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Abstract

Extensive amount of data is produced in textual form nowadays, especially
in bioinformatics. Several algorithms exist to store and process this data ef-
ficiently in compressed space. In this thesis, we focus on both combinatorial
and practical aspects of two of the most widely used algorithms for com-
pressing text in bioinformatics: the Burrows-Wheeler Transform (BWT) and
Lempel-Ziv compression (LZ77).

In the first part, we focus on combinatorial aspects of the BWT. Given a
word v, r = r(v) denotes the number of maximal equal-letter runs in BWT(v).

First, we investigate the relationship between r of a word and r of its
reverse. We prove that there exist words for which these two values differ by
a logarithmic factor in the length of the word. In other words, although the
repetitiveness in the two words is preserved, the number of runs can change
by a non-constant factor. This suggests that the number of runs may not be
an ideal repetitiveness measure.

The second combinatorial aspect we are interested in is how small alter-
ations in a word may affect its BWT in a relevant way. We prove that the
number of runs of the BWT of a word can change (increase or decrease) by
up to a logarithmic factor in the length of the word by just adding, removing,
or substituting a single character.

We then consider the special character $ used in real-life applications to
mark the end of a word. We investigate the impact of this character on words
with respect to the BWT. We characterize positions in a word where $ can
be inserted in order to turn it into the BWT of a $-terminated word over
the same alphabet. We show that, whether and where $ is allowed, depends
entirely on the structure of a specific permutation of the indices of the word,
which is called the standard permutation of the word.

The final part of this thesis treats more applied aspects of text compres-
sors. In bioinformatics, BWT-based compressed data structures are widely
used for pattern matching. We give an algorithm based on the BWT to find
Maximal Unique Matches (MUMs) of a pattern with respect to a reference
text in compressed space, extending an existing tool called PHONI [Boucher
et. al, DCC 2021].

Finally, we study some aspects of the Lempel-Ziv 77 (LZ77) factorization
of a word. Modeling DNA short reads, we provide a bound on the compression
size of the concatenation of regular samples of a word.
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Chapter 1

Introduction

This thesis consists of 152 pages and approximately 60 000 words. When read
in the traditional western way, left-to-right and top-down, the sequence of
words in these pages has a meaning and carries specific information. Assume
the we are interested in some particular properties of the text of this thesis.
For example, does it give some information if read back-to-front, too? Does
a decomposition of the text in specific parts suggest some property of it? Do
repeated sentences in the text show any regularity? Studies of this kind on
textual data fall in the combinatorics on words field of research.

On the other hand, during the process of writing down this manuscript,
a periodic commit on GitHub was done. This resulted in tens of versions
of this thesis, all differing very little from each other, hence contained in an
extremely repetitive repository.

Similarly, one may need to store hundreds of textual documents. They
would need a lot of storage, and some sort of textual compression would
be necessary. Additionally, one may also want to search for some term in
one or all these documents, or in many of them, therefore, being able to
look for specific terms in them would be helpful. There exist algorithms
and data structures for efficiently solving problems such as: compressing and
decompressing textual data, answering whether a pattern occurs in the text,
locating the pattern, or counting how many times it occurs.

Let us explain all this more in detail.

Combinatorics on words is a field of discrete mathematics studying words.
Words (or texts) are defined as finite or infinite sequences of symbols taken
from a set. The first systematic collection of results in this field can be found
in the book “Combinatorics on words” [55] written by a group of mathemati-
cians under the pseudonym of M. Lothaire in 1983. Before this book, works
on words, such as [3, 66, 67, 68], were usually more for supporting the re-
search in other areas (e.g. Mathematics and Computer Science), rather than
the main topic. Even when the theory on words became an area of its own,
the area of combinatorics on words has remained strictly connected to that
of computer science when automata, formal languages, and textual data are
involved, in particular, to the branch of theoretical computer science.
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Another aspect of computer science related to textual data is the need
to compress and use the data in compressed form. As a matter of fact, the
applications where the data is growing the fastest nowadays, thus requiring
the most to be handled in compressed form, are those dealing with highly
repetitive textual data (as the simple example of the GitHub repository of
this thesis, but with much larger amounts of textual data). Usual statisti-
cal compression methods for collections are based on the statistical entropy
defined by Shannon [79]. However, measures defined on Shannon’s entropy
are not able to capture the repetitiveness of the text. Thus, methods that
can measure the repetitiveness of textual data have been attracting consid-
erable attention both from a theoretical and combinatorial point of view, as
well as from the more applied research communities interested in exploiting
string repetitiveness for more efficient compression. Two widely used text
compression techniques that can also be used to measure the repetitiveness
of a text to evaluate its compressibility are the Burrows-Wheeler Transform
and Lempel-Ziv factorization. (A detailed overview of these and other string
repetitiveness measures can be found in [69].) We will explain them in the
following.

The Burrows-Wheeler Transform (BWT) was introduced in 1994 by M.
Burrows and D.J. Wheeler. This transform produces a permutation of the
characters of the text which tends to be easier to compress than the input.
The input text can be easily recovered, and this is one of the reasons why
the BWT has become fundamental for string compression and indexing. The
key point of the transform is that the characters are rearranged in such a
way that occurrences of the same characters tend to be grouped together.
Groups of equal consecutive characters are usually called equal-letter runs or
just runs. For instance, the BWT of the word abracadabra is rdarcaaaabb.
All the occurrences of b appear together, thus producing one run, while the
occurrences of r remain separated, producing one run each. In this way, the
number of runs goes from 11 of abracadabra (equal to its length) to 7 of
its BWT rdarcaaaabb. The clusterization happens because the transform
sorts the rotations of the input text, and extracts and concatenates the pre-
ceding character (thus the last) of each sorted rotation. This is easier to
notice when the BWT is seen as the last column of a matrix consisting of
all lexicographically sorted rotations of the word, as in Figure 1.1. Due to
the sorting, rotations starting with the same repetition occurring within the
text are grouped together (e.g. rotations starting with bra in Figure 1.1).
Since repetitions often have a common preceding character, long runs in the
BWT of the text are created (in the example, both occurrences of bra are
preceded by a). However, usually, not all occurrences of a character are ac-
tually moved one after the other in the BWT. One can notice in the example
that most occurrences of a appear together in the BWT, but one occurrence
remains separated, while both b’s are moved one after the other. This effect
is commonly known as clustering effect of the BWT.
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rotations of
abracadabra

BWT

aabracadabr r
abraabracad d
abracadabra a
acadabraabr r
adabraabrac c
braabracada a
bracadabraa a
cadabraabra a
dabraabraca a
raabracadab b
racadabraab b

Figure 1.1: The BWT matrix of the word abracadabra.

Originally, the BWT was presented as a preprocessing step to the move-
to-front compression technique, but its tendency of clustering together equal
characters in runs makes it suitable for run-length encoding, (RLE). This
compression scheme consists of replacing each run with a pair containing a
single character and the number of consecutive occurrences of the character
in that run. For example, the RLE applied on the example rdarcaaaabb
results in (r, 1)(d, 1)(a, 1)(r, 1)(c, 1)(a, 4)(b, 2). Due to the tendency of the
BWT to have long runs of the same character, the RLE applied on the BWT
of a text usually results in a higher compression than applying it directly on
the text itself. This can already be seen in the short example, where the RLE
applied on abracadabra would produce three more pairs than when applied
on its BWT.

The other compression technique we discuss was introduced by A. Lempel
and J. Ziv in 1977 (LZ77). The idea is to exploit repetitions in the text and
substitute new occurrences with a pointer to a previous occurrence. Anal-
ogously to the BWT, this technique works particularly well when the input
is very repetitive. In particular, very long repetitions in the word allow re-
placing many characters with just one pointer character-position referring to
a previous occurrence of that repetition. Many variants of this compression
scheme have been studied and developed so far [45, 70, 72, 76, 83, 85], to
name just a few.

One field that deals with extremely redundant textual data, and where
both BWT and LZ are widely used, is bioinformatics. Bioinformatics tackles
problems of collecting, storing, analyzing, and disseminating biological data.

Often, compression schemes are also used as an index for large texts,
exploiting the high rate of repetitions in them. An index is a data structure
that allows finding a specific pattern in a larger text, locating the pattern or
counting the number of its occurrences, depending on the type of the index.
The index is built beforehand and permits speeding up search queries in the
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original text. In fact, BWT and LZ are not only used to compress data, but
also to index texts to allow easier and faster queries of a pattern on them.

A breakthrough for BWT was the introduction of the FM-index [26] which
is the base of some of the widely used bioinformatics tools for genome align-
ment, such as bwa [51], bowtie [49], and SOAP2 [48]. Although the BWT can
be stored and queried in compressed space [60], the size of the FM-index may
grow with the length of the uncompressed text. Later, the r-index [30] was
introduced. The r-index is also a BWT-based index able to handle hundreds
of human genomes, and whose size grows with r of the input.

1.1 Contributions

This thesis is mainly devoted to the study of combinatorial properties of
words with respect to their BWT, and of words that are the BWT of some
other word. We also treat an application of BWT in bioinformatics, and a
combinatorial study on LZ77 related to bioinformatics.

The first research direction we discuss deals with the BWT in relation to
a comparison between a text and its reverse. The BWT is known to tend to
cluster together equal characters of the input text in long runs of the same
character, especially when these occurrences appear in parts of the text re-
peated many times. This tendency makes the BWT, and in particular the
number of runs in the BWT, suitable to measure the number of repetitions
in the input text: the fewer and longer the runs in the BWT, the higher the
repetitiveness of the input. Intuitively, a word and its reverse are equally
repetitive, i.e. a word read left-to-right contains the same number of repeti-
tions as the word read right-to-left.

The first research results of this thesis are in this direction, showing that,
even though the repetitiveness is preserved when a word is reversed, r may
not be. We focus on the parameter ρ, or runs-ratio. This is the ratio between
the number r of runs of the BWT of a text and that of the BWT of its reverse.
The first upper bound ρ = O(log2 n) was given in [43]. Two questions that
remained open were whether this bound was tight, and whether there existed
examples with ρ = ω(1), i.e. ρ non-constant. We give a first answer to these
questions by exhibiting an infinite family of binary words whose members
satisfy ρ = Θ(log n), where n is the length of the word.

Another direction we took is related to how r changes after a one-character
modification is performed on the word. This question was already treated for
LZ78 [47], where it was shown that prepending just one character to a word
may significantly increase the size of the LZ78 factorization of the word.
This event is known as the one-bit catastrophe. We used this notion loosely
considering one-character changes rather than one-bit changes.

In close relation to this, one could think that such small changes in the
word do not affect much the repetitiveness of the word and thus the number
of runs of its BWT. We show that there exist words for which prepending,
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appending, or inserting a single character increases r by a multiplicative log-
arithmic factor in the length n of the word, going from 2 to Θ(log n) runs.
Moreover, also deleting or substituting one character can produce the same
effect.

Usually, in bioinformatics applications of the BWT, a so-called sentinel
character $ is involved. This character is set to be smaller than any charac-
ter of the word, and it is implicitly added at the end of each sequence. It
permits marking the end of the sequence, and it also allows computing the
BWT sorting the suffixes of the sequence instead of sorting its rotations. Our
results on the non-constant increment of r when a character smaller than all
characters of the word is added may be of particular interest in this context.

Another topic treated in this thesis combines the essential role of the
character $ and the interest in deciding whether, given a data structure,
there exists a word on which that data structure is built. Characterizations
of words that are BWT of some other word over the same alphabet already
exist, both for binary alphabets [64], and for general alphabets [52], and show
that whether a word w is a BWT depends on a specific permutation of the
indices of the word. This permutation is called the standard permutation of
the word. In this context, we characterized positions in a word w that allow
inserting $ to turn w in a BWT of some $-terminated word, and we call these
nice positions. In other words, those are positions that change the standard
permutation of w in such a way that it becomes the standard permutation of
the BWT of a $-terminated word.

Additionally, we provide an efficient algorithm that, given a word, returns
all nice positions, and we use it to produce some statistics on the number of
words with a given number of nice positions.

We finally focus on fully clustered words over a binary alphabet. As the
name suggests, fully clustered words are words in which all occurrences of
a character appear together. The study of nice positions of these words
attracted our interest because fully clustered words are the simplest form of
BWT output. They were treated in several works [25, 64, 80], where words
whose BWT is a fully clustered word are characterized. In [64], the authors
show that binary fully clustered words are exactly the BWT of powers of
rotations of standard words. In [25, 80] larger alphabets were considered. We
investigate the number of nice positions of a fully clustered binary word w,
and the number of words which have k nice positions, for a given length n.

Finally, we present two applications of string compressors in bioinformat-
ics.

The first is an application of the BWT. With the advent of third-generation
sequencing, the quality of assembled genomes drastically increased, and with
it, the availability of these data grew. One important step to enable the use
of these high-quality assembled genomes is to build a multiple sequence align-
ment of the genomes. Tools like MUMmer [46, 65], and Mauve [18] proposed
a solution to the original problem of multiple sequence alignment by using
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Maximal Unique Matches (MUMs) between two input sequences as prospec-
tive anchors for an alignment. MUMs are long stretches of the genomes that
are equal in both genomes and occur only once in each. MUMs have also
been proven useful for strain level read quantification [86], and as a computa-
tionally efficient genomic distance measure [21]. We present an extension of
an already existing algorithm to compute Maximal Exact Matches (MEMs),
called PHONI [8]. We store O(r) samples of the LCP array additionally with
respect to the original implementation. With the additional samples, we are
able to compute enhanced Matching Statistics that permit computing MUMs
in the same asymptotic time and space as MEMs in PHONI.

For the second application we used LZ77. We give a model for DNA short
reads sequencing, and we give a bound for the size of its LZ77 factorization.
The wide adoption of high-throughput sequencing in medical and evolutionary
biology over the last decade has made short read data sets abundant and very
large. The de facto standard in most labs and large institutions is to compress
such files with the gzip all-purpose file compressor, which usually leads to a
still relatively large file. However, to the best of our knowledge, no careful
analysis of the compressibility of short read data sets—even in an idealized
setting—has been undertaken. We consider the problem of compressing a
set of substrings regularly sampled from a string: Given a string X and two
integer parameters m and d, we sample the string X extracting substrings of
length m at a regular distance d one to the other. We give an upper bound
on the size of the LZ77 factorization of the concatenation of the extracted
samples in terms of the length of X, the two parameters m and d, and the
compression size of the original string X. Finally, we also show a different
upper bound on the size of the factorization that holds regardless of the order
in which the samples are concatenated.

1.2 Organization of the thesis

Chapter 2 We first give the basic definition on words and permutations
that will be used in the manuscript. We then give the definition of the
BWT, explaining some of its properties, such as how the original word can be
recovered from its BWT. We also introduce a widely studied family of words
presenting a particular form of BWT. We then briefly explain two variants of
LZ, i.e. LZ77 and LZ78, and we show how to encode and decode strings via
these compressors.

Chapter 3 We answer the question of how much the number of runs of
the BWT of a text may differ from the BWT of the same text read back-to-
front, showing in detail the structure of the BWT of both the forward and
the reverse of a particular family of words whose number of runs changes
logarithmically in its length.
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Chapter 4 We state that the BWT suffers from the so-called one-bit catas-
trophe, showing that the number of runs in the BWT of a word may increase
by a logarithmic factor in the length of the word when any kind of edit op-
eration is conducted on the word: inserting, deleting or substituting a single
character.

Chapter 5 This chapter is devoted to the problem of inserting the special
character $ in a word in order to make it the BWT of another word over
the same alphabet. The $ is the so-called sentinel character, used in many
applications involving the BWT, to indicate the end of the input text. In this
chapter, we show whether and where a $ can be inserted in a text to make it
the BWT of some text.

Chapter 6 We give two examples of applications, one for BWT and one for
LZ77. In Section 6.1, we describe mum-phinder, an algorithm to compute
Maximal Unique Extensions (MUMs) of a query pattern over an index of
hundreds of human genomes.

In Section 6.2 we present a model of DNA short reads. In our model, the
reads fully cover the genome, and they have a known and fixed distance.

Chapter 7 Finally, we give a brief summary, and discuss some future ideas
linked to this research field.

1.3 Publications

Several parts of this thesis have been published in conference proceedings or
international journals.

1. Parts of Chapter 3 have appeared in
S. Giuliani, S. Inenaga, Zs. Lipták, N. Prezza, M. Sciortino, and A. Tof-
fanello, Novel Results on the Number of Runs of the Burrows-Wheeler-
Transform, International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM 2021) [32],
where the paper won the best paper award.

2. The contents of Chapter 4 is pubblished in
S. Giuliani, S. Inenaga, Zs. Lipták, G. Romana, M. Sciortino, and C.
Urbina, Bit catastrophes for the Burrows-Wheeler Transform, Develop-
ments in Language Theory (DLT 2023) [33].

3. The contents of Chapter 5 have led to three publications:

i) the very first results on pseudo-cycles and the algorithm is pub-
lished in
S. Giuliani, Zs. Lipták, R. Rizzi, When a Dollar Makes a BWT,
Italian Conference on Theoretical Computer Science (ICTCS 2019) [36],
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ii) an extended version appeared in the international journal Theo-
retical Computer Science S. Giuliani, Zs. Lipták, F. Masillo, R.
Rizzi, When a Dollar Makes a BWT, Theoretical Computer Sci-
ence, 2021 [35],

iii) the narrowed definition of essential pseudo-cycles and the study on
fully clustered words appeared in
S. Giuliani, Zs. Lipták, F. Masillo, When a Dollar in a Fully Clus-
tered Word Makes a BWT, Italian Conference on Theoretical Com-
puter Science (ICTCS 2022) [34]

4. The contents of Chapter 6, Section 6.1 have been published in
S. Giuliani, G. Romana, M. Rossi, Computing Maximal Unique Matches
with the r-index, Symposium on Experimental Algorithms (SEA 2022) [37].

5. The contents of Chapter 6, Section 6.2 have been published in
G. Badkobeh, S. Giuliani, Zs. Lipták, S. J. Puglisi, On Compressing Col-
lections of Substring Samples, Italian Conference on Theoretical Com-
puter Science (ICTCS 2022) [4].



17

Chapter 2

Technical Background

In this chapter, we introduce the basic concepts needed in the thesis. Most
of the terminology used concerning words refers to the books [54, 55].

2.1 Strings and permutations

In the following, we give the necessary terminology and notation on strings
and permutations.

Strings Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet. The elements
of the alphabet are called characters, and σ is its size. A string (or word)
v = v[0]v[1] · · · v[n − 1] (or just v = v[0..n − 1]) over Σ is a sequence of n
characters from Σ. We denote by |v| the length of the word v, and by |v|c the
number of occurrences in v of character c ∈ Σ. The unique string of length 0
is denoted by ε. We denote by Σ∗ the set of all words over the alphabet. For
two strings x, y ∈ Σ∗, v = x · y (or just v = xy) denotes the concatenation of
the words x and y. Given v = xuy, x, u, y are called factors (or substrings)
of v. In particular, x is a prefix and y is a suffix of v. We refer to the suffix
of v starting in position i as sufi(v), and to the prefix of v ending in position
j as prefj(v). Maximal substrings of equal consecutive characters in a word
are called runs.

The lexicographic order on Σ∗ is defined by: v < v′ if either v is a proper
prefix of v′, or there exists a u ∈ Σ∗ and characters c, c′ ∈ Σ such that uc is
a prefix of v and uc′ is a prefix of w, where c < c′. Given two words v and
v′ of length n such that v[0] = v′[n− 1], v[1] = v′[n− 2], . . . , v[n− 1] = v′[0],
then v′ is the reverse of v, and we write v′ = vrev. A palindrome is a word v
such that v = vrev. Given two words v = xy and v′ = yx, then we say that v
and v′ are conjugate, and we write conj|x|(v) = v′. We can also refer to v′ as
a rotation of v. For instance, the word ationrot is the third conjugate of the
word rotation, i.e. conj3(rotation) = ationrot. Conjugacy between words
is an equivalence relation over Σ∗. A word u is a circular factor of v if it is
the prefix of some conjugate of v. In a word v, a circular factor u is called
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left-special if, for some c, c′ ∈ Σ, both cu and c′u occur as circular factors of
v.

For an integer k ≥ 1, uk = u · · ·u is the kth power of u. A word v
is called primitive if v = uk implies k = 1. A word v is primitive if and
only if it has exactly |v| distinct conjugates. Let v be primitive and the
lexicographically smallest of its rotations, then v is called a Lyndon word. In
the earlier example, the conjugate ationrot is the Lyndon conjugate of the
word rotation.

In many applications, a special character is used to mark the end of the
string, commonly denoted $. The $-character is assumed not to occur any-
where else in the string, and it is set to be smaller than all other characters.
It will be explicitly indicated when a string ends with $, and we call such a
string $-terminated.

The longest common prefix (lcp) of two words v, v′ is the maximum length
word u such that u is a prefix both of v and v′. Additionally, LCP(v, v′) = |u|
gives the length of the lcp of v and v′. Finally, we are interested in the lcp
length of two rotations of the same word v. Let v = xuyuz such that y[0] ̸=
z[0], and |x| = i− 1, |xuy| = i′ − 1, then lcpv(i, i

′) = |u|. Finally, we need an
array of length |v| containing the length of the longest common prefix between
consecutive suffixes of v in lexicographic order, that is LCPv[i] = lcpv(j, j

′)
where sufj(v) and sufj′(v) are the ith respectively the (i + 1)st suffixes of
v lexicographically. As an example, let v = rotation and v′ = rotated.
Then, lcp(v, v′) = rotat and LCP(v, v′) = 4, while LCPv[6] = lcpv(2, 4) = 1
because lcp(suf2(v), suf4(v)) = t, and suf2(v) = tation is the 6th suffix of v
in lexicographic order of v and suf4(v) = tion is the 7th.

Permutations Let n be a positive integer. A permutation of n is a bijection
from {0, 1, . . . , n− 1} to itself. Permutations are often written using the two-
line notation

(︁ 0 1 ... n−1
π(0) π(1) ... π(n−1)

)︁
, or the one line notation [π(0), π(1), . . . , π(n−

1)]. A cycle in a permutation π is a minimal subset C ⊆ {0, . . . , n− 1} with
the property that π(C) = C. A cycle of length 1 is called a fixpoint, and one
of length 2 a transposition. Every permutation can be decomposed uniquely
into disjoint cycles, giving rise to the cycle representation of a permutation
π, i.e. as a composition of the cycles in the cycle decomposition of π. For
example, π = [3, 1, 4, 5, 2, 0] =

(︁
0 1 2 3 4 5
3 1 4 5 2 0

)︁
= (0 3 5)(1)(2 4). Permutations

whose cycle decomposition consists of just one cycle are called cyclic.
A fundamental theorem about permutations says that every permutation

π can be written as a product (composition) of transpositions, and that the
number of any sequence of transpositions whose product is π is either always
even or always odd: this is called the parity of the permutation. The sign
sgn(π) of a permutation π is defined as 1 if π is even, and as (−1) if it is odd;
equivalently, sgn(π) = (−1)m, where π =

∏︁m
i=1 τi for some transpositions τi.

The sign sgn(C) of a cycle C of m elements is (−1)m−1, since any cycle
C = (x0, . . . , xm−1) can be written as C = (x0, x1)(x1, x2) · · · (xm−2, xm−1),
thus C is the product of m − 1 transpositions. Moreover, if π =

∏︁c
i=1 Ci is
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the cycle decomposition of permutation π of {0, . . . , n − 1}, then sgn(π) =∏︁c
i=1 sgn(Ci) = (−1)n−c.

2.1.1 Fundamental permutations on strings

There are three fundamental permutations on strings that we will frequently
encounter in this thesis. The standard permutation πv of the word v is a
permutation of length |v| defined as follows: πv[i] < πv[j] if and only if either
v[i] < v[j] or v[i] = v[j] and i < j. For example, the standard permutation
of the word thisisathesis is π = [11, 2, 4, 7, 5, 8, 0, 12, 3, 1, 9, 6, 10].

The conjugate array CAv of the word v is the array of length |v| con-
taining all indices of v according to the lexicographic order of the conjugates
of v. More precisely, CAv[i] < CAv[j] if and only if conji(v) < conjj(v) or
conji(v) = conjj(v) and i < j. Clearly, if v is not primitive, then at least two
conjugates are equal (second case of the definition). The conjugate array of
thisisathesis is CA = [6, 9, 8, 1, 4, 2, 11, 5, 3, 10, 12, 7, 0].

The third permutation we are going to use is the suffix array SAv of the
word v. It is defined as follows SAv[i] < SAv[j] if and only if sufi(v) < sufj(v).
The suffix array of thisisathesis is SA = [6, 9, 8, 1, 11, 4, 2, 12, 5, 10, 3, 7, 0].
Note that there are cases when CA = SA, but it is not true in general, as
one can see in the example. We will see later in Section 2.2.1 that if v is
$-terminated, then CA = SA.

When the word v is clear for the context, then we refer to πv, CAv and
SAv by π, CA, and SA, respectively.

Using the SA, we can express LCPv[i] as the lcp between the suffix of
v starting in position SA[i] and the immediately smaller suffix: LCPv[i] =
lcpv(sufSA[i], sufSA[i−1]).

2.2 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT), was introduced by Burrows and
Wheeler as a first step for a lossless text compression algorithm in a technical
report in 1994 [9]. It is at the heart of several lossless data compressors,
such as bzip [78], and of several text indices, especially in bioinformatics.
An example is the FM-index [26] on which some of the most commonly used
bioinformatics tools are based, such as bwa [51], bowtie [49], and SOAP2 [48].

The BWT is a reversible transform of the input string producing a per-
mutation of the input characters. The transform tends to reorganize the
characters of the input in such a way that it makes it easier to compress
the output than the original string. Occurrences of the same characters tend
to be grouped together, and this works well especially with highly repetitive
texts. Due to its reversibility, it is possible to recover the original string, and
this can be done in linear time.
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Let us define the BWT. For a word v of length n, the output of the BWT
consists of a word w and an index i such that w is the concatenation of the
last character of the rotations sorted lexicographically, and i is the rank of
the original word v in the list of the sorted rotations. Formally,

Definition 1 Let v be a word of length n over the alphabet Σ. The Burrows-
Wheeler Transform (BWT) of v is a pair (i, w) consisting of an integer i and
a word of length n such that for 0 ≤ j ≤ n−1, w[j] = v[(CAv[j]−1) mod n],
and v is the ith conjugate in lexicographic order.

The BWT of the word v can also be visualized as follows. Consider the
matrix M of size n×n consisting of all conjugates of v sorted lexicographically
(see Figure 2.1). We call this matrix the BWT matrix of the word v. In the
figure, on the left of the matrix, the indices of the starting position in the
original word of each conjugate are shown (i.e. the conjugate array, or CA).
Considering the rows and the columns in the matrix, they are all permutations
of the characters of the word. In particular, each row is a conjugate of the
input word, and the first column consists of all characters of the word sorted
lexicographically. The output of the BWT of the word v is the word w and
the index i such that w is the last column of the BWT matrix, and i is the
rank of the row containing v. Recall that maximal substrings of consecutive
equal characters in a word are called runs. The fact that the BWT of a word
tends to have fewer and longer runs than the original word is the key point
of the transform. We define runs(v) as the number of runs of the word v and
r(v) = runs(BWT(v)) the number of runs of the BWT of v.

Note that, the index i is needed to recover the exact rotation of v from its
BWT (as explained in detail in Section 2.2.2). In this thesis we are interested
in recovering v up to rotation, therefore we do not need to store the index
i. We are going to refer as BWT(v) only to the characters permutation
representing the last column of the BWT matrix, ignoring the index indicating
the rank of v in CA.

It can be noticed in Figure 2.1 that occurrences of the same character tend
to be grouped together in the BWT of v. This is the so-called clustering effect
of the BWT. This effect has an easy explanation: consider the repetition s
occurring in the example. That is a suffix of length 1 of the repetition is
of length 2 also occurring in the example. All rotations starting with some
occurrence of s will be grouped together in the BWT matrix by construction.
Those s that are suffixes of is are the prefix of length 1 of rotations preceded
by the character i. If some occurrence of s is preceded by some other charac-
ter, this may break the run of i in the BWT of the block of rotations starting
with s. In the example, the occurrence of es breaks the runs of i in the last
column, but most of the s still appear together, producing longer runs of i
in the BWT than in the original word.

Note that, when a word containing occurrences of exactly two distinct
characters is considered, the number of runs in its BWT must be even. The
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CA thisisathesis BWT

0 6 athesisthisis s
1 9 esisthisisath h
2 8 hesisthisisat t
3 1 hisisathesist t
4 4 isathesisthis s
5 2 isisathesisth h
6 11 isthisisathes s
7 5 sathesisthisi i
8 3 sisathesisthi i
9 10 sisthisisathe e
10 12 sthisisathesi i
11 7 thesisthisisa a
12 0 thisisathesis s

Figure 2.1: The BWT matrix of the word thisisathesis.

reason is that the BWT of these words cannot start with the smallest char-
acter in the alphabet (let us say a), nor end with the largest (b). Let us
consider a word v of length n of this type (i.e. consisting of occurrences of a
and b ), with w = BWT(v), and w[0] = a. This would imply that there exists
a conjugate conji(v) = v[i..n − 1]v[0..i − 1] starting with v[i] = w[0] = a,
and circularly followed by the lexicographically smallest conjugate of v. But
this cannot happen because the conji+1(v) = v[i+1..n− 1]v[0..i] ending with
v[i] = w[0] = a cannot be smaller that conji(v) = av[i + 1..n − 1]v[0..i − 1].
The analogous reasoning can be done for w[n− 1] = b.

2.2.1 The role of the $ character

Often, in real-life applications, a special character is used to mark the end of
the string. In the area of data structures for bioinformatics, the character used
is $, since it does not occur in the strings considered. It is set to be smaller
than any character of the alphabet. The unique occurrence of $ guarantees
that no rotation occurs twice (the word is primitive), and also that no suffix is
a prefix of some other prefix. In fact, when v is $-terminated the lexicographic
order of the conjugates of the word is equal to the lexicographic order of the
suffixes, therefore CAv = SAv. For this reason, the BWT can also be built
from the SA of a word.

Let us now define BWT(v) over the suffixes as follows:

Definition 2 Let v be a word of length n over the alphabet. The Burrows-
Wheeler Transform of v is a word w = BWT (v) such that w[i] = v[n− 1] if
SA[i] = 0, otherwise w[i] = v[SA[i]− 1].

In Figure 2.2, we see that the BWT matrices of the word thisisathesis
built over the CA and the SA are the same when $ is appended at the end of
the word.
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CA thisisathesis$ BWT

0 13 $thisisathesis s
1 6 athesis$thisis s
2 9 esis$thisisath h
3 8 hesis$thisisat t
4 1 hisisathesis$t t
5 11 is$thisisathes s
6 4 isathesis$this s
7 2 isisathesis$th h
8 12 s$thisisathesi i
9 5 sathesis$thisi i
10 10 sis$thisisathe e
11 3 sisathesis$thi i
12 7 thesis$thisisa a
13 0 thisisathesis$ $

(a)

SA thisisathesis$ BWT
0 13 $ s
1 6 athesis$ s
2 9 esis$ h
3 8 hesis$ t
4 1 hisisathesis$ t
5 11 is$ s
6 4 isathesis$ s
7 2 isisathesis$ h
8 12 s$ i
9 5 sathesis$ i
10 10 sis$ e
11 3 sisathesis$ i
12 7 thesis$ a
13 0 thisisathesis$ $

(b)

Figure 2.2: When the $ is appended at the end of the word thisisathesis the
CA and the SA coincide, and the corresponding BWT matrices as well.

In contrast, considering shttshsiieias, which is the BWT of the word
thisisathesis (see Figure 2.1), it does not have a clear relationship with the
word sshttsshiieia, which is the result of removing the $ from the BWT
of thisisathesis$ (see Figure 2.2).

Additionally, when a word ends with $, the output of the BWT is just the
word w from Definition 2. The original word can be recovered starting from
the position where the $ character occurs in w.

2.2.2 Recovering the original word

From the BWT of a word, it is possible to produce the original word in linear
time [9]. To recover the word, some properties of the BWT are essential,
which are described in the following:

Proposition 1 (BWT properties [9]) Given a word v of length n, and the
BWT-matrix of v, let F be the string consisting of the concatenation of the
characters in the first column of the matrix, and L the concatenation of the
characters in the last. Then

i) F is the list of the characters of v sorted lexicographically,

ii) L is the output string,

iii) each row of the matrix is a rotation of v,

iv) for all i < n, F [i] is cyclically preceded by L[i] in v,

v) for any character c, the ith occurrence of c in F corresponds to the ith

occurrence of c in L (LF-property). For example, in Figure 2.1 the
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second s in the L (i.e. the BWT), is the character preceding the suffix
athesis$, and the second s in F is also preceding the suffix athesis$.

The LF-property produces the so-called LF-mapping that gives a corre-
spondence between characters from the Last and the First column of the BWT
matrix. This mapping is the standard permutation πL of L = BWT(v). Re-
calling from Section 2.1.1, πw is a permutation of the indices of w such that
πw[i] < πw[j] if and only if either wi < wj or wi = wj and i < j.

The idea behind the reconstruction of the word is described in the follow-
ing, and works the same with or without the index of the correct rotation
of the word we want, and with or without $. In case we stored the index i
indicating the desired rotation of the original word, we start recovering the
word from position i in L. Otherwise (i.e. we did not store i), we can start
recovering it from any character of the BWT. In case the $ character is used,
we start from the position of $. Once we have the starting character for re-
covering the word, we start building it back-to-front. This means that the
character will be the last character v[n − 1] of the rotation of the word we
are recovering. Now, we use the LF-mapping (i.e. πw) to know the position
of v[n− 1] in the lexicographically sorted characters of the word, thus in the
string F . Once we get that position, let us say j, we can deduce the preceding
character. This is clear from the BWT matrix, where each row is a rotation
of the word, and therefore the first character of a row is preceded by the
character in the BWT in the same row (see Proposition 1). Going on with
this procedure, a rotation of the original word will be recovered.

Let us show with the example v = thisisathesis$ in Figure 2.2a how
to recover the word from its BWT w = sshttsshiieia$. The standard
permutation of w tells us in which position i = π[j] in F we can find the
character in position j in BWT: πw = [8, 9, 3, 12, 13, 10, 11, 4, 5, 6, 2, 7, 1, 0].
Since we have the end-of-string indicator, we can start recovering the word
back-to-front from position 13 where we have v[13] = $. The character $ is the
smallest character in the word, therefore we can easily recover the previous
character in v, namely the very first character w[0] = s in w. So now we have
v[12..13] = s$. We can now exploit π[0], which tells us where to find in F
the occurrence of s that we just wrote, therefore which rotation in the BWT
matrix starts with that occurrence of s. The rotation we are looking for is
the π[0] = 8th one, which ends with w[8] = i. We have now the third last
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character of v. Then we go on and we can write:

v[10] = w[π[8]] = w[5] = s

v[9] = w[π[5]] = w[10] = e

v[8] = w[π[10]] = w[2] = h

v[7] = w[π[2]] = w[3] = t

v[6] = w[π[3]] = w[12] = a

v[5] = w[π[12]] = w[1] = s

v[4] = w[π[1]] = w[9] = i

v[3] = w[π[9]] = w[6] = s

v[2] = w[π[6]] = w[11] = i

v[1] = w[π[11]] = w[7] = h

v[0] = w[π[7]] = w[4] = t

As one can see, if we do another round of this and we check which character
precedes the last t we wrote in v, it is actually v[n−1] = w[π[4]] = w[13] = $.

2.2.3 Fully clustered words and BWT

The power of the BWT is the tendency to cluster together occurrences of
the same character in runs. Usually, the more repetitive the input string,
the fewer the runs. There are words for which the BWT tends to cluster the
characters better than other words.

Words consisting of exactly one run for each character appearing in the
word are called fully clustered words. More formally, let alph(w) be the set of
distinct characters in w, then w is fully clustered if runs(w) = |alph(w)|.

For instance, the word bbbaaaaa = b3a5 is a binary fully clustered word,
and cbbbbaaaaa = cb4a5 is a fully clustered word over an alphabet of size
3. Those words are of special interest for their property of being particularly
easy to compress with RLE-based compressors. Words whose BWT is a fully
clustered word have been studied under different names in [25, 73, 74, 80, . . . ].
In particular, Simpson and Puglisi [80] treat ternary words v whose BWT is
a fully clustered word w = BWT (v). They divide the pre-images v in 3 types
on the basis of the form of their BWT: cibjak is of Type I, ciakbj is of Type
II, bjciak is of Type III. They show that there exists a characterization via
morphisms of words whose BWT is of Type I. In [74], a combinatorial property
(circular palindromic richness) was shown to be necessary but not sufficient
condition for words having a fully clustered BWT of Type I over arbitrary
alphabets of size σ, i.e. for words whose BWT has the form xmσ

σ x
mσ−1

σ−1 · · ·xm1
1 ,

with x1 < . . . < xσ−1 < xσ ∈ Σ. Finally, a characterization of words with
fully clustered BWT words over arbitrary alphabet was given in [25] in terms
of interval exchanges.
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2.2.3.1 BWT of standard words

Of particular interest for this thesis are binary fully clustered words. In fact,
these words are precisely the BWT of a widely studied family of words called
standard words (see e.g. [64, 74]). Next, we introduce in detail standard
words, and we follow [57] to discuss these words.

Definition 3 (Standard words) Given an infinite sequence of integers
(d0, d1, d2, . . .), with d0 ≥ 0, di > 0 for all i > 0, called a directive sequence,
define a sequence of words (si)i≥0 of increasing length as follows: s0 = b, s1 =

a, and for i ≥ 1, si+1 = s
di−1

i si−1. The words si are called standard words,
and the index i is referred to as the order of si.

In the following, we present some properties of standard words that will
be used later in this thesis (see [6, 7, 56, 58]).

Proposition 2 (Some known properties of standard words) Let si be
a standard word of with directive sequence d = (d0, . . . , di−2), and i > 2. The
following properties hold:

1. let s′i be a standard word with directive sequence d = (0, d0, . . . , di−2),
then s′i can be obtained from si by interchanging the character a with
the character b,

2. for all k ≥ 1, s2k = x2kab and s2k+1 = x2k+1ba, where x2k and x2k+1

are palindromes (x2 = ε) and are called central words,

3. for all k ≥ 2,

• s2k = x2k−1bax2k−2ab = x2k−2abx2k−1ab,

• s2k+1 = x2kabx2k−1ba = x2k−1bax2kba.

