPTY/FREE_ROAD_B

(b) FSM2

B_GREEN

A_PASSING

t4: ϵ.TURN_OF_A/B_RED t5: A_PASSED/

(c) FSM3

A_GREEN

B_PASSING

t6: ϵ.TURN_OF_B/A_RED t7: B_PASSED/

(d) FSM4

TURN_OF_B TURN_OF_A

t8: ϵ.A_GREEN/A_RED

t9: ϵ.B_GREEN/B_RED

(e) FSM5

Transition barriers
tb0 = {t4, t9}

(f) Transition barriers

Fig. 7.28: MSFSM derived from PN in Fig. 7.27.

106 7 MSFSM model

From the Petri net in Fig. 7.27, three S-components can be extracted generating the MSFSM
in Fig. 7.28. Given the resultant MSFSM, we can immediately notice the difficulty in following
the synchronizations between the FSMs, even if the structures of the single FSMs are very
simple, preferring the reachability graph generated from the Petri net or the one generated by
the synchronization of the FSMs of the MSFSM. Indeed, even if the MSFSM model could be
used as an intermediate model for the analysis of the original PN subparts, its utility is apparent
once a synchronous circuit is going to be designed.

Notice the presence of Wait States; it means that the current example does not represent a
Free-Choice Petri net, in this case the PN is even outside the Asymmetric-choice subclass (we
can see for example the following confusion structure (B_EMPTY)• = {B_INCOMING_VEHICLE,
FREE_ROAD_A} and (A_NOT_EMPTY)• = {FREE_ROAD_A, B_RED}), violating the re-
striction required for the validity of the MSFSM decomposition proposed in [23]. Instead, this
example supports our conjecture based on the revised Wait State extraction, even though a for-
mal proof of correctness in the general case is still missing.

In this chapter, the MSFSM model was presented, compared to Communicating Sequen-
tial Processes (CSP) and Synchronous Languages, in particular SynchChart, highlighting the
reasons which led us to explore this model. A flow for the design of synchronous circuits start-
ing from Petri nets and based on MSFSMs was presented. Special cases of possible resultant
synchronous circuits were proposed, in particular synchronous elastic circuits. The opposite
flow from MSFSMs to PNs was shown, explaining an inconsistency regarding the Wait State
synchronization primitive in the original transformation flow, suggesting a revised version of
the Synchronization Primitive and a modified transformation flow from MSFSMs to PNs. An
explanation of self-loops in PNs was given, showing also a possible use case for MSFSMs.

Part IV

Conclusion

8

Final considerations

8.1 Main contributions of this thesis

The first part of the thesis explores the decomposition of Transition Systems and Petri Nets
based on the theory of regions. In this part we introduced the notion of a set of excitation-closed
Petri nets derived from a Transition System and we proved the existence of a bisimulation be-
tween the initial TS and the synchronous product of the reachability graphs of the derived PNs.
We defined and implemented a flow to create a decomposition into a set of synchronizing SMs,
and then we reported the experimental results. We defined and implemented a similar flow also
for FCPNs, and then we proposed a new method based on encoding the excitation-closure prop-
erty by means of BDDs, which allows the search of k FCPNs simultaneously instead of using
a sequential approach. We have also shown that passing from SMs to FCPNs there is a huge
difference in the complexity of the implementation, since FCPN minimization can transform
a Free-Choice Petri net into Asymmetric-Choice one; furthermore, it is much more complex
to guarantee that an FCPN decomposition contains only safe FCPNs with respect to the SM
decomposition, for which limiting the initial marking guarantees safeness.

In the second part of this thesis, we focus on the discovery of the MSFSM model as a bridge
for the synthesis of synchronous circuits. A comparison with similar models was made, includ-
ing Communicating Sequential Processes and Synchronous Languages. After having presented
the flows from Petri net to MSFSM and vice versa it was shown an inconsistency with the Wait
State synchronization primitive in the original conversion flow, showing how self-loops in Petri
nets could become Wait States passing to the MSFSM model. It was observed that this kind of
mapping probably was not noticed by the original authors, since self-loops usually do not be-
long to either FCPN nor ACPNs. Due to lack of time, this last part was presented as a conjecture
and was not formally proved for general Petri nets.

8.2 Considerations about the decomposition based on regions theory

In this thesis, we described a new method for the decomposition of transition systems into a
synchronous composition of Petri nets, with a special focus on the decomposition into sets of
State Machines and Free-choice Petri nets.

110 8 Final considerations

The experimental results demonstrate that the decomposition algorithm can be run on tran-
sition systems with up to one million states, therefore it is suitable to handle real cases.

The resultant set of synchronizing FCPNs offers a good complexity trade-off compared to
other more expressive classes of PNs [28] vs. decomposition into completely sequential SM.

Since the generation of minimal regions is currently a computational bottleneck, future work
could overcome this limitation, due to improvements in the efficiency of last-generation MIS
and SAT solvers and HPC1.

The power of High Performance Computing can be very useful since the generation of min-
imal regions is highly parallelizable. HPC can also be exploited in other steps of the decompo-
sition algorithm, e.g., different MIS computations could be performed simultaneously applying
constraints to each parallel computation (e.g., assigning a state to each thread and forcing it to
be in the MIS result). Also, the encoding of excitation-closure for the search of k PNs simultane-
ously is highly parallelizable since a set of constraints is extracted for each event independently.

