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Abstract
In the last few decades, the advent of next-generation sequencing

technologies (NGS) has dramatically reduced the cost of DNA sequenc-
ing. This has made it possible to sequence many genomes in very little
time, paving the way for projects which aim at the creation of large and
repetitive collections of genomic sequences. The abundance of biological
data is driving the development of new memory-efficient algorithms and
data structures that can scale for large datasets, thus tackling the high
computational burden related to processing these data. This trend has
a strong impact on the text algorithms area. In this thesis, we will study
the Burrows-Wheeler Transform for processing, indexing, and compress-
ing collections of strings.

Data compression addresses the problem of encoding the input to
reduce the space needed for storing it, while text indexing focuses on
finding ways to efficiently process and extract information from the
data. In bioinformatics, these two concepts have been frequently used
together since they allow the design of data structures that can effi-
ciently process biological data while keeping the input compressed. The
Burrows-Wheeler Transform (BWT) is a reversible transformation on
strings introduced by Michael Burrows and David J. Wheeler in 1994
that plays a central role in this area. It is the key component of several
compressed data structures for text processing, like the FM-index [Fer-
raggina and Manzini, SODA, 2000] or the r-index [Gagie et al., SODA,
2018], and some of the most important software in bioinformatics, such
as the well-known Bowtie [Langmead et al., Genome Biology, 2009] and
BWA [Li and Durbin, Bioinformatics, 2010].

The BWT was originally defined for individual strings, so when the
focus moved from single sequences to string collections, there was the
need to extend this transform. Over the years, several different tools and
algorithms for computing BWT of string collections were introduced.
However, even if the transforms generated by these tools frequently
differ from each other, the problem of characterizing the BWT variants
was never addressed properly.

In this thesis, we close this gap by presenting the first systematic
study of the BWT of string collections. We identified five non-equivalent
variants computed by the tools in current use and analyzed their prop-
erties to show how exactly they differ. We complete our theoretical
analysis by comparing the five BWT variants on several real-life biolog-
ical datasets. We show that not only the differences among the resulting
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transforms can be extensive, but they also lead to significant changes in
the compressibility of the BWT of the underlying string collection.

As a further complication, the BWT variants in use often depend on
the input order of the sequences. This significantly impacts the num-
ber of runs r, which defines the size of BWT-based compressed data
structures. In this thesis, we address the problem of reordering the in-
put sequences by providing the first implementation of the algorithm
of Bentley et al. [ESA 2020], which computes the order minimizing the
number of runs of the BWT. This leads to the creation of the first tool for
computing the optimal BWT, i.e., the BWT variant which guarantees
the minimum number of runs. We show experimentally that the input
order can dramatically affect the final result: on our real-life datasets,
the optimal BWT had up to 31 times fewer runs than the BWT com-
puted without reordering the input sequences.

The extended BWT (eBWT) of Mantaci et al. [Theor. Comput. Sci.
2007] is one of the first BWT variants explicitly designed to process
string collections. Even though this transform is mathematically sound
and has useful properties, its construction has been a problem for more
than a decade. In this thesis, we present two linear-time algorithms
for computing the eBWT of large string collections. The first is an im-
provement of the Bijective BWT construction algorithm of Bannai et al.
[CPM 2019], while the second uses the Prefix-free parsing (PFP) method
[Boucher et al., Algorithms Mol. Biol., 2019] to specifically process large
and repetitive genomic sequence collections.

In the final part of the thesis, we conclude by studying, for the
first time, how to index string collections using the eBWT. We present
the extended r-index, an extension of the r-index to the eBWT, which
maintains the same performance as the original r-index while inherit-
ing the properties of the eBWT. We implemented this data structure
using a variant of the PFP algorithm and tested it on real-life biological
datasets containing circular bacterial genomes and plasmids. We show
experimentally that our index has competitive query times compared
to the r-index on different pattern lengths while supporting advanced
pattern matching functionalities on circular sequences.

4



Abstract (Italian)
Negli ultimi decenni, l’avvento delle tecnologie di sequenziamento

di nuova generazione (NGS) ha ridotto drammaticamente il costo del
sequenziamento del DNA. Questo ha reso possibile sequenziare molti
genomi in pochissimo tempo, lastricando la via a progetti per la creazione
di grandi e ripetitive collezioni di sequenze genomiche. L’abbondanza di
dati biologici sta guidando lo sviluppo di nuovi algoritmi e strutture dati
in grado di scalare per grandi quantità di dati, quindi affrontando l’alto
onore computazionale associato ad essi. Questo trend sta avendo forte
impatto nell’area degli algoritmi su testo. In questa tesi, studieremo la
Burrows-Wheeler Transform per processare, indicizzare e comprimere
collezioni di sequenze.

La compressione dati affronta il problema di codificare i dati al fine di
ridurre lo spazio necessario a salvarli in memoria, mentre l’indicizzazione
si concentra su come estrarre le informazioni dai dati in maniera effi-
ciente. In bioinformatica, questi due concetti sono spesso usati in siner-
gia in quanto permettono di progettare strutture dati in grado di proces-
sare dati biologici in forma compressa. La Burrows-Wheeler Transform
(BWT) è una trasformata reversibile su sequenze introdotta da Michael
Burrows e David J. Wheeler nel 1994 che gioca un ruolo fondamentale in
quest’area di ricerca. La BWT è una componente chiave di molte strut-
ture dati compresse su testi, come l’FM-index [Ferraggina e Manzini,
SODA, 2000] o l’r-index [Gagie et al., SODA, 2018], e alcuni dei soft-
ware più importanti in bioinformatica, come Bowtie [Langmead et al.,
Genome Biology, 2009] e BWA [Li e Durbin, Bioinformatics, 2010].

La BWT venne definita originariamente per sequenze singole, quindi
quando l’attenzione si è spostata da testi singoli a collezioni di sequenze
c’è stato il bisogno di estendere questa transformata. Nel corso degli
anni, sono stati introdotti molti software e algoritmi per calcolare la
BWT di collezioni di sequenze. Però, anche se le trasformate generate
da questi software differiscono frequentemente tra di loro, il problema
di caratterizzare le varianti della BWT non è mai stato affrontato.

In questa tesi, colmiamo questo vuoto presentando il primo studio
sistematico della BWT di collezioni di sequenze. Abbiamo identificato
cinque varianti non equivalenti calcolate dai software in uso, e abbiamo
analizzato le loro proprietà per mostrare esattamente dove differiscono.
Completiamo la nostra analisi teorica comparando le cinque varianti
della BWT su molti dataset di dati biologici di uso corrente nella ricerca.
Mostriamo che non solo le differenze tra le transformate possono essere



grandi, ma queste possono causare un cambiamento significativo nella
compressibilità della BWT della corrispettiva collezione di sequenze.

Come ulteriore complicazione, le varianti della BWT in uso spesso
dipendono dall’ordine di input delle sequenze. Questo impatta significa-
tivamente il numero di run r, che definisce la dimensione delle strutture
dati compresse basate sulla BWT. In questa tesi affrontiamo il problema
di ordinare in modo efficiente le sequenze fornendo la prima implemen-
tazione dell’algortmo di Bentley et al. [ESA 2020], che calcola l’ordine
che minimizza il numero di run della BWT. Mostriamo quindi il primo
software per calcolare la optimal BWT, ovvero la BWT di collezioni di
sequenze che garantisce il minimo numero di run. Mostriamo sperimen-
talmente che l’ordine di input può cambiare radicalmente il risultato
finale: su i nostri dati reali, l’optimal BWT ha avuto fino a 31 volte
meno run della BWT calcolata senza riordinare la sequenze di input.

La extended BWT (eBWT) di Mantaci et al. [Theor. Comput. Sci.
2007] è una della prima varianti della BWT progettata per processare
collezioni di sequenze. Anche se questa transformata è matematicamente
elegante e mostra proprietà utili, la sua construzione ha rappresentato
un problema per più di una decade. In questa tesi, mostriamo due algo-
ritmi lineari per calcolare la eBWT di grandi collezioni di sequenze. Il
primo è un miglioramento dell’algoritmo di Bannai et al. per construire
la Bijective BWT [CPM 2019], mentre il secondo usa il Prefix-free pars-
ing (PFP) [Boucher et al., Algorithms Mol. Biol., 2019] per processare
in modo specifico collezioni di sequenze grandi e ripetitive.

Nell’ultima parte della tesi, concludiamo studiando per la prima
volta come indicizzare collezioni di sequenze usando la eBWT. Qui,
presentiamo l’extended r-index, un’estensione dell’r-index alla eBWT
che mantiene le stesse performance dell’r-index originale ereditando le
proprietà della eBWT. Abbiamo implementato questa struttura dati
usando una variante dell’algoritmo PFP e l’abbiamo testata su dataset
contenenti genomi circolari di batteri e plasmidi. Mostriamo sperimen-
talmente che il nostro indice ha tempi di query competitivi rispetto
all’r-index su pattern di diversa lunghezza, mentre supporta avanzate
funzionalità di pattern matching su sequenze circolari.
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1

Introduction

The big data challenge in bioinformatics consists in finding solutions to several
computational problems related to storing, processing, and extracting informa-
tion from large amounts of biological data. The advent of next-generation se-
quencing technologies (NGS) caused a drastic increase in the sequencing data by
making available machines and software that allow sequencing genomes cheaply
and in little time [119], literally in hours [46,51]. The effects of these new tech-
nologies can be seen by looking at the curve showing the amount of biological
data in the last 40 years; in particular, the GenBank platform statistics report
that the number of sequenced bases has been doubling on average every 18
months since 1982 (see Figure 1.1). This data availability has paved the way
for the creation of pangenome datasets [100, 121–123, 125], which could bring
important future benefits in several fields, including real-life clinical research
scenarios like personalized medicine and rare disease discovery [16]. However,
these datasets are usually associated with a very high computational burden,
which makes it hard to unlock those benefits.

Fig. 1.1: Genbank and WGS statistics (https://www.ncbi.nlm.nih.gov/
genbank/statistics).

https://www.ncbi.nlm.nih.gov/genbank/statistics
https://www.ncbi.nlm.nih.gov/genbank/statistics
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One of the ways to tackle this challenge consists in developing memory-
efficient algorithms which scale for large amounts of textual data, usually using
compressed data structures that exploit the repetitiveness of biological data. In
this thesis, we will bring contributions in the text algorithm area by focusing
on three main topics: characterizing the extensions of the Burrows-Wheeler
Transform of string collections, studying efficient ways to compute these text
transforms, and indexing large genomic string collections using the extended
Burrows-Wheeler Transform of Mantaci et al. [87].

1.1 The Burrows-Wheeler Transform of string collections

As we previously mentioned, the increasing availability of low-cost NGS tech-
nologies has made it possible to create large string collections of genomic se-
quences, such as the 1000 Genomes project [122], 10,000 Genomes Project [100],
the 100,000 Human Genome Project [125], the 1001 Arabidopsis Project [123],
and the 3,000 Rice Genomes Project (3K RGP) [121]. Such pangenome datasets
reach sizes of several hundred thousand gigabytes, thus making it unpractical
to store or index them as they are. In bioinformatics, this problem is overcome
by applying a compression step to reduce the space needed for storing and
processing the data.

Luckily, DNA sequences of the same species tend to share a lot of repeated
regions. This property makes this kind of data the perfect candidate for com-
pression techniques that aim at taking advantage of repetitions to obtain a
more compact representation. The two groups of compression methods that are
the most well suited to process biological data are Lempel-Ziv-based [130, 131]
compression methods and compression methods based on the Burrows-Wheeler
Transform [24]. In this thesis, we focus on the second class of methods due to
their connection with text indexing.

1.1.1 The original Burrows-Wheeler Transform

The Burrows-Wheeler Transform, or BWT for short, is a reversible transform
on strings introduced by Michael Burrows and David J. Wheeler in 1994 [24].
Briefly, the BWT permutes the characters of a string T by sorting lexicograph-
ically the cyclic shifts (rotations) of T and concatenating the last character of
each rotation. We can imagine the BWT as the last column of the matrix con-
taining the sorted rotations of T ; in particular, the ith character of the BWT is
the last character of the ith row (see Figure 1.2). This transformation has two
surprising features, namely the clustering effect and the invertibility.

The sorting procedure brings together rotations starting with the same se-
quence of characters. It follows that if the indexed text T contains repeated
substrings, then the BWT will tend to generate equal-letter runs (clusters),
also called runs, of the same character. This is because the characters in the
last column of the BWT matrix are the left contexts of the ones in the first
column, i.e., the ith BWT character precedes in T the ith character of the
first column. Thus, if several repeated parts in T are preceded by the same
character, their left contexts will form a run in the BWT. Thanks to this prop-
erty, the BWT tends to create long runs of the same character, making it more
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compressible than the original text when applying any simple locally-adaptive
compression scheme [11].

Furthermore, if we store the position of the row containing T in the BWT
matrix, we can also invert the BWT, i.e., recover the original input T . We
obtain it using the so-called LF-property of the BWT. The LF-property says
that the ith occurrence of a character in the last column corresponds to the
ith occurrence of the same character in the first column. Thus, given the ith
occurrence of an arbitrary character c in the BWT, we can always find the
character that precedes c in the text by locating the position of the ith rotation
starting with c in the BWT matrix. Using this property, we can start from the
last character of T and compute all preceding characters in a backward fashion.

sorted rotations BWT
1 AANABANAN N
2 ABANANAAN N
3 ANAANABAN N
4 ANABANANA A
5 ANANAANAB B

→ 6 BANANAANA A
7 NAANABANA A
8 NABANANAA A
9 NANAANABA A

Fig. 1.2: Let T = BANANAAN, the BWT of T is NNNABAAAA, and the position of
T in the BWT matrix is i = 6. Note that the number of equal-letter runs of T
is 7, while it is 4 for the BWT.

Due to these two features, the BWT was originally introduced as a prepro-
cessing step for text compression. In particular, in [24], the authors showed that
applying a simple compression scheme such as the move-to-front (MTF) encod-
ing in combination with Huffman or arithmetic coding on the BWT allows to
obtain good compression rates, comparable to or better than other state-of-art
Lempel-Ziv based compressors such as gzip.

However, the BWT is not only useful for compressing data. In fact, this
transform has a key feature for text indexing, i.e., it supports efficient pattern
matching queries in a small compressed space, usually much smaller than the
size of the original input. We had the first example of this functionality in 2000
when Ferragina and Manzini introduced the FM-index showing that it is possible
to support efficient pattern matching while keeping the input compressed using
the BWT, thus initiating the research area of succinct text indexes based on
the BWT [40,41].

Example 1. The run-length compressed version of the BWT in Figure 1.2 is
RLE(NNNABAAAA) = (N,3)(A,1)(B,1)(A,4).

A further improvement was introduced in 2005, when Mäkinen et al. [83]
proposed the run-length encoding as a compression scheme for the BWT. It
is based on encoding the BWT as a list of pairs, one for each run, consisting
of a character (head) plus the length of the run, so reducing the space needed
to store long runs (see Example 1). Even though the run-length encoding is
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simpler than classic compression schemes such as the MTF and the LZ parsing,
it was shown that on highly repetitive string collections, it provides a better
space-time tradeoff than the competitors [83,84,117].

1.1.2 Extending the Burrows-Wheeler Transform

As we previously mentioned, the large availability of genomic data has led to
the development of text indexes and compressed data structures specifically
designed to handle large string collections of genomic data. This also comprises
developing variants of the BWT to string collections to store and index string
collections rather than single sequences.

Concurrently, ever increasing dataset sizes have been driving a trend toward
ever smaller data structures. Since, the BWT is usually stored in compressed
form using the run-length compression scheme, whose effectiveness directly de-
pends on r, much recent research effort has concentrated on the construction of
data structures which can not only store but query, process, and mine strings
in space and time proportional to r [5, 31,44,104].

Moreover, the parameter r is also being increasingly seen as a measure of
repetitiveness of the string, with several recent works theoretically exploring
its suitability as such a measure, as well as its relationship to other such mea-
sures [3, 50,95].

sorted
rotations BWT(M1)

1 $ABN N
2 $BAA A
3 $NAN N
4 A$BA A
6 AA$B B
7 ABN$ $
8 AN$N N
9 BAA$ $

10 BN$A A
11 N$AB B
12 N$NA A
13 NAN$ $

sorted
rotations BWT(M2)

1 $NAN N
2 $ABN N
3 $BAA A
4 A$BA A
6 AA$B B
7 ABN$ $
8 AN$N N
9 BAA$ $

10 BN$A A
11 N$NA A
12 N$AB B
13 NAN$ $

Fig. 1.3: Let M1 = [ABN$, BAA$, NAN$] and M2 = [NAN$, ABN$, BAA$] be two
permutations of the same string collection. We give an example of BWT of
string collection for the two inputs (see Chapter 3 for more details). Note the
BWT of M1 has 12 runs, while the BWT ofM2 has 9 runs.

Since the BWT was originally defined for individual sequences, computing
the BWT of string collections is not completely straightforward. In fact, there
are different strategies being employed to construct the BWT, which, as we will
see later in Chapter 3, can generate non-equivalent transforms. These differences
also extend to the number r of runs of the BWT. Considering that the data
structures based on the BWT rely on small r values to obtain good compression
rates and fast query times, studying the relationship between BWT and number
of runs is of primary importance. However, the problem of characterizing these
differences was never addressed until now in the literature.
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As a result, over the years, several different tools and algorithms employing
the BWT of string collections were introduced [68,112] but the method used to
compute the BWT is not always clearly stated, and the selection of a particular
BWT variant not motivated. All this goes with the tacit assumption that all
methods are equivalent. In this thesis, we close this gap by presenting the first
systematic study and characterization of the BWT variants of string collections
present in the literature. In Chapter 3, we will present five BWT variants we
identified in the literature as computed by 15 current tools designed to specif-
ically compute the BWT of string collections. We show that not only can the
differences among the BWT variants be extensive, but that the BWT definition
chosen can greatly influence the number of equal-letter runs of the BWT r, and
so the compressibility of the resulting transform.

This study is even more important considering that the r parameter is also
influenced by the input order of the sequences (see example in Figure 1.3). This
effect was first described in a 2012 study [32] when the authors showed that
applying a specific order to a short string set reduces the number of runs of
the corresponding BWT and improves the input’s compressibility significantly.
However, since then, this problem has been mostly overlooked, and most of
the BWT implementations in use do not address the problem of reordering the
input sequences.

Recently, Bentley et al. [10] introduced the first linear-time algorithm to
compute the permutation of the input collection that yields the minimum r
value of the resulting BWT. In this thesis, we give the first implementation of
the Bentley et al. algorithm for computing the optimal BWT (optBWT), i.e.,
the BWT of a string collection that guarantees the minimum number of runs. In
Chapter 4, we present a framework for constructing the optimal BWT, starting
from a BWT of the collection and permuting its characters. We implemented
it in the optimalBWT tool via an adaptation of two algorithms, SAIS [99] and
BCR [8]. We tested our tool on real-life and simulated data and found that
reordering the input sequences can dramatically affect the resulting BWT. On
our data, the optimal BWT has up to 31 times fewer runs than the BWT
computed with a random input order.

1.2 Indexing biological string collections

In the second part of the thesis, we focus on indexing string collections using
the extended Burrows-Wheeler Transform of Mantaci et al. [87]. Text indexing
studies how to efficiently extract information from the data. In strings, the most
fundamental problem is finding the occurrences of a short string, called pattern,
in a text that is assumed to be much larger than the pattern. This problem
is called string matching or pattern matching and is solved efficiently using a
text index. In this way, we can preprocess the input, building a data structure
that allows answering each pattern matching query in time proportional to the
length of the pattern. Without such an index, we would need to use algorithms
that have query times proportional to the length of the text [2, 23,62].

On large inputs, text indexes allow saving a lot of time by using additional
space in memory to store the necessary data structures [96]. In recent research,
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data compression is employed to keep these data structures as small as pos-
sible, thus allowing the processing of biological data while keeping the input
compressed [96]. The BWT plays a central role in this area. In particular, it is
the key component of several compressed data structures for text processing,
like the FM-index [41], the run-length FM-index [83] and r-index [44], and some
of the most popular software in bioinformatics to perform sequence alignment,
like the well-known Bowtie [69,70], and BWA [72,74].

The popularity of the BWT is due to its ability to support fast pattern
matching queries. This is obtained as means of the so-called backward search
algorithm [40]. When searching for a pattern, the backward search exploits
the property that all rotations starting with the same substring are grouped
together in the BWT matrix. It follows that we can identify an interval in the
BWT [b..e] containing all rotations starting with a certain suffix of the pattern
P [i..]. For instance, in Figure 1.2, all rotations starting with P [2..] = A are in the
interval [1..5]. Since the BWT characters are the left contexts of the characters
in the first column, we can left extend P [i..] with the character P [i − 1] using
the LF-mapping on the BWT (see Figure 1.4 for an example).

Fig. 1.4: Continuing example in Figure 1.2. Backward search step example for
the pattern P = NA. We left-extend the pattern suffix P [2..] = A with the N

character.

Backward search has two major advantages: given a pattern P [1..m], it runs
in O(m) time by computing m backward search steps. This is the same query
time complexity guaranteed by other text indexes such as the suffix tree [127].
Moreover, it can be computed on a BWT in compressed form by using some
additional small auxiliary data structures [54, 92]. In this case, it is important
to employ a compression scheme like the run-length encoding that offers good
compression rates while still allowing efficient implementation of the backward
search.

1.2.1 A text index based on the extended Burrows-Wheeler
Transform

In 2005, Mäkinen and Navarro [83] introduced the run-length FM-index (RLFM-
index), the first text index implementing the backward search in run-length
compressed space. However, even though this data structure supports count
queries in space proportional to r, locating patterns still requires a sampling or
compression scheme for the suffix array (SA) [86], i.e., the array containing the
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indexes of the text suffixes in lexicographic order. However, these schemes do
not scale well for large string collections.

In 2018 Gagie et al. solved this problem with the introduction of the r-
index [44,45], the first data structure supporting count and locate queries whose
size and time requirements can be described entirely using the number of runs
of the BWT. This result was obtained by using the Toehold lemma [108] to
augment the backward search algorithm and a new SA sampling scheme which
ensures small memory requirements in case of repetitive texts.

During the development of all these data structures, however, little atten-
tion was paid to the fact that the input nowadays is typically a string collection
(i.e., a multiset of strings), rather than an individual sequence. Indeed, this
kind of input is effectively just treated as if it was a single sequence: most tools
computing BWT of string collection just concatenate the input, adding string
separator symbols to mark string boundaries. In Chapter 3, we will see that
there are different ways to concatenate sequences; in fact, the output can vary
significantly, and this extends to the number r of runs of the BWT. More-
over, the concatenation methods depend on the input order: if the same string
collection is presented in a different order to the same tool, the text index pro-
duced may be different, including the number of runs. As a consequence, this
may result in a big variation in the memory requirement of the resulting data
structures, which is measured using r.

The extended Burrows-Wheeler Transform (eBWT) proposed by Mantaci et
al. in 2007 [87], is a BWT of string collection (see Chapter 2 for the complete
definition), which offers a solution to the problem of the variation of the number
of runs. In particular, the eBWT is independent of the input order and thus
does not suffer from the above shortcoming. The eBWT also processes every
input string as a circular string without adding string separators, thus support-
ing advanced pattern matching functionalities. However, even though eBWT
has useful properties and is the mathematically cleanest BWT extension, its
application in text indexing has never been properly investigated.

In this thesis, we close this gap by presenting an extension of the r-index to
the eBWT we called extended r-index. In Chapter 7, we detail how to construct
the extended r-index, maintaining the same core functionalities as the original
r-index while inheriting the properties of the eBWT. We note that our text
index is the first BWT-based compressed data structure whose space require-
ment is the same for all input orders. We tested the extended r-index on three
genomic datasets containing circular bacterial and plasmid genomes for pat-
terns of different lengths. In all cases, our data structure obtained competitive
or better query times compared to the r-index.

1.2.2 Constructing the extended Burrows-Wheeler Transform

Text indexing is not only about fast query times; another fundamental problem
is constructing the index efficiently. In particular, for the extended r-index, an
essential step consists of the computation of the eBWT of string collections.
However, until recently, no efficient construction algorithm for computing the
eBWT was known, which may be the reason why it has not been the method of
choice for most tools. In 2019 Bannai et al. [7] introduced a linear-time algorithm
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for computing the Bijective BWT using an adaptation of the SAIS algorithm by
Nong et al. [99]. As a by-product, this algorithm can also construct the eBWT of
a string collection, thus becoming the first linear-time algorithm for computing
the eBWT. However, it requires a preprocessing step that can be demanding
for large datasets.

In this thesis, we present a new algorithm named SAIS_for_eBWT that im-
proves and simplifies the algorithm of Bannai et al., removing the need for
preprocessing. We implemented this algorithm and included it in the cais tool.
As a by-product of this result, we obtain the first linear time algorithm for com-
puting the BWT of a single sequence that uses neither end-of-string characters
nor Lyndon words.

When computing the BWT of very large datasets like pangenome datasets, it
is not always possible to keep the computation in internal memory; this creates
a serious obstacle for the computation of text indexes for such datasets. In the
last decade, much effort was put into the development of efficient algorithms and
tools to construct the BWT of very large string collections. There are different
successful strategies used to address the dataset size problem, including (i)
keeping part of the data structures needed by the algorithm in external memory
(BCR) [8], (ii) keeping the growing BWT in the internal memory in compressed
form (ropeBWT2) [73] and (iii) computing the BWT starting from a compressed
version of the input which fits in the internal memory (Big-BWT) [17].

In 2019, Boucher et al. [21] introduced the first algorithm for computing
large BWTs which keeps all computation in internal memory. It is based on
the Prefix-free parsing (PFP) technique, a prepossessing step for compressing
large datasets. The PFP algorithm shows excellent performance on repetitive
genomic string collections and is employed as a tool to support the efficient
construction of the r-index [68].

In this thesis, we present an extension of the PFP algorithm for computing
the extended BWT of Mantaci et al. [87]. In Chapter 6, we present how to reach
this goal by combining our SAIS_for_eBWT algorithm with the PFP preprocess-
ing. We implemented this algorithm in pfpebwt, the first tool for computing
the eBWT of large string collections. We tested it on real-life genomic data and
showed that it is competitive with other tools designed to construct the BWT
of large string collections. Finally, we collaborated on developing an algorithm
inspired by the well-known RePair by Larsson and Moffat [71] for optimizing
the PFP size. We show that it can reduce the combined size of the PFP data
structures significantly on real-life datasets.

1.3 Overview of the thesis

The thesis comprises two main parts: Chapters 3, 4 deal with characterizing
the BWT variants of string collections and computing the BWT variant which
guarantees the minimum number of runs, while Chapters 5, 6, and 7 deal with
constructing and indexing string collections using the eBWT.

In Chapter 2, we give all definitions and background necessary for the fol-
lowing chapters.

In the first part of this thesis, we show that different ways to extend the
BWT to string collections generate non-equivalent transforms. In Chapter 3, we
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present the first systematic study of the BWT variants for string collections. We
define five BWT variants we identified in the literature and present where and
how much exactly they differ. The chapter also includes experiments on several
real-life genomic datasets. In Chapter 4, we present the first tool for computing
the optimal BWT of string collections, i.e., the BWT of string collections that
guarantees the minimum number of runs. We also include experiments giving
the reduction in the number of runs of the optimal BWT compared to the BWT
computed without reordering the input sequences.

In the second part of this thesis, we describe how to define an extension of
the r-index based on the extended BWT and how to construct it. In Chapter
5, we give details of SAIS_for_eBWT, a linear-time algorithm for computing
the eBWT of string collections. We also describe cais, the tool containing
the implementation of this algorithm. In Chapter 6, we present pfpebwt, the
first tool computing the eBWT of very large string collections based on the
PFP preprocessing. We also include experiments on real-life genomic datasets
assessing the performance of our tool compared to other tools currently in use.
Finally, in Chapter 7, we present how to extend the r-index of Gagie et al. to
define the extended r-index, the first text index built on the eBWT. We also
detail an efficient implementation of this new data structure and show how to
construct it using our pfpebwt tool.

We conclude in Chapter 8, with an outlook to future research directions.
The contents of Chapters 3, 4, 5, 6, 7 have been published in refereed confer-

ence proceedings. An extended version of Chapter 7 is under review for publica-
tion. Special thanks go to all co-authors of these papers and my two reviewers,
Leena Salmela and Enno Ohlebusch, whose remarks made this thesis a lot bet-
ter.
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Basics

Let Σ be a finite ordered alphabet of size σ. We use the notation T = T [1..n]
for a string T of length n over Σ, T [i] for the ith character, and T [i..j] for
the substring T [i] · · ·T [j] of T , where i ≤ j, and 1 ≤ i, j ≤ n; |T | denotes
the length of T , and ε the empty string. We refer to T [i..j] as a substring
(or factor) of T , to T [1..j] as the j-th prefix of T , and to T [i..n] = T [i..] as
the i-th suffix of T . A substring S of T is called proper if T ̸= S. Given a
positive integer i ≤ n and a symbol c ∈ Σ, a rank query rankc(T, i) returns
the number of occurrences of c in the prefix T [1..i], while selectc(T, i) returns
the position of the ith occurrence of c in T . Given two strings S and T , we
denote by lcp(S, T ) the length of the longest common prefix of S and T , i.e.,
lcp(S, T ) = max{i | S[1..i] = T [1..i]). Given a string T and an integer m > 0,
we refer to Tm as the m-fold concatenation of T , and to Tω as the infinite string
TT · · · obtained by concatenating an infinite number of copies of T .

Every string T can be written uniquely as T = Um, where U is primitive.
We refer to U as the root of T , root(T ), and to m as the exponent of T , exp(T ),
i.e. T = root(T )exp(T ). A string T is called primitive if T = Um implies T = U
and m = 1. A run in a string T is a maximal substring consisting of the same
character; we denote by runs(T ) the number of runs of T . An end-of-string
character, usually denoted by $, is a special character appended at the end of
T ; this character is not an element of Σ and is assumed to be smaller than all
characters from Σ. Note that appending a $ makes any string primitive.