Note that, by Proposition 2, part 1, we can restrict ourselves to the case
of d0 > 0.

Standard words are used for the construction of infinite Sturmian words,
in the sense that every characteristic Sturmian word is the limit of a sequence
of standard words (cf. Chapter 2 of [54]). These words have many interesting
combinatorial properties and appear as an extreme case in a great range of
contexts [10, 11, 12, 44, 56, 58, 64, 77]. A fundamental result in connection
with the BWT is the following: BWT(w) = bqap with p, q co-prime if and
only if w is a conjugate of a standard word [64]. This result implies that
the BWT of standard words is a fully clustered word, and all fully clustered
words over a binary alphabet are conjugates of some standard word.

Fibonacci words are a particular case of standard words, which are given
by a directive sequence consisting of only ones (1, 1, 1, . . .), and of which the
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first few elements are as follows:

s0 = b

s1 = a

s2 = s1s0 = ab

s3 = s2s1 = aba

s4 = s3s2 = abaab

s5 = s4s3 = abaababa

s6 = s5s4 = abaababaabaab

s7 = s6s5 = abaababaabaababaababa

s8 = s7s6 = abaababaabaababaababaabaababaabaab

. . .

Note that |si| = Fi, where Fi is the ith Fibonacci number of the sequence
defined by F0 = F1 = 1 and Fi+1 = Fi + Fi−1. Moreover, the number
of occurrences of the character a in si is |si|a = Fi−1 and the number of
occurrences of the character b is |si|b = Fi−2, for i ≥ 2.

Proposition 2 holds for Fibonacci words as well. In the following, we
present some additional properties of Fibonacci words, some of which can be
deduced from more general properties that hold for all standard words (see [6,
7, 56, 58]).

Proposition 3 (Additional known properties of Fibonacci words) Let
vk be a Fibonacci word of order k

1. for k > 2, the standard word s with directive sequence (1, 1, . . . , 1, 2) of
length k−2 is a conjugate of the Fibonacci word of order k and directive
sequence (1, 1, . . . , 1) of length k − 1,

2. for k > 1, s = x2kba is the standard word from part 1, where x2k is the
central word from Proposition 2, i.e. with directive sequence (d0, . . . , d2k−3)
of length 2k − 2, and d0 = . . . = d2k−4 = 1, d2k−3 = 2,

3. for k ≥ 1, s = x2k+1ab is the standard word from part 1, where
x2k+1 is the central word from Proposition 2, i.e. with directive se-
quence (d0, . . . , d2k−2) of length 2k − 1, and d2k−2 = 2, and for k > 1,
d0 = . . . = d2k−3 = 1,

4. for all k ≥ 2, axkb is a Lyndon word, where xk is the palindrome from
Proposition 2 .

5. for all circular factors y, z of si with |y| = |z|, and for each c ∈ Σ, one
has that ||y|c − |z|c| ≤ 1 (Balancedness Property).

Standard and Fibonacci words will be key concepts in Chapter 3 and
Chapter 4.
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2.3 The Lempel-Ziv factorization

In 1977, Lempel and Ziv introduced a new text compression technique based
on a dictionary compression scheme [87]. The very next year, a different vari-
ant was published by the same authors [88], which was then followed by many
others in the following years [45, 70, 72, 76, 83, 85, . . . ]. Lempel-Ziv based
algorithms are at the basis of many widely used lossless data compressors,
such as GIF, PNG, ZIP, 7-Zip.

The main idea, which slightly changes among variants, is to output a de-
composition of the input text into non-empty factors that are either a charac-
ter that never appeared before, or the longest substring that appeared already.
The already occurred factors are thus encoded as a pointer to (one of) the
other occurrence(s) position. The result of the algorithm is then an encoded
factorization of the input string. For example, in the string thisisathesis,
the substring sis occurs twice, once in position 3 and once in position 10.
The occurrence in position 10 may be referred to as the pair (3, 3), where the
first 3 is the position in thisisathesis of the other occurrence of sis, and
the second 3 is the length of the substring to encode. Clearly, the longer the
repetitions in the string, the higher the compression.

The decompression simply consists of decoding each factor in string order
one by one.

2.3.1 Variants

We now briefly explain the two variants that we will encounter later in the
thesis, namely LZ77 [87] and LZ78 [88]. Given a string v, they both produce
a factorization of the string where each factor f is either one character that
never occurred before, or a pair used as a pointer to previously occurring
factors. Let us see in detail how the pair is defined in the two versions.

2.3.1.1 LZ77

In this version of the compression algorithm [87], the longest substrings that
already occurred in the string are encoded as a pair position-length. This pair
is used as a pointer to the previous occurrence, and stores the position where
the substring already occurred and the length of the repetition. Formally:

Definition 4 (LZ77 Factorization [87]) The LZ factorization of v is a
factorization v = f1f2 . . . fz of v into phrases such that each phrase fi (a
substring of v) is either

1. a letter that does not occur in f1 · · · fi−1, or

2. the longest substring that occurs at least twice in f1 · · · fi.

The number z of the phrases is the length of the LZ factorization of v.
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Every factor fi starting at position j in the string v is encoded with a
pointer consisting of pair (c, 0) if the character c has never occurred before, or
of a pair (pos, len), such that pos is the position of a previous occurrence of fi,
and len is the length of fi. The occurrence of fi in position j is called phrase,
while the previous occurrence appearing in position pos is called source. In
other words, the pair (pos, len) is a pointer from the phrase to its source.

Let us encode our example thisisathesis. Every not-yet-seen character
c is encoded with a pair (0, c). So the first four factors will be

f1 = (0, t)

f2 = (0, h)

f3 = (0, i)

f4 = (0, s)

We can now start exploiting repetitions. The following factor will encode the
substring is, which already occurred starting in position 2 in the string and
the length of the repetition is 2.

f5 = (2, 2)

We can go on this way until the end of the string.

f6 = (0, a)

f7 = (0, 2)

f8 = (0, e)

f9 = (3, 3)

Decoding the string does not require any additional information. The
concatenation of each factor will produce the original string. Let us show
how to recover the original string with the example.

The first four factors are just characters, so we can decode v by concate-
nating those.

v[0] = f1 = t

v[1] = f2 = h

v[2] = f3 = i

v[3] = f4 = s
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fi pair phrase source prefix
f1 (0, t) v[0] t

f2 (0, h) v[1] th

f3 (0, i) v[2] thi

f4 (0, s) v[3] this

f5 (2, 2) v[4..5] v[2..3] thisis

f6 (0, a) v[6] thisisa

f7 (0, 2) v[7..8] v[0..1] thisisath

f8 (0, e) v[9] thisisathe

f9 (3, 3) v[10..12] v[3..5] thisisathesis

Figure 2.3: Sum up of the LZ77 factorization of thisisathesis.

For each factor representing a repetition (i.e. f5), the decoding of the substring
can be done by looking at the already decoded prefix of the string. The index
in the pair (first element) gives us a position in the prefix of the string, and
the length (second element) tells us how long is the substring to copy starting
from the given position in the text. In our example:

v[4..5] = f5 = (2, 2) = v[2..3] = is

We can go on this way until the end of the string. In Table 2.3 we summarize
the example.

LZ77 will be a key point in Chapter 6 (Section 6.2), where also more
details about it are given.

2.3.1.2 LZ78

In the version published in 1978 [88] the definition of factorization is slightly
different. The pair encoding each factor consists of a position in the list of
already encoded factors (i.e. the dictionary), and a character. The new factor
can be decoded as the already seen factor pointed to in the dictionary by the
pair (the position) concatenated with the character stored in the pair. The
idea is that the prefix of the encoded factor fi of length |fi| − 1 already has
an occurrence in some position p, and v[p..p+ |fi| − 2] = fi[0..|fi| − 2].

Definition 5 (LZ78 Factorization [88]) The LZ factorization of v is a
factorization v = f1f2 . . . fz78 of v into phrases such that each phrase fi (a
substring of v) is either

1. a letter that does not occur in f1 · · · fi−1, or

2. the longest substring never occurred before, such that fi[0..|fi| − 2] has
already occurred as a phrase in f1 · · · fi−1.

The number z78 of the phrases is the length of the LZ factorization of v.
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pair dictionary D[i]

0 (0, ε) ε
1 (0, t) t

2 (0, h) h

3 (0, i) i

4 (0, s) s

5 (2, s) is

6 (0, a) a

7 (0, h) th

8 (0, e) e

9 (4, i) si

10 (0, s) s

Figure 2.4: The LZ78 factorization for thisisathesis. For example, consider
the fifth factor f5 = (2, s). It encoded the substring of the word is whose prefix
i has a previous occurrence encoded in the 3nd element of the dictionary, and it is
followed by the character s.

We show the LZ78 factorization for the example thisisathesis in Table 2.4.
The decoding works in the same way as that for LZ77.
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Chapter 3

The Number of Runs in the BWT
as a Repetitiveness Measure

In this chapter, we discuss the number r of runs of the BWT as a reflection
of the factor complexity of words, and we show why it may not be ideal to
use it as a repetitiveness measure.

The number of runs of the BWT of a word is known to be related to
the repetitiveness of the word. In particular, usually the more repetitive the
word, the fewer the runs in its BWT. This is because repetitions in the word
generate rotations of the word starting with the same prefix, and they will
appear one after the other in the BWT matrix of the word. As a consequence,
rotations starting with a suffix of a repetition produce blocks in the matrix
starting with a common prefix and ending with the same character.

In other words, if we consider a large text v with a substring v[i1] · · · v[j1]
repeated many times, for example, v[i1..j1] = v[i2..j2] = . . . = v[ik..jk], then
we have a block in the BWT matrix containing all rotations prefixed by this
substring. Additionally, we have other blocks of consecutive rotations in the
BWT matrix, all prefixed by some suffix of this substring. Clearly, many of
these rotations will be preceded by the same character (those starting with
the ending part of the whole v[i1..j1] substring), creating long runs of the
same character in the last column of the BWT matrix, namely in the BWT
of the word. For this reason, the number of runs in the BWT of a word may
be considered a word-repetitiveness measure.

As mentioned before, great interest has arisen recently in repetitiveness
measures in general to evaluate the compressibility of repetitive strings.

In this chapter, we focus on the parameter ρ, or runs ratio, which is the
ratio between the number r of runs of the BWT of a word and that of the
BWT of its reverse. The first upper bound ρ = O(log2 n) was given in [43]. It
was still open whether this bound was tight, and it was also open the question
of whether examples with ρ = ω(1) existed, i.e. ρ non-constant.

We give a first answer to this question by exhibiting an infinite family
of binary words whose members satisfy ρ = Θ(log n). We prove that words
that are specific extensions of standard words have ρ = O(log n), and, in
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particular, extensions of Fibonacci words have ρ = Θ(log n). We call these
words standard-plus words (respectively, Fibonacci-plus words). In showing
this result, we also present the BWT matrix of such words, discussing how
the lexicographic order of the rotations of Fibonacci-plus words changes with
respect to the original Fibonacci words.

The contents of this chapter have partially appeared in [32].

3.1 Number of runs in the BWT of the forward
and the backward word

If we consider a word v and its reverse v′ = vrev, for each circular factor u in
v there exists a unique circular factor urev in vrev. In particular, the number
of distinct circular factors in the two words is the same, and the number of
occurrences of u in v is equal to the number of occurrences of urev in vrev. If
we consider the word repetition, then r,e,p,t,i,o,n are the 7 factors of
length 1, re, ep, pe, et, ti, it, io, on, nr are the 9 factors of length
2, and so on. Consider now its reverse noititeper, the factors of length 1
are the same, and those of length 2 are no, oi, it, ti, te, ep, pe, er,
rn, which are the reverse of the 2-length factors of the forward word.

On the other hand, the number of runs is known to decrease with the
repetitiveness of the word. For this reason, one could think that the num-
ber of runs of the BWT of a word may be preserved in its reverse since its
repetitiveness is.

Although there are words for which this is true and the number of runs is
the same in the two directions, this is not the case in general. For example,
the BWT of repetition is rpttoienie with 9 runs, while the BWT of its
reverse is tptorneeii with 8 runs.

In this chapter, we are going to show that there exists a family of infinite
words for which the number of runs of the reverse increases by a logarithmic
factor in the length of the word with respect to that of the original word.

We first define the runs-ratio as a measure of comparison of the number
of runs of a word and its reverse. We discuss this ratio for standard words.
Additionally, we introduce extensions of standard words, and we show an
increment by a logarithmic factor in the length of the word of the runs from
the BWT of the forward word and the BWT of the reverse.

3.2 The runs-ratio parameter

Let us start with the definition of the runs-ratio, the measure that gives an
idea of the difference in the repetitiveness of a word and its reverse. Recall
that, given a word v, we indicate with runs(v) the number of maximal sub-
strings of consecutive equal characters in v, while r(v) = runs(BWT (v)) is
the number of runs in the BWT of v.
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Definition 6 We define the runs-ratio ρ(v) of a word v as

ρ(v) = max

Å
runs(BWT(v))

runs(BWT(vrev))
,
runs(BWT(vrev))

runs(BWT(v))

ã
= max

Å
r(v)

r(vrev)
,
r(vrev)

r(v)

ã
,

We are also interested in the maximum number of runs ρ(n) among all
words of length n over the alphabet.

Definition 7 Let n be an integer. We define the runs-ratio over a length
ρ(n) as ρ(n) = max{ρ(v) : |v| = n}.

Note that ρ(v) ≥ 1 holds by definition. Since r(v) = r(vrev) for all v with
|v| ≤ 6, we have ρ(n) = 1 for n < 7. In Table 3.1, we give the values of
ρ(n) for n = 7, . . . , 30 (computed with a computer program by exhaustively
computing the number of runs of the words for each length from 7 to 30).

n 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
ρ(n) 1.5 1.5 2 2 2 2 2 2 2 2 2.5 2.5 2.5 2.5 3 2.5 3 3 2.67 3 3 3 3 3

Table 3.1: The values of ρ(n) for n = 7, . . . , 30.

3.2.1 Runs-ratio of standard words

We recall standard words (see Section 2.2.3). Given a so-called directive
sequence of integers (d0, d1, d2, . . .), with d0 ≥ 0, di > 0 for all i > 0, a
standard word si, with i ≥ 0, is a word such that s0 = b, s1 = a, si+1 =
s
di−1

i si−1, for i ≥ 1. The index i is referred to as the order of si. Fibonacci
words are standard words with directive sequence consisting of only ones.
Recall that, by Proposition 2, part 1 (page 25), we can restrict ourselves to
the case of d0 > 0.

Standard words have many interesting properties, for instance, the BWT
of any standard word consists of just two runs [64]: all the b’s followed by all
the a’s. A key property of standard words that is important in the context
of ρ is that the reverse of any standard word is a conjugate of the word itself.
Therefore, they both have the same BWT, and thus ρ = 1. For example,
aaabaaaabaaaab is the standard word with directive sequence d = (3, 1, 2).
Its reverse is baaaabaaaabaaa, which is the rotation of aaabaaaabaaaab start-
ing in position 3. The BWT of both words is bbbaaaaaaaaaaa.

3.3 Fibonacci-plus words

In this section, we introduce a one-character extension of Fibonacci words.
We show that such words have ρ = Θ(log n), where n is the length of the
word, meaning that the number r of runs of the BWT of these words differs
by a logarithmic factor from r of the reverse. In other words, there exist cases
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in which r changes by a non-constant factor. This suggests that r may not
be an ideal measure for the repetitiveness of words.

Let us define the one-character extension of Fibonacci words as follows.

Definition 8 A word s is called a Fibonacci-plus word if it is either of the
form sb, where s is a Fibonacci word of even order 2k, k ≥ 2, or of the form
sa, where s is a Fibonacci word of odd order 2k + 1, k ≥ 2. In the first case,
s is of even order, otherwise of odd order.

We start showing that the number of runs of the BWT of Fibonacci-plus
words is constant. We then show that r of the reverse is logarithmic in the
length of the word. We conclude with Theorem 1 claiming the result on ρ.

Proposition 4 Let v be a Fibonacci-plus word. Then r(v) = 4. In particular,

1. if v = s2kb, then BWT(v) = bF2k−2aF2k−1−1ba, and

2. if v = s2k+1a, then BWT(v) = babF2k−1−1aF2k .

Proof. We give the proof for even order only. The proof for odd order is
analogous.

Let us write v = sb, with s = s2k, and n = |s|. Since Fibonacci words are
standard words, it follows that BWT(s) = bF2k−2aF2k−1 (see Section 2.2.3). By
Proposition 2, part 2 (page 25), s can be written as s = xab for a palindrome
x; moreover, it follows from the specific form of x (Proposition 2, part 3,
page 25) that both xab and xba are conjugates. It is further known that the
lexicographically smallest conjugate is axb and the largest is bxa [7, 64].

Now consider the conjugates of v = sb. We will show that the conjugates
of s retain their relative order after the insertion of the new b, i.e. that if
conji(s) < conjj(s) then also conji(v) < conjj(v). We further show that the
new conjugate conjn(v) is the penultimate one in the lexicographic order of
the conjugates of v. Since conjn(v) ends in b, while the other conjugates
conji(v) end in the same character as conji(s), for i = 1, . . . , n− 1, the claim
follows.

Let conji(s) < conjj(s) be lexicographically consecutive conjugates of s.
If i < j, then the new b appears earlier in conjj(s) than in conji(s), therefore
conji(v) < conjj(v) clearly holds. Now let i > j. It is known [7] that two
lexicographically consecutive conjugates of s have the form uabu′ and ubau′,
where u′u = x is the palindrome from Proposition 2, part 2 (page 25). From
s2k = x2k−1bax2k−2ab = x2k−2abx2k−1ab, it follows that x2k = x2k−1bax2k−2 =
x2k−2abx2k−1, and we deduce that x = x2k has exactly two occurrences in s
as a circular factor. Therefore, conji(v) = uabbu′, and the new b appears
in conjj(v) within the suffix u′. This implies u = lcp(conji(v), conjj(v)), and
thus conji(v) < conjj(v).

Now note that conjn(v) = conjn−1(s)b = bxab. We know that conjn−1(s) =
bxa is the lexicographically largest conjugate of s; let conji(s) be the one
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immediately preceding it lexicographically. Then, for some u, u′, we have
conji(s) = uabu′ and conjn−1(s) = ubau′, and therefore conji(v) = uabbu′ <
ubau′b = conjn(v). On the other hand, conjn(v) < conjn−1(v) = bbxa.

This completes the proof. □

We now show that r of the reverse of Fibonacci-plus words depends on
the order of the respective Fibonacci word. In particular, it increases linearly
with the order, and therefore it increases logarithmically with the length of
the word.

Proposition 5 Let v be a Fibonacci-plus word of order 2k. Then r(vrev) =
2k. In particular,

1. if v is of even order, i.e. v = s2kb for some k ≥ 1, then BWT(vrev) =
bF2k−2−k+1aF0baF2baF4b · · · aF2k−4bbaF2k−2,

2. if v is of odd order, i.e. v = s2k+1a for some k ≥ 1, then BWT(vrev) =
bF2k−2aabF2k−4abF2k−6a · · · bF2abF0aF2k−k+1.

Example 1 In Figure 3.1 we display the BWT matrices of the Fibonacci-plus
word v = s8b of length 35 and of its reverse.

Now consider the first few conjugates of vrev. Since v = s2kb = x2kabb,
we have vrev = bbax2k, noting that x2k is a palindrome. Thus

conj0(v
rev) = bbax2k,

conj1(v
rev) = bax2kb,

conj2(v
rev) = ax2kbb,

conj3(v
rev) = x2kbba.

Since Fibonacci words have no occurrence of bb, the conjugate conj0(vrev) =
vrev is the last row of the matrix. Moreover, by Proposition 3, part 4 (page 26),
ax2kb is a Lyndon word, and therefore conj2(vrev), having only an extra b at
the end, is also Lyndon, and thus can be found in the first row. The relative
order of the other two conjugates is also clear since x2k begins with an a, thus
we have

ax2kbb < x2kbba < bax2kb < bbax2k.

We will now subdivide the BWT matrix into three parts, according to the
positions of these conjugates, and we will call these top part, middle part, and
bottom part. The conjugates ax2kbb, x2kbba and bax2kb are the first row of the
top part, middle part, and bottom part, respectively. We use this to partition
the BWT into the three corresponding parts BWT(vrev)top,BWT(vrev)mid,
and BWT(vrev)bot. Thus we have

BWT(vrev) = BWT(vrev)top · BWT(vrev)mid · BWT(vrev)bot.
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BW
array

rotations of v =
abaababaabaababaababaabaababaabaabb

BWT(v)

1 21 aabaababaabaabbabaababaabaababaabab b
2 8 aabaababaababaabaababaabaabbabaabab b
3 29 aabaabbabaababaabaababaababaabaabab b
4 16 aababaabaababaabaabbabaababaabaabab b
5 3 aababaabaababaababaabaababaabaabbab b
6 24 aababaabaabbabaababaabaababaababaab b
7 11 aababaababaabaababaabaabbabaababaab b
8 32 aabbabaababaabaababaababaabaababaab b
9 19 abaabaababaabaabbabaababaabaababaab b

10 6 abaabaababaababaabaababaabaabbabaab b
11 27 abaabaabbabaababaabaababaababaabaab b
12 14 abaababaabaababaabaabbabaababaabaab b
13 1 abaababaabaababaababaabaababaabaabb b
14 22 abaababaabaabbabaababaabaababaababa a
15 9 abaababaababaabaababaabaabbabaababa a
16 30 abaabbabaababaabaababaababaabaababa a
17 17 ababaabaababaabaabbabaababaabaababa a
18 4 ababaabaababaababaabaababaabaabbaba a
19 25 ababaabaabbabaababaabaababaababaaba a
20 12 ababaababaabaababaabaabbabaababaaba a
21 33 abbabaababaabaababaababaabaababaaba a
22 20 baabaababaabaabbabaababaabaababaaba a
23 7 baabaababaababaabaababaabaabbabaaba a
24 28 baabaabbabaababaabaababaababaabaaba a
25 15 baababaabaababaabaabbabaababaabaaba a
26 2 baababaabaababaababaabaababaabaabba a
27 23 baababaabaabbabaababaabaababaababaa a
28 10 baababaababaabaababaabaabbabaababaa a
29 31 baabbabaababaabaababaababaabaababaa a
30 18 babaabaababaabaabbabaababaabaababaa a
31 5 babaabaababaababaabaababaabaabbabaa a
32 26 babaabaabbabaababaabaababaababaabaa a
33 13 babaababaabaababaabaabbabaababaabaa a
34 35 babaababaabaababaababaabaababaabaab b
35 34 bbabaababaabaababaababaabaababaabaa a

BW
array

rotations of vrev =
bbaabaababaabaababaababaabaababaaba

BWT(vrev)

1 3 aabaababaabaababaababaabaababaababb b
2 11 aabaababaababaabaababaababbaabaabab b
3 24 aabaababaababbaabaababaabaababaabab b
4 6 aababaabaababaababaabaababaababbaab b
5 19 aababaabaababaababbaabaababaabaabab b
6 14 aababaababaabaababaababbaabaababaab b
7 27 aababaababbaabaababaabaababaababaab b
8 32 aababbaabaababaabaababaababaabaabab b
9 9 abaabaababaababaabaababaababbaabaab b

10 22 abaabaababaababbaabaababaabaababaab b
11 4 abaababaabaababaababaabaababaababba a
12 17 abaababaabaababaababbaabaababaabaab b
13 12 abaababaababaabaababaababbaabaababa a
14 25 abaababaababbaabaababaabaababaababa a
15 30 abaababbaabaababaabaababaababaabaab b
16 7 ababaabaababaababaabaababaababbaaba a
17 20 ababaabaababaababbaabaababaabaababa a
18 15 ababaababaabaababaababbaabaababaaba a
19 28 ababaababbaabaababaabaababaababaaba a
20 33 ababbaabaababaabaababaababaabaababa a
21 35 abbaabaababaabaababaababaabaababaab b
22 2 baabaababaabaababaababaabaababaabab b
23 10 baabaababaababaabaababaababbaabaaba a
24 23 baabaababaababbaabaababaabaababaaba a
25 5 baababaabaababaababaabaababaababbaa a
26 18 baababaabaababaababbaabaababaabaaba a
27 13 baababaababaabaababaababbaabaababaa a
28 26 baababaababbaabaababaabaababaababaa a
29 31 baababbaabaababaabaababaababaabaaba a
30 8 babaabaababaababaabaababaababbaabaa a
31 21 babaabaababaababbaabaababaabaababaa a
32 16 babaababaabaababaababbaabaababaabaa a
33 29 babaababbaabaababaabaababaababaabaa a
34 34 babbaabaababaabaababaababaabaababaa a
35 1 bbaabaababaabaababaababaabaababaaba a

Figure 3.1: BWT matrices of the Fibonacci-plus word v = s8b of length 35 and
its reverse, underlined the added b.

3.3.1 Bottom part

We show that the bottom part consists of all conjugates starting with a b.
By construction, only one conjugate ends also with a b, while all the others
end with an a.

Proposition 6 BWT(vrev)bot = baF2k−2.

Proof. By definition, the bottom part starts with the conjugate conj1(v) =
bax2kb. Since ax2kbb is Lyndon (Proposition 3, part 4, page 26), it is smaller
than all other conjugates, and therefore, bax2kb is smaller than all other
conjugates starting with b. Thus, the bottom part consists exactly of all con-
jugates starting with b. The number of b’s in v, and thus in vrev is F2k−2 +1.
Since s2k has no occurrence of bb, every b in vrev except the one in position
1 is preceded by an a, thus bax2kb is the only conjugate ending in b. This
proves the claim. □
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Figure 3.2: A sketch of the BWT matrix structure of vrev where v is a Fibonacci-
plus word.
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3.3.2 Middle part

The middle part is the most complex one. It consists of blocks of conjugates
prefixed by some xh, h odd, which are all preceded by an a except for the
largest one in each block, which is preceded by a b.

We first need to show the following auxiliary lemmas.

Lemma 1 The left-special circular factors of vrev are exactly the prefixes of
x2k−1b and the prefixes of bax2k−2.

Proof. From Proposition 2, part 3 (page 25), vrev = bbax2k = bbax2k−1bax2k−2 =
bbax2k−2abx2k−1. Let u be a left-special circular factor of vrev. Since bb

occurs only once, u does not contain bb as a factor. Moreover, from com-
binatorial properties of standard words (see [7]), it is known that for each
0 ≤ h ≤ F2k − 2, there is exactly one left-special circular factor of bax2k

having length h, and it is a prefix of x2k. Since x2k−1ba (that is a prefix of
x2k) occurs exactly once in vrev and bax2k−2 has exactly two occurrences (one
preceded by b and followed by a, the other one preceded by a and followed
by b), either u is a prefix of x2k−1b or it is a prefix of bax2k−2. □

Lemma 2 Let s2k be a Fibonacci word of even order. Then, for all i =
0, . . . , k−2, ax2(k−i)b and ax2(k−i)−1b have F2i and F2i+1 occurrences, respec-
tively, as circular factors of s2k.

Proof. The statement can be proved by induction on i. For i = 0, the state-
ment follows from the fact that ax2kb and ax2k−1b have just 1 = F0 = F1

occurrence. Let us suppose the statement is true for all j ≤ i. Note that
ax2(k−i)−2b appears as suffix of ax2(k−i)b and as suffix of ax2(k−i)−1b. More-
over, such two occurrences are distinct because ax2(k−i)−1b is not a suffix of
ax2(k−i)b. This means that, by using the inductive hypothesis, the number of
occurrences of ax2(k−i)−2b is F2i+F2i+1 = F2i+2. Analogously, ax2(k−i)−3b ap-
pears as prefix of ax2(k−i)−1b and as prefix of ax2(k−i)−2b. Moreover, such two
occurrences are distinct because ax2(k−i)−2b is not a prefix of ax2(k−i)−1b. This
means that the number of occurrences of ax2(k−i)−3b is F2i+1+F2i+2 = F2i+3.
□

Proposition 7 BWT(vrev)mid = aF0baF2b . . . aF2k−4b.

Proof. For all 2 ≤ i < j, xi is a prefix (and also a suffix) of xj. This means
that the rotations starting with xibb are lexicographically greater than xjbb.
Note that, if k = 2, v = x4abb = x3bax2abb where x4 = aba, x3 = a, x2 = ε
by Proposition 2 (page 25). Therefore, BWT(vrev)mid = aF0b since the rota-
tions involved start with x4bb and x3bb, respectively. Let us suppose k ≥ 3.
By Proposition 2, part 3 (page 25), x2k−1b is a prefix of v = s2kb, as well as
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x2tab for 2 ≤ t ≤ k − 1. This means that, for 1 ≤ i ≤ k − 2, x2(k−i)b is not
a prefix of x2k−1b. Thus, by Lemma 1, x2(k−i)b is not left-special. Therefore,
each occurrence of x2(k−i)b is preceded by the same character; this character
must be a, since otherwise, both bx2(k−i)b and ax2(k−i)a would be factors,
contradicting the fact that srev

2k is balanced (Proposition 3, part 5, page 26).
Therefore, all occurrences of x2(k−i)b correspond to a run of a’s in the BWT .
The length of this run is F2i by Lemma 2. The claim follows from the fact
that each x2(k−i)−1bb occurs exactly once, and it is preceded by b. □

3.3.3 Top part

We finally show the first run of b’s of the BWT, namely the top part of the
BWT matrix.

Lemma 3 Let i be such that conji(vrev) < x2kbba. Then the last character
of conji(vrev) is b.

Proof. Let u = lcp(conji(vrev), x2kbba). Then u is a proper prefix of x2k−1.
This is because there are only two occurrences of x2k−1, one followed by ba,
this is the prefix of x2kbba, and the other followed by bb, thus greater than
x2kbba. Therefore, u′ = ua is a prefix of conji(vrev) but not of x2k−1, and thus
by Lemma 1 it is not left-special. Now assume that conji(vrev) ends with a.
Then aua is a factor of vrev, and since u does not contain bb, it is thus also
a factor of srev

2k . On the other hand, ub is left-special, since it is a prefix of
x2k−1b (Lemma 1), therefore both bub and aua are factors of vrev, and again,
of srev

2k . This implies that both aureva and burevb are factors of s2k. This is a
contradiction, since s2k is balanced (Proposition 3, part 5, page 26). □

Proposition 8 BWT(vrev)top = bF2k−2−k+1.

Proof. By Lemma 3, BWT(vrev)top consists of b’s only. The number of
b’s of v is F2k−2 + 1, of which we have accounted for k (since 1 is con-
tained in BWT(vrev)bot and k − 1 in BWT(vrev)mid), there remaining exactly
F2k−2 − k + 1 b’s. □

3.3.4 Fibonacci-plus runs-ratio proof

We recall Proposition 5 and we show its proof.

Proposition5 Let v be a Fibonacci-plus word. Then r(vrev) = 2k. In partic-
ular,
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1. if v is of even order, i.e. v = s2kb for some k ≥ 1, then BWT(vrev) =
bF2k−2−k+1aF0baF2baF4b · · · aF2k−4bbaF2k−2,

2. if v is of odd order, i.e. v = s2k+1a for some k ≥ 1, then BWT(vrev) =
bF2k−2aabF2k−4abF2k−6a · · · bF2abF0aF2k−k+1.

Proof. The statement for even order Fibonacci-plus words follows from Propo-
sitions 6, 7, and 8. The statement for odd order Fibonacci-plus words can be
proved analogously. □

Theorem 1 Let v be a Fibonacci-plus word, and let |v| = n. Then ρ(v) =
Θ(log n).

Proof. From Propositions 4 and 5, we have that ρ(v) = 2k/4 = k/2. On the
other hand, n = |v| = F2k + 1, if v is of even order 2k, n = |v| = F2k+1 + 1 if
v is of odd order 2k + 1. Thus, by the properties of the Fibonacci numbers,
2k = Θ(log n), implying that ρ(v) = k/2 = Θ(log n). □

3.4 Standard-plus words: a generalization of
Fibonacci-plus words

In fact, Fibonacci words are a specific case of standard words. In particular,
Fibonacci words are standard words with directive sequence consisting of only
1’s.

In this section, we generalize Fibonacci-plus words to standard-plus words.
We prove that r of a standard-plus word may change up to a logarithmic
factor with respect to its reverse. This result combined with that of the
previous section implies that Fibonacci-plus words are maximal with respect
to ρ among all standard words.

3.4.1 Standard-plus words have ρ = O(log n)
Recall that we can restrict ourselves to the case of d0 > 0, which means
that the word has more a’s than b’s. Otherwise, we could consider the word
obtained by exchanging a’s and b’s and the result would still be true.

Definition 9 A word v is called standard-plus if it is either of the form sb,
where s is a standard word of even order 2k, k ≥ 2, or of the form sa, where
s is a standard word of odd order 2k+1, k ≥ 2. In the first case, v is of even
order, otherwise of odd order.

Proposition 9 Let v = s2kb be a standard-plus word of even order. Then
r(v) = 4.
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The proof of Proposition 9 is analogous to that of Proposition 4.

Proposition 10 Let v = s2kb be a standard-plus word of even order 2k,
where s2k is the standard word that is obtained by using the directive sequence
(d0, d1, . . . , d2k−2) of length 2k−1, where d0 ≥ 1. If d0 = 1, then r(vrev) = 2k.
Otherwise, r(vrev) = 2k + 2.

Analogously, let v = s2k+1a be a standard-plus word of even order 2k + 1,
where s2k+1 is the standard word obtained by using the directive sequence
(d0, d1, . . . , d2k−1) of length 2k, where d0 ≥ 1. Then r(vrev) = 2k.

Proof. (Sketch)
We sketch the proof for even order. Similar to what happens with Fi-

bonacci’s words (see Proposition 2, page 25), it is known that s2k = Cab,
where C is a palindrome, the conjugate aCb is a Lyndon word (see [6,
58]). Then vrev = bbaC and, in order to lexicographically sort the conju-
gates of vrev, we can consider its Lyndon rotation aCbb. One can verify
that C ∈ {ad0b, ad0+1b}∗. It is possible to see that BWT(vrev) ends with
ba|s2k|b , since baCb is the smallest rotation starting with b. Moreover, since
t = b(ad0b)d1b is a suffix of aCbb, all rotations of vrev starting with the first
occurrence of a in each run ad0 in t determine d1 consecutive b’s in BWT(vrev).
If d0 = 1 such rotations are followed by the rotation baCb, otherwise several
rotations preceded by a (including the rotations starting with the other a’s of
t) are in between. So, if d0 = 1, the last run of b’s has length d1+1, otherwise
the last two runs of b’s have length d1 and 1, respectively.

Finally, when di (with odd i) is used to generate standard words, a set
of consecutive rotations starting with (ad0b)d1ad0+1b and preceded by b is pro-
duced. This means that the other runs of b’s have length d3, d5, . . . , d2k−3, |s2k|b−
(d1 + d3 + . . .+ d2k−3). □

Theorem 2 Let v be a standard-plus word of even order with |v| = n. Then
ρ(v) = O(log n).

Proof. By definition, v = s2kb where s2k is a standard word of order 2k for
some positive k. Then |s2k| ≥ F2k, and by Proposition 9 and 10, ρ(v) ≤ k+1

2
∈

O(log n). □

This last proposition of the section shows that Fibonacci-plus words are
maximal with respect to ρ among all standard-plus words.

Proposition 11 Let v be a Fibonacci-plus word, and v′ a standard-plus word
s.t. |v| = |v′|. Then ρ(v) ≥ ρ(v′).

Proof. Follows directly from Proposition 9 and 10, and from the fact that Fi-
bonacci words have the longest directive sequence among all standard words
of the same length. □
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3.5 Runs-ratio and palindromic richness

Another interesting property of standard words is that they contain the high-
est possible number of palindromes when seen circularly. For this reason, we
decided to investigate this aspect in standard-plus words, too.

In [23] the authors showed that any word v contains at most |v|+1 distinct
palindromic factors, including the empty string. Words with exactly |v| + 1
distinct palindromic factors are said to be palindromically rich (or just rich).
A word v is said to be strongly rich if all conjugates of v are rich.

It is shown in [74] that, if BWT(v) is fully clustered, then v is strongly
rich. Therefore, standard words are strongly rich since their BWT is fully
clustered.

We are going to show that standard-plus words are palindromically rich
but not strongly rich. This means that there exists at least one conjugate of
any standard-plus word v having less than |v|+1 distinct palindromic factors.
We will show this by exhibiting a non-rich conjugate of a standard-plus word.

Proposition 12 Let v be a standard-plus word with d = (d0, . . . , d2k), then
v is rich, but it is not strongly rich.

Proof. We will show the statement for standard words of even order with a
further b at the end. The proof is analogous for standard words of odd order
with a further a.

We first prove that v is rich. Then we show that conjd0+1(v) is not, and
these statements together will prove the claim.

To show that v is rich it is enough to consider that we are adding a b to
a standard word, which is already rich. Since the factor bb does not occur
in standard words of even order with d0 > 0, appending a character b results
in extending the word by one character, and gaining the new palindromic
factor bb. This makes the standard-plus word palindromically rich since it
has |v|+ 1 palindromic factors.

On the other hand, conjd0+1(v) is not palindromically rich. We will show
that conjd0+1(v) loses d0+1 palindromic factors, and gains only d0 palindromic
factors with respect to v.

Let us rewrite v as s2kb = sd2k2k−1s2k−2b. The word conjd0+1(v) starts with
a suffix of s2k−1 since |s2k−1| > d0, followed by either another occurrence of
s2k−1 or by one of s2k−2 (d0 > 1 respectively d0 = 1). Since d0 + 1 = |s2|,
thus conjd0+1(v) ends with s2k−2bs2. Therefore, all palindromic factors con-
tained in s2k−2 are preserved, while some contained in v are not, as shown
in the following. For every standard word s it holds that s2i = x2iab and
s2i−1 = x2i−1ba, with x2i and x2i−1 palindrome (see Proposition 2, Chap-
ter 2, page 25). Therefore, v can be written as v = x2kabb, and the factors
x2k, x2k[1..|x2k|−2], . . . , x2k[d0..|x2k|−d0−1] are missing in conjd0+1(v). This
is because the first occurrence of s2 in v now occurs as a suffix of the word
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instead of as a prefix. Altogether, conjd0+1(v) loses |s2| = d0 + 1 palindromic
factors with respect to v.

