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We study the multivariate deconvolution problem of recovering the dis-
tribution of a signal from independent and identically distributed observations
additively contaminated with random errors (noise) from a known distribu-
tion. We investigate whether a Bayesian nonparametric approach for mod-
elling the latent distribution of the signal can yield inferences with frequen-
tist asymptotic validity under the L'-Wasserstein metric. For errors with in-
dependent coordinates having ordinary smooth densities, we recast the mul-
tidimensional problem as a one-dimensional problem leveraging the strong
equivalence between the 1-Wasserstein and the max-sliced 1-Wasserstein
metrics and derive an inversion inequality relating the L'-Wasserstein dis-
tance between two distributions of the signal to the L' -distance between the
corresponding mixture densities of the observations. This smoothing inequal-
ity outperforms existing inversion inequalities and, at least in dimension one,
leads to minimax-optimal rates of contraction for the posterior measure on
the distribution of the signal, lower bounds for 1-Wasserstein deconvolution
in any dimension d > 1, possibly with Sobolev regular mixing densities, be-
ing derived here. As an application of the inversion inequality to the Bayesian
framework, we consider 1-Wasserstein deconvolution with Laplace noise in
dimension one using a Dirichlet process mixture of normal densities as a prior
measure on the mixing distribution (or distribution of the signal). We con-
struct an adaptive approximation of the sampling density by convolving the
Laplace density with a well-chosen mixture of normal densities and show that
the posterior measure concentrates around the sampling density at a nearly
minimax rate, up to a log-factor, in the L' distance. The same posterior law
is also shown to automatically adapt to the unknown Sobolev regularity of
the mixing density, thus leading to a new Bayesian adaptive estimation proce-
dure for mixing distributions with regular densities under the L'-Wasserstein
metric. We illustrate utility of the inversion inequality also in a frequentist
setting by showing that an appropriate isotone approximation of the classical
kernel deconvolution estimator attains the minimax rate of convergence for
1-Wasserstein deconvolution in any dimension d > 1, when only a tail condi-
tion is required on the latent mixing density.

1. Introduction. Multivariate deconvolution problems occur when we observe random
vectors Y; = (Y1, ..., Yi7d)t in RY, for d > 1, that are contaminated signals X; with additive
random errors €; as in the model

(1.1) Yi:Xi—H-:i,

where the sequences (X;);en and (e;);en are independent, the random vectors X; =
(Xit,.on X i,d)t are independent and identically distributed (i.i.d.) according to an unknown
probability measure fox and the random vectors €; = (51, ..., 5i7d)t are i.i.d. according to
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a product probability measure ®§-l:1 He.j» With p. ; the distribution of the jth coordinate ¢; j,

for errors with independent components. The distribution of the observations Y; in R¢ is then
the convolution (®?:1 He.j) * pox - The interest is in recovering the distribution pox of X;,
when the error distribution is supposed to be known. This situation is very common in many
real-life problems in econometrics, biometrics, medical statistics, image reconstruction and
signal deblurring, operations management, online matching markets, queueing, networks,
data privacy protection under local differential privacy as popularized by Dwork, see, e.g.,
[27], etc.

In this paper, we consider nonparametric estimation of ygx with respect to the L'-
Wasserstein metric. Estimation of pox is an extensively studied problem. There exists a
vast literature on frequentist estimation of the density fox of pgx, with ground-breaking
papers of the early 90’s using density estimators based on Fourier inversion techniques, see
[13, 31, 23], penalized contrast estimators as in [17] or kernel [22] and projection [49] esti-
mators for adaptive density estimation. Minimax rates have been studied in [11, 10, 7]. All
these papers, however, consider the one-dimensional case and pointwise or L?, L!'-metrics
as loss functions for fox. Multivariate adaptive kernel density deconvolution taking into ac-
count possible anisotropy for both the signal and noise densities has been studied in [15],
where minimax rates under the L2-loss for fyx are derived that are a natural extension of
those in the univariate case.

Some results have been recently obtained on convergence rates for estimating yox under
LP-Wasserstein metrics, for p > 1, see [12, 21, 20] and [34]. For probability measures p, v
on R? having finite pth moments, the LP-Wasserstein distance Wy (u, v) is defined as

1/p

Wylp, v) = _inf </ x —y[Py(dx, dy)) ,
YEL (1, v) \JRdx R4

where |x — y| is the Euclidean distance between x, y € R% and T'(1, v/) denotes the set of all

couplings or transport plans having marginal distributions x and v.

Wasserstein metrics have lately become popular in statistics and machine learning because
of their suitability to problems with unusual geometry, as in manifold learning, see, for in-
stance, [25] and the references therein, or in deconvolution models [12]. In particular, an
important aspect of Wasserstein metrics is that they are much more sensitive to differences
in the supports of p and v compared to metrics like the Hellinger or the total variation. As an
extreme case, for instance, when d = 1, while the total variation distance between 5(0) and
d(c)» where d(,) is the Dirac mass at z, is equal to 1 even when € is small, LP-Wasserstein
distances converge to 0 when |e| goes to 0. More discussion on the use of Wasserstein metrics
in the analysis of convergence of latent mixing measures in mixture models can be found in
[47].

In this paper, we consider the L'-Wasserstein metric, the weakest of all LP-Wasserstein
metrics since Wy < W, for every p > 1. Another important feature of the 1-Wasserstein
metric is the Kantorovich-Rubenstein dual formulation, see, e.g., [63],

(1.2) Wi(p, v)= sup Fx)(u—v)(dx),
feLip, (R1) JR4

where Lip; (R?) is the set of all 1-Lipschitz functions from R? to R, which allows to con-
trol smooth linear functionals of 1y . Furthermore, being equal to the L'-distance between
cumulative distribution functions, the L'-Wasserstein metric is useful to study quantile esti-
mation, see, for instance, [18].

State-of-the-art results on Wasserstein convergence rates for univariate deconvolution
models are given in [20], where a minimum distance estimator of pgx is constructed that
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attains optimal convergence rates under I, when the error distribution is known and ordi-
nary smooth of order 5 > % In the multivariate case, minimax estimation under Wasserstein
metrics has only been studied in the case where the distribution of the errors is supersmooth,
see [21]. Convergence rates in the multivariate deconvolution model have been obtained by
[12] under the L2-Wasserstein loss, but they lead to rather slow convergence rates. Until now,
the question of minimax rates under LP-Wasserstein metrics in the multivariate deconvolu-
tion problem with ordinary smooth noise remains open. In this paper, we partially fill this
gap by providing lower bounds (see Theorem 5.1) and proposing a kernel type deconvolu-
tion estimator which achieves the optimal rates, up to a log-factor, for any d > 1 under the
1-Wasserstein distance, see Section 5.

While frequentist deconvolution estimators have been extensively studied, little is known
about the theoretical properties of Bayesian nonparametric procedures, whose analysis is
quite involved because, differently from kernel methods where the estimators are explicit,
the posterior distribution of px is not explicit. A way to assess how accurately the posterior
distribution recovers pix is to study posterior contraction rates, i.e., to determine a sequence
€, = o(1) such that, given a sample Y™ := (Y, ..., Y,,) of n i.i.d. random vectors Y; € R?
from the convolution model in (1.1),

(px : d(px, pox) > €n | Y™) = 0p(1),

where 1 is the true mixing distribution, II(- | Y(™)) is the posterior distribution and d(-, -)
is some semi-metric on probability measures. In their seminal papers [36, 37], the authors
propose an elegant strategy to study posterior concentration rates which has been successful
for a wide range of models and prior distributions under certain metrics or loss functions
and, although more adapted to losses for direct problems in the form d(fy, foy ), it has been
applied also to inverse problems by [48, 50]. This approach, however, does not seem to eas-
ily lead to sharp upper bounds on posterior convergence rates for px in deconvolution. An
alternative approach is to obtain posterior convergence rates for the direct problem, i.e., for
Ilfv — foy |1, and then combine them with an inversion inequality that translates an upper
bound on || fy — foy||1 into an upper bound on W1 (ux, pox ). Using such an inversion in-
equality, posterior contraction rates in LP-Wasserstein metrics, for p > 1, have been derived
by [34] in the univariate case with the Laplace noise, when pgx has bounded support. This
result has been extended to the case of unbounded support by [58], but the rates obtained in
both papers are sub-optimal. Similarly, an inversion inequality is proposed by [47] in general
mixture models, which is used to obtain L2-Wasserstein posterior convergence rates for the
mixing distribution. However, in the deconvolution model with ordinary smooth error den-
sities, the obtained rates are suboptimal. Therefore, the construction of Bayesian minimax-
optimal procedures for estimating 1ox under Wasserstein metrics in a multivariate setting
remains an open issue, with the sharpest results obtained in [34, 58]. Recently, [60] studied
density deconvolution under W5, subject to heteroscedastic errors as well as symmetry about
zero and shape constraints, in particular, unimodality. They proved posterior consistency for
Dirichlet location-mixture of gamma densities, but did not study convergence rates.

In this paper, we propose a novel inversion inequality between Wi (ux, iy ) and the cor-
responding L!-distance || fy — f3||1, which holds for any ordinary smooth noise distribution
and any dimension d > 1. This inversion inequality is sharper than any of the existing ones,
i.e., [34, 58, 47], and is more general then those of [34, 58], since the latter only exist when
d = 1. We then use this inversion inequality in two approaches to the deconvolution prob-
lem: the nonparametric Bayesian framework and the frequentist setting with a kernel type
estimator. In the Bayesian setting, we first derive a simple, but general theorem on poste-
rior concentration rates with respect to the L'-Wasserstein distance on px. We then apply
it to the special case of univariate deconvolution models with a Laplace noise in Section 4,
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for which we obtain the minimax rate n~1/>, up to a (logn)-term, thus improving the rate
n~1/8 obtained by [34, 58]. Furthermore, we prove that the same prior leads to posterior
rate adaptation to Sobolev or Holder regularity of the mixing density fox. We also use the
inversion inequality of Theorem 3.1 to study a kernel type deconvolution estimator, similar
to the estimator of [15], for multivariate deconvolution. We show that this estimator achieves
the minimax rate, up to a log-factor, for all d > 1, since the bound that we obtain match with
the lower bound of Theorem 5.1. For the sake of simplicity, we consider the Laplace noise
example, but the proof extends to other ordinary smooth distributions.

Another nontrivial contribution of the paper is the study of posterior rates of convergence
for mixture densities foy in the Laplace deconvolution model. Posterior rates of conver-
gence for fyy have been widely studied in the literature on Bayesian nonparametric mixture
models mostly for Gaussian mixtures, see, e.g., [40, 57]. When the noise follows a Laplace
distribution, [34, 58] have obtained the rate n=3/ 8 up to a (log n)-factor, in the Hellinger or
L'-distance using a Dirichlet process mixture of normals prior on sy . As noted by [34], this
corresponds to the minimax estimation rate for densities belonging to Sobolev balls of order
%, where, in this case, 10y belongs to any Sobolev class of order smaller than % Under the
assumption that oy has Lebesgue density fox, in Theorem 4.2 we prove that this rate can
be improved to n~2/>. We also study the case where fyx is Sobolev a-regular and obtain
an adaptive rate of convergence for fpy of the order O(n_(o‘+2)/ (20+5) ), up to a logarithmic
factor, see Theorem 4.4. We believe that the theory developed in Section 4.4 to approximate
fov = fe * fox by f-* fx, where fx is modelled as a mixture of Gaussian densities, is also
of interest in itself.

The main contributions of the paper can be thus summarized:

 we derive a novel inversion inequality relating the L!'-Wasserstein distance between the
distributions of the signal to the L'-distance between the corresponding mixture densities
of the observations in a d-dimensional deconvolution problem, for known error distribu-
tions having independent coordinates with ordinary smooth densities (Theorem 3.1). This
inequality leads to the minimax-optimal rate n~1/(284+1) when 3 > 1. Besides improving
upon the rates existing in the literature, cf. [12, 47, 34, 58], the inversion inequality sheds
light on the impact of the dimension d on the minimax rate, see the discussion after Theo-
rem 3.1;

* we establish a general theorem on posterior contraction rates for latent mixing distributions
with respect to the L'-Wasserstein metric under model (1.1) (Theorem 4.1). The theorem
gives sufficient conditions that connect to those existing in the literature for deriving pos-
terior convergence rates in the direct problem, see [36, 37], which have been checked to
hold for many prior distributions;

e we construct a new adaptive approximation of the sampling density fpy by convolving
the Laplace density with a well-chosen mixture of normal densities when d = 1 (Lemma
4.1) and show that the posterior distribution automatically adapts to the Sobolev regularity
of the mixing density fox, thus leading to a new Bayesian adaptive estimation procedure
for mixing distributions with Sobolev regular densities under the L'-Wasserstein metric
(Theorem 4.5);

» we validate our approach by establishing lower bounds on the rates of convergence with
respect to the L'-Wasserstein metric for multivariate deconvolution with independent, or-
dinary smooth error coordinates (Theorem 5.1). These lower bounds match with the up-
per bounds obtained, in dimension d = 1, using a Dirichlet process mixture-of-Laplace-
normals prior to deconvolve a mixing distribution with Sobolev regular density and, in
any dimension d > 1, using a kernel type deconvolution estimator (Theorem 5.2). We,
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therefore, fill a gap present in the literature because minimax rates for multivariate W -
deconvolution with ordinary smooth errors having independent coordinates were previ-
ously not known and provide theoretical guarantees, in terms of optimal asymptotic per-
formance, of the proposed Bayesian deconvolution procedures.

The paper is organized as follows. In Section 2, we describe the set-up and introduce
the notation. In Section 3, we present the inversion inequality. In Section 4, we first state a
general theorem on posterior contraction rates for the signal distribution with respect to the
L'-Wasserstein metric and then apply it to the case where the noise has Laplace distribu-
tion and the mixing density is modelled as a Dirichlet process mixture of Gaussian densi-
ties. By constructing a novel approximation of the sampling density, we also prove posterior
rate adaptation to Sobolev regularity of the mixing density under the L'-Wasserstein metric.
In Section 5, we present lower bounds for L'-Wasserstein deconvolution in any dimension
d > 1 with ordinary smooth error distribution having independent coordinates and signal den-
sity belonging to a Sobolev class and show that they are attained by a frequentist minimum
distance estimator. Main proofs are deferred to Section 6. Extensions and open problems are
discussed in Section 7. Auxiliary results are reported in the Supplement [53].

2. Set-up and notation. We observe a sample Y™ = (Y1, ..., Y,) of n ii.d. random
vectors Y; of R? from the multivariate convolution model Y; = X; + €; in (1.1), where the
random vectors X; are i.i.d. according to an unknown probability measure ppx. In case of
errors with independent and identically distributed coordinates, the random vectors &; are
i.i.d. according to the d-fold product probability measure ,u?d of the known distribution p.
having Lebesgue density f., which is assumed to be ordinary smooth of order 3 > 0, i.e., for
constants dy > 0, its Fourier transform f. verifies

dolt| ™| < | fe(b)]

Examples of ordinary smooth densities are the gamma distribution with shape parameter
B > 0 and the Linnik distribution with index g € (0, 2], the Laplace being a special case for
5 = 2. The common distribution of the Y;’s is given by pgy = u?‘i * UOX

Let 2(RY) stand for the set of probability measures on (RY, B(R?)) and #,(R?) for
the subset of Lebesgue absolutely continuous distributions on R<. For p > 1, define Pp(Rd)
to be the set of probability measures on R¢ having finite pth moments, i.e. if My(p) =
Jga [X[Pp(dx) < oo. In symbols, Pp(R?) = {u € 2(R?) : My(n) < oo}. For M > 0, let
Pp(RY, M) = {u € 2(R?) : M,(u) < M} be the subset of P,(R?) consisting of proba-
bility measures having pth moments uniformly bounded by M. We denote by .# the class
of probability measures py = u®? * ux, with ux € 2(R9). Since uy is Lebesgue abso-
lutely continuous, we denote by fy = €®d % j1x its density. For any subset 22, C Z(R%), let
F(22)) stand for the set of probability measures py = u&% * ux, with uy € 2.

We consider a prior distribution IT,, on %(R?) and denote by IT,, (- | Y(™)) the correspond-
ing posterior measure

STy A(Ya) L (ux)
J =1 Sy (Y;) AT, (px)
Our aim is to assess the posterior contraction rate for px in the L'-Wasserstein distance,

namely, to find a sequence ¢,, = o(1) such that, if Y (™) is an n-sample from model (1.1) with
true mixing distribution pqx, then, for a sufficiently large constant M > 0,

IL,(B|Y™)

IL, (px : Wi(px, pox) < Me, | Y™) — 1in P, -probability,

where I}, stands for the n-fold product measure of Fyy = oy .



We hereafter review some useful facts on Wasserstein metrics. It is known that P, (R%)
endowed with W), is a Polish space, i.e., a separable and completely metrizable space, see,
e.g., Theorem 6.18 of [63]. For d = 1, the following explicit expression of W, holds true:

@.1) Wy (s, v) = ( / B ) - F;l<s>rpds)1/p,

where Fu_l(s) =inf{x € R: p((—o0, x]) > s} and F, !(s) :=inf{x € R: v((—o0, z]) >
s} are the generalized inverse distribution functions associated to y, v € P,(R). For p =1,

02 Wil v /rF rds—/rF ()| dz = | Ey — Fy|s.

Since in the R%-case the closed-form expression in (2.1) of the LP-Wasserstein distance
in terms of the inverse distribution functions no longer holds, we can exploit the connec-
tion between the LP-Wasserstein distance and its max-sliced version, which only requires
estimating the LP-Wasserstein distances of the projected uni-dimensional distributions. Let
S¥1:={ve R?: |v| = 1} C R? be the unit sphere. For i € P,(R%) and v € S*1, we set
fty := g o vy ! to be the image measure of y by v,, where v, : Rg — R is the map deﬁned by
Vi(X) i =V - x—zd 1vjx;. Then, py € P,(R) because

(2.3) M, () /]w\p,uv dz) /]v x|Pp(dx) < /\x]f” (dx) = Mp(p) < oc.

For p1, v € P,(R?), the max-sliced Wasserstein distance W, (1, v/) is defined as

Wp(lua V)= SUP Wiy, v) = max, Wi (py, )-

veS veSd—
Of particular importance for what follows is the strong equivalence between W1 and Wi due
to [3], Theorem 2.1(ii), pp. 4 and 6-7, according to which W and W are strongly equivalent
for all d > 1, that is, there exists a constant Cy > 1 such that, for all u, v € Py (Rd),

(2.4) Wl(:uv V) <W (ﬂ) V) < CdWI(/% V)'

We now introduce some notation that will be used throughout the article. For probability
measures P, Q € Z,(R?), with respective densities fp, fo relative to some reference mea-

sure, let dy (fp, fo) :== ||V fp—+/foll2 be the Hellinger distance between fp and fq, where
| fp|l-is the L"-norm of fp, for r > 1. Letting P f stand for the expected value [ fd P, where

the integral extends over the entire domain, we define the Kullback-Leibler divergence of )
from P as KL(P; Q) := Plog(fp/fq) and, for € > 0, the e-Kullback-Leibler type neigh-
bourhood of P as

2
ByL(P; €%) = {Q € Zy(RY): KL(P; Q) <€, P <10g ?) < 62} .
Q

For f € Ll(Rd) let f fRd e f(x)dx, t € RY, be its Fourier transform. When d =
1, fora>0and f € Ll(R) such that fR |t|*|f(t)| dt < co, we define the ath fractional
derivative of f as D“f(x) e (—at)* f(t) dt, with DOf = f. Let Cy(S) be
the set of bounded, continuous real valued functlons on S CR%,

For global estimation, we consider Sobolev spaces. For a = (o, ..., ag)’, let the

anisotropic Sobolev space S;(c, L) be defined as the class of integrable functions f : R? —
R satisfying

Z P(1+8)* dt < L2
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For pointwise estimation, we consider Holder classes. Let the Holder class Hy(c, L) be
defined as the class of functions f : R — R that admit derivatives with respect to x; up to
the order ;| and

oleslf , oleslf
(T, e, T, T, Tig 1, e - < Lz — .%“L%‘Jj
(0 )] (x4 Tj-1, Tjy Tjsl Zq) (@)1 (x)| < Llaj — ]
where |o; ] :=max{k € Z: k < a;} is the lower integer part of «;. In the isotropic case,
for a; = ... = ag = a, we simply write Sy(«, L) and H4(c, L). The Sobolev and Holder

spaces of dimension one are denoted by S(«, L) and H(«, L), respectively.

For € > 0, let D(e, B, d) be the e-packing number of a set B with metric d, that is, the
maximal number of points in B such that the d-distance between every pair is at least e,
where d can be either the Hellinger or the L'-distance.

We denote by ¢(z) = (2rr)~1/2e=%*/2, 2 € R, the density of a standard Gaussian random
variable and by ¢, - (z) = (1/0)¢((x — ) /o), x € R, its recentered and rescaled version. We
write a V b = max{a, b}, a Ab=min{a, b} and a; = a V0. Also, a,, < by, (resp. a, 2 by)
means that a,, < Cb,, (resp. a, > Cb,,) for some C' > 0 that is universal or depends only on
Pyy and a,, < b, means that both a,, < b,, and b,, < a,, hold. Let Ny := {0, 1, 2, ...}. For
any de N, let [d] :={1, ..., d}.