The possibility of extracting hidden knowledge from unstructured data suggests that the
presented decomposition flow based on regions may be applied to process mining, especially
in Business Process Management (BPM) field, deriving FCPNs or SMs for different parts of
the mined behavior and helping to represent the entire system as a set of connected concurrent
subparts. A TS can be created directly from a set of traces [15, 16] and then given as input
to the presented decomposition algorithm. As mentioned previously, there are advantages in
decomposing into a set of FCPNs, rather than representing the entire behavior with only one PN,
especially when the PN is very complex. The decomposition into simpler FCPN/SM structures
could provide benefits, especially if the aim is to identify parts of the total behavior.

Another direction for the improvement of the presented decomposition algorithms could be
an extension to k-bounded PNs. In [38] the possibility to derive a bounded PN starting from a
transition system, called k-ECTS, was proved. This result is a promising indicator for the exis-
tence of a decomposition flow for the achievement of multiple k-bounded PNs. Furthermore, the
example in the introduction section shows how k-bound PNs are important in the representation
of real cases, significantly expanding the usability of the proposed work.

8.3 Considerations about MSFSM model

We have seen that the MSFSM model can be used for the synthesis of synchronous circuits
without time and space explosion. I tried to exploit the usage of the MSFSM model also in the
opposite direction, starting from a set of synchronizing FSMs and obtaining an MSFSM, used
for property verification. However, this approach, particularly in the field of verification, proved
to be suboptimal for the MSFSM model. This is especially true during manual verification,
where there is a natural inclination to rely on a canonical model, such as FSMs or Petri nets, for
comparative analysis. Similarly, when the verification process is automated, the MSFSM model
does not offer any distinct advantages.

1 High Performance Computing: aggregation of computing power to solve problems too complex to be solved by
a normal desktop computer or workstation.

8.4 PN decomposition: MSFSM vs. Regions Theory 111

m0

m1 m2

m3 m4

m5 m6

a b

c

d

e
d

c

f

(a) Transition System ex-
ample

Preregion States Events

r0 {m1,m2,m4} {c}
r1 {m1,m4,m5} {c, e}
r2 {m1,m2,m3} {d}
r3 {m1,m3,m5} {e}
r4 {m2,m3,m6} {d, f }
r5 {m2,m4,m6} { f }
r6 {m3,m5,m6} {e, f }
r7 {m4,m5,m6} {e, f }
r8 {m0} {a, b}

Postregion Events

r0 {a, b}
r1 {a, d}
r2 {a, b}
r3 {a}
r4 {b, c}
r5 {b}
r6 {c}
r7 {d}
r8 {e, f }

(b) Pre and post-regions

Fig. 8.1: Monolithic Transition System and its pre and post regions

As future work, I would like to mention the proof of the presented conjecture: the equiv-
alence between MSFSM and PN models considering the newly introduced Wait State syn-
chronization primitive. This proof would represent an extension of the proof presented in [23],
limited to FCPNs.

8.4 PN decomposition: MSFSM vs. Regions Theory

Starting from a Petri net, the MSFSM decomposition can be performed directly; when using the
theory of regions instead, the reachability graph extraction should be performed and from the
derived transition system the minimal regions would be obtained. What is the main difference
between the two flows? We can view MSFSM decomposition as a selection of structures already
embedded in the PN (S-components) with an addition of synchronizations, which also are al-
ready present in the PN but represented in a different way. The decomposition based on regions
instead looks into the behaviour of the Petri net searching to extract information not yet explicit,
and this step is done extracting the regions from the transition system: each region can be as-
sociated to a place of a possible PN, but calculating all minimal regions we may find regions
associated to places that did not appear in the original PN. Regions allow a deeper exploration
than MSFSMs, relying on the fact that the satisfaction of the excitation-closure property yields
PN behaviours. As a result we could have better minimized results with regions than with MSF-
SMs. An example can be seen comparing Figs. 8.3 and 8.4. Observing the two decompositions,
we notice that the first two components are isomorphic, and that the MSFSM decomposition
was unable to recognize that the fourth component (FSM4) is completely redundant (see Figs.
8.5 and 8.6).

Looking at the results of the final model, the theory of regions has the advantage of using
synchronization based on parallel composition, as we have seen in Sec. 7.1. MSFSMs instead
are synchronized with their own synchronization primitives, which are not very intuitive, but de-
spite the new synchronization method, this model can be used for the synthesis of synchronous

112 8 Final considerations

r8

r0

r6 r4

r1

r2

r5

a b

e

f

c

d

Fig. 8.2: PN derived from TS in Fig. 8.1.

r8

r0

r6

a b

e fc

(a) SM1

r8

r2

r7

a b

e fd

(b) SM2

r8

r1 r4

d

c

bfa e

(c) SM3

Fig. 8.3: SM decomposition of PN in Fig. 8.2.

circuits (Sec. 7.2). Synchronizing PNs, instead, are more suitable for system modeling and pro-
tocol design. Furthermore, the creation of structures from event logs may be possible, as we
mentioned in Sec. 8.2.