Let us now consider the suffix s2k−2bs2 of conjd0+1(v). There is exactly one
occurrence of bb in v, and it is between x2a (as a suffix of s2k−2 without the
last b) and s2 = x2ab = ad0−1ab. Therefore, x2abbx2ab = ad0−1abbad0−1ab is
a suffix of v, and x2abbx2a is a new palindromic factor, as well as all the other
d0 − 1 = |s2| − 2 factors of it sharing bb as center. In total, those are d0 new
palindromic factors. The factor x2abbx2a is prefixed by an a by construction
and followed by a b, then there cannot be any more additional palindromic
factors in conjd0+1(v) with respect to v involving the unique occurrence of bb.
Combining the d0 + 1 missing palindromic factors to the d0 gained, the word
is not rich. □

3.6 Are there words with higher runs-ratio?

We showed in the previous sections that, for standard-plus words, the number
of runs in their BWT differs by up to a logarithmic factor in the length of
the word with respect to their reverse. In particular, Fibonacci-plus words
are maximal among standard-plus words with ρ = Θ(log n). The question we
asked ourselves was whether there exist binary words with a higher increase
in r between the forward word and its reverse. In case of a positive answer,
the gap between our bound and the upper bound of ρ = O(log2 n) given by
Kempa and Kociumaka in [43] would be narrowed. The answer unfortunately
is we do not know yet.

We experimentally produced binary words w with 4 or 6 runs such that
w = BWT (v), for some word v, and ρ(v) is strictly greater than ρ(s) for any
standard-plus word s of the same length. We could not give a characterization
for such words, leaving us with the question of whether ρ of these words is
asymptotically greater than that of standard-plus words, or if it is just a
matter of constants.

Since we were interested in words with high ρ, we started our study from
words that are BWT of some other word over the alphabet, and are as clus-
tered as possible. We were looking for those with r much greater than r of
their reverse, i.e. words w = BWT (v) and r(vrev) much larger than r(v).

However, we discarded BWT words with just two runs, because those
are the BWTs of standard words [64], for which a full characterization with
respect to r already exists. We recall that the BWT of binary words always
has an even number of runs. For this reason, we first focused on words
with four runs. We then extended our search to words with six runs. We
exhaustively produced words v up to length n = 30 such that ρ(v) = ρ(n),
having then the greatest ρ for that length. We noticed that for certain lengths
(n = 23, 28) we only have one such string (up to rotation and reverse), and
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that the BWT of both words and of both reverse words have a similar form,
as follows:

• n = 23: BWT(v) = b3a2baba5b3a2baba3, BWT(vrev) = b5a10b5a3

• n = 28: BWT(v) = b3a2baba10b3a2baba3, BWT(vrev) = b5a15b5a3

We then further studied words having the same number of b’s in their
4-run BWT. Let w = bpaqbpat be a BWT word of length n. We list the
(p, q, t) triplets in Table A.1 in the Appendix, together with the length of
the word w = BWT(v) and ρ(v). For example, consider the Fibonacci-plus
word u of order 10. The BWT of the forward word has 4 runs and the BWT
of the reverse has 10 runs, therefore ρ(u) = 2.5. Consider now the word
BWT (v) = b19a45b19a7 (which is the word of the same length 90 in Table A.1
in the Appendix). The BWT of the reverse of v has 18 runs, and therefore
ρ(v) = 4.5.

We extended our experiments in the following way. For lengths n of words
in Table A.1 (in the Appendix), we generated words w of 4 or 6 runs such that
w = BWT(v), for some v, and ρ(v) > ρ(v′), where v′ is a word from Table A.1
in the Appendix. In Table 3.2 we partially list these words. Among the words
we computed in such a way, only words with the highest ρ for each length
are reported in Table 3.2. For the full list, we refer the reader to Table A.2
in the Appendix. For example, the word b19a45b19a7 mentioned before is
not in the new tables because there exist words whose BWT has 6 runs and
having ρ > 4.5. One of these words is v whose BWT is b2a5b20a17b31a15, with
ρ(v) = 4.67.

As opposed to the words from Table A.1, the runs of b’s of these new
words are not necessarily all equal (as in the example word). There is no
such word for n < 45.

highest no. of
n runs r(reverse) ρ palindromic factors

45 2, 5, 8, 11, 13, 6 22 3.67 29
45 2, 5, 10, 15, 8, 5 22 3.67 26
45 5, 8, 15, 10, 5, 2 22 3.67 26
45 6, 13, 11, 8, 5, 2 22 3.67 29
45 7, 3, 4, 13, 11, 7 22 3.67 33
45 7, 11, 13, 4, 3, 7 22 3.67 33
47 6, 7, 22, 12 16 4 22
47 6, 19, 10, 12 16 4 20
47 7, 16, 13, 11 16 4 36
47 11, 13, 16, 7 16 4 36
47 12, 10, 19, 6 16 4 20
47 12, 22, 7, 6 16 4 22
53 6, 13, 22, 12 18 4.5 24
53 12, 22, 13, 6 18 4.5 24
55 6, 11, 26, 12 18 4.5 25
55 12, 26, 11, 6 18 4.5 25
68 7, 13, 33, 15 18 4.5 25
68 8, 14, 31, 15 18 4.5 25
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highest no. of

n runs r(reverse) ρ palindromic factors
68 9, 19, 25, 15 18 4.5 29
68 15, 25, 19, 9 18 4.5 29
68 15, 31, 14, 8 18 4.5 25
68 15, 33, 13, 7 18 4.5 25
78 7, 16, 36, 19 18 4.5 27
78 9, 16, 36, 17 18 4.5 25
78 10, 22, 29, 17 18 4.5 29
78 12, 22, 13, 31 18 4.5 35
78 12, 26, 11, 29 18 4.5 35
78 17, 29, 22, 10 18 4.5 29
78 17, 36, 16, 9 18 4.5 25
78 19, 36, 16, 7 18 4.5 27
78 29, 11, 26, 12 18 4.5 35
78 31, 13, 22, 12 18 4.5 35
89 12, 26, 28, 23 20 5 25
89 23, 28, 26, 12 20 5 25
90 2, 5, 20, 17, 31, 15 28 4.67 39
90 2, 5, 22, 31, 19, 11 28 4.67 32
90 2, 5, 25, 31, 19, 8 28 4.67 31
90 4, 7, 18, 29, 23, 9 28 4.67 34
90 6, 10, 11, 37, 20, 6 28 4.67 38
90 6, 14, 37, 11, 16, 6 28 4.67 40
90 6, 16, 11, 37, 14, 6 28 4.67 40
90 6, 20, 37, 11, 10, 6 28 4.67 38
90 7, 10, 13, 42, 11, 7 28 4.67 35
90 7, 11, 42, 13, 10, 7 28 4.67 35
90 8, 19, 31, 25, 5, 2 28 4.67 31
90 9, 23, 29, 18, 7, 4 28 4.67 34
90 11, 18, 24, 6, 18, 13 28 4.67 40
90 11, 19, 31, 22, 5, 2 28 4.67 32
90 13, 18, 6, 24, 18, 11 28 4.67 40
90 13, 28, 10, 9, 11, 19 28 4.67 38
90 15, 31, 17, 20, 5, 2 28 4.67 39
90 18, 13, 5, 13, 23, 18 28 4.67 53
90 18, 23, 13, 5, 13, 18 28 4.67 53
90 19, 11, 9, 10, 28, 13 28 4.67 38
93 12, 20, 24, 5, 18, 14 30 5 39
93 14, 18, 5, 24, 20, 12 30 5 39
93 14, 30, 22, 27 20 5 18
93 27, 22, 30, 14 20 5 18
95 14, 30, 23, 28 20 5 18
95 18, 34, 19, 24 20 5 34
95 24, 19, 34, 18 20 5 34
95 28, 23, 30, 14 20 5 18

106 2, 9, 22, 19, 37, 17 30 5 47
106 6, 10, 14, 44, 23, 9 30 5 32
106 9, 23, 44, 14, 10, 6 30 5 32
106 12, 16, 12, 20, 27, 19 30 5 33
106 14, 16, 49, 27 20 5 22
106 15, 23, 34, 8, 7, 19 30 5 40
106 15, 35, 31, 25 20 5 39
106 17, 37, 19, 22, 9, 2 30 5 47
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highest no. of

n runs r(reverse) ρ palindromic factors
106 17, 39, 26, 24 20 5 36
106 19, 7, 8, 34, 23, 15 30 5 40
106 19, 27, 20, 12, 16, 12 30 5 33
106 24, 26, 39, 17 20 5 36
106 25, 31, 35, 15 20 5 39
106 27, 49, 16, 14 20 5 22

Table 3.2: Examples of words with higher ρ than standard-plus words. For a
larger list, see A.2 in the Appendix.
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Chapter 4

Bit Catastrophes: How Small
Changes in a Word Affect its
BWT

In this chapter, we show that the BWT is sensitive to one-character changes in
the input word. We present a family of binary words for which edit operations
(of insertion, deletion, and substitution) involving just one character may
affect the number of runs r in the BWT of the word by a logarithmic factor
in the length of the word.

This phenomenon was first studied for LZ78. Considering an optimally
compressing word, Lutz and other authors [50, 53] posed the question of
whether the word would still be reasonably well compressible after a one-bit
change in it. This question was eventually answered in [47], where the authors
showed that prepending a character to a word may cause a so-called one-bit
catastrophe by reducing its compressibility. They additionally specified that
this phenomenon is not a tragedy for LZ78, showing that, when it happens, it
may produce an incompressible word only when the original word was already
poorly compressible.

The interest in these so-called bit-catastrophes has recently spread to other
string compressors and repetitiveness measures; an overview can be found
in [1].

Here we focus on the effect on the BWT, and we are using the term
“one-bit catastrophe” in a looser meaning, namely simply to denote the effect
that a one-character edit operation may significantly change the compression
size. The increase should be such that r(w′

n) = ω(r(wn)), for an infinite
family (wn)n>0, where w′

n is the word resulting from applying a single edit
operation to wn. Considering the same families of words used in the previous
chapter, we show that the reverse of Fibonacci-plus words are an example of a
logarithmic increase from O(1) runs for the BWT of the reverse of Fibonacci
words to Θ(log n) runs. In other words, a one-bit catastrophe can be caused
by prepending a character to the reverse of a Fibonacci word. Additionally,
we show that prepending, appending or inserting a character can produce the
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CA rotations of

abaababaabaab
0 7 aabaababaabab b
1 2 aababaabaabab b
2 10 aababaababaab b
3 5 abaabaababaab b
4 0 abaababaabaab b
5 8 abaababaababa a
6 3 ababaabaababa a
7 11 ababaababaaba a
8 6 baabaababaaba a
9 1 baababaabaaba a

10 9 baababaababaa a
11 4 babaabaababaa a
12 12 babaababaabaa a

(a) Fibonacci word of order 6

CA rotations of
abaababbaabaab

0 8 aabaababaababb b
1 11 aababaababbaab b
2 2 aababbaabaabab b
3 9 abaababaababba a
4 0 abaababbaabaab b
5 12 ababaababbaaba a
6 3 ababbaabaababa a
7 5 abbaabaababaab b
8 7 baabaababaabab b
9 10 baababaababbaa a

10 1 baababbaabaaba a
11 13 babaababbaabaa a
12 4 babbaabaababaa a
13 6 bbaabaababaaba a

(b) Insertion

CA rotations of
abaababaabaa

0 10 aaabaababaab b
1 7 aabaaabaabab b
2 11 aabaababaaba a
3 2 aababaabaaab b
4 8 abaaabaababa a
5 5 abaabaaabaab b
6 0 abaababaabaa a
7 3 ababaabaaaba a
8 9 baaabaababaa a
9 6 baabaaabaaba a

10 1 baababaabaaa a
11 4 babaabaaabaa a

(c) Deletion

CA rotations of
abaabbbaabaab

0 7 aabaababaabbb b
1 10 aababaabbbaab b
2 2 aabbbaabaabab b
3 8 abaababaabbba a
4 0 abaabbbaabaab b
5 11 ababaabbbaaba a
6 3 abbbaabaababa a
7 6 baabaababaabb b
8 9 baababaabbbaa a
9 1 baabbbaabaaba a

10 12 babaabbbaabaa a
11 5 bbaabaababaab b
12 4 bbbaabaababaa a

(d) Substitution

Figure 4.1: The BWT matrix of the Fibonacci word of order 6 (a), and that of the
result for 3 bit-catastrophes: (b) inserting a character in position 6 = F6−1− 2, (c)
deleting the last character (d) substituting the character in position 5 = F6−1− 3.

same effect. Finally, we show that deleting and inserting single characters
can produce this effect, as well. (See Figure 4.1 for an example) To show this,
we will use some results from the previous chapter, in particular, Lemma 2,
Proposition 5, 6 and 9.

The contents of this chapter have been published at Developments in
Language Theory (DLT 2023) [33].

4.1 Appending, prepending, inserting a charac-
ter

In this section, we show that, for BWT, prepending, appending or inserting
a character within a word may increase r by a logarithmic factor. To do so,
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we consider the reverse of Fibonacci words.

Proposition 13 Let v be the reverse of a Fibonacci word. If vrev is of even
order 2k, then r(vb) = 2k. If vrev is of odd order 2k + 1, then r(va) = 2k.

Proof. This follows from the fact that vb is a conjugate of bv, and thus they
have the same BWT. Since bv is the reverse of a Fibonacci-plus word, by
Proposition 5 (Chapter 3, page 35), then r(bv) = 2k. The same reasoning
holds for Fibonacci words of odd order 2k − 1 and the additional character
a. □

The following proposition can be deduced from previous results, and shows
that there exist at least two positions in a Fibonacci word of even order,
where adding a character causes a logarithmic increase of r. Recall properties
of Fibonacci words presented in Proposition 2 and 3, (Chapter 2, pages 25
and 26). In particular, we will need the decomposition of standard words
s2k = x2kab, s2k+1 = x2k+1ba, where x2k, x2k+1 are palindromes, and the
property of standard words that s with directive sequence of length k of the
form (1, . . . , 1, 2) is a conjugate of the Fibonacci word of order k + 2.

Proposition 14 Let s be the Fibonacci word of even order 2k. If we add

i) a b in position F2k−1 − 2 or

ii) an a in position F2k − 2,

then the BWT of the resulting word has Θ(log n) runs, where n = |s|.

Proof. Let us rewrite the word s as s = x2kab = x2k−1bax2k−2ab. We will
first prove i), then ii).

i) The reverse of s is its conjugate conjF2k−1−2(s) = bax2k−2abx2k−1. Prepend-
ing a b to conjF2k−1−2(s) is equivalent to adding a b in position F2k−1−2
in s. Clearly, the word bconjF2k−1−2(s) is the reverse of the Fibonacci-
plus word of order 2k, and by Proposition 5 (Chapter 3, page 35), its
BWT has 2k runs. See Figure 4.2a for an illustration.

ii) On the other hand, t = x2kba is also a conjugate of s, and it is the
standard word of odd order 2k−1. It is easy to verify that trev = abx2k =
conjF2k−2(s). By Proposition 10 (Chapter 3, page 41), r(atrev) = 2k −
2 = Θ(log n), and for similar considerations as above, prepending an a

to trev is equivalent to inserting a at position F2k−2 in s. See Figure 4.2b
for an illustration. □

Note that, by using similar arguments as in Proposition 13, it is possible to
prove that adding a further b at the end of the reverse of a Fibonacci word of
even order has the same effect as adding a character c greater than b and not
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s = ba ab

F2k−1 F2k−2

srev = ba ab

bsrev = bba ab

(a) Insert a b in position F2k−1 − 2.

F2k−1 F2k−2

s = ba ab

t = baab

trev = ab ba

atrev = aab ba

(b) Insert an a in position F2k − 2

Figure 4.2: In the figure, two positions where inserting a character in the reverse
of a Fibonacci word of order 2k that produce a one-bit catastrophe (a b in position
F2k−1 − 2, and an a in position F2k − 2) are shown. The word s is represented as
the decomposition in the palindromic central words (colored in orange and green)
and ab, ba depending on the order of the central words. The decomposition of the
word s, the position where the character is inserted and the conjugates used are
chosen with respect to the proof of Proposition 14.

present in the word. This is because in both cases a new factor is introduced
in the word, namely bb respectively c, see Figure 4.3 for an example. Both
these factors are greater than all the other factors of the word, and they are
the only changes in the word. The analogous thing happens when adding
a further a to the reverse of a Fibonacci word of odd order or a character
smaller than a, say $ (see Figure 4.4). These results are formalized in the
following two propositions.

Proposition 15 Let v be the reverse of the Fibonacci word of even order 2k
and c > b, then r(vc) = Θ(k).

Proof. Recall that BWT(vc) = BWT(cv). For the proof, we consider the
conjugate cv. Let us consider the reverse of the Fibonacci-plus word of the
same order 2k, v′ = bv. Then v = v′[1..n−1], and cv and v′ differ only for the
characters in position 0. Moreover, cv[0] = cb is the lexicographically great-
est 2-length substring of v, and v′[0..1] = bb is the lexicographically greatest
2-length substring of v. In particular, the relative lexicographic order of the
conjugates of v and v′[1..n−1] is the same, and therefore the BWT of cv and
v′ differs only by the character preceding the conjugates starting in position
1. By Proposition 6 (Chapter 3), the character preceding conj1(v′) is the last
character of a run of b’s, therefore the character c which precedes conj0(v)
adds only one run, namely the 1-length run of c. Since r(v′) = 2k, BWT(cv)
has the same 2k runs, plus the further run consisting of the single c. There-
fore, r(vc) = r(cv) = Θ(k) □
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Analogously, a similar argument can be made when a character c < a is
prepended to the reverse of a Fibonacci word of odd order, as shown in the
following.

Proposition 16 Let v be the reverse of the Fibonacci word of odd order 2k+1
and c < a, then r(vc) = Θ(k).

Proof. As in the previous proof, we note that the conjugate cv has the same
BWT as vc, i.e. BWT(cv) = bFk2−2aabF2k−4 · · · bF2abaF2k−k+1 by Proposi-
tion 5 (Chapter 3, page 35). Let us consider the reverse of the Fibonacci-plus
word of the same order, v′ = av of length n. Then v = v′[1..n − 1], and cv
and v′ differ only by the characters in position 0. In particular, the relative
lexicographic order of the conjugates of v and v′[1..n − 1] is the same. The
additional rotation cv starts with c = $, and it is now the smallest among
all rotations, therefore it will be at the very beginning of the matrix. This
rotation is preceded by a. Since cv ends with a and the lexicographically
following rotations end with b, it increments the number of runs by at most
1 with respect to the BWT of v′.

Additionally, the rotation ending with $ contributes to r with at most
2 more runs. This is because it either falls in between runs of two distinct
characters, or within a run of a single character. In total, BWT(cv) has at
most 2k + 3 runs, and thus r(cv) = r(vc) = Θ(k). □

CA rotations of
baabaababaaba

BWT

0 1 aabaababaabab b
1 9 aababaabaabab b
2 4 aababaababaab b
3 12 abaabaababaab b
4 7 abaababaabaab b
5 2 abaababaababa a
6 10 ababaabaababa a
7 5 ababaababaaba a
8 0 baabaababaaba a
9 8 baababaabaaba a

10 3 baababaababaa a
11 11 babaabaababaa a
12 6 babaababaabaa a
13

CA rotations of
baabaababaababb

BWT

1 aabaababaababb b
4 aababaababbaab b
9 aababbaabaabab b
2 abaababaababba a
7 abaababbaabaab b
5 ababaababbaaba a

10 ababbaabaababa a
12 abbaabaababaab b
0 baabaababaabab b
3 baababaababbaa a
8 baababbaabaaba a
6 babaababbaabaa a

11 babbaabaababaa a
13 bbaabaababaaba a

CA rotations of
baabaababaabac

BWT

1 aabaababaabacb b
4 aababaabacbaab b
9 aabacbaabaabab b
2 abaababaabacba a
7 abaabacbaabaab b
5 ababaabacbaaba a

10 abacbaabaababa a
12 acbaabaababaab b
0 baabaababaabac c
3 baababaabacbaa a
8 baabacbaabaaba a
6 babaabacbaabaa a

11 bacbaabaababaa a
13 cbaabaababaaba a

Figure 4.3: The BWT matrices of the reverse of the Fibonacci word of order 6
and that of the same word with a further character b (resp. c) at the end. The
inserted character is highlighted in red. The lexicographic order of the rotations is
the same when a b or a c is appended. The BWT coincides as well, except for the
additional characters b respectively c, which are in the same position in the two
BWTs.

The previous proposition implies that words that are $-terminated may
have Θ(log n) more runs in their BWT with respect to the same word without
the end-of-string character, as shown in the following corollary. The insight
of this corollary is that the bit-catastrophe should be taken into consideration
when a terminator symbol ($) is used. In fact, this single additional character
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CA rotations of

ababaababaabaababaaba
BWT

0 9 aabaababaabaababaabab b
1 17 aabaababaababaabaabab b
2 4 aababaabaababaabaabab b
3 12 aababaabaababaababaab b
4 20 aababaababaabaababaab b
5 7 abaabaababaabaababaab b
6 15 abaabaababaababaabaab b
7 2 abaababaabaababaabaab b
8 10 abaababaabaababaababa a
9 18 abaababaababaabaababa a

10 5 ababaabaababaabaababa a
11 13 ababaabaababaababaaba a
12 0 ababaababaabaababaaba a
13 8 baabaababaabaababaaba a
14 16 baabaababaababaabaaba a
15 3 baababaabaababaabaaba a
16 11 baababaabaababaababaa a
17 19 baababaababaabaababaa a
18 6 babaabaababaabaababaa a
19 14 babaabaababaababaabaa a
20 1 babaababaabaababaabaa a
21

CA rotations of
ababaababaabaababaabaa

BWT

20 aaababaababaabaababaab b
17 aabaaababaababaabaabab b
9 aabaababaabaaababaabab b

12 aababaabaaababaababaab b
4 aababaabaababaabaaabab b

21 aababaababaabaababaaba a
18 abaaababaababaabaababa a
15 abaabaaababaababaabaab b
7 abaabaababaabaaababaab b

10 abaababaabaaababaababa a
2 abaababaabaababaabaaab b

13 ababaabaaababaababaaba a
5 ababaabaababaabaaababa a
0 ababaababaabaababaabaa a

19 baaababaababaabaababaa a
16 baabaaababaababaabaaba a
8 baabaababaabaaababaaba a

11 baababaabaaababaababaa a
3 baababaabaababaabaaaba a

14 babaabaaababaababaabaa a
6 babaabaababaabaaababaa a
1 babaababaabaababaabaaa a

CA rotations of
ababaababaabaababaaba$

BWT

21 $ababaababaabaababaaba a
20 a$ababaababaabaababaab b
17 aaba$ababaababaabaabab b
9 aabaababaaba$ababaabab b

12 aababaaba$ababaababaab b
4 aababaabaababaaba$abab b

18 aba$ababaababaabaababa a
15 abaaba$ababaababaabaab b
7 abaabaababaaba$ababaab b

10 abaababaaba$ababaababa a
2 abaababaabaababaaba$ab b

13 ababaaba$ababaababaaba a
5 ababaabaababaaba$ababa a
0 ababaababaabaababaaba$ $

19 ba$ababaababaabaababaa a
16 baaba$ababaababaabaaba a
8 baabaababaaba$ababaaba a

11 baababaaba$ababaababaa a
3 baababaabaababaaba$aba a

14 babaaba$ababaababaabaa a
6 babaabaababaaba$ababaa a
1 babaababaabaababaaba$a a

Figure 4.4: The BWT matrices of the reverse of the Fibonacci word of order 7
and that of the same word with a further character a (resp. $) at the end. The
inserted character is highlighted in red. Except for two rotations, the lexicographic
order of other rotations is the same when a a or a $ is appended.

may cause an asymptotically relevant increase in the number of runs of the
BWT of the text.

Corollary 1 There exist an infinite family of words v such that r$(v)/r(v) =
Θ(log n), where n = |v|.

Proof. Consider the word v$, where v is the reverse of a Fibonacci word of
odd order. □

4.2 Deleting a character

We next show that deleting a character can result in a logarithmic increment
in r. In particular, we consider a Fibonacci word of even order and show the
form of its BWT, as claimed in the following proposition.

We recall the notation sˆ︁ = s[0..|s| − 2], i.e. sˆ︁ is the word s without the
character in the last position.

Proposition 17 Let s be the Fibonacci word of length n and order 2k > 4,
and sˆ︁ = s[0..n− 2]. Then BWT(sˆ︁) has the following form:

BWT(sˆ︁) = bk−1abF2k−3−k+1abF2k−5 · · · bF5abF3abaF2k−1−k+1.

In particular, BWT(sˆ︁) has 2k runs.
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To give the proof, we divide the BWT matrix of the word v in three parts:
top, middle and bottom part, showing the form of each part separately:

BWT(sˆ︁)top = bk−1abF2k−3−k+1, consisting of 3 runs,
BWT(sˆ︁)mid = abF2k−5abF2k−7 · · · ab, consisting in 2(k − 2) runs,
BWT(sˆ︁)bot = aF2k−1−k+1, consisting in just one run.

Altogether, we then have 3 + 2(k − 2) + 1 = 2k runs.
We identify 3 conjugates of the word of length n − 1 that delimit the 3

parts of the BWT-matrix of the word:

conjn−2(sˆ︁) = aax2k−2abx2k−3ba · · · ab
conjn−4(sˆ︁) = abaaab · · ·x3ba

conj0(sˆ︁) = x2ka

and they are such that conjn−2(sˆ︁) < conjn−4(sˆ︁) < conj0(sˆ︁). In particular,
the first mentioned rotation is the smallest rotation in the matrix due to the
unique aaa prefix. The second rotation indicates the beginning of the middle
part, and it is the smallest rotation starting with ab. Finally, the word itself
v = x2ka determines the beginning of the bottom part, namely the last long
run of a’s in the BWT.

Top part The top part of the matrix consists of all rotations of the word
starting with aa. We are going to show that only one of these rotations ends
with an a, and we show where the a in the BWT of the top part breaks the
run of b’s.

Proposition 18 (Top part) Given sˆ︁, the Fibonacci word of order 2k with-
out the last character, then the first k rotations in the BWT matrix are
aaa · · · b < ax4aa · · · b < ax6aa · · · b < . . . < ax2k−2aa · · · b < ax2k. All
other F2k−3 − k + 1 rotations starting with aa ends with a b.

Proof. Overall, there are F2k−3 + 1 occurrences of aa in v. This is because
there are F2k−1 a’s, of which F2k−2−1 are followed by a b, therefore there are
F2k−1 − F2k−2 + 1 = F2k−3 + 1 occurrences of a followed by an a.

Among all rotations starting by aa, the k smallest ones are those starting
with the rightmost occurrence of axh for each even h in increment order of
h. This is because of the single occurrence of aaa following the rightmost
occurrence of x3. Finally, only the largest axh is preceded by an a, therefore
the k smallest rotations of sˆ︁ are all preceded by a b except for the largest of
them which is preceded by an a. This shows that the k smallest rotations in
the BWT-matrix form two runs: bk−1a.

There are not any other occurrences of aaa, therefore all the remaining
F2k−3 − k + 1 rotations starting with aa are preceded by b by construction.
Therefore, we have bk−1abF2k−3−k+1 in the top part of the BWT matrix of sˆ︁.
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□

Middle part In Figure 4.5 the structure of the middle part of the BWT
matrix, when the last character is deleted, is shown. To prove the number of
runs in this part of the matrix, we first draw attention to the fact that, for
each xh, all rotations starting with xh appear together in the BWT matrix.
In particular, they occur in blocks such that rotations starting with xha, with
h odd, are immediately lexicographically preceded by the unique rotation
starting with xh−1aa, and immediately followed by the rotation starting with
xh+1aa. This is because xha, h odd, is prefixed by xh−1ab (Lemma 4 and 5).

The word sˆ︁ separates the middle and the bottom part. Note that every
two lexicographically consecutive rotations of a Fibonacci word s differ by just
two characters [7]. Therefore, for all conji(sˆ︁) such that lcp(sˆ︁, conji(sˆ︁)) = xh

for some h, where conji(sˆ︁) is prefixed by xha while sˆ︁ is prefixed by xhb, then
conji(sˆ︁) is in the middle part (i.e. smaller than sˆ︁).

x4

x5a

a
b
...

b

aa

...

x6a a

x2(k−h)+1a
a
b...
b

...

x2(k−h)a a

x2k−1a a

x2(k−1)a a

x2(k−1)−1a
a

b

...

...

b

a
b

b
b b

...

a

b

b
...

...

a
b

b

...

a

F
2
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5
F
2
(k−

h
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1
F
3

F
0

Figure 4.5: In the figure, the middle part BWTmid(sˆ︁) of the BWT matrix for
the deletion of the last character of a Fibonacci word of even order 2k is shown.
In particular, for all x2(k−h)+1, rotations starting with that factor occur in blocks
such that rotations prefixed by x2(k−h)+1a are all preceded by a b. Moreover, they
are immediately lexicographically preceded by the unique rotation starting with
x2(k−h)aa, which is preceded by an a, instead.

Lemma 4 For all h ≤ 2k, if h is even, then the rotation starting with the
rightmost occurrence of xh is preceded by a and is the smallest rotation among
those starting with xh.
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Proof. Each xh is both a prefix and a suffix of x2k. By properties of Fibonacci
words, the rightmost occurrence of xh is preceded by a if h is even, and by b

otherwise. Additionally, the rightmost occurrence of xh is the only occurrence
of xh circularly followed by aa. Therefore, this is the smallest rotation starting
with xh. □

Lemma 5 For h ≤ 2k, rotations starting with some xh−1aa are smaller than
rotations starting with xha. In particular, the word sˆ︁ = x2ka is greater than
any of the aforementioned rotations.

Proof. We are showing that xh−1aa < xha for every h ≤ 2k. Every xh−1

is a prefix of xh. Since there is exactly one circular occurrence of aaa in sˆ︁,
then xha is either prefixed by xh−1ab or by xh−1ba, i.e. the aaa factor occurs
earlier in xh−1aa. In either case, the claim holds. □

Lemma 6 There are F2h− 1 occurrences of bx2(k−h)a and F2h+1 occurrences
of bx2(k−h)−1a as circular factors in sˆ︁ = x2ka

Proof. The claim can be proved by induction. For h = 1, the statement
follows from the fact that there is one occurrence of bx2ka in the Fibonacci
word of order 2k, therefore there are F0 − 1 = 0 occurrences in sˆ︁ because
of the missing b at the end. There are F1 = 1 occurrences of bx2k−1a in
both words. Note that the occurrence of any bx2ha in position F2k − 1 of the
Fibonacci word of order 2k is missing in sˆ︁ due to the missing b at the end of
the word.

Let us suppose the statement holds for all i ≤ h. The factor bx2(k−h)−2a

appears as a prefix of bx2(k−h)−1a and as a prefix of bx2(k−h)a. Moreover,
the mentioned occurrences are distinct because bx2(k−h)−1a is not a prefix of
bx2(k−h)a. Therefore, by induction, the number of occurrences of bx2(k−h)a

is equal to the sum of the number of occurrences of bx2(k−h)−2a and those
of bx2(k−h)−1a: F2h − 1 + F2h+1 = F2h+2 − 1. On the other, bx2(k−h)−3a

appears as a suffix of bx2(k−h)−2a and as a suffix of bx2(k−h)−1a. Moreover,
the mentioned occurrences are distinct because bx2(k−h)−2a is not a suffix of
bx2(k−h)−1a. Finally, bx2(k−h)−3a appears once also as suffix of ax2(k−h)−2a,
starting in position F2k − 2 of sˆ︁. Therefore, by induction, the number of oc-
currences of bx2(k−h)−3a is equal to the sum of the number of occurrences of
bx2(k−h)−2a and those of bx2(k−h)−1a plus one: F2h+2−1+F2h+1+1 = F2h+3.□

Proposition 19 (Middle part) The middle part contributes to r(sˆ︁) with
2(k − 2) runs in the following form: abF2k−5abF2k−7 · · · abF3ab
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Proof. By Lemma 4, among rotations starting with the same xh, h ≥ 4 even,
the smallest one is preceded by a. All the following F2k−h−1 rotations starting
with xh+1a are preceded by b (Lemma 6). The fact that there exist exactly
k − 2 such xh proves the claim. □

Bottom part The rotations that divide the middle part from the bottom
part are the two rotations prefixed by the two occurrences of x2k−1. By
properties of Fibonacci words, one rotation is prefixed by x2k−1a (end of
middle part) and the other by x2k−1b (beginning of bottom part). The latter
follows the first in lexicographic order. Note that the rotation starting with
x2k−1b is sˆ︁, namely x2k−1bax2k−2a.

Proposition 20 (Bottom part) All rotations greater than sˆ︁ = x2k−1bax2k−2a

end with a .

Proof. From Lemma 18 we have that k− 1+F2k−3− k+1 rotations ending
with b have already appeared in the matrix, and from Lemma 19 F2k−5+ . . .+
F3 + F1 rotations ending with b have already appeared in the matrix. Sum-
ming the number of b’s we have k−1+F2k−3−k+1+F2k−5+ . . .+F3+F1 =
F2k−3 + F2k−5 + . . .+ F3 + F1. We can decompose each odd Fibonacci num-
ber F2x+1 in the sum F2x + F2x−1. Therefore, the previous sum becomes
F2k−4+F2k−5+F2k−6+F2k−7 . . .+F2+F1+F1. For every Fibonacci number
Fx ,it holds that Fx = Fx−2 + Fx−3 + Fx−4 + . . . + F2 + F1 + 2. Therefore,
F2k−4+F2k−5+F2k−6+F2k−7 . . .+F2+F1+F1 = F2k−2−1, which is exactly the
number of b’s in sˆ︁. Therefore, all the remaining rotations must end with a. □

In the following, we report Proposition 17 and we explicitly state its proof.

Proposition 17 Let s be the Fibonacci word of length n and order 2k > 4,
and sˆ︁ = s[0..n− 2]. Then BWT(sˆ︁) has the following form:

BWT(sˆ︁) = bk−1abF2k−3−k+1abF2k−5 · · · bF5abF3abaF2k−1−k+1.

In particular, BWT(sˆ︁) has 2k runs.

Proof. The statement follows directly from Propositions 18, 19, 20. □

We have thus shown that appending or deleting a single character can
substantially increase the parameter r. This implies the following known
result:

Corollary 2 The measure r is not monotone.
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4.3 Substituting a character

Next, we show how to increment r by a logarithmic factor by the edit oper-
ation of substituting a character. Consider a modification of the reverse of
Fibonacci words of even order in which we replace the last a by a b. More
formally, let s = x2kab be the Fibonacci word of order 2k, and consider
v = bax2k”b. Note that replacing the last a in srev with a b is equivalent to
replace in the Fibonacci word s the character a at position F2k−1 − 3 by b.
This is because the conjugate conjF2k−1−2(s) = bax2k−2abx2k−1 is exactly the
reverse of s.

Then BWT(v) has Θ(log n) runs, where n is the length of the word, as
shown in the following proposition.

Proposition 21 Let s be the Fibonacci word of order 2k with a b instead of
the first a, and v = srev = bax2k”b. Then BWT(v) has the form

BWT(v) = bF2k−2−k+1aF0baF2b · · · aF2k−4baF2k−2−2ba.

In particular, BWT(v) has 2k runs.

As for the deletion of a character, we divide the BWT matrix into three
parts, and we prove the structure of each part separately. The BWT in the
3 parts is as follows:

BWT(v)top = bF2k−2−k+1, consisting in one run
BWT(v)mid = aF0baF2b · · · aF2k−4b, consisting in 2(k − 1) runs,
BWT(v)bot = aF2k−2−2ba, consisting in just 3 runs.

Altogether, we have 1 + 2(k − 1) + 3 = 2k + 2 runs.
In this case, the rotations we identify to divide the BWT matrix are

conj0(v) = bax2k”b

conj1(v) = ax2k”bb

conj2(v) = x2k”bba

conjn−2(v) = bbbax2k”[0..n− 2]

and they are such that conj1(v) < conj2(v) < v < conjn−2(v). Note that,
as it is shown in the following, by properties of Fibonacci words, conj1(v) is
smaller than any other rotation of v starting with a, and consequently v is
the smallest rotation starting with b. In particular, conj1(v) is the smallest
rotation in the top part, conj2(v) and v are the smallest respectively the
largest rotation in the middle part, and conjn−2(v) is the largest rotation in
the bottom part.

Lemma 7 The conjugate conj1(v) is the Lyndon conjugate of v.
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Proof. By properties of Fibonacci words, ax2kb is the Lyndon conjugate of
the Fibonacci word s2k of order 2k. Note that ax2kb is not the reverse of
s2k, and the reverse of any Fibonacci word is a conjugate of the Fibonacci
word itself. We are claiming that the corresponding conjugate ax2k”bb in v
is Lyndon as well. Substituting the last a in v with the b, we create the
unique occurrence of bbb at the end of the string. Doing this, no conjugate
conji(v) is produced such that conji(v) < ax2kb. Let us assume the contrary,
i.e. that there exists a conjugate of v conji(v) lexicographically smaller than
ax2kb. This means that lcp(ax2kb, conji(v)) = y for some factor y of v, and
conji(v) starts with ya, while ax2kb starts with yb. The factor y must be of
length |x2k|, otherwise also conji((s2k)rev) would be lexicographically smaller
than ax2kb, which is a contradiction with ax2kb being the Lyndon rotation of
Fibonacci word s2k of order 2k. Therefore, conj1(v) = ax2k”bb is the Lyndon
rotation of v. □

Corollary 3 The word v is the smallest conjugate in v starting with b.

Proof. From Lemma 7 conj1(v) = ax2k”bb is the Lyndon rotation of v. It
follows that bax2k”b is lexicographically smaller than all other conjugate in v
starting with b. □

Bottom part The bottom part consists in all conjugates lexicographically
greater than v = bax2k”b. Such rotations must start with a b, and, as shown
in the following, only one of such conjugates also ends with b. Since the
b-ending conjugate does not appear as the very last nor the very first row in
the bottom part of the matrix, then it breaks a long run of a’s generating 3
runs.

