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2Dipartimento di Scienze Economiche, Università di Verona, Verona, Italy bcatia.scricciolo@univr.it

We study the multivariate deconvolution problem of recovering the dis-

tribution of a signal from independent and identically distributed observations

additively contaminated with random errors (noise) from a known distribu-

tion. We investigate whether a Bayesian nonparametric approach for mod-

elling the latent distribution of the signal can yield inferences with frequen-

tist asymptotic validity under the L1-Wasserstein metric. For errors with in-

dependent coordinates having ordinary smooth densities, we recast the mul-

tidimensional problem as a one-dimensional problem leveraging the strong

equivalence between the 1-Wasserstein and the max-sliced 1-Wasserstein

metrics and derive an inversion inequality relating the L1-Wasserstein dis-

tance between two distributions of the signal to the L1-distance between the

corresponding mixture densities of the observations. This smoothing inequal-

ity outperforms existing inversion inequalities and, at least in dimension one,

leads to minimax-optimal rates of contraction for the posterior measure on

the distribution of the signal, lower bounds for 1-Wasserstein deconvolution

in any dimension d≥ 1, possibly with Sobolev regular mixing densities, be-

ing derived here. As an application of the inversion inequality to the Bayesian

framework, we consider 1-Wasserstein deconvolution with Laplace noise in

dimension one using a Dirichlet process mixture of normal densities as a prior

measure on the mixing distribution (or distribution of the signal). We con-

struct an adaptive approximation of the sampling density by convolving the

Laplace density with a well-chosen mixture of normal densities and show that

the posterior measure concentrates around the sampling density at a nearly

minimax rate, up to a log-factor, in the L1-distance. The same posterior law

is also shown to automatically adapt to the unknown Sobolev regularity of

the mixing density, thus leading to a new Bayesian adaptive estimation proce-

dure for mixing distributions with regular densities under the L1-Wasserstein

metric. We illustrate utility of the inversion inequality also in a frequentist

setting by showing that an appropriate isotone approximation of the classical

kernel deconvolution estimator attains the minimax rate of convergence for

1-Wasserstein deconvolution in any dimension d≥ 1, when only a tail condi-

tion is required on the latent mixing density.

1. Introduction. Multivariate deconvolution problems occur when we observe random

vectors Yi = (Yi,1, . . . , Yi,d)
t in Rd, for d≥ 1, that are contaminated signals Xi with additive

random errors εi as in the model

(1.1) Yi = Xi + εi,

where the sequences (Xi)i∈N and (εi)i∈N are independent, the random vectors Xi =
(Xi,1, . . . , Xi,d)

t are independent and identically distributed (i.i.d.) according to an unknown

probability measure µ0X and the random vectors εi = (εi,1, . . . , εi,d)
t are i.i.d. according to
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a product probability measure ⊗d
j=1µε,j , with µε,j the distribution of the jth coordinate εi,j ,

for errors with independent components. The distribution of the observations Yi in Rd is then

the convolution (⊗d
j=1µε,j) ∗ µ0X . The interest is in recovering the distribution µ0X of Xi,

when the error distribution is supposed to be known. This situation is very common in many

real-life problems in econometrics, biometrics, medical statistics, image reconstruction and

signal deblurring, operations management, online matching markets, queueing, networks,

data privacy protection under local differential privacy as popularized by Dwork, see, e.g.,

[27], etc.

In this paper, we consider nonparametric estimation of µ0X with respect to the L1-

Wasserstein metric. Estimation of µ0X is an extensively studied problem. There exists a

vast literature on frequentist estimation of the density f0X of µ0X , with ground-breaking

papers of the early 90’s using density estimators based on Fourier inversion techniques, see

[13, 31, 23], penalized contrast estimators as in [17] or kernel [22] and projection [49] esti-

mators for adaptive density estimation. Minimax rates have been studied in [11, 10, 7]. All

these papers, however, consider the one-dimensional case and pointwise or L2, L1-metrics

as loss functions for f0X . Multivariate adaptive kernel density deconvolution taking into ac-

count possible anisotropy for both the signal and noise densities has been studied in [15],

where minimax rates under the L2-loss for f0X are derived that are a natural extension of

those in the univariate case.

Some results have been recently obtained on convergence rates for estimating µ0X under

Lp-Wasserstein metrics, for p ≥ 1, see [12, 21, 20] and [34]. For probability measures µ, ν
on Rd having finite pth moments, the Lp-Wasserstein distance Wp(µ, ν) is defined as

Wp(µ, ν) := inf
γ∈Γ(µ, ν)

(∫

Rd×Rd

|x− y|p γ(dx, dy)
)1/p

,

where |x− y| is the Euclidean distance between x, y ∈ Rd and Γ(µ, ν) denotes the set of all

couplings or transport plans having marginal distributions µ and ν .

Wasserstein metrics have lately become popular in statistics and machine learning because

of their suitability to problems with unusual geometry, as in manifold learning, see, for in-

stance, [25] and the references therein, or in deconvolution models [12]. In particular, an

important aspect of Wasserstein metrics is that they are much more sensitive to differences

in the supports of µ and ν compared to metrics like the Hellinger or the total variation. As an

extreme case, for instance, when d = 1, while the total variation distance between δ(0) and

δ(ǫ), where δ(x) is the Dirac mass at x, is equal to 1 even when ǫ is small, Lp-Wasserstein

distances converge to 0 when |ǫ| goes to 0. More discussion on the use of Wasserstein metrics

in the analysis of convergence of latent mixing measures in mixture models can be found in

[47].

In this paper, we consider the L1-Wasserstein metric, the weakest of all Lp-Wasserstein

metrics since W1 ≤ Wp for every p ≥ 1. Another important feature of the 1-Wasserstein

metric is the Kantorovich-Rubenstein dual formulation, see, e.g., [63],

(1.2) W1(µ, ν) = sup
f∈Lip1(R

d)

∫

Rd

f(x)(µ− ν)(dx),

where Lip1(R
d) is the set of all 1-Lipschitz functions from Rd to R, which allows to con-

trol smooth linear functionals of µ0X . Furthermore, being equal to the L1-distance between

cumulative distribution functions, the L1-Wasserstein metric is useful to study quantile esti-

mation, see, for instance, [18].

State-of-the-art results on Wasserstein convergence rates for univariate deconvolution

models are given in [20], where a minimum distance estimator of µ0X is constructed that
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attains optimal convergence rates under W1, when the error distribution is known and ordi-

nary smooth of order β ≥ 1
2 . In the multivariate case, minimax estimation under Wasserstein

metrics has only been studied in the case where the distribution of the errors is supersmooth,

see [21]. Convergence rates in the multivariate deconvolution model have been obtained by

[12] under the L2-Wasserstein loss, but they lead to rather slow convergence rates. Until now,

the question of minimax rates under Lp-Wasserstein metrics in the multivariate deconvolu-

tion problem with ordinary smooth noise remains open. In this paper, we partially fill this

gap by providing lower bounds (see Theorem 5.1) and proposing a kernel type deconvolu-

tion estimator which achieves the optimal rates, up to a log-factor, for any d ≥ 1 under the

1-Wasserstein distance, see Section 5.

While frequentist deconvolution estimators have been extensively studied, little is known

about the theoretical properties of Bayesian nonparametric procedures, whose analysis is

quite involved because, differently from kernel methods where the estimators are explicit,

the posterior distribution of µX is not explicit. A way to assess how accurately the posterior

distribution recovers µ0X is to study posterior contraction rates, i.e., to determine a sequence

ǫn = o(1) such that, given a sample Y(n) := (Y1, . . . , Yn) of n i.i.d. random vectors Yi ∈Rd

from the convolution model in (1.1),

Π(µX : d(µX , µ0X)> ǫn | Y(n)) = oP(1),

where µ0X is the true mixing distribution, Π(· | Y(n)) is the posterior distribution and d(·, ·)
is some semi-metric on probability measures. In their seminal papers [36, 37], the authors

propose an elegant strategy to study posterior concentration rates which has been successful

for a wide range of models and prior distributions under certain metrics or loss functions

and, although more adapted to losses for direct problems in the form d(fY , f0Y ), it has been

applied also to inverse problems by [48, 50]. This approach, however, does not seem to eas-

ily lead to sharp upper bounds on posterior convergence rates for µX in deconvolution. An

alternative approach is to obtain posterior convergence rates for the direct problem, i.e., for

‖fY − f0Y ‖1, and then combine them with an inversion inequality that translates an upper

bound on ‖fY − f0Y ‖1 into an upper bound on W1(µX , µ0X). Using such an inversion in-

equality, posterior contraction rates in Lp-Wasserstein metrics, for p≥ 1, have been derived

by [34] in the univariate case with the Laplace noise, when µ0X has bounded support. This

result has been extended to the case of unbounded support by [58], but the rates obtained in

both papers are sub-optimal. Similarly, an inversion inequality is proposed by [47] in general

mixture models, which is used to obtain L2-Wasserstein posterior convergence rates for the

mixing distribution. However, in the deconvolution model with ordinary smooth error den-

sities, the obtained rates are suboptimal. Therefore, the construction of Bayesian minimax-

optimal procedures for estimating µ0X under Wasserstein metrics in a multivariate setting

remains an open issue, with the sharpest results obtained in [34, 58]. Recently, [60] studied

density deconvolution under W2, subject to heteroscedastic errors as well as symmetry about

zero and shape constraints, in particular, unimodality. They proved posterior consistency for

Dirichlet location-mixture of gamma densities, but did not study convergence rates.

In this paper, we propose a novel inversion inequality between W1(µX , µ
′
X) and the cor-

responding L1-distance ‖fY − f ′Y ‖1, which holds for any ordinary smooth noise distribution

and any dimension d≥ 1. This inversion inequality is sharper than any of the existing ones,

i.e., [34, 58, 47], and is more general then those of [34, 58], since the latter only exist when

d = 1. We then use this inversion inequality in two approaches to the deconvolution prob-

lem: the nonparametric Bayesian framework and the frequentist setting with a kernel type

estimator. In the Bayesian setting, we first derive a simple, but general theorem on poste-

rior concentration rates with respect to the L1-Wasserstein distance on µX . We then apply

it to the special case of univariate deconvolution models with a Laplace noise in Section 4,



4

for which we obtain the minimax rate n−1/5, up to a (logn)-term, thus improving the rate

n−1/8 obtained by [34, 58]. Furthermore, we prove that the same prior leads to posterior

rate adaptation to Sobolev or Hölder regularity of the mixing density f0X . We also use the

inversion inequality of Theorem 3.1 to study a kernel type deconvolution estimator, similar

to the estimator of [15], for multivariate deconvolution. We show that this estimator achieves

the minimax rate, up to a log-factor, for all d≥ 1, since the bound that we obtain match with

the lower bound of Theorem 5.1. For the sake of simplicity, we consider the Laplace noise

example, but the proof extends to other ordinary smooth distributions.

Another nontrivial contribution of the paper is the study of posterior rates of convergence

for mixture densities f0Y in the Laplace deconvolution model. Posterior rates of conver-

gence for f0Y have been widely studied in the literature on Bayesian nonparametric mixture

models mostly for Gaussian mixtures, see, e.g., [40, 57]. When the noise follows a Laplace

distribution, [34, 58] have obtained the rate n−3/8, up to a (logn)-factor, in the Hellinger or

L1-distance using a Dirichlet process mixture of normals prior on µX . As noted by [34], this

corresponds to the minimax estimation rate for densities belonging to Sobolev balls of order
3
2 , where, in this case, µ0Y belongs to any Sobolev class of order smaller than 3

2 . Under the

assumption that µ0X has Lebesgue density f0X , in Theorem 4.2 we prove that this rate can

be improved to n−2/5. We also study the case where f0X is Sobolev α-regular and obtain

an adaptive rate of convergence for f0Y of the order O(n−(α+2)/(2α+5)), up to a logarithmic

factor, see Theorem 4.4. We believe that the theory developed in Section 4.4 to approximate

f0Y = fε ∗ f0X by fε ∗ fX , where fX is modelled as a mixture of Gaussian densities, is also

of interest in itself.

The main contributions of the paper can be thus summarized:

• we derive a novel inversion inequality relating the L1-Wasserstein distance between the

distributions of the signal to the L1-distance between the corresponding mixture densities

of the observations in a d-dimensional deconvolution problem, for known error distribu-

tions having independent coordinates with ordinary smooth densities (Theorem 3.1). This

inequality leads to the minimax-optimal rate n−1/(2βd+1) when β ≥ 1. Besides improving

upon the rates existing in the literature, cf. [12, 47, 34, 58], the inversion inequality sheds

light on the impact of the dimension d on the minimax rate, see the discussion after Theo-

rem 3.1;

• we establish a general theorem on posterior contraction rates for latent mixing distributions

with respect to the L1-Wasserstein metric under model (1.1) (Theorem 4.1). The theorem

gives sufficient conditions that connect to those existing in the literature for deriving pos-

terior convergence rates in the direct problem, see [36, 37], which have been checked to

hold for many prior distributions;

• we construct a new adaptive approximation of the sampling density f0Y by convolving

the Laplace density with a well-chosen mixture of normal densities when d= 1 (Lemma

4.1) and show that the posterior distribution automatically adapts to the Sobolev regularity

of the mixing density f0X , thus leading to a new Bayesian adaptive estimation procedure

for mixing distributions with Sobolev regular densities under the L1-Wasserstein metric

(Theorem 4.5);

• we validate our approach by establishing lower bounds on the rates of convergence with

respect to the L1-Wasserstein metric for multivariate deconvolution with independent, or-

dinary smooth error coordinates (Theorem 5.1). These lower bounds match with the up-

per bounds obtained, in dimension d = 1, using a Dirichlet process mixture-of-Laplace-

normals prior to deconvolve a mixing distribution with Sobolev regular density and, in

any dimension d ≥ 1, using a kernel type deconvolution estimator (Theorem 5.2). We,
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therefore, fill a gap present in the literature because minimax rates for multivariate W1-

deconvolution with ordinary smooth errors having independent coordinates were previ-

ously not known and provide theoretical guarantees, in terms of optimal asymptotic per-

formance, of the proposed Bayesian deconvolution procedures.

The paper is organized as follows. In Section 2, we describe the set-up and introduce

the notation. In Section 3, we present the inversion inequality. In Section 4, we first state a

general theorem on posterior contraction rates for the signal distribution with respect to the

L1-Wasserstein metric and then apply it to the case where the noise has Laplace distribu-

tion and the mixing density is modelled as a Dirichlet process mixture of Gaussian densi-

ties. By constructing a novel approximation of the sampling density, we also prove posterior

rate adaptation to Sobolev regularity of the mixing density under the L1-Wasserstein metric.

In Section 5, we present lower bounds for L1-Wasserstein deconvolution in any dimension

d≥ 1 with ordinary smooth error distribution having independent coordinates and signal den-

sity belonging to a Sobolev class and show that they are attained by a frequentist minimum

distance estimator. Main proofs are deferred to Section 6. Extensions and open problems are

discussed in Section 7. Auxiliary results are reported in the Supplement [53].

2. Set-up and notation. We observe a sample Y(n) = (Y1, . . . , Yn) of n i.i.d. random

vectors Yi of Rd from the multivariate convolution model Yi = Xi + εi in (1.1), where the

random vectors Xi are i.i.d. according to an unknown probability measure µ0X . In case of

errors with independent and identically distributed coordinates, the random vectors εi are

i.i.d. according to the d-fold product probability measure µ⊗dε of the known distribution µε
having Lebesgue density fε, which is assumed to be ordinary smooth of order β > 0, i.e., for

constants d0 > 0, its Fourier transform f̂ε verifies

d0|t|−β| ≤ |f̂ε(t)|
Examples of ordinary smooth densities are the gamma distribution with shape parameter

β > 0 and the Linnik distribution with index β ∈ (0, 2], the Laplace being a special case for

β = 2. The common distribution of the Yi’s is given by µ0Y = µ⊗dε ∗ µ0X .

Let P(Rd) stand for the set of probability measures on (Rd, B(Rd)) and P0(R
d) for

the subset of Lebesgue absolutely continuous distributions on Rd. For p≥ 1, define Pp(Rd)
to be the set of probability measures on Rd having finite pth moments, i.e. if Mp(µ) :=∫

Rd |x|pµ(dx) < ∞. In symbols, Pp(Rd) = {µ ∈ P(Rd) : Mp(µ) < ∞}. For M > 0, let

Pp(Rd, M) = {µ ∈ P(Rd) : Mp(µ) ≤M} be the subset of Pp(Rd) consisting of proba-

bility measures having pth moments uniformly bounded by M . We denote by F the class

of probability measures µY = µ⊗dε ∗ µX , with µX ∈ P(Rd). Since µY is Lebesgue abso-

lutely continuous, we denote by fY = f⊗dε ∗µX its density. For any subset P1 ⊆ P(Rd), let

F (P1) stand for the set of probability measures µY = µ⊗dε ∗ µX , with µX ∈ P1.

We consider a prior distribution Πn on P(Rd) and denote by Πn(· | Y(n)) the correspond-

ing posterior measure

Πn(B | Y(n)) =

∫

B

∏n
i=1 fY (Yi)dΠn(µX)∫ ∏n
j=1 fY (Yj)dΠn(µX)

.

Our aim is to assess the posterior contraction rate for µX in the L1-Wasserstein distance,

namely, to find a sequence ǫn = o(1) such that, if Y(n) is an n-sample from model (1.1) with

true mixing distribution µ0X , then, for a sufficiently large constant M > 0,

Πn(µX : W1(µX , µ0X)≤Mǫn | Y(n))→ 1 in Pn0Y -probability,

where Pn0Y stands for the n-fold product measure of P0Y ≡ µ0Y .
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We hereafter review some useful facts on Wasserstein metrics. It is known that Pp(Rd)
endowed with Wp is a Polish space, i.e., a separable and completely metrizable space, see,

e.g., Theorem 6.18 of [63]. For d= 1, the following explicit expression of Wp holds true:

(2.1) Wp(µ, ν) =

(∫ 1

0
|F−1
µ (s)−F−1

ν (s)|p ds
)1/p

,

where F−1
µ (s) := inf{x ∈ R : µ((−∞, x]) > s} and F−1

ν (s) := inf{x ∈ R : ν((−∞, x])>
s} are the generalized inverse distribution functions associated to µ, ν ∈Pp(R). For p= 1,

(2.2) W1(µ, ν) =

∫ 1

0
|F−1
µ (s)− F−1

ν (s)|ds=
∫

R

|Fµ(x)−Fν(x)|dx= ‖Fµ − Fν‖1.

Since in the Rd-case the closed-form expression in (2.1) of the Lp-Wasserstein distance

in terms of the inverse distribution functions no longer holds, we can exploit the connec-

tion between the Lp-Wasserstein distance and its max-sliced version, which only requires

estimating the Lp-Wasserstein distances of the projected uni-dimensional distributions. Let

Sd−1 := {v ∈ Rd : |v| = 1} ⊂ Rd be the unit sphere. For µ ∈ Pp(Rd) and v ∈ Sd−1, we set

µv := µ ◦ v−1
∗ to be the image measure of µ by v∗, where v∗ : R

d →R is the map defined by

v∗(x) := v · x=∑d
j=1 vjxj . Then, µv ∈ Pp(R) because

(2.3) Mp(µv) =

∫

R

|x|pµv(dx) =
∫

Rd

|v · x|pµ(dx)≤
∫

Rd

|x|pµ(dx) =Mp(µ)<∞.

For µ, ν ∈ Pp(Rd), the max-sliced Wasserstein distance W p(µ, ν) is defined as

W p(µ, ν) := sup
v∈Sd−1

Wp(µv, νv) = max
v∈Sd−1

W1(µv, νv).

Of particular importance for what follows is the strong equivalence betweenW 1 andW1 due

to [3], Theorem 2.1(ii), pp. 4 and 6–7, according to whichW 1 andW1 are strongly equivalent

for all d≥ 1, that is, there exists a constant Cd ≥ 1 such that, for all µ, ν ∈ P1(R
d),

(2.4) W 1(µ, ν)≤W1(µ, ν)≤CdW 1(µ, ν).

We now introduce some notation that will be used throughout the article. For probability

measures P, Q ∈ P0(R
d), with respective densities fP , fQ relative to some reference mea-

sure, let dH(fP , fQ) := ‖√fP −
√
fQ‖2 be the Hellinger distance between fP and fQ, where

‖fP ‖r is theLr-norm of fP , for r≥ 1. Letting Pf stand for the expected value
∫
fdP , where

the integral extends over the entire domain, we define the Kullback-Leibler divergence of Q
from P as KL(P ; Q) := P log(fP /fQ) and, for ǫ > 0, the ǫ-Kullback-Leibler type neigh-

bourhood of P as

BKL(P ; ǫ
2) =

{

Q ∈ P0(R
d) : KL(P ; Q)≤ ǫ2, P

(

log
fP
fQ

)2

≤ ǫ2

}

.

For f ∈ L1(Rd), let f̂(t) :=
∫

Rd e
ıt·xf(x)dx, t ∈ Rd, be its Fourier transform. When d=

1, for α ≥ 0 and f ∈ L1(R) such that
∫

R
|t|α|f̂(t)|dt <∞, we define the αth fractional

derivative of f as Dαf(x) := (2π)−1 ∫

R
e−ıtx(−ıt)αf̂(t)dt, with D0f ≡ f . Let Cb(S) be

the set of bounded, continuous real-valued functions on S ⊆Rd.

For global estimation, we consider Sobolev spaces. For α = (α1, . . . , αd)
t, let the

anisotropic Sobolev space Sd(α, L) be defined as the class of integrable functions f : Rd→
R satisfying

d∑

j=1

∫

Rd

|f̂(t)|2(1 + t2j)
αj dt≤ L2.
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For pointwise estimation, we consider Hölder classes. Let the Hölder class Hd(α, L) be

defined as the class of functions f : Rd → R that admit derivatives with respect to xj up to

the order ⌊αj⌋ and
∣
∣
∣
∣

∂⌊αj⌋f

(∂xj)⌊αj⌋
(x1, . . . , xj−1, x

′
j, xj+1, . . . , xd)−

∂⌊αj⌋f

(∂xj)⌊αj⌋
(x)

∣
∣
∣
∣
≤L|x′j − xj|αj−⌊αj⌋,

where ⌊αj⌋ := max{k ∈ Z : k < αj} is the lower integer part of αj . In the isotropic case,

for α1 = . . . = αd = α, we simply write Sd(α, L) and Hd(α, L). The Sobolev and Hölder

spaces of dimension one are denoted by S(α, L) and H(α, L), respectively.

For ǫ > 0, let D(ǫ, B, d) be the ǫ-packing number of a set B with metric d, that is, the

maximal number of points in B such that the d-distance between every pair is at least ǫ,
where d can be either the Hellinger or the L1-distance.

We denote by φ(x) = (2π)−1/2e−x
2/2, x ∈R, the density of a standard Gaussian random

variable and by φµ,σ(x) = (1/σ)φ((x−µ)/σ), x ∈R, its recentered and rescaled version. We

write a ∨ b=max{a, b}, a ∧ b=min{a, b} and a+ = a ∨ 0. Also, an . bn (resp. an & bn)

means that an ≤ Cbn (resp. an ≥ Cbn) for some C > 0 that is universal or depends only on

P0Y and an ≍ bn means that both an . bn and bn . an hold. Let N0 := {0, 1, 2, . . .}. For

any d ∈N, let [d] := {1, . . . , d}.

3. Inversion inequality between the direct and inverse problems. In this section, we

present an inversion inequality relating the L1-Wasserstein distance W1(µX , µ0X) between

the mixing distributions to the L1-distance ‖fY − f0Y ‖1 between the corresponding mixture

densities. The inequality, which is stated in Section 3.2, is the key tool for proving a general

theorem on L1-Wasserstein contraction rates for the posterior distribution of the mixing mea-

sure based on properties of the prior law and the data generating process. The inequality may

also be of interest in itself.

3.1. Assumptions. In order to obtain L1-Wasserstein posterior contraction rates for the

latent distribution µX , we make assumptions on the single coordinate error distribution µε
and the “true” mixing measure µ0X .

Error assumptions

If |f̂ε(t)| 6= 0, t ∈R, then the reciprocal of f̂ε,

(3.1) rε(t) :=
1

f̂ε(t)
, t ∈R,

is well defined. For an l-times differentiable Fourier transform f̂ε, with l ∈N0, the lth deriva-

tive of rε is denoted by r
(l)
ε , with r

(0)
ε ≡ rε.

ASSUMPTION 3.1. The single coordinate error distribution µε ∈ P0(R) ∩ P1(R) has

Fourier transform |f̂ε(t)| 6= 0, t ∈R. Furthermore, there exists β > 0 such that, for l= 0, 1,

(3.2) |r(l)ε (t)|. (1 + |t|)β−l, t ∈R.

Assumption 3.1 requires that f̂ε is everywhere non-null. This is a standard hypothesis in

density deconvolution problems, related to the identifiability with respect to the L1-metric,

which is a necessary condition for the existence of consistent density estimators of f0X with

respect to the L1-metric, see [46], pp. 23–26. Finiteness of the first moment of ε, that is,

M1(µε)<∞, is a technical condition with a two-fold aim. First, if also M1(µ0X)<∞, then
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it entails that M1(µ0Y ) <∞, thus allowing to define the L1-Wasserstein distance between

µ0Y and µY , provided that µY has finite expectation too. Secondly, it implies that f̂ε is

continuously differentiable on R and the derivative is f̂
(1)
ε (t) =

∫

R
eıtu(ıu)fε(u)du, t ∈ R.

Then, r
(1)
ε exists and is well defined. Differently from [20], in condition (3.2), we do not

assume that rε is at least twice continuously differentiable. Instead, as in [18], we only assume

the existence of the first derivative such that |r(1)ε (t)| . (1 + |t|)β−1, t ∈ R. Note that, for

l = 0, condition (3.2) is equivalent to |f̂ε(t)|& (1 + |t|)−β , t ∈ R. We mention that only the

lower bound on |f̂ε| is required to derive upper bounds on the convergence rates. Assumption

3.1 is satisfied for ordinary smooth error densities covering the following examples.

• The symmetric Linnik distribution with f̂ε(t) = (1 + |t|β)−1, t ∈ R, for index 0< β ≤ 2
and scale parameter equal to 1. The standard Laplace distribution corresponds to β = 2,

see § 4.3 in [43], pp. 249–276.

• The gamma distribution with f̂ε(t) = (1 − ıt)−β , t ∈ R, for shape parameter β > 0 and

scale parameter equal to 1. The standard exponential distribution corresponds to β = 1.

Exponential-type densities have great interest in physical contexts, see, for instance, the

fluorescence model studied in [16], where the measurement error density is fitted as an

exponential-type distribution.

• An error distribution with characteristic function f̂ε that is the reciprocal of a polynomial,

rε(t) =
∑m

j=0 ajt
sj , t ∈ R, with aj ∈ C, for j = 0, . . . , m, and exponents 0 ≤ s0 < s1 <

. . . < sm = β, with β > 0. This extends Example 1 in [4], p. 487, wherein the sj’s are

taken to be non-negative integers sj = j, for j = 0, . . . , β.