3. Inversion inequality between the direct and inverse problems. In this section, we
present an inversion inequality relating the L'-Wasserstein distance W1 (ux, piox ) between
the mixing distributions to the L!-distance || fy — foy |1 between the corresponding mixture
densities. The inequality, which is stated in Section 3.2, is the key tool for proving a general
theorem on L'-Wasserstein contraction rates for the posterior distribution of the mixing mea-
sure based on properties of the prior law and the data generating process. The inequality may
also be of interest in itself.

3.1. Assumptions. In order to obtain L'-Wasserstein posterior contraction rates for the
latent distribution px, we make assumptions on the single coordinate error distribution pi.
and the “true” mixing measure fipx.

Error assumptions

If | f-(t)| # 0, t € R, then the reciprocal of f.,
1
(3.1) re(t):=———, teR,
fe(t)
is well defined. For an [-times differentiable Fourier transform fg, with [ € Ny, the [th deriva-
0] (0)

tive of r. is denoted by rz”, with rz 7 = r..
ASSUMPTION 3.1. The single coordinate error distribution u. € Z5(R) N P1(R) has
Fourier transform | f.(t)| # 0, t € R. Furthermore, there exists 5 > 0 such that, for { =0, 1,

(3.2) rO® <@+t teR.

Assumption 3.1 requires that fg is everywhere non-null. This is a standard hypothesis in
density deconvolution problems, related to the identifiability with respect to the L'-metric,
which is a necessary condition for the existence of consistent density estimators of fox with
respect to the L'-metric, see [46], pp. 23-26. Finiteness of the first moment of ¢, that is,
M7 (pe) < 00, is a technical condition with a two-fold aim. First, if also M; (uox) < oo, then
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it entails that M (poy') < oo, thus allowing to define the L'-Wasserstein distance between
uoy and py, provided that py has finite expectation too. Secondly, it implies that f. is
continuously differentiable on R and the derivative is fa(l)(t) = [pe™(w) fe(u)du, t € R.

Then, rél) exists and is well defined. Differently from [20], in condition (3.2), we do not
assume that r. is at least twice continuously differentiable. Instead, as in [18], we only assume
the existence of the first derivative such that ]rél)(t)] < (1 + [t))P1, t € R. Note that, for
I = 0, condition (3.2) is equivalent to | f.(¢)| > (1 + |t|)~?, t € R. We mention that only the
lower bound on | fal is required to derive upper bounds on the convergence rates. Assumption
3.1 is satisfied for ordinary smooth error densities covering the following examples.

e The symmetric Linnik distribution with f.(t) = (1 + [¢|?)~!, ¢t € R, for index 0 < 8 < 2
and scale parameter equal to 1. The standard Laplace distribution corresponds to 8 = 2,
see § 4.3 in [43], pp. 249-276.

e The gamma distribution with f.(t) = (1 —1t)~7, t € R, for shape parameter 3 > 0 and
scale parameter equal to 1. The standard exponential distribution corresponds to 5 = 1.
Exponential-type densities have great interest in physical contexts, see, for instance, the
fluorescence model studied in [16], where the measurement error density is fitted as an
exponential-type distribution. X

e An error distribution with characteristic function f. that is the reciprocal of a polynomial,

re(t) = Z;”ZO a;t®, t € R, with a; € C, for j =0, ..., m, and exponents 0 < sy < s1 <
... < 8y, = 3, with 3 > 0. This extends Example 1 in [4], p. 487, wherein the s;’s are
taken to be non-negative integers s; = j, for j =0, ..., 3.

e The error distribution in Example 2 of [4], p. 487, with f.(u) = v[go(u — u) + go(u +
w]/2+ (1 —7v)go(u), u € R, for a density gg, constants 0 < v < 1/2 and p # 0, having

Fe(t) = [(1 =) + v cos(ut)]go(t). t € R, with |go(t)| 2 (1+ [t]) =7, for 5> 0.

Location and/or scale transformations of random variables with distributions as in the previ-
ous examples, as well as their convolutions, verify condition (3.2). In fact, if we consider the
m-fold self-convolution of f., then we obtain an ordinary smooth error density with degree
Bm, because the corresponding Fourier transform is equal to ( fe)m. Nevertheless, there are
important distributions, such as the uniform, triangular and symmetric gamma, that cannot
be classified neither as ordinary smooth nor as supersmooth. For nonstandard error densities,
see, e.g., [46], pp. 45-46, and the references therein.

In this paper we derive results for any pox but also some more precise results for smooth
mixing densities, i.e. under the following assumptions:
Regularity assumptions on the mixing distribution

We consider Sobolev or Holder regularity for the Lebesgue density fyx of the mixing
distribution z19x € Zy(R%).

ASSUMPTION 3.2. The mixing distribution pgx € Zo(R%) NPy (R?) is such that there
exists a > 0 for which

(3.3) max / [t|*|ftox (tv)|dt <oo and max ||D*fox |1 < oo,
VESd71 R VESd71
where D fyx  is the inverse Fourier transform of (—2-)%fiox (-v).

For d = 1, the conditions in (3.3) reduce to [, [¢|*|fox (t)|dt < co and D%fox € L' (R).
In dimension one, we also consider the case where fx belongs to a Holder class.
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ASSUMPTION 3.3. The mixing distribution pox € Z(R) NP (R) has density fox ver-

ifying the following condition: there exist a > 0 and Lo € L' (R) such that the derivative fo(g
of order ¢ = |« exists and

118 @+ 6) — £(@)] < Lo()[5]*¢ for every 6, z € R.

Thus, when d = 1, when we consider smoothness assumptions of fyx, we assume that
fox belongs to either a Sobolev or a Holder class of densities, which are common nonpara-
metric classes of regular functions. With Assumption 3.3, the density fox is required to be
locally Holder smooth, namely, it has ¢ derivatives, for ¢ the largest integer strictly smaller
than o, with the ¢th derivative being Holder of order o — ¢ and integrable envelope L, the
latter condition being used to bound the L!-norm of the bias of Fyx, cf. Lemma A.3. With
Assumption 3.2, instead, fox is required to have global Sobolev regularity «. Requiring that
D°fox € L*(R) is equivalent to imposing that fox € S(, L) for some L > 0, the difference
being that D®fqx is here assumed to be in L' (R).

To prove the inversion inequalities of Theorem 3.1 below we use a kernel whose choice
depends on the type of regularity of fox. We consider K € L'(R) N L?(R), with zK(z) €
L'(R), such that

(a) under Assumption 3.2, K is symmetric with K supported on [—2, 2], while K =1 on
[_17 1],

(b) under Assumption 3.3, K is a kernel of order £, see, e.g., [46], pp. 38-39: fR K(z)dz=1,
while [, 2/ K(z)dz =0, for j € [¢], with K supported on [—1, 1].

In case (a), a key property is that, for A:=1+ | K||; < oo,

[1—K(t)]
sup -
ter\foy ||
For h > 0, we define K,(-) := (1/h)K(-/h) as the rescaled kernel and b, (h) := Fx —
Fx *x K}, as the “bias” of the distribution function F'x of a probability measure px on R.

In general, for d > 1, we consider a multivariate kernel on R4 with independent coordinates
defined as

< A forall a > 0.

d
(3.4) K®(x) =[] K(z;), xeR%
j=1

For ux € P1(RY) and v € S*1, let bp, (h) := Fx, — Fx, * (K}‘?d)v be the bias of the
distribution function F'y , associated to p1x , € P (R).

3.2. Inversion inequality. In this section, we establish, in the d-dimensional case and for
measurement errors with independent coordinates having ordinary smooth densities that are
known, possibly up to a scale parameter, an inversion inequality relating the L'-Wasserstein
distance between the mixing distributions to the L'-norm distance between the corresponding
mixture densities. This inequality plays a crucial role in the proofs of Theorems 4.1 and 5.2.
The proof of Theorem 3.1 is reported in Section 6.1. Starting from [20], the idea is to use
a suitable kernel to smooth the distribution functions F'x, Fyx corresponding to the mixing
measures [ix, pox and then to bound the L'-Wasserstein distance between the smoothed
versions, meanwhile controlling the bias induced by the smoothing.
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THEOREM 3.1. Let ux, puox € P1 (Rd), d > 1, and let the error distribution ,u?d have
single coordinate measure 1. € P1(R) satisfying Assumption 3.1 for B > 0. Then, for proba-
bility measures py := puS% * ux, poy = pee * pox, having densities fy, foy, respectively,
and a sufficiently small h > 0,

Wilpx, pox) Sh+Wipy, poy) + T,

with

T =logh| max, <‘logh‘]lwuz,(v)<1>+h_5mv)+1 11 ’”ﬂﬁﬂwuz(v)bl))

3.5 eIz (v)

x| fyy = fovwlli,
where, for each v € S41, we let I} (v) := {j € [d] : |vj| > h}.
If, in addition, pox satisfies Assumption 3.2 for a > 0 and there exist a constant C7 > 0
and a kernel K as in (a) such that
(3.6) max |bp,, (h)|1 < C1h*T,

vesd—1

then

Wi (px, pox) ST+ Wipy, poy) + T,
with T as in (3.5).

REMARK 3.1. The terms h and At in W1y (ux, pox) S h+ Wipy, poy) + T and
Wi (px, pox) S hH + Wi(uy, poy) + T, respectively, stem from bounding

b (R by (h).
Jnax bry, (k) + max bpy,(h)

REMARK 3.2. The key quantity in the inversion inequality is & + 7" (or h®T! + T when
a > 0) because typically Wi (uy, poy ) can be bounded by a term of the same order as || fy —
fov||1, up to a log-factor, see, e.g., Theorem B.1.

REMARK 3.3. For d =1, Theorem 3.1 also holds if Assumption 3.3, in place of As-
sumption 3.2, is in force. Then, K is taken to be an (|| + 1)-order kernel satisfying also
the condition [, |2|***| K (z)|dz < co. For o > 2, the kernel K is not a probability density
because it takes negative values. Nonetheless, if, in addition to Assumption 3.3, uox satisfies
condition (3.6), then we still have

Wi (ux, pox) ShY T, T <SWilpy, poy) +h~ BV [log A 1e=0 || fy — foy s

REMARK 3.4. Theorem 3.1 can be used to study both Bayesian and frequentist decon-
volution procedures. In Section 4 we consider Bayesian posterior convergence rates while
in Section 5, we analyse an estimator based on the deconvolution kernel density estimator
considered in [15]. Using Theorem 3.1, we show that in both cases, for the Laplace noise
(8 =2), the derived rate is minimax-optimal.

The result of Theorem 3.1 falls within the scope of inversion inequalities, which translate
an LP-distance, p > 1, between kernel mixtures into a proximity measure between the cor-
responding mixing distributions. A first inequality has been obtained by [47], Theorem 2, p.
377, for ordinary and supersmooth kernel densities in convolution mixtures, see also [42]. In
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dimension one, with ordinary smooth error distributions, refined inversion inequalities from
the Hellinger or L!/L?-distance between fy and foy to the L'-Wasserstein distance be-
tween the corresponding mixing measures px and pox have been elaborated by [34, 58], but
neither of these inequalities are sharp to lead to minimax-optimal estimation rates.

To better understand the implications of Theorem 3.1, we first analyse the case d = 1. In
the direct problem, under the bound || fy — foy||1 < €, and in the context of Remark 3.2, one
obtains that, for 3 > 1, choosing h = h,, = [&, (logn)]"/ (@),

Wilpx, tox) < (€nlog n)(a+1)/(a+ﬁ).

This reasoning has been used in Section 4. As mentioned in Remark 3.2, in the case of
Bayesian estimation and posterior contraction rates, Theorem B.1 states that the Kullback-
Leibler prior mass condition (4.1), together with the assumptions that pgy € L@o(Rd) N
Po5(R?), for some & > 0, and that the posterior distribution is asymptotically supported
on probability measures with uniformly bounded (2 + §)th moments, yields a posterior con-
traction rate for W1 (uy, poy ) of the order O(€,, logn), where €, is the posterior convergence
rate of || fy — foy||1. For &, = n=(@t8)/2(a+B)+1 (Jog )@ we get

Wiux, pox) < n~@FD/R+B)+1 (16 )

for some g1, g2 > 0. For the sake of simplicity, we neglect logarithmic factors in the following
discussion. The above rate n~(*+8)/2(e+8)+1 for || fy — foy |1 in the direct density estima-
tion problem is expected to occur when fox has (Holder or Sobolev) regularity o > 0, see
also Theorems 4.2 and 4.4 for the special case of a Laplace error. The rate (@ +1)/[2(a+5)+1]
matches with the lower bound on the L'-Wasserstein risk for estimating jiox given in The-
orem 5.1, showing that, up to a log-factor, the rate n~(*+1/2(e+8)+1] i minimax-optimal.
Theorem 3.1, however, does not satisfactorily cover the case when 0 < 8 < 1. In this case,
in fact, it yields the rate n—(*+8)/[2(a+8)+1] when fyx is a-regular and the rate n—?/(26+1)
when pgx is only known to have a density fpx. Both rates are slower than the respective
lower bounds n~(@+1)/[2a+2BVD+1] gpd =1/[(2BVD+1] gjven in Theorem 5.1.

When d > 1, the use of the inversion inequality is less straightforward because, still as-
suming for the sake of simplicity that Sd > 1, the term

max <1+h_6|lhf(")Jrl H ‘vj‘ﬁ>”fY,v_f0Y,v”l

veSd—t .
JEI;(v)

is more involved, even though it has the correct behaviour to control Wi (ux, pox ). In fact,
it reduces the problem to univariate projections v - Y, v - X and v - £, with a penalty in
terms of A that takes into account the correct regularity of the resulting noise v - £, namely,
B|1};(v)|. Following the above discussion and pretending that, for each v, the kernel type de-
convolution estimator fi1,, defined in Section 5.2 only depends on the (v - Y;)’s, for i € [n],
the distance || fz,, , — fuoy. |1 Would be bounded by n~(@+AILVIN/(2at2B5(V)I+1)  Then,
considering h = n~1/(e+28d+1) would yield Wi (firn, pox) S n=(@tD/Rat28d+1) "yp o
a log-factor. Obviously, fi1, depends on the Y;’s and not only on the projected observa-
tions (v - Y;)’s, for i € [n]. Nonetheless, we get a bound on || f, .. — fuy.|l1 of the order
O(n~(e+BILVD/(20+28d+1)) "wwhich still leads to the minimax rate 7~ (@+1)/(2a+25d+1)

In a Bayesian framework, instead, controlling || fy,v — foy,v|[1 for all fy in the bulk of the
posterior distribution is challenging and is left for future work.




12

3.3. Error distribution with unknown scale parameter. The inversion inequality pre-
sented in Theorem 3.1 goes through to the convolution model where the coordinate error
distribution is known up to a common scale parameter. Consider observations

(3.7) Y; =X; +10€;, 1E [n],

where the X;’s and €;’s are as described in Section 1. There are two unknown elements in this
model that need to be recovered: the common law ugx of the X;’s and the scale parameter
70 > 0 of the coordinate error density f. r, = (1/70)f(-/70)-

PROPOSITION 3.1. Consider model (3.7) with the single coordinate error density satis-
fying the following condition: there exists a constant ¢ > 0 such that

|7 — 70|

(3.8) VT, 70>0, Hfs,ﬂ'_fe,mHl <c
TT0

Under the assumptions of the first part of Theorem 3.1, we have that
(3.9) Wi (px, pox) S h+Wilpy,r, poyr,) + |7 — 70l + T,
where T is given by the expression in (3.5) with || fy,v — fovv||1 replaced by

|7 — 70l

+ 1 fy,rv — fovimovlli-
TT0

PROOF. By Theorem 3.1, we have that

Wi(px, pox) Sh+Wi(py,r, Hoy,r) + Ty

where 17, is given by the expression in (3.5) with || fy.y, — foy,v||1 replaced by || fy v —
fovmovll1. Let Y = X 4 7e be distributed according to py,, and Y = X + 7pe according
to fty,r,. By the triangle inequality and the bound W1 (uy 7, py.7,) < E[|(X + 7€) — (X +
10€)|] = My (€| — 10| < |7 — 70|, we have that

Wiy rs tov,r) S Wilky,r, tHov,r) + |7 — 7ol

Besides, from || fy,ry — fy,nwllt < | fyvir — frimlls < 1FE2 = 224 |y < d| ferr = ferr |l and
condition (3.8), it follows that

| fymow — fovimonllt < I fyimw — frevlli + 1 fyiry — fovimnl

|7 — 70|

<dc + 1 fy,ry = fovimowllts

TT0

which completes the proof. O

REMARK 3.5. Condition (3.8) is verified for the ordinary smooth error distributions
listed in Section 3.1. Specifically, for Laplace densities see, e.g., (A.6) with p =1 in Lemma
A.2 of [56], p. 300; for Linnik densities the result follows from the fact that they are scale
mixtures of Laplace, while for gamma densities it can be directly checked when |7 — 79| < 1.

REMARK 3.6. Whether the inversion inequality with the term 7" bounded as in (3.9) can
be used to recover the mixing distribution in a convolution model with single coordinate error
density known up to a scale parameter is a critical question related to the identifiability as a
sufficient condition for the existence of consistent estimators. In the present context, it is not
clear whether the distribution of the Y;’s uniquely determines the scale parameter 73 and
the distribution pgx. In fact, as remarked by [9], p. 312, it is important that the distribution



WASSERSTEIN CONVERGENCE IN DECONVOLUTION MODELS 13

to be deconvolved be significantly less smooth than the error distribution, which is not the
case when both the error and mixing distributions are ordinary smooth. We should mention
that, at least for d = 2, identifiability has been proved by [35], see Theorem 2.1, p. 306. It
remains, however, an open question whether fast rates of convergence are possible. Typically,
in presence of identifiability problems, either more restrictive conditions are imposed on the
mixing distribution or additional data are required. If the scale parameter is estimable without
loss in the speed of convergence, then the inversion inequality can be used to estimate the
mixing distribution. Yet, a thorough investigation of this issue is beyond the scope of this
paper and we refer the reader to Chapter 2 of [46], pp. 5-105, as well as to the references
therein, for a more complete discussion of the various aspects of the problem.

4. Application to Bayesian estimation: posterior rates of convergence for L!-
Wasserstein deconvolution. In this section, we first provide a general theorem on posterior
rates of convergence for W1 (ux, pox ) and then apply it to the univariate deconvolution prob-
lem using a Dirichlet process mixture-of-normals prior on the mixing density fx.

4.1. Posterior rates of convergence for deconvolution on R%.  We state a general theorem
on posterior contraction rates. The proof is reported in Section 6.

THEOREM 4.1. Let 11, be a prior distribution on 2 (R%), d > 1. Suppose that, for
§ >0, we have jgx € Puyrs(RY) and the error distribution is 2%, with single coordi-
nate distribution . € Pyys(R) satisfying Assumption 3.1 for some 3 > 0. Furthermore, for
a sequence &, > +/(logn)/n such that &, — 0, constants ci, ca, c3, ¢4, K' > 0 and sets
P Cux : Mugs(py) < K'&%Y,

log D(é,, F(P,), d) < cné2,
4.1) I, (2¢) < cgexp (—(ca + 4)né2),
I, (BxL(Poy; €2)) > cpexp (—coné?).
Then, for €, := [é,(logn) T 1es=n V(BN and sufficiently large constant C > 0,
IL, (px : Wi(px, pox) > Cepn | YY) = 0in P3y -probability.

If, in addition, pox satisfies Assumption 3.2 for a > 0 and there exist a constant C'y > 0
and a kernel K as in (a) such that, for every px € &y,

max by, (hn)lls < CLhi ™, with hy = [ (log n) ey /e GHLL
veSd—t ’

then, for €, o := [€n(logn) ' H1@asn )@t D)/ lo+BAVD] gng C, > 0 large enough,

I, (pex : Wa(px, pox) > Co€na | Y(")) — 0 in By -probability.

Theorem 4.1 provides sufficient conditions on the prior distribution and the data gen-
erating process so that the corresponding posterior measure asymptotically concentrates
on L'-Wasserstein balls centered at jox. As a consequence, the posterior mean [ :=
[ px AL, (x| Y™) converges to yox in the L'-Wasserstein distance at least as fast as
€n OF € .

COROLLARY 4.1.  Under the assumptions of Theorem 4.1, the posterior mean (i3 con-
verges to igx in the L'-Wasserstein distance at rate €,, namely, there exists M' > 0 such
that, with Py -probability tending to 1,

Wl(ﬂg? ,UOX) < M/Em

or €y, under the assumptions of the second part of Theorem 4.1.
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Corollary 4.1 can be proved using standard arguments, see, e.g., Theorem 8.8 of [39], p.
196.