Lemma 8 The two conjugates conjn−1(v), conjn−2(v) are respectively the largest
and the second largest conjugates of v, and they end with a respectively b.

Proof. The conjugate conjn−2(v) starts with the unique occurrence of bbb,
therefore it is the lexicographically greatest conjugate of v, and it is preceded
by an a. On the other hand, conjn−1(v) is the unique conjugate starting with
bba, therefore it is the immediate smaller conjugate than conjn−2(v) and it is
preceded by b. □

Lemma 9 All conjugates conji(v) such that v < conji(v) < conjn−1(v) end
with a.
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Proof. All such conjugates conji(v) start with b. There is exactly one oc-
currence of bbb in v, therefore exactly two occurrences of b are preceded by
b. One such occurrence is in position 0, i.e. at the beginning of v. The other
occurrence is in position n − 1, i.e. at the beginning of the second largest
conjugate of v. Therefore, all conjugates lexicographically greater than v and
larger than conjn−1(v) must be preceded by a. □

Proposition 22 (Bottom part) BWT(v)bot = aF2k−2−2ba.

Proof. By Lemma 8 and 9, we have that BWT(v)bot consists in a long run of
a’s followed by ba. The length of the run of a’s is the number of conjugates
of v such that v < conji(v) < conjn−1(v). The number of b’s in v is F2k−2+1.
Therefore, the number of conjugates v < conji(v) < conjn−1(v) is exactly
F2k−2 + 1− 3 = F2k−2 − 2. □

Middle part A picture of the structure of the middle part of the BWT
matrix is shown in Figure 4.6. To prove the form of BWT(v)mid we need
Lemma 2 from Chapter 3, that state that for the Fibonacci words s2k of
order 2k for all i = 0, . . . , k − 2, ax2(k−i)b and ax2(k−i)−1b have F2i and F2i+1

occurrences, respectively, as circular factors of s2k. Note that, exactly one
occurrence of ax2(k−i)b and one of ax2(k−i)−1b of srev2k are replaced by ax2(k−i)÷bb

respectively ax2(k−i)−1ÿ�bb in the word v = bax2k”b. Thus, in v we have F2i −
1 and F2i+1 − 1 occurrences of ax2(k−i)b respectively ax2(k−i)−1b, and one
occurrence of ax2(k−i)÷bb and ax2(k−i)−1ÿ�bb.
Lemma 10 The left-special circular factors of v are exactly the prefixes of
x2k−1’ and the prefixes of x2k−2.

Proof. Let u be a left-special circular factor in v = bax2k”b. The factor
bbb occurs exactly once in v, therefore u does not contain bbb. By com-
binatorial properties of Fibonacci words, v = bax2k−3bax2k−2bax2k−2’b =
bax2k−2abx2k−2abx2k−3’b. Moreover, for each 0 ≤ h ≤ F2k − 2, there ex-
ists exactly one left-special circular factor of bax2k having length h, and it is
a prefix of x2k. Since x2k−1’ occurs twice in v (once preceded and followed by
a, once preceded and followed by b), and x2k−2 (once preceded by a and once
preceded by b), and both x2k−1’ and x2k−2 are prefixes of x2k, then either u is
a prefix of x2k−1’ or it is a prefix of x2k−2. □

To prove the middle part of the BWT matrix, we consider the blocks
of lexicographically consecutive rotations prefixed by x2hb. We are showing
that such rotations are always preceded by an a. In addition, the immediate
smaller rotation is the largest rotation prefixed by x2hab, i.e. that prefixed by
x2h+1’bb and preceded by b. This is formalized in the following lemma.

Proposition 23 (Middle part) BWT(v)mid = aF0baF2b · · · aF2k−4b.
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Figure 4.6: In the figure, the structure for the middle part BWTmid(v) f the BWT
matrix of the reverse of a Fibonacci word of order 2k when the last character is
substituted. For each x2(k−h)◊�, all rotations prefixed by that factor appear together
in the BWT. These rotations are all preceded by an a, and lexicographically followed
by the unique rotation starting with x2(k−h)−1Ÿ�b, which is instead preceded by a b.

Proof. For 2 ≤ i < j, rotations starting with xi“b are lexicographically
greater than xi. For 1 ≤ i < k, x2(k−i)b is not a prefix of x2k”. Thus, rotations
starting with x2(k−i)b are lexicographically greater than x2(k−i)+1ÿ�. Moreover,
x2(k−i)b is not a prefix of x2k−2a, as well. By Lemma 10, only factors that
are prefixes of x2k−2a or x2k” occur in v both preceded by a and by b. Note
that v = bax2k”b can also be written as v = bax2k−3bax2k−2bax2k−2’b. Every
ax2(k−i)b is a suffix of x2(k−i)+1b, therefore the character preceding any other
x2(k−i)b must also be an a. There are exactly F2i − 1 occurrences of x2(k−i)b,
and they are lexicographically immediately followed by x2(k−i)÷b. Together,
rotations prefixed by such factors correspond to a run of a’s in BWT(v)mid

of length F2i. The claim follows from the fact that each x2(k−i)−1ÿ�b occurs
exactly once, and it is preceded by b. □

Top part The top part of the matrix consists of the remaining b’s of the
word.

Proposition 24 (Top part) BWTtop(v) = bF2k−2−k+1.

Proof. In total, in v there are F2k−2+1 b’s. So far, we encountered k−1 b’s
in the middle part of the BWT matrix, and 1 b in the bottom part. There-
fore, we have exactly F2k−2 + 1− (k − 1)− 1 = F2k−2 − k + 1 b’s in the top
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part of the matrix. □

In the following, we rewrite Proposition 21, and we explicitly state its
proof.

Proposition 21 Let s be the Fibonacci word of order 2k with a b instead of
the first a, and v = srev = baxˆ︁b. Then BWT(v) has the form

BWT(v) = bF2k−2−k+1aF0baF2b · · · aF2k−4baF2k−2−2ba.

In particular, BWT(v) has 2k + 2 runs.

Proof. The statement follows directly from Propositions 22, 23, 24. □

4.4 Shall we call these phenomena “tragedies”?

In this chapter, we showed how small changes in a word may affect r, pre-
senting words of length n for which a single-character edit operation has the
power of increasing r from 2 to Θ(log n). Now, the question is whether these
“catastrophes” affect the compressibility of the word. To answer this, we need
a definition of compressibility.

The usual statistical compression methods for collections are based on
the statistical entropy defined by Shannon [79]. An adaptation for finite
strings is the empirical entropy (see [17]). However, the measures defined on
Shannon’s entropy define the compressibility of a text based on the frequency
of a character to follow a certain context of fixed length. This way, they are
not able to capture the repetitiveness of the text and exploit it to evaluate its
compressibility. Compressors that better reflect the repetitiveness of a text
have been introduced and studied as an alternative to statistical compression
methods.

Examples are compressors based on the number r of runs of the BWT
respectively and those based on the number z of factors of some LZ factor-
ization variant. Both r and z are usually considered good measures of the
repetitiveness of the word. A high number of repetitions leads to longer and
fewer runs in the BWT resulting in texts that are easier to compress than
the original one. Analogously repeated substrings lead to longer and fewer
phrases in the LZ factorization of the word, which is again easier to compress
than the original word.

In this context, Lagarde and Perifel [47] define the compressibility of a
string based on the size of its LZ78 factorization with respect to the length
of the input word. They first show that prepending a character to a word
can decrease its compressibility up to a non-constant factor, resulting in the
so-called “one-bit catastrophe” for LZ78. However, they prove that a word
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can become incompressible only when it was poorly compressible from the
beginning, and those that are well compressible cannot be turned into in-
compressible words. For this reason, they state that the one-bit catastrophe
cannot be called a tragedy.

In our work, we refer as “bit catastrophe” to any change in one character
which results in an increase of r by a non-constant factor. However, for a
further discussion on “tragedies” for r, we would need to decide for one of the
different definitions of BWT-compressibility currently in use. In particular,
a string w may be called compressible with respect to the BWT

i) if r = O(n/polylog(n)) [43],

ii) if r(w)/runs(w)→ 0 [27],

iii) if runs(w) > r(w) [62].

If we consider as “tragedy” if a one-character edit operation on a compressible
word turns it into an incompressible one, then the events we described in
this chapter are not tragedies for any of the above-mentioned definitions. In
particular,

i) after the edit operation we have Θ(log n) runs in the BWT, and Θ(log n) =
O(n/polylog(n)), thus the produced word is compressible,

ii) since the runs in Fibonacci words are never longer than 2, then we still
have r(w)/runs(w)→ 0 after the edit operation,

iii) the number of runs of the original word is strictly greater than r even
after the edit operation is performed, and therefore the catastrophe
produces a compressible word.

However, Fibonacci words are precisely those words with the best possible
compressibility (r for these words is 2), and we showed that r can increase by
multiplicative logarithmic factor after a one-character edit operation. In [33],
another infinite family of words showing a non-constant change in r after a
single-character edit operation is shown. Those are words of length n whose r
is Θ(

√
n), and their BWT can gain additive Θ(

√
n) runs. Even though the up-

per bound for the multiplicative increase of r is proved to be O(log n log r) [1],
as for now, no word is known with the property that r is non-constant, and r
also presents a multiplicative non-constant increase after a one-character edit
operation is performed.
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Chapter 5

When a Dollar Makes a BWT

In this chapter we give a characterization of the positions of a word where
the special character $ can be inserted, obtaining the BWT of a $-terminated
word.

The BWT has always raised interest from a combinatorial point of view. A
common combinatorial question on words related to some data structure built
on words is deciding whether, given a data structure, a word on which that
data structure is built exists, and sometimes even inferring it. For example,
finding a word having a given permutation as its suffix array, or a given
graph as its directed acyclic word graph (DAWG) is possible as presented
in [40]. Similar questions were answered for prefix tables [15], LCP-arrays [42],
Lyndon arrays [20], and suffix trees [13, 40, 82]. The problem was also studied
for the BWT. A partial answer to a similar question to the one presented in
this chapter can be found in [63], where a characterization for fixpoints of the
BWT is given.

On the other hand, the BWT also lies at the heart of some of the most pow-
erful compressed indexes in terms of query time and functionality, such as the
well-known FM-index [26], and the more recent RLBWT [61] and r-index [5,
30, 31]. For this reason, the BWT has an important role in bioinformat-
ics, where those data structures are mostly used, and the data are extremely
repetitive. In general, in all real-life applications, special characters are used
to indicate the end of the file. In bioinformatics applications, the end-of-file
character is usually $.

As a result, the research community interested in the BWT is divided
in the two main branches mentioned: data structures applied on real-life
bioinformatics problems and combinatorics on words. The former uses $, the
latter usually does not.

We are interested in what differences, if any, may arise when $ is used
with respect to when it is not. We already saw in Chapter 4 that, for Fi-
bonacci words of odd order, inserting a character smaller than the characters
of the word (such as $) increases the number of runs by up to a logarithmic
factor. In particular, this happens also when $ is appended at the end of the
string. What about whether a word is the BWT of some other word over the
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alphabet? Does the $ have an impact on this? Can it turn a BWT word into
a non-BWT? And vice versa?

We answer these questions in this chapter, giving a characterization of
positions where $ can be inserted in a word and turn it in the BWT of a
$-terminated word. We call such positions nice, and we show that whether
a position is nice depends on the indices of the original word. In particular,
we show that just a subset of the indices of the word is enough to determine
the positions in the word that are nice. We additionally give an algorithm
that efficiently computes all nice positions of a word. We finally give some
bounds on the number of nice positions in a word, and some properties of such
positions. We devote a section to the nice positions of fully clustered words,
i.e. words having all occurrences of the same character clustered together.

The contents of this chapter have been published in [34, 35, 37].

5.1 Nice positions

In this section, we define the positions where $ can be inserted in a word
in order to make it a BWT. To do so, we first present some known results
showing that whether a word is a BWT of some other word over the same
alphabet depends on the structure of its standard permutation. We recall the
standard permutation πw of a word w, defined in Chapter 2, which is an array
of length |w| defined as follows: πw[i] < πw[j] if and only if either wi < wj or
wi = wj and i < j.

The following statement was proved for binary alphabets in [64], and
stated in generalized form for larger alphabets in [52]:

Theorem 3 (Mantaci et al., 2003 [64], Likhomanov and Shur, 2011 [52])
For a string v ∈ Σ∗, BWT(v) = ac0 · · · acm−1 for some c ≥ 1, if and only if
v = uc with BWT(u) = a0 · · · am−1.

From this, the authors of [52] obtain the following result:

Theorem 4 (Likhomanov and Shur, 2011 [52]) A word w ∈ Σ∗ is a
BWT image if and only if the number of cycles of πw equals the greatest
common divisor of the runlengths of w.

In the following, we will need the explicit form of the standard permutation
of BWT images.

Corollary 4 If w is the BWT of a word v ∈ Σ∗ then πw has the following
form, where c ≥ 1 and m = n/c, for some c:

πw = (0, e0, . . . , em−1)(1, e0+1, . . . , em−1+1) . . . (c−1, e0+c−1, . . . , em−1+c−1).
(5.1)

Moreover, for c = 1, it holds that w is the BWT of a primitive word if and
only if πw is cyclic.
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Proof. Let c be the greatest common divisor of the runlengths of w. By
Theorem 3, there exists a primitive word u s.t. v = uc. If c = 1, then, by
Theorem 4, πw is cyclic, as claimed. Otherwise, let 0 ≤ i ≤ |w| − 1 and
i− 1 = kc+ r, with 0 ≤ r < c be the unique decomposition of i− 1 modulo
c. It follows from the definition of the standard permutation that

πw(i) = πw(kc+ r + 1) = πw(kc+ 1) + r, (5.2)

since w[i] = w[i− 1] = . . . = w[kc + 1], i.e. position i and position kc+ 1 lie
in the same run. But this implies that the standard permutation of w has
the form (5.1), as claimed.

For c = 1, the reverse implication follows from applying the BWT reversal
algorithm: if πw is cyclic, then the output is a word of length |w|. Note that
this direction is not true for c > 1: e.g. (0, 2)(1, 3) is the standard permuta-
tion of bbaa, but also of cdab, and the latter is not a BWT image. □

Example 2 Consider the word cbccabaa. Its standard permutation is(︁
0 1 2 3 4 5 6 7
5 3 6 7 0 4 1 2

)︁
= (0, 5, 4)(1, 3, 7, 2, 6), and has two cycles and the gcd of

its run-lengths is 1, therefore it is not the BWT of any other word. Con-
trarily, the BWT of cbccabaa is bcaaccab, whose standard permutation is(︁
0 1 2 3 4 5 6 7
3 5 0 1 6 7 2 4

)︁
= (0, 3, 1, 5, 7, 4, 6, 2) with 1 cycle, and the gcd of its run-

lengths is also 1. Finally, BWT((cbccabaa)3) = bbbcccaaaaaaccccccaaabbb

is the "blow-up" of the BWT of bcaaccab as stated in Theorem 3, and its
standard permutation

(︁
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
9 10 11 15 16 17 0 1 2 3 4 5 18 19 20 21 22 23 6 7 8 12 13 14

)︁
=

(0, 9, 3, 15, 21, 12, 18, 6)(1, 10, 4, 16, 22, 13, 19, 7)(2, 11, 5, 17, 23, 14, 20, 8) has the
form as in Corollary 4.

Let w ∈ Σ∗, and 0 ≤ i ≤ n. We denote by dol(w, i) the (n + 1)-length
word w[0..i− 1]$w[i..n− 1], i.e. the word which results from inserting $ in w
at position i.

Whenever w is clear from the context, we denote by πi the standard
permutation of dol(w, i). Additionally, we define Σ∗

$ the set of all words over
Σ with an additional $ at the end, and BWT(Σ∗

$) the set of words that are
the BWT of a $-terminated word. Clearly, all words in Σ∗

$ are primitive.
We can now define nice positions as follows:

Definition 10 Let w ∈ Σ∗, |w| = n, we call a position i nice if 0 ≤ i ≤ n
and dol(w, i) ∈ BWT(Σ∗

$), i.e. if there exists a word v ∈ Σ∗, |v| = n, such
that BWT(v$) = dol(w, i).

Since, for every i, the character $ appears exactly once in dol(w, i), from
Theorem 4 we immediately get the following:

Corollary 5 For w ∈ Σn and 0 ≤ i ≤ n, i is nice if and only if πi is cyclic.
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Figure 5.1: Standard permutation for w = cbccabaa from Example 2 with σw =(︁
0 1 2 3 4 5 6 7
5 3 6 7 0 4 1 2

)︁
and σ6 =

(︁
0 1 2 3 4 5 6 7 8
6 4 7 8 1 5 0 2 3

)︁
.
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Lemma 11 Let w ∈ Σn, 0 ≤ i ≤ n, πw the standard permutation of w, and
πi the standard permutation of dol(w, i). Then

πi(j) =

⎧⎪⎨⎪⎩
πw(j) + 1 if j < i,

1 if j = i, and
πw(j − 1) + 1 if j > i.

Proof. Immediate from the definition. □

We use a bipartite graph Gw to visualize the standard permutation of w
(see Fig. 5.1). The top row corresponds to w, and the bottom row to the
characters of w in alphabetical order. When w is a BWT, then this implies
that the top row corresponds to the last column of a BWT matrix M , and
the bottom row to the first. (This graph is therefore sometimes called BWT-
graph.) Let us refer to the nodes in the top row as x0, . . . , xn−1 and to those
in the bottom row as y0, . . . , yn−1. Nodes xi are labeled by character w[i],
and nodes yi are labeled by the characters of w in alphabetical order. We
connect (xi, yj) if and only if i = j (parallel edges) or j = πw(i) (oblique
edges). It is easy to see that the node set of any cycle S in Gw has the form
{xk, yk | k ∈ I} for some I ⊆ {0, . . . , n − 1}, and that S is a cycle in Gw if
and only if I is a cycle in π.

Now observe what happens when we insert a dollar into w in position i (see
Fig. 5.1). For positions j which are smaller than i, their image is incremented
by one; i is mapped to 0; and for positions j on the right of i, both j and its
image π(j) are shifted to the right by one. This is what is formally said in
Lemma 11.

5.2 Characterization of nice positions via essen-
tial pseudo-cycles

In this section, we give the characterization of nice positions, namely which
position i in a word w is such that dol(w, i) = BWT (v$) for some v over the
same alphabet.
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Figure 5.2: Standard permutation for w = beaaecdcb with σw =
(︁
0 1 2 3 4 5 6 7 8
2 7 0 1 8 4 6 5 3

)︁
and σ7 =

(︁
0 1 2 3 4 5 6 7 8 9
3 8 1 2 9 5 0 7 6 4

)︁
. Red edges become fixpoints in σ6.

(a) Standard permutation of w
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(b) Standard permutation of dol(w, 6)

b
0

e
1

a
2

a
3

e
4

c
5

$
6

d

7

c
8

b
9

$
0

a
1

a
2

b
3

b
4

c
5

c
6

d
7

e
8

e
9

Our first result is that every word that is the BWT of some other word
over the alphabet has at least one nice position.

Theorem 5 Let w ∈ BWT(Σn), and c the number of cycles of πw. Then c
is nice.

Proof. By Corollary 4, πw has the form

πw = (0, e0, . . . , em−1)(1, e0+1, . . . , em−1+1) . . . (c−1, e0+c−1, . . . , em−1+c−1).

By Lemma 11 we have that πc(c) = 0. Note that each cycle of πw has
exactly one element which is smaller than c, therefore for exactly one element
j < c of each cycle we have that πc(j) = πw(j), by Lemma 11. These elements
are πc(0) = e0, πc(1) = e0+1, . . . , πc(c−1) = e0+c−1. For all other elements
j > c we have that πc(j) = πw(j−1), i.e. πc(e0) = πw(e0)+1 = e1, πc(e1+1) =
πw(e1) + 1 = e2, . . . , πc(ei + c − 1) = πw(ei + c − 2) + 1 = ei+1 + c − 1. The
resulting form of πc is the following.

πc = (0, e0+1, . . . , em−1+1, 1, e0+2, . . . , em−1+2, . . . , c−1, e0+c, . . . , em−1+c, c),

and is thus cyclic, therefore, by Corollary 4, c is nice. □

Proposition 25 Let w = BWT(v$) such that w[1] = $, i.e. $ is in the second
position of w. Then v is Lyndon.

Proof. Let v′ = v$. The smallest rotation of v′ is $v, since $ is smaller than
all other characters; while v$ is the second smallest rotation, since w[1] = $.
Therefore, every proper suffix u of v is lexicographically strictly larger than
v, implying that v is Lyndon. □

In order to see which positions are nice, we want to understand how cycles
in πi are created. See the example w = beaaecdcb and i = 6 in Figure 5.2.
Position 6 is not nice, and π6 has two fixpoints.

In general, if j is a fixpoint in πw and i ≤ j, then j+1 will be a fixpoint in
πi. Similarly, if π(j) = j − 1 and j < i, then j is a fixpoint in πi. These two
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Figure 5.3: Standard permutation of w = cedcbbabb with σ =
(︁
0 1 2 3 4 5 6 7 8
5 8 7 6 1 2 0 3 4

)︁
and of dol(w, 6) with σ6 =

(︁
0 1 2 3 4 5 6 7 8 9
6 9 8 7 2 3 0 1 4 5

)︁
.

(a) Pseudo-cycle in the standard per-
mutation of w
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(b) Cycle in the standard permutation of
dol(w, 6)
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cases are illustrated in Fig. 5.2, where 6 is a fixpoint in πw and πw(5) = 4, so
the insertion of $ in position i = 6 leads to the two fixpoints 5 and 7 in π6.
Therefore, position 6 is not nice.

Indeed, the previous observation can be generalized: if S is a cycle in
πw, then no position i ≤ minS is nice. Similarly, if S is such that πw(S) =
S − 1 = {j − 1 | j ∈ S}, then no position i > maxS is nice; in both cases,
the insertion of $ in such a position would turn S into a cycle. However, the
situation can also be more complex, as illustrated in Figure 5.3. In Theorem 6
we will give a necessary and sufficient condition for creating a proper cycle
by inserting a $ in some position. First, we need another definition.

We recall that not all words are the BWT of some other word, and that
whether a word is a BWT or not depends on its standard permutation.
Clearly, also whether a position is nice with respect to a given word depends
on the standard permutation of the word. To characterize such positions, we
introduce the concept of pseudo-cycle and the correlated critical interval in
the following.

Definition 11 (Pseudo-cycle) Let τ be a permutation of n. A non-empty
subset S ⊆ {0, 1, . . . , n − 1} is called a pseudo-cycle if it can be partitioned
into two sets Sleft and Sright, where Sleft < Sright (elementwise), such that
τ(S) = {x− 1 | x ∈ Sleft} ∪ Sright.

Definition 12 (Critical interval) The critical interval of the pseudo-cycle
S is RS = [a+ 1, b], where a = maxSleft and b = minSright. If Sleft is empty,
we set a = −1, and if Sright is empty, we set b = n. Let S1, . . . , Sk be all
pseudo-cycles of the word w, then Rw = R1 ∪ . . . ∪ Rk is the union of the
critical intervals of all pseudo-cycles in w.

Definition 13 (Additional definitions on pseudo-cycle) Let S = Sleft∪
Sright be a pseudo-cycle, then

i) If Sleft = ∅ then S is called right-only, if Sright = ∅ then S is called
left-only.

ii) If Sleft ̸= ∅, then we refer to a = maxSleft as the boundary of S.
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iii) A right-only pseudo-cycle is called minimal if no proper subset is a cycle.

Example 3 (continued from page 65) Consider the word cbccabaa. The
pseudo-cycle S = {1, 2, 3, 6, 7}, with π(S) = {1, 2, 3, 6, 7} is a right-only
pseudo-cycle with critical interval RS = [0, 1], while S ′ = {5}, with π(S ′) =
{4} is a left-only pseudo-cycle with boundary 4 and critical interval RS′ =
[6, 8]. Finally, S ′′ = {2, 3, 6, 7}, with π(S ′′) = {1, 2, 6, 7} has boundary 3
and critical interval RS′′ = [4, 6]. This last pseudo-cycle can be divided in
S ′′

left = {2, 3} and S ′′
right = {6, 7} (See Figure 5.4).

Figure 5.4: The pseudo-cycles of the word cbccabaa mentioned in Example 3
S, S′, S′′ (Sleft in green, Sright in blue, critical intervals in red).

(a) Right-only pseudo-cycle
S = {1, 2, 3, 6, 7}, with
π(S) = {1, 2, 3, 6, 7} and
critical interval RS = [0, 1]
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(b) Left-only pseudo-cycle
S′ = {5}, with π(S′) = {4},
with boundary 5 and criti-
cal interval RS′ = [6, 8]
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(c) S′′ = {2, 3, 6, 7}, with
π(S′′) = {1, 2, 6, 7}, bound-
ary 3 and critical interval
RS′′ = [4, 6]
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Lemma 12 Let S and S ′ be two pseudo-cycles with boundary i. Then S ∩S ′

is also a pseudo-cycle with boundary i.

Proof. If S ⊆ S ′ or S ′ ⊆ S, then the statement is trivial. Otherwise, we
have to show that (1) i ∈ S ∩S ′, and (2) if x ∈ S ∩S ′ then x− 1 ∈ π(S ∩S ′)
if x ≤ i, and x ∈ π(S ∩ S ′) if x > i. (1) follows from the fact that both S
and S ′ have boundary i. Ad (2): Let x ∈ S ∩ S ′, x ≤ i. Since S is a pseudo-
cycle with boundary i, it follows that π−1(x − 1) ∈ S. Similarly, since S ′ is
a pseudo-cycle with boundary i, π−1(x − 1) ∈ S ′, thus π−1(x − 1) ∈ S ∩ S ′.
Now let x ∈ S ∩ S ′, x > i. Then it follows that π−1(x) ∈ S and π−1(x) ∈ S ′,
thus π−1(x) ∈ S ∩ S ′. □

Note that not every i is the boundary of some pseudo-cycle. But with
Lemma 12, we can now define a unique pseudo-cycle for each i which is a
boundary, as follows.

Definition 14 Let 0 ≤ i ≤ n − 1. A pseudo-cycle S = Sleft ∪ Sright, with
Sleft ̸= ∅ is called i-essential if i is the boundary of S and every pseudo-cycle
S ′ with boundary i is a superset of S. A pseudo-cycle is called essential if it
is i-essential for some i.
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Clearly, for every i, there exists at most one i-essential pseudo-cycle. This
implies that altogether there are at most n − 2 essential pseudo-cycles. See
Figure B.1 in the Appendix.

Example 4 (continued from page 69) Consider again the word cbccabaa.
S = {3, 7} is the 3-essential pseudo-cycle with π(S) = {2, 7} and critical in-
terval R = [4, 7]. In this pseudo-cycle we have Sleft = {3} and Sright = {7}.

Proposition 26 Given an i-essential pseudo-cycle S, its critical interval RS

is maximal w.r.t. the boundary i. In other words, if S ′ is a pseudo-cycle with
the same boundary i, then RS′ ⊆ RS.

Proof. Follows immediately from Lemma 12. □

Corollary 6 Let w be a word. Then Rw equals the union of critical intervals
of those pseudo-cycles which are either minimal right-only or essential.

Definition 15 Let 0 ≤ i ≤ n and S ⊆ {0, 1, . . . , n− 1}. We define

shift(S, i) = {x | x ∈ S and x < i} ∪ {x+ 1 | x ∈ S and x ≥ i}, and
unshift(S, i) = {x | x ∈ S and x < i} ∪ {x− 1 | x ∈ S and x > i}.

Lemma 13 Let w ∈ Σ∗ and π = πw. Let 0 ≤ i ≤ n, and U ⊆ {0, 1, . . . , n} \
{i}. Then U is a cycle in the permutation πi if and only if S = unshift(U, i)
is a pseudo-cycle w.r.t. π, and i belongs to the critical interval of S.

Proof. Let U1 = {x ∈ U | x < i}, U2 = {x ∈ U | x > i}. Then S =
U1 ∪ (U2− 1). We have to show that U is a cycle if and only if S is a pseudo-
cycle, with Sleft = U1 and Sright = U2 − 1. Note that this implies that i is
contained in the critical interval of S.

First, let S be a pseudo-cycle with Sleft = U1 and Sright = U2 − 1, and let
x ∈ U . We have to show that x ∈ πi(U), which implies the claim. If x ∈ U1,
then x ∈ Sleft, and there is a y ∈ S s.t. π(y) = x− 1. If y ∈ Sleft, then y ∈ U1

and πi(y) = x by Lemma 11, thus x ∈ πi(U). Else y ∈ Sright, then y + 1 ∈ U2

and πi(y + 1) = x, again by Lemma 11, and thus x ∈ πi(U).
Now let x ∈ U2. Then x−1 ∈ Sright and there is a y ∈ S s.t. π(y) = x−1.

If y ∈ Sleft, then y ∈ U1 and x = π(y) + 1 = πi(y) by Lemma 11, thus
x ∈ πi(U). Else y ∈ Sright, then y + 1 ∈ U2 and πi(y + 1) = x, again by
Lemma 11, and thus x ∈ πi(U).

Conversely, let U be a cycle, set Sleft = U1 and Sright = U2− 1. Let x ∈ S.
We will show that if x ∈ Sleft, then x − 1 ∈ π(S), and if x ∈ Sright, then
x ∈ π(S), proving that S is a pseudo-cycle. The claim follows with analogous
arguments as above and noting that π(j) = πi(j)−1 if j < i, and πi(j+1)−1
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if j ≥ i. □

What the latter lemma says is that the $ can be inserted in some position
i which will not turn a pseudo-cycle of w into a cycle in dol(w, i). This is
because words that are $-terminated must be cyclic in order to be the BWT
of some other word (see Theorem 4). Such "forbidden" positions are those
contained in the critical interval of some pseudo-cycle. Therefore, we can now
characterize nice positions via pseudo-cycles as follows.

Theorem 6 Let w be a word of length n over Σ, and 0 ≤ i ≤ n. Then i is
nice if and only if there is no pseudo-cycle S w.r.t. the standard permutation
π = πw whose critical interval contains i.

Proof. “⇒”: We will assume that π contains a pseudo-cycle with i in its
critical interval, and show that then i is not nice. Let S be a pseudo-cycle
w.r.t. π, R its critical interval and i ∈ R. By Lemma 13, shift(S, i) is a
cycle in πi not containing i. Therefore, πi has at least two cycles, implying
that dol(w, i) ̸∈ BWT(Σ∗

$). “⇐”: For the converse, assume that i is not nice.
Then πi contains at least two cycles, and thus it contains at least one cycle
C ⊆ {0, 1, . . . , n} \ {i}. By Lemma 13, this implies that unshift(C, i) is a
pseudo-cycle in π, and its critical interval contains i. □
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Figure 5.5: The standard permutation of cb$ccabaa is cyclic:
(︁
0 1 2 3 4 5 6 7 8
6 4 0 7 8 1 5 2 3

)︁
=

(0, 6, 5, 1, 4, 8, 3, 7, 2). Position 2 is nice in w = cbccabaa because it is not contained
in Rw.

5.3 Computing nice positions

Given a word w, it is easy to compute all nice positions of w, by inserting $ in
each position i and running the BWT reversal algorithm, in a total of O(n2)
time. Here we present an O(n log n) time algorithm for the problem. The
underlying idea is that, if we know πi, the standard permutation of dol(w, i),
then it is not too difficult to compute πi+1.

Note that, in this section, we compute nice positions without considering
pseudo-cycles (presented in Section 5.2). However, an algorithm exploiting
them exists [34]. We will discuss later the advantages of choosing one algo-
rithm over the other.
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Lemma 14 Let w ∈ Σn, and 0 ≤ i ≤ n− 1. Then

i) π0(0) = 0 and for i > 0, π0(i) = πw(i− 1) + 1, and

ii) πi+1 = (0, πi(i+ 1)) · πi.

In particular, the standard permutation πi+1 is the result of applying a
single transposition to πi.

Proof.

i) Follows by applying Lemma 11 to i = 0.

ii) First notice that for all j ̸= i, i+1, πi(j) = πi+1(j), by Lemma 11, since
j is either smaller than both i and i+1, or larger than both i and i+1.

In the first case (i.e. j < i, i + 1), we have that πi(j) = πw(j) + 1 =
πi+1(j). In the second case (i.e. j > i, i + 1), we have that πi(j) =
πw(j−1)+1 = πi+1(j). We have πi(i) = 0 = πi+1(i+1), and πi(i+1) =
πw(i) + 1 = πi+1(i), again by Lemma 11.

□

As we show next, applying a transposition to a permutation has either
the effect of splitting a cycle, or of merging two cycles.

Lemma 15 Let π = C1 · · ·Ck be the cycle decomposition of the permutation
π, x ̸= y, and π′ = (π(x), π(y)) · π.

i) If x and y are in the same cycle Ci, then this cycle is split into two.
In particular, let Ci = (c1, c2, . . . , cj, . . . , cm), with cm = x and cj = y.
Then π′ = (c1, c2, . . . , cj−1, y)(cj+1 . . . cm−1, x)

∏︁
ℓ ̸=i Cℓ.

ii) If x and y are in different cycles Ci and Cj, then these two cycles are
merged. In particular, let Ci = (c1, c2, . . . , cm), with cm = x, and Cj =
(c′1, c

′
2, . . . , c

′
r), with c′r = y, then π′ = (c1, . . . , cm−1, x, c

′
1, . . . , c

′
r−1, y)

∏︁
ℓ̸=i,j Cℓ.

Proof. Let τ = (π(x), π(y)). First, note that π′(z) = τ(π(z)) = π(z) for all
z ̸= x, y.

i) π′(x) = τ(π(x)) = π(y) = cj+1 and π′(y) = τ(π(y)) = π(x) = c1, which
proves the claim.

ii) Follows analogously. □

(See Example 5 for an example.)
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Example 5 We report σ = σw, followed by σi for i = 0, . . . , 10. Changes
from one permutation to the next are highlighted in red, and cyclic σi, i.e.
nice positions i, are marked with a box. On the right, we note whether a
merge or a split has taken place. By Lemma 15, this depends on whether i
and i+ 1 are in distinct cycles or in the same cycle.

w = acccbccbab

σ =
(︁
0 1 2 3 4 5 6 7 8 9
0 5 6 7 2 8 9 3 1 4

)︁
= (0)(1, 5, 8)(2, 6, 9, 4)(3, 7)

σ0 =
(︁
0 1 2 3 4 5 6 7 8 9 10
0 1 6 7 8 3 9 10 4 2 5

)︁
= (0)(1)(2, 6, 9)(3, 7, 10, 5)(4, 8)

σ1 =
(︁
0 1 2 3 4 5 6 7 8 9 10
1 0 6 7 8 3 9 10 4 2 5

)︁
= (0,1)(2, 6, 9)(3, 7, 10, 5)(4, 8)

σ2 =
(︁
0 1 2 3 4 5 6 7 8 9 10
1 6 0 7 8 3 9 10 4 2 5

)︁
= (0, 1, 6, 9,2)(3, 7, 10, 5)(4, 8)

σ3 =
(︁
0 1 2 3 4 5 6 7 8 9 10
1 6 7 0 8 3 9 10 4 2 5

)︁
= (0, 1, 6, 9, 2, 7, 10, 5,3)(4, 8)

σ4 =
(︁
0 1 2 3 4 5 6 7 8 9 10
1 6 7 8 0 3 9 10 4 2 5

)︁
= (0, 1, 6, 9, 2, 7, 10,5, 3, 8,4)

σ5 =
(︁
0 1 2 3 4 5 6 7 8 9 10
1 6 7 8 3 0 9 10 4 2 5

)︁
= (0, 1,6, 9, 2, 7, 10,5)(3, 8, 4)

σ6 =
(︁
0 1 2 3 4 5 6 7 8 9 10
1 6 7 8 3 9 0 10 4 2 5

)︁
= (0, 1,6)(9, 2,7, 10, 5)(3, 8, 4)

σ7 =
(︁
0 1 2 3 4 5 6 7 8 9 10
1 6 7 8 3 9 10 0 4 2 5

)︁
= (0, 1, 6, 10, 5, 9, 2,7)(3,8, 4)

σ8 =
(︁
0 1 2 3 4 5 6 7 8 9 10
1 6 7 8 3 9 10 4 0 2 5

)︁
= (0, 1, 6, 10, 5,9, 2, 7, 4, 3,8)

σ9 =
(︁
0 1 2 3 4 5 6 7 8 9 10
1 6 7 8 3 9 10 4 2 0 6

)︁
= (0, 1, 6,10, 5,9)(2, 7, 4, 3, 8)

σ11 =
(︁
0 1 2 3 4 5 6 7 8 9 10
1 6 7 8 3 9 10 4 2 5 0

)︁
= (0, 1, 6, 10)(5, 9)(2, 7, 4, 3, 8)
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5.3.1 High-level description of the algorithm

The algorithm first computes the standard permutation π = πw of w and
initializes a counter c with the number of cycles in π. It then computes π0

according to Lemma 14, part 1. It increments counter c by 1 for i = 0, since
0 is always a fixpoint in π0. Then the algorithm iteratively computes the
new permutation πi+1, updating c at each iteration. By Lemma 15, c either
increases or decreases by 1 at every iteration: it increases if i+1 is in the same
cycle as i, and it decreases otherwise. Whenever c equals 1, the algorithm
reports the current value i. See Algorithm 1 for the pseudocode.
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Algorithm 1: FindNicePositions(w)
Given a word w, return a set I of positions in which the $-character
can be inserted to turn w into a BWT image.