• The error distribution in Example 2 of [4], p. 487, with fε(u) = γ[g0(u − µ) + g0(u +
µ)]/2 + (1− γ)g0(u), u ∈ R, for a density g0, constants 0< γ < 1/2 and µ 6= 0, having

f̂ε(t) = [(1− γ) + γ cos(µt)]ĝ0(t), t ∈R, with |ĝ0(t)|& (1 + |t|)−β , for β > 0.

Location and/or scale transformations of random variables with distributions as in the previ-

ous examples, as well as their convolutions, verify condition (3.2). In fact, if we consider the

m-fold self-convolution of fε, then we obtain an ordinary smooth error density with degree

βm, because the corresponding Fourier transform is equal to (f̂ε)
m. Nevertheless, there are

important distributions, such as the uniform, triangular and symmetric gamma, that cannot

be classified neither as ordinary smooth nor as supersmooth. For nonstandard error densities,

see, e.g., [46], pp. 45–46, and the references therein.

In this paper we derive results for any µ0X but also some more precise results for smooth

mixing densities, i.e. under the following assumptions:

Regularity assumptions on the mixing distribution

We consider Sobolev or Hölder regularity for the Lebesgue density f0X of the mixing

distribution µ0X ∈P0(R
d).

ASSUMPTION 3.2. The mixing distribution µ0X ∈ P0(R
d) ∩P1(R

d) is such that there

exists α> 0 for which

(3.3) max
v∈Sd−1

∫

R

|t|α|µ̂0X(tv)|dt <∞ and max
v∈Sd−1

‖Dαf0X,v‖1 <∞,

where Dαf0X,v is the inverse Fourier transform of (−ı·)αµ̂0X(·v).

For d= 1, the conditions in (3.3) reduce to
∫

R
|t|α|µ̂0X(t)|dt <∞ and Dαf0X ∈ L1(R).

In dimension one, we also consider the case where f0X belongs to a Hölder class.
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ASSUMPTION 3.3. The mixing distribution µ0X ∈P0(R)∩P1(R) has density f0X ver-

ifying the following condition: there exist α> 0 and L0 ∈L1(R) such that the derivative f
(ℓ)
0X

of order ℓ= ⌊α⌋ exists and

|f (ℓ)0X(x+ δ)− f
(ℓ)
0X(x)| ≤L0(x)|δ|α−ℓ for every δ, x ∈R.

Thus, when d = 1, when we consider smoothness assumptions of f0X , we assume that

f0X belongs to either a Sobolev or a Hölder class of densities, which are common nonpara-

metric classes of regular functions. With Assumption 3.3, the density f0X is required to be

locally Hölder smooth, namely, it has ℓ derivatives, for ℓ the largest integer strictly smaller

than α, with the ℓth derivative being Hölder of order α− ℓ and integrable envelope L0, the

latter condition being used to bound the L1-norm of the bias of F0X , cf. Lemma A.3. With

Assumption 3.2, instead, f0X is required to have global Sobolev regularity α. Requiring that

Dαf0X ∈ L2(R) is equivalent to imposing that f0X ∈ S(α, L) for some L> 0, the difference

being that Dαf0X is here assumed to be in L1(R).

To prove the inversion inequalities of Theorem 3.1 below we use a kernel whose choice

depends on the type of regularity of f0X . We consider K ∈ L1(R) ∩ L2(R), with zK(z) ∈
L1(R), such that

(a) under Assumption 3.2, K is symmetric with K̂ supported on [−2, 2], while K̂ ≡ 1 on

[−1, 1];

(b) under Assumption 3.3,K is a kernel of order ℓ, see, e.g., [46], pp. 38-39:
∫

R
K(z)dz = 1,

while
∫

R
zjK(z)dz = 0, for j ∈ [ℓ], with K̂ supported on [−1, 1].

In case (a), a key property is that, for A := 1+ ‖K‖1 <∞,

sup
t∈R\{0}

|1− K̂(t)|
|t|α ≤A for all α > 0.

For h > 0, we define Kh(·) := (1/h)K(·/h) as the rescaled kernel and bFX
(h) := FX −

FX ∗Kh as the “bias” of the distribution function FX of a probability measure µX on R.

In general, for d≥ 1, we consider a multivariate kernel on Rd with independent coordinates

defined as

(3.4) K⊗d(x) :=

d∏

j=1

K(xj), x ∈R
d.

For µX ∈ P1(R
d) and v ∈ Sd−1, let bFX,v

(h) := FX,v − FX,v ∗ (K⊗d
h )v be the bias of the

distribution function FX,v associated to µX,v ∈ P1(R).

3.2. Inversion inequality. In this section, we establish, in the d-dimensional case and for

measurement errors with independent coordinates having ordinary smooth densities that are

known, possibly up to a scale parameter, an inversion inequality relating the L1-Wasserstein

distance between the mixing distributions to theL1-norm distance between the corresponding

mixture densities. This inequality plays a crucial role in the proofs of Theorems 4.1 and 5.2.

The proof of Theorem 3.1 is reported in Section 6.1. Starting from [20], the idea is to use

a suitable kernel to smooth the distribution functions FX , F0X corresponding to the mixing

measures µX , µ0X and then to bound the L1-Wasserstein distance between the smoothed

versions, meanwhile controlling the bias induced by the smoothing.
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THEOREM 3.1. Let µX , µ0X ∈ P1(R
d), d ≥ 1, and let the error distribution µ⊗dε have

single coordinate measure µε ∈ P1(R) satisfying Assumption 3.1 for β > 0. Then, for proba-

bility measures µY := µ⊗dε ∗ µX , µ0Y := µ⊗dε ∗ µ0X , having densities fY , f0Y , respectively,

and a sufficiently small h > 0,

W1(µX , µ0X). h+W1(µY , µ0Y ) + T,

with

T = | logh| max
v∈Sd−1

(

| logh|1(β|I∗h(v)|≤1) + h−β|I
∗
h(v)|+1

∏

j∈I∗h(v)

|vj |β1(β|I∗h(v)|>1)

)

×‖fY,v − f0Y,v‖1,
(3.5)

where, for each v ∈ Sd−1, we let I∗h(v) := {j ∈ [d] : |vj |> h}.

If, in addition, µ0X satisfies Assumption 3.2 for α > 0 and there exist a constant C1 > 0
and a kernel K as in (a) such that

(3.6) max
v∈Sd−1

‖bFX,v
(h)‖1 ≤C1h

α+1,

then

W1(µX , µ0X). hα+1 +W1(µY , µ0Y ) + T,

with T as in (3.5).

REMARK 3.1. The terms h and hα+1 in W1(µX , µ0X) . h +W1(µY , µ0Y ) + T and

W1(µX , µ0X). hα+1 +W1(µY , µ0Y ) + T , respectively, stem from bounding

max
v∈Sd−1

bFX,v
(h) + max

v∈Sd−1
bF0X,v

(h).

REMARK 3.2. The key quantity in the inversion inequality is h+ T (or hα+1 + T when

α > 0) because typicallyW1(µY , µ0Y ) can be bounded by a term of the same order as ‖fY −
f0Y ‖1, up to a log-factor, see, e.g., Theorem B.1.

REMARK 3.3. For d = 1, Theorem 3.1 also holds if Assumption 3.3, in place of As-

sumption 3.2, is in force. Then, K is taken to be an (⌊α⌋ + 1)-order kernel satisfying also

the condition
∫

R
|z|α+1|K(z)|dz <∞. For α > 2, the kernel K is not a probability density

because it takes negative values. Nonetheless, if, in addition to Assumption 3.3, µ0X satisfies

condition (3.6), then we still have

W1(µX , µ0X). hα+1 + T, T .W1(µY , µ0Y ) + h−(β−1)+ | logh|1+1(β≤1)‖fY − f0Y ‖1.

REMARK 3.4. Theorem 3.1 can be used to study both Bayesian and frequentist decon-

volution procedures. In Section 4 we consider Bayesian posterior convergence rates while

in Section 5, we analyse an estimator based on the deconvolution kernel density estimator

considered in [15]. Using Theorem 3.1, we show that in both cases, for the Laplace noise

(β = 2), the derived rate is minimax-optimal.

The result of Theorem 3.1 falls within the scope of inversion inequalities, which translate

an Lp-distance, p ≥ 1, between kernel mixtures into a proximity measure between the cor-

responding mixing distributions. A first inequality has been obtained by [47], Theorem 2, p.

377, for ordinary and supersmooth kernel densities in convolution mixtures, see also [42]. In
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dimension one, with ordinary smooth error distributions, refined inversion inequalities from

the Hellinger or L1/L2-distance between fY and f0Y to the L1-Wasserstein distance be-

tween the corresponding mixing measures µX and µ0X have been elaborated by [34, 58], but

neither of these inequalities are sharp to lead to minimax-optimal estimation rates.

To better understand the implications of Theorem 3.1, we first analyse the case d= 1. In

the direct problem, under the bound ‖fY − f0Y ‖1 ≤ ǫ̃n and in the context of Remark 3.2, one

obtains that, for β > 1, choosing h≡ hn = [ǫ̃n(logn)]
1/(α+β),

W1(µX , µ0X). (ǫ̃n logn)
(α+1)/(α+β).

This reasoning has been used in Section 4. As mentioned in Remark 3.2, in the case of

Bayesian estimation and posterior contraction rates, Theorem B.1 states that the Kullback-

Leibler prior mass condition (4.1), together with the assumptions that µ0Y ∈ P0(R
d) ∩

P2+δ(R
d), for some δ > 0, and that the posterior distribution is asymptotically supported

on probability measures with uniformly bounded (2 + δ)th moments, yields a posterior con-

traction rate forW1(µY , µ0Y ) of the orderO(ǫ̃n logn), where ǫ̃n is the posterior convergence

rate of ‖fY − f0Y ‖1. For ǫ̃n = n−(α+β)/[2(α+β)+1](logn)q1 , we get

W1(µX , µ0X). n−(α+1)/[2(α+β)+1](logn)q2

for some q1, q2 > 0. For the sake of simplicity, we neglect logarithmic factors in the following

discussion. The above rate n−(α+β)/[2(α+β)+1] for ‖fY − f0Y ‖1 in the direct density estima-

tion problem is expected to occur when f0X has (Hölder or Sobolev) regularity α > 0, see

also Theorems 4.2 and 4.4 for the special case of a Laplace error. The rate n−(α+1)/[2(α+β)+1]

matches with the lower bound on the L1-Wasserstein risk for estimating µ0X given in The-

orem 5.1, showing that, up to a log-factor, the rate n−(α+1)/[2(α+β)+1] is minimax-optimal.

Theorem 3.1, however, does not satisfactorily cover the case when 0 < β < 1. In this case,

in fact, it yields the rate n−(α+β)/[2(α+β)+1] when f0X is α-regular and the rate n−β/(2β+1)

when µ0X is only known to have a density f0X . Both rates are slower than the respective

lower bounds n−(α+1)/[2α+(2β∨1)+1] and n−1/[(2β∨1)+1] given in Theorem 5.1.

When d > 1, the use of the inversion inequality is less straightforward because, still as-

suming for the sake of simplicity that βd > 1, the term

max
v∈Sd−1

(

1 + h−β|I
∗
h(v)|+1

∏

j∈I∗h(v)

|vj |β
)

‖fY,v − f0Y,v‖1

is more involved, even though it has the correct behaviour to control W1(µX , µ0X). In fact,

it reduces the problem to univariate projections v · Y, v · X and v · ε, with a penalty in

terms of h that takes into account the correct regularity of the resulting noise v · ε, namely,

β|I∗h(v)|. Following the above discussion and pretending that, for each v, the kernel type de-

convolution estimator µ̃1n defined in Section 5.2 only depends on the (v · Yi)’s, for i ∈ [n],
the distance ‖fµ̃Y n,v

− fµ0Y,v
‖1 would be bounded by n−(α+β|I∗h(v)|)/(2α+2β|I∗h(v)|+1). Then,

considering h = n−1/(2α+2βd+1) would yield W1(µ̃1n, µ0X) . n−(α+1)/(2α+2βd+1) , up to

a log-factor. Obviously, µ̃1n depends on the Yi’s and not only on the projected observa-

tions (v · Yi)’s, for i ∈ [n]. Nonetheless, we get a bound on ‖fµ̃Y n,v
− fµ0Y,v

‖1 of the order

O(n−(α+β|I∗h(v)|)/(2α+2βd+1)), which still leads to the minimax rate n−(α+1)/(2α+2βd+1) .

In a Bayesian framework, instead, controlling ‖fY,v − f0Y,v‖1 for all fY in the bulk of the

posterior distribution is challenging and is left for future work.
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3.3. Error distribution with unknown scale parameter. The inversion inequality pre-

sented in Theorem 3.1 goes through to the convolution model where the coordinate error

distribution is known up to a common scale parameter. Consider observations

(3.7) Yi = Xi+ τ0εi, i ∈ [n],

where the Xi’s and εi’s are as described in Section 1. There are two unknown elements in this

model that need to be recovered: the common law µ0X of the Xi’s and the scale parameter

τ0 > 0 of the coordinate error density fε,τ0 = (1/τ0)fε(·/τ0).

PROPOSITION 3.1. Consider model (3.7) with the single coordinate error density satis-

fying the following condition: there exists a constant c > 0 such that

(3.8) ∀ τ, τ0 > 0, ‖fε,τ − fε,τ0‖1 ≤ c
|τ − τ0|
ττ0

.

Under the assumptions of the first part of Theorem 3.1, we have that

W1(µX , µ0X). h+W1(µY,τ , µ0Y,τ0) + |τ − τ0|+ T,(3.9)

where T is given by the expression in (3.5) with ‖fY,v − f0Y,v‖1 replaced by

|τ − τ0|
ττ0

+ ‖fY,τ,v − f0Y,τ0,v‖1.

PROOF. By Theorem 3.1, we have that

W1(µX , µ0X). h+W1(µY,τ0 , µ0Y,τ0) + Tτ0 ,

where Tτ0 is given by the expression in (3.5) with ‖fY,v − f0Y,v‖1 replaced by ‖fY,τ0,v −
f0Y,τ0,v‖1. Let Y = X + τε be distributed according to µY,τ and Y = X + τ0ε according

to µY,τ0 . By the triangle inequality and the bound W1(µY,τ , µY,τ0) ≤ E[|(X + τε) − (X +
τ0ε)|] =M1(µ

⊗d
ε )|τ − τ0|. |τ − τ0|, we have that

W1(µY,τ0 , µ0Y,τ0).W1(µY,τ , µ0Y,τ0) + |τ − τ0|.
Besides, from ‖fY,τ,v − fY,τ0,v‖1 ≤ ‖fY,τ − fY,τ0‖1 ≤ ‖f⊗dε,τ − f⊗dε,τ0‖1 ≤ d‖fε,τ − fε,τ0‖1 and

condition (3.8), it follows that

‖fY,τ0,v − f0Y,τ0,v‖1 ≤ ‖fY,τ0,v − fY,τ,v‖1 + ‖fY,τ,v − f0Y,τ0,v‖1

≤ dc
|τ − τ0|
ττ0

+ ‖fY,τ,v − f0Y,τ0,v‖1,

which completes the proof.

REMARK 3.5. Condition (3.8) is verified for the ordinary smooth error distributions

listed in Section 3.1. Specifically, for Laplace densities see, e.g., (A.6) with p= 1 in Lemma

A.2 of [56], p. 300; for Linnik densities the result follows from the fact that they are scale

mixtures of Laplace, while for gamma densities it can be directly checked when |τ − τ0|< 1.

REMARK 3.6. Whether the inversion inequality with the term T bounded as in (3.9) can

be used to recover the mixing distribution in a convolution model with single coordinate error

density known up to a scale parameter is a critical question related to the identifiability as a

sufficient condition for the existence of consistent estimators. In the present context, it is not

clear whether the distribution of the Yi’s uniquely determines the scale parameter τ0 and

the distribution µ0X . In fact, as remarked by [9], p. 312, it is important that the distribution
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to be deconvolved be significantly less smooth than the error distribution, which is not the

case when both the error and mixing distributions are ordinary smooth. We should mention

that, at least for d = 2, identifiability has been proved by [35], see Theorem 2.1, p. 306. It

remains, however, an open question whether fast rates of convergence are possible. Typically,

in presence of identifiability problems, either more restrictive conditions are imposed on the

mixing distribution or additional data are required. If the scale parameter is estimable without

loss in the speed of convergence, then the inversion inequality can be used to estimate the

mixing distribution. Yet, a thorough investigation of this issue is beyond the scope of this

paper and we refer the reader to Chapter 2 of [46], pp. 5–105, as well as to the references

therein, for a more complete discussion of the various aspects of the problem.

4. Application to Bayesian estimation: posterior rates of convergence for L1-

Wasserstein deconvolution. In this section, we first provide a general theorem on posterior

rates of convergence forW1(µX , µ0X) and then apply it to the univariate deconvolution prob-

lem using a Dirichlet process mixture-of-normals prior on the mixing density fX .

4.1. Posterior rates of convergence for deconvolution on Rd. We state a general theorem

on posterior contraction rates. The proof is reported in Section 6.

THEOREM 4.1. Let Πn be a prior distribution on P(Rd), d ≥ 1. Suppose that, for

δ > 0, we have µ0X ∈ P4+δ(R
d) and the error distribution is µ⊗dε , with single coordi-

nate distribution µε ∈ P4+δ(R) satisfying Assumption 3.1 for some β > 0. Furthermore, for

a sequence ǫ̃n ≥
√

(logn)/n such that ǫ̃n → 0, constants c1, c2, c3, c4, K
′ > 0 and sets

Pn ⊆ {µX : M4+δ(µY )≤K ′ǫ̃−2
n },

logD(ǫ̃n, F (Pn), d)≤ c1nǫ̃
2
n,

Πn(P
c
n)≤ c3 exp (−(c2 + 4)nǫ̃2n),

Πn(BKL(P0Y ; ǫ̃
2
n))≥ c4 exp (−c2nǫ̃2n).

(4.1)

Then, for ǫn := [ǫ̃n(logn)
1+1(βd≤1) ]1/(βd∨1) and sufficiently large constant C̄ > 0,

Πn(µX : W1(µX , µ0X)> C̄ǫn | Y(n))→ 0 in Pn0Y -probability.

If, in addition, µ0X satisfies Assumption 3.2 for α > 0 and there exist a constant C1 > 0
and a kernel K as in (a) such that, for every µX ∈ Pn,

max
v∈Sd−1

‖bFX,v
(hn)‖1 ≤C1h

α+1
n , with hn = [ǫ̃n(logn)

1+1(βd≤1) ]1/[α+(βd∨1)],

then, for ǫn,α := [ǫ̃n(logn)
1+1(βd≤1) ](α+1)/[α+(βd∨1)] and Cα > 0 large enough,

Πn(µX : W1(µX , µ0X)>Cαǫn,α | Y(n))→ 0 in Pn0Y -probability.

Theorem 4.1 provides sufficient conditions on the prior distribution and the data gen-

erating process so that the corresponding posterior measure asymptotically concentrates

on L1-Wasserstein balls centered at µ0X . As a consequence, the posterior mean µ̂Bn :=
∫
µX dΠn(µX | Y(n)) converges to µ0X in the L1-Wasserstein distance at least as fast as

ǫn or ǫn,α.

COROLLARY 4.1. Under the assumptions of Theorem 4.1, the posterior mean µ̂Bn con-

verges to µ0X in the L1-Wasserstein distance at rate ǫn, namely, there exists M ′ > 0 such

that, with Pn0Y -probability tending to 1,

W1(µ̂
B
n , µ0X)≤M ′ǫn,

or ǫn,α under the assumptions of the second part of Theorem 4.1.
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Corollary 4.1 can be proved using standard arguments, see, e.g., Theorem 8.8 of [39], p.

196.

Some remarks and comments on two main issues, (i) the relationship between the rates

for the direct and the inverse problems, (ii) rate optimality, are in order. As for issue (i),

Theorem 4.1 connects to existing results that give sufficient conditions for assessing posterior

convergence rates in the direct density estimation problem. In fact, the conditions in (4.1)

imply that, for a sufficiently largeM> 0,

E
n
0Y [Πn(µX : ‖fY − f0Y ‖1 >Mǫ̃n | Y(n))]→ 0,

see [36], Theorem 2.1, p. 503, which states that the posterior concentration rate on L1-

neighbourhoods of f0Y is ǫ̃n. Alternative conditions for assessing posterior contraction rates

in Lr-metrics, 1≤ r ≤∞, are given in [41], see Theorems 2 and 3, pp. 2891–2892. As for

issue (ii), a remarkable feature of Theorem 4.1 is the fact that, to obtain L1-Wasserstein pos-

terior convergence rates for µX , which is a mildly ill-posed inverse problem, it is enough

to derive posterior contraction rates relative to the L1-metric in the direct density estimation

problem, which is more gestible. In fact, granted Assumption 3.2, the essential conditions to

verify are those listed in (4.1), which are sufficient for the posterior distribution to contract

at rate ǫ̃n around f0Y . This simplification is due to the inversion inequality of Theorem 3.1,

which holds true under Assumption 3.1 only, when no smoothness condition is imposed on

µ0X , and jointly with condition (3.6), when the smoothness Assumption 3.2 on µ0X is in

force. Application of Theorem 4.1 to specific models gives further insight into this aspect. In

Section 4.2, for the case d= 1, we consider a Dirichlet process mixture-of-Laplace-normals

prior and find the rate n−1/5(logn)κ when the latent distribution µ0X is only known to have a

density f0X , and the rate n−(α+1)/(2α+5)(logn)κ
′

when the mixing density f0X is α-Sobolev

regular. These rates match with the lower bound given in Theorem 5.1 and are, therefore,

minimax-optimal, up to log-factors. When d ≥ 2 and βd ≥ 1, to assess W1-posterior con-

traction rates for µ0X under no regularity assumptions on f0X , we would need a posterior

contraction rate for the direct density estimation problem (with respect to the L1-norm dis-

tance between fY and f0Y ) of the order n−βd/[(2β+1)d] = n−β/(2β+1). However, the theory

developed in Section 4.2 based on a Dirichlet process mixture-of-Laplace-normals prior does

not immediately extend to the multivariate case.

4.2. Deconvolution on R by a Dirichlet process mixture-of-Laplace-normals prior. In

this section, we study the problem of density deconvolution on the real line for mixtures

with a Laplace error distribution, whose Fourier transform is given by f̂ε(t) = (1 + t2)−1,

t ∈ R. The problem of density deconvolution with a Laplace error distribution arises also

in nonparametric inference under local differential privacy, when a Laplace density is used

in a convolution-based privacy mechanism, see, e.g., [27]. In this case, in fact, the problem

of recovering the common density, say f0X in our notation, of the original data before a

perturbed version with additive errors is released, boils down to a density deconvolution

problem with Laplace noise. Data privacy protection is nowadays a major issue due to the

massive amount of data collected and stored. Local differential privacy, in particular, has

lately attracted a lot of attention as a way to construct data privacy preserving mechanisms,

see, for instance, [24, 29, 28, 27, 26] and the recent articles [51, 8] on nonparametric adaptive

estimation of f0X .

We use a Dirichlet process mixture-of-normals prior on the mixing density fX = φσ ∗µH ,

so that the model density is fY = fε ∗ fX = fε ∗ (φσ ∗ µH), with µH ∼ DH0
, a Dirichlet

process with finite, positive base measure H0 on R, and σ ∼Πσ . We consider the following

assumptions on H0 and Πσ .
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ASSUMPTION 4.1. The base measure H0 has a continuous and positive density h0 on

R such that, for constants b0, b
′
0, c0, c

′
0 > 0 and ι > 0,

c0 exp (−b0|u|ι)≤ h0(u)≤ c′0 exp (−b′0|u|ι), u ∈R.

ASSUMPTION 4.2. The prior distribution Πσ for σ has a continuous density πσ on

(0, ∞) such that, for constants D1, D2 > 0 and s1, s2, t1, t2 ≥ 0,

σ−s1 exp (−D1σ
−1| logσ|t1). πσ(σ). σ−s2 exp (−D2σ

−1| logσ|t2)
for all σ in a neighborhood of 0. Furthermore, for constants D3, ̟ > 0, the tail probability

Πσ((σ̄,∞)). exp (−D3σ̄
̟) as σ̄→∞.

Assumption 4.1 on the base measure H0 of the Dirichlet process is analogous to (4.8) in

[56], p. 288, and holds true, for example, when h0 is the density of an exponential power

distribution with shape parameter ι > 0, which includes the Laplace distribution ( ι= 1), and

the Gaussian distribution ( ι= 2).

The first part of Assumption 4.2 on the scale parameter σ of the Gaussian kernel has

become common in the literature since the articles [62, 19, 44]. Here we consider in addition

the tail condition for large values of σ, which requires Πσ to have an exponentially decaying

tail also at infinity. Examples of densities satisfying these two conditions are inverse Gamma

distribution restricted to (0, σ̄], for 0 < σ̄ <∞. An example of distribution supported on

(0, ∞) that verifies Assumption 4.2 is given in [56], p. 291, where πσ is proportional to

an inverse-gamma IG(1, ζ) on (0, 1] and to a Weibull W (ζ, ν) on (1,∞), where ζ > 0 is

the scale parameter and ν > 0 the shape parameter. Then, s1 = s2 = ζ + 1, t1 = t2 = 0 and

̟ = ν . The assumption on the upper tail of Πσ is used to guarantee that condition (B.4)

is satisfied, which, in virtue of Theorem B.1, allows to control W1(µY , µ0Y ) in terms of

‖fY − f0Y ‖1.

We also consider the following assumption on the tails of the mixing distribution:

ASSUMPTION 4.3. The mixing distribution µ0X ∈ P0(R) has density f0X(x) .
e−(1+C0)|x|, x ∈R, with some constant C0 > 0.

First we study the case in which mixing distribution satisfies only Assumption 4.3 and

then the case where it also has a density Sobolev regularity α. In the latter case, the prior

distribution on the mixing density does not depend on α, yet it yields an adaptive posterior

contraction rate. We refer to these two cases as non-adaptive and adaptive, respectively, and

treat them separately.

4.3. Non-adaptive case. Let Π be the prior distribution induced on F by the product

measure DH0
⊗ Πσ on the parameter (µH , σ) of the density fY = fε ∗ (φσ ∗ µH), for a

standard Laplace error density fε. Let also the sampling density f0Y = fε ∗ f0X be a Laplace

mixture, with mixing density f0X satisfying the following exponential tail decay condition.

We begin by assessing posterior contraction rates in the L1-metric for Laplace convolution

mixtures with mixing distributions having exponentially decaying tails.

THEOREM 4.2. Let Y1, . . . , Yn be i.i.d. observations from f0Y := fε ∗ f0X , where fε
is the density of the standard Laplace distribution and f0X satisfies Assumption 4.3. Let Π
be the prior distribution induced by DH0

⊗ Πσ , where H0 verifies Assumption 4.1 and Πσ
verifies Assumption 4.2. Then, the conditions in (4.1) are satisfied for ǫ̃n = n−2/5(logn)ϕ,

with some ϕ> 0, and there exists D large enough so that

Π(µY : ‖fY − f0Y ‖1 >Dǫ̃n | Y (n))→ 0 in Pn0Y -probability.
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PROOF. We argue that the conditions in (4.1) are satisfied for ǫ̃n as in the statement.

