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Abstract

The solution of stiff systems of Ordinary Differential Equations (ODEs), that typically arise after spatial
discretization of many important evolutionary Partial Differential Equations (PDEs), constitutes a
topic of wide interest in numerical analysis. A prominent way to numerically integrate such systems
involves using exponential integrators. In general, these kinds of schemes do not require the solution of
(non)linear systems but rather the action of the matrix exponential and of some specific exponential-like
functions (known in the literature as ϕ-functions). In this PhD thesis we aim at presenting efficient
tensor-based tools to approximate such actions, both from a theoretical and from a practical point
of view, when the problem has an underlying Kronecker sum structure. Moreover, we investigate the
application of exponential integrators to compute numerical solutions of important equations in various
fields, such as plasma physics, mean-field optimal control and computational chemistry. In any case, we
provide several numerical examples and we perform extensive simulations, eventually exploiting modern
hardware architectures such as multi-core Central Processing Units (CPUs) and Graphic Processing
Units (GPUs). The results globally show the effectiveness and the superiority of the different approaches
proposed.
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Introduction

The numerical integration of systems of Ordinary Differential Equations (ODEs) is of great interest for
many fields of science and engineering. In particular, systems of the form{

u′(t) = f(t,u(t)) = Mu(t) + g(t,u(t)), t ∈ [0, T ],

u(0) = u0,
(1)

typically arise after semidiscretization in a spatial domain Ω ⊆ Rd of evolutionary Partial Differential
Equations (PDEs), which in turn are at the basis of many models for physical and chemical phenomena
(see, for instance, References [113, 162]). Here, u : [0, T ]→ CN is the unknown vector, being T the final
simulation time and N the total number of degrees of freedom, M ∈ CN×N is a matrix which represents
the linear part of the system, and f : [0, T ]×CN → CN and g : [0, T ]×CN → CN are generic nonlinear
functions. Problems in form (1) can also be seen more generally as abstract ODEs on proper function
spaces, see Reference [112] for more details.

We are interested in particular in the case of stiff systems of ODEs [105]. These are characterized
by the fact that the Jacobian of system (1) has eigenvalues with large negative real parts, and it is
well-known that explicit methods perform poorly compared to implicit ones due to the lack of favorable
stability properties. A prominent and effective alternative way to numerically integrate in time stiff
equations is to employ explicit exponential integrators, see Reference [112] for a seminal review. In few
words, these schemes are based on the representation of the exact solution of system (1) in terms of the
variation-of-constants formula

u(t) = etMu0 +

∫ t

0

e(t−s)Mg(s,u(s))ds. (2)

Then, suitable approximations are performed in order to obtain an explicit time marching scheme. For
instance, probably the most famous exponential integrator is the exponential version of the (forward)
Euler scheme, which is obtained by considering formula (2) in the time interval [tn, tn+1] of length τ , i.e.,

u(tn+1) = eτMu(tn) +

∫ τ

0

e(τ−s)Mg(tn + s,u(tn + s))ds,

and by approximating the nonlinear function g(tn + s,u(tn + s)) in the interval [0, τ ] as g(tn,u(tn)).
Then, by writing u(tn+1) ≈ un+1 and u(tn) ≈ un, after simple calculations we obtain the explicit time
marching scheme

un+1 = eτMun + τϕ1(τM)g(tn,un) = un + τϕ1(τM)f(tn,un),

which is the just mentioned exponential Euler method. In the notation, we employed the exponential-like
matrix function

ϕ1(X) =

∫ 1

0

e(1−θ)Xdθ, X ∈ CN×N .

The exponential Euler method is an explicit first order A-stable scheme, and hence well-suited for stiff
equations (see Reference [111] for a complete and formal analysis of the scheme). More in general,
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2 INTRODUCTION

exponential integrators, as opposed to implicit methods, do not require the solution of (non)linear
systems but rather the action of the exponential on a vector and/or of (linear combinations of) the
so-called ϕ-functions, defined for a generic matrix X ∈ CN×N as

ϕ`(X) =

∫ 1

0

θ`−1

(`− 1)!
e(1−θ)Xdθ, ` ≥ 1. (3)

It is clear that the effective employment in practice of this kind of schemes requires efficient tools to
approximate actions of the matrix exponential and of the just introduced exponential-like functions.
The aim of this PhD thesis is precisely to contribute to the numerical analysis area in this direction.
More in detail, the contribution can be divided into two parts:

I. Efficiently solving problems with a special characteristic, i.e., that have an underlying Kroneck-
er/tensor structure;

II. Applying exponential integrators to numerically solve important equations in various fields.

Regarding the first one, we developped an integrator of exponential type for differential equations
which possess d-dimensional Kronecker sum structure. This means that system (1) is actually given in
the form

u′(t) = Ku(t) + g(t,u(t)), u(0) = u0, (4)

where

K =

d∑
µ=1

A⊗µ (5)

and
A⊗µ = Id ⊗ · · · ⊗ Iµ+1 ⊗Aµ ⊗ Iµ−1 ⊗ · · · ⊗ I1.

Here, Aµ denotes an arbitrary nµ × nµ matrix and Iµ is the identity matrix of size nµ, with 1 ≤ µ ≤ d.
This kind of systems arises, for instance, when semidiscretizing in space evolutionary PDEs defined
on domains which are the Cartesian product of d intervals. Typical examples are semilinear diffusion–
reaction and Schrödinger equations, with linear operators ∆ and i∆, respectively. The task has been
achieved by exploiting tensor algebra operations and techniques (the µ-mode product and the Tucker
operator, in particular), which led to the development of the so-called µ-mode integrator. The approach
has been extensively tested with many numerical examples, and it also scales very well, in terms of
computational time, on Graphic Processing Units (GPUs). A comprehensive explanation with all the
details is addressed in Chapter 1.

The d-dimensional Kronecker structure is actually not only present in the context of differential
equations of the form (4). Indeed, many tasks in numerical analysis possess a similar tensor product
structure. We mention, among the others, multidimensional interpolation, multidimensional function
approximation using pseudospectral expansions and preconditioning of linear systems. The µ-mode based
techniques mentioned before can still be employed, with suitable modifications, in order to effectively
solve such tasks. This idea led to the development of the package KronPACK, which is a collection of
MathWorks MATLAB®/GNU Octave functions which perform the needed tensor operations by means
of the highly efficient Basic Linear Algebra Subprograms (BLAS). The approach, as well as the package,
have been extensively tested on many multidimensional numerical tasks. A thorough explanation can be
found in Chapter 2.

Then, as mentioned before, exponential integrators may require not only the action of the matrix
exponential, but also of the exponential-like functions (3). In Chapter 3 we present an effective technique
to compute actions of ϕ-functions when the matrix has d-dimensional Kronecker sum structure (5). The
proposed approach is based on a suitable quadrature rule in combination with a modified scaling and
squaring technique, and it is shown to be more efficient than state-of-the-art techniques to accomplish
the same task.

When dealing with exponential integrators up to second order applied to equation (4), it is actually
possible to pursue an alternative approach to compute the needed actions of ϕ-functions, which is more
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practical and easier to implement rather than the one explained in Chapter 3. Indeed, in Chapter 4 we
present a technique based on a direction splitting of the involved matrix functions, which still lets us
exploit the highly efficient level 3 BLAS for the actual computation of the required actions in a µ-mode
fashion.

Concerning the second contribution, i.e., the employment of exponential integrators in applications,
we present in Chapter 5 an example of usage of these schemes for plasma physics problems, in the
context of a fairly recent technique to effectively handle high-dimensional scenarios. In particular, we
propose a newly-designed second order projector-splitting dynamical low rank integrator for the full
six-dimensional Vlasov–Poisson equations

∂tf(t, x, v) + v · ∇xf(t, x, v)− E(f)(t, x) · ∇vf(t, x, v) = 0,

E(f)(t, x) = −∇xφ(t, x),

−∆φ(t, x) = ρ(f)(t, x) + 1, ρ(f)(t, x) = −
∫

Ωv

f(t, x, v) dv,

(6)

where f(t, x, v) represents the particle-density function of the species under consideration, t ∈ R+
0 is

the time variable, x ∈ Ωx ⊂ Rd refers to the space variable, v ∈ Ωv ⊂ Rd is the velocity variable
and d = 1, 2, 3. Depending on the specific physical phenomenon under study, system (6) is completed
with appropriate boundary and initial conditions. The scheme is based on an exponential integrator
in combination with a Fourier spectral discretization, which leads to a numerical method which is
free of a Courant–Friedrichs–Lewy (CFL) condition but still fully explicit. The implementation has
been performed with the aid of Ensign, a software framework (presented in Chapter 5 as well) which
facilitates the efficient implementation of dynamical low-rank algorithms on modern multi-core Central
Processing Unit (CPU) as well as GPU based systems. In particular, we show numerical results of 6D
simulations run on a single suitably equipped workstation, which highlight the significant speedup that
can be obtained using GPUs in this context.

A different application is presented in Chapter 6, in which we illustrate the usage of exponential
integrators for mean-field optimal control problems. These kinds of models are very popular nowadays
among practitioners: indeed, we have mean-field based models for a huge variety of phenomena, like
coordinated animal motion, flock herding, opinion formation, pedestrian dynamics and cooperative
robots, among the others. In particular, we consider a mean-field optimal control problem with selective
action of the control, where the constraint is a continuity equation involving a non-local term and
diffusion. To determine the optimal control, we formally derive the first order optimality conditions from
the Lagrangian function and obtain a system of coupled PDEs, which are then integrated numerically,
in the context of a steepest descent algorithm, with exponential integrators. The simulations performed
match satisfactorily with the results already available in the literature, and highlight the effectiveness of
the approach.

Finally, in Chapter 7 we present a technique to efficiently integrate in time inhomogeneous evolutionary
advection–diffusion–reaction equations, typically arising in computational chemistry, with exponential
integrators. The approach is based on the extraction of a constant coefficient diffusion part from the
original PDE, whose magnitude is determined by a linear stability analysis of the chosen temporal
scheme. The resulting equation can then be numerically solved more efficiently than the initial one, by
employing for example Fast Fourier Transform (FFT)-based or tensor µ-mode-based techniques. Also, we
present there two new exponential integrators of Lawson type (of first and second order), which appear
to have better unconditional stability bounds compared to other well-known exponential integrators.

Overall, the thesis is structured as follows. In Part I, constituted by Chapters 1–4, we collect all
the works related to Kronecker/tensor structured problems. The applications of exponential integrators
to important differential equations are presented in Chapters 5–7, encompassed in Part II. Moreover,
each chapter is self-consistent, so that it is possible to examine each one on its own. Nevertheless, for
readability and exposition reasons, the enumeration of the formulas and of the sections is global to the
thesis. For similar reasons, we generated a single common bibliography for the whole thesis.

Finally, the complete list of the author’s publications and preprints/ongoing works is given in the
following.
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Chapter 1

The µ-mode integrator and
exponential-like schemes

In this chapter, we present a µ-mode integrator for computing the solution of stiff evolution equations.
The integrator is based on a d-dimensional splitting approach and uses exact (usually precomputed) one-
dimensional matrix exponentials. We show that the action of the exponentials, i.e., the corresponding batched
matrix-vector products, can be implemented efficiently on modern computer systems. We further explain how
µ-mode products can be used to compute spectral transforms efficiently even if no fast transform is available.
We illustrate the performance of the new integrator by solving, among the others, three-dimensional linear
and nonlinear Schrödinger equations, and we show that the µ-mode integrator can significantly outperform
numerical methods well-established in the field. We also discuss how to efficiently implement this integrator
on both multi-core CPUs and GPUs. Finally, the numerical experiments show that using GPUs results in
performance improvements between a factor of 10 and 20, depending on the problem.

The material of this chapter is taken from Reference [39], i.e., M. Caliari, F. C., L. Einkemmer, A. Ostermann
and F. Zivcovich. A µ-mode integrator for solving evolution equations in Kronecker form. J. Comput. Phys.,
455:110989, 2022.

1.1 Introduction

Due to the importance of simulation in various fields of science and engineering, devising efficient
numerical methods for solving evolutionary partial differential equations has received considerable
interest in the literature. For linear problems with time-invariant coefficients, after discretizing in space,
the task of solving the partial differential equation is equivalent to computing the action of a matrix
exponential to a given initial value. Computing the action of matrix exponentials is also a crucial
ingredient to devise efficient numerical methods for nonlinear partial differential equations; for example,
in the context of exponential integrators [112] or splitting methods [138].

Despite the significant advances made in constructing more efficient numerical algorithms, efficiently
computing the action of large matrix functions remains a significant challenge. Here, we propose a µ-mode
integrator that performs this computation for matrices in Kronecker form by computing the action of
one-dimensional matrix exponentials only. In d dimensions and with n grid points per dimension, the
number of arithmetic operations required scales as O(nd+1). Nevertheless, such an approach would not
have been viable in the past. With the increasing gap between the amount of floating point operations
compared to the amount of memory transactions modern computer systems can perform, however, this is
no longer a consequential drawback. In fact, (batched) matrix-matrix multiplications, as are required for
this algorithm, can achieve performance close to the theoretical limit of the hardware, and they do not
suffer from the irregular memory accesses that plague implementations based on sparse matrix formats.

7
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This is particularly true on accelerators, such as Graphic Processing Units (GPUs). Thus, on modern
computer hardware, the proposed method is extremely effective. In this work, we will show that for a
range of problems the proposed µ-mode integrator can outperform well-established integrators that are
commonly used in the field. We investigate the performances of the method for a two-dimensional pipe
flow example. Then, we consider three-dimensional linear Schrödinger equations with time-dependent
and time-independent potentials, in combination with Hermite spectral discretization, as well as a cubic
nonlinear Schrödinger equation (Gross–Pitaevskii equation) in three space dimensions. In this context,
we will also provide a discussion on the implementation of the method for multi-core CPUs and GPUs.

The µ-mode integrator is exact for linear problems in Kronecker form (see Section 1.2 for more
details). The discretization of many differential operators with constant coefficients fits into this class
(e.g., the Laplacian operator ∆ and the i∆ operator that is commonly needed in quantum mechanics),
as well as some more complicated problems (e.g., the Hamiltonian for a particle in a harmonic potential).
For nonlinear partial differential equations, the approach can be used to solve the part of the problem
that is in Kronecker form: for example, in the framework of a splitting method.

The µ-mode integrator is related to dimension splitting schemes such as Alternating Direction Implicit
(ADI) schemes (see, e.g., [96, 109, 145, 153]). However, while the main motivation for the dimension
splitting in ADI is to obtain one-dimensional matrix equations, for which efficient solvers such as the
Thomas algorithm are known, for the µ-mode integrator the main utility of the dimension splitting is
the reduction to one-dimensional problems for which matrix exponentials can be computed efficiently.
Because of the exactness property described above, for many problems the µ-mode integrator can be
employed with a much larger step size compared to implicit methods such as ADI. This is particularly
true for highly oscillatory problems, where both implicit and explicit integrators do suffer from small
time steps (see, e.g., [14]).

In the context of spectral decompositions, commonly employed for pseudospectral methods, the
structure of the problem also allows us to use µ-mode products to efficiently compute spectral transforms
from the space of values to the space of coefficients (and vice versa) even if no d-dimensional fast
transform is available.

The remaining part of this chapter is structured as follows. In Section 1.2 we describe the proposed
µ-mode integrator and explain in detail what it means for a differential equation to be in Kronecker
form. We also discuss for which class of problems the integrator is particularly efficient. We then show,
in Section 1.3, how µ-mode products can be used to efficiently compute arbitrary spectral transforms.
Numerical results that highlight the efficiency of the approach will be presented in Section 1.4. The
implementation on modern computer architectures, which includes performance results for multi-core
CPU and GPU based systems, will be discussed in Section 1.5. Finally, in Section 1.6 we draw some
conclusions.

1.2 The µ-mode integrator for evolution equations in Kronecker
form

As a simple example that introduces the main idea, we consider the two-dimensional heat equation

∂tu(t,x) = ∆u(t,x) =
(
∂2

1 + ∂2
2

)
u(t,x), x ∈ Ω ⊂ R2, t ≥ 0,

u(0,x) = u0(x),
(1.1)

on a rectangle, subject to appropriate boundary conditions (e.g., periodic, homogeneous Dirichlet or
homogeneous Neumann). Its analytic solution is given by

u(t, ·) = et∆u0 = et∂
2
1 et∂

2
2u0 = et∂

2
2 et∂

2
1u0, (1.2)

where the last two equalities result from the fact that the partial differential operators ∂2
1 and ∂2

2

commute.
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Discretizing (1.1) by finite differences on a Cartesian grid with n1 × n2 grid points results in the
linear differential equation

u′(t) = (I2 ⊗A1 +A2 ⊗ I1)u(t), u(0) = u0, (1.3)

for the unknown vector u(t). Here, A1 is a (one-dimensional) stencil matrix for ∂2
1 on the grid points xi11 ,

1 ≤ i1 ≤ n1, and A2 is a (one-dimensional) stencil matrix for ∂2
2 on the grid points xi22 , 1 ≤ i2 ≤ n2. The

symbol ⊗ denotes the standard Kronecker product between two matrices. Since the matrices I2 ⊗A1

and A2 ⊗ I1 trivially commute, the solution of (1.3) is given by

u(t) = et(I2⊗A1+A2⊗I1)u0 = etI2⊗A1etA2⊗I1u0 = etA2⊗I1etI2⊗A1u0,

which is the discrete analog of (1.2).
Using the tensor structure of the problem, the required actions of the large matrices etI2⊗A1 and

etA2⊗I1 on a vector can easily be reformulated. Let U(t) be the order two tensor of size n1 × n2 (in fact,
a matrix) whose stacked columns form the vector u(t). The indices of this matrix reflect the structure
of the grid. In particular

U(t)(i1, i2) = u(t, xi11 , x
i2
2 ), i1 = 1, . . . , n1, i2 = 1, . . . , n2.

Using this tensor notation, problem (1.3) takes the form

U ′(t) = A1U(t) +U(t)AT
2 , U(0) = U0,

and its solution can be expressed as
U(t) = etA1U0 etA

T
2 , (1.4)

see [147]. From this representation, it is clear that U(t) can be computed as the action of the small
matrices etA1 and etA2 on the tensor U0. More precisely, the matrices etA1 and etA2 act on the first and
second indices, respectively. The computation of (1.4) can thus be performed by the simple algorithm

U (0) = U0,

U (1)(·, i2) = etA1U (0)(·, i2), i2 = 1, . . . , n2,

U (2)(i1, ·) = etA2U (1)(i1, ·), i1 = 1, . . . , n1,

U(t) = U (2).

It should be duly noted that the µ-mode integrator is not restricted to the simple example considered
until now. Indeed, let us consider the differential equation

u′(t) = Mu(t), u(0) = u0, (1.5)

where

M =

d∑
µ=1

A⊗µ

and
A⊗µ = Id ⊗ · · · ⊗ Iµ+1 ⊗Aµ ⊗ Iµ−1 ⊗ · · · ⊗ I1. (1.6)

Here, Aµ denotes an arbitrary nµ × nµ matrix while Iµ is the identity matrix of size nµ, 1 ≤ µ ≤ d. The
matrix M is also known in the literature as the Kronecker sum of the matrices Aµ and is denoted by

M = Ad ⊕Ad−1 ⊕ · · · ⊕A2 ⊕A1.

Condition (1.6) holds true for a range of equations with linear and constant coefficient differential
operators on tensor product domains. Examples in this class include, after space discretization, the
diffusion-advection-absorption equation

∂tu(t,x) = α∆u(t,x) + β · ∇u(t,x)− γu(t,x)
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or the Schrödinger equation with potential in Kronecker form

i∂tψ(t,x) = −1

2
∆ψ(t,x) +

(
d∑

µ=1

V (xµ)

)
ψ(t,x).

Condition (1.6) is fulfilled also for some problems with non-constant coefficient differential operators,
see Section 1.4.2 for an example. We will consider these and other equations later to perform numerical
examples.

Equation (1.5) is what we call a linear problem in Kronecker form, and its solution is obviously given
by

u(t) = etA⊗1 · · · etA⊗du0,

where the single factors etA⊗µ mutually commute. Again, the computation of u(t) just requires the
actions of the small matrices etAµ . More precisely, consider the order d tensor U(t) of size n1 × · · · × nd
that collects the values of a function u on a Cartesian grid, i.e.,

U(t)(i1, . . . , id) = u(t, xi11 , . . . , x
id
d ), 1 ≤ iµ ≤ nµ, 1 ≤ µ ≤ d.

Then, in the same way as in the two-dimensional heat equation case, the computation of u(t) can be
performed as

U (0) = U0,

U (1)(·, i2, . . . , id) = etA1U (0)(·, i2, . . . , id), 1 ≤ iµ ≤ nµ, 2 ≤ µ ≤ d,
· · ·

U (d)(i1, . . . , id−1, ·) = etAdU (d−1)(i1, . . . , id−1, ·), 1 ≤ iµ ≤ nµ, 1 ≤ µ ≤ d− 1,

U(t) = U (d).

(1.7)

We remark that scheme (1.7) can also be useful as a building block for solving nonlinear partial
differential equations. In this case, an exponential or splitting scheme would be used to separate the
linear part, which is treated exactly by the integrator (1.7), from the nonlinear part which is treated in
a different fashion. This is useful for a number of problems. For example, when solving the drift-kinetic
equations in plasma physics using an exponential integrator [61, 62], Fourier spectral methods are
commonly used. While such FFT based schemes are efficient, it is also well known that they can lead to
numerical oscillations [89]. Using integrator (1.7) would allow us to choose a more appropriate space
discretization while still retaining efficiency. Another example are diffusion-reaction equations with
nonlinear reaction terms that are treated using splitting methods (see, e.g., [83, 86, 113]). In this case
scheme (1.7) would be used to efficiently solve the flow corresponding to the linear diffusion. We further
note that a related approach was pursued by [148] in order to produce schemes that solve two- and
three-dimensional biological models.

Implementing integrator (1.7) requires the computation of d small exponentials of sizes n1 × n1,
. . . , nd × nd, respectively. If a marching scheme with constant time step size is applied to (1.5), then
these matrices can be precomputed once and for all, and their storage cost is negligible compared to
that required by the solution U(t). Otherwise, we need to compute at every time step new matrix
exponentials, whose computational cost still represents only a small fraction of the entire algorithm
(see Section 1.4.1). Indeed, the main component of the final cost is represented by the computation of
matrix-matrix products of size nµ × nµ times nµ × (n1 · · ·nµ−1nµ+1 · · ·nd). Thus, the computational
complexity of the algorithm is O(N maxµ nµ), where N = n1 · · ·nd is the total number of degrees of
freedom.

Clearly, we can solve equation (1.5) also by directly computing the vector etMu0. In fact M is
an N ×N sparse matrix and, when it is too large for the explicit computation of etM , the action of
the matrix exponential can be approximated by polynomial methods such as Krylov projection (see,
for instance, [97, 149]), Taylor series [6], or polynomial interpolation (see, for instance, [40, 44, 45]).
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All these iterative methods require one matrix-vector product per iteration, which costs O(N) plus
additional vector operations. The number of iterations, however, highly depends on the norm and some
properties of the matrix, such as the normality, the condition number, and the stiffness, and it is not
easy to predict it. Moreover, for Krylov methods, one has to take into account the storage of a full
matrix with N rows and as many columns as the dimension of the Krylov subspace.

Also, an implicit scheme based on a Krylov solver could be applied to integrate equation (1.5). In
particular, if we restrict our attention to the heat equation case and the conjugate gradient method,
for example, O(maxµ nµ) iterations are needed for the solution (see the convergence analysis in [168,
Chap. 6.11]), and each iteration requires a sparse matrix-vector product which is O(N). Hence, the
resulting computational complexity is the same as for the proposed algorithm. However, on modern
hardware architectures memory transactions are much more costly than performing floating point
operations. A modern CPU or GPU can easily perform many tens of arithmetic operations in the same
time it takes to read/write a single number from/to memory (see the discussion in Section 1.5).

Summarizing, the µ-mode integrator has the following advantages:

• For a heat equation the proposed scheme only requires O(N) memory operations, compared to an
implicit integrator which requires O(N maxµ nµ) memory operations. This has huge performance
implications on all modern computer architectures. For other classes of PDEs the analysis is more
complicated. However, in many situations similar results can be obtained.

• Very efficient implementations of matrix-matrix products that operate close to the limit of the
hardware are available. This is not the case for iterative schemes which are based on sparse
matrix-vector products.

• The computation of pure matrix exponentials of small matrices is less prone to the problems that
affect the approximation of the action of the (large) matrix exponential.

• The proposed integrator is often able to take much larger time step sizes than, for example, an
ADI scheme, as it computes the exact result for equations in Kronecker form.

• Conserved quantities of the underlying system, such as mass, are preserved by the integrator.

We will in fact see that the proposed integrator can outperform algorithms with linear computational
complexity (see Sections 1.4.3 and 1.4.4).

Equation (1.7) gives perhaps the most intuitive picture of the proposed approach. However, we
can also formulate this problem in terms of µ-fibers. Indeed, let U ∈ Cn1×···×nd be an order d tensor.
A µ-fiber of U is a vector in Cnµ obtained by fixing every index of the tensor but the µth. In these
terms, U (µ−1)(i1, . . . , iµ−1, ·, iµ+1, . . . , id) is a µ-fiber of the tensor U (µ−1), and every line in formula
(1.7) corresponds to the action of the matrix etAµ on the µ-fibers of U (µ−1). By means of µ-fibers, it is
possible to define the following operation.

Definition 1.2.1. Let L ∈ Cm×nµ be a matrix. Then the µ-mode product1 of L with U , denoted by
S = U ×µ L, is the tensor S ∈ Cn1×···×nµ−1×m×nµ+1×···×nd obtained by multiplying the matrix L onto
the µ-fibers of U , that is

S(i1, . . . , iµ−1, i, iµ+1, . . . , id) =

nµ∑
j=1

LijU(i1, . . . , iµ−1, j, iµ+1, . . . , id), 1 ≤ i ≤ m.

According to this definition, it is clear that in formula (1.7) we are performing d consecutive µ-mode
products with the matrices etAµ , 1 ≤ µ ≤ d. We can therefore write scheme (1.7) as follows

U(t) = U0 ×1 etA1 ×2 · · · ×d etAd .

This is the reason why we call the proposed method the µ-mode integrator. Notice that the concatenation
of µ-mode products of d matrices with a tensor is also known as the Tucker operator (see [119]), and it
can be performed using efficient level-3 BLAS operations. For more information on tensor algebra and
the µ-mode product we refer the reader to [120].

1Also known as mode-n product, n-mode product or mode-α multiplication, depending on the convention.
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1.3 Application of the µ-mode product to spectral decomposi-
tion and reconstruction

Problems of quantum mechanics with vanishing boundary conditions are often set in an unbounded
spatial domain. In this case, the spectral decomposition in space by Hermite functions is appealing
(see [21, 179]), since it allows to treat boundary conditions in a natural way (without imposing artificial
periodic boundary conditions as required by Fourier spectral methods, for example).

Consider the multi-index i = (i1, . . . , id) ∈ Nd0 and the coordinate vector x = (x1, . . . , xd) belonging
to Rd. We define the d-variate functions Hi(x) as

Hi(x) =

d∏
µ=1

Hiµ(xµ)e−x
2
µ/2,

where {Hiµ(xµ)}iµ is the family of Hermite polynomials orthonormal with respect to the weight function
e−x

2
µ on R, that is ∫

Rd
Hi(x)Hj(x)dx = δij.

We recall that Hermite functions satisfy(
−1

2

d∑
µ=1

(∂2
µ − x2

µ)

)
Hi(x) = λiHi(x),

where

λi =

d∑
µ=1

(
1

2
+ iµ

)
.

In general, we can consider a family of functions φi : R1 × · · · ×Rd → C in tensor form

φi(x) =

d∏
µ=1

φµiµ(xµ)

which are orthonormal on the Cartesian product of intervals R1, . . . , Rd of R.
If a d-variate function f can be expanded into a series

f(x) =
∑
i

fiφi(x), fi ∈ C,

then its ith coefficient is
fi =

∫
R1×···×Rd

f(x)φi(x)dx.

In order to approximate the integral on the right-hand side, we rely on a tensor product quadrature
formula. To do so, we consider for each direction µ a set of mµ uni-variate quadrature nodes Xµ

`µ
and

weights Wµ
`µ
, 0 ≤ `µ ≤ mµ, and fix to kµ the number of uni-variate functions φµiµ(xµ) to be considered.

Then we have
f̂i =

∑
`<m

f(x`)φi(x`)w`, i < k, (1.8)

where x` = (X1
`1
, . . . , Xd

`d
) ∈ Rd, w` =

∏d
µ=1W

µ
`µ

and k is the multi-index which collects the values
{kµ}µ. We show now how µ-mode products can be employed to compute the coefficients of the spectral
decomposition

f̂(x) =
∑
i<k

f̂iφi(x) ≈ f(x) (1.9)
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and its evaluation on a Cartesian grid. First of all, for each fixed µ, 1 ≤ µ ≤ d, we define the matrix
Φµ ∈ Ckµ×mµ with components

(Φµ)i` = φµi (Xµ
` ),

and we denote by FW ∈ Cm1×···×md the tensor with elements f(x`)w` and by F̂ ∈ Ck1×···×kd the tensor
with elements f̂i. Then, in terms of the Tucker operator, we can write equation (1.8) as follows

F̂ = FW ×1 Φ1 ×2 · · · ×d Φd. (1.10)

It is then possible to evaluate the function f̂(x) in (1.9) at a Cartesian grid yp = (Y 1
p1 , . . . , Y

d
pd

), that
is

f̂(yp) =
∑
i<k

f̂iφi(yp), p < q, (1.11)

by the Tucker operator, too. Here the component qµ of the multi-index q is the number of uni-variate

evaluation points Y µpµ . Indeed, if we collect the elements f̂(yp) in the tensor ˆ̂
F ∈ Cq1×···×qd and, for

fixed µ, we define the matrix Ψµ ∈ Cqµ×kµ with components (Ψµ)pi = φµi (Y µp ), then

ˆ̂
F = F̂ ×1 Ψ1 ×2 · · · ×d Ψd (1.12)

is the tensor formulation of formula (1.11).
Now, we restrict our attention to the common case where the quadrature nodes are chosen in such a

way that ∑
`<m

φi(x`)φj(x`)w` = δij, i, j < k,

with m = k, that is, the orthonormality relation among the φi functions is true also at discrete level.
This is the case, for instance, when using Gauss–Hermite quadrature nodes for φi(x) = Hi(x). Then,
the matrices Φµ ∈ Cmµ×mµ turn out to be square and formula (1.10) is the spectral transform from
the space of values to the space of coefficients. Moreover, if the evaluation points coincide with the
quadrature nodes, then we have Ψµ = Φ∗µ, where the symbol ∗ denotes the conjugate transpose of the
matrix, and formula (1.12) is the inverse spectral transform from the space of coefficients to the space of
values.

As mentioned at the beginning of the section, we will employ the Hermite spectral decomposition
in some of the experiments (see Sections 1.4.3 and 1.4.4). Hence, we will use (1.10) and (1.12) for the
required spectral transforms.

We also remark that a similar approach was pursued in [106] in the framework of three-dimensional
Chebyshev interpolation.

1.4 Numerical comparison

In this section, we will compare the proposed µ-mode integrator with some widely used techniques to
solve partial differential equations. For that purpose a range of PDEs, mainly from quantum mechanics,
is considered. Concerning the experiments in Sections 1.4.1, 1.4.2 and 1.4.5, we will test the proposed
method against the following iterative schemes commonly employed to compute the action of the matrix
exponential etM :

• expmv: a polynomial method described in [6] which is based on a Taylor expansion of the
exponential;

• phipm: a full Krylov method presented in [149];

• kiops: a Krylov method based on an incomplete orthogonalization process, described in [97].
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Their implementations are publicly available as matlab functions. Although the underlying algorithms
just require the action of the matrix on a vector, only kiops is readily available to do that. Therefore,
in order to ensure a fair comparison, we pass the explicit matrix to all the matlab functions. Moreover,
considering the action of the matrix on a vector (which in our case could be performed entirely in tensor
formulation by means of sums of µ-mode products) instead of the matrix itself would not result in a
speedup for the schemes (see Section 1.4.1). The tolerance for all the algorithms considered has been set
to 2−53, which corresponds to the machine epsilon for double precision computations. As a measure of
cost, we consider the computational time (wall-clock time) needed to solve numerically the differential
equation under consideration up to a fixed final time. As mentioned in Section 1.2, the µ-mode integrator
requires the explicit computation of small matrix exponentials. This is performed using the internal
matlab function expm, which is based on the scaling and squaring rational Padé approximation described
in [5]. In this context, another method which could be directly used in matlab is exptayotf from
[46]. It is based on a backward stable Taylor approximation for the matrix exponential and is faster
than expm. Moreover, as it works in single, double and variable precision arithmetic data types, it
produces approximations with the desired accuracy. This is not possible for the iterative schemes which
approximate the action of etM , because the matlab sparse format is restricted to double precision.
Another fast method using a similar technique and suited for double precision is expmpol from [172].
We will demonstrate that the matlab implementation of the proposed µ-mode integrator outperforms
all the iterative schemes by at least a factor of 7.

Concerning the experiments in Sections 1.4.3 and 1.4.4, we compare the µ-mode based approach
with a splitting scheme/FFT based space discretization that is well-established and efficient. In order
to perform direct and inverse Fourier transforms, we employ the internal matlab functions fftn and
ifftn respectively, which are in turn based on the very efficient FFTW library [93]. Care has been taken
to ensure that comparisons conducted in matlab give a good indication of the performance that would
be obtained in a compiled language. This is possible here as the majority part of the computational
time is spent in the FFT routines. For these problems, we will show that the µ-mode integrator can
reach a speedup of at least 5.

All the tests in this section have been conducted on an Intel Core i7-5500U CPU with 12GB of RAM
using MathWorks MATLAB® R2020b.

1.4.1 Code validation

As an introductory test problem, in order to highlight some qualities of the µ-mode integrator, we
consider the three-dimensional heat equation{

∂tu(t,x) = ∆u(t,x), x ∈ [0, 2π)3, t ∈ [0, T ],

u(0,x) = cosx1 + cosx2 + cosx3,
(1.13)

with periodic boundary conditions.
The equation is discretized in space using centered finite differences with nµ grid points in the

µth direction (the total number of degrees of freedom stored in computer memory is hence equal to
N = n1n2n3). By doing so we obtain the following ordinary differential equation

u′(t) = Mu(t), (1.14)

where u denotes the vector in which the degrees of freedom are assembled. The exact solution of equation
(1.14) is given by the action of the matrix exponential

u(t) = etMu(0). (1.15)

The matrix M has the following Kronecker structure

M = I3 ⊗ I2 ⊗A1 + I3 ⊗A2 ⊗ I1 +A3 ⊗ I2 ⊗ I1,
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Figure 1.1: The wall-clock time for solving the heat equation (1.13) is shown as a function of n (left), of
the order of the finite difference scheme p (middle), and of the final time T (right). Note that p =∞
corresponds to a spectral space discretization.

where Aµ ∈ Rnµ×nµ results from the one-dimensional discretization of the operator ∂2
µ, and Iµ ∈ Rnµ×nµ

is the identity matrix. The quantity u(t) can be seen as vectorization of the tensor U(t), and we can
write (1.15) in tensor form as

U(t) = U(0)×1 etA1 ×2 etA2 ×3 etA3 ,

where U(t)(i1, i2, i3) = u(t)i1+n1(i2−1)+n1n2(i3−1).
We now present three numerical tests.

Test 1. We consider second-order centered finite differences and compute the solution at time T = 1
for nµ = n, µ = 1, 2, 3, with various n. We investigate the wall-clock time as a function of the
problem size.

Test 2. We fix the problem size (nµ = 40, µ = 1, 2, 3) and compute the solution at time T = 1 for
different orders p of the finite difference scheme. We thereby investigate the wall-clock time as a
function of the sparsity pattern of M .

Test 3. We consider second-order centered finite differences and fix the problem size (nµ = 40, µ =
1, 2, 3). We then compute the solution at different final times T . By doing so we investigate the
wall-clock time as a function of the norm of TM .