1 n← |w|
2 π ← standard permutation of w // variant of counting sort
3 c← number of cycles of π
4 I ← ∅
5 for i← n down to 1 do // compute π0 from π
6 π(i)← π(i− 1)
7 π(0)← 0
8 c← c+ 1 // π0 has one more cycle than π
9 for i← 0 to n− 1 do

10 C ← cycle of π which contains 0 // C also contains i
11 if i+ 1 ∈ C then
12 c← c+ 1 // case split
13 else
14 c← c− 1 // case merge
15 π ← Update(π, i) // now π = πi+1

16 if c = 1 then
17 I ← I ∪ {i+ 1}
18 return I
19 procedure Update(π, i): // π(i) = 0
20 π(i)← π(i+ 1)
21 π(i+ 1)← 0
22 return π
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5.3.2 Implementation with splay trees

For the algorithm’s implementation, we need an appropriate data structure
for maintaining and updating the current permutation πi. Using an array to
keep πi would allow us to update it in constant time in each step, but would
not give us the possibility to efficiently decide whether i + 1 ∈ C in line 11.
On the other hand, a standard balanced binary search tree would require an
auxiliary data structure that, for each element, keeps track of the cycle where
the element is. This auxiliary data structure would need to be updated at
each split and merge operation in O(n) in the worst case. Thus, we need a
data structure to maintain the cycles of πi. The functionalities we seek are (a)
deciding whether two elements are in the same cycle, (b) splitting two cycles,
(c) merging two cycles. The data structure we have chosen is a forest of splay
trees [81]. This data structure supports the above operations in amortized
O(log n) time.

Splay trees are self-adjusting binary search trees. They are not necessarily
balanced, but they have the property that at every access-operation, the ele-
ment x accessed is moved to the root and the tree is adjusted in such a way as
to move nodes on the path from the root to x closer to the root, thus reducing
access-time to these nodes for future operations. The basic operation, called
splaying, consists of a series of the usual edge rotations in binary search trees.
Which rotations are applied depends on the position of the node with respect
to its parent and grandparent (the cases are referred to as zig, zig-zig, and
zig-zag). Splay trees can implement the standard operations on binary search
trees, such as access, insert, delete, join, split in amortized logarithmic time,
in the total number of nodes involved. We refer the reader to the original
article [81] for more details.

We represent the current permutation πi as a forest of splay trees, where
each tree corresponds to a cycle of πi. Let (c0, c2, . . . , ck−1) be an arbitrary
rotation of a cycle in πi. We consider the cycle as a ranked list of the elements
from c0 to ck−1 and assign to the element cj its position j as key. This way,
the in-order traversal of the tree leads to the cycle. For a node v of the tree,
the elements of the list that come before v are contained in the left subtree
of v, and the elements that come after v are contained in the right subtree of
v. Note that we always have 0 as the left-most node and i as the right-most
node in the first cycle of πi.

We now explain how to update the data structure.
If i and i + 1 are in distinct cycles of πi, then the transposition of 0 =

πi(i) and πi(i + 1) leads to the merge of their cycles (Lemma 15). The
implementation of the merge-step using splay trees is shown in Fig. 5.6. Let
the two cycles have the form (0, A, i) and (B, i + 1, C), respectively, with
A,B,C sequences of numbers. First, with the access operations on i and
i + 1, these two elements move to the roots of their respective trees. This
situation is displayed in (a). Now we have a split of the right subtree of node
i+ 1, the result of which is shown in (b). Next, a join operation links the C
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subtree to the node i as its right child, and another join operation links node
i+1, together with its left subtree B, as the right child of the rightmost node
of C.

Figure 5.6: The implementation of the merge-step with splay trees.

(a) σi

i i+ 1

A B C

(b)

i i+ 1

A B C

(c) σi+1

i

i+ 1

A

B

C

If i and i+1 are in the same cycle of πi, then the transposition of 0 = πi(i)
and πi(i + 1) leads to a split of the cycle (Lemma 15). The implementation
of this operation with splay trees is shown in Fig. 5.7. Let the cycle have
the form (0, A, i + 1, B, i). The corresponding splay tree after access i + 1 is
shown in (a). The split operation cuts the right subtree of i + 1 producing
the two new trees in (b).

5.3.3 Analysis

We now show that Algorithm 1 takes O(n log n) time in the worst case.
Computing the standard permutation of w takes O(n) time (using a vari-

ant of Counting Sort [16], and noting that the alphabet of the string has
cardinality at most n). The computation of π0 (lines 5 to 7) takes O(n) time.
All steps in one iteration of the for-loop (lines 9 to 17) take constant time,
except deciding whether i + 1 ∈ C (line 11), and updating π (line 15). For
deciding whether i + 1 ∈ C, we access i + 1. If the answer is yes, we will
have a split-step: this is a split-operation on the tree for C (Fig. 5.7). If
the answer is no, then we access i, and merge the two trees (Fig. 5.6); the
implementation of this consists of one split- and two join-operations on the
trees.

Figure 5.7: The implementation of the split-step with splay trees.

(a) σi

i+ 1

A B

(b) σi+1

i+ 1

A
B
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Therefore, in one iteration of the for-loop, we either have one access and
one split operation (for a split-step), or two access-, one split-, and two join-
operations (merge-step), thus in either case, at most five operations. There
are n iterations of the for-loop, thus at most 5n operations. Together with
the initial insertion of the n + 1 nodes, we get a total of 6n operations. We
report the relevant theorem from [81]:

Theorem 7 (Balance Theorem with Updates, Theorem 6 in [81]) A
sequence of m arbitrary operations on a collection of initially empty splay trees
takes O(m +

∑︁m
j=1 log nj) time, where nj is the number of items in the tree

or trees involved in operation j.

For our algorithm, we have m = O(n) operations altogether, each involv-
ing no more than n+1 nodes, thus Theorem 7 guarantees that the total time
spent on the splay trees is O(n + n log n). Adding to this the computation
of π0 and the initialization of the splay trees, each in O(n) time, and of the
constant-time operations within the for-loop, we get altogether O(n log n)
time. Memory usage is O(n), since the forest of splay trees consists of n+ 1
vertices in total. Summarizing, we have

Theorem 8 Algorithm 1 runs in O(n log n) time and uses O(n) space, for
an input string of length n.

Note that this algorithm does not exploit our characterization of nice
positions. It is possible to retrieve the nice positions of a word by comput-
ing all the essential pseudo-cycles and the right-only pseudo-cycles of the
word. An algorithm that does so is presented in [34], and it computes those
pseudo-cycles in quadratic time. Even though the latter algorithm is slower
than Algorithm 1, it is essential when information about the structure of the
pseudo-cycles of the word is required.

5.4 Bounds and properties on nice positions

In this section, we study the number of nice positions of a given string w.

Definition 16 For w ∈ Σn, let h(w) denote the number of nice positions of
w.

We will first show that all nice positions of a word w have the same parity.

Theorem 9 Let w be a word over Σ. Then either all nice positions are even,
or all nice positions are odd. In particular, let c be the number of cycles in
the standard permutation πw; if c is even, then all nice positions are even,
and if c is odd, then all nice positions are odd.
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Proof. Let us assume that i < j are both nice, thus πi and πj are cyclic.
This implies that sgn(πi) = (−1)n = sgn(πj), since both cycles consist of n+1
elements. By Lemma 14, πi+1 = τi · πi, where τi = (0, πi(i+ 1)). Thus, πj =
τj−1 · · · τi · πi, so sgn(πj) = (−1)j−isgn(πi), and therefore sgn(πj) = sgn(πi) if
and only if j − i is even.

Given a cycle C = (e0, . . . , em−1), let C ′ = (e0 + 1, . . . , em−1 + 1). Now
let πw =

∏︁c
j=1 Cj be the cycle decomposition of πw. By Lemma 14, π0 =

(0)
∏︁c

j=1C
′
j. Therefore, sgn(π0) = (−1)n+1−(c+1) = (−1)n−c. On the other

hand, again by Lemma 14, πi = τi−1 · · · τ1 · π0, thus sgn(πi) = (−1)n−c+i−0.
But this equals (−1)n if and only if c and i have the same parity. □

Corollary 7 Let w ∈ Σn. Then h(w) ≤ ⌊n+1
2
⌋.

Proof. Follows from Theorem 9 and the fact that π0 is not nice. □

Given the cycle decomposition of πw =
∏︁c

j=1Cj, let ℓj denote the mini-
mum element of Cj, and L = maxj=1,...,c ℓj.

Proposition 27 If i is nice, then i ≥ L. In particular, i ≥ c, where c is the
number of cycles of πw.

Proof. Note that every cycle Cj is a pseudo-cycle, where Sleft = ∅ and
Sright = Cj, with critical interval [0, ℓj]. Therefore, by Theorem 6, no i < L
can be nice. The second claim follows since L ≥ ℓc ≥ c. □

Corollary 8 Let w ∈ Σn. Then h(w) ≤ ⌈n−L+1
2
⌉.

Proof. Follows from Theorem 9 and Proposition 27. □

We next derive some properties of nice positions from Algorithm 1. We
show that, given πi, there may exist a cycle C in πi that blocks all positions
before or after i, depending on the elements of C and i (see Proposition 29).
We additionally show that we can count the number of specific pairs of indices
of π0 to derive a lower bound for the smallest nice position in the word (see
Proposition 30).

Proposition 28 Let ci be the number of cycles of πi. If j is nice and j > i,
then j ≥ i+ ci.
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Proof. The permutation πj is computed from πi by j − i iterations of the
for-loop of Algorithm 1 (lines 9-17), each of which either results in increment-
ing (split) or decrementing (merge) the number of cycles. Therefore, at least
ci steps are needed to arrive at a cyclic permutation. (Since c0 = c + 1, this
implies in particular that for every nice position j, j ≥ c, as already seen in
Proposition 27.) □

Definition 17 Let C be a cycle of πi. We call C a bad cycle w.r.t. i if
i /∈ [minC,maxC].

Example 6 (continued from p. 73) The cycle (4, 8) is a bad cycle w.r.t.
3, and (2, 7, 4, 3, 8) is a bad cycle w.r.t. 9.

Proposition 29 If C is a bad cycle w.r.t. i, then

i) if i < minC, then no j ≤ i is nice,

ii) if i > maxC, then no j ≥ i is nice.

Proof.

i) Let i < minC. Then i is not nice, since πi has at least two cycles.
Now let j < i, thus πi = τi−1 . . . τj · πj, where τk = (0, πk(k)). Since
j ≤ i < minC, it follows that each τk is disjoint from C, and since C is
a cycle of πi, therefore it is also a cycle of πj. Since [minC,maxC] ̸=
{0, . . . , n}, this implies that j is not nice.

ii) Analogously, if i > maxC, this implies that all πj for j ≥ i have C as
a cycle, implying that j is not nice.

□

Definition 18 Let πw =
∏︁c

j=1 Cj be the cycle decomposition of πw and ℓj =
minCj for j = 1, . . . , c, where the cycles are in increasing order w.r.t. their
minima, i.e. ℓ1 < . . . < ℓc. We call a pair (ℓj, ℓj + 1) bad pair if j < c and
ℓj + 1 ∈ Cj.

Example 7 Given the permutation (0)(1, 5, 2, 6, 8, 3)(4, 7, 9) with 3 cycles,
the pair (1, 2) in the second cycle is a bad pair because 1 is the smallest
element of its own cycle, and 2 is in the same cycle too. That is the only bad
pair.

Proposition 30 Let b be the number of bad pairs in πw. If i is a nice position
of w, then i ≥ 2b+ c.
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Proof. We will count the number of iterations of the for-loop (lines 9-17)
of Algorithm 1 before arriving at a cyclic permutation. Let us refer to the
iterations as either merge- or split-steps. As we saw before, we need at least
c merge-steps, since π0 has c+1 cycles. It should also be clear that every ad-
ditional split-step will necessitate a further merge-step. Therefore, it suffices
to show that every bad pair results in a distinct split-step.

Let (ℓj, ℓj + 1) be a bad pair. By Lemma 11, π0 = (0)
∏︁

C ′
j, where

minC ′
j = ℓj + 1. Therefore, C ′

j is a bad cycle w.r.t. ℓj, and thus is present in
all πi for i ≤ ℓj. Since ℓj /∈ C ′

j, step ℓj is a merge-step. Now ℓj + 2 is still in
C ′

j, so step ℓj + 1 is a split-step. □

Example 8 (continued from page 79) The standard permutation of the
word abbababbaa is (0)(1, 5, 2, 6, 8, 3)(4, 7, 9). There are two nice positions,
5 and 7, both greater or equal 5 = 2 + 3 = 2b+ c.

We summarize:

Theorem 10 Let w be a word over Σ and πw =
∏︁c

j=1 Cj the cycle decompo-
sition of it standard permutation πw.

i) If i is nice, then i ≥ max{L + 1, 2b + c}, where L = maxj minCj, and
b is the number of bad pairs in πw.

ii) Let ci be the number of cycles of πi. If j is nice, then j ≥ i + ci − 1.
Moreover, if πi has a bad cycle C s.t. i > maxC, then no j ≥ i is nice.

5.5 Experimental results

In the following, we give some examples (Sec. 5.5.1), followed by some statis-
tics on the number of nice positions (Sec. 5.5.2).

5.5.1 Examples

We list all words over {a, b} of length 2, 3, 4, and 5 (Tables 5.1 to 5.4).
For each word w (first column), we give the lexicographically smallest v such
that BWT(v) = w, if such a v exists, dashes otherwise (second column); the
standard permutation π = πw (third column); and the number h(w) of nice
positions for w (fourth column). For each word w with h(w) > 0, we also list
every dol(w, i) with i nice, giving the analogous information, and specify i in
the last (fifth) column.

In Table 5.5, the same information is shown about several longer strings
over alphabets of sizes 2 and 3. They are ordered by string length (n =
10, 13, 15, 18). We chose these strings in order to give examples of as many
different cases as possible.
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w v π h(w) i

aa (a)2 (0)(1) 1

aa$ aa$ (0, 1, 2) 2
ab - (0)(1) 1

ab$ ba$ (0, 1, 2) 2

w v π h(w) i

ba ab (0, 1) 1

b$a ab$ (0, 1, 2) 1
bb (b)2 (0)(1) 1

bb$ bb$ (0, 1, 2) 2

Table 5.1: All strings w of length 2 over a binary alphabet. See text for details.

There are words that are the BWT of primitive words (strings 1, 7, 8, 12,
13, 20, 21, 22), some of which have the maximum number of nice positions
according to their length (strings 7, 12, 20); two words have only one nice
position (8, 13); string 1 is an example that shows that, once a position
is nice, not necessarily all following positions with the same parity are also
nice. Similarly, string 21 shows that there are no further nice positions after
position 12 due to a bad cycle with respect to 13 containing only elements
strictly smaller than 13.

We have BWTs of powers of primitive words (strings 2, 14, 15, 23, 24,
25), but only one of these has the maximum number of nice positions (string
2).

The table also contains strings that are not BWT (strings 3, 4, 5, 6, 9,
10, 11, 16, 17, 18, 19). Three of these have no nice positions (strings 6, 11,
19). Sometimes the parity of the number of cycles equals the parity of the
smallest element of the last cycle (strings 3, 4, 5, 16, 18, 19), but this does
not always happen (strings 6, 17).

w v π h(w) i

aaa aaa (0)(1)(2) 1

aaa$ aaa$ (0, 1, 2, 3) 3
aab - (0)(1)(2) 1

aab$ baa$ (0, 1, 2, 3) 3
aba - (0)(1, 2) 1

ab$a aba$ (0, 1, 3, 2) 2
abb - (0)(1)(2) 1

abb$ bba$ (0, 1, 2, 3) 3

w v π h(w) i

baa aab (0, 2, 1) 1

b$aa aab$ (0, 3, 2, 1) 1
bab - (0, 1)(2) 0

bba abb (0, 1, 2) 2

b$ba abb$ (0, 2, 3, 1) 1
bba$ bab$ (0, 2, 1, 3) 3
bbb bbb (0)(1)(2) 1

bbb$ bbb$ (0, 1, 2, 3) 3

Table 5.2: All strings w of length 3 over a binary alphabet. See text for details.
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w v π h(w) i

aaaa aaaa (0)(1)(2)(3) 1

aaaa$ aaaa$ (0, 1, 2, 3, 4) 4
aaab - (0)(1)(2)(3) 1

aaab$ baaa$ (0, 1, 2, 3, 4) 4
aaba - (0)(1)(2, 3) 1

aab$a abaa$ (0, 1, 2, 4, 3) 3
aabb - (0)(1)(2)(3) 1

aabb$ bbaa$ (0, 1, 2, 3, 4) 4
abaa - (0)(1, 3, 2) 1

ab$aa aaba$ (0, 1, 4, 3, 2) 2
abab - (0)(1, 2)(3) 0

abba - (0)(1, 2, 3) 2

ab$ba abba$ (0, 1, 3, 4, 2) 2
abba$ baba$ (0, 1, 3, 2, 4) 4
abbb - (0)(1)(2)(3) 1

abbb$ bbba$ (0, 1, 2, 3, 4) 4

w v π h(w) i

baaa aaab (0, 3, 2, 1) 1

b$aaa aaab$ (0, 4, 3, 2, 1) 1
baab - (0, 2, 1)(3) 0

baba aabb (0, 2, 3, 1) 1

b$aba aabb$ (0, 3, 4, 2, 1) 1
babb - (0, 1)(2)(3) 0

bbaa abab (0, 2)(1, 3) 2

bb$aa abab$ (0, 3, 1, 4, 2) 2
bbaa$ baab$ (0, 3, 2, 1, 4) 4
bbab - (0, 1, 2)(3) 1

bbab$ bbab$ (0, 2, 1, 3, 4) 4
bbba abbb (0, 1, 2, 3) 2

b$bba abbb$ (0, 2, 3, 4, 1) 1
bbb$a babb$ (0, 2, 4, 1, 3) 3
bbbb bbbb (0)(1)(2)(3) 1

bbbb$ bbbb$ (0, 1, 2, 3, 4) 4

Table 5.3: All strings w of length 4 over a binary alphabet. See text for details.
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w v π h(w) i

aaaaa aaaaa (0)(1)(2)(3)(4) 1

aaaaa$ aaaaa$ (0, 1, 2, 3, 4, 5) 5
aaaab - (0)(1)(2)(3)(4) 1

aaaab$ baaaa$ (0, 1, 2, 3, 4, 5) 5
aaaba - (0)(1)(2)(3, 4) 1

aaab$a abaaa$ (0, 1, 2, 3, 5, 4) 4
aaabb - (0)(1)(2)(3)(4) 1

aaabb$ bbaaa$ (0, 1, 2, 3, 4, 5) 5
aabaa - (0)(1)(2, 4, 3) 1

aab$aa aabaa$ (0, 1, 2, 5, 4, 3) 3
aabab - (0)(1)(2, 3)(4) 0

aabba - (0)(1)(2, 3, 4) 2

aab$ba abbaa$ (0, 1, 2, 4, 5, 3) 3
aabba$ babaa$ (0, 1, 2, 4, 3, 5) 5
aabbb - (0)(1)(2)(3)(4) 1

aabbb$ bbbaa$ (0, 1, 2, 3, 4, 5) 5
abaaa - (0)(1, 4, 3, 2) 1

ab$aaa aaaba$ (0, 1, 5, 4, 3, 2) 2
abaab - (0)(1, 3, 2)(4) 0

ababa - (0)(1, 3, 4, 2) 1

ab$aba aabba$ (0, 1, 4, 5, 3, 2) 2
ababb - (0)(1, 2)(3)(4) 0

abbaa - (0)(1, 3)(2, 4) 2

abb$aa ababa$ (0, 1, 4, 2, 5, 3) 3
abbaa$ baaba$ (0, 1, 4, 3, 2, 5) 5
abbab - (0)(1, 2, 3)(4) 1

abbab$ bbaba$ (0, 1, 3, 2, 4, 5) 5
abbba - (0)(1, 2, 3, 4) 2

ab$bba abbba$ (0, 1, 3, 4, 5, 2) 2
abbb$a babba$ (0, 1, 3, 5, 2, 4) 4
abbbb - (0)(1)(2)(3)(4) 1

abbbb$ bbbba$ (0, 1, 2, 3, 4, 5) 5

w v π h(w) i

baaaa aaaab (0, 4, 3, 2, 1) 1

b$aaaa aaaab$ (0, 5, 4, 3, 2, 1) 1
baaab - (0, 3, 2, 1)(4) 0

baaba aaabb (0, 3, 4, 2, 1) 1

b$aaba aaabb$ (0, 4, 5, 3, 2, 1) 1
baabb - (0, 2, 1)(3)(4) 0

babaa - (0, 3, 1)(2, 4) 0

babab - (0, 2, 3, 1)(4) 0

babba aabbb (0, 2, 3, 4, 1) 1

b$abba aabbb$ (0, 3, 4, 5, 2, 1) 1
babbb - (0, 1)(2)(3)(4) 0

bbaaa aabab (0, 3, 1, 4, 2) 3

b$baaa aabab$ (0, 4, 2, 5, 3, 1) 1
bba$aa abaab$ (0, 4, 2, 1, 5, 3) 3
bbaaa$ baaab$ (0, 4, 3, 2, 1, 5) 5
bbaab - (0, 2)(1, 3)(4) 1

bbaab$ bbaab$ (0, 3, 2, 1, 4, 5) 5
bbaba - (0, 2)(1, 3, 4) 2

bb$aba abbab$ (0, 3, 1, 4, 5, 2) 2
bbab$a baabb$ (0, 3, 5, 2, 1, 4) 4
bbabb - (0, 1, 2)(3)(4) 1

bbabb$ bbbab$ (0, 2, 1, 3, 4, 5) 5
bbbaa ababb (0, 2, 4, 1, 3) 2

b$bbaa ababb$ (0, 3, 5, 2, 4, 1) 1
bbbaa$ babab$ (0, 3, 1, 4, 2, 5) 5
bbbab - (0, 1, 2, 3)(4) 0

bbbba abbbb (0, 1, 2, 3, 4) 3

b$bbba abbbb$ (0, 2, 3, 4, 5, 1) 1
bbb$ba babbb$ (0, 2, 4, 5, 1, 3) 3
bbbba$ bbabb$ (0, 2, 4, 1, 3, 5) 5
bbbbb bbbbb (0)(1)(2)(3)(4) 1

bbbbb$ bbbbb$ (0, 1, 2, 3, 4, 5) 5

Table 5.4: All strings w of length 5 over a binary alphabet. See text for details.
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5.5.2 Statistics

We present here some statistics to know how words of the same length are
distributed with respect to the number of nice positions they have, i.e. for a
given length n, how many words have 0 nice positions? How many have 1,
2, 3, . . . ? How many of these words are already BWT of some other words?
Are they BWT of a primitive word or of a power of a primitive word?

In Tables 5.6 and 5.7, we present statistics on the number of nice po-
sitions h(w). Table 5.6 contains the statistics for a binary alphabet and
n = 15, 16, 17, 18. We give the statistics for all n = 3, . . . , 18 in the Appendix
(Table B.2). Table 5.7 contains the same information for a ternary alphabet
and n = 3, . . . , 10.

For fixed n, we give the absolute number of strings of length n with k
nice positions (column 3), as well as the corresponding percentage (column
4). Percentages have been rounded to the next integer, where we write ‘0.5’
for percentages x such that 0 < x < 0.5. In columns 5 and 6, we give strings
with k nice positions that are not BWT images, in absolute and percentage
numbers; in columns 7 and 8, the same for BWT images. The last two
columns contain a subdivision of column 7: the number of BWT images with
k nice positions which are the BWT of a primitive word (column 9) and
powers of primitive words (column 10).

Looking at the statistics, there are 0 words that are the BWT of some
other word and have 0 nice positions. As we mention in section 5.2, BWT
images have at least one nice position. An interesting fact that emerged from
these statistics is that the number of words with 0 nice positions seems to
slowly increase in percentage with the increase of their length: e.g. 40% for
binary words of length 7, 50% for length 10, 60% for length 15, 63% for
length 18, suggesting that there may exist some words which do not allow a
$ insertion even when extended.

|Σ| = 2 BWTs of
h(w) all % noBWTs % BWTs % prim pow

n = 15 0 19664 60 19664 64 0 0 0 0
1 5874 18 4695 15 1179 54 1177 2
2 1464 4 1381 5 83 4 83 0
3 1940 6 1775 6 165 8 165 0
4 1880 6 1637 5 243 11 242 1
5 1218 4 991 3 227 10 222 5
6 574 2 380 1 194 9 192 2
7 140 < 0.5 53 < 0.5 87 4 87 0
8 14 < 0.5 0 0 14 1 14 0

total 32768 100 30576 100 2192 100 2182 10
n = 16 0 40094 61 40094 65 0 0 0 0

1 11062 17 8843 14 2219 54 2217 2
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|Σ| = 2 BWTs of
h(w) all % noBWTs % BWTs % prim pow

2 2882 4 2709 4 173 4 173 0
3 3702 6 3346 5 356 9 353 3
4 3622 6 3157 5 465 11 459 6
5 2426 4 1988 3 438 11 427 11
6 1298 2 980 2 318 8 309 9
7 402 1 273 < 0.5 129 3 125 4
8 48 < 0.5 30 < 0.5 18 < 0.5 17 1

total 65536 100 61420 100 4116 100 4080 36
n = 17 0 81602 62 81602 66 0 0 0 0

1 20898 16 16758 14 4140 54 4138 2
2 5711 4 5423 4 288 4 288 0
3 7146 5 6589 5 557 7 557 0
4 6863 5 6139 5 724 9 724 0
5 4820 4 4020 3 800 10 800 0
6 2736 2 2112 2 624 8 624 0
7 1042 1 639 1 403 5 403 0
8 234 < 0.5 78 < 0.5 156 2 156 0
9 20 < 0.5 0 0 20 < 0.5 20 0

total 131072 100 123360 100 7712 100 7710 2
n = 18 0 165632 63 165632 67 0 0 0 0

1 39704 15 31871 13 7833 54 7831 2
2 11281 4 10696 4 585 4 585 0
3 13798 5 12641 5 1157 8 1153 4
4 13167 5 11672 5 1495 10 1485 10
5 9620 4 8113 3 1507 10 1492 15
6 5722 2 4579 2 1143 8 1119 24
7 2450 1 1818 1 632 4 622 10
8 696 < 0.5 474 < 0.5 222 2 218 4
9 74 < 0.5 46 < 0.5 28 < 0.5 27 1

total 262144 100 247542 100 14602 100 14532 70

Table 5.6: Statistics of words over a binary alphabet of lengths from 15 to 18.
Percentages rounded to nearest integer. See text for further details.

|Σ| = 3 BWTs of
h(w) all % noBWTs % BWTs % prim pow

n = 3 0 4 15 4 25 0 0 0 0
1 19 70 12 75 7 64 4 3
2 4 15 0 0 4 36 4 0

total 27 100 16 100 11 100 8 3
n = 4 0 18 22 18 32 0 0 0 0



5.5. Experimental results 87

|Σ| = 3 BWTs of
h(w) all % noBWTs % BWTs % prim pow

1 45 56 31 54 14 58 11 3
2 18 22 8 14 10 42 7 3

total 81 100 57 100 24 100 18 6
n = 5 0 74 30 74 39 0 0 0 0

1 109 45 83 43 26 51 23 3
2 46 19 35 18 11 22 11 0
3 14 6 0 0 14 27 14 0

total 243 100 192 100 51 100 48 3
n = 6 0 258 35 258 43 0 0 0 0

1 277 38 212 35 65 50 62 3
2 130 18 94 16 36 28 29 7
3 64 9 35 6 29 22 25 4

total 729 100 599 100 130 100 116 14
n = 7 0 884 40 884 47 0 0 0 0

1 709 32 564 30 145 46 142 3
2 348 16 290 15 58 18 58 0
3 202 9 134 7 68 22 68 0
4 44 2 0 0 44 14 44 0

total 2187 100 1872 100 315 100 312 3
n = 8 0 2870 44 2870 50 0 0 0 0

1 1897 29 1509 26 388 46 385 3
2 932 14 766 13 166 20 164 2
3 648 10 456 8 192 23 176 16
4 214 3 124 2 90 11 85 5

total 6561 100 5725 100 836 100 810 26
n = 9 0 9208 47 9208 53 0 0 0 0

1 5135 26 4164 24 971 44 968 3
2 2558 13 2193 13 365 17 365 0
3 1834 9 1452 8 382 17 378 4
4 810 4 471 3 339 15 335 4
5 138 1 0 0 138 6 138 0

total 19683 100 17488 100 2195 100 2184 11
n = 10 0 29024 49 29024 55 0 0 0 0

1 14059 24 11438 22 2621 44 2618 3
2 7148 12 6085 11 1063 18 1059 4
3 5290 9 4184 8 1106 19 1088 18
4 2816 5 1965 4 851 14 828 23
5 712 1 419 1 293 5 287 6

total 59049 100 53115 100 5934 100 5880 54

Table 5.7: Statistics of words of length 3 to 10 over an alphabet of size 3. Per-
centages rounded to nearest integer. See text for further details.
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5.6 Inserting $ in fully clustered words

In this section, we present properties of nice positions in fully clustered words.
Recall that a fully clustered word is a word that has one run per character,
such as cccabb. We will study these questions for different alphabets, where
we restrict our attention to words w in which every character in the alphabet
appears at least once. We are interested in the number h(w) of nice positions
of a word w, and in the number of words H(k) = Hn(k) which have k nice
positions, for given length n.

As an example, for σ = 2, there are 10 fully clustered words of length
6, 6 of which have 1 nice position, 2 have 2 nice positions, and 2 have 3,
see Table 5.8 below. Of the 60 fully clustered words for σ = 3, 5 have 0
nice positions, 26 have 1, 16 have 2, and 13 have 3 (see Table B.1 in the
Appendix).

word h(w) nice positions
abbbbb 1 6
aabbbb 1 6
aaabbb 1 6
aaaabb 1 6
aaaaab 1 6

word h(w) nice positions
baaaaa 1 1
bbaaaa 3 2, 4, 6
bbbaaa 2 3, 5
bbbbaa 2 2, 4
bbbbba 3 1, 3, 5

Table 5.8: Nice positions of fully clustered binary words of length 6. We report
the number of nice positions and the nice positions for each word.

First, we gather some useful properties using pseudo-cycles:

Lemma 16 Let w be any word and πw its standard permutation. The fol-
lowing hold:

i) If n− 1 is a fixpoint, then no i < n is nice (by Theorem 6).

ii) If π(1) = 0, then no i > 1 is nice (by Theorem 6).

iii) n is nice if and only if πw has no left-only pseudo-cycle.

iv) 0 is not nice.

Proof.

i) If (n− 1) is a fixpoint, then {n− 1} is a right-only pseudo-cycle, so it
blocks all elements from 0 to n− 1.

ii) If π(1) = 0, then {1} is a left-only pseudo-cycle, blocking any i > 1.

iii) If n is nice, then it cannot be in the critical interval of any pseudo-cycle.
But the pseudo-cycles whose critical interval contains n are exactly the
left-only pseudo-cycles, since if there is a non-empty right part, then its
minimum must be smaller than n.
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iv) The entire set {0, . . . , n−1} is a right-only pseudo-cycle, so its minimum
0 blocks all i ≤ 0.

□

Lemma 17 Let w be any word, |w| = n. If πw is the identity permutation,
then h(w) = 1. In particular, n is the only nice position.

Proof. πw = (0)(1) · · · (n − 1) (in cycle representation), consisting of n fix-
points. Since n−1 is a fixpoint, by Lemma 16, no i < n can be nice. Clearly,
πw has no left-only pseudo-cycles, so again by Lemma 16, n is nice. □

Since the standard permutation of any word over a unary alphabet is the
identity permutation, these words have exactly one nice position:

Corollary 9 If w is a word over an alphabet of size σ = 1, then h(w) = 1.

5.6.1 Number of nice positions for alphabets of size 2

Our first result says that every fully clustered word over a binary alphabet
has at least one nice position.

Proposition 31 If w begins with an a, then h(w) = 1. If w begins with a b,
then h(w) ≥ 1.

Proof. First, let w = aibn−i, for some 1 ≤ i ≤ n − 1. Then πw = id, thus,
by Lemma 17, there is exactly one nice position, namely n (See Figure 5.8).

Now let w = bian−i, for some 1 ≤ i ≤ n−1. It is known that a word of this
form is the BWT of a standard word, or of a power of a standard word [64].
Thus, by Theorem 4 (the result of Likhomanov and Shur [52]), the number of
cycles c of πw equals the greatest common divisor of the runlengths, namely
c = gcd(i, n− i). By Theorem 5, c is nice. □
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Figure 5.8: The right-only pseudo-cycles of the word aaabbbb. All of them are
fixpoints, therefore only position 7 is eligible to be nice.

Proposition 32 Let w = ban−1. Then h(w) = 1.
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Proof. The standard permutation of w is πw = (n − 1, 0, 1, . . . , n − 2). By
Theorem 5, 1 is nice, πw has one cycle. 0 is not nice by Lemma 16. Every
i > 0 is a singleton left-only pseudo-cycle, since π(i) = i− 1, while all other
pseudo-cycles are subsets of {1, . . . , n−1}, and thus left-only. Every left-only
pseudo-cycle {i} is i-essential, blocking [i+ 1, n], i.e. the only position which
is nice is 1 (Fig. 5.9).
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(a) S1 = {0, 1, 2, 3, 4, 5, 6}, π(S1) =
{0, 1, 2, 3, 4, 5, 6}, R1 = [0, 0].
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(b) S2 = {1}, π(S2) = {0}, R2 = [2, 7].

Figure 5.9: Two pseudo-cycles S1, S2 in the word baaaaaa and their critical in-
tervals R1, R2, which block all positions of the word except for 1.

Proposition 33 Let w = bian−i where c = gcd(i, n− i) > 1. Then w has at
least two nice positions, namely c and c+ 2.

Proof. Let d = n
c
. By Corollary 4 the standard permutation of w is

π = (0, e1, . . . , ed−1)(1, e1+1, . . . , ed−1+1) . . . (c−1, e1+c−1, . . . , ed−1+c−1).

By Theorem 6 position c is nice. In particular, the standard permutation of
the word with $ in position c has the form

πc = (0, e1+1, . . . , ed−1+1, 1, e1+2, . . . , ed−1+2, 2, . . . , e1+c, . . . , ed−1+c, c).

Note that each element of π is increased by one except for the first element of
the cycles, which are the positions smaller than c. The order of the elements
in the cycle of πc is as follows: first there are all the elements of the cycle of π
containing 0 (increased by one accordingly), then all the elements of the cycle
of π containing 1, and so on. Positions c and c + 1 were respectively in the
first and the second cycle of π, therefore they occur (increased by 1) in the
same order in πc. When $ is moved by one position to the right in the word
(namely, from position c to position c + 1), then c and c + 1 are swapped in
πc, leading to a split of the cycle. The split breaks the cycle right after c+1,
generating two cycles: one containing c+1, and the other one containing c+2
and c. Moving $ by one further position in the word causes the swap of c+1
and c + 2 in the permutation. Since they are in two distinct cycles in πc+1,
then the cycles are merged into one in πc+2. Thus, πc+2 consists of one single
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cycle, dol(w, c+ 2) is a BWT, and therefore c+ 2 is nice. □

Example 9 Consider the word bbbaaaaaa and its standard permutation π =
(0, 6, 3)(1, 7, 4)(2, 8, 5). The first nice position is 3, and the word bbb$aaaaaa
has the following standard permutation π3 = (0, 7, 4, 1, 8, 5, 2, 9, 6, 3). Moving
the dollar in the next position, we have bbba$aaaaa with standard permu-
tation π4 = (0, 7, 4)(1, 8, 5, 2, 9, 6, 3). Finally, we arrive at bbbaa$aaaa with
standard permutation π5 = (0, 7, 4, 2, 9, 6, 3, 1, 8, 5).

Proposition 34 Let w = bj+1aj. Then h(w) = 2, in particular, 1 and n are
nice.

Proof. First, since w is a BWT, the number of cycles c of πw is nice, by
Theorem 5. Since the runlengths j and j + 1 are relatively prime, c = 1, so
1 is nice.

Let 0 < i ≤ j. The i-essential pseudo-cycle is Si = {i, i + j}, since
π(i) = i + j and π(j) = i + j − (j + 1) = i − 1. The critical interval of Si

is Ri = [i + 1, i + j]. The union of these critical intervals is [2, n − 1] ⊆ Rw,
since n = |w| = 2j + 1.

Finally, no i-essential pseudo-cycles exist for i > j. Therefore, there are no
left-only pseudo-cycles, and thus, by Lemma 16, n is nice. (See Figure 5.10.)
□
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Figure 5.10: Three pseudo-cycles S1, S2, S3 of the same form in the word bbbbaaa,
and their critical intervals R1, R2, R3. (Sleft in green, Sright in blue, critical intervals
in red.)

5.6.2 Number of words with k nice positions over alpha-
bet size 2

We now turn to the number of words with k nice positions.
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Definition 19 For n > 0, k ≥ 0, let Hπ
n (k) denote the number of fully clus-

tered words of length n with exactly k nice positions over an alphabet of size
σ. When it is clear from the context, we drop the superscript π.

From Proposition 31 it follows that H2
n(0) = 0, and from Proposition 31

and 32 it follows that H2
n(1) ≥ n, since the n−1 words beginning with a and

the word ban−1 have 1 nice position.
For a better understanding of the words with k nice positions, we ran

experiments on fully clustered words up to length 100, and studied their
pseudo-cycles. These led to the following conjectures:

Conjecture 1 For all n, H2
n(1) = n.

Conjecture 2 For n even, n ≥ 8, H2
n(2) = 0. For n odd, H2

n(2) = 1.

Conjecture 3 For every n, H2
n(⌈n2 ⌉) = 2.

The conjectured two words with ⌈n/2⌉ nice positions are bban−2 and
bn−1a. This is because both have ⌊n/2⌋ pseudo-cycles whose critical inter-
vals contain exactly one position each. From Theorem 9, we know that for
words that are BWT images, the parity of nice positions is the same as the
parity of the number of cycles. In these two cases, the pseudo-cycles block
every position that has the opposite parity, leaving all the remaining positions
available.

All our conjectures are supported by the histograms we produced for words
up to length 100 and k nice positions, k up to 19 (see Figure 5.11). Further-
more, the words show regular behavior with distinct k’s. In particular, we
can see that the 8 longest words (4 of even length, 4 of odd length) are dis-
connected from all the others. Moreover, the greater k, the farther this group
of 8 words is from the others. The first k where this group is visible is k = 6,
and we identify the 4 words of even length as follows: two primitive words
(w1 = b7a13, w2 = b15a7), two power words (w3 = b14a6, w4 = b8a14); and
the 4 primitive words of odd length (w5 = b8a15, w6 = b16a7, w7 = b9a16,
w8 = b17a8).