The small ball prior probability estimate in the third inequality of (4.1) is verified taking into

account Remark B.2 and Lemma C.3, which is based on the construction of an approximation

of f0Y by fε ∗ (φσ ∗ µH), for a carefully chosen probability measure µH . This construction

adapts the proof of Lemma 2 of [34], pp. 615–616, to obtain an approximation error of

the order O(ǫ̃n), as shown in Lemma C.2. The entropy and remaining mass conditions, the

first two inequalities in (4.1), are consequences of Theorem 5 of [59], p. 631, because, for

any pair of densities f1 and f2, we have ‖fε ∗ (f1 − f2)‖1 ≤ ‖f1 − f2‖1. Finally, since

µX has density φσ ∗ µH so that X = σZ + U , with Z ∼ N(0, 1) and U ∼ µH , we have

M1(µX)≤ σE[|Z|] +M1(µH)<∞, that is, µX ∈ P1(R) almost surely, because DH0
(µH :

M1(µH) =∞) = 0. The assertion follows.

A rate of the order O(n−2/5), up to a logarithmic factor, is achieved for estimating mix-

tures of Laplace densities if a kernel mixture prior on the mixing density is constructed using

a Gaussian kernel, with an inverse-gamma type bandwidth σ and a Dirichlet process prior

on µH . The result is new in Bayesian density estimation and is a preliminary step for the

following L1-Wasserstein deconvolution result.

THEOREM 4.3. Let Y1, . . . , Yn be i.i.d. observations from f0Y := fε ∗ f0X , where fε is

the density of the standard Laplace distribution and f0X satisfies Assumption 4.3. Let Π be

the prior distribution induced by DH0
⊗Πσ , where H0 verifies Assumption 4.1 for ι > 1 and

Πσ verifies Assumption 4.2 with ̟> 1. Then, there exist K large enough and κ > 0 so that

Π(µX : W1(µX , µ0X)>Kn−1/5(logn)κ | Y (n))→ 0 in Pn0Y -probability.

PROOF. We apply Theorem 4.1. For any δ > 0, with the Laplace distribution we have

µε ∈ P4+δ(R). By Assumption 4.3, also µ0X ∈ P4+δ(R). We know from Theorem 4.2 that

the conditions in (4.1) hold for ǫ̃n = n−2/5(logn)ϕ. It remains to show that, for a suitable

c > 0,

(4.2) Π(µX : M4+δ(µX)>K ′′ǫ̃−2
n ). exp (−cnǫ̃2n).

Recalling that µX has density φσ ∗µH so that X = σZ+U , with Z ∼N(0, 1) and U ∼ µH ,

we have M4+δ(µX). σ4+δE[|Z|4+δ] +M4+δ(µH). Therefore, for M1 > 0,

M4+δ(µX). σ4+δ +M4+δ(µH). σ4+δ +M1ǫ̃
−2
n +M4+δ(1(|U |4+δ>M1ǫ̃

−2
n )µH).

Assumption 4.2 on the upper tail of Πσ implies that, for a suitable c1 > 0,

Πσ(σ : σ > (M1ǫ̃
−2
n )1/(4+δ))≤ exp (−D3(M1ǫ̃

−2
n )̟/(4+δ)). exp (−c1nǫ̃2n)

provided that 0< δ ≤ 4(̟− 1), where ̟> 1 by hypothesis. Besides, for a suitable c2 > 0,

DH0
(µH : M4+δ(1(|U |4+δ>M1ǫ̃

−2
n )µH)>M1ǫ̃

−2
n ).

∫

|u|4+δ>M1ǫ̃
−2
n

|u|4+δh0(u)du

. exp (−b′0(M1ǫ̃
−2
n )−ι/(4+δ)/2)

. exp (−c2nǫ̃2n)
provided that 0< δ ≤ 4(ι− 1), where ι > 1 by hypothesis. Hence, choosing δ small enough

so that both the above requirements are satisfied, condition (4.2) holds true and the proof is

complete.
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We now exhibit another example of convolution model for which a statement in the same

spirit as that of Theorem 4.3 can be obtained. Let the random variable Z have monotone non-

increasing density fZ on (0,∞). Following [64], it is known that fZ is a scale mixture of

uniform densities, fZ(z) =
∫∞
0 [1[0, v](z)/v] dF (v), so that Y = logZ =X − ε, where ε ∼

Exp(1) is independent ofX . Under suitable conditions, the posterior convergence rate at f0Y
relative to the Hellinger or L1-distance is n−1/3, up to a logarithmic factor, see, e.g., Theorem

2 in [55], pp. 1384–1385. Then, the posterior distribution of µX concentrates around µ0X at

rate n−1/3, up to a log-factor, in a metric similar to the L1-Wasserstein. In fact, writing

fZ(z) =
∫∞
0 [1[z,∞)(v)/v] dF (v) and f0Z(z) =

∫∞
0 [1[z,∞)(v)/v] dF0(v), we have

Π(F : W̃ (F, F0)>Mn−1/3(logn)ν | Z(n))]→ 0 in Pn0Z -probability,

where W̃ (F, F0) :=
∫∞
0 [|F (v) − F0(v)|/v] dv. We believe that this rate is optimal, up to a

log-factor, since F (v) = 1− fZ(v)/fZ(0), see [2], p. 2538.

4.4. Sobolev-regularity adaptive case. In this section, we focus on the case where the

sampling density f0Y is a mixture of Laplace densities with a Sobolev regular mixing density.

We still consider the prior distribution Π induced on F by the product measure DH0
⊗Πσ

for the parameter (µH , σ) of fY = fε ∗ (φσ ∗ µH), with a standard Laplace error density

fε. Let the corresponding posterior distribution Π(· | Y (n)) be based on i.i.d. observations

Y1, . . . , Yn from f0Y = fε ∗ f0X , which is a Laplace mixture with mixing density f0X satis-

fying the following conditions.

ASSUMPTION 4.4. There exists α> 0 such that

∀ b=∓1

2
,

∫

R

|t|2α| ̂(eb·f0X)(t)|2 dt <∞.

ASSUMPTION 4.5. For given α > 0, there exist 0 < υ ≤ 1, L0 ∈ L1(R) and R ≥
(2m/υ), with the smallest integer m≥ [2∨ (α+2)/2], such that f0X satisfies

(4.3) |f0X(x+ ζ)− f0X(x)| ≤ L0(x)|ζ|υ for every x, ζ ∈R,

and

(4.4)

∫

R

e|x|/2f0X(x)

(
L0

f0X
(x)

)R

dx <∞.

Assumption 4.4 requires that, for b = ∓1
2 , the function eb·f0X is α-Sobolev regular, while

Assumption 4.5 requires that f0X is locally υ-Hölder smooth, with envelope function L0 sat-

isfying the integrability condition (4.4). The model fY = fε ∗ (φσ ∗ µH) acts as an approxi-

mation scheme for automatic posterior rate adaptation to the global regularity of f0Y , without

any knowledge of the regularity of f0X being used in the prior specification. We show that a

rate-adaptive estimation procedure for Laplace mixtures can be obtained if the prior distribu-

tion is properly constructed, for instance, as a mixture of Laplace-normal convolutions, with

an inverse-gamma type bandwidth and a Dirichlet process on the mixing distribution.

THEOREM 4.4. Let Y1, . . . , Yn be i.i.d. observations from f0Y := fε ∗ f0X , where fε
is the density of the standard Laplace distribution and f0X satisfies Assumptions 4.3–

4.5. Let Π be the prior distribution induced by DH0
⊗ Πσ , where H0 verifies Assump-

tion 4.1 and Πσ verifies Assumption 4.2. Then, the conditions in (4.1) are satisfied for

ǫ̃n = n−(α+2)/(2α+5)(logn)ϕ
′

, with some ϕ′ > 0, and there exists D′ large enough so that

Π(µY : ‖fY − f0Y ‖1 >D′ǫ̃n | Y (n))→ 0 in Pn0Y -probability.
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PROOF. The entropy and remaining mass conditions, as well as the small ball prior prob-

ability estimate in (4.1), are satisfied for ǫ̃n as in the statement. For details of the entropy and

remaining mass conditions, see, e.g., Theorem 5 of [59], p. 631, while for the small ball prior

probability estimate apply Lemma D.2, together with a modified version of Lemma C.3, with

β replaced by (α+2).

Theorem 4.4 is based on the approximation Lemmas 4.1 and D.2. The approximation of

f0Y by fε ∗ (φσ ∗ µH) used in the non-adaptive case of Theorem 4.2 is remarkably simpler

than the approximation used in Lemma 4.1 for the adaptive case. The latter is also different

from the construction in [44]. As in the non-adaptive case, L1-Wasserstein posterior conver-

gence rates for µX are derived from Theorem 4.4 by controlling the prior probability of the

event in (4.2) and the L1-norm of the bias in (3.6).

THEOREM 4.5. Granted the assumptions of Theorem 4.4 on f0Y and considered the

same prior with ι > 1 and ̟> 1, there exist M ′ large enough and κ′ > 0 so that

Π(µX : W1(µX , µ0X)>M ′n−(α+1)/(2α+5)(logn)κ
′ | Y (n))→ 0 in Pn0Y -probability.

PROOF. Applying Theorem 4.4, we get ǫ̃n = n−(α+2)/(2α+5)(logn)ϕ
′

for some ϕ′ >
0. Then, reasoning as in the proof of Theorem 4.3, it can be shown that, for some

c, δ, K ′′ > 0, condition (4.2) is satisfied. By Lemma D.1, for 0 < h
√

(2α+1)| logh| ≤
σ < 1, we have ‖bFX

(h)‖1 . hα+1. For q > 0, replace h with hn = [ǫ̃n(logn)
q]1/(α+2) =

n−1/(2α+5)(logn)(q+ϕ
′)/(α+2). From the proof of Theorem 4.4, over the sieve set Pn,

we have σ ≥ σn ≡ n−1/(2α+5)(logn)q
′

, for some q′ > 0. We can choose q′ so that σn ≥
hn| loghn|α+1/2. Then, for every µX ∈ Pn, we have ‖bFX

(hn)‖1 . hα+1
n as prescribed by

condition (3.6) and the proof is complete.

4.4.1. Approximation result. When assessing posterior rates of convergence for kernel

mixture priors, a crucial step consists in finding a suitable approximation of the true density

within the model. Lemma 4.1, stated below, constructs an approximation of a Laplace mixture

density f0Y = fε ∗ f0X , with an α-Sobolev regular mixing density f0X , by a Laplace-normal

convolution fε ∗ (φσ ∗ µH) so that the “bias”, the L2-distance between the true density and

the approximation, is of the correct order O(σα+2) in terms of the kernel bandwidth σ. Even

if the approximation is a crucial technical device within the Bayesian framework, the result

is independent of the inferential paradigm adopted and is of interest in itself.

For h > 0, let

H(x) :=
1

2π
(τ ∗ φh)
∧

(x) =
1

2π
τ̂(x)φh
∧

(x) =
1

2π
τ̂(x)e−(hx)2/2, x ∈R,

where |τ̂(x)| ≤ (162/15)e−
√

|x|/15, x ∈R, is the Fourier transform of τ : R→ [0, 1] defined

in Theorem 25 of [6], p. 29, such that

τ(u) =

{
1, if |u|< 1,
0, if |u|> 17/15.

The function τ is such that τ̂ is infinitely differentiable and

(4.5) for any i ∈N0, |τ̂ (i)(x)|=O(|x|−ν) for large |x| and every ν > 0.

Given m ∈N, b=∓1
2 , δ, σ > 0 and a function f : R→R, we define the operator

f 7→ Tm,b,σf := f +

m−1∑

k=1

(−σ2/2)k
k!

2k∑

j=0

(
2k

j

)

(−b)2k−j [f ∗ (e−b·DjHδ)],



WASSERSTEIN CONVERGENCE IN DECONVOLUTION MODELS 19

where Hδ(·) := (1/δ)H(·/δ). Since δ will be chosen proportional to σ, the operator does not

ultimately depend on δ. If M0X(b) :=
∫

R
ebxf0X(x)dx <∞, introduced the density

(4.6) h̄0,b :=
eb·f0X
M0X(b)

and the constant γ :=−(1− e−σ
2/8), let the function hm,b,σ : R→R be defined as

(4.7) hm,b,σ :=
1

γ

m−1∑

k=1

(−σ2/2)k
k!

2k∑

j=0

(
2k

j

)

(−b)2k−j(h̄0,b ∗DjHδ).

Then,

(4.8)
eb·

M0X(b)
Tm,b,σf0X = h̄0,b + γhm,b,σ .

The following lemma provides the order of the approximation error, in terms of the Gaus-

sian bandwidth σ, of the L2-norm distance between the Laplace mixture density f0Y =
fε ∗ f0X and the normal-Laplace mixture of the transformation Tm,b,σf0X of f0X .

LEMMA 4.1. Let fε be the standard Laplace density. Let f0X be a density such that

(e|·|/2f0X) ∈ L1(R) and satisfies Assumption 4.4 for α > 0. Then, for m≥ [2 ∨ (α+ 2)/2]
and σ > 0 small enough,

(4.9)
∑

b=∓1/2

‖eb·{fε ∗ [φσ ∗ (Tm,b,σf0X)− f0X ]}‖22 . σ2(α+2)

and

(4.10) ∀ b=∓1

2
,

∫

R

hm,b,σ(x)dx= 1+O(σ2(m−1)).

The proof of Lemma 4.1 is reported in Section 6.3. We note that the result also holds when

only (e|·|/2f0X) ∈ L1(R) ∩ L2(R). This case can be regarded as corresponding to α= 0 so

that m ≥ 2. The approximation error in (4.9) is then of the order O(σ4). However, in this

case, we can directly prove the existence of a compactly supported discrete mixing prob-

ability measure µH , with a sufficiently small number of support points, such that the cor-

responding Laplace-normal mixture fε ∗ (φσ ∗ µH) has squared Hellinger distance of the

order O(σ4) from f0Y , see Lemma C.2. When α > 0, to obtain the correct order of approx-

imation O(σ2(α+2)) of the squared L2-bias for a Sobolev regularity (α+ 2) of the density

f0Y = fε ∗ f0X , we construct a modification of f0Y , to be convolved with the Gaussian ker-

nel φσ , such that, for a global level of regularity strictly larger than 2, the new function

φσ ∗ (f0Y − fε ∗ f1), with a suitable f1, outperforms the natural candidate φσ ∗ f0Y for the

approximation. However, the new function is not a probability density and needs to be mod-

ified. The resulting high quality approximation allows to use the correct bandwidth, which is

selected by the prior distribution for the scale parameter from the appropriate range. Thus, the

posterior contracts at the minimax-optimal rate (up to a logarithmic factor) near f0Y , without

actually knowing the regularity of f0Y and without using that knowledge in the definition of

the prior on the bandwidth, yet automatically adapting to the given regularity level. Even if

the idea of constructing a correct approximation for a given level of regularity by subtracting

appropriate terms from f0Y has previously appeared in [52, 44, 59], there are two main differ-

ences with the approximation results of these articles: first, we consider global regularity on

a Sobolev scale, whereas all the above articles deal with local smoothness on a Hölder scale;

second, our approximation is more involved as it employs a double smoothing by the Gaus-

sian kernel φσ and by another super-smooth kernel Hδ proportional to the Fourier transform

of a normal density to control the error for low frequencies.
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5. W1-lower bound rates for deconvolution in any dimension and application of the

inversion inequality to a frequentist estimator. In this section, we provide lower bounds

on the L1-Wasserstein deconvolution convergence rates in any dimension d ≥ 1. These

bounds are attained by the Bayes’ estimator for d = 1 and, as shown in Section 5.2, by a

frequentist minimum distance estimator for every d≥ 1.

5.1. Lower bounds. To get a validation of our results, we derive lower bound rates for

the L1-Wasserstein risk extending Theorem 4.1 in [20], pp. 246–248, to a multivariate setting

with Sobolev regular mixing densities.

THEOREM 5.1. Assume that there exists β > 0 such that, for every l= 0, 1, 2,

(5.1) |f̂ (l)ε (t)| ≤ dl(1 + |t|)−(β+l), t ∈R,

with dl > 0. For any d≥ 1, given α, L, M > 0, let Dd := P1(R
d, M)∩ Sd(α, L) and

ψn := n(α+1)/[2α+(2βd∨1)+1].

Then, there exists C > 0 such that, for any estimator µ̂n,

lim
n→∞

ψn sup
µ∈Dd

E
n
(µ∗µ⊗d

ε )
W1(µ̂n, µ)>C.

The proof of Theorem 5.1 is reported in Appendix F. Note that, for d= 1, D1 = P1(R, M)
and 0< β < 1

2 , the lower bound rate n−1/2 of Theorem 5.1 improves upon the lower bound

n−1/(2β+1) of Theorem 4.1 in [20], p. 246. The sharper lower bound n−1/2 matches with

the upper bound for the minimum distance deconvolution estimator proposed by [20], see

Theorem 3.1, p. 243, thus showing that, for all β > 0, it attains minimax-optimal rates, up to

log-factors.

Mixing distribution µ0X Dimension d= 1 Any dimension d≥ 1

µ0X ∈ P1(R
d, M) n−1/(2β+1) [Dedecker et al. (2015)]

n
−1/[(2β∨1)+1]

n
−1/[(2βd∨1)+1]

µ0X ∈ P1(R
d, M)∩ Sd(α, L) n

−(α+1)/[2α+(2β∨1)+1]
n
−(α+1)/[2α+(2βd∨1)+1]

TABLE 1

In bold our lower bound rates on the L1-Wasserstein risk for error distributions µ⊗dε with ordinary β-smooth

single coordinate distribution and Sobolev α-regular mixing densities.

When d = 1, as a consequence of Corollary 4.1 and Theorems 4.3, 4.5, the Bayes’ esti-

mator, namely the posterior expected mixing distribution, attains minimax rates, up to log-

factors, under the Laplace noise. Then a natural question is whether the lower bound rates

of Theorem 5.1 can also be attained when d > 1. For d ≥ 1, [12] consider a modification

of the standard deconvolution kernel estimator and find slower rates than n−1/[(2βd∨1)+1]

with respect to the L2-Wasserstein distance. In Section 5.2, using the inversion inequal-

ity of Theorem 3.1, we show that a frequentist estimator of µ0X attains the lower bound

n−1/(2βd+1) = n−1/(4d+1), when β > 1.
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5.2. Frequentist deconvolution estimator. In this section, we consider a frequentist esti-

mator of µ0X and, using the inversion inequality of Theorem 3.1, we show that it achieves

the minimax rate, up to a log-factor. For the sake of simplicity, we restrict to the case of α= 0
and a standard Laplace noise distribution, but the proof extends to any α > 0 and ordinary

smooth noise distribution.

Let bn = n−1/(2βd+1) and define f̃n as the inverse Fourier transform of K̂⊗d
bn
φnr

⊗d
ε , where

φn(t) := Pn(e
ıt·Y) is the empirical characteristic function and the kernel K = τ̂ is defined in

Section 4.4.1. In symbols,

f̃n(x) :=
1

(2π)d

∫

Rd

e−ıt·xK̂⊗d
bn

(t)φn(t)r
⊗d
ε (t)dt, x∈R

d.

Since f̃n is not necessarily non-negative and Fµ̃n
is not necessarily a distribution function,

we define µ̃1n to be the probability measure such that the corresponding distribution function

Fµ̃1n
is, up to a term of order O(n−1/2), the closest one to Fµ̃n

in the max-sliced L1-distance,

that is, for every µ ∈P1(R
d),

sup
v∈Sd−1

‖Fµ̃n,v
− Fµ̃1n,v

‖1 ≤ sup
v∈Sd−1

‖Fµ̃n,v
−Fµv

‖1 +O(n−1/2).

The idea of defining the estimator as an approximate minimizer over all distribution functions

of the L1-metric is considered in [20] for d = 1. Here, instead, we choose the estimator as

an approximate minimizer over all distribution functions of the max-sliced L1-distance. We

then have the following result whose proof is reported in Appendix G.

THEOREM 5.2. Let fε be the standard Laplace density. Assume that f0X has exponential

tails, that is, there exists a constant c2 > 0 such that

(5.2) f0X(x). e−c2|x|, for |x| large enough.

Then, for suitable q > 0,

W1(µ̃1n, µ0X) =OP(n
−1/(4d+1)(logn)q).

From the proof of Theorem 5.2, we see that the result extends straightforwardly to any

noise distribution which satisfies Assumption 3.2 and such that

fε(ε). e−c2|ε|,

leading to a convergence rate of order OP(n
−1/(βd+1)(logn)q) as soon as β > 1/d.

6. Proofs. We preliminarily recall an auxiliary result. For every j ∈ N, let f̂ (j) denote

the jth derivative of the Fourier transform f̂ of a function f : R→C. If f̂ (j) ∈L1(R), then

(6.1) for z 6= 0, f(z) =
1

2π(ız)j

∫

R

e−ıtz f̂ (j)(t)dt.

6.1. Proof of Theorem 3.1. Because µX , µ0X ∈ P1(R
d) by assumption, we have

W1(µX , µ0X) <∞, see, e.g., [63], p. 94. For d ≥ 1, the assumption µε ∈ P1(R) implies

that µ⊗dε ∈ P1(R
d) so that also µY , µ0Y ∈ P1(R

d) and W1(µY , µ0Y )<∞. From the strong

equivalence, recalled in (2.4), between the Wasserstein metricW1 and the max-sliced Wasser-

stein metric W 1, valid in any dimension d≥ 1, we have that, for a constant Cd ≥ 1,

1

Cd
W1(µX , µ0X)≤W 1(µX , µ0X) = max

v∈Sd−1
W1(µX,v, µ0X,v).
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We now bound W1(µX,v, µ0X,v). We first treat the case where only the condition µ0X ∈
P1(R

d) is required and then the case where the smoothness Assumption 3.2 holds.

• Case 1: no smoothness assumption on µ0X

We consider a multivariate kernel with independent coordinates as in (3.4). This assumption

is not necessary, but simplifies the proof. The univariate kernel can be taken to be a symmetric

probability density K ∈L2(R)∩Pd∧2(R). For h > 0, let Kh denote the rescaled kernel den-

sity and, with abuse of notation, let K⊗d
h denote the corresponding d-fold product probability

measure. For brevity, in what follows we also use the notation Kh,v := (K⊗d
h )v to denote the

distribution of v · Z when Z∼K⊗d
h . By the triangle inequality for Wasserstein metrics,

W1(µX,v, µ0X,v)≤W1(µX,v, µX,v ∗Kh,v) +W1(µX,v ∗Kh,v, µ0X,v ∗Kh,v)

+W1(µ0X,v ∗Kh,v, µ0X,v).(6.2)

Also, v · (X + Z) = (v · X + v · Z) ∼ µX,v ∗Kh,v and W1(µX,v, µX,v ∗Kh,v) ≤ E[|v · Z|].
For d = 1, we have E[|Z|] = h

∫

R
|z|K(z)dz < ∞, while, for d ≥ 2, we have E[|v ·

Z|] ≤ (E[|Z|2])1/2 = h(
∫

Rd |z|2K(z)dz)1/2 < ∞ as soon as
∫

R
z2K(z)dz < ∞. Thus,

W1(µX,v, µX,v ∗Kh,v) . h uniformly in v. Analogously, letting X0 be distributed accord-

ing to µ0X and independent of Z, we have W1(µ0X,v, µ0X,v ∗Kh,v) . h. Also, W1(µX,v ∗
Kh,v, µ0X,v ∗Kh,v)≤ E[|X−X0|]≤M1(µX)+M1(µ0X)<∞ because µX , µ0X ∈ P1(R

d).
Thus,

(6.3) W1(µX,v, µ0X,v). h+W1(µX,v ∗Kh,v, µ0X,v ∗Kh,v).

We derive an upper bound on W1(µX,v ∗Kh,v, µ0X,v ∗Kh,v).

Control of the term W1(µX,v ∗Kh,v, µ0X,v ∗Kh,v)

Taking into account that

(6.4) µ̂v(t) =

∫

R

eıtxµv(dx) =

∫

Rd

eıtv·xµ(dx) = µ̂(tv), t ∈R,

and using the representation of W1, when d = 1, as the L1-distance between distribution

functions, for all µ, ν ∈ P1(R
d) we have

W1(µv, νv) = ‖Fµv
−Fνv‖1 =

1

2π

∫

R

∣
∣
∣
∣

∫

R

e−ıtx
µ̂v(t)− ν̂v(t)

(−ıt) dt

∣
∣
∣
∣
dx

=
1

2π

∫

R

∣
∣
∣
∣

∫

R

e−ıtx
µ̂(tv)− ν̂(tv)

(−ıt) dt

∣
∣
∣
∣
dx.(6.5)

We introduce some more notation. Let χ : R → R be a symmetric, continuously differen-

tiable function, equal to 1 on [−1, 1] and to 0 outside [−2, 2]. For example, one such func-

tion could be χ(t) = e exp{−1/[1− (|t| − 1)2]}, |t| ∈ (1, 2). For the construction of smooth

bump functions, see, e.g., [33]. Define

w1,h(t) := K̂(ht)χ(t)rε(t) and w2,h(t) := K̂(ht)[1− χ(t)]rε(t), t ∈R.

Note that K ∈ L1(R) implies that K̂ is well-defined and ‖K̂‖∞ := supt∈R |K̂(t)| ≤ ‖K‖1 <
∞. We consider a kernel with K̂ supported on [−1, 1]. Since K̂ is continuous and bounded

on a compact, we have K̂ ∈ L1(R) andK(·) = (2π)−1
∫

R
e−ıt·K̂(t)dt. If h < 1

2 , the function

w1,h is equal to 0 outside [−2, 2], whilew2,h is equal to 0 on [−1, 1] and outside [−1/h, 1/h].
Thus,wj,h ∈L1(R), for j ∈ [2]. In fact, by the inequality (3.2) with l= 0, we have ‖w1,h‖1 .
∫

|t|≤2 |K̂(ht)||χ(t)|(1 + |t|)β dt <∞ because the integrand is in Cb([−2, 2]). Analogously,
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‖w2,h‖1 .
∫

1<|t|≤1/h |K̂(ht)||1−χ(t)|(1+ |t|)β dt <∞. Then, the inverse Fourier transform

of wj,h,

z 7→Kj,h(z) :=
1

2π

∫

R

e−ıtzwj,h(t)dt

is well defined for j ∈ [2]. For v ∈ Sd−1, let J∗
d (v) := {j ∈ [d] : vj 6= 0} be the set of indices

corresponding to non-null coordinates of v. We denote by |J∗
d (v)| the cardinality of J∗

d (v).
Clearly, J∗

d (v) 6= ∅ because |v|= 1. For later use, we note that

Kh,v

∧

(t) = (K⊗d
h )
∧

v
(t) = (K⊗d

h )
∧

(tv) =

d∏

j=1

K̂(vjht) = K̂⊗d(htv), t ∈R.