The string S is a conjugate of the string T if S = T [i..n]T [1..i− 1], for some
1 ≤ i ≤ n (also called the i-th rotation of T ). The conjugate S is also denoted
conji(T ). The string T is primitive if and only if it has n distinct conjugates.
A Lyndon word is a primitive string that is lexicographically smaller than all
of its conjugates. Given a string T , U is a circular or cyclic substring of T if
it is a factor of TT of length at most |T |, or equivalently if it is the prefix of
some conjugate of T . For example, ATA is a cyclic substring of AGCAT. A string
T [1..n] can also be regarded as a circular or cyclic string; in this case we set
T [0] = T [n] and T [n+ 1] = T [1].

For two strings S, T , the (unit-cost) edit distance distedit(S, T ) is defined
as the minimum number of operations necessary to transform S into T , where
an operation can be deletion or insertion of a character, or substitution of a
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character by another. The Hamming distance distH(S, T ), defined only if |S| =
|T |, is the number of positions i such that S[i] ̸= T [i].

The order relations

The lexicographic order on Σ∗ is defined by S <lex T if S is a proper prefix of
T , or if there exists an index j s.t. S[j] < T [j] and for all i < j, S[i] = T [i].
The colexicographic order, or colex-order (referred to as reverse lexicographic
order in [32, 73]) is defined by S <colex T if Srev <lex T rev, where Xrev =
X[n]X[n− 1] · · ·X[1] denotes the reverse of the string X = X[1..n].

The omega order [47, 87], or ω-order is defined by S ≺ω T if root(S) =
root(T ) and exp(S) < exp(T ), or Sω <lex Tω (this implies root(S) ̸= root(T )).
One can easily verify that the ω-order relation is different from the lexicographic
one. For example, CG <lex CGA but CGA ≺ω CG.

The Suffix Array

Given a string T [1..n], the suffix array [86], denoted by SA = SAT , is defined as
the permutation of {1, . . . , n} such that T [SA[i]..] is the i-th lexicographically
smallest non-empty suffix of T , T [SA[i]..] <lex T [SA[i + 1]..]. For an example,
see Fig 2.1. Given the SA of T , we denote the inverse suffix array as ISA, and
define it as ISA[SA[i]] = i for all i = 1, . . . , n. In several data structures (such
as the FM-index [41] or the r-index [45]), instead of storing the entire array SA,
only a proper subset is stored; this will be referred to as an SA-sample.

A basic property of the SA is that, given a substring P of T , the set of
occurrences of P appear as an interval in SA. Thus, P defines a unique interval
[sP , eP ] of SA, namely SA[sP ] is the lexicographically least suffix and SA[eP ]
the lexicographically largest suffix which have P as a prefix.

The Conjugate Array and the Burrows-Wheeler Transform

Given a string T [1..n], the conjugate array, also called circular suffix array in [7,
58] and BW-array in [66, 106], CA = CAT of T is defined as the permutation
of {1, . . . , n} such that CA[i] = j if conjj(T ) is the i-th conjugate of T with
respect to the lexicographic order, with ties broken according to string order, i.e.,
if CA[i] = j and CA[i′] = j′ for some i < i′, then either conjj(T ) <lex conjj′(T ),
or conjj(T ) = conjj′(T ) and j < j′. Note that if T is a Lyndon word, then
CA[i] = SA[i] for all 1 ≤ i ≤ n [48].

The Burrows-Wheeler Transform [24], denoted as BWT, is a reversible trans-
formation extensively used in data compression. Given a string T [1..n], BWT(T )
is a permutation of the letters of T defined as the concatenation of the last
characters of all lexicographically sorted conjugates of T . For an example, see
Fig 2.1. The mapping T 7→ BWT(T ) is reversible, up to rotation, and can be
made uniquely reversible by adding to BWT(T ) an index indicating the rank
of T in the lexicographic order of all of its conjugates. Given BWT(T ) and an
index i, the original string T can be computed in linear time [24]. The BWT
itself can be computed from the conjugate array since for all i = 1, . . . , n,
BWT(T )[i] = T [CA[i] − 1], where T is considered to be cyclic, so if CA[i] = 1
then BWT(T )[i] = T [n].
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The end-of-string character

It should be noted that in many applications, it is assumed that an end-of-string
character, denoted as $, is appended at the end of the string. Since T$ is the
only conjugate ending with $, BWT(T$) is now uniquely reversible without the
need for the additional index i. Moreover, adding a final $ makes the string
primitive, and $T is a Lyndon word. Therefore, computing the conjugate array
becomes equivalent to computing the suffix array, since CAT$[i] = SAT$[i].
Thus, applying one of the linear-time suffix array computation algorithms [94,
111] leads to linear-time computation of the BWT.

When no $-character is appended to the string, the situation is slightly
more complex. For primitive strings T , first the Lyndon conjugate of T has to be
computed (in linear time, [115]) and then a linear-time suffix array algorithm can
be employed [48]. For strings T which are not primitive, one can take advantage
of the following well-known property of the BWT: let T = Sk and BWT(S) =
U [1..m], then BWT(T ) = U [1]kU [2]k · · ·U [m]k (Prop. 2 in [88]). Thus, in order
to compute BWT(T ), it suffices to compute the BWT of root(T ). The root of
T can be found by computing the border array b of T : T is not primitive if and
only if n/(n− b[n]) is an integer, which is then also the length of root(T ). For
example, the border array can be computed by the preprocessing phase of the
KMP-algorithm for pattern matching [62], in linear time in the length of T .

The LF- and ϕ-mappings

The LF-mapping (last-to-first mapping) [24] plays a central role in BWT-based
algorithms. Given a string S of length n, the LF-mapping is a permutation
of {1, . . . , n} defined as: LF(j) < LF(j′) if S[j] < S[j′] or S[j] = S[j′] and
j < j′. This permutation is also called standard permutation of S [78]; when
S is the BWT of some primitive string, then the lexicographically smallest
such T can be constructed using the LF-mapping as follows [24]: T [n] = S[1]
and for i ≥ 1, T [n − i] = T [LFi(1)]. In particular, the LF-mapping allows to
walk through the original string T , in a back-to-front direction, by mapping the
lexicographically jth conjugate conji(T ) to the lexicographic rank of conji−1(T ).
The same mapping is fundamental for backward search [41], the efficient pattern
matching algorithm on BWT-based data structures.

Another fundamental permutation is the ϕ-mapping introduced in [60]. This
permutation is defined as ϕ(i) = SA[ISA[i]− 1] if ISA[i] > 1, and ϕ(i) = SA[n]
otherwise. In other words, ϕ maps the ith suffix T [i..] to the lexicographi-
cally next smaller suffix. In terms of the suffix array, this can be expressed
as: ϕ(SA[1]) = SA[n] and ϕ(SA[j]) = SA[j − 1], for j > 1. See Figure 2.1 for an
example. Note that the ϕ-function can be similarly defined on the basis of the
conjugate array CA, and the LF-mapping on that of the SA if an end-of-string
marker is present.

Example 2. Let T = GATAT, and T ′ = GATAT$ be two input strings. In Figure 2.1,
for each string, we list its BWT, LF-mapping, and ϕ. We also give the CA and
the SA for T and T ′, respectively.
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T = GATAT

i ϕT CAT LFT BWTT

1 4 2 3 G ATATG
2 5 4 4 T ATGAT
3 1 1 5 T GATAT
4 2 3 1 A TATGA
5 3 5 2 A TGATA

T ′ = GATAT$

i ϕT ′ SAT ′ LFT ′ BWTT ′

1 2 6 5 T $GATAT
2 4 4 6 T AT$GAT
3 5 2 4 G ATAT$G
4 6 1 1 $ GATAT$
5 1 5 2 A T$GATA
6 3 3 3 A TAT$GA

Fig. 2.1: Figure for Example 2.

The r-index

A fundamental parameter of the BWT is the number of runs r. For example,
in Figure 2.1, r = 3 for the string T = GATAT since BWT (T ) = GTTAA. The
memory required by the run-length encoded version of the BWT is O(r). The
r-index [45], building on the run-length encoded FM-index of Mäkinen and
Navarro [83,84] and the Toehold Lemma of Policriti and Prezza [108], is a data
structure that not only requires O(r) memory only, but supports pattern match-
ing queries in time which depends almost entirely on the size of the pattern. In
detail, let w be the size of a computer word. Given a pattern P of length p, the
r-index returns the number occ of occurrences of P in O(p log logw(σ + n/r))
time (a count query), and, after having answered the count query, returns all
occ occurrences of P in O(log logw(n/r)) time per occurrence. In other words,
it answers locate queries in total time O(log logw(σ + n/r) + occ log logw(n/r))
time.

Two crucial ideas are combined in the workings of the r-index: (1) the Toe-
hold Lemma [108] allows to produce one occurrence along with answering a
count query (the toehold value), and (2) repeated application of the ϕ-function
returns all occurrences contained in the SA-interval of P .

The r-index consists of three main components: (1) a data structure that
stores the run-length encoded BWT supporting LF-mapping queries, (2) an SA-
sample for each of the r runs, and (3) a data structure supporting ϕ operations.
In particular, in [45], (1) builds on the RLFM-index of Mäkinen et al. [84]
combined with the data structures of Belazzougui and Navarro [9], while (2) is an
array storing the SA-samples at the end of each run. Finally, (3) is implemented
as a predecessor data structure built on SA-samples at the beginning of each
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run, with the corresponding SA-sample at the end of the previous run as satellite
information.

The Generalized Conjugate Array and extended Burrows-Wheeler
Transform

Given a multiset of stringsM = {T1[1..n1], . . . , Tm[1..nm]}, we denote the total
length of the strings inM as ||M||, i.e., ||M|| = |T1|+ . . .+ |Tm|. Alternatively,
we denote N = ||M||. The generalized conjugate array ofM, denoted by GCAM
or just by GCA, contains the list of the conjugates of all strings in M, sorted
according to the ω-order relation. More formally, GCA[i] = (d, j) if conjj(Td)
is the i-th string in the ⪯ω-sorted list of the conjugates of all strings of M,
with ties broken first w.r.t. the index of the string (in case of identical strings),
and then w.r.t. the index in the string itself. The text order forM is defined by
g <text g

′, where g = (d, j) and g′ = (d′, j′), if d < d′ or d = d′ and j < j′. Given
a string P [1..p] (the pattern), we say that P occurs inM = {T1, T2, . . . , Tm} if
P occurs as a cyclic substring of one of T1, T2, . . . , Tm. More formally, we define
an (cyclic) occurrence of P in M as a pair (d, j) such that P is a prefix of
conjj(T d).

M = {AAT, TAGA, AT}

i GCAM LFM eBWTM
ω-sorted
conjugates

1 (1,1) 7 T AAT
2 (2,2) 8 T AGAT
3 (1,2) 1 A ATA
4 (2,4) 6 G ATAG
5 (3,1) 9 T AT
6 (2,3) 2 A GATA
7 (1,3) 3 A TAA
8 (2,1) 4 A TAGA
9 (3,2) 5 A TA

Fig. 2.2: An illustration of the eBWT for the multiset of strings M. From left
to right, we report the index i, the generalized conjugate array GCA for M,
the LF permutation, the eBWT, and the conjugates of M sorted according to
the ω-order.

The extended Burrows-Wheeler Transform (eBWT) is an extension of the
BWT to a multiset of strings [87]. It is a bijective transformation that, given
a multiset of strings M = {T1, . . . , Tm}, produces a permutation of the char-
acters on the strings in the multiset M. Formally, eBWT(M) can be com-
puted by sorting all the conjugates of the strings in the multiset according to
the ⪯ω-order, and the output is the string obtained by concatenating the last
character of each conjugate in the sorted list, together with the set of indices
representing the positions of the original strings of M in the list. Given the
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generalized conjugate array of M we can construct eBWT(M) in linear time,
since eBWT(M)[i] = Td[j − 1] if GCA[i] = (d, j), where again, the strings in
M are considered to be cyclic. It is easy to see that when M consists of only
one string, i.e.M = {T}, then eBWT(M) = BWT(T ).

Example 3. In Figure 2.2 we show the eBWT, GCA, and LF-mapping for the
multiset of strings M = {AAT, TAGA, AT}. From the GCA we can compute
eBWT(M) = TTAGTAAAA, with index set {1, 5, 8}. We highlight the differ-
ence between the ω-order and lexicographic order in the GCA by noting that
GCAM[4] = (2, 4) and GCAM[5] = (3, 1) corresponding to conjugates ATAG

and AT respectively.

Similarly to the BWT, the eBWT is a reversible transformation, i.e., starting
from eBWT(M) the original strings of the multiset M can be recovered (up
to rotation). Such a recovery can be realized by using the LF-mapping denoted
by LFM and defined as the standard permutation of the string eBWT(M).
In particular, for each d = 1, . . . ,m, the string Td is constructed as follows:
Td[|Td|] = eBWT(M)[kd], with GCA[kd] = (d, 1), and for i ≥ 1, Td[|Td| −
i] = Td[LF

i
M(kd)]. Finally, the definition of the ϕ-mapping can be naturally

extended to the generalized conjugate array GCAM as follows: ϕM(GCA[1]) =
GCA[||M||] and for each h > 1, ϕM(GCA[h]) = GCA[h− 1].
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An extensive study of the BWT of string
collections

In this chapter, we present an extensive analysis of different BWT variants of
string collections present in the literature. The contents of this chapter were
published in [28–30].

As mentioned in the introduction, the BWT was originally designed for
individual strings, and it is not completely straightforward how to compute
the BWT of string collections. In fact, there exist multiple ways to extend
the BWT that generate non-equivalent results. As an effect, there are several
publicly available tools explicitly designed to compute the BWT of string col-
lections that use not only different algorithms but also output different data
structures. We identified 15 such tools computing variants of the BWT; among
these BEETL, BCR_LCP_GSA [8], ropebwt2 [73], nvSetBWT [105], msbwt [57],
Merge-BWT [116], eGSA [82], BigBWT [21], bwt-lcp-parallel [13], eGAP [36],
gsufsort [81], G2BWT [33], grlBWT [34], cais and pfpebwt [17]. We show a first
example, in Table 3.1, where we give 5 BWT variants on a toy example of 5
DNA strings.

The classical way of computing text indexes of string collections is to con-
catenate the strings, adding a different end-of-string-symbol at the end of each
string, and then computing the index for the concatenated string. This is the
method traditionally used for generating classical data structures such as suffix
trees and suffix arrays for more than one string, and results in the so-called gen-
eralized suffix tree resp. generalized suffix array (see e.g. [56,101]). The drawback
of this method is an increase of the size of the alphabet, from σ, often a small
constant in applications, to σ + k, where k is the number of elements in the
collection, typically in the thousands or even tens or hundreds of thousands.

In the literature, we can find two main classes of methods designed to avoid
this drawback: using only conceptually different end-of-string characters as in
ropebwt2 [73] and gsufsort [81] or concatenating the string with the same
dollar as in BigBWT [21]. Many studies nowadays use string collections in exper-
iments (e.g. [5, 67, 112]), and apply one of the methods to avoid the alphabet
size increase; however, the exact method used by the software is not always
stated explicitly. Underlying this is the implicit assumption that all methods
are equivalent.

In 2007, Mantaci et al. [87] introduced the eBWT, which is the first gener-
alization of the BWT to a multiset of strings not using dollars. The eBWT, like
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variant result on example tools
eBWT CGGGATGTACGTTAAAAA pfpebwt [17], cais [17]
dolEBWT GGAAACGG$$$TTACTGT$AAA$ G2BWT [33], pfpebwt [17], msbwt [57]

cais [17]
mdolBWT GAGAAGCG$$$TTATCTG$AAA$ BEETL [8], ropebwt2 [73], nvSetBWT [105],

Merge-BWT [116], eGSA [82], eGAP [36],
bwt-lcp-parallel [13], gsufsort [81],
grlBWT [34], BCR_LCP_GSA [8]

concatBWT $AAGAGGGC$#$TTACTGT$AAA$ BigBWT [21], tools for single-string BWT
colexBWT AAAGGCGG$$$TTACTGT$AAA$ ropebwt2 [73]

Table 3.1: The different BWT variants on the multiset M =
{ATATG, TGA, ACG, ATCA, GGA}.

the BWT, is reversible; moreover, it is independent of the order in which the
strings in the collection are presented. This is not true of any of the methods
mentioned above. All tools but pfpebwt and cais (see Chapters 5 and 6) append
an end-of-string character to the input strings, explicitly or implicitly, and as
a consequence, the resulting data structures differ from the one defined in [87].
Moreover, the output in most cases depends on the input order of the sequences
(except for [33], [57] and using a specific option [73]). As a further complication,
the exact nature of this dependence differs from one data structure to another.

The result is that the BWT variants computed by different tools on the
same dataset, or by the same tool on the same dataset but given in a different
order, may vary considerably. As we will show, this variability extends to the
parameter r, the number of runs of the BWT. This is all the more important
given the fact that r (and the related parameter n/r, the average length of a
run) is increasingly being used as a parameter characterizing both the BWT-
based data structures and the datasets themselves, namely as a measure of their
repetitiveness (see e.g. [5, 20,31]).

In this chapter, we show what is, to the best of our knowledge, the first
systematic treatment of the different BWT variants in use for collections of
strings. We define five distinct BWT variants, which are computed by 15 cur-
rent tools designed explicitly for string collections. Given these transforms, we
formally describe the differences between these, identifying specific intervals to
which differences are restricted. We show the influence of the input order on
the output and how it interacts with the different BWT variant definitions. Fi-
nally, we describe the consequences on the number of runs r of the BWT and
complement our theoretical analysis with extensive experiments, comparing the
five BWT variants on eight real-life datasets with different characteristics.

3.1 Related work

In this chapter, we consider tools for string collections, so we did not include any
tool that computes the BWT of a single string, such as libdivsufsort [90], sais-
lite-lcp [42], libsais [53], bwtdisk [37]. Even though in several cases, these are the
tools used for collections of strings, the data structure they compute depends
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on the specific method used to concatenate the strings of the input collections.
Nor did we include other BWT variants for single strings, such as the bijective
BWT [49,65], since, again, these were not designed for string collections.

In addition, we did not include any tools that compute the xBWT of Ferrag-
ina et al. [38,39], among these Big-xBWT [43] and the tool in [102]. The xBWT,
as opposed to all other BWT variants we review, first maps the input to a tree
and then applies the xBWT to it, making it a BWT-like index for labeled trees,
rather than for strings. Moreover, the xBWT is not a permutation of the input
characters; it can be shorter than a BWT. Due to this, the output is not easily
comparable to the other BWT variants we review. Last Big-xBWT requires a
reference sequence as input, in contrast to all other tools.

There has been considerable interest recently in the parameter r, the number
of runs of the BWT: it was put in relation with other measures of repetitiveness
in [61], while both [25] and [10] studied the question which permutation of
the input strings of the collection results in the lowest value for r. Since the
BWT variant used in [25] (the BWT of the strings concatenated with the same
separator symbol but without an additional end-of-string character) differs from
all BWT variants that have been implemented by some tools, we do not include
it in this study. The result by Bentley et al. [10], on the other hand, is more
related to the BWT variants we review, and we employ it as a benchmark in our
experimental comparisons (Section 3.6). See Chapter 4 for an implementation
and extensive experiments on the algorithm of Bentley et al.

3.2 Overview

In Section 3.3, we present the BWT variants and discuss how to construct them.
In Section 3.4, we discuss the consequences of adding the separator characters
and show the effects on the parameter r. In Section 3.5, we discuss the per-
mutations induced by the separator-based BWT variants. Finally, we present
our experimental results and some conclusions from our study in Sections 3.6
and 3.7.

3.3 BWT variants of string collections in the literature

We identified five distinct transforms, which we list below.
These BWTs are computed by the software we listed in Table 3.1. LetM =

{T1, . . . , Tk} be a multiset of strings, with total length NM =
∑k

i=1 |Ti|. Since
several of the data structures depend on the order in which the strings are listed,
we implicitly regard M as a list [T1, . . . , Tk], and write (M, π) explicitly for a
specific permutation π in which the strings are presented.

1. eBWT(M): the extendedBWT ofM of Mantaci et al. [87].
2. The multidollar BWT (mdolBWT) is defined as the BWT of the concatena-

tion of all input strings separated with different dollars, mdolBWT(M) =
BWT(T1$1T2$2 · · ·Tk$k), where the dollars are assumed to be smaller than
all characters in Σ and $1 < $2 < . . . < $k. Alternatively, the mdolBWT
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can be defined as the eBWT of the strings terminated with different dollars
mdolBWT(M) = eBWT({Ti$i | Ti ∈M}).

3. The dollar-eBWT (dolEBWT) is defined as the mdolBWT of a string col-
lection, dolEBWT(M) = mdolBWT(M, δ) where δ is the permutation cor-
responding to the lexicographic order. Alternatively, the dolEBWT can be
defined as the eBWT of a string collection where all input strings are ter-
minated with the same dollar, dolEBWT(M) = eBWT({Ti$ | Ti ∈M}).

4. The concatenated BWT (concBWT) is defined as the BWT of the concate-
nation of all input strings separated with the same dollar plus a final eof
character, concBWT(M) = BWT(T1$T2$ · · ·Tk$#), where # < $.

5. The colexicographic BWT (colexBWT) is defined as the mdolBWT of a col-
lection of strings, colexBWT(M) = mdolBWT(M, γ), where γ is the
permutation corresponding to the colexicographic (aka ’reverse lexicographic’)
order of the strings in M.

Because all BWT variants except the eBWT use additional end-of-string
symbols as string separators, we refer to these four by the collective term
separator-based BWT variants. In Table 3.5, we show the five data structures
on our running example of five DNA strings and give the first properties of
these data structures. For ease of exposition and comparison, we replaced all
separator symbols with the same dollar-sign $ for all string separator sym-
bols, even where, conceptually or concretely, different dollar-signs are assumed
to terminate the individual strings, as is the case for mdolBWT. Moreover, the
concBWT contains one additional character, the final end-of-string symbol, here
denoted by #, which is smaller than all other characters; thus, the additional
rotation starting with # is the smallest and results in an additional dollar in
the first position of the transform. For ease of comparison, we remove this first
symbol from concBWT and replace the # by $, we refer to this transform as
adapted concBWT.

Finally, we note that both the dolEBWT and the colexBWT can be defined
using the mdolBWT. These two transforms correspond to the special case where
the input strings are sorted according to a specific order relation, namely the
lexicographic and the colexicographic order, respectively.

3.3.1 Methods to compute the BWT variants

pfpebwt and cais are the only current tools in the literature for computing
the eBWT (see Chapters 5 and 6 for a complete description). Note that the
eBWT differs from the other BWT variants in several ways, most importantly
in the order relation for sorting conjugates: while the BWT uses lexicographic
order, the eBWT uses the so-called omega order (see Chapter 2). This can be
clearly seen in Table 3.4, where appending dollars leads to a completely different
order of the strings’ conjugates. Due to this, these two tools feature different
characteristics from all other software. In particular, they do not use dollars to
separate the strings in the input and compute the final transform by sorting the
strings’ conjugates circularly rather than sorting suffixes.

On the other hand, the separator-based BWTs represent the vast major-
ity of the BWT of string collections used in the literature. Here we need to
make an important distinction between the tools computing the mdolBWT and
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the concBWT. The tools computing the mdolBWT append implicitly different
end-of-string-symbols, i.e. they use the same dollar-sign and apply string input
order to distinguish them. However, from an algorithmic point of view, there
are different ways to implement this method. For example, the gsufsort tool
explicitly produces the concatenation of the input strings separated by the same
dollar sign; then it computes the SA and the BWT of the concatenation, break-
ing ties between equal suffixes using the dollar positions. On the other hand, the
BEETL tool only simulates the suffix sorting procedure without concatenating
the strings or even appending the end-of-string characters. However, in terms
of the final transform, all these tools produce an equivalent BWT.

As for computing the concBWT, we need to separate the input strings using
the same end-of-string-symbol and compute the BWT of the concatenation; in
this case, a different end-of-string-symbol # has to be added to the end of the
concatenated string, as in BigBWT [21] to ensure correctness. An equivalent so-
lution is concatenating the input strings without removing the end-of-line and
end-of-file characters since these act as separators. In Section 3.5, we will show
that it is not possible to define the mdolBWT using the concBWT. Thus, we
cannot use the same algorithmic approaches for both transforms, noting that
they are not equivalent. Finally, we note that the concBWT can be directly com-
puted from the SA of input strings concatenated with the same dollar without
adding the final end-of-string symbol #. However, in this case, when inverting
the concBWT we need to use a slightly different algorithm which causes the
loss of the original order of the sequences in the concatenation.

3.4 The effects of adding separator symbols

The first obvious difference, when adding separator symbols, is in the length of
the transform. The eBWT(M) has length NM while all other BWT variants
have length NM+k since they contain an additional end-of-string character for
each input string.

In all four separator-based transforms, the k-length prefix of the transform
consists of a permutation of the last characters of the input strings. This is
because the k rotations starting with dollar are always the lexicographically
smallest among all rotations. On the other hand, in the eBWT, these characters
occur interspersed in the transform, namely in the positions corresponding to
the omega-ranks of the input strings Ti.

The next point is that adding a $ to the end of each string introduces a
difference between the suffixes and the other substrings occurring as internal
factors: since the separators are smaller than all other characters, occurrences
of a substring as suffix will be listed en bloc before all other occurrences of the
same substring. On the other hand, in the eBWT, these occurrences will be
listed interspersed with the other occurrences of the same substring.

Example 4. Let M = {AACGAC, TCAC} and U = AC. U occurs both as a suffix
and as an internal factor; the characters preceding it are A (internal substring)
and C,G (suffix), and we have eBWT(M) = CGACATAACC, dolEBWT(M) =
CC$GCAAATAC$ since ACGACA <lex ACTA while ACGAC$A >lex AC$TA.
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index mdolBWT rotation
(1,6) G $1ATATG
(2,4) A $2TGA
(3,4) G $3ACG
(4,5) A $4ATCA
(5,4) A $5GGA
(2,3) G A$2TG
(4,4) C A$4ATC
(5,3) G A$5GG
(3,1) $3 ACG$3
(1,1) $1 ATATG$1
(4,1) $4 ATCA$4
(1,3) T ATG$1AT
(4,3) T CA$4AT
(3,2) A CG$3A
(1,5) T G$1ATAT
(3,3) C G$3AC
(2,2) T GA$2T
(5,2) G GA$5G
(5,1) $5 GGA$5
(1,2) A TATG$1A
(4,2) A TCA$4A
(1,4) A TG$1ATA
(2,1) $2 TGA$2

index colexBWT rotation
(1,5) A $1ATCA
(2,4) A $2GGA
(3,4) A $3TGA
(4,4) G $4ACG
(5,6) G $5ATATG
(1,4) C A$1ATC
(2,3) G A$2GG
(3,3) G A$3TG
(4,1) $ ACG$4
(5,1) $ ATATG$5
(1,1) $ ATCA$1
(5,3) T ATG$5AT
(1,3) T CA$1AT
(4,2) A CG$4A
(4,3) C G$4AC
(5,5) T G$5ATAT
(2,2) G GA$2G
(3,2) T GA$3T
(2,1) $ GGA$2
(5,2) A TATG$5A
(1,2) A TCA$1A
(5,4) A TG$5ATA
(3,1) $ TGA$3

Table 3.2: From left to right we show the mdolBWT, and the colexBWT of the
string collection M = {ATATG, TGA, ACG, ATCA, GGA}.

In addition, it should be noted that adding end-of-string symbols to the
input strings changes the definition of the order applied. As observed above, the
omega-order coincides with the lexicographic order on all pairs of strings S, T
where neither is a proper prefix of the other. This is because the lexicographic
order always ranks first the string that is a prefix of the other, while this is not
true with the omega-order. It follows that if the two distinct strings have the
same length, neither can be a proper prefix of the other; thus, the two ordering
relations are equivalent. This condition is often unrealistic when considering
large string collections, where we may need to sort many conjugates of different
lengths. However, when adding different end-of-string characters, no conjugate
can be a proper prefix of another since all dollars are unique. Thus, when sorting
the rotations of the Ti$i’s, the omega-order and the lexicographic order of the
conjugates are always equivalent.

Example 5. LetM = {AGC$1, GC$2} a string collection where we appended a dif-
ferent dollar at the end of each string, we have the following omega-order sorted
conjugates list: $1AGC, $2GC, AGC$1, C$1AG, C$2G, GC$1, GC$2, which is equivalent
to the lexicographic order sorting.

Moreover, appending different end-of-string characters has an important ef-
fect on the relationship between the lexicographic order of the suffixes and the
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index concBWT rotation
23 A $#ATATG$TGA$ACG$ATCA$GGA
10 A $ACG$ATCA$GGA$#ATATG$TGA
14 G $ATCA$GGA$#ATATG$TGA$ACG
19 A $GGA$#ATATG$TGA$ACG$ATCA
6 G $TGA$ACG$ATCA$GGA$#ATATG

22 G A$#ATATG$TGA$ACG$ATCA$GG
9 G A$ACG$ATCA$GGA$#ATATG$TG

18 C A$GGA$#ATATG$TGA$ACG$ATC
11 $ ACG$ATCA$GGA$#ATATG$TGA$
1 $ ATATG$TGA$ACG$ATCA$GGA$#

15 $ ATCA$GGA$#ATATG$TGA$ACG$
3 T ATG$TGA$ACG$ATCA$GGA$#AT

17 T CA$GGA$#ATATG$TGA$ACG$AT
12 A CG$ATCA$GGA$#ATATG$TGA$A
13 C G$ATCA$GGA$#ATATG$TGA$AC
5 T G$TGA$ACG$ATCA$GGA$#ATAT

21 G GA$#ATATG$TGA$ACG$ATCA$G
8 T GA$ACG$ATCA$GGA$#ATATG$T

20 $ GGA$#ATATG$TGA$ACG$ATCA$
2 A TATG$TGA$ACG$ATCA$GGA$#A

16 A TCA$GGA$#ATATG$TGA$ACG$A
4 A TG$TGA$ACG$ATCA$GGA$#ATA
7 $ TGA$ACG$ATCA$GGA$#ATATG$

index optBWT rotation
(1,4) A $1TGA
(2,4) A $2GGA
(3,5) A $3ATCA
(4,4) G $4ACG
(5,6) G $5ATATG
(1,3) G A$1TG
(2,3) G A$2GG
(3,4) C A$3ATC
(4,1) $ ACG$4
(5,1) $ ATATG$5
(3,1) $ ATCA$3
(5,3) T ATG$5AT
(3,3) T CA$3AT
(4,2) A CG$4A
(4,3) C G$4AC
(5,5) T G$5ATAT
(1,2) T GA$1T
(2,2) G GA$2G
(2,1) $ GGA$2
(5,2) A TATG$5A
(3,2) A TCA$3A
(5,4) A TG$5ATA
(1,1) $ TGA$1

Table 3.3: From left to right we show the concBWT and the optBWT of the
string collection M = {ATATG, TGA, ACG, ATCA, GGA}.

omega-order of the conjugates. In fact, these two order relations coincide if there
are no two strings S, T such that they have a common suffix or one suffix is a
proper prefix of another. Thus, when using different dollars, the omega-order
of the conjugates, the lexicographic order of the conjugates, the lexicographic
order of the strings’ suffixes, and the lexicographic order of the concatenation’s
suffixes are all equivalent.