These words give an idea of the regularity of H2
n(k) across different k.

Consider w1 = b7a13, and the same word with 4 more a’s and 2 more b’s,
namely w′

1 = b9a17. In both cases, there are |w1|b − 1 number of pseudo-
cycles that have the same form, and starting from the one with the smallest
boundary, they are shifted by one position to the right. Moreover, the critical
interval of each of these pseudo-cycles has length |w1|b−1 (in total, they cover
2 · |w1|b − 1 positions). On the other hand, there are |w1|−2·|w1|b−1

2
additional

pseudo-cycles blocking just one position each, e.g. 5 and 7 in w resp. w′.
For this reason, h(w1) = |w1| − |w1|−2·|w1|b−1

2
− 2 · |w1|b − 1 and h(w′

1) =

|w′
1| −

|w′
1|−2·|w′

1|b−1

2
− 2 · |w′

1|b − 1, and therefore h(w′
1) = h(w1) + 1. We

observed this phenomenon holds adding iteratively the same number of a’s
and b’s (up to length 100). Further, the same happens adding 2 b’s and 4 a’s
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Figure 5.11: In the figure, the number of words H2(k) having k = 6, 13, 18 nice
positions are plotted for each length from 0 to 100. The blue line highlights even
lengths, while the yellow line the odd ones.
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k 3 4 5 6 7 8 9 10 11 12 13 14 15 16
nk 10 16 22 28 34 40 46 52 58 64 70 76 82 88

Table 5.9: Conjecture 4: There are no binary words of length greater than nk

with k nice positions.

to w4, w5, w7, and adding 4 b’s and 2 a’s to w2, w3, w6, w8. Our experiments
suggest that for fixed k, there are no words with greater length than those
above, see Table 5.9.

On the basis of these observations, we conjecture that the set F2(k) of
binary words with k nice positions is finite. Formally:

Conjecture 4 For every k ≥ 3, there exists a length nk such that no word
of length greater than nk has exactly k nice positions.

Finally, we noticed from our experiments that the smallest nice position
is always a divisor of n. Let d divide n. As we have seen before, w = biaj

is the BWT of a word ud with u a standard word and d = gcd(j, i). Thus, d
is nice by Theorem 5. The standard permutation of w has d cycles, and the
largest minimum of a cycle is d − 1, blocking all positions i ≤ d − 1. Thus,
given n, d where d is a divisor of n, e.g. the word bda(

n
d
−1)d has smallest nice

position d. We conjecture that the converse is true also:

Conjecture 5 An integer d can occur as a smallest nice position for some
fully clustered word of length n if and only if d divides n.

5.6.3 Larger alphabets

We partially defined a mapping from fully clustered words over a ternary al-
phabet having k nice positions to fully clustered words over a binary alphabet
having at least k nice positions. We could not define a mapping for ternary
words of the form cibjaℓ, i, j, ℓ > 1.

For a word w = ci00 c
i1
1 · · · c

ir−1

r−1 the pattern pat(w) = c0c1 · · · cr−1 is the
concatenation of a single occurrence of a character for each run c0, c1, . . . , cr−1.
E.g. the word bbaaaabbaac has 5 runs and pat(bbaaaabbaac) = babac.

In Table B.1 in the Appendix, we report all ternary fully clustered words
with the number of nice positions for each word and the position where $ can
be inserted.

Definition 20 We define the following mapping g : F3 → F2

i) pat(w) = abc;w = aibjcℓ, g(w) = aibj

ii) pat(w) = acb;w = aicjbℓ, g(w) = bjaℓ

iii) pat(w) = bac;w = biajcℓ, g(w) = biaj



5.6. Inserting $ in fully clustered words 95

iv) pat(w) = bca;w = bicjaℓ, g(w) = bi+jaℓ

v) pat(w) = cab;w = ciajbℓ, g(w) = biaj+ℓ

A preliminary study on inferring nice positions for ternary words from
their corresponding binary words is summarized in the following Proposition.
We show that given w ∈ F3 we can go to F2 mapping the length of the
word and the number of the nice positions. For example, consider the word
aaacccccbb having length 10 and three nice positions 4, 8, 10. If we map it
to the corresponding binary word bbbbbaa, the length is now 7, and positions
1,5,7 are nice.

Proposition 35 Referring to the numbering in Definition 20, we state that:

i) pat(w) = abc;h(w) = h(g(w)) = 1 and |w| = |g(w)|+ |w|c

ii) pat(w) = acb;h(w) = h(g(w)) and |w| = |g(w)|+ |w|a

iii) pat(w) = bac;h(w) ≤ min{h(g(w)), 1} and |w| = |g(w)|+ |w|c

iv) pat(w) = bca;h(w) = h(g(w)) and |w| = |g(w)|

v) pat(w) = cab;h(w) = h(g(w)) and |w| = |g(w)|

Proof. i) The standard permutation of both g(w) and w is πg(w) = πw = id,
then from Lemma 17 the only nice position of g(w) is |g(w)|, that of w is |w|
and h(w) = h(g(w)).

ii) In the standard permutation of w the first |w|a elements are fixpoints.
By removing these characters in w, the resulting permutation is the same
except for the initial fixpoints. The form of πw is preserved but shifted in
πg(w), and the value of the indices is decreased by |w|a. Therefore, every nice
position of w decreased by |w|a is a nice position in g(w).

iii) In this case, w has |w|c fixpoints at the end, blocking every position
before. Therefore, the only candidate position to be nice is |w|. By removing
the last |w|c characters, we remove the fixpoints that block the possible nice
positions in the first part of the standard permutation, therefore we can have
more nice positions in the binary word.

iv), v) Clearly, πw = πg(w), and therefore h(w) = h(g(w)).

Example 10 Referring to i): Given the word w = aabbbbccc, its standard
permutation is πw = id. Therefore, the only nice position is 9. If we apply the
mapping we get g(w) = aabbbb, then πg(w) = id, and the cycles block every
position up to 5, leaving out 6, which is the only nice position.

Referring to ii): w = aaccccbb πw = (0)(1)(2, 4, 6)(3, 5, 7), 4 and 6 begin
nice positions. By removing the two a’s we get g(w) = bbbbaa with πg(w) =
(0, 2, 4)(1, 3, 5) resulting in 2 and 4 being nice.

Referring to iii): w = bbbbbbaaac, πw = (0, 3, 6)(1, 4, 7)(2, 5, 8)(9), the
only nice position is 10. By removing the only c at the end we get g(w) =
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bbbbbbaaa with πg(w) = (0, 3, 6)(1, 4, 7)(2, 5, 8) having the following nice po-
sitions: 3, 5, 7, 9.

Referring to iv), v)): w = cccaaaabbbbbb, πw = (0, 10, 7, 4, 1, 11, 8, 5, 2,
12, 9, 6, 3), g(w) = bbbaaaaaaaaaa, πg(w) = (0, 10, 7, 4, 1, 11, 8, 5, 2, 12, 9, 6, 3),
therefore the nice positions are the same in the two words, namely 1, 3, 7, 9,
13.

Based on Proposition 35 we believe that there is a constant number of
words longer than a certain length with k nice positions. (For binary alphabet
this phenomenon is described in Conjecture 4.) This is suggested by the fact
that among the words involved in the mapping, only those of the pattern acb
maintain the same number of nice positions while increasing in length.

This result suggests that some regularities on the number of words H(k)
having a fixed number of nice positions are preserved in ternary, and maybe
even larger, alphabets.
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Chapter 6

Two Fundamental Text
Compressors in Bioinformatics

In this chapter, we present two applications in bioinformatics, one for BWT
and one for LZ77.

6.1 MUM-PHINDER: BWT application in MUM
search

Maximum Unique Matches (MUMs) are substrings of a pattern that occur
only once in a reference text and in the pattern, and that cannot be extended
in either direction. Maximal Exact Matches (MEMs) are a superset of MUMs
that are not necessarily unique.

Formally, given a text T [0..n − 1] and a pattern P [0..m − 1], we refer to
any factor in P that also occurs in T as a match. A match u in P is defined
as a pair (i, ℓ) such that w = P [i..i + ℓ − 1]. The match u is maximal if it
cannot be extended neither on the left nor on the right, i.e. either i = 0 or
P [i− 1..i+ ℓ− 1] does not occur in T and either i = m− ℓ or P [i..i+ ℓ] does
not occur in T .

Definition 21 (Maximal Unique Matches) Given a text T and a pattern
P , a Maximal Unique Match (MUM) is a maximal match that occurs exactly
once both in T and in P .

Example 11 Let T = ACACTCTTACACCATATCATCAA$ be the text and
P = AACCTAA the pattern. The factor AA is maximal in P and occurs
only once in T , while it is repeated in P at positions 0 and 5. The factor CT
of P starting in position 3 is a maximal exact match that occurs only once
in P , but it is not unique in T . The factor CC of P starting in position 2
is unique in both T and P , but both can be extended on the left with an A.
Finally, the factor P [1..3] = T [10..12] = ACC is a MUM.
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MEMs and MUMs have proven themselves to be useful in multiple bioin-
formatics problems, such as short read alignment and multiple genome align-
ment. Standard techniques to compute them on genomes use suffix trees and
the FM-index, which is the base of widely used bioinformatics tools such as
Bowtie [49] and BWA [51]. Recently, pangenomes received increasing atten-
tion from the scientific community for their ability to incorporate population
variation information and alleviate reference genome bias. With the advent
of third-generation sequencing, the quality of assembled genomes drastically
increased. Very recently, the Telomere-to-Telomere project released the first
complete haploid human genome [71] and the Human Pangenome Reference
Consortium (HPRC) plans to release hundreds of high-quality assembled
genomes to be used as a pangenome reference. One important step to en-
able the use of these high-quality assembled genomes is to build a multiple
sequence alignment of the genomes. However, the FM-index does not scale
well to a pangenomic level. Although the BWT can be stored and queried
in compressed space [60], the size of the FM-index grows with the length of
the uncompressed text. Tools like MUMmer [46, 65] and Mauve [18] pro-
posed a solution to the original problem of multiple sequence alignment by
using Maximal Unique Matches (MUMs) between two input sequences as
prospective anchors for an alignment. Recently, Gagie et al. [30] introduced
the r-index, which is a BWT-based index able to handle hundreds of human
genomes, and whose size grows with the number of runs of the BWT. The
r-index is a text index composed of the run-length encoded BWT and the
Suffix Array (SA) sampled at run boundaries, i.e. in correspondence of the
first and last character of a run of the BWT, and it can retrieve the missing
values of the SA by using a predecessor data structure on the samples of the
SA. However, the r-index itself cannot find MEMs nor MUMs. Bannai et
al. [5] introduced a variant of the r-index that supports finding MEMs. In [8,
75], the authors proposed a tool to index hundreds of human genomes and
to query such an index to find MEMs using the r-index variant described
in [5]. The tool is called PHONI [8], and is built on top of an r-index [30]
and a straight-line program (SLP) [28]. Their main objective is to compute
the so-called matching statistics (MS) of the pattern with respect to the text,
which can be used to compute the MEMs with a linear scan. The SLP is used
to compute efficient longest common extension (LCE) queries, which allows
computing the matching statistics and the MEMs with only one scan of the
query. Overall, PHONI computes the MS array of a pattern of length m in
O(m · (tLF + tLCE + tpred)) time, where tLF, tLCE, and tpred represent the time
to perform respectively one LF-mapping step, one LCE, and one predecessor
query.

In this section, we present mum-phinder, an algorithm to compute MUMs
that builds on the approach of Boucher et al. [8] for the computation of the
MS array. Our algorithm extends Boucher et al.’s method by storing addi-
tional O(r) samples of the LCP array. Given a text T [0..n− 1] and a pattern
P [0..m − 1], in the following, we show how we extended the algorithm for
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finding MEMs in order to find unique occurrences of the matches, i.e. MUMs.
We evaluated mum-phinder on real-world datasets. We tested our algo-

rithm against MUMmer [65], and we measured time and memory required by
both tools for sets of increasing size of haplotypes of human chromosome 19
and SARS-CoV2 genomes. We queried them using one haplotype of chromo-
some 19 and one SARS-CoV2 genome not present in the dataset. We report
that mum-phinder requires consistently less memory than MUMer for all ex-
periments, being up to 25 times smaller. Although MUMer is generally faster
than mum-phinder (18 times faster for 1 haplotype of chromosome 19, and
6.5 times faster for 12,500 SARS-CoV2 genomes), it cannot process longer
sequences due to memory limitations. Additionally, we observe that when
increasing the number of sequences in the dataset, the construction time of
mum-phinder increases, while the query time decreases. This phenomenon
is due to the increase in the number of matches in the search process, which
prevents the use of more computational-demanding operations. Note that,
due to the use of the r-index, the efficiency of our method increases when the
dataset is highly repetitive as in the case of pangenomes.

The full results on mum-phinder are published in [37].

6.1.1 Additional preliminaries

We recall that, given a text T , the suffix array SAT is the array consisting
of the indices of its suffixes ordered lexicographically. The Inverse Suffix
array (ISAT ) is the inverse of SAT , i.e. ISAT [i] = j if and only if SAT [j] =
i. The LF-mapping is the function that maps every character in the BWT
with its preceding text character in the BWT. In other words, it gives a
correspondence between characters from the Last and the First column of
the BWT matrix. This mapping is exactly the standard permutation π of
L = BWT(v). Given the ith character in the BWT, we can compute the
character preceding it in text order as follows: LF(i) = ISAT [SAT [i] − 1
mod n].

A context-free grammar G = {V,Σ, R, S} consists in a set of variables
V , a set of terminal symbols Σ, a set of rules R of the type A ↦→ α, where
A ∈ V and α ∈ {V ∪ Σ}∗, and the start variable S ∈ V . The language of
the grammar L(G) ⊆ Σ∗ is the set of all words over the alphabet of terminal
symbols generated after applying some rules in R starting from S. When L(G)
contains only one string T , that is G only generates T , then the grammar G
is called straight-line program (SLP).

Given a text T [0..n − 1], the longest common extension (LCE) query
between two positions 0 ≤ i, j < n in T is the length of the longest common
prefix of T [i..n−1] and T [j..n−1]. Thus, if ℓ = LCE(i, j), then T [i..i+ℓ−1] =
T [j..j + ℓ− 1] and either T [i+ ℓ] ̸= T [j + ℓ] or either i+ ℓ = n or j + ℓ = n.

Given a character c and an integer i, we define T.rankc(i) as the number
of occurrences of the character c in the prefix T [0..i − 1], while we define
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T.selectc(i) as the position p ∈ [0..n− 1] of the ith occurrence of c in T if it
exists, and p = n otherwise.

For our purpose, we extend the standard definition of the matching statis-
tics (MS) array as follows.

Definition 22 Given a text T = [0..n− 1] and a pattern P = [0..m− 1], we
define the extended matching statistics eMS as an array of (pos, len, slen)-
tuples eMS[0..m− 1] such that

i) P [i..i+ eMS[i].len− 1] = T [eMS[i].pos..eMS[i].pos+ eMS[i].len− 1];

ii) either i = m− eMS[i].len or P [i..i+ eMS[i].len] does not occur in T .

iii) eMS[i].slen is the largest value ℓ for which there exists p ̸= eMS[i].pos
such that P [i..i+ ℓ− 1] = T [p..p+ ℓ− 1].

In other words, eMS[i].slen is the length of the second longest match of a
prefix P [i..n− 1] of P in T .

Note that eMS[i].slen ≤ eMS[i].len, for any i ∈ [0..m−1]. In the following,
SAT , ISAT and LCPT are referred to the reference text T , thus we omit the
subscript and we write only SA, ISA and LCP. We state next some results
from [37], for the proofs we refer the reader to the paper.

Proposition 36 (Results from [37]) Given a text T , a pattern P , and the
eMS array computed for P with respect to T ,

a let w = P [i..i+eMS[i].len−1] = T [eMS[i].pos..eMS[i].pos+eMS[i].len−1]
be a maximal match between a pattern P [0..m−1] and a text T [0..n−1]$.
Then w occurs exactly once in T if and only if eMS[i].slen < eMS[i].len
(uniqueness in T ).

b let L be the subset of positions in P such that wi = P [i..i+eMS[i].len−1]
is maximal and occurs only once in T , for all i ∈ L. Then, wi occurs
only once in P if and only if, for all i′ ∈ L \ {i}, either eMS[i].pos <
eMS[i′].pos or eMS[i].len+eMS[i].pos > eMS[i′].len+eMS[i′].pos (unique-
ness in P ).

c let w = P [i..i + eMS[i].len − 1] be a match with a text T . Then w is a
maximal match if and only if either i = 0 or eMS[i−1].len ≤ eMS[i].len
(maximality).

d for all 0 ≤ i < m, wi = P [i..i+ eMS[i].len− 1] is a MUM if and only if
b holds and i ∈ L.

e let P [i..i+eMS[i].len−1] = T [eMS[i].pos..eMS[i].pos+eMS[i].len−1] and
q = ISA[eMS[i].pos]. If q < n, then eMS[i].slen = max{LCP[q],LCP[q+
1]}, where LCP[n] = 0. Otherwise, i.e. q = n, eMS[i].slen = LCP[n]
(second longest match via LCP).
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f let LCP and SA be the longest common prefix array, suffix array and
inverse suffix array of T , respectively. Then, for all 0 < q ≤ n, let i, j
be two integers such that q−1 = LF[i] and q = LF[j], then if BWT[i] ̸=
BWT[j] then LCP[q] = 0, otherwise LCP[q] = LCE(SA[i], SA[j]) + 1.

Example 12 Let T = ACACTCTTACACCATATCATCAA$ be the text and
P = AACCTAA the pattern. In the table below, we report the values of the
eMS of P with respect to T .

i 0 1 2 3 4 5 6
P [i] A A C C T A A

eMS[i].pos 21 10 11 5 6 21 8
eMS[i].len 2 3 2 2 2 2 1

eMS[i].slen 1 2 1 2 2 1 1

It is easy to check that L = {0, 1, 5}, where L contains those indices
i which verify both eMS[i].slen < eMS[i].len (Proposition 36b), and either
i = 0 or eMS[i−1].len ≤ eMS[i].len (Proposition 36c). Note that eMS[0].pos =
eMS[5].pos and eMS[0].len = eMS[5].len, and thus P [0..1] = P [5..6] is repeated
in P (Proposition 36b). Since eMS[1].pos < eMS[0].pos = eMS[5].pos, the
match P [1..3] = T [10..12] = ACC is a MUM (Proposition 36d).

6.1.2 Algorithm description

In this section, we present the algorithm for computing MUMs that builds on
the approach of Boucher et al. [8] for the computation of the MS array. The
authors showed how to use the r-index and the SLP of [28, 29] to compute the
MS array of a pattern P [0..m−1] in O(m·(tLF+tLCE+tpred)) time, where tLF,
tLCE, and tpred represent the time to perform respectively one LF, one LCE,
and one predecessor query. Our algorithm extends Boucher et al.’s method
by storing additional O(r) samples of the LCP array. Given a text T [0..n−1]
and a pattern P [0..m − 1], in the following, we first show how to compute
the eMS array of P with respect to T using the r-index, the SLP, and the
additional LCP array samples. Then we show how to apply Proposition 36d
to compute the MUMs from the eMS array.

Computing the eMS array The key point of the algorithm is to extend the
last computed match backward when possible, otherwise, we search for the
new longest match that can be extended on the left by using the BWT. Let q
be the index such that P [i..i+eMS[i].len−1] = T [SA[q]..SA[q]+eMS[i].len−1]
is the longest match found at step i:

• if BWT[q] = P [i − 1], then it can be extended on the left, i.e. P [i −
1..i+ eMS[i].len− 1] = T [SA[q]− 1..SA[q] + eMS[i].len− 1];
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Figure 6.1: Application of Proposition 36f to compute LCP[LF(q)] by extending
the result of the last LCE query.

• otherwise, we want to find the longest prefix of P [i..i+ eMS[i].len− 1]
that is preceded by P [i − 1] in the text T . As observed in Bannai et
al. [5] it can be either the suffix corresponding to the occurrence of
P [i − 1] in the BWT immediately preceding or immediately following
q, that we refer to as qp and qs respectively. Formally, qp = max{j <
q | BWT[j] = P [i− 1]} and qs = min{j > q | BWT[j] = P [i− 1]}.

The algorithm to compute the pos and len entry of the eMS array is
analogous to the procedure detailed in [8]. We use the same data structures as
the one defined in [8], that are the run-length encoded BWT and the samples
of the SA in correspondence of positions q such that BWT[q] is either the
first or the last symbol of a run of the BWT. Note that both qp and qs are
respectively the last and the first index of their corresponding run.

Analogous reasoning can be formulated to compute the second longest
match. Note that the second longest match can be retrieved from the LCP
values (Proposition 36e). Once we have the maximal match in position q in
the BWT, we can compute LCP[q] and LCP[q + 1] from the LCE queries on
T [SA[q]..n− 1] with T [SA[qp]..n− 1] and T [SA[qs]..n− 1] (Proposition 36f).

Moreover, assuming the index qp is the greatest index smaller than q
such that BWT[qp] = BWT[q], then LF(qp) = LF(q) − 1. It follows that
if BWT[LF(qp)] = BWT[LF(q) − 1] = BWT[LF(q)], then LCP[LF(q)]) is
an extension of the LCE query computed between SA[qp] and SA[q] (see
Figure 6.1). Symmetrically, if qs is the smallest index greater than q such
that BWT[qs] = BWT[q], then LF(qs) = LF(q) + 1. Thus, at each iteration,
we keep track of both LCP values computed to find the second longest match.

With respect to the implementation in [8], we add O(r) sampled values
from the LCP array. Precisely, we store the LCP values between the first and
the last two suffixes in correspondence of each run (if only one suffix corre-
sponds to a run we simply store 0). As shown later, this allows overcoming
the problem of computing the LCE queries in case a position p in T is not
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stored in the sampled SA, i.e. when ISA[p] is neither the first nor the last
index of its equal-letter run.

For simplicity of exposition, we ignore the cases when a select query of
a symbol c in the BWT fails. However, whenever it happens, either c does
not occur in T or we are attempting to find an occurrence out of the allowed
range, that is between 0 and the number of occurrences of the character c
minus 1. For the first case, we can simply reset the algorithm starting from
the next character of P to process, while the second occurs when we are
attempting to compute an LCE query, whose result can be safely set to 0.

Algorithm 2 computes the extended matching statistics eMS of the pattern
P = [0..m− 1] with respect to the text T = [0..n− 1] starting from the last
element of the pattern (line 2). Moreover, we keep track of the first LCP
values with respect to the maximal match of length 1 (line 3).

At each iteration of the loop (line 5), the algorithm tries to extend the
match backward position by position. If the match can be extended (line 7),
then we use Algorithm 3 to compute the entry of the eMS. Otherwise, we use
Algorithm 4 to compute the next entry of eMS (line 9).

Algorithm 2: computeeMS(P [0..m− 1])

1 q ← BWT.selectP [m−1](1)
2 eMS[m− 1]← (pos : SA[q]− 1, len : 1, slen : 1)
3 lcpp ← 0, lcps ← 1
4 q ← LF(q)
5 for i← m− 2 down to 0 do
6 if BWT[q] = P [i] then
7 eMS[i], lcpp, lcps ←

MSMatch(P [i], q, eMS[i+ 1].pos, eMS[i+ 1].pos, lcpp, lcps)
8 else
9 eMS[i], lcpp, lcps ←

MSMisMatch(P [i], q, eMS[i+ 1].pos, eMS[i+ 1].pos, lcpp, lcps)
10 q ← LF(q)
11 return eMS

Match case Suppose eMS[i+1..m−1] has already been processed and that
P [i] = T [eMS[i+1].pos− 1], namely we can further extend the longest match
at the previous step by one position to the left. Algorithm 3 handles such a
scenario.

Let q be such that SA[q] = eMS[i + 1].pos − 1. Hence, we have that
eMS[i].pos = eMS[i + 1].pos − 1 and eMS[i].len = eMS[i + 1].len + 1 (line 1).
At this point, we search for the greatest index qp among those smaller than
q such that BWT[qp] = P [i]. As discussed before, when qp = q − 1, then
LCP[LF(q)] = LCP[q] + 1 = lcpp + 1 (line 3). Otherwise, we can compute
the LCE query between SA[q] and SA[qp], to which we add 1 for the match
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with P [i] in correspondence of BWT[q] and BWT[qp] (line 6). Note that
SA[q] = eMS[i + 1].pos, while qp is the last index of its run (and therefore
SA[qp] is stored).

Analogously, we compute lcps (lines 7-10) and, by Proposition 36e and f,
we assign to eMS[i].slen the maximum between lcpp and lcps.

Algorithm 3: MSMatch(P [i], q, eMS[i+1].pos, eMS[i+1].len, lcpp, lcps)

1 pos← eMS[i+ 1].pos− 1, len← eMS[i+ 1].len+ 1
2 c← BWT.rankP [i](q)
3 if BWT[q − 1] = P [i] then

lcpp ← lcpp + 1
4 else
5 qp ← BWT.selectP [i](c)
6 lcpp ← min(lcpp,LCE(eMS[i+ 1].pos, SA[qp])) + 1

7 if BWT[q + 1] = P [i] then
lcps ← lcps + 1

8 else
9 qs ← BWT.selectP [i](c+ 2)

10 lcps ← min(lcps,LCE(eMS[i+ 1].pos, SA[qs])) + 1

11 slen← max(lcpp, lcps)
12 return (pos, len, slen), lcpp, lcps

Mismatch case We use Algorithm 4 when q is such that BWT[q] ̸= P [i].
We search for the index q′ in SA such that, among the suffixes of T preceded
by P [i], at position SA[q′] in T starts the longest match with a prefix of
P [i+ 1..m− 1]. Note that T [SA[q′]− 1] = P [i], and that q′ is either qp or qs.

Hence, if qp = q − 1, then by Proposition 36f the longest common prefix
of T [SA[q′]..n − 1] and P [i + 1..m − 1] has length lcp′p = lcpp computed at
the previous step (line 5), otherwise we compute and store the LCE between
T [q..n−1] and T [qp..n−1] (line 7). A symmetric procedure is used to compute
lcp′s (lines 8-11).

Without loss of generality, we assume that lcp′s ≥ lcp′p, hence eMS[i].pos =
SA[qs]−1. Then eMS[i].len = lcp′s+1 and lcpp = lcp′p+1 (line 13). We add 1
to both lcp′s and lcp′p because both matches can be extended by one position
on the left since P [i] = BWT[qp] = BWT[qs]. To compute eMS[i].slen we
need to compute the value of lcps with respect to qs. To do so, we look
for the smallest index q′s greater than qs such that BWT[q′s] = P [i], and
then apply a similar procedure to Algorithm 2 (lines 14-18). In this case,
if BWT[qs + 1] = P [i], then we can retrieve lcps from LCP[qs + 1] since qs
is in correspondence of a run boundary. Symmetrically, we handle the case
lcp′p > lcp′s (lines 20-26). Finally, we compute eMS[i].slen by picking the
maximum between lcpp and lcps.
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Theorem 11 Given a text T [0..n−1], we can build a data structure in O(r+
g) space that allows to compute the set of MUMs between any pattern P [0..m−
1] and T in O(m · (tLF + tLCE + tpred)) time.

Proof. Algorithm 2, Algorithm 3 and Algorithm 4 show how to compute the
eMS array in m steps by using the data structure used in [8] of size O(r+ g),
to which we add O(r) words from the LCP array, preserving the space bound.
Since at each step the dominant cost depends on the LF, LCE, and rank/select
queries, eMS is computed in O(m(tLF+tLCE+tpred)) time. By Proposition 36a
and c, we can build the set L in O(m) steps from the eMS array. Recall that
L contains those indices i ∈ [0..m− 1] such that P [i..i + eMS[i].len− 1] is a
maximal match that occurs only once in T .

Now we have to look for those indices in L that are also unique in P . A
simple algorithm is to build both the LCP and ISA array of P , and then check
for each i ∈ L if both LCP[ISA[i]] and LCP[ISA[i] + 1] (or only LCP[ISA[i]]
if ISA[i] = m) are smaller than eMS[i].len, i.e. the same property that we use
to check the uniqueness in T . Both structures can be built in O(m) time.
The overall time is O(m(tLF + tLCE + tpred) + m + m), which is O(m(tLF +
tLCE + tpred)).

□

6.1.3 Experimental results

We implemented our algorithm for computing MUMs and measured its per-
formances on real biological datasets. We performed the experiments on a
desktop computer equipped with 3.4GHz Intel Core i7-6700 CPU, 8MiB L3
cache, and 16GiB of DDR4 main memory. The machine had no other sig-
nificant CPU tasks running, and only a single thread of execution was used.
The OS was Linux (Ubuntu 16.04, 64bit) running kernel 4.4.0. All programs
were compiled using gcc version 8.1.0 with -O3 -DNDEBUG -funroll-loops
-msse4.2 options. We recorded the runtime and memory usage using the wall
clock time, CPU time, and maximum resident set size from /usr/bin/time.

Setup We compare our method (mum-phinder) with MUMmer [65] (mummer).
We tested two versions of mummer, v3.27 [46] (mummer3) and v4.0 [65] (mummer4).
We executed mummer with the -mum flag to compute MUMs that are unique
in both the text and the pattern, -l 1 to report all MUMs of length at least
1, and -n to match only A,C,G,and T characters. We setup mum-phinder
to produce the same output as mummer. We did not test against Mauve [19]
because the tool does not directly report MUMs. We also did not consider al-
gorithms that do not produce an index for the text that can be queried with
different patterns without reconstructing the index, e.g. the algorithm de-
scribed in Mäkinen et al. [59, Section 11.1.2]. The experiments that exceeded
16 GB of memory were omitted from further consideration.
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Algorithm 4: MSMismatch(P [i], q, eMS[i + 1].pos, eMS[i +
1].len, lcpp, lcps)

1 c← BWT.rankP [i](q)
2 qp ← BWT.selectP [i](c)
3 qs ← BWT.selectP [i](c+ 1)
4 if qp = q − 1 then
5 lcp′p ← lcpp
6 else
7 lcp′p ← min(eMS[i+ 1].len,LCE(eMS[i+ 1].pos, SA[qp]))

8 if qs = q + 1 then
9 lcp′s ← lcps

10 else
11 lcp′s ← min(eMS[i+ 1].len,LCE(eMS[i+ 1].pos, SA[qs]))

12 if lcp′p ≤ lcp′s then
13 pos← SA[qs]− 1, len← lcp′s + 1, lcpp ← lcp′p + 1

14 q′s ← BWT.selectP [i](c+ 2)
15 if q′s = qs + 1 then
16 lcps ← min(len,LCP[qs + 1] + 1)

17 else
18 lcps ← min(len,LCE(SA[qs], SA[q′s]) + 1)

19 q ← qs
20 else
21 pos← SA[qp]− 1, len← lcpp, lcps ← lcp′s + 1
22 q′p ← BWT.selectP [i](c− 1)

23 if q′p = qp − 1 then
24 lcpp ← min(len,LCP[qp] + 1)

25 else
26 lcpp ← min(len,LCE(SA[qp], SA[q′p]) + 1)

27 q ← qp
28 slen← max(lcpp, lcps)
29 return (pos, len, slen), lcpp, lcps
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No. seqs n (MB) n/r

1 59 1.92
2 118 3.79
4 236 7.47
8 473 14.78

16 946 29.19
32 1892 57.63
64 3784 113.49

128 7568 222.23
256 15 136 424.93
512 30 272 771.53

(a) Collections of chromosomes 19.

No. seqs n (MB) n/r

1562 46 459.57
3125 93 515.42
6250 186 576.47

12 500 372 622.92
25 000 744 704.73
50 000 1490 848.29
100 000 2983 1060.07
200 000 5965 1146.24
300 000 8947 1218.82

(b) Collections of SARS-CoV2
genomes.

Table 6.1: Dataset used in the experiments. For each collection of datasets of
the human chromosome 19 (chr19) dataset in Table 6.1a and for the SARSCoV2
(sars-cov2) dataset in Table 6.1b, we report the number of sequences (No. seqs),
the length n in Megabytes (MB), and the ratio n/r, where r is the number of runs
of the BWT for each number of sequences in a collection.

Datasets We evaluated our method using real-world datasets. We build
our index for up to 512 haplotypes of human chromosome 19 from the 1000
Genomes Project [84] and up to 300,000 SARS-CoV2 genomes from EBI’s
COVID data portal [38]. We provide a complete list of accession numbers in
the repository. We divide the sequences into 11 collections of 1, 2, 3, 4, 8,
16, 32, 64, 128, 256, 512 chromosomes 19 (chr19) and 9 collections of 1,562,
3,125, 6,250, 1250,00, 25,000, 50,000, 100,000, 200,000, 300,000 genomes of
SARS-CoV2 (sars-cov2). In both datasets, each collection is a superset of
the previous one. In Table 6.1 we report the length n of each collection and
the ratio n/r, where r is the number of runs of the BWT.

Furthermore, for querying the datasets, we used the first haplotype of
chromosome 19 of the sample NA21144 from the 1000 Genomes Project,
and the genome with accession number MZ477765 from EBI’s COVID data
portal [38].

Results In Figure 6.2 we show the construction and query time and space
for mum-phinder and mummer. Since mummer is not able to decouple the
construction of the suffix tree from the query, for our method we report
the sum of the running times for construction and query, and the maximum
resident set size of the two steps. We observe that on chr19 mummer3 is up to
9 times faster than mum-phinder, while using up to 8 times more memory,
while mummer4 is up to 19 times faster than mum-phinder, while using up to
7 times more memory. However, both mummer3 and mummer4 cannot process
more than 8 haplotypes of chr19 due to memory limitations. mum-phinder
was able to build the index and query in 48 minutes for 512 haplotypes of
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chr19 while using less than 11.5 GB of RAM. On sars-cov2, mummer3 is
up to 6.5 times faster than mum-phinder, while using up to 24 times more
memory, while mummer4 is up to 1.2 times slower than mum-phinder, while
using up to 25 times more memory. mummer3 was not able to process more
than 25,000 genomes while mummer4 were not able to query mote than 12,500
genomes of sars-cov2 due to memory limitations.
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Figure 6.2: Human chromosome 19 and SARS-CoV2 genomes dataset construc-
tion CPU time and peak memory usage. We compare mum-phinder with mummer3
and mummer4. For mum-phinder we report a breakdown of the construction (build)
and query time and space. Note that for mum-phinder we consider as time the
sum of construction and query time, while for memory we consider the maximum
between construction and query memory.

In Figure 6.2 we also show the construction time and space for mum-phinder.
We observe that the construction time grows with the number of sequences in
the dataset, however, the query time decreases while increasing the number
of sequences in the index with a 9x speedup when moving from 1 to 512 hap-
lotypes of chr19. A similar phenomenon is observed in [8] and it is attributed
to the increased number of match cases (Algorithm 3) while increasing the
number of sequences in the index. From our profiling (data not shown) the
more time-demanding part of the queries are LCE queries, which are not per-
formed in case of matches. This observation also motivates the increase in
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the control logic of Algorithm 4 to limit the number of LCE queries to the
essential ones.

6.2 Compression of collections of substring sam-
ples with LZ77

The extraordinarily wide adoption of high-throughput sequencing in medical
and evolutionary biology over the last decade has made short read data sets
abundant. These data sets are also very large. For example, a typical human
sequencing experiment might run at 20x coverage on an underlying genome
of size n = 3 · 109 nucleotides. The resulting read set in FASTQ format (a
standard file format, which stores one ASCII-encoded short read sequence
per line) is then 60 gigabytes in size. The de facto standard in most labs
and large institutions is to compress such files with the gzip all-purpose file
compressor, which usually leads to a factor four reduction in size1, or 15GB
in our human sequencing example. A gzip’d large read set is thus, alas, still
relatively large.

With the rapid growth in, and the need to store, short read data sets,
specialized compressors that exploit properties inherent to such data sets will
become paramount. Several read set specific compressors have now been
developed (see, e.g., [2, 14, 22, 39]). None are yet in wide use. However, to
our knowledge, no careful analysis of the compressibility of short read data
sets—even in an idealized setting such as that described below—has been
undertaken. This section addresses that need. In particular, we consider the
problem of compressing a set of substrings sampled from a string. (Note that
only in this section, strings and permutations are indexed from 1.) Given a
string X of length n and two integer parameters d and m, m ≥ 2d, we call a
sample of X a substring of X of length m starting at any position 1+i·d in X,
where i ≥ 0. We refer to the samples as Si = X[(i−1)·d+1..(i−1)·d+m], for
i ≥ 1, and to the concatenation as S = S1S2 · · ·Sr, where r = ⌊(n−m)/d⌋+1.
Note that if n−m

d
is not an integer, then the final few characters of X will not

be part of any sample.
If X is viewed as a genome sequence, the above substring sampling process

corresponds to an idealized model of short read DNA sequencing. In the
language of genome sequencing, m is the read length and m/d is the so-called
coverage (the number of samples that cover a given position in X, on average).
Our assumption is that m ≥ 2d corresponds to a coverage of at least 2, which
is the relevant case for DNA sequencing. S represents a file of short read
sequences — the typical output of a sequencing experiment. Our sampling

1This can be loosely interpreted as gzip, a sliding-window dictionary compressor with
window size too small to capture any large dispersed repeated substrings present in the
file, essentially reducing the space used by each DNA letter from the 8 bits used in the
plain ASCII encoding to the 2 bits that a flat minimal binary code for four letters would
use.
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process idealizes short read sequencing in at least two ways. Firstly, short
read sequencing may produce strings of slightly different lengths and may
introduce errors — insertions, deletions, and substitutions of letters — to the
sampled strings, albeit with fairly low probability for present-day short read
technology (p < 0.01 for Illumina short reads, for example). Secondly, in
short read sequencing, coverage is not completely uniform, fluctuating across
the genome for a variety of reasons (see, e.g. [24]).

We present a non-trivial upper bound on the size of the LZ77 parsing of
S, the concatenation of sampled substrings of X, in terms of n, m, d and the
size of the LZ parsing of X. We also show a different upper bound that holds
regardless of the order in which the samples are concatenated to form S. The
contents of this section have been published in [4].

Recall the definition of the Lempel-Ziv 77 factorization.