Some remarks and comments on two main issues, (i) the relationship between the rates
for the direct and the inverse problems, (ii) rate optimality, are in order. As for issue (i),
Theorem 4.1 connects to existing results that give sufficient conditions for assessing posterior
convergence rates in the direct density estimation problem. In fact, the conditions in (4.1)
imply that, for a sufficiently large M > 0,

Efy [ (px = || fy — fov|li > Mé&, | Y™)] =0,

see [36], Theorem 2.1, p. 503, which states that the posterior concentration rate on Li-
neighbourhoods of fyy is €,. Alternative conditions for assessing posterior contraction rates
in L"-metrics, 1 <7 < oo, are given in [41], see Theorems 2 and 3, pp. 2891-2892. As for
issue (ii), a remarkable feature of Theorem 4.1 is the fact that, to obtain L'-Wasserstein pos-
terior convergence rates for px, which is a mildly ill-posed inverse problem, it is enough
to derive posterior contraction rates relative to the L'-metric in the direct density estimation
problem, which is more gestible. In fact, granted Assumption 3.2, the essential conditions to
verify are those listed in (4.1), which are sufficient for the posterior distribution to contract
at rate €, around fpy. This simplification is due to the inversion inequality of Theorem 3.1,
which holds true under Assumption 3.1 only, when no smoothness condition is imposed on
tox, and jointly with condition (3.6), when the smoothness Assumption 3.2 on pgx is in
force. Application of Theorem 4.1 to specific models gives further insight into this aspect. In
Section 4.2, for the case d = 1, we consider a Dirichlet process mixture-of-Laplace-normals
prior and find the rate n~1/° (logn)" when the latent distribution yox is only known to have a
density fox, and the rate n—(@+1)/(20+5) (Jog )% when the mixing density fox is a-Sobolev
regular. These rates match with the lower bound given in Theorem 5.1 and are, therefore,
minimax-optimal, up to log-factors. When d > 2 and Sd > 1, to assess Wj-posterior con-
traction rates for px under no regularity assumptions on fyx, we would need a posterior
contraction rate for the direct density estimation problem (with respect to the L;-norm dis-
tance between fy and foy) of the order n~P4/[(26+1)d] — ,—B8/(26+1) However, the theory
developed in Section 4.2 based on a Dirichlet process mixture-of-Laplace-normals prior does
not immediately extend to the multivariate case.

4.2. Deconvolution on R by a Dirichlet process mixture-of-Laplace-normals prior. In
this section, we study the problem of density deconvolution on the real line for mixtures
with a Laplace error distribution, whose Fourier transform is given by f-(t) = (1 + ¢2)71,
t € R. The problem of density deconvolution with a Laplace error distribution arises also
in nonparametric inference under local differential privacy, when a Laplace density is used
in a convolution-based privacy mechanism, see, e.g., [27]. In this case, in fact, the problem
of recovering the common density, say fox in our notation, of the original data before a
perturbed version with additive errors is released, boils down to a density deconvolution
problem with Laplace noise. Data privacy protection is nowadays a major issue due to the
massive amount of data collected and stored. Local differential privacy, in particular, has
lately attracted a lot of attention as a way to construct data privacy preserving mechanisms,
see, for instance, [24, 29, 28, 27, 26] and the recent articles [51, 8] on nonparametric adaptive
estimation of fox.

We use a Dirichlet process mixture-of-normals prior on the mixing density fx = ¢, * g,
so that the model density is fy = f. x fx = fe * (¢o * pp), with g ~ P, a Dirichlet
process with finite, positive base measure Hy on R, and o ~ II,. We consider the following
assumptions on Hy and II,;.
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ASSUMPTION 4.1. The base measure H has a continuous and positive density hg on
IR such that, for constants by, by, co, ¢ >0 and ¢ > 0,

coexp (—bolul") < ho(u) < cpexp (=bplul’), u€eR.

ASSUMPTION 4.2. The prior distribution II, for o has a continuous density 7, on
(0, 00) such that, for constants Dy, Dy > 0 and sq, s, t1, t2 >0,

o % exp (—D1o logo|h) < my(0) S o2 exp (— Dot |log o|'?)

for all ¢ in a neighborhood of 0. Furthermore, for constants D3, @ > 0, the tail probability
I1,((7,00)) Sexp(—D35%) as  — o0.

Assumption 4.1 on the base measure H( of the Dirichlet process is analogous to (4.8) in
[56], p. 288, and holds true, for example, when hg is the density of an exponential power
distribution with shape parameter ¢ > 0, which includes the Laplace distribution ( ¢ = 1), and
the Gaussian distribution ( ¢ = 2).

The first part of Assumption 4.2 on the scale parameter o of the Gaussian kernel has
become common in the literature since the articles [62, 19, 44]. Here we consider in addition
the tail condition for large values of o, which requires II,, to have an exponentially decaying
tail also at infinity. Examples of densities satisfying these two conditions are inverse Gamma
distribution restricted to (0, 7], for 0 < & < co. An example of distribution supported on
(0, 00) that verifies Assumption 4.2 is given in [56], p. 291, where 7, is proportional to
an inverse-gamma IG(1, ¢) on (0, 1] and to a Weibull W ((, v) on (1, o), where ¢ > 0 is
the scale parameter and v > 0 the shape parameter. Then, s; =so =(+ 1, t; =t2 =0 and
w = v. The assumption on the upper tail of II, is used to guarantee that condition (B.4)
is satisfied, which, in virtue of Theorem B.1, allows to control W7 (uy, poy) in terms of

Ify = fov |

We also consider the following assumption on the tails of the mixing distribution:

ASSUMPTION 4.3.  The mixing distribution pox € Zy(R) has density fox(z) S
e_(HCO)'x', x € R, with some constant Cy > 0.

First we study the case in which mixing distribution satisfies only Assumption 4.3 and
then the case where it also has a density Sobolev regularity «. In the latter case, the prior
distribution on the mixing density does not depend on «, yet it yields an adaptive posterior
contraction rate. We refer to these two cases as non-adaptive and adaptive, respectively, and
treat them separately.

4.3. Non-adaptive case. Let Il be the prior distribution induced on .# by the product
measure Py, ® I, on the parameter (ug, o) of the density fy = f. x (¢5 * np), for a
standard Laplace error density f.. Let also the sampling density foy = f- * fox be a Laplace
mixture, with mixing density fyx satisfying the following exponential tail decay condition.

We begin by assessing posterior contraction rates in the L'-metric for Laplace convolution
mixtures with mixing distributions having exponentially decaying tails.

THEOREM 4.2. Let Yy, ..., Y, be i.id. observations from foy ‘= f. x fox, where f.
is the density of the standard Laplace distribution and fox satisfies Assumption 4.3. Let 11
be the prior distribution induced by 9Py, @ 11,, where Hy verifies Assumption 4.1 and 11,
verifies Assumption 4.2. Then, the conditions in (4.1) are satisfied for €, = n_2/5(log n)%,
with some @ > 0, and there exists D large enough so that

O(py : |fy — foy|l1 > Dé, | Y™) = 0 in Pl -probability.
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PROOF. We argue that the conditions in (4.1) are satisfied for €, as in the statement.
The small ball prior probability estimate in the third inequality of (4.1) is verified taking into
account Remark B.2 and Lemma C.3, which is based on the construction of an approximation
of foy by fe * (¢5 * i), for a carefully chosen probability measure zz7. This construction
adapts the proof of Lemma 2 of [34], pp. 615-616, to obtain an approximation error of
the order O(€, ), as shown in Lemma C.2. The entropy and remaining mass conditions, the
first two inequalities in (4.1), are consequences of Theorem 5 of [59], p. 631, because, for
any pair of densities fi and f2, we have || f: * (f1 — f2)|l1 < ||f1 — f2||1. Finally, since
px has density ¢, * g so that X = oZ + U, with Z ~ N(0, 1) and U ~ pp, we have
M (px) < oE[|Z]] + M1(pm) < oo, that is, px € Pi(R) almost surely, because Zp, (g :
M (pp) = o00) = 0. The assertion follows. O

A rate of the order O(n_z/ %), up to a logarithmic factor, is achieved for estimating mix-
tures of Laplace densities if a kernel mixture prior on the mixing density is constructed using
a Gaussian kernel, with an inverse-gamma type bandwidth o and a Dirichlet process prior
on pp. The result is new in Bayesian density estimation and is a preliminary step for the
following L'-Wasserstein deconvolution result.

THEOREM 4.3. Let Y1, ..., Y, be ii.d. observations from foy := f- * fox, where f. is
the density of the standard Laplace distribution and fox satisfies Assumption 4.3. Let 11 be
the prior distribution induced by Py, ® 11, where Hy verifies Assumption 4.1 for . > 1 and
11, verifies Assumption 4.2 with @ > 1. Then, there exist K large enough and x > 0 so that

(px : Wiux, pox) > Kn~?(logn)® | Y™) =0 in Py -probability.

PROOF. We apply Theorem 4.1. For any ¢ > 0, with the Laplace distribution we have
e € Pats(R). By Assumption 4.3, also jigx € Pa+s(R). We know from Theorem 4.2 that
the conditions in (4.1) hold for &, = n=2/%(logn)¥. It remains to show that, for a suitable
c>0,

(4.2) M(px : Myys(ux) > K"é,%) S exp (—cné?).

Recalling that px has density ¢, * upg sothat X =oZ + U, with Z ~ N(0, 1) and U ~ pp,
we have My, s(ux) S o OE[|Z|*9] + My s(pm). Therefore, for My > 0,

Myys(px) S oM+ Myys(um) S o0 + Mg, ? + Mays(L(jyjasss pryezzyom)-
Assumption 4.2 on the upper tail of I, implies that, for a suitable ¢; > 0,
I, (0: o> (M&,2)/ ) < exp (—Ds(M1&,%) /1)) < exp (—crnél)

provided that 0 < 0 < 4(w — 1), where w > 1 by hypothesis. Besides, for a suitable ¢y > 0,

‘@HU (/,LH : M4+5(]]'(‘U|4+5>M1€;2)/’6H) > M1€;2) g /| ‘ ”u,‘4+6h0(u) du
u 4+5>M1€;2
Sexp (—bp(Mi&,%) /(449 /2)

< exp (—02716%)

provided that 0 < 6 < 4(c — 1), where ¢ > 1 by hypothesis. Hence, choosing § small enough
so that both the above requirements are satisfied, condition (4.2) holds true and the proof is
complete. O
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We now exhibit another example of convolution model for which a statement in the same
spirit as that of Theorem 4.3 can be obtained. Let the random variable Z have monotone non-
increasing density fz on (0, co). Following [64], it is known that f is a scale mixture of
uniform densities, f7(z) = [;°[1}o,,)(2)/v]dF(v), so that Y =log Z = X — ¢, where € ~
Exp(1) is independent of X . Under suitable conditions, the posterior convergence rate at foy
relative to the Hellinger or L*-distance is n~ /3, up to a logarithmic factor, see, e.g., Theorem
2 in [55], pp. 1384—1385. Then, the posterior distribution of 1 x concentrates around pox at
rate n~'/3, up to a log-factor, in a metric similar to the L'-Wasserstein. In fact, writing

f2(2) = [§7 L1z, 00) (v) /0] dF (v) and foz(2) = [57[L[z, 00)(v) /0] dFp(v), we have
II(F: W(F, Fy) > Mn~3(logn)” | Z™)] = 0 in PJ,-probability,

where W (F, Fy) := Jo [[F(v) — Fy(v)|/v] dv. We believe that this rate is optimal, up to a
log-factor, since F'(v) =1 — fz(v)/fz(0), see [2], p. 2538.

4.4, Sobolev-regularity adaptive case. In this section, we focus on the case where the
sampling density foy is a mixture of Laplace densities with a Sobolev regular mixing density.
We still consider the prior distribution II induced on .# by the product measure Zy, ® I1,
for the parameter (g, o) of fy = f- % (¢5 * pupr), with a standard Laplace error density
fe- Let the corresponding posterior distribution TI(- | Y(”)) be based on i.i.d. observations
Y1, ..., Y, from foy = f- * fox, which is a Laplace mixture with mixing density fox satis-
fying the following conditions.

ASSUMPTION 4.4. There exists o > 0 such that

1 —
o=y [P ) @ dt < o
R

ASSUMPTION 4.5. For given a > 0, there exist 0 < v < 1, Ly € L'(R) and R >
(2m/v), with the smallest integer m > [2V (a + 2) /2], such that fyx satisfies

4.3) | fox (z+ ) — fox(x)] < Lo(x)|¢|Y for every z, ¢ € R,
and

R
(4.4) /Rex/zfox(:n) (é—i(x)) dz < 0.

Assumption 4.4 requires that, for b = :F%, the function e’ fox is a-Sobolev regular, while
Assumption 4.5 requires that fjx is locally v-Holder smooth, with envelope function Lg sat-
isfying the integrability condition (4.4). The model fy = f. * (¢, * pupr) acts as an approxi-
mation scheme for automatic posterior rate adaptation to the global regularity of fyy, without
any knowledge of the regularity of fox being used in the prior specification. We show that a
rate-adaptive estimation procedure for Laplace mixtures can be obtained if the prior distribu-
tion is properly constructed, for instance, as a mixture of Laplace-normal convolutions, with
an inverse-gamma type bandwidth and a Dirichlet process on the mixing distribution.

THEOREM 4.4. Let Yy, ..., Y, be iid. observations from foy := f. x fox, where f.
is the density of the standard Laplace distribution and fyx satisfies Assumptions 4.3—
4.5. Let 11 be the prior distribution induced by Yy, ® ll,, where Hy verifies Assump-
tion 4.1 and 11, verifies Assumption 4.2. Then, the conditions in (4.1) are satisfied for
&, =n~(22)/(2a+5) (log n)w/, with some ©' > 0, and there exists D’ large enough so that

M(py : ||fy — foy|ls > D'é, | Y ™) =0 in P -probability.
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PROOF. The entropy and remaining mass conditions, as well as the small ball prior prob-
ability estimate in (4.1), are satisfied for €, as in the statement. For details of the entropy and
remaining mass conditions, see, e.g., Theorem 5 of [59], p. 631, while for the small ball prior
probability estimate apply Lemma D.2, together with a modified version of Lemma C.3, with
B replaced by (o + 2). O

Theorem 4.4 is based on the approximation Lemmas 4.1 and D.2. The approximation of
foy by fz* (¢ * up) used in the non-adaptive case of Theorem 4.2 is remarkably simpler
than the approximation used in Lemma 4.1 for the adaptive case. The latter is also different
from the construction in [44]. As in the non-adaptive case, L'-Wasserstein posterior conver-
gence rates for ux are derived from Theorem 4.4 by controlling the prior probability of the
event in (4.2) and the L'-norm of the bias in (3.6).

THEOREM 4.5. Granted the assumptions of Theorem 4.4 on fyy and considered the
same prior with . > 1 and @ > 1, there exist M' large enough and ' > 0 so that

(px : Wilpx, pox) > M/n=(@+D/Rat5) (Iog n)~" | Y (M) 5 0 in Pgy--probability.

PROOF. Applying Theorem 4.4, we get &, = n~(@+2)/(2a+5) (Jogn)?" for some ¢’ >
0. Then, reasoning as in the proof of Theorem 4.3, it can be shown that, for some
¢, 0, K" > 0, condition (4.2) is satisfied. By Lemma D.1, for 0 < hy/(2a+ 1)|logh| <
o < 1, we have ||bp, (h)|1 < R, For ¢ > 0, replace h with h,, = [&,(logn)?]"/(®+2) =
n~ 1/ (2e45) (Jog n) @+’ )/(@+2] From the proof of Theorem 4.4, over the sieve set &7,
we have o > o, = n‘l/(2a+5) (logn)?, for some ¢’ > 0. We can choose ¢’ so that o,, >
B |log by |* /2. Then, for every ux € 2, we have ||bp, (h,)|1 < heH! as prescribed by
condition (3.6) and the proof is complete. U

4.4.1. Approximation result. When assessing posterior rates of convergence for kernel
mixture priors, a crucial step consists in finding a suitable approximation of the true density
within the model. Lemma 4.1, stated below, constructs an approximation of a Laplace mixture
density foy = f- * fox, with an a-Sobolev regular mixing density fyx, by a Laplace-normal
convolution f. * (¢, * jupr) so that the “bias”, the L2-distance between the true density and
the approximation, is of the correct order O(c“*?) in terms of the kernel bandwidth o. Even
if the approximation is a crucial technical device within the Bayesian framework, the result
is independent of the inferential paradigm adopted and is of interest in itself.

For h > 0, let

H(@) = o (e an) (@) = o (@) (@) =

where |7(z)| < (162/15)e~VI#I/15_ 2 € R, is the Fourier transform of 7 : R — [0, 1] defined
in Theorem 25 of [6], p. 29, such that

(u) = 1, ifful <1,
=0, if jul > 17/15.

The function 7 is such that 7 is infinitely differentiable and

—7(x)e , T€eR,

4.5) forany i € Ng, |7 (z)] = O(|z|™") for large |z| and every v > 0.

GivenmeN, b= :F%, 6, o > 0 and a function f : R — R, we define the operator

m— 1 2 L 2k
f o T f = f+Z 2 Z(zk)(—b)%‘j[f*(e—b'DjHa)],

=1 7=0 J
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where Hy(+) := (1/6)H(-/d). Since 6 will be chosen proportional to o, the operator does not
ultimately depend on 6. If Mox (b) := [ €*® fox () dz < oo, introduced the density

- e’ fox
(4.6) 00 = Tox (D)
and the constant y := —(1 — 6_02/8), let the function Ay, » : R — R be defined as
m—1 2k
1 —o2/2)F 2k e ,
(47) hm,b,a = Z % Z < . )(—b)2k J(th * DJH(;).
7= ’ Jj=0 J
Then,
et -
4.8 T fox=h _—
4.8) Mox () bofox =hop +vhmp,

The following lemma provides the order of the approximation error, in terms of the Gaus-
sian bandwidth o, of the L?-norm distance between the Laplace mixture density foy =
fe * fox and the normal-Laplace mixture of the transformation 75, , » fox of fox.

LEMMA 4.1. Let f. be the standard Laplace density. Let fyx be a density such that
(el fox) € LY (R) and satisfies Assumption 4.4 for a > 0. Then, for m > [2V (o + 2)/2]
and o > 0 small enough,

4.9) Z ||€b.{fs * [po * (T b0 fox) — fox]}H% < o2(at2)
b=7F1/2
and
(4.10) ¥b=%5, [ hnpolz)do=1+ 0" ),
R

The proof of Lemma 4.1 is reported in Section 6.3. We note that the result also holds when
only (el/2fyx) € L*(R) N L?(R). This case can be regarded as corresponding to o = 0 so
that m > 2. The approximation error in (4.9) is then of the order 0(04). However, in this
case, we can directly prove the existence of a compactly supported discrete mixing prob-
ability measure ppr, with a sufficiently small number of support points, such that the cor-
responding Laplace-normal mixture f. % (¢, * ppr) has squared Hellinger distance of the
order O(o*) from foy, see Lemma C.2. When « > 0, to obtain the correct order of approx-
imation O(02(®+2)) of the squared L?-bias for a Sobolev regularity (« + 2) of the density
fov = fe * fox, we construct a modification of fy, to be convolved with the Gaussian ker-
nel ¢, such that, for a global level of regularity strictly larger than 2, the new function
oo * (foy — fe * f1), with a suitable f;, outperforms the natural candidate ¢, * foy for the
approximation. However, the new function is not a probability density and needs to be mod-
ified. The resulting high quality approximation allows to use the correct bandwidth, which is
selected by the prior distribution for the scale parameter from the appropriate range. Thus, the
posterior contracts at the minimax-optimal rate (up to a logarithmic factor) near fyy-, without
actually knowing the regularity of fpy and without using that knowledge in the definition of
the prior on the bandwidth, yet automatically adapting to the given regularity level. Even if
the idea of constructing a correct approximation for a given level of regularity by subtracting
appropriate terms from fgy has previously appeared in [52, 44, 59], there are two main differ-
ences with the approximation results of these articles: first, we consider global regularity on
a Sobolev scale, whereas all the above articles deal with local smoothness on a Holder scale;
second, our approximation is more involved as it employs a double smoothing by the Gaus-
sian kernel ¢, and by another super-smooth kernel H;s proportional to the Fourier transform
of a normal density to control the error for low frequencies.
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5. Wi-lower bound rates for deconvolution in any dimension and application of the
inversion inequality to a frequentist estimator. In this section, we provide lower bounds
on the L'-Wasserstein deconvolution convergence rates in any dimension d > 1. These
bounds are attained by the Bayes’ estimator for d = 1 and, as shown in Section 5.2, by a
frequentist minimum distance estimator for every d > 1.

5.1. Lower bounds. To get a validation of our results, we derive lower bound rates for
the L'-Wasserstein risk extending Theorem 4.1 in [20], pp. 246—248, to a multivariate setting
with Sobolev regular mixing densities.

THEOREM 5.1. Assume that there exists 5 > 0 such that, for every =0, 1, 2,
(5.1) SOOI <d@+[e)~*, teRr,
with d; > 0. For any d > 1, given o, L, M > 0, let Dy := P1 (R4, M) N Sy(a, L) and

wn — n(a+1)/[2a+(2ﬁd\/1)+1] )

Then, there exists C > 0 such that, for any estimator fi,,

li_m 1/}71 sup E? % ®d)W1(lan7 ,u) > C.
n—o00 wED, Hxphe

The proof of Theorem 5.1 is reported in Appendix F. Note that, ford =1, D; = P1(R, M)
and 0 < B < %, the lower bound rate n~/2 of Theorem 5.1 improves upon the lower bound
n~ Y28+ of Theorem 4.1 in [20], p. 246. The sharper lower bound n~'/2 matches with
the upper bound for the minimum distance deconvolution estimator proposed by [20], see
Theorem 3.1, p. 243, thus showing that, for all S > 0, it attains minimax-optimal rates, up to
log-factors.