The corresponding results are shown in Figure 1.1. We see that the proposed µ-mode integrator is
always the fastest algorithm. The difference in computational time is at least a factor of 60.

Concerning the first test, we measure also the relative error between the analytical solution and the
numerical one. As the dimensional splitting performed by the µ-mode integrator is exact, its errors are
equal to the ones obtained by computing (1.15) using the other algorithms. Indeed, for the values of n
under consideration, we obtain 2.06e-03, 1.09e-03, 6.71e-04, 4.55e-04 and 3.29e-04 for all the methods.
We highlight also that the main cost of the µ-mode integrator is represented by the computation of
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n 40 55 70 85 100

expm 0.52 0.71 1.37 3.15 3.54
µ-mode products 0.79 1.71 5.74 10.92 16.89

Total 1.31 2.42 7.11 14.07 20.43

Table 1.1: Breakdown of wall-clock time (in milliseconds) for the µ-mode integrator for different values
of n (cf. left plot of Figure 1.1).

the µ-mode products and not by the exponentiation of the matrices Aµ (see Table 1.1). Lastly, notice
that the iterative algorithms would not have taken advantage from the computation of the internal
matrix-vector products, which constitute their main cost, in tensor formulation (i.e., by means of sums
of µ-mode products). Indeed, if we measure the wall-clock time for a single action of the matrix on a
vector we observe, for the values of n under consideration, a speedup of averagely 1.5 times by using the
standard sparse matrix-vector product as opposed to the tensor formulation.

The second test shows that the iterative schemes have a decrease in performance when decreasing the
sparsity of the matrix (i.e., by increasing the order of the method p or by using a spectral approximation).
This effect is particularly visible when performing a spectral discretization, which results in full matrices
Aµ. On the other hand, the µ-mode integrator is largely unaffected as it computes the exponential of
the full matrices Aµ, independently of the initial sparsity pattern, by using expm.

Similar observations can be made for the third test. While the iterative schemes suffer from increasing
computational time as the norm of the matrix increases, for the µ-mode integrator this is not the case.
The reason for this is that the scaling and squaring algorithm in expm scales very favorably as the norm
of the matrix increases.

1.4.2 Pipe flow

To demonstrate that the µ-mode integrator can be used for some problems with non-constant coefficients,
we consider a model for a fluid flowing in a pipe. The main assumptions are that of radial symmetry (i.e.,
the solution does not depend on the angular variable in the circular cross section, see for example [178])
and a prescribed length-dependent flow velocity. In this case we obtain the following diffusion-advection
equation for the concentration c

∂tc(t, ρ, z) = α

(
∂ρρc(t, ρ, z) +

1

ρ
∂ρc(t, ρ, z) + ∂zzc(t, ρ, z)

)
− s(z)∂zc(t, ρ, z), (1.16)

where t ∈ [0, T ], ρ ∈ [ρmin, ρmax] and z ∈ [0, zmax]. Here α is the diffusivity and s(z) represents the
advection velocity.

After space discretization, which in our case is performed by means of second-order centered finite
differences with equal number of discretization points nµ in each direction (i.e., nµ = n, with µ = 1, 2),
the resulting ODE is a linear problem in Kronecker form (1.6). The system can then be integrated
exactly by the µ-mode integrator. For the simulations conducted, we use the following initial and
boundary conditions 

c(0, ρ, z) = exp(−8(ρ− ρ0)2 − 8(z − z0)2),

c(t, ρ, 0) = 0,

∂zc(t, ρ, zmax) = 0,

∂ρc(t, ρmin, z) = 0,

∂ρc(t, ρmax, z) = 0,

while the flow velocity is set to

s(z) = 2 + tanh(4(z − 5/2))− tanh(4(z − 5)).



1.4. NUMERICAL COMPARISON 17

500 600 700 800 900

100

101

102

103

104

n

W
al
l-
cl
oc
k
ti
m
e
(s
)

phipm
expmv
kiops
µ-mode

Figure 1.2: Wall-clock time (in seconds) for the integration of (1.16) up to T = 4 as a function of n
(total number of degrees of freedom N = n2).

The parameters are chosen as ρmin = 0.1, ρmax = 5, zmax = 8, α = 1/90, ρ0 = (ρmin + ρmax)/2 and
z0 = 3/2. The structure of the problem does not allow an effective use of FFT based methods. The
results of the experiment are presented in Figure 1.2. The µ-mode integrator outperforms all the iterative
methods by a consistent factor, with an average speedup of 45 times with respect to kiops, the fastest
competitor in this simulation.

1.4.3 Schrödinger equation with time-independent potential
In this section we solve the Schrödinger equation in three space dimensionsi∂tψ(t,x) = −1

2
∆ψ(t,x) + V (x)ψ(t,x), x ∈ R3, t ∈ [0, 1]

ψ(0,x) = ψ0(x),
(1.17)

with a time-independent potential V (x) = V1(x1) + V2(x2) + V3(x3), where

V1(x1) = cos(2πx1), V2(x2) = x2
2/2, V3(x3) = x2

3/2.

The initial condition is given by

ψ0(x) = 2−
5
2π−

3
4 (x1 + ix2) exp

(
−x2

1/4− x2
2/4− x2

3/4
)
.

This equation could be integrated using any of the iterative methods considered in the previous
section. However, for reasons of efficiency a time splitting approach is commonly employed. This
treats the Laplacian and the potential part of the equations separately. For the former the fast Fourier
transform (FFT) can be employed, while an analytic solution is available for the latter. The two partial
flows are then combined by means of the Strang splitting scheme. For more details on this Time Splitting
Fourier Pseudospectral method (TSFP) we refer the reader to [115].

Another approach is to use a Hermite pseudospectral space discretization. This has the advantage
that harmonic potentials are treated exactly, which is desirable in many applications. However, for most
of the other potentials, the resulting matrices are full which, for traditional integration schemes, means
that using a Hermite pseudospectral discretization is not competitive with respect to TSFP. However, as
long as the potential is in Kronecker form, we can employ the µ-mode integrator to perform computations
very efficiently. Moreover, the resulting method based on the µ-mode integrator combined with a Hermite
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Figure 1.3: Precision diagram for the integration of the Schrödinger equation with a time-independent
potential (1.17) up to T = 1. The number of degrees of freedom N and the number of time steps (ts) are
varied in order to achieve a result which is accurate up to the given tolerance. The reference solution
has been computed by the HKP method with N = 3003.

pseudospectral space discretization can take arbitrarily large time steps without incurring any time
discretization error (as it is exact in time). We call this scheme the Hermite Kronecker Pseudospectral
method (HKP).

Before proceeding, let us note that for the TSFP method it is necessary to truncate the unbounded
domain. In order to relate the size of the truncated domain to the chosen degrees of freedom, we
considered that, in practice, in the HKP method the domain is implicitly truncated. This truncation
is given by the convex hull of the quadrature points necessary to compute the Hermite coefficients
corresponding to the initial solution. For any choice of degrees of freedom of the TSFP method, we
decided to truncate the unbounded domain to the corresponding convex hull of the quadrature points of
the HKP method. In this way, for the same degrees of freedom, the two methods use the same amount
of information coming from the same computational domain.

The TSFP and the HKP methods are compared in Figure 1.3. In both cases, we consider a constant
number of space discretization points nµ = n for every direction µ = 1, 2, 3 (total number of degrees of
freedom N = n3) and integrate the equation until final time T = 1 with constant time step size. We see
that in terms of wall-clock time the HK method outperforms the TSFP scheme for all levels of accuracy
considered here. Also note that the difference in performance increases as we move to more stringent
tolerances. The reason for this is that the splitting error forces the TSFP scheme to take relatively small
time steps.

1.4.4 Schrödinger equation with time-dependent potential

Let us now consider the Schrödinger equation{
∂tψ(t,x) = H(t,x)ψ(t,x), x ∈ R3, t ∈ [0, 1]

ψ(0,x) = 2−
5
2π−

3
4 (x1 + ix2) exp

(
−x2

1/4− x2
2/4− x2

3/4
)
,

(1.18)

where the Hamiltonian is given by

H(x, t) =
i

2

(
∆− x2

1 − x2
2 − x2

3 − 2x3 sin2 t
)
.



1.4. NUMERICAL COMPARISON 19

10−4 10−3 10−2 10−1 100 101 102

10−7

10−6

10−5

10−4

10−3

10−2 N = 203, ts = 2

N = 203, ts = 8

N = 203, ts = 32

N = 303, ts = 64

N = 303, ts = 256

N = 403, ts = 512

N = 203, ts = 4

N = 303, ts = 16

N = 303, ts = 64

N = 403, ts = 128

N = 403, ts = 512

Wall-clock time (s)

A
cc
ur
ac
y

HKMP
TSFMP

Figure 1.4: Precision diagram for the integration of the Schrödinger equation with a time-dependent
potential (1.18) up to T = 1. The number of degrees of freedom N and the number of time steps (ts) are
varied in order to achieve a result which is accurate up to the given tolerance. The reference solution
has been computed by the HKMP method with N = 1003 and ts = 2048.

Note that the potential is now time-dependent, as opposed to the case presented in Section 1.4.3. Such
potentials commonly occur in applications, e.g., when studying laser-atom interactions (see, for example,
[157]).

Similarly to what we did in the time-independent case, we can use a time splitting approach: the
Laplacian part can still be computed efficiently in Fourier space, but now the potential part has no
known analytical solution. Hence, for the numerical solution of the latter, we will employ an order two
Magnus integrator, also known as the exponential midpoint rule. Let

u′(t) = A(t)u(t)

be the considered ODE with time-dependent coefficients, and let un be the numerical approximation to
the solution at time tn. Then, the exponential midpoint rule provides the numerical solution

un+1 = exp
(
τnA(tn + τn/2)

)
un (1.19)

at time tn+1 = tn + τn, where τn denotes the chosen step size. The two partial flows are then combined
together by means of the Strang splitting scheme. We call this scheme the Time Splitting Fourier
Magnus Pseudospectral method (TSFMP). For the domain truncation needed in this approach, the
same reasoning as in the time-independent case applies.

Another technique is to perform a Hermite pseudospectral space discretization. However, as opposed
to the case in Section 1.4.3, the resulting ODE cannot be integrated exactly in time. For the time
discretization, we will then use the order two Magnus integrator (1.19). We call the resulting scheme
Hermite Kronecker Magnus Pseudospectral method (HKMP).

The results of the experiments are depicted in Figure 1.4. In both cases, we consider a constant
number of space discretization points nµ = n for every direction µ = 1, 2, 3 (total number of degrees of
freedom N = n3) and solve the equation until final time T = 1 with constant time step size. Moreover,
concerning the TSFMP method, we integrate the flow corresponding to the potential part with a single
time step. Again, as we observed in the time-independent case, the HKMP method outperforms the
TSFMP scheme in any case. Notice in particular that, for the chosen degrees of freedom and time steps,
the TSFMP method is not able to reach an accuracy of 1e-07, while the HKMP one is.
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Figure 1.5: Wall-clock time (in seconds) for the integration of (1.20) up to T = 25 as a function of n
(total number of degrees of freedom N = n3). A constant time step size τ = 0.1 is employed.

1.4.5 Nonlinear Schrödinger/Gross–Pitaevskii equation

In this section we consider the nonlinear Schrödinger equation

∂tψ(t,x) =
i

2
∆ψ(t,x) +

i

2

(
1− |ψ(t,x)|2

)
ψ(t,x), (1.20)

which is also known as Gross–Pitaevskii equation. The unknown ψ represents the wave function, x ∈ R3,
t ∈ [0, 25], and the initial condition is constituted by the superimposition of two straight vortices in a
background density |ψ∞|2 = 1, in order to replicate the classical experiment of vortex reconnection (see
[47] and the references therein for more details).

The initial datum and the boundary conditions given by the background density make it quite difficult
to use artificial periodic boundary conditions in a truncated domain, unless an expensive mirroring of
the domain in the three dimensions is carried out. Therefore, in order to solve (1.20) numerically, we
consider the Time Splitting Finite Difference method proposed in [47]. More specifically, we truncate the
unbounded domain to x ∈ [−20, 20]3 and discretize by non-uniform finite differences with homogeneous
Neumann boundary conditions. The number nµ of discretization points is the same in each direction,
i.e., nµ = n, with µ = 1, 2, 3. After a proper transformation of variables in order to recover symmetry,
we end up with a system of ODEs of the form

ψ′(t) =
i

2
MWψ(t) +

i

2

(
1−W−1|ψ(t)|2

)
ψ(t),

where MW is a matrix in Kronecker form and W is a diagonal weight matrix. Then, we employ a
Strang splitting scheme for the time integration, in which the linear part is solved either by means of
the µ-mode integrator or by using the iterative methods indicated at the beginning of Section 1.4. The
nonlinear flow is integrated exactly.

The results of the experiment are presented in Figure 1.5. The µ-mode integrator outperforms expmv
by approximately a factor of 7. The speedup compared to both phipm and kiops is even larger.

1.5 Implementation on multi-core CPUs and GPUs

It has increasingly been realized that in order to fully exploit present and future high-performance
computing systems we require algorithms that parallelize well and which can be implemented efficiently
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on accelerators, such as GPUs [16]. In particular, for GPU computing much research effort has been
undertaken to obtain efficient implementations (see, e.g., [17, 35, 74, 75, 78, 135, 139, 163, 169, 188]).

In this section we will consider an efficient implementation of the proposed µ-mode integrator on
multi-core CPUs and GPUs. We note that all modern hardware platforms are much better at performing
floating point operations (such as addition and multiplication) than they are at accessing data in memory.
This favors algorithms with a high flop/byte ratio; that is, algorithms that perform many floating point
operations for every byte that is loaded from or written to memory. The µ-mode product of a square
matrix for an array of size n1 × · · · × nµ−1 × nµ × nµ+1 × · · · × nd is computed using a matrix-matrix
multiplication of size nµ × nµ times nµ × (n1 · · ·nµ−1nµ+1 · · ·nd), see Section 1.2 for more details. For
moderate nµ the relatively small nµ × nµ matrix can be kept in cache and thus O(nµN) arithmetic
operations are performed compared to O(N) memory operations, where N = n1 · · ·nd is the total
number of degrees of freedom. Thus, the flop/byte ratio of the algorithm is O(nµ), which makes it
ideally suited to modern computer hardware. This is particularly true when the µ-mode integrator
is compared to an implicit scheme implemented with sparse matrix-vector products. In this case the
flop/byte ratio is only O(1), and modern CPUs and GPUs will spend most of their time waiting for
data that is fetched from memory.

To make this analysis more precise, we have to compare the flop/byte ratio of the algorithm to that
of the hardware. For the benchmarks in this section we will use a multi-core CPU system based on a
dual socket Intel Xeon Gold 5118 with 2× 12 cores. The system has a peak floating point performance
of 1.8 TFlops/s (double precision) and a theoretical peak memory bandwidth of 256 GB/s. Thus, during
the time a double precision floating point number is fetched from memory approximately 56 arithmetic
operations can be performed. In addition, we will use a NVIDIA V100 GPU with 7.5 TFlop/s double
precision performance and 900 GB/s peak memory bandwidth (approximately 67 arithmetic operations
can be performed for each number that is fetched from memory). Due to their large floating point
performance we expect the algorithm to perform well on GPUs. A feature of the V100 GPU is that it
contains the so-called tensor cores, that can dramatically accelerate half-precision computations (up
to 125 Tflops/s). Tensor cores are primarily designed for machine learning tasks, but they can also be
exploited for matrix-matrix products (see, e.g., [1, 136]).

For reasonably large nµ the proposed µ-mode integrator is thus compute bound. However, since very
efficient (close to the theoretical peak performance) matrix-matrix routines are available on both of
these platforms, one can not be entirely indifferent towards memory operations. There are two basic
ways to implement the algorithm. The first is to explicitly form the nµ× (n1 · · ·nµ−1nµ+1 · · ·nd) matrix.
This has the advantage that a single matrix-matrix multiplication (gemm) can be used to perform each
µ-mode product and that the corresponding operands have the proper sequential memory layout. The
disadvantage is that a permute operation has to be performed before each µ-mode product is computed.
This is an extremely memory bound operation with strided access for which the floating point unit in
the CPU or GPU lies entirely dormant. Thus, while this is clearly the favored approach in a matlab
implementation, it does not achieve optimal performance. The approach we have chosen in this section
is to directly perform the µ-mode products on the multi-dimensional array stored in memory (without
altering the memory layout in between such operations).

Both Intel MKL and cuBLAS provide appropriate batched gemm routines (cblas_gemm_batch for
Intel MKL and cublasGemmStridedBatched for cuBLAS) that are heavily optimized, and we will make
use of those library functions in the implementation (for more details on these routines we refer to [54]).
The code is written in C++ and uses CUDA for the GPU implementation.

Before proceeding, let us briefly discuss how the µ-mode integrator would perform in a distributed
memory setting (i.e., when parallelized using MPI). Since, in general, the matrix exponentials are full
matrices, each degree of freedom along a coordinate axis couples with each other degree of freedom
on that same axis. This data communication pattern is similar to computing a FFT. Thus, we would
expect the µ-mode product to scale comparable to FFT on a distributed memory system. This would be
worse than a stencil code. However, one should keep in mind that the µ-mode integrator can take much
larger time steps. Thus, the overall communication overhead to compute the solution at a specified final
time could still be larger for an explicit or an iterative method.
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n exp double single half
CPU GPU speedup CPU GPU speedup GPU

200 2.92 38.39 2.66 14.4x 19.48 1.33 14.6x 0.39
300 4.88 136.17 8.90 15.3x 81.65 5.27 15.5x 2.73
400 10.14 310.11 29.88 10.4x 161.97 16.89 9.6x 6.68
500 17.74 711.07 52.86 13.5x 373.36 30.51 12.2x 15.43

Table 1.2: Wall-clock time for the heat equation (1.13) discretized using second-order centered finite
differences with n3 degrees of freedom. The time for computing the matrix exponentials (exp) and for
one step of the µ-mode integrator are listed (in milliseconds). The speedup is the ratio between the
single step performed in CPU and GPU, in double and single precision. The matrix exponential is
always computed in double precision.

In the remainder of this section we will present benchmark results for the implementations. The
speedups are always calculated as ratio between the wall-clock time needed by the CPU and the one
needed by the GPU.

1.5.1 Heat equation

We consider the same problem as in Section 1.4.1, Test 1. The wall-clock time for computing the matrix
exponentials and a single time step of the proposed algorithm is listed in Table 1.2.

We consider both a CPU implementation using MKL (double and single precision) and a GPU
implementation based on cuBLAS (double, single, and half precision). The GPU implementation
outperforms the CPU implementation by a factor of approximately 13. Using half-precision computations
on the GPU results in another performance increase by approximately a factor of 2. The relative error
with respect to the analytical solution reached by the double precision and single precision, for both CPU
and GPU and the values of n under consideration, are 8.22e-05, 3.66e-05, 2.06e-05, 1.47e-05. Results in
half precision are not reported as the accuracy of the method is lower than the precision itself.

For a number of simulations conducted we observed a drastic reduction in performance for single
precision computations when using Intel MKL. To illustrate this we consider the heat equation∂tu(t,x) = ∆u(t,x), x ∈

[
− 11

4 ,
11
4

]3
, t ∈ [0, 1],

u(0,x) =
(
x4

1 + x4
2 + x4

3

)
exp
(
−x4

1 − x4
2 − x4

3

)
,

(1.21)

with (artificial) Dirichlet boundary conditions, discretized in space as above. From Table 1.3 we see
that the performance of single precision computations with Intel MKL can be worse by a factor of
3.5 compared to double precision, which obviously completely defeats the purpose of doing so. The
reason for this performance degradation are the so-called denormal numbers, i.e., floating point numbers
with leading zeros in the mantissa. Since there is no reliable way to disable denormal numbers on
modern x86-64 systems, we avoid them by scaling the initial value in an appropriate way. Since this is a
linear problem, the scaling can easily be undone after the computation. The results with the scaling
workaround, listed in Table 1.3, now show the expected behavior (that is, single precision computations
are approximately twice as fast as double precision ones). We note that this is not an issue with the
µ-mode integrator but rather an issue with Intel MKL. The cuBLAS implementation is free from this
artifact and thus no normalization is necessary on the GPU.

1.5.2 Schrödinger equation with time-independent potential

We consider the Schrödinger equation with time-independent potential from Section 1.4.3. The equation
is integrated up to T = 1 in a single step, as for this problem no error is introduced by the µ-mode
integrator. For the space discretization the Hermite pseudospectral discretization is used. The results



1.6. CONCLUSIONS 23

n exp double single scaled single half
CPU GPU CPU GPU CPU GPU

200 2.92 38.80 2.64 92.19 1.34 19.98 0.38
300 6.01 157.41 8.87 385.84 5.22 71.24 2.71
400 13.40 314.96 29.85 1059.78 16.86 154.84 6.67
500 30.19 702.48 52.92 2567.56 30.42 367.34 13.44

Table 1.3: Wall-clock time for the heat equation (1.21) discretized using second-order centered finite
differences with n3 degrees of freedom. The time for computing the matrix exponential (exp) and for
one step of the µ-mode integrator are listed (in milliseconds).The performance degradation in CPU due
to denormal numbers disappears when using the scaling workaround (scaled single). Speedups are not
computed in this case.

n double single
exp CPU GPU speedup exp CPU GPU speedup

127 5.56 20.89 1.27 16.4x 4.71 13.71 0.64 21.4x
255 8.31 224.13 16.02 13.9x 5.16 134.21 8.11 16.5x
511 50.79 3121.42 219.13 14.2x 28.01 1824.93 119.46 15.2x

Table 1.4: Wall-clock time for the linear Schrödinger equation with time-independent potential (1.17)
integrated with the HKP method (n3 degrees of freedom). The time for computing the matrix exponential
(exp) and for one step of the µ-mode integrator are listed (in milliseconds). The speedup is the ratio
between the single step performed in CPU and GPU, in double and single precision.

for both the CPU and GPU implementation are listed in Table 1.4. The GPU implementation, for both
single and double precision, shows a speedup of approximately 15 compared to the CPU implementation.

1.5.3 Schrödinger equation with time-dependent potential
We consider once again the Schrödinger equation with the time-dependent potential from Section 1.4.4
solved with the HKMP method. The equation is integrated up to T = 1 with time step size τ = 0.02.
The results are given in Table 1.5. In this case, the matrix exponential changes as we evolve the
system in time. Thus, the performance of computing the matrix exponential has to be considered
alongside the µ-mode products. On the CPU this is not an issue as the time required for the matrix
exponential is significantly smaller than the time required for the µ-mode products. However, for the
GPU implementation and small problem sizes it is necessary to perform the matrix exponential on the
GPU as well. To do this we have implemented an algorithm based on a Taylor backward stable approach.
Overall, we observe a speedup of approximately 15 from the CPU to the GPU (for both single and
double precision).

1.6 Conclusions
We have shown that with the proposed µ-mode integrator we can make use of modern computer hardware
to efficiently solve a number of partial differential equations. In particular, we have demonstrated that
for Schrödinger equations the approach can outperform well-established integrators in the literature by
a significant margin. This was also possible thanks to the usage of the µ-mode product to efficiently
compute spectral transforms, which can be beneficial even in applications that are not related to solving
partial differential equations. The proposed integrator is particularly efficient on GPUs too, as we have
demonstrated, which is a significant asset for running simulation on the current and next generation of
supercomputers.
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n double
exp (ext) CPU GPU speedup

exp (int) µ-mode exp (int) µ-mode
127 0.02 2.56 19.38 0.37 1.05 15.3x
255 0.05 4.52 200.46 0.66 13.79 14.2x
511 0.07 29.71 3043.88 2.38 213.21 14.3x

n single
exp (ext) CPU GPU speedup

exp (int) µ-mode exp (int) µ-mode
127 0.01 2.16 12.51 0.25 0.54 18.9x
255 0.03 2.88 100.35 0.34 7.01 13.9x
511 0.05 14.25 1600.86 1.09 108.31 14.8x

Table 1.5: Wall-clock time for the Schrödinger equation with time-dependent potential (1.18) integrated
with the HKMP method (n3 degrees of freedom). The time for computing the matrix exponentials
and for one step of the µ-mode integrator is listed (in milliseconds). The acronym exp (ext) refers
to exponentiation of the time-independent matrices, which are diagonal, while exp (int) refers to the
time-dependent ones that have to be computed at each time step. The speedup is the ratio between the
single step performed in CPU and GPU, in double precision (top) and single precision (bottom).



Chapter 2

KronPACK: a µ-mode approach for
tensor structured problems

In this chapter, we present a common tensor framework which can be used to generalize one-dimensional
numerical tasks to arbitrary dimension d by means of tensor product formulas. This is useful, for example,
in the context of multivariate interpolation, multidimensional function approximation using pseudospectral
expansions and solution of stiff differential equations on tensor product domains. The key point to obtain
an efficient-to-implement BLAS formulation consists in the suitable usage of the µ-mode product (also
known as tensor–matrix product or mode-n product) and related operations, such as the Tucker operator.
Their MathWorks MATLAB®/GNU Octave implementations are discussed, and collected in the package
KronPACK. We present numerical results on experiments up to dimension six from different fields of numerical
analysis, which show the effectiveness of the approach.

The material of this chapter is taken from Reference [42], i.e., M. Caliari, F. C., and F. Zivcovich. A µ-mode
BLAS approach for multidimensional tensor-structured problems. Numer. Algorithms, 2022. Published online:
04 October 2022.

2.1 Introduction
Many one-dimensional tasks in numerical analysis can be generalized to a two-dimensional formulation by
means of tensor product formulas. This is the case, for example, in the context of spectral decomposition
or interpolation of multivariate functions. Indeed, the one-dimensional formula

si =

m∑
j=1

tj`ij , 1 ≤ i ≤ n,

where the values tj are linearly combined to obtain the values si (i.e., s = Lt, with s = (si) ∈ Cn,
t = (tj) ∈ Cm, and L = (`ij) ∈ Cn×m), can be easily extended to the two-dimensional case as

si1i2 =

m2∑
j2=1

m1∑
j1=1

tj1j2`
1
i1j1`

2
i2j2 , 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2. (2.1)

The meaning of the involved scalar quantities depends on the specific example under consideration.
In any case, a straightforward implementation of formula (2.1) requires four nested for-loops, with a
resulting computational cost of O(n4) (if, for simplicity, we consider m1 = m2 = n1 = n2 = n). On the
other hand, formula (2.1) can be written equivalently in matrix formulation as

S = L1TL
T
2 , (2.2)

25
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n = 50 n = 100 n = 200 n = 400
Nested for-loops 1.8e-2 2.8e-1 4.8e0 8.0e1

Matrix-matrix products (for-loops) 7.8e-4 5.5e-3 4.9e-2 3.9e-1
Matrix-matrix products (BLAS) 2.1e-5 5.6e-5 1.7e-4 1.2e-3

Table 2.1: Wall-clock time (in seconds) for the computation of the values si1i2 in formula (2.1) with
increasing size m1 = m2 = n1 = n2 = n and different approaches, using MathWorks MATLAB® R2019a.
The input values are standard normal distributed random numbers.

where L1 = (`1i1j1) ∈ Cn1×m1 , L2 = (`2i2j2) ∈ Cn2×m2 , T = (tj1j2) ∈ Cm1×m2 and S = (si1i2) ∈ Cn1×n2 .
The usage of formula (2.2) requires two separate matrix-matrix products as floating point operations,
each of which can be implemented with three nested for-loops: this approach reduces then the cost of
computing the elements of S to O(n3). On the other hand, a more efficient way to realize formula (2.2)
is to exploit optimized Basic Linear Algebra Subprograms (BLAS) [58, 69, 114, 189], which are a set
of numerical linear algebra routines that perform the just mentioned matrix operations with a level of
efficiency close to the theoretical hardware limit. A performance comparison of the three approaches to
compute the values si1i2 in matlab1 language, for increasing size of the task, is given in Table 2.1. As
expected, for all the values of n under study, the most efficient way to compute the elements of S is
realizing formula (2.2) through the BLAS approach. Remark that the considerations on the complexity
cost and BLAS efficiency are basically language-independent, and apply for other interpreted or compiled
languages as well, like Python, Julia, R, Fortran, and C++. For clarity of exposition and simplicity
of presentation of the codes, we will use in this work, from now on, matlab programming language.

In other contexts, such as numerical solution of (stiff) differential equations on two-dimensional
tensor product domains by means of exponential integrators or preconditioned iterative methods, it is
required to compute quantities like

vec(S) = (L2 ⊗ L1)vec(T ), (2.3)

being again L1, L2, T and S matrices of suitable size whose meaning depends on the specific example
under consideration. Here ⊗ denotes the standard Kronecker product of two matrices, while vec
represents the vectorization operator, see the appendix for their formal definitions. A straightforward
implementation of formula (2.3) would need to assemble the large-sized matrix L2⊗L1. If, for simplicity,
we consider again m1 = m2 = n1 = n2 = n, this approach requires a storage and a computational cost
of O(n4), which is impractical. However, owing to the properties of the Kronecker product (see the
appendix), we can see that formula (2.3) is equivalent to formula (2.2). Therefore, all the considerations
made for the previous example on the employment of optimized BLAS apply also in this case.

The aim of this work is to provide a common framework for generalizing formula (2.2) in arbitrary
dimension d, which will result in an efficient BLAS realization of the underlying task. This is very
useful in the context of solving tensor-structured problems which may arise from different scientific and
engineering fields. The pursued approach is illustrated in detail in Section 2.2, in which we present
the µ-mode product and some associated operations (the Tucker operator, in particular), both from
a theoretical and a practical point of view. These operations are widely known by the tensor algebra
community, but their usage is mostly restricted in the context of tensor decompositions (see [119, 120]).
Then, we proceed in Section 2.3 by describing more precisely the one- and two-dimensional formulations
of the problems mentioned in this section, as well as their generalization to the d-dimensional case in
terms of µ-mode products. We collect in Section 2.4 the related numerical experiments and we finally
draw the conclusions in Section 2.5.

All the functions and the scripts needed to perform the relevant tensor operations and to reproduce
the numerical examples are contained in the matlab package KronPACK2.

1We refer to matlab as the common language interpreted by the softwares MathWorks MATLAB® and GNU Octave,
for instance.

2The software is available from Netlib (http://www.netlib.org/numeralgo/) as the na58 package. A maintained
version, freely distributed under the MIT license, is available at https://github.com/caliarim/KronPACK.

http://www.netlib.org/numeralgo/
https://github.com/caliarim/KronPACK


2.2. THE µ-MODE PRODUCT AND ITS APPLICATIONS 27

2.2 The µ-mode product and its applications
In order to generalize formula (2.2) to the d-dimensional case, we rely on some concepts from tensor
algebra (see [119, 120] for more details). Throughout this section, we assume that T ∈ Cm1×···×md is an
order-d tensor whose elements are either denoted by tj1...jd or by T (j1, . . . , jd).

Definition 2.2.1. A µ-fiber of T is a vector in Cmµ obtained by fixing every index of the tensor but
the µth.

A µ-fiber is nothing but a generalization of the concept of rows and columns of a matrix. Indeed, for
an order-2 tensor (i.e., a matrix), 1-fibers are the columns, while 2-fibers are the rows. On the other
hand, for an order-3 tensor, 1-fibers are the column vectors, 2-fibers are the row vectors while 3-fibers
are the so-called “page” or “tube” vectors, which means vectors along the third dimension.

Definition 2.2.2. The µ-matricization of T , denoted by T (µ) ∈ Cmµ×m1···mµ−1mµ+1···md , is defined as
the matrix whose columns are the µ-fibers of T .

Remark that for an order-2 tensor the 1- and 2-matricizations simply correspond to the matrix itself
and its transpose. In dimensions higher than two, the µ-matricization requires the concept of generalized
transpose of a tensor and its unfolding into a matrix. The first operation is realized in matlab by
the function permute, that we use to interchange µ-fibers with 1-fibers of the tensor T . The second
operation is performed by the reshape function, that we use to unfold the “transposed” tensor into the
matrix T (µ). In matlab, the anonymous function which performs the µ-matricization of a tensor T,
given

m = size(T);
d = length(m);

can be written as

mumat = @(T,mu) reshape(permute(T,[mu,1:mu-1,mu+1:d]),...
m(mu),prod(m([1:mu-1,mu+1:d])));

By means of µ-fibers, it is possible to define the following operation.

Definition 2.2.3. Let L ∈ Cn×mµ be a matrix. The µ-mode product of T with L, denoted by S = T×µL,
is the tensor S ∈ Cm1×···×mµ−1×n×mµ+1×···×md obtained by multiplying the matrix L onto the µ-fibers
of T .

From this definition, it appears clear that the µ-fiber S(j1, . . . , jµ−1, ·, jµ+1, . . . , jd) of S can be
computed as the matrix-vector product of L and the µ-fiber T (j1, . . . , jµ−1, ·, jµ+1, . . . , jd). Therefore,
the µ-mode product T ×µ L might be performed by calling m1 · · ·mµ−1mµ+1 · · ·md times level 2 BLAS.
However, owing to the concept of matricization of a tensor introduced in Definition 2.2.2, it is possible to
perform the same task more efficiently by using a single level 3 BLAS call. Indeed, the µ-mode product
of T with L is just the tensor S such that

S(µ) = LT (µ). (2.4)

In particular, in the two-dimensional setting, the 1-mode product corresponds to the multiplication LT ,
while the 2-mode product corresponds to (LT T)T = TLT. In general, we can compute the matrix S(µ)

appearing in formula (2.4) as L*mumat(T,mu), and in order to recover the tensor S from S(µ) we need
to invert the operations of unfolding and “transposing”. This can be done easily with the aid of the
matlab functions reshape and ipermute, respectively. All in all, given n = size(L,1), the anonymous
function that computes the µ-mode product of an order-d tensor T with L by a single matrix-matrix
product can be written as

mump = @(T,L,mu) ipermute(reshape(L*mumat(T,mu),...
[n,m([1:mu-1,mu+1:d])]),[mu,1:mu-1,mu+1:d]);
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Notice that from formula (2.4) it appears clear that the computational cost of the µ-mode product, in
terms of floating point operations, is O(nm1 · · ·md).

One of the main applications of the µ-mode product is the so-called Tucker operator, which is
implemented in KronPACK in the function tucker.

Definition 2.2.4. Let Lµ ∈ Cnµ×mµ be matrices, with µ = 1, . . . , d. The Tucker operator of T with
L1, . . . , Ld is the tensor S ∈ Cn1×···×nd obtained by concatenating d consecutive µ-mode products with
matrices Lµ, that is

S = T ×1 L1 ×2 · · · ×d Ld. (2.5)

We notice that the single element si1...id of S in formula (2.5) turns out to be

si1...id =

md∑
jd=1

· · ·
m1∑
j1=1

tj1...jd

d∏
µ=1

`µiµjµ , 1 ≤ iµ ≤ nµ, (2.6)

provided that `µiµjµ are the elements of Lµ. Hence, as formula (2.6) is clearly the generalization of
formula (2.1) to the d-dimensional setting, formula (2.5) is the sought d-dimensional generalization of
formula (2.2). We also notice that the Tucker operator (2.5) is invariant with respect to the ordering of
the µ-mode products, and that the implicit ordering given by Definition 2.2.4 is equivalent to performing
the sums in formula (2.6) starting from the innermost.

The Tucker operator is strictly connected with the Kronecker product of matrices applied to a vector.

Lemma 2.2.1. Let Lµ ∈ Cnµ×mµ be matrices, with µ = 1, . . . , d. Then, the elements of S in formula
(2.5) are equivalently given by

vec(S) = (Ld ⊗ · · · ⊗ L1)vec(T ). (2.7)

Proof. The µ-mode product satisfies the following property

S = T ×1 L1 ×2 · · · ×d Ld ⇐⇒ S(µ) = LµT
(µ)(Ld ⊗ · · · ⊗ Lµ+1 ⊗ Lµ−1 ⊗ · · · ⊗ L1)T,

see [120]. Then, with µ = 1 we obtain

S = T ×1 L1 ×2 · · · ×d Ld ⇐⇒ S(1) = L1T
(1)(Ld ⊗ · · · ⊗ L2)T.