Another big difference between the two approaches is represented by the MSFSM limita-
tions: the decomposition can be done starting only from a Free-Choice or Asymmetric-Choice

8.4 PN decomposition: MSFSM vs. Regions Theory 113

r8

r0 r6

t0: a

t1: b

t2: c

t3: e

t4: f

(a) FSM1

r8

r2 r7

t5: a

t6: b

t7: d

t8: e

t9: f

(b) FSM2

r8

r1 r4

t10: a t11: b

t12: e t13: f

t14: c

t15: d

(c) FSM3

r8

r3 r5

t15: a t16: b

t17: e t18: f

(d) FSM4

Transition Barrier Transitions

tba {t0, t5, t10, t15}

tbb {t1, t6, t11, t16}

tbc {t2, t14}

tbd {t7, t15}

tbe {t3, t8, t12, t17}

tb f {t4, t9, t13, t18}

(e) Synchronizations

Fig. 8.4: MSFSM derived from PN in Fig. 8.2.

r8

r0 r6

t0: a

t1: b

t2: c

t3: e

t4: f

(a) FSM1

r8

r2 r7

t5: a

t6: b

t7: d

t8: e

t9: f

(b) FSM2

r8

r1 r4

t10: a t11: b

t12: e t13: f

t14: c

t15: d

(c) FSM3

Transition Barrier Transitions

tba {t0, t5, t10}

tbb {t1, t6, t11}

tbc {t2, t14}

tbe {t3, t8, t12}

tb f {t4, t9, t13}

(d) Synchronizations

Fig. 8.5: MSFSM derived from PN in Fig. 8.2 without FSM4 of Fig. 8.4.

Petri net with STG labels, meanwhile for the decomposition based on the theory of regions, it
is sufficient to have a safe Petri net.

(r8)

(r0, r1, r2)

(r2, r4, r6)

(r1, r6)

(r0, r2, r4, r5)

(r0, r1, r5)

(r4, r5, r6)

a b

c

d

e d

c

f

(a) Reachability graph of PN in Fig. 8.2

(r8, r8, r8)

(r0, r2, r1)

(r6, r2, r4)

(r6, r7, r1)

(r0, r2, r4)

(r0, r7, r1)

(r6, r7, r4)

a b

c

d

e d

c

f

(b) Reachability graph of MSFSM in Fig. 8.5

Fig. 8.6: Reachability graphs of PN in Fig. 8.2 and MSFSM in Fig. 8.5

References

1. S. C. White and S. S. Sarvestani, “Comparison of Security Models: Attack Graphs Versus Petri Nets,” in Ad-
vances in Computers. Elsevier, 2014, vol. 94, pp. 1–24.

2. Gartner. Gartner Glossary - Business Process Management (BPM). [Online]. Available: https://www.gartner.
com/en/information-technology/glossary/business-process-management-bpm

3. W. M. P. van der Aalst, “The application of Petri nets to workflow management,” Journal of circuits, systems,
and computers, vol. 8, no. 01, pp. 21–66, 1998.

4. ——, “Making Work Flow: On the Application of Petri Nets to Business Process Management,” in Application
and Theory of Petri Nets 2002, J. Esparza and C. Lakos, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 1–22.

5. ——, “Challenges in business process management: Verification of business processes using Petri nets,” Bulletin
of the EATCS, vol. 80, no. 32, pp. 174–199, 2003.

6. ——, “Business process management demystified: A tutorial on models, systems and standards for workflow
management,” Lectures on concurrency and petri nets, 2004.

7. ——, “Using free-choice nets for process mining and business process management,” in 2021 16th Conference
on Computer Science and Intelligence Systems (FedCSIS). IEEE, 2021, pp. 9–15.

8. ——, “Business process management as the “Killer App” for Petri nets,” Software& Systems Modeling, vol. 14,
no. 2, pp. 685–691, 2015.

9. ——, “Decomposing process mining problems using passages,” in International Conference on Application
and Theory of Petri Nets and Concurrency. Springer, 2012, pp. 72–91.

10. ——, “Decomposing Petri nets for process mining: A generic approach,” Distributed and Parallel Databases,
vol. 31, no. 4, pp. 471–507, 2013.

11. H. Verbeek and W. M. P. van der Aalst, “Decomposed process mining: The ILP case,” in International Confer-
ence on Business Process Management. Springer, 2014, pp. 264–276.

12. J. de San Pedro and J. Cortadella, “Mining structured Petri nets for the visualization of process behavior,” in
Proceedings of the 31st Annual ACM Symposium on Applied Computing, 2016, pp. 839–846.

13. D. Taibi and K. Systä, “From Monolithic Systems to Microservices: A Decomposition Framework based on
Process Mining,” in CLOSER, 2019, pp. 153–164.

14. W. M. P. van der Aalst, Discovering Directly-Follows Complete Petri Nets from Event Data. Cham: Springer
Nature Switzerland, 2022, pp. 539–558. [Online]. Available: https://doi.org/10.1007/978-3-031-15629-8_29

15. W. M. P. van der Aalst, V. Rubin, H. Verbeek, B. F. van Dongen, E. Kindler, and C. W. Günther, “Process
mining: a two-step approach to balance between underfitting and overfitting,” Software & Systems Modeling,
vol. 9, no. 1, p. 87, 2010.