Mixing distribution 1 x Dimension d = 1 | Any dimension d > 1 ||
pox € P1(RY, M) n~ 1/ (28+1) [Dedecker et al. (2015)]
—1/1(28V1)+1] —1/1(28dv1)+1]
tox € P1(RE, M) Sy L) n—(c+1)/[20+(28V1)+1] n—(a+1)/[2a+(28dV1)+1]
TABLE 1

In bold our lower bound rates on the LY -Wasserstein risk for error distributions u?d with ordinary (3-smooth
single coordinate distribution and Sobolev a-regular mixing densities.

When d = 1, as a consequence of Corollary 4.1 and Theorems 4.3, 4.5, the Bayes’ esti-
mator, namely the posterior expected mixing distribution, attains minimax rates, up to log-
factors, under the Laplace noise. Then a natural question is whether the lower bound rates
of Theorem 5.1 can also be attained when d > 1. For d > 1, [12] consider a modification
of the standard deconvolution kernel estimator and find slower rates than n~1/[(28dv1)+1]
with respect to the L?-Wasserstein distance. In Section 5.2, using the inversion inequal-

ity of Theorem 3.1, we show that a frequentist estimator of pgx attains the lower bound
pH/@Bd+1) — p—1/(4d+) when B> 1.
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5.2. Frequentist deconvolution estimator. In this section, we consider a frequentist esti-
mator of ugx and, using the inversion inequality of Theorem 3.1, we show that it achieves
the minimax rate, up to a log-factor. For the sake of simplicity, we restrict to the case of @ =0
and a standard Laplace noise distribution, but the proof extends to any « > 0 and ordinary
smooth noise distribution.

Let b, = n~Y/(2F4+1) and define f,, as the inverse Fourier transform of K §d¢nr§d, where

¢n(t) := P, (e™*'Y) is the empirical characteristic function and the kernel K = 7 is defined in
Section 4.4.1. In symbols,

) = ﬁ /R TURE () dt, xR

Since fn is not necessarily non-negative and FJ; is not necessarily a distribution function,
we define i1, to be the probability measure such that the corresponding distribution function
Fj,, is, up to a term of order O(n~1/2), the closest one to F};, in the max-sliced L'-distance,

that is, for every p € Py (R?),
1 +0(n~1?),

Sup ”F~n,v - F

ﬂln,v 1 S Sup HF~ - Fﬂ/v
veSd- veSd—1

n,v

The idea of defining the estimator as an approximate minimizer over all distribution functions
of the L!'-metric is considered in [20] for d = 1. Here, instead, we choose the estimator as
an approximate minimizer over all distribution functions of the max-sliced L!-distance. We
then have the following result whose proof is reported in Appendix G.

THEOREM 5.2. Let f. be the standard Laplace density. Assume that fyx has exponential
tails, that is, there exists a constant co > 0 such that
(5.2) fox (x) Se X for x| large enough.
Then, for suitable q > 0,

Wi (fitn, pox) = Op(n~ "1 (logn)?).

From the proof of Theorem 5.2, we see that the result extends straightforwardly to any
noise distribution which satisfies Assumption 3.2 and such that

fole) S e,

leading to a convergence rate of order Op (n~/(#4+1) (log n)9) as soon as § > 1/d.

6. Proofs. We preliminarily recall an auxiliary result. For every j € N, let f (@) denote
the jth derivative of the Fourier transform f of a function f : R — C. If fU) ¢ L'(R), then

(6.1) for 2 £0,  f(2) = - (122)]. /R e fU)(¢) dt.

6.1. Proof of Theorem 3.1. Because ux, pox € P1(RY) by assumption, we have
Wi(ux, pox) < oo, see, e.g., [63], p. 94. For d > 1, the assumption p. € P;(R) implies
that &4 € P1(R?) so that also py, poy € P1(R?) and Wy (uy, poy) < co. From the strong
equivalence, recalled in (2.4), between the Wasserstein metric 1/ and the max-sliced Wasser-
stein metric Wy, valid in any dimension d > 1, we have that, for a constant C; > 1,

1 _
C—Wl(/ix, pox) < Wiux, pox) = max Wi(ux,y, fox,v)-
d veSd—t
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We now bound Wi (ux v, pox,v). We first treat the case where only the condition i9x €
P (R9) is required and then the case where the smoothness Assumption 3.2 holds.

e Case 1: no smoothness assumption on [ox

We consider a multivariate kernel with independent coordinates as in (3.4). This assumption
is not necessary, but simplifies the proof. The univariate kernel can be taken to be a symmetric
probability density K € L?(R) N Pyr2(R). For h > 0, let K}, denote the rescaled kernel den-
sity and, with abuse of notation, let K ff’d denote the corresponding d-fold product probability

measure. For brevity, in what follows we also use the notation K}, , := (I ffd)v to denote the
distribution of v - Z when Z ~ K ff’d. By the triangle inequality for Wasserstein metrics,
Wipxv, poxy) < Wilpxy, pxy* Kpy) + Wi(puxy * Kpy, poxy* Kpy)

(6.2) +Wy (,uOX,v * Kh,w IUOX,V)-
Also, v- (X+Z)=(v-X+Vv-Z)~ puxy* Kpy and Wi(pux,y, pxy* Kny) < E[v-Z|].
For d =1, we have E[|Z|] = h [, |2|K(z)dz < oo, while, for d > 2, we have E[Jv -
Z|) < (E[|1Z])Y? = h([ga |2|*K(z)dz)/? < oo as soon as [, 2°K(z)dz < co. Thus,
Wi(ux,v, pxv * Kpny) S h uniformly in v. Analogously, letting X, be distributed accord-
ing to pox and independent of Z, we have W1 (pox,v, ox,y * Kpy) S h. Also, Wi (px .y *

Ky, poxv* Kny) SE[IX=Xo[] < My (px) + Mi(pox) < oo because px, pox € P1(RY).
Thus,

(6.3) Wipxv, poxy) Sh+Wilpxy * Kny, poxy * Kny).

We derive an upper bound on Wy (ux v * Ky, pox,v * Kpy).

Control of the term W1 (ux v * Kp v, ptox,y * Kpy)

Taking into account that
64) (t) = / &% 1 (dz) = / WX () = i(tv), tER,
R R4

and using the representation of Wi, when d = 1, as the L1-distance between distribution
functions, for all y, v € Py (R?) we have
[ )
R

(—ut)

/R ot ALIV) = D(tv) (t"()__zt’; (tv) dt‘ da.

We introduce some more notation. Let x : R — R be a symmetric, continuously differen-
tiable function, equal to 1 on [—1, 1] and to 0 outside [—2, 2]. For example, one such func-
tion could be x(t) = eexp {—1/[1 — (|t| — 1)?]}, |t| € (1, 2). For the construction of smooth
bump functions, see, e.g., [33]. Define

win(t) = K(ht)x(t)r=(t) and  wyu(t) := K(ht)[1 = x()]r-(t), teR.

Note that K € L'(R) implies that K is well-defined and ||KHoo = supyer |K ()] < | K| <
0. We consider a kernel with K supported on [ , 1]. Since K is continuous and bounded
on a compact, we have K € L'(R) and K (-) = ~1 [Le” ™ K(t)dt. If h < i, the function
wy p, is equal to 0 outside [—2, 2], while wy y, is equal to0on [—1, 1] and outside [—-1/h, 1/h].
Thus, wj , € L' (R), for j € [2]. In fact, by the inequality (3.2) with [ = 0, we have [Jw |1 <
f|t‘<2 | (Rt)||x(t)|(1 + |t])? dt < co because the integrand is in Cj([—2, 2]). Analogously,

2T

1
_27TR

1
mmWwﬂwﬁﬂﬂz—/
R

(6.5)
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lwa.nlh S f1<‘t|<1/h | (ht)||1—x ()] (14 |t])? dt < co. Then, the inverse Fourier transform
of w; p, -

1
2= Kjp(2) = %/Re_mwjﬁ(t) dt

is well defined for j € [2]. For v € S, let J5(v) := {j € [d] : v; # 0} be the set of indices
corresponding to non-null coordinates of v. We denote by |.J(v)| the cardinality of J}(v).
Clearly, Jj(v) # () because |v| = 1. For later use, we note that

Knu(t) = (K29, (t) = (K2 (tv) = [] K (v;ht) = K®(htv), teR.

<.
Il =8
—

By the inequality on the right-hand side of (2.4), we have W1 (ux * K }?d, Hox * K}?d) <
CaW1(ux * Kf?d, LoX * Kf?d), where, using the expression of W1 (py, 1) in (6.5), we have

Wi(pxy * Knys poxy* Kny)

— i / e—lt:c (K;?d)(tV) Hx (tV) — HoX (tV) dt! dx
2 RI|JR (—Zt)
1 t t
_ = / —zth®d(htv) ®d( ):U’Y( v) — figy (tv) dt| dz
2 Jr |Jr (—at)
1 : iy (tv) — fioy (
< — /e_mK@)d(htv)r?d(tv))(@d(tv) iy (tv) = oy (V) dt| dz
2 R |JR (_Zt)
. / e R ) S ) 1 — 5S4 (1)) ) oV () g,
2T R (—’lt)
= Tl + T27
for
d d
K& htv)r2d(tv)x H (vjht)re(vit)x(vt) = Hth(vj H wi p(v5t)
j=1 j= JeJ; (v

because wy (v;t) = 1if v; = 0. Noting that the inverse Fourier transform of HjeJ;(v) wy p(vjt)
is ®jey: (v [(1/0;) K1p(/vj)], we have
dx x /
R

27TT1§/

R
/e‘m H th(vjt)dt‘dx
R

=2rWi(py,v, Hoy,v) /
R

/ e_mﬂY(tV)—ﬂOY(tV) dt‘ de
R (—ut)

/ e K9 hiv)r®? (tv) x @4 (tv) dt
R

JEJ; (V)
1
= Wiy pov) [ ( ® [—Klvh«/vj)})(as) da
R \jeJ:(v) LYj
1 v
< P Wiluyas povs) ] le,h<-/vj>] — (20 Wi (s ptov) [ Kol
J 1

7€ (v)
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where [|K1 1 = O(1) by Lemma A.1 and max,ega: [|K14]" ™ = max;cq | Kial <
oo. Thus, T1 < Wi (py.y, poy,v). Concerning the term 75, set the position

d
Wy py(t) = KO htv)r@ (tv)[1—x®% (tv)] = [1—1_[)((1)] } H (vght)re(vgt), teR,

by Lemma A.2, recalling that I} (v) = {j € [d] : |vj| > h}, we have

27TT2§/ /e‘mﬂwdt‘ dxx/
R |JR (—at) R

Slloghl | [log k|1 z: <1y + A PHEOFTT i L sy | v = fovilln,
JEI;(v)

[ o) = o)t ao

where fy,, and foy,, are the densities of the measures p1y,, and poy,y, respectively. Note also
that, for every v € S%1,

1
=\ fyy — fovylh = Sllp |y (A) — oy (A)]
2 AcB(R)

1
< sup |Py(YeB)-Fy(YeB)=glfy— forl
BeB(R?)

It follows that max, cgd-1 nyN — fOYNHl < ny — fOY”l and

Ty < [logh| | [og hlLgr; <1y + B TT (0P g1 | Iy = fov Il
Jel;(v)
Combining the bounds on 7} and 75, we obtain the bound on T reported in (3.5), which,
together with (6.3), proves the inversion inequality.
o Case 2: smoothness Assumption 3.2 on ugx is in force

If Assumption 3.2 holds true, then K € L'(R) N L?(R) is taken to be a superkernel with
2K(z) € L'(R) and [, 2%|K ()| dz < co when d > 2. Since K =1on[-1, 1], while K =
0 on [—2, 2]¢, by taking K(-/2) the support reduces to [—1, 1]. Note that, as K need not
be a probability density, the triangular inequality for the Wasserstein metric in (6.2) does
not necessarily hold. Nevertheless, by the inequality on the right-hand side of (2.4) and the
representation of Wy, when d = 1, as the L!-distance between distribution functions, we have

1 _
C_Wl(NXa pox) < Wilpx, pox) = max Wi(ux,y, pox,y) = max [[Fx, — Fox|i-
d veSd—1 veSa—1

Then, by the triangular inequality for the L'-norm distance,

1
I Wi(px, pox) < max ||[Fxy — Foxvlh
d veSd—1

< max [[Fx, — (Fx « K&, + max [[(Fx — Fox) « K29, |
vesa—1 vesa—1

+ max |(Fox * Kff’d)v — Fox vl

=: Dy + Dy + D3,
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where h := h/2. Note that, for v € S9!, we have (Fx * Kf??d)v =Fx, * (Kff’d)v so that

by, (h) = Fxy = Fxy % (K2, = Fx, — (Fx « K29),.

Therefore, by condition (3.6), we have D; = max,ega—1 |[bry, (R)||1 = O(h®*!). The term

D5 can be bounded using the same arguments as for Wy (px * K}?d, Hox * K}?d) in Case 1,
therefore

Dy SWi(py, poy)

+ [log | | [log h| L1z <y + b O T 0 Ligirz sy | 11y = fov [
JEIL;(v)

By the same arguments laid down for Dy, the term D3 = maxyegi-1 ||bp, (h)||1. We show
that

(6.6) D3 =O(h™).

We make two preliminary remarks. First, for v € S¥1, by (6.4), we have fi,(t) = fi(tv),
t € R. Then, Assumption 3.2 implies that

67) max | D% foxall = max /\t\amox,v(t)\dt: max /]t!o‘]ﬂox(tv)\dt<oo.
vesi-1 vesi-1 Jp vesi-1 Jp

Second, note that |1 — K ®fl(l~1tv)| # 0 for all those ¢ € R for which there exists at least an
index j € Jj(v) so that |vjht| > 1. We define the set

2 :={teR:3jcJjv)sothat |v;ht| > 1}.

The domain & depends on h and v, i.e., ¥ = %, but we shall not emphasize this depen-

dence in what follows and simply write 2. Note that 2 C {t € R : [t| > (h||v||oc) '}, where
[V[|oo := max;e(q) |vj| < 1. By the same arguments used for the function Gy 5, in [20], pp.

251-252, we have
- 1 1 — K®4(hty
or @l = [ |5 [ e
R|4T J9 (—ut)

because ¢ — [1 — K®4(htv)][fiox.v (t)/] is in L (R) due to (6.7). To prove relationship (6.6),
we write

Ibre ()1 = /
R

IELOXN (t) dt|dx

1 —itx an [1 — K®d(iLtV)]
or /9 e " (=) flox,v(t) B dt

D*fox(®)

<D foxalls x </ +/ >
izl<h  Jjz>h
—— N —

::Bl,v :ZBQ’\,

dx

1 _ f®d(,
_/ e*lt:v [1 K (htV)] dt d$,
2T 9

(_Zt)aJrl

where || D*fox v||1 < oo by Assumption 3.2. Now,

Bsn [ 1 LS [ [+ KSR g, < o
2 [t1>(Rllv]o)

|t|a+1 |t|a+1

because || K ||oo < 0o and the bound is uniform over S*~1. Thus, max, cge1 By, = O(h®*1).
To bound Bs,, we use identity (6.1). The conditions K € L'(R) and 2K (z) € L'(R)
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jointly imply that K is continuously differentiable with | K (V) (¢)] — 0 as || — co. Indeed,
D(-/2) € Cy([-1, 1]). Define f,(t) := [1 — K®%(htv)](—t)~ (@1, ¢t € R. Taking into
account that
d ([1—-K®(htv)]\  h(E2H)D(htv)
dt o+l - ta+l

and using the bound in (A.6), we have

||f ||2 / 'dt< [1— It{ji(ht\/)])

S / h2 ‘(K®d)(1) (;:Ltv)‘2 + ‘1 B K®d(ﬁtv)’2 dt g h2(a+3/2)
|t\>(ﬁ|\v|| ) ‘tP(O‘"H) ’t’2(0‘+2)

[1 — K®4(Rhtv)]

o (Oé + 1) tat2

dt

and the bound is uniform over ! so that max,cga Hf\, |2 = O(h**3/2). For f,(-) :=
e g€ —it fv t) dt, which is well defined because f, € L'(R), by identity (6.1) and the
Cauchy—Schwarz 1nequa11ty, we have that
1 —atx (1)
- /j e (1) dt

1
Buvim [ If@lde= [
2| >h e|>h 17|

1 1/2
: </]R 22 Lllal>h) dw) 1A )l S hH/2Ret3/2 < pott

uniformly over S?~!. Thus, max,ega-—1 Bay = O(h®*1). Consequently, D3 = O(h®*!) and
the proof is complete. O

dz

6.2. Proof of Theorem 4.1. By the conditions in (4.1), Theorem 2.1 of [36], p. 503, im-
plies that, for sufficiently large M > 0,

n (x| fy — fovll >Mé, | Y)] —

Since p1ox € Pays(RY) and p. € Pyys(R), we have My 5(poy) < 0o. Also, since

)
Egy [T (px : Mags(py) > K'62 | Y0)] —

for M >0 and ., := {ux : Wi(py, poy) < Méylog(1/€,)}, by Theorem B.1 we have
that 2, [T1, (¢ | Y(M)] — 0.

The case where Assumption 3.2 is in force is treated in details. By the bound in (3.6),
Theorem 3.1 implies that, uniformly over &, N .7},

Wi(ux, pox) S he +En(logn) + by 470 (logn) 1= | fyy — foy |-
Replacing h,, with [¢, (logn) +1ea<n]l/[e+(BAVI] and || fy — foy||1 with &, leads to

Wi(px, pox) < [én(logn) Hieasn]lat)/lat @V

There thus exists C,, > 0 such that
Efy L, (px : Wilpex, pox) > Catna | Y™)] = 0.

The case where no regularity assumption on pgx is considered, except for the first moment
condition M (upx) < oo, follows similarly from the inversion inequality of Theorem 3.1,
with h,, in place of h2T!, choosing h,, = [¢, (logn)+1ea<n]1/(BdV1), O
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6.3. Proof of Lemma 4.1. 'We begin by obtaining an equivalent expression for the L>-
norm in (4.9). Denoting by F the Fourier transform operator, for any f € L'(R) we have
F{f}:= f. Recall that, given f.(u) = e~"l/2, u € R, for b= T3 we have F{e¥ f-}(t) =
[1/0b(t)], where gp(t) := [1 — ¢2(t)] and ¢p(t) := — (2t + b), t € R. Note that, as a conse-
quence of the identity in (4.8), we have that

Vox ()f{e (T pofox)} = Flhop}t + 7F{humpo}s

where M (b) < co by the assumption that (el'l/2 fyx) € L' (R). Then,
ANo:i= Y |le"{fe#[bo * (Tmpofox) — fox]}HI3

b=F1/2
= > MO ) (e b0)  {Mox (O] e (Tono fox)} = Rosl I}
b=F1/2
1 ) eV /2 o2 /2 _ 2
©8) =5 D M) 10— Flhos} 4 1F oo
b=F1/2

Some facts are highlighted for later use. For every 0 > 0, the function F{H}(d-) is well
defined because ||H |1 = (27) 71| 7é5 |1 < oc. Besides, as 0 < 7 < 1,
©.9)  |F{H}O)| = [(7* ¢n)(=08)] < ll¢n(=0t =)L = [¢-senlh =1, teR.

Let Z be a standard normal random variable. For constants 0 < ¢g, ¢;, < 1, take 0 := c50
and h := ¢p,|log 0| ~1/2. Fix g such that 0 < ¢5 < ug < 1. Then, for w > 0 and ¢;, such that
(1 —wup) > V2w, we have, for every [t| < (up/d),

11— F{H}(61) <2 /| - aual)du S 2P(Z] 2 (L5l /)
(6.10) <2P(|Z] = (1 —ug)|loga|"/?/ey) S 0®

as soon as o is small enough. For every j € Ng, we have F{D7 Hs}(t) = (—t)’ F{H}(5t),
t € R. Then,

m—1 k
1 __ - 2
Fllmso )0 = S oab 0 F )0 3 IZEWOEEE e
k=1
Decomposing F{hq }(t) by means of F{H }(t) and [1 — F{H }(6t)], the numerator of the
integrand of Ag in (6.8) can be bounded above by
T (1) = e O (1 e_ozwg(t)/2)f{7lo b} (OF{H}0t) + 7 F {0 }(2)]
+1e7 02 12| Fhop} () |1 = F{H}(Ot)?, teR.