By means of the properties of the Kronecker product (see the appendix) we have then

S(1) = L1T
(1)(Ld ⊗ · · · ⊗ L2)T ⇐⇒ vec(S(1)) = (Ld ⊗ · · · ⊗ L1)vec(T (1))

and finally, by definition of vec operator,

vec(S(1)) = (Ld ⊗ · · · ⊗ L1)vec(T (1)) ⇐⇒ vec(S) = (Ld ⊗ · · · ⊗ L1)vec(T ).

Notice that formula (2.7) is precisely the d-dimensional generalization of formula (2.3). Hence, tasks
written as in formula (2.7) can be equivalently stated and computed more efficiently again by formula
(2.5), without assembling the large-sized matrix Ld ⊗ · · · ⊗ L1.

We can then summarize as follows: the element-wise formulation (2.6), the tensor formulation (2.5)
and the vector formulation (2.7) can all be used to compute the entries of the tensor S. However, in light
of the considerations for the µ-mode product, only the tensor formulation can be efficiently computed
by d calls of level 3 BLAS, with an overall computational cost of O(nd+1) for the case mµ = nµ = n.
This is the reason why the relevant functions of the package KronPACK are based on formulation (2.5).

Remark 2.2.1. The implementation of a single µ-mode product in the function mump of KronPACK
involves two explicit permutations of the tensor (except the 1-mode and the d-mode products, which are
realized without explicitly permuting, thanks to the design of the function reshape in matlab). On the
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other hand, the function tucker, which realizes the Tucker operator (2.5), performs a composition of
any pair of consecutive permutations, thus reducing their overall number. In fact, this is important when
dealing with large-sized tensors, because the cost of permuting is not negligible due to the underlying
alteration of the memory layout. For this reason, several algorithms which further reduce or completely
avoid permutations in an efficient way have been developed (see, for instance [129, 137, 164, 174]). In
this context, for instance, it is possible to use the function pagemtimes to efficiently realize a “Loops-over-
GEMMs” strategy. However, as this function has been recently introduced in MathWorks MATLAB®

R2020b and it is still not available in the latest stable GNU Octave release 7.1.0, for compatibility reasons
we do not follow this approach.

Notice that the definition of µ-mode product and its realization through the function mump can be
easily extended to the case in which instead of a matrix L we have a matrix-free operator L.

Definition 2.2.5. Let L : Cmµ → Cn be an operator. Then the µ-mode action of T with L, still denoted
S = T ×µ L, is the tensor S ∈ Cm1×···×mµ−1×n×mµ+1×···×md obtained by the action of the operator L
on the µ-fibers of T .

In matlab, if the operator L is represented by the function Lfun which operates on columns, we can
implement the µ-mode action by

mumpfun = @(T,Lfun,mu) ipermute(reshape(Lfun(mumat(T,mu)),...
[n,m([1:mu-1,mu+1:d])]),[mu,1:mu-1,mu+1:d]);

The corresponding generalization of the Tucker operator, denoted again by

S = T ×1 L1 ×2 · · · ×d Ld (2.8)

and implemented in KronPACK in the function tuckerfun, follows straightforwardly. Clearly, in this
case, some properties of the Tucker operator (2.5), such as the aforementioned invariance with respect
to the ordering of the µ-mode product operations, may not hold anymore for generic operators Lµ.
Generalization (2.8) is useful in some instances, see Remark 2.3.2 and Section 2.4.2 for an example.
We remark that such an extension is not available in some other popular tensor algebra toolboxes,
such as Tensor Toolbox for MATLAB [18] — which does not have GNU Octave support, too — and
Tensorlab [185], both of which are more devoted to tensor decomposition and related topics.

The µ-mode product is also useful for computing the action of the Kronecker sum (see the appendix
for its definition) of the Lµ matrices to a vector v, that is

(Ld ⊕ · · · ⊕ L1)v = vec

(
d∑

µ=1

(V ×µ Lµ)

)
, (2.9)

where v = vec(V ). In fact, as it can be noticed from formula (2.4), the identity matrix is the identity
element of the µ-mode product. Combining this observation with Lemma 2.2.1, we easily obtain
formula (2.9). In the package KronPACK, the matrix resulting from the Kronecker sum on the left hand
side of equality (2.9) can be computed as kronsum(L), where L is the cell array containing Lµ in L{mu}.
On the other hand, its action on v can be computed equivalently in tensor formulation, without forming
the matrix itself, by kronsumv(V,L).

2.3 Problems formulation in d dimensions

In this section we discuss in more detail the problems that were briefly introduced in Section 2.1. Their
generalization to arbitrary dimension d is addressed thanks to the common framework presented in
Section 2.2.
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2.3.1 Pseudospectral decomposition
Suppose that a function f : R→ C, with R ⊆ R, can be expanded into a series

f(x) =

∞∑
i=1

fiφi(x),

where fi are complex scalar coefficients and φi(x) are complex functions orthonormal with respect to
the standard L2(R) inner product, i.e.,∫

R

φi(x)φj(x)dx = δij , ∀i, j.

Then, the spectral coefficients fi are defined by

fi =

∫
R

f(x)φi(x)dx,

and can be approximated by a quadrature formula. Usually, in this context, specific Gaussian quadrature
formulas are employed, whose nodes and weights vary depending on the chosen family of basis functions.
If we consider q quadrature nodes ξk and weights wk, we can compute the first m pseudospectral
coefficients by

f̂i =

q∑
k=1

f(ξk)φi(ξk)wk ≈ fi, 1 ≤ i ≤ m.

By collecting the values φi(ξk) in position (i, k) of the matrix Ψ ∈ Cm×q and the values f(ξk)wk in the
vector fw, we can compute the pseudospectral coefficients by means of the single matrix-vector product

f̂ = Ψfw.

In the two-dimensional case, the coefficients of a pseudospectral expansion in a tensor product basis
(see, for instance, [30, Ch. 6.10]) are given by

f̂i1i2 =

q2∑
k2=1

q1∑
k1=1

f(ξk11 , ξk22 )φ1
i1

(ξk11 )φ2
i2

(ξk22 )wk11 wk22 ,

which can be efficiently computed as
F̂ = Ψ1FWΨT

2 ,

where Ψµ ∈ Cmµ×qµ has element φµiµ(ξ
kµ
µ ) in position (iµ, kµ), with µ = 1, 2, and FW is the matrix with

element f(ξk11 , ξk22 )wk11 wk22 in position (k1, k2).
In general, the coefficients of a d-dimensional pseudospectral expansion in a tensor product basis are

given by

f̂i1...id =

qd∑
kd=1

· · ·
q1∑

k1=1

f(ξk11 , . . . , ξkdd )φ1
i1

(ξk11 ) · · ·φdid(ξkdd )wk11 · · ·w
kd
d .

In tensor formulation, the coefficients can be computed as (see formulas (2.5) and (2.6))

F̂ = FW ×1 Ψ1 ×2 · · · ×d Ψd,

where Ψµ is the transform matrix with element φµiµ(ξ
kµ
µ ) in position (iµ, kµ), and we collect in the order-d

tensors F̂ and FW the values f̂i1...id and f(ξk11 , . . . , ξkdd )wk11 · · ·w
kd
d , respectively. The corresponding

pseudospectral approximation of f(x) is

f̂(x) =

md∑
id=1

· · ·
m1∑
i1=1

f̂i1...idφ
1
i1(x1) · · ·φdid(xd), (2.10)

where x = (x1, . . . , xd). An application to Hermite–Laguerre–Fourier function decomposition is given in
Section 2.4.2.
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2.3.2 Function approximation
Suppose we are given an approximation of a univariate function f(x) in the form

f̃(x) =

m∑
i=1

ciφi(x) ≈ f(x), (2.11)

where ci are scalar coefficients and φi(x) are generic (basis) functions. This is the case, for example, in
the context of function interpolation or pseudospectral expansions. We are interested in the evaluation
of formula (2.11) at given points x`, with 1 ≤ ` ≤ n. This can be easily realized in a single matrix-vector
product: indeed, if we collect the coefficients ci in the vector c ∈ Cm and we form the matrix Φ ∈ Cn×m
with element φi(x`) in position (`, i), the sought evaluation is given by

f̃ = Φc,

being f̃ ∈ Cn the vector containing the approximated function at the given set of evaluation points.
The extension of formula (2.11) to the tensor product bivariate case is straightforward (see, for

instance, [66, Ch. XVII]). Indeed, in this case the approximating function is given by

f̃(x1, x2) =

m2∑
i2=1

m1∑
i1=1

ci1i2φ
1
i1(x1)φ2

i2(x2) ≈ f(x1, x2), (2.12)

where ci1i2 represent scalar coefficients and φµiµ(xµ) the (univariate) basis function, with 1 ≤ iµ ≤ mµ

and µ = 1, 2. Then, given a Cartesian grid of points (x`11 , x
`2
2 ), with 1 ≤ `µ ≤ nµ, the evaluation of

approximation (2.12) can be computed efficiently in matrix formulation by

F̃ = Φ1CΦT
2 .

Here we collected the function evaluations f̃(x`11 , x
`2
2 ) in the matrix F̃ , we formed the matrices Φµ of

size nµ ×mµ with element φµiµ(x
`µ
µ ) in position (`µ, iµ), and we let C be the matrix of element ci1i2 in

position (i1, i2).
In general, the approximation of a d-variate function f with tensor product basis functions is given

by

f̃(x) =

md∑
id=1

· · ·
m1∑
i1=1

ci1...idφ
1
i1(x1) · · ·φdid(xd) ≈ f(x), (2.13)

where ci1...id represent scalar coefficients while φµiµ(xµ) the (univariate) basis functions, with 1 ≤ iµ ≤ mµ.
Then, given a Cartesian grid of points (x`11 , . . . , x

`d
d ), with 1 ≤ `µ ≤ nµ, the evaluation of approximation

(2.13) can be expressed in tensor formulation as

F̃ = C ×1 Φ1 ×2 · · · ×d Φd, (2.14)

see formulas (2.5) and (2.6). Here we denote Φµ the matrix with element φµiµ(x
`µ
µ ) in position (`µ, iµ),

and we collect in the order-d tensors C and F̃ the coefficients and the resulting function approximation
at the evaluation points, respectively. We present an application to barycentric multivariate interpolation
in Section 2.4.3.

Remark 2.3.1. Clearly, formula (2.14) can be employed to evaluate a pseudospectral approximation
(2.10) at a generic Cartesian grid of points, by properly defining the involved tensor C and matrices
Φµ. In the context of direct and inverse spectral transforms, for example for the effective numerical
solution of differential equations (see [39]), one could be interested in the evaluation of pseudospectral
decompositions at the same grid of quadrature points (ξk11 , . . . , ξkdd ) used to approximate the spectral
coefficients. Under standard hypothesis, this can be done by applying formula (2.14) with matrices
Φµ = Ψ∗µ, where the symbol ∗ denotes the conjugate transpose. Without forming explicitly the matrices
Φµ, the desired evaluation can be computed using the matrices Ψµ by means of the KronPACK function
cttucker.
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Remark 2.3.2. Several functions which perform the whole one-dimensional procedure of approximating
a function and evaluating it on a set of points, given suitable inputs, are available. This is the case, for
example in the interpolation context, of the matlab built-in functions spline, interp1 (that performs
different kinds of one-dimensional interpolations), and interpft (which performs a resample of the
input values by means of FFT techniques), or of the functions provided by the QIBSH++ library [26]
in the approximation context. Yet, it is possible to extend the usage of this kind of functions to the
approximation in the d-dimensional tensor setting by means of concatenations of µ-mode actions (see
Definition 2.2.5), yielding the generalization of the Tucker operator (2.8). In practice, we can perform
this task with the KronPACK function tuckerfun, see the numerical example in Section 2.4.2.

2.3.3 Action of the matrix exponential

Suppose we want to solve the linear Partial Differential Equation (PDE){
∂tu(t, x) = Au(t, x), t > 0, x ∈ Ω ⊂ R,
u(0, x) = u0(x),

(2.15)

coupled with suitable boundary conditions, where A is a linear time-independent spatial (integer or
fractional) differential operator, typically stiff. The application of the method of lines to equation (2.15),
by discretizing first the spatial variable, e.g., by finite differences or spectral differentiation, leads to the
system of Ordinary Differential Equations (ODEs){

u′(t) = Au(t), t > 0,

u(0) = u0,
(2.16)

for the unknown vector u(t). Here, A ∈ Cn×n is the matrix which approximates the differential operatorA
on the grid points x`, with 1 ≤ ` ≤ n. The exact solution of system (2.16) is obviously u(t) = exp(tA)u0

and, if the size of A allows, it can be effectively computed by Padé or Taylor approximations (see [5, 46]).
If the size of A is too large, then one has to rely on algorithms to approximate the action of the matrix
exponential exp(tA) on the vector u0. Examples of such methods are [6, 40, 97, 149].

Suppose now we want to solve instead{
∂tu(t, x1, x2) = Au(t, x1, x2), t > 0, (x1, x2) ∈ Ω ⊂ R2,

u(0, x1, x2) = u0(x1, x2),
(2.17)

coupled again with suitable boundary conditions. If PDE (2.17) admits a Kronecker structure, such as
for some linear Advection–Diffusion–Absorption (ADA) equations on tensor product domains or linear
Schrödinger equations with a potential in Kronecker form (see [39] for more details and examples), then
the method of lines yields the system of ODEs{

u′(t) = (I2 ⊗A1 +A2 ⊗ I1)u(t), t > 0,

u(0) = u0.
(2.18)

Here Aµ, with µ = 1, 2, represent the one-dimensional stencil matrices corresponding to the discretization
of the one-dimensional differential operators that constitute A on the grid points x`µµ , with 1 ≤ `µ ≤ nµ.
Moreover, the notation Iµ stands for identity matrices of size nµ, and the component `1 + (`2 − 1)n1 of
u corresponds to the grid point (x`11 , x

`2
2 ), that is

u`1+(`2−1)n1
(t) ≈ u(t, x`11 , x

`2
2 ).

This, in turn, is consistent with the linearization of the indexes of the vec operator defined in the
appendix.
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Clearly, the solution of system (2.18) is given by

u(t) = exp (t(I2 ⊗A1 +A2 ⊗ I1))u0, (2.19)

which again could be computed by any method to compute the action of the matrix exponential on a
vector. Remark that, since the matrices I2 ⊗A1 and A2 ⊗ I1 commute and using the properties of the
Kronecker product (see the appendix), one could write everything in terms of the exponentials of the
small-sized matrices Aµ. Indeed, we have

u(t) = exp (t(I2 ⊗A1 +A2 ⊗ I1))u0 = exp(t(I2 ⊗A1)) exp(t(A2 ⊗ I1))u0

= (I2 ⊗ exp(tA1)) (exp(tA2)⊗ I1)u0 = (exp(tA2)⊗ exp(tA1))u0.

However, as in general the matrices exp(tAµ) are full, their Kronecker product results in a large
and full matrix to be multiplied into u0, which is an extremely inefficient approach. Nevertheless, if
we fully exploit the tensor structure of the problem, we can still compute the solution of the system
efficiently just in terms of the exponentials exp(tAµ). Indeed, let U(t) be the n1 × n2 matrix whose
stacked columns form the vector u(t), that is

vec(U(t)) = u(t).

Then, using this matrix notation and by means of the properties of the Kronecker product, problem
(2.18) takes the form {

U ′(t) = A1U(t) +U(t)AT
2 , t > 0,

U(0) = U0,

and it is well-known (see [147]) that its solution can be computed in matrix formulation as

U(t) = exp(tA1)U0 exp(tA2)T.

In general, the d-dimensional version of solution (2.19) is

u(t) = exp

(
t

d∑
µ=1

(Id ⊗ · · · ⊗ Iµ+1 ⊗Aµ ⊗ Iµ−1 ⊗ · · · ⊗ I1)

)
u0,

which can be written in more compact notation as

u(t) = exp (t (Ad ⊕ · · · ⊕A1))u0. (2.20)

Here, Aµ are square matrices of size nµ, and u0 is a vector of length N = n1 · · ·nd. Then, similarly to
the two-dimensional case, we have

u(t) = exp (t(Ad ⊕ · · · ⊕A1))u0 = (exp(tAd)⊗ · · · ⊗ exp(tA1))u0.

Finally, using Lemma 2.2.1, we have

U(t) = U0 ×1 exp(tA1)×2 · · · ×d exp(tAd), (2.21)

where U(t) and U0 are d-dimensional tensors such that u(t) = vec(U(t)) and u0 = vec(U0). Hence, the
action of the large-sized matrix exponential appearing in formula (2.20) can be computed by the Tucker
operator (2.21) which just involves the small-sized matrix exponentials exp(tAµ). For an application in
the context of solution of an ADA linear evolutionary equation with spatially variable coefficients, see
Section 2.4.4.
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2.3.4 Preconditioning of linear systems
Suppose we want to solve the semilinear PDE{

∂tu(t, x) = Au(t, x) + f(t, u(t, x)), t > 0, x ∈ Ω ⊂ R,
u(0, x) = u0(x),

(2.22)

coupled with suitable boundary conditions, where A is a linear time-independent spatial differential
operator and f is a nonlinear function. Using the method of lines, similarly to what led to system (2.16),
we obtain {

u′(t) = Au(t) + f(t,u(t)), t > 0,

u(0) = u0.
(2.23)

A common approach to integrate system (2.23) in time involves the use of IMplicit EXplicit (IMEX)
schemes. For instance, the application of the well-known backward-forward Euler method with constant
time step size τ leads to the solution of the linear system

Muk+1 = uk + τf(tk,uk)

at every time step, where M = (I − τA) ∈ Cn×n and I is an identity matrix of suitable size. If the
space discretization allows (second order centered finite differences, for example), the system can then
be solved by means of the very efficient Thomas algorithm. If, on the other hand, this is not the case, a
suitable direct or (preconditioned) iterative method can be employed.

Let us consider now the two-dimensional version of the semilinear PDE (2.22), i.e.,{
∂tu(t, x1, x2) = Au(t, x1, x2) + f(t, u(t, x1, x2)), t > 0, (x1, x2) ∈ Ω ⊂ R2,

u(0, x1, x2) = u0(x1, x2),
(2.24)

again with suitable boundary conditions, A a linear time-independent spatial differential operator and
f a nonlinear function. As for equation (2.17), if the PDE admits a Kronecker sum structure, the
application of the method of lines leads to{

u′(t) = (I2 ⊗A1 +A2 ⊗ I1)u(t) + f(t,u(t)), t > 0,

u(0) = u0,
(2.25)

which can be integrated in time again by means of the backward-forward Euler method. The matrix of
the resulting linear system to be solved at every time step is now

M = I2 ⊗M1 +M2 ⊗ I1 = I2 ⊗
(

1

2
I1 − τA1

)
+

(
1

2
I2 − τA2

)
⊗ I1.

If we use an iterative method, we can obtain the action of the matrix M to a vector v as

M1V + VMT
2 = VM , vec(V ) = v,

by observing that
Mv = vec(VM ).

Moreover, examples of effective preconditioners for this kind of linear systems are the ones of
Alternating Direction Implicit (ADI) type (see [13]). In this case, we can use the product of the matrices
arising from the discretization of equation (2.24) after neglecting all the spatial variables but one in the
operator A. We obtain then the preconditioner

(I2 − τA2)⊗ (I1 − τA1) = P2 ⊗ P1 = P, (2.26)

which is expected to be effective since P = M +O(τ2). In addition, the action of P−1 to a vector v can
be efficiently obtained as

P−1
1 V P−T2 = VP−1 ,

by noticing that
P−1v = (P−1

2 ⊗ P−1
1 )v = vec(VP−1).
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Remark 2.3.3. Another approach of solution to equation (2.25) would be to write the equivalent matrix
formulation of the problem, i.e.,{

U ′(t) = A1U(t) +U(t)AT
2 + F (t,U(t)), t > 0,

U(0) = U0,

and then apply appropriate algorithms to integrate it numerically, mainly based on the solution of
Sylvester equations. This is the approach pursued, for example, in [117].

In general, for a d-dimensional semilinear problem with a Kronecker sum structure, the linear system
to be solved at every time step has now matrix

M = Md ⊕ · · · ⊕M1, Mµ =

(
1

d
Iµ − τAµ

)
.

Again, the action of the matrix M on a vector v can be computed without assembling the matrix
(see equivalence (2.9)). Finally, an effective preconditioner for the linear system is a straightforward
generalization of formula (2.26), i.e.,

(Id − τAd)⊗ · · · ⊗ (I1 − τA1) = Pd ⊗ · · · ⊗ P1 = P.

Similarly to the two-dimensional case, its inverse action to a vector v can be computed efficiently as

V ×1 P
−1
1 ×2 · · · ×d P−1

d = VP−1 , (2.27)

see Lemma 2.2.1. In the package KronPACK, formula (2.27) can be realized without explicitly inverting
the matrices Pµ by using the function itucker. We notice that this is another feature not available in
the tensor algebra toolboxes mentioned in Section 2.2. For an example of application of these techniques,
in the context of solution of evolutionary diffusion–reaction equations, see Section 2.4.5.

We finally notice that there exist also specific techniques to solve linear systems in Kronecker form,
usually arising in the discretization of time-independent differential equation, see for instance [56, 151].

2.4 Numerical experiments
We present in this section some numerical experiments of the proposed µ-mode approach for tensor-
structured problems, which make extensively use of the functions contained in the package KronPACK.
We remark that, when we employ Cartesian grids of points, they have been produced by the matlab
command ndgrid. If instead one would prefer to use the ordering induced by the meshgrid command
(which, however, works only up to dimension three), it is enough to interchange the first and the second
matrix in the Tucker operator (2.5). The resulting tensor is then the (2, 1, 3)-permutation of S in
Definition 2.2.4.

All the numerical experiments have been performed with MathWorks MATLAB® R2019a on an
Intel® Core™ i7-8750H CPU with 16 GB of RAM. The degrees of freedom of the problems have been
kept at a moderate size, in order to be reproducible with the package KronPACK in a few seconds on a
personal laptop.

2.4.1 Code validation
In this section we validate the tucker function of KronPACK, by comparing it to the corresponding
functions of the toolboxes mentioned in Section 2.2, i.e., ttm and tmprod of Tensor Toolbox for MATLAB
and Tensorlab, respectively. We performed several tests on tensors of different orders and sizes and the
three functions always produced the same output (up to round-off unit) at comparable computational
times. For simplicity of exposition, we report in Figure 2.1 just the wall-clock times of the experiments
with tensors of order d = 3 and d = 6. For each selected value of d, we take as tensors and matrices
sizes mµ = nµ = n, µ = 1, . . . , d, for different values of n, in such a way that the number of degrees
of freedom nd ranges from Nmin = 126 to Nmax = 186. The input tensors and matrices have normal
distributed random values, and the complete code can be found in the script code_validation.m.
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Figure 2.1: Wall-clock times for different realizations of the Tucker operator (2.5) with the functions
ttm, tmprod, and tucker. The left plot refers to the case d = 3, while the right plot refers to the case
d = 6. Each test has been repeated several times in order to avoid fluctuations.

2.4.2 Hermite–Laguerre–Fourier function decomposition

We are interested in the approximation, by means of a pseudospectral decomposition, of the trivariate
function

f(x) =
x2

2 sin(20x1) sin(10x2) exp(−x2
1 − 2x2)

sin(2πx3) + 2
, x = (x1, x2, x3) ∈ Ω,

where Ω = [−b1, b1]× [0, b2]× [a3, b3]. The decays in the first and second directions and the periodicity
in the third direction suggest the use of a Hermite–Laguerre–Fourier (HLF) expansion. This mixed
transform is useful, for instance, for the solution of differential equations with cylindrical coordinates by
spectral methods, see [20]. We then introduce the normalized and scaled Hermite functions (orthonormal
in the space L2(R))

Hβ1

i1
(x1) =

√
β1√

π2i1−1(i1 − 1)!
Hi1(β1x1)e−β

2
1x

2
1/2,

where Hi1 is the (physicist’s) Hermite polynomial of degree i1 − 1. We consider the m1 scaled Gauss–
Hermite quadrature points {ξk11 }k1 and define Ψ1 ∈ Rm1×m1 to be the corresponding transform matrix
with element Hβ1

i1
(ξk11 ) in position (i1, k1). The parameter β1 is chosen so that the quadrature points

are contained in [−b1, b1] (see [177]). This is possible by estimating the largest quadrature point for the
unscaled functions by

√
2m1 + 1 (see [175, Ch. 6]) and setting

β1 =

√
2m1 + 1

b1
.

Moreover, we consider the normalized and scaled generalized Laguerre functions (orthonormal in the
space L2(R+))

Lα,β2

i2
(x2) =

√
β2(i2 − 1)!

Γ(i2 + α)
Lαi2(β2x2)(β2x2)α/2e−β2x2/2,

where Lαi2 is the generalized Laguerre polynomial of degree i2 − 1. We define Ψ2 to be the corresponding
transform matrix with element Lα,β2

i2
(ξk22 ) in position (i2, k2), where {ξk22 }k2 are them2 scaled generalized
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Gauss–Laguerre quadrature points. The parameter β2 is chosen, similarly to the Hermite case, as

β2 =
4m2 + 2α+ 2

b2
,

see [175, Ch. 6] for the asymptotic estimate which holds for |α| ≥ 1/4 and α > −1. Finally, for the
Fourier decomposition, we obviously do not construct the transform matrix, but we rely on a Fast
Fourier Transform (FFT) implementation provided by the matlab function interpft, which performs
a resample of the given input values by means of FFT techniques. We measure the approximation error,
for varying values of nµ, µ = 1, 2, 3, by evaluating the pseudospectral decomposition at a Cartesian
grid of points (x`11 , x

`2
2 , x

`3
3 ), with 1 ≤ `µ ≤ nµ. In order to do that, we construct the matrices Φ1 and

Φ2 containing the values of the Hermite and generalized Laguerre functions at the points {x`11 }`1 and
{x`22 }`2 , respectively. The relevant code for the approximation of f and its evaluation, by using the
KronPACK function tuckerfun, can be written as

PSIFUN{1} = @(f) PSI{1}*f;
PSIFUN{2} = @(f) PSI{2}*f;
PSIFUN{3} = @(f) f;
Fhat = tuckerfun(FW,PSIFUN);
PHIFUN{1} = @(f) PHI{1}*f;
PHIFUN{2} = @(f) PHI{2}*f;
PHIFUN{3} = @(f) interpft(f,n(3));
Ftilde = tuckerfun(Fhat,PHIFUN);

where FW is the three-dimensional array containing the values f(ξk11 , ξk22 , ξk33 )wk11 wk22 , where {ξk33 }k3 are
the m3 equispaced Fourier quadrature points in [a3, b3) and {wkµµ }kµ , with µ = 1, 2, are the scaled
weights of the Gauss–Hermite and generalized Gauss–Laguerre quadrature rules, respectively. The values
{ξkµµ }kµ and {wkµµ }kµ , for µ = 1, 2, have been computed by the relevant functions available, for instance,
in Chebfun [71]. The complete example can be found in the script example_spectral.m.

Given a prescribed accuracy, we look for the smallest number of basis functions (m1,m2,m3) that
achieve it, and we measure the computational time needed to perform the approximation of f and
its evaluation with the HLF method. As a term of comparison, we consider the same experiment
with a three-dimensional Fourier spectral approximation (FFF method): in fact, for the size of the
computational domain and the exponential decays along the first and second directions of the function
f we are considering, it appears reasonable to approximate f by a periodic function in Ω and take
advantage of the efficiency of a three-dimensional FFT.

The results with α = 4, b1 = 4, b2 = 11, b3 = −a3 = 1, and n1 = n2 = n3 = 301 evaluation
points uniformly distributed in Ω are displayed in Figure 2.2. As we can observe, the total number of
degrees of freedom needed by the HLF approach is always smaller than the corresponding FFF one. In
particular, despite the exponential decay along the second direction, the FFF method requires a very
large number of Fourier coefficients along that direction in order to reach the most stringent accuracies.
In these situations, the HLF method implemented with the µ-mode approach is preferable in terms of
computational time to the well-established implementation by the FFT technique of the FFF method.

2.4.3 Multivariate interpolation

Let us consider the approximation of a function f(x) through a five-variate interpolating polynomial in
Lagrange form

p(x) =

m5∑
i5=1

· · ·
m1∑
i1=1

fi1...i5Li1(x1) · · ·Li5(x5). (2.28)
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Figure 2.2: Achieved accuracies versus wall-clock times (in seconds, averaged over 20 runs) for the
Hermite–Laguerre–Fourier (HLF) and the Fourier–Fourier–Fourier (FFF) approaches. The label of the
marks in the plot indicates the number of basis functions used in each direction.

Here Liµ(xµ) is the Lagrange polynomial of degree mµ − 1 on a set {ξkµµ }kµ of mµ interpolation points
written in the second barycentric form, with µ = 1, . . . , 5, i.e.,

Liµ(xµ) =

w
iµ
µ

xµ−ξ
iµ
µ∑

kµ

w
kµ
µ

xµ−ξ
kµ
µ

, wiµµ =
1∏

kµ 6=iµ(ξ
iµ
µ − ξkµµ )

,

while fi1...i5 = f(ξi11 , . . . , ξ
i5
5 ).

For this numerical example, we consider the five-dimensional Runge function

f(x1, . . . , x5) =
1

1 + 16
∑
µ x

2
µ

in the domain [−1, 1]5. We choose as interpolation points a Cartesian grid of Chebyshev nodes

ξkµµ = cos

(
(2kµ − 1)π

2mµ

)
, kµ = 1, . . . ,mµ,

whose barycentric weights are

wkµµ = (−1)kµ+1 sin

(
(2kµ − 1)π

2mµ

)
, kµ = 1, . . . ,mµ.

This is the five-dimensional version of one of the examples presented in [25, Sec. 6]. We evaluate the
polynomial at a uniformly spaced Cartesian grid of points (x`11 , . . . , x

`5
5 ), with 1 ≤ `µ ≤ nµ. Then,

approximation (2.28) at the just mentioned grid can be computed as

P = F ×1 L1 ×2 · · · ×5 L5, (2.29)

where we collected the function evaluations at the interpolation points in the tensor F and Lµ contains
the element Liµ(x

`µ
µ ) in position (`µ, iµ). If we store the matrices Lµ in a cell L, the corresponding

matlab command for computing the desired approximation is

P = tucker(F,L);
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Figure 2.3: Results for approximation (2.29) with an increasing number mµ = m of interpolation points.
The relative error (blue circles) is computed in maximum norm at the evaluation points. For reference,
a dashed line representing the theoretical decay estimate is added.

The results, for a number of evaluation points fixed to nµ = n = 35 and varying number of interpo-
lation points mµ = m, are reported in Figure 2.3, and the complete code can be found in the script
example_interpolation.m.

As expected, the error decreases according to the estimate

‖f(x)− p(x)‖∞≈ K−m, K =
1

4
+

√
17

16
,

see [25, 181].

2.4.4 Linear evolutionary equation
Let us consider the following three-dimensional Advection–Diffusion–Absorption evolutionary equation,
written in conservative form, for a concentration u(t,x) (see [191])

∂tu(t,x) +

3∑
µ=1

βµ∂xµ(xµu(t,x)) = α

3∑
µ=1

β2
µ∂xµ(x2

µ∂xµu(t,x))− γu(t,x),

u(0,x) = u0(x) = x1(2− x1)2x2(2− x2)2x3(2− x3)2,

(2.30)

where βµ, µ = 1, 2, 3, and α > 0 are advection and diffusion coefficients and γ ≥ 0 is a coefficient
governing the decay of u(t,x). After a space discretization by second order centered finite differences on
a Cartesian grid, we end up with a system of ODEs{

u′(t) = (A3 ⊕A2 ⊕A1)u(t),

u(0) = u0,
(2.31)

where Aµ ∈ Rnµ×nµ is the one-dimensional discretization of the operator

(2αβ2
µxµ − βµxµ)∂xµ + αβ2

µx
2
µ∂x2

µ
−
(
βµ +

γ

3

)
.

If we denote by U0 = vec(u0) and U(t) = vec(u(t)) the tensors associated to the vectors u0 and u(t),
respectively, then we have

U(t) = U0 ×1 exp(tA1)×2 exp(tA2)×3 exp(tA3). (2.32)
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We consider equation (2.30) for x ∈ [0, 2]3, coupled with homogeneous Dirichlet–Neumann conditions
(u(t,x) = 0 at xµ = 0 and ∂xµu(t,x) = 0 at xµ = 2, µ = 1, 2, 3). The coefficients are fixed to

β1 = β2 = β3 =
2

3
, α =

1

2
, γ =

1

100
.

Then, if we compute the needed matrix exponentials by the function expm in matlab and define

E{mu} = expm(tstar*A{mu});

the solution U(t∗) at final time t∗ = 0.5 can be computed as

U = tucker(U0,E);

since the matrix exponential is the exact solution and thus no substepping strategy is needed. The
complete example is reported in the script example_exponential.m.

In Table 2.2 we show the results with a discretization in space of n = (50, 55, 60) grid points. Since
the problem is moderately stiff, we consider for comparison the solution of system (2.31) by the ode23
matlab function (which implements an explicit adaptive Runge–Kutta method of order (2)3) and by a
standard implementation of the explicit Runge–Kutta method of order four (RK4). For the Runge–Kutta
methods, we consider both the tensor and the vector implementations, using the functions kronsumv
and kronsum, respectively (see equivalence (2.9)). The number of uniform time steps for RK4 has
been chosen in order to obtain a comparable error with respect to the result of the variable time step
solver ode23. As we can see, the tensor formulation (2.32) implemented using the function tucker is
much faster than any other considered approach. Indeed, this is due to the fact that formula (2.32)
requires a single time step and calls a level 3 BLAS only three times. For other experiments involving
the approximation of the action of the matrix exponential in tensor-structured problems, we invite the
reader to check [39].

Time steps Elapsed time vector Elapsed time tensor Error
tucker 1 – 0.03 –
ode23 1496 14.0 11.2 1.0e-4
RK4 1351 9.14 6.33 3.7e-5

Table 2.2: Summary of the results for solving the ODEs system (2.31) with the three described approaches.
We report the number of time steps, the wall-clock times in seconds for both the tensor and the vector
formulations (when feasible) and the relative error in infinity norm of the final solution with respect to
the solution given by the tucker approach.

2.4.5 Semilinear evolutionary equation
We consider the following three-dimensional semilinear evolutionary equation∂tu(t,x) = ∆u(t,x) +

1

1 + u(t,x)2
+ Φ(t,x),

u(0,x) = u0(x) = x1(1− x1)x2(1− x2)x3(1− x3),

(2.33)

for x ∈ [0, 1]3, where the function Φ(t,x) is chosen so that the exact solution is u(t,x) = etu0(x). We
complete the equation with homogeneous Dirichlet boundary conditions in all the directions. This is the
three-dimensional generalization of the example presented in [111].

We discretize the problem in space by means of second order centered finite differences on a Cartesian
grid, with nµ grid points for the spatial variable xµ, µ = 1, 2, 3. Then, the application of the backward-
forward Euler method leads to the following marching scheme

Muk+1 = uk + τf(tk,uk), (2.34)
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where uk ≈ u(tk,x), τ is the time step size, tk is the current time and

f(tk,uk) =
1

1 + u2
k

+ Φ(tk,x).

The matrix of the linear system (2.34) is given by

M = M3 ⊕M2 ⊕M1, Mµ =

(
1

3
Iµ − τAµ

)
,

where Aµ is the discretization of the partial differential operator ∂x2
µ
and Iµ is the identity matrix of

size nµ. One could solve the linear system (2.34) using a direct method, in particular by computing the
Cholesky factors of the matrix M once and for all (if the step size τ is constant). Another approach
would be to use the Conjugate Gradient (CG) method for the single marching step (2.34). In matlab,
the latter can be performed as

pcg(M,uk+tau*f(tk,uk),tol,maxit,[],[],uk);

or

pcg(Mfun,uk+tau*f(tk,uk),tol,maxit,[],[],uk);

where M is the matrix assembled using kronsum (vector approach), while Mfun is implemented by means
of the function kronsumv (tensor approach). As described in Section 2.3.4, an effective preconditioner
for system (2.34) is the one of ADI-type

P3 ⊗ P2 ⊗ P1, Pµ = (Iµ − τAµ).