16. J. Carmona, J. Cortadella, and M. Kishinevsky, “Divide-and-conquer strategies for process mining,” in Interna-
tional Conference on Business Process Management. Berlin, Heidelberg: Springer, 2009, pp. 327–343.

17. V. Teren, J. Cortadella, T. Villa et al., “Seto: a framework for the decomposition of Petri nets and transition
systems,” in Proceedigs of 26th Euromicro Conference on Digital System Design (DSD), 2023, pp. 669–677.

18. A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and function using NetworkX,”
in Proceedings of the 7th Python in Science Conference (SciPy 2008), Pasadena, CA, 2008, pp. 11–15.

https://www.gartner.com/en/information-technology/glossary/business-process-management-bpm
https://www.gartner.com/en/information-technology/glossary/business-process-management-bpm
https://doi.org/10.1007/978-3-031-15629-8_29

116 References

19. T. Philipp and P. Steinke, “PBLib – A Library for Encoding Pseudo-Boolean Constraints into CNF,” in Theory
and Applications of Satisfiability Testing – SAT 2015, ser. Lecture Notes in Computer Science, M. Heule and
S. Weaver, Eds. Springer International Publishing, 2015, vol. 9340, pp. 9–16.

20. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, “Petrify: a tool for manipulating
concurrent specifications and synthesis of asynchronous controllers,” IEICE Transactions on information and
Systems, vol. 80, no. 3, pp. 315–325, 1997.

21. O. Bunte, J. F. Groote, J. J. A. Keiren, M. Laveaux, T. Neele, E. P. de Vink, W. Wesselink, A. Wijs, and
T. A. C. Willemse, “The mCRL2 Toolset for Analysing Concurrent Systems,” in Tools and Algorithms for the
Construction and Analysis of Systems, T. Vojnar and L. Zhang, Eds. Cham: Springer International Publishing,
2019, pp. 21–39.

22. J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull, “Graphviz—open source graph drawing
tools,” in Graph Drawing: 9th International Symposium, GD 2001 Vienna, Austria, September 23–26, 2001
Revised Papers 9. Springer, 2002, pp. 483–484.

23. P. M. Mattheakis, “Logic Synthesis of Concurrent Controller Specifications,” Ph.D. dissertation, University of
Thessaly, 2013.

24. P. M. Mattheakis and C. P. Sotiriou, “Polynomial Complexity Asynchronous Control Circuit Synthesis of Con-
current Specifications Based on Burst-Mode FSM Decomposition,” in 2013 26th International Conference on
VLSI Design and 2013 12th International Conference on Embedded Systems, Jan 2013, pp. 251–256.

25. P. M. Mattheakis, C. P. Sotiriou, and P. A. Beerel, “A polynomial time flow for implementing free-choice Petri-
nets,” in 2012 IEEE 30th International Conference on Computer Design (ICCD), Sep. 2012, pp. 227–234.

26. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, “Deriving Petri nets from finite transition systems,”
IEEE Transactions on Computers, vol. 47, no. 8, pp. 859–882, Aug 1998.

27. A. Mazurkiewicz, “Compositional semantics of pure place/transition systems,” Fundamenta Informaticae,
vol. 11, no. 4, pp. 331–355, 1988.

28. J. Esparza, “Decidability and complexity of Petri net problems—an introduction,” in Advanced Course on Petri
Nets. Springer, 1996, pp. 374–428.

29. T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE, vol. 77, no. 4, pp. 541–
580, 1989.

30. E. Badouel, L. Bernardinello, and P. Darondeau, Petri net synthesis. Berlin: Springer, 2015.
31. J. L. Peterson, “Petri Nets,” ACM Comput. Surv., vol. 9, no. 3, pp. 223–252, Sep. 1977. [Online]. Available:

http://doi.acm.org/10.1145/356698.356702
32. L. Bernardinello, “Synthesis of net systems,” in Application and Theory of Petri Nets 1993, M. Ajmone Marsan,

Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 89–105.
33. M. Hack, “Extended State-Machine Allocatable Nets, an Extension of Free Choice Petri Nets Results,” Cam-

bridge, Massachussets, 1974.
34. K. Jensen, “Coloured Petri nets and the invariant-method,” Theoretical computer science, vol. 14, no. 3, pp.

317–336, 1981.
35. P. Kemper, “O(PT) - Algorithm to Compute a Cover of S-components in EFC-nets,” 1994.
36. A. A. Kalenkova, I. A. Lomazova, and W. M. P. van der Aalst, “Process model discovery: A method based on

transition system decomposition,” in International Conference on Applications and Theory of Petri Nets and
Concurrency. Springer, 2014, pp. 71–90.

37. A. Mokhov, J. Cortadella, and A. de Gennaro, “Process windows,” in 2017 17th International Conference on
Application of Concurrency to System Design (ACSD). IEEE, 2017, pp. 86–95.

38. J. Carmona, J. Cortadella, and M. Kishinevsky, “New region-based algorithms for deriving bounded Petri nets,”
IEEE Transactions on Computers, vol. 59, no. 3, pp. 371–384, 2009.