Set

Ag= S M (b) / T2(0)/lav(t) ),

b=F1/2 3t <uo

Boai= 3 M) [ 1T/ttt

b=71/2 O|t|>uo
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we have Ag < Agy 4+ Agz. We prove that Ag; < 02(@+2) for j € [2]. Taking into account that
eT* VW22 = =" (P =0%) — e=*(=1/1) for w > 2m > (a + 2) and o > 0 small enough,
by Lemma C.1, relationships (6.9) and (6.10), we have

1
b=F1/2 lt|<uo 105(1)]

+ 0% min{4, od (2 + 1/4)2 /A1) | F{hop }(t)2 dt

< 0_2(a+2 Z / |t|2a + 1)|(€b/f(]\X)(t)|2 dt 5 0.2(a+2)

because F{hop}(t) = [Mox (b)) (e fox)(t), t € R, and [, (|t]** v 1)|(e¥ fox)(t)]* dt <
oo by Assumption 4.4 and the hypothesis that (e/'1/2fyx) € L*(R). Analogously, for o|t| >
(ugp/cs) > 1,

1
DS D Mix(b) /c5t|>uo W<

b=F1/2

2

m—1 k
o242 (t) /22 {- Ul/)b 1?/2} 1
k=0

RO 1\2)\f{h0b}< D2t

1 —o2(£2— m
S M (D) /5 et e 2 g em g

t]>uo 106(H)[?

b=F1/2
+min{2, o?(t? 4+ 1/4)/2}}2|F{hop } ()| dt
« t4 —(ot)? m « 7
S S0 Mi(b) [ e o)™ o0
b=F1/2 O|t|>uo Ob

<U2(a+2 Z / |t|2a| ebr fOX)(t)|2 dt,§0'2(a+2).
6

p=1/27 OltI>uo

We prove relationship (4.10). Since F{ho,}(0) =1, (1 — e~ 7/8)/y = —1 and ¢2/8 <
e’ /8 |v|, from previous computations for the term Ag; we have

(1—e7"/8)
—
whence [, hun b0 (%) dz = F{hmpo}(0) =1+ O(0?™=1)) and the proof is complete. [

2
g 2
im0 }0) = 11 < € /50| F {0 1(0) + STH(0) S,

7. Final remarks. In this paper, we have studied the problem of multivariate deconvo-
lution with known ordinary smooth error distributions having independent coordinates, with
respect to the 1-Wasserstein loss. Prior to this work, optimal lower and upper bounds on the
rates of convergence were derived only in [20] when d = 1, under no smoothness assumption
on the signal, leading to the minimax-optimal rate n~1/(25+1) when the exponent 8 of the
Fourier transform of the noise distribution is such that 8 > % The contributions of this work
are four-fold: (1) propose an inversion inequality between Wy (ux, nox) and || fy — fov |1
(or || fyy — fovv||1 in the case where d > 1), which can also be used in other contexts than
those herein considered, for instance, as a first step to obtain Bernstein-von Mises type results
for linear functionals of 1ox; (2) use this inversion inequality in a Bayesian framework under
the Laplace noise to derive a-adaptive minimax-optimal posterior contraction rates for any
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a > 0 when d = 1; (3) prove that a kernel type deconvolution estimator achieves the min-
imax convergence rate under the Laplace noise for any d > 1 and (4) derive lower bounds
on the Wi-convergence rates for any S > 0 and d > 1. Note that the rate obtained for the
kernel type deconvolution estimator easily extends to any other ordinary smooth noise distri-
bution under additional moment assumptions. Along the way, we have obtained intermediate
results which we believe are themselves of interest: a new approximation of a convolution
between a Sobolev regular density and a Laplace distribution by the convolution of a mixture
of Gaussian densities with a Laplace. This construction is different from (and significantly
more involved than) the approximation of Holder densities by mixtures of Gaussian densities
constructed in [45], which would not lead to the correct error rate in the present context. Our
method is validated by deriving lower bounds that match with the upper bounds in the case
where the error coordinates are independent and homogeneous, in the sense that they are all
ordinary smooth, possibly of different orders. These results pave the way to the study of the
inhomogeneous case where there are mixed components, some ordinary smooth and some
others supersmooth. Furthermore, the case where the error components are not independent
remains to be completely investigated.
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This supplement contains auxiliary results for proving Theorems 3.1, 4.1,
4.2,4.4,5.1 and 5.2 of the main document [54].

APPENDIX A: LEMMAS FOR THEOREM 3.1 ON THE INVERSION INEQUALITY

The following lemma provides the order of the L'-norm of the function K 1, that arises
when controlling the term 77 in Theorem 3.1. We recall the notation. The function x : R — R
is symmetric, continuously differentiable, equal to 1 on [—1, 1] and to 0 outside [—2, 2]. The
kernel K is defined in Section 3.1 and has Fourier transform K with compact support. For
h >0, we defined wy ,(-) := K (h-)x(-)re(-), with 7. as in (3.1) satisfying Assumption 3.1.
The function K1 5,(-) := (2m) ! [, e "wy ,(t) dt is the inverse Fourier transform of wy .

LEMMA A.1. If the single coordinate error distribution . satisfies Assumption 3.1 for
some 3 > 0, then, for sufficiently small h > 0,
[K1nl=0(1).

PROOF. Denoted by w%lf)L the derivative of wy j,, we have ||Ky [ < 272(||lwinl3 +
wa}lug)l/?, see the proof of Theorem 4.2 in [5], pp. 1030-1031. For h < i, by con-
dition (3.2) with I = 0, we have [lwi 3 < [<, |K (ht)2[x(®)2(1 + [t)*P dt < [Ixl3 <
0o as K is bounded on any compact set. Analogously, for wﬁl(t) = [hEK W (ht)x(t) +
K(ht)xD (#)]r(t) + K (ht)x(t)r" (¢), for ¢ € R, using condition (3.2) with [ = 1, we have

lw{All S /t|<2[h!f?(1)(ht)\!x(t)\ + 1K ()XW (O (1 + () dt

T / R ()PP + )26V at
[t] <2

S I3 + I3 < oo

because also &) is bounded on any compact set by continuity. The assertion follows. [

The following lemma gives the order, in terms of the kernel bandwidth h, of the Li-
norm of the “distribution function” F3 j, , associated to K5 j, ,,, which is the inverse Fourier
transform of

d d
wa py(t) = f(®d(htv)[1 —X®d(tv)]rg®d(tv) = [1 — H X(vjt)} H K(vkht)re (vkt), teR.

j=1 k=1

30
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LEMMA A.2. If the error distribution ,u?d, d > 1, has single coordinate measure .
satisfying Assumption 3.1 for some 3 > 0, then, for h > 0 small enough, defined, for every
v e S the set I (v) := {j € [d] : |vj| > h}, we have

[ Fo,n]l1 < Clloghl

(A.D) x | [og hl1 (g 1z <ty + RO TT o 1z s | »
JEI;(v)

where |1} (v)| denotes the cardinality of I} (v) and C does not depend on v nor on h.

PROOF. Forv € S%71, let J5(v) := {j € [d] : v; # 0}. Note that () # I} (v) C J5(v) be-
cause |v| = 1. Also, |1 — x®%(tv)| # 0 for all those ¢t € R for which there exists at least an
index j € J3(v) so that |v;t| > 1. Besides, | K®?(htv)| # 0 if and only if |v;t| < 1/h for all
j € |d] because K is compactly supported on [—1, 1]. Indeed, K is supported on [—2, 2], but,
for ease of exposition and without loss of generality, we can assume that K has support on
[~1,1]. For h < 1 and v € S 1, let

Do :=Njeigit €R: |vjt]| <1/hyN{t € R: 3j € Jj(v) so that |v;t| > 1}
={teR: || <[t| < (hlvll) ™"}
—{teR: 1< (IMlwlth <h 71},

where ||v[|o := max;¢[g [vj| < 1. Note that % depends on h and v, i.e., Zo = % v, nev-
ertheless, we shall not emphasize this dependence in what follows and simply write . By
the same arguments used for the function G 3, in [20], pp. 251-252, we have

1 t
F27h,v(Z) = % /Re_ltz L?f’zvt() ) dt, S R7

where t — [wo p,y(t)/] is in L}(R) because Jo Jw2ny(@)]/It] dt < [[wzpyll1 < 00. Con-
sider the integral decomposition

[F2n vl = </ +/ +/ >|F27h,v(z)|dz = FY 4+ FP 4+ ¥,
|z|<h h<|z|<1 |z|>1

We highlight some useful facts to study the terms F2(1), F2(2) and F2(3). By condition (3.2)
with [ =0, 1, over the set &, we have

(A.2) ) < T (4 vit)h? < @+ Va)PBOD TT 1+ [ogt))?
JETiW) JEL(v)

because 1 = |v|? < d||v||% , which implies that ||v||o, > 1/+/d, and

®dy (1) ®d : . M
2O @) < 200 Y sl

j=1

(A3) y

< oL+ oyt T @+ et )? < V2P (vl
j=1

keld]
k#j
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We study F2(1). By inequality (A.2), since K € Cy([—1, 1]), we have

h ”
Y= / | Fap(2)] dz <~ / (K= hiv)||1 = X (tv)
|2|<h T J %

1
5h/ o IT (et ar
Do

JEL;(v)

If d =1, then v; = 1 and the above term is bounded above by h=B+L 1f d > 1, without loss
of generality, we can assume that 1 = vg > |v1| > ... > |vg, | > h and, with abuse of notation,
we can write vg, +1 = h, where 1 < dj, := |I}(v)| < d. Then,

| [r&d(tv)]

dt
i

dn 1 1/|viga
/ 1 IT @ +loith?dt Stog(1/lval) + > ] |Uj|@/ Jloes ||t|ﬁl—1dt
2 [t eI 211 .
dn 1 !
S Hoghl+ 3 gl ™ = Juul ™) T L el
=1 =1
d, dy,
S logh| + h—Bdn H |Uj|5 < p,—Bdn H |Uj|g
Jj=1 j=1

so that
Fz(l)gh—B\IZ(V)Hl H ’,Uj’@
JEI; (V)

To bound F2(2) and F2(3), note that, by applying identity (6.1) to F3 5, with 7 =1, we have

_ 1 —atz d w27h,v(t)
(A.4) for z # 0, F2JL7V(Z)_W/R€ t [E <—72t>} dt,
where
A (wany(®) _; pwdy) wdg, ()
& (22 o0 s — )
d
_ R ) { (DD (1) re t(tV)
d\(1) _ d
(A5) [ — % (1)] <t(r? ) (tl\;) r® (tv)> }7
with
B )] < | RO )] 3 oy K51
B = K (vht)]

d
(A6) = >l & wtt)] [T 1R Ceult)] < VAIKIE [l ()] dz < oc

Jj=1 kkid] R

J

because K € L!(R) as well as zK (z) € L*(R) by assumption, and

d
A7 1EYD ) <D sl P et)] TT e(ost)] < VXVl lixlise < oo
j=1 keld]
k#j
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since x € Cy([—2, 2]) and xM) € Cy([~1, 1]° N [~2, 2]). The bounds in (A.6) and (A.7) are
uniform over S*~!. We prove below that

(A.8)

d w2,h,v(t)

/% T <f dt < [log h|1(g)rx(v)<1)
+ R PO TT 1o P L g1 011)
JeIy(v)
1/2
d wa by (T ?
(/ E( 21:”) dt) < [log b2 g1 vy <3/2)
Do

=Bl (v)|[+3/2 .
+ R PSS T 0 P11 ) 53/2)-
JeliW)

Then, in virtue of relationship (A.4), we have

e / L / d (LQ”L’V@))‘ dt
2w\ Jnez<a |2 7 | dt t

< oghl | [Nog Al g i<y + A~ PO T o7 g17; 015
JEL W)

) . 1/2 1 O\ 2 1/2
(3) < - + a W2, h,v
e ([me) (LLa(29) o)

S Nog b1 g1z vy 1<s/2) + RO TT (0171517 ) 3/2)-
JEIr(v)

and

We prove (A.8). Using relationships (A.5), (A.2), (A.6) and reasoning as for term F2(1), we
get that

£-@dy (1) wd o [TEA (V)] 1 3
Sue=h [ ERDO @ -yl [ T () ar
7 7 It .
0 0 GEen(v)

dn
<ho s il
j=1
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while
N tv
Suai=t? [ 1001 P
<h2/ H (1 + Jo;t)?P dt
.]0 ]GI
141
<h2+h22H\v \25/ |¢[281=1) gy
=1 j=1 /||
Ay 1
§h2—|—h22H|vj|2ﬁ [10g(|vl|/|Ul+l|)]l(2ﬁl:1)
=1 j=1
1
(2B1#1) —2BI+1 |, |—2Bl+1
e e U
dn L2p1<1) Lapi>1) l
< — >
Sh2 4+ |[loghllpg—1) + T + 2oL 281 T 1wl
=1 j=1

dp,
< h?|logh| + h= 2P T3 T |v;|*.
j=1

It is easily seen that

_ 20 ) 1) D 1y GOl
= [ R B 0 ae = 0()
and
2’7’®d(V)’

Spni= /j R (i) 2| (2D (2v) dt = 0(1).
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Using (A.2) and (A.3), we have

. ®@d)(1) _ r®d
S = [ EE a1~ x o) L) T
Do

) O ()] | Bty
5L< e >dt

NZ|UJ|/ (L + Juit)?~ TT (1 + Jokt]) 5dt+/ IT @+vth?dt

held JeI;i(v)
k#j
1/|vi41] 1 .
<1+Z|U]|Z/ 1+|Uﬂt|6 [T+ fot))? at
a el ke[d]
ki
+§: |log |1 (1= G A (ﬁz>1 ﬁ
=1 P=DT 1 1 b
dn 1 1/|vis1] 0
SZZ |’Uk|5/ |t|5l_2dt+|10gh|+h_5dh+1H|Uj|ﬁ
j=11=1 k=1 1/]vi] o
dn,
< [logh| + =P T vy 1°.
j=1
Similarly,
Suaim [ oA =y LN 10
Do
EHO@) (a2
S/0 < ) 12 +== 4 de
dn Li2p1<3) L(ap1>3)
<1 log h|19a,— —(2pi<3) h—251+3 > 28
N +; |log h| (2Bl_3)+3—25l+ 351 H‘]‘

dn
< |log h| 4+ h~20dn+3 H \vj]w.
j=1
It follows that Sy 1 + 521+ 531 < |log A Lga, <)+ h—Bdnt1 H;lhzl |v; ‘ﬁ]l(ﬁdh’>1) and S1 2+
Sap + Sz S [loghl1(ga, <3/2) + h™ 2P0 +3 H?L |v;1%° 1 (84, >3/2), thus implying the first
and second bounds in (A.8), respectively. Inequality (A.1) follows by combining the bounds
on F2(1), F2(2) and F2(3). O

The next lemma assesses the order of magnitude of the bias, in terms of the kernel band-
width h, of any distribution function Fyx having derivatives up to a certain order, with locally
Holder continuous derivative of the highest degree. An (|« | + 1)-order kernel is used when
fox verifies Assumption 3.3 as in Lemma A.3.
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LEMMA A.3. Let Fyx be the distribution function of pox € Po(R) satisfying Assump-
tion 3.3 for o> 0. Let K be a kernel of order (|a] + 1) satisfying [, |2|*T|K(2)]dz < oc.
Then, there exists a constant C7 > 0 such that, for every h > 0,

(A.9) | Fox * Ky — Fox|l1 < C1heth,

PROOF. Let ¢ = |«]. For any z, v € R and h > 0, by Taylor’s expansion,

(—hu)é"'l

1
Fox (z — hu) = Fyx (z) — hufox (z) + ... + T/0 (1 =7 (@ = rhu) dr.

Since K is a kernel of order £ + 1 = |« + 1, we have

(Fox * K — Fox)(@) = / [Fox (2 — hu) — Fox ()] K (u) du

’LL {41
/K h . / (1—7)Z[f(§2(:n—7'hu) (Z)( )] dr du.
0

Recalling the notation b, , (h) := Fyx * K, — Fyx, Assumption 3.3 yields that

Z—i—l
b (R \1<//!K h'”' /( 1= 7)Y (2 = rhu) — £ ()] dr duda
0

1
S hOH‘l”Lo”lE </ ‘u’a'i‘l‘K(u)’d’U,) / (1 _T)ZTa_édT.
. R 0

By the assumptions that Lo € L*(R) and [ [2|*™|K(2)|dz < co, we conclude that
1B (B)[l1 < CLAH. O

REMARK A.l1. The constant C'; appearing in (A.9) depends only on the kernel K and
the distribution function Fpx.

APPENDIX B: AUXILIARY RESULT FOR THEOREM 4.1

We state a theorem that gives sufficient conditions for the posterior distribution to con-
centrate on L'-Wasserstein neighborhoods of the sampling distribution on R?. The assertion
extends Theorem 3.2 of [14], p. 3643, to the L'-Wasserstein metric between probability mea-
sures on R? and provides conditions in terms of the prior concentration rate ¢, on Kullback-
Leibler type neighborhoods of the sampling distribution and in terms of moments of the
probability measures in the support of the posterior distribution so that the latter contracts
at a nearly é,-rate (up to a log-factor) on L'-Wasserstein neighborhoods of the truth. The
underlying idea is to exploit the equivalence between the Wasserstein metric W; and the
max-sliced Wasserstein metric Wi, valid in any dimension d > 1, to construct tests for the
projected uni-dimensional distributions so that they have exponentially decaying type I and
type II error probabilities.

THEOREM B.1. Let I, be a prior distribution on Py(R%), d > 1. Suppose that, for
§ >0, we have pgy € Po(RY) NPy ys(RY). If, for C > 0 and a sequence &, > \/(logn)/n
such that €,, — 0,

(B.1) I1,,(Bkw(Poy; €2)) = exp (—Cné2)
and there exists K > 0 so that
(B.2) IL, (py : Myys(puy) > K | Y™) =0 in P -probability,
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then, for sufficiently large M > 0,
(B.3) IL, (py : Walpy, poy) > Mé,log(1/e,) | Y™) =0 in Py -probability.

If. instead, for &' > 0, we have pgy € Po(R?) N Pyrs (R, the conditions in (4.1) are
satisfied and, for K' > 0,
(B.4) o (py : Mayy (py) > K'€,%) Sexp (—(C +4)ney),

then there exists a constant K > 0 such that (B.2) holds for § = ¢' /2. Consequently, the
convergence in (B.3) takes place.

The first part of the proof is based on Theorem 3.2 of [14], p. 3643, but extends it to
the multivariate case exploiting the equivalence between the Wasserstein metric W; and the
max-sliced Wasserstein metric ;. The second part serves to prove that condition (B.2)
holds, provided that the posterior contraction L'-norm rate has been derived.

PROOF OF THEOREM B.1. Because My 5(poy) < oo implies that M (uoy) < oo, the
hypothesis 1oy € Pays(R?) yields that gy € Py (R?). Assumption (B.2) implies that also
py € P1(RY) so that Wy (py, poy) < oo, see, e.g., [63], p. 94, with posterior probability
tending to one, in Fjjy--probability.

By the inequalities in (2.4), to prove (B.3) it is enough to show that
(B.5) A (y = W (uy poy) > (M/Cq)énlog(1/é,) | Y™)] = 0.

We apply a chaining argument. For a sequence 0 < d,, < &,, we consider a ,-net for S
Since S41 C {ve R4 : |v| < 1}, then, for 0 < e < 1, the e-covering number of S9! that is,
the minimal number of | - |-balls of radius € needed to cover S~!, denoted by N (e, ST, |-|),
is such that

N(e, §4L, | ]) < N(e, fv R W] < 1}, |- ) <3677,
see Proposition C.2 in [39], p. 530. Thus, Ns, := N(6,, S¥1, |- |) < 36,77 Let (Vi)ie[Ns,]
be a minimal d,,-net for S*~1. Because for all v, v; € S¥~1 and p € Py (RY),
Wiy ;) < IV — vy My (p),
for every puy € P (Rd), ve S and v; in a minimal ¢,,-net for S91, we have
Wipy,, toyy) < Wiy, tyy,) + Wilpyy,, tovy,) + Wilkoy,,, toy,v)

< max Wl(,UY,vja NOY,vj)
J€[Ns,]

+ max  sup [Wi(pyy, tyy,) + Witoyy,, toyy)]
J€[Ns,] [v;—v|<é,

< jg{ljf\ilx | Wiy, pov,y,) + 0n[Mi(py) + My (poy )]

< jg{ljf\ifx | Wiy, pov,y,) + €n[Mi(ny) + My (poy))].

Thus,

Wi(py, poy) < jg[ljf\ifx | Wiy, tovy,) + € [Mi(ny) + Mi(poy))].

For 0 < M' < (M/Cy) — [K + M1 (poy)]/ log(1/€,), defined the event

Ap = {,UY : max Wi(uy,, tovy,) < M'é, 10g(1/€n)} ;
J€[Ns,, ]
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if By [T, (AS | Y(™)] — 0, then the convergence in (B.5) follows by condition (B.2).
We define (a sequence of) tests (¥, ),en for the hypothesis Hy : P = Pyy = ugy versus

Hy: P=Py =puy,for uy € C, := AfL N {,uy : M2+5(uy) < K}, such that

ov[¥n]=0(1) and sup Ej [1—U¥,]<exp (—né?) for n large enough.