The action of the inverse of this preconditioner on a vector v can be easily performed in tensor formulation,
see formula (2.27), and the resulting Preconditioned Conjugate Gradient (PCG) method is

pcg(Mfun,uk+tau*f(tk,uk),tol,maxit,Pfun,[],uk);

where Pfun is implemented through the KronPACK function itucker. The complete example is reported
in the file example_imex.m.

In Table 2.3 we report the results obtained for a space discretization of n = (40, 44, 48) grid points.
The time step size τ of the marching scheme (2.34) is 0.01 and the final time of integration is t∗ = 1. For
all the methods, the final relative error in infinity norm with respect to the exact solution is 9.7 · 10−3.
As it is clearly shown, the ADI-type preconditioner is really effective in reducing the number of iterations
of the CG method. Moreover, the resulting method is the fastest among all the considered approaches.

Avg. iterations Elapsed timeper time step
Direct – 6.7

CG vector 30 3.3
CG tensor 30 2.2
PCG tensor 2 0.5

Table 2.3: Summary of the results for solving the semilinear equation (2.33) by the method of lines and
the backward–forward Euler method. The elapsed time is the wall-clock time measured in seconds.

2.5 Conclusions
We presented how it is possible to state d-dimensional tensor-structured problems by means of composition
of one-dimensional rules, in such a way that the resulting µ-mode BLAS formulation can be efficiently
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implemented on modern computer hardware. The common thread consists in the suitable employment of
tensor product operations, with special emphasis on the Tucker operator and its variants. After validating
the package KronPACK against other commonly used tensor operation toolboxes, the effectiveness of
the µ-mode approach compared to other well-established techniques is shown on several examples from
different fields of numerical analysis. More in detail, we employed this approach for a pseudospectral
Hermite–Laguerre–Fourier trivariate function decomposition, for the barycentric Lagrange interpolation
of a five-variate function and for the numerical solution of three-dimensional stiff linear and semilinear
evolutionary differential equations by means of exponential techniques and a (preconditioned) IMEX
method, respectively.

Appendix
Throughout the chapter, the symbol ⊗ denotes the standard Kronecker product of two matrices. In
particular, given A ∈ Cm×n and B ∈ Cp×q, we have

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Cmp×nq.

Moreover, we define the Kronecker sum of two matrices A ∈ Cm×m and B ∈ Cp×p, denoted by the
symbol ⊕, as

A⊕B = A⊗ IB + IA ⊗B ∈ Cmp×mp,

where IA and IB are identity matrices of size m and p, respectively.
We define also the vectorization operator, denoted by vec, which stacks a tensor T ∈ Cm1×···×md in

a vector v ∈ Cm1···md in such a way that

vec(T ) = v, with vj = T (j1, . . . , jd), j = j1 +

d∑
µ=2

(jµ − 1)

µ−1∏
k=1

mk,

where 1 ≤ jµ ≤ mµ and 1 ≤ µ ≤ d.
The Kronecker product satisfies many properties, see [183] for a comprehensive review. For convenience

of the reader, we list here the relevant ones in our context

1. A⊗ (B1 +B2) = A⊗B1 +A⊗B2 for every A ∈ Cm×n and B1, B2 ∈ Cp×q;

2. (B1 +B2)⊗A = B1 ⊗A+B2 ⊗A for every B1, B2 ∈ Cp×q and A ∈ Cm×n;

3. (λA)⊗B = A⊗ (λB) = λ(A⊗B) for every λ ∈ C, A ∈ Cm×n and B ∈ Cp×q;

4. (A⊗B)⊗ C = A⊗ (B ⊗ C) for every A ∈ Cm×n, B ∈ Cp×q and C ∈ Cr×s;

5. (A⊗B)T = AT ⊗BT for every A ∈ Cm×n and B ∈ Cp×q;

6. (A⊗B)−1 = A−1 ⊗B−1 for every invertible matrix A ∈ Cm×m and B ∈ Cp×p;

7. (A⊗B)(D ⊗ E) = (AD)⊗ (BE) for every A ∈ Cm×n, B ∈ Cp×q, D ∈ Cn×r and E ∈ Cq×s;

8. vec(ADC) = (CT ⊗A)vec(D) for every A ∈ Cm×n, D ∈ Cn×r and C ∈ Cr×s.



Chapter 3

PHIKS: actions of ϕ-functions of
Kronecker sums

In this chapter, we present a novel method for computing actions of the so-called ϕ-functions for a Kronecker
sum K of d arbitrary matrices Aµ. It is based on the approximation of the integral representation of the
ϕ-functions by Gaussian quadrature formulas combined with a scaling and squaring technique. The resulting
algorithm, which we call phiks, evaluates the required actions by means of µ-mode products involving
exponentials of the small sized matrices Aµ, without using the large sized matrix K itself. phiks, which
profits from the highly efficient level 3 BLAS, is designed to compute different ϕ-functions applied on the
same vector. In addition, due to the underlying scaling and squaring technique, the desired quantities are
available simultaneously at suitable time scales. All these features allow the effective usage of phiks in the
exponential integration context. In particular, we tested our newly designed method on popular exponential
Runge–Kutta integrators of stiff order two and three, in comparison with state-of-the-art algorithms for
computing actions of ϕ-functions. Our numerical experiments with discretized semilinear evolutionary 3D
advection–diffusion–reaction and Allen–Cahn equations show the superiority of the µ-mode approach of
phiks.

The material of this chapter is taken from preprint [41], i.e., M. Caliari, F. C., and F. Zivcovich. A
µ-mode approach for exponential integrators: actions of ϕ-functions of Kronecker sums. arXiv preprint
arXiv:2210.07667, 2022.

3.1 Introduction
We consider a system of Ordinary Differential Equations (ODEs) in Kronecker form{

u′(t) = Ku(t) + g(t,u(t)) = f(t,u(t)), t ∈ [0, T ],

u(0) = u0,
(3.1a)

where g : [0, T ]× CN → CN is a nonlinear function of the unknown u : [0, T ]→ CN , N = n1 · · ·nd, and
K ∈ CN×N is a large sized matrix which can be written as a Kronecker sum, that is

K = Ad ⊕Ad−1 ⊕ · · · ⊕A1 =

d∑
µ=1

A⊗µ, A⊗µ = Id ⊗ · · · ⊗ Iµ+1 ⊗Aµ ⊗ Iµ−1 ⊗ · · · ⊗ I1. (3.1b)

Here Aµ ∈ Cnµ×nµ is an arbitrary complex matrix and Iµ is the nµ × nµ identity matrix. Such a
structure arises for instance when applying the method of lines to some evolutionary PDEs, from
different fields of science and engineering, in domains which are the Cartesian product of d intervals.

43
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Typical examples are semilinear diffusion and Schrödinger equations, with linear operators ∆ and i∆,
respectively, discretized with finite differences. More in general, the matrices Aµ can be sparse (as arising
from finite differences or lumped mass tensor product finite elements applied to differential operators),
dense (as arising from standard tensor product finite elements, spectral differentiations or discretizations
of fractional operators), and possibly singular (due to encapsulated boundary conditions, for instance).
System (3.1) is typically stiff, and a prominent way to numerically integrate it in time is by using explicit
exponential integrators [112]. These schemes, as opposed to fully implicit or IMEX integrators, do
not require the solution of (non)linear systems but rather the action of the exponential and/or of the
so-called ϕ-functions, defined as

ϕ`(X) =

∫ 1

0

f`(θ,X)dθ, f`(θ,X) =
θ`−1

(`− 1)!
exp((1− θ)X), ` ≥ 1, X ∈ CN×N . (3.2)

The direct approximation of the matrix ϕ-functions is feasible only when the size of the matrix is not
too large. In this case, the most commonly employed techniques are based on Padé approximations [24].
On the other hand, when the size is large (which is the case of interest in this work), it is possible
to rely on methods which directly compute the action of the matrix ϕ-functions on a vector, or even
their linear combination at once. Among them, Krylov methods [97, 132, 149] and other polynomial
methods [6, 40, 43, 44, 45] do not require the solution of linear systems.

If we consider the matrix exponential case, it is possible to exploit the fact that K has a Kronecker
sum structure and compute the action exp(K)v with a µ-mode approach (see [39, 42]). With this
technique, it is possible to efficiently implement exponential schemes which require the action of the
matrix exponential only, such as some splitting schemes, exponential Lawson and Magnus integrators.
Unfortunately, such an elegant approach does not directly apply to the computation of the action of
ϕ-functions, since they do not enjoy the splitting property of the exponential function.

In this work, we aim at extending the µ-mode approach developed for the matrix exponential to
the computation of actions of ϕ-functions for a matrix K which is the Kronecker sum of d matrices Aµ,
without assembling the matrix K itself. In particular, we will derive a quadrature-based algorithm for
the computation of actions of ϕ-functions on the same vector

{exp(τK)v, ϕ1(τK)v, ϕ2(τK)v, . . . , ϕp(τK)v} (3.3)

at once, where τ is the time step size of the integrator. In addition, as a byproduct of the underlying
scaling and modified squaring method [173], the algorithm can output the quantities in formula (3.3) at
different time scales.

The remaining part of the chapter is structured as follows. Section 3.2 is devoted to the description
of the new algorithm, which we call phiks (PHI-functions of Kronecker Sums), for the approximation of
actions of ϕ-functions on the same vector, with an important subsection describing a suitable choice of the
scaling parameter and of the quadrature formula. Then, in Section 3.3, we validate the implementation of
phiks and we apply it to the numerical solution of stiff systems of ODEs with exponential Runge–Kutta
integrators of second and third order. Finally, we draw some conclusions in Section 3.4.

3.2 Approximation of ϕ-functions of a Kronecker sum

In this section, we describe in detail how to approximate the action of single ϕ-functions on the same vector.
A reader not familiar with the µ-mode and tensor formalism is invited to check References [39, 42, 120].
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A ν-stage explicit exponential Runge–Kutta integrator [112] with time step size τ is defined by

uni = exp(ciτK)un + ciτϕ1(ciτK)g(tn,un) + τ

i−1∑
j=2

aij(τK)dnj

= un + ciτϕ1(ciτK)f(tn,un) + τ

i−1∑
j=2

aij(τK)dnj , 2 ≤ i ≤ ν,

un+1 = exp(τK)un + τϕ1(τK)g(tn,un) + τ

ν∑
i=2

bi(τK)dni

= un + τϕ1(τK)f(tn,un) + τ

ν∑
i=2

bi(τK)dni,

(3.4a)

where
dni = g(tn + ciτ,uni)− g(tn,un). (3.4b)

The matrix functions aij(τK) and bi(τK) are linear combinations of ϕ-functions. Thus, for each stage
uni and for the final approximation un+1, we need to compute actions of ϕ-functions on the same vector,
and combine them to obtain the required quantities. For example, let us consider the simple stiff second
order exponential Runge–Kutta method ETD2RK [59], which has reduced tableau [131]

1
ϕ2

. (3.5)

Here and throughout the chapter, by “reduced tableau” we mean that for each stage and for the final
approximation un+1 we write only the coefficients corresponding to the perturbation of the underlying
exponential Euler scheme. It can be implemented by computing ϕ1(τK)τ(Kun + g(tn,un)) and
ϕ2(τK)τ(g(tn+1,un2)− g(tn,un)), and then appropriately assembling the results.

We start with the computation of ϕ1(K)v, where, for clarity of exposition, we omit the time step
size τ and use a generic vector v. As mentioned in the introduction, the idea is to apply a quadrature
rule to the integral definition of the ϕ-functions. In this way, we can fully exploit the possibility to apply
the Tucker operator to compute actions of suitable matrix exponentials. Hence, we directly approximate
the integral representation

ϕ1(K)v =

∫ 1

0

exp((1− θ)K)vdθ (3.6)

by a quadrature formula. In order to avoid an impractical number of quadrature points, we introduce a
scaling strategy. Therefore, the quadrature rule is applied to the computation of ϕ1(K/2s)v, that is

ϕ1(K/2s)v =

∫ 1

0

exp((1− θ)K/2s)vdθ ≈
q∑
i=1

wi exp((1− θi)K/2s)v,

where θi and wi are q quadrature nodes and weights, respectively, and we scale by a power of two in order
to employ the favorable scaling and squaring algorithm [173] for matrix ϕ-functions. The choices of the
quadrature formula, of the number q of quadrature nodes, and of the nonnegative integer scaling s will
be discussed in detail in Section 3.2.1. Then, the evaluation of the integrand above at each quadrature
point θi ∈ [0, 1] can be performed by the Tucker operator

V ×1 exp((1− θi)A1/2
s)×2 exp((1− θi)A2/2

s)×3 · · · ×d exp((1− θi)Ad/2s), (3.7)

where vec(V ) = v. Finally, in order to recover ϕ1(K)v from its scaled version, we use the following
squaring formula (see again Reference [173]) ϕ1(K/2j−1)v =

1

2

(
exp(K/2j)ϕ1(K/2j)v + ϕ1(K/2j)v

)
,

exp(Aµ/2
j−1) = exp(Aµ/2

j) exp(Aµ/2
j),
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which has to be repeated for j = s, s− 1, . . . , 1. Notice that, to perform the squaring, no full matrix
exp(K/2j) has to be evaluated in practice. In fact, in order to compute its action on ϕ1(K/2j)v, which
is available as a tensor, it is enough to compute the Tucker operator with the small sized matrices
exp(Aµ/2

j).
Now, let us consider the approximation of the action of ϕ2(K), that is

ϕ2(K)v =

∫ 1

0

θ exp((1− θ)K)vdθ. (3.8)

Comparing integrals (3.6) and (3.8) it appears clear that, if we define a common scaling strategy, we
can compute the two approximations at once just by selecting the same quadrature nodes and weights,
but different integrand functions

exp((1− θ)K/2s)v and θ exp((1− θ)K/2s)v.

Therefore, the two quadrature formulas can be implemented with common evaluations of the matrices
exp((1− θi)Aµ/2s) for each quadrature point θi and each µ. Their action on v is computed with a single
Tucker operator (3.7), followed by the multiplication by the scalar θi needed for the approximation of
ϕ2(K/2s)v. After assembling the quadrature, the steps of the squaring are

ϕ2(K/2j−1)v =
1

4

(
exp(K/2j)ϕ2(K/2j)v + ϕ1(K/2j)v + ϕ2(K/2j)v

)
,

ϕ1(K/2j−1)v =
1

2

(
exp(K/2j)ϕ1(K/2j)v + ϕ1(K/2j)v

)
,

exp(Aµ/2
j−1) = exp(Aµ/2

j) exp(Aµ/2
j),

to be repeated for j = s, s− 1, . . . , 1.
The generalization to the computation of the action of the first p ϕ-functions on the same vector v

{ϕ1(K)v, ϕ2(K)v, . . . , ϕp(K)v}

is straightforward. First, we compute their approximations at the same scaled matrix by the common
quadrature rule, i.e.,

ϕ`(K/2
s)v ≈

q∑
i=1

wi
θ`−1
i

(`− 1)!
exp((1− θi)K/2s)v, ` = 1, . . . , p. (3.9a)

Then, we perform the squaring procedure
ϕ`(K/2

j−1)v =
1

2`

(
exp(K/2j)ϕ`(K/2

j)v +
∑̀
k=1

ϕk(K/2j)v

(`− k)!

)
, ` = p, p− 1, . . . , 1,

exp(Aµ/2
j−1) = exp(Aµ/2

j) exp(Aµ/2
j),

(3.9b)

for j = s, s−1, . . . , 1. We stress that the relevant computations in formulas (3.9) are performed by means
of the µ-mode approach, without forming the large sized matrix K. Notice also that, from the squaring
formula we obtain at no additional cost also ϕ`(K/2j−1)v, j = 2, . . . , s, which could be useful for the
efficient implementation of exponential integrators that require, for instance, (some of) the quantities

exp(cjτK)v, ϕ1(cjτK)v, ϕ2(cjτK)v, . . . , ϕp(cjτK)v, cj = c/2j−1, c ∈ C. (3.10)

Remark 3.2.1. Notice that the quadrature rule in formula (3.9a) is equivalent to

q∑
i=1

wi
θ`−1
i

(`− 1)!
exp((1− θi)(K − σI)/2s)e(1−θi)σ/2sv, ` = 1, . . . , p,
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where σ ∈ C is a shift parameter. Given the Kronecker sum structure of K, it is possible to choose σ as
the sum of d shifts σµ, selected in such a way that Aµ − σµI has a smaller norm than Aµ (and thus its
exponential can be possibly computed in a more efficient way [6, 46]). A common and effective choice
for σµ is the trace of the matrix Aµ divided by nµ, which corresponds to its average eigenvalue and
minimizes the Frobenius norm of Aµ − σµI.

We now summarize the number of Tucker operators of the whole procedure needed to obtain the
quantities (3.3) together with ŝ scales (3.10). We recall that, if we assume n1 = . . . = nd = n, the
computational cost of a single Tucker operator is O(nd+1). For each quadrature point we need to compute
one Tucker operator. Then, for each step of the squaring phase, we have p Tucker operators. Finally, we
have one Tucker operator for the computation of exp(K/2j−1)v for each j = 1, . . . , ŝ. Therefore, the
total number of Tucker operators is

T (s, ŝ, q, p) = q + sp+ ŝ. (3.11)

We remark that for d ≥ 3 the number T gives an adequate indication of the computational cost of the
whole procedure, being the Tucker operator the most expensive operation. On the other hand, for d < 3
other tasks such as the computation of the matrix exponential may have a comparable cost (or even
higher, in the trivial case d = 1).

Remark 3.2.2. A similar approach can be applied also to the integral formulation of linear combinations
of actions of ϕ-functions on different vectors, i.e., in order to directly approximate in a µ-mode fashion
quantities of the form

exp(τK)v0 + ϕ1(τK)v1 + ϕ2(τK)v2 + · · ·+ ϕp(τK)vp.

This is useful for high stiff order exponential integrators, see for example References [111, 130]. For
clarity and brevity of exposition, the details are not reported here, and an interested reader is invited to
check Reference [41].

3.2.1 Choice of s, q, and quadrature formula
The choice of the scaling value s and the number of quadrature points q is based on a suitable expansion
of the error of the quadrature formula. After this selection, the algorithm is direct and no convergence
test or exit criterion is needed. We start writing

ϕ`(K) =

∫ 1

0

f`(θ,K)dθ =

q∑
i=1

wif`(θi,K) +Rq(f`(·,K)), (3.12)

where Rq(f`(·,K)) is the remainder

Rq(f`(·,K)) =
1

2πi

∮
Γ

kq(z)f`(z,K)dz, (3.13)

see Section 4.6 of Reference [65]. Here, Γ ⊂ C is an arbitrary simple closed curve surrounding the
interval [0, 1] and kq is the kernel defined by

kq(z) =

∫ 1

0

πq(t)

πq(z)(z − t)
dt,

with πq(t) the monic polynomial of degree q with the quadrature points as roots.
Given a tolerance δ and starting from s = 0, we look for the smallest number q0 ∈ [qmin, qmax] of

quadrature points such that

‖Rq0(f`(·,K))‖‖v‖ ≤ δ, ` = 1, . . . , p.
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We then repeat the procedure for increasing values of the scaling sj ∈ {1, 2, . . .} and look for the
corresponding smallest value qj such that

‖Rqj (f`(·,K/2sj ))‖‖v‖ ≤ δ · 2`sj , ` = 1, . . . , p.

Here, the tolerance is amplified by the factor 2`sj because we take into account that squaring formula (3.9b)
requires sj divisions by 2`. We continue until the number T (sj̄+1, ŝ, qj̄+1, p) of Tucker operators in
formula (3.11) is larger than T (sj̄ , ŝ, qj̄ , p). The obtained values s = sj̄ and q = qj̄ are then employed in
the approximation of actions of ϕ-functions applied on the vector v through formulas (3.9).

The previous estimates clearly require computable bounds for the remainders with different numbers
of quadrature points, integrand functions and scaling parameters. To avoid cumbersome notation, we
explain the procedure for Rq(f`(·,K)) in formula (3.13). We choose Γ = Γr to be the ellipse with foci in
{0, 1} and logarithmic capacity (half sum of its semi-axes) r > 1/4, that is

Γr =

{
z ∈ C : z = z(ζ) = reiζ +

1

2
+

e−iζ

16r
, with ζ ∈ [0, 2π)

}
.

Then, we have

‖Rq(f`(·,K))‖ =

∥∥∥∥∥ 1

2πi

∮
Γr

kq(z)f`(z,K)dz

∥∥∥∥∥ =

=
1

2π

∥∥∥∥∥
∫ 2π

0

kq(z(ζ))f`(z(ζ),K)

(
reiζ − e−iζ

16r

)
dζ

∥∥∥∥∥.
Finally, by using the fact that the numerical range of K (denoted by W(K)) is a (1 +

√
2)-spectral

set [63], we estimate in 2-norm

‖Rq(f`(·,K))‖2 ≤
1 +
√

2

2π
sup
w∈Ω

∣∣∣∣∣
∫ 2π

0

kq(z(ζ))f`(z(ζ), w)

(
reiζ − e−iζ

16r

)
dζ

∣∣∣∣∣, (3.14)

being Ω ⊂ C a smooth, bounded, convex domain which embraces W(K). In our situation, we can easily
find such a domain without assembling the matrix K. Indeed, it is possible to show that

W(K) =W(A⊗1) +W(A⊗2) + · · ·+W(A⊗d) =W(A1) +W(A2) + · · ·+W(Ad),

andW(Aµ) can be estimated [40] with a rectangle Ξµ obtained by computing the norms of the Hermitian
and the skew-Hermitian parts of the small sized matrices Aµ. Thus, the rectangle Ξ = Ξ1 + · · ·+ Ξd
embraces W(K) and, thanks to the maximum modulus principle, the supremum in estimate (3.14) is
attained at the boundary of Ξ, which we suitably discretize. Moreover, we approximate the integral by
the trapezoidal rule.

Concerning the choice of the main quadrature formula (3.12), we use the Gauss–Lobatto–Legendre
one. Besides being very accurate, it employs the endpoints of the integration interval [0, 1]. This allows
on one side to avoid one Tucker operator of type (3.7) (since θq = 1), and on the other to avail of the
quantities exp(Aµ/2

s) (corresponding to θ1 = 0), which are needed for the squaring procedures. This
shrewdness, together with few others, was taken into account in the implementation of the algorithm,
leading to a total number of performed Tucker operators slightly smaller than the theoretical value (3.11).
Finally, the evaluation of the kernel kq in estimate (3.14) is obtained by the recurrence relation of the
underlying orthogonal polynomials (see Reference [98]).

3.3 Numerical experiments
In this section, we validate the matlab1 implementation of phiks and present the effectiveness of the
proposed algorithm for the numerical solution of stiff systems of ODEs with exponential Runge–Kutta

1The code is available at https://github.com/caliarim/phiks and is fully compatible with GNU Octave.

https://github.com/caliarim/phiks
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integrators of stiff order two and three. The algorithm employs the function tucker contained in
the package KronPACK2 to compute the underlying Tucker operators by means of µ-mode products.
In addition, it uses the internal matlab function expm for the approximation of the needed matrix
exponentials. Such a function is based on the double precision scaling and squaring Padé algorithm [5].

Concerning the two-dimensional example described in Section 3.3.3, we compare the efficiency of
the µ-mode approach with a technique [144] recently introduced for the computation of ϕ-functions of
matrices that have Kronecker sum structure. The method, which was developed for the two-dimensional
case only, is direct, does not require an input tolerance and retrieves the action of a single ϕ-function of
order ` by solving ` Sylvester equations. This approach has some restrictions on the input matrices (A1

and −A2 must have disjoint spectra in order to have a unique solution of the Sylvester equation) and it
may suffer of ill-conditioning for ϕ-functions of high order (see again Reference [144]). For our purposes,
we combined the relevant parts from the available code of the algorithm3 in a function that we name
sylvphi. In addition, in this two-dimensional example and in the three-dimensional one, we compare
the µ-mode approach with state-of-the-art algorithms for computing linear combinations of actions of
ϕ-functions for large and sparse general matrices. For convenience of the reader, we briefly describe
them in the following.

• phipm_simul_iom4 is a Krylov subspace solver with incomplete orthogonalization [132] which
computes linear combinations of actions of ϕ-functions at different time scales, by expressing
everything in terms of the highest order ϕ-function and using a recurrence relation.

• kiops5 is another adaptive Krylov subspace solver with incomplete orthogonalization [97]. It
computes linear combinations of actions of ϕ-functions at different time scales by using the
augmented matrix technique.

• bamphi6 is a hybrid Krylov-polynomial method [43] for computing linear combinations of actions
of ϕ-functions at different time scales, equipped with a backward error analysis of the underlying
polynomial approximation. In contrast to the previous methods, it does not require to store a
Krylov subspace.

We used all these methods with an incomplete orthogonalization procedure of length two. Moreover,
since their matlab implementations output some information that can be effectively used for successive
calls, such as an estimate of the appropriate Krylov subspace size, in our numerical experience we
obtained overall the best results by adopting the following strategy: for each call of the routine at a
certain time step we input the information obtained by the same call at the previous time step. In
addition, these three methods, together with phiks, require an input tolerance, but their error estimates
are substantially different. For this reason, we decided to set the tolerance of each method to a value
proportional to both the local error of the used time marching scheme and the 2-norm of the current
approximation un. The proportionality constant has been selected for each method and each integrator
as large as possible among the powers of two, in such a way that the final error measured with respect to
a reference solution is not affected by the approximation error of the matrix functions. We believe that
running the experiments with the tolerances obtained in this way yields a fair comparison among all the
methods, ensuring the minimal effort needed to reach the accuracy of the considered time marching
schemes. The study of a more sophisticated technique for an effective choice of the tolerances is far
beyond the scope of this work.

All the numerical experiments were performed on an Intel® Core™ i7-10750H CPU with six physical
cores and 16GB of RAM, using MathWorks MATLAB® R2022a. The errors were measured in infinity
norm relatively to either the analytical solution, when available, or to a reference solution computed
with the phiks routine and a sufficiently large number of time steps.

2https://github.com/caliarim/KronPACK
3https://github.com/jmunoz022/Kronecker_EI
4https://github.com/drreynolds/Phipm_simul_iom
5https://gitlab.com/stephane.gaudreault/kiops/-/tree/master/
6https://github.com/francozivcovich/bamphi

https://github.com/caliarim/KronPACK
https://github.com/jmunoz022/Kronecker_EI
https://github.com/drreynolds/Phipm_simul_iom
https://gitlab.com/stephane.gaudreault/kiops/-/tree/master/
https://github.com/francozivcovich/bamphi
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3.3.1 Code validation
We extensively tested the phiks routine and we present here the results regarding the approximation of
actions of ϕ-functions on the same vector up to order p = 5. The input matrices K ∈ Cnd×nd arise from
the discretization by standard second order finite differences of the complex operator (1 + i)/100 ·∆ in
the spatial domain [0, 1]d, for d = 3 and d = 6, with homogeneous Dirichlet boundary conditions. The
application vector v is the discretization of

4096(1 + i)

d∏
µ=1

xµ(1− xµ).

The number n of discretization points for each spatial direction ranges from 64 to 121 for d = 3, and
from 8 to 11 for d = 6. As a term of comparison we consider the results obtained with kiops. Both
routines were called with input tolerance set to the double precision unit roundoff value 2−53. We
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Figure 3.1: Relative difference between kiops and phiks, measured in infinity norm, for the actions
ϕ`(K/2

j)v, ` = 1, . . . , p, in the code validation. The plots refer to j = 0 and d = 3 (top left), j = 1 and
d = 3 (top right), j = 0 and d = 6 (bottom left), j = 1 and d = 6 (bottom right).

report in Figure 3.1 the relative difference in infinity norm between the approaches and, for phiks, we
collect in Table 3.1 the values of the scaling parameter s, the number of quadrature points q, and the
corresponding number of Tucker operators. Overall, we observe an homogeneous behavior of the relative
difference between kiops and phiks for all the values of d, n, and `, and a number of Tucker operators
required by the routine phiks which increases very slowly with n.

3.3.2 Evolutionary advection–diffusion–reaction equation
In this section we consider the following evolutionary advection–diffusion–reaction (ADR) equation

∂tu(t, x1, x2, x3) = ε∆u(t, x1, x2, x3) + α(∂x1
+ ∂x2

+ ∂x3
)u(t, x1, x2, x3)

+ g(t, x1, x2, x3, u(t, x1, x2, x3)),

u0(x1, x2, x3) = 64x1(1− x1)x2(1− x2)x3(1− x3),

(3.15a)
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ϕ-functions on the same vector
d = 3 d = 6

n 64 81 100 121 8 9 10 11
s 8 8 9 9 3 3 3 4
q 10 12 11 12 11 11 12 10
T 51 53 57 58 27 27 28 31

Table 3.1: Values of the scaling parameter, number of quadrature points, and number of Tucker operators
employed by phiks in the code validation to compute actions of ϕ-functions on the same vector.

in the spatial domain [0, 1]3, where the nonlinear function g is defined by

g(t, x1, x2, x3, u(t, x1, x2, x3)) =
1

1 + u(t, x1, x2, x3)2
+ Ψ(t, x1, x2, x3). (3.15b)

Here, Ψ(t, x1, x2, x3) is chosen so that the analytical solution is u(t, x1, x2, x3) = etu0(x1, x2, x3). Finally,
the equation is coupled with homogeneous Dirichlet boundary conditions. The diffusion and advection
parameters are set to ε = 0.5 and α = 10, respectively. After the semidiscretization in space by second
order centered finite differences we end up with an ODEs system of type (3.1), with K a matrix with
heptadiagonal structure. This is a three-dimensional variation of a standard stiff example [111] for
exponential integrators. For the time integration, we consider the ETD2RK scheme (3.5). We test the
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Figure 3.2: Rate of convergence of the ETD2RK scheme for the semidiscretization of ADR equation (3.15)
with n1 = n2 = n3 = n = 20 discretization points (left) and wall-clock time in seconds for increasing
number n of discretization points and 100 time steps, up to final time T = 0.1 (right).

correct order of convergence of the scheme and the performance of the routines as the discretization is
space becomes finer and finer. The results are collected in Figure 3.2. We notice that phiks turns out to
be roughly 5.6 times faster than the best of the other methods, phipm_simul_iom, in the largest size
scenario (total number of degrees of freedom N = 1213).

3.3.3 Allen–Cahn equation

In this section we examine an example similar to the one reported in Reference [144], which describes
the Sylvester approach for the computation of the ϕ-functions. It is the two-dimensional Allen–Cahn
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phase-field model equation [88] for the concentration u
∂tu(t, x1, x2) = ∆u(t, x1, x2) +

1

ε2
u(t, x1, x2)(1− u2(t, x1, x2))

=

(
∆ +

1

ε2

)
u(t, x1, x2) + g(u(t, x1, x2)),

u(0, x1, x2) = u0(x1, x2),

(3.16a)

in the spatial domain [0, 1]2, coupled with homogeneous Neumann boundary conditions. The initial
condition is given by

u0(x1, x2) = tanh

 1
4 + 1

10 cos
(
β · atan2

(
x2 − 1

2 , x1 − 1
2

))
−
√(

x1 − 1
2

)2
+
(
x2 − 1

2

)2
√

2α

 . (3.16b)

We set ε = 0.05, β = 7, α = 0.75, and we discretize in space with second order centered finite differences,
thus obtaining a system in form (3.1) with K a matrix with pentadiagonal structure. We simulate
until final time T = 0.025. Notice that the linear operator ∆ + 1

ε2 guarantees a unique solution for
the corresponding Sylvester equation, even with homogeneous Neumann boundary conditions. As
time marching scheme, we employ the third order exponential Runge–Kutta integrator with (reduced)
tableau (5.9) in Reference [111]

c2

c3 γc2ϕ2,2 +
c23
c2
ϕ2,3

γ
γc2+c3

ϕ2
1

γc2+c3
ϕ2

(3.17)

with c3 = 2c2 = 1/2 and γ = (3c3−2)c3
(2−3c2)c2

= −4/5. Its implementation involves the usage only of the
ϕ1 and ϕ2 functions, which do not trigger the ill-conditioning of the Sylvester equation observed in
Reference [144]. This integrator requires to compute the following actions (scaled by proper coefficients)

ϕ1(τK/2s)f(tn,un), s = 0, 1, 2,

ϕ2(τK/2s)dn2, s = 0, 1, 2,

ϕ2(τK)dn3,

see formula (3.4). The sylvphi routine is then called in total six times: three times to compute the
action of the ϕ1 function at the different scales of K, twice to compute the action of the ϕ2 function for
the scales s = 1 and s = 2 and, finally, once to compute the action of ϕ2(τK) to (γdn2 +dn3)/(γc2 + c3).
Therefore, nine Sylvester equations have to be solved. The other four routines have to be called three
times, one for each of the above rows. In fact, all of them are natively able to produce the action of
single ϕ-functions simultaneously at different scales of K (see, in particular, Section 3.2 for phiks). The
results are summarized in Figure 3.3. Also in this two-dimensional example, with numbers of degrees of
freedom up to N = 6512, the phiks routine turns out to be always the fastest, by a factor of roughly 1.5
with respect to the other techniques.

3.4 Conclusions
In this work, we proposed an efficient µ-mode approach to compute actions of ϕ-functions for matrices K
which are Kronecker sums of any number of arbitrary matrices Aµ. This structure naturally arises when
suitably discretizing in space some evolutionary PDEs of great importance in science and engineering,
such as advection–diffusion–reaction and Allen–Cahn equations. The corresponding stiff system of ODEs
can be effectively solved by exponential integrators, which rely on the efficient approximation of the
action of ϕ-functions. The new method, that we named phiks, approximates the integral definition
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Figure 3.3: Rate of convergence of the exponential Runge–Kutta scheme (3.17) for the semidiscretization
of Allen–Cahn equation (3.16) with n1 = n2 = n = 21 discretization points (left) and wall-clock time in
seconds for increasing number n of discretization points and 20 time steps, up to final time T = 0.025
(right).

of ϕ-functions by the Gauss–Lobatto–Legendre quadrature formula, employs the scaling and squaring
technique, and computes the required actions in a µ-mode fashion by means of Tucker operators and
exponentials of the small sized matrices Aµ, exploiting the efficiency of modern hardware architectures
to perform level 3 BLAS operations. We tested the approach on different stiff ODEs systems arising
from the discretization of important PDEs in two and three space dimensions, using different exponential
integrators (of stiff order two and three). As terms of comparison, we considered another technique
for computing actions of ϕ-functions of Kronecker sums of matrices (based on Sylvester equations,
and currently limited to two space dimensions) and more general techniques for computing actions of
ϕ-functions. The proposed method turned out to be always faster than the others, with speed-ups
ranging from 1.5 to 5.6, depending on the example under consideration. Interesting future developments
are the application of the method to space-fractional diffusion equations [190] and second-order in time
partial differential equations [159].





Chapter 4

PHISPLIT: direction splitting of
ϕ-functions for exponential integrators

In this chapter, we present an efficient, practical, and easy-to-implement way to compute actions of ϕ-functions
for matrices with a d-dimensional Kronecker sum structure in the context of exponential integrators up
to second order. The method is based on a direction splitting of the involved matrix functions, which
lets us exploit the highly efficient level 3 BLAS for the actual computation in a µ-mode fashion of the
required actions. The approach has been successfully tested on 2D and 3D problems with various exponential
integrators, resulting in a consistent speedup with respect to a state-of-the-art technique for computing
actions of ϕ-functions for Kronecker sums.

The material of this chapter is an ongoing work temporarily named as in Reference [37], i.e., M. Caliari, and
F. C.. A µ-mode based direction splitting of ϕ-functions for exponential integrators. In preparation, 2023.