Example 6. Let M = {AGC$1, GC$2}, we have the following lexicographically
sorted suffixes list: $1, $2, AGC$1, C$1, C$2, GC$1, GC$2, which is equivalent to the
sorting computed applying the omega-order to the strings’ conjugates.

3.4.1 Interesting intervals

Regarding the differences among the four separator-based BWT variants, we
show that all differences occur in certain well-defined intervals of the BWT,
called interesting intervals, and that the differences depend only on the per-
mutation of {1, · · · , k}, given by the combination of the input order, the lex-
icographic order of the input strings, and the BWT variant applied. In Ta-
bles 3.2, 3.3, and 3.4 we give the full BWT matrices for all five BWT variants,
along with the optimal BWT minimizing the number of runs, see Section 3.4.2.
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index eBWT rotation
(4,4) C AATC
(3,1) G ACG
(5,3) G AGG
(1,1) G ATATG
(4,1) A ATCA
(1,3) T ATGAT
(2,3) G ATG
(4,3) T CAAT
(3,2) A CGA
(3,3) C GAC
(5,2) G GAG
(1,5) T GATAT
(2,2) T GAT
(5,1) A GGA
(1,2) A TATGA
(4,2) A TCAA
(1,4) A TGATA
(2,1) A TGA

index dolEBWT rotation
(3,4) G $ACG
(1,6) G $ATATG
(4,5) A $ATCA
(5,4) A $GGA
(2,4) A $TGA
(4,4) C A$ATC
(5,3) G A$GG
(2,3) G A$TG
(3,1) $ ACG$
(1,1) $ ATATG$
(4,1) $ ATCA$
(1,3) T ATG$AT
(4,3) T CA$AT
(3,2) A CG$A
(3,3) C G$AC
(1,5) T G$ATAT
(5,2) G GA$G
(2,2) T GA$T
(5,1) $ GGA$
(1,2) A TATG$A
(4,2) A TCA$A
(1,4) A TG$ATA
(2,1) $ TGA$

Table 3.4: From left to right we show the eBWT, and the dolEBWT of the
string collection M = {ATATG, TGA, ACG, ATCA, GGA}.

BWT variant example order of shared suffixes independent
of input order?

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA omega-order of strings yes
separator-based
dolEBWT(M) GGAAACGG$$$TTACTGT$AAA$ lexicographic order of strings yes
mdolBWT(M) GAGAAGCG$$$TTATCTG$AAA$ input order of strings no
concBWT(M) AAGAGGGC$$$TTACTGT$AAA$ lexicographic order of no

subsequent strings in input
colexBWT(M) AAAGGCGG$$$TTACTGT$AAA$ colexicographic order yes

Table 3.5: Overview of properties of the five BWT variants considered in this
chapter. The colors in the example BWTs correspond to interesting intervals in
separator-based variants.

Let us call a string U a shared suffix w.r.t. multiset M if it is the suffix
of at least two strings in M. Let b be the lexicographic rank of the smallest
rotation beginning with U$ and e the lexicographic rank of the largest rotation
beginning with U$, among all rotations of strings T$, where T ∈ M. (One
can think of [b, e] as the suffix-array interval of U$.) We call [b, e] an interesting
interval if there exist i ̸= j s.t. U is a suffix of both Ti and Tj , and the preceding
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characters in Ti and Tj are different, i.e., the two occurrences of U as suffix of
Ti and Tj constitute a match that cannot be extended on the left (left-maximal
repeat). (Interesting intervals correspond to internal nodes in the suffix tree of
the reverse string within the subtree of $).

Clearly, [1, k] is an interesting interval unless all strings end with the same
character. Note that interesting intervals differ both from the SAP-intervals
of [32] and from the tuples of [10] (called maximal row ranges in [89]): the former
are the intervals corresponding to all shared suffixes U , even if not left-maximal,
while the latter include also suffixes U that are not shared. In particular, an
interesting interval is a SAP-interval containing at least two different characters.
The next lemma follows from the fact that no two substrings ending in $ can
be a prefix of the other.

Lemma 1. Any two distinct interesting intervals are disjoint.

Proof. Follows immediately from the fact that no two distinct substrings ending
in $ can be one prefix of the other.

We can now narrow down the differences between any two separator-based
BWTs of the same multiset. The next proposition states that these can only
occur in interesting intervals (part 1). This implies that the dollar-symbols
appear in the same positions in all separator-based variants except for one
very specific case (part 2). Moreover, we get an upper bound on the Hamming
distance between two separator-based BWTs (part 3).

Proposition 1. Let L1 and L2 be two separator-based BWTs of the same mul-
tiset M.

1. If L1[i] ̸= L2[i] then i ∈ [b, e] for some interesting interval [b, e].
2. Let I1 resp. I2 be the positions of the dollars in L1 resp. L2. If I1 ̸= I2

then there exist i ̸= j such that Ti is a proper suffix of Tj.
3. distH(L1, L2) ≤

∑
[b,e] interesting interval

(e− b+ 1).

Proof. 1. Let L1[i] = x and L2[i] = y be two BWT positions, such that L1[i] ̸=
L2[i]. The two BW-matrices consist of the lexicographically ordered suffixes of
the same strings inM. Thus, if x ̸= y there exists two occurrences of a suffix U
in M which are preceded by x and y, and both have rank i in the two BWTs.
Assume that position i is not part of any interesting interval. This means that
all occurrences of U inM are preceded by the same character, i.e., U does not
constitute a left-maximal repeat. However, this contradicts the initial statement
L1[i] ̸= L2[i]. It follows that i is part of an interesting interval [b, e], which is
the SA-interval of U . Parts 2. and 3. follow from 1.

Proposition 1 implies that the variation of the different transforms can be
explained based solely on what rule is used to break ties for shared suffixes.
We will see next how the different rules used by the different BWT variants to
break ties affect the parameter r.
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3.4.2 The effects on the parameter r

In this section we investigate the effect of the different input permutations π
of the strings in M, induced by the BWT variants, on the number of runs
of the BWT. As the following example shows, the number of runs can differ
significantly between different variants.

Example 7. Let M = {AAAA, AGCA, GCAA, GTCA, CAAA, CGCA, TCAA, TTCA} a string
collection of eight strings. We have that mdolBWT(M) = AAAAAAAAACACACACA
CACAC$$GTGTGT$$AC$$GT$$, and colexBWT(M) = AAAAAAAAAAAACCCCAACCAC
$$GGTTGT$$AC$$GT$$.
We see that runs(mdolBWT(M)) = 28, and runs(colexBWT(M)) = 18, i.e.
the colexBWT has about 55% fewer runs than the mdolBWT.

In the previous section, we saw that the differences in r between the
separator-based BWTs can only occur in the interesting intervals. In particular,
the number of runs in each of these intervals depends on how well the BWT
characters can be mixed. If an interesting interval contains a single equal-letter
run, we will have no differences between the different BWTs. On the other hand,
if we have a similar number of occurrences for all characters, then we will have
many chances to create new runs. In the following lemma, we will show the
maximum number of runs we can achieve on a specific interesting interval.

Lemma 2. Let [b, e] be an interesting interval, and (n1, . . . , nσ) the Parikh vec-
tor of L[b..e], i.e. ni is the number of occurrences of the ith character. Let a
be such that na = maxi ni, and Na = (e − b + 1) − na, the sum of the other
character multiplicities. Then the maximum number of runs in interval [b, e] is
e− b+ 1 if na − 1 ≤ Na, and 2Na + 1 otherwise.

Proof Place the na a-characters in a row, creating na + 1 gaps, namely one
between each adjacent a, and one each at the beginning and at the end. Now
place all b-characters, each in a different gap; since na is maximum, there are
enough gaps. Then place all c’s, first filling gaps that are still empty, if any, then
into gaps without c, etc. We never have to place two identical characters in the
same gap. If the total number of non-a-characters is at least na−1, then we can
fill every gap, thus separating all a’s, and creating a run for every character of
I. If we have fewer than na − 1 characters, then we are still creating two runs
with each non-a-character, but we cannot separate all a’s.

This lemma shows that it is possible to draw a definition of the variability of
a string collection. Given a Parikh vector if the maximum value is much smaller
than the sum of all other characters’ occurrences then we will have few chances
to create new runs, otherwise, we will be able to mix the characters better.

We will use this lemma to measure the variability of a dataset:

Definition 1. LetM be a multiset. For an interesting interval [b, e], let var([b, e])
be the upper bound on the number of runs in [b, e] from Lemma 1. Then the vari-
ability of M is

var(M) =

∑
[b,e] interesting interval var([b, e])∑
[b,e] interesting interval(e− b+ 1)

.
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Example 8. Let L = (0, 2, 1, 1, 0) a Parikh vector containing 2 As one C and one
G. Here we have the maximal variability since we can mix the characters to
create a string with the maximum number of runs, ACAG.

Which of the BWT variants produces the fewest runs? As we have shown,
this depends on the input order with most BWT variants, and the only possible
variation is within interesting intervals. The colexBWT has been shown exper-
imentally to yield a low number of runs of the BWT [32, 73]. Even though it
does not always minimize r (one can easily create small examples where other
permutations yield a lower number of runs), we can bound its distance from the
optimum.

Proposition 2. Let L be the colexBWT of multisetM, and let rOPT denote the
minimum number of runs of any separator-based BWT of M. Then runs(L) ≤
rOPT + 2 · cM, where cM is the number of interesting intervals.

Proof. Let I = [bI , eI ] be an interesting interval containing d distinct characters,
and let U be the shared suffix defining I. Since the strings are listed according
to the colex order, all strings in which U is preceded by the same character will
appear in one block, and therefore, L has exactly d runs in the interval I. Let
LbI−1 = x and LeI+1 = y. If x occurs in I and it is not the first run of I (i.e.,
LbI ̸= x), then listing first the strings where U is preceded by x would reduce
the number of runs by 1; similarly, listing those where y precedes U as last of
the group would reduce the number of runs by 1. By Prop. 1, this is the only
possibility for varying the number of runs.

Bentley, Gibney, and Thankachan recently gave a linear-time algorithm for
computing the order of the dollars which minimizes the number of runs [10],
i.e. the optimal order for mdolBWT. We refer to this BWT as optimal BWT
(optBWT) and provide an algorithm to construct this BWT variant in Chap-
ter 4. The idea consists in starting from the colex-order and adjusting, where
possible, the order of the runs within interesting intervals to minimize char-
acter changes at the borders, i.e. such that the first and the last run of each
interesting interval is identical to the run preceding and following that inter-
esting interval. This is equivalent to sorting groups of sequences sharing the
same left-maximal suffix. This sorting can be done on each interesting interval
independently without affecting the other interesting intervals. In Table 3.3, we
show the result on our toy example, where it reduces the number of runs by 2
w.r.t. colexicographic order. We computed the number of optimal runs of our
datasets according to the method of [10] and compared the number of runs of
each of the five BWT variants to the optBWT (Section 3.6).

3.5 Permutations induced by separator-based BWT
variants

In the previous section, we have seen that every BWT variant outputs a different
permutation of the BWT characters as a consequence of using different input
permutations. In this section, we further describe the relationship between the
input order and the final transform.
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Let us now restrict ourselves to M being a set, i.e., no string occurs more
than once. (This is just for convenience since now the input order uniquely de-
fines a permutation w.r.t. lexicographic order; the results of this section apply
equally to multisets M.) As we showed, the only differences between the dif-
ferent separator-based BWT variants are given by the order in which shared
suffixes are listed. It is also clear that the same order applies in each interesting
interval, as well as to the k-length prefix of the transform. Therefore, it suffices
to study the permutation π of the k dollars in this prefix.

Since the strings are all distinct, they each have a unique lexicographic rank
within the set M. Thus the input order can be seen as a permutation ρ of the
lexicographic ranks; if the strings are input in lexicographic order, then ρ = id.
For our toy example M = [ATATG, TGA, ACG, ATCA, GGA], we have ρ = 25134. For
those used to thinking about suffix arrays, ρ can be seen as the inverse suffix
array of the input if the strings are thought of as meta-characters.

Let us now define as output permutation π the permutation of the last char-
acters of the input strings, as found in the k-length prefix of the BWT variant in
question. We will denote the output permutations of the dolEBWT, mdolBWT,
concBWT, and colexBWT by πde, πmd, πconc, and πcolex, respectively. Again,
we give these permutations w.r.t. the lexicographic ranks of the strings. In our
running example, we have πde = 12345, πmd = 25134, πconc = 45132, and
πcolex = 34512.

Example 9. Let M = [ATATG, TGA, ACG, ATCA, GGA] be a string collection where
ρ = 25134. In the colexBWT we concatenate the sequences following the colex-
icographic order. Let Mcolex = [ATCA, GGA, TGA, ACG, ATATG] be the re-ordered
string collection, πcolex is the list of lexicographic ranks of the re-ordered se-
quences πcolex = 34512.

It is easy to see that the permutation πmd is equal to ρ, since the dollar-
symbols are ordered according to ρ. For the dolEBWT, the rank of $Ti equals
the lexicographic rank of Ti among all input strings, i.e., πde = id. Further,
πcolex = γ by definition, where γ denotes the colexicographic order of the input
strings. The situation is more complex in the case of concBWT. Since the # is
the smallest character, the last string of the input will be the first, while for the
others, the lexicographic rank of the following string decides the order. In our
running example, πconc = 45132. We next formalize how to map any ρ to πconc.

Let Φρ be the linking permutation [66] of ρ, defined by Φρ(i) = ρ(ρ−1(i)+1),
for i ̸= ρ(k), and Φρ(ρ(k)) = ρ(1), the permutation that maps each element to
the element in the next position and the last element to the first. Let us also
define, for j ∈ {1, . . . , k} and i ̸= j, fj(i) by fj(i) = i if i < j and i−1 otherwise,
i.e. fj(i) gives the rank of element i in the set {1, . . . , k} \ {j}. The next lemma
gives the precise relationship between ρ and πconc.

Lemma 3. Let ρ be the permutation of the input order w.r.t. the lexicographic
order, i.e. the ith input string has lexicographic rank ρ(i). Then πconc = πconc(ρ)
is given by:

πconc(1) = ρ(k), and for i ̸= ρ(k) : π−1
conc(i) = fρ(1)(Φρ(i)) + 1. (3.1)

Proof. Follows straightforwardly from the tie-breaking rule of concBWT.
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Essentially, Lemma 3 says that πconc is the BWT of ρ. Actually, we can take
a string collection and construct a new string T ρ concatenating the lexicographic
ranks of the strings in it with a final dollar, in our example T ρ = 25134$. The
πconc is the BWT of T ρ, BWT(25134$) = 45$132 = 45132 without the dollar.
The same holds if we have more than one sequence with the same lexicographic
rank. For example, if we have T ρ = 21521324$ we can easily compute πconc by
BWT(21521324$) = 42253121.

Example 10. The mapping ρ 7→ πconc for k = 3 is as follows: 123 7→ 312, 132 7→
231, 312 7→ 231, 213 7→ 321, 231 7→ 132, and 321 7→ 123. Note that no ρ maps
to 213.

Since not all BWT strings have a pre-image [75], not all permutations πconc

are reached by this mapping (as can be seen already for k = 3). We will call a
permutation π feasible if there exists an input order ρ such that πconc(ρ) = π,
or alternatively if BWT(ρ$) = π. For k = 4, there are 18 feasible permutations
(out of 24), for k = 5, 82 (out of 120). In Table 3.6, we give the percentage
of feasible permutations π, for k up to 11. The lexicographic order is always
feasible, namely with ρ = k, k − 1, . . . , 2, 1; however, the colex order is not
always feasible, as the following example shows.

Example 11. Let M = {GAA, ACA, TGA}, thus γ = 213, but as we have seen, no
permutation of the strings in M will yield this order for concBWT. In partic-
ular, the colexBWT(M) = AAAACGG$AT$$ has 7 runs, and it is not a feasible
concBWT. While all feasible concBWTs have at least 8 runs: AAAGACG$AT$$,
AAACGAG$AT$$, AAAAGCG$AT$$, AAAGCAG$AT$$, AAACAGG$AT$$.

An important consequence is that given in input permutation ρ the output
permutations induced by mdolBWT and concBWT are always different: πmd ̸=
πconc holds always, since πconc(1) = ρ(k). This means that in whatever order
the strings are given w.r.t. lexicographic order, on most string sets, the resulting
transforms, mdolBWT and concBWT, will differ. Note that two different output
permutations can lead to identical BWTs. Moreover, the mdolBWT is much
more flexible since every input order maps to a different permutation of the
BWT characters, while for the concBWT some input permutations map to the
same π. This implies that the πconc that minimizes the number of runs of the
BWT cannot always be reached (see Example 11).

no. of seq’s k 3 4 5 6 7 8 9 10 11
83.33% 75.0% 68.33% 63.89% 60.12% 57.29% 54.8% 52.81% 51.0%

Table 3.6: Percentage of feasible permutations w.r.t. concBWT.

3.6 Experimental results

We computed the five different BWT variants for eight genomic datasets with
different characteristics and reported several statistics.
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3.6.1 Experimental setup

All datasets are stored in FASTA format. We used three tools for computing
the five BWT variants; pfpebwt, ropebwt2 and Big-BWT. In order to make the
BWTs comparable, we made some adaptations to both tools and inputs. We
modified ropebwt2 to make it work with the same character order as the other
tools, i.e. $ < A < C < G < N < T. Then we used ropebwt2 for computing both
the mdolBWT and the colexBWT using the -R and -R -s flags respectively.
We used pfpebwt for constructing both the eBWT and the dolEBWT variants.
In order to compute the dolEBWT, we modified the input files, appending
an end-of-string character at the end of each sequence. Finally, for computing
the concBWT, we removed the headers from the FASTA files, arranging the
sequences in newline separated files, and ran Big-BWT without additional flags
on these newline separated files.

3.6.2 Datasets

We computed the five BWT variants for eight different genomic datasets with
different characteristics. Four of the datasets contain short reads: SARS-CoV-
2 short [118], Simons Diversity reads [85], 16S rRNA short [128], Influenza A
reads [126], and four contain long sequences: SARS-CoV-2 long [52], 16S rRNA
long [35], Candida auris reads [129], and SARS-CoV-2 genomes which contains
whole viral genomes [17]. The main features of the datasets, including the num-
ber of sequences, sequence length, and the mean run-length of the optimal BWT,
are reported in Table 3.7.

3.6.3 Results

On each of the datasets, we computed the pairwise Hamming distance between
separator-based BWTs. To compare them to the eBWT, we computed the pair-
wise edit distance on a small subset of the sequences (for obvious computational
reasons), computing also the Hamming distance on the small set for comparison.
We generated some statistics on each of the data sets: the number of interest-
ing intervals, the fraction of positions within interesting intervals defined as the
ratio between the total length of the interesting intervals and the length of the
transform, and the dataset’s variability (Def. 1). To study the variation of the r-
parameter, we implemented the algorithm by Bentley et al. [10], and computed
rOPT for each data set (see Chapter 4 for algorithm details), comparing it to
the number of runs of all five BWT variants. In Table 3.9 and 3.10, we include
a compact version of these results for the two datasets with the highest and the
lowest variation between the BWT variants, the SARS-CoV-2 short sequences
and the SARS-CoV-2 genomes, respectively. The complete experimental results
for all eight datasets are contained in the Appendix.

In Table 3.8, we give a brief summary of the results, reporting, for each
dataset, the fraction of positions in interesting intervals, the dataset’s variability,
the average pairwise Hamming distance between separator-based BWT variants,
and the maximum and minimum value, among the five BWT variants, of the
average run-length (n/r) of the BWT.
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The experiments showed a high variation in the number of runs, particularly
on datasets of short sequences. The highest difference was between colexBWT
and concBWT, by a multiplicative factor of over 4.2, on the SARS-CoV-2 short
dataset. In Figure 3.1, we plot the average run-length n/r for the four short
sequence datasets and the percentage increase of the number of runs w.r.t.
rOPT . On the other hand, the r variation is less pronounced on the one dataset
which is less repetitive (small n/r (opt)), namely Simons Diversity reads. Recall
that the mdolBWT and concBWT vary depending on the input order, so we
may obtain different results starting with different input permutations. Finally,
on most long sequence datasets the differences were quite small.

In our experiments the colexBWT was the BWT variant that always showed
the smallest number of runs among the 5 BWTs reviewed. To better understand
how far the colexBWT is from the optimum w.r.t. the number of runs, we plot
in Figure 3.2 the number of runs of colexBWT w.r.t. to r of the optBWT, on all
eight datasets. The strongest increase is on short sequences, where the variation
among all BWT variants is high, as well; on the long sequence datasets, with
the exception of SARS-CoV-2 long sequences, the colexBWT is very close to
the optimum; however, note that on those datasets, all BWTs are close to the
optimum.

To sum up, we showed that the average number of runs and the average
pairwise Hamming distance strongly depend on the length of the sequences in
the input collection. If the collection has a lot of short sequences which are
very similar, then the differences between the BWTs both w.r.t. the number of
runs, and as measured by the Hamming distance, can be large. This is because
the only variation in the separator-based BWTs is allowed in the interesting
intervals. Thus, when working with short sequences we end up with a lot of
maximal shared suffixes, and so many positions are in interesting intervals. To
better understand this relationship, we plotted, in Figure 3.3, the average Ham-
ming distance against the two parameters variability and fraction of positions
in interesting intervals. We see that the two datasets with the highest average
Hamming distance, SARS-CoV-2 short dataset, and the Simons Diversity reads,
have at least one of the two values very close to 1, while for those datasets where
both values are very low, the BWT variants do not differ very much.

3.7 Conclusion

In this chapter, we presented the first study of the different variants of the
Burrows-Wheeler-Transform for string collections. We found that the data
structures computed by different tools differ not insignificantly, as measured
by the pairwise Hamming distance: up to 12% between different BWT variants
on the same dataset in our experiments. We showed that most BWT variants in
use are input order dependent, so the same tool can produce different variants if
the input set is permuted. These differences also extend to the number of runs
r, a parameter that is central in the analysis of BWT-based data structures
and which is increasingly being used as a measure of the repetitiveness of the
dataset itself.

With string collections replacing individual sequences as the prime object of
research and analysis and thus becoming the standard input for text indexing
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dataset no. seq total length avg min max n/r (opt)
SARS-CoV-2 short 500,000 25,000,000 50 50 50 35.125
Simons Diversity reads 500,000 50,000,000 100 100 100 8.133
16S rRNA short 500,000 75,929,833 152 69 301 44.873
Influenza A reads 500,000 115,692,842 231 60 251 50.275
SARS-CoV-2 long 50,000 53,726,351 1,075 265 3,355 74.498
16S rRNA long 16,741 25,142,323 1,502 1,430 1,549 47.140
Candida auris reads 50,000 124,150,880 2,483 214 8,791 1.732
SARS-CoV-2 genomes 2,000 59,610,692 29,805 22,871 29,920 523.240

Table 3.7: Table summarizing the main parameters of the eight datasets. From
left to right we report the dataset name, the number of sequences, the total
length, the average, minimum and maximum sequence length and the optimum
average run-length (n/r), according to [10].

dataset ratio pos.s varia- avg. Hamming d. max n/r min n/r
in intr.int.s bility betw. $-sep. BWTs (avg. run-length) (avg. run-length)

SARS-CoV-2 short 0.792 0.210 0.11754 31.524 7.494
Simons Diversity reads 0.107 0.976 0.07195 7.873 5.299
16S rRNA short 0.741 0.058 0.02982 44.253 18.836
Influenza A reads 0.103 0.363 0.02609 49.172 23.100
SARS-CoV-2 long 0.175 0.037 0.00464 73.204 57.568
16S rRNA long 0.047 0.104 0.00289 46.879 45.015
Candida auris reads 0.007 0.497 0.00246 1.732 1.726
SARS-CoV-2 genomes 0.001 0.148 0.00012 521.610 499.549

Table 3.8: Table summarizing the results on the eight datasets. From left to
right we report dataset names followed by the ratio of positions in interesting
intervals, the variability of the dataset (see Def. 1), the average normalized
Hamming distance between any two separator-based BWT variants. In the last
two columns we report the maximum and minimum average run-length (n/r)
taken over all five BWT variants.

algorithms, we believe that it is all the more important for users and researchers
to be aware that not all methods are equivalent, and to understand the precise
nature of the BWT variant produced by a particular tool. We suggest further
to standardize the definition of the parameter r for string collections in order to
make it independent of the input order, using either the colexicographic order
or the optimal order of Bentley et al. [10].



SARS-CoV-2 short (500,000 short sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 3,014,183 2,926,602 2,912,860

mdolBWT 0.11820 0 3,013,908 3,102,887

concBWT 0.11477 0.11819 0 3,013,634

colexBWT 0.11423 0.12168 0.11818 0

dataset properties

no. sequences 500,000

average length 50

total length 25,000,000

no. of interesting intervals 116,598

total length intr.int.s 20,187,840

fraction pos.s in intr.int.s 0.792

variability 0.210

norm. edit d.

edit d. edit distance on a subset of 5,0000 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 28,702 43,903 43,828 46,936

dolEBWT 0.11256 0 17,000 16,921 20,104

mdolBWT 0.17217 0.06667 0 16,130 20,812

concBWT 0.17187 0.06636 0.06325 0 20,830

colexBWT 0.18406 0.07884 0.08162 0.08169 0

no. runs big dataset

r n/r

eBWT 1,902,148 13.143

dolEBWT 1,868,581 13.647

mdolBWT 3,113,818 8.189

concBWT 3,402,513 7.494

colexBWT 808,906 31.524

optimum 725,979 35.125

Table 3.9: Results for the SARS-CoV-2 short dataset. Top left: absolute and
normalized pairwise Hamming distance between separator-based BWT variants.
Top right: summary of the dataset properties. Bottom left: absolute and nor-
malized pairwise edit distance between all BWT variants on a subset of the
input collection. Bottom right: number of runs and average run-length (n/r)
taken over all BWT variants.

Fig. 3.1: Results regarding r on short sequence datasets, of all BWT variants.
Left: average run-length (n/r). Right: number of runs (percentage increase with
respect to optimal BWT).



SARS-CoV-2 genomes (2,000 long sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 7,958 7,900 7,263

mdolBWT 0.00013 0 7,958 7,957

concBWT 0.00013 0.00013 0 7,990

colexBWT 0.00012 0.00013 0.00013 0

dataset properties

no. sequences 2,000

total length 59,612,692

average length 29,085

no. interesting intervals 1863

total length intr.int.s 80,486

fraction pos.s in intr.int.s 0.001

variability 0.148

norm. edit d.

edit d. edit distance on a subset of 50 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 786 795 801 791

dolEBWT 0.00053 0 98 107 86

mdolBWT 0.00053 0.00007 0 105 112

concBWT 0.00054 0.00007 0.00007 0 114

colexBWT 0.00053 0.00006 0.00008 0.00008 0

no. runs big dataset

r n/r

eBWT 117,628 506.773

dolEBWT 117,410 507.731

mdolBWT 118,870 501.495

concBWT 119,334 499.549

colexBWT 114,287 521.605

optimum 113,930 523.240

Table 3.10: Results for the SARS-CoV-2 genomes dataset. Top left: absolute
and normalized pairwise Hamming distance between separator-based BWT vari-
ants. Top right: summary of the dataset properties. Bottom left: absolute and
normalized pairwise edit distance between all BWT variants on a subset of the
input collection. Bottom right: number of runs and average run-length (n/r)
taken over all BWT variants.

Fig. 3.2: Number of runs of the colexBWT with respect to optimal BWT (per-
centage increase) on all eight datasets.



Fig. 3.3: Average normalized Hamming distance variations with respect to vari-
ability and fraction of positions in interesting intervals on all datasets.
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Computing the optimal BWT

In this chapter, we present a linear-time algorithm for computing the optimal
BWT, i.e., the BWT of string collections which guarantees the minimum num-
ber of runs. The contents of this chapter were published in [26,27].

Since the run-length encoding scheme guarantees good compression rates
while supporting fast pattern matching tasks, several compressed data struc-
tures on strings [44,83] adopted this compression scheme. However, even though
the time and space requirements of these data structures are measured using
r, most of the available tools computing the BWT of string collections give in
output a transform that depends on the input order of the sequences. Moreover,
as we pointed out in Chapter 3, different input permutations can generate large
variations of r.

The first attempt to fix the r variation was presented in 2012 in [32], when
the authors introduced the rlo-heuristic (named colexBWT in Chapter 3) and
sap-heuristic. These two heuristics are implemented by permuting the symbols
within special intervals of the BWT, called SAP-intervals (same-as-previous),
associated with suffixes equal up to the dollars. These SAP-intervals are a more
general case than the interesting intervals described in Chapter 3. Within SAP-
intervals, one can permute the symbols by grouping them into as few runs as
possible, which is equivalent to reordering the input sequences. However, it is
easy to construct examples on which neither of these two heuristics results in a
BWT with a minimal number of runs (see Figure 4.1).