39. E. Best, T. Hujsa, and H. Wimmel, “Sufficient conditions for the marked graph realisability of labelled transition
systems,” Theoretical Computer Science, vol. 750, pp. 101–116, 2018.

40. V. Teren, J. Cortadella, and T. Villa, “Decomposition of transition systems into sets of synchronizing state
machines,” in 2021 24th Euromicro Conference on Digital System Design (DSD). IEEE, 2021, pp. 77–81.

41. ——, “Decomposition of transition systems into sets of synchronizing Free-choice Petri Nets,” in 2022 25th
Euromicro Conference on Digital System Design (DSD), 2022, pp. 165–173.

42. F. Somenzi, “CUDD: CU decision diagram package release 2.5. 0,” University of Colorado at Boulder, 2012.

http://doi.acm.org/10.1145/356698.356702

References 117

43. NetworkX developer team, “NetworkX,” 2014. [Online]. Available: https://networkx.org/
44. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, “Synthesizing Petri nets from state-based models,”

in Proceedings of IEEE International Conference on Computer Aided Design (ICCAD). IEEE, 1995, pp. 164–
171.

45. J. Carmona, J.-M. Colom, J. Cortadella, and F. García-Vallés, “Synthesis of asynchronous controllers using
integer linear programming,” IEEE Transactions on computer-aided design of integrated circuits and systems,
vol. 25, no. 9, pp. 1637–1651, 2006.

46. V. Khomenko, M. Koutny, and A. Yakovlev, “Detecting state encoding conflicts in STG unfoldings using SAT,”
Fundamenta Informaticae, vol. 62, no. 2, pp. 221–241, 2004.

47. J. Carmona, J. Cortadella, and M. Kishinevsky, “Genet: A Tool for the Synthesis and Mining of Petri nets,” in
2009 Ninth International Conference on Application of Concurrency to System Design, Augsburg, Germany,
2009, pp. 181–185.

48. E. Gansner, E. Koutsofios, S. North, and K. P. Vo, “A Technique for Drawing Directed Graphs,” Software
Engineering, IEEE Transactions on, vol. 19, no. 3, pp. 214 – 230, 04 1993.

49. V. Teren, J. Cortadella, and T. Villa, “Generation of synchronizing state machines from a transition system: A
region-based approach,” International Journal of Applied Mathematics and Computer Science (AMCS), vol. 33,
no. 1, pp. 133–149, 2023.

50. P. M. Mattheakis, C. P. Sotiriou, and P. A. Beerel, “A polynomial time flow for implementing free-choice Petri-
nets,” in 2012 IEEE 30th International Conference on Computer Design (ICCD), 2012, pp. 227–234.

51. C. A. R. Hoare, “Communicating sequential processes,” Communications of the ACM, vol. 21, no. 8, pp. 666–
677, 1978.

52. J. Davies and S. Schneider, “A brief history of Timed CSP,” Theoretical Computer Science, vol. 138, no. 2, pp.
243–271, 1995.

53. J. Sun, Y. Liu, J. S. Dong, and C. Chen, “Integrating specification and programs for system modeling and
verification,” in 2009 Third IEEE International Symposium on Theoretical Aspects of Software Engineering.
IEEE, 2009, pp. 127–135.

54. K. Seidel, “Probabilistic communicating processes,” Theoretical Computer Science, vol. 152, no. 2, pp. 219–
249, 1995.

55. M. Roggenbach, “CSP-Casl—a new integration of process algebra and algebraic specification,” Theoretical
Computer Science, vol. 354, no. 1, pp. 42–71, 2006.

56. M. Leuschel and M. Fontaine, “Probing the depths of CSP-M: A new FDR-compliant validation tool,” in Formal
Methods and Software Engineering: 10th International Conference on Formal Engineering Methods, ICFEM
2008, Kitakyushu-City, Japan, October 27-31, 2008. Proceedings 10. Springer, 2008, pp. 278–297.

57. T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. Roscoe, “FDR3 — A Modern Refinement Checker
for CSP,” in Tools and Algorithms for the Construction and Analysis of Systems, ser. Lecture Notes in Computer
Science, E. Ábrahám and K. Havelund, Eds., vol. 8413, 2014, pp. 187–201.

58. J. Woodcock and A. Cavalcanti, “The semantics of Circus,” in International Conference of B and Z Users.
Springer, 2002, pp. 184–203.

59. J. Davies and J. Woodcock, “Using Z,” Specification Refinement and Proof. Series in Computer Science, 1996.
60. C. Fischer, “CSP-OZ: a combination of Object-Z and CSP,” Formal Methods for Open Object-based Distributed

Systems: Volume 2, pp. 423–438, 1997.
61. G. Smith, The Object-Z specification language. Springer Science & Business Media, 2012, vol. 1.
62. R. Acosta-Bermejo, “Rejo Langage d’Objects Réactifs et d’Agents,” Ph.D. dissertation, École Nationale

Supérieure des Mines de Paris, 2003.
63. A. Charles, “Representation and analysis of reactive behaviors: A synchronous approach,” in Computational

Engineering in Systems Applications, CESA, vol. 96, 1996, pp. 19–29.
64. F. Maraninchi, “The Argos language: Graphical representation of automata and description of reactive systems,”

in IEEE Workshop on Visual Languages, vol. 3. Citeseer, 1991.
65. D. Harel and A. Pnueli, “On the development of reactive systems,” in Logics and models of concurrent systems.