4.1 Introduction
The problem of computing actions of the exponential and exponential-like functions with Kronecker
sum structure received a lot of attention in the last years [39, 41, 42, 127, 128, 144]. Indeed, the
efficient computation of such quantities allows to effectively employ exponential integrators for the time
integration of large stiff systems of Ordinary Differential Equations (ODEs) arising from many problems
of science and engineering. More in detail, we suppose to work with the following stiff system of ODEs{

u′(t) = Ku(t) + g(t,u(t)), t > 0,

u(0) = u0.
(4.1)

Here g(t,u(t)) is a generic nonlinear function of t and of the unknown u(t) ∈ CN , with N = n1 · · ·nd,
while K ∈ CN×N is a matrix with Kronecker sum structure, i.e.,

K = Ad ⊕Ad−1 ⊕ · · · ⊕A1 =

d∑
µ=1

A⊗µ, A⊗µ = Id ⊗ · · · ⊗ Iµ+1 ⊗Aµ ⊗ Iµ−1 ⊗ · · · ⊗ I1, (4.2)

where Aµ ∈ Cnµ×nµ , and Iµ is the identity matrix of size nµ. Here and throughout the chapter the
symbol ⊗ denotes the standard Kronecker product of matrices, while ⊕ is employed for the Kronecker
sum of matrices. Moreover, we refer to system (4.1) as a system in Kronecker form or with Kronecker
sum structure.

This kind of systems naturally arises in many contexts. For example, in the two dimensional case
d = 2, such a structure appears in constant coefficient matrix Riccati differential equations (see, for

55
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instance, [2, Ch. 3]) {
U ′(t) = A1U(t) +U(t)AT

2 + C +U(t)BU(t),

U(0) = U0,
(4.3)

where A1 ∈ Cn1×n1 , A2 ∈ Cn2×n2 , U(t) ∈ Cn1×n2 , B ∈ Cn2×n1 , and C ∈ Cn1×n2 . Using the properties
of the Kronecker product [42], we can easily rewrite such a matrix equation as a system of ODEs in
Kronecker form (4.1), i.e.,{

u′(t) = ((I2 ⊗A1) + (A2 ⊗ I1))u(t) + vec(C +U(t)BU(t)),

u(0) = vec(U0),
(4.4)

where vec is the operator which stacks the columns of the input matrix in a single vector. A remarkable
case is the one of Hermitian Riccati differential equations, which are strictly related to linear quadratic
optimal control problems (see [2, Ch. 4]).

Systems with Kronecker sum structure often arise also when applying the method of lines to
approximate numerically the solution of a Partial Differential Equation (PDE) defined on a tensor
product domain. Indeed, after semi-discretization in space of well-known parabolic equations such as
Allen–Cahn, Brusselator, Gray–Scott, advection–diffusion–reaction [41, 42] or Schrödinger equations [39],
we obtain a large stiff system of ODEs in form (4.1).

Once system (4.1) is given, many techniques can be employed to numerically integrate it in time,
and in particular we are interested in the application of exponential integrators [112]. In fact, they are a
prominent way to perform the required task since they enjoy favorable stability properties that make
them suitable to work in the stiff regime. These kinds of schemes require the computation of the action
of the matrix exponential and of exponential-like matrix functions (the so-called ϕ-functions) on vectors.
They are defined, for a generic matrix X ∈ CN×N , as

ϕ0(X) = eX , ϕ`(X) =
1

(`− 1)!

∫ 1

0

e(1−θ)Xθ`−1dθ, ` > 0, (4.5a)

and their Taylor series expansion is given by

ϕ`(X) =

∞∑
i=0

Xi

(i+ `)!
, ` ≥ 0. (4.5b)

When the size of X allows, it is common in practice to approximate such matrix functions by means of
diagonal Padé approximations [5, 24, 173] or via polynomial approximations [126], and then multiply
with the vector. On the other hand, when X is large sized, this approach is computationally unfeasible,
and many algorithms have been developed to perform directly the action of ϕ-functions on vectors. We
mention, among the others, Krylov-based techniques [97, 132, 149], direct polynomial methods [6, 40,
44, 126], and hybrid techniques [43].

When X is in fact a matrix K with Kronecker sum structure (4.2), it is possible to exploit this
information to compute more efficiently the action of the ϕ-functions on a vector. Indeed, let us consider
` = 0, so that ϕ0(K) = eK . Then, it is easy to see [42] that computing

e = eKv = eAd⊕Ad−1⊕···⊕A1v = eAd ⊗ eAd−1 ⊗ · · · ⊗ eA1v (4.6)

is mathematically equivalent to compute

E = V ×1 eA1 ×2 · · · ×d eAd , (4.7)

which we refer to as the tensor formulation. Here, E and V are order-d tensors of size n1× · · · ×nd that
satisfy vec(E) = e and vec(V ) = v, respectively, while vec is the operator which stacks the columns
of the input tensor into a suitable single column vector. The symbol ×µ denotes the tensor–matrix
product along the mode µ, which is also known as µ-mode product, and the computation of consecutive
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µ-mode products (as it happens in formula (4.7)) is usually referred to as Tucker operator. As extensively
explained in Reference [42], the tensor formulation is computationally more attractive, since it can be
implemented by exploiting the highly performant level 3 BLAS after computing the small sized matrix
exponentials eAµ . This technique led to the so-called µ-mode integrator [39], and has been successfully
used to integrate in time semi-discretizations of advection–diffusion–reaction and Schrödinger equations,
eventually in combination with a splitting scheme. In particular, a consistent speedup is reported with
respect to state-of-the-art techniques to compute the action of the matrix exponential on a vector, as
well as a very good scaling when performing GPUs simulations.

When computing actions of ϕ-function of higher order, i.e., ϕ`(K)v with ` > 0, the last equality in
formula (4.6) does not hold anymore. In Reference [41] the authors propose an approach to overcome
this difficulty. In particular, they develop a method based on the application of a quadrature rule to
the integral definition of the ϕ-functions (4.5a) in combination with a modified scaling and squaring
technique. Then, for each quadrature point and squaring stage, the needed actions of matrix exponentials
are performed by a Tucker operator of the form (4.7). In this way, it is possible to compute the required
actions of ϕ-functions at a given tolerance. The technique, which has been named phiks, allows
to efficiently implement high stiff order exponential integrators, such as exponential Runge–Kutta
integrators, and has been shown to be faster than classical state-of-the-art techniques to compute
combinations of actions of ϕ-functions. Moreover, phiks turned out to be more efficient than a recently
proposed method [144] to compute ϕ`(K)v when K is a matrix of type I2 ⊗ A1 + A2 ⊗ I1, i.e., with
two-dimensional Kronecker sum structure. This approach, currently limited to d = 2, is based on the
solution of Sylvester equations. Other recent techniques to approximate the action of the so-called
Sylvester operator A1V + V A2 or the Lyapunov operator A1V + V A1 for the solution of Riccati
differential equations by means of exponential Rosenbrock integrators, possibly in the context of low-rank
approximation, are presented in References [127, 128].

In this work, we propose an alternative way to approximate ϕ`(K)v, with ` > 0 and K a matrix
with d-dimensional Kronecker sum structure, in the context of exponential integrators up to second
order. The approach, that we call phisplit, is based on a direction splitting of the matrix ϕ-functions
of K, which generates an approximation error compatible with the one of the time marching numerical
scheme and evaluates the required actions in a µ-mode fashion by means of a single Tucker operator for
each ϕ-function. In particular, after recalling some exponential integrators in Section 4.2, we describe
in Section 4.3 the proposed technique, as well as how to employ it to implement the just mentioned
schemes. Then, in Section 4.4 we present some numerical experiments that show the effectiveness of
phisplit, and we draw some conclusions in Section 4.5.

4.2 Recall of some exponential integrators of order up to two
When numerically integrating stiff semilinear ODEs in form (4.1) (where the stiff part is represented by
the matrix K), a prominent approach is to use exponential integrators [112]. For convenience of the
reader, we report here (for simplicity in a constant time step size scenario) a possible derivation of the
exponential schemes that will be employed later in the numerical experiments of Section 4.4.

The starting point is the variation-of-constants formula

u(tn+1) = eτKu(tn) +

∫ tn+1

tn

e(tn+1−s)Kg(s,u(s))ds

= eτKu(tn) + τ

∫ 1

0

e(1−θ)τKg(tn + τθ,u(tn + τθ))dθ

(4.8)

which expresses the analytical solution of system (4.1) at time tn+1 = tn + τ , where τ is the time step
size. If we approximate the integrand with the rectangle left rule, we get the scheme

un+1 = eτKun + τeτKg(tn,un) = eτK(un + τg(tn,un)), (4.9)

which is known as exponential Lawson–Euler scheme (see [23, Sec. A.1.1]). It is of order one and exact
for linear homogeneous problems. The linear part of system (4.1) is solved exactly and thus no restriction
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on the time step due to the stiffness is necessary. If instead the trapezoidal quadrature rule is applied to
the integral in equation (4.8), we get the approximation

u(tn+1) ≈ eτKu(tn) +
τ

2

(
eτKg(tn,u(tn)) + g(tn+1,u(tn+1))

)
.

An explicit time marching scheme is then obtained by creating an intermediate stage un2 which
approximates u(tn+1) in the right hand side by the exponential Lawson–Euler scheme (4.9). Overall, we
get

un2 = eτK(un + τg(tn,un)),

un+1 = eτK
(
un +

τ

2
g(tn,un)

)
+
τ

2
g(tn+1,un2),

(4.10)

which is an exponential Lawson method of order two, also known in literature as Lawson2b (see [23,
Sec. A.1.6]).

A different approach to the approximation of the integral in formula (4.8) leads to the so-called
exponential Runge–Kutta methods. Indeed, if we approximate only the nonlinear function g(tn +
τθ,u(tn + τθ)) by g(tn,u(tn)), by using the definition of ϕ1 function in equation (4.5a) we get the
scheme

un+1 = eτKun + τϕ1(τK)g(tn,un),

which can be rewritten as
un+1 = un + τϕ1(τK)(Kun + g(tn,un)) (4.11)

and is known as exponential Euler (or exponential Nørsett–Euler, see [23, Sec. A.2.1]). It is a first order
scheme, and it is exact for linear problems with constant coefficients. Another possibility is to interpolate
g(tn + τθ,u(tn + τθ)) with a polynomial of degree one in θ at 0 and 1, thus obtaining the approximation

u(tn+1) ≈ eτKu(tn) + τ

∫ 1

0

e(1−θ)τK(θg(tn+1,u(tn+1)) + (1− θ)g(tn,u(tn)))dθ.

By taking a stage un2 which approximates u(tn+1) in the right hand side by the exponential Euler
scheme and using the definitions of ϕ1 and ϕ2 functions in formula (4.5a), we obtain the second order
exponential Runge–Kutta scheme (also known in literature as ETD2RK, see [23, Sec. A.2.5])

un2 = un + τϕ1(τK)(Kun + g(tn,un)),

un+1 = un2 + τϕ2(τK)(g(tn+1,un2)− g(tn,un)).
(4.12)

Finally, we consider the Rosenbrock–Euler method (see [112, Ex. 2.20]), which can be obtained from
the application of the exponential Euler scheme to the linearized differential equation (assumed to be
autonomous, for simplicity)

u′(t) =

(
K +

∂g

∂u
(un)

)
u(t) + g(u(t))− ∂g

∂u
(un)u(t).

The resulting scheme is
un+1 = un + τϕ1(τKn)(Kun + g(un)), (4.13)

where Kn is the Jacobian

Kn = K +
∂g

∂u
(un)

evaluated at un. It is a second order method and, in contrast to all the methods presented above, it
requires the evaluation of a different matrix function ϕ1(τKn) at each time step. The extension to
non-autonomous systems is straightforward and can be written as

un+1 = un + τϕ1(τKn)(Kun + g(tn,un)) + τ2ϕ2(τKn)
∂g

∂t
(tn,un), Kn = K +

∂g

∂u
(tn,un),

see [112, Ex. 2.21]. We invite an interested reader to check the survey paper [112] for more information
and details on exponential integrators.



4.3. DIRECTION SPLITTING OF ϕ-FUNCTIONS 59

Remark 4.2.1. We considered here only a selected number of exponential integrators which require
the action of ϕ-functions. Other exponential-type schemes of first or second order could benefit from
the µ-mode splitting technique for computing ϕ-functions of Kronecker sums that we present in this
work. We mention, among the others, corrected splitting schemes [86], low-regularity schemes [165], and
Magnus integrators for linear time dependent coefficient non-homogeneous equations [100].

4.3 Direction splitting of ϕ-functions
As mentioned in the introduction, we suppose that we are dealing with a matrix K with Kronecker
sum structure (4.2), and we are interested in computing efficiently ϕ`(τK)v, v ∈ CN , τ ∈ C, in the
context of exponential integrators. In particular, we know that by employing a scheme of order p, we
make a local error O(τp+1), being τ the (constant) time step size. Hence, if the integrator requires to
compute a quantity of the form τ qϕ`(τK), with q > 0, it is sufficient to approximate ϕ`(τK) with an
error O(τp+1−q), in order to preserve the order of convergence. For our schemes of interest, i.e, the ones
presented in the previous section, we make use of the following result.

Theorem 4.3.1. Let K be a matrix with d-dimensional Kronecker sum structure (4.2). Then we have

ϕ`(τK) = (`!)d−1 (ϕ`(τAd)⊗ ϕ`(τAd−1)⊗ · · · ⊗ ϕ`(τA1))) +O(τ2). (4.14)

Proof. For compactness of presentation, we employ the following notation

Xd ⊗Xd−1 ⊗ · · · ⊗X1 =

1⊗
µ=d

Xµ, Xµ ∈ Cnµ×nµ .

Then, by using the Taylor expansion of the ϕ` function (4.5b) and the properties of the Kronecker
product (see Reference [183] for a comprehensive review) we obtain

(`!)d−1
1⊗

µ=d

ϕ`(τAµ) = (`!)d−1
1⊗

µ=d

(
Iµ
`!

+
τAµ

(`+ 1)!
+O(τ2)

)

= (`!)d−1

 1

(`!)d

1⊗
µ=d

Iµ +
τ

(`!)d−1(`+ 1)!

d∑
µ=1

A⊗µ +O(τ2)


=
I

`!
+

τK

(`+ 1)!
+O(τ2)

= ϕ`(τK) +O(τ2),

where I is the identity matrix of size N ×N .

Notice that in the case ` = 0, i.e., for the matrix exponential, the direction splitting error of
formula (4.14) is null, and when applying to a vector v we recover formula (4.6).

Formula (4.14) allows for an efficient µ-mode based implementation, similarly to the matrix expo-
nential case (4.7). Indeed, given an order d tensor V such that v = vec(V ), if we define

p
(2)
` = ϕ

(2)
` (τK)v = vec

(
((`!)d−1V )×1 ϕ`(τA1)×2 ϕ`(τA2)×3 · · · ×d ϕ`(τAd)

)
we have

ϕ`(τK)v = p
(2)
` +O(τ2). (4.15)

We refer to
P

(2)
` =

(
(`!)d−1V

)
×1 ϕ`(τA1)×2 ϕ`(τA2)×3 · · · ×d ϕ`(τAd) (4.16)

as the tensor formulation of p(2)
` , so that vec(P

(2)
` ) = p

(2)
` . This is precisely the formulation that we

propose to employ when actions of ϕ-functions of a matrix with Kronecker sum structure are required
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for the above exponential integrators. From now on, we refer to this technique as the phisplit approach.
Notice that, after the computation of the small sized matrix functions ϕ`(τAµ), with µ = 1, . . . , d, a
single Tucker operator is required to evaluate approximation (4.16)

Remark 4.3.1. A similar idea can be employed in order to retrieve higher order approximations for the
ϕ-functions. For example, for the case d = 2 we have

ϕ1(τ(I2 ⊗A1 +A2 ⊗ I1)) = ϕ1(τA2)⊗ ϕ1(τA1) +
1

12

(
(eτA2 − I2)⊗ (eτA1 − I1)

)
+O(τ4)

and
ϕ2(τ(I2 ⊗A1 +A2 ⊗ I1)) = 2(ϕ2(τA2)⊗ ϕ2(τA1))

+ 4

((
ϕ3(2τA2)− 1

6
I2

)
⊗
(
ϕ3(2τA1)− 1

6
I1

))
+O(τ4).

This is useful for the implementation of exponential integrators of order higher than two, or for lower
order schemes in order to reduce the magnitude of the direction splitting error. A comprehensive theory
for these kinds of approximations is currently under study.

4.3.1 Evaluation of small sized matrix ϕ-functions

The matrices Aµ have a much smaller size compared to K, and the corresponding matrix ϕ-functions
can be computed without much effort. The most popular technique for general matrices is based on
diagonal rational Padé approximations, coupled with a suitable scaling and squaring algorithm (which is
in fact the algorithm underlying the matlab function expm for the matrix exponential). For convenience
of the reader, we report here the formula which is usually adopted, that is (see Reference [173])

ϕ`(2X) =
1

2`

eXϕ`(X) +
∑̀
j=1

ϕj(X)

(`− j)!

 , X ∈ Cn×n.

As we can see, the squaring of ϕ`(X) requires the evaluation of all the ϕj(X) functions, for j < `. These
can be computed themselves by a Padé approximation, or by using the recurrence relation

ϕj−1(X) = zϕj(X) +
1

(j − 1)!
, j = 1, . . . , `.

Hence, the computation of a single matrix function ϕ` makes available also all the matrix functions
ϕj , j < `. A popular matlab routine employing this technique is phipade [24]. Other more recent
techniques that use polynomial Taylor approximations instead of rational Padé ones are available, see
for instance Reference [126].

4.3.2 Practical implementation of the exponential integrators

The implementation of the exponential Lawson methods introduced in Section 4.2, which require just
actions of matrix exponentials, does not suffer from any direction splitting error, thanks to the equivalence
between formulas (4.6) and (4.7). In particular, the tensor formulation of exponential Lawson–Euler is

Un+1 = (Un + τG(tn,Un))×1 eτA1 ×2 · · · ×d eτAd , (4.17)

while the Lawson2b scheme is given by

Un2 = (Un + τG(tn,Un))×1 eτA1 ×2 · · · ×d eτAd ,

Un+1 =
(
Un +

τ

2
G(tn,Un)

)
×1 eτA1 ×2 · · · ×d eτAd +

τ

2
G(tn+1,Un2).

(4.18)
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Here and in the subsequent formulas we have

vec(Un) = un, vec(Un2) = un2, vec(Un+1) = un+1

and
vec(G(tn,Un)) = g(tn,un), vec(G(tn+1,Un2)) = g(tn+1,un2).

The remaining exponential integrators transform as follows. First of all, the action of the matrix K on
un is computed in tensor form as

d∑
µ=1

(Un ×µ Aµ)

without explicitly assembling the matrix K (see Reference [42]). Then, the exponential Euler phisplit
method is

Un+1 = Un + τ

(
d∑

µ=1

(Un ×µ Aµ) +G(tn,Un)

)
×1 ϕ1(τA1)×2 · · · ×d ϕ1(τAd), (4.19)

while the ETD2RK phisplit scheme becomes

Un2 = Un + τ

(
d∑

µ=1

(Un ×µ Aµ) +G(tn,Un)

)
×1 ϕ1(τA1)×2 · · · ×d ϕ1(τAd),

Un+1 = Un2 + τ (G(tn+1,Un2)−G(tn,Un))×1 ϕ2(τA1)×2 · · · ×d ϕ2(τAd).

(4.20)

Finally, concerning the exponential Rosenbrock–Euler method, we assume that the Jacobian Kn can be
written as a Kronecker sum, i.e.,

Kn = K +
∂g

∂u
(un) = Jd(Un)⊕ Jd−1(Un)⊕ · · · ⊕ J1(Un).

Therefore the exponential Rosenbrock–Euler phisplit method is

Un+1 = Un + τ

(
d∑

µ=1

(Un ×µ Aµ) +G(tn,Un)

)
×1 ϕ1(τJ1(Un))×2 · · · ×d ϕ1(τJd(Un)). (4.21)

4.4 Numerical experiments
In this section we present numerical experiments to validate phisplit, the proposed approach in the
context of exponential integrators to compute actions of ϕ-functions when the matrix has a Kronecker
sum structure. In particular, we will consider a two-dimensional example from linear quadratic control
and a three-dimensional example which models an advection–diffusion–reaction equation. To perform
the time marching, we will employ the exponential integrators of Section 4.2 as described in Section 4.3.2
for the phisplit version.

As term of comparison, we will consider the approximation of actions of ϕ-functions for matrices with
Kronecker sum structure using phiks1[41], for both the 2D and 3D experiments. Also this algorithm
operates in tensor formulation using µ-mode products, but it requires an input tolerance, which we
take proportional to the local temporal order of the method and to the norm of the current solution.
The proportionality constant is chosen so that the error committed by the routine, measured against a
reference or analytical solution, does not affect the temporal error.

To compute all the relevant tensor operations, i.e., Tucker operators and µ-mode products, we use the
functions contained in the package KronPACK2. Moreover, to compute the needed matrix ϕ-functions,
we employ the internal matlab function expm (for ϕ0) and the function phipade3 (for ϕ`, ` > 0). In
terms of hardware, we run all the experiments employing an Intel® Core™ i7-10750H CPU with six
physical cores and 16GB of RAM. As a software, we employ MathWorks MATLAB® R2022a.

1https://github.com/caliarim/phiks
2https://github.com/caliarim/KronPACK
3https://www.math.ntnu.no/num/expint/matlab/

https://github.com/caliarim/phiks
https://github.com/caliarim/KronPACK
https://www.math.ntnu.no/num/expint/matlab/
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4.4.1 2D experiment: linear quadratic control
We present in this section a classical example from linear quadratic control, see for instance [140, 156].
We are interested in the minimization over the scalar control v(t) ∈ R of the functional

J (v) =
1

2

∫ T

0

(
αs(t)Ts(t) + v(t)2

)
dt

subject to the constraints
w′(t) = Aw(t) + bv(t), w(0) = w0,

s(t) = cw(t).

Here w(t) ∈ Rn×1 is a column vector containing the state variables, s(t) ∈ R represents the scalar output,
A ∈ Rn×n is the system matrix, b ∈ Rn×1 is the system column vector, c ∈ R1×n is a row vector, and
α ∈ R+ is a positive scalar.

Then, the solution of the constrained optimization problem is determined by the optimal control

v∗(t) = −bTU(t)w(t),

where U(t) ∈ Rn×n satisfies the symmetric Riccati differential equation{
U ′(t) = ATU(t) +U(t)A+ C +U(t)BU(t),

U(0) = Z,
(4.22)

with C = αcTc and B = −bbT. Here Z ∈ Rn×n is a matrix containing all zeros entries. Clearly,
equation (4.22) is in form (4.3), which in turn can be seen as a problem with two-dimensional Kronecker
sum structure and integrated efficiently by means of the techniques described in the Section 4.3. Notice
also that the solution of equation (4.22) converges to a steady state determined by the algebraic Riccati
equation

ATU(t) +U(t)A+ C +U(t)BU(t) = 0. (4.23)

For our numerical experiment, similarly to what previously done in the literature [127, 128, 140, 156],
we take A ∈ Rn̂2×n̂2

as the matrix obtained by the discretization with second order centered finite
differences of the operator

∂xx + ∂yy − 10x∂x − 100y∂y (4.24)

on the domain [0, 1]2 with homogeneous Dirichlet boundary conditions. Moreover, the components bk of
the vector b are defined as

bk =

{
1 if 0.1 < xi ≤ 0.3,

0 otherwise,
k = i+ (j − 1)n̂, i = 1, . . . , n̂, j = 1, . . . , n̂,

while for the components ck of the vector c we take

ck =

{
1 if 0.7 < xi ≤ 0.9,

0 otherwise,
k = i+ (j − 1)n̂, i = 1, . . . , n̂, j = 1, . . . , n̂.

Here xi represents the ith (inner) grid point along the x direction. Finally, we set α = 100.
For the temporal integration of equation (4.22) we use the exponential Rosenbrock–Euler method,

already employed in [127, 128], and reported in formula (4.13) (see formula (4.21) for the phisplit
version). In fact, the Jacobian matrix of system (4.22) has the following Kronecker sum structure

Kn = I ⊗ (AT +UnB) + (A+BUn)T ⊗ I,

where I is the identity matrix of size n×n, with n = n̂2. Remark that the exponential Rosenbrock–Euler
phisplit method requires to evaluate at each time step ϕ1(τ(AT +UnB)) and ϕ1(τ(A+BUn)T), to
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compute the action Kun and to perform one Tucker operator. We will employ also the second order
exponential Runge–Kutta method ETD2RK, reported in formula (4.12) and presented in phisplit sense
in formula (4.20). Although each time step of this integrator requires two actions of matrix functions,
and thus two Tucker operators for the phisplit version, plus the action Kun, in a constant time step
size implementation the two matrix functions needed ϕ1(τAT) and ϕ2(τAT) can be computed once and
for all at the beginning.

First of all, we verify the implementation of the involved exponential integrators for a long term
simulation, i.e., until reaching the steady state. For this experiment, we employ n̂ = 30 inner discretization
points for the x and y variables. As confirmed by the plot in Figure 4.1, we see that all the methods,
both in their phiks and phisplit implementation, reach around time 0.15 the solution of equation (4.23),
which is obtained with the matlab function icare from the Control System Toolbox.
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Figure 4.1: Convergence of the exponential Rosenbrock–Euler and of the ETD2RK methods, both
in phiks and in phisplit variants, to the steady state of Riccati differential equation (4.22). All the
integrators have been employed with 200 time steps, and the relative error with respect to the solution
of algebraic Riccati equation (4.23) is measured in Frobenius norm.

Then, we compare the performances of the integrators for the solution of equation (4.22) with n̂ = 40
up to the final time T = 0.025. All methods are run with different time step sizes in such a way to
reach comparable relative errors with respect to a reference solution. The number of time steps for
each method and simulation, together with the numerically observed convergence rate, is reported in
Table 4.1. All the methods appear to be of second order, as expected.

Moreover, in Figure 4.2 we report the relative errors and the corresponding wall-clock times of
the simulations. Here, we include also the performance of the built-in matlab function ode23. It
implements an explicit Runge–Kutta method of order three with variable step size, suggested for not
stringent tolerances and for moderately stiff problems. In fact, it turned out to be the fastest routine in
the ODE suite to reach accuracies in the same range of the other methods. We notice first of all that
the exponential Rosenbrock–Euler method is always faster than ETD2RK in the phiks implementation,
that is with the action of matrix functions computed at a precision that does not affect the temporal
error (see the discussion at the beginning of the section). On the other hand, the two implementations
with phisplit are always faster compared with their phiks counterparts, although they require a larger
number of time steps to reach a comparable accuracy. Moreover, the ETD2RK method turns out to be
faster with respect to the exponential Rosenbrock–Euler method. This is mainly due to the fact that
the matrix functions in the Runge–Kutta case are computed only once before the time marching. This
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Exponential Rosenbrock–Euler phiks
# steps 15 30 45 60 75
order – 2.10 2.06 2.04 2.03

ETD2RK phiks
# steps 10 20 30 40 50
order – 2.12 2.07 2.05 2.04

Exponential Rosenbrock–Euler phisplit
# steps 30 65 100 135 170
order – 2.05 2.03 2.02 2.02

ETD2RK phisplit
# steps 30 65 100 135 170
order – 2.05 2.03 2.02 2.02

Table 4.1: Number of time steps and observed convergence rates for the time integration of the Riccati
differential equation (4.22) up to final time T = 0.025, with different exponential integrators and n̂ = 40.
The achieved errors and the wall-clock times are displayed in Figure 4.2.

method is in fact at least twice as fast as the other exponential methods, and the fastest one in any case.
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Figure 4.2: Achieved errors and wall-clock times in seconds for the solution of Riccati differential
equation (4.22) up to final time T = 0.025, with different integrators and n̂ = 40. The numbers of time
steps for each exponential method are reported in Table 4.1. The input tolerances (both absolute and
relative) for ode23 are 3e-3, 4e-4, 2.3e-4, 9.5e-5 and 8.7e-5.

Remark 4.4.1. The discretization of the operator (4.24) has itself a Kronecker sum structure. Hence,
it is be possible to write equation (4.22) (in vector formulation, for simplicity of exposition) as{

u′(t) = Ku+ g(u),

u(0) = z,

where g and z are the vectorization of the nonlinearity and of Z, respectively, and K has the form

K = I ⊗ I ⊗ I ⊗DT
1 +DT

2 ⊗ I ⊗ I ⊗ I.

Here I is an identity matrix of size n̂ × n̂ and D1 ∈ Rn̂×n̂ and D2 ∈ Rn̂×n̂ the discretizations of
the operators ∂xx − 10x∂x and ∂yy − 100y∂y, respectively. In the context of temporal integration with
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exponential Runge–Kutta schemes, we could then use both the phiks and the phisplit approaches with
the even smaller sized matrices D1 and D2, forming then the approximations at every time steps using
Tucker operators with order four tensors. However, as this is just possible because of the specific form of
the operator (4.24), we do not pursue this approach here.

4.4.2 3D experiment: advection–diffusion–reaction
We now consider the semidiscretization in space of the following three dimensional evolutionary advection–
diffusion–reaction (ADR) equation (see Reference [41])

∂tu(t, x1, x2, x3) = ε∆u(t, x1, x2, x3) + α(∂x1
+ ∂x2

+ ∂x3
)u(t, x1, x2, x3)

+ g(t, x1, x2, x3, u(t, x1, x2, x3)),

u0(x1, x2, x3) = 64x1(1− x1)x2(1− x2)x3(1− x3).

(4.25)

The nonlinear function g is given by

g(t, x1, x2, x3, u(t, x1, x2, x3)) =
1

1 + u(t, x1, x2, x3)2
+ Ψ(t, x1, x2, x3),

where Ψ(t, x1, x2, x3) is such that the analytical solution of the equation is

u(t, x1, x2, x3) = etu0(x1, x2, x3).

The problem is solved up to final time T = 1 in the domain [0, 1]3 and completed with homogeneous
Dirichlet boundary conditions. The remaining parameters are set to ε = 0.75 and α = 0.1. By
semidiscretizing in space with second order centered finite differences, we end up with a system of type (4.1)
with K in three-dimensional Kronecker sum structure (4.2), where Aµ approximates ε∂xµxµ + α∂xµ ,
µ = 1, 2, 3. In particular, we take n1 = 80, n2 = 81 and n3 = 82 internal discretization points for the
x1, x2 and x3 variables, respectively. The temporal integration is performed with four methods: the
Lawson–Euler scheme (4.9), the Lawson2b scheme (4.10), the Exponential Euler method (4.11) and
the ETD2RK method (4.12) (see Section 4.3.2 for their practical implementation and the phisplit
versions). In particular, concerning the Lawson schemes, the needed matrix exponentials eτAµ , µ = 1, 2, 3,
are computed once and for all at the beginning. Then, one and two Tucker operators per time step,
for the first order and second order scheme, respectively, are required to form the approximations
during the temporal integration. Concerning the phisplit implementation of exponential Euler and
ETD2RK, again we compute once and for all the needed matrix function ϕ1(τAµ) and ϕ2(τAµ) before
starting the temporal integration, and we then combine them suitably at each time step. This operation
requires a single Tucker operator for the first order scheme and two for the second order one, as for the
aforementioned Lawson schemes, plus the action Kun.

The number of time steps for each method, for both the phisplit and phiks implementations, is
reported in Table 4.2, while the reached relative errors and the wall-clock times are summarized in
Figure 4.3. First of all, we notice that all the methods show the expected convergence rate, reported in
Table 4.2 as well. In particular, for large time step sizes, the Lawson2b method suffers from an order
reduction. This is expected, as in these cases the problem is more stiff, and schemes which employ just
the exponential function are affected by this phenomenon (see, for instance, Reference [110]). Then,
from Figure 4.3 we observe that the phisplit approach is in any case the most performant among all
the methods and techniques considered, with an increasing speedup for more stringent accuracies. More
in detail, compared with its phiks counterparts, the phisplit implementations are roughly 3.4 and 3.7
times faster for the first order and second order schemes, respectively, even if (in general) they require
more time steps to reach a comparable accuracy. Finally, concerning the Lawson schemes, although they
require the same number of Tucker operators per time step compared with the phisplit implementations
of the exponential Runge–Kutta schemes, they are always the least performant. This is mainly due to
the requirement of a large number of time steps to reach the accuracy of the other methods, which is
particularly evident for the second order scheme (see bottom of Table 4.2 and of Figure 4.3).



66 CHAPTER 4. PHISPLIT: DIRECTION SPLITTING FOR EXPONENTIAL INTEGRATORS

Lawson–Euler
# steps 800 8800 16800 24800 32800
order – 1.00 1.00 1.00 1.00

Exponential Euler phiks
# steps 50 450 850 1250 1650
order – 1.02 1.00 1.00 1.00

Exponential Euler phisplit
# steps 50 450 850 1250 1650
order – 1.03 1.01 1.00 1.00

Lawson2b
# steps 3000 4500 6000 7500 9000
order – 1.79 1.87 1.92 1.94

ETD2RK phiks
# steps 20 80 140 200 260
order – 1.94 1.97 1.98 1.99

ETD2RK phisplit
# steps 40 140 240 340 440
order – 2.10 2.04 2.03 2.02

Table 4.2: Number of time steps and observed convergence rates for the time integration of the
semidiscretization of the advection–diffusion–reaction equation (4.25) up to final time T = 1 , with
different exponential integrators. Here we considered n1 = 80, n2 = 81 and n3 = 82 space discretization
points. The achieved errors and the wall-clock times are displayed in Figure 4.3.

4.5 Conclusions
In this work, we presented how it is possible to efficiently approximate actions of ϕ-functions for matrices
with d-dimensional Kronecker sum structure using a µ-mode based approach. The technique, that we call
phisplit, is suitable when integrating initial valued Ordinary Differential Equations with exponential
integrators up to second order. It is based on an inexact direction splitting of the matrix functions
involved in the time marching schemes which preserves the order of the method. The effectiveness and
superiority of the approach, with respect to another technique to compute actions of ϕ-functions in
Kronecker form, has been shown on a two-dimensional problem from linear quadratic control and on
a three-dimensional advection–diffusion–reaction equation, using a variety of exponential integrators.
Interesting future developments would be to generalize the approach for higher order integrators and
performing GPU simulations with the phisplit technique, possibly in single and/or half precision (which
are compatible with the magnitude of the errors of the temporal integration), for different problems from
science and engineering. Also, an extension of phisplit to the Mittag–Leffler functions, which appear
in exponential time differencing methods for fractional differential equations (see for instance [94, 95]),
would be of great interest.
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Figure 4.3: Achieved errors and wall-clock times in seconds for the solution of the semidiscretization
of the advection–diffusion–reaction equation (4.25) up to final time T = 1, with different exponential
integrators of order one (top) and order two (bottom). Here we considered n1 = 80, n2 = 81 and n3 = 82
space discretization points. The numbers of time steps for each method are reported in Table 4.2.
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Chapter 5

Ensign: dynamical low-rank 6D Vlasov
simulation

Running kinetic simulations using grid-based methods is extremely expensive due to the up to six-dimensional
phase space. Recently, it has been shown that dynamical low-rank algorithms can drastically reduce the
required computational effort, while still accurately resolving important physical features such as filamentation
and Landau damping. In this chapter, we present a new second order projector-splitting dynamical low-rank
algorithm for the full six-dimensional Vlasov–Poisson equations. An exponential integrator based Fourier
spectral method is employed to obtain a numerical scheme that is free of a CFL condition but still fully explicit.
The resulting method is implemented with the aid of Ensign, a software framework which facilitates the
efficient implementation of dynamical low-rank algorithms on modern multi-core CPU as well as GPU based
systems. Its usage and features are briefly described as well. The presented numerical results demonstrate
that 6D simulations can be run on a single workstation and highlight the significant speedup that can be
obtained using GPUs.

The material of this chapter is taken from Reference [52], i.e., F. C., and L. Einkemmer. Efficient 6D Vlasov
simulation using the dynamical low-rank framework Ensign. Comput. Phys. Commun., 280:108489, 2022.

5.1 Introduction

Efficiently solving kinetic equations is important in applications ranging from plasma physics to radiative
transport. The main challenge in this context is the up to six-dimensional phase space and the associated
unfavorable scaling of computational cost and memory requirements. Assuming n discretization points
for each direction of a 6D phase space, the storage cost of a direct discretization scales as O(n6). This
is usually referred to as the curse of dimensionality. To mitigate this issue, many techniques have
been proposed in the literature; we mention, for example, particle methods [48, 184] and sparse grid
approximations [102, 122]. However, it is well known that the former misses or underresolves some
important physical phenomena (such as Landau damping or regions with low density), while the latter has
issues with the Gaussian equilibrium distribution and the low regularity inherent in collisionless kinetic
problems. Because of this, direct simulations are routinely conducted on large supercomputers [27, 73].
However, current computational constraints mostly limit this approach to four- and some five-dimensional
problems.