Definition 23 (LZ Factorization) The LZ factorization of X is a factor-
ization X = f1f2 . . . fzX of X into zX phrases such that each phrase fi (a
substring of X) is either

1. a letter that does not occur in f1 · · · fi−1, or

2. the longest substring that occurs at least twice in f1 · · · fi.

Example 13 Consider the example string X = zzzzzipzip. It produces the
following zX = 5 factors, f1 = z, f2 = zzzz, f3 = i, f4 = p, f5 = zip.

We denote with ℓi = |fi| the length of phrase fi, and with si the starting
position of phrase fi in X, i.e., si = 1 +

∑︁
j<i ℓj. Finally, we denote with pi

the position of the first occurrence of substring fi in X and we call substring
X[pi..pi + ℓi − 1] the source of fi. Note that phrases and sources are allowed
to overlap, as is the case with f2 in our example.

The following is a known upper bound on the number of phrases in the
parsing.

Theorem 12 ([41], Theorem 5.20) Let X be a string of length n over Σ,
with |Σ| = σ. Then zX ≤ Z, where

Z =
n− (σ/(σ − 1))

logσ n− logσ logσ n− (1/(σ − 1))
.

Fact 1 Let T be a string, and 1 < i ≤ j ≤ |T |. If t = T [i..j] has an
occurrence before i, i.e., if there exists an i′ < i s.t. T [i′..i′+ |t| − 1] = t, then
the interval [i..j] can contain at most one starting position of a phrase.
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6.2.1 Compression of overlapping substring samples

In the following, we formally define the problem of compressing the string S
consisting of the concatenation of samples from string X. We first show a
bound on the compression size of S when the samples are concatenated in
the same order as they appear in X.

Given a string X of length n and two integer parameters m, d, such that
m ≥ 2d, let S = S1S2 · · ·Sr, where r = ⌊(n −m)/d⌋ + 1, and, for i ∈ [1..r],
Si = X[(i− 1) · d+ 1..(i− 1) · d+m].

Let us write, for i ≥ 1, Si = vixi, where |vi| = m− d and |xi| = d. Then
X and S can be written as follows, where |u| < d:

X = v1x1x2 · · ·xru, (6.1)
S = v1x1v2x2v3x3 · · · vrxr. (6.2)

Lemma 18 Let bi and ei denote the beginning resp. ending position of the
vi’s in the factorization of S given in (6.2). Then, for i > 1, the interval
[bi..ei] can contain at most one starting position of a phrase.

Proof. Since two consecutive samples Si and Si+1 overlap by m− d charac-
ters, it follows that, for all i > 1, Si = yivi+1, where yi is the d-length prefix
of Si. Therefore, S contains the square vivi for every i > 1, and bi is the start
of the second occurrence of vi in this square. By Fact 1, therefore, [bi..ei] can
contain at most one starting position. □

Definition 24 Let 1 ≤ b ≤ e ≤ n. We define the projection of substring
X[b..e] (which covers the substrings of X from xi to xj completely) on S as a
collection of substrings in S as follows: For xι, let bι and eι denote the starting
respectively ending positions of xι in S with respect to the factorization given
in (6.1). Then

ProjS([b..e]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
⋃︁j

ι=i[ιm− d..ιm]) ∪ [(i− 2) · (m− d) + b..(i− 1)m]∪
[mj +m− d+ 1..j(m− d) + e] if m− d < b

[b..e] if b, e ≤ m− d

[b..m− d] ∪ ProjS[m− d+ 1..e] if b ≤ m− d < e.

Definition 25 Let f be a phrase of the LZ parsing of X, with starting po-
sition s and length ℓ. Define g(f) as the number of phrase starting positions
in the projection ProjS([s..s+ ℓ− 1]) of X[s..s+ ℓ− 1] on S.

Lemma 19 Let m ≥ 2d. Let f be a phrase of the LZ factorization of X,
with starting position s > m− d. Then g(f) ≤ |f |

d
+ 2.
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X = v1 x1 xi−1 xi xι. . . xj xj+1. . . xr. . .

S = . . . . . . . . . . . .

. . .

X[b..e] =

ProjS([b..e]) =

vi−1 xixi−1 vι xι vj xj vj+1 xj+1vi

Figure 6.3: The projection of the substring X[b..e] on the string S is shown. The
number of substrings of X contained in the collection of substrings produced by
the projection is the number of xi’s intersected by X[b..e] in X, and they are all
contained in the corresponding xi’s in S.

Proof. Let ℓ = |f |, k = ⌈ ℓ
d
⌉ and f = X[s..s+ℓ−1] = x′xixi+1 · · ·xjx

′′, where
x′ and x′′ are a proper suffix of xi−1 respectively a proper prefix of xj+1, both
possibly empty. We will show that each of these substrings is charged with
at most one phrase starting position. From Fact 1, the claim follows.

By construction of S, each of the substrings x′, xi, xi+1, . . . , xj, x
′′ will

appear contiguously in S. The number of these substrings is either k or
k + 1. Additionally, a v substring separates the projections in S of each pair
of contiguous aforementioned substrings of X.

Consider now the source f ′ of f occurring in X in some position s′ < s.
Then X[s..s+ ℓ− 1] = X[s′..s′ + ℓ− 1] = u′xi′xi′+1 · · ·xj′u

′′, where u′ and u′′

are a proper suffix of xi′−1 respectively a proper prefix of xj′+1, both possibly
empty. As for f , the projection of f ′ is also split in S in such a way that
the projection of each pair of mentioned substrings of f ′ is separated by a v
substring in S.

Notice that, since m ≥ 2d, each xb in X has an occurrence in S also as
a suffix of vb′+1, occurring immediately after xb+1 in S. This means that,
even if the projections of f and f ′ in S are split asynchronously, each of the
substrings x′, xi, xi+1, . . . , xj, x

′′ in the projection of f has already occurred
as the concatenation of a suffix of some vb′ intersecting the projection of f ′

and the contiguous xb′+1.
There are at most k + 1 factors x′, xi, xi+1, . . . , xj, x

′′, and each of them
has a previous occurrence in S. Therefore, by Fact 1, there will be at most
k + 1 phrase starting positions for f . See Fig. 6.4 for an illustration. □

Lemma 20 With respect to the factorization of S given in (6.2), the number
of phrase starting positions in xi’s is at most n

d
+ 2zX .

Proof. The sum of the lengths of all phrases f1, . . . , fzX in the LZ factoriza-
tion of X is the length n of the string X. Therefore, we can bound the total
contribution to zS of X as follows:

zX∑︂
j=1

g(fj) ≤
zX∑︂
j=1

(
|fj|
d

+ 2) =
n

d
+ 2zX .
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X = v1 x1

f ′ = X[b..e] =

xj−1 xj xj+1 xj+2. . .

f =

xi−1 xi xi+1 xi+2. . . xr u. . .

S = v1 x1 xj−1

ProjS([b..e]) =

. . . vj xj vj+1 xj+1 vj+2 xj+2 . . .

xj−1

|Sj| ≥ 2|xj|

Figure 6.4: The original string X on top, and the concatenation S of the r samples
of X below are shown. In particular, a phrase f and its corresponding source f ′ in
X are represented with distinct colors for each of the xi segments of X intersected
by the phrase. Finally, the projection ProjS(f

′) of the source is shown. It is clear
from the figure that, in S′, the samples intersecting some string in the projection
of f ′ fully contain at least one substring of the projection of f .

□

Theorem 13 Let zX be the number of phrases of the LZ parsing of X, and zS
the number of phrases of the LZ parsing of S. Then zS ≤ 2n−m

d
+2zX+m−d.

Proof. We show the maximum number of phrase starting positions in S
summing up the contribution of the (m − d)-length prefix of S, and of the
remaining xi’s (Lemma 20) and vi’s (Lemma 18) substrings.

zS = number of starting positions in v1 + number of starting positions in xi’s
+ number of starting positions in vi’s, for i ≥ 2

≤ (m− d) +
n

d
+ 2zX +

n−m

d
=

2n−m

d
+ 2zX +m− d.

□

Theorem 13 essentially says that the number of LZ phrases of S is at
most twice the number of samples plus twice the number of LZ phrases of X.
Note that the important parameter that determines the number of samples
is d, while m influences only the number of samples in which a given position
occurs (i.e. m/d is the so-called coverage).

6.2.2 Arbitrary order of the samples in the concatena-
tion

The question we posed at this point was: does the order of the samples in
concatenation matter? We now examine the effect that the ordering of the
samples in the concatenation has on the number of phrases.
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As before, we are given a string X of length n and two integer parameters
m and d, such that m ≥ 2d. Let r = ⌊(n − m)/d⌋ + 1, and, for i ∈ [1..r],
Si = X[(i− 1) · d+ 1..(i− 1) · d+m].

We will show that, regardless of the order in which the samples Si of
X are concatenated, the number of phrases in the LZ factorization of that
concatenation is at most n+ 2(n−m)

d
. We make this argument precise below.

X = xi−t xk xi xk′ xi+t

Si =

Si−t =

Si+t =

...

...

...

...

Sk =

Sk′ =

...

S ′ = ... ...... ...

Sk ′ Sk Si

ui

Figure 6.5: The contribution of the samples of X to zS′ , where S′ is the con-
catenation of the samples in an arbitrary order. The colored substrings are the
prefixes and suffixes with multiple occurrences in S′ of some sample. Each sample
consists of a prefix and a suffix (possibly empty) that has already occurred in S′,
and a substring in between them (i.e., labeled ui, in white) that is not assumed to
necessarily occur previously in S′.

Theorem 14 Let S ′ be the concatenation of the samples of X in any order,
then the number of phrases is zS′ ≤ n+ 2(n−m)

d
.

Proof. Fix i. We will show that the number of phrase starting positions in
sample Si where it appears in S ′ is at most 2 + |ui|, where ui is a specific
substring of Si. Let k = max{i′ < i | Si′ appears before Si in S ′}, and
let wi be the longest suffix of Sk which is also a prefix of Si (i.e., wi is the
maximum overlap). Note that wi may be empty. Similarly, let k′ = min{i′ >
i | Si′ appears before Si in S ′}, and let w′

i be the longest prefix of Sk′ which
is also a suffix of Si, again possibly empty. If |wi|+ |w′

i| ≥ m = |Si|, then set
ui = ε. Otherwise, Si can be written as Si = wiuiw

′
i, for some ui.

This ui is a substring of X that has not so far been covered by any sample
in S ′, and this is because of the definition of k and k′. We call ui the new
part of Si; in particular, if ui = ε, then the new part of Si is empty.

By Fact 1, if wi is non-empty, then at most one phrase starting position
is contained within wi. Similarly, if w′

i is non-empty, at most one starting
position is contained within w′

i. The number of starting positions within the
new part ui can be trivially upper bounded by |ui|.

Summing over all samples Si, we thus get

zS′ ≤
r∑︂

i=1

(2 + |ui|) = 2r +
r∑︂

i=1

|ui| = 2r + n,
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with the last equality using the fact that every position of X occurs exactly
once in some ui. See Figure 6.5.

□

Theorem 14 essentially says that the number of LZ phrases of S ′, i.e. of
the concatenation of the samples in an arbitrary order, is at most the length
of X plus twice the number of samples.

6.2.3 Experimental results

To gauge the tightness of our bounds, we computed the number of phrases in
the conventional LZ factorization of the concatenation of the samples taken
from each of the texts in Table 6.2. We did this for a range of d and m
parameters, and concatenated the samples both in string order and after a
random shuffling.

Data Our test data, which contains files of varying repetitiveness is shown
in Table 6.2.

Data Description n z n/z

SARS-CoV2 Taken from the COVID-19
Data Portal [38] 29 835 4373 6.8

50 SARS-CoV2

Concatenation of 50
virus genomes taken
from the COVID-19

Data Portal [38]

1 490 134 5421 275

Fibonacci word Fibonacci word of order 22 28 657 22 1302.6

Random
Word over an alphabet of
size 4 built with python

function random.choices()
29 835 4575 6.5

Table 6.2: Data used in the experiments. The table shows the length (n) and the
number of phrases (z) of each text used for the experiments.

By nature, viruses contain very little recurrent genetic heritage, and so a
viral genome represents a real-world non-repetitive string. We used a genome
of SARS-CoV2 taken from the COVID-19 Data Portal [38] of length 29 836,
which is factorized in 4 373 LZ phrases. We also performed experiments
on extreme cases between which real-life genomes lie: Fibonacci words and
random words.

Let s0 = b, s1 = a, the Fibonacci word of order i + 1 is the binary
word si+1 = sisi−1. In other words, the Fibonacci word of order i + 1 is the
concatenation of the Fibonacci words of the two previous orders.

By construction, Fibonacci words have a very high degree of repetition,
resulting in very few phrases with respect to their length. Random words, on
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the other hand, could be considered, instead, not repetitive at all. To perform
a comparison with the virus genome, we chose a random word of the same
length as the genome, and the Fibonacci word of length 28 657, the closest to
the length of the genome. The strings are factorized in 4 575 respectively 22
phrases.

We also performed experiments with larger data. In particular, we counted
the number of phrases of the concatenation of 50 SARS-CoV2 genomes, which,
due to the high similarity of the individual genomes, constitutes a highly
repetitive dataset.

Experiments We are interested in simulating the coverage provided by the
most used technologies in genome sequencing. The coverage is given by the
number of samples that cover a given position in the text. In the context
of genome sequencing, a reasonable coverage is given by large m and small
d, in order to have the coverage as large as possible with reasonable sample
lengths.

We perform the experiments on each of the aforementioned texts with
d = 1, 2, 4, 8, 16, 32, 64, and m from 50 to 1 000, in increments of 10. We
counted the number of phrases for m > d.

Figure 6.6, on top, displays the number of phrases for concatenations of
samples in string order of a Fibonacci word (top-left corner), and of a random
string of a similar length (top-right corner). Below, we show the counts for
an arbitrarily ordered concatenation of the samples of the same data. In
all figures, the number of phrases for some selected m’s is shown in distinct
colors, in gray for all other m’s. The corresponding colored line shows our
bounds for each m and d pair. Finally, the colored rounded points show the
existing bound given by Kärkkäinen [41], see Theorem 12.

The analogous comparison is shown in Figure 6.7 between a single SARS-
CoV2 genome and the concatenation of 50 genomes.

The overlapping of the bound lines in all plots reflects the small impact
of the sampling length m in the bound for fixed d.

When the samples are concatenated in string order (on the top of both
Figure 6.6 and 6.7), the number of phrases in the original string has a big
influence on the bound. We can see that the bound lines in the Fibonacci
word’s plot are closer to the actual counts than in the other plots, where
the number of phrases of the original strings is higher. On the other hand,
because of the different nature of the bound for the samples in string order
versus random order, we can see that the latter bound has a similar trend for
the three strings of similar length. In this case, the length and the number
of samples of the original string determine the bound rather than its number
of phrases.

Comparing the bound given in this paper (lines) to the one reported in
Theorem [41] by Kärkkäinen (rounded points), when repetitive strings are
considered, our bound is not worse than the existing one for the string order
concatenation, while it gets looser with the concatenation in arbitrary order.
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See the plots for Fibonacci words and the concatenation of 50 genomes of
SARS-CoV-2. On the other hand, for non repetitive strings, namely random
strings and the single viral genome in the plots, the existing bound is often
better than ours.

Data d = 1 d = 2 d = 4 d = 8 d = 16 d = 32 d = 64
Fibonacci
max m 1000 980 990 970 960 960 940
phrases 1336 1321 1308 1021 1007 910 603
bound 57 357 29 189 15 111 8049 4510.1 2733.1 1800.8

Fibonacci
shuffled

max m 1000 990 990 990 630 970 980
phrases 25 164 13 179 6802 3505 1802 942 521
bound 83 971 56 324 42 490.5 35 573.75 32 160.4 30 387.4 29 521.906 25

SARS-CoV2
max m 80 150 50 70 50 90 210
phrases 44 438 27 823 14 880 8945 6759 5575 4973
bound 68 417 38 655 23 697.5 16 258.25 12 506.38 10 665.93 9821.09

SARS-CoV2
shuffled

max m 200 260 350 540 780 680 760
phrases 45 725 27 898 17 538 11 620 7969 6142 5238
bound 89 108 59 412 44 574 37 185 33 468 31 658.25 30 744.63

Table 6.3: A summary of relevant results for the Fibonacci word and the single
SARS-CoV2 genome. For each sampling frequency d, we report the value of m
for which the maximum number of phrases in the concatenation of the samples is
produced in both string order and after the random shuffling. We further show the
counts and the value of our bound for the mentioned m.

In Table 6.3 we show, for fixed d, the maximum number of phrases in S,
varying m. For strings X that are already very repetitive (Fibonacci word),
the longer the string, the higher the number of phrases. On the other hand,
for strings that are not that repetitive (single SARS-CoV2 genome), intro-
ducing long repetitions may decrease the number of phrase starting positions
in contrast to having a shorter string with very short repetitions. The con-
catenation of 50 SARS-CoV2 genomes lies in the middle.
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(a) Fibonacci word of length 28 657 (b) Random word of length 29 835

Figure 6.6: The number of phrases in log scale for concatenation of samples of
a Fibonacci word (left column) and a random word (right column), both in string
order (on top) and in an arbitrarily chosen order (on bottom). The counts are shown
for each concatenation of m-length samples at every d position. Colored markers
indicate the number of phrases for m = 50, 100, 200, 400, 1000, while we use grey
points to mark all others m’s. The bounds shown in Theorem 13 and 14 for the
concatenation in string order respectively random order are shown with colored and
shaped lines accordingly to the corresponding m, d pair, while the colored rounded
points indicate the bound given by Kärkkäinen [41], see Theorem 12.
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(a) SARS-CoV2 genome of
length 29 835

(b) Concatenation of 50 SARS-CoV2
genome, of total length 1 490 134

Figure 6.7: The number of phrases in log scale for concatenation of samples of
a single SARS-CoV2 genome (left column) and of a concatenation of 50 SARS-
CoV2 genomes (right column), both in string order (on top) and in any arbitrarily
chosen order (on bottom). The counts are shown for each concatenation of m-length
samples at every d position. Coloured markers indicate the number of phrases
for m = 50, 100, 200, 400, 1000, while we use grey points to mark all others m’s.
The bounds shown in Theorem 13 and 14 for the concatenation in string order
respectively random order are shown with colored and shaped lines accordingly to
the corresponding m, d pair, while the colored rounded points indicate the bound
given by Kärkkäinen [41], see Theorem 12.
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Chapter 7

Conclusion

This thesis focused mainly on the study of combinatorial properties of words
concerning their Burrows-Wheeler Transform (BWT), and of words that are
the BWT of some other word. It further treated applications of two of
the most commonly used compression schemes in bioinformatics, BWT and
Lempel-Ziv (LZ77).

Both BWT and LZ77 are widely used in bioinformatics, a field of computer
science that tackles problems of understanding and interpreting questions on
biological data. In particular, the extremely repetitive and redundant textual
data produced by genome sequencing requires algorithms and data structures
able to compress and/or index this huge amount of data, to store and use it
efficiently.

i) The first research direction we took regards r(v) the number of runs of
the BWT of a word v as a measure of its repetitiveness. The repet-
itiveness of a word is preserved when the word is read back-to-front,
i.e. in its reverse. We were interested in the number of runs r of the
BWT of a word v and r(vrev), the number of runs of the BWT of its
reverse. We showed that there exists a family of words for which the
ratio ρ = r(v)

r(vrev)
grows logarithmically with the length of the word. This

result suggests that r is not an ideal parameter of the repetitiveness of
words because it gives information about the repetitiveness of a word
only up to a logarithmic factor.

ii) Another interesting aspect of the BWT is how much it can be affected
by small character changes. The so-called bit-catastrophe was intro-
duced and studied on the LZ78 factorization of a word, where it was
shown that prepending a single character to a word may increase the
size of its factorization by a logarithmic factor in the length of the
word. It was also shown that well compressible words still show good
compressibility after the additional character, and that words which be-
came particularly badly compressible were already poorly compressible
before the new character was added. We followed a similar reasoning,
treating the bit-catastrophe on the BWT with a looser meaning: we
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studied the changes in the number of runs in the BWT of a word after
a one-character edit operation is performed. We showed that adding,
substituting or deleting a character to a Fibonacci word may increase r
by Θ(log n). Additionally, Fibonacci words are special cases for BWT
due to their property of having r constant and being minimal for bi-
nary words: it is known that the BWT of all rotations of Fibonacci
words has 2 runs. This makes our result even more interesting, showing
that, for words characterized by the smallest number of runs possible
in their BWT, r may increase by a non-constant factor when even a
one-character change occurs. Additionally, we showed that appending
a character at the end of a word which is smaller than any other char-
acter in the word may cause the bit-catastrophe. Since the BWT is
widely used in bioinformatics, where single character errors easily occur
and, in particular, where an end-of-string character (smaller than the
alphabet characters) is always appended, these results may be relevant
for general applications of the BWT in this field.

iii) The relevance of the $ character in BWT applications directed our at-
tention to characterizing positions where this character can be inserted
in a word to make it a BWT of some $-terminated word over the same
alphabet. This is the third direction we explored. We showed that
whether and where the $ can be inserted in a word to turn it into
a BWT depends entirely on a specific permutation of the indices of
the word, called standard permutation. We defined subsets of the ele-
ments of the standard permutation of a word called pseudo-cycles that
determine positions in the word which are “forbidden” for the dollar.
Pseudo-cycles allowed us to characterize positions where the dollar can
be inserted to make a word the BWT of a $-terminated word, and we
called these positions nice. Finally, we studied nice positions and the
number of nice positions of a word for fully clustered words, which are
words consisting of exactly one run for each distinct character of the
word, i.e. the best possible instances of BWT words.

Finally, we presented two applications of string compressors in bioinfor-
matics, one for BWT and one for LZ77.

iv) Regarding the BWT, we presented an extension of an already existing
algorithm to find Maximal Exact Matches (MEMs), which we modified
to compute Maximal Unique Matches (MUMs). MEMs and MUMs are
substrings of a pattern P that occur also in a reference text T and
that cannot be extended in either direction. MUMs are also unique
both in P and in T . These matches between patterns and a reference
are used in bioinformatics as prospective anchors for building multi-
ple sequence alignments of genomes. We tested our algorithm on real-
world datasets against MUMmer, the first tool that used MUMs to
compute multiple sequence alignments. We report that mum-phinder
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requires consistently less memory than MUMmer in all experiments,
being up to 25 times smaller. Although MUMmer is generally faster
than mum-phinder (18 times faster for 1 haplotype of chromosome 19,
and 6.5 times faster for 12,500 SARS-CoV2 genomes), it cannot process
longer sequences due to memory limitations.

v) The application we described for LZ77 is that of compressing DNA
short reads. DNA short reads data sets are abundant, very large and
repetitive, properties that make these data sets suitable for compression
with LZ77. We studied a model of short read data sets where the reads
fully cover the genome, from the beginning to the end, and start at
a regular distance from one another. In other words, given a text X
we extract samples of length m at distance d, and we concatenate the
samples in the same order as they appear in X, resulting in a new string
S. We evaluated the size of the LZ77 factorization of S, giving an upper
bound in terms of the length n and the size of the factorization z(X) of
the original text X, and the two parameters m and d. We showed that
the number of phrases of S is at most twice the number of samples plus
twice the number of phrases of X, and that the important parameter
that determines the number of samples is d, while m influences only
the number of samples in which a given position occurs. We gave an
additional and distinct upper bound on the factorization of the string
S ′ where the samples are concatenated in an arbitrary order. In this
case, we showed that the number of phrases of S ′ is at most the length
of X plus twice the number of samples.

7.1 Future work

i) Several open questions remain on the study of the runs-ratio ρ between
the number of runs of the BWT of a word and that of its reverse. We
saw that Fibonacci-plus words are maximal among the class of standard-
plus words with respect to ρ. However, we experimentally saw that they
stay strictly below ρ(n), the maximum among all words of length n: it
is possible to construct binary words of arbitrary length with greater
runs-ratio ρ than any standard-plus word of the same length. However,
we currently do not know the asymptotic growth of the ρ value for such
words. Therefore, the question of closing the gap for ρ(n) between our
lower bound Ω(log n) and the upper bound O(log2 n) remains open. It
would be interesting also to explore the question for larger alphabets.

ii) We saw that even modifications of just one character on Fibonacci words
may affect r by a logarithmic factor, and this holds for all one-character
edit operations: insertion, deletion, substitution. This also proves that
the upper bound O(log n log r) on the multiplicative sensitivity of r
shown in [1] is tight for each edit operation when r = O(1). It would
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be interesting to consider other prefixes of infinite words, and study
whether words whose r is not constant also reach the same increment
in r when a single character is modified, and how the BWT matrix
structure changes after this modification.

On the other hand, in [33] our lower bound for the additive sensitivity
of r was improved, by showing an infinite family of words in which in-
sertion, deletion and substitution of a character increase r by a Θ(

√
n)

additive factor, where n is the length of the word. However, the tight-
ness of the upper bound O(r log r log n) for the additive sensitivity of r
proved in [1] is still an open question.

iii) We characterized nice positions via specific subsets of indices of the
word, that is that essential pseudo-cycles in the standard permutation
of a word describe which positions allow a $ to be inserted and turn the
word in the BWT of a $-terminated word. It would be interesting to
investigate further the standard permutation, for example, whether and
how the number of cycles and pseudo-cycles of the standard permutation
is related to the number of nice positions.

Additionally, we extensively studied nice positions in fully clustered
words over a binary alphabet. We defined a mapping from fully clus-
tered ternary words with k nice positions to binary words with at least
k nice positions. Our preliminary results show that, assuming the phe-
nomenon produced by nk for binary words is true (Conjecture 4, Chap-
ter 5, page 94), for fixed k after a certain length there is a constant
number of ternary words with k nice positions. This is suggested by
the fact that among the words involved in the mapping, only those of
one specific form maintain the same number of nice positions while in-
creasing in length. We have not yet fully defined the mapping, and a
generalization from an alphabet of arbitrary size would be interesting
to know whether the aforementioned regularities in binary and ternary
fully clustered words are preserved for larger alphabets.
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Appendix chapter 3

highest no. of
n runs r(reverse) ρ palindromic factors

45 2, 5, 8, 11, 13, 6 22 3.67 29
45 2, 5, 10, 15, 8, 5 22 3.67 26
45 5, 8, 15, 10, 5, 2 22 3.67 26
45 6, 13, 11, 8, 5, 2 22 3.67 29
45 7, 3, 4, 13, 11, 7 22 3.67 33
45 7, 11, 13, 4, 3, 7 22 3.67 33
47 2, 3, 13, 22, 5, 2 22 3.67 28
47 2, 3, 22, 13, 5, 2 22 3.67 28
47 2, 5, 13, 22, 3, 2 22 3.67 28
47 2, 5, 22, 13, 3, 2 22 3.67 28
47 2, 7, 8, 11, 13, 6 22 3.67 30
47 2, 7, 10, 15, 8, 5 22 3.67 27
47 3, 6, 8, 13, 12, 5 22 3.67 23
47 4, 3, 8, 15, 12, 5 22 3.67 24
47 5, 8, 15, 10, 7, 2 22 3.67 27
47 5, 12, 13, 8, 6, 3 22 3.67 23
47 5, 12, 15, 8, 3, 4 22 3.67 24
47 6, 7, 22, 12 16 4 22
47 6, 9, 12, 3, 10, 7 22 3.67 26
47 6, 13, 11, 8, 7, 2 22 3.67 30
47 6, 19, 10, 12 16 4 20
47 7, 10, 3, 12, 9, 6 22 3.67 26
47 7, 16, 13, 11 16 4 36
47 11, 13, 16, 7 16 4 36
47 12, 10, 19, 6 16 4 20
47 12, 22, 7, 6 16 4 22
53 1, 4, 6, 16, 12, 14 22 3.67 23
53 1, 4, 23, 11, 10, 4 22 3.67 36
53 2, 3, 10, 7, 16, 15 22 3.67 35
53 2, 3, 13, 22, 11, 2 22 3.67 31
53 2, 3, 14, 23, 8, 3 22 3.67 27
53 2, 3, 22, 13, 11, 2 22 3.67 31
53 2, 5, 13, 22, 9, 2 24 4 31
53 2, 5, 22, 13, 9, 2 24 4 31
53 2, 5, 24, 5, 11, 6 22 3.67 34
53 2, 7, 8, 7, 11, 18 22 3.67 29
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n runs r(reverse) ρ palindromic factors
53 2, 7, 8, 11, 19, 6 22 3.67 33
53 2, 7, 12, 17, 9, 6 22 3.67 27
53 2, 7, 12, 19, 8, 5 22 3.67 28
53 2, 7, 13, 22, 7, 2 24 4 31
53 2, 7, 22, 13, 7, 2 24 4 31
53 2, 9, 5, 12, 15, 10 22 3.67 42
53 2, 9, 7, 4, 17, 14 22 3.67 38
53 2, 9, 10, 13, 11, 8 22 3.67 33
53 2, 9, 12, 15, 5, 10 22 3.67 36
53 2, 9, 13, 16, 5, 8 22 3.67 31
53 2, 9, 13, 22, 5, 2 24 4 31
53 2, 9, 22, 13, 5, 2 24 4 31
53 2, 11, 13, 22, 3, 2 22 3.67 31
53 2, 11, 22, 13, 3, 2 22 3.67 31
53 2, 13, 8, 11, 13, 6 22 3.67 33
53 2, 13, 10, 15, 8, 5 22 3.67 30
53 3, 4, 22, 13, 8, 3 22 3.67 36
53 3, 6, 9, 14, 15, 6 22 3.67 29
53 3, 7, 12, 18, 6, 7 22 3.67 26
53 3, 8, 13, 22, 4, 3 22 3.67 36
53 3, 8, 23, 14, 3, 2 22 3.67 27
53 3, 12, 8, 13, 12, 5 22 3.67 25
53 4, 3, 9, 16, 15, 6 22 3.67 30
53 4, 7, 17, 8, 13, 4 22 3.67 34
53 4, 8, 9, 15, 12, 5 22 3.67 24
53 4, 9, 8, 17, 11, 4 22 3.67 34
53 4, 10, 11, 23, 4, 1 22 3.67 36
53 4, 11, 17, 8, 9, 4 22 3.67 34
53 4, 13, 8, 17, 7, 4 22 3.67 34
53 5, 8, 15, 10, 13, 2 22 3.67 30
53 5, 8, 17, 9, 8, 6 22 3.67 27
53 5, 8, 19, 12, 7, 2 22 3.67 28
53 5, 11, 22, 15 16 4 30
53 5, 12, 13, 8, 12, 3 22 3.67 25
53 5, 12, 15, 9, 8, 4 22 3.67 24
53 5, 12, 19, 8, 3, 6 22 3.67 30
53 5, 13, 8, 15, 3, 9 22 3.67 37
53 6, 3, 8, 19, 12, 5 22 3.67 30
53 6, 8, 3, 20, 10, 6 22 3.67 37
53 6, 8, 9, 17, 8, 5 22 3.67 27
53 6, 9, 17, 12, 7, 2 22 3.67 27
53 6, 10, 17, 3, 6, 11 22 3.67 25
53 6, 10, 20, 3, 8, 6 22 3.67 37
53 6, 11, 5, 24, 5, 2 22 3.67 34
53 6, 13, 11, 8, 13, 2 22 3.67 33
53 6, 13, 22, 12 18 4.5 24
53 6, 15, 12, 3, 10, 7 22 3.67 29
53 6, 15, 14, 9, 6, 3 22 3.67 29
53 6, 15, 16, 9, 3, 4 22 3.67 30
53 6, 19, 11, 8, 7, 2 22 3.67 33
53 6, 25, 10, 12 16 4 22
53 7, 3, 1, 14, 15, 13 22 3.67 37
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n runs r(reverse) ρ palindromic factors
53 7, 6, 18, 12, 7, 3 22 3.67 26
53 7, 9, 4, 14, 12, 7 22 3.67 40
53 7, 9, 14, 4, 12, 7 22 3.67 26
53 7, 10, 3, 12, 15, 6 22 3.67 29
53 7, 12, 4, 14, 9, 7 22 3.67 26
53 7, 12, 14, 4, 9, 7 22 3.67 40
53 7, 13, 18, 15 16 4 19
53 7, 16, 17, 13 16 4 39
53 8, 3, 5, 16, 13, 8 22 3.67 41
53 8, 5, 16, 13, 9, 2 22 3.67 31
53 8, 9, 6, 2, 16, 12 22 3.67 26
53 8, 9, 8, 2, 14, 12 22 3.67 29
53 8, 11, 9, 10, 5, 10 22 3.67 33
53 8, 11, 13, 10, 9, 2 22 3.67 33
53 8, 13, 16, 5, 3, 8 22 3.67 41
53 8, 14, 16, 15 16 4 19
53 9, 3, 15, 8, 13, 5 22 3.67 37
53 9, 19, 10, 15 16 4 22
53 10, 5, 10, 9, 11, 8 22 3.67 33
53 10, 5, 15, 12, 9, 2 22 3.67 36
53 10, 15, 12, 5, 9, 2 22 3.67 42
53 11, 6, 3, 17, 10, 6 22 3.67 25
53 12, 10, 25, 6 16 4 22
53 12, 14, 2, 8, 9, 8 22 3.67 29
53 12, 16, 2, 6, 9, 8 22 3.67 26
53 12, 22, 13, 6 18 4.5 24
53 13, 15, 14, 1, 3, 7 22 3.67 37
53 13, 17, 16, 7 16 4 39
53 14, 12, 16, 6, 4, 1 22 3.67 23
53 14, 17, 4, 7, 9, 2 22 3.67 38
53 15, 10, 19, 9 16 4 22
53 15, 16, 7, 10, 3, 2 22 3.67 35
53 15, 16, 14, 8 16 4 19
53 15, 18, 13, 7 16 4 19
53 15, 22, 11, 5 16 4 30
53 18, 11, 7, 8, 7, 2 22 3.67 29
55 6, 11, 26, 12 18 4.5 25
55 12, 26, 11, 6 18 4.5 25
68 2, 5, 14, 21, 19, 7 26 4.33 35
68 2, 7, 13, 19, 19, 8 26 4.33 40
68 7, 13, 33, 15 18 4.5 25
68 7, 19, 21, 14, 5, 2 26 4.33 35
68 8, 14, 31, 15 18 4.5 25
68 8, 19, 19, 13, 7, 2 26 4.33 40
68 9, 19, 25, 15 18 4.5 29
68 12, 16, 5, 3, 20, 12 26 4.33 36
68 12, 20, 3, 5, 16, 12 26 4.33 36
68 15, 25, 19, 9 18 4.5 29
68 15, 31, 14, 8 18 4.5 25
68 15, 33, 13, 7 18 4.5 25
78 2, 5, 10, 7, 37, 17 26 4.33 50
78 2, 5, 15, 21, 25, 10 26 4.33 45
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78 2, 5, 17, 25, 21, 8 26 4.33 35
78 2, 5, 31, 13, 19, 8 26 4.33 46
78 2, 7, 7, 31, 17, 14 26 4.33 52
78 2, 9, 13, 19, 27, 8 26 4.33 45
78 2, 9, 21, 27, 13, 6 26 4.33 33
78 2, 15, 14, 21, 19, 7 26 4.33 40
78 2, 17, 13, 19, 19, 8 26 4.33 45
78 3, 7, 13, 10, 24, 21 26 4.33 39
78 4, 7, 16, 27, 17, 7 26 4.33 28
78 4, 7, 32, 17, 13, 5 26 4.33 24
78 4, 8, 29, 15, 17, 5 26 4.33 24
78 5, 9, 19, 33, 4, 8 26 4.33 36
78 5, 13, 17, 32, 7, 4 26 4.33 24
78 5, 17, 15, 29, 8, 4 26 4.33 24
78 6, 8, 37, 11, 10, 6 26 4.33 36
78 6, 10, 11, 37, 8, 6 26 4.33 36
78 6, 13, 27, 21, 9, 2 26 4.33 33
78 7, 5, 15, 26, 15, 10 26 4.33 22
78 7, 11, 27, 13, 8, 12 26 4.33 26
78 7, 16, 36, 19 18 4.5 27
78 7, 17, 27, 16, 7, 4 26 4.33 28
78 7, 19, 21, 14, 15, 2 26 4.33 40
78 8, 4, 33, 19, 9, 5 26 4.33 36
78 8, 12, 9, 18, 20, 11 26 4.33 36
78 8, 19, 13, 31, 5, 2 26 4.33 46
78 8, 19, 19, 13, 17, 2 26 4.33 45
78 8, 21, 25, 17, 5, 2 26 4.33 35
78 8, 27, 19, 13, 9, 2 26 4.33 45
78 9, 11, 9, 14, 20, 15 26 4.33 34
78 9, 14, 20, 5, 19, 11 26 4.33 36
78 9, 14, 22, 5, 16, 12 26 4.33 43
78 9, 16, 36, 17 18 4.5 25
78 10, 15, 26, 15, 5, 7 26 4.33 22
78 10, 16, 5, 17, 19, 11 26 4.33 39
78 10, 22, 29, 17 18 4.5 29
78 10, 25, 21, 15, 5, 2 26 4.33 45
78 11, 17, 17, 3, 18, 12 26 4.33 34
78 11, 19, 5, 20, 14, 9 26 4.33 36
78 11, 19, 17, 5, 16, 10 26 4.33 39
78 11, 20, 18, 9, 12, 8 26 4.33 36
78 12, 8, 13, 27, 11, 7 26 4.33 26
78 12, 16, 5, 22, 14, 9 26 4.33 43
78 12, 18, 3, 17, 17, 11 26 4.33 34
78 12, 22, 13, 31 18 4.5 35
78 12, 26, 11, 29 18 4.5 35
78 14, 17, 31, 7, 7, 2 26 4.33 52
78 15, 10, 5, 10, 21, 17 26 4.33 53
78 15, 20, 14, 9, 11, 9 26 4.33 34
78 17, 21, 10, 5, 10, 15 26 4.33 53
78 17, 29, 22, 10 18 4.5 29
78 17, 36, 16, 9 18 4.5 25
78 17, 37, 7, 10, 5, 2 26 4.33 50
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78 19, 36, 16, 7 18 4.5 27
78 21, 24, 10, 13, 7, 3 26 4.33 39
78 29, 11, 26, 12 18 4.5 35
78 31, 13, 22, 12 18 4.5 35
89 2, 5, 20, 27, 25, 10 28 4.67 34
89 2, 9, 22, 19, 20, 17 28 4.67 40
89 2, 11, 19, 28, 21, 8 28 4.67 32
89 4, 7, 41, 24, 9, 4 28 4.67 29
89 4, 8, 18, 30, 21, 8 28 4.67 26
89 4, 9, 24, 41, 7, 4 28 4.67 29
89 6, 4, 14, 24, 32, 9 28 4.67 26
89 8, 21, 28, 19, 11, 2 28 4.67 32
89 8, 21, 30, 18, 8, 4 28 4.67 26
89 9, 4, 14, 30, 23, 9 28 4.67 27
89 9, 23, 30, 14, 4, 9 28 4.67 27
89 9, 32, 24, 14, 4, 6 28 4.67 26
89 10, 25, 27, 20, 5, 2 28 4.67 34
89 12, 15, 6, 23, 21, 12 28 4.67 44
89 12, 21, 23, 6, 15, 12 28 4.67 44
89 12, 26, 28, 23 20 5 25
89 15, 17, 4, 10, 28, 15 28 4.67 47
89 15, 28, 10, 4, 17, 15 28 4.67 47
89 16, 17, 6, 10, 24, 16 28 4.67 27
89 16, 24, 10, 6, 17, 16 28 4.67 27
89 17, 20, 19, 22, 9, 2 28 4.67 40
89 23, 28, 26, 12 20 5 25
90 2, 5, 20, 17, 31, 15 28 4.67 39
90 2, 5, 22, 31, 19, 11 28 4.67 32
90 2, 5, 25, 31, 19, 8 28 4.67 31
90 4, 7, 18, 29, 23, 9 28 4.67 34
90 6, 10, 11, 37, 20, 6 28 4.67 38
90 6, 14, 37, 11, 16, 6 28 4.67 40
90 6, 16, 11, 37, 14, 6 28 4.67 40
90 6, 20, 37, 11, 10, 6 28 4.67 38
90 7, 10, 13, 42, 11, 7 28 4.67 35
90 7, 11, 42, 13, 10, 7 28 4.67 35
90 8, 19, 31, 25, 5, 2 28 4.67 31
90 9, 23, 29, 18, 7, 4 28 4.67 34
90 11, 18, 24, 6, 18, 13 28 4.67 40
90 11, 19, 31, 22, 5, 2 28 4.67 32
90 13, 18, 6, 24, 18, 11 28 4.67 40
90 13, 28, 10, 9, 11, 19 28 4.67 38
90 15, 31, 17, 20, 5, 2 28 4.67 39
90 18, 13, 5, 13, 23, 18 28 4.67 53
90 18, 23, 13, 5, 13, 18 28 4.67 53
90 19, 11, 9, 10, 28, 13 28 4.67 38
93 2, 5, 40, 19, 19, 8 28 4.67 51
93 2, 7, 19, 28, 29, 8 28 4.67 32
93 2, 9, 20, 27, 25, 10 28 4.67 36
93 2, 13, 22, 19, 20, 17 28 4.67 42
93 2, 15, 19, 28, 21, 8 28 4.67 34
93 4, 7, 41, 24, 13, 4 28 4.67 30
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93 4, 9, 24, 41, 11, 4 28 4.67 30
93 4, 11, 41, 24, 9, 4 28 4.67 30
93 4, 12, 18, 30, 21, 8 28 4.67 27
93 4, 13, 24, 41, 7, 4 28 4.67 30
93 6, 10, 13, 41, 16, 7 28 4.67 37
93 6, 10, 16, 26, 25, 10 28 4.67 25
93 6, 10, 37, 20, 14, 6 28 4.67 24
93 6, 14, 20, 37, 10, 6 28 4.67 24
93 6, 14, 42, 12, 12, 7 28 4.67 46
93 7, 12, 12, 42, 14, 6 28 4.67 46
93 7, 16, 41, 13, 10, 6 28 4.67 37
93 8, 15, 37, 4, 17, 12 28 4.67 44
93 8, 19, 19, 40, 5, 2 28 4.67 51
93 8, 21, 28, 19, 15, 2 28 4.67 34
93 8, 21, 30, 18, 12, 4 28 4.67 27
93 8, 29, 28, 19, 7, 2 28 4.67 32
93 9, 11, 12, 17, 26, 18 28 4.67 33
93 9, 13, 20, 35, 4, 12 28 4.67 37
93 9, 14, 12, 16, 23, 19 28 4.67 33
93 10, 16, 27, 5, 20, 15 28 4.67 39
93 10, 25, 26, 16, 10, 6 28 4.67 25
93 10, 25, 27, 20, 9, 2 28 4.67 36
93 12, 4, 35, 20, 13, 9 28 4.67 37
93 12, 8, 18, 27, 16, 12 28 4.67 20
93 12, 16, 27, 18, 8, 12 28 4.67 20
93 12, 17, 4, 37, 15, 8 28 4.67 44
93 12, 20, 24, 5, 18, 14 30 5 39
93 14, 18, 5, 24, 20, 12 30 5 39
93 14, 30, 22, 27 20 5 18
93 15, 20, 5, 27, 16, 10 28 4.67 39
93 17, 20, 19, 22, 13, 2 28 4.67 42
93 18, 26, 17, 12, 11, 9 28 4.67 33
93 19, 23, 16, 12, 14, 9 28 4.67 33
93 27, 22, 30, 14 20 5 18
95 2, 5, 24, 21, 24, 19 28 4.67 43
95 2, 7, 40, 19, 19, 8 28 4.67 52
95 2, 9, 19, 28, 29, 8 28 4.67 33
95 2, 11, 20, 27, 25, 10 28 4.67 37
95 2, 15, 22, 19, 20, 17 28 4.67 43
95 2, 17, 19, 28, 21, 8 28 4.67 35
95 3, 7, 20, 31, 25, 9 28 4.67 29
95 5, 8, 19, 34, 21, 8 28 4.67 28
95 5, 13, 32, 15, 21, 9 28 4.67 49
95 6, 10, 14, 24, 32, 9 28 4.67 27
95 6, 10, 18, 20, 28, 13 28 4.67 22
95 6, 10, 23, 40, 6, 10 28 4.67 36
95 6, 10, 38, 21, 14, 6 28 4.67 24
95 6, 13, 20, 37, 11, 8 28 4.67 27
95 6, 14, 21, 38, 10, 6 28 4.67 24
95 7, 5, 17, 28, 27, 11 28 4.67 24
95 7, 12, 15, 26, 25, 10 28 4.67 25
95 8, 11, 37, 20, 13, 6 28 4.67 27
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95 8, 12, 9, 35, 20, 11 28 4.67 44
95 8, 19, 19, 40, 7, 2 28 4.67 52
95 8, 21, 28, 19, 17, 2 28 4.67 35
95 8, 21, 34, 19, 8, 5 28 4.67 28
95 8, 29, 28, 19, 9, 2 28 4.67 33
95 9, 13, 18, 29, 16, 10 28 4.67 27
95 9, 14, 7, 30, 15, 20 28 4.67 31
95 9, 21, 15, 32, 13, 5 28 4.67 49
95 9, 25, 31, 20, 7, 3 28 4.67 29
95 9, 32, 24, 14, 10, 6 28 4.67 27
95 10, 6, 40, 23, 10, 6 28 4.67 36
95 10, 16, 29, 18, 13, 9 28 4.67 27
95 10, 25, 26, 15, 12, 7 28 4.67 25
95 10, 25, 27, 20, 11, 2 28 4.67 37
95 10, 26, 23, 5, 18, 13 28 4.67 39
95 11, 20, 35, 9, 12, 8 28 4.67 44
95 11, 27, 28, 17, 5, 7 28 4.67 24
95 12, 16, 7, 22, 24, 14 28 4.67 40
95 12, 16, 8, 23, 22, 14 28 4.67 35
95 12, 20, 25, 7, 18, 13 28 4.67 45
95 13, 18, 5, 23, 26, 10 28 4.67 39
95 13, 18, 7, 25, 20, 12 28 4.67 45
95 13, 28, 20, 18, 10, 6 28 4.67 22
95 14, 19, 12, 4, 26, 20 28 4.67 27
95 14, 20, 13, 4, 24, 20 28 4.67 35
95 14, 22, 23, 8, 16, 12 28 4.67 35
95 14, 24, 22, 7, 16, 12 28 4.67 40
95 14, 30, 23, 28 20 5 18
95 16, 8, 9, 22, 24, 16 28 4.67 25
95 16, 20, 10, 7, 24, 18 28 4.67 30
95 16, 24, 22, 9, 8, 16 28 4.67 25
95 17, 20, 19, 22, 15, 2 28 4.67 43
95 17, 20, 24, 10, 5, 19 28 4.67 42
95 18, 19, 12, 7, 20, 19 28 4.67 36
95 18, 24, 7, 10, 20, 16 28 4.67 30
95 18, 34, 19, 24 20 5 34
95 19, 5, 10, 24, 20, 17 28 4.67 42
95 19, 20, 7, 12, 19, 18 28 4.67 36
95 19, 24, 21, 24, 5, 2 28 4.67 43
95 20, 15, 30, 7, 14, 9 28 4.67 31
95 20, 24, 4, 13, 20, 14 28 4.67 35
95 20, 26, 4, 12, 19, 14 28 4.67 27
95 24, 19, 34, 18 20 5 34
95 28, 23, 30, 14 20 5 18