Recently, in 2020 Bentley et al. [10] presented a linear-time algorithm that
computes a permutation of the input collection minimizing r, but they gave no
implementation. In this chapter, we present an implementation of the Bentley
et al. algorithm [10] for computing a BWT with the minimum number of runs
we refer to as optimal BWT (optBWT). We implemented this algorithm in
optimalBWT, the first tool that guarantees to output a BWT of a string collec-
tion with the minimal number of runs in terms of reordering of input strings.
We present a framework for constructing this transform starting from two ele-
ments: a BWT and the SAP-array of Cox et al. [32]. We provide an on-the-fly
construction of the SAP-array using two different algorithms: one is our adap-
tation of the SAIS-based algorithm we will present in Chapter 5, the other is
the BCR algorithm [8].
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We performed several experiments both on simulated and real-life short-read
datasets. Since the variation in the number of runs is highest on string collections
containing many similar short reads, in our experiments, we concentrate on
short-read data. For each of these, we report the decrease in the number of runs
provided by the optimal BWT compared with BWT variants computed with
other input permutations, showing that the improvement can be very significant.
In particular, on our real-life data, the optBWT obtains up to 31 times fewer
runs with only a 1.39× slowdown, making optimalBWT competitive with other
tools computing the BWT of string collections in terms of running time and
space usage.

Our result is also significant because it allows using the number of runs
of the optimal BWT as a repetitiveness measure for string collections. As we
pointed out in Chapter 3, the parameter r should be standardized since it is
being increasingly used as a parameter for string collections. Note that r is not
well-defined if computed for a BWT variant which depends on the input order.

4.1 Overview

The rest of the chapter is organized as follows. In Section 4.2, we present an
algorithm to compute the optBWT starting from the BWT and its SAP-array.
In Section 4.3, we present the adaptations of two algorithms SAIS and BCR
to compute the SAP-array and optBWT. Finally, in Section 4.4, and 4.5, we
present our experimental results and give final comments.

multidollar BWT approaches different orderings sorted
S1$1 · ·S5$5# {S1$1, .., S5$5} S1$1 · ·S5$5 SAP mdolBWT dolEBWT colexBWT sapBWT optBWT suffixes

$5 #

A A A 0 A T A A T $
A A A 1 A A A A T $
T T T 1 T T T T T $
T T T 1 T A T T A $
T T T 1 T T T T A $

G G G 0 G A A G A A$
A A A 1 A G G A G A$

G G G 0 G G G G G AA$

T T T 0 T G G T G CCT$
G G G 1 G T T G T CCT$

T T T 0 T T T T T CGA$

C C C 0 C C C C T CT$
T T T 1 T C C C C CT$
C C C 1 C T T T C CT$

C C C 0 C C C C C GA$

G G G 0 G G G G G GAA$

$4 $5 $4 0 $ $ $ $ $ GCCT$

$1 $2 $1 0 $ $ $ $ $ GGAA$

C C C 0 C C C C C T$
C C C 1 C C C C C T$
C C C 1 C C C C C T$

$2 $3 $2 0 $ $ $ $ $ TCCT$

# $1 $5 0 $ $ $ $ $ TCGA$

T T T 0 T T T T T TCT$

$3 $4 $3 0 $ $ $ $ $ TTCT$

number of equal-letter runs 17 17 14 17 11

Fig. 4.1: The output of different separator-based BWT variants applied to the
string collection M = {TCGA, GGAA, TCCT, TTCT, GCCT}. The SAP-array (SAP-
intervals in bold) and the corresponding BWTs with different orderings of M.
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4.2 An algorithm for computing the optimal BWT

In this section, we describe the computation of the optBWT in two steps: i)
computing an arbitrary BWT and its SAP-array, ii) determining the optBWT.

First we define the SAP-array [32], as a binary array of length ||M|| such
that SAP[i] = 1 if and only if the symbol L[i] is associated with a suffix which
is same as its previous suffix (up to the dollar) in the list of sorted suffixes. An
SAP-interval L[b..e] is a maximal interval in BWT such that SAP[i] = 1, for all
b < i ≤ e. The SAP-intervals which contain more than one character correspond
to left-maximal shared suffixes, which were called interesting intervals in Chap-
ter 3. We also introduce the reduced SAP-array obtained from the SAP-array
by setting SAPred[i] = 0, b < i ≤ e, for any SAP-interval L[b..e] which is a run
of the same symbol (see Table 4.1).

We will first explain how to obtain optBWT from an arbitrary BWT and
the SAP-array (or equivalently, the reduced SAP-array). Then we describe how
to obtain the SAP-array during the BWT-construction using an adaptation
of the SAIS-based BWT construction algorithm described in Chapter 5, and
finally, how to obtain the SAP-array during BWT-construction with BCR [8].
Note that the SAP-intervals containing more than one character correspond to
interesting intervals.

4.2.1 Computing the optimal BWT using the SAP-array

mdolBWT AATATAA GAACT CT C $ GG C A $ $ $ T AC AA GG $ $ $
tuples (A,T) (A,C,G,T) (C,T) (C) ($) (G) (C) (A) ($) ($) ($) (T) (A,C) (A) (G) ($) ($) ($)

tuples opt (T,A) (A,G,C,T) (T,C) (C) ($) (G) (C) (A) ($) ($) ($) (T) (C,A) (A) (G) ($) ($) ($)
optBWT TTAAAAA AAGCT TC C $ GG C A $ $ $ T CA AA GG $ $ $

SAP-array 0111111 01111 01 0 0 01 0 0 0 0 0 0 01 01 01 0 0 0
reduced SAP-a. 0111111 01111 01 0 0 00 0 0 0 0 0 0 01 00 00 0 0 0

Table 4.1: The mdolBWT and optBWT on the string collection M =
{TGA, CACAA, AGAGT, TAA, CGAGT, CCA, TA} together with their SAP-array and reduced
SAP-array.

It is clear that as we pointed out in Section 3, all characters of the BWT
are fixed except those within interesting intervals, and therefore, the BWT can
be varied only within these. In fact, the two heuristics employed in [32, 73] re-
duce the number of runs within interesting intervals by grouping together all
characters of the same type. The algorithm of Bentley et al. [10] further reduces
the number of runs by grouping together runs of the same character at borders
of interesting intervals, wherever possible. The authors show that this can be
modeled as a problem they refer to as tuple ordering problem, which in turn
can be turned into a shortest path problem in a DAG. The correctness of the
algorithm and the fact that the output BWT is optimal follow from [10] and
properties of interesting intervals shown in [29].

Each SAP-interval is mapped to a tuple containing those characters which
occur in the interval at least once, while a position i outside any SAP-interval
with L[i] = c is mapped to (c) (See Table 4.1 for an example). We compute
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Algorithm 1: Procedure to process a Parikh vector P

1 if Stack is empty then
2 if there is exactly one j such that P [j] > 0 then
3 write P [j] copies of character j // interval not interesting
4 else
5 if P [x] > 0 where x is the last character inserted in the BWT then
6 write P [x] copies of the character x, P [x]← 0

7 Stack ← pushTop(P ) // push a new Parikh vector on the stack

8 else
9 T ← Stack.top() // first element of the stack

10 if there are at least two j s.t. T [j] > 0 and P [j] > 0 then
11 Stack ← pushTop(P )
12 else
13 write corresponding characters for each T in Stack // see text for

details

the optBWT in a single left-to-right scan of the input BWT and the SAP-
array. For every pair of neighboring SAP-intervals, the goal is to place identical
character runs on either side of the border. If more than one character is shared
between the two intervals, then this choice is not unique. Note that this implies
that both intervals are interesting. The choice of the character may be further
restricted by the other neighbors of the two intervals. Thus, an arbitrary number
of consecutive interesting intervals may have to be kept track of before the
decision on which characters to place at the borders can be made.

We maintain a stack to keep track of the Parikh vectors of the tuples for
which the BWT has not yet been output. For each new tuple, if the stack is
empty, either we can output the BWT immediately (Algorithm 1 lines 2-3), or
check if there exists a match with the last character output in the BWT. If
so, we remove the character from the Parikh vector and output its occurrences
(lines 5-7), then we place it on the stack (line 8). Otherwise, if the stack is not
empty, we check whether the characters can now be assigned (lines 11-16). This
is the case if the top Parikh vector shares 1 or 0 characters with the current one:
if it is 1, then that character must be taken, otherwise an arbitrary character
can be chosen. We can now empty the stack and write the corresponding parts
of the BWT. Finally, if some characters of the current Parikh vector were not
written, we place the remaining Parikh vector on the stack.

In Table 4.1, the BWT starts with three interesting intervals. The cor-
responding Parikh vectors are placed on the stack. Arriving at i = 16, the
stack contains (0, 5, 0, 0, 2), (0, 2, 1, 1, 1), (0, 0, 1, 0, 1). The current Parikh vec-
tor is (0, 0, 1, 0, 0) (corresponding to C), and C is the only character in the in-
tersection with the top Parikh vector (0, 0, 1, 0, 1). The BWT corresponding
to the three interesting intervals can now be output and the stack emptied:
TTAAAAA|AAGCT|TC|C, where we marked borders between interesting intervals
by |. Note that if the symbols in the second interesting interval were permuted
as AACGT, then we would also get the minimal number of runs. We use as default
the inverse lexicographic order.
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4.3 Adapting SAIS and BCR algorithms

In this section, we briefly present how we adapted two algorithms, one using
a SAIS-based approach [99] and BCR [8], for computing the SAP-array. Fi-
nally, given the BWT and its SAP-array we can use the algorithm described
in the previous section to permute the BWT characters and compute the final
optBWT. While our SAIS-based algorithm keeps all computation in internal
memory, BCR stores the growing BWT and SAP-array on the disk. Thus, in
optimalBWT, we can use the SAIS-based algorithm to process datasets up to
a few tens of gigabytes, while we can use the BCR algorithm to compute the
optBWT of very large datasets, even hundred thousands of gigabytes.

4.3.1 Computing the SAP-array using SAIS

We generate the SAP-array during the computation of the BWT, using our
adaptation of the SAIS-based algorithm described in Chapter 5. This is done
by computing it in each recursion step and propagating it while mapping back
one recursion level up. The SAP-array within a step can be computed along
with the SA while inducing the L- and S-type suffixes. This is achieved via an
adaptation of the inducing step that allows propagating the information that
we are within a shared suffix: Let Si[t..ni]$ be a shared suffix; if at least two
positions are preceded by the same character c then cSi[t..ni]$ corresponds to
another SAP-interval. Since all occurrences of the same suffix are listed together
in the SA, we can compute all SA-values in the new SAP-interval sequentially
during the inducing step. This is carried out by keeping track of suffixes starting
with the same character, and updating the SAP-array accordingly in case they
are induced by the same shared suffix.

4.3.2 Computing the SAP-array using BCR

The BCR algorithm is based on the idea of right-to-left scanning, at the same
time, all the k strings and building the BWT through ℓ+ 1 iterations, where ℓ
is the length of the longest string. At each iteration, BCR considers a "slice" of
(at most) k characters from the strings: it starts by concatenating the symbols
preceding all $i, for all i, building a partial BWT (BWT0). Then, at iteration j,
for j = 1, . . . , k, the symbols circularly preceding the suffixes Si[ni−j+1..ni] (for
all 1 ≤ i ≤ k) are inserted in the partial BWTj−1 by simulating the insertion
of these suffixes in the lexicographically sorted list of suffixes of length h (for
all h < j).

During the j’th step, we are able to compute and propagate from one it-
eration to the next the SAP-interval information (see also [8, 32]). Note that
unlike [32], we compute SAP-intervals for the current iteration. Indeed, when
inserting symbols circularly preceding a shared suffix Si[ni−j+1..ni] (for some
i), we can deduce the length of the SAP-interval that these symbols form (i.e.,
their number). Furthermore, we can distinguish whether a SAP-interval is an
interesting interval or not (i.e., the symbols form a equal-character run), so that
we can incrementally build along with the BWT both the SAP-array and the
reduced SAP-array.
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4.4 Experimental Results

In this section, we evaluate the performance of our tool, named optimalBWT.
Tests were performed on a DELL PowerEdge R630 machine, 24-core machine
with Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40 GHz, with 128 GB of internal
memory.

4.4.1 Datasets

To evaluate the performance of optimalBWT, we have designed a series of tests
on both simulated and real-life short-read datasets.

dataset description length BWTn len. no. seq ropt n/ropt n/r

1 ERR732065–70 HIV-virus 1,345,713,812 150 8,912,012 11,539,661 116.62 27.62
2 SRR12038540 SARS-CoV-2 RBD 1,690,229,250 50 33,141,750 14,864,523 113.71 8.08
3 ERR022075_1 E. Coli str. K-12 2,294,730,100 100 22,720,100 71,203,469 32.23 8.83
4 SRR059298 Deformed wing virus 2,455,299,082 72 33,634,234 48,376,632 50.75 9.83
5 SRR065389–90 C. Elegans 14,095,870,474 100 139,563,074 921,561,895 15.30 6.26
6 SRR2990914_1 Sindibis virus 15,957,722,119 36 431,289,787 105,250,120 151.62 4.81
7 ERR1019034 H. Sapiens 123,506,926,658 100 1,222,840,858 10,860,229,434 11.37 5.35

Table 4.2: Real-life datasets used in the experiments together with the number of runs (ropt)
and the average run-length (n/ropt) of the optBWT compared to the average run-length (n/r)
of the inputBWT.

As for the simulated data, we generated short reads datasets by vary-
ing read lengths using the ART tool https://www.niehs.nih.gov/research/
resources/software/biostatistics/art (sequencing machine Illumina HiSeq
2500) and three reference sequences CP068259.2 H. Sapiens, chr.19, NC_002516
.2 P. Aeruginosa PAO1, NC_003197.2 S. enterica. While for the real-life data,
we downloaded seven short reads datasets with different characteristics from
the NCBI platform. We summarized the main features of the datasets as well
as the accession codes in Table 4.2.

4.4.2 Experimental setup

The experiments are arranged as a pipeline that runs the two steps described in
the previous section and, for building the BWTand the SAP-array, provides two
approaches: one is an adaptation of our SAIS-based algorithm (Chapter 5) that
mainly works in internal memory, and the other is the BCR approach working
in semi-external memory. We selected one of the two methods depending on the
resources available.

We compare the number of runs in the optBWT with respect to the input
order (inputBWT), the lexicographic order (dolEBWT), and the two heuristics,
rlo-heuristic (colexBWT) and sap-heuristic (sapBWT) defined in [32] (see also
Fig. 4.1). Note that in this section, we denote as inputBWT the mdolBWT of
a string collection sorted according to an arbitrary random input order. Both
heuristics reduce the number of runs within interesting intervals by grouping to-
gether all characters of the same type: the rlo-heuristic achieves this implicitly,
since by sorting the input strings in colexicographic order, identical characters
are grouped together within each interesting interval. The sap-heuristic can be

https://www.niehs.nih.gov/research/resources/software/biostatistics/art
https://www.niehs.nih.gov/research/resources/software/biostatistics/art
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thought of as an approximation of the rlo-heuristic, in which the permutation
of symbols within interesting intervals occurs during the on-the-fly construc-
tion of the BWT(through BEETL-BCRext) and the SAP-array information is
implicitly obtained by computing a SAP status.

4.4.3 Results

We summarize the results for the real-life datasets in Table 4.3. For each com-
parison we report both the factor increase and the percentage increase obtained
by r−ropt

ropt
· 100, where r is the number of the runs of the BWT variant. We

also report the time and memory peak to construct the optBWT from scratch
by choosing the algorithmic approach which has the best trade-off performance
between the two proposed. We note that the increase of r with respect to the
optBWT is significant for all different read lengths and n/r values. In par-
ticular, the two short-read datasets SRR2990914_1 and SRR1203854, featur-
ing high n/ropt, show 31.5 and 14.07 times fewer runs than the input order
BWTspending only a 1.39× and 1.15× overhead in time by using the BCR-
and SAIS-based approaches, respectively. On the other hand, on the large hu-
man dataset [85] (122.3 Gb) even if the factor is smaller than the others, the r
saved is still over 10 billion with only a 1.48× time overhead.

As for the simulated data, we note that the difference in the number of
runs of the inputBWT compared to the optBWT increases while decreasing the
sequence length. As expected, we have the largest differences on the sequences
of length 50, while for length 150 all numbers of runs were much more similar as
shown in Figure 4.2. We summarized the results for Pseudomonas Aeruginosa
in Table 4.4. Here we had the highest factor increase of 7.5 for the dataset of
length 50, with a time overhead of 1.64x and 1.12x for the BCR and SAIS-
based algorithms, respectively. However, the factor increase still is substantial
for datasets with longer sequences, and the overhead to compute the optBWT
remains small for all read lengths.

data number of runs increase compared to optimal BWT resource usage
set inputBWT colexBWT (rlo) sapBWT dolEBWT RAM (GB) Time (hh:mm:ss)
1 4.22 (322.26%) 1.03 (3.48%) 1.53 (53.06%) 1.30 (30.13%) 6.45 (1.02×) 7:18 (1.12×)
2 14.07 (1306.95%) 1.15 (14.54%) 1.21 (20.75%) 3.52 (252.39%) 8.08 (1.03×) 6:32 (1.15×)
3 3.65 (264.90%) 1.07 (6.52%) 1.30 (29.63%) 2.07 (107.01%) 11.15 (1.04×) 18:29 (1.26×)
4 5.17 (416.52%) 1.04 (4.38%) 1.55 (55.33%) 1.55 (54.87%) 21.03 (1.02×) 22:08 (1.08×)
5 2.44 (144.36%) 1.05 (5.05%) 1.16 (15.73%) 2.03 (103.35%) 4.31 (1.04×) 2:25:46 (1.28×)
6 31.49 (3048.66%) 1.04 (4.30%) 1.79 (79.40%) 1.89 (89.17%) 8.86 (1.05×) 1:59:46 (1.39×)
7 2.13 (112.56%) 1.04 (4.17%) 1.12 (11.89%) 1.96 (96.04%) 34.42 (1.03×) 26:24:18 (1.48×)

Table 4.3: Results on the number of runs increase compared to the optBWT and resource usage.
For each BWT variant we report the increase factor and the percentage increase (in brackets).
Total overhead in time and memory for building the optBWT from scratch with respect to the
inputBWT is shown in brackets. For the first four datasets we used the SAIS-based approach,
and the BCR-based one for the last three.
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dataset len. no. seq no. runs RAM (GB) time (mm:ss)
increase BCR-based SAIS-based BCR-based SAIS-based

NC_002516.2 50 56,379,600 7.50 (650.20%) 1.02 (1.05×) 13.91 (1.03×) 25:13 (1.64×) 25:45 (1.12×)
P. aeruginosa 75 37,586,250 4.96 (395.76%) 0.98 (1.03×) 13.84 (1.04×) 27:39 (1.58×) 25:59 (1.13×)

100 28,189,800 3.78 (277.91%) 0.52 (1.05×) 13.82 (1.04×) 30:39 (1.54×) 26:13 (1.17×)
125 22,551,750 3.08 (208.18%) 0.51 (1.04×) 13.83 (1.04×) 34:14 (1.57×) 26:33 (1.16×)
150 18,792,900 2.67 (167.48%) 0.51 (1.03×) 13.83 (1.04×) 36:26 (1.50×) 26:32 (1.18×)

Table 4.4: Results on the number of runs increase factor (percentage increase in brackets)
compared to the optBWT, and resource usage for simulated datasets. Overhead in time and
memory for building the optBWT from scratch using both approaches with respect to the
inputBWT is shown in brackets.

4.5 Conclusion

In this chapter, we presented the first tool for computing the optimal BWT
of string collections. We showed that the improvement obtained in terms of
r reduction with respect to the input order is significant, and the overhead
created by the computation of the optimal BWT is negligible. This makes our
tool competitive with other tools for BWT computation in terms of running time
and space usage and allows it to scale for large string collections. In particular,
on real data the optBWT we obtained on the Sindibis virus datasets had up to
31 times fewer runs with only a 1.39× slowdown. Finally, on simulated data, we
had the best results for the shortest sequences, even if we obtained a significant
reduction in the number of runs for all sequence lengths.



Fig. 4.2: Top to bottom: results regarding the number of runs on three simu-
lated datasets of H. Sapiens chr.19 (cov. 100x), P. Aeruginosa (cov. 450x) and
Salmonella (cov. 450x) varying read lengths. Left: number of runs. Right: per-
centage increase of sapBWT and colexBWT with respect to the optimal BWT.
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Computing the eBWT using SAIS

In this chapter, we present SAIS_for_eBWT, a linear-time algorithm for com-
puting the eBWT. The contents of this chapter were published in [18,20].

Although it has been known for a long time how to efficiently compute
the original BWT of a single string, this only holds if the string is terminated
with an end-of-string character (dollar for short). In fact, if a sequence ends
with a dollar, sorting the string’s suffixes is equivalent to sorting the string’s
conjugates; thus, it is possible to compute the BWT using any suffix sorting
algorithm, ensuring the transform’s correctness. However, while the problem of
sorting suffixes in linear time was solved in 2003 [63], sorting conjugates looks
much more difficult. It is meaningful that until 2021, no linear-time algorithms
were known for constructing the BWT of a sequence without appending a dollar
or applying a preprocess to the input. The same problem extends to the BWT
of string collections, where all variants use terminator characters to ensure the
correct order of the rotations.

In 2007 Mantaci et al. [87] introduced the eBWT, a BWT variant that
has different properties than all other BWT extensions; first of all, it uses the
omega order. The computation of this order relation represents a bottleneck that
prevented the efficient computation of this data structure for a long time. In fact,
sorting the string’s conjugates according to the omega order cannot be solved
using suffix sorting since, in general, it requires more character comparisons and
a more complex procedure than suffix sorting.

Since its introduction, there have been several attempts to overcome these
difficulties and develop a linear time to compute the eBWT. The first one,
proposed in 2007 [87], is based on sorting the strings’ conjugates by using their H
length prefixes, where H is a value computed using the Fine and Wilf theorem.
This gives a bound on the maximum number of character comparisons we need
to sort each conjugate. However, no linear time implementation was proposed for
this algorithm, and using a naive radix sort procedure, the number of character
comparisons would still be quadratic in the size of the input. In 2012 Hon
et al. proposed an algorithm with an O(n log n) time complexity [58]. It first
computes the GCA of the string collections via a recursive procedure and then
uses the GCA to compute the eBWT. In 2014 Bonomo et al. [15] proposed an
incremental algorithm that takes in input a sorted collection of Lyndon words for
constructing the eBWT. At each step, this algorithm inserts a new character in
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the eBWT built so far by computing the position of the corresponding rotation.
It runs in O(||M||(t1 + t2)) time, where t1 and t2 are the time for inserting a
character and computing a rank query on a dynamic string. However, also in
this case, no practical implementations were provided.

Finally, in 2019 Bannai et al. proposed a linear time algorithm for computing
the Bijective BWT (BBWT) [6,7] based on the well-known SAIS algorithm by
Nong et al. [99]. The BBWT is a bijective variant of the BWT and is defined as
the concatenation of the last characters of the lexicographically sorted rotations
of all Lyndon factors of the input string. The Bannai et al. algorithm computes
the BBWT by applying the Lyndon factorization to the input string and com-
puting the eBWT of the resulting multiset of Lyndon factors. It follows that
this algorithm can also be used to compute the eBWT of a string collection in
linear time, even if it is first necessary to preprocess the input strings in a way
that the strings are presented as a sequence of non-increasing Lyndon words,
such as the output of the Lyndon factorization. However, this preprocessing can
be expensive for large string collections.

In this chapter, we present the SAIS_for_eBWT algorithm, an improvement
of the algorithm of Bannai et al. that removes the need for a preprocessing
of the input. As a by-product of these results, we obtain the first algorithm to
compute the BWT of a single string without a dollar and without preprocessing
the input. We implemented this algorithm and included it in cais, a tool to
compute the eBWT as well as three other types of BWT.

5.1 Overview

The rest of the chapter is organized as follows. In Section 5.2, we give first
information about our algorithm. In Section 5.3, we explain how to compute
the SAIS types cyclically and how this removes the need for preprocessing. In
Section 5.4, and 5.5, we discuss in detail how to compute the GCA of a string
collection and our algorithm’s correctness and running time. In Section 5.6, we
present how to use our algorithm to compute the BWT of a single sequence
without using an end-of-string symbol and applying a preprocess. Finally, in
Section 5.7, we present the cais tool implementing the SAIS_for_eBWT algo-
rithm.

5.2 A simpler algorithm for computing the eBWT and
GCA

In the following sections, we describe all steps of our algorithm, SAIS_for_eBWT,
to compute the eBWT of a multiset of strings M. Our algorithm is an adap-
tation of the well-known SAIS algorithm of Nong et al. [99], which computes
the suffix array of a single string T ending with an end-of-string character $
via a recursive procedure. Our adaptation is similar to that of Bannai et al. [7]
for computing the BBWT, which can also be used for computing the eBWT.
Even though our algorithm does not improve the latter asymptotically (both
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are linear time), it is significantly simpler since it does not require first comput-
ing and sorting the Lyndon rotations of the input strings. In this chapter, we
will focus on describing the differences between our algorithm and the original
SAIS. Detailed explanations of SAIS can be found in [80,99,101].

The main differences between our algorithm and the original SAIS algorithm
are: (1) we are comparing conjugates rather than suffixes, (2) we have a multiset
of strings rather than just one string, (3) the comparison is done w.r.t. the
omega-order rather than the lexicographic order, and (4) the strings are not
terminated by an end-of-string symbol.

5.2.1 The eBWT and GCA of non-primitive strings

Even if in the original definition of eBWT [87], the input multiset M was
assumed to contain only primitive strings, our definition is more general and also
allows for non-primitive strings. For example, eBWT({ATA, TATA}) = TATTAAA,
with index set {2, 6}, while eBWT({ATA, TA, TA}) = TATTAAA, with index set
{2, 6, 7}. This does not affect the correctness of the transform. The linear-time
algorithm for recovering the original multiset starting from the eBWT and its
index set can be straightforwardly extended.

The following lemma shows how to construct the generalized conjugate array
GCAM of a multisetM of strings (not necessarily primitive), once we know the
generalized conjugate array GCAR of the multiset R of the roots of the strings
inM. The lemma follows straightforwardly from the fact that equal conjugates
will end up consecutively in the GCA.

Lemma 4. LetM = {T1, . . . , Tm} be a multiset of strings and let R the multiset
of the roots of the strings in M, i.e. R = {S1, . . . , Sm}, where Ti = (Sri

i ), with
ri ≥ 1 for 1 ≤ i ≤ m. Let GCAR[1..K] = [(i1, j1), (i2, j2), . . . , (iK , jK)], where
K =

∑m
i=1 |Si|. The generalized conjugate array is then given by

GCAM[1..N ] = [(i1, j1), (i1, j1 + |Si1 |), . . . , (i1, j1 + (ri1 − 1) · |Si1 |),
(i2, j2), (i2, j2 + |Si2 |), . . . , (i2, j2 + (ri2 − 1) · |Si2 |),
. . .

(iK , jK), (iK , jK + |SiK |), . . . , (iK , jK + (riK − 1) · |SiK |)],

with N =
∑m

i=1 |Si| · ri.

We will assume for the rest of the chapter that all strings inM are primitive
since we can use Lemma 4 to compute the eBWT and GCA ofM otherwise.

Finally, in Section 5.4.1, we show an alternative method to compute the
eBWT of non-primitive strings without computing their roots and exponents
by modifying the algorithm described in Section 5.4.

5.3 Cyclic types computation

To describe our algorithm, we need the following definition, which is the cyclic
version of the classic definitions of L- and S-type in [99] (where S stands for
smaller, L for larger, and LMS also called S∗, for leftmost-S):
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Definition 2 (Cyclic types, LMS-substrings). Let T be a primitive string
of length at least 2, and 1 ≤ i ≤ |T |. Position i of T is called (cyclic) S-type
if conji(T ) <lex conji+1(T ), and (cyclic) L-type if conji(T ) >lex conji+1(T ). An
S-type position i is called (cyclic) LMS-position if i−1 is L-type (where we view
T as a cyclic string). An LMS-substring is a cyclic substring T [i, j] of T such
that both i and j are LMS-positions, but there is no LMS-position between i and
j. Given a conjugate conji(T ), its LMS-prefix is the cyclic substring from i to
the first LMS-position strictly greater than i (viewed cyclically).

Since T is primitive, no two conjugates are equal, and in particular, no two
adjacent conjugates are equal. Thus, the type of every position is defined.

Example 12. Let M = {GTACAACG, CGGCACACACGT, C}, we assign the L- and S-
types as follows (we mark LMS -positions with a ∗),

G T A C A A C G C G G C A C A C A C G T

S L S L S S S S S L L L S L S L S S S L

∗ ∗ ∗ ∗ ∗ ∗
The LMS -substrings are ACA, AACGGTA, CGGCA, and ACGTC. The LMS -prefix of
the conjugate conj7(T1) = CGGTACAA is CGGTA.

Lemma 5 (Cyclic type properties). Let T be a primitive string of length
at least 2. Let a1 be the smallest and aσ the largest character of the alphabet.
Then the following hold, where T is viewed cyclically:

1. if T [i] < T [i+ 1], then i is type S, and if T [i] > T [i+ 1], then i is type L,
2. if T [i] = T [i+ 1], then the type of i is the same as the type of i+ 1,
3. i is of type S iff T [i′] > T [i], where i′ = min{i+ j | j > 0, T [i+ j] ̸= T [i]},
4. if T [i] = a1, then i is type S, and if T [i] = aσ, then i is type L.

Proof. 1. follows from the fact that for all b, c ∈ Σ, if b < c then for all U, V ∈
Σ∗, bU ≺ω cV ; 2. follows by induction from the fact that for all U, V ∈ Σ∗, if
U ≺ω V , then cU ≺ω cV ; 3. and 4. follow from 2. by induction.

Corollary 1 (Linear-time cyclic type assignment). Let T be a primitive
string of length at least 2. Then all positions can be assigned a type in altogether
at most 2|T | steps.

Proof. Once the type of one position is known, then the assignment can be
done in one cyclic pass over T from right to left by Lemma 5. Therefore, it
suffices to find the type of one single position. Any position of character a1 or
of character aσ will do; alternatively, any position i such that T [i + 1] ̸= T [i],
again by Lemma 5. Since T is primitive and has length at least 2, the latter
must exist and can be found in at most one pass over T .