Springer, 1984, pp. 477–498.
66. F. X. Dormoy, “Scade 6 a model based solution for safety critical software development,” in Embedded Real

Time Software and Systems (ERTS2008), 2008.

https://networkx.org/

118 References

67. G. Berry, “Synchronous design and verification of critical embedded systems using SCADE and Esterel,” Lec-
ture Notes in Computer Science, vol. 4916, pp. 2–2, 2008.

68. D. Harel, “Statecharts: A visual formalism for complex systems,” Science of computer programming, vol. 8,
no. 3, pp. 231–274, 1987.

69. F. Boussinot and R. De Simone, “The ESTEREL language,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1293–
1304, 1991.

70. C. André, “Computing SyncCharts reactions,” Electronic Notes in Theoretical Computer Science, vol. 88, pp.
3–19, 2004.

71. ——, “Semantics of SyncCharts,” I3S Laboratory, Sophia-Antipolis, France, Tech. Rep. ISRN I3S/RR–2003–
24–FR, 2003.

72. J. Desel, Free choice Petri nets. Cambridge New York: Cambridge University Press, 1995.
73. T. Nishimura, D.-I. Lee, S. Kodama, and S. Kumagai, “Decomposition algorithms for live and safe free choice

nets,” Electronics and Communications in Japan (Part III: Fundamental Electronic Science), vol. 78, no. 1, pp.
1–12, 1995. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ecjc.4430780101

74. M. Yamauchi and T. Watanabe, “Algorithms for Extracting Minimal Siphons Containing Specified Places in a
General Petri Net,” IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer
Sciences, vol. 82, no. 11, pp. 2566–2575, 1999.

75. P. Kemper and F. Bause, “An Efficient Polynomial-Time Algorithm to Decide Liveness and Boundedness of
Free-Choice Nets,” in Application and Theory of Petri Nets, K. Jensen, Ed. Springer Berlin Heidelberg, 1992,
pp. 263–278.

76. J. Sparsø and S. Furber, Principles of asynchronous circuit design. Springer, 2002.
77. J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin, “Elastic circuits,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1437–1455, 2009.

https://onlinelibrary.wiley.com/doi/abs/10.1002/ecjc.4430780101

List of Figures

1.1 Transition system representing a car manufacturing system with a low level of
detail. 4

1.2 Transition system representing a car manufacturing system with a higher level
of detail, representing the production of single materials and car parts where
m1, m2 and m3 represent the production of three different materials and p1 and
p2 represent the production of car parts. 5

1.3 Petri net representation of the car factory of Fig. 1.2. 6
1.4 Petri net decomposition representing an extended version of the car factory in

Fig. 1.3. 7
1.5 Petri net representing the composition of PNs in Figs. 1.4(b), 1.4(d) and 1.4(e). 8
1.6 Relationships among the models discussed in this thesis. 11

2.1 Two different FSM representations of the same system. 13
2.2 Example of transition system. 13
2.3 Example of synchronous product. 15
2.4 Petri net example . 15
2.5 Reachability graph of Petri net in Fig. 2.4. 15
2.6 PN hierarchy. 16
2.7 Modelling power of different Petri Net classes [31]. 18
2.8 Example of enter property for event a, exit property for event d and no_cross

property for event b respect to the highlighted region. 19
2.9 Framework for Petri net synthesis . 21
2.10 Example of expansion tree for event b of TS in Fig. 2.2. 23
2.11 TS before label splitting (a) and ECTS after label splitting (b). 24
2.12 Example showing the different Petri nets derived from optimal and sub-optimal

label splitting. 25
2.13 Truth table for the function f . 27
2.14 Binary Decision Tree for the function f . 27
2.15 Reduced Ordered Binary Decision Diagram for the function f 27

120 List of Figures

2.16 Reduced Ordered Binary Decision Diagram for the function f created with a
different variable order with respect to the ROBDD in Fig. 2.15. 27

3.1 Example of decomposition: PN1 and PN2 are derived from PN0. 33
3.2 Transition system example. 35
3.3 Three FCPNs distilled from the TS in Fig. 3.2 . 35
3.4 Reachability graphs of the FCPNs in Fig. 3.3. 35
3.5 Synchronous product of reachability graphs in Fig. 3.4. 36
3.6 Two unsafe Free-choice Petri nets with a safe synchronization. 37
3.7 Synchronous product of the reachability graphs of FCPNs in Fig. 3.6. 37
3.8 Example of transition system with label splitting required for the decomposition

based on regions theory. 40
3.9 SM decomposition derived from TS in Fig. 3.8. 40
3.10 Synchronous product of the reachability graphs of SMs in Fig. 3.9. 41
3.11 Example of a TS which cannot be transformed into an MG. 41
3.12 Example ECTS . 42