106 2, 5, 15, 21, 29, 34 28 4.67 21
106 2, 5, 21, 41, 25, 12 28 4.67 29
106 2, 5, 25, 31, 35, 8 28 4.67 33
106 2, 5, 25, 33, 29, 12 28 4.67 34
106 2, 5, 29, 35, 25, 10 28 4.67 31
106 2, 5, 39, 13, 35, 12 28 4.67 59
106 2, 7, 19, 49, 21, 8 28 4.67 38
106 2, 7, 45, 13, 17, 22 28 4.67 29
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106 2, 9, 22, 19, 37, 17 30 5 47
106 2, 9, 25, 31, 25, 14 28 4.67 28
106 2, 9, 43, 13, 25, 14 28 4.67 59
106 2, 11, 24, 21, 17, 31 28 4.67 40
106 2, 13, 25, 31, 27, 8 28 4.67 36
106 2, 13, 38, 13, 25, 15 28 4.67 46
106 2, 15, 42, 21, 19, 7 28 4.67 50
106 2, 17, 39, 13, 23, 12 28 4.67 59
106 2, 21, 20, 17, 31, 15 28 4.67 47
106 2, 21, 22, 31, 19, 11 28 4.67 40
106 2, 21, 25, 31, 19, 8 28 4.67 39
106 3, 14, 22, 34, 24, 9 28 4.67 31
106 4, 6, 45, 25, 20, 6 28 4.67 38
106 4, 8, 29, 48, 12, 5 28 4.67 27
106 4, 9, 44, 17, 21, 11 28 4.67 34
106 4, 11, 20, 31, 29, 11 28 4.67 41
106 4, 23, 18, 29, 23, 9 28 4.67 38
106 5, 9, 42, 16, 23, 11 28 4.67 29
106 5, 11, 19, 34, 29, 8 28 4.67 31
106 5, 11, 22, 36, 21, 11 28 4.67 27
106 5, 12, 37, 16, 25, 11 28 4.67 49
106 5, 12, 48, 29, 8, 4 28 4.67 27
106 5, 13, 17, 14, 30, 27 28 4.67 41
106 5, 13, 21, 36, 22, 9 28 4.67 29
106 5, 13, 45, 17, 14, 12 28 4.67 28
106 5, 14, 22, 36, 18, 11 28 4.67 32
106 5, 15, 20, 34, 23, 9 28 4.67 27
106 5, 23, 18, 32, 20, 8 28 4.67 31
106 6, 4, 27, 37, 23, 9 28 4.67 24
106 6, 8, 21, 37, 24, 10 28 4.67 40
106 6, 9, 22, 39, 21, 9 28 4.67 28
106 6, 10, 14, 44, 23, 9 30 5 32
106 6, 10, 18, 44, 15, 13 28 4.67 26
106 6, 10, 21, 22, 32, 15 28 4.67 22
106 6, 10, 37, 19, 18, 16 28 4.67 24
106 6, 14, 8, 26, 33, 19 28 4.67 31
106 6, 14, 20, 36, 21, 9 28 4.67 35
106 6, 16, 13, 41, 23, 7 28 4.67 41
106 6, 16, 18, 28, 27, 11 28 4.67 26
106 6, 19, 19, 35, 19, 8 28 4.67 30
106 6, 20, 19, 35, 18, 8 28 4.67 30
106 6, 20, 25, 45, 6, 4 28 4.67 38
106 6, 20, 42, 12, 19, 7 28 4.67 51
106 7, 5, 17, 28, 38, 11 28 4.67 26
106 7, 5, 18, 29, 34, 13 28 4.67 30
106 7, 5, 20, 32, 30, 12 28 4.67 24
106 7, 5, 24, 44, 16, 10 28 4.67 25
106 7, 9, 23, 42, 15, 10 28 4.67 26
106 7, 10, 18, 31, 29, 11 28 4.67 25
106 7, 11, 10, 30, 18, 30 28 4.67 35
106 7, 11, 10, 30, 28, 20 28 4.67 41
106 7, 11, 13, 44, 24, 7 28 4.67 38
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highest no. of

n runs r(reverse) ρ palindromic factors
106 7, 11, 17, 28, 31, 12 28 4.67 31
106 7, 11, 22, 42, 17, 7 28 4.67 24
106 7, 11, 41, 21, 18, 8 28 4.67 24
106 7, 11, 47, 14, 19, 8 28 4.67 47
106 7, 11, 52, 15, 12, 9 28 4.67 51
106 7, 12, 18, 30, 28, 11 28 4.67 25
106 7, 12, 20, 23, 30, 14 28 4.67 22
106 7, 17, 15, 46, 13, 8 28 4.67 38
106 7, 17, 42, 22, 11, 7 28 4.67 24
106 7, 17, 44, 13, 18, 7 28 4.67 40
106 7, 18, 13, 44, 17, 7 28 4.67 40
106 7, 19, 12, 42, 20, 6 28 4.67 51
106 7, 19, 16, 28, 26, 10 28 4.67 26
106 7, 19, 21, 42, 15, 2 28 4.67 50
106 7, 23, 41, 13, 16, 6 28 4.67 41
106 7, 24, 44, 13, 11, 7 28 4.67 38
106 8, 10, 50, 14, 15, 9 28 4.67 36
106 8, 12, 9, 35, 31, 11 28 4.67 49
106 8, 13, 46, 15, 17, 7 28 4.67 38
106 8, 14, 38, 14, 17, 15 28 4.67 25
106 8, 14, 45, 5, 20, 14 28 4.67 43
106 8, 18, 21, 41, 11, 7 28 4.67 24
106 8, 18, 35, 19, 20, 6 28 4.67 30
106 8, 19, 14, 47, 11, 7 28 4.67 47
106 8, 19, 31, 25, 21, 2 28 4.67 39
106 8, 19, 35, 19, 19, 6 28 4.67 30
106 8, 20, 6, 26, 29, 17 28 4.67 40
106 8, 20, 32, 18, 23, 5 28 4.67 31
106 8, 21, 49, 19, 7, 2 28 4.67 38
106 8, 27, 31, 25, 13, 2 28 4.67 36
106 8, 29, 34, 19, 11, 5 28 4.67 31
106 8, 35, 31, 25, 5, 2 28 4.67 33
106 9, 12, 15, 52, 11, 7 28 4.67 51
106 9, 13, 16, 27, 32, 9 28 4.67 29
106 9, 13, 22, 27, 20, 15 28 4.67 20
106 9, 13, 50, 14, 8, 12 28 4.67 31
106 9, 14, 27, 16, 31, 9 28 4.67 33
106 9, 14, 32, 5, 29, 17 28 4.67 40
106 9, 14, 36, 19, 16, 12 28 4.67 45
106 9, 15, 14, 50, 10, 8 28 4.67 36
106 9, 15, 16, 29, 26, 11 28 4.67 25
106 9, 15, 25, 38, 5, 14 28 4.67 50
106 9, 20, 12, 17, 19, 29 28 4.67 20
106 9, 21, 36, 20, 14, 6 28 4.67 35
106 9, 21, 39, 22, 9, 6 28 4.67 28
106 9, 22, 16, 17, 10, 32 28 4.67 37
106 9, 22, 16, 27, 23, 9 28 4.67 31
106 9, 22, 36, 21, 13, 5 28 4.67 29
106 9, 23, 27, 16, 22, 9 28 4.67 31
106 9, 23, 29, 18, 23, 4 28 4.67 38
106 9, 23, 34, 20, 15, 5 28 4.67 27
106 9, 23, 37, 27, 4, 6 28 4.67 24
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highest no. of

n runs r(reverse) ρ palindromic factors
106 9, 23, 44, 14, 10, 6 30 5 32
106 9, 24, 34, 22, 14, 3 28 4.67 31
106 9, 31, 16, 27, 14, 9 28 4.67 33
106 9, 32, 27, 16, 13, 9 28 4.67 29
106 10, 15, 42, 23, 9, 7 28 4.67 26
106 10, 16, 44, 24, 5, 7 28 4.67 25
106 10, 24, 37, 21, 8, 6 28 4.67 40
106 10, 25, 35, 29, 5, 2 28 4.67 31
106 10, 25, 38, 15, 5, 13 28 4.67 30
106 10, 26, 28, 16, 19, 7 28 4.67 26
106 11, 15, 11, 24, 28, 17 28 4.67 36
106 11, 17, 12, 24, 27, 15 28 4.67 36
106 11, 18, 24, 5, 34, 14 28 4.67 35
106 11, 18, 32, 6, 22, 17 28 4.67 48
106 11, 18, 36, 22, 14, 5 28 4.67 32
106 11, 19, 31, 22, 21, 2 28 4.67 40
106 11, 21, 17, 44, 9, 4 28 4.67 34
106 11, 21, 36, 22, 11, 5 28 4.67 27
106 11, 23, 16, 42, 9, 5 28 4.67 29
106 11, 25, 16, 37, 12, 5 28 4.67 49
106 11, 26, 29, 16, 15, 9 28 4.67 25
106 11, 27, 28, 18, 16, 6 28 4.67 26
106 11, 28, 30, 18, 12, 7 28 4.67 25
106 11, 29, 31, 18, 10, 7 28 4.67 25
106 11, 29, 31, 20, 11, 4 28 4.67 41
106 11, 31, 35, 9, 12, 8 28 4.67 49
106 11, 38, 28, 17, 5, 7 28 4.67 26
106 12, 8, 14, 50, 13, 9 28 4.67 31
106 12, 14, 17, 45, 13, 5 28 4.67 28
106 12, 16, 10, 24, 27, 17 28 4.67 31
106 12, 16, 12, 20, 27, 19 30 5 33
106 12, 16, 12, 26, 25, 15 28 4.67 41
106 12, 16, 19, 36, 14, 9 28 4.67 45
106 12, 20, 21, 5, 18, 30 28 4.67 41
106 12, 20, 35, 5, 11, 23 28 4.67 32
106 12, 23, 13, 39, 17, 2 28 4.67 59
106 12, 25, 41, 21, 5, 2 28 4.67 29
106 12, 26, 33, 8, 10, 17 28 4.67 27
106 12, 29, 33, 25, 5, 2 28 4.67 34
106 12, 30, 32, 20, 5, 7 28 4.67 24
106 12, 31, 28, 17, 11, 7 28 4.67 31
106 12, 35, 13, 39, 5, 2 28 4.67 59
106 13, 5, 15, 38, 25, 10 28 4.67 30
106 13, 15, 10, 20, 29, 19 28 4.67 39
106 13, 15, 44, 18, 10, 6 28 4.67 26
106 13, 17, 8, 26, 27, 15 28 4.67 45
106 13, 17, 34, 10, 10, 22 28 4.67 28
106 13, 19, 9, 18, 28, 19 28 4.67 48
106 13, 20, 28, 8, 22, 15 28 4.67 40
106 13, 34, 29, 18, 5, 7 28 4.67 30
106 14, 5, 38, 25, 15, 9 28 4.67 50
106 14, 16, 49, 27 20 5 22
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highest no. of

n runs r(reverse) ρ palindromic factors
106 14, 20, 5, 45, 14, 8 28 4.67 43
106 14, 22, 35, 8, 8, 19 28 4.67 41
106 14, 25, 13, 43, 9, 2 28 4.67 59
106 14, 25, 31, 25, 9, 2 28 4.67 28
106 14, 30, 23, 20, 12, 7 28 4.67 22
106 14, 34, 5, 24, 18, 11 28 4.67 35
106 15, 8, 7, 30, 17, 29 28 4.67 45
106 15, 10, 19, 10, 21, 31 28 4.67 55
106 15, 12, 10, 21, 33, 15 28 4.67 26
106 15, 17, 14, 38, 14, 8 28 4.67 25
106 15, 17, 26, 8, 25, 15 28 4.67 28
106 15, 20, 14, 4, 30, 23 28 4.67 27
106 15, 20, 23, 12, 19, 17 28 4.67 26
106 15, 20, 27, 22, 13, 9 28 4.67 20
106 15, 21, 15, 4, 28, 23 28 4.67 31
106 15, 22, 6, 23, 24, 16 28 4.67 34
106 15, 22, 8, 28, 20, 13 28 4.67 40
106 15, 23, 34, 8, 7, 19 30 5 40
106 15, 25, 8, 26, 17, 15 28 4.67 28
106 15, 25, 13, 38, 13, 2 28 4.67 46
106 15, 25, 26, 12, 16, 12 28 4.67 41
106 15, 25, 34, 8, 6, 18 28 4.67 42
106 15, 27, 24, 12, 17, 11 28 4.67 36
106 15, 27, 26, 8, 17, 13 28 4.67 45
106 15, 31, 17, 20, 21, 2 28 4.67 47
106 15, 31, 24, 10, 7, 19 28 4.67 46
106 15, 32, 22, 21, 10, 6 28 4.67 22
106 15, 33, 21, 10, 12, 15 28 4.67 26
106 15, 35, 31, 25 20 5 39
106 16, 18, 19, 37, 10, 6 28 4.67 24
106 16, 24, 23, 6, 22, 15 28 4.67 34
106 17, 3, 10, 22, 37, 17 28 4.67 46
106 17, 10, 3, 30, 19, 27 28 4.67 45
106 17, 10, 8, 33, 26, 12 28 4.67 27
106 17, 19, 7, 8, 22, 33 28 4.67 26
106 17, 19, 8, 9, 32, 21 28 4.67 27
106 17, 19, 12, 23, 20, 15 28 4.67 26
106 17, 21, 12, 7, 28, 21 28 4.67 30
106 17, 22, 6, 32, 18, 11 28 4.67 48
106 17, 26, 14, 7, 22, 20 28 4.67 27
106 17, 26, 16, 5, 21, 21 28 4.67 34
106 17, 27, 24, 10, 16, 12 28 4.67 31
106 17, 28, 24, 11, 15, 11 28 4.67 36
106 17, 29, 5, 32, 14, 9 28 4.67 40
106 17, 29, 26, 6, 20, 8 28 4.67 40
106 17, 36, 10, 9, 11, 23 28 4.67 23
106 17, 37, 19, 22, 9, 2 30 5 47
106 17, 37, 22, 10, 3, 17 28 4.67 46
106 17, 39, 26, 24 20 5 36
106 18, 6, 8, 34, 25, 15 28 4.67 42
106 18, 15, 9, 15, 27, 22 28 4.67 56
106 18, 20, 13, 13, 16, 26 28 4.67 43
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highest no. of

n runs r(reverse) ρ palindromic factors
106 18, 22, 9, 5, 32, 20 28 4.67 36
106 19, 7, 8, 34, 23, 15 30 5 40
106 19, 7, 10, 24, 31, 15 28 4.67 46
106 19, 8, 8, 35, 22, 14 28 4.67 41
106 19, 13, 9, 14, 28, 23 28 4.67 63
106 19, 27, 20, 12, 16, 12 30 5 33
106 19, 28, 18, 9, 19, 13 28 4.67 48
106 19, 29, 20, 10, 15, 13 28 4.67 39
106 19, 33, 26, 8, 14, 6 28 4.67 31
106 20, 22, 7, 14, 26, 17 28 4.67 27
106 20, 28, 30, 10, 11, 7 28 4.67 41
106 20, 32, 5, 9, 22, 18 28 4.67 36
106 21, 21, 5, 16, 26, 17 28 4.67 34
106 21, 28, 7, 12, 21, 17 28 4.67 30
106 21, 32, 9, 8, 19, 17 28 4.67 27
106 22, 10, 10, 34, 17, 13 28 4.67 28
106 22, 17, 5, 13, 27, 22 28 4.67 61
106 22, 17, 13, 45, 7, 2 28 4.67 29
106 22, 26, 15, 7, 8, 28 28 4.67 24
106 22, 27, 13, 5, 17, 22 28 4.67 61
106 22, 27, 15, 9, 15, 18 28 4.67 56
106 23, 11, 5, 35, 20, 12 28 4.67 32
106 23, 11, 9, 10, 36, 17 28 4.67 23
106 23, 28, 4, 15, 21, 15 28 4.67 31
106 23, 28, 14, 9, 13, 19 28 4.67 63
106 23, 30, 4, 14, 20, 15 28 4.67 27
106 24, 26, 39, 17 20 5 36
106 25, 31, 35, 15 20 5 39
106 26, 16, 13, 13, 20, 18 28 4.67 43
106 27, 19, 30, 3, 10, 17 28 4.67 45
106 27, 30, 14, 17, 13, 5 28 4.67 41
106 27, 49, 16, 14 20 5 22
106 28, 8, 7, 15, 26, 22 28 4.67 24
106 29, 17, 30, 7, 8, 15 28 4.67 45
106 29, 19, 17, 12, 20, 9 28 4.67 20
106 30, 18, 5, 21, 20, 12 28 4.67 41
106 30, 18, 30, 10, 11, 7 28 4.67 35
106 31, 17, 21, 24, 11, 2 28 4.67 40
106 31, 21, 10, 19, 10, 15 28 4.67 55
106 32, 10, 17, 16, 22, 9 28 4.67 37
106 33, 22, 8, 7, 19, 17 28 4.67 26
106 34, 29, 21, 15, 5, 2 28 4.67 21

Table A.2: Examples of words with higher ρ than standard-plus words.
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n p q t ρ

4 1 1 1 1.0
9 2 4 1 2.0

13 3 6 1 2.0
17 4 7 2 2.5
23 5 10 3 3.0
33 6 13 8 3.5
39 7 16 9 3.5
39 9 16 5 3.5
45 8 19 10 3.5
47 10 23 4 3.5
53 11 28 3 3.5
55 12 24 7 4.0
65 15 28 7 4.5
68 13 21 21 4.0
77 14 30 19 4.5
77 18 31 10 4.5
78 17 39 5 4.0
89 16 36 21 4.5
90 19 45 7 4.5
93 21 46 5 4.5
93 22 39 10 4.5
95 20 48 7 4.5

106 23 53 7 4.5
107 28 39 12 5.0
118 25 59 9 5.0
119 32 40 15 5.0
123 24 43 32 5.0
124 29 51 15 5.0
131 30 55 16 5.0
139 26 46 41 5.0
140 27 51 35 5.0
143 33 64 13 5.0
159 34 73 18 5.5
160 35 69 21 5.5
170 31 67 41 5.5
179 38 90 13 5.0
182 39 83 21 5.5
185 43 78 21 5.5
185 44 76 21 5.5
191 40 96 15 5.5
197 36 77 48 5.5
197 42 91 22 6.0
199 46 85 22 5.5

n p q t ρ

206 37 85 47 5.5
207 48 88 23 5.5
210 45 103 17 5.0
221 50 105 16 5.5
226 41 89 55 6.0
227 54 102 17 5.5
232 53 99 27 6.0
233 49 118 17 5.5
236 63 81 29 6.0
239 51 110 27 6.0
245 52 120 21 5.5
255 68 88 31 6.0
256 59 105 33 6.0
259 60 111 28 5.5
260 61 117 21 5.5
262 47 107 61 6.0
262 55 131 21 5.5
263 56 122 29 6.0
266 57 121 31 6.0
269 58 118 35 6.0
271 62 115 32 6.0
288 75 115 23 6.0
299 67 150 15 5.5
303 64 151 24 6.0
304 65 139 35 6.0
305 69 136 31 6.0
308 81 111 35 6.0
310 71 131 37 6.0
311 66 145 34 6.0
329 70 153 36 6.0
329 86 136 21 6.0
335 72 151 40 6.0
338 89 121 39 6.0
340 77 147 39 6.0
344 73 171 27 6.0
349 74 174 27 6.0
363 76 171 40 6.0
363 82 174 25 6.5
363 95 134 39 6.0
365 78 169 40 6.5
369 79 168 43 6.5
376 97 159 23 6.0
377 87 162 41 6.5

n p q t ρ

380 101 133 45 6.5
383 80 180 43 6.5
387 84 193 26 6.0
387 90 163 44 6.5
391 104 136 47 7.0
397 83 186 45 6.5
398 103 147 45 6.5
399 92 172 43 6.5
401 107 136 51 6.5
403 93 174 43 6.5
404 85 189 45 6.5
413 88 191 46 6.5
413 106 156 45 6.5
417 99 172 47 6.5
425 98 184 45 6.5
428 91 195 51 6.5
429 94 184 57 6.5
431 96 176 63 6.5
437 102 181 52 6.5
446 105 175 61 6.5
465 108 197 52 6.5
465 111 188 55 6.5
469 109 198 53 6.5
471 110 190 61 6.5
476 113 197 53 6.5
479 112 193 62 6.5
493 114 202 63 6.5

Table A.1





147

Appendix B

Appendix chapter 5

|Σ| = 2 BWTs of
h(w) all % noBWTs % BWTs % prim pow

n = 3 0 1 13 1 25 0 0 0 0
1 6 75 3 75 3 75 1 2
2 1 13 0 0 1 25 1 0

total 8 100 4 100 4 100 2 2
n = 4 0 3 19 3 30 0 0 0 0

1 10 63 6 60 4 67 2 2
2 3 19 1 10 2 33 1 1

total 16 100 10 100 6 100 3 3
n = 5 0 9 28 9 38 0 0 0 0

1 16 50 11 46 5 63 3 2
2 5 16 4 17 1 13 1 0
3 2 6 0 0 2 25 2 0

total 32 100 24 100 8 100 6 2
n = 6 0 21 33 21 42 0 0 0 0

1 28 44 20 40 8 57 6 2
2 9 14 6 12 3 21 1 2
3 6 9 3 6 3 21 2 1

total 64 100 50 100 14 100 9 5
n = 7 0 51 40 51 47 0 0 0 0

1 46 36 35 32 11 55 9 2
2 14 11 13 12 1 5 1 0
3 14 11 9 8 5 25 5 0
4 3 2 0 0 3 15 3 0

total 128 100 108 100 20 100 18 2
n = 8 0 111 43 111 50 0 0 0 0

1 84 33 64 29 20 56 18 2
2 20 8 19 9 1 3 1 0
3 32 13 21 10 11 31 8 3
4 9 4 5 2 4 11 3 1
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word h(w) nice positions
abcccc 1 6
abbccc 1 6
abbbcc 1 6
abbbbc 1 6
aabccc 1 6
aabbcc 1 6
aabbbc 1 6
aaabcc 1 6
aaabbc 1 6
aaaabc 1 6
acbbbb 1 2
accbbb 3 2, 4, 6
acccbb 2 2, 6
accccb 3 2, 4, 6
aacbbb 1 3
aaccbb 2 4, 6
aacccb 2 3, 5
aaacbb 1 4
aaaccb 2 4, 6
aaaacb 1 5
bacccc 0
baaccc 0
baaacc 0
baaaac 0
bbaccc 1 6
bbaacc 1 6
bbaaac 1 6
bbbacc 0
bbbaac 1 6
bbbbac 1 6

word h(w) nice positions
bcaaaa 3 2, 4, 6
bccaaa 2 3, 5
bcccaa 2 2, 4
bcccca 3 1, 3, 5
bbcaaa 2 3, 5
bbccaa 2 2, 4
bbccca 3 1, 3, 5
bbbcaa 2 2, 4
bbbcca 3 1, 3, 5
bbbbca 3 1, 3, 5
cabbbb 1 1
caabbb 1 1
caaabb 1 1
caaaab 1 1
ccabbb 3 2, 4, 6
ccaabb 3 2, 4, 6
ccaaab 3 2, 4, 6
cccabb 2 3, 5
cccaab 2 3, 5
ccccab 2 2, 4
cbaaaa 3 1, 3, 5
cbbaaa 2 1, 5
cbbbaa 3 1, 3, 5
cbbbba 1 5
ccbaaa 2 1, 3
ccbbaa 2 4, 6
ccbbba 1 1
cccbaa 1 1
cccbba 3 1, 3, 5
ccccba 2 1, 5

Table B.1: Fully clustered ternary words of length 6.
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|Σ| = 2 BWTs of
h(w) all % noBWTs % BWTs % prim pow
total 256 100 220 100 36 100 30 6

n = 9 0 243 47 243 54 0 0 0 0
1 150 29 118 26 32 53 30 2
2 31 6 29 6 2 3 2 0
3 56 11 48 11 8 13 7 1
4 28 5 14 3 14 23 13 1
5 4 1 0 0 4 7 4 0

total 512 100 452 100 60 100 56 4
n = 10 0 515 50 515 56 0 0 0 0

1 274 27 216 24 58 54 56 2
2 53 5 48 5 5 5 5 0
3 98 10 81 9 17 16 14 3
4 70 7 48 5 22 20 19 3
5 14 1 8 1 6 6 5 1

total 1024 100 916 100 108 100 99 9
n = 11 0 1088 53 1088 58 0 0 0 0

1 494 24 393 21 101 54 99 2
2 104 5 96 5 8 4 8 0
3 164 8 147 8 17 9 17 0
4 142 7 114 6 28 15 28 0
5 50 2 22 1 28 15 28 0
6 6 < 0.5 0 0 6 3 6 0

total 2048 100 1860 100 188 100 186 2
n = 12 0 2258 55 2258 60 0 0 0 0

1 914 22 724 19 190 54 188 2
2 200 5 183 5 17 5 17 0
3 288 7 252 7 36 10 34 2
4 284 7 224 6 60 17 51 9
5 130 3 90 2 40 11 37 3
6 22 1 13 < 0.5 9 3 8 1

total 4096 100 3744 100 352 100 335 17
n = 13 0 4679 57 4679 62 0 0 0 0

1 1680 21 1339 18 341 54 339 2
2 388 5 365 5 23 4 23 0
3 536 7 478 6 58 9 58 0
4 522 6 455 6 67 11 67 0
5 292 4 209 3 83 13 83 0
6 85 1 35 < 0.5 50 8 50 0
7 10 < 0.5 0 0 10 2 10 0

total 8192 100 7560 100 632 100 630 2
n = 14 0 9601 59 9601 63 0 0 0 0
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|Σ| = 2 BWTs of
h(w) all % noBWTs % BWTs % prim pow

1 3140 19 2498 16 642 54 640 2
2 748 5 696 5 52 4 52 0
3 1024 6 907 6 117 10 114 3
4 982 6 843 6 139 12 134 5
5 620 4 475 3 145 12 139 6
6 235 1 161 1 74 6 70 4
7 34 < 0.5 21 < 0.5 13 1 12 1

total 16384 100 15202 100 1182 100 1161 21
n = 15 0 19664 60 19664 64 0 0 0 0

1 5874 18 4695 15 1179 54 1177 2
2 1464 4 1381 5 83 4 83 0
3 1940 6 1775 6 165 8 165 0
4 1880 6 1637 5 243 11 242 1
5 1218 4 991 3 227 10 222 5
6 574 2 380 1 194 9 192 2
7 140 < 0.5 53 < 0.5 87 4 87 0
8 14 < 0.5 0 0 14 1 14 0

total 32768 100 30576 100 2192 100 2182 10
n = 16 0 40094 61 40094 65 0 0 0 0

1 11062 17 8843 14 2219 54 2217 2
2 2882 4 2709 4 173 4 173 0
3 3702 6 3346 5 356 9 353 3
4 3622 6 3157 5 465 11 459 6
5 2426 4 1988 3 438 11 427 11
6 1298 2 980 2 318 8 309 9
7 402 1 273 < 0.5 129 3 125 4
8 48 < 0.5 30 < 0.5 18 < 0.5 17 1

total 65536 100 61420 100 4116 100 4080 36
n = 17 0 81602 62 81602 66 0 0 0 0

1 20898 16 16758 14 4140 54 4138 2
2 5711 4 5423 4 288 4 288 0
3 7146 5 6589 5 557 7 557 0
4 6863 5 6139 5 724 9 724 0
5 4820 4 4020 3 800 10 800 0
6 2736 2 2112 2 624 8 624 0
7 1042 1 639 1 403 5 403 0
8 234 < 0.5 78 < 0.5 156 2 156 0
9 20 < 0.5 0 0 20 < 0.5 20 0

total 131072 100 123360 100 7712 100 7710 2
n = 18 0 165632 63 165632 67 0 0 0 0

1 39704 15 31871 13 7833 54 7831 2
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|Σ| = 2 BWTs of
h(w) all % noBWTs % BWTs % prim pow

2 11281 4 10696 4 585 4 585 0
3 13798 5 12641 5 1157 8 1153 4
4 13167 5 11672 5 1495 10 1485 10
5 9620 4 8113 3 1507 10 1492 15
6 5722 2 4579 2 1143 8 1119 24
7 2450 1 1818 1 632 4 622 10
8 696 < 0.5 474 < 0.5 222 2 218 4
9 74 < 0.5 46 < 0.5 28 < 0.5 27 1

total 262144 100 247542 100 14602 100 14532 70

Table B.2: Statistics of words over a binary alphabet of lengths from 3 to 18.
Percentages rounded to nearest integer. See text for further details.
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Figure B.1: Essential and minimal right-only pseudo-cycles of the word w =
bdcaebdc. For each pseudo-cycle S, elements contained in Sleft are colored in
green, and elements contained in Sright are colored in blue. Elements in the critical
interval are highlighted in red.
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