More recently, a dynamical low-rank algorithm for solving the Vlasov–Poisson equations has been
proposed in [82]. In the context of a 6D phase space, dynamical low-rank integrators approximate the
solution by a set of only three-dimensional advection problems. The resulting algorithm has the primary
advantage of having storage and computational costs that scale as O(rn3) and O(r2n3), respectively,
where r is the (usually small) rank of the approximation. This can result in a drastic reduction of both
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memory consumption as well as computational effort. The main enabling technology was the introduction
of the projector-splitting integrator [134], which allows us to obtain a robust integrator without the need
for regularization within the framework of dynamical low-rank approximations [118, 133, 141, 142].

For kinetic equations the dynamical low-rank approach offers a range of advantages, not only strictly
related to storage and computational costs. For example, filamented structures in velocity space can be
resolved accurately [87]. Moreover, it is known that in the linear regime [82] and for certain fluid [76, 80]
and diffusive limits [68, 79] the solution has a low-rank structure, hence it is natural to use a low-
rank approximation. Recently, a dynamical algorithm that is conservative from first principle has
been constructed [81]. Because of these advances, dynamical low-rank approximations have received
significant interest lately, and methods for problems from plasma physics [82, 87, 103, 121], radiation
transport [79, 124, 154, 155], and uncertainty quantification for hyperbolic problems [123] have been
proposed. These schemes have the potential to enable the 6D simulation of such systems on small
clusters or even desktop computers.

While mature software packages exist for solving kinetic problems using both particle methods (e.g.,
[31, 182]) and methods that directly discretize the phase space on a grid (e.g., [77, 101, 161, 186]), no
such software frameworks exist for dynamical low-rank algorithms. However, the need in the latter case
is arguably even more critical, as the resulting evolution equations are usually somewhat more complex
than the original model.

The purpose of this work is to present six-dimensional simulations of the Vlasov–Poisson equations
using the framework Ensign1, which facilitates the easy and efficient implementation of dynamical low-
rank algorithms for kinetic equations (both on multi-core CPU and GPU based systems). In particular,
we will employ a newly designed second order projector-splitting dynamical low-rank algorithm, which
is based on a CFL-free (but still fully explicit) exponential integrator that uses Fourier spectral methods
to compute the action of certain matrix functions. We emphasize, however, that in principle the
software framework is able to support other dynamical low-rank techniques (such as the unconventional
integrator [55]), and is completely flexible with regard to the specific space and time discretizations
employed. In fact, almost any third party library suitable for a given problem could be used alongside
Ensign in an implementation.

The remaining part of this chapter is structured as follows: in Section 5.2 we describe the general
structure of a projector-splitting dynamical low-rank integrator for the Vlasov–Poisson equations. In
Section 5.3 we then semi-discretize (discrete in space and continuous in time) the equations of motion
resulting from the projector-splitting integrator and write them in a matrix formulation. The proposed
integrator is described in detail in Section 5.4. In Section 5.5 we provide a big picture overview of the
Ensign software framework and how it can be used to implement a dynamical low-rank algorithm. We
present some numerical results in Section 5.6 and discuss the performance of the dynamical low-rank
algorithms on CPUs and GPUs in Section 5.7. Finally, we conclude in Section 5.8.

5.2 Low-rank approximation for the Vlasov–Poisson equations
In this chapter we consider the Vlasov–Poisson equations in dimensionless form given by

∂tf(t, x, v) + v · ∇xf(t, x, v)− E(f)(t, x) · ∇vf(t, x, v) = 0,

E(f)(t, x) = −∇xφ(t, x),

−∆φ(t, x) = ρ(f)(t, x) + 1, ρ(f)(t, x) = −
∫

Ωv

f(t, x, v) dv,

(5.1)

where f(t, x, v) represents the particle-density function of the species under consideration, t ∈ R+
0 is

the time variable, x ∈ Ωx ⊂ Rd refers to the space variable, v ∈ Ωv ⊂ Rd is the velocity variable
and d = 1, 2, 3. Depending on the physical phenomenon under study, system (5.1) is completed with
appropriate boundary and initial conditions.

1Publicly available at https://github.com/leinkemmer/Ensign under the MIT license.

https://github.com/leinkemmer/Ensign


5.2. LOW-RANK APPROXIMATION FOR THE VLASOV–POISSON EQUATIONS 73

We now describe how to obtain the dynamical low-rank approximation of the Vlasov–Poisson
system (5.1). A reader not familiar with these concepts can find more details, for instance, in [82]. The
computational domain is denoted by Ω = Ωx × Ωv. Then, instead of directly solving system (5.1), we
look for an approximation of the particle-density function f(t, x, v) that, for fixed t, lies in the rank-r
manifold

M =
{
g(x, v) ∈ L2(Ω) : g(x, v) =

∑
i,j

Xi(x)SijVj(v) with invertible S = (Sij) ∈ Rr×r,

Xi ∈ L2(Ωx), Vj ∈ L2(Ωv) with 〈Xi, Xk〉x = δik, 〈Vj , V`〉v = δj`

}
with corresponding tangent space

TfM =
{
ġ(x, v) ∈ L2(Ω) : ġ(x, v) =

∑
i,j

(
Xi(x)ṠijVj(v) + Ẋi(x)SijVj(v) +Xi(x)Sij V̇j(v)

)
,

with Ṡ ∈ Rr×r, Ẋi ∈ L2(Ωx), V̇j ∈ L2(Ωv)

and 〈Xi, Ẋk〉x = 0, 〈Vj , V̇`〉v = 0
}
.

Here 〈·, ·〉x and 〈·, ·〉v denote the standard inner products on L2(Ωx) and L2(Ωv), respectively, and
we employ Newton’s notation for the time derivative. Moreover, all indexes run from 1 to r and, for
simplicity of presentation, we drop these limits from the notation.

To obtain the dynamical low-rank approximation of the Vlasov–Poisson system (5.1) we need to
compute

∂tf(t, x, v) = −P (f)(v · ∇xf(t, x, v)− E(f) · ∇vf(t, x, v)), (5.2)

where P (f) is the orthogonal projector onto the tangent space TfM. For simplicity of notation, we will
keep using the symbol f to denote the low-rank approximation to the particle-density. The orthogonal
projection of a generic function g can be written as

P (f)g = PV g − PV PXg + PXg,

where PX and PV are orthogonal projectors onto the spaces spanned by the functions Xi and Vj ,
respectively. This formulation suggests a three-term splitting of equation (5.2) with subflows (in the
sense of differential equations in the context of splitting schemes) given by

∂tf1(t, x, v) = −PV (v · ∇xf1(t, x, v)− E(f1) · ∇vf1(t, x, v)), (5.3)
∂tf2(t, x, v) = PV PX(v · ∇xf2(t, x, v)− E(f2) · ∇vf2(t, x, v)), (5.4)
∂tf3(t, x, v) = −PX(v · ∇xf3(t, x, v)− E(f3) · ∇vf3(t, x, v)). (5.5)

This is the projector-splitting integrator that has been first proposed in [134].
By explicitly applying the projector PV on equation (5.3), we can see that solving it is equivalent to

∂tKj(t, x) = −
∑
`

c1j` · ∇xK`(t, x) +
∑
`

c2j` · E(K)(t, x)K`(t, x),

Vj(t, v) = Ṽj(v),

(5.6)

where the approximate particle-density function is written as

f1(t, x, v) =
∑
j

Kj(t, x)Vj(t, v), Kj(t, x) =
∑
i

Xi(t, x)Sij(t),

and
c1j` =

∫
Ωv

vṼj(v)Ṽ`(v)dv, c2j` =

∫
Ωv

Ṽj(v)∇vṼ`(v)dv.
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We refer to [82] for a more detailed derivation and a thorough explanation of the underlying mathematical
structure. Equation (5.6) is usually referred to as the K step of the low-rank projector-splitting algorithm.
Note that the velocity dependent low-rank factors, i.e., Vj , do not change during this step. This means
that we can use their values at the beginning of the step, i.e., Ṽj , in all computations of the K step.

By applying both projectors PV and PX , the second subflow (i.e., the one related to equation (5.4))
can be obtained by 

Ṡij(t) =
∑
k,`

(c1j` · d2
ik − c2j` · d1

ik[E(S)])Sk`(t),

Xi(t, x) = X̆i(x),

Vj(t, v) = Ṽj(v),

(5.7)

where
d1
ik[E(S)] =

∫
Ωx

X̆i(x)E(S)X̆k(x)dx, d2
ik =

∫
Ωx

X̆i(x)∇xX̆k(x)dx.

We refer to equation (5.7) as the S step of the low-rank projector-splitting algorithm. Note that neither
Xi nor Vj change during this step, i.e., their values are fixed to the ones at the beginning of the step
(X̆i and Ṽj , respectively).

Finally, we can demonstrate that solving equation (5.5) is equivalent to
∂tLi(t, v) =

∑
k

d1
ik[E(L)] · ∇vLk(t, v)−

∑
k

(d2
ik · v)Lk(t, v),

Xi(t, x) = X̆i(x),

(5.8)

with the approximate particle-density function written as

f3(t, x, v) =
∑
i

Xi(t, x)Li(t, v), Li(t, v) =
∑
j

Sij(t)Vj(t, v).

This step of the low-rank projector-splitting algorithm is referred to as the L step. Note that the Xi do
not change during this step, i.e., their values are set to X̆i.

Concerning the equations of the electric field, they can be written in terms of the low-rank factors
Xi(t, x), Sij(t) and Vj(t, v) as well. Indeed, depending on the need, we can express the charge density
ρ(f)(t, x) as

ρ(K)(t, x) = −
∑
j

Kj(t, x)ρ(Ṽj(v)), ρ(Ṽj(v)) =

∫
Ωv

Ṽj(v) dv,

ρ(S)(t, x) = −
∑
i,j

X̆i(x)Sij(t)ρ(Ṽj(v)),

ρ(L)(t, x) = −
∑
i

X̆i(x)ρ(Li(t, v)), ρ(Li(t, v)) =

∫
Ωv

Li(t, v) dv,

where the relevant quantities are defined above.
Finally, the approximate solution to the Vlasov–Poisson equations, i.e., system (5.1), is obtained by

combining the partial solutions of the K, S and L steps in a splitting fashion. In the easiest setting, the
first order Lie splitting scheme concatenates the three subflows in sequence, see Section 5.3.1. We will
also outline a second order scheme based on Strang splitting in Section 5.3.2.

5.3 Matrix formulation of the semi-discrete algorithm
So far we have considered the low-rank approximation in a continuous framework. However, to perform
calculations on a computer we have to discretize the equations for the K, S, and L steps. In this
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section, we assume that a space discretization has been chosen. The goal is then to collect the degrees of
freedom into matrices and vectors and write the resulting equations as operations on those objects. The
implementation using the software framework Ensign, described later in Section 5.5, is also based on
this formulation.

We consider nxk discretization points for the space variable xk, k = 1, . . . , d, and nvk discretization
points for the velocity variable vk, k = 1, . . . , d. The total numbers of degrees of freedom are denoted as
Nx = nx1

· · ·nxd and Nv = nv1 · · ·nvd for space and velocity, respectively. Then, for a fixed time t, we
define X = [X1, . . . , Xr] ∈ RNx×r to be the matrix having as columns the evaluation of the low-rank
factors Xi at the chosen spatial grid. Clearly, the resulting matrix entries depend on the discretization
performed and on the ordering of the grid points. Similarly, we consider V = [V1, . . . , Vr] ∈ RNv×r to be
the matrix having as columns the evaluation of the low-rank factors Vj at the velocity grid. The coupling
coefficients Sij are collected in the matrix S ∈ Rr×r. Hence, we can write the evolution equation for the
K step (5.6) in matrix formulation as follows

∂tK(t) = −
d∑
i=1

∂xiK(t)CT
1,vi +

d∑
i=1

diag(Exi(K(t)))K(t)CT
2,vi , (5.9)

where
K(t) = X(t)S(t), K(t) ∈ RNx×r,

C1,vi = Ṽ Tdiag(ωvi1,vi
)Ṽ ∈ Rr×r,

C2,vi = Ṽ Tdiag(ω2,vi)∂vi Ṽ ∈ Rr×r,

and ωvi1,vi
and ω2,vi are suitable quadrature weights. The ith component of the electric field has been

denoted by Exi(K(t)) ∈ RNx . In addition, we have used ∂xi to denote the discretization of the spatial
derivative operator. While this operator can be represented as a matrix, in many cases it is more efficient
to directly compute its application to K(t) (e.g., in a stencil code or by using FFTs). We also note that
in order to compute the coefficients C1,vi and C2,vi it would (obviously) be very inefficient to form the
diagonal matrix. Instead, the framework Ensign provides the function coeff that takes the matrices as
well as a vector of weights as input and computes the corresponding quadrature (see Section 5.5 for
more details).

For the evolution equation of the S step (5.7) we obtain

Ṡ(t) =

d∑
i=1

D2,xiS(t)CT
1,vi −

d∑
i=1

D1,xi [E(S(t))]S(t)CT
2,vi , (5.10)

where
D1,xi [E(S(t))] = X̆Tdiag(ωE1,xi)X̆ ∈ Rr×r,

D2,xi = X̆Tdiag(ω2,xi)∂xiX̆ ∈ Rr×r,

and again ωE1,xi and ω2,xi are suitable quadrature weights.
Finally, for the evolution equation of the L step (5.8) we have

∂tL(t) =

d∑
i=1

∂viL(t)DT
1,xi −

d∑
i=1

diag(vi)L(t)DT
2,xi , (5.11)

where
L(t) = V (t)S(t)T, L(t) ∈ RNv×r,

and vi ∈ RNv is the vector with the positions of the grid points in velocity space.
In matrix formulation, the equations for the electric field are given by

(Ex1(f)(t), . . . , Exd(f)(t)) = −∇xΦ(f)(t), Exi(f)(t) ∈ RNx , Φ(f)(t) ∈ RNx ,
−∆Φ(f)(t) = P (f)(t) + 1, P (f)(t) ∈ RNx ,
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where the discretized charge density P (f)(t) can be computed in terms of the low-rank factors, depending
on the need, as

P (K)(t) = −K(t)P̃ , P̃ = Ṽ Tωv ∈ Rr, ωv ∈ RNv , (5.12)

P (S)(t) = −X̆S(t)P̃ ,

P (L)(t) = −X̆P (L(t)), P (L(t)) = L(t)Tωv ∈ Rr. (5.13)

Here ωv is a vector which collects suitable quadrature weights.
Let us also note that the approximation of the particle-density function can be recovered at any

moment from the low-rank factors by computing

F (t) = X(t)S(t)V (t)T ∈ RNx×Nv ,

but clearly this is not needed for the low-rank projector-splitting algorithm, and doing so would be
extremely costly.

5.3.1 Order 1 low-rank projector-splitting algorithm
The subflows corresponding to the K step, the S step, and the L step are then combined by a splitting
scheme in order to recover an approximation of the particle-density function. For a first order method it
is clearly sufficient to consider a Lie–Trotter splitting algorithm. A detailed description of the resulting
scheme is given in Algorithm 1.

Algorithm 1: First order dynamical low-rank integrator for the Vlasov–Poisson equations (5.1).
Input: X0, S0, V 0 such that f(0, x, v) ≈

∑
i,j X

0
i (x)S0

ijV
0
j (v), time step size τ

Output: X1, S3, V 1 such that f(τ, x, v) ≈
∑
i,j X

1
i (x)S3

ijV
1
j (v)

1 Compute C1,vi and C2,vi , i = 1, . . . , d, using V 0;
2 Compute K0 using X0 and S0;
3 Compute the electric field E0 with equation (5.12) using K0 and V 0;
4 Solve equation (5.9) with initial value K0 and E0 up to time τ to obtain K1;
5 Perform a QR decomposition of K1 to obtain X1 and S1;
6 Compute D1,xi and D2,xi , i = 1, . . . , d, using E0 and X1;
7 Solve equation (5.10) with initial value S1 and E0 up to time τ to obtain S2;
8 Compute L0 using V 0 and S2;
9 Solve equation (5.11) with initial value L0 and E0 up to time τ to obtain L1;

10 Perform a QR decomposition of L1 to obtain V 1 and S3;

Remark that the computation of the electric field is performed only once at the beginning of the
time step. This is not a restriction in the context of a Lie–Trotter splitting, as fixing the electric field at
each time step still results in a first order approximation. In principle, any numerical method can be
employed to integrate in time equations (5.9)–(5.11). We will discuss a proposal, based on the choice of
a spectral phase space discretization, in Section 5.4. Moreover, after performing the K and the L steps,
in order to proceed with the algorithm we need to recover the orthonormal functions Xi, Vj and the
coupling coefficients Sij . This can be accomplished, for example, by a QR or an SVD decomposition.
Finally, we note that the overall storage and computational costs of the dynamical low-rank algorithm,
for nxi = nvi = n, scale as O(rnd) and O(r2nd), respectively. For more details we refer the reader
to [82].

5.3.2 Order 2 low-rank projector-splitting algorithm
A straightforward generalization to a second order integrator by employing a Strang splitting procedure
instead of a Lie–Trotter one is not possible. Indeed, if we freeze the electric field at the beginning of the
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time step, we still end up with a first order algorithm. To overcome this problem, an almost symmetric
Strang splitting scheme is proposed in [82]; however, in order to achieve full second order, that algorithm
requires several updates of the electric field, which in turn translates into high computational effort. We
propose here a slightly different strategy to obtain a second order scheme, listed in detail in Algorithm 2.
The underlying idea is that we compute an approximation of the electric field at time τ/2 of (local)
second order by means of Algorithm 1. Then, we restart the integration with a classic Strang splitting
scheme employing as constant electric field the approximation at the half step. Mathematically, this
can still be analyzed as an almost symmetric splitting scheme (see [84, 85]), and as for Algorithm 1 the
storage and computational costs scale as O(rnd) and O(r2nd), respectively.

Algorithm 2: Second order dynamical low-rank integrator for the Vlasov–Poisson equa-
tions (5.1).
Input: X0, S0, V 0 such that f(0, x, v) ≈

∑
i,j X

0
i (x)S0

ijV
0
j (v), time step size τ

Output: X3, S7, V 1 such that f(τ, x, v) ≈
∑
i,j X

3
i (x)S7

ijV
1
j (v)

1 Perform steps 1–9 of Algorithm 1 with time step size τ/2;
2 Compute the electric field E1/2 with equation (5.13) using X1 and L1 from step 1;
3 Solve equation (5.9) with initial value K0 and E1/2 up to time τ/2 to obtain K2;
4 Perform a QR decomposition of K2 to obtain X2 and S3;
5 Compute D1,xi and D2,xi , i = 1, . . . , d, using E1/2 and X2;
6 Solve equation (5.10) with initial value S3 and E1/2 up to time τ/2 to obtain S4;
7 Compute L1 using V 0 and S4;
8 Solve equation (5.11) with initial value L1 and E1/2 up to time τ to obtain L2;
9 Perform a QR decomposition of L2 to obtain V 1 and S5;

10 Compute C1,vi and C2,vi , i = 1, . . . , d, using V 1;
11 Solve equation (5.10) with initial value S5 and E1/2 up to time τ/2 to obtain S6;
12 Compute K3 using X2 and S6;
13 Solve equation (5.9) with initial value K3 and E1/2 up to time τ/2 to obtain K4;
14 Perform a QR decomposition of K4 to obtain X3 and S7;

5.4 Time and space discretization of K, S and L steps

As already mentioned in Section 5.3, in principle any numerical scheme can be used to integrate in time
equations (5.9)–(5.11). However, depending on the selected phase space discretization, some choices can
be more adequate than others. In particular, we describe here in detail an exponential integrator based
strategy which uses a Fourier spectral discretization for both space and velocity variables. The method
converges rapidly in space and velocity (owing to the spectral discretization) and despite being fully
explicit does not suffer from a CFL induced step size restriction in time.

Let us consider the K step (5.9). As we are interested in performing 6D simulations, for clarity of
exposition we will only consider the case d = 3 here. The (simpler) cases d = 1 and d = 2 can be treated
similarly. Then, by performing a further splitting of the K step we obtain the following three equations

∂tK1(t) = −∂x1
K1(t)CT

1,v1 , (5.14)

∂tK2(t) = −∂x2K2(t)CT
1,v2 , (5.15)

∂tK3(t) = −∂x3K3(t)CT
1,v3 +

3∑
i=1

diag(Exi)K3(t)CT
2,vi . (5.16)

Note that, in principle, the summation term related to the electric field could be put in any of the three
equations (5.14)–(5.16), without any substantial change. On the other hand, in a general setting, there
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would not be advantages in treating this term in a separate flow, because there is no exact solution in
Fourier space and more splitting error would be generated.

Applying then a Fourier transform in the xi variables (denoted by Fxi) we obtain

∂tK̂1(t) = −DFx1
K̂1(t)CT

1,v1 ,

∂tK̂2(t) = −DFx2
K̂2(t)CT

1,v2 ,

∂tK̂3(t) = −DFx3
K̂3(t)CT

1,v3 +

3∑
i=1

Fx3(diag(Exi)K3(t))CT
2,vi ,

where K̂i(t) = Fxi(Ki(t)) and DFxi is a diagonal matrix containing the coefficients stemming from the
differential operator ∂xi in Fourier space. Then, as the matrices CT

1,vi are symmetric by construction, it
is possible to diagonalize them so that CT

1,vi = TviDviT
T
vi . We note that this operation is computationally

cheap as the matrices involved have only size r × r. By performing the substitution M̂i(t) = K̂i(t)Tvi
we have

∂tM̂1(t) = −DFx1
M̂1(t)Dv1 , (5.17)

∂tM̂2(t) = −DFx2
M̂2(t)Dv2 , (5.18)

∂tM̂3(t) = −DFx3
M̂3(t)Dv3 +

3∑
i=1

Fx3(diag(Ei)K3(t))CT
2,viTv3 . (5.19)

At this point, equations (5.17) and (5.18) can be solved exactly in time by means of independent pointwise
operations, while equation (5.19) can be solved efficiently by means of a first or second order exponential
Runge–Kutta method (see [112] for a survey), again just using independent pointwise operations. We
choose to use exponential integrators in the time evolution of this step because in this way we remove
any CFL-like restriction of the step size coming from the stiffness of the spatial derivative. Moreover, as
everything is written in terms of independent pointwise operations, the computation of the single flow
can be performed completely in parallel.

Finally, coming back to the original variables K̂i and performing an inverse Fourier transform, we
obtain approximate solutions for the equations involved. Embedding this procedure in a splitting context
returns the desired approximation of the evolution equation for the K step. In particular, for the first
order method described in Algorithm 1 it is enough to perform a Lie–Trotter splitting, while a (classical)
Strang splitting procedure is needed for the second order method presented in Algorithm 2.

Concerning the integration of the evolution equation of the L step (5.11), similar considerations
apply. Finally, concerning the S step (5.10), it is an r × r problem and there is no source of stiffness in
it. Hence, we perform its time integration by means of the classical explicit fourth order Runge–Kutta
scheme RK4. In principle it would be sufficient to use a first order scheme, in the context of Algorithm 1,
and a second order scheme, in the context of Algorithm 2. However, since the S step is cheap, we can
use a higher order approximation at negligible additional computational cost and reduce the error term
associated with integrating S from the numerical scheme.

5.5 The Ensign framework and implementation
As presented in Sections 5.2–5.4, in the context of dynamical low-rank algorithms a function f(t, x, v) is
approximated as f(t, x, v) ≈

∑
i,j Xi(t, x)Sij(t)Vj(t, v), where the indexes i and j run from 1 to r and r

is the chosen approximation rank. The quantities Xi(t, x), Sij(t) and Vj(t, v) constitute the so called
low-rank factors and, after discretization in x and v, they can be expressed as matrices, allowing us to
write the scheme in matrix formulation. Therefore, independently of the specific case under consideration,
the common key point for an efficient implementation of dynamical low-rank algorithms for kinetic
equations, both on CPU and GPU based systems, is the fast computation of operations on matrices
and vectors (e.g., matrix-matrix and matrix-vector products, certain pointwise operations, etc). For
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every modern computer architecture, we have at our disposal heavily optimized routines to perform such
operations, usually referred to as BLAS. For example, Intel MKL [114] and OpenBLAS [189] are available
for CPU based systems while we have cuBLAS [58] and MAGMA [146] for NVIDIA GPUs. Among their
many features, all these libraries are equipped with multithreaded versions of BLAS routines. When
possible we use these libraries heavily. However, we note that there are certain operations that we need
to perform in the context of a low-rank algorithm that are not part of BLAS.

The main idea behind Ensign is to provide the user a collection of structures and functions in order
to compute and manipulate easily the arising quantities in dynamical low-rank algorithms. Let us
note that the goal here is to provide primitives that allow the user to implement dynamical low-rank
approximations on a high-level. Thus, we are concerned with relevant data structures for dynamical
low-rank algorithms, for computing the coefficients that appear in the approximations (which can have,
in general, two or more indices and also spatial dependences), for performing certain operations such
as initialization, addition or truncation on low-rank approximations, orthogonalization with respect
to arbitrary inner products, and writing such low-rank approximations to disk. This could then be
complemented by the user of Ensign with libraries that perform spatial and temporal discretization.
The framework is written in C++ programming language and uses CUDA internally for the GPU code.

We now illustrate some of its features with the aid of the first order projector-splitting dynamical
low-rank algorithm presented in Section 5.3.1, assuming an underlying six-dimensional phase space. To
this aim, in Figure 5.1 we translate in source code some lines of the pseudocode of Algorithm 1, and in
Figure 5.2 we show how it is possible to initialize the low-rank factors. We can immediately note how
the quantities arising from the mathematical equations can be naturally translated into the structures
and functions provided by the framework. In particular, in terms of data storage we employ a structure
multi_array which lets us easily define vectors (w1v1, for example) and matrices (C1v1, for example)
both in CPU and in GPU memory, depending on the need. This structure is also enriched with some
user-friendly functions and operators which are useful to perform basic operations between multi_arrays,
such as sum, difference, multiplication with a scalar, and to transfer data from/to CPU/GPU memory
(the latter can be simply done by assignment, as commented in Figure 5.2). For convenience of the
user, we provide also a structure lr2, which contains three 2D multi_arrays (X, S and V) that reflect
the evaluation of the low-rank factors on a discretized grid. In particular, the degrees of freedom are
linearized so that each column corresponds to the discretized version of a single low-rank factor. While
the specific example of Figure 5.2 is presented in the context of a uniform space discretization, any other
kind of discretization (with an arbitrary ordering of the nodes) would work in a straightforward way as
well.

We use C++ templates in order to abstract the underlying architecture on which the code is run.
Depending on whether a function is called with arguments that reside on the CPU or on the GPU, an
efficient implementation suitable for that hardware architecture is selected. Indeed, whether the code
runs on the CPU or on the GPU is never explicitly specified in the code example in Figure 5.1, because
it is automatically detected from the storage location of the input arguments of the functions. Thus, the
algorithmic part of the implementation is completely independent of what computer hardware the code
is eventually run on.

Concerning BLAS operations, Ensign provides the structure blas_ops which contains wrappers for
matrix multiplications (e.g., matmul and matmul_transb) and handles needed to call properly these
routines on the GPU. Then, the framework is equipped with a function to compute the C and D integral
coefficients, namely coeff. Depending on the input matrices and the vector of weights, the function
computes the corresponding matrix of coefficients. As an example, given the 1D quadrature weight
multi_array w1v1 and the 2D multi_array lr_st.V, the coefficient matrix C1,v1 can be computed
using the command in line 8 of the code in Figure 5.1. Also, we can find in the framework the structure
gram_schmidt, which contains a function to compute the QR decomposition of a matrix with a generic
inner product. It is based on a modified Gram–Schmidt algorithm written as much as possible in matrix
formulation, so that again the internal computations are automatically performed in parallel by means
of calls to appropriate BLAS. Modified Gram-Schmidt is used here because it is easy to parallelize and
can operate purely in terms of inner products, even if the associated degrees of freedom are not stored
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1 // Declaration and initialization
2 /* See Figure 2 */
3 gram_schmidt gs(&blas);
4 multi_array <double ,1> w1v1(stloc::host); // stloc:: device if on GPU
5 multi_array <double ,2> C1v1(stloc::host);
6 /* ... */
7 // Line 1: Compute C coefficients
8 coeff(lr_st.V, lr_st.V, w1v1 , C1v1 , blas);
9 coeff(lr_st.V, lr_st.V, w1v2 , C1v2 , blas);

10 coeff(lr_st.V, lr_st.V, w1v3 , C1v3 , blas);
11 coeff(lr_st.V, dV0_v1 , w2v1 , C2v1 , blas);
12 coeff(lr_st.V, dV0_v2 , w2v2 , C2v2 , blas);
13 coeff(lr_st.V, dV0_v3 , w2v3 , C2v3 , blas);
14 // Line 2: Compute K0
15 tmpX = lr_st.X;
16 blas.matmul(tmpX , lr_st.S, lr_st.X);
17 // Line 3: Compute electric field
18 /* ... */
19 // Line 4: Solve K step
20 /* ... */
21 // Line 5: Perform QR decomposition
22 gs(lr_st.X, lr_st.S, ip_xx);
23 /* ... */
24 // Line 6: Compute D coefficients
25 coeff(lr_st.X, lr_st.X, wE1x1 , D1x1 , blas);
26 coeff(lr_st.X, lr_st.X, wE1x2 , D1x2 , blas);
27 coeff(lr_st.X, lr_st.X, wE1x3 , D1x3 , blas);
28 coeff(lr_st.X, dX1_x1 , w2x1 , D2x1 , blas);
29 coeff(lr_st.X, dX1_x2 , w2x2 , D2x2 , blas);
30 coeff(lr_st.X, dX1_x3 , w2x3 , D2x3 , blas);
31 // Line 7: Solve S step
32 /* ... */
33 // Line 8: Compute L0
34 tmpV = lr_st.V;
35 blas.matmul_transb(tmpV , lr_st.S, lr_st.V);
36 // Line 9: Solve L step
37 /* ... */
38 // Line 10: Perform QR decomposition
39 gs(lr_st.V, lr_st.S, ip_vv);
40 transpose_inplace(lr_st.S);

Figure 5.1: Sketch of a C++ implementation of Algorithm 1 using the Ensign framework. To perform
computation on the GPU, it is enough to use d_lr_st instead of lr_st, and to declare the relevant
multi_arrays with stloc::device. The syntax /*...*/ indicates code not reported for simplicity of
exposition.

directly as a vector. The latter is important in the case of hierarchical low-rank approximations such
as the those considered in [82]. For example, given the 2D multi_arrays lr_st.X and lr_st.S and
the inner product ip_xx, the call to perform the QR decomposition of lr_st.X is given in line 22 of
Figure 5.1.

Finally, we want to emphasize that while we have illustrated the software framework for a simple
projector-splitting based dynamical low-rank integrator, every effort has been made in designing Ensign
to allow also the implementation of other dynamical low-rank integrators, such as the recently proposed
unconventional integrator [55] or the conservative dynamical low-rank integrator [81]. Moreover, we
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1 typedef ptrdiff_t Index;
2 array <Index ,3> N_xx , N_vv;
3 array <double ,3> lim_xx , lim_vv , h_xx , h_vv;
4 Index r;
5 blas_ops blas;
6 vector <const double*> X0, V0;
7
8 // Initialize N_xx , lim_xx , h_xx , N_vv , lim_vv , h_vv and r on CPU
9 /* ... */

10
11 Index N_xx_m = N_xx [0]* N_xx [1]* N_xx [2];
12 Index N_xx_m = N_vv [0]* N_vv [1]* N_vv [2];
13
14 // Define inner products that are used in the algorithm
15 auto ip_xx = inner_product_from_const_weight(h_xx [0]* h_xx [1]* h_xx[2], N_xx_m);
16 auto ip_vv = inner_product_from_const_weight(h_vv [0]* h_vv [1]* h_vv[2], N_vv_m);
17
18 // Initialize the low -rank structure for the initial value
19 // (the initial value is given by X0 and V0 and can usually
20 // be easily determined from the problem)
21 // To illustrate data movement (see below) we perform the
22 // initialization on the CPU and then transfer the result
23 // to the GPU.
24
25 lr2 <double > lr_st(r,{N_xx_m ,N_vv_m });
26
27 // Set up X0 and V0
28 /* ... */
29
30 initialize(lr_st , X0, V0 , ip_xx , ip_vv , blas);
31
32 // Assignment of two lr2 or multi_arrays copies from CPU to GPU
33 lr2 <double > d_lr_st(r,{N_xx_m ,N_vv_m},stloc :: device); // on GPU
34 d_lr_st = lr_st;

Figure 5.2: Sketch of a C++ implementation for the initialization of low-rank factors using the Ensign
framework. N_xx, lim_xx and h_xx are arrays which contain the number of discretization points, the
left extremes of the space domain and the grid spacing for each direction, respectively (similarly for
N_vv, lim_vv and h_vv, which are related to the velocity domain). r is the approximation rank, while
lr_st and d_lr_st are structures which contain 2D multi_arrays that reside on the CPU and on the
GPU, respectively. The syntax /*...*/ indicates code not reported for simplicity of exposition.

again point out that the user is completely free to choose any space or time discretization appropriate to
the problem. The only requirement in terms of space discretization is that the degrees of freedom of the
low-rank factors have to be collected in suitable matrices by means of an index linearization. This is
certainly possible for all the commonly used space discretization strategies.

5.6 Numerical experiments

In this section we will present some numerical results and validate the implementations of the algorithms
described in Section 5.3. The developed code solves the 6D Vlasov–Poisson equations (5.1) and uses
the framework Ensign. All the experiments in this section have been performed in double precision
arithmetic with the aid of a single NVIDIA Tesla A100 card (theoretical peak memory bandwidth of
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1555 GB/s and peak floating point processing power for double precision of 9.7 TFlops), equipped with
40 GB of RAM.

5.6.1 Orders of convergence
First of all, we check the implementation of the low-rank projector-splitting algorithms by computing
numerically the order of convergence of the methods. For this purpose, we consider a 6D linear Landau
problem posed on the domain Ω = (0, 4π)3 × (−6, 6)3 with an initial particle-density given by

f0(x1, x2, x3, v1, v2, v3) =
1√

(2π)3
e−(v21+v22+v23)/2(1+α1 cos(κ1x1)+α2 cos(κ2x2)+α3 cos(κ3x3)). (5.20)

The parameters are set to α1 = α2 = α3 = 10−2 and κ1 = κ2 = κ3 = 1
2 . We consider the problem with

periodic boundary conditions in all directions and integrate it up to final time T = 1. Concerning the
space discretization, we take 323 as number of discretization points for both space and velocity variables.
The rank of the solution is fixed to r = 10. As a reference solution, we take the result of the second
order low-rank projector-splitting algorithm with m = 2000 time steps (time step size τ = 5 · 10−4).

We also consider a 6D two stream instability problem defined on the domain Ω = (0, 10π)3× (−9, 9)3

with initial distribution

f0(x1, x2, x3, v1, v2, v3) =
1√

(8π)3

(
e−(v1−v1)2/2 + e−(v1−ṽ1)2/2

)
×
(

e−(v2−v2)2/2 + e−(v2−ṽ2)2/2
)

×
(

e−(v3−v3)2/2 + e−(v3−ṽ3)2/2
)

× (1 + α1 cos(κ1x1) + α2 cos(κ2x2) + α3 cos(κ3x3)).

(5.21)

In this case the parameters are given by α1 = α2 = α3 = 10−3, κ1 = κ2 = κ3 = 1
5 , v1 = 5

2 , v2 = v3 = 0,
ṽ1 = − 5

2 , ṽ2 = − 9
4 and ṽ3 = −2. As for linear Landau damping, the problem is equipped with periodic

boundary conditions in all directions and the rank is fixed to r = 10. We perform simulations up to final
time T = 1

20 with 323 discretization points for both space and velocity variables. We again consider as a
reference solution the results of the second order algorithm with m = 2000 time steps (time step size
τ = 2.5 · 10−5).

The results for both problems are collected in Figure 5.3. In each of the two cases, we can clearly see
that the first and second order algorithms show the expected order of convergence.