4.1 Transition system of the current example. 46
4.2 All SMs created from TS in Fig. 2.2. 48
4.3 Excitation-closed subset of state machines selected from the SMs in Fig. 4.2 as

result of the greedy algorithm. 49
4.4 LTS representing the composition RG(SM4)||RG(SM5) of SMs in Fig. 4.3. 49
4.5 ECTS. 49
4.6 SMs obtained with the MIS solver from the TS of Fig. 4.5. 50
4.7 SMs of Fig. 4.6 after the removal of label e in SMb. 50

5.1 Transition system of Fig. 3.2 and a bisimilar Petri net. 54
5.2 Four SMs distilled from the TS in Fig. 5.1. 54
5.3 Three FCPNs distilled from the TS in Fig. 5.1. 54
5.4 Current example ECTS. 57
5.5 Binary Decision Tree for EC of event f of TS in Fig. 5.4 representing the

choice of the regions in the following order: r1, r7, r8. 58
5.6 Binary Decision Diagram for EC of event f of TS in Fig. 5.4, following the

same variale order of BDT in Fig. 5.5. 58
5.7 Free-choice Petri nets derived from LTS in Fig. 5.4. 61
5.8 Example with merge of two not disjoint regions. 63
5.9 Example of the loss of free-choice property after the removal of event b. 64
5.10 Choice (a) and join (b) used in the proof. 65
5.11 Removing events b, c, d and e as a collateral effect also event a is removed. 65

6.1 Trend of the exact algorithm for the decomposition of a TS compared to the
approximate version. 69

List of Figures 121

7.1 Example of synchronous MSFSM architecture [23]. 84
7.2 Wait State example. 84
7.3 Transition Barrier example. 85
7.4 Evolution of the synchronous approach. 86
7.5 SyncChart FSM notations [71]. 87
7.6 Hierarchy representation example with SyncCharts [71]. 88
7.7 Concurrency representation example with SynchCharts (2-bit binary

counter) [71]. 88
7.8 2-bit binary counter MSFSM. 89
7.9 4-phases to 2-phases handshake converter. 90
7.10 S-component of 4-phases to 2-phases handshake converter. 93
7.11 4-phase to 2-phase handshake converter after the creation of Non-Interactive

FSMs. 94
7.12 Example showing MSFSM extraction from a Petri net. 95
7.13 MSFSM. 95
7.14 Example of a synchronous execution of the PN representing 4-phase to 2-phase

handshake protocol controller (a) and the execution of synchronous MSFSM (b). 96
7.15 PN to MSFSM transformation representing a synchronous behaviour [23]. 97
7.16 Initial MSFSM. 98
7.17 S-components after the MSFSM to S-component mapping. 99
7.18 Petri net derived from MSFSM in Fig. 7.16. 100
7.19 Example of transformation of an MSFSM with Mealy FSMs (a) into a Petri net

(b). 100
7.20 MSFSM example. 101
7.21 Petri net derived from MSFSM in Fig. 7.20 with a Wait State represented by

the place pw. 101
7.22 MSFSM derived from PN in Fig. 7.21. 102
7.23 S-components after the integration of the self loops. 103
7.24 Petri net after the complete conversion flow, starting from Fig. 7.16. 103
7.25 Example of self-loop with the transition belonging to a single S-component

where event a can be fired an infinite number of times before firing event c. 104
7.26 Example of Petri net with self-loop. 104
7.27 Petri net representation of the controller managing crossroads warehouse. 105
7.28 MSFSM derived from PN in Fig. 7.27. 105

8.1 Monolithic Transition System and its pre and post regions 111
8.2 PN derived from TS in Fig. 8.1. 112
8.3 SM decomposition of PN in Fig. 8.2. 112
8.4 MSFSM derived from PN in Fig. 8.2. 113
8.5 MSFSM derived from PN in Fig. 8.2 without FSM4 of Fig. 8.4. 113
8.6 Reachability graphs of PN in Fig. 8.2 and MSFSM in Fig. 8.5 114

List of Tables

2.1 Minimal regions of the TS in Fig. 2.2. 20
2.2 Pre-regions and ESs for each event of the TS in Fig. 2.2. 20
2.3 Possible expansions given a set of states with a combination of properties

respect to a given event. 22

3.1 Regions derived from TS in Fig. 3.8. 40
3.2 Minimal regions derived from ECTS in Fig. 3.12. 42
3.3 Excitation sets for each event of ECTS in Fig. 3.12. 42

4.1 Adjacency matrix representing the edges (value 1) between vertices of the
Graph G created from the regions of the TS in Fig. 4.1. 46

4.2 Minimal regions of the transition system in Fig. 4.5. 49
4.3 Pre-regions for each event of the transition system in Fig. 4.5 49

5.1 Minimal regions of TS in Fig. 5.4. 58
5.2 Excitation sets, pre-regions and post-regions for each event of TS in Fig. 5.4. . . . 58
5.3 Truth table for EC of event f of TS in Fig. 5.4. 58
5.4 Sets of clauses to satisfy excitation-closure for each event of TS in Fig. 5.4. 59

6.1 TS statistics and CPU time for each decomposition step including the time
spent to generate the regions. 68

6.2 Impact of each optimization step in terms of places (P) and transitions (T) 69
6.3 Number of places (P), transitions (T) and arc crossings (C) of the original

transition systems vs. derived Petri nets vs. product of SMs and SM details. 70
6.4 CPU time and results of the exact decomposition algorithm. 70
6.5 Number of final SMs derived using an approximate algorithm for the search

of new SMs and different approaches for the removal of redundant SMs, i.e.
greedy, exact and a mixed approach. 71