My eCn
Let
U, = max ¢y j,
J€[Ns,]

where ¢y, ; is the test associated to poy,,, defined on pp. 3668-3669 of [14], with poy,y,
playing the role of % in the definition of ¢, r— and ¢,  +. It is known from the proof of
Theorem 8.9 in [14], p. 3665, that there exists a constant ¢ > 0 such that, for all j € [N, ],

Edy., [fn.;] = exp (—cné) and sucl? EZY,VJ_ [1—¢n, ;] <exp (—cné?),
by €Cn

where
Cng = {ny : Wilnyy,, Hovy,) > M'&log(1/&)} N {uy : Moys(py) < K}
Recalling that N5 < 36,9,

Ns,
by [Wn] < gy, [0n5] < Ns, exp (—ené,) S exp (—cné;, /2)
j=1
and
sup E" 1 -7,]< max sup E" [1— ¢, ] <exp(—cné).
uyegn | d _je[Nan}uyegn,j uy'vj[ Pl < oxp 2
Using Theorem 3 of [37], p. 196, together with assumption (B.1), we have that Ef}y. [I1,,(C, |
Y(®) )] = 0. Then, under condition (B.2), the convergence in (B.3) holds.
We now show that, under (4.1), assumption (B.2) holds. The conditions in (4.1) imply that
Epy [, (py ¢ du(fy, foy) > Moé, | Y™)] — 0. Besides, condition (B.4) and the Kullback-
Leibler prior mass condition in (B.1) imply that

Egy [T (py : Mays (py) > K'62 | YI)] = 0.

Let uy be such that My, s (py) < K'€,2 and dy(fy, foy) < Moé,. Since we are now as-
suming that My s (10y ) < 00, by the Cauchy-Schwarz inequality we have

My s p2(py) < Moys 2 (poy) + /Rd VP21 fy =V for (Vv + v for)I(y) dy

< My g ja(poy) + [Mats () + Mags (poy )] * Moén

<{ My s ja(poy) + [K' + Muss (poy)]* Mo} =: K.
Therefore, My 5 /5(p1y’) < K, which implies condition (B.2) with § = ¢'/2. O

REMARK B.1. For d =1, the first part of Theorem B.1 reduces to Theorem 3.2 of
[14], pp. 3643 and 3667-3669, for the L*-Wasserstein distance on R. The assertion holds
for any probability measure Pyy = gy € Po(R%) NPy, s(R?), with § > 0. The probability
measure ugy need not be a convolution, but if this is the case with error distribution u?d,
then the condition gy € Po(R%) N Pyys(RY) is implied by pox € Poys(R?) and p. €
Zy(R) N Pays(R). Under the latter assumption on pi., condition (B.2) boils down to require
that there exists K* > 0 such that IT,, (yux : Mays(py) > K* | Y™) — 01in PR, -probability.



WASSERSTEIN CONVERGENCE IN BAYESIAN DECONVOLUTION MODELS: SUPPLEMENT 39

REMARK B.2. If condition (B.1) is replaced by
IL,(NkL(Poy; &) 2 exp (—Cnés),

where Nk, (Poy; €2) := {Py : KL(Ppy; Py) < &} is a Kullback-Leibler neighborhood of
Pyy, then, by Lemma 6.26 of [39], pp. 143-144, for any sequence L, — oo, with P -
probability at least equal to (1 — L;1), we have

(B.6) / H foy O dIL, (uy) = exp (—(C + 2L, )né?).

Following the proof of Theorem B.1 and applying the lower bound in (B.6), the convergence
in (B.3) continues to hold with Mé,log(1/¢,) replaced by M,,é,log(1/é,), where M, >
(C + 2L,,). Therefore, Kullback-Leibler type neighborhoods can be replaced by Kullback-
Leibler neighborhoods.

APPENDIX C: LEMMAS FOR THEOREM 4.2 ON POSTERIOR CONTRACTION
RATES FOR DIRICHLET LAPLACE-NORMAL MIXTURES

In Lemmas C.2 and C.3 below we prove the existence of a compactly supported dis-
crete mixing probability measure such that the corresponding Laplace-normal mixture has
Hellinger distance of the appropriate order from a Laplace mixture and the prior law on
Laplace-normal mixtures concentrates on Kullback-Leibler neighborhoods of the true den-
sity foy at optimal rate, up to a logarithmic factor.

The next lemma provides an upper bound on the remainder term (or truncation error)
associated with the (r — 1)th order Taylor polynomial about zero of the complex exponential
function, see, e.g., Lemma 10.1.5 in [1], pp. 320-321.

LEMMA C.1. Foreveryr € N, we have

o9 r—1
< min \x]7 2] , zeR
rl 7 (r—1)!

k

r—1 (ZI‘)
€ _Z k!
k=0

For later use, we recall that the bilateral Laplace transform of a function f: R —
C is defined as B{f}(s) := [pe **f(x)dx for all s € C such that [,|e™*"f(z)|dx =
Iz e~ Re()| f ()| dz < oo, where Re(s) denotes the real part of s With abuse of notation,
for a probablhty measure p on R, we define B{u}(s) fR ,s€C.ForallteR
such that [, e"”p(dz) < oo, the mapping ¢ — M, (t ) fR e ,u(da:) 1s the moment generat-
ing function ofu and M, (t) = B{u}(—t),t € R

In the following lemma we prove the existence of a compactly supported discrete mixing
probability measure, with a sufficiently small number of support points, such that the corre-
sponding Laplace-normal mixture has Hellinger distance of the order O(c”), with 3 = 2, for
o > 0 small enough, from the sampling density fopy .

LEMMA C.2. Let f. be the standard Laplace density. Let pox € Zo(R) be a probability
measure supported on [—a, a), with density fox such that (e/'/?fox) € L*(R). For o >0
small enough, there exists a discrete probability measure |y on [—a, a], with at most N =
O((a/o)|log a|'/?) support points, such that, for fy := f. % (¢o * prr) and foy := f- * fox.

dH(fy, foy) S (50_1/26[10/20'6, with /8 =2,

as soon as pox ({x €R: |x| <agp}) > dg for some 0 < ag < aand 0 <y < 1.
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PROOF. For ag, dy as in the statement, we have

8o
)2 [y fox(@dez Ge ), yer
z|<ao
Define
(C.1) Uly):=e 92+ e¥2, yeR.

By the inequality e!¥//2 < U(y), y € R, we have
i (fy, for) <26, ‘e / 72 (fy — for ) ()]* dy < 255 " e*llgy — gov II3,
R

where gy := U fy and ggy := U foyy. For b = :F%, we have e foy = (e¥ f2) * (e¥ fox),
where e” fox € L'(R) for compactly supported fox and e f. € LP(R) for every 1<p<oo.
Hence, [|€” foy ||, < |le” f=|l, x [|€® fox |1 < co. Analogously, since e fy = (¥ (f- % ¢g)) *
(e uupr), where MMH(b) < oo for compactly supported pr and e (f. x ¢,) € LP(R) for
1 <p < oo, we have e fy ||, < || (f: * ¢o)|lp X My, (b) < oo Consequently, gy, goy €
L'(R) N L?(R) and the corresponding Fourier transforms gy (t) == [z e"gy(y)dy and
Joy (t) :== [z e™goy (y)dy, t € R, are well defined. Also, HgoyH2 = (2m)"'|goy ||3 and

gy I3 = (27r) Hgy 13- For 1y(t) :== —(at +b), let gp(t) :=[1 — 1/1b( )], t € R. Note that

0-12(t) = 01/2(t) and |o_1 ;2 (t)|* = |01 2(t)|* = (¢t* + 5t*/2 4+ 9/16). Since
e—wb(t)x
BUL( —m)H () == haeR
we have
r(t; z) :=/Re’yU(y)fa(y—w) dy
e~ ()T
S B{f-ly—a)}wn(t) = Y. ——, tzeR

b=F1/2 b=F1/2 Qb(t)

Then, goy(t) = f\x\gar(t; x)f()X (x) de = Zb:$1/2 B{fox}(lﬂb(t))/gb(t), t € R. We derive
the expression of gy . Since

B{¢o (- —u)}(vu(1)) = exp (= (t)u + 093 (8)/2),  t,ueR,

we have

v (1) = /| ([ s nte — ) as ) ()

e Vi ()/2
= Y o Bl ter

b=F1/2

For ease of notation, we introduce the integrals

= [ e OB Y ) Bl Y O) Pt b=,

By Plancherel’s theorem and the triangular inequality, 27||gy — goy ||3 = ||y — dov |3 <
2([_1/2 + I, 2). Both terms I_; /5 and I /o can be controlled using the same arguments, we
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therefore consider a unified treatment for I,. For M > 0, we have

k2%“/ﬂ2 ,
I < / / (B{un} — Bl fox})(Ws(t) dt
[t|<M [t|>M ’Qb

/‘Qb 2’ 0'271117 1’ ’B{fgx} Qpb ’ dt =: ZI

Study of the term Ilgl)

The term 1, él) can be bounded similarly to I; in Lemma 2 of [34], p. 616. Preliminarily
note that, for o < 1/|b| = 2, we have [e7 ¥i(1)/2]2 = | (=17 +20140%)/2)2 _ =0 (1=07) —
e~ ("=1/4) < ¢ Let puy be a discrete probability measure on [—a, a] satisfying the con-
straints

/uj,uH(du):/uijX(u)du, j=0,...,J—-1,

(C.2) 1
/ebuﬂH(dU):/ebufOX(u) du, b=Fg,

where J = [neaM| for some n > 1, with [x] := min {k € Z : k > z} the upper integer part
of z. Note that the second set of constraints in (C.2) can be written as M, (b) = Myx (b),
with b = :F%- Using Lemma C.1 with » = J, by the inequality J! > (J/e)”, we have

[(1) </ 1 '/ ebu |:eztu Ji:l (Ztu)j] (M m )(du) 2dt
< — — - H — Hox
b i< loo@1? | Jjuj<a =
1 (alt)*’
< My, () + Mox (b)) / dt
My (0) + Mox (B)] (D2 Jr<nr lov(®)]?
2J M
< a / t2(J—2) dt
~ (D% o
_ J
a2’ M2I-3 < 1yt a2’ y M2+ — ealM \ 2 +1<M_4
(J!)? J—-3" (JH2  2J-3"7 J ~
Study of the term Ilgz)
Note that, for b = :F%,
(C.3) B{ fox}(u(t)) = (e fox)(t), teER,

so that ‘B{fox}(l/}b(t))‘ < Mpx (b). Similarly, ’B{MH}(l/Jb(t))’ < MMH(b) = Moyx (D).
Choosing M so that (¢ M)? > |log |, equivalently, M > o~ !|log ¢|*/2, and using the fact
that |7 ¥(0/22 = O(e=(?)"), we have

19 < M2y ()M / l4dt < e OMP N3 < o8 < gt
[t|>M
Study of the term 1 153)
By Lemma C.1,
i 22 (t)/2 — 1| <min{2, o (t2—|—b2)/2}<0 (t2+1/4)/
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which combined with (C.3) gives

4 4 34 .

1<% [ Bl as ot [ (@ )oPas e
2 Jr lov(®)? R

where, by Plancherel’s theorem, (27) ! Heb/‘J-"E( |2 = ||e¥ fox ||? < oc by the assumption that

(M2 fox) € LA(R).

The existence of a discrete probability measure pp supported on [—a, a], with at most
[(J +2) + 1] < (aM) > (a/o)|log o|'/? support points, is guaranteed by Lemma A.1 of
[40], p. 1260. Combining the bounds on I ék), k € [3], we conclude that ||gy — goy |3 < 0.
It follows that dZ (fy, foy)n < g ‘e o?, which completes the proof. O

The next lemma gives sufficient conditions on the distribution Zp, ® 11, so that the in-
duced prior probability measure IT on Laplace-normal mixtures fy = fe * (¢, * ppr) concen-
trates on Kullback-Leibler neighborhoods of a Laplace mixture foy = fe * fox, with mixing
density fox having exponentially decaying tails, at a rate of the order O(n~2/5(logn)T) for
suitable 7 > 0.

LEMMA C.3. Let foy := f- * fox, where f. is the density of a standard Laplace distri-
bution and fox satisfies Assumption 4.3. Consider the model fy := f. x (¢ * pgr), with
pg € P(R). If the base measure Hy of the Dirichlet process prior Py, for up satis-
fies Assumption 4.1 and the prior 11, for o satisfies Assumption 4.2 with 0 < ~v < 1, then
II(Nkr (Poy; €2)) 2 exp (—Cné2), for &, =n~2/5(logn)'/2+ (0 v3)/5,

PROOF. We use the generic exponent 3 > 0 of the Fourier transform of the error density
in those steps of the proof that do not depend on the specific form of the Laplace density. We
show that, for some constant C' > 0, the prior probability of a Kullback-Leibler neighborhood
of Pyy of radius é2 is at least exp (—Cné? ). We apply Lemma B2 of [59], pp. 638639, to re-
late Nx1.(Poy; €2) to a Hellinger ball of appropriate radius. By Assumption 4.3, there exists
Co > 0 such that ygx ([—a, a]¢) < e~(17C0)e for g large enough. Set a,, := ag|logn|, with
ap > [2/(1 + Cy)] and n > 0 small enough, we have uox ([—ay, a,]¢) < 1. Then, Lemma
A.30of [40], p. 1261, shows that the L'-distance between fyy and foy = fex fix» where fiy
is the density of the renormalized restriction of jiox to [—a,, a,], denoted by p . is bounded
above by 2. From d2(fov, fiy) < |fov — foy | < 2n% we have du(foy, fiy) S 71
Lemma C.2 applied to p; (which plays the role of ;ox in the statement) shows that, for
o > 0 small enough, there exists a discrete probability measure 1}, supported on [—ay, ay),
with at most N = O((a,,/o)|log o|'/2) support points, such that f;: := f. * (¢, * u%;) satis-
fies

du(f, foy) S o’

An analogue of Corollary B1 in [59], p. 16, shows that u7; = Z;VZI P;0., has support points

inside [—ay), a,)], with at least o128 _separation between every pair of points u; # uj, and
that dy(fy, fy) < of. Consider disjoint intervals Uj, for j € [N], centred at uy, ..., u,
with length o727 each. Extend {Uy, ..., Uy} to a partition {U1, ..., Uk} of [~ay, a,]
such that each Uj, for j = N + 1, ..., K, has length at most o. Further extend this to a
partition Uy, ..., Uys of R such that, for some constant a; > 0, we have ¢ < HO(U]-) <1,
for j € [M]. The whole process can be done with a total number M of intervals of the same
order as N. Define p; =0, for j = N +1, ..., M. Let &, be the set of probability measures
pr € Z(R) with

K
(C4) Z |l (Uj) — pj| <20%*1 and 1%1[1]% p (U) > 02840 g
J=1 J
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Note that 02’*1K < 1. By Lemma 5 in [38], p. 711, or Lemma B1 in [59], p. 16, with
Vo = Uj>NUj and V; = Uj, for j € [N], for any uy € 2, we have d(fy, f{;) <|fy —
i S P, Then, for = O(c”), we have dH(fY7 Jov) S di a(fy, fy) + dH(fY7 foy) +

42 (f&y fov) < 0P To apply Lemma B2 of [59], pp. 16-17, we study the ratio ( fy / fov)-

Let pg € &,. For a standard Laplace error distribution (5 = 2), since || foy||c < 5, for
’y‘ < a’ﬁ’
Jfr
—Wz fe(y — ) ¢o(z — u)pp(du)dz
Jovy z|<a, |z—ul|<o

1 —2a
>1 / U dr 2 o e,
z|<a,

while, for |y| > a,),

fY ( )N/ fg(y_x)/ gbo(x_u)ﬂH(du)dJ;z%6_‘y|e—ane—2(an/0)2’
Joy x| <ay, |u|<a, g

where pp([—ay, ay)) > 1 — 2029+ because of the first condition in (C.4). For A\ =
Hla,e 2%, we have log(1/A) < |logo]. Since {y € R: (fy/for)(y) <A} C{yeR:
’y‘ 2 a’ﬂ}v

Joy Jov < L 2
Poy<<10g i ) ]]-(f{)_yyg)\)> §/y|>an < Ty ——(y )) fov (y)dy S 3 |y\2any foy (y) dy,

where
[ s ([ xwa) [ 2w
‘ylzan R ‘ylzan

< / e II/2 4y < =an/2 < 5,
ly|>an

see, e.g., Lemma A.7 in [56], pp. 303-304, provided that ag > max{6, 2/(1 + Cp)}. Conse-
quently, Poy (1og(fov /fy)L((fy /oy )<n) S 0.

Thus, Poy(log(foy/fy)]l((fy/fw)g)\)) S 0'26, with 5 = 2. Lemma B2 of [59], pPp- 16—17,
implies that Pyy log(foy/fy) is bounded above by o2?|logc|. By Lemma 10 of [38], p.
714, we have Zp,(Z2,) 2 exp (—c1K|logo|) 2 exp (—ca(ay/o)|log o|*/?) for constants
c1, c > 0 that depend on Hy(R) and a;. Given o > 0, define .7, := {0’ > 0: o(1+0%) 71 <
o’ <o} foraconstant 0 < d < sy — 1. Then, I1,(.%,) 2 exp (—D10 7| log o|"*). Replace o
at every occurrence with o’ € .%,. For £ := o |log o|'/2, noting that |log 0| < |log&|, since
v <1 we have

TI( Nk (Poy; €2)) 2 exp (—ca(an/o)|log o[*?) x exp (—Dyo | log a|™)
2 exp (~cs(ay/0)] log o] +9/2)
> exp (—cg& VP log ¢/ BAFIH(0VE/2)y,

Replacing & with €, = n —B/2B+1) (log n) /2B V3/2)/(26+1) for a suitable constant C' > 0,
we have IT( N (Poy; €2)) 2 exp (—Cné?) and the proof is complete. O
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APPENDIX D: LEMMAS FOR THEOREM 4.4 ON ADAPTIVE POSTERIOR
CONTRACTION RATES FOR DIRICHLET LAPLACE-NORMAL MIXTURES

The following lemma assesses the order of the bias of the distribution function correspond-
ing to a Gaussian mixture, where the mixing distribution is any probability measure on R and
the scale parameter is bounded below by a multiple of the kernel bandwidth h, times a log-
arithmic factor. It shows that, when d = 1, condition (3.6) of Theorem 3.1 is verified for a
universal positive constant C1.

LEMMA D.1. Let Fx be the distribution function of ux = ¢o * jim, with o > 0 and
pir € Z(R). Let K € L'(R) N L*(R) be symmetric, with [3|2]|K(z)|dz < oo and K €
LY(R) such that K =1 on [—1, 1]. Then, there exists C} > 0, depending only on K, such
that, for a >0, 0 < h <1 and h\/(2a + 1)|log h| <o < 1, we have

||FX —FX *KhHl S Clha-H.

PROOF. Defined the function f(t) := [1 — K (ht)][¢(ct)/t], t € R, since t — iz (t)f(t)
is in L*(R), arguing as for Gy 1, in [20], pp. 251-252, we have

L / e 1 (1) F (1) dt| dar
[t|>1/h

2

||bpx<h>u1=||Fx—Fx*Kh||1=/
R

1
V2
see, e.g., [5], p. 1031, for the last inequality. Using the fact that ||K o < || K1 < 0o, we
have [I£13 < (v30/)(1 + K1) fiyoy it 2t = 2(1 + | K|l1)2he (@0 < p2atD),
Besides,

= llpz  fl < 1F < =z FI + 17D,

fO@) =— {hf((l)(ht) + (% + 0275) = f((ht)]} ‘5(;”5) Ly, (ht), teR.

Since K € L'(R) and zK(z) € L'(R) jointly imply that K is continuously differentiable
with |K( ()| — 0, as |t| — oo, so that K(1) € Cy(R), we have

1O < 26/ /

h? (1) (12 2 )
>R =K \\oo+t—4(1+”KH1) dt
>

+2
+ 40t (1 + HKHl)?/ e~ qt
[t|>1/h
5 (h2 +O_2)he—(a/h)2 5 he—(o/h)2 5 h2(o¢+1)‘

The assertion follows for a suitable constant C'; > 0 depending only on K. U

REMARK D.1. Due to the exponentially decaying tails of the Gaussian density and to
a suitable choice of the scale parameter o greater than or equal to a multiple of the kernel
bandwidth h, times a logarithmic factor, a different argument than that used in the proof of
Theorem 3.1 for the case when the smoothness Assumption 3.2 on pox holds is used to
bound the bias of the distribution function F'x associated to px = ¢y * ip.

We introduce some more notation. For h = o(1), let § = o(h). For m € N, b= F3 and
o =o(1), we define the set

1
(D.1) Ap o= {w eER: vhppo(x) > —iho,b(x)} ,
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with 71071, and Ay, p » as defined in (4.6) and (4.7), respectively, and the function
b 1
(D.2) Gbo = Mox (b)e " Yhmpola,, — §f0X Lag .

In the following lemma we prove the existence of a compactly supported discrete mix-
ing probability measure, with a sufficiently small number of support points, such that the
corresponding Laplace-normal mixture has Hellinger distance of the order O(c®*?) from
the Laplace mixture sampling density foy = f- * fox having an a-Sobolev regular mixing
density fpx with exponentially decaying tails.

LEMMA D.2. Let f. be the standard Laplace density. Let fyx be a density satisfying
Assumption 4.3, Assumption 4.4 for o > 0 and Assumption 4.5. For o > 0 small enough,
there exist a constant Ay > 0 and a discrete probability measure on |—ay, a,], with a, :=
Aplloga|, having at most N = O((ay/0)|log o|*/?) support points, such that, for fy =
fex (do x pm) and foy := fe * fox,

du(fy, for) S0 Pen 200+

as soon as pox ({x €R: |z| < ag}) > do for some 0 < ag < ay and 0 < §p < 1.