5.6.2 Linear Landau simulation
We consider again the 6D linear Landau problem (5.20) with periodic boundary conditions and the
same set of parameters. However, now we pick 643 discretization points for the space variables and
2563 for the velocity ones. The approximation rank is fixed to r = 10, and we perform two simulations
with time step sizes τ = 10−1 and τ = 10−2, respectively. We emphasize that a direct (Eulerian or
semi-Lagrangian) Vlasov solver would require a total number of degrees of freedom of approximately
4.4 · 1012, and at least 70 TB of main memory (RAM) to perform the simulations in double precision
arithmetic. This would clearly only be feasible on a supercomputer. The dynamical low-rank simulation,
in contrast, runs on a single NVIDIA A100 equipped with 40 GB of memory, and the number of degrees
of freedom are 10 · 643 + 10 · 2563 ≈ 1.7 · 108. The computational time of execution is approximately six
minutes for the simulation with τ = 10−1 and an hour for the one with τ = 10−2.

The results obtained, in terms of electric energy, error in mass and error in total energy, are
summarized in Figure 5.4. We can observe that the electric energy shows the expected theoretical
exponential rate of decay up to approximately 10−6, with very similar results for both the time step
sizes. In this sense, what dominates after time t = 40 is the low-rank error, and we basically enter into a
stagnation region (see Section 5.7.2 and Figure 5.6 for simulations with higher ranks). Concerning the
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Figure 5.3: Orders of convergence for first order (red crosses) and second order (green circles) low-rank
projector-splitting Algorithms 1 and 2. Left plot: linear Landau damping (5.20) with T = 1. Right
plot: two stream instability problem (5.21) with T = 1

20 . In both cases, the rank is set to r = 10. The
(relative) error is computed in maximum norm at the final time for a number of time steps equal to
m = 40, 50, 60, 70, 80, with respect to a reference solution produced with Algorithm 2 and m = 2000
time steps. The dashed and dashed-dotted lines are reference lines of slope -1 and -2, respectively.

errors in mass and in total energy (both quantities are conserved by the original equations), even though
the proposed low-rank projector-splitting integrator does not preserve a priori any quantity we obtain
conservation of mass up to roughly 3 · 10−8 and up to 7 · 10−7 or 4 · 10−8 for the energy, depending on the
time step size. In this sense, the simulation with smaller time step size produces better results, meaning
that for these quantities we still did not encounter a bound stemming from the low-rank truncation.

5.6.3 Two stream instability simulation

Let us perform now two simulations with the 6D two stream instability problem (5.21) and 1283

discretization points for both spatial and velocity variables. The set of parameters is the same as for the
example presented in Section 5.6.1, but we integrate the problem until time T = 60 with the second
order Algorithm 2 and time step sizes τ = 6 · 10−2 and τ = 10−2. The rank is fixed to r = 10. Again,
a direct Vlasov solver would require a total number of degrees of freedom of approximately 4.4 · 1012,
while the dynamical low rank approach has 2 · 10 · 1283 ≈ 4.2 · 107 degrees of freedom. As for the linear
Landau problem, we investigate the behavior of the electric energy and the conservation of mass and
total energy. The results are summarized in Figure 5.5. In both cases, as expected, the electric energy
shows an exponential increase before entering into a saturation phase, and similar considerations apply
also for the error in mass and in energy (with slightly better results for the simulation with lower time
step size, as expected). This behaviour matches well with what has been previously reported in the
literature for this problem.

5.7 Performance results

We now investigate the performance of the low-rank projector-splitting algorithms presented in Sec-
tion 5.3. This, in particular, should highlight the efficiency of using the software framework Ensign and
demonstrate that GPUs provide an efficient way to run such simulations.
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To perform a comparison with the GPU simulation, we present results on a dual-socket Intel Xeon
Gold 6226R CPU based system with 2× 16 CPU cores and 192 GB of RAM. For parallelizing the CPU
code OpenMP is used and the Intel MKL library is employed for matrix and vector operations. For
the GPU performance results we use the NVIDIA card described at the beginning of Section 5.6, and
cuBLAS for BLAS operations. All simulations are conducted in double precision arithmetics.

5.7.1 CPU/GPU comparison
We consider here the linear Landau problem (5.20) discretized with 1283 points in both space and
velocity variables. This is done so that the effort of the K and L step can be directly compared. We
integrate the problem until final time T = 60 with a time step size of τ = 10−2 and rank r = 10. We
report the timings (in descending order) of a single time step, for the relevant parts of the algorithms, in
Table 5.1 and Table 5.2 for the first order and the second order schemes, respectively.

CPU GPU
Wall-clock time (s) Wall-clock time (s)

K step 2.87 · 100 K step 2.34 · 10−2

L step 2.77 · 100 L step 2.34 · 10−2

D coefficients 1.17 · 100 D coefficients 1.13 · 10−2

C coefficients 1.17 · 100 C coefficients 1.12 · 10−2

Electric field 9.76 · 10−2 QR decomposition K 5.31 · 10−3

QR decomposition L 2.00 · 10−2 QR decomposition L 5.26 · 10−3

QR decomposition K 1.96 · 10−2 Electric field 2.39 · 10−3

S step 6.72 · 10−5 S step 7.43 · 10−4

Total 8.12 · 100 Total 8.30 · 10−2

Table 5.1: Breakdown of timings for a single step of the first order Algorithm 1, in descending order, for
CPU and GPU simulation of the linear Landau problem. The number of discretization points in both
space and velocity is 1283, the final time is T = 60, the time step size is τ = 10−2 and the rank is r = 10.

CPU GPU
Wall-clock time (s) Wall-clock time (s)

Lie splitting 8.02 · 100 Lie splitting 8.03 · 10−2

First K step + QR 2.83 · 100 First K step + QR 3.19 · 10−2

Second K step + QR 2.82 · 100 Second K step + QR 2.99 · 10−2

L step + QR 2.82 · 100 L step + QR 2.89 · 10−2

C coefficients 1.12 · 100 C coefficients 1.10 · 10−2

D coefficients 1.11 · 100 D coefficients 1.09 · 10−2

Electric field 1.01 · 10−1 Electric field 1.53 · 10−3

First S step 5.83 · 10−5 First S step 6.81 · 10−4

Second S step 5.12 · 10−5 Second S step 6.50 · 10−4

Total 1.88 · 101 Total 1.96 · 10−1

Table 5.2: Breakdown of timings for a single step of the second order Algorithm 2, in descending order,
for CPU and GPU simulation of the linear Landau problem. The number of discretization points in both
space and velocity is 1283, the final time is T = 60, the time step size is τ = 10−2 and the rank is r = 10.

As expected, the most costly parts of the algorithms consist of the K and the L steps (with roughly
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the same computational time, as the degrees of freedom are equal in space and velocity). The cost of
the S step, which involves the solution of a problem of size r × r is negligible. The remaining major
part of the cost lies in the computation of the C and the D coefficients: again, this is expected, as they
require a matrix-matrix product of size Nv × r (and Nx × r, respectively). A single time step of the
second order scheme is, as we would expect, approximately twice as costly as the first order scheme.

In both cases, we observe a drastic speedup (up to a factor of 100) between the GPU and the CPU
based systems. The main reason for this is that very efficient implementations of matrix-matrix products
are available on the GPU (in particular, in cuBLAS). This helps both in computing the coefficients
as well as performing the K and L step. In addition, the algorithm needs to compute transcendental
functions in order to evaluate the matrix functions in Fourier space. This is also an area where the GPU
kernels drastically outperform the corresponding CPU implementation.

5.7.2 Varying rank
We now investigate the performance of the GPU implementation for the second order low-rank projector-
splitting algorithm for different ranks. For this purpose, we consider again the 6D linear Landau
problem (5.20) with 643 discretization points for the spatial variables and 1283 discretization points for
the velocity ones.

We integrate the problem up to T = 60 with a time step size of τ = 10−2 and different ranks
r = 5, 10, 15, 20. The computational times for a single time step of the simulation are reported in
Table 5.3. First of all, we observe that the wall-clock time increases roughly in a linear fashion as the
rank increases. This scaling is better than the theoretical estimates provided in Section 5.3.2. Then, in

Wall-clock time (s)
Rank 5 5.12 · 10−2

Rank 10 8.70 · 10−2

Rank 15 1.28 · 10−1

Rank 20 1.85 · 10−1

Table 5.3: Timings of a single time step for the linear Landau problem with increasing ranks r. The
second order dynamical low-rank Algorithm 2 is employed. The number of discretization points in space
is 643, in velocity it is 1283, the final time is T = 60 and the time step size is τ = 10−2.

Figure 5.6 we summarize the behavior of the electric energy, of the error in mass and in total energy for
all the ranks considered. We can clearly observe that rank 5 is not enough for the 6D problem under
investigation. Starting from rank 10, we see a substantial improvement, in particular in terms of decay
of electric energy.

Finally, we repeat a similar experiment with the 6D two stream instability problem (5.21). In this
case, we consider 643 discretization points for both spatial and velocity variables. The problem is then
integrated up to T = 60 with a time step size of τ = 10−2 and increasing rank r = 5, 10, 15, 20. The
computational times for a single time step are summarized in Table 5.4, and analogous conclusions as
for the linear Landau simulations can be drawn. In terms of electric energy, error in mass and error in
total energy, we collect the results in Figure 5.7. We note that for the linear regime rank 5 still gives
very good results in that it perfectly predicts both the growth rate of the instability as well as the time
of its onset. Starting at saturation the rank 5 solution tends to overestimate the electric energy and
thus the rank has to be increased. In order to capture saturation a rank 10 simulation is sufficient. If it
is desired to integrate far into the nonlinear regime the rank has to be increased further.

5.8 Conclusions
We have demonstrated, by conducting numerical simulations for two test problems, that six-dimensional
Vlasov simulations using a projector-splitting dynamical low-rank algorithm can be efficiently run on GPU
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Wall-clock time (s)
Rank 5 1.84 · 10−2

Rank 10 3.06 · 10−2

Rank 15 4.85 · 10−2

Rank 20 7.15 · 10−2

Table 5.4: Timings of a single time step for the two stream instability problem with increasing ranks r.
The second order dynamical low-rank Algorithm 2 is employed. The number of discretization points in
both space and velocity is 643, the final time is T = 60 and the time step size is τ = 10−2.

based systems. In particular, we report a drastic speedup compared to the CPU implementation, and we
remark that these are the first dynamical low-rank results obtained for the full six-dimensional problem.
We also emphasize that results with similar resolution using a direct (Eulerian or semi-Lagrangian) Vlasov
solver could only be attained on large-scale supercomputers, while we have conducted the simulations
on a single workstation equipped with an NVIDIA A100 card.

Algorithmic efficiency has been achieved by proposing a CFL-free and second order exponential
integrator based dynamical low-rank scheme that uses a Fourier spectral phase space discretization.
Implementation efficiency has been achieved by basing the implementation on the software framework
Ensign.
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Figure 5.4: Linear Landau simulation with 643 space discretization points, 2563 velocity discretization
points, final time T = 60, rank r = 10 and time step sizes τ = 10−1 (cyan line) and τ = 10−2 (blue line),
see Section 5.6.2. The second order low-rank projector-splitting Algorithm 2 is employed. Top plot:
behavior of electric energy, with reference decay rate. Center plot: error in mass (relative). Bottom plot:
error in total energy (relative).
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Figure 5.5: Two stream instability simulation with 1283 discretization points for both space and velocity,
final time T = 60, rank r = 10 and time step sizes τ = 6 · 10−2 (cyan line) and τ = 10−2 (blue line),
see Section 5.6.3. The second order low-rank projector-splitting Algorithm 2 is employed. Top plot:
behavior of electric energy. Center plot: error in mass (relative). Bottom plot: error in total energy
(relative).
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Figure 5.6: Linear Landau simulation with 643 space discretization points, 1283 velocity discretization
points, final time T = 60, time step size τ = 10−2 and different ranks r, see Section 5.7.2. The second
order low-rank projector-splitting Algorithm 2 is employed. The red line corresponds to r = 5, the blue
one to r = 10, the green one to r = 15 and the magenta one to r = 20. Top plot: behaviour of electric
energy, with reference decay rate. Center plot: error in mass (relative). Bottom plot: error in total
energy (relative).
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Figure 5.7: Two stream instability simulation with 643 discretization points for both space and velocity,
final time T = 60, time step size τ = 10−2 and different ranks r, see Section 5.7.2. The second order
low-rank projector-splitting Algorithm 2 is employed. The red line corresponds to r = 5, the blue one to
r = 10, the green one to r = 15 and the magenta one to r = 20. Top plot: behaviour of electric energy.
Center plot: error in mass (relative). Bottom plot: error in total energy (relative).



Chapter 6

Exponential integrators for mean-field
selective optimal control problems

In this chapter we consider mean-field optimal control problems with selective action of the control, where the
constraint is a continuity equation involving a non-local term and diffusion. First order optimality conditions
are formally derived in a general framework, accounting for boundary conditions. Then, the optimality system
is used to construct a reduced gradient method, where we introduce a novel algorithm for the numerical
realization of the forward and the backward equations, based on exponential integrators. We illustrate
extensive numerical experiments on different control problems for collective motion in the context of opinion
formation, pedestrian dynamics and mass transfer.

The material of this chapter is taken from preprint [9], i.e., G. Albi, M. Caliari, E. Calzola and F. C..
Exponential integrators for mean-field selective optimal control problems. arXiv preprint arXiv:2302.00127,
2023.

6.1 Introduction
The study of collective motion of interacting agents systems is of paramount importance to understand
the formation of coherent global behaviors at various scales, with applications to the study of biological,
social, and economic phenomena. In recent years, there has been a surge of literature on the collective
behavior of multi-agent systems, covering a wide range of topics such as cell aggregation and motility,
coordinated animal motion [64, 70], opinion formation [99, 143, 180], coordinated human behavior
[60, 72, 160], and cooperative robots [57, 92, 150, 158]. These fields are vast and constantly evolving,
and we refer to the surveys [7, 67, 107] that provide a comprehensive overview of recent developments.
Modeling such complex and diverse systems poses a significant challenge, since in general there are no
first-principles as, for instance, in classical physics, or statistical mechanics. Nevertheless, the dynamics
of the individuals have been successfully described by systems of Ordinary Differential Equations (ODEs)
from Newton’s laws designing basic interaction rules, such as attraction, repulsion and alignments,
or, alternatively, by considering an evolutive game where the dynamics is driven by the simultaneous
optimization of costs by N players such as in References [36, 125]. In this context, of paramount
importance for several applications is the design of centralized policies able to optimally enforce a desired
state of the agents, see for instance References [8, 11, 34, 50].

In this work, we consider a constrained setting, where interacting individuals are influenced by a
centralized control with selective action, i.e.,

dxi =

 1

N

N∑
j=1

p(xi, xj)(xj − xi) + s(t, xi, ρ
N )ui

dt+ σdW t
i , (6.1)

91
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with initial data x0 = [x0
1, . . . , x

0
N ]. Here each agent xi ∈ Ω ⊆ Rd, for i = 1, . . . , N , accounts for pairwise

interactions weighted by the function p(·, ·), and for disturbances modelled with a Brownian motion.
The action of the control u = [u1, . . . , uN ] is weighted by a selective function s(t, xi, ρN ), with ρN (x) the
empirical measures associated to the interacting agent system, i.e., ρN (t, x) = N−1

∑N
i=1 δ(xi(t)− x).

Then, the optimal control u∗ is obtained in the space of admissible controls U , by minimizing the cost
functional

J(u;x0) = E

[∫ T

0

1

2N

N∑
i=1

`(t, xi, ρ
N ) + γ|ui|2

]
, (6.2)

where `(t, xi, fN ) is a running cost to be designed by the controller, with a quadratic penalization of the
control for γ ≥ 0.

For a large number of agents, we can write the mean-field optimal control problem corresponding to
the finite dimensional optimal control problem (6.1)–(6.2) as follows (see References [90, 91])

min
u∈U

1

2

∫ T

0

∫
Ω

(
`(t, x, ρ) + γ|u|2

)
ρdxdt, (6.3a)

where ρ is the density function satisfying the Partial Differential Equation (PDE)∂tρ+∇ · ((P(ρ) + s(t, x, ρ)u) ρ)− σ2

2
∆ρ = 0,

ρ(0, x) = ρ0(x).

(6.3b)

Here the non-local interactions among agents are described by the integral term

P(ρ)(t, x) =

∫
Ω

p(x, y)(y − x)ρ(t, y)dy (6.4)

and ρ0(x) is the initial distribution of the agents. Differently from mean-field games [3, 49, 125], in this
context the goal is to compute a mean-field optimal strategy capable of driving the population density
to a specific target, avoiding the curse of dimensionality induced by the large scale non-linear system of
N agents. However, the numerical solution of the PDE-constrained optimization problem (6.3a)–(6.3b)
requires careful treatment [29]. To this end, we follow a reduced gradient method, where the first order
optimality system is solved iteratively for the realization of the control, as in References [4, 10, 19]. Major
challenges arise from the presence of the stiff diffusive and transport operators, and from the stability
and storage requirements originated by the choice of the numerical solvers. For these kinds of problems,
explicit time marching schemes usually require several time steps due to the lack of favorable stability
properties, while implicit ones need possibly expensive solutions of (non)linear systems [12, 104, 108]. A
prominent and effective alternative way to numerically integrate stiff equations in time is to employ
explicit exponential integrators, see Reference [112] for a seminal review. After semidiscretization in
space, these schemes require to approximate the action of exponential and of exponential-like matrix
functions.

The chapter is structured as follows. In Section 6.2 we present a model of interest which generalizes
the one in formulas (6.3), and we derive the formal optimality conditions using the associated Lagrangian
function, obtaining a system of coupled PDEs. The first one is forward in time for the density function,
while the second is backward in time for the adjoint variable. We numerically couple these equations
using the steepest descent algorithm. In Section 6.3 we present the semidiscretization in space of the
forward and of the backward PDEs, together with the numerical solution of the arising systems of
ODEs using a pair of exponential integrators. For convenience of the reader, we also present there the
derivation of the schemes and a brief discussion on common techniques to compute the involved matrix
functions. Section 6.4 is devoted to some numerical validations and simulations in opinion formation
(Sznajd), pedestrian (see Reference [32]) and mass transfer models. We finally draw some conclusions in
Section 6.5.
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6.2 Mean-field selective optimal control problem
We consider the mean-field optimal control problem [10, 32, 91] defined by the functional minimization

min
u
J (u; ρ0), (6.5a)

where ρ = ρ(t, x) is a probability density of agents satisfying

∂tρ+∇ · [(P(ρ) + s(t, x, ρ)u) ρ]− σ2

2
∆ρ = 0,

ρ(0, x) = ρ0(x),(
(P(ρ) + s(t, x, ρ)u) ρ− σ2

2
∇ρ
)
· ~n =

{
βρ on ΓF,

0 on ΓZ.

(6.5b)

and defined for each (t, x) ∈ [0, T ]× Ω. The evolution of the density is driven by the non-local operator
P(ρ)(t, x), as in equation (6.4), and by the control u = u(t, x) weighted by the selective function s(t, x, ρ).
Here, we denoted by ΓF the subset of the boundary in which there is a flux different from zero (β 6= 0) and
by ΓZ the part of ∂Ω with zero-flux boundary conditions. These two subsets are such that ΓF ∪ΓZ = ∂Ω
and ΓF ∩ ΓZ = ∅, and ~n is the outward normal vector to the boundary with norm equal to one. Finally,
the functional in formula (6.5a) is given by

J (u; ρ0) =
1

2

∫ T

0

∫
Ω

(
e(t, x, ρ) + γ|u|2ρ

)
dxdt+

1

2

∫
Ω

c(T, x, ρ(T, x))dx

for a general running cost e(t, x, ρ) and a terminal cost c(T, x, ρ(T, x)).

6.2.1 First order optimality conditions
We can derive the first order optimality conditions on a formal level using a Lagrangian approach. For
a rigorous treatment we refer to References [10, 33]. We define the Lagrangian function with adjoint
variable ψ as

L(u, ρ, ψ) =
1

2

∫ T

0

∫
Ω

(
e(t, x, ρ) + γ|u|2ρ

)
dxdt+

1

2

∫
Ω

c(T, x, ρ(T, x))dx

−
∫ T

0

∫
Ω

ψ

(
∂tρ+∇ · [(P(ρ) + s(t, x, ρ)u) ρ]− σ2

2
∆ρ

)
dxdt.

(6.6)

The optimal solution (u∗, ρ∗, ψ∗) can be found by equating to zero the partial Fréchet derivatives of the
Lagrangian function, i.e., by solving the following system

DuL(u, ρ, ψ) = 0,

DψL(u, ρ, ψ) = 0,

DρL(u, ρ, ψ) = 0.

(6.7)

Before computing the partial derivatives in system (6.7), we integrate by parts the last term appearing
in the Lagrangian function (6.6) and we get

L(u, ρ, ψ) =
1

2

∫ T

0

∫
Ω

(
e(t, x, ρ) + γ|u|2ρ

)
dxdt+

1

2

∫
Ω

c(T, x, ρ(T, x))dx

+

∫ T

0

∫
Ω

ρ

(
∂tψ +

σ2

2
∆ψ + (P(ρ) + s(t, x, ρ)u) · ∇ψ

)
dxdt

−
∫ T

0

∫
ΓF

ρ

(
σ2

2
∇ψ · ~n+ βψ

)
dbdt

−
∫

Ω

(ψ(T, x)ρ(T, x)− ψ(0, x)ρ(0, x))dx,
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where we used the value of the boundary conditions appearing in equation (6.5b). Performing then the
computations of the partial derivatives we obtain the gradient direction for the control variable u

DuL(u, ρ, ψ) = γu+ s(t, x, ρ)∇ψ, (6.8)

the forward PDE for the density function ρ

∂tρ+∇ · [(P(ρ) + s(t, x, ρ)u) ρ]− σ2

2
∆ρ = 0,

ρ(0, x) = ρ0(x),(
(P(ρ) + s(t, x, ρ)u) ρ− σ2

2
∇ρ
)
· ~n =

{
βρ on ΓF,

0 on ΓZ,

(6.9)

and the backward PDE for the adjoint variable ψ

− ∂tψ =
σ2

2
∆ψ + (P(ρ) + (s(t, x, ρ) + ρDρs(t, x, ρ))u) · ∇ψ+

+Q(ρ, ψ) +
1

2
(Dρe(t, x, ρ) + γ|u|2),

ψ(T, x) = ψT (x),

σ2

2
∇ψ · ~n =

{
− βψ on ΓF,

0 on ΓZ,

(6.10)

where

Q(ρ, ψ)(t, x) =

∫
Ω

p(y, x)(x− y) · ∇ψ(t, y)ρ(t, y)dy

and ψT (x) = 1
2Dρc(T, x, ρ(T, x)). Now, in order to solve model (6.5), we employ a steepest descent

approach (see References [10, 19]). Starting with an initial control u0, at each iteration ` we insert
u` into the forward equation (6.9) and solve it for ρ = ρ`+1. We then insert u` and ρ`+1 into the
backward equation (6.10) and solve it for ψ = ψ`+1. We finally update the control by using the gradient
direction (6.8), i.e.,

u`+1 = u` − λ`(γu` + s(t, x, ρ`+1)∇ψ`+1)

and get u`+1. We proceed iterating until J (u`+1) has stabilized within a given tolerance. For the
numerical solution of equations (6.9) and (6.10) we use the method of lines: in fact, we first discretize in
space and then use appropriate exponential integrators for the obtained systems of ODEs.

6.3 Numerical integrators for the semidiscretized equations

In this section, we explain how to solve the forward and the backward PDEs in the steepest descent
algorithm. By observing that both are semilinear parabolic equations, the idea is to use numerical schemes
tailored for this type of problems. A prominent way is to apply explicit exponential integrators [112] to
the systems of ODEs arising from the semidiscretization in space of the PDEs. By construction, these
schemes solve exactly linear ODEs systems with constant coefficients, they allow for time steps usually
much larger than those required by classical explicit methods (i.e., typically they do not suffer from a
CFL restriction), and do not require the solution of (non)linear systems as implicit methods do. On the
other hand, this class of integrators requires the computation of the action of exponential-like matrix
functions for which different efficient techniques have been developed in recent years.
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6.3.1 Forward PDE
For sake of clarity, and since we will present later on one-dimensional numerical examples, we consider
Ω = [a, b] and we rewrite the forward PDE (6.9)

∂tρ(t, x) =
σ2

2
∂xxρ(t, x)− ∂x ((P(ρ(t, ·))(t, x) + s(t, x, ρ(t, x))u(t, x))ρ(t, x)) ,

ρ(0, x) = ρ0(x),(
(P(ρ(t, ·))(t, x) + s(t, x, ρ(t, x))u(t, x))ρ(t, x)− σ2

2
∂xρ(t, x)

) ∣∣∣∣
a

= βaρ(t, a),(
(P(ρ(t, ·))(t, x) + s(t, x, ρ(t, x))u(t, x))ρ(t, x)− σ2

2
∂xρ(t, x)

) ∣∣∣∣
b

= βbρ(t, b),

where βa, βb ∈ R can be selected so that it is possible to express both zero and nonzero fluxes. Notice
that when we solve this equation we consider u(t, x) a given function. We introduce a semidiscretization
in space by finite differences on a grid of points xi, with i = 1, . . . , n, in such a way that ρ(t) =
[ρ1(t), . . . , ρn(t)]T is the unknown vector whose components ρi(t) approximate ρ(t, xi). Now, by denoting
D1 and D2 the matrices which discretize ∂x and ∂xx at the grid points, respectively, and P the
discretization of the linear integral operator P by a quadrature formula, the linear part of the right hand
side of the equation is discretized by

ÃFρ(t) =
σ2

2
D2ρ(t),

while the nonlinear part becomes

g̃F(t,ρ(t)) = −(D1Pρ(t))ρ(t)− (Pρ(t))(D1ρ(t))− (D1s(t,ρ(t)))u(t)ρ(t)− s(t,ρ(t))(D1u(t))ρ(t).

Now, we also discretize the boundary conditions with finite differences by using virtual nodes, and we
modify accordingly both the linear part ÃF and the nonlinear one g̃F(t,ρ(t)). The resulting nonlinear
system of ODEs is then {

ρ′(t) = AFρ(t) + gF(t,ρ(t)), t ∈ [0, T ],

ρ(0) = ρ0.
(6.11)

Given a time discretization [t0, . . . , tk, . . . , tm], with t0 = 0 and tm = T , the exact solution of
system (6.11) at time tk+1 can be expressed using the variation-of-constants formula, i.e.,

ρ(tk+1) = eτk+1AFρ(tk) +

∫ τk+1

0

e(τk+1−s)AFgF(tk + s,ρ(tk + s))ds,

where τk+1 = tk+1 − tk, for k = 0, . . . ,m− 1. In order to obtain an explicit first order numerical scheme,
we denote by ρk the approximation of ρ(tk) and approximate the nonlinear function gF(tk + s,ρ(tk + s))
with gF(tk,ρk). Hence, we have

ρ(tk+1) ≈ ρk+1 = eτk+1AFρk +

∫ τk+1

0

e(τk+1−s)AFgF(tk,ρk)ds

= eτk+1AFρk +

(∫ τk+1

0

e(τk+1−s)AFds

)
gF(tk,ρk)

= eτk+1AFρk +

(
τk+1

∫ 1

0

eτk+1(1−θ)AFdθ

)
gF(tk,ρk)

= eτk+1AFρk + τk+1ϕ1(τk+1AF)gF(tk,ρk).

(6.12)

Here we introduced the exponential-like function

ϕ1(X) =

∫ 1

0

e(1−θ)Xdθ,
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with X ∈ Cn×n a generic matrix. This scheme is known as exponential Euler, it is a fully explicit method
of first (stiff) order and it is A-stable by construction. Its implementation requires at each time step
the evaluation of a linear combination of type eτk+1Xvk + τk+1ϕ1(τk+1X)wk, where vk,wk ∈ Cn are
suitable vectors, which we will address in Section 6.3.3.

Selective function independent of the density

A remarkable occurrence in the literature is the one in which the selective function does not depend
on the density, i.e., s(t, x, ρ(t, x)) = s(t, x) (see Reference [10] for the case s(t, x) = 1, which we will
also consider in the numerical examples). In this case, some terms in the nonlinear part g̃F(t,ρ(t)) can
actually be incorporated into the linear one. In fact, we obtain

ÃF(t)ρ(t) =
σ2

2
D2ρ(t)− (D1s(t))u(t)ρ(t)− s(t)(D1u(t))ρ(t)− s(t)u(t)(D1ρ(t)),

while the nonlinear part is now given by

g̃F(t,ρ(t)) = −(D1Pρ(t))ρ(t)− (Pρ(t))(D1ρ(t)).

By modifying accordingly the quantities in order to impose the boundary conditions, we end up with
the system of ODEs {

ρ′(t) = AF(t)ρ(t) + gF(t,ρ(t)), t ∈ [0, T ],

ρ(0) = ρ0,
(6.13)

which is similar to system (6.11), except for the fact that the linear part has time dependent coefficients.
Nevertheless, at each tk we can rewrite equivalently this system as

ρ′(t) = AF(tk)ρ(t) + (AF(t)−AF(tk))ρ(t) + gF(t,ρ(t))

= AF(tk)ρ(t) + gkF(t,ρ(t)),

ρ(0) = ρ0,

and apply the exponential Euler method. Thus, we end up with the scheme

ρ(tk+1) ≈ ρk+1 = eτk+1AF(tk)ρk + τk+1ϕ1(τk+1AF(tk))gkF(tk,ρk)

= eτk+1AF(tk)ρk + τk+1ϕ1(τk+1AF(tk))gF(tk,ρk),
(6.14)

for k = 0, . . . ,m− 1. As for the general case s(t, x, ρ(t, x)), we obtain in this way an explicit method of
first order (which we call exponential Euler–Magnus) that requires again a linear combination of actions
of the matrix exponential and of the matrix ϕ1 function.

6.3.2 Backward PDE
We rewrite the backward PDE (6.10) in the one-dimensional case Ω = [a, b]

− ∂tψ(t, x) =
σ2

2
∂xxψ(t, x) + P(ρ(t, ·))(t, x)∂xψ(t, x)

+ (s(t, x, ρ(t, x)) + ρ(t, x)sρ(t, x, ρ(t, x)))u(t, x)∂xψ(t, x)

+Q(ρ(t, ·), ψ(t, ·))(t, x) +
1

2

(
eρ(t, x, ρ(t, x)) + γu2(t, x)

)
,

ψ(T, x) = ψT (x),

σ2

2
∂xψ(t, x)

∣∣
a

= −βaψ(t, a),

σ2

2
∂xψ(t, x)

∣∣
b

= −βbψ(t, b),
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where sρ(t, x, ρ(t, x)) = Dρs(t, x, ρ(t, x)) and eρ(t, x, ρ(t, x)) = Dρe(t, x, ρ(t, x)). Here we assume that
ρ(t, x) and u(t, x) are given functions. By applying a finite difference discretization on the same spatial
grid as above and defining Q the discretization of the linear integral operator Q we obtain the linear part

ÃB(t)ψ(t) =
σ2

2
D2ψ(t)+(Pρ(t))(D1ψ(t))+(s(t,ρ(t))+ρ(t)sρ(t,ρ(t)))u(t)(D1ψ(t))+Q(ρ(t)(D1ψ(t)))

and the source term

g̃B(t) =
1

2
eρ(t,ρ(t)) + γu2(t).

Finally, by taking into consideration boundary conditions, we end up with the inhomogeneous time
dependent coefficient linear system of ODEs{

−ψ′(t) = AB(t)ψ(t) + gB(t), t ∈ [0, T ],

ψ(T ) = ψT .
(6.15)

By considering the same time discretization [t0, . . . , tk+1, . . . , tm] as above, system (6.15) has a similar
structure to system (6.13). Hence, taking into account that we are marching backward in time, we apply
the exponential Euler–Magnus method and we obtain the time marching

ψ(tk) ≈ ψk = eτk+1AB(tk+1)ψk+1 + τk+1ϕ1(τk+1AB(tk+1))gB(tk+1), (6.16)

for k = m− 1,m− 2 . . . , 0.

6.3.3 Matrix functions evaluation

We have introduced two exponential integrators that require, at each time step, the evaluation of

eτXv + τϕ1(τX)w, (6.17)

where τ > 0, X ∈ Rn×n, and v, w ∈ Rn. We stress that these quantities depend in general on the
current time step, but for simplicity of notation we dropped the subscripts. If we choose a uniform time
discretization, i.e., τk = τ for k = 0, . . . ,m− 1, in the exponential Euler scheme (6.12) we can compute
once and for all the matrices eτAF and ϕ1(τAF) and then multiply by the corresponding vectors. In this
case, for the matrix function approximations the most common techniques are Taylor expansions or
Padé rational approximations with scaling and squaring (see, for instance, References [5, 46, 171, 173]).
This approach is computationally attractive only for matrices of moderate size, taking into account
also that the resulting matrix functions are full even if the original ones were sparse. When employing
the exponential Euler–Magnus schemes (6.14) and (6.16), we can still pursue this approach. However,
since here the matrices change at each time step, we need to recompute the matrix functions every time
accordingly. It is also possible to compute linear combination (6.17) by using a single slightly augmented
matrix function evaluation. In fact, thanks to [167, Proposition 2.1], we have that the first n rows of

exp

(
τ

[
X w

0 · · · 0 0

])[
v
1

]
coincide with vector (6.17). This is an attractive choice in a variable step size scenario, in which both
the forward and the backward equations could be solved by a single matrix function evaluation at each
time step.

When X is a large sized and sparse matrix, it may be convenient to compute directly vector (6.17) at
each time step without explicitly computing the matrix exponential. State-of-the-art techniques follow
this approach and are based on Krylov methods or direct interpolation polynomial methods (see, for
instance, References [6, 43, 97, 132]).
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6.4 Numerical experiments
We present in this section numerical examples arising from different choices of parameters and functions
in the continuous model (6.5). In particular, we consider numerical experiments for different classes
of multi-agent systems: opinion formation, pedestrian dynamics and mass transfer. In all cases, we
discretize in space with second order centered finite differences and we employ the trapezoidal rule for
the quadrature of the integral operators. All the numerical experiments have been performed on an
Intel® Core™ i7-10750H CPU with six physical cores and 16GB of RAM, using matlab programming
language. As a software, we use MathWorks MATLAB® R2022a. In order to compute the needed
actions of exponential and ϕ1-function, we employ the kiops function1, which is based on the Krylov
method and whose underlying algorithm is thoroughly presented in Reference [97]. This routine requires
an input tolerance, which we set sufficiently small in order not to affect the accuracy of the temporal
integration.

6.4.1 Control in opinion dynamics: Sznajd model
In this section we consider the Sznajd model for control of opinion dynamics, similarly to References [10,
176]. We set the spatial domain to Ω = [−1, 1], whose boundaries represent the extremal opinions. The
running cost is e(t, x, ρ) = |x − xd|2ρ(t, x) and the selective function s(t, x, ρ) is set to the constant 1
(hence, we use the exponential Euler–Magnus scheme (6.14) for the forward equation). We consider
zero-flux boundary conditions everywhere and null terminal cost function c(T, x, ρ(T, x)). The interaction
function is selected as p(x, y) = x2 − 1, representing a repulsive interaction, and the target point in
the running cost is xd = −0.5. Moreover, we set the penalization parameter γ = 0.5 and the diffusion
coefficient σ =

√
0.02. The initial density function is of bimodal type

ρ0(x) = C(ρ+(x+ 0.75; 0.05, 0.5) + ρ+(x− 0.5; 0.15, 1)),

where
ρ+(x; a, b) = max

{
−
(x
b

)2

+ a, 0

}
and C defined so that

∫
Ω
ρ0(x)dx = 1.

First of all, we show that the expected temporal rate of convergence of the exponential integrators is
preserved also after a complete solution of the model. In fact, for a semidiscretization in space with
n = 200 uniform grid points, we solve several times model (6.5) by the steepest descent method described
at the end of Section 6.2 and employing an increasing sequence of time steps, ranging from m = 300
to m = 700. Each time, after the stabilization of the functional J , we measure the error at final time
T = 4 for ρ(t) and at initial time for ψ(t) with respect to reference solutions. We display in Figure 6.1
the obtained relative errors, which confirm the expected accuracy and rate of convergence.