By the inequality on the right-hand side of (2.4), we have W1(µX ∗K⊗d
h , µ0X ∗K⊗d

h ) ≤
CdW 1(µX ∗K⊗d

h , µ0X ∗K⊗d
h ), where, using the expression of W1(µv, νv) in (6.5), we have

W1(µX,v ∗Kh,v, µ0X,v ∗Kh,v)

=
1

2π

∫

R

∣
∣
∣
∣

∫

R

e−ıtx(K⊗d
h )
∧

(tv)
µ̂X(tv)− µ̂0X(tv)

(−ıt) dt

∣
∣
∣
∣
dx

=
1

2π

∫

R

∣
∣
∣
∣

∫

R

e−ıtxK̂⊗d(htv)r⊗dε (tv)
µ̂Y (tv)− µ̂0Y (tv)

(−ıt) dt

∣
∣
∣
∣
dx

≤ 1

2π

∫

R

∣
∣
∣
∣

∫

R

e−ıtxK̂⊗d(htv)r⊗dε (tv)χ⊗d(tv)
µ̂Y (tv)− µ̂0Y (tv)

(−ıt) dt

∣
∣
∣
∣
dx

+
1

2π

∫

R

∣
∣
∣
∣

∫

R

e−ıtxK̂⊗d(htv)r⊗dε (tv)[1− χ⊗d(tv)]
µ̂Y (tv)− µ̂0Y (tv)

(−ıt) dt

∣
∣
∣
∣
dx

=: T1 + T2,

for

K̂⊗d(htv)r⊗dε (tv)χ⊗d(tv) =

d∏

j=1

K̂(vjht)rε(vjt)χ(vjt) =

d∏

j=1

w1,h(vjt) =
∏

j∈J∗
d (v)

w1,h(vjt)

becausew1,h(vjt) = 1 if vj = 0. Noting that the inverse Fourier transform of
∏

j∈J∗
d (v)

w1,h(vjt)

is ⊛j∈J∗
d (v)

[(1/vj)K1,h(·/vj)], we have

2πT1 ≤
∫

R

∣
∣
∣
∣

∫

R

e−ıtxK̂⊗d(htv)r⊗dε (tv)χ⊗d(tv)dt

∣
∣
∣
∣
dx×

∫

R

∣
∣
∣
∣

∫

R

e−ıtx
µ̂Y (tv)− µ̂0Y (tv)

(−ıt) dt

∣
∣
∣
∣
dx

= 2πW1(µY,v, µ0Y,v)

∫

R

∣
∣
∣
∣

∫

R

e−ıtx
∏

j∈J∗
d (v)

w1,h(vjt)dt

∣
∣
∣
∣
dx

= (2π)2W1(µY,v, µ0Y,v)

∫

R

∣
∣
∣
∣

(

⊛
j∈J∗

d (v)

[
1

vj
K1,h(·/vj)

])

(x)

∣
∣
∣
∣
dx

≤ (2π)2W1(µY,v, µ0Y,v)
∏

j∈J∗
d (v)

∥
∥
∥
∥

1

vj
K1,h(·/vj)

∥
∥
∥
∥
1

= (2π)2W1(µY,v, µ0Y,v)‖K1,h‖|J
∗
d (v)|

1 ,
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where ‖K1,h‖1 = O(1) by Lemma A.1 and maxv∈Sd−1 ‖K1,h‖|J
∗
d (v)|

1 =maxj∈[d] ‖K1,h‖j1 <
∞. Thus, T1 .W1(µY,v, µ0Y,v). Concerning the term T2, set the position

w2,h,v(t) := K̂⊗d(htv)r⊗dε (tv)[1−χ⊗d(tv)] =

[

1−
d∏

j=1

χ(vjt)

] d∏

k=1

K̂(vkht)rε(vkt), t ∈R,

by Lemma A.2, recalling that I∗h(v) = {j ∈ [d] : |vj|>h}, we have

2πT2 ≤
∫

R

∣
∣
∣
∣

∫

R

e−ıtx
w2,h,v(t)

(−ıt) dt

∣
∣
∣
∣
dx×

∫

R

∣
∣
∣
∣

∫

R

e−ıtx[µ̂Y,v(t)− µ̂0Y,v(t)] dt

∣
∣
∣
∣
dx

. | logh|



| logh|1(β|I∗h(v)|≤1) + h−β|I
∗
h(v)|+1

∏

j∈I∗h(v)

|vj |β1(β|I∗h(v)|>1)



‖fY,v − f0Y,v‖1,

where fY,v and f0Y,v are the densities of the measures µY,v and µ0Y,v, respectively. Note also

that, for every v ∈ Sd−1,

1

2
‖fY,v − f0Y,v‖1 = sup

A∈B(R)
|µY,v(A)− µ0Y,v(A)|

≤ sup
B∈B(Rd)

|PY (Y ∈B)−P0Y (Y ∈B)|= 1

2
‖fY − f0Y ‖1.

It follows that maxv∈Sd−1 ‖fY,v − f0Y,v‖1 ≤ ‖fY − f0Y ‖1 and

T2 . | logh|



| logh|1(β|I∗h(v)|≤1) + h−β|I
∗
h(v)|+1

∏

j∈I∗h(v)

|vj |β1(β|I∗h(v)|>1)



‖fY − f0Y ‖1.

Combining the bounds on T1 and T2, we obtain the bound on T reported in (3.5), which,

together with (6.3), proves the inversion inequality.

• Case 2: smoothness Assumption 3.2 on µ0X is in force

If Assumption 3.2 holds true, then K ∈ L1(R) ∩ L2(R) is taken to be a superkernel with

zK(z) ∈ L1(R) and
∫

R
z2|K(z)|dz <∞ when d≥ 2. Since K̂ ≡ 1 on [−1, 1], while K̂ ≡

0 on [−2, 2]c, by taking K̂(·/2) the support reduces to [−1, 1]. Note that, as K need not

be a probability density, the triangular inequality for the Wasserstein metric in (6.2) does

not necessarily hold. Nevertheless, by the inequality on the right-hand side of (2.4) and the

representation ofW1, when d= 1, as the L1-distance between distribution functions, we have

1

Cd
W1(µX , µ0X)≤W 1(µX , µ0X) = max

v∈Sd−1
W1(µX,v, µ0X,v) = max

v∈Sd−1
‖FX,v − F0X,v‖1.

Then, by the triangular inequality for the L1-norm distance,

1

Cd
W1(µX , µ0X)≤ max

v∈Sd−1
‖FX,v − F0X,v‖1

≤ max
v∈Sd−1

‖FX,v − (FX ∗K⊗d
h̃

)v‖1 + max
v∈Sd−1

‖((FX − F0X) ∗K⊗d
h̃

)v‖1

+ max
v∈Sd−1

‖(F0X ∗K⊗d
h̃

)v − F0X,v‖1

=:D1 +D2 +D3,
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where h̃ := h/2. Note that, for v ∈ Sd−1, we have (FX ∗K⊗d
h̃

)v = FX,v ∗ (K⊗d
h̃

)v so that

bFX,v
(h̃) := FX,v − FX,v ∗ (K⊗d

h̃
)v = FX,v − (FX ∗K⊗d

h̃
)v.

Therefore, by condition (3.6), we have D1 =maxv∈Sd−1 ‖bFX,v
(h̃)‖1 = O(hα+1). The term

D2 can be bounded using the same arguments as for W1(µX ∗K⊗d
h , µ0X ∗K⊗d

h ) in Case 1,

therefore

D2 .W1(µY , µ0Y )

+ | logh|



| logh|1(β|I∗h(v)|≤1) + h−β|I
∗
h(v)|+1

∏

j∈I∗h(v)

|vj |β1(β|I∗h(v)|>1)



‖fY − f0Y ‖1.

By the same arguments laid down for D1, the term D3 =maxv∈Sd−1 ‖bF0X,v
(h̃)‖1. We show

that

(6.6) D3 =O(hα+1).

We make two preliminary remarks. First, for v ∈ Sd−1, by (6.4), we have µ̂v(t) = µ̂(tv),
t ∈R. Then, Assumption 3.2 implies that

(6.7) max
v∈Sd−1

‖Dαf0X,v
∧

‖1 = max
v∈Sd−1

∫

R

|t|α|µ̂0X,v(t)|dt= max
v∈Sd−1

∫

R

|t|α|µ̂0X(tv)|dt <∞.

Second, note that |1 − K̂⊗d(h̃tv)| 6= 0 for all those t ∈ R for which there exists at least an

index j ∈ J∗
d (v) so that |vjh̃t|> 1. We define the set

D := {t ∈R : ∃ j ∈ J∗
d (v) so that |vjh̃t|> 1}.

The domain D depends on h and v, i.e., D ≡ Dh,v, but we shall not emphasize this depen-

dence in what follows and simply write D . Note that D ⊆ {t ∈R : |t|> (h̃‖v‖∞)−1}, where

‖v‖∞ := maxj∈[d] |vj | ≤ 1. By the same arguments used for the function G2,h in [20], pp.

251–252, we have

‖bF0X,v
(h̃)‖1 =

∫

R

∣
∣
∣
∣

1

2π

∫

D

e−ıtx
[1− K̂⊗d(h̃tv)]

(−ıt) µ̂0X,v(t)dt

∣
∣
∣
∣
dx

because t 7→ [1−K̂⊗d(h̃tv)][µ̂0X,v(t)/t] is in L1(R) due to (6.7). To prove relationship (6.6),

we write

‖bF0X,v
(h̃)‖1 =

∫

R

∣
∣
∣
∣

1

2π

∫

D

e−ıtx (−ıt)αµ̂0X,v(t)
︸ ︷︷ ︸

Dαf0X,v
∧

(t)

[1− K̂⊗d(h̃tv)]

(−ıt)α+1
dt

∣
∣
∣
∣
dx

≤ ‖Dαf0X,v‖1 ×
(∫

|x|≤h
︸ ︷︷ ︸

=:B1,v

+

∫

|x|>h
︸ ︷︷ ︸

=:B2,v

)∣
∣
∣
∣

1

2π

∫

D

e−ıtx
[1− K̂⊗d(h̃tv)]

(−ıt)α+1
dt

∣
∣
∣
∣
dx,

where ‖Dαf0X,v‖1 <∞ by Assumption 3.2. Now,

B1,v . h

∫

D

[1 + |K̂⊗d(h̃tv)|]
|t|α+1

dt. h

∫

|t|>(h̃‖v‖∞)−1

[1 + |K̂⊗d(h̃tv)|]
|t|α+1

dt. hα+1

because ‖K̂‖∞ <∞ and the bound is uniform over Sd−1. Thus, maxv∈Sd−1B1,v =O(hα+1).
To bound B2,v, we use identity (6.1). The conditions K ∈ L1(R) and zK(z) ∈ L1(R)
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jointly imply that K̂ is continuously differentiable with |K̂(1)(t)| → 0 as |t| →∞. Indeed,

K̂(1)(·/2) ∈ Cb([−1, 1]). Define f̂v(t) := [1 − K̂⊗d(h̃tv)](−ıt)−(α+1) , t ∈ R. Taking into

account that

d

dt

(
[1− K̂⊗d(h̃tv)]

tα+1

)

=− h̃(K̂
⊗d)(1)(h̃tv)

tα+1
− (α+ 1)

[1− K̂⊗d(h̃tv)]

tα+2

and using the bound in (A.6), we have

‖f̂ (1)v ‖22 =
∫

D

∣
∣
∣
∣

d

dt

(
[1− K̂⊗d(h̃tv)]

tα+1

)∣
∣
∣
∣

2

dt

.

∫

|t|>(h̃‖v‖∞)−1

(

h2
|(K̂⊗d)(1)(h̃tv)|2

|t|2(α+1)
+

|1− K̂⊗d(h̃tv)|2
|t|2(α+2)

)

dt. h2(α+3/2)

and the bound is uniform over Sd−1 so that maxv∈Sd−1 ‖f̂ (1)v ‖2 = O(hα+3/2). For fv(·) :=
(2π)−1

∫

D
e−ıt·f̂v(t)dt, which is well defined because f̂v ∈ L1(R), by identity (6.1) and the

Cauchy–Schwarz inequality, we have that

B2,v :=

∫

|x|>h
|fv(x)|dx=

∫

|x|>h

1

|x|

∣
∣
∣
∣

1

2π

∫

D

e−ıtxf̂
(1)
v (t)dt

∣
∣
∣
∣
dx

.

(∫

R

1

x2
1(|x|>h) dx

)1/2

‖f̂ (1)v ‖2 . h−1/2hα+3/2 . hα+1

uniformly over Sd−1. Thus, maxv∈Sd−1B2,v =O(hα+1). Consequently, D3 =O(hα+1) and

the proof is complete.

6.2. Proof of Theorem 4.1. By the conditions in (4.1), Theorem 2.1 of [36], p. 503, im-

plies that, for sufficiently largeM> 0,

E
n
0Y [Πn(µX : ‖fY − f0Y ‖1 >Mǫ̃n | Y(n))]→ 0.

Since µ0X ∈ P4+δ(R
d) and µε ∈P4+δ(R), we have M4+δ(µ0Y )<∞. Also, since

E
n
0Y [Πn(µX : M4+δ(µY )>K ′ǫ̃−2

n | Y(n))]→ 0,

for M > 0 and Sn := {µX : W1(µY , µ0Y ) ≤Mǫ̃n log(1/ǫ̃n)}, by Theorem B.1 we have

that En0Y [Πn(S
c
n | Y(n))]→ 0.

The case where Assumption 3.2 is in force is treated in details. By the bound in (3.6),

Theorem 3.1 implies that, uniformly over Pn ∩Sn,

W1(µX , µ0X). hα+1
n + ǫ̃n(logn) + h−(βd−1)+

n (logn)1+1(βd≤1)‖fY − f0Y ‖1.
Replacing hn with [ǫ̃n(logn)

1+1(βd≤1) ]1/[α+(βd∨1)] and ‖fY − f0Y ‖1 with ǫ̃n leads to

W1(µX , µ0X). [ǫ̃n(logn)
1+1(βd≤1) ](α+1)/[α+(βd∨1)].

There thus exists Cα > 0 such that

E
n
0Y [Πn(µX : W1(µX , µ0X)>Cαǫn,α | Y(n))]→ 0.

The case where no regularity assumption on µ0X is considered, except for the first moment

condition M1(µ0X) <∞, follows similarly from the inversion inequality of Theorem 3.1,

with hn in place of hα+1
n , choosing hn = [ǫ̃n(logn)

1+1(βd≤1) ]1/(βd∨1) .
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6.3. Proof of Lemma 4.1. We begin by obtaining an equivalent expression for the L2-

norm in (4.9). Denoting by F the Fourier transform operator, for any f ∈ L1(R) we have

F{f} := f̂ . Recall that, given fε(u) = e−|u|/2, u ∈ R, for b= ∓1
2 we have F{eb·fε}(t) =

[1/̺b(t)], where ̺b(t) := [1 − ψ2
b (t)] and ψb(t) := −(ıt+ b), t ∈ R. Note that, as a conse-

quence of the identity in (4.8), we have that

1

M0X(b)
F{eb·(Tm,b,σf0X)}=F{h̄0,b}+ γF{hm,b,σ},

where M0X(b)<∞ by the assumption that (e|·|/2f0X) ∈L1(R). Then,

∆0 :=
∑

b=∓1/2

‖eb·{fε ∗ [φσ ∗ (Tm,b,σf0X)− f0X ]}‖22

=
∑

b=∓1/2

M2
0X(b)‖(eb·fε) ∗ [(eb·φσ) ∗ {[M0X (b)]−1eb·(Tm,b,σf0X)} − h̄0,b]‖22

=
1

2π

∑

b=∓1/2

M2
0X(b)

∥
∥
∥
eσ

2ψ2
b/2

̺b
[(1− e−σ

2ψ2
b/2)F{h̄0,b}+ γF{hm,b,σ}]

∥
∥
∥

2

2
.(6.8)

Some facts are highlighted for later use. For every δ > 0, the function F{H}(δ·) is well

defined because ‖H‖1 = (2π)−1‖τ̂ φh
∧

‖1 <∞. Besides, as 0≤ τ ≤ 1,

(6.9) |F{H}(δt)| = |(τ ∗ φh)(−δt)| ≤ ‖φh(−δt− ·)‖1 = ‖φ−δt,h‖1 = 1, t ∈R.

Let Z be a standard normal random variable. For constants 0 < cδ, ch < 1, take δ := cδσ
and h := ch| logσ|−1/2. Fix u0 such that 0< cδ < u0 < 1. Then, for ω > 0 and ch such that

(1− u0)≥ ch
√
2ω, we have, for every |t| ≤ (u0/δ),

|1−F{H}(δt)| ≤ 2

∫

|u|≥1
φ−δt,h(u)du≤ 2P (|Z| ≥ (1− δ|t|)/h)

≤ 2P (|Z| ≥ (1− u0)| logσ|1/2/ch). σω(6.10)

as soon as σ is small enough. For every j ∈N0, we have F{DjHδ}(t) = (−ıt)jF{H}(δt),
t ∈R. Then,

F{hm,b,σ}(t) =
1

γ
F{h̄0,b}(t)F{H}(δt)

m−1∑

k=1

{−[σψb(t)]
2/2}k

k!
, t ∈R.

Decomposing F{h̄0,b}(t) by means of F{H}(δt) and [1−F{H}(δt)], the numerator of the

integrand of ∆0 in (6.8) can be bounded above by

J 2
b (t) := |eσ2ψ2

b (t)/2|2|(1− e−σ
2ψ2

b (t)/2)F{h̄0,b}(t)F{H}(δt) + γF{hm,b,σ}(t)|2

+ |eσ2ψ2
b (t)/2 − 1|2 |F{h̄0,b}(t)|2 |1−F{H}(δt)|2 , t ∈R.

Set

∆01 :=
∑

b=∓1/2

M2
0X(b)

∫

δ|t|≤u0

[J 2
b (t)/|̺b(t)|2] dt,

∆02 :=
∑

b=∓1/2

M2
0X(b)

∫

δ|t|>u0

[J 2
b (t)/|̺b(t)|2] dt,
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we have ∆0 .∆01+∆02. We prove that ∆0j . σ2(α+2), for j ∈ [2]. Taking into account that

|eσ2ψ2
b (t)/2|2 = e−σ

2(t2−b2) = e−σ
2(t2−1/4), for ω ≥ 2m ≥ (α+ 2) and σ > 0 small enough,

by Lemma C.1, relationships (6.9) and (6.10), we have

∆01 .
∑

b=∓1/2

M2
0X(b)

∫

δ|t|≤u0

1

|̺b(t)|2
([σ2(t2 + 1/4)]2m

+ σ2ωmin{4, σ4(t2 +1/4)2/4})|F{h̄0,b}(t)|2 dt

. σ2(α+2)
∑

b=∓1/2

∫

δ|t|≤u0

(|t|2α +1)| ̂(eb·f0X)(t)|2 dt. σ2(α+2)

because F{h̄0,b}(t) = [M0X(b)]
−1 ̂(eb·f0X)(t), t ∈ R, and

∫

R
(|t|2α ∨ 1)| ̂(eb·f0X)(t)|2 dt <

∞ by Assumption 4.4 and the hypothesis that (e|·|/2f0X) ∈ L1(R). Analogously, for σ|t|>
(u0/cδ)> 1,

∆02 .
∑

b=∓1/2

M2
0X(b)

∫

δ|t|>u0

1

|̺b(t)|2
(∣
∣
∣
∣
eσ

2ψ2
b (t)/2

m−1∑

k=0

{−[σψb(t)]
2/2}k

k!
− 1

∣
∣
∣
∣

2

+ |eσ2ψ2
b (t)/2 − 1|2

)

|F{h̄0,b}(t)|2 dt

.
∑

b=∓1/2

M2
0X(b)

∫

δ|t|>u0

1

|̺b(t)|2
{e−σ2(t2−1/4)/2(σ|t|)2m + 1

+min{2, σ2(t2 + 1/4)/2}}2 |F{h̄0,b}(t)|2 dt

. σ2(α+2)
∑

b=∓1/2

M2
0X(b)

∫

δ|t|>u0

t4

|̺b(t)|2
[e−(σt)2 (σ|t|)4m +1]|t|2α|F{h̄0,b}(t)|2 dt

. σ2(α+2)
∑

b=∓1/2

∫

δ|t|>u0

|t|2α| ̂(eb·f0X)(t)|2 dt. σ2(α+2).

We prove relationship (4.10). Since F{h̄0,b}(0) = 1, (1 − e−σ
2/8)/γ = −1 and σ2/8 ≤

eσ
2/8|γ|, from previous computations for the term ∆01 we have

σ2

8
|F{hm,b,σ}(0)− 1| ≤ eσ

2/8|γ|
∣
∣
∣F{hm,b,σ}(0) +

(1− e−σ
2/8)

γ

∣
∣
∣. Jb(0). σ2m,

whence
∫

R
hm,b,σ(x)dx=F{hm,b,σ}(0) = 1 +O(σ2(m−1)) and the proof is complete.

7. Final remarks. In this paper, we have studied the problem of multivariate deconvo-

lution with known ordinary smooth error distributions having independent coordinates, with

respect to the 1-Wasserstein loss. Prior to this work, optimal lower and upper bounds on the

rates of convergence were derived only in [20] when d= 1, under no smoothness assumption

on the signal, leading to the minimax-optimal rate n−1/(2β+1) when the exponent β of the

Fourier transform of the noise distribution is such that β ≥ 1
2 . The contributions of this work

are four-fold: (1) propose an inversion inequality between W1(µX , µ0X) and ‖fY − f0Y ‖1
(or ‖fY,v − f0Y,v‖1 in the case where d > 1), which can also be used in other contexts than

those herein considered, for instance, as a first step to obtain Bernstein-von Mises type results

for linear functionals of µ0X ; (2) use this inversion inequality in a Bayesian framework under

the Laplace noise to derive α-adaptive minimax-optimal posterior contraction rates for any
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α > 0 when d = 1; (3) prove that a kernel type deconvolution estimator achieves the min-

imax convergence rate under the Laplace noise for any d ≥ 1 and (4) derive lower bounds

on the W1-convergence rates for any β > 0 and d ≥ 1. Note that the rate obtained for the

kernel type deconvolution estimator easily extends to any other ordinary smooth noise distri-

bution under additional moment assumptions. Along the way, we have obtained intermediate

results which we believe are themselves of interest: a new approximation of a convolution

between a Sobolev regular density and a Laplace distribution by the convolution of a mixture

of Gaussian densities with a Laplace. This construction is different from (and significantly

more involved than) the approximation of Hölder densities by mixtures of Gaussian densities

constructed in [45], which would not lead to the correct error rate in the present context. Our

method is validated by deriving lower bounds that match with the upper bounds in the case

where the error coordinates are independent and homogeneous, in the sense that they are all

ordinary smooth, possibly of different orders. These results pave the way to the study of the

inhomogeneous case where there are mixed components, some ordinary smooth and some

others supersmooth. Furthermore, the case where the error components are not independent

remains to be completely investigated.
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This supplement contains auxiliary results for proving Theorems 3.1, 4.1,

4.2, 4.4, 5.1 and 5.2 of the main document [54].

APPENDIX A: LEMMAS FOR THEOREM 3.1 ON THE INVERSION INEQUALITY

The following lemma provides the order of the L1-norm of the function K1,h that arises

when controlling the term T1 in Theorem 3.1. We recall the notation. The function χ : R→R

is symmetric, continuously differentiable, equal to 1 on [−1, 1] and to 0 outside [−2, 2]. The

kernel K is defined in Section 3.1 and has Fourier transform K̂ with compact support. For

h > 0, we defined w1,h(·) := K̂(h·)χ(·)rε(·), with rε as in (3.1) satisfying Assumption 3.1.

The function K1,h(·) := (2π)−1
∫

R
e−ıt·w1,h(t)dt is the inverse Fourier transform of w1,h.

LEMMA A.1. If the single coordinate error distribution µε satisfies Assumption 3.1 for

some β > 0, then, for sufficiently small h > 0,

‖K1,h‖1 =O(1).

PROOF. Denoted by w
(1)
1,h the derivative of w1,h, we have ‖K1,h‖1 ≤ 2−1/2(‖w1,h‖22 +

‖w(1)
1,h‖22)1/2, see the proof of Theorem 4.2 in [5], pp. 1030–1031. For h ≤ 1

2 , by con-

dition (3.2) with l = 0, we have ‖w1,h‖22 .
∫

|t|≤2 |K̂(ht)|2|χ(t)|2(1 + |t|)2β dt . ‖χ‖22 <
∞ as K̂ is bounded on any compact set. Analogously, for w

(1)
1,h(t) = [hK̂(1)(ht)χ(t) +

K̂(ht)χ(1)(t)]rε(t) + K̂(ht)χ(t)r
(1)
ε (t), for t ∈R, using condition (3.2) with l= 1, we have

‖w(1)
1,h‖22 .

∫

|t|≤2
[h|K̂(1)(ht)||χ(t)|+ |K̂(ht)||χ(1)(t)|]2(1 + |t|)2β dt

+

∫

|t|≤2
|K̂(ht)|2|χ(t)|2(1 + |t|)2(β−1) dt

. ‖χ‖22 + ‖χ(1)‖22 <∞

because also K̂(1) is bounded on any compact set by continuity. The assertion follows.

The following lemma gives the order, in terms of the kernel bandwidth h, of the L1-

norm of the “distribution function” F2,h,v associated to K2,h,v, which is the inverse Fourier

transform of

w2,h,v(t) := K̂⊗d(htv)[1−χ⊗d(tv)]r⊗dε (tv) =

[

1−
d∏

j=1

χ(vjt)

] d∏

k=1

K̂(vkht)rε(vkt), t ∈R.
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LEMMA A.2. If the error distribution µ⊗dε , d ≥ 1, has single coordinate measure µε
satisfying Assumption 3.1 for some β > 0, then, for h > 0 small enough, defined, for every

v ∈ Sd−1, the set I∗h(v) := {j ∈ [d] : |vj |> h}, we have

‖F2,h,v‖1 ≤ C| logh|

×



| logh|1(β|I∗h(v)|≤1) + h−β|I
∗
h(v)|+1

∏

j∈I∗h(v)

|vj|β1(β|I∗h(v)|>1)



 ,(A.1)

where |I∗h(v)| denotes the cardinality of I∗h(v) and C does not depend on v nor on h.

PROOF. For v ∈ Sd−1, let J∗
d (v) := {j ∈ [d] : vj 6= 0}. Note that ∅ 6= I∗h(v) ⊂ J∗

d (v) be-

cause |v| = 1. Also, |1− χ⊗d(tv)| 6= 0 for all those t ∈ R for which there exists at least an

index j ∈ J∗
d (v) so that |vjt|> 1. Besides, |K̂⊗d(htv)| 6= 0 if and only if |vjt| ≤ 1/h for all

j ∈ [d] because K̂ is compactly supported on [−1, 1]. Indeed, K̂ is supported on [−2, 2], but,

for ease of exposition and without loss of generality, we can assume that K̂ has support on

[−1, 1]. For h < 1 and v ∈ Sd−1, let

D0 := ∩j∈[d]{t ∈R : |vjt| ≤ 1/h} ∩ {t ∈R : ∃ j ∈ J∗
d (v) so that |vjt|> 1}

= {t ∈R : ‖v‖−1
∞ < |t| ≤ (h‖v‖∞)−1}

= {t ∈R : 1< (‖v‖∞|t|)≤ h−1},
where ‖v‖∞ := maxj∈[d] |vj | ≤ 1. Note that D0 depends on h and v, i.e., D0 ≡ D0,h,v, nev-

ertheless, we shall not emphasize this dependence in what follows and simply write D0. By

the same arguments used for the function G2,h in [20], pp. 251–252, we have

F2,h,v(z) =
1

2π

∫

R

e−ıtz
w2,h,v(t)

(−ıt) dt, z ∈R,

where t 7→ [w2,h,v(t)/t] is in L1(R) because
∫

D0
[|w2,h,v(t)|/|t|] dt < ‖w2,h,v‖1 <∞. Con-

sider the integral decomposition

‖F2,h,v‖1 =
(∫

|z|≤h
+

∫

h<|z|≤1
+

∫

|z|>1

)

|F2,h,v(z)|dz =: F
(1)
2 + F

(2)
2 +F

(3)
2 .