PROOF. Reasoning as in Lemma C.2, for ag, dg as in the statement, d%( fv, foy) <
2(50_16[1“”9)/ — goy ||3, where gy := U fy and goy := U foy, with U defined in (C.1). Note
that (el'l/2fox) € L'(R) N L?(R) by Assumption 4.3. Also, gy, goy € L'(R) N L*(R) so
that, not only are the corresponding Fourier transforms gy, oy well defined, but ||gy |3 =
(27)~ v 113 and llgoy 3 = (27)[ldov 13- In order to bound [lgy — goy 3 some defini-
tions and preliminary facts are exposed. For T > [(a + 2) /9], with ¥ € (0, 1), we define
the set B, := {z € R: fox(x) > o''}. The tail condition on fox of Assumption 4.3 im-
plies that E, C {z € R: |z| < Ag|logao|} for some Ay > 0. Note that Ay can be chosen
arbitrarily large by choosing 7" large enough because Ay is proportional to T'/(1 + Cp). Set
By = [3[fox(2)]'"? dz < oo, then

(D.3) pox (E5) < Boo”" S oo+
by definition of 7. For b = :F%, introduced the densities

= fox + e hyolp,
hy o = and —
| fox + 9o |11 ho1E, |1
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where gy, is as defined in (D.2), we consider the decomposition

lgoy — gv |13 < Z le” {f= * [fox — o * (Tmpofox)IH3

b=F1/2

+ > e {fe b0 % [(Trnpo fox) — (fox + go0) 1} 3

b=F1/2

+ Z Heb'{fs*gbo*[(fOX"i'gb,U)_}_lb,a]}H%

b=F1/2

+ > e {fe o % [ — (hoolp, /o Le, )15

b=F1/2

3 e {fe o (oo L, /Mo L, 11) — ]I

b=F1/2

5
o
r=1
We show that each term V7, ..., Vj is of order O(c2(®+2)). By inequality (4.9) of Lemma
4.1, we have 1} < g2(@+2),
Study of the term Vy
We recall that g,(t) := [1 — ¢Z(t)], with ¢ (t) := — (2t + 1), t € R, and

m—1 2k

1 —o2/2)F 2k - ,

s = 3 S (%F) 0 D)
k=1 j=0

As in Lemma 4.1, for constants 0 < c5, ¢; < 1, we take 8 := cso and h := ¢, |log 0| ~1/2. We
write

) . 1
e’ {fa * Qo * [Mox(b)e b Yhmpolag  + §fox ]lAg,g} }
as

Mox(b){eb' [fa * (ba] * [(’Yhm,b,cr + %710717) ]lAzf,a] }

so that, using the definition of gy , in (D.2),

Vy = Z Heb'{f€ * By * [Mox(b)e_bﬁhm,b,a]lf\i,n + %fOX ]lAgv"} }Hz

b=F1/2
e a2y (t)? /2|2 9
S 30 M) [ (2 e + ol YOP
b F1/2 Qb
Z Mg (b )([VhmboLag Il + [1hopla; )%,
b=F1/2
where we have used the facts that
IF{2YPmpo + hoplLag Moo < 2hmpolag [l + [[hopLag Il

and
o2y ()2 /2|2
e o1
los(@®)>  ~ 1+t
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Finally, using the inequalities in (E.4) of Lemma E.3, we obtain that
Va < g2k < O.2(a+2)'

Study of the term V3
By the inequalities in (E.4) and (E.5) of Lemma E.3, noting that || F{ho}||cc < 1, we have

1 2

ne 3 (1 —) e [ 00+ ox + 0] B

b:;/z [ fox + gbelln : ?

S2VR ’e T /2‘2 2 2
Z Mg (b TTa®F (1F{Rop} () + [ F{vhmpo} (#)]*] dt
b=F1/2 Qb
Recalling that, by inequality (6.9), we have | F{D’ Hs}(t)| < [t} | F{H}(t)| < |t}, for j =
, 2k, we find

T2 Un(1)2/2)2 mol o?/4 o2(#2 +1/4)]2F B
/’ 0] ‘If{vhmba} dt < Z e /[ ( /4)] | F{hop}(t)[* dt

k=1 el7D’| oy (t)|?

<11 fox)I2 S lle fox |2 < oo,

which implies that
Vs < g2k < O.2(a+2)'

Study of the term V4
Taking into account that || fox + g~ ||1 > 1 (see (E.5) of Lemma E.3), we have

Vi > (Mnodesli? < e {fe 0o * (o L, /oo L, 1) 1B
b=F1/2

e £ o+ (oo L) HI3)

S > I(fox + gbo) L

b=F1/2

e 0222 ,
/7\% TinoLe, /oL, 1} (1) dt

Je7 0" 22 /2|2 :
> | e L b Pt
b=F1/2 Qb
Note that, by (D.3),

3 —0x
I(ox + o)Lzl < Jhox (B + Mox(®) [ g ola)|do

Ab,aﬂEg
3B
<3800 | po(v) / o ()] da,
AbﬁvﬂE(C,

where, as hereafter shown,
(D.4) [ e @) de oo
Ay sNEC

and

(D.5) [ F{e” hpplpe oo S 0T




48

It follows that

Vi < o207 4 o2(at2) < o2(at2)

We prove inequality (D.4). By Holder’s inequality, Lemma E.2 and inequality (D.3), for
7=0,..., 2k, we have

/,Aby(fﬁEg
é /
Ab,gﬂEg

/ e fox (x — u)D? Hy(u) du| dz

dx

/R e~ fox (2 — 1) — fox ()] D7 Hs (1) du

+ < /R |DjH5(u)|du> /A e fox (z)dx

sca |  Lola)+ fox(@)de -+ Cogpox (Ans 1 ES)

. L
§Cj5_J+U/A . [fox ()] BHI-1/R) <—0

Tox (x)) dz + (Coj + C;6 Y uox (ES)

1/R

Citw Ly f cy1-1/R  9T—j+v
<5 /A fox@) (F2@) de ) o (B 07
b,n‘m §

1/R
it Ly f ! 9T(1-1/R) | 9T—j+v
<o fox(x) f—(:n)+1 dz o + oVt I,
R 0X

Consequently,
/ e_bm\’yhm,b,o(a:)]da: g O,v+19T(1—1/R) + gvtIT S O,z?T(l—l/R) + 7T g oot2
Ab UﬂEC
by choosing T' > [(« + 2) R]/[¢(R — 1)]. With this choice, the condition T > [(ar + 2) /9] is

satisfied. Thus, ||(fox + gb,0)LE: |1 S o9*2 Inequality (D.5) follows from the tail condition
on fox of Assumption 4.3 and the definition of the set EY.

Study of the term V5

Recalling that B stands for the bilateral Laplace transform operator, we have

" (®/2)2 o2 (t)? /2|2 _ _ 9
Vs < / or Bl e /Ifuole, 1} - Blun @) dv
b=F1/2

For M > 0, split the integral domain into [¢| < M and [¢t| > M and let the corresponding

terms be denoted by V5(1) and 1/5(2). Let g be a discrete probability measure on E, C
[—a,, ay] satisfying, for b= :F%, the constraints

, o
/ uj,uH(du):/ u]bi()du, i=0,...,J—1,
E, 17,0 LE, |11
with J = [nea, M| for some 7 > 1, together with

.o
(D.6) / e g (du) = / ebuﬂ du,
E, B, lholE, Il
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where the integral on the right-hand side of (D.6) is finite because f o eb“i}b,o(u) du <

Ji € b0 (w) du S Mox (B)[1 + [ Yhum o () du] = Mox (b){1 + 71 + O(c>™=D)]} by
relationship (4.10) of Lemma 4.1. Thus,

/ P hy o (u) du = O(1).
Es

By the lower bound inequality in (E.5) of Lemma E.3 and the previously proven fact
that ||(fox + gbo)LEs |1 < 0®F, we have |fiodp, 1 =1 — el 21— [[(fox +
9v0)LEe|[1 21— 0®"2. Therefore,

1B{ oo L, /1o L, 1} (W0) oo < €7 o1, |11/ 1o LE, |1 S/ " iy (u) du.

o

Then, using Lemma C.1 with r = .J, by the inequality .J! > (J/e)’, we have

W LR :
Vel = W![B{hb,oﬂ&/llhb,ol&Hl} = B{pu Y (¥p(t))]° dt
b1 /27 IISM Ob
2J M
< g / t2(J—2) dt
I o
o 2J+1

< pp-2at2) o ay’ % M Fe) < pf2(a+2) eaqs M M2 < pp-2(at2)
~ (J1)2 2J -3 ™ J ~

because (ea, M/J)*/ 1 M2 < e=2/(ogm) N2 < 1. Choosing M so that (o M)? > (20 +
1)|log 0|, equivalently, M > o~ '[(2a + 1)|logc|]*/?, and recalling that |e” ¥i(t)/2|2 =
O(e=(9%), we have

2) e @212 . 2
Vili= ) / W’[B{hb,oﬂEv/th,aﬂEn 1} = B{pr (v ())]” dt
b=1/2 [t|>M Ob

< e—(O'M)2 / A< e—(UM)2M—3 < gotlpr=3 < O,2(a+2).
[t|>M
Therefore,
Vs 5 V5(1) + V5(2) 5 O_2(a+2)‘

Conclude that ||gy — goy |3 < 215:1 V. < 02@+2) The assertion follows. O

APPENDIX E: TECHNICAL LEMMAS FOR ADAPTIVE POSTERIOR
CONTRACTION RATES FOR DIRICHLET LAPLACE-NORMAL MIXTURES

LEMMA E.1. Forr >0, a € R and j € Ny, there exists a constant C,. ; < oo such that,
for h=o0(1) and § = o(h),

E.1) / 2" | HO) (2] da < ) .
R

PROOF. Recalling that H(z) = (27) " #(2)op () = (27) 1#(x)e="®)*/2 2 € R, we
have

<j> #(0) (x)Dj_ig/b;(a:), reR,
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where D’ _’@(:E) = Di~ie~(h*)*/2 i5 3 linear combination of terms of the form
On () (-1 B,
where 0 < ji, jo, j3 < (j — ). Note that 9% gy, ()¢~ (ha—ad/h)*/2¢(ad/h)*/2 < o(ad/h)*/2
where e(99/M)?/2 =1 4 o(1) because (§/h) = o(1). Then, by condition (4.5), for v > (r +
j+1)and 0 < ji, jo, j3 < (j —9),
e[ e 0 () | () [l < ]2 170 (),

where the function on the right-hand side of the last inequality is integrable. The assertion
follows. O

LEMMA E.2. Suppose that fyx satisfies the local Holder condition (4.3) of Assumption
4.5 with 0 < v <1 and Ly € L*(R). For every b € R and j € Ny, if h = o(1) and § = o(h),
then

; C
€2 [ e fox(o—u) ~ fox @)D Hy(w] du < F&[Lo(o) + fox @), 2R
R
where C; := (3C,, ; V C1 ;) > 0, with Cy, j as in (E.1).

PROOF. Let x € R be fixed. By Lemma C.1 and the local Holder condition (4.3) of As-
sumption 4.5, we have

5 / e foxc (& — w) — fox ()] D7 Hy(w)| du
R
- / e~ fox (z — 62) — fox ()] HD ()| dz
< / €797 1] fox (& — 62) — fox (@)1 HD(2)] dz
T e b0z _ @) (2)|dz
T fox( >/R| 1[HO)(2)|d
+ / fox (& — 62) — fox (@)1 HO) ()] dz
R
§3/R|fox($—5z) —fOX(!E)||H(j)(Z)|dz+fox($)/R|€_b62 —1[HD(2)|dz

< 36 Lo (a) / |2° [ HD(2)] dz + b6 fox () / |2/ HO (2)|d2

<38Cy jLo(x) +b0C j fox (x) < Cj0" [Lo(x) + fox (x)].
Inequality (E.2) follows. O

LEMMA E3. FormeN, b= :F% and o = o(1), let the set Ay, , be defined as in (D.1).
Under Assumptions 4.3 and 4.5 on fox, the latter with 0 < v <1, Ly € L'(R) and any
R > 1, there exists a constant C,,, > 0, depending on m and v, such that, for o small enough,

1
(E.3) Vb=:F§, bo € Bo,
with B, :={z € R: [Lo(z) + fox(z)] > C;;}o 7" fox(x)}. Furthermore, there exist con-
stants Cr, Dr, Sg > 0, depending on m, v and R, so that

(E.4) lhopla; Il < Cro™™,  |Yhmpolag 1 < Dro®*
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and the function fox + gy o, With gy » as defined in (D.2), which is non-negative, has
(E.5) 1<l fox + gbolls <14 Spo*”

PROOF. Let b be fixed. We begin by proving the inclusion in (E.3). Assume that x € A§
i.e., Yhinp.o(2) < —ho p(x)/2. Recall that

m—1 2 L 2k
—02/2 o% . .
Voo =D % > < . >(—b)2k I(hop * D? Hs),

k=1 © =0 N

b,o°

where, as in Lemma 4.1, for constants 0 < c¢s, ¢;, < 1, we take 0 := ¢s0 and h :=
cn|log o] ~/2. Note that, by relationship (6.9),

/RDjH(;(u) du= </RH(w)d$> 110y (J)

_ % /R e o)) dx> 110} () = (7 % 61)(0) 10y () < 1.
Then,

m—1 . E 2k . ) ) |
Z % Z <2k> (—b)* /R[ho,b(x —u) — hop(x)|D? Hs(u) du

k=1 ’ j=0 J

= Y b () = hop(2 Tnzfﬂf:(%) )2k J/DJHs

k=1 Jj=0
O' 27 2 g
S—Bo,()<——(7*¢h b Z :+1/2 )
k=0
< hoo@) g oz —LZ(‘"”).

- 2
For ¢ small enough, by Lemma E.2,

m—1 2k
(= ;(2>kz<2k> )2k / [P — ) — Fro () D7 Hy(w) du

k=1 ’ j=0

m—1, o L 2k
L 2 TS (B i [ e foxte - ) = fox (@)D (o) du

1 (1 [bleso)?/(2¢2)]F .
= Mox (b) (; - 6k!) ) og;i}ékc> e’ [Lo(z) + fox (z)]
1 m—1 (2/62)k .
Mox (b) (k_l k"(s Oglj%kcj> e"[Lo() + fox(2)],

where 0 < C,,, < 0o. Then, for C,,, := 4C,,,, we have Af  C B,.
We prove the inequalities in (E.4). Concerning the ﬁrst one,

/ ho () dz < oV Cui /ebmf (x)(LO()+1>Rdw<C oV
o 10 Mox(®) /. 0X Fox <CRro™,

c
b,o
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where

R
= jal/
O o 1/2 N Vox (1/2) / *ox (@ <f ()+1> da < o0

by condition (4.4) and Assumption 4.3. As for the second inequality, from previous compu-

tations, for every j € N, we have

/ |(hop * D? Hs)(z)| da
A

c
b,o

<6 ( / / oy (2 — 5u) — oy ()| HO ()| dudar + co,joRavR>
;U R

. C;év
<67 (M(f)((b) / eb® [Lo(x) + fox (x)] dz + Co,jCRO'UR>
[ CjeeCit L R
—j | 21z Zm ba 0 , vR
<4 < Mox (b) /gﬁe fox () <f0X( )+1> dx+C0,]CR> o

LU
Cjcs \ wR
Cf »J o ?
m

g 22/
Dri=Cr <Cm + 1) ; m o, (G V Coy),

§5_jCR<

which, defined the constant

implies that [|[vhm poLag 11 < DprovF
To prove the last part of the lemma, we begin by noting that

_ 1 1
fox + gbo = [fox + Mox (D)e " Yhmp o)l a, ., + §f0X lag > §fox >0

and

Myx (b) / e_bx’yhmbﬁ(a:) dz =0.
R

In fact, since by Lemma E.1 we have [, e~ H (z) dz < oo because (§/h) = o(1), it holds

that

ng(b)/e_bx’yhm,b,o(x) dz
R

m—1 . L 2k

k=1 j=0 J
</>*z<>

(=b+b)2*=0
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Then, since g, » = Mox (b)e > Yhm po — [Mox (b)e 0 Yhp b0 + (fOX/2)]]lAgYU, we have

/ (ox + gbo) (@) dz =1+ / Mox (b)e"" vy .0 () da
R R

=0
~ [ [Mox O bsa )+ s a0

1
=1- / [MOX(b)e_bw’Yhm,b,cr(w) +§f0X ({L’)] dx > 1.
<—3fox(z)

On the other side, using Lemma E.2 and reasoning as in the first part of the present lemma,

/R(fox + gho)(@)dr=1— /A

1 —bx
— 1= hox(45) = Mox(®) [ €V 0(o)do

[Mox(b)e_bxWhm,b,a(fﬂ) + %fox(ﬂf)] dz

c
b,o

<14+ Mpx(b) / e_bx\’yhm,b,o(w)] dz
Ag,n‘

<1+ [Mox(~1/2) V Mox(1/2)]Dr o™

ZSR

Conclude that 1 < || fox + gbo|l1 < 1+ Srov®. The proof is thus complete. O

REMARK E.1.  Although in condition (4.3) of Assumption 4.5 the constant R > (2m/v),
for the smallest integer m > [2 V (o + 2)/2], in Lemma E.3 we have that R can be any real
greater than or equal to 1.

APPENDIX F: PROOF OF THEOREM 5.1 ON RATE LOWER BOUNDS

PROOF OF THEOREM 5.1. For clarity of exposition, we distinguish the cases where d = 1
and d > 2.

e Cased=1

The proof develops along the lines of Theorem 3 in [21], pp. 281-285, and of Theorem 4.1
in [20], pp. 246-248. It uses intermediate results from [30], pp. 1267-1271, from Theorem 1
in [15], pp. 577 and 590-594, and from Theorem 2.10 in [18], p. 10 and pp. 34-36.

We consider mixing distributions belonging to the class D1 = P1(R, M) N S(a, L). We
begin by defining a finite family of Lebesgue absolutely continuous probability measures on
R, with uniformly bounded first moments, whose densities belong to S(«, L). For 1 < r < %,
we define the density

(F.1) for(x):=Cr(1+2%)7", z€R.

Let H (-) be the kernel function on R defined in [30], p. 1268, which is such that, in particular,

e H is real, bounded and continuous,

* H(0) #0, [ H(z)dz =0 and fol |HEY (z)| dz > 0, where H"V (z) := [F H(u)du
is a primitive of H,

o |H(z)| <c(1+2?)7%, z €R, with§ > 3,

« H(t) =0 (hence also HM (t) = H® () = 0), |t| ¢ [1, 2].
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Let b, := ([n/[(@+8)+1]]v 1), where [] denotes the integer part. For @ € {0, 1}*» and C' > 0,
let

bn
(F2) fo(x) = for(@) +Cby* Y 0,H(bp(z — x5y)), zER,

s=1

where z; , := (s — 1)/b,,. Defined the measure g := fg d\, we show that

{ng: 6 €{0,1}} CD;.

The function fg is a density

Since fo, is a density and [, H(x)dxz =0, we have [, fo(x)dz = 1. To ensure that fg >0,
it is sufficient to show that | fg — fo | < for. In fact, by Lemma 7 in [32], pp. 1923-1924,

since > (1 3), there exists C > 0 such that, for n large enough, we have

by
for @) folx) = for(@)| = CCT 1+ 2) b, Y Os|H(bp(z — 35,0))| < CC7 ' C " < 1.

s=1
The probability measure 119 € P1(R, M)

Let 10, := fo,dA. Since r > 1 we have M (po,) : fR|$|f0r )dx < oo. For n large
enough, since § > 1, we have

M, (j16) = / 2] fo(2) da

bn
< / 2l for(z) dz+ Cb70 Y / (2| H (b (& — ap))|
R s—1 R
i 1 Ju|
< —(a+1) /7 vl
_Ml(,UO,r)+CCbn 82:: . (1+u2)5 <bn +$s,n> du

:Ml(,uo,r)—Fch;(o‘“)/ (1+u2 (\u!—i—Zwsn) du

lu| +1
<M —_
I(NO,T)"i'/R 1+ u2)

Thus, pe € Pi1(R, M) for every M > My, 5.

dz =: My, s < oo.

The density fg € S(a, L)

By Lemma 4 in [15], p. 590, we have fo ,(t) = exp (—|t|*" ), t € R, where 0 < (2r — 1) <
2.Let Lo o= [p(1+ )| fo.-(t)|? dt < co. For n large enough, we have

/ (142 fo(t)Pdt <2 / (L + 22| for (D] + C205 24 | F(t/b,) 2] at
R R

<2[Loa+ C%, (446, H|3] < 2Lora +1=: Lo.
Thus, fg € S(a, L) for every L > Ly.