The advantage of processing a multiset of Lyndon words is that we know the
last position of each Lyndon word is always an L-type. Thus, we can compute
all types with a single left to right scan of each sequence. Moreover, if the
sequences are presented in non creasing order, and we remove the Lyndon words
of length 1, then the cyclic types match the classic SAIS types [7]. Note that
this property is not true for general sequences. Our cyclic type assignment does
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not have any restriction on the characteristics of input strings; thus, it does
not require computing the Lyndon conjugates of the input strings and sorting
them. In fact, for each sequence, we only need to find the first L-type with the
first scan and then compute the other types with the second scan.

5.4 The Generalized conjugate array computation

Let N be the total length of the strings in M. The algorithm constructs an
initially empty array A of size N , which, at termination, will contain the GCA
of M. The algorithm also returns the set I containing the set of indices in A
representing the positions of the strings of M. The overall procedure consists
of the following steps (each step will be explained below):

Algorithm SAIS-for-eBWT

Step 1 remove strings of length 1 fromM (to be added back at the end)
Step 2 assign cyclic types to all positions of strings from M
Step 3 use procedure Induced Sorting to sort cyclic LMS -substrings
Step 4 assign names to cyclic LMS -substrings; if all distinct, go to Step 6
Step 5 recurse on new multisetM′, returning array A′, map A′ back to A
Step 6 use procedure Induced Sorting to sort all positions in M, add

length-1 strings in their respective positions, return (A, I)

At the heart of the algorithm is the procedure Induced Sorting of [99]
(Algorithms 3.3 and 3.4), which is used once to sort the LMS -substrings (Step
3), and once to induce the order of all conjugates from the correct order of the
LMS -positions (Step 6), as in the original SAIS. Before sketching this procedure,
we need to define the order according to which the LMS -substrings are sorted
in Step 2. Our definition of LMS -order extends the LMS -order of [99] to LMS -
prefixes. It can be proved that these definitions coincide for LMS -substrings.

Definition 3 (LMS-order). Given two strings S and T , let U resp. V be
their LMS-prefixes. We define U <LMS V if either V is a proper prefix of U , or
neither is a proper prefix of the other and U <lex V .

The procedure Induced Sorting for the conjugates of the multiset is anal-
ogous to the original one, except that strings are viewed cyclically. First, the
array A is subdivided into so-called buckets, one for each character. For c ∈ Σ,
let nc denote the total number of occurrences of the character c in the strings
in M. Then the buckets are [1, na1 ], [na1 + 1, na1 + na2 ], . . . , [N − naσ + 1, N ],
i.e., the k-th bucket will contain all conjugates starting with character ak. The
procedure Induced Sorting first inserts all LMS -positions at the end of their
respective buckets, then induces the L-type positions in a left-to-right scan of
A, and finally, induces the S-type positions in a right-to-left scan of A, possibly
overwriting previously inserted positions. We need two pointers for each bucket
b, head(b) and tail(b), pointing to the current first resp. last free position.

Procedure Induced Sorting [99]
1. insert all LMS -positions at the end of their respective buckets; for all

buckets b, initialize head(b), tail(b) to the first resp. last position
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2. induce the L-type positions in a left-to-right scan of A: for i from 1
to N−1, if A[i] = (d, j) then A[head(bucket(Td[j−1]))]← (d, j−1);
increment head(bucket(Td[j − 1]))

3. induce the S-type positions in a right-to-left scan of A: for i from
N to 2, if A[i] = (d, j) then A[tail(bucket(Td[j − 1]))] ← (d, j − 1);
decrement tail(bucket(Td[j − 1]))

At the end of this procedure, the LMS -substrings are listed in correct relative
LMS -order (see Lemma 7), and they can be named according to their rank. For
the recursive step, we define, for i = 1, . . . ,m, a new string T ′

i , where each
LMS -substring of Ti is replaced by its name (i.e. its rank). The algorithm is
called recursively onM′ = {T ′

1, . . . , T
′
m} (Step 5).

Finally (Step 6), the array A′ = GCA(M′) from the recursive step is mapped
back into the original array, resulting in the placement of the LMS -substrings
in their correct relative order. This is then used to induce the full array A. All
length-1 strings Ti, which were removed in Step 1, can now be inserted between
the L- and S-type positions in their bucket (Lemma 6). See Figure 5.1 for a full
example.

5.4.1 Handling non-primitive strings in SAIS

Step 2 of our algorithm requires that each string in M contains at least two
different characters to assign the cyclic types. If not, it means thatM contains
a non-primitive string with a root of length 1; thus, we cannot assign the cyclic
types. Let T be a string of length n; if it is non-primitive, we know we can rewrite
it in the following way, T = Sr, where S = T [1..(n/r)] is the root, and r ≥ 2 is
the exponent. Let a position 1 ≤ i ≤ (n/r) in S be an LMS-type position, since
S is repeated periodically all {i + (n/r · 0), i + (n/r · 1), ..., i + (n/r · r − 1)}th
positions will be LMS-positions. This implies that all cyclic LMS-substrings in
R are repeated p times (see Example 13).

Example 13. Let M = {TGAGTGAG, ACCAACCAACCA} be a string collection con-
taining two non-primitive words, where R = {TGAG, ACCA}.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12
T G A G T G A G A C C A A C C A A C C A

L L S S L L S S S L L S S L L S S L L S

∗ ∗ ∗ ∗ ∗
The two distinct LMS -substrings are AGTGA, and AACCA, and the new string
collection constructed using the LMS substrings’ ranks is M′ = {aa, bbb}. At
this point we cannot proceed with step 2 since we cannot assign the cyclic types.

It follows that at each recursive step, the length of the root of T reduces
at least by half until it reaches length 1. In this case, we end up with a string
containing p equal characters T ′ = c1..cp for which we cannot assign the cyclic
types. However, we note that all conjugates in T ′ have the same rank, which
is the same rank as a string containing a single occurrence of the character c,
T ′′ = c1. It follows that in Step 1, we can remove all non-primitive strings with
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a root of length 1 along with all strings of length 1 and add their conjugates in
the correct position in Step 6.

5.5 Correctness and running time

The following lemma shows that the individual steps of Induced Sorting are
applicable for the ω-order on conjugates of a multiset (part 1), that L-type
conjugates (of all strings) come before the S-type conjugates within the same
bucket (part 2), and that length-1 strings are placed between S-type and L-
type conjugates (part 3). The second property was originally proved for the
lexicographic order between suffixes in [64]:

Lemma 6 (Induced sorting for multisets). Let U, V ∈ Σ∗.

1. If U ≺ω V , then for all c ∈ Σ, cU ≺ω cV .
2. If U [i] = V [j], i is an L-type position, and j an S-type position, then

conji(U) ≺ω conjj(V ).
3. If U [i] = V [j] = c, i is an L-type position, and j an S-type position, then

conji(U) ≺ω c ≺ω conjj(V ).

Proof. 1. follows directly from the definition of ω-order. 3. implies 2. For 3., let
i′ be the nearest character following i in U such that U [i′] ̸= c. By Lemma 5,
U [i′] < c, and thus conji(U) <lex c|U |, and therefore, conji(U) ≺ω c. Anal-
ogously, if j′ is the next character in V s.t. V [j′] ̸= c, then by Lemma 5,
V [j′] > c, and therefore, c ≺ω conjj(V ).

Next, we show that after applying procedure Induced Sorting, the conju-
gates will appear in A such that they are correctly sorted w.r.t. to the LMS -order
of their LMS -prefixes, while the order in which conjugates with identical LMS -
prefixes appear in A is determined by the input order of the LMS -positions.

Lemma 7 (Extension of Thm. 3.12 of [99]). Let T1, T2 ∈M, let U be the
LMS-prefix of conji(T1), with i′ the last position of U ; let V be the LMS-prefix
of conjj(T2), and j′ the last position of V . Let k1 be the position of conji(T1) in
array A after the procedure Induced Sorting, and k2 that of conjj(T2).

1. If U <LMS V , then k1 < k2.
2. If U = V , then k1 < k2 if and only if conji′(T1) was placed before conjj′(T2)

at the start of the procedure.

Proof. Both claims follow from Lemma 6, and the fact that from one LMS -
position to the previous one, there is exactly one run of L-type positions, pre-
ceded by one run of S-type positions.

The next lemma shows that the LMS -order of the LMS -prefixes respects
the ω-order.

Lemma 8. Let S, T ∈ Σ∗, let U be the LMS-prefix of S and V the LMS-prefix
of T . If U <LMS V then S ≺ω T .
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T1 T2 T3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 1
M = { G T A C A A C G , C G G C A C A C A C G T , C }

S L S L S S S S S L L L S L S L S S S L
∗ ∗ ∗ ∗ ∗ ∗

Step 2 - assign cyclic types to all positions of strings from M
Step 1 - remove strings of length 1 fromM

A C G T
S∗ 2 2 2 1 1 2

5 7 9 3 5 1
L 2 2 2 1 2 2 1 2
−→ 4 6 8 4 3 2 2 12
S 1 2 2 1 1 2 2 1 2 1 1 2
←− 5 5 7 3 6 9 1 7 10 8 1 11

A C G T
1 2 2 1 1 2 2 2 2 1 2 1 2 2 2 1 1 2 1 2
5 5 7 3 6 9 4 6 8 4 1 7 10 3 2 8 1 11 2 12
∗ ∗ ∗ ∗ ∗ ∗

Step 3 - use procedure Induced Sorting to sort cyclic
LMS -substrings

A A C G G T A a
A C A b
A C G T C c
C G G C A d

Step 4 - Assign names to
cyclic LMS-substrings

T ′
1 = b a

T ′
2 = d b b a

T ′
1 T ′

2

1 2 1 2 3 4
M′ = { b a , d b b c }

L S L S S S
∗ ∗

a b c d
S∗ 1 2

2 2
L 1 2
−→ 1 1
S 1 2 2 2
←− 2 2 3 4

A′ 1 1 2 2 2 2
2 1 2 3 4 1

Step 5 - recurse on new string multiset M′

A C G T
S∗ 1 1 2 2 2 2

5 3 5 7 9 1
L 1 2 2 2 2 2 1 2
−→ 4 4 6 8 3 2 2 12
S 1 1 2 2 1 2 3 2 1 2 1 1 2
←− 5 3 5 7 6 9 1 1 7 10 8 1 11 T3

Step 6 - use procedure Induced Sorting to sort all positions inM,
add length-1 strings in their respective positions

GCA 1 1 2 2 1 2 1 2 2 2 3 2 1 2 2 2 1 1 2 1 2
5 3 5 7 6 9 4 4 6 8 1 1 7 10 3 2 8 1 11 2 12

eBWT C T C C A C A G A A C T A A G C C G C G G

Generalized conjugate array ofM

Fig. 5.1: The algorithm SAIS-for-eBWT on Example 13. The start positions
of input strings are marked in bold.
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Proof. If neither U nor V is a proper prefix one of the other, then there exists
an index i s.t. S[i] = U [i] < V [i] = T [i], and therefore, S ≺ω T . Otherwise,
V is a proper prefix of U . Let i = |V | and c = V [i]. Since both U and V are
LMS -prefixes, with i being the last position of V but not of U , this implies
that V [i] = T [i] is of type S, while U [i] = S[i] is of type L. Let j be the next
character in S s.t. S[j] ̸= c, and k be the next character in T s.t. T [k] ̸= c. By
Lemma 5, S[j] < c, T [k] > c, and by definition of j, k all characters inbetween
equal c. Then for i′ = min(j, k), we have S[i′] < T [i′], with i′ being the first
position where S and T differ. Therefore, S ≺ω T .

Theorem 1. Algorithm SAIS-for-eBWT correctly computes the GCA and
eBWT of a multiset of strings M in time O(N), where N is the total length of
the strings in M.

Proof. By Lemma 5, Step 2 correctly assigns the types. Step 3 correctly sorts
the LMS -substrings by Lemma 7. It follows from Lemma 8 that the order of
the conjugates of the new strings T ′

i coincides with the relative order of the
LMS -conjugates. In Step 6, the LMS -conjugates are placed in A in correct
relative order from the recursion; by Lemmas 7 and 8, this results in the correct
placement of all conjugates of strings of length > 1, while the positioning of the
length-1 strings is given by Lemma 6.

For the running time, note that Step 1 takes time proportional to 2N . The
Induced Sorting procedure also runs in linear time O(N). Finally, since no two
LMS -positions are consecutive, and we remove strings of length 1, the problem
size in the recursion step is reduced to at most N/2.

5.6 Computing the BWT for one single string without
dollar

The special case whereM contains one single string T leads to a new algorithm
for computing the BWT, since for a singleton set, the eBWT coincides with the
BWT. To the best of our knowledge, this is the first linear-time algorithm for
computing the BWT of a string without an end-of-string character that uses
neither Lyndon rotations nor end-of-string characters. The modified procedure
consists of the following steps:

Algorithm SAIS-for-eBWT (one string)
Step 1 if T has length one, return (A, I) = (1, 1)
Step 2 assign cyclic types to all positions of T
Step 3 use procedure Induced Sorting to sort cyclic LMS -substrings
Step 4 assign names to cyclic LMS -substrings; if all distinct, go to Step 6
Step 5 recurse on new string T ′, returning array A′, map A′ back to A
Step 6 use procedure Induced Sorting to sort all positions in T , return

(A, I)

We demonstrate the algorithm on a well-known example, T = banana. We
get the following types, from left to right: LSLSLS, and all three S-type po-
sitions are LMS. We insert 2, 4, 6 into the array A; after the left-to-right pass,
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indices are in the order 2, 4, 6, 1, 3, 5, and after the right-to-left pass, in the order
6, 2, 4, 1, 3, 5. The LMS -substring aba (pos. 6) gets the name A, and the LMS -
substring ana (pos. 2,4) gets the name B. In the recursive step, the new string
T ′ = ABB, with types SLL and only one LMS -position 1, the GCA gets induced
in just one pass: 1, 3, 2. This maps back to the original string: 6, 2, 4, and one
more pass over the array A results in 6, 4, 2, 1, 5, 3 and the BWT nnbaaa.

1 2 3 4 5 6
b a n a n a
L S L S L S

* * *

Step 2

a b n
S∗ 2 4 6
L 1 3 5
S 6 2 4

6 2 4 1 3 5

Step 3

6 a b a A
2 a n a B
4 a n a B

Step 4

1 2 3
A B B
S L L
*

A B

1
3 2

1 3 2

Step 5

a b n

6 4 2
1 5 3

GCA 6 4 2 1 5 3
BWT n n b a a a

Step 6

Fig. 5.2: Example for computing the BWT for one string, start index marked
in bold.

5.7 The cais tool

We implemented the SAIS_for_eBWT algorithm in the cais (Conjugate array in-
duced sorting) tool (https://github.com/davidecenzato/cais.git) for com-
puting four different BWT variants, the BWT of a single string without the
end-of-string character, the BBWT, the eBWT and the dollar eBWT.

5.7.1 Implementation

The cais tool is implemented in C++ and only requires the sdsl-lite li-
brary (https://github.com/simongog/sdsl-lite.git), a modern gcc com-
piler, and a make command to be installed. It takes as input either string
collections in fasta or fastq format or single texts in plain ASCII format. The
user can set the command-line arguments to select which of the four transforms
to compute.

Given a string collection M = {T1, . . . , Tm}, as for the eBWT, we con-
catenate all strings into a single string C[1..N ] = T1T2, ..., Tm, and construct a
bitvector D of length N + 1 marking the starting positions of the input strings
in the concatenation. Thus, the ith entry of D is D[i] = 1 if C[i] is the starting
position of a string in C, D[i] = 0 otherwise. The (N+1)th entry of D is always
set to 1. Finally, we compute the data structures supporting rank and select
queries on D using sdsl-lite. Since we are not using dollar characters, the
D bitvector is essential to identify the string boundaries in C and process the
strings circularly. By default, the tool computes a plain bitvector that takes
N + 1 bits in memory that supports constant time rank and select queries. We
also allow the user to select an Elias-Fano encoded bit vector implementation
to represent sparse bivectors.

The cais tool uses the SAIS_for_eBWT algorithm to compute the GCA of
the concatenation C[1..N ] by sorting the strings’ conjugates circularly. It takes
as input C and D and at each recursive step, computes D′ of the new string

https://github.com/davidecenzato/cais.git
https://github.com/simongog/sdsl-lite.git
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C ′ constructed by renaming the LMS-substrings. The eBWT is computed and
written directly to disk using the following equation,

eBWT[i] =

{
C[GCA[i]− 1], if D[i] = 0,
C[select1(D, rank1(D,GCA[i]) + 1)− 1], otherwise,

where rank(D, i) is the number of 1 in D[1..i], while select(D, i) is the position
of the ith 1 in D. The dollar BWT is computed similarly, just appending the
dollar characters at the end of the strings.

As for the BBWT, the procedure is identical except for the way we construct
C and D. Given an input string T , we initialize C = T and compute D by
marking the starting positions of the Lyndon factors of T .

Finally, the cais tool uses the SAIS_for_eBWT (one string) algorithm to
compute the CA of a string T [1..n] by sorting its conjugates circularly. The
BWT is computed and written directly to disk using the following equation,

BWT[i] =

{
T [CA[i]− 1], if i > 0,
T [n], otherwise.





6

Computing the eBWT of large string collections

In this chapter, we present pfpebwt, a tool implementing a linear-time algorithm
for computing the eBWT of large and repetitive string collections using prefix-
free parsing preprocessing. Finally, in the last section, we present an algorithm
to optimize the size of the PFP data structures. The contents of this chapter
were published in [17,18], and [103].

Computing the eBWT, as well as other BWT variants, using a SAIS-based
algorithm not only guarantees that the algorithm runtime will grow linearly with
the size of the input, but it is also fast in practice. Thus, it is not surprising
that two of the fastest implementations available to compute the SA and the
BWT of a text, libsais and sais-lite-lcp, are based on SAIS. However, this
type of algorithm requires keeping the whole SA or GCA in internal memory
during the computation. Due to this, applying these algorithms to large string
collections is impractical since it would require an enormous amount of internal
memory. In order to overcome this limitation, several attempts were made to
design algorithms implementing the suffix sorting procedure using the external
memory [12, 59, 77, 98]. However, they trade more efficient memory usage with
a slower running time.

In 2018 Boucher et al. [21, 22], introduced the prefix-free parsing (PFP).
PFP is a preprocessing technique that was originally introduced to construct
the BWT of large and repetitive texts. Briefly, with one scan, the PFP divides
the input in overlapping segments, called phrases, of variable length, which are
then used to construct what is referred to as the dictionary D and parse P
of the input. Then, with a separate procedure, it is possible to construct the
BWT of the input directly from D and P ; thus using space proportional to the
combined size of these two data structures. The key of the PFP is that if the
input collection is repetitive enough, the combined size of D and P will be much
smaller than the size of the original input.

In Section 3, we listed a number of tools for computing the BWT of large
string collections. However, all of them use dollars, and most of them produce a
transform that depends on the input order, thus, losing the original properties
of the eBWT. In this chapter, we show how to combine our new eBWT con-
struction, SAIS_for_eBWT presented in Chapter 5, with a variant of a PFP to
develop the first algorithm for computing the eBWT of large repetitive string
collections fast and keeping all computation in internal memory. We imple-
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mented our algorithm in the pfpebwt tool and measured the time and memory
required to build the eBWT on three genomic sequence datasets.

The PFP algorithm uses a simple and fast procedure that computes the
parse and dictionary data structures with a single pass on the input text. This
algorithm delivers excellent results in practice; however, it gives no guarantees
on the output size. In [103], we collaborated on developing an algorithm inspired
by the well-known RePair by Larsson and Moffat [71] to optimize the PFP size.
This algorithm is based on joining pairs of phrases to reduce the combined size
of the parse and dictionary. This algorithm, implemented in the rePFP-CST tool,
can significantly reduce the combined size of the PFP data structures on real
datasets and unlock the computation of a compressed suffix tree data structure
for one terabyte of data.

6.1 Overview

The rest of the chapter is organized as follows. In Section 6.2, we show how to
extend the PFP algorithm to cyclic strings. In Section 6.3, we present the algo-
rithm to compute the eBWT starting from the parse and dictionary constructed
using the cyclic PFP. In Section 6.4, and 6.5, we present our experimental re-
sults and give final comments. Finally, in Section 6.6, we give some highlights
of an algorithm inspired by the RePair of Larsson and Moffat to reduce the size
of the PFP data structures.

6.2 The cyclic prefix-free parsing

In this section, we show how to extend the prefix-free parsing to build the
eBWT. We define the cyclic prefix-free parse for a multiset of strings M =
{T1, T2, . . . , Tm} (with |Ti| = ni, 1 ≤ i ≤ m) as the multiset of parses P =
{P1, P2, . . . , Pm} with dictionary D, where we consider Ti as circular, and Pi is
the parse of Ti. We denote by pi the length of the parse Pi.

Next, given a positive integer w, let E be a set of strings of length w called
trigger strings. We assume that each string Th ∈ M has length at least w and
at least one cyclic factor in E.

We divide each string Th ∈M into overlapping phrases as follows: a phrase
is a circular factor of Th of length > w that starts and ends with a trigger string
and has no internal occurrences of a trigger string. The set of phrases obtained
from strings inM is the dictionary D. The parse Ph can be computed from the
string Th by replacing each occurrence of a phrase in Th with its lexicographic
rank in D.

Example 14. LetM = {T1 : CACGTGCTAT, T2 : CCACTTGCTAGA, T3 : CACTTGCTAT}
and let E = {AC, GC}. The dictionary D of the multiset of parses P of M
is D = {ACCAC, ACGTGC, ACTTGC, GCTAGAC, GCTATCAC} and P = {2 5, 3 4 1, 3 5},
where P2 = 3 4 1 means that the parsing of T2 is given by the third, the fourth
and the first phrase of the dictionary. Note that the string T2 has a trigger string
AC that spans the first position of T2.
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We denote by S the set of suffixes of D having a length greater than w. The
first important property of the dictionary D is that the set S prefix-free, i.e., no
string in S is the prefix of another string of S. This follows directly from [21].

Example 15. Continuing Example 14, we have that

S = {ACCAC, ACGTGC, ACTTGC, AGAC, ATCAC, CAC, CCAC, CGTGC,
CTAGAC, CTATCAC, CTTGC, GAC, GCTAGAC, GCTATCAC, GTGC,

TAGAC, TATCAC, TCAC, TGC, TTGC}

6.3 Computing the eBWT using the PFP

The computation of eBWT from the prefix-free parse consists of three steps:
computing the cyclic prefix-free parse of M (denoted as P), computing the
eBWT of P by using the algorithm described in Section 5.2; and lastly, comput-
ing the eBWT ofM from the eBWT of P using the lexicographically sorted dic-
tionary D = {D1, D2, . . . , D|D|} and its prefix-free suffix set S. We now describe
the last step as follows. We define δ as the function that uniquely maps each
character of Th[j] to the pair (i, k), where with 1 ≤ i ≤ ph, 1 ≤ k ≤ |Ph[i]| −w,
and Th[j] corresponds to the k-th character of the Ph[i]-th phrase of D. We
call i and k the position and the offset of Th[j], respectively. Furthermore, we
define α as the function that uniquely associates to each conjugate conjj(Th)
the element s ∈ S such that s is the k-th suffix of the Ph[i]-th element of D,
where (i, k) = δ(Th[j]). By extension, i and k are also called the position and
the offset of the suffix α(conjj(Th)).

Example 16. In Example 14, δ(T2[4]) = (1, 2) since T2[4] is the second character
(offset 2) of the phrase ACTTGC, which is the first phrase (position 1) of P2.
Moreover, α(conj4(T2)) = CTTGC since CTTGC is the suffix of D3, which is prefix
of conj4(T2) = CTTGCTAGACCA.

Lemma 9. Given two strings Tg, Th ∈M, if α(conji(Tg)) <lex α(conjj(Th)) it
follows that conji(Tg) ≺ω conjj(Th).

Proof. It follows from the definition of α that α(conji(Tg)) and α(conjj(Th))
are prefixes of conji(Tg) and conjj(Th), respectively.

Proposition 3. Given two strings Tg, Th ∈ M. Let conji(Tg) and conjj(Th)
be the i-th and j-th conjugates of Tg and Th, respectively, and let (i′, g′) =
δ(Tg[i]) and (j′, h′) = δ(Th[j]). Then conji(Tg) ≺ω conjj(Th) if and only if
either α(conji(Tg)) <lex α(conjj(Th)), or conji′+1(Pg) ≺ω conjj′+1(Ph), i.e.,
Pg[i

′] precedes Ph[j
′] in eBWT(P).

Proof. By definition of α, conji(Tg) = α(conji(Tg))Tg[i+g′′]Tg[i+g′′+1] . . . Tg[i−
1] and conjj(Th) = α(conjj(Th))Th[j+h′′]Th[j+h′′+1] . . . Th[j−1], where g′′ =
|α(conji(Tg))| and h′′ = |α(conjj(Th))|, respectively. Moreover, conji(Tg) ≺ω

conjj(Th) if and only if either α(conji(Tg)) <lex α(conjj(Th)) or conji+g′′−w(Tg) ≺ω

conjj+h′′−w(Th), where w is the length of trigger strings. It is easy to verify that
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the position of Tg[i + g′′ − w] and Th[j + h′′ − w] is i′ + 1 and j′ + 1, respec-
tively. Moreover, since Tg[i+ g′′ −w] and Th[j + h′′ −w] are the first character
of a phrase, we have that conji+g′′−w(Tg) ≺ω conjj+h′′−w(Th) if and only if
conji′+1(Pg) ≺ω conjj′+1(Ph).

Next, using Proposition 3, we define how to build the eBWT of the multiset
of strings M from P and D. First, we note that we will iterate through all
the suffixes in S in lexicographic order and build the eBWT of M in blocks
corresponding to the suffixes in S. Hence, it follows that we only need to describe
how to build an eBWT block corresponding to a suffix s ∈ S. Given s ∈ S, we
let Ss be the set of the lexicographic ranks of the phrases of D that have s
as a suffix, i.e., Ss = {i | 1 ≤ i ≤ |D|, s is a suffix of Di ∈ D}. Moreover,
given the string Th ∈ M, we let conji(Th) be the i-th conjugate of Th, let
j and k be the position and offset of Th[i], and lastly, let p be the position
of Ph[j] in eBWT(P). We define f(p, k) = DPh[j][k − 1] if k > 1, otherwise
f(p, k) = DPh[j−1][|DPh[j−1]| − w] where we view Ph as a cyclic string.

Example 17. In Example 14, eBWT(P) = 4 5 1 5 3 2 3. Let us consider conj4(T2)
and conj3(T3) that are both mapped to the suffix CTTGC by the function α. By
using Example 16, the positions and the offsets of T2[4] and T3[3] are 1 and
2, respectively. The positions of P2[1] = P3[1] = 3 in eBWT(P) are 5 and 7,
respectively, because conj2(P2) ≺ω conj2(P3). This implies that conj4(T2) ≺ω

conj3(T3) by Proposition 3. Furthermore, f(5, 2) = T2[3] = A.

Finally, we let Os be the set of pairs (p, c) such that for all d ∈ Ss, p is
the position of an occurrence of d in eBWT(P), and c is the character resulting
in the application of the f function considering as k the offset of s in Dd,
i.e., c = f(p, |Dd| − |s| + 1). Formally, Os = {(p, f(p, |DeBWT(P)[p]| − |s| + 1) |
eBWT(P)[p] ∈ Ss}.
Example 18. In Example 14, if s = CAC ∈ S and Ss = {1, 5}, where 1 : ACCAC
and 5 : GCTATCAC, then it follows thatOs = {(3, C), (2, T), (4, T)} since the phrase
1 is in position 3 in the eBWT(P) and the suffix CAC starts in position 3 of D1,
the character preceding the occurrences of CAC corresponding to the phrase 1

is C. Analogously, the phrase 5 is in positions 2 and 4 in the eBWT(P) and
the suffix CAC starts in position 6 of D5, hence the character preceding the
occurrences of CAC corresponding to the phrase 5 is T.

To build the eBWT block corresponding to s ∈ S, we scan the set Os

in increasing order of the first element of the pair, i.e., the position of the
occurrence in eBWT(P), and concatenate the values of the second element of
the pair, i.e., the character preceding the occurrence of s in Th.Note that if all
the occurrences in Os are preceded by the same character c, we do not need
to iterate through all the occurrences but rather concatenate |Os| copies of the
character c.

Example 19. In Example 14, eBWT(M) = GCCCTTTTCTAAGGGAAATTTCCCCAATGT

CC, where the block of the eBWT corresponding to the suffix s = CAC ∈ S is
underlined. Given Os = {(3, C), (2, T), (4, T)}, we generate the block by sorting
Os by the first element of each pair – resulting in Os = {(2, T), (3, C), (4, T)} –
and concatenating the second element of each pair obtaining TCT.
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6.3.1 Keeping track of the first rotations

So far, we have shown how to compute the first component of the eBWT. Now
we show how to compute the second component of the eBWT i.e., the set of
indices marking the first rotation of each string. The idea is to keep track of
the starting positions of each text in the parse by marking the offset of the
first position of each string in the last phrase of the corresponding parse. We
propagate this information during the computation of the eBWT of the parse.
When scanning the suffixes of S, we check if one of the phrases sharing the
same suffix s ∈ S is marked as a phrase containing a starting position, and
if the offset of the starting position coincides with the offset of the suffix. If
so, when generating the elements of Os, we mark the element corresponding to
the occurrence of the first rotation of a string, and we output the index of the
eBWT when that element is processed.

6.3.2 Implementation notes

In practice, as in [21], we implicitly select the set of trigger strings E, by rolling a
Karp-Rabin hash over consecutive windows of size w and take as trigger strings
of length w all windows such that their hash value is congruent 0 modulo a
parameter p. In our version of the PFP, we also need to ensure that there is at
least one trigger string on each sequence of the collection. Hence, we change the
way we select the trigger strings as follows. We define a set D of remainders, and
we select a window of length w as a trigger string with hash value congruent
d modulo p if d ∈ D. Note that if we set D = {0}, we obtain the same set of
trigger strings as in the original definition. We choose the set D in a greedy
way. We start with D = {0} by scanning the set of sequences and checking if
the current sequence has a trigger string according to the current D. As soon as
we find one, we move to the next sequence. If we don’t find any trigger string,
we take the remainder of the last window we checked, and we include it in the
set D.