We highlight some useful facts to study the terms F
(1)
2 , F

(2)
2 and F

(3)
2 . By condition (3.2)

with l= 0, 1, over the set D0, we have

(A.2) |r⊗dε (tv)| ≤
∏

j∈J∗
d (v)

(1 + |vjt|)β ≤ (1 +
√
d)β(d−|I∗h(v)|)

∏

j∈I∗h(v)

(1 + |vjt|)β

because 1 = |v|2 ≤ d‖v‖2∞, which implies that ‖v‖∞ ≥ 1/
√
d, and

|(r⊗dε )(1)(tv)| ≤ |r⊗dε (tv)|
d∑

j=1

|vj |
|r(1)ε (vjt)|
|rε(vjt)|

≤
d∑

j=1

|vj|(1 + |vjt|)β−1
∏

k∈[d]
k 6=j

(1 + |vkt|)β <
√
d2βd(‖v‖∞|t|)βd.

(A.3)
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We study F
(1)
2 . By inequality (A.2), since K̂ ∈Cb([−1, 1]), we have

F
(1)
2 :=

∫

|z|≤h
|F2,h,v(z)| dz ≤

h

π

∫

D0

|K̂⊗d(htv)||1− χ⊗d(tv)| |r
⊗d
ε (tv)|
|t| dt

. h

∫

D0

1

|t|
∏

j∈I∗h(v)

(1 + |vjt|)β dt.

If d= 1, then v1 = 1 and the above term is bounded above by h−β+1. If d > 1, without loss

of generality, we can assume that 1≡ v0 ≥ |v1| ≥ . . .≥ |vdh |> h and, with abuse of notation,

we can write vdh+1 ≡ h, where 1≤ dh := |I∗h(v)| ≤ d. Then,

∫

D0

1

|t|
∏

j∈I∗h(v)

(1 + |vjt|)β dt. log(1/|v1|) +
dh∑

l=1

l∏

j=1

|vj |β
∫ 1/|vl+1|

1/|vl|
|t|βl−1 dt

. | logh|+
dh∑

l=1

1

βl
(|vl+1|−βl − |vl|−βl)

l∏

j=1

|vj |β

. | logh|+ h−βdh
dh∏

j=1

|vj|β . h−βdh
dh∏

j=1

|vj |β

so that

F
(1)
2 . h−β|I

∗
h(v)|+1

∏

j∈I∗h(v)

|vj |β.

To bound F
(2)
2 and F

(3)
2 , note that, by applying identity (6.1) to F2,h,v with j = 1, we have

(A.4) for z 6= 0, F2,h,v(z) =
1

2π(ız)

∫

R

e−ıtz
[
d

dt

(
w2,h,v(t)

−ıt

)]

dt,

where

d

dt

(
w2,h,v(t)

t

)

= h(K̂⊗d)(1)(htv)[1− χ⊗d(tv)]
r⊗dε (tv)

t

−K̂⊗d(htv)

{

(χ⊗d)(1)(tv)
r⊗dε (tv)

t

−[1− χ⊗d(tv)]

(
t(r⊗dε )(1)(tv)− r⊗dε (tv)

t2

)}

,(A.5)

with

|(K̂⊗d)(1)(htv)| ≤ |K̂⊗d(htv)|
d∑

j=1

|vj |
|K̂(1)(vjht)|
|K̂(vjht)|

=

d∑

j=1

|vj ||K̂(1)(vjht)|
∏

k∈[d]
k 6=j

|K̂(vkht)| ≤
√
d‖K‖d−1

1

∫

R

|z||K(z)|dz <∞(A.6)

because K ∈L1(R) as well as zK(z) ∈L1(R) by assumption, and

(A.7) |(χ⊗d)(1)(tv)| ≤
d∑

j=1

|vj ||χ(1)(vjt)|
∏

k∈[d]
k 6=j

|χ(vkt)| ≤
√
d‖χ(1)‖∞‖χ‖d−1

∞ <∞
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since χ ∈ Cb([−2, 2]) and χ(1) ∈Cb([−1, 1]c ∩ [−2, 2]). The bounds in (A.6) and (A.7) are

uniform over Sd−1. We prove below that

∫

D0

∣
∣
∣
∣

d

dt

(
w2,h,v(t)

t

)∣
∣
∣
∣
dt. | logh|1(β|I∗h(v)|≤1)

+ h−β|I
∗
h(v)|+1

∏

j∈I∗h(v)

|vj |β1(β|I∗h(v)|>1),

(
∫

D0

∣
∣
∣
∣

d

dt

(
w2,h,v(t)

t

)∣
∣
∣
∣

2

dt

)1/2

. | logh|1/21(β|I∗h(v)|≤3/2)

+ h−β|I
∗
h(v)|+3/2

∏

j∈I∗h(v)

|vj |β1(β|I∗h(v)|>3/2).

(A.8)

Then, in virtue of relationship (A.4), we have

F
(2)
2,h,v ≤

1

2π

(
∫

h<|z|≤1

1

|z| dz
)
∫

D0

∣
∣
∣
∣

d

dt

(
w2,h,v(t)

t

)∣
∣
∣
∣
dt

. | logh|



| logh|1(β|I∗h(v)|≤1) + h−β|I
∗
h(v)|+1

∏

j∈I∗h(v)

|vj |β1(β|I∗h(v)|>1)





and

F
(3)
2,h,v ≤

1

2π

(
∫

|z|>1

1

z2
dz

)1/2(∫

D0

∣
∣
∣
∣

d

dt

(
w2,h,v(t)

t

)∣
∣
∣
∣

2

dt

)1/2

. | logh|1/21(β|I∗h(v)|≤3/2) + h−β|I
∗
h(v)|+3/2

∏

j∈I∗h(v)

|vj |β1(β|I∗h(v)|>3/2).

We prove (A.8). Using relationships (A.5), (A.2), (A.6) and reasoning as for term F
(1)
2 , we

get that

S1,1 := h

∫

D0

|(K̂⊗d)(1)(htv)||1− χ⊗d(tv)| |r
⊗d
ε (tv)|
|t| dt. h

∫

D0

1

|t|
∏

j∈I∗h(v)

(1 + |vjt|)β dt

. h−βdh+1
dh∏

j=1

|vj |β,
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while

S1,2 := h2
∫

D0

|(K̂⊗d)(1)(htv)|2|1− χ⊗d(tv)|2 |r
⊗d
ε (tv)|2
t2

dt

. h2
∫

D0

1

t2

∏

j∈I∗h(v)

(1 + |vjt|)2β dt

. h2 + h2
dh∑

l=1

l∏

j=1

|vj |2β
∫ 1/|vl+1|

1/|vl|
|t|2(βl−1) dt

. h2 + h2
dh∑

l=1

l∏

j=1

|vj |2β
[

log(|vl|/|vl+1|)1(2βl=1)

+
1(2βl 6=1)

2βl− 1
(|vl+1|−2βl+1 − |vj |−2βl+1)

]

. h2 + h2
dh∑

l=1



| logh|1(2βl=1) +
1(2βl<1)

1− 2βl
+ h−2βl+11(2βl>1)

2βl− 1

l∏

j=1

|vj|2β




. h2| logh|+ h−2βdh+3
dh∏

j=1

|vj |2β .

It is easily seen that

S2,1 :=

∫

D0

|K̂⊗d(htv)||(χ⊗d)(1)(tv)| |r
⊗d
ε (tv)|
|t| dt=O(1)

and

S2,2 :=

∫

D0

|K̂⊗d(htv)|2|(χ⊗d)(1)(tv)|2 |r
⊗d
ε (tv)|2
t2

dt=O(1).
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Using (A.2) and (A.3), we have

S3,1 :=

∫

D0

|K̂⊗d(htv)||1− χ⊗d(tv)| |t(r
⊗d
ε )(1)(tv)− r⊗dε (tv)|

t2
dt

.

∫

D0

( |(r⊗dε )(1)(tv)|
|t| +

|r⊗dε (tv)|
t2

)

dt

.

d∑

j=1

|vj |
∫

D0

1

|t|(1 + |vjt|)β−1
∏

k∈[d]
k 6=j

(1 + |vkt|)β dt+
∫

D0

1

t2

∏

j∈I∗h(v)

(1 + |vjt|)β dt

. 1 +

d∑

j=1

|vj |
dh∑

l=1

∫ 1/|vl+1|

1/|vl|

1

|t|(1 + |vjt|)β−1
∏

k∈[d]
k 6=j

(1 + |vkt|)β dt

+

dh∑

l=1



| logh|1(βl=1) +
1(βl<1)

1− βl
+ h−βl+11(βl>1)

βl− 1

l∏

j=1

|vj |β




.

d∑

j=1

dh∑

l=1

l∏

k=1

|vk|β
∫ 1/|vl+1|

1/|vl|
|t|βl−2 dt+ | logh|+ h−βdh+1

dh∏

j=1

|vj |β

. | logh|+ h−βdh+1
dh∏

j=1

|vj |β.

Similarly,

S3,2 :=

∫

D0

|K̂⊗d(htv)|2|1− χ⊗d(tv)|2 |t(r
⊗d
ε )(1)(tv)− r⊗dε (tv)|2

t4
dt

.

∫

D0

( |(r⊗dε )(1)(tv)|2
t2

+
|r⊗dε (tv)|2

t4

)

dt

. 1 +

dh∑

l=1



| logh|1(2βl=3) +
1(2βl<3)

3− 2βl
+ h−2βl+31(2βl>3)

2βl− 3

l∏

j=1

|vj |2β




. | logh|+ h−2βdh+3
dh∏

j=1

|vj|2β .

It follows that S1,1+S2,1+S3,1 . | logh|1(βdh≤1)+h
−βdh+1

∏dh
j=1 |vj |β1(βdh>1) and S1,2+

S2,2 + S3,2 . | logh|1(βdh≤3/2) + h−2βdh+3
∏dh
j=1 |vj |2β1(βdh>3/2), thus implying the first

and second bounds in (A.8), respectively. Inequality (A.1) follows by combining the bounds

on F
(1)
2 , F

(2)
2 and F

(3)
2 .

The next lemma assesses the order of magnitude of the bias, in terms of the kernel band-

width h, of any distribution function F0X having derivatives up to a certain order, with locally

Hölder continuous derivative of the highest degree. An (⌊α⌋+ 1)-order kernel is used when

f0X verifies Assumption 3.3 as in Lemma A.3.
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LEMMA A.3. Let F0X be the distribution function of µ0X ∈ P0(R) satisfying Assump-

tion 3.3 for α> 0. Let K be a kernel of order (⌊α⌋+1) satisfying
∫

R
|z|α+1|K(z)|dz <∞.

Then, there exists a constant C1 > 0 such that, for every h > 0,

(A.9) ‖F0X ∗Kh −F0X‖1 ≤C1h
α+1.

PROOF. Let ℓ= ⌊α⌋. For any x, u ∈R and h > 0, by Taylor’s expansion,

F0X (x− hu) = F0X(x)− huf0X(x) + . . . +
(−hu)ℓ+1

ℓ!

∫ 1

0
(1− τ)ℓf

(ℓ)
0X(x− τhu)dτ.

Since K is a kernel of order ℓ+ 1= ⌊α⌋+1, we have

(F0X ∗Kh − F0X)(x) =

∫

R

[F0X(x− hu)−F0X(x)]K(u)du

=

∫

R

K(u)
(−hu)ℓ+1

ℓ!

∫ 1

0
(1− τ)ℓ

[
f
(ℓ)
0X(x− τhu)− f

(ℓ)
0X(x)

]
dτ du.

Recalling the notation bF0X
(h) := F0X ∗Kh −F0X , Assumption 3.3 yields that

‖bF0X
(h)‖1 ≤

∫

R

∫

R

|K(u)|(h|u|)
ℓ+1

ℓ!

∫ 1

0
(1− τ)ℓ|f (ℓ)0X(x− τhu)− f

(ℓ)
0X(x)|dτ dudx

≤ hα+1‖L0‖1
1

ℓ!

(∫

R

|u|α+1|K(u)|du
)∫ 1

0
(1− τ)ℓτα−ℓ dτ.

By the assumptions that L0 ∈ L1(R) and
∫

R
|z|α+1|K(z)|dz < ∞, we conclude that

‖bF0X
(h)‖1 ≤C1h

α+1.

REMARK A.1. The constant C1 appearing in (A.9) depends only on the kernel K and

the distribution function F0X .

APPENDIX B: AUXILIARY RESULT FOR THEOREM 4.1

We state a theorem that gives sufficient conditions for the posterior distribution to con-

centrate on L1-Wasserstein neighborhoods of the sampling distribution on Rd. The assertion

extends Theorem 3.2 of [14], p. 3643, to the L1-Wasserstein metric between probability mea-

sures on Rd and provides conditions in terms of the prior concentration rate ǫ̃n on Kullback-

Leibler type neighborhoods of the sampling distribution and in terms of moments of the

probability measures in the support of the posterior distribution so that the latter contracts

at a nearly ǫ̃n-rate (up to a log-factor) on L1-Wasserstein neighborhoods of the truth. The

underlying idea is to exploit the equivalence between the Wasserstein metric W1 and the

max-sliced Wasserstein metric W 1, valid in any dimension d ≥ 1, to construct tests for the

projected uni-dimensional distributions so that they have exponentially decaying type I and

type II error probabilities.

THEOREM B.1. Let Πn be a prior distribution on P0(R
d), d ≥ 1. Suppose that, for

δ > 0, we have µ0Y ∈ P0(R
d) ∩ P2+δ(R

d). If, for C > 0 and a sequence ǫ̃n ≥
√

(logn)/n
such that ǫ̃n → 0,

(B.1) Πn(BKL(P0Y ; ǫ̃
2
n))& exp (−Cnǫ̃2n)

and there exists K > 0 so that

(B.2) Πn(µY : M2+δ(µY )>K | Y(n))→ 0 in Pn0Y -probability,
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then, for sufficiently large M > 0,

(B.3) Πn(µY : W1(µY , µ0Y )>Mǫ̃n log(1/ǫ̃n) | Y(n))→ 0 in Pn0Y -probability.

If, instead, for δ′ > 0, we have µ0Y ∈ P0(R
d) ∩ P4+δ′(R

d), the conditions in (4.1) are

satisfied and, for K ′ > 0,

(B.4) Πn(µY : M4+δ′(µY )>K ′ǫ̃−2
n ). exp (−(C +4)nǫ̃2n),

then there exists a constant K > 0 such that (B.2) holds for δ = δ′/2. Consequently, the

convergence in (B.3) takes place.

The first part of the proof is based on Theorem 3.2 of [14], p. 3643, but extends it to

the multivariate case exploiting the equivalence between the Wasserstein metric W1 and the

max-sliced Wasserstein metric W 1. The second part serves to prove that condition (B.2)

holds, provided that the posterior contraction L1-norm rate has been derived.

PROOF OF THEOREM B.1. Because M2+δ(µ0Y ) <∞ implies that M1(µ0Y ) <∞, the

hypothesis µ0Y ∈ P2+δ(R
d) yields that µ0Y ∈ P1(R

d). Assumption (B.2) implies that also

µY ∈ P1(R
d) so that W1(µY , µ0Y ) <∞, see, e.g., [63], p. 94, with posterior probability

tending to one, in Pn0Y -probability.

By the inequalities in (2.4), to prove (B.3) it is enough to show that

(B.5) E
n
0Y [Πn(µY : W 1(µY , µ0Y )> (M/Cd)ǫ̃n log(1/ǫ̃n) | Y(n))]→ 0.

We apply a chaining argument. For a sequence 0< δn ≤ ǫ̃n, we consider a δn-net for Sd−1.

Since Sd−1 ⊆ {v ∈Rd : |v| ≤ 1}, then, for 0< ǫ < 1, the ǫ-covering number of Sd−1, that is,

the minimal number of | · |-balls of radius ǫ needed to cover Sd−1, denoted byN(ǫ, Sd−1, | · |),
is such that

N(ǫ, Sd−1, | · |)≤N(ǫ, {v ∈R
d : |v| ≤ 1}, | · |)≤ 3ǫ−d,

see Proposition C.2 in [39], p. 530. Thus, Nδn :=N(δn, S
d−1, | · |)≤ 3δ−dn . Let (vj)j∈[Nδn ]

be a minimal δn-net for Sd−1. Because for all v, vj ∈ Sd−1 and µ ∈ P1(R
d),

W1(µv, µvj)≤ |v− vj|M1(µ),

for every µY ∈ P1(R
d), v ∈ Sd−1 and vj in a minimal δn-net for Sd−1, we have

W1(µY,v, µ0Y,v)≤W1(µY,v, µY,vj) +W1(µY,vj , µ0Y,vj) +W1(µ0Y,vj , µ0Y,v)

≤ max
j∈[Nδn ]

W1(µY,vj , µ0Y,vj)

+ max
j∈[Nδn ]

sup
|vj−v|≤δn

[W1(µY,v, µY,vj) +W1(µ0Y,vj , µ0Y,v)]

≤ max
j∈[Nδn ]

W1(µY,vj , µ0Y,vj) + δn[M1(µY ) +M1(µ0Y )]

≤ max
j∈[Nδn ]

W1(µY,vj , µ0Y,vj) + ǫ̃n[M1(µY ) +M1(µ0Y )].

Thus,

W 1(µY , µ0Y )≤ max
j∈[Nδn ]

W1(µY,vj , µ0Y,vj) + ǫ̃n[M1(µY ) +M1(µ0Y )].

For 0<M ′ < (M/Cd)− [K +M1(µ0Y )]/ log(1/ǫ̃n), defined the event

An :=

{

µY : max
j∈[Nδn ]

W1(µY,vj , µ0Y,vj)≤M ′ǫ̃n log(1/ǫ̃n)

}

,
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if En0Y [Πn(A
c
n | Y(n))]→ 0, then the convergence in (B.5) follows by condition (B.2).

We define (a sequence of) tests (Ψn)n∈N for the hypothesis H0 : P = P0Y ≡ µ0Y versus

H1 : P = PY ≡ µY , for µY ∈Cn :=Acn ∩ {µY : M2+δ(µY )≤K}, such that

E
n
0Y [Ψn] = o(1) and sup

µY ∈Cn

E
n
µY

[1−Ψn]≤ exp (−nǫ̃2n) for n large enough.

Let

Ψn := max
j∈[Nδn ]

φn,j,

where φn,j is the test associated to µ0Y,vj defined on pp. 3668–3669 of [14], with µ0Y,vj
playing the role of P0 in the definition of φm,F,− and φm,F,+. It is known from the proof of

Theorem 8.9 in [14], p. 3665, that there exists a constant c > 0 such that, for all j ∈ [Nδn ],

E
n
0Y,vj [φn,j] = exp (−cnǫ̃2n) and sup

µY ∈Cn,j

E
n
µY,vj

[1− φn,j]≤ exp (−cnǫ̃2n),

where

Cn,j := {µY : W1(µY,vj , µ0Y,vj)>M ′ǫ̃n log(1/ǫ̃n)} ∩ {µY : M2+δ(µY )≤K}.
Recalling that Nδn ≤ 3δ−dn ,

E
n
0Y [Ψn]≤

Nδn∑

j=1

E
n
0Y,vj [φn,j ]≤Nδn exp (−cnǫ̃2n). exp (−cnǫ̃2n/2)

and

sup
µY ∈Cn

E
n
µY

[1−Ψn]≤ max
j∈[Nδn ]

sup
µY ∈Cn,j

E
n
µY,vj

[1− φn,j]≤ exp (−cnǫ̃2n).

Using Theorem 3 of [37], p. 196, together with assumption (B.1), we have that En0Y [Πn(Cn |
Y(n))]→ 0. Then, under condition (B.2), the convergence in (B.3) holds.

We now show that, under (4.1), assumption (B.2) holds. The conditions in (4.1) imply that

En0Y [Πn(µY : dH(fY , f0Y )>M0ǫ̃n | Y(n))]→ 0. Besides, condition (B.4) and the Kullback-

Leibler prior mass condition in (B.1) imply that

E
n
0Y [Πn(µY : M4+δ′(µY )>K ′ǫ̃−2

n | Y(n))]→ 0.

Let µY be such that M4+δ′(µY ) ≤K ′ǫ̃−2
n and dH(fY , f0Y ) ≤M0ǫ̃n. Since we are now as-

suming that M4+δ′(µ0Y )<∞, by the Cauchy-Schwarz inequality we have

M2+δ′/2(µY )≤M2+δ′/2(µ0Y ) +

∫

Rd

|y|2+δ′/2[|
√

fY −
√

f0Y |(
√

fY +
√

f0Y )](y)dy

≤M2+δ′/2(µ0Y ) + [M4+δ′(µY ) +M4+δ′(µ0Y )]
1/2M0ǫ̃n

< {M2+δ′/2(µ0Y ) + [K ′ +M4+δ′(µ0Y )]
1/2M0}=:K.

Therefore, M2+δ′/2(µY )<K, which implies condition (B.2) with δ = δ′/2.

REMARK B.1. For d = 1, the first part of Theorem B.1 reduces to Theorem 3.2 of

[14], pp. 3643 and 3667–3669, for the L1-Wasserstein distance on R. The assertion holds

for any probability measure P0Y ≡ µ0Y ∈ P0(R
d) ∩P2+δ(R

d), with δ > 0. The probability

measure µ0Y need not be a convolution, but if this is the case with error distribution µ⊗dε ,

then the condition µ0Y ∈ P0(R
d) ∩ P2+δ(R

d) is implied by µ0X ∈ P2+δ(R
d) and µε ∈

P0(R)∩P2+δ(R). Under the latter assumption on µε, condition (B.2) boils down to require

that there existsK∗ > 0 such that Πn(µX : M2+δ(µX)>K∗ | Y(n))→ 0 in Pn0Y -probability.
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REMARK B.2. If condition (B.1) is replaced by

Πn(NKL(P0Y ; ǫ̃
2
n))& exp (−Cnǫ̃2n),

where NKL(P0Y ; ǫ̃
2
n) := {PY : KL(P0Y ; PY )≤ ǫ̃2n} is a Kullback-Leibler neighborhood of

P0Y , then, by Lemma 6.26 of [39], pp. 143–144, for any sequence Ln → ∞, with Pn0Y -

probability at least equal to (1−L−1
n ), we have

(B.6)

∫ n∏

i=1

fY
f0Y

(Yi)dΠn(µY )& exp (−(C +2Ln)nǫ̃
2
n).

Following the proof of Theorem B.1 and applying the lower bound in (B.6), the convergence

in (B.3) continues to hold with Mǫ̃n log(1/ǫ̃n) replaced by Mnǫ̃n log(1/ǫ̃n), where Mn >
(C + 2Ln). Therefore, Kullback-Leibler type neighborhoods can be replaced by Kullback-

Leibler neighborhoods.

APPENDIX C: LEMMAS FOR THEOREM 4.2 ON POSTERIOR CONTRACTION

RATES FOR DIRICHLET LAPLACE-NORMAL MIXTURES

In Lemmas C.2 and C.3 below we prove the existence of a compactly supported dis-

crete mixing probability measure such that the corresponding Laplace-normal mixture has

Hellinger distance of the appropriate order from a Laplace mixture and the prior law on

Laplace-normal mixtures concentrates on Kullback-Leibler neighborhoods of the true den-

sity f0Y at optimal rate, up to a logarithmic factor.

The next lemma provides an upper bound on the remainder term (or truncation error)

associated with the (r− 1)th order Taylor polynomial about zero of the complex exponential

function, see, e.g., Lemma 10.1.5 in [1], pp. 320–321.

LEMMA C.1. For every r ∈N, we have
∣
∣
∣
∣
∣
eıx −

r−1∑

k=0

(ıx)k

k!

∣
∣
∣
∣
∣
≤min

{ |x|r
r!
,
2|x|r−1

(r− 1)!

}

, x ∈R.

For later use, we recall that the bilateral Laplace transform of a function f : R →
C is defined as B{f}(s) :=

∫

R
e−sxf(x)dx for all s ∈ C such that

∫

R
|e−sxf(x)|dx =

∫

R
e−Re(s)x|f(x)|dx <∞, where Re(s) denotes the real part of s. With abuse of notation,

for a probability measure µ on R, we define B{µ}(s) :=
∫

R
e−sxµ(dx), s ∈C. For all t ∈R

such that
∫

R
etxµ(dx)<∞, the mapping t 7→Mµ(t) :=

∫

R
etxµ(dx) is the moment generat-

ing function of µ and Mµ(t) = B{µ}(−t), t ∈R.

In the following lemma we prove the existence of a compactly supported discrete mixing

probability measure, with a sufficiently small number of support points, such that the corre-

sponding Laplace-normal mixture has Hellinger distance of the order O(σβ), with β = 2, for

σ > 0 small enough, from the sampling density f0Y .

LEMMA C.2. Let fε be the standard Laplace density. Let µ0X ∈ P0(R) be a probability

measure supported on [−a, a], with density f0X such that (e|·|/2f0X) ∈ L2(R). For σ > 0
small enough, there exists a discrete probability measure µH on [−a, a], with at most N =
O((a/σ)| log σ|1/2) support points, such that, for fY := fε ∗ (φσ ∗ µH) and f0Y := fε ∗ f0X ,

dH(fY , f0Y ). δ
−1/2
0 ea0/2σβ, with β = 2,

as soon as µ0X({x ∈R : |x| ≤ a0})≥ δ0 for some 0< a0 < a and 0< δ0 < 1.
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PROOF. For a0, δ0 as in the statement, we have

f0Y (y)≥
∫

|x|≤a0

fε(y − x)f0X(x)dx≥
δ0
2
e−(|y|+a0), y ∈R.

Define

(C.1) U(y) := e−y/2 + ey/2, y ∈R.

By the inequality e|y|/2 ≤U(y), y ∈R, we have

d2H(fY , f0Y )≤ 2δ−1
0 ea0

∫

R

[e|y|/2(fY − f0Y )(y)]
2 dy ≤ 2δ−1

0 ea0‖gY − g0Y ‖22,

where gY := UfY and g0Y := Uf0Y . For b = ∓1
2 , we have eb·f0Y = (eb·fε) ∗ (eb·f0X),

where eb·f0X ∈ L1(R) for compactly supported f0X and eb·fε ∈ Lp(R) for every 1≤ p≤∞.