The rest of the proof proceeds along the lines of Theorem 3 in [21], pp. 281-285. There-
fore, we only sketch it. Let /i, be an estimator of . based on the sample Y (). Let 6 be
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a random vector whose components are i.i.d. Bernoulli random variables él, e Han, with
P(f;=1) = P(6s=0) = 1, for s € [by,]. We have

sup E?,, , \Wi(fin, p) > sup Ef, _ \Wi(jin, po)
LDy (xpe) n 0c{0,1}bn (poxpie) n

>inf sup ET, . Wi(fin, f1e)
fi, 0€{0,1}0n (nopie) "

> inf EE{,. vy Wi (fins 115)

=inf | EE(, ., )|Fn(z) — Fg(2)|dz,
Ay JR
where the infimum is taken over all estimators /i,, of jg, the expectation E is taken with

respect to the distribution of 0 and F),, Fj are the distribution functions of [ir, and Hg» TE-
spectively. For @ € {0, 1}*~ and s € [b,], we define the densities

Jos0 = fi01,0. 100.41,00,) w=0,1,

and let pg s v := fo,s,u AN, for u =0, 1, be the corresponding probability measures on R. Let
he,s . be the density of pig s, * fte, for u =0, 1. Using a standard randomization argument,
it can be shown that there exists a constant C; > 0 such that

(Wt pte

1
sué) By Wi (i, 1) = C1b;, @+ / |H Y (u)| du > n~ (@t D/Rle+B)+1]
pneDy 0

provided that [1 — x?*(he s0; he.s1)/2]*" is bounded below by a constant, where the -
divergence between two densities hg and hy on R is defined as

0 o [ [ho(z) = ha(x)]? .
X (%JM)—/R To@) dz.

Using standard arguments from [30], see the proof of Theorem 5, pp. 1269—-1271, under as-
sumption (5.1), it can be shown that there exists a constant Cy > 0 so that x? (ho,s,0; hos1) <
Czb;[2(a+5)+1] < an_l.

We now show that also the sequence 7 ~'/? is a lower bound on sup ueDs E?ﬂ*u )Wl (fin, ).
In fact, replacing the function in (F.2) with

fo(x) := fo,(x) + Ca, 0H(z), z€R, 6€{0,1},

and taking a,, = ([n!/2] v 1), all previous steps go through and we find that, for a constant
C3>0,

sup B, \Wi(fin, 1) > Csa,t 20"/

peD, ©
and x2(fo * pe; f1* pe) < a2 <n~!. Combining the two previously obtained bounds, we
conclude that

n

a+1)/2(e+B8)+1] ,,—1/27 _ . —(a+1)/[2a+(28V1)+1
(e )/ R(eAB)H] p=1/2) — p=(e+1)/Rat(2BVI)+1]

sup B, Wi (iin, 1) Z max{n™

neD,

e Cased>?2
We define the d x d matrix

_ (1 1!
A_<0 Id—1>’
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where 0 is a (d — 1) x 1-column vector with all elements equal to 0, while 1t is a 1 x (d —
1)-row vector with all elements equal to 1 and I;_; is the identity matrix of size (d — 1).
The matrix A is invertible and, being upper triangular, the determinant is the product of
the main diagonal entries, therefore det(A) = 1. For each observation Y;, we consider the
transformation

Set the position

n = Aeia
the d x 1-column vector 7); has elements
d
Ei k) lf] = 1a
Mg =\ k=1
€i,j5 lf]:2,,d
The random variables 7y 1, ..., 1,1 are i.i.d. according to the d-fold convolution measure

,u:d, that is,
s = 120, i€ [n).

We now show that condition (5.1) implies that, for every [ =0, 1, 2,
(F3) D ) S A+ [t)" D teR,  fori € [n).
In fact, by condition (5.1) with [ =0,

i (O] =[O S A +[t)™%, teR, forie[n].
By the same condition, with [ =1,

), ()] = dla= (01" @) S QL+ [8) P, teR, fori € [n],
and, with [ = 2,
A2, (1)) = ld(d = D1 2D W + dlj= (0] A8 1)
S (U ()P ) 720D 4 (1 ) 7D (1 () )
SA+t)~ P teR, forie[n].

This proves that condition (F.3) holds.

We make a preliminary remark for bounding below the supremum of the L'-Wasserstein
risk. For a random vector X in R? with distribution z € P;(R%, M), we denote by p* the
distribution of the transformation AX, which is the image measure of i by A. Let i, be

any estimator of . based on the observations Y™ = (Y1, ...,Y,). We denote by /i the
corresponding estimator of MA, which is a function of Z(") = (Z4, ..., Z,), with Z; = AY,,
for i € [n]. Then,
Wi (@2, u™) = inf / z—7|7(dz, d
1 (> 1) N . lz—2|7( )

= inf / |Ay — Ay'|y(dy, dy’)
YET (fin, 1) R4 x R4

= it [ A=)y, ) < AW G, )
YET (fin, 1) SR x R4
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where |A| := (Zle Z?:l a?j)l/2 = v/2d — 1. Therefore,
(F4) AW (i, 1) = Wi (i, ).

We now study the supremum of the L'-Wasserstein risk over the class Dy = P; (RY, M)N
S(a, L). We begin by defining a finite family of Lebesgue absolutely continuous probability
measures on R?, with uniformly bounded first moments, whose densities belong to Sy(cv, L).
Let b, := ([n!/Rle+B)+1] v 1), Let f;, be the density defined in (F.1) and pg, = fo,d\
the corresponding probability measure. For 8 € {0, 1}, let 19 = fg d ) be the probability

measure corresponding to the density fg defined in (F.2). Define the product probability
measure on R¢

i =10 @y Y = (fodN) @ (for dN) @ ... @ (fo, dN)

having Lebesgue density f3*(X) = fo(71) X H;l:2 for(%;), X € R Define fig to be the dis-
tribution of X := A~'X when X ~ i In other words, fig has density fo(x) = f&*(Ax). We
show that

{fig: 8 €{0,1}"} CD,.

The probability measure Jig € Py (R%, M)

Taking into account that the Euclidean norm of any vector is bounded above by its 1-norm,
that is, |x| < Z;l:l |z, for n large enough we have

d
M (fig) < |A™Y|Mi(fig) < |A™Y| | Mi(ue) + Y M (o) | =: Myps < o0

=2

by the same arguments laid down for the case d = 1. Thus, fig € P; (RY, M) for every
M > MO,T,&-

The density fo € Sq(c, L)

First note that fg (t) = féx (t- A~1). By the same arguments exposed for the case d = 1, for
n large enough we have

d X . A
fo(t)2(1+5)7dt =D | [fg'(t- A™HP(1+1)d
j:1/Rd’f0(t)‘( +tﬂ) ¢ j:1/Rd‘f0 (t )= ( ‘|‘t]) t
<d | 1 AP ) de
Rd
<d|A'2a/ T O+ ) de
Rd
:d|A|2a</|f9(t1)|2(1+t?)“dt1
R
d ~
+j2—;/R|f0’r(tj)|2(1 ”?)adtz) — L.

Therefore, there exists a finite constant Ly > 0 such that Z?:l Jga | fg(t) 12(1+ t?)o‘ dt < Ly.
Thus, fg € Sq(a, L) for every L > Ly.
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Let 6 be a random vector whose components are i.i.d. Bernoulli random variables
01, ...,0, , with P(6, =1) = P(§, = 0) = 1, for s € [by]. By the inequality in (F.4), for
any estimator fi,, that is a measurable functlon of the observations Z(™) from (R?)" into the
set of probability measures on R, we have

‘A‘ sup E?N*M§d)W1 (ﬂna N) > ’A’ sup E( d)Wl(lam ﬂO)
HEDq 0c{0,1}bn
> sup  EY oo Wiy, g
iy i (fim Fig)

A
Zee{soull)}b B wpety W () M1, ()

>inf sup E(u o )Wl(ﬁm (Fg)1)

:U'n 96{0 1}b
2 InfEE,. . o0 Wi (fin, (75)1)
—int /R BE, oo |[Frule) = Flaa, (@) de,

where Fn is the distribution function of ﬁn and F( A, is the distribution function of (,ag*)l,
6
which is the marginal distribution of ﬂg on the first coordinate, that is, 115, whose density is

bn

fo=Tor+Cb"> 0 H(bu(- — x40))-

s=1
For 0 € {0, 1}%» and s € [b,], we define the densities
Jo.50=F0r,0. 100011000y, TOru=0,1,

and let jig s, := fg s,u A, for u =0, 1, be the corresponding probablhty measures on R. For
any TE [Tsm, Tsi1, n] taking the expected value with respect to 6, and using the subscript 0 \
(91, e, 051, 95+1, .. 9bn) to denote the expected value with respect to the remaining
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components of the vector é, we have

EE{, , o0 |Fn(z) = Faa), ()]
1 - ;
§E9\5 [ _OE?“B ok )|F (z) F(ﬁﬁs W ($)|]
1
> SEp\, [Flaz 0. (@) = Faa ), ()]
2 Rd Rd 6,s,0 O.s:1
Xmln{H(feso 7Hf951* )A( )}dzl d
=1 =
%b;(a—l—l) |H(—1)(b (x — T n))‘
X Eé\s/ mln{H (fOSO *f771 1 ZZ 1 ) H fOs 1 *fm ' (Zi’l)}dZLl .”dzml
Rn i=1 =
> %b;(oﬁ-l) |H(_1) (b (33‘ — xs,n))‘

1 2n
2 .
X Eg s [1 —5X (fg,&o * fonas Jos1 * fm,l)]
because the following facts hold:

s forany 0 € {0, 1}b~,

’ (fo,5,0 — fo,5,1)(u)du

g, o (@) = Fag, ), (@) = Cb°

Mss1

/_g; H(bp(u —zs,))du

= Cb, T HEY (b, (2 — 5,0))];

* for any 6 € {0, 1}b" and u = 0, 1, all observations 21 1, ..., 2,1 are i.i.d. according to
the probability measure

A)1

((ﬂ@,s,u * /‘?d)A)l = ((l_‘G,S,u) * ((N?d)A)l = HO,s,u * Hny 15

* by the same arguments as in Theorem 3 of [21], p. 283, for any 6 € {0, 1}°~,

n n
/ mln{H f@,s,O*fnll Zzl 7H f@sl*fn11 (221)}(121,1”'(1271,1
" =1 =1

1 2n
_2[1__X (f@,s,O fmmf@,s,l f771,1>:| :

By applying the same arguments as in [30], p. 1270, with the difference that the error density
is ordinary smooth of order 3d instead of 5 and condition (F.3) holds, we get that there exists
a constant ¢ > 0 such that, for any 8 € {0, 1}, we have

X2 (fe,s,() * f771,1 ; f978,1 * f771,1> < Cb;[z(a+ﬁd)+1] 5 n_l
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Thus, for a suitable constant C’ > 0,

AT, By W1 1) 2300 AEE<ﬁé*u§d>an<> Fiag, (@) da

> bt Z H( D( (bn(z — z5n))| da

Ts,n

— O (4D /O 1B ()| du

> (et D)/[2(a+5d)+1]

~1/2 ;

To show that also the sequence n is alower bound on sup ,cp, E

(u*“(@d)Wl(,uny ) we
can reason as in the case d = 1. Therefore, combining the two previously obtained bounds,
we have that

sup E(

)Wl(ﬂna ,U) z max{n_(a+1)/[2(o‘+6d)+1], n 1/2} —(a41)/[204(2BdV1)+1]
n€Dyg

ppé

and the proof is complete. U

APPENDIX G: PROOF OF THEOREM 5.2 AND RELATED RESULTS
G.1. Proof of Theorem 5.2. We first note that
sup ||Fp,,, —F 1 < sup. | Fr

1n,v Hox v
veSd—t veSd—

1+ 0(n1?).

_ FN

n,v 0X,v

Then, by inequality (2.4) and Theorem 3.1 with 8 > 1 and any sequence h,, — 0,

Wi (fiin, pox) < CaWi(fitn, pox)

= C’d sup HFﬁm,v - FHOX,V ||1
vESd—1

5 sup HFﬂn,v - FHOX,V ||1 + n_1/2
veSd—1

Shn+ sup ||[Fj L+ nl/2
d—1

veSd—

_FN

Y n,v 0Y,v

=Bl (v)|+1
© (logn) sup (hn LA | |vj|ﬁ||fpyn,v—fm,vnl).

d—1
ves jelr, (v)

We now bound || fz, .., — fuoy., ||1 uniformly in v. In [15], the authors control the errors in the

L2-distance, therefore we need to control the above term differently. For every v € RY, with
Gy, := v/n(P,, — Pyy) the empirical process, we have

1 —itx » 2
v = sl < | [ (| [ ot = ot an
3 . G (eztv-Y)
zt:cK®d n t )
/Re b, (tv)i\/ﬁ d )d;n]

We denote by By (v) the first integral and by By(v) the second one. In Section G.2, we show
that

_|_

) 1 3/2
(G.1) Bi(v) 2|I H v; " and Egy[ sup Bg(v)] S %.
jel;. (v) veSd—1 NOop
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Since 8 = 2, choosing h,, = b, = [n/(logn)?]~ /(441 the bounds in (G.1) imply that

—2d+1/2 3/2
ol ()[4t b, logn
sup (525 T 2l = Fu ) 5 b e 2

d—1
ves jel;, v)

< [n/(log )]~/ (HD),

The bound on sup, csa-—1 || Fjiy,,, — Floy.. |1 Proceeds similarly noting that

1 [Y b
Fﬂyn,v(y) = %/ / e Kl?;d(tV)(bn(tV) dtdx

—tx ®d 1tv-Y
HOY 271_\/*/ / K ( )dtdZE

d
1 [ K () = 1]
+ o / € _—t,UOY(tV) dt,
so that
[R5 (tv) = 1]

1 —1
/\ fivne(U) = oy, (y )!dy<— e i uoy(tV)dt‘dy

- 27

—t

zth®d tV ( ztv~Y) dtdz dy

=:Bi(v) + B2(v).
The first term By (v) is similar to By (v), therefore
Bl (V) 5 bn,

uniformly in v € S9!, We now study the term Bg( ) following the control of By in Sec-
tion G.2 below. First note that Ba(v) = (271'\/_ e |lGu([? gon(Y)da)| dy, where the

function g, (Y) is defined in (G.2). Set Gy (Y) := [V gzv(Y)dz, y € R, write

- </_oo+ /j) |G (Gy(Y))] dy-

We only study the case where y < 0 because the case y > 0 can be treated similarly. Without
loss of generality, we assume that v; > 0 for all j € Jj(v). Since

Gen(Y)=0271) ® Kpo,(x—v-Y), zeR,
JETF (V)

Y y—v-Y
1Gyu(Y)] < / ® Ko, (2 —v-Y)|do= / ® K, (u)|du

—o0 jeJ (V) —oco  jEJF(v)
SPL > baviZi<y—v-Y
J€Ji(v)

< 57 P02 < g+ IVIL)/(dbn)).

jedi(v)
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where the Z;’s are i.i.d. random variables with density |K|/||K||;. Hence, for all k£ > 1,
defined vyyin 1= min; |vj| we have

Gyu(Y) < ﬂ(yg(_2||v||1A—1))dP (Z1 <y/(2dbpVimin)) + dLo>y>(—2) Y|, A—1))

S yemny (/Y1) + LZ1<y<0)s
which in turns implies that
Eoy (Gy(Y)?) < Liy<—1) (ba/ly))** ™ + L C1y<0)-

Using Lemma 19.36 of [61], p. 268, jointly with the computations of the integrated bracketing
entropy in Section G.2,

_ 1
o (510 /%2

vesd—1 n

This implies that
- F

Hoy,v

S bn,

13

sup [|F
veSa—1

Y n,v

which concludes the proof.

G.2. Proof of the bounds in (G.1). We begin to prove the bound on Bj(v).
e Bound on Bi(v)
Forv e R?, let a,(z) := (2m) ™" [, e " figy (tv)[1 — Kﬁd(tv)] dt, z € R. Using the inequal-
ity [lav]|? < [layll2 % 48" |2 see, e.g., (4.4) in [5], p. 1030, we have

B < oy (W1~ Kl x || (v (vl — K(w)

2
Note that
1= K2t < D 11— K0nvit)] < dLys s, ufw))
jET;(v)

and

d d L(jt)> @balvlle) 1)

oy (001 — KE4(1v)] '
dt ( ) szl(l +v3t?)
d . v t]
X &Mox(tV) + 2|10 x (tv)] Z 1+ 02

jedi(v)

< Lgzealvie) )

d
T T+ 0/ (Bullvlo)?) <'dtﬂox<tv>

By assumption (5.2), recalling inequality (2.3), we have

+ \ﬂox(tV)O :

1

— [0 t
- fiox (tv)

w | dt
Combmmg previous bounds and recalling that I} (v) = {j € [d] : |v;| > by}, we obtain that

2
dt:/x2\uox7v(x)\2dx§/ \x]zfox(x)dszz(MOX)<oo
R d

[Ma(pox)]'? + liox (W)l _ 21,
Bi(v) £ vy
R T o 2 alvo?) ]J}M
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e Bound on Bs(v)
Set

(G.2) Gon(Y) = / eV KP vy dt, wER,
R
we have
1
B = 5_ — n\dz,v Y .
O I
We now control Ef [sup,cgi-1 |Grn(gav(Y))[]- Let Go(z) := {gzv(Y) : v € ST} We use

Lemma 19.36 of [61], p. 288. Since ||v||o > 1/d forall v € S, we have |g, (Y)| < 2d/b,,.
We now bound Egy [g2 v(Y)?]. We have

2d
Eoy [gzv(Y)?] < | ® | Kb, ( — )| fov (y) dy
n JR jET; ()

2d T*(v 2d
< ol IK[PH N < ZNK 1 sup (| fovulloo =: 82.
bn bn VESd71
For |vi — va| < 7b2e, with 7 € (0, 1), we have
9o (V) — goan (V)] < 782 / VI o, dt < 7]V,

Using that Egy [[Y|?] < oo, a §,-bracket covering of G,, is obtained by an (e7b? )-covering of
S%=1 choosing 7 accordingly. Hence

logn
by,

On
TG G(), L2 (Poy)) < / Viog(1/bn) +log(1/6); de < +/log néy <
0

which in turns implies that

1 n R,+/logn
Te [ B | s (Gl (V| o FEEER,
\/’ﬁ || <R veSd—1 len

We now study f\x\>R |G (g (Y))|dz. Consider the event Q, = {|Y;| < R, /2, i € [n]}.
Then, | — v -Y;| > |z|/2 when |z| > R, and, for all k£ > 1,

. 1 dk
u(Y5) = —Zt(w—V'Yi)K®d ) dt = / —t(z—v-Y;) K®d ) dt
g (Yi) /Re b, (V) i v Y L€ Sk w)

so that, since K is k-times continuously differentiable and each derivative is equal to O on
the boundary of its support,

T,V Yz <
1920 (Y3)| S bl

Also on €,
Gn(92n(Y)) = Gnlgan (V) Lvi<ial/2) — VB0 (920 (V)L (1v (> [2(/2)]

and, for |z| > R,,, with the abuse of notation ¢y := (ca A 1),

n —|z n —ca|z
By (1900 Lavis o] < L Pox (X] > [a]/4) + e1o1/4) < YT menlelfa

~ b, by,
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Therefore on €2,,,

n o _

sup / |G (gan(Y))|dz S sup / G (g2 (Y)Lyi<r, 2)| do + b£€ 2R /4
veSi—t Jiz|>R, veSi—t J|z|>R, n

Using the above construction of a covering of G,,(x) with the upper bounds, for |z| > R,

1 1
1925 (Y) Ly i<r, 2lloo S ol and  [|gzv(Y)Lv|<r, 2ll2 S L

we obtain
2/(ba || —
ToCfon, Gule) (o)) 5 /0 Viog(1/b,) +log(1/e)1 de S ﬁ
so that
Viogn
Egy | sup |Gp(gzv(Y)1 ] 7
/|m|>R 0y [Vggd1’ (92w (V) Lv|<r, /2)] S T

which implies that

1 V1
= EELY |:]lQn sup ’Gn(g:c,v(Y))‘:| dx § i:—l + @€_C2R"/4.
\/ﬁ |z|>R., vesd—1 \/ﬁban by,
We also bound
1
— El |:]ch sup |G, (ng(Y))]] dz
\/’ﬁ |z|>Rn oY veSd—1

/ e MY KR (ty) dt

dgg] |

<2Egy |lg: sup
vesSi—1 Jz|>R,

By symmetry of K, thatis, K(z) = K(—x

)
/e_ltbnvjxk(t) dt = (bn‘lv]’)

,if vj # 0, we have

K(x/(bnlvj]) =: Kb, v,(2).

Therefore,

/ e—zt(m—v-Y)KIid(tv) dt‘ =| ® Kbnvj (.Z' —v- Y) <
R

JEJ;(v)

® |Kpo(x—v-Y).
JEJ;(v)

We thus obtain
1

7o [ E Lo s 16|
x| >y

vesa—1
< 2E3, [1196 Sgp | @ Ko, } <2PRA(Q8) || K |4
e d—1

Since P, (Q¢) < e f/4 4 Pyx (IX| > |z|/4) < e~¢fin/4 (assuming without loss of gener-
ality that ¢, < 1), by choosing R,, = Rglogn, with Ry large enough, we get that
Moo 3/2
sup Ba(v) < Rnvlogn 2V —c.p,a < (087)°" ”

vesi-1 v/nby, by, ~  /nb,
This concludes the proof. O
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