Then, we show the behavior of the Sznajd model in opinion formation. For this purpose we use a
spatial discretization of n = 1000 points and m = 200 time steps. Notice that we can employ a number
of time steps small with respect to the number of discretization points since the exponential integrators
applied to this problem do not exhibit any CFL restriction, in contrast to explicit methods. In Figure 6.2
we show the evolution of the density ρ(t, x) and of the control u(t, x). The results have the expected
behavior of concentration of the opinions around the target point xd = −0.5 and qualitatively match
the analogous simulation available in the literature [10]. Moreover, we show in Figure 6.3 the value of
the functional J (u`) at the successive iterations of the steepest descent method. We observe that the
method needs 19 iterations to reach the input tolerance 2 · 10−3. Finally, the overall computational time
of this simulation is about 55 seconds.

6.4.2 Crowd dynamics: fast exit scenario
In this section we consider a model for crowd dynamics taken from Reference [32]. We set the model in
the spatial domain Ω = [−1, 1], whose boundaries represent the exit doors. The non-local interaction

1https://gitlab.com/stephane.gaudreault/kiops/-/tree/master/

https://gitlab.com/stephane.gaudreault/kiops/-/tree/master/
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Figure 6.1: Relative errors in infinity norm of ρ(T ) (left, T = 4) and ψ(0) (right), with respect to a
reference solution, for the Sznajd model described in Section 6.4.1 with n = 200 spatial discretization
points and varying number of time steps m. The reference line of order 1 is also displayed.

Figure 6.2: Evolution of the density ρ(t, x) (left) and of the control u(t, x) (right) up to final time T = 8
for the Sznajd model described in Section 6.4.1 with n = 1000 spatial discretization points and m = 200
time steps.

kernel p(x, y) is null and the selective function s(t, x, ρ) is 1 − ρ (hence, we employ the exponential
Euler method (6.12) for the forward equation). The diffusion parameter is σ =

√
0.04 and the exit

intensity flux is β = 10. The initial density function models the presence of two distinct groups, namely
ρ0(x) = 0.9e−100(x+0.4)2 + 0.65e−150x2

.
Similarly to the opinion dynamics case, we first show that the expected temporal rate of convergence

of the exponential integrators is preserved after a complete solution of the model. To this purpose, we
discretize this problem with n = 200 spatial discretization points and with different number of time
steps, from m = 300 to m = 700, up to the final time T = 2. After the stabilization of the functional J
in the steepest descent algorithm, we measure the error at final time for ρ(t) and at initial time for ψ(t)
with respect to reference solutions. We display in Figure 6.4 the obtained relative errors which again
confirm the expected accuracy and rate of convergence.

Then, we solve the same model up to the final time T = 3 and show its behavior. We discretize this
problem with n = 1000 spatial discretization points and m = 250 time steps. We show the evolution of
the density and of the control in Figure 6.5, where we can clearly see the exit of the crowd from the two
doors. Moreover, we show in Figure 6.6 the value of the functional J (u`) at the successive iterations
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Figure 6.3: Value of the functional J (u`) at the successive iterations of the steepest descent method for
the Sznajd model described in Section 6.4.1 (n = 1000 and m = 200).
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Figure 6.4: Relative errors in infinity norm of ρ(T ) (left, T = 2) and ψ(0) (right), with respect to a
reference solution, for the pedestrian model described in Section 6.4.2 with n = 200 spatial discretization
points and varying number of time steps m. The reference line of order 1 is also displayed.

of the steepest descent method. We observe that the method needs 14 iterations to reach the input
tolerance 2 · 10−3. Finally, the overall computational time of this simulation is about 45 seconds.

6.4.3 Mass transfer problem via optimal control

In this final example, we present an optimal control approach to a mass transfer problem, see for instance
References [22, 170], where the particle density accounts for non-local interactions [28, 51]. Hence, the
goal is to move the initial density function in the spatial domain Ω = [−1, 1]

ρ0(x) = C(e−(x−µ0)2/(2σ2
0)),

where µ0 = 0, σ0 = 0.1, and C is defined so that
∫

Ω
ρ0(x)dx = 1, to a target one

ρ̄(x) = C̄
(

e−(x−µ1)2/(2σ2
1) + e−(x−µ2)2/(2σ2

2)
)
,

where µ1 = 0.5, σ1 = 0.1, µ2 = −0.3, and σ2 = 0.15, and C̄ is defined so that
∫

Ω
ρ̄(x)dx = 1. The

boundary conditions are of zero-flux type, the running cost is e(t, x, ρ) = |ρ− ρ̄|2, the interaction kernel
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Figure 6.5: Evolution of the density ρ(t, x) (left) and of the control u(t, x) (right) up to final time T = 3
for the two-group crowd model described in Section 6.4.2 with n = 1000 spatial discretization points
and m = 250 time steps.
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Figure 6.6: Value of the functional J (u`) at the successive iterations of the steepest descent method for
the two-group crowd model described in Section 6.4.2 (n = 1000 and m = 250).

is of Sznajd type p(x, y) = (x2 − 1)/20, and the selective function is s(t, x, ρ) = 1. The penalization
parameter is γ = 0.1 and the diffusion parameter is σ =

√
0.02. We discretize the problem with

n = 1000 spatial grid points and m = 200 time steps, and we run the simulation up to the final time
T = 3. We consider a terminal cost given by c(T, x, ρ(T, x)) = |ρ(T, x)− ρ̄(x)|2, which translates into
ψT (x) = ρ(T, x) − ρ̄(x). In Figure 6.7 we plot the density functions at the initial and the final time,
and we can observe that the initial density is correctly transported to the target one. In addition, in In
addition, we show the values of the functional J (u`) at the successive iterations of the steepest descent
method. We observe that the method needs 33 iterations to reach the input tolerance 2 · 10−3. Finally,
in Figure 6.8 we present the evolution of the density and of the control. The overall computational time
of this simulation is roughly 75 seconds.
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Figure 6.7: Left plot: density functions at initial time (red asterisks) and at final time (blue crosses) for
the mass transfer problem described in Section 6.4.3 with n = 1000 spatial discretization points and
m = 200 time steps. For plotting reasons, the target density is reported with a solid line, while the
others are displayed each tenth point. Right plot: value of the functional J (u`) at successive iterations
of the steepest descent method.

Figure 6.8: Evolution of the density ρ(t, x) (left) and of the control u(t, x) (right) up to final time T = 3
for the mass transfer problem described in Section 6.4.3 with n = 1000 spatial discretization points and
m = 200 time steps.

6.5 Conclusions
We presented a mean-field optimal control model where the constraint is represented by a nonlinear
PDE with non-local interaction term and diffusion describing the evolution of a continuum of agents.
We provide, at a formal level, first order optimality conditions, resulting in a forward-backward coupled
system with associated boundary conditions. Thus, a reduced gradient method is derived for the
synthesis of the mean-field control, where the primal and adjoint equations are efficiently solved by using
exponential integrators. Our proposed approach has been successfully tested on various examples from
the literature, including models of opinion formation, pedestrian dynamics and mass transfer in the one-
dimensional setting. In future works we plan to exploit the efficiency of exponential integrators to tackle
higher dimensional problems (possibly using ad hoc techniques for tensor structured problems [39, 41, 42])
and scenarios where a fine spatial discretization is required to correctly capture the behavior of the
controlled dynamics.



Chapter 7

Efficient exponential integration of
inhomogeneous ADR equations

In this chapter, we propose a technique to efficiently integrate in time inhomogeneous evolutionary advection–
diffusion–reaction equations with exponential integrators. The approach is based on the extraction from
the original PDE of a constant coefficient diffusion part, which is determined by a linear stability analysis
of the chosen temporal scheme. After semidiscretization in space, the arising system of ODEs can then be
numerically integrated efficiently, by employing for example FFT-based or tensor µ-mode-based techniques.
Also, we present two new exponential integrators of Lawson type (of first and second order), which appear
to have better unconditional stability bounds compared to other well-known exponential integrators. The
effectiveness of the approach is highlighted presenting numerical examples with up to three space dimensions.

The material of this chapter is an ongoing work temporarily named as in Reference [38], i.e., M. Caliari,
F. C., L. Einkemmer and A. Ostermann. Efficient exponential integration of inhomogeneous evolutionary
advection–diffusion–reaction equations. In preparation, 2023.

7.1 Introduction
Efficiently solving evolutionary Partial Differential Equations (PDEs) is of great interest for many fields
of science and engineering. In particular, many physical and chemical phenomena can be effectively
modeled by time-dependent advection–diffusion–reaction equations [113], which we consider in the
following conservative form{

∂tu(t,x) = ∇ · (λ(x)∇u(t,x)) + r(t,x, u(t,x)), t ∈ [0, T ], x ∈ Ω ⊂ Rd,
u(0,x) = u0(x),

(7.1)

coupled with suitable boundary conditions.
Many techniques and schemes have been developed in the past years to integrate numerically

equations of the form (7.1), see Reference [113] for a comprehensive review. For instance, if the problem
is considered with periodic boundary conditions and the diffusion coefficient is constant, i.e., λ(x) = λ,
Fast Fourier Transform (FFT) based methods are appealing [116, 166]. Or, if problem (7.1) admits a
Kronecker sum structure, after space discretization it is possible to employ µ-mode based techniques
to efficiently compute the approximate solution [39, 42]. In general, due to the presence of spatial
derivatives in the equation, integrators that do not have restrictions stemming from the stiffness should
be employed. This is the case, for example, for IMplicit EXplicit (IMEX) schemes [15] or exponential
integrators [112]. We will focus in this work on the latter class. For equations in generic form (7.1), the
aforementioned FFT or µ-mode based techniques cannot be directly applied, mainly due to the presence
of the inhomogeneous term λ(x).

103
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The idea is then to consider the equivalent formulation

∂tu(t,x) = Λu(t,x) + (∇ · (λ(x)∇u(t,x))− Λu(t,x) + r(t,x, u(t,x))︸ ︷︷ ︸
g(t,x,u(t,x))

, (7.2)

where Λ is an operator which approximates the original advection–diffusion one but can be treated,
computationally speaking, in a more efficient manner (see also Reference [53]). Depending on the specific
time marching scheme under consideration this means that, for instance, the operators (I − τΛ)−1 or
eτΛ, being τ the time step size, can be computed in a fast way (using FFT, µ-mode or semi-Lagrangian
techniques, for example). The choice of Λ is clearly not uniquely determined. In particular, we will
propose our scheme dependent choice, in the context of exponential integrators, based on a linear stability
analysis of a simple diffusion equation. This is similar to what has been done in the literature for IMEX
schemes [187].

The remaining part of the chapter is structured as follows. In Section 7.2, the main one, we introduce
the prototypical equation that we use to analyze different exponential integrators and to determine the
corresponding operator Λ. Also, we present there two newly designed schemes of Lawson type, that
enjoy favorable unconditional stability properties. In Section 7.3 we validate our implementation and our
choice of the approximation operator on one-dimensional examples, as well as we present performance
results on a three-dimensional numerical example. Finally, we draw some conclusions in Section 7.4.

7.2 Linear stability analysis
As mentioned in the introduction, we investigate here a model equation to determine the approximation
operator Λ in equation (7.2). In particular, we consider the constant coefficient heat equation

∂tu = ∆u (7.3)

on the domain Ω = [−π, π)d with periodic boundary conditions, and we equivalently write

∂tu = λ∆u+ (1− λ)∆u, (7.4)

with λ ∈ [0, 1]. Notice that in this case the approximation operator is simply λ∆. Then, in order to
determine the parameter λ we perform a linear stability analysis of the temporal exponential integrator
in Fourier space. For convenience of the reader, all the schemes mentioned and studied in this section
are collected in the appendix (in a formulation for a generic abstract semilinear ODE).

Let us firstly consider the well-known exponential Euler method, which for equation (7.4) marches in
time as follows

un+1 = un + τϕ1(τλ∆)∆un, (7.5)

being un the approximated solution at time tn and τ the time step size. Here and throughout the
chapter we assume, without loss of generality, that τ is constant. Then we have the following result.

Theorem 7.2.1. The exponential Euler scheme (7.5) is unconditionally stable for λ ≥ λee = 1/2.

Proof. Let us denote k = (k1, . . . , kd) ∈ Zd, k2 =
∑
µ k

2
µ, and let ûnk be the kth Fourier mode of un.

Then, in Fourier space we have

ûn+1
k

ûnk
= 1− ϕ1(−λτk2)τk2 = 1− 1

λ
+

e−λτk
2

λ
.

Thus, we have unconditional stability if the growing factor is less or equal than one in absolute value,
i.e., if ∣∣∣∣ ûn+1

k

ûnk

∣∣∣∣ ≤ 1

for all k. This implies 1/λ ≤ 2 which gives λ ≥ 1/2, as desired.
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Remark 7.2.1. If instead of considering the semidiscrete (in time) scheme (7.5) we work with the
fully discrete version, i.e., the Laplacian operator is approximated by a matrix A ∈ RN×N , being N the
number of degrees of freedom in space, a similar bound in terms of the largest (in magnitude) eigenvalue
can be derived. Moreover, notice that clearly λ < 1/2 is also admissible, accepting a stability constraint.

Roughly speaking, the result of Theorem 7.2.1 tells us that we need to take at least 1/2 of the
magnitude of the original diffusion in order to obtain an unconditionally stable method for equation (7.4).
Let us consider now another example of interest, i.e., the exponential Lawson–Euler scheme which
marches as

un+1 = eτλ∆(un + τ(1− λ)un). (7.6)

It can alternatively be seen as a Lie splitting where we approximate the second subflow by explicit Euler,
that is

ŭn+1 = eτλ∆eτ(1−λ)∆ŭn ≈ eτλ∆(ŭn + τ(1− λ)∆ŭn).

Then we have the following.

Theorem 7.2.2. The Lawson–Euler scheme (7.6) is unconditionally stable for λ ≥ λle = 0.218.

Proof. Similarly to the proof of Theorem 7.2.1, in Fourier space we have

ûn+1
k

ûnk
= e−λτk

2

(1− (1− λ)τk2).

A straightforward study of the unconditional stability relation for the growing factor gives the following
inequality to be satisfied

e−
1

1−λ

(
1− 1

λ

)
+ 1 ≥ 0.

The result simply follows from numerical approximation of the root of the left hand side.

This shows that there exist methods which are unconditionally stable for smaller values of λ = λee =
1/2. This is of interest because it is often the case that the accuracy of the method increases as λ
decreases (see the numerical examples in Section 7.3). In addition, as mentioned in the introduction,
the advantage of using schemes that just employ the exponential function is that in certain situations
the exponential can be more efficient to compute than the ϕ-functions (e.g., exploiting the Kronecker
structure or if a semi-Lagrangian scheme is used).

It is possible to improve even more the stability bound, by considering a simple variation of the
Lawson–Euler scheme (7.6) applied to equation (7.4), i.e.,

un+1 = un + τeτλ∆∆un. (7.7)

We call this scheme stabilized Lawson–Euler, and it can be easily verified by comparing with a Taylor
expansion of the exact solution that this is indeed a first order scheme. Then, we have the following
result.

Theorem 7.2.3. The stabilized Lawson–Euler scheme (7.7) applied to equation (7.4) is unconditionally
stable for λ ≥ λsle = 1/(2e) ≈ 0.184.

Proof. In this case, in Fourier space the growing factor is given by

ûn+1
k

ûnk
= 1− τk2e−τλk

2

,

and the result follows straightforwardly by imposing |ûn+1
k /ûnk| ≤ 1 for each k.
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Remark 7.2.2. A similar analysis can be performed also for other classes of schemes. For example, in
Reference [187] some IMEX schemes have been analyzed in a fully discretized context. In particular, for
the well known backward-forward Euler method

(I − τλ∆)un+1 = (I + τ(1− λ)∆)un (7.8)

they obtain the unconditional stability bound λ ≥ λim1 = 1/2. Moreover, they propose the second order
method (

I − τ

2
λ∆
)
U =

(
I +

τ

2
(1− λ)∆

)
un,(

I − τ

2
λ∆
)
un+1 =

(
I +

τ

2
λ∆
)
un + τ(1− λ)∆U,

(7.9)

which has the same bound λ ≥ λim2 = 1/2.

Let us now consider some examples of second order exponential integrators. In particular, we start
with the following class of Runge–Kutta type schemes for equation (7.4), that we name expRK2phi2,

U = un + c2τϕ1(c2τλ∆)∆un,

un+1 = un + τϕ1(τλ∆)∆un +
τ

c2
ϕ2(τλ∆)(1− λ)∆(U − un),

(7.10)

where 0 < c2 ≤ 1 is a free parameter. Then we have the following result.

Theorem 7.2.4. The expRK2phi2 scheme (7.10) is unconditionally stable for λ ≥ λerk2p2 = 1/(1 + c2).

Proof. Similarly to what performed for the first order schemes, in Fourier space we have (setting x = τk2)

ûn+1
k

ûnk
= 1− xϕ1(−λx) + x2(1− λ)ϕ2(−λx)ϕ1(−c2λx).

Then, by imposing |ûn+1
k /ûnk| ≤ 1 for each k we have

1− 1

λ
+

1− λ
c2λ2

≤ 1

for which we obtain

λ ≥ 1

1 + c2

as desired.

The best results, in terms of unconditional stability bound, are obtained by setting the free parameter
c2 = 1, which yields λ ≥ 1/2.

Let us consider now another class of second order Runge–Kutta exponential integrators, which
requires just the ϕ1 function and for which the stiff order conditions are satisfied in weaker form. For
model equation (7.4) we have

U = un + c2τϕ1(c2τλ∆)∆un,

un+1 = un + τϕ1(τλ∆)∆un +
τ

2c2
ϕ1(τλ∆)(1− λ)∆(U − un).

(7.11)

We label this class, dependent on the parameter 0 < c1 ≤ 1, as expRK2phi1, and we have the following
result for the unconditional stability.

Theorem 7.2.5. The expRK2phi1 scheme (7.11) is unconditionally stable for λ ≥ λerk2p1 = 1/(1 +2c2).
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Proof. In Fourier space, the growing factor is in this case given by (setting x = τk2)

ûn+1
k

ûnk
= 1− xϕ1(−λx) +

x2

2
(1− λ)ϕ1(−λx)ϕ1(−c2λx)

for which we obtain
λ ≥ 1

1 + 2c2

as desired.

The choice c2 = 1 leads to λ ≥ 1/3, which is better than the bound obtained for the expRK2phi2
class.

Concerning the second order Lawson type schemes, we consider the Lawson2a and the Lawson2b
integrators, which for equation (7.4) march in time as

U = e
τ
2 λ∆un +

τ

2
e
τ
2 λ∆(1− λ)∆un,

un+1 = eτλ∆un + τe
τ
2 λ∆(1− λ)∆U,

(7.12)

and
U = eτλ∆un + τeτλ∆(1− λ)∆un,

un+1 = eτλ∆un +
τ

2
eτλ∆(1− λ)∆un +

τ

2
(1− λ)∆U,

(7.13)

respectively. In terms of unconditional stability, we have the following result.

Theorem 7.2.6. The Lawson2a scheme (7.12) and the Lawson2b scheme (7.13) are unconditionally
stable for λ ≥ λl2a = λl2b = 0.301.

Proof. The stability relations in Fourier space of the schemes are given by∣∣∣∣e−λx − xe−λ
x
2 (1− λ)

(
e−λ

x
2 − x(1− λ)

2
e−λ

x
2

)∣∣∣∣ ≤ 1

and ∣∣∣e−λx (1− x

2
(1− λ)− x

2
(1− λ)(1− x(1− λ))

)∣∣∣ ≤ 1

for Lawson2a and Lawson2b, respectively. In both cases, a numerical calculation leads to the restriction
λ ≥ 0.301 for unconditional stability.

Finally, similarly to what we did for the first order Lawson–Euler scheme, we consider a stabilized
version for integrators of Lawson type. In particular, letting 0 < α ≤ 1 be a free parameter, we obtain
for model equation (7.4) the class

U = un + ατeατλ∆∆un,

un+1 = un + τe
τ
2 λ∆∆un +

τ

2α
eτλ∆(1− λ)∆(U − un),

(7.14)

that we name stabilized Lawson2 and which can easily be seen of second order. Then we obtain the
following result.

Theorem 7.2.7. The stabilized Lawson2 scheme (7.14) with α = 1/4 is unconditionally stable for
λ ≥ λsl2 = 0.197.

Proof. In this case, the stability relation in Fourier space is given by∣∣∣∣1− xe−
λx
2 +

x2

2
(1− λ)e−λxe−αλx

∣∣∣∣ ≤ 1.

Then, setting α = 1/4, a numerical calculation leads to the restriction λ ≥ 0.197 for unconditional
stability, as stated.
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Remark 7.2.3. If for instance we set α = 1/2, we numerically obtain the restriction λ ≥ 0.266, which
is more stringent than the one stated in Theorem 7.2.7. A more deep investigation, letting α have
non-rational values (which is clearly admissible), could lead to an even improved bound with respect to
the one in Theorem 7.2.7. In particular, by numerical observations, we claim that the lowest value for α
lies in the interval (1/4, 1/3), and that leads to a restriction comparable with the one of the first order
stabilized Lawson–Euler scheme. For simplicity and compactness of presentation, we do not investigate
further this possibility here.

A recap table of the methods, in descending order with respect to the stability restriction, is given in
Table 7.1.

order uncond. stab. lower bound λ∗

IMEX2 2 λim2 = 1/2
IMEX1 1 λim1 = 1/2

expRK2phi2 (c2 = 1) 2 λerk2p2 = 1/2
Exponential Euler 1 λee = 1/2

expRK2phi1 (c2 = 1) 2 λerk2p1 = 1/3
Lawson2a 2 λl2a = 0.301
Lawson2b 2 λl2b = 0.301

Lawson–Euler 1 λle = 0.218
Stabilized Lawson2 (α = 1/4) 2 λsl2 = 0.197

Stabilized Lawson–Euler 1 λsle = 1/(2e) ≈ 0.184

Table 7.1: Collection of methods, in descending order in terms of unconditional stability. Floating point
notation means values obtained by numerical approximations.

The linear stability analysis just presented has been performed on the simple model equation (7.4).
However, it gives us a good indication on what to employ as approximation operator in the more general
formulation (7.2). In particular, our proposal is to choose

Λ = λmax∆ = λmax
x∈Ω

λ(x)∆, (7.15)

being λ ∈ [λ∗, 1], where λ∗ is one of the values summarized in Table 7.1, depending on the chosen time
marching scheme.

7.3 Numerical examples
We present in this section a numerical validation of the bounds derived in Section 7.2. In particular, we
will consider two different one-dimensional equations, one linear and one nonlinear, both with spatially
variable diffusion coefficients. Moreover, we present performance results of the proposed technique for
a three-dimensional advection–diffusion–reaction equation. All the numerical experiments have been
performed on an Intel® Core™ i7-10750H CPU with six physical cores and 16GB of RAM, using matlab
programming language. As a software, we employ MathWorks MATLAB® R2022a.

7.3.1 One-dimensional linear diffusion equation
We start by considering the following one-dimensional linear diffusion equation with space dependent
coefficients {

∂tu(t, x) = λ(x)∂xxu(t, x), x ∈ [−π, π), t ∈ [0, T ],

u(0, x) = sin(x),
(7.16)

completed with periodic boundary conditions. Here λ(x) = 1+10 sin2(x) is the space dependent diffusion
coefficient.
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We rewrite equation (7.16) as

∂tu(t, x) = λmax∂xxu(t, x)︸ ︷︷ ︸
Λu(t,x)

+ (λ(x)− λmax)∂xxu(t)︸ ︷︷ ︸
g(t,u(t,x))

, (7.17a)

where
λmax = λmax

x
λ(x), λ ∈ [0, 1]. (7.17b)

The structure of the equation allows for an effective discretization in space by means of a Fourier spectral
technique. In particular we denote with N the number of Fourier modes. Then, the temporal schemes
studied in Section 7.2 and resumed in the appendix can be applied in a straightforward manner, with
the computation of derivatives and matrix functions by pointwise operations on Fourier coefficients.

Here, we verify that the theoretical lower bounds for λ found in Section 7.2 also apply to this space
dependent coefficients diffusion equation. The actual simulations have been performed with N = 211

and T = 1/40, and the achieved errors for different λ and varying number of time steps m = 2`, with
` = 4, 5, . . . , 11, have been measured at the final time T in infinity norm, relatively with respect to the
exact solution of equation (7.16). The results are collected in Figure 7.1. First of all, we observe that
all the considered exponential methods show the expected order of convergence (in particular also the
newly derived schemes of first and second order labeled stabilized Lawson–Euler and stabilized Lawson2,
respectively). Then, we also clearly see that as λ decreases some methods fail to be unconditionally
stable. In particular, if we compare with the bounds resumed in Table 7.1, we observe that the values
found can be applied sharply also to the case of equation (7.16). Indeed, up to λ = 0.5 all the methods
behave nicely. Then, if we further decrease λ, some methods start to blow up when incrementing the
number of time steps, in accordance to what presented in Table 7.1. Then, as predicted by the linear
analysis, for λ < λsle all the methods fail to be unconditionally stable.

Finally, we notice that each method becomes more and more precise as λ decreases, and we compare
in Figure 7.2 the achieved errors of the exponential schemes using their own values λ∗. In this case, we
observe that basically all the first order methods behave similarly, while, for the second order methods,
the best performant in terms of achieved final error is the stabilized Lawson2 scheme.

7.3.2 One-dimensional diffusion–reaction equation
We now turn our attention to the following one-dimensional nonlinear diffusion–reaction equation{

∂tu(t, x) = ∂x(λ(x)∂xu(t, x)) + r(u), x ∈ [−π, π), t ∈ [0, T ],

u(0, x) = sin(x),
(7.18)

in an inhomogeneous media with periodic boundary conditions, see Reference [152]. Here we select
λ(x) = 1 + 10 sin2(x) as space dependent diffusion coefficient, and the nonlinearity is of quadratic type
r(u) = u(1− u). Similarly to the previous example, we rewrite equation (7.18) as

∂tu(t, x) = λmax∂xxu(t, x)︸ ︷︷ ︸
Λu(t,x)

+ (λ(x)− λmax)∂xxu(t) + λ′(x)∂xu(t, x) + r(u)︸ ︷︷ ︸
g(t,u(t,x))

, (7.19a)

where again
λmax = λmax

x
λ(x), λ ∈ [0, 1]. (7.19b)

We first discretize in space with a Fourier spectral method employing N = 210 modes. Then, as for the
previous example, the temporal schemes can be applied straightforwardly with pointwise operations on
Fourier coefficients. We simulate until final time T = 1/10 with a number of time steps equal to m = 212

for all the methods, different values of λ and we measure the relative errors in infinity norm with respect
to a reference solution computed with expRK2phi2 as time integrator (applied to the original equation
semidiscretized in space by using spectral differentiation matrices and a sufficiently large number of time
steps). We collect the results in Figure 7.3.
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Figure 7.1: Solution of equation (7.16), rewritten as equation (7.17), with different schemes, decreasing
λ and varying number of time steps m. The blue ◦ line is stabilized Lawson–Euler, the red × line is
Lawson–Euler, the yellow + line is exponential Euler, the purple � line is expRK2phi2 (c2 = 1), the
green 4 line is stabilized Lawson2, the light blue . line is expRK2phi1 (c2 = 1), the brown / line is
Lawson2a and the pink O line is Lawson2b (see also the legend in Figure 7.2).
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Figure 7.3: Solution of equation (7.18), rewritten as equation (7.19), with different schemes and varying
value λ. The number of time steps is fixed to m = 212 for each method. Missing marks means that the
error was above the plot threshold 10−2.

Also in this nonlinear case, we observe that the linear analysis predicts very sharply the amount of
diffusion that we can consider in the operator Λ while keeping unconditional stability. Moreover, in this
example as well, each method becomes more precise as the value λ decreases, with in general a greater
gain for second order methods than the first order ones. For completeness, we added also the results
obtained with the IMEX schemes mentioned in Remark 7.2.2. Overall, in terms of achieved accuracy, we
observe that the best performant methods are the stabilized Lawson–Euler and the stabilized Lawson2
schemes among the methods of order one and of order two, respectively.
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7.3.3 Three-dimensional advection–diffusion–reaction equation

We now consider the following three-dimensional advection–diffusion–reaction equation{
∂tu(t, x1, x2, x3) = λ(x1, x2, x3)∆u(t, x1, x2, x3) + β∇u(t, x1, x2, x3) + r(u(t, x1, x2, x3)),

u(0, x1, x2, x3) = 26x1x2x3(1− x1)2(1− x2)2(1− x3)2,
(7.20)

in the spatial domain Ω = [0, 1]3 and t ∈ [0, T ]. We equip the problem with homogeneous Dirichlet
boundary conditions on the set {(x1, x2, x3) ∈ ∂Ω : x1x2x3 = 0} and with homogeneous Neumann
boundary conditions elsewhere. We set the diffusion coefficient as

λ(x1, x2, x3) = 0.1e−(x1−1/2)2−(x2−1/2)2−(x3−1/2)2 ,

while we choose the advection parameter as β = −0.01. Finally, we consider the quadratic nonlinearity
r(u) = u(1− u).

Based on the numerical results of the previous sections, we apply here the time marching schemes
with the technique presented in Section 7.2, and we rewrite equation (7.20) as

∂tu(t, x1, x2, x3) = (Λ∗ + β(∂x1
+ ∂x2

+ ∂x3
))u(t, x1, x2, x3)︸ ︷︷ ︸

Mu(t,x1,x2,x3)

+g(x1, x2, x3, u(t, x1, x2, x3)), (7.21)

where Λ∗ is defined as in equation (7.15) with

λmax = λ∗max = λ∗max
x∈Ω

λ(x)

and

g(x1, x2, x3, u(t, x1, x2, x3)) = (λ(x1, x2, x3)− λ∗max)∆u(t, x1, x2, x3) + r(u(t, x1, x2, x3)).

The employment of different choices of λmax is subject of current study. We discretize in space the equation
with standard second order centered finite differences, using Nx1

= Nx2
= Nx3

= 60 discretization points
for each direction (which leads to a space discretization error of approximately 10−4). By doing so, the
linear operatorM in equation (7.21) becomes a matrix with Kronecker sum structure

M = M3 ⊕M2 ⊕M1,

whereMµ ∈ RNxµ×Nxµ is the discretization matrix of the operator λ∗max∂xµxµ +β∂xµ . Here the symbol ⊕
denotes the standard Kronecker sum of matrices. Hence, for the exponential integrators that just require
the exponential function (i.e., the ones of Lawson type), it is possible to employ µ-mode based techniques
in order to efficiently compute the needed actions of the matrix exponential via Tucker operators, see
References [39, 42] for more details.

As terms of comparison, we consider here the same time integrators but applied to the original
equation (7.20), again spatially discretized with second order centered finite differences and Nx1 = Nx2 =
Nx3

= 60. In addition, in this formulation, we also present the results obtained with the exponential
Euler scheme and with the expRK2phi1 integrator (with c2 = 1). In order to compute the needed
actions of exponentials and ϕ-functions, we employ the kiops function1, whose underlying algorithm
is thoroughly presented in Reference [97]. This routine requires an input tolerance, which we set as
τp+1/100, being τ the time step size and p the order of convergence of the time marching scheme.
Moreover, we also perform the time integration with the IMEX schemes mentioned in Remark 7.2.2, and
reported in the appendix for an abstract semilinear equation. The arising linear systems are solved with
an iterative method, namely the biconjugate gradient stabilized method (implemented in the internal
matlab function bicgstab). Also for this routine we set the input tolerance as τp+1/100, similarly to
the previous case.
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Figure 7.4: Results for the simulations of equation (7.20) (dashed lines), eventually rewritten as
equation (7.21) (solid lines), with different integrators and varying number of time steps m = 2`1 , with
`1 = 9, . . . , 12 (left), and m = 2`2 , with `2 = 6, . . . , 9 (right).

We perform the simulations with a number of time integration steps equal to 2`1 , with `1 = 9, . . . , 12,
for the first order methods, while we consider 2`2 , with `2 = 6, . . . , 9, for the second order ones. The
final time is in any case set to T = 1/4. The results are collected in the CPU diagram of Figure 7.4.

First of all, concerning the schemes of order 1, we observe that in the original formulation (i.e,
the dashed lines in the plot) the Lawson–Euler scheme is the one which performs better. Indeed,
comparing it with the other exponential methods, it is the one which reaches the lowest error, with all
the computational times similar one to each other. The IMEX1 method performs slightly better in term
of wall-clock time, but the reached error is higher than both the exponential Euler and the Lawson–Euler
scheme. Hence, overall, it is not the preferred method. In any case, we observe that the proposed
approach, i.e., solving instead equation (7.21) with µ-mode techniques (solid lines) is effective. Indeed,
in this formulation the Lawson–Euler and the stabilized Lawson–Euler methods reach comparable errors,
with a slight advantage of the former in terms of computational time.

Similar considerations can be drawn for the second order schemes. Indeed, in the original formulation
the Lawson2a and the Lawson2b schemes perform better than the IMEX2 scheme, the expRK2phi1 and
the stabilized Lawson2 methods. Then, the µ-mode approach applied to equation (7.21) allows to obtain
comparable errors in less wall-clock time, and hence appears to be an effective choice.

7.4 Conclusions
In this chapter, we presented an effective approach to solve inhomogeneous advection–diffusion–reaction
equations. It is based on an equivalent rewriting of the equation which allows for the employment of
more efficient methods (FFT or µ-mode based, for instance) to integrate it numerically. By working in

1https://gitlab.com/stephane.gaudreault/kiops/-/tree/master/

https://gitlab.com/stephane.gaudreault/kiops/-/tree/master/
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the context of exponential integrators, we also presented two schemes of Lawson type which have better
unconditional stability properties compared to methods already available. The conducted numerical
examples show the superiority of the approach. A more sophisticated choice of the approximation
operator is currently under study.

Appendix
For convenience of the reader, we list here the integrators that have been mentioned and studied
throughout the chapter. We suppose here that the equation under study is given in the following abstract
form

u′(t) =Mu(t) + g(t, u(t)) = F (t, u(t)),

beingM a generic linear operator and g a nonlinear function.

Lawson type exponential integrators

The Lawson–Euler scheme is given by

un+1 = eτM(un + τg(tn, u
n)).

The stabilized Lawson–Euler scheme is given by

un+1 = un + τeτMF (tn, u
n).

The Lawson2a scheme is given by

U = e
τ
2Mun +

τ

2
e
τ
2Mg(tn, u

n), un+1 = eτMun + τe
τ
2Mg

(
tn +

τ

2
, U
)
.

The Lawson2b scheme is given by

U = eτMun + τeτMg(tn, u
n), un+1 = eτMun +

τ

2
eτMg(tn, u

n) +
τ

2
g(tn + τ, U).

The stabilized Lawson2 scheme is given by

U = un + ατeατMF (tn, u
n), un+1 = un + τe

τ
2MF (tn, u

n) +
τ

2α
eτM(g(tn + ατ, U)− g(tn, u

n)).

Classical exponential integrators

The exponential Euler scheme is given by

un+1 = un + τϕ1(τM)F (tn, u
n).

The exponential Runge–Kutta scheme of second order involving ϕ1 and ϕ2 functions is given by

U = un + c2τϕ1(c2τM)F (tn, u
n),

un+1 = un + τϕ1(τM)F (tn, u
n) +

τ

c2
ϕ2(τM)(g(tn + c2τ, U)− g(tn, u

n)).

The exponential Runge–Kutta scheme of second order involving just the ϕ1 function is given by

U = un + c2τϕ1(c2τM)F (tn, u
n),

un+1 = un + τϕ1(τM)F (tn, u
n) +

τ

2c2
ϕ1(τM)(g(tn + c2τ, U)− g(tn, u

n)).
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IMEX schemes

The Backward-Forward Euler scheme is given by

(I − τM)un+1 = un + τg(tn, u
n).

The second order IMEX scheme given in Reference [187] is given by(
I − τ

2
M
)
U = un +

τ

2
g(tn, u

n),
(
I − τ

2
M
)
un+1 = un +

τ

2
Mun + τg

(
tn +

τ

2
, U
)
.
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