Hence, ‖eb·f0Y ‖p ≤ ‖eb·fε‖p ×‖eb·f0X‖1 <∞. Analogously, since eb·fY = (eb·(fε ∗ φσ)) ∗
(eb·µH), where MµH

(b) < ∞ for compactly supported µH and eb·(fε ∗ φσ) ∈ Lp(R) for

1≤ p≤∞, we have ‖eb·fY ‖p ≤ ‖eb·(fε ∗ φσ)‖p ×MµH
(b) <∞. Consequently, gY , g0Y ∈

L1(R) ∩ L2(R) and the corresponding Fourier transforms ĝY (t) :=
∫

R
eıtygY (y)dy and

ĝ0Y (t) :=
∫

R
eıtyg0Y (y)dy, t ∈ R, are well defined. Also, ‖g0Y ‖22 = (2π)−1‖ĝ0Y ‖22 and

‖gY ‖22 = (2π)−1‖ĝY ‖22. For ψb(t) := −(ıt + b), let ̺b(t) := [1 − ψ2
b (t)], t ∈ R. Note that

̺−1/2(t) = ̺1/2(t) and |̺−1/2(t)|2 = |̺1/2(t)|2 = (t4 + 5t2/2 + 9/16). Since

B{fε(· − x)}(ψb(t)) =
e−ψb(t)x

̺b(t)
, t, x ∈R,

we have

r(t; x) :=

∫

R

eıtyU(y)fε(y− x)dy

=
∑

b=∓1/2

B{fε(y − x)}(ψb(t)) =
∑

b=∓1/2

e−ψb(t)x

̺b(t)
, t, x ∈R.

Then, ĝ0Y (t) =
∫

|x|≤a r(t; x)f0X(x)dx=
∑

b=∓1/2B{f0X}(ψb(t))/̺b(t), t ∈R. We derive

the expression of ĝY . Since

B{φσ(· − u)}(ψb(t)) = exp (−ψb(t)u+ σ2ψ2
b (t)/2), t, u ∈R,

we have

ĝY (t) =

∫

|u|≤a

(∫

R

r(t; x)φσ(x− u)dx

)

µH(du)

=
∑

b=∓1/2

eσ
2ψ2

b (t)/2

̺b(t)
B{µH}(ψb(t)), t ∈R.

For ease of notation, we introduce the integrals

Ib :=

∫

R

1

|̺b(t)|2
|eσ2ψ2

b (t)/2B{µH}(ψb(t))−B{f0X}(ψb(t))|2 dt, b=∓1

2
.

By Plancherel’s theorem and the triangular inequality, 2π‖gY − g0Y ‖22 = ‖ĝY − ĝ0Y ‖22 ≤
2(I−1/2 + I1/2). Both terms I−1/2 and I1/2 can be controlled using the same arguments, we
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therefore consider a unified treatment for Ib. For M > 0, we have

Ib ≤
(
∫

|t|≤M
+

∫

|t|>M

)

|eσ2ψ2
b (t)/2|2

|̺b(t)|2
|(B{µH} − B{f0X})(ψb(t))|2 dt

+

∫

R

1

|̺b(t)|2
|eσ2ψ2

b (t)/2 − 1|2 |B{f0X}(ψb(t))|2 dt=:

3∑

k=1

I
(k)
b .

Study of the term I
(1)
b

The term I
(1)
b can be bounded similarly to I1 in Lemma 2 of [34], p. 616. Preliminarily

note that, for σ < 1/|b| = 2, we have |eσ2ψ2
b (t)/2|2 = |eσ2(−t2+2ıbt+b2)/2|2 = e−σ

2(t2−b2) =
e−σ

2(t2−1/4) < e. Let µH be a discrete probability measure on [−a, a] satisfying the con-

straints
∫

ujµH(du) =

∫

ujf0X(u)du, j = 0, . . . , J − 1,

∫

ebuµH(du) =

∫

ebuf0X(u)du, b=∓1

2
,

(C.2)

where J = ⌈ηeaM⌉ for some η > 1, with ⌈x⌉ := min{k ∈ Z : k > x} the upper integer part

of x. Note that the second set of constraints in (C.2) can be written as MµH
(b) =M0X(b),

with b=∓1
2 . Using Lemma C.1 with r= J , by the inequality J !≥ (J/e)J , we have

I
(1)
b .

∫

|t|≤M

1

|̺b(t)|2
∣
∣
∣
∣

∫

|u|≤a
ebu
[

eıtu −
J−1∑

j=0

(ıtu)j

j!

]

(µH − µ0X)(du)

∣
∣
∣
∣

2

dt

. [MµH
(b) +M0X(b)]

2 1

(J !)2

∫

|t|≤M

(a|t|)2J
|̺b(t)|2

dt

.
a2J

(J !)2

∫ M

0
t2(J−2) dt

.
a2J

(J !)2
× M2J−3

2J − 3
.M−4 a

2J

(J !)2
× M2J+1

2J − 3
.M−4

(
eaM

J

)2J+1

.M−4.

Study of the term I
(2)
b

Note that, for b=∓1
2 ,

(C.3) B{f0X}(ψb(t)) = (êb·f0X)(t), t ∈R,

so that |B{f0X}(ψb(t))| ≤ M0X(b). Similarly, |B{µH}(ψb(t))| ≤ MµH
(b) = M0X(b).

Choosing M so that (σM)2 ≥ | logσ|, equivalently, M ≥ σ−1| logσ|1/2, and using the fact

that |eσ2ψ2
b (t)/2|2 =O(e−(σt)2 ), we have

I
(2)
b .M2

0X(b)e
−(σM)2

∫

|t|>M

1

t4
dt. e−(σM)2M−3 . σM−3 . σ4.

Study of the term I
(3)
b

By Lemma C.1,

|eσ2ψ2
b (t)/2 − 1| ≤min{2, σ2(t2 + b2)/2} ≤ σ2(t2 +1/4)/2,
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which combined with (C.3) gives

I
(3)
b ≤ σ4

2

∫

R

(t4 + b4)

|̺b(t)|2
|B{f0X}(ψb(t))|2 dt. σ4

∫

R

|(êb·f0X)(t)|2 dt. σ4,

where, by Plancherel’s theorem, (2π)−1‖êb·f0X‖22 = ‖eb·f0X‖22 <∞ by the assumption that

(e|·|/2f0X) ∈ L2(R).

The existence of a discrete probability measure µH supported on [−a, a], with at most

[(J + 2) + 1] ∝ (aM) & (a/σ)| logσ|1/2 support points, is guaranteed by Lemma A.1 of

[40], p. 1260. Combining the bounds on I
(k)
b , k ∈ [3], we conclude that ‖gY − g0Y ‖22 . σ4.

It follows that d2H(fY , f0Y )n. δ−1
0 ea0σ4, which completes the proof.

The next lemma gives sufficient conditions on the distribution DH0
⊗Πσ so that the in-

duced prior probability measure Π on Laplace-normal mixtures fY = fε ∗ (φσ ∗µH) concen-

trates on Kullback-Leibler neighborhoods of a Laplace mixture f0Y = fε ∗ f0X , with mixing

density f0X having exponentially decaying tails, at a rate of the order O(n−2/5(logn)τ ) for

suitable τ > 0.

LEMMA C.3. Let f0Y := fε ∗ f0X , where fε is the density of a standard Laplace distri-

bution and f0X satisfies Assumption 4.3. Consider the model fY := fε ∗ (φσ ∗ µH), with

µH ∈ P(R). If the base measure H0 of the Dirichlet process prior DH0
for µH satis-

fies Assumption 4.1 and the prior Πσ for σ satisfies Assumption 4.2 with 0 < γ ≤ 1, then

Π(NKL(P0Y ; ǫ̃
2
n))& exp (−Cnǫ̃2n), for ǫ̃n = n−2/5(logn)1/2+(2t1∨3)/5.

PROOF. We use the generic exponent β > 0 of the Fourier transform of the error density

in those steps of the proof that do not depend on the specific form of the Laplace density. We

show that, for some constantC > 0, the prior probability of a Kullback-Leibler neighborhood

of P0Y of radius ǫ̃2n is at least exp (−Cnǫ̃2n). We apply Lemma B2 of [59], pp. 638–639, to re-

late NKL(P0Y ; ξ
2) to a Hellinger ball of appropriate radius. By Assumption 4.3, there exists

C0 > 0 such that µ0X([−a, a]c) . e−(1+C0)a for a large enough. Set aη := a0| log η|, with

a0 ≥ [2/(1 + C0)] and η > 0 small enough, we have µ0X([−aη , aη]c) . η2. Then, Lemma

A.3 of [40], p. 1261, shows that the L1-distance between f0Y and f∗0Y := fε∗f∗0X , where f∗0X
is the density of the renormalized restriction of µ0X to [−aη, aη], denoted by µ∗0X , is bounded

above by 2η2. From d2H(f0Y , f
∗
0Y ) ≤ ‖f0Y − f∗0Y ‖1 ≤ 2η2, we have dH(f0Y , f

∗
0Y ) . η.

Lemma C.2 applied to µ∗0X (which plays the role of µ0X in the statement) shows that, for

σ > 0 small enough, there exists a discrete probability measure µ∗H supported on [−aη, aη],
with at most N =O((aη/σ)| logσ|1/2) support points, such that f∗Y := fε ∗ (φσ ∗ µ∗H) satis-

fies

dH(f
∗
Y , f

∗
0Y ). σβ.

An analogue of Corollary B1 in [59], p. 16, shows that µ∗H =
∑N

j=1 pjδuj
has support points

inside [−aη, aη], with at least σ1+2β -separation between every pair of points ui 6= uj , and

that dH(f
∗
Y , f

∗
0Y ) . σβ . Consider disjoint intervals Uj , for j ∈ [N ], centred at u1, . . . , uN ,

with length σ1+2β each. Extend {U1, . . . , UN} to a partition {U1, . . . , UK} of [−aη, aη]
such that each Uj , for j = N + 1, . . . , K, has length at most σ. Further extend this to a

partition U1, . . . , UM of R such that, for some constant a1 > 0, we have σa1 ≤H0(Uj)≤ 1,

for j ∈ [M ]. The whole process can be done with a total number M of intervals of the same

order asN . Define pj = 0, for j =N +1, . . . , M . Let Pσ be the set of probability measures

µH ∈ P(R) with

(C.4)

K∑

j=1

|µH(Uj)− pj | ≤ 2σ2β+1 and min
j∈[K]

µH(Uj)≥ σ2(2β+1)/2.
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Note that σ2β+1K < 1. By Lemma 5 in [38], p. 711, or Lemma B1 in [59], p. 16, with

V0 := ∪j>NUj and Vj ≡ Uj , for j ∈ [N ], for any µH ∈ Pσ we have d2H(fY , f
∗
Y ) ≤ ‖fY −

f∗Y ‖1 . σ2β . Then, for η = O(σβ), we have d2H(fY , f0Y ) . d2H(fY , f
∗
Y ) + d2H(f

∗
Y , f

∗
0Y ) +

d2H(f
∗
0Y , f0Y ). σ2β . To apply Lemma B2 of [59], pp. 16–17, we study the ratio (fY /f0Y ).

Let µH ∈ Pσ . For a standard Laplace error distribution (β = 2), since ‖f0Y ‖∞ ≤ 1
2 , for

|y|< aη ,

fY
f0Y

(y)&

∫

|x|≤aη

fε(y − x)

∫

|x−u|≤σ
φσ(x− u)µH(du)dx

&
1

σ

∫

|x|≤aη

fε(y− x)µH(UJ(x))dx& σ4β+1aηe
−2aη ,

while, for |y| ≥ aη ,

fY
f0Y

(y)&

∫

|x|≤aη

fε(y − x)

∫

|u|≤aη

φσ(x− u)µH(du)dx&
aη
σ
e−|y|e−aηe−2(aη/σ)2 ,

where µH([−aη , aη]) ≥ 1 − 2σ2β+1 because of the first condition in (C.4). For λ =
σ4β+1aηe

−2aη , we have log(1/λ) . | logσ|. Since {y ∈ R : (fY /f0Y )(y) ≤ λ} ⊆ {y ∈ R :
|y| ≥ aη},

P0Y

((

log
f0Y
fY

)

1

(
fY
f0Y

≤λ
)

)

.

∫

|y|≥aη

(

log
f0Y
fY

(y)

)

f0Y (y)dy .
1

σ2

∫

|y|≥aη

y2f0Y (y)dy,

where
∫

|y|≥aη

y2f0Y (y)dy ≤
(∫

R

e|x|f0X(x)dx

)∫

|y|≥aη

y2fε(y)dy

.

∫

|y|≥aη

e−|y|/2 dy . e−aη/2 . σ6,

see, e.g., Lemma A.7 in [56], pp. 303–304, provided that a0 ≥max{6, 2/(1 +C0)}. Conse-

quently, P0Y (log(f0Y /fY )1((fY /f0Y )≤λ)). σ4.

Thus, P0Y (log(f0Y /fY )1((fY /f0Y )≤λ)) . σ2β , with β = 2. Lemma B2 of [59], pp. 16–17,

implies that P0Y log(f0Y /fY ) is bounded above by σ2β | logσ|. By Lemma 10 of [38], p.

714, we have DH0
(Pσ) & exp (−c1K| logσ|) & exp (−c2(aη/σ)| logσ|3/2) for constants

c1, c2 > 0 that depend onH0(R) and a1. Given σ > 0, define Sσ := {σ′ > 0 : σ(1+σd)−1 ≤
σ′ ≤ σ} for a constant 0< d≤ s1 − 1. Then, Πσ(Sσ)& exp (−D1σ

−γ | logσ|t1). Replace σ
at every occurrence with σ′ ∈ Sσ. For ξ := σβ| logσ|1/2, noting that | logσ|. | log ξ|, since

γ ≤ 1 we have

Π(NKL(P0Y ; ξ
2))& exp (−c2(aη/σ)| logσ|3/2)× exp (−D1σ

−γ | logσ|t1)

& exp (−c3(aη/σ)| logσ|(t1∨3/2))

& exp (−c4ξ−1/β| log ξ|1/(2β)+1+(t1∨3/2)).

Replacing ξ with ǫ̃n = n−β/(2β+1)(logn)1/2+β(t1∨3/2)/(2β+1) , for a suitable constant C > 0,

we have Π(NKL(P0Y ; ǫ̃
2
n))& exp (−Cnǫ̃2n) and the proof is complete.
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APPENDIX D: LEMMAS FOR THEOREM 4.4 ON ADAPTIVE POSTERIOR

CONTRACTION RATES FOR DIRICHLET LAPLACE-NORMAL MIXTURES

The following lemma assesses the order of the bias of the distribution function correspond-

ing to a Gaussian mixture, where the mixing distribution is any probability measure on R and

the scale parameter is bounded below by a multiple of the kernel bandwidth h, times a log-

arithmic factor. It shows that, when d = 1, condition (3.6) of Theorem 3.1 is verified for a

universal positive constant C1.

LEMMA D.1. Let FX be the distribution function of µX = φσ ∗ µH , with σ > 0 and

µH ∈ P(R). Let K ∈ L1(R) ∩ L2(R) be symmetric, with
∫

R
|z||K(z)|dz <∞ and K̂ ∈

L1(R) such that K̂ ≡ 1 on [−1, 1]. Then, there exists C1 > 0, depending only on K, such

that, for α > 0, 0<h< 1 and h
√

(2α+1)| logh| ≤ σ < 1, we have

‖FX −FX ∗Kh‖1 ≤C1h
α+1.

PROOF. Defined the function f̂(t) := [1− K̂(ht)][φ̂(σt)/t], t ∈ R, since t 7→ µ̂H(t)f̂(t)
is in L1(R), arguing as for G2,h in [20], pp. 251–252, we have

‖bFX
(h)‖1 = ‖FX −FX ∗Kh‖1 =

∫

R

∣
∣
∣
∣

1

2π

∫

|t|>1/h
e−ıtxµ̂H(t)f̂(t)dt

∣
∣
∣
∣
dx

= ‖µH ∗ f‖1 ≤ ‖f‖1 ≤
1√
2
(‖f̂‖22 + ‖f̂ (1)‖22)1/2,

see, e.g., [5], p. 1031, for the last inequality. Using the fact that ‖K̂‖∞ ≤ ‖K‖1 <∞, we

have ‖f̂‖22 < φ̂(
√
2σ/h)(1 + ‖K‖1)2

∫

|t|>1/h t
−2 dt = 2(1 + ‖K‖1)2he−(σ/h)2 . h2(α+1).

Besides,

f̂ (1)(t) =−
{

hK̂(1)(ht) +

(
1

t
+ σ2t

)

[1− K̂(ht)]

}
φ̂(σt)

t
1[−1,1]c(ht), t ∈R.

Since K ∈ L1(R) and zK(z) ∈ L1(R) jointly imply that K̂ is continuously differentiable

with |K̂(1)(t)| → 0, as |t| →∞, so that K̂(1) ∈Cb(R), we have

‖f̂ (1)‖22 < 2e−(σ/h)2
∫

|t|>1/h

[
h2

t2
‖K̂(1)‖2∞ +

2

t4
(1 + ‖K‖1)2

]

dt

+ 4σ4(1 + ‖K‖1)2
∫

|t|>1/h
e−(σt)2 dt

. (h2 + σ2)he−(σ/h)2 . he−(σ/h)2 . h2(α+1).

The assertion follows for a suitable constant C1 > 0 depending only on K.

REMARK D.1. Due to the exponentially decaying tails of the Gaussian density and to

a suitable choice of the scale parameter σ greater than or equal to a multiple of the kernel

bandwidth h, times a logarithmic factor, a different argument than that used in the proof of

Theorem 3.1 for the case when the smoothness Assumption 3.2 on µ0X holds is used to

bound the bias of the distribution function FX associated to µX = φσ ∗ µH .

We introduce some more notation. For h = o(1), let δ = o(h). For m ∈ N, b = ∓1
2 and

σ = o(1), we define the set

(D.1) Ab,σ :=

{

x ∈R : γhm,b,σ(x)>−1

2
h̄0,b(x)

}

,
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with h̄0,b and hm,b,σ as defined in (4.6) and (4.7), respectively, and the function

(D.2) gb,σ :=M0X(b)e
−b·γhm,b,σ1Ab,σ

− 1

2
f0X1Ac

b,σ
.

In the following lemma we prove the existence of a compactly supported discrete mix-

ing probability measure, with a sufficiently small number of support points, such that the

corresponding Laplace-normal mixture has Hellinger distance of the order O(σα+2) from

the Laplace mixture sampling density f0Y = fε ∗ f0X having an α-Sobolev regular mixing

density f0X with exponentially decaying tails.

LEMMA D.2. Let fε be the standard Laplace density. Let f0X be a density satisfying

Assumption 4.3, Assumption 4.4 for α > 0 and Assumption 4.5. For σ > 0 small enough,

there exist a constant A0 > 0 and a discrete probability measure on [−aσ, aσ], with aσ :=
A0| logσ|, having at most N = O((aσ/σ)| logσ|1/2) support points, such that, for fY :=
fε ∗ (φσ ∗ µH) and f0Y := fε ∗ f0X ,

dH(fY , f0Y ). δ
−1/2
0 ea0/2σα+2

as soon as µ0X({x ∈R : |x| ≤ a0})≥ δ0 for some 0< a0 < aσ and 0< δ0 < 1.

PROOF. Reasoning as in Lemma C.2, for a0, δ0 as in the statement, d2H(fY , f0Y ) ≤
2δ−1

0 ea0‖gY − g0Y ‖22, where gY := UfY and g0Y := Uf0Y , with U defined in (C.1). Note

that (e|·|/2f0X) ∈ L1(R) ∩ L2(R) by Assumption 4.3. Also, gY , g0Y ∈ L1(R) ∩ L2(R) so

that, not only are the corresponding Fourier transforms ĝY , ĝ0Y well defined, but ‖gY ‖22 =
(2π)−1‖ĝY ‖22 and ‖g0Y ‖22 = (2π)−1‖ĝ0Y ‖22. In order to bound ‖gY − g0Y ‖22, some defini-

tions and preliminary facts are exposed. For T ≥ [(α + 2)/ϑ], with ϑ ∈ (0, 1), we define

the set Eσ := {x ∈ R : f0X(x) > σT }. The tail condition on f0X of Assumption 4.3 im-

plies that Eσ ⊂ {x ∈ R : |x| ≤ A0| logσ|} for some A0 > 0. Note that A0 can be chosen

arbitrarily large by choosing T large enough because A0 is proportional to T/(1 +C0). Set

B0 :=
∫

R
[f0X(x)]

1−ϑ dx <∞, then

(D.3) µ0X(E
c
σ)≤B0σ

ϑT . σα+2

by definition of T . For b=∓1
2 , introduced the densities

h̄b,σ :=
f0X + gb,σ

‖f0X + gb,σ‖1
and

h̄b,σ1Eσ

‖h̄b,σ1Eσ
‖1
,
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where gb,σ is as defined in (D.2), we consider the decomposition

‖g0Y − gY ‖22 .
∑

b=∓1/2

‖eb·{fε ∗ [f0X − φσ ∗ (Tm,b,σf0X)]}‖22

+
∑

b=∓1/2

‖eb·{fε ∗ φσ ∗ [(Tm,b,σf0X)− (f0X + gb,σ)]}‖22

+
∑

b=∓1/2

‖eb·{fε ∗ φσ ∗ [(f0X + gb,σ)− h̄b,σ]}‖22

+
∑

b=∓1/2

‖eb·{fε ∗ φσ ∗ [h̄b,σ − (h̄b,σ1Eσ
/‖h̄b,σ1Eσ

‖1)]}‖22

+
∑

b=∓1/2

‖eb·{fε ∗ φσ ∗ [(h̄b,σ1Eσ
/‖h̄b,σ1Eσ

‖1)− µH ]}‖22

=:

5∑

r=1

Vr.

We show that each term V1, . . . , V5 is of order O(σ2(α+2)). By inequality (4.9) of Lemma

4.1, we have V1 . σ2(α+2).

Study of the term V2

We recall that ̺b(t) := [1−ψ2
b (t)], with ψb(t) :=−(ıt+ b), t ∈R, and

hm,b,σ :=
1

γ

m−1∑

k=1

(−σ2/2)k
k!

2k∑

j=0

(
2k

j

)

(−b)2k−j(h̄0,b ∗DjHδ).

As in Lemma 4.1, for constants 0< cδ , ch < 1, we take δ := cδσ and h := ch| logσ|−1/2. We

write

eb·
{

fε ∗ φσ ∗
[

M0X(b)e
−b·γhm,b,σ1Ac

b,σ
+

1

2
f0X1Ac

b,σ

]}

as

M0X(b)
{

eb·[fε ∗ φσ] ∗
[(

γhm,b,σ +
1

2
h̄0,b

)

1Ac
b,σ

]}

so that, using the definition of gb,σ in (D.2),

V2 =
∑

b=∓1/2

∥
∥
∥eb·

{

fε ∗ φσ ∗
[

M0X(b)e
−b·γhm,b,σ1Ac

b,σ
+

1

2
f0X1Ac

b,σ

]}∥
∥
∥

2

2

.
∑

b=∓1/2

M2
0X(b)

∫

R

|eσ2ψb(t)2/2|2
|̺b(t)|2

|F{[2γhm,b,σ + h̄0,b]1Ac
b,σ
}(t)|2 dt

.
∑

b=∓1/2

M2
0X(b)(‖γhm,b,σ1Ac

b,σ
‖1 + ‖h̄0,b1Ac

b,σ
‖1)2,

where we have used the facts that

‖F{[2γhm,b,σ + h̄0,b]1Ac
b,σ
}‖∞ ≤ 2‖γhm,b,σ1Ac

b,σ
‖1 + ‖h̄0,b1Ac

b,σ
‖1

and

|eσ2ψb(t)2/2|2
|̺b(t)|2

.
1

1 + t4
.
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Finally, using the inequalities in (E.4) of Lemma E.3, we obtain that

V2 . σ2υR . σ2(α+2).

Study of the term V3

By the inequalities in (E.4) and (E.5) of Lemma E.3, noting that ‖F{h̄0,b}‖∞ ≤ 1, we have

V3 =
∑

b=∓1/2

(

1− 1

‖f0X + gb,σ‖1

)2

‖eb·[fε ∗ φσ ∗ (f0X + gb,σ)]‖22

. σ2υR
∑

b=∓1/2

M2
0X(b)

∫

R

|eσ2ψb(t)2/2|2
|̺b(t)|2

[|F{h̄0,b}(t)|2 + |F{γhm,b,σ}(t)|2] dt.

Recalling that, by inequality (6.9), we have |F{DjHδ}(t)| ≤ |t|j |F{H}(δt)| ≤ |t|j , for j =
0, . . . , 2k, we find

∫

R

|eσ2ψb(t)2/2|2
|̺b(t)|2

|F{γhm,b,σ}(t)|2 dt.
m−1∑

k=1

eσ
2/4

(2kk!)2

∫

R

[σ2(t2 +1/4)]2k

e(σt)
2 |̺b(t)|2

|F{h̄0,b}(t)|2 dt

. ‖ ̂(eb·f0X)‖22 . ‖e|·|/2f0X‖22 <∞,

which implies that

V3 . σ2υR . σ2(α+2).

Study of the term V4

Taking into account that ‖f0X + gb,σ‖1 ≥ 1 (see (E.5) of Lemma E.3), we have

V4 .
∑

b=∓1/2

(

‖h̄b,σ1Ec
σ
‖21 × ‖eb·{fε ∗ φσ ∗ (h̄b,σ1Eσ

/‖h̄b,σ1Eσ
‖1)}‖22

+ ‖eb·{fε ∗ φσ ∗ (h̄b,σ1Ec
σ
)}‖22

)

.
∑

b=∓1/2

‖(f0X + gb,σ)1Ec
σ
‖21
∫

R

|eσ2ψb(t)2/2|2
|̺b(t)|2

|F{eb·h̄b,σ1Eσ
/‖h̄b,σ1Eσ

‖1}(t)|2 dt

+
∑

b=∓1/2

∫

R

|eσ2ψb(t)2/2|2
|̺b(t)|2

|F{eb·h̄b,σ1Ec
σ
}(t)|2 dt.

Note that, by (D.3),

‖(f0X + gb,σ)1Ec
σ
‖1 ≤

3

2
µ0X(E

c
σ) +M0X(b)

∫

Ab,σ∩Ec
σ

e−bx|γhm,b,σ(x)|dx

≤ 3B0

2
σϑT +M0X(b)

∫

Ab,σ∩Ec
σ

e−bx|γhm,b,σ(x)|dx,

where, as hereafter shown,

(D.4)

∫

Ab,σ∩Ec
σ

e−bx|γhm,b,σ(x)|dx. σα+2

and

(D.5) ‖F{eb·h̄b,σ1Ec
σ
}‖∞ . σα+2.
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It follows that

V4 . σ2ϑT + σ2(α+2) . σ2(α+2).

We prove inequality (D.4). By Hölder’s inequality, Lemma E.2 and inequality (D.3), for

j = 0, . . . , 2k, we have
∫

Ab,σ∩Ec
σ

∣
∣
∣
∣

∫

R

e−buf0X(x− u)DjHδ(u)du

∣
∣
∣
∣
dx

≤
∫

Ab,σ∩Ec
σ

∣
∣
∣
∣

∫

R

[e−buf0X(x− u)− f0X(x)]D
jHδ(u)du

∣
∣
∣
∣
dx

+

(∫

R

|DjHδ(u)|du
)∫

Ab,σ∩Ec
σ

f0X(x)dx

.Cjδ
−j+υ

∫

Ab,σ∩Ec
σ

[L0(x) + f0X(x)] dx+C0,jµ0X(Ab,σ ∩Ecσ)

.Cjδ
−j+υ

∫

Ab,σ∩Ec
σ

[f0X(x)]
1/R+(1−1/R)

(
L0

f0X
(x)

)

dx+ (C0,j +Cjδ
−j+υ)µ0X(E

c
σ)

. δ−j+υ

(
∫

Ab,σ∩Ec
σ

f0X(x)

(
L0

f0X
(x)

)R

dx

)1/R

[µ0X(E
c
σ)]

1−1/R + σϑT−j+υ

. δ−j+υ

(
∫

R

f0X(x)

(
L0

f0X
(x) + 1

)R

dx

)1/R

σϑT (1−1/R) + σϑT−j+υ.

