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Abstract: We introduce an abstract framework for the study of general mean field game and
mean field control problems. Given a multiagent system, its macroscopic description is provided
by a time-depending probability measure, where at every instant of time the measure of a set
represents the fraction of (microscopic) agents contained in it. The trajectories available to each
of the microscopic agents are affected also by the overall state of the system. By using a suitable
concept of random lift of set-valued maps, together with fixed point arguments, we are able to
derive properties of the macroscopic description of the system from properties of the set-valued
map expressing the admissible trajectories for the microscopical agents. We apply the results
in the case in which the admissible trajectories of the agents are the minimizers of a suitable
integral functional depending also from the macroscopic evolution of the system.
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1. INTRODUCTION

The mathematical analysis of complex systems with mul-
tiple interacting agents has recently attracted increasing
attention from researchers in the area of applied mathe-
matics. Social dynamics (e.g., pedestrian dynamics, social
network models, opinion formation, infrastructure plan-
ning, financial markets, big data analysis, life sciences are
only some examples of fields where the mathematical mod-
eling of multi-agent systems has been successfully applied.

The core of the analysis is the fact that the collective
(macroscopic) behavior is deeply influenced by complex
interactions that usually arise among the subjects (agents
like e.g., cell populations, fish swarms, insect colonies,
human crowds, bird flocks). The interactions between
the agents, which may range from the simplest, e.g.,
avoiding collision, or attraction/repulsion effects, to more
complex ones, involving also penalization of overcrowd-
ing/dispersion, or further state constraints on the density
of the agents. As a consequence, in general the macro-
scopic description of the system cannot be reduced to the
simple superposition of the microscopic description of each
individual.

The reference framework for many mathematical models
of multi-agent systems is provided by Mean Field Games
(MFG) theory.

The concept of Mean Field Games (MFGs) was first
introduced around 2006 by two independent groups, P.
E. Caines, M. Huang, and R. P. Malhamé (Huang et al.,
2007, 2006), and J.-M. Larsy and P.-L. Lions (Lasry and
Lions, 2006a,b, 2007), motivated by problems in economics

and engineering and building upon previous works on
games with infinitely many agents such as (Aumann and
Shapley, 1974; Jovanovic and Rosenthal, 1988). Roughly
speaking, MFGs are game models with a continuum of
indistinguishable, rational agents influenced only by the
average behavior of other agents, and the typical goal of
their analysis is to characterize their equilibria.

In general, the equilibria are defined through the system
of PDEs, known as MFG system, involving two unknown
functions: the value function of the optimal control prob-
lem that a typical agent seeks to solve, and the time-
dependent density of the population of agents. This inter-
pretation fails in presence of state constraints, i.e., when
agents are confined in the closure of a bounded domain.
This case has been studied in (Cannarsa and Capuani,
2018; Cannarsa et al., 2019, 2021), where the authors
used a different approach to attack the problem. They de-
fine the equilibrium for the constrained problem replacing
probability measures with measures on arcs, the so-called
Lagrangian Formulation.

Recently, a deep comparison between the Lagrangian for-
mulation and other formulation for mean-field problems
has been developed in Cavagnari et al. (2020). Basing on
the possibility to represent the evolution of the system
as the evolution of L2-random variables in a suitable
probability space, it is possible to give an alternative
formulation of many classes of problems in terms of L2-
random variables, and the authors establish a comparison
between the original problem, the Lagrangian approach,
and the L2-random variable approach.
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2018; Cannarsa et al., 2019, 2021), where the authors
used a different approach to attack the problem. They de-
fine the equilibrium for the constrained problem replacing
probability measures with measures on arcs, the so-called
Lagrangian Formulation.

Recently, a deep comparison between the Lagrangian for-
mulation and other formulation for mean-field problems
has been developed in Cavagnari et al. (2020). Basing on
the possibility to represent the evolution of the system
as the evolution of L2-random variables in a suitable
probability space, it is possible to give an alternative
formulation of many classes of problems in terms of L2-
random variables, and the authors establish a comparison
between the original problem, the Lagrangian approach,
and the L2-random variable approach.

In this paper, we focus on constrained MFG equilibria,
introduced in (Cannarsa and Capuani, 2018, Definition
3.1), proving that they can be seen as a special case of
a more general construction, that we called random lift,
whose aim is to directly transfer properties from set-valued
map describing the microscopical behaviour of the agent,
to the macroscopical description of the system. A similar
setting was investigated also in Cavagnari et al. (2018),
but only when the trajectories of microscopic agents obey
to a differential inclusion and there were no interactions
between them.

The definition of nonlocal dynamics in Wasserstein space,
not necessarily related to control problem, has been stud-
ied in Piccoli (2019), Camilli et al. (2021), Cavagnari et al.
(2021), also providing numerical schemes for the approx-
imation of the trajectories. In Bonnet and Frankowska
(2021), it is developed a full theory for differential inclu-
sions in Wasserstein space, but under severe restrictions
on the allowed concept of solution in the space of mea-
sures. We emphasize that the approach outlined here and
applied to constrained mean field games can be extended
to cover cases where less regularity both of the microscopic
trajectories and of the macroscopic evolution are consid-
ered. From a macroscopical point of view, the control of
continuity equation has been studied in Pogodaev (2016)
and in Pogodaev and Staritsyn (2020), where an extension
to impulsive control systems is presented.

2. PRELIMINARIES

Let (X, dX) be a separable metric space. We denote by
P(X) the set of Borel probability measures on X endowed
with the weak∗ topology induced by the duality with
the Banach space C0

b (X) of the real-valued continuous
bounded functions on X with the uniform convergence
norm. The support of µ ∈ P(X), supp(µ), is the closed
set defined by

supp(µ)=
{
x ∈ X : µ(V ) > 0 for any open V s.t. x ∈ V

}
.

For any p ≥ 1, we set the space of Borel probability
measures with finite p-moment as

Pp(X) =
{
µ ∈ P(X) :

∫

X

dpX(x, x̄) dµ(x) < +∞

for some x̄ ∈ X
}
.

Given complete separable metric spaces (X, dX), (Y, dY ),
for any Borel map r : X → Y and µ ∈ P(X), we
define the push forward measure r�µ ∈ P(Y ) by setting
r�µ(B) = µ(r−1(B)) for any Borel set B of Y .

Definition 2.1. (Transport plans and Wasserstein distance).
Let X be a complete separable metric space, µ1, µ2 ∈
P(X). We define the set of admissible transport plans
between µ1 and µ2 by setting

Π(µ1, µ2) = {π ∈ P(X ×X) : pri�π = µi, i = 1, 2},
where for i = 1, 2, we defined pri : X × X → X by
pri(x1, x2) = xi. The inverse π−1 of a transport plan
π ∈ Π(µ, ν) is defind by π−1 = i�π ∈ Π(ν, µ), where
i(x, y) = (y, x