6.6 Comparison between sequential SM search using previously created heuristics
(sequential version) and the new approach (simultaneous version) directly
encoding excitation-closure property. 72

124 List of Tables

6.7 Comparison between sequential and simultaneous FCPN search. 74
6.8 Comparison of different techniques to ensure safe FCPNs or a combination of

safe SMs and FCPNs. 75
6.9 Trivial safe search performed with timeouts. 77
6.10 Results achieved on sequential safe search with the usage of counters. 77
6.11 Results achieved on sequential safe search with the usage of improved counters. . 78
6.12 Comparison between the best approaches to decompose an LTS into a set

of synchronizing FCPNs with and without guarantee on the safeness of the
components. 78

6.13 Comparison between standard sequential FCPN search and a variation of
the same algorithm without resetting the set of learned clauses related to the
FCPNs forbidded because part of a solution with multiple FCPNs. 79

List of Acronyms

ACPN Asymmetric-Choice Petri net
BDD Binary Decision Diagram
BDT Binary Decision Tree
BPM Business Process Management
EC Excitation-closure
ECTS Excitation-closed Transition System
EFCPN Extended Free-Choice Petri net
ES Excitation set
FCPN Free-Choice Petri net
FSM Finite State Machine
HPC High Performance Computing
IT Information technology
MIS Maximal Inependent Set
MSFSM Multiple Synchronized Finite State Machine
OT Operational technology
PN Petri net
RG Reachability Graph
SAT Boolean satisfiability problem
SM State Machine
SS Switching set
STG State Transition Graph
TS Transition System
UNSAT Boolean Unsatisfiability

	Part I Introduction and preliminaries
	1 Introduction
	1.1 Practical application of Petri net decomposition
	1.2 Overview

	2 Preliminaries
	2.1 Finite State Machines and Transition systems
	2.2 Petri Nets and Signal Transition Graphs
	2.3 Region theory and Petri net synthesis
	2.3.1 Definitions and conversion flow overview
	2.3.2 Petri net synthesis
	2.3.3 Minimal pre-regions generation
	2.3.4 Label Splitting
	2.3.5 Redundant pre-regions removal
	2.3.6 Minimal pre-regions merging

	2.4 Binary Decision Diagram (BDD)

	Part II Decomposition based on regions theory
	3 Decomposition into sets of synchronizing PNs
	3.1 Evolution of the decomposition
	3.2 Decomposition based on theory of regions
	3.3 Composition of PNs and equivalence to the original TS/PN
	3.3.1 Safe composition of unsafe PNs
	3.3.2 Proof of Theorem 4

	3.4 What happens if excitation-closure is not satisfied?
	3.5 What about the decomposition into sets of synchronizing Marked Graphs?

	4 Transition System decomposition into sets of synchronizing SMs
	4.1 Sequential SM search
	4.1.1 Generation of a set of SMs with excitation closure
	4.1.2 Removal of the redundant SMs
	4.1.3 Merge between regions preserving the excitation closure

	5 Transition System decomposition into sets of synchronizing FCPNs
	5.1 Overview
	5.2 Sequential FCPN search
	5.3 Decomposition into k FCPNs simultaneously
	5.3.1 Example of k FCPN simultaneous decomposition

	5.4 Additional constraint: safeness for each FCPN
	5.5 Decomposition optimization
	5.6 Decomposition into a set of synchronizing ACPNs

	6 Experimental results
	6.1 SMs
	6.1.1 Creation of a new mixed strategy
	6.1.2 Simultaneous SM search
	6.1.3 SMs without guarantee the safeness of single components

	6.2 FCPNs
	6.2.1 FCPNs without guarantee the safeness of single components
	6.2.2 Safe FCPNs
	6.2.3 Reset of the learned clauses

	Part III Multiple Synchronized FSMs
	7 MSFSM model
	7.1 Other models of concurrency
	7.1.1 Communicating Sequential Processes (CSP)
	7.1.2 Synchronous Languages and their representations
	7.1.3 Why MSFSMs?

	7.2 Creation of synchronous circuits with MSFSMs
	7.2.1 PN to MSFSM transformation flow
	7.2.2 Original models with the addition of the clock

	7.3 Synchronous elastic circuits
	7.4 MSFSM to PN conversion flow
	7.4.1 MSFSM to S-component mapping
	7.4.2 S-component merging to PN conversion

	7.5 The role of the Wait State synchronization primitive
	7.5.1 Issues with the MSFSM to PN conversion flow
	7.5.2 Revised Wait State in the MSFSM to PN conversion flow
	7.5.3 Self-loops in the PN to MSFSM conversion flow

	7.6 A simple use case

	Part IV Conclusion
	8 Final considerations
	8.1 Main contributions of this thesis
	8.2 Considerations about the decomposition based on regions theory
	8.3 Considerations about MSFSM model
	8.4 PN decomposition: MSFSM vs. Regions Theory

	References
	List of Figures
	List of Tables
	List of Acronyms