Consequently,
∫

Ab,σ∩Ec
σ

e−bx|γhm,b,σ(x)|dx. συ+ϑT (1−1/R) + συ+ϑT . σϑT (1−1/R) + σϑT . σα+2

by choosing T ≥ [(α+2)R]/[ϑ(R− 1)]. With this choice, the condition T ≥ [(α+ 2)/ϑ] is

satisfied. Thus, ‖(f0X + gb,σ)1Ec
σ
‖1 . σα+2. Inequality (D.5) follows from the tail condition

on f0X of Assumption 4.3 and the definition of the set Ecσ .

Study of the term V5

Recalling that B stands for the bilateral Laplace transform operator, we have

V5 .
∑

b=∓1/2

∫

R

|eσ2ψb(t)2/2|2
|̺b(t)|2

|[B{h̄b,σ1Eσ
/‖h̄b,σ1Eσ

‖1} −B{µH}](ψb(t))|2 dt.

For M > 0, split the integral domain into |t| ≤M and |t| >M and let the corresponding

terms be denoted by V
(1)
5 and V

(2)
5 . Let µH be a discrete probability measure on Eσ ⊆

[−aσ, aσ] satisfying, for b=∓1
2 , the constraints

∫

Eσ

ujµH(du) =

∫

Eσ

uj
h̄b,σ(u)

‖h̄b,σ1Eσ
‖1

du, j = 0, . . . , J − 1,

with J = ⌈ηeaσM⌉ for some η > 1, together with

(D.6)

∫

Eσ

ebuµH(du) =

∫

Eσ

ebu
h̄b,σ(u)

‖h̄b,σ1Eσ
‖1

du,



WASSERSTEIN CONVERGENCE IN BAYESIAN DECONVOLUTION MODELS: SUPPLEMENT 49

where the integral on the right-hand side of (D.6) is finite because
∫

Eσ
ebuh̄b,σ(u)du ≤

∫

R
ebuh̄b,σ(u)du .M0X(b)[1 +

∫

R
γhm,b,σ(u)du] =M0X(b){1 + γ[1 + O(σ2(m−1))]} by

relationship (4.10) of Lemma 4.1. Thus,
∫

Eσ

ebuh̄b,σ(u)du=O(1).

By the lower bound inequality in (E.5) of Lemma E.3 and the previously proven fact

that ‖(f0X + gb,σ)1Ec
σ
‖1 . σα+2, we have ‖h̄b,σ1Eσ

‖1 = 1 − ‖h̄b,σ1Ec
σ
‖1 & 1 − ‖(f0X +

gb,σ)1Ec
σ
‖1 & 1− σα+2. Therefore,

‖B{h̄b,σ1Eσ
/‖h̄b,σ1Eσ

‖1}(ψb)‖∞ ≤ ‖eb·h̄b,σ1Eσ
‖1/‖h̄b,σ1Eσ

‖1 .
∫

Eσ

ebuh̄b,σ(u)du.

Then, using Lemma C.1 with r= J , by the inequality J !≥ (J/e)J , we have

V
(1)
5 :=

∑

b=∓1/2

∫

|t|≤M

|eσ2ψb(t)2/2|2
|̺b(t)|2

|[B{h̄b,σ1Eσ
/‖h̄b,σ1Eσ

‖1} −B{µH}](ψb(t))|2 dt

.
a2Jσ
(J !)2

∫ M

0
t2(J−2) dt

.M−2(α+2) × a2Jσ
(J !)2

× M2(J+α)+1

2J − 3
.M−2(α+2)

(
eaσM

J

)2J+1

M2α .M−2(α+2)

because (eaσM/J)2J+1M2α < e−2J(log η)M2α < 1. Choosing M so that (σM)2 ≥ (2α +
1)| logσ|, equivalently, M ≥ σ−1[(2α + 1)| logσ|]1/2, and recalling that |eσ2ψ2

b (t)/2|2 =
O(e−(σt)2 ), we have

V
(2)
5 :=

∑

b=∓1/2

∫

|t|>M

|eσ2ψb(t)2/2|2
|̺b(t)|2

|[B{h̄b,σ1Eσ
/‖h̄b,σ1Eσ

‖1} − B{µH}](ψb(t))|2 dt

. e−(σM)2
∫

|t|>M
t−4 dt. e−(σM)2M−3 . σ2α+1M−3 . σ2(α+2).

Therefore,

V5 . V
(1)
5 + V

(2)
5 . σ2(α+2).

Conclude that ‖gY − g0Y ‖22 .
∑5

r=1 Vr . σ2(α+2). The assertion follows.

APPENDIX E: TECHNICAL LEMMAS FOR ADAPTIVE POSTERIOR

CONTRACTION RATES FOR DIRICHLET LAPLACE-NORMAL MIXTURES

LEMMA E.1. For r ≥ 0, a ∈ R and j ∈ N0, there exists a constant Cr,j <∞ such that,

for h= o(1) and δ = o(h),

(E.1)

∫

R

|x|reaδx|H(j)(x)|dx≤Cr,j.

PROOF. Recalling that H(x) = (2π)−1τ̂(x)φh
∧

(x) = (2π)−1τ̂(x)e−(hx)2/2, x ∈ R, we

have

H(j)(x) =
1

2π

j
∑

i=0

(
j

i

)

τ̂ (i)(x)Dj−iφh
∧

(x), x ∈R,
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where Dj−iφh
∧

(x) =Dj−ie−(hx)2/2 is a linear combination of terms of the form

φh
∧

(x)(−1)j1h2j2xj3 ,

where 0 ≤ j1, j2, j3 ≤ (j − i). Note that eaδxφh
∧

(x)e−(hx−aδ/h)2/2e(aδ/h)
2/2 ≤ e(aδ/h)

2/2,

where e(aδ/h)
2/2 = 1 + o(1) because (δ/h) = o(1). Then, by condition (4.5), for ν > (r +

j +1) and 0≤ j1, j2, j3 ≤ (j − i),

|x|reaδx|τ̂ (i)(x)|φh
∧

(x)|x|j3 . |x|r+j3 |τ̂ (i)(x)|,
where the function on the right-hand side of the last inequality is integrable. The assertion

follows.

LEMMA E.2. Suppose that f0X satisfies the local Hölder condition (4.3) of Assumption

4.5 with 0< υ ≤ 1 and L0 ∈ L1(R). For every b ∈R and j ∈ N0, if h= o(1) and δ = o(h),
then

(E.2)

∫

R

|[e−buf0X(x− u)− f0X(x)]D
jHδ(u)|du≤ Cj

δj
δυ[L0(x) + f0X(x)], x ∈R,

where Cj := (3Cυ,j ∨C1,j)> 0, with Cυ,j as in (E.1).

PROOF. Let x ∈ R be fixed. By Lemma C.1 and the local Hölder condition (4.3) of As-

sumption 4.5, we have

δj
∫

R

|[e−buf0X(x− u)− f0X(x)]D
jHδ(u)|du

=

∫

R

|[e−bδzf0X(x− δz)− f0X(x)]H
(j)(z)|dz

≤
∫

R

|e−bδz − 1||f0X(x− δz)− f0X(x)||H(j)(z)|dz

+ f0X(x)

∫

R

|e−bδz − 1||H(j)(z)|dz

+

∫

R

|f0X(x− δz)− f0X(x)||H(j)(z)|dz

≤ 3

∫

R

|f0X(x− δz)− f0X(x)||H(j)(z)|dz + f0X(x)

∫

R

|e−bδz − 1||H(j)(z)|dz

≤ 3δυL0(x)

∫

R

|z|υ|H(j)(z)|dz + bδf0X(x)

∫

R

|z||H(j)(z)|dz

≤ 3δυCυ,jL0(x) + bδC1,jf0X(x)<Cjδ
υ [L0(x) + f0X(x)].

Inequality (E.2) follows.

LEMMA E.3. For m ∈ N, b=∓1
2 and σ = o(1), let the set Ab,σ be defined as in (D.1).

Under Assumptions 4.3 and 4.5 on f0X , the latter with 0 < υ ≤ 1, L0 ∈ L1(R) and any

R≥ 1, there exists a constant C̄m > 0, depending onm and υ, such that, for σ small enough,

(E.3) ∀ b=∓1

2
, Acb,σ ⊆Bσ,

with Bσ := {x ∈ R : [L0(x) + f0X(x)] > C̄−1
m σ−υf0X(x)}. Furthermore, there exist con-

stants CR, DR, SR > 0, depending on m, υ and R, so that

(E.4) ‖h̄0,b1Ac
b,σ
‖1 <CRσ

υR, ‖γhm,b,σ1Ac
b,σ
‖1 <DRσ

υR
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and the function f0X + gb,σ , with gb,σ as defined in (D.2), which is non-negative, has

(E.5) 1≤ ‖f0X + gb,σ‖1 ≤ 1 + SRσ
υR.

PROOF. Let b be fixed. We begin by proving the inclusion in (E.3). Assume that x ∈Acb,σ,

i.e., γhm,b,σ(x)≤−h̄0,b(x)/2. Recall that

γhm,b,σ =

m−1∑

k=1

(−σ2/2)k
k!

2k∑

j=0

(
2k

j

)

(−b)2k−j(h̄0,b ∗DjHδ),

where, as in Lemma 4.1, for constants 0 < cδ, ch < 1, we take δ := cδσ and h :=
ch| logσ|−1/2. Note that, by relationship (6.9),

∫

R

DjHδ(u)du=

(∫

R

H(x)dx

)

1{0}(j)

=

(
1

2π

∫

R

(τ ∗ φh)
∧

(x)dx

)

1{0}(j) = (τ ∗ φh)(0)1{0}(j)≤ 1.

Then,

m−1∑

k=1

(−σ2/2)k
k!

2k∑

j=0

(
2k

j

)

(−b)2k−j
∫

R

[h̄0,b(x− u)− h̄0,b(x)]D
jHδ(u)du

= γhm,b,σ(x)− h̄0,b(x)

m−1∑

k=1

(−σ2/2)k
k!

2k∑

j=0

(
2k

j

)

(−b)2k−j
∫

R

DjHδ(u)du

≤−h̄0,b(x)
(

1

2
− (τ ∗ φh)(0)

(bσ)2

2

m−2∑

k=0

[−(bσ)2/2]k

(k +1)!

)

≤− h̄0,b(x)
2

[1− (bσ)2]<− h̄0,b(x)
4

.

For σ small enough, by Lemma E.2,
∣
∣
∣
∣
∣
∣

m−1∑

k=1

(−σ2/2)k
k!

2k∑

j=0

(
2k

j

)

(−b)2k−j
∫

R

[h̄0,b(x− u)− h̄0,b(x)]D
jHδ(u)du

∣
∣
∣
∣
∣
∣

≤ 1

M0X(b)

m−1∑

k=1

(σ2/2)k

k!

2k∑

j=0

(
2k

j

)

|b|2k−jebx
∫

R

|e−buf0X(x− u)− f0X(x)||DjHδ(u)|du

<
1

M0X(b)

(
m−1∑

k=1

[(1 + |b|cδσ)2/(2c2δ)]k
k!

max
0≤j≤2k

Cj

)

συebx[L0(x) + f0X(x)]

<
1

M0X(b)

(
m−1∑

k=1

(2/c2δ)
k

k!
max

0≤j≤2k
Cj

)

︸ ︷︷ ︸

=:C̃m

συebx[L0(x) + f0X(x)],

where 0< C̃m <∞. Then, for C̄m := 4C̃m, we have Acb,σ ⊆Bσ.

We prove the inequalities in (E.4). Concerning the first one,
∫

Ac
b,σ

h̄0,b(x)dx< συR
C̄Rm

M0X(b)

∫

Bσ

ebxf0X(x)

(
L0

f0X
(x) + 1

)R

dx≤CRσ
υR,
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where

CR :=
C̄Rm

[M0X(−1/2) ∧M0X(1/2)]

∫

R

e|x|/2f0X(x)

(
L0

f0X
(x) + 1

)R

dx<∞

by condition (4.4) and Assumption 4.3. As for the second inequality, from previous compu-

tations, for every j ∈N0, we have
∫

Ac
b,σ

|(h̄0,b ∗DjHδ)(x)|dx

< δ−j

(
∫

Ac
b,σ

∫

R

|h̄0,b(x− δu)− h̄0,b(x)||H(j)(u)|dudx+C0,jCRσ
υR

)

≤ δ−j

(

Cjδ
υ

M0X(b)

∫

Ac
b,σ

ebx[L0(x) + f0X(x)] dx+C0,jCRσ
υR

)

< δ−j

(

Cjc
υ
δ C̄

R−1
m

M0X(b)

∫

Ac
b,σ

ebxf0X(x)

(
L0

f0X
(x) + 1

)R

dx+C0,jCR

)

συR

≤ δ−jCR

(
Cjc

υ
δ

C̄m
+C0,j

)

συR,

which, defined the constant

DR :=CR

(
cυδ
C̄m

+ 1

)m−1∑

k=1

(2/c2δ)
k

k!
max

0≤j≤2k
(Cj ∨C0,j),

implies that ‖γhm,b,σ1Ac
b,σ
‖1 <DRσ

υR .

To prove the last part of the lemma, we begin by noting that

f0X + gb,σ = [f0X +M0X(b)e
−bxγhm,b,σ]1Ab,σ

+
1

2
f0X1Ac

b,σ
>

1

2
f0X ≥ 0

and

M0X(b)

∫

R

e−bxγhm,b,σ(x)dx= 0.

In fact, since by Lemma E.1 we have
∫

R
e−bδxH(x)dx <∞ because (δ/h) = o(1), it holds

that

M0X(b)

∫

R

e−bxγhm,b,σ(x)dx

=

m−1∑

k=1

(−σ2/2)k
k!

2k∑

j=0

(
2k

j

)

(−b)2k−j
∫

R

e−buDjHδ(u)du

=

(∫

R

e−bδxH(x)dx

)m−1∑

k=1

(−σ2/2)k
k!

2k∑

j=0

(
2k

j

)

(−b)2k−jbj

︸ ︷︷ ︸

(−b+b)2k=0

= 0.
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Then, since gb,σ =M0X(b)e
−b·γhm,b,σ − [M0X(b)e

−b·γhm,b,σ + (f0X/2)]1Ac
b,σ

, we have
∫

R

(f0X + gb,σ)(x)dx= 1+

∫

R

M0X(b)e
−bxγhm,b,σ(x)dx

︸ ︷︷ ︸

=0

−
∫

Ac
b,σ

[

M0X(b)e
−bxγhm,b,σ(x) +

1

2
f0X(x)

]

dx

= 1−
∫

Ac
b,σ

[

M0X(b)e
−bxγhm,b,σ(x)

︸ ︷︷ ︸

≤− 1

2
f0X(x)

+
1

2
f0X(x)

]

dx≥ 1.

On the other side, using Lemma E.2 and reasoning as in the first part of the present lemma,
∫

R

(f0X + gb,σ)(x)dx= 1−
∫

Ac
b,σ

[

M0X(b)e
−bxγhm,b,σ(x) +

1

2
f0X(x)

]

dx

= 1− 1

2
µ0X(A

c
b,σ)−M0X(b)

∫

Ac
b,σ

e−bxγhm,b,σ(x)dx

≤ 1 +M0X(b)

∫

Ac
b,σ

e−bx|γhm,b,σ(x)|dx

≤ 1 + [M0X(−1/2) ∨M0X(1/2)]DR
︸ ︷︷ ︸

=:SR

συR.

Conclude that 1≤ ‖f0X + gb,σ‖1 ≤ 1 + SRσ
υR. The proof is thus complete.

REMARK E.1. Although in condition (4.3) of Assumption 4.5 the constantR≥ (2m/υ),
for the smallest integer m≥ [2 ∨ (α+ 2)/2], in Lemma E.3 we have that R can be any real

greater than or equal to 1.

APPENDIX F: PROOF OF THEOREM 5.1 ON RATE LOWER BOUNDS

PROOF OF THEOREM 5.1. For clarity of exposition, we distinguish the cases where d= 1
and d≥ 2.

• Case d= 1

The proof develops along the lines of Theorem 3 in [21], pp. 281–285, and of Theorem 4.1

in [20], pp. 246–248. It uses intermediate results from [30], pp. 1267–1271, from Theorem 1

in [15], pp. 577 and 590–594, and from Theorem 2.10 in [18], p. 10 and pp. 34–36.

We consider mixing distributions belonging to the class D1 = P1(R, M) ∩ S(α, L). We

begin by defining a finite family of Lebesgue absolutely continuous probability measures on

R, with uniformly bounded first moments, whose densities belong to S(α, L). For 1< r < 3
2 ,

we define the density

(F.1) f0,r(x) :=Cr(1 + x2)−r, x ∈R.

LetH(·) be the kernel function on R defined in [30], p. 1268, which is such that, in particular,

• H is real, bounded and continuous,

• H(0) 6= 0,
∫

R
H(x)dx= 0 and

∫ 1
0 |H(−1)(x)|dx > 0, where H(−1)(x) :=

∫ x
−∞H(u)du

is a primitive of H ,

• |H(x)| ≤ c(1 + x2)−δ , x ∈R, with δ > 3
2 ,

• Ĥ(t) = 0 (hence also Ĥ(1)(t) = Ĥ(2)(t) = 0), |t| /∈ [1, 2].
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Let bn := ([n1/[2(α+β)+1]]∨1), where [·] denotes the integer part. For θ ∈ {0, 1}bn andC > 0,

let

(F.2) fθ(x) := f0,r(x) +Cb−αn

bn∑

s=1

θsH(bn(x− xs,n)), x ∈R,

where xs,n := (s− 1)/bn. Defined the measure µθ := fθ dλ, we show that

{µθ : θ ∈ {0, 1}bn} ⊆ D1.

The function fθ is a density

Since f0,r is a density and
∫

R
H(x)dx= 0, we have

∫

R
fθ(x)dx= 1. To ensure that fθ ≥ 0,

it is sufficient to show that |fθ − f0,r| ≤ f0,r . In fact, by Lemma 7 in [32], pp. 1923–1924,

since δ > (r ∨ 1
2), there exists C̃ > 0 such that, for n large enough, we have

f−1
0,r (x)|fθ(x)− f0,r(x)|=CC−1

r (1+x2)rb−αn

bn∑

s=1

θs|H(bn(x−xs,n))| ≤CC−1
r C̃b−αn ≤ 1.

The probability measure µθ ∈ P1(R, M)

Let µ0,r := f0,r dλ. Since r > 1 we have M1(µ0,r) :=
∫

R
|x|f0,r(x)dx <∞. For n large

enough, since δ > 1, we have

M1(µθ) =

∫

R

|x|fθ(x)dx

≤
∫

R

|x|f0,r(x)dx+Cb−αn

bn∑

s=1

∫

R

|x||H(bn(x− xs,n))|dx

≤M1(µ0,r) + cCb−(α+1)
n

bn∑

s=1

∫

R

1

(1 + u2)δ

( |u|
bn

+ xs,n

)

du

=M1(µ0,r) + cCb−(α+1)
n

∫

R

1

(1 + u2)δ

(

|u|+
bn∑

s=1

xs,n

)

du

<M1(µ0,r) +

∫

R

|u|+1

(1 + u2)δ
dx=:M0,r,δ <∞.

Thus, µθ ∈ P1(R, M) for every M ≥M0,r,δ.

The density fθ ∈ S(α, L)
By Lemma 4 in [15], p. 590, we have f̂0,r(t) = exp (−|t|2r−1), t ∈R, where 0< (2r− 1)<

2. Let L0,r,α :=
∫

R
(1 + t2)α|f̂0,r(t)|2 dt <∞. For n large enough, we have

∫

R

(1 + t2)α|f̂θ(t)|2 dt≤ 2

∫

R

(1 + t2)α
[
|f̂0,r(t)|2 +C2b−2(1+α)

n |Ĥ(t/bn)|2
]
dt

≤ 2
[
L0,r,α+C2b−1

n (4 + b−2
n )α‖Ĥ‖22

]
< 2L0,r,α +1 =: L0.

Thus, fθ ∈ S(α, L) for every L≥ L0.

The rest of the proof proceeds along the lines of Theorem 3 in [21], pp. 281–285. There-

fore, we only sketch it. Let µ̂n be an estimator of µ based on the sample Y (n). Let θ̃ be
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a random vector whose components are i.i.d. Bernoulli random variables θ̃1, . . . , θ̃bn , with

P (θ̃s = 1) = P (θ̃s = 0) = 1
2 , for s ∈ [bn]. We have

sup
µ∈D1

E
n
(µ∗µε)

W1(µ̂n, µ)≥ sup
θ∈{0,1}bn

E
n
(µθ∗µε)

W1(µ̂n, µθ)

≥ inf
ˆ̂µn

sup
θ∈{0,1}bn

E
n
(µθ∗µε)

W1(ˆ̂µn, µθ)

≥ inf
ˆ̂µn

EE
n
(µ

θ̃
∗µε)

W1(ˆ̂µn, µθ̃)

= inf
ˆ̂µn

∫

R

EE
n
(µ

θ̃
∗µε)

| ˆ̂Fn(x)−Fθ̃(x)|dx,

where the infimum is taken over all estimators ˆ̂µn of µθ , the expectation E is taken with

respect to the distribution of θ̃ and ˆ̂Fn, Fθ̃ are the distribution functions of ˆ̂µn and µθ̃ , re-

spectively. For θ ∈ {0, 1}bn and s ∈ [bn], we define the densities

fθ,s,u := f(θ1,...,θs−1,u,θs+1,...,θbn )
, u= 0, 1,

and let µθ,s,u := fθ,s,u dλ, for u= 0, 1, be the corresponding probability measures on R. Let

hθ,s,u be the density of µθ,s,u ∗ µε, for u= 0, 1. Using a standard randomization argument,

it can be shown that there exists a constant C1 > 0 such that

sup
µ∈D1

E
n
(µ∗µε)

W1(µ̂n, µ)≥C1b
−(α+1)
n

∫ 1

0
|H(−1)(u)|du& n−(α+1)/[2(α+β)+1],

provided that [1 − χ2(hθ,s,0; hθ,s,1)/2]
2n is bounded below by a constant, where the χ2-

divergence between two densities h0 and h1 on R is defined as

χ2(h0; h1) =

∫

R

[h0(x)− h1(x)]
2

h0(x)
dx.

Using standard arguments from [30], see the proof of Theorem 5, pp. 1269–1271, under as-

sumption (5.1), it can be shown that there exists a constantC2 > 0 so that χ2(hθ,s,0; hθ,s,1)≤
C2b

−[2(α+β)+1]
n ≤C2n

−1.

We now show that also the sequencen−1/2 is a lower bound on supµ∈D1
En(µ∗µε)

W1(µ̂n, µ).

In fact, replacing the function in (F.2) with

fθ(x) := f0,r(x) +Ca−1
n θH(x), x∈R, θ ∈ {0,1},

and taking an = ([n1/2] ∨ 1), all previous steps go through and we find that, for a constant

C3 > 0,

sup
µ∈D1

E
n
(µ∗µε)

W1(µ̂n, µ)≥C3a
−1
n & n−1/2

and χ2(f0 ∗ µε; f1 ∗ µε). a−2
n . n−1. Combining the two previously obtained bounds, we

conclude that

sup
µ∈D1

E
n
(µ∗µε)

W1(µ̂n, µ)&max{n−(α+1)/[2(α+β)+1], n−1/2}= n−(α+1)/[2α+(2β∨1)+1].

• Case d≥ 2

We define the d× d matrix

A=
(
1 1

t

0 Id−1

)

,
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where 0 is a (d− 1)× 1-column vector with all elements equal to 0, while 1
t is a 1× (d−

1)-row vector with all elements equal to 1 and Id−1 is the identity matrix of size (d − 1).
The matrix A is invertible and, being upper triangular, the determinant is the product of

the main diagonal entries, therefore det(A) = 1. For each observation Yi, we consider the

transformation

Zi :=AYi =A(Xi + εi) =AXi +Aεi, i ∈ [n].

Set the position

ηi :=Aεi,

the d× 1-column vector ηi has elements

ηi,j =







d∑

k=1

εi,k, if j = 1,

εi,j , if j = 2, . . . , d .

The random variables η1,1, . . . , ηn,1 are i.i.d. according to the d-fold convolution measure

µ∗dε , that is,

µηi,1 = µ∗dε , i ∈ [n].

We now show that condition (5.1) implies that, for every l= 0, 1, 2,

(F.3) |µ̂(l)ηi,1(t)|. (1 + |t|)−(βd+l), t ∈R, for i ∈ [n].

In fact, by condition (5.1) with l= 0,

|µ̂ηi,1(t)|= |[µ̂ε(t)]d|. (1 + |t|)−βd, t ∈R, for i ∈ [n].

By the same condition, with l= 1,

|µ̂(1)ηi,1(t)|= d|µ̂ε(t)|d−1|µ̂(1)ε (t)|. (1 + |t|)−(βd+1), t ∈R, for i ∈ [n],

and, with l= 2,

|µ̂(2)ηi,1(t)|= |d(d− 1)[µ̂ε(t)]
d−2[µ̂(1)ε (t)]2 + d[µ̂ε(t)]

d−1µ̂(2)ε (t)|

. (1 + |t|)−β(d−2)(1 + |t|)−2(β+1) + (1+ |t|)−β(d−1)(1 + |t|)−(β+2)

. (1 + |t|)−(βd+2), t ∈R, for i ∈ [n].

This proves that condition (F.3) holds.

We make a preliminary remark for bounding below the supremum of the L1-Wasserstein

risk. For a random vector X in Rd with distribution µ ∈ P1(R
d, M), we denote by µA the

distribution of the transformation AX, which is the image measure of µ by A. Let µ̂n be

any estimator of µ based on the observations Y(n) = (Y1, . . . , Yn). We denote by µ̂An the

corresponding estimator of µA, which is a function of Z(n) = (Z1, . . . , Zn), with Zi =AYi,

for i ∈ [n]. Then,

W1(µ̂
A
n , µ

A) = inf
τ∈Γ(µ̂A

n , µ
A)

∫

Rd×Rd

|z− z′| τ(dz, dz′)

= inf
γ∈Γ(µ̂n, µ)

∫

Rd×Rd

|Ay−Ay′|γ(dy, dy′)

= inf
γ∈Γ(µ̂n, µ)

∫

Rd×Rd

|A(y− y′)|γ(dy, dy′)≤ |A|W1(µ̂n, µ),
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where |A| := (
∑d

i=1

∑d
j=1 a

2
ij)

1/2 =
√
2d− 1. Therefore,

(F.4) |A|W1(µ̂n, µ)≥W1(µ̂
A
n , µ

A).