We note that we consider S to be the set of suffixes of the phrases of D
such that s ∈ S is not a phrase in D, nor it has length smaller than w in
the implementation. This allows us to compute f more efficiently since we can
compute the preceding character of all the occurrences of a suffix in S from its
corresponding phrase in D. Moreover, as in [21], for each phrase in D, we keep
an ordered list of their occurrences in the eBWT of the parse. For a given suffix
s ∈ S, we do not generate Os all at once and sort it – but rather, we visit the
elements of Os in order using a heap data structure as we merge the ordered
lists of the occurrences in the eBWT of the parse of the phrases that share the
same suffix s.

6.4 Experimental results

We implemented the algorithm for building the eBWT and measured its perfor-
mance on real biological data. We performed the experiments on a server with
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz with 16 cores and 62 gigabytes of
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Name Description σ n/106 n/r

chr19 Human chromosome 19 5.00 121 086.62 2199.21
salmonella Salmonella genomes 4.00 48 791.75 112.72
sars-cov2 SARS-CoV2 genomes 5.00 11 930.96 1424.65

Table 6.1: Datasets used in the experiments. We give the alphabet size in column
3. We report the length of the file and the ratio of the length to the number of
runs in the eBWT in columns 4 and 5, respectively.

RAM running Ubuntu 16.04 (64bit, kernel 4.4.0). The compiler was g++ version
9.4.0 with -O3 -DNDEBUG -funroll-loops -msse4.2 options. We recorded the
runtime and memory usage using the wall clock time, CPU time, and maximum
resident set size from /usr/bin/time. The source code is available online at:
https://github.com/davidecenzato/PFP-eBWT.

We compared our method (pfpebwt) with the BCR algorithm implemen-
tation of [73] (ropebwt2), gsufsort [81], and egap [36]. We did not compare
against G2BWT [33], lba [14], and BCR [8] since they are currently implemented
only for short reads1. We did not compare against egsa [82] since it is the pre-
decessor of egap or against methods that construct the BWT of a multiset of
strings using one of the methods we evaluated against, i.e., LiME [55], BEETL [32],
metaBEETL [4], and ebwt2snp [109,110].

6.4.1 Datasets

We evaluated our method using 2,048 copies of human chromosomes 19 from
the 1000 Genomes Project [122]; 10,000 Salmonella genomes taken from the
GenomeTrakr project [120], and 400,000 SARS-CoV2 genomes from EBI’s
COVID-19 data portal [124]. The sequence data for the Salmonella genomes
were assembled, and the assembled sequences that had length less than 500 bp
were removed. In addition, we note that we replaced all degenerate bases in
the SARS-CoV2 genomes with N’s and filtered all sequences with more than
95% N’s. A brief description of the datasets is reported in Table 6.1. We used
12 sets of variants of human chromosome 19 (chr19), containing 2i variants
for i = 0, . . . , 11 respectively. We used 6 collections of Salmonella genomes
(salmonella) containing 50, 100, 500, 1,000, 5,000, and 10,000 genomes respec-
tively. We used 5 sets of SARS-CoV2 genomes (sars-cov2) containing 25,000,
50,000, 100,000, 200,000, 400,000 genomes, respectively. Each collection is a
superset of the previous one.

6.4.2 Experimental setup

We run pfpebwt and ropebwt2 with 16 threads, and gsufsort and egap with a
single thread since they do not support multi-threading. Using pfpebwt, we set
w = 10 and p = 100. Furthermore, for pfpebwt on the salmonella dataset, we
used up to three different remainders to build the eBWT. We used ropebwt2

1 G2BWT crashed and BCR did not terminate within 48 hours with the smallest of each
dataset; lba works only with sequences of length up to 255

https://github.com/davidecenzato/PFP-eBWT
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with the -R flag to exclude the reverse complement of the sequences from the
computation of the BWT. All other methods were run with default parameters.

We repeated each experiment five times, and reported the average CPU time
and peak memory for the set of chromosomes 19 up to 64 distinct variants, for
Salmonella up to 1,000 sequences, and for all SARS-CoV2. The experiments
that exceeded 48 hours of wall clock time or exceeded 62 GB of memory were
omitted for further consideration, e.g., 128 sequences of chr19, 5000 sequences
of salmonella and 400,000 sequences of sars-cov2 for egap. Furthermore,
gsufsort failed to successfully build the eBWT for 256 sequences of chr19,
5000 sequences of salmonella, and 400,000 sequences of sars-cov2 or more,
because it exceeded the 62GB memory limit.

6.4.3 Results

In Figures 6.1, 6.2, and 6.3 we illustrate the construction time and memory us-
age to build the eBWT and the BWT of collections of strings for the chromosome
19 dataset, the Salmonella dataset, and the SARS-CoV2 dataset, respectively.

pfpebwt was the fastest method to build the eBWT of 4 or more sequences
of chromosome 19, with a maximum speedup of 7.6x of wall-clock time and
2.9x of CPU time over ropebwt2 on 256 sequences of chromosomes 19, 2.7x of
CPU time over egap on 64 sequences, and 3.8x of CPU time over gsufsort
on 128 sequences. On Salmonella sequences, pfpebwt was always the fastest
method, except for 10,000 sequences where ropebwt2 was the fastest method
on wall-clock time. pfpebwt had a maximum speedup of 3.0x of wall-clock time
over ropebwt2 on 100 sequences of salmonella. Considering the CPU time,
pfpebwt was the fastest for ≥ 500 sequences with a maximum speedup of 1.7x
over ropebwt2 on 100 sequences and 1.2x over gsufsort and egap on 1,000
sequences. On SARS-CoV2 sequences, pfpebwt was always the fastest method,
with a maximum speedup of 2.4x of wall-clock time over ropebwt2 while a
maximum speedup of 1.3x of CPU time over ropebwt2 on 400,000 sequences,
2.9x over gsufsort and 2.7x over egap on 200,000 sequences of SARS-CoV2.

Considering the peak memory, on the chromosomes 19 dataset, ropebwt2
used the smallest amount of memory for 1, 2, 4, 8, and 2,048 sequences, while
pfpebwt used the smallest amount of memory in all other cases. pfpebwt used
a maximum of 5.6x less memory than ropebwt2 on 256 sequences of chromo-
somes 19, 28.0x less than egap on 64 sequences, and 45.3x less than gsufsort
on 128 sequences. On Salmonella sequences, pfpebwt used more memory than
ropebwt2 for 50, 100, and 10,000 sequences, while pfpebwt used the smallest
amount of memory on all other cases. The largest gap between ropebwt2 and
pfpebwt memory peak is of 1.7x on 50 sequences. On the other hand, pfpebwt
used a maximum of 17.0x less memory than egap and gsufsort on 1,000 se-
quences. On SARS-CoV2 sequences, pfpebwt always used the smallest amount
of memory, with a maximum of 6.4x less memory than ropebwt2 on 25,000
sequences of SARS-CoV2, 57.1x over gsufsort and egap on 200,000 sequences.

The memory peak of ropebwt2 is given by the default buffer size of 10 GB,
and the size of the run-length encoded BWT stored in the rope data structure.
This explains the memory plateau on 10.5 GB of ropebwt2 on the chromosomes
19 dataset. However, ropebwt2 is able only to produce the BWT of the input
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sequence collection, while pfpebwt can be trivially extended to produce also the
samples of the conjugate array at the run boundaries with negligible additional
costs in terms of time and peak memory.
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Fig. 6.1: Chromosome 19 dataset construction CPU time and peak memory
usage. We compare pfpebwt with ropebwt2, gsufsort, and egap.
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Fig. 6.2: Salmonella dataset construction CPU time and peak memory usage.
We compare pfpebwt with ropebwt2, gsufsort, and egap.

6.5 Conclusion

We described the first linear-time algorithm for building the eBWT of a large
collection of genomic sequences that does not require the manipulation of the
input sequences, i.e., neither the addition of an end-of-string character, nor
computing and sorting the Lyndon rotations of the input strings. We reached
this result by combining the SAIS_for_eBWT algorithm with an extension of
the prefix-free parsing to cyclic strings. We demonstrated pfpebwt was efficient
with respect to both memory and time in a scenario where the input is highly
repetitive.
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Fig. 6.3: SARS-CoV2 dataset construction CPU time and peak memory usage.
We compare pfpebwt with ropebwt2, gsufsort, and egap.

6.6 RePairing the PFP

The original PFP algorithm relies on two parameters, the length of the trigger
strings w and the integer p, to tune the size of the PFP data structures of
T [1..n]. In particular, it computes the trigger strings by selecting all substring
T [i..i + w] whose Karp-Rabin hash is congruent 0 modulo p [21]. Each PFP
phrase is then defined as a substring of the text starting and ending with a
trigger string. Since the parse contains an integer for each phrase, if we set low
w and p values, the PFP algorithm will generate many short phrases associated
with a small dictionary and a large parse. On the other hand, if we set high w
and p values, we will have many long unique phrases associated with a large
dictionary and a small parse. Due to this, we want to select w and p to minimize
the combined size of the parse and dictionary.

In [103], we collaborated on developing an algorithm to optimize the com-
bined size of the PFP dictionary and parse. This algorithm is inspired by Lars-
son and Moffat’s RePair [71], which iteratively substitutes the most frequent
character pairs in the text with a new character. However, in our algorithm,
we substitute pairs of phrases rather than pairs of characters. The selection of
the best pairs is driven by a cost function that assigns a value to each trig-
ger string. Thus, at each step, we remove the pairs associated with the trigger
string having the highest cost. The method depicted above is implemented in the
RePFP-CST tool and provides significant compression of the PFP data structures
while enabling the construction of the compressed suffix tree (CST) [20] index
of very large string collections; in particular, it allowed to compute the CST of
one terabyte of data. Here is a summary of the main highlights of the algorithm.

Filtering the trigger strings In our method, we merge pairs of phrases in
the parse by removing trigger strings. In particular, we search for the trigger
strings that allow decreasing the combined size of parse and dictionary the most
and filter them out. This method is implemented by defining a cost function to
track the effect of removing a specific trigger string.

Let D = {d1, ..., d|D|} be the dictionary and P = [p1, ..., p|P |] be the
parse of a text T . We aim to compute a new pair D′ and P ′ such that
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||D′|| + W |P ′| < ||D|| + W |P | where W is the size of one element of the
parse. Since each pair of consecutive phrases (pj , pj+1) in P overlaps by a
trigger string of length w we can define for each trigger string Ti, the set Li

containing all pairs of phrases (pj , pj+1) such that pj ends and pj+1 starts
with Ti. We can also define two sets L1i and L2i containing the first and
second element of the pairs in Li, respectively. Finally, we refer to f(q, p) as
the number of occurrences of the pair (q, p) in P . Using the set Li, we can
compute the effect of removing Ti on the combined size of the dictionary and
parse. We define as CD(Ti) =

∑
p∈L1i

∪L2i
|p| − ∑

(p1,p2)∈Li
(|p1| + |p2| − w)

the reduction of the dictionary size removing the trigger string Ti. While
CP (Ti) =

∑
(p1,p2)∈Li

f(p1, p2) · W is the reduction of the parse size. Alto-
gether, the effect of removing one trigger string Ti is C(Ti) = CD(Ti)+CP (Ti).

Updating the trigger string costs Our algorithm uses a greedy procedure;
at each step, it selects the trigger string Ti with the highest cost C(Ti) and
replaces each pair of phrases (p, q) ∈ Li with a new symbol u. Then, it updates
the dictionary by inserting the phrases associated with a new symbol u and
removing the phrases that no longer appear in the parse. Moreover, it updates
the cost of the other trigger strings. In order to compute all these operations
efficiently, we need three additional data structures: (i) a double-linked list DL
for the parse, (ii) a priority queue PQ to store the trigger string costs, (iii)
a hash table H storing for each Ti all pointers to the occurrences of the Li

pairs in P . We remove a trigger string Ti and update the cost of all others in
O(occ log |T | + occ log occ), where |T | is the number of trigger strings, and occ
is the number of occurrences of Ti in P .

We can summarize this procedure in four steps: 1) select the trigger string
with the highest cost Timax

using the priority queue PQ, 2) substitute all pairs
(p, q) ∈ Limax

in P with a new symbol u, all positions of the pairs to substitute
are contained in the H[Timax ] entry. 3) update the dictionary, and 4) update the
cost of all remaining trigger strings in PQ. We compute this last step efficiently
by storing all positions where we inserted a new symbol u in the parse, and
then, we update the costs by scanning only these positions.

Experimental results The performance of our method was evaluated on two
datasets, the repetitive corpus from Pizza&Chilli [107] and a dataset contain-
ing 5,000 sequences of chromosomes 17,18, and 19. As for the space reduction,
the best results were observed on the Pizza&Chilli Einstein and chromosomes
datasets. Here, our algorithm compressed the combined size of PFP data struc-
tures of the two datasets by 57% and 40%, respectively. As for constructing the
CST data structure, on chromosomes dataset, rePFP-CST was able to reduce the
CPU-time by 37.17% and the memory peak by 27.65% compared to PFP-CST
tool [20], the only competitor that can construct the CST. Finally, rePFP-CST
was able to construct, for the first time, the CST of a dataset of 1 terabyte
containing 5,000 chromosome sequences.
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Constructing the extended r-index

In this chapter, we present the extended r-index, a novel extension of the r-
index to the eBWT. A preliminary version of the contents of this chapter was
published in [19], while an extended version is under review for publication.

Even if string collections resulting from sequencing projects, such as the
100K Human Genome Project [125], the 1001 Arabidopsis Project [123], and
the 3,000 Rice Genomes Project (3K RGP) [121], are often very large, usually
only a small fraction of all information is useful to identify genomic variations.
This is because, between cultivars or individuals of these sequencing projects,
genomes share a lot of identical regions, leading to many repetitions in the
datasets. In this context, the challenge of text indexing consists in develop-
ing data structures able to exploit the biological data repetitiveness to get a
compressed representation of the input, which can still be queried efficiently.

The FM-index [41] is a data structure that has been the cornerstone of text
indexing for two decades, as it was part of two of the most well-known read
alignment algorithm: BWA [74] and Bowtie [70]. However, this data structure
does not scale well when using pangenome datasets as a reference for string
alignment. Since these datasets exhibit a small number of runs r of the resulting
BWT, the research moved toward the development of an index able to answer
the same queries of the FM-index while showing a space requirement linear in
the number of runs of the BWT, rather than in the size of the input.

In 2005 Mäkinen and Navarro [83, 84] introduced the run-length FM-index
(RLFM), a text index built on the run-length compressed BWT (RLBWT)
which solves locate queries to find all occurrences of a pattern P [1..p] in a text
T [1..n] in O

(
(p+s ·occ)

(
log σ

log log r +(log log n)2
))

time, where occ is the number of
occurrences of P , σ is the alphabet size, and s ≥ 1 is a parameter. The downside
of this data structure is that it requires O(r+n/s) space to store the RLBWT
and the SA-samples. Finally, in 2018 Gagie et al. [44,45] introduced the r-index
data structure; the first text index which fully supports locate queries in space
O(r) linear in the number of runs of the BWT.

However, during the development of all these data structures, little attention
has been paid to the fact that the input nowadays is typically a string collection
rather than an individual sequence. In particular, as we detailed in Chapter 3,
there are different ways to concatenate the input sequences, which generate
non-equivalent results. Due to this, treating a string collection such as a single
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sequence can result in a big variation in the memory requirement of the resulting
data structures, which is measured using r. Since the eBWT introduced by
Mantaci et al. [87] is independent of the input order, it offers a solution to
the previously mentioned problem. This is because the number of runs of the
resulting transform does not change while modifying the input order. However,
until recently, no efficient eBWT algorithm implementation was available. We
closed this gap in Chapters 5 and 6, where we described and implemented two
algorithms for constructing the eBWT, unlocking the efficient computation of
this BWT variant even for large string collections.

In this chapter, we extend the eBWT construction algorithm described in
Chapter 6 for computing the analog of the r-index based on the eBWT. We
refer to this new data structure as extended r-index. We show how to adapt the
PFP algorithm to the new task, thus enabling us to handle very large string
collections. The extended r-index has similar time and space requirements to
the r-index of Gagie et al. while inheriting the properties of the eBWT. In
contrast to other BWT variants, which append terminator characters at the
end of the strings, the eBWT naturally supports circular pattern matching
queries. In particular, the eBWT considers the input strings to be indexed as
circular; thus, it allows searching for patterns spanning the end and beginning
of a string.

We implemented the extended r-index and evaluated it on real-life biological
data. In particular, we constructed the extended r-index of two collections of
circular Salmonella Enterica and Escherichia Coli genomes, and a set of plas-
mids from various microbial species, and tested them with patterns of varying
length. We found that the extended r-index always has a negligible memory
overhead and similar query time compared to the r-index. We also compared
the number of occurrences as reported by the extended r-index with the r-index
and show that the differences between the number of occurrences reported by
the two indexes can be significant, especially when considering long patterns: for
patterns of length 10, 000, the r-index reports, on average, 50% fewer matches
than the extended r-index.

7.1 Overview

The rest of the chapter is organized as follows. In Section 7.2, we present the
extended r-index data structure, and in Section 7.3 detail its construction us-
ing the cyclic PFP algorithm. In Section 7.4, we explain how to construct the
thresholds along with the extended r-index to answer MEM queries, and in
Section 7.5, we present our experimental results. We close with an outlook in
Section 7.6.

7.2 The extended r-index

In this section, we show how to extend the r-index to the eBWT. Throughout
the rest of the chapter, we assume that all strings inM are primitive, and that
the multiset M is conjugate-free, i.e. no two strings are conjugates. The first
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assumption is justified, since we showed in Chapter 5 how, given a multiset of
strings M = {T1, . . . , Tm}, the GCAM can be computed from the GCA of the
roots of the strings in M or via the modification of the SAIS algorithm pre-
sented in Section 5.4.1. In addition, as we detail in Section 7.5.3, the ϕ-mapping
can be adapted to work with non-primitive strings by storing some additional
information, such as the exponents of the strings in M. The assumption that
M does not contain two strings which are conjugate is more restrictive. In Sec-
tion 7.5, we detail how we deal with input collections for which this condition
does not hold. Note in particular that the fact thatM is conjugate-free implies
thatM is a set. Finally, given a pattern P [1..p], we assume the pattern length
to be p ≤ min{|s| : s ∈ M}. This assumption ensures the correctness of our
pattern matching algorithm on the eBWT, and is realistic in most practical
scenarios. We recall that from now on, we denote the total length of strings in
M by N = ||M||.

Note that the results we present in this chapter hold in the RAM model
of computation, i.e., we assume our software runs on a random-access memory
which supports constant time access and processing of words of w = Ω(logN)
bits. It implies that all arithmetic and logical operations on such a machine
word are performed in constant time.

7.2.1 The data structures for the extended r-index

The extended r-index consists of three main components: (1) a data structure
supporting backward search queries on the run-length encoded eBWT, (2) a
data structure computing the toehold value during the backward search, and
(3) a data structure computing ϕM operations on the GCA.

We construct (1) by extending the RLFM-index by Mäkinen and Navarro [83]
to the eBWT, and describe it using the definitions and notation in [45]. It con-
sists of four elements:

(i) a data structure E[1..r] which supports predecessor search queries and stores
the first position of each eBWT run (run heads). The ith entry E[i] is the
beginning of the ith run;

(ii) a data structure L[1..r] which supports rank and select queries and stores
the eBWT run characters. The ith entry L[i] is the eBWT character of the
ith run;

(iii) a data structure D[1..r] which stores the cumulative lengths of the eBWT
runs of the same symbol after stably sorting them according to the lexico-
graphic order of their characters;

(iv) two vectors C[1..σ] and C ′[1..σ]: entry C[c] contains the number of charac-
ters smaller than c in the eBWT, and C ′[c] contains the number of characters
smaller than c in L.

In Example 20, we show the content of such data structures when the set
M = {AAT, AATAT, GATAATAA, AGA} is considered.

We implement the backward search procedure to search a pattern P [1..p]
in the eBWT using these four data structures. In particular, we compute the
interval GCA[i..j] for P by using 2p rank queries on the run-length encoded
eBWT. Each rank query counts the occurrences of a character c in an eBWT
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prefix eBWT[1..i] and can be computed efficiently using the E, L, D and C ′

data structures using the procedure shown in [45, Section 2.5] (see Example 20).
Then, once the results of the rank queries have been computed, the C vector is
used to get the correct eBWT interval. All these data structures can be stored
in O(r) words with up-to-date implementations (see Section 7.5.1). Note that
also the select queries are computed using the same four data structures. We
recall that given an array S of n elements, rankc(S, i) returns the number of
occurrences of c in the prefix S[1, i]; while selectc(S, i) returns the position of
ith occurrence of c in S. Moreover, given an ordered array S′ and a symbol
c′, where S′ contains elements from a totally ordered set U and c′ ∈ U , the
predecessor query pred(S′, c′) returns the position of the largest element in
S′ smaller than or equal to c′. In Example 20, we show how these operations
work on the previously defined data structures and how to apply them for the
computation described above.

M = {AAT, AATAT, GATAATAA, AGA}

i GCAM LFM eBWTM
1 (4,3) 13 G AAG
2 (3,7) 15 T AAGATAAT
3 (3,4) 16 T AATAAGAT
4 (1,1) 17 T AAT
5 (2,1) 18 T AATAT
6 (4,1) 1 A AGA
7 (3,8) 2 A AGATAATA
8 (3,5) 3 A ATAAGATA
9 (3,2) 14 G ATAATAAG

10 (1,2) 4 A ATA
11 (2,4) 19 T ATAAT
12 (2,2) 5 A ATATA
13 (4,2) 6 A GAA
14 (3,1) 7 A GATAATAA
15 (3,6) 8 A TAAGATAA
16 (3,3) 9 A TAATAAGA
17 (1,3) 10 A TAA
18 (2,5) 11 A TAATA
19 (2,3) 12 A TATAA

Fig. 7.1: An illustration of the eBWT for the multiset of strings M. From left
to right, we report the index i, the generalized conjugate array GCA for M,
the LF permutation, the eBWT, and the conjugates of M sorted according to
the ω-order. Highlighted in red the GCA-samples at the beginning and at the
end of an eBWT run.

Example 20. In Figure 7.1 we have the eBWT and the GCA of a string collection
M. Following the above list, (i) E = [1, 2, 6, 9, 10, 11, 12] and answers predeces-
sor queries like pred(E, 7) = 3, where E[3] = 6 is the predecessor of 7 in E; (ii)
L = [G, T, A, G, A, T, A] and answers rank and select queries like rankA(L, 5) = 2,
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and selectA(L, 2) = 5; (iii) D = [3, 4, 12, 1, 2, 4, 5] corresponding to the sorted
runs (A, 3)(A, 1)(A, 8)(G, 1)(G, 1)(T, 4)(T, 1); (iv) C = [0, 12, 14], and C ′ = [0, 3, 5]
for the A, G, T characters.

We compute the rank query rankA(eBWT, 13) as follows. The predecessor
of 13 in E is 12 in position 7. We know that eBWT[13] is in a run of A since
L[7] = A. With rankA(L, 7) = 3 we detect that eBWT[13] is within the third
run of A. We now access the D[C ′[A] + (3 − 1)] = 4 value in D, and compute
the final result rankA(eBWT, 13) = 4 + (13− 12) + 1 = 6.

We construct (2) by augmenting the backward search procedure to find a
toehold [45, Lemma 3.2] in the GCA, rather than in the SA, and (3) by extending
the locate machinery in [45, Section 3] to compute ϕ operations on the GCA
rather than on the SA. We do this by including the following data structures:

(v) a data structure G[1..r] which stores the GCA-samples at the end of the
eBWT runs. The ith entry G[i] is the GCA-sample at the end of the ith
run;

(vi) a data structure F [1..r] which supports circular predecessor search queries
and stores the GCA-samples at the beginning of the eBWT runs in text
order. The ith entry F [i] is the ith GCA-sample at the beginning of an
eBWT run in text order;

(vii) a data structure FirstToRun[1..r] which stores the mapping between the
GCA-samples in F and G. The ith entry FirstToRun[i] = i′ indicates that
F [i] and G[i′] are the GCA-samples at the beginning and end of the i′th
eBWT run, respectively;

(viii) a data structure B[1..m] which stores the length of each input string. The
ith entry B[i] is the length of the ith string inM.

The content of such data structures for the input string collection M =
{AAT, AATAT, GATAATAA, AGA} is described in Example 21. Notice that since we
are working with collections of circular strings, the predecessor search queries
on F have to work circularly. Given a GCA-sample, s = (d, j), the circular
predecessor query predcirc(F, s) returns the position of the GCA-sample (d, j′)
in F such that j′ is the largest positive integer smaller or equal than j. If there
is no such a GCA-sample in F , we ensure the circular behavior by searching the
predecessor of (d,B[d]), i.e., the sample (d, j′) such that j′ is the largest integer
in {j + 1, .., B[d]}.

Example 21. Continuing Example 20, following the above list, (v) stores the
GCA-samples at the end of the eBWT runs G = [(4, 3), (2, 1), (3, 5), (3, 2), (1, 2),
(2, 4), (2, 3)], (vi) stores the GCA-samples at the beginning of the eBWT runs
sorted in text order F = [(1, 2), (2, 2), (2, 4), (3, 7), (3, 2), (4, 1), (4, 3)]. The (vii)
stores the mapping between G and F , FirstToRun = [5, 7, 6, 2, 4, 3, 1]. Note
that since FirstToRun[4] = 2, F [4] = (3, 7) and G[2] = (2, 1) are the beginning
and end GCA-samples of the second eBWT run. Finally, (viii) stores the input
string lengths B = [3, 5, 8, 3].

We now describe how to compute the toehold value for the GCA during the
backward search procedure. The first step consists in augmenting the backward
search in a way that, at each step, in addition to the interval GCA[i..j], it also
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returns GCA[j]. We always store as toehold the last value of the interval since
later we will use ϕ to compute all other values in GCA[i..j − 1]. Assume we are
searching for a pattern P [1..p] and we matched it up to position p′. The interval
corresponding to P [p′..p] is GCA[i..j]; the toehold for this interval is GCA[j]. We
update the toehold for the next backward search step as follows. Let GCA[i′..j′]
be the interval for P [p′−1..p] and c = P [p′−1]; we need to distinguish between
two cases. If eBWT[j] ̸= c, then eBWT[j′] is the last position of a run. Thus, we
compute the new toehold value by using a predecessor search query on E and
a rank and select query on the eBWT to compute the position of the eBWT
run containing the eBWT[j′] character. Finally, we use FirstToRun to get the
the GCA[j′] value stored in G. Otherwise, if eBWT[j] = c, we simply update
the current toehold value (d, x) to (d, x− 1). Notice that also the update of the
toehold value has to work circularly. If x = 1, we compute the updated toehold
as (d, x−1) = (d,B[d]). We keep updating the toehold with this procedure until
we obtain the final GCA-interval for P [1..p].

Example 22. Continuing Example 20, assume we are locating pattern P = AAG.
The interval corresponding to the empty string is GCA[1..19] and the toehold
value is (2, 3). Using the LF-mapping, we compute the new GCA-interval for
P [3..3] = G, GCA[13..14]. Since eBWT[19] ̸= G, we compute the new toehold
as follows, rankG(eBWT, 14) = 2; thus, selectG(eBWT, 2) = 9 i.e. the second
occurrence of G is in position 9. Finally, we compute pred(E, 9) = 4, and update
the toehold value G[4] − 1 = (3, 1). Next, we compute the GCA-interval for
P [2..3] = AG, GCA[6..7]. In this case, eBWT[14] = A; thus, we simply compute
the circular predecessor of (3, 1) in T3, i.e., t = (3, 8). We end this example
computing the interval GCA[1..2] for P [1..3] with toehold (3, 7).

The last element we need to implement in our locate machinery is a data
structure which can compute ϕ operations on the GCA. Given GCA[i] = (d, j)
we compute ϕ(GCA[i]) = GCA[i− 1] by using a predecessor search query on F
and one access to G and FirstToRun. First, we obtain the circular predecessor
of (d, j), predcirc(F, (d, j)) = (d, j′). Then, we compute the number of LF-steps
between the two GCA-samples, ∆ = j − j′. Note that if j′ > j, the distance
is computed in a circular way as ∆ = j + (B[d] − j′). Finally, we get the
final result by adding ∆ to the sample in G[FirstToRun[j] − 1] = (d′, x), i.e.,
ϕ(GCA[i]) = (d′, (x+∆) mod B[d′]).

Example 23. Continuing Example 20, let GCA[3..5] be the interval of P = AAT

with toehold GCA[5] = (2, 1). We get ϕ(GCA[5]) as follows; we compute a
circular predecessor search query predcirc(F, (2, 1)) = 3; where F [3] = (2, 4).
We compute the number of LF steps separating the two GCA samples, ∆ =
(2, 1)− (2, 4) = 1 + (B[2]− 4) = 2. Now we get the GCA-sample at the end of
the previous run G[FirstToRun[3] − 1] = (1, 2), and compute the final result
GCA[3] = (1, 2) +∆ = (1, (2 + 2) mod B[1]) = (1, 1).

We store G,F,B, and FirstToRun in O(r) words (Prop. 5), and give details
of the implementation in Section 7.5.1.
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7.2.2 Analysis of the extended r-index

We will now show that the memory requirement of our data structure is O(r)
words, and that it can answer count and locate queries in time analogous to the
original r-index. Recall also that all strings in M are assumed to be primitive
and that M is a conjugate-free set.

We first need a technical lemma:

Lemma 10. Let M = {T1, . . . , Tm} be a conjugate-free set of primitive strings
of total length N , GCA its generalized conjugate array, with GCA[h] = (dh, jh)
for 1 ≤ h ≤ N . Let k be such that eBWT[k] = eBWT[k−1], and let k′ = LF(k).
Then LF(k − 1) = k′ − 1. In particular, GCA[k′ − 1] = (dk−1, jk−1 − 1).

Proof. This follows directly from the fact that the eBWT has the LF-property,
i.e., that same characters appear in the same order in the last and the first
column of the eBWT-matrix, see Prop. 10 in [87].