We now study the supremum of the L1-Wasserstein risk over the class Dd = P1(R
d, M)∩

Sd(α, L). We begin by defining a finite family of Lebesgue absolutely continuous probability

measures on Rd, with uniformly bounded first moments, whose densities belong to Sd(α, L).
Let bn := ([n1/[2(α+βd)+1]] ∨ 1). Let f0,r be the density defined in (F.1) and µ0,r = f0,r dλ
the corresponding probability measure. For θ ∈ {0, 1}bn , let µθ = fθ dλ be the probability

measure corresponding to the density fθ defined in (F.2). Define the product probability

measure on Rd

µ̄Aθ := µθ ⊗ µ
⊗(d−1)
0,r = (fθ dλ)⊗ (f0,r dλ)⊗ . . .⊗ (f0,r dλ)

having Lebesgue density f̄Aθ (x̃) = fθ(x̃1)×
∏d
j=2 f0,r(x̃j), x̃ ∈ Rd. Define µ̄θ to be the dis-

tribution of X :=A
−1X̃ when X̃∼ µ̄Aθ . In other words, µ̄θ has density f̄θ(x) = f̄Aθ (Ax). We

show that

{µ̄θ : θ ∈ {0, 1}bn} ⊆ Dd.

The probability measure µ̄θ ∈ P1(R
d, M)

Taking into account that the Euclidean norm of any vector is bounded above by its 1-norm,

that is, |x| ≤∑d
j=1 |xj |, for n large enough we have

M1(µ̄θ)≤ |A−1|M1(µ̄
A
θ )≤ |A−1|



M1(µθ) +

d∑

j=2

M1(µ0,r)



=: M̄0,r,δ <∞

by the same arguments laid down for the case d = 1. Thus, µ̄θ ∈ P1(R
d, M) for every

M ≥ M̄0,r,δ.

The density f̄θ ∈ Sd(α, L)
First note that ˆ̄fθ(t) =

ˆ̄fAθ (t ·A−1). By the same arguments exposed for the case d= 1, for

n large enough we have

d∑

j=1

∫

Rd

| ˆ̄fθ(t)|2(1 + t2j)
α dt=

d∑

j=1

∫

Rd

| ˆ̄fAθ (t ·A−1)|2(1 + t2j)
α dt

≤ d

∫

Rd

| ˆ̄fAθ (t ·A−1)|2(1 + |t|2)α dt

< d|A|2α
∫

Rd

| ˆ̄fAθ (t)|2(1 + |t|2)α dt

= d|A|2α
(∫

R

|f̂θ(t1)|2(1 + t21)
α dt1

+

d∑

j=2

∫

R

|f̂0,r(tj)|2(1 + t2j)
α dtj

)

=: L0.

Therefore, there exists a finite constant L̄0 > 0 such that
∑d

j=1

∫

Rd | ˆ̄fθ(t)|2(1+ t2j)α dt≤ L̄0.

Thus, f̄θ ∈ Sd(α, L) for every L≥ L̄0.
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Let θ̃ be a random vector whose components are i.i.d. Bernoulli random variables

θ̃1, . . . , θ̃bn , with P (θ̃s = 1) = P (θ̃s = 0) = 1
2 , for s ∈ [bn]. By the inequality in (F.4), for

any estimator ˆ̂µn that is a measurable function of the observations Z(n) from (Rd)n into the

set of probability measures on R, we have

|A| sup
µ∈Dd

E
n
(µ∗µ⊗d

ε )
W1(µ̂n, µ)≥ |A| sup

θ∈{0,1}bn

E
n
(µ̄θ∗µ

⊗d
ε )
W1(µ̂n, µ̄θ)

≥ sup
θ∈{0,1}bn

E
n
(µ̄θ∗µ

⊗d
ε )
W1(µ̂

A
n , µ̄

A
θ )

≥ sup
θ∈{0,1}bn

E
n
(µ̄θ∗µ

⊗d
ε )
W1((µ̂

A
n )1, (µ̄

A
θ )1)

≥ inf
ˆ̂µn

sup
θ∈{0,1}bn

E
n
(µ̄θ∗µ

⊗d
ε )
W1(ˆ̂µn, (µ̄

A
θ )1)

≥ inf
ˆ̂µn

EE
n
(µ̄

θ̃
∗µ⊗d

ε )
W1(ˆ̂µn, (µ̄

A
θ̃
)1)

= inf
ˆ̂µn

∫

R

EE
n
(µ̄

θ̃
∗µ⊗d

ε )
| ˆ̂Fn(x)− F(µ̄A

θ̃
)1(x)|dx,

where ˆ̂Fn is the distribution function of ˆ̂µn and F(µ̄A

θ̃
)1 is the distribution function of (µ̄A

θ̃
)1,

which is the marginal distribution of µ̄A
θ̃

on the first coordinate, that is, µθ̃, whose density is

fθ̃ = f0,r +Cb−αn

bn∑

s=1

θ̃sH(bn(· − xs,n)).

For θ ∈ {0, 1}bn and s ∈ [bn], we define the densities

f̄θ,s,u := f̄(θ1,...,θs−1,u,θs+1,...,θbn )
, for u= 0, 1,

and let µ̄θ,s,u := f̄θ,s,u dλ, for u= 0, 1, be the corresponding probability measures on R. For

any x ∈ [xs,n, xs+1,n], taking the expected value with respect to θ̃s and using the subscript θ̃\
s := (θ̃1, . . . , θ̃s−1, θ̃s+1, . . . , θ̃bn) to denote the expected value with respect to the remaining
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components of the vector θ̃, we have

EE
n
(µ̄

θ̃
∗µ⊗d

ε )
| ˆ̂Fn(x)−F(µ̄A

θ̃
)1(x)|

=
1

2
Eθ̃\s

[ 1∑

u=0

E
n
(µ̄

θ̃,s,u∗µ
⊗d
ε )

| ˆ̂Fn(x)− F(µ̄A

θ̃,s,u
)1(x)|

]

≥ 1

2
Eθ̃\s

∫

Rd

. . .

∫

Rd

|F(µ̄A

θ̃,s,0
)1(x)− F(µ̄A

θ̃,s,1
)1(x)|

×min

{ n∏

i=1

(f̄θ̃,s,0 ∗ f⊗dε )A(zi),

n∏

i=1

(f̄θ̃,s,1 ∗ f⊗dε )A(zi)

}

dz1 . . .dzn

=
1

2
b−(α+1)
n

∣
∣H(−1)(bn(x− xs,n))

∣
∣

×Eθ̃\s

∫

Rn

min

{ n∏

i=1

(
fθ̃,s,0 ∗ fη1,1

)
(zi,1),

n∏

i=1

(
fθ̃,s,1 ∗ fη1,1

)
(zi,1)

}

dz1,1 . . .dzn,1

≥ 1

4
b−(α+1)
n

∣
∣H(−1)(bn(x− xs,n))

∣
∣

×Eθ̃\s

[

1− 1

2
χ2
(

fθ̃,s,0 ∗ fη1,1 ; fθ̃,s,1 ∗ fη1,1
)]2n

because the following facts hold:

• for any θ ∈ {0, 1}bn ,

|F(µ̄A

θ,s,0)1
(x)− F(µ̄A

θ,s,1)1
(x)|=Cb−αn

∣
∣
∣
∣

∫ x

−∞
(fθ,s,0 − fθ,s,1)(u)du

∣
∣
∣
∣

=Cb−(α+1)
n

∣
∣
∣
∣

∫ x

−∞
H(bn(u− xs,n))du

∣
∣
∣
∣

=Cb−(α+1)
n

∣
∣H(−1)(bn(x− xs,n))

∣
∣;

• for any θ ∈ {0, 1}bn and u = 0, 1, all observations z1,1, . . . , zn,1 are i.i.d. according to

the probability measure

((µ̄θ,s,u ∗ µ⊗dε )A)1 = ((µ̄θ,s,u)
A)1 ∗ ((µ⊗dε )A)1 = µθ,s,u ∗ µη1,1 ;

• by the same arguments as in Theorem 3 of [21], p. 283, for any θ ∈ {0, 1}bn ,

∫

Rn

min

{ n∏

i=1

(
fθ,s,0 ∗ fη1,1

)
(zi,1),

n∏

i=1

(
fθ,s,1 ∗ fη1,1

)
(zi,1)

}

dz1,1 . . .dzn,1

≥ 1

2

[

1− 1

2
χ2
(

fθ,s,0 ∗ fη1,1 , fθ,s,1 ∗ fη1,1
)]2n

.

By applying the same arguments as in [30], p. 1270, with the difference that the error density

is ordinary smooth of order βd instead of β and condition (F.3) holds, we get that there exists

a constant c > 0 such that, for any θ ∈ {0, 1}bn , we have

χ2
(

fθ,s,0 ∗ fη1,1 , fθ,s,1 ∗ fη1,1
)

≤ cb−[2(α+βd)+1]
n . n−1.



60

Thus, for a suitable constant C ′ > 0,

|A| sup
µ∈Dd

E
n
(µ∗µ⊗d

ε )
W1(µ̂n, µ)≥ inf

ˆ̂µn

∫

R

EE
n
(µ̄

θ̃
∗µ⊗d

ε )
| ˆ̂Fn(x)− F(µ̄A

θ̃
)1(x)|dx

≥C ′b−(α+1)
n

bn∑

s=1

∫ xs+1,n

xs,n

∣
∣H(−1)(bn(x− xs,n))

∣
∣dx

=C ′b−(α+1)
n

∫ 1

0

∣
∣H(−1)(u)

∣
∣du

& n−(α+1)/[2(α+βd)+1].

To show that also the sequence n−1/2 is a lower bound on supµ∈Dd
En
(µ∗µ⊗d

ε )
W1(µ̂n, µ) we

can reason as in the case d = 1. Therefore, combining the two previously obtained bounds,

we have that

sup
µ∈Dd

E
n
(µ∗µ⊗d

ε )
W1(µ̂n, µ)&max{n−(α+1)/[2(α+βd)+1], n−1/2}= n−(α+1)/[2α+(2βd∨1)+1]

and the proof is complete.

APPENDIX G: PROOF OF THEOREM 5.2 AND RELATED RESULTS

G.1. Proof of Theorem 5.2. We first note that

sup
v∈Sd−1

‖Fµ̃1n,v
−Fµ0X,v

‖1 ≤ sup
v∈Sd−1

‖Fµ̃n,v
−Fµ0X,v

‖1 +O(n−1/2).

Then, by inequality (2.4) and Theorem 3.1 with β > 1 and any sequence hn → 0,

W1(µ̃1n, µ0X)≤CdW 1(µ̃1n, µ0X)

=Cd sup
v∈Sd−1

‖Fµ̃1n,v
−Fµ0X,v

‖1

. sup
v∈Sd−1

‖Fµ̃n,v
−Fµ0X,v

‖1 + n−1/2

. hn + sup
v∈Sd−1

‖Fµ̃Y n,v
−Fµ0Y,v

‖1 + n−1/2

+ (logn) sup
v∈Sd−1

(

h
−β|I∗hn

(v)|+1
n

∏

j∈I∗hn
(v)

|vj |β‖fµ̃Y n,v
− fµ0Y,v

‖1
)

.

We now bound ‖fµ̃Y n,v
− fµ0Y,v

‖1 uniformly in v. In [15], the authors control the errors in the

L2-distance, therefore we need to control the above term differently. For every v ∈ Rd, with

Gn :=
√
n(Pn − P0Y ) the empirical process, we have

‖fµ̃Y n,v
− fµ0Y,v

‖1 ≤
1

2π

[∫

R

(∣
∣
∣
∣

∫

R

e−ıtxµ̂0Y (tv)[1− K̂⊗d
bn

(tv)] dt

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

R

e−ıtxK̂⊗d
bn

(tv)
Gn(e

ıtv·Y)√
n

dt

∣
∣
∣
∣

)

dx

]

.

We denote by B1(v) the first integral and by B2(v) the second one. In Section G.2, we show

that

(G.1) B1(v). b
2|I∗bn(v)|
n

∏

j∈I∗bn(v)

v−2
j and E

n
0Y

[

sup
v∈Sd−1

B2(v)

]

.
(logn)3/2√

nbn
.
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Since β = 2, choosing hn = bn = [n/(logn)3]−1/(4d+1), the bounds in (G.1) imply that

sup
v∈Sd−1

(

b
−2|I∗bn (v)|+1
n

∏

j∈I∗bn(v)

v2j ‖fµ̃Y n,v
− fµ0Y,v

‖1
)

. bn +
b
−2d+1/2
n (logn)3/2√

n

. [n/(logn)3]−1/(4d+1).

The bound on supv∈Sd−1 ‖Fµ̃Y n,v
−Fµ0Y,v

‖1 proceeds similarly noting that

Fµ̃Y n,v
(y) =

1

2π

∫ y

−∞

∫

R

e−ıtxK̂⊗d
bn

(tv)φn(tv)dtdx

= Fµ0Y,v
(y) +

1

2π
√
n

∫ y

−∞

∫

R

e−ıtxK̂⊗d
bn

(tv)Gn(e
ıtv·Y)dtdx

+
1

2π

∫

R

e−ıty
[K̂⊗d

bn
(tv)− 1]

−ıt µ̂0Y (tv)dt,

so that
∫

R

|Fµ̃Y n,v
(y)−Fµ0Y,v

(y)|dy ≤ 1

2π

∫

R

∣
∣
∣
∣

∫

R

e−ıty
[K̂⊗d

bn
(tv)− 1]

−ıt µ̂0Y (tv)dt

∣
∣
∣
∣
dy

+
1

2π
√
n

∫

R

∣
∣
∣
∣

∫ y

−∞

∫

R

e−ıtxK̂⊗d
bn

(tv)Gn(e
ıtv·Y)dtdx

∣
∣
∣
∣
dy

=: B̄1(v) + B̄2(v).

The first term B̄1(v) is similar to B1(v), therefore

B̄1(v). bn

uniformly in v ∈ Sd−1. We now study the term B̄2(v) following the control of B2 in Sec-

tion G.2 below. First note that B̄2(v) = (2π
√
n)−1

∫

R
|Gn(

∫ y
−∞ gx,v(Y)dx)|dy, where the

function gx,v(Y) is defined in (G.2). Set Gy,v(Y) :=
∫ y
−∞ gx,v(Y)dx, y ∈R, write

B̄2(v) =

(∫ 0

−∞
+

∫ ∞

0

)
∣
∣Gn

(
Gy,v(Y)

)∣
∣dy.

We only study the case where y ≤ 0 because the case y > 0 can be treated similarly. Without

loss of generality, we assume that vj > 0 for all j ∈ J∗
d (v). Since

gx,v(Y) = (2π) ⊛
j∈J∗

d (v)
Kbnvj (x− v ·Y), x ∈R,

|Gy,v(Y)|.
∫ y

−∞
⊛

j∈J∗
d (v)

|Kbnvj (x− v ·Y)|dx=
∫ y−v·Y

−∞
⊛

j∈J∗
d (v)

|Kbnvj (u)|du

. P




∑

j∈J∗
d (v)

bnvjZj ≤ y− v ·Y





≤
∑

j∈J∗
d (v)

P (vjZj ≤ (y + ‖Y‖1)/(dbn)) ,
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where the Zj ’s are i.i.d. random variables with density |K|/‖K‖1. Hence, for all k > 1,

defined vmin :=minj∈[d] |vj|, we have

Gy,v(Y)≤ 1(y≤(−2‖Y‖1∧−1))dP (Z1 ≤ y/(2dbnvmin)) + d1(0≥y>(−2‖Y‖1∧−1))

. 1(y≤−1)(bn/|y|)k−1 + 1(−1<y≤0),

which in turns implies that

E0Y (Gy,v(Y)
2)≤ 1(y≤−1)(bn/|y|)2(k−1) + 1(−1<y≤0).

Using Lemma 19.36 of [61], p. 268, jointly with the computations of the integrated bracketing

entropy in Section G.2,

E
n
0Y

(

sup
v∈Sd−1

B̄2(v)

)

.

√

logn

n
.

This implies that

sup
v∈Sd−1

‖Fµ̃Y n,v
− Fµ0Y,v

‖1 . bn,

which concludes the proof.

G.2. Proof of the bounds in (G.1). We begin to prove the bound on B1(v).

• Bound on B1(v)

For v ∈Rd, let av(x) := (2π)−1
∫

R
e−ıtxµ̂0Y (tv)[1− K̂⊗d

bn
(tv)] dt, x ∈R. Using the inequal-

ity ‖av‖21 ≤ ‖âv‖2 ×‖â(1)v ‖2, see, e.g., (4.4) in [5], p. 1030, we have

[B1(v)]
2 ≤ ‖µ̂0Y (·v)[1− K̂⊗d

bn
(·v)]‖2 ×

∥
∥
∥
∥

d

dt

(

µ̂0Y (·v)[1− K̂⊗d
bn

(·v)]
)
∥
∥
∥
∥
2

.

Note that

|1− K̂⊗d
bn

(tv)| ≤
∑

j∈J∗
d (v)

|1− K̂(bnvjt)| ≤ d1(|t|≥(bn‖v‖∞)−1)

and
∣
∣
∣
∣

d

dt

(

µ̂0Y (tv)[1− K̂⊗d
bn

(tv)]
)
∣
∣
∣
∣
.
1(|t|≥(bn‖v‖∞)−1)
∏d
j=1(1 + v2j t

2)

×





∣
∣
∣
∣

d

dt
µ̂0X(tv)

∣
∣
∣
∣
+2|µ̂0X(tv)|

∑

j∈J∗
d (v)

v2j |t|
1 + v2j t

2





.
1(|t|≥(bn‖v‖∞)−1)

∏d
j=1[1 + v2j /(bn‖v‖∞)2]

(∣
∣
∣
∣

d

dt
µ̂0X(tv)

∣
∣
∣
∣
+ |µ̂0X(tv)|

)

.

By assumption (5.2), recalling inequality (2.3), we have

1

2π

∫

R

∣
∣
∣
∣

d

dt
µ̂0X(tv)

∣
∣
∣
∣

2

dt=

∫

R

x2|µ0X,v(x)|2 dx≤
∫

Rd

|x|2f0X(x)dx=M2(µ0X)<∞.

Combining previous bounds and recalling that I∗bn(v) = {j ∈ [d] : |vj |> bn}, we obtain that

B1(v).
[M2(µ0X)]

1/2 + ‖µ̂0X(·v)‖2
∏d
j=1[1 + v2j /(bn‖v‖∞)2]

. b
2|I∗bn(v)|
n

∏

j∈I∗bn(v)

v−2
j .
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• Bound on B2(v)

Set

(G.2) gx,v(Y) :=

∫

R

e−ıt(x−v·Y)K̂⊗d
bn

(tv)dt, x ∈R,

we have

B2(v) =
1

2π
√
n

∫

R

|Gn(gx,v(Y))|dx.

We now control En0Y [supv∈Sd−1 |Gn(gx,v(Y))|]. Let Gn(x) := {gx,v(Y) : v ∈ Sd−1}. We use

Lemma 19.36 of [61], p. 288. Since ‖v‖∞ ≥ 1/d for all v ∈ Sd−1, we have |gx,v(Y)|< 2d/bn.

We now bound E0Y [gx,v(Y)
2]. We have

E0Y [gx,v(Y)
2]<

2d

bn

∫

R

⊛
j∈J∗

d (v)
|Kbnvj (x− y)|f0Y,v(y)dy

≤ 2d

bn
‖f0Y,v‖∞‖K‖|J

∗
d (v)|

1 ≤ 2d

bn
‖K‖1 sup

v∈Sd−1

‖f0Y,v‖∞ =: δ2n.

For |v1 − v2| ≤ τb2nǫ, with τ ∈ (0, 1), we have

|gx,v1(Y)− gx,v2(Y)| ≤ τb2nǫ

∫

R

|t||Y|1|t|≤d/bn dt≤ τǫ|Y|d2.

Using that E0Y [|Y|2]<∞, a δn-bracket covering of Gn is obtained by an (ǫτb2n)-covering of

Sd−1 choosing τ accordingly. Hence

J[ ](δn,Gn(x),L2(P0Y )).

∫ δn

0

√

log(1/bn) + log(1/ǫ)+ dǫ.
√

lognδn .

√

logn

bn
,

which in turns implies that

1√
n

∫

|x|≤Rn

E
n
0Y

[

sup
v∈Sd−1

|Gn(gx,v(Y))|
]

dx.
Rn

√
logn√
nbn

.

We now study
∫

|x|>Rn
|Gn(gx,v(Y))|dx. Consider the event Ωn = {|Yi| ≤ Rn/2, i ∈ [n]}.

Then, |x− v ·Yi| ≥ |x|/2 when |x| ≥Rn, and, for all k ≥ 1,

gx,v(Yi) =

∫

R

e−ıt(x−v·Yi)K̂⊗d
bn

(tv)dt=
1

2π[ı(x− v ·Yi)]k
∫

R

e−ıt(x−v·Yi) d
k

dtk
K̂⊗d
bn

(tv)dt

so that, since K̂ is k-times continuously differentiable and each derivative is equal to 0 on

the boundary of its support,

|gx,v(Yi)|.
1

bn|x|k
.

Also on Ωn,

Gn(gx,v(Y)) =Gn(gx,v(Y)1(|Y|≤|x|/2))−
√
nE0Y [gx,v(Y)1(|Y|>|x|/2)]

and, for |x|>Rn, with the abuse of notation c2 := (c2 ∧ 1),

√
nE0Y [|gx,v(Y)|1(|Y|>|x|/2)].

√
n

bn
[P0X (|X|> |x|/4) + e−|x|/4].

√
n

bn
e−c2|x|/4.
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Therefore on Ωn,

sup
v∈Sd−1

∫

|x|>Rn

|Gn(gx,v(Y))|dx. sup
v∈Sd−1

∫

|x|>Rn

|Gn(gx,v(Y)1|Y|≤Rn/2)|dx+
√
n

bn
e−c2Rn/4.

Using the above construction of a covering of Gn(x) with the upper bounds, for |x|>Rn,

‖gx,v(Y)1|Y|≤Rn/2‖∞ .
1

bn|x|k
and ‖gx,v(Y)1|Y|≤Rn/2‖2 .

1

bn|x|k
,

we obtain

J[ ](2d/bn,Gn(x),L2(P0Y )).

∫ 2/(bn|x|k)

0

√

log(1/bn) + log(1/ǫ)+ dǫ.

√
logn

bn|x|k
,

so that
∫

|x|>Rn

E
n
0Y

[

sup
v∈Sd−1

|Gn(gx,v(Y)1|Y|≤Rn/2)|
]

dx.

√
logn√

nbnR
k−1
n

,

which implies that

1√
n

∫

|x|>Rn

E
n
0Y

[

1Ωn
sup

v∈Sd−1

|Gn(gx,v(Y))|
]

dx.

√
logn√

nbnR
k−1
n

+

√
n

bn
e−c2Rn/4.

We also bound

1√
n

∫

|x|>Rn

E
n
0Y

[

1Ωc
n

sup
v∈Sd−1

|Gn(gx,v(Y))|
]

dx

≤ 2En0Y

[

1Ωc
n

sup
v∈Sd−1

∫

|x|>Rn

∣
∣
∣
∣

∫

R

e−ıt(x−v·Y)K̂⊗d
bn

(tv)dt

∣
∣
∣
∣
dx

]

.

By symmetry of K, that is, K(x) =K(−x), if vj 6= 0, we have
∫

e−ıtbnvjxK̂(t)dt=
1

(bn|vj|)
K(x/(bn|vj |)) =:Kbnvj (x).

Therefore,

∣
∣
∣
∣

∫

R

e−ıt(x−v·Y)K̂⊗d
bn

(tv)dt

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
⊛

j∈J∗
d (v)

Kbnvj (x− v ·Y)
∣
∣
∣
∣
∣
≤ ⊛
j∈J∗

d (v)
|Kbnvj (x− v ·Y)|.

We thus obtain

1√
n

∫

|x|>Rn

E
n
0Y

[

1Ωc
n

sup
v∈Sd−1

|Gn(gx,v(Y))|
]

dx

≤ 2En0Y

[

1Ωc
n

sup
v∈Sd−1

∥
∥

d
⊛
j=1

Kbnvj

∥
∥
1

]

≤ 2Pn0Y (Ω
c
n)‖K‖d1.

Since Pn0Y (Ω
c
n)≤ e−Rn/4 + P0X(|X|> |x|/4) ≤ e−c2Rn/4 (assuming without loss of gener-

ality that c2 ≤ 1), by choosing Rn =R0 logn, with R0 large enough, we get that

sup
v∈Sd−1

B2(v).
Rn

√
logn√
nbn

+
2
√
n

bn
e−c2Rn/4 .

(logn)3/2√
nbn

.

This concludes the proof.
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[4] BISSANTZ, N., DÜMBGEN, L., HOLZMANN, H. and MUNK, A. (2007). Non-parametric confidence bands

in deconvolution density estimation. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 69 483-506.

[5] BOBKOV, S. (2016). Proximity of probability distributions in terms of Fourier-Stieltjes transforms. Russian

Mathematical Surveys 71 1021–1079. https://doi.org/10.1070/RM9749

[6] BOURGAIN, J. (1999). On triples in arithmetic progression. Unpublished manuscript.

[7] BUTUCEA, C. and COMTE, F. (2009). Adaptive estimation of linear functionals in the convolution model

and applications. Bernoulli 15 69–98. https://doi.org/10.3150/08-BEJ146

[8] BUTUCEA, C., DUBOIS, A., KROLL, M. and SAUMARD, A. (2020). Local differential privacy: Elbow

effect in optimal density estimation and adaptation over Besov ellipsoids. Bernoulli 26 1727 – 1764.

https://doi.org/10.3150/19-BEJ1165

[9] BUTUCEA, C. and MATIAS, C. (2005). Minimax estimation of the noise level and of the deconvolution

density in a semiparametric convolution model. Bernoulli 11 309–340.

[10] BUTUCEA, C. and TSYBAKOV, A. B. (2007). Sharp optimality in density deconvolution with dominating

bias. II. Teor. Veroyatn. Primen. 52 336–349. https://doi.org/10.1137/S0040585X97982992

[11] BUTUCEA, C. and TSYBAKOV, A. B. (2008). Sharp optimality in density deconvolu-

tion with dominating bias. I. Theory of Probability & Its Applications 52 24-39.

https://doi.org/10.1137/S0040585X97982840

[12] CAILLERIE, C., CHAZAL, F., DEDECKER, J. and MICHEL, B. (2011). Deconvolution for the Wasserstein

metric and geometric inference. Electronic Journal of Statistics 5 1392-1423.

[13] CARROLL, R. J. and HALL, P. (1988). Optimal rates of convergence for deconvolving a density. Journal of

the American Statistical Association 83 1184-1186. https://doi.org/10.1080/01621459.1988.10478718

[14] CHAE, M., DE BLASI, P. and WALKER, S. G. (2021). Posterior asymptotics in Wasserstein metrics on the

real line. Electron. J. Statist. 15 3635 – 3677. https://doi.org/10.1214/21-EJS1869

[15] COMTE, F. and LACOUR, C. (2013). Anisotropic adaptive kernel deconvolution. Annales de l’Institut Henri
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