Example 24. Figure 7.1 illustrates an example of the property in Proposition 10.
Considering rows 10 and 11, we have GCA[12] = (2, 2) and GCA[13] = (4, 2).
With LF[12] = 5 and LF[13] = 6, we have GCA[5] = (2, 1) and GCA[6] = (4, 1).

To analyze the space required by the extended r-index, we show that every
string in M is sampled at least once among the run-beginning samples and at
least once among the run-end samples.

Proposition 4. Let M = {T1, . . . , Tm} be a conjugate-free set of primitive
strings of total length N , GCA its generalized conjugate array, with GCA[h] =
(dh, jh) for h = 1, . . . , N . Then, for each i, 1 ≤ i ≤ m, there exist integers k
and k′, such that dk = dk′ = i and

1. either k = 1 or eBWT[k] ̸= eBWT[k − 1], and
2. either k′ = N or eBWT[k′] ̸= eBWT[k′ + 1].

Proof. We assume (for contradiction) that there exists an integer i, with 1 ≤
i ≤ m, such that at least one of the two following conditions holds:

1. d1 ̸= i and, for all 1 < h ≤ N such that dh = i, eBWTM[h] = eBWTM[h−
1];

2. dN ̸= i and, for all 1 ≤ h < N such that dh = i, eBWTM[h] = eBWTM[h+
1].

We assume w.l.o.g. that 1 holds. Then, by Lemma 10 there exists an integer
1 ≤ i′ ≤ m, with i′ ̸= i, such that for all 1 < h ≤ N such that dh = i it holds
that dh−1 = i′. If we let u = conjjh−1

(Tdh−1
) and v = conjjh(Tdh

) then we see
that root(u) = root(v) by Lemma 10. In fact, every time we make an LF-step,
the conjugate index in GCAM is decreased by 1, and after |root(v)| steps, the
index of the conjugate of u must be jh−1. This implies that root(u) and root(v)
are conjugate. Since all strings in M are primitive, then we conclude that u
and v are conjugate, which is a contradiction to the hypothesis that M is a
conjugate-free set.
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Proposition 4 allows us to deduce a relationship between the number of runs
r and the number of strings m, and, if all strings have the same length, also
with the average run-length:

Corollary 2. LetM = {T1, . . . , Tm} be a conjugate-free set of primitive strings
of total length N , r the number of runs of its eBWT. Then m ≤ r. Moreover,
if all strings Ti have the same length ℓ, then N/r ≤ ℓ.

Proof. Both statements follow directly from Proposition 4.

We are ready to state the memory requirement of our data structure:

Proposition 5. The extended r-index of a conjugate-free set of primitive strings
requires O(r) words of storage, where r is the number of runs of the eBWT of
M.

Proof. The data structures E,L,D,G, F , and FirstToRun, as presented in
Sec. 7.2.1, occupy O(r) words each, C and C ′ occupy O(σ) words, and B occu-
pies O(m) words; since m ≤ r by Cor. 2, altogether we have O(r) space.

Count queries are done analogously to the r-index:

Proposition 6. LetM be a conjugate-free set of primitive strings of total length
N , and r the number of runs of eBWT(M). We can build an index of O(r)
words such that, later, given a pattern P [1..p], we can return the number of
cyclic occurrences of P in M in O(p log logw(σ +N/r)) time.

Proof. Count queries are answered by applying p backward search steps, i.e.,
2p rank queries, starting from the complete interval [1, N ] and computing the
interval [sP , eP ] which contains the conjugates of which the pattern P is a prefix.
The number of occurrences is then occP = eP − sP + 1. Since our strategy and
data structures are exactly analogous to the ones used for the r-index, the time
complexity follows by using similar arguments as in [45, Lemma 2.1].

Next we give the analog of the Toehold Lemma [45,108]:

Proposition 7. LetM be a conjugate-free set of primitive strings of total length
N and r the number of runs of eBWT(M). We can build an index of O(r) words
such that, later, given a pattern P [1..p], we can return the interval [sP , eP ] of
cyclic occurrences of P inM, along with one position q and the content GCA[q],
in O(p log logw(σ +N/r)) time.

Proof. As described in Sec. 7.2.1, we compute the toehold value similarly to
the r-index, employing the additional data structures for the extended r-index,
which allow us to handle circular predecessor queries and navigation between
different strings in the string collection. The running time follows again analo-
gously to [45, Lemma 3.2].

The next lemma, the analog of Lemma 3.5 in [45], states that one ϕ-value
can be computed in O(log logw(N/r)) time. Together with Prop. 7, this will
allow us, analogously to the r-index, to output all occ occurrences of a pattern
P .
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Lemma 11. Let M be a conjugate-free set of primitive strings of total length
N and r the number of runs of eBWT(M). Using the extended r-index of M,
we can evaluate ϕM in O(log logw(N/r)) time.

Proof. As described in Sec. 7.2.1, the evaluation of ϕM is realized analogously
to the r-index. Our additional data structures that allow the predecessor data
structure E to work circularly, do not affect the O(log logw(N/r)) query time
proved in [9].

We summarize the properties of the extended r-index in the following theo-
rem.

Theorem 2. Let M be a conjugate-free set of primitive strings of total length
N , and let r be the number of runs of eBWT(M). We can build an index of
O(r) words such that, later, given a pattern P [1..p], we can return the number of
cyclic occurrences of P inM in O(p log logw(σ+N/r)) time, and after counting,
return all occP cyclic occurrences of P in M in O(occ log logw(N/r)) time.

Proof. The extended r-index can be stored in O(r) words by Prop. 5. Given
a query pattern P , in O(p log logw(σ + N/r)) time the GCA-interval of its
occurrences [sP , eP ] can be computed, along with one occurrence in M (the
toehold value) by Prop. 7. By our construction, this toehold value is always the
last in the interval, i.e., GCA(eP ). Then, by repeated applications of ϕ, we can
compute all occ occurrences of P , each in time O(log logw(N/r)) by Lemma 11.

7.3 Efficient construction of the extended r-index

In Chapters 6, we showed how to efficiently construct the eBWT of large string
collections by using a variant of the PFP algorithm in a way that preserves
the original definition of Mantaci et al. [87]. In this section, we augment the
PFP algorithm to compute the GCA-samples as well as the run-length encoded
eBWT. The PFP is a preprocessing technique originally introduced to con-
struct the BWT of large and repetitive string collections. We now recall a brief
overview of the algorithm. With one scan, the PFP divides the input in overlap-
ping substrings of variable length, called phrases, which are used to construct
what is referred to as the dictionary D and parse P of the input collection. Then
a separate procedure constructs the BWT of the input directly from D and P;
thus using space proportional to the combined size of these two data structures.
The key of the PFP is that if the input collection is repetitive enough, the
combined size of D and P will be much smaller than the size of the original
input. In 6 we presented a variant of the PFP, called cyclic PFP. This variant
is designed to process circular strings; in particular, it constructs a dictionary
that also contains phrases spanning the beginning of the input strings.

In [68] Kuhnle et al. showed how to construct the SA, and the SA-samples
along with the run-length encoded BWT using the PFP data structures. This
is performed by computing for each BWT entry, BWT[i], its corresponding
SA value SA[i]. On the other hand, the SA-samples are computed by checking
at each step whether BWT[i] ̸= BWT[i− 1]; if this is the case we store both
the sample at the end, SA[i− 1], and at the beginning, SA[i] of the previous
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and current BWT run respectively. The SA entries are computed by storing
||P|| additional integers, one for each phrase, representing the offsets of the last
characters of the PFP phrases in the original text. Later in the algorithm, when
processing each sorted suffix s of one of the phrases in D, we use the offset of
the corresponding phrase and the length of s to output the SA value together
with the BWT character.

Here we extend the cyclic PFP algorithm we have previously described in
Chapter 6 to compute the GCA-samples rather than the SA-samples. We do this
by storing ||P|| additional offsets o = (d1, j1), ..., (dm, jm) representing the last
positions of the cyclic PFP phrases inM and implementing an algorithm similar
to the one in [68] to compute the GCA-samples by using these offsets. Briefly,
every time we process a suffix s in D, we get the offset of the corresponding
phrase (d, j) and use the suffix length to compute the correct GCA-sample
(d, j−|s|). The only exception we need to handle is the case where we process a
phrase spanning the beginning of a string, i.e., |s| ≥ j. Here, in order to ensure
the correct circular GCA-sample computation, we need to maintain only m
additional integers storing the length of each input string as we did with B. In
particular, when processing a suffix s in D, if s spans the beginning of a string
Ti, we retrieve the string length and compute the correct circular GCA-sample
for s. As a result, we compute the run-length eBWT as well as the GCA samples
using the augmented cyclic PFP algorithm in time linear in the size of the input
collection M and space linear in the combined size of D and P.

Finally, given these two data structures, we construct the extended r-index
using the procedure described in [45, Appendix A]. As for the RLFM-index,
we compute the run heads, the cumulative lengths of the sorted runs, and the
content of C and C ′ while scanning the run-length encoded eBWT in O(r)
time. Moreover, we compute the E and D predecessor search data structures
in O(r) time and O(r) words of space using up-to-date data structures (see
Section 7.5.1). As for the locate machinery, we sort the GCA samples at the
beginning of the runs and store them in F in O(r log r) time and O(r) words
of space, where r log r is the time required to sort r integers with a comparison
sort algorithm such as introsort [93]. Since we have already sorted the samples
in F in text order, we compute the FirstToRun in O(r) time by storing the
original positions of those samples in F . Note that the values in B are computed
during the first pass of the cyclic PFP algorithm by maintaining a counter for
the length of the input strings.

Proposition 8. Given a conjugate-free set of primitive strings M, we com-
pute the run-length encoded eBWT and the GCA-samples in O(||M||) time and
O(||D|| + ||P||) words of space, where D and P are the dictionary and parse
defined by the cylic PFP, and construct the extended r-index in O(r log r) time
and O(r) words of space.

Proof. In the previous discussion, we described how to adapt the method in [68]
to augment the cyclic PFP algorithm introduced in Chapter 6 to compute the
GCA-samples along with the run-length eBWT. This requires, in addition to the
PFP data structures, to store ||P|| additional phrase offsets and m additional
integers for the string lengths. Since P contains at least one phrase for each input
string, both are stored in O(||P||) words of space. In addition, we need O(r)
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additional steps to compute and output the samples, which are implemented by
means of rank and select queries on a bitvector. Thus, altogether we maintain
the same O(||M||) time and O(||D|| + ||P||) space complexity of the original
algorithm of Chapter 6. Finally, it follows from the previous discussion that
given the run-length eBWT and the GCA-samples, we construct the extended
r-index in O(r log r) time and O(r) space by extending the procedure described
in [45, Appendix A].

7.4 Computing MEMs with the extended r-index

Maximal exact matches (MEMs) are exact matches between two sequences G
and R that can neither be extended to the left nor to the right. A classic
application for MEMs is finding seeds between a short sequence and a genome
for computing multiple sequence alignments of both short and long reads [113].
As previously noted, the main components of the r-index, namely the run-length
BWT and the SA-samples, are not enough to find MEMs efficiently.

Bannai et al. [5] showed that MEM-finding can be supported by computing
the matching statistics (MS) of a query string P w.r.t. the text T , defined as
an array of size P , with P [i] = (ℓ, q), where ℓ is the length of the longest
substring starting at position i in P which occurs somewhere in T , and q one
of its occurrences in T , i.e., some position s.t. T [q..q + ℓ − 1] = P [i..i + ℓ − 1].
From the matching statistics for P , we can compute the occurrence of a MEM
using a two-pass algorithm: first, working right to left, we process each suffix
of P until we find a substring of the text that matches for as long as possible;
then, working left to right, we use random access to T to determine the length
of those matches.

In order to compute the matching statistics, Bannai et al. described the ad-
dition of a small data structure to the r-index referred to as thresholds. However,
they did not explain how to construct it efficiently. Rossi et al. [113] solved this
problem by redefining a threshold between a consecutive pair of runs of the same
character as the position of the minimum LCP value in the interval between
them. They further showed how to compute the thresholds efficiently using the
PFP based construction algorithm of the r-index.

The same modification can also be made for the extended r-index, allowing
the thresholds for the eBWT to be constructed along with the GCA-samples.
In particular, we need to extend our pfpebwt algorithm to find the positions of
the minimum LCP values in all intervals between pairs of consecutive eBWT
runs of the same character. This is performed using two data structures, 1) the
LCP-array of D, supporting range minimum queries, and 2) the LCP-array of
the parse P counting longest common prefixes with respect to the number of
characters in the original strings. In particular, every time we find a new eBWT
run, we search for the minimum value in 1) or 2) depending on whether the
preceding run of the same character shares the same PFP phrase suffix or not.

Corollary 3. Given a conjugate-free set of primitive strings M, we can build
the thresholds in addition to the extended r-index in O(||M||) time and O(||D||+
||P||) words of space, where D and P are the dictionary and parse defined by
the cyclic PFP.
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P = TAGAA

P Prefix POS
T TA (2,3)
A AGA (3,8)
G GA (3,1)
A AA (2,1)
A A (2,2)

M = {AAT, AATAT, GATAATAA, AGA}

GCAM THRM eBWTM
A G T

(4,5) ∗ ∗ ∗ G AAG
(3,7) T AAGATAAT
(3,4) T AATAAGAT
(1,1) T AAT
(2,1) T AATAT
(4,1) ∗ ∗ A AGA
(3,8) A AGATAATA
(3,5) ∗ A ATAAGATA
(3,2) G ATAATAAG
(1,2) A ATA
(2,4) T ATAAT
(2,2) ∗ A ATATA
(4,2) A GAA
(3,1) A GATAATAA
(3,6) A TAAGATAA
(3,3) A TAATAAGA
(1,3) A TAA
(2,5) A TAATA
(2,3) A TATAA

Fig. 7.2: An illustration of the thresholds for calculating the matching statistics
of a query string P [1..m] in a set of strings M. Shown on the left is P , the
longest Prefix of the suffix of P that occurs in M, and the position of the
corresponding prefix in the text. Shown on the right, continuing from left to
right, is the GCAM ofM with the entries corresponding to either the beginning
or the end of a run highlighted in red, the thresholds THRM for the characters
A, G, and T, the eBWTM, and all rotations of all strings in M. The arrows
illustrate the position in the GCAM which corresponds to the prefix on the
left.

These data structures can be used for finding MEMs on the eBWT in the
same way as for the r-index. It follows directly from Bannai et al. [7] and Rossi
et al. [113], that, given a query string P [1..p] which has occ occurrences of a
MEM inM, we can find a single MEM in O(p(log logw(σ +N/r) + tRA))-time
and O(r+sRA) words of space, where tRA and sRA are the time and space of any
data structure that is able to provide random access to the string. Moreover, we
extend this search to find all occ occurrences in additional O(occ log logw(N/r))-
time.

Figure 7.2 depicts an example of matching statistics query of the pattern
P = TAGAA against the collection of strings M = {AAT, AATAT, GATAATAA, AGA}.
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7.5 Experimental results

We implemented the extended r-index in C++ by adapting the code of the r-
index (https://github.com/nicolaprezza/r-index), and made it available
in https://github.com/davidecenzato/extended_r-index.git. We compute
all data structures necessary to construct the extended r-index via an adaptation
of our cyclic PFP algorithm to enable our construction algorithm to scale for
large string collections. We compared the performance of the extended r-index
with the r-index using real-life biological data. We used the r-index implemen-
tation given in https://github.com/alshai/r-index.git since this software
version allows to compute the BWT as well as the SA-samples of large datasets
using the Big-BWT algorithm [68,91].

Note that, unlike the r-index, our implementation supports circular pattern
matching, i.e., we report occurrences of a pattern that span the end and be-
ginning of a string in addition to the ones already reported by the r-index.
We compute all necessary data structures via an adaptation of pfpebwt we
described in Chapter 6 to enable our construction algorithm to scale for large
string collections.

7.5.1 Implementation

We construct the RLFM-index computing the interval GCA[i..j] for a pattern
P by extending the implementation described in [45, Section 7.1]. We com-
pute L by constructing the wavelet tree of the BWT runs characters using the
Huffman-encoded wavelet tree implementation of sdsl (wt_huff) supporting
rank and select queries. We compute E and D by encoding the run heads and
the cumulative lengths using the unary encoding and storing the final binary
strings in two sdsl Elias-Fano compressed bitvectors (sd_vector) supporting
rank and select queries. In our implementation, we do not store C ′ explicitly
since we split D in σ different substrings, thus enabling direct access to D.
Finally, we store the C vector using the sdsl (int_vector) implementation.
Altogether these data structures take (1 + ϵ)r(log(n/r) + 2) + r log σ + σ log n
bits, where ϵ = 0.5 is a parameter decided in input.

We extend the locate machinery described in [45] to support ϕ operations
on the GCA rather than on the SA. We construct G, the data structure storing
the GCA-samples at the end of the runs, as well as the FirstToRun vector
using the sdsl (int_vector) implementation. Further, we compute F by stor-
ing the GCA-samples at the beginning of a run using a gap-encoded bitvector.
In particular, we construct a bitvector Bf [1..N ] for F such that the ith entry
Bf [i] = 1 if i ∈ F . We construct the B data structure that we additionally need
in the extended r-index in a similar way; in particular, we define a bitvector
Bb[1..n] for B such that the ith entry Bb[1..N ] = 1 if i is the position of the
first character of one of the input string. Note that we represent the GCA-
samples as we did in Section 5.7.1. In particular, we store samples as offsets
in the concatenation T1T2...Tm and keep a bitvector to get the string indexes.
Thus, the indexes encoded by Bf refer to positions in the concatenation, and
Bb stores the string boundaries in the concatenation. We implement both Bf

 https://github.com/nicolaprezza/r-index
https://github.com/davidecenzato/extended_r-index.git
https://github.com/alshai/r-index.git
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and Bb using the Elias-Fano compressed bitvector of sdsl (sd_vector) imple-
mentation. Altogether these data structures implementing the locate machinery
take r log n+ r log r + r(log(n/r) + 2) +m(log(n/m) + 2) bits.

7.5.2 Handling equal conjugates

Proposition 4 ensures that if in an input collectionM, no two strings have the
same set of conjugates, then we will sample at least two GCA-samples for each
string, one at the beginning and one at the end of a eBWT run. However, when
working with string collections containing circular genomes of the same specie,
this condition may not be fulfilled since we may find two sequences such that
one is a rotation of the other. In this case, we will have some sequences with
no GCA-samples. We solve this problem by sampling some additional GCA
values corresponding to the first rotation of each string in M. We added this
functionality to the algorithm described in Section 7.3: while computing the
eBWT, every time we process the first rotation of a string, we check whether
the corresponding character eBWT[i] is the first character of a new run. If not,
we instantiate a new run and store two GCA-samples, one at the beginning of
the new run GCA[i], and one at the end of the previous run GCA[i− 1]. At the
end of this procedure, we will sample at most 2m additional GCA-samples.

Example 25. In Figure 7.2, assume we want to sample the GCA positions cor-
responding to the first rotation of each string in M. In this case, we also need
to store (1, 1), (1, 2) and (1, 3), which are the samples corresponding to the AAT,
AATAT and GATAATAA rotation, respectively. Note that (1, 4) was already at the
beginning of the third eBWT run; thus, we do not need to sample it again.

7.5.3 Handling non-primitive strings

As for handling non-primitive strings, we need two additional functionalities: (i)
computing the GCA and eBWT of string collections containing non-primitive
strings and (ii) supporting ϕ operations on such a GCA. We obtain (i) by mod-
ifying the PFP algorithm as described in Section 5.2.1; this includes running
the algorithm on the roots {S1, ..., Sm} of the strings inM and using the expo-
nents {k1, ..., km} to output the correct eBWT and GCA-samples. As for (ii),
we implement it by using the information provided by the exponents; in par-
ticular, when computing ϕ(GCA[i]), where GCA[i] = (d, j), if j > kd then the
query will report (d, j− kd) as a result, otherwise it applies the same procedure
described in Section 7.2.1.

7.5.4 Datasets

We evaluated the extended r-index, and the r-index using three genomic
datasets: the first dataset contains circular assembled genomes of Salmonella
Enterica (Salmonella); the second dataset contains circular assembled genomes
of Escherichia Coli (E.coli) strains; the last dataset contains a set of plasmid
(plasmids) genomes. Features of the three datasets are summarized in Ta-
ble 7.1. We downloaded the Salmonella and E.coli datasets from NCBI using
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the accession ids of the reference genomes from the ZymoBIOMICS High-Molec-
ular-Weight DNA Mock Microbial community (ZymoMC) used to evaluate the
method in [1]. We downloaded the most recent assemblies of this data, and
removed the ones marked as anomalous. In addition, we only retained the refer-
ence genomes and removed additional contigs. This resulted in 846 Salmonella
enterica and 1,362 Escherichia coli assembled genomes. As for plasmids, we
downloaded the sequences from the PLSDB database containing a collection of
34,513 plasmid sequences gathered from the NCBI and INSDC platforms [114].
Finally, we removed all plasmid sequences shorter than our maximum pattern
length and, since we did not yet implement the functionalities described in
Section 7.5.3, we also removed the non-primitive sequences. This resulted in a
dataset containing 25,916 plasmid sequences

dataset no. seq total length avg. length min. length max. length n/r (eBWT)
Salmonella 846 4,121,587,394 4,871,853 4,482,093 5,700,307 70.574
E.coli 1,362 7,024,773,608 5,157,690 4,456,672 6,162,417 88.011
Plasmids 25,916 3,458,859,947 133,464 10,005 4,605,385 4.220

Table 7.1: Table summarizing the main parameters of the three datasets. From
left to right, we report the dataset name, the number of sequences, the total
length, the average, minimum, and maximum sequence length, and the average
run-length of the eBWT (n/r).

7.5.5 Experimental setup

We performed the experiments on a server with Intel(R) Core(TM) CPU i9-
11900 @ 2.50GHz with 8 cores and 64 gigabytes of RAM running Ubuntu
22.04 LTS 64-bit. The compiler was g++ version 11.3.0 using C++ 17 stan-
dard and -Ofast -fstrict-aliasing -march=native -DNDEBUG options. We
recorded the memory usage using the maximum resident set size retrieved from
/usr/bin/time. We computed the count and locate queries on the r-index using
the occ and locate_all functions, respectively.

From each dataset, we extracted three pattern sets containing 1 million
sequences each of length 100, 1, 000, and 10, 000, respectively. Patterns were
extracted by randomly sampling substrings from the input strings. In particular,
for each pattern, we computed a random offset on an input string and extracted
a substring starting from the offset. We also included patterns spanning the end
and the beginning of a string. For each set of patterns, we computed both count
and locate queries on all patterns and collected the number of occurrences, the
total memory usage, and the average time to process a pattern.

In our experiments, we built and queried both the extended r-index and the
original r-index. Given a collection of stringsM = {T1, T2, ..., Tm}, we build the
r-index of the string S = T1$T2$ · · · $Tm#, where $ and # are characters not
occurring in M preventing spurious occurrences to be found, e.g., occurrences
of the pattern P spanning T1T2. For the sake of completeness, we included in
our experiments a data structure that builds on top of the r-index and supports
circular count, and locate queries with minimal implementation effort. We refer
to this data structure as circular r-index, and it is built as follows. Given a
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collection of strings M = {T1, T2, ..., Tm} we build a r-index on the collection
M and we also build a r-index on the collectionM′ = {T1T1, T2T2, ..., TmTm}.
Given a pattern P , circular count queries are performed by computing a count
query on the circular r-index of M′, which returns twice the number of occur-
rences of P that are entirely contained in {T1, T2, ..., Tm} and once the number
of occurrences of P that spans the end and the beginning of each string in M;
then, we subtract from this value the result of a count query on the r-index
of M. Thus, every count query on the circular r-index consists of two count
queries. Finally, the locate queries on the circular r-index are computed as a
locate query on the r-index ofM′, where all occurrences located in the second
copy of each string are discarded.

7.5.6 Results

In Figure 7.3, we illustrate the difference in the number of occurrences reported
by the r-index and the extended r-index, for those patterns where these do not
coincide. For each of Salmonella, E. coli, and plasmids, we ran count queries
for 3 million patterns: 1 million each of length 100, 1, 000, and 10, 000.

Patterns with a different number of occurrences between the r-index and
the extended r-index are patterns that occur as circular substrings spanning the
beginning of a sequence in the dataset. Therefore, the number of occurrences
strongly depends on two factors: the lengths of the indexed sequences and the
lengths of the patterns. In the first case, having long indexed sequences and
short patterns, it is less likely to extract a pattern that spans the beginning
of a string; thus, most patterns have the same number of occurrences in both
the r-index and the extended r-index. On Salmonella, and E.coli datasets,
only 0.02%, 0.04%, 0.30% and 0.04%, 0.06%, 0.27% of the patterns show a
different number of occurrences for the 100, 1000, and 10000 pattern length,
respectively. On the other hand, when the dataset contains short sequences, it
is more likely to extract patterns that span the beginning of a string. On the
plasmids dataset, the 3.59%, 9.44%, and 24.77% of the patterns show a different
number of occurrences between the two indexes for the three pattern lengths,
respectively (see Figure 7.4). Notice that for all datasets, the longest pattern
length, 10, 000, is always associated with the largest percentage of patterns with
different number of occurrences between the two indexes.

The pattern length also affects the difference of the number of occurrences
between the r-index and the extended r-index. Given a pattern P , we defined
the percentage of matches lost as [1 − c(P )/c′(P )] · 100, where c(P ) and c′(P )
are the number of occurrences of P in the input reported by the r-index and the
extended r-index, respectively. We focus on the patterns for which c(P ) ̸= c′(P ).
For patterns of length 10,000, a pattern loses on average more than 50% of its
matches when using the r-index. In particular, we report 68.0%, 71.9%, and
78.4% average matches lost for the Salmonella, E.coli, and plasmids dataset,
respectively. While for patterns of length 1,000, the average match loss is 42.5%,
32.7%, and 20.0% for the three datasets. Finally, the reported average match
loss is 6.0%, 3.7%, and 5.1% on patterns of length 100. In Figure 7.5, we report
the number of patterns for each of the percentages of matches lost.
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Runtime analysis

In Figure 7.6, we illustrate the time and the memory usage to process the three
sets of patterns containing 1 million queries of lengths 100, 1,000, and 10,000
for Salmonella, E.coli, and plamids datasets. In particular, we report the
resident set size on the x-axis and the average time to process a pattern on the
y-axis.

The runtime and memory requirements for the extended r-index are similar
to the r-index for all datasets and pattern lengths. As for the time, the extended
r-index was slightly faster for the locate queries on Salmonella and E.coli with
pattern length p ≥ 1, 000, and Plasmids with p = 1, 000 with a maximum 1.03x
speedup factor. In contrast, the extended r-index was slightly slower in the other
cases with a maximum slowdown of 1.11x reported in the plasmids dataset. The
same holds for memory usage, where the extended r-index used at most 1.005x
more memory than the r-index. The differences are more evident when looking
at the circular r-index data structure. Note that this data structure, unlike the
r-index, can locate the circular occurrences as the extended r-index. As for the
count queries, the extended r-index is always faster than the circular r-index
with a maximum speedup of 1.97x wall-clock time. This is due to the fact that
a circular r-index has always run two different count queries. For the locate
queries, the running times are comparable since the extended r-index had a
maximum speedup of 1.19x wall-clock time; however, we did not implement
the function to filter the occurrences of the circular r-index locate queries. The
extended r-index always uses less memory than the circular r-index with a
maximum of 1.04x space reduction.

In summary, we show important differences in the number of occurrences
between the original r-index and the extended r-index—especially when work-
ing with datasets of short sequences and long patterns. Moreover, the space
and time requirements of the extended r-index are similar to the r-index on
all datasets. The extended r-index always allows performing circular pattern
matching queries faster and using less memory than the circular r-index. The
extended r-index is also simpler to construct than the circular r-index since we
do not need to double the size of the dataset.

7.6 Conclusion

In this chapter, we described how the fundamentals of the r-index can be trans-
ferred to the context of the eBWT. We note that the eBWT has the advantage
over other BWT-based data structures for string collections that it is indepen-
dent of the order of the input strings. The r-index based on the eBWT, which
we call extended r-index, inherits this important property. Yet, we note that
the applicability of this data structure has not been fully explored. We imple-
mented the extended r-index and showed that on large biological datasets, it has
competitive performance compared to the r-index. We further notice that from
a more theoretical point of view, recasting some of the more recent results—
including the results of Nishimoto and Tabei [97], Bannai et al. [5], and Cobas
et al. [31]—regarding the r-index to the context of eBWT merits attention since
it could provide a further improvement of our text index.



Fig. 7.3: Dispersion plots between the number of occurrences of the r-index
and the extended r-index on 3 sets of patterns of different lengths, containing
1 million sequences each. Each point in the figures represents the number of
occurrences of the two indexes on a specific pattern. We omitted the patterns
having the same number of occurrences for the two indexes.



Fig. 7.4: Histograms summarizing the number of occurrences difference between
the extended r-index and the r-index on the plasmids dataset. Each bar reports
the percentage of the number of patterns with a given difference in the number
of occurrences between the two indexes. For ease of presentation, we cut the x-
axis at 13 since all other bars have a value on the x-axis below 1,000. We omitted
the first bin containing the number of patterns whose difference between the
two indexes is zero.



Fig. 7.5: Histograms summarizing the number of matches lost between the ex-
tended r-index and the r-index on the three datasets. Each bar shows the per-
centage of the number of patterns with a given percentage of pattern lost be-
tween the two indexes. For this plot we only include the patterns whose number
of occurrences is different between the two indexes. We omitted the last bin
containing the patterns with zero matches using the r-index.



Fig. 7.6: Time and space to perform count and locate queries using the extended
r-index and the r-index on 3 sets of patterns containing 1 million sequences of
different lengths. Each point in the figures represents a pair consisting of the
average time to process a pattern and the peak memory usage of one of the
three indexes.





8

Conclusion and suggestions for future research

In this thesis, we focused on studying and developing algorithms to construct the
BWT of string collections with a focus on data compression and text indexing.

In the first part of the thesis, we addressed the study of the different BWT
extensions to string collections present in the literature: In Chapter 3, we sys-
tematically reviewed five different BWT variants and showed that there are
important differences between them. Most importantly, these differences also
extend to r, the number of runs of the BWT. Moreover, the r parameter is also
strongly influenced by the input order of the sequences, especially for string col-
lections containing short sequences. Due to this, we argued for the importance
of standardizing r by fixing an input order, such as the optimal order of Bent-
ley et al. In addition to ensuring that r is well-defined, using the optimal BWT
also allows to obtain the best compression and performance of BWT-based data
structures. We further investigated this topic in Chapter 4 where we presented
the first tool to compute the optBWT, i.e. the BWT of string collections which
guarantees the minimum number of runs. We showed both on simulated and
real-life data that the reduction of the number of runs provided by the optBWT
can be large. On our data, we observed a reduction of r by up to a factor of 31.

In the second part of the thesis, we addressed the problem of constructing the
extended BWT (eBWT) of Mantaci et al., and a text index based on the eBWT.
Among the BWT variants in the literature, the eBWT is the mathematically
cleanest generalization of the BWT to string collections; it does not need the
addition of the separator characters and is independent of the input order.
However, no efficient implementations of the eBWT were available before 2021,
and therefore, the eBWT was not part of any tool until now. In Chapters 5 and
6, we presented two efficient linear time algorithms to compute the eBWT of
string collections, whose implementations are contained in two tools: cais and
pfpebwt. In addition, we showed that pfpebwt can compute the eBWT of very
large genomic string collections and has competitive performance compared
to other currently available tools. We continued this work by presenting the
first text index based on the eBWT: In Chapter 7, we defined an extension
of the r-index of Gagie et al. based on the eBWT; we named it extended r-
index. We implemented this index and showed it has similar time and space
requirements as the original r-index while supporting efficient circular pattern
matching queries.
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8.1 Directions for future research

We conclude this chapter with suggestions for future research directions opened
by this thesis.

The number of runs reduction provided by optimal BWT (Chapter 4) opens
several new future research directions. An interesting possibility consists in de-
veloping a short reads compressor based on the optimal BWT, which exploits
the minimum number of runs guaranteed by this transform. A second direction
consists in the creation of a text index for large string collections based on the
optBWT. This would allow defining a new data structure built on the optimal
BWT similar to the extended r-index described in Chapter 7, which guarantees
the minimum size of the resulting index. Finally, it would be interesting to ex-
tend our optimalBWT tool with an algorithm computing the optBWT of large
and repetitive string collections by adapting the PFP preprocessing technique
described in Chapter 6 to construct the eBWT.

Regarding the extended r-index defined in Chapter 7, as mentioned in the
conclusion of the chapter, an interesting future direction consists in extending
the more recent improvements of the r-index to the eBWT. This includes imple-
menting the subsampling procedure described in [31], which would reduce the
number of sampled GCA positions and the size of the extended r-index, and
implementing optimal time queries in r bounded space [97] to speed up pattern
search on circular genomes.

A further improvement consists in extending our extended r-index with the
functionalities described in Section 7.4 and 7.5.3. This includes implementing
the matching statistics and MEM computation on circular strings with our
index, computing the thresholds of Rossi et al. [113] using pfpebwt and com-
puting the LCP-array of the GCA using cais. As for handling non-primitive
strings, it is necessary to extend our circular locate machinery and adapt the
implementations in Chapter 5 and 6 to construct the GCA of non-primitive
strings.
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A

Full experimental results for Chapter 3

A.1 Further information on the tools

We extensively tested all tools we cited in Chapter 3 and determined which data
structure they compute, using both our tests and the algorithm descriptions in
the respective papers. In this section, we include further information about the
tools.

• pfpebwt is the tool computing the eBWT of string collections (https:
//github.com/davidecenzato/PFP-eBWT.git) we described in Chapter 6.
It takes in input a fasta file and gives in output the eBWT in either plain
ASCII text or RLE (run-length-encoded) format. We used (a) no flags for
long sequences, and (b) the flags -w 10 -p 10 -n 3 --reads for short se-
quences. We included it in two different rows of Table 3.1 because by default
pfpebwt computes the eBWT, but it can compute the dolEBWT if the se-
quences have explicit end-of-string characters (not in multi-thread mode).

• cais is the tool implementing the SAIS_for_eBWT (Chapter 5) algorithm,
which computes four BWT types: (i) the eBWT, (ii) the dolEBWT, (iii)
the BWT of a single sequence without an end-of-string symbol, and (iv)
the BBWT of a text (https://github.com/davidecenzato/cais.git) de-
pending on the input flag. It takes in input a fasta file, a fastq file, or a plain
text file and gives in output one of the four transforms in plain ASCII text.
The -c and -a flags enable the conjugate array computation, while -s flag
allows using a sdsl’s sd_vector bitvector to represent the string bound-
aries.

• BEETL is a suite containing several tools, including a tool computing the
mdolBWT of string collections using an implementation of the BCR and
BCR-ext algorithms [8] (https://github.com/BEETL/BEETL.git). All in-
put sequences have to have the same length. We tested this tool using
–output-format ASCII and –concatenate-output flags. This tool also
computes the sapBWT (Chapter 4) by using the –sap-ordering flag (BCR-
ext mode only).

• BCR_LCP_GSA is a tool computing the mdolBWT of sting collections in semi-
external memory (https://github.com/giovannarosone/BCR_LCP_GSA).
It implements an algorithm similar to BCR contained in the BEETL tool, but

https://github.com/davidecenzato/PFP-eBWT.git
https://github.com/davidecenzato/PFP-eBWT.git
https://github.com/davidecenzato/cais.git
https://github.com/BEETL/BEETL.git
https://github.com/giovannarosone/BCR_LCP_GSA
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it can process a string collection containing sequences of different lengths.
It takes in input a fasta file, a fastq file, or a gz-compressed fastq file. It
computes the mdolBWT following the method of Bauer et al., described
in [8]. We set the ’dataTypeLengthSequences’ variable in Parameters.h
to 1.

• ropebwt2 is a tool computing the FM-index and the mdolBWT of string
collections (https://github.com/lh3/ropebwt2.git), using an approach
similar to BCR. It takes in input a fasta file, a fastq file, or a gz compressed
fastq file. We listed it in two different rows of Table 3.1 because it computes
the mdolBWT or the colexBWT, depending on the flags. We used the -R
and the -R -s flags, respectively, to obtain the two transforms. In addition,
we modified main.c in order to change the order of the characters to $ <
A < C < G < N < T.

• BigBWT computes the concBWTof string collections, and optionally the suf-
fix array, of a highly repetitive text or string collection (https://github.
com/alshai/Big-BWT.git). It takes in input a newline separated file or
a fasta file. This tool with the -f flag is used internally in the r-index
(https://github.com/alshai/r-index), producing the BWT of the in-
put strings concatenated without dollars; the separator symbols have to be
added beforehand in the fasta file. On the other hand, the tool without the
-f flag will compute the BWT of the fasta files without skipping the fasta
headers. We used standard parameters and new-line separated files as input;
the output then is the concBWT.

• grlBWT is a tool computing the mdolBWT of string collections using an
algorithm that keeps the intermediate data structures in compressed form
(https://github.com/ddiazdom/grlBWT). It takes in input a concatenated
string collection and gives in output the mdolBWT in run-length com-
pressed form. We tested it with the default parameters and used new-line
separated files as input. We parsed the results in plain text format.

• merge-BWT computes the mdolBWT of string collections by merging the
BWTs of subcollections of the input (https://github.com/jltsiren/
bwt-merge.git). It takes in input a list of one or several mdolBWTs. The
order of the dollars will depend on the order in which the input BWTs are
listed. We tested it using -i plain_sorted and -o plain_sorted flags.
We computed the BWTs of the subcollections using ropebwt2.

• nvSetBWT is a tool included in nvbio suite (https://github.com/NVlabs/
nvbio.git). It takes in input either a fastq or a newline separated file. We
tested it using the -R flag for skipping the reverse strand. However, even if
the algorithmic descriptions in [76,105] seem to describe the mdolBWT, the
output of the current version (version 1.1) does not correspond to a possible
BWT because the Parikh vector is different from that of the input.

• eGSA computes the generalized enhanced suffix array and the mdolBWT of
string collections (https://github.com/felipelouza/egsa.git). It takes
in input a text file, a fasta file, or a fastq file. It uses the gSACA-K [79]
algorithm for computing the suffix array of subcollections of the input and
then merges all suffix arrays. Thus it computes the mdolBWT. We tested
it with the -b flag.

https://github.com/lh3/ropebwt2.git
https://github.com/alshai/Big-BWT.git
https://github.com/alshai/Big-BWT.git
https://github.com/alshai/r-index
https://github.com/ddiazdom/grlBWT
https://github.com/jltsiren/bwt-merge.git
https://github.com/jltsiren/bwt-merge.git
https://github.com/NVlabs/nvbio.git
https://github.com/NVlabs/nvbio.git
https://github.com/felipelouza/egsa.git
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• eGAP computes the mdolBWT, and optionally the LCP-array and DA (doc-
ument array) of string collections (https://github.com/felipelouza/
egap.git). It works in semi-external memory by merging BWTs of increas-
ing subsets of the input. It takes in input a newline separated file, a fasta
file, or a fastq file. We tested it with default settings.

• bwt-lcp-parallel computes the mdolBWT and the LCP-array of short
string collections (https://github.com/AlgoLab/bwt-lcp-parallel.git).
It takes in input fasta files and does not support the N character. We tested
it using standard settings.

• gsufsort computes the SA, LCP and mdolBWT of string collections
(https://github.com/felipelouza/gsufsort.git), using the gSACA-K
algorithm of [79]. It takes in input a newline separated file, a fasta file, or a
fastq file. We tested it using --fasta and --bwt flags.

• G2BWT is a tool computing the dolEBWT of short string collections (https:
//bitbucket.org/DiegoDiazDominguez/lms_grammar/src/bwt_imp2). It
takes in input newline separated files. Even though it is not stated explicitly,
this tool computes the dolEBWT because, when it constructs the grammar,
it uses dollars for separating adjacent strings. Thus, also the string rotations
will contain dollars. We tested it using the default settings.

• msbwt is a tool implementing the Holt and McMillan [57] merge-based
BWT construction algorithm (https://github.com/holtjma/msbwt.git).
It takes in input a list of one or several fastq files. Even if this tool uses the
BCR approach [8] for computing the BWTs to merge, it actually computes
the dolEBWT. This is because it features a preprocessing where it sorts the
input strings lexicographically. Thus, the resulting mdolBWT corresponds
to the dolEBWT.

A.2 Results on individual datasets

In this section, we include the tables containing the full experimental results on
the eight datasets used in Chapter 3.

https://github.com/felipelouza/egap.git
https://github.com/felipelouza/egap.git
https://github.com/AlgoLab/bwt-lcp-parallel.git
https://github.com/felipelouza/gsufsort.git
https://bitbucket.org/DiegoDiazDominguez/lms_grammar/src/bwt_imp2
https://bitbucket.org/DiegoDiazDominguez/lms_grammar/src/bwt_imp2
https://github.com/holtjma/msbwt.git


104 A Full experimental results for Chapter 3

SARS-CoV-2 short (500,000 short sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 3,014,183 2,926,602 2,912,860

mdolBWT 0.11820 0 3,013,908 3,102,887

concBWT 0.11477 0.11819 0 3,013,634

colexBWT 0.11423 0.12168 0.11818 0

dataset properties

no. sequences 500,000

average length 50

total length 25,000,000

no. of interesting intervals 116,598

total length intr.int.s 20,187,840

fraction pos.s in intr.int.s 0.792

variability 0.210

no. runs big dataset

r n/r

eBWT 1,902,148 13.143

dolEBWT 1,868,581 13.647

mdolBWT 3,113,818 8.189

concBWT 3,402,513 7.494

colexBWT 808,906 31.524

optimum 725,979 35.125

norm. Hamming d.

Hamming d. Hamming distance on a subset of 5,000 sequences

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 21,362 21,196 20,626

mdolBWT 0.08377 0 21,376 21,256

concBWT 0.08312 0.08383 0 21,259

colexBWT 0.08089 0.08336 0.08337 0

small dataset properties

no. of sequences 5,000

total length 250,000

average length 100

no. of interesting intervals 2,476

total length intr.int.s 180,038

fraction pos.s in intr.int.s 0.706

variability 0.173

norm. edit d.

edit d. edit distance on a subset of 5,000 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 28,702 43,903 43,828 46,936

dolEBWT 0.11256 0 17,000 16,921 20,104

mdolBWT 0.17217 0.06667 0 16,130 20,812

concBWT 0.17187 0.06636 0.06325 0 20,830

colexBWT 0.18406 0.07884 0.08162 0.08169 0

no. runs small dataset

r n/r

eBWT 52,979 4.719

dolEBWT 50,803 5.019

mdolBWT 54,766 4.656

concBWT 54,698 4.662

colexBWT 37,320 6.833

optimum 35,904 7.102

Table A.1: Results for the SARS-CoV-2 short dataset. First row left: absolute and
normalized pairwise Hamming distance between separator-based BWT variants. First
row right: summary of the dataset properties. Second row: number of runs and average
run-length (n/r) of all BWT variants. Third row left: absolute and normalized pairwise
Hamming distance between separator-based BWT variants on a subset of the input
collection. Third row right: summary of the dataset properties of a subset of the input
collection. Fourth row left: absolute and normalized pairwise edit distance between all
BWT variants on a subset of the input collection. Fourth row right: number of runs
and average run-length (n/r) of all BWT variants on a subset of the input collection.
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Simons Diversity reads (500,000 short sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 3,624,283 3,602,362 3,594,438

mdolBWT 0.07249 0 3,628,799 3,623,154

concBWT 0.07133 0.07186 0 3,617,679

colexBWT 0.07189 0.07246 0.07168 0

dataset properties

no. of sequences 500,000

total length 50,000,000

average length 100

no. of interesting intervals 316,013

total length intr.int.s 5,387,549

fraction pos.s in intr.int.s 0.107

variability 0.976

no. runs big dataset

r n/r

eBWT 8,974,105 5.572

dolEBWT 9,337,122 5.409

mdolBWT 9,362,564 5.394

concBWT 9,530,334 5.299

colexBWT 6,414,356 7.873

optimum 6,209,567 8.133

norm. Hamming d.

Hamming d. Hamming distance on a subset of 5,000 sequences

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 23,742 23,461 23,535

mdolBWT 0.04748 0 23,785 23,722

concBWT 0.04646 0.04710 0 23,660

colexBWT 0.04707 0.04744 0.04685 0

small dataset properties

no. of sequences 5,000

total length 500,000

average length 100

no. of interesting intervals 3,111

total length intr.int.s 35,404

fraction pos.s in intr.int.s 0.070

variability 0.989

norm. edit d.

edit d. edit distance on a subset of 5,000 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 72,898 72,878 72,918 74,026

dolEBWT 0.14435 0 17,820 17,560 22,481

mdolBWT 0.14431 0.03529 0 17,726 22,586

concBWT 0.14439 0.03477 0.03510 0 22,595

colexBWT 0.14659 0.04452 0.04472 0.04474 0

no. runs small dataset

r n/r

eBWT 77,646 6.439

dolEBWT 81,758 6.177

mdolBWT 81,883 6.167

concBWT 82,779 6.101

colexBWT 64,229 7.862

optimum 62,117 8.130

Table A.2: Results for the Simons Diversity reads dataset. First row left: absolute and
normalized pairwise Hamming distance between separator-based BWT variants. First
row right: summary of the dataset properties. Second row: number of runs and average
run-length (n/r) of all BWT variants. Third row left: absolute and normalized pairwise
Hamming distance between separator-based BWT variants on a subset of the input
collection. Third row right: summary of the dataset properties of a subset of the input
collection. Fourth row left: absolute and normalized pairwise edit distance between all
BWT variants on a subset of the input collection. Fourth row right: number of runs
and average run-length (n/r) of all BWT variants on a subset of the input collection.



106 A Full experimental results for Chapter 3

16S rRNA short (500,000 short sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 2,202,008 2,540,310 1,748,072

mdolBWT 0.02881 0 2,201,003 2,202,717

concBWT 0.03324 0.02880 0 2,784,600

colexBWT 0.02287 0.02882 0.03643 0

dataset properties

no. of sequences 500,000

total length 75,929,833

average length 152

no. of interesting intervals 54,366

total length intr.int.s 56,708,529

fraction pos.s in intr.int.s 0.742

variability 0.058

no. runs big dataset

r n/r

eBWT 1,992,130 38.115

dolEBWT 1,992,211 38.364

mdolBWT 4,057,541 18.836

concBWT 2,767,797 27.614

colexBWT 1,727,127 44.253

optimum 1,703,234 44.873

norm. Hamming d.

Hamming d. Hamming distance on a subset of 5,000 sequences

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 20,159 23,229 15,835

mdolBWT 0.02635 0 20,024 20,092

concBWT 0.03036 0.02617 0 25,464

colexBWT 0.02070 0.02626 0.03329 0

small dataset properties

no. of sequences 5,000

total length 765,037

average length 152

no. of interesting intervals 1,376

total length intr.int.s 139,041

fraction pos.s in intr.int.s 0.182

variability 0.222

norm. edit d.

edit d. edit distance on a subset of 5,000 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 51,683 62,799 63,303 61,732

dolEBWT 0.06756 0 16,968 20,180 14,166

mdolBWT 0.08209 0.02218 0 16,695 19,371

concBWT 0.08274 0.02638 0.02182 0 21,683

colexBWT 0.08069 0.01852 0.02532 0.02834 0

no. runs small dataset

r n/r

eBWT 35,262 21.554

dolEBWT 35,293 21.677

mdolBWT 50,581 15.125

concBWT 38,900 19.667

colexBWT 30,568 25.027

optimum 30,007 25.495

Table A.3: Results for the 16S rRNA short dataset. First row left: absolute and
normalized pairwise Hamming distance between separator-based BWT variants. First
row right: summary of the dataset properties. Second row: number of runs and average
run-length (n/r) of all BWT variants. Third row left: absolute and normalized pairwise
Hamming distance between separator-based BWT variants on a subset of the input
collection. Third row right: summary of the dataset properties of a subset of the input
collection. Fourth row left: absolute and normalized pairwise edit distance between all
BWT variants on a subset of the input collection. Fourth row right: number of runs
and average run-length (n/r) of all BWT variants on a subset of the input collection.
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Influenza A reads (500,000 short sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 3,040,590 3,038,509 2,938,706

mdolBWT 0.02617 0 3,039,095 3,041,816

concBWT 0.02615 0.02616 0 3,089,670

colexBWT 0.02529 0.02618 0.02659 0

dataset properties

no. of sequences 500,000

total length 116,192,842

average length 231

no. of interesting intervals 213,735

total length intr.int.s 11,995,246

fraction pos.s in intr.int.s 0.103

variability 0.363

no. runs big dataset

r n/r

eBWT 3,258,605 35.504

dolEBWT 3,298,502 35.226

mdolBWT 5,030,032 23.100

concBWT 4,629,150 25.100

colexBWT 2,362,987 49.172

optimum 2,311,133 50.275

norm. Hamming d.

Hamming d. Hamming distance on a subset of 5,000 sequences

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 23,456 23,456 22,873

mdolBWT 0.02018 0 23,509 23,407

concBWT 0.02018 0.02023 0 24,061

colexBWT 0.01968 0.02014 0.02070 0

small dataset properties

no. of sequences 5,000

total length 1,162,319

average length 231

no. of interesting intervals 3,062

total length intr.int.s 36,019

fraction pos.s in intr.int.s 0.031

variability 0.966

norm. edit d.

edit d. edit distance on a subset of 5,000 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 75,966 75,935 75,991 76,437

dolEBWT 0.06536 0 18,043 18,316 21,869

mdolBWT 0.06533 0.01552 0 17,835 22,536

concBWT 0.06538 0.01576 0.01534 0 23,078

colexBWT 0.06576 0.01881 0.01939 0.01986 0

no. runs small dataset

r n/r

eBWT 81,992 14.115

dolEBWT 85,489 13.596

mdolBWT 89,256 13.022

concBWT 87,867 13.228

colexBWT 70,534 16.479

optimum 68,900 16.870

Table A.4: Results for the Influenza A reads dataset. First row left: absolute and
normalized pairwise Hamming distance between separator-based BWT variants. First
row right: summary of the dataset properties. Second row: number of runs and average
run-length (n/r) of all BWT variants. Third row left: absolute and normalized pairwise
Hamming distance between separator-based BWT variants on a subset of the input
collection. Third row right: summary of the dataset properties of a subset of the input
collection. Fourth row left: absolute and normalized pairwise edit distance between all
BWT variants on a subset of the input collection. Fourth row right: number of runs
and average run-length (n/r) of all BWT variants on a subset of the input collection.
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SARS-CoV-2 long (50,000 long sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 248,189 248,205 255,357

mdolBWT 0.00462 0 248,572 248,631

concBWT 0.00462 0.00462 0 248,765

colexBWT 0.00475 0.00462 0.00463 0

dataset properties

no. sequences 50,000

total length 53,776,351

average length 1,075

no. of interesting intervals 31,931

total length intr.int.s 9,436,894

fraction pos.s in intr.int.s 0.17548

variability 0.03716

no. runs big dataset

r n/r

eBWT 882,634 60.870

dolEBWT 879,608 61.137

mdolBWT 934,129 57.568

concBWT 934,117 57.569

colexBWT 734,610 73.204

optimal 721,845 74.498

norm. Hamming d.

Hamming d. Hamming distance on a subset of 1,500 sequences

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 4,936 4,939 5,296

mdolBWT 0.00306 0 4,884 4,908

concBWT 0.00306 0.00303 0 5,012

colexBWT 0.00328 0.00304 0.00310 0

small dataset properties

no. sequences 1,500

total length 1,612,956

average length 1,075

no. of interesting intervals 1,046

total length intr.int.s 152,035

fraction pos.s in intr.int.s 0.094

variability 0.047

norm. edit d.

edit d. edit distance on a subset of 1,500 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 19,140 21,809 21,796 22,618

dolEBWT 0.01186 0 4,345 4,322 5,186

mdolBWT 0.01351 0.00269 0 4,110 4,820

concBWT 0.01350 0.00306 0.00255 0 4,893

colexBWT 0.01401 0.00321 0.00299 0.00303 0

no. runs small dataset

r n/r

eBWT 45,262 35.636

dolEBWT 45,155 35.754

mdolBWT 45,572 35.426

concBWT 45,644 35.371

colexBWT 42,516 37.973

optimum 42,093 38.355

Table A.5: Results for the SARS-CoV-2 long dataset. First row left: absolute and
normalized pairwise Hamming distance between separator-based BWT variants. First
row right: summary of the dataset properties. Second row: number of runs and average
run-length (n/r) of all BWT variants. Third row left: absolute and normalized pairwise
Hamming distance between separator-based BWT variants on a subset of the input
collection. Third row right: summary of the dataset properties of a subset of the input
collection. Fourth row left: absolute and normalized pairwise edit distance between all
BWT variants on a subset of the input collection. Fourth row right: number of runs
and average run-length (n/r) of all BWT variants on a subset of the input collection.
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16S rRNA long (16,741 long sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 85,960 42,948 67,103

mdolBWT 0.00342 0 85,961 82,890

concBWT 0.00171 0.00342 0 71,264

colexBWT 0.00267 0.00329 0.00283 0

dataset properties

no. sequences 16,741

total length 25,159,064

average length 1,501

no. of interesting intervals 9,918

total length intr.int.s 1,173,284

fraction pos.s in intr.int.s 0.047

variability 0.104

no. runs big dataset

r n/r

eBWT 547,991 45.881

dolEBWT 547,793 45.928

mdolBWT 555,687 45.276

concBWT 558,902 45.015

colexBWT 536,682 46.879

optimum 533,712 47.140

norm. Hamming d.

Hamming d. Hamming distance on a subset of 1,500 sequences

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 4,740 3,104 3,926

mdolBWT 0.00210 0 4,716 4,783

concBWT 0.00137 0.00209 0 4,208

colexBWT 0.00174 0.00212 0.00186 0

small dataset properties

no. sequences 1,500

total length 2,260,229

average length 1,501

no. of interesting intervals 946

total length intr.int.s 72,933

fraction pos.s in intr.int.s 0.032

variability 0.104

norm. edit d.

edit d. edit distance on a subset of 1,500 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 18,328 22,194 21,021 21,987

dolEBWT 0.00811 0 4,410 2,761 3,858

mdolBWT 0.00982 0.00195 0 4,323 4,691

concBWT 0.00930 0.00122 0.00191 0 4,146

colexBWT 0.00973 0.00171 0.00208 0.00183 0

no. runs small dataset

r n/r

eBWT 62,077 36.386

dolEBWT 62,031 36.437

mdolBWT 62,712 36.041

concBWT 62,800 35.991

colexBWT 61,235 36.911

optimal 60,979 37.066

Table A.6: Results for the 16S rRNA long dataset. First row left: absolute and nor-
malized pairwise Hamming distance between separator-based BWT variants. First row
right: summary of the dataset properties. Second row: number of runs and average
run-length (n/r) of all BWT variants. Third row left: absolute and normalized pairwise
Hamming distance between separator-based BWT variants on a subset of the input
collection. Third row right: summary of the dataset properties of a subset of the input
collection. Fourth row left: absolute and normalized pairwise edit distance between all
BWT variants on a subset of the input collection. Fourth row right: number of runs
and average run-length (n/r) of all BWT variants on a subset of the input collection.
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Candida auris reads (50,000 long sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 306,071 306,431 305,665

mdolBWT 0.00246 0 305,649 305,713

concBWT 0.00247 0.00246 0 305,469

colexBWT 0.00246 0.00246 0.00246 0

dataset properties

no. sequences 50,000

total length 124,200,880

average length 2,483

no. interesting intervals 39,076

total length intr.int.s 913,721

fraction pos.s in intr.int.s 0.007

variability 0.497

no. runs big dataset

r n/r

eBWT 72,014,777 1.724

dolEBWT 71,972,783 1.726

mdolBWT 71,972,346 1.726

concBWT 71,973,221 1.726

colexBWT 71,725,274 1.732

optimal 71,704,473 1.732

norm. Hamming d.

Hamming d. Hamming distance on a subset of 1,500 sequences

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 6,333 6,393 6,260

mdolBWT 0.00169 0 6,411 6,354

concBWT 0.00170 0.00171 0 6,294

colexBWT 0.00167 0.00169 0.00168 0

small dataset properties

no. sequences 1,500

total length 3,755,776

average length 2,503

no. of interesting intervals 1,189

total length intr.int.s 18,372

fraction pos.s in intr.int.s 0.005

variability 0.530

norm. edit d.

edit d. edit distance on a subset of 1,500 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 30,345 30,552 30,562 30,794

dolEBWT 0.00808 0 4,835 4,860 6,005

mdolBWT 0.00813 0.00129 0 4,824 6,105

concBWT 0.00814 0.00129 0.00128 0 6,035

colexBWT 0.00820 0.00160 0.00163 0.00161 0

no. runs small dataset

r n/r

eBWT 2,635,300 1.425

dolEBWT 2,633,676 1.426

mdolBWT 2,633,652 1.426

concBWT 2,633,727 1.426

colexBWT 2,629,094 1.429

optimum 2,628,470 1, 429

Table A.7: Results for the Candida auris reads dataset. First row left: absolute and
normalized pairwise Hamming distance between separator-based BWT variants. First
row right: summary of the dataset properties. Second row: number of runs and average
run-length (n/r) of all BWT variants. Third row left: absolute and normalized pairwise
Hamming distance between separator-based BWT variants on a subset of the input
collection. Third row right: summary of the dataset properties of a subset of the input
collection. Fourth row left: absolute and normalized pairwise edit distance between all
BWT variants on a subset of the input collection. Fourth row right: number of runs
and average run-length (n/r) of all BWT variants on a subset of the input collection.
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SARS-CoV-2 genomes (2,000 long sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 7,958 7,900 7,263

mdolBWT 0.00013 0 7,958 7,957

concBWT 0.00013 0.00013 0 7,990

colexBWT 0.00012 0.00013 0.00013 0

dataset properties

no. sequences 2,000

total length 59,612,692

average length 29,085

no. interesting intervals 1863

total length intr.int.s 80,486

fraction pos.s in intr.int.s 0.001

variability 0.148

no. runs big dataset

r n/r

eBWT 117,628 506.773

dolEBWT 117,410 507.731

mdolBWT 118,870 501.495

concBWT 119,334 499.549

colexBWT 114,287 521.605

optimum 113,930 523.240

norm. Hamming d.

Hamming d. Hamming distance on a subset of 50 sequences

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 105 119 90

mdolBWT 0.00007 0 124 116

concBWT 0.00008 0.00008 0 118

colexBWT 0.00006 0.00008 0.00008 0

small dataset properties

no. sequences 50

total length 1,490,184

average length 29,802

no. interesting intervals 43

total length intr.int.s 271

fraction pos.s in intr.int.s 1.8 · 10−4

variability 0.690

norm. edit d.

edit d. edit distance on a subset of 50 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 786 795 801 791

dolEBWT 0.00053 0 98 107 86

mdolBWT 0.00053 0.00007 0 105 112

concBWT 0.00054 0.00007 0.00007 0 114

colexBWT 0.00053 0.00006 0.00008 0.00008 0

no. runs small dataset

r n/r

eBWT 25,258 58.997

dolEBWT 25,255 59.006

mdolBWT 25,274 58.961

concBWT 25,285 58.936

colexBWT 25,221 59.085

optimum 25,210 59.111

Table A.8: Results for the SARS-CoV-2 genomes dataset. First row left: absolute and
normalized pairwise Hamming distance between separator-based BWT variants. First
row right: summary of the dataset properties. Second row: number of runs and average
run-length (n/r) of all BWT variants. Third row left: absolute and normalized pairwise
Hamming distance between separator-based BWT variants on a subset of the input
collection. Third row right: summary of the dataset properties of a subset of the input
collection. Fourth row left: absolute and normalized pairwise edit distance between all
BWT variants on a subset of the input collection. Fourth row right: number of runs
and average run-length (n/r) of all BWT variants on a subset of the input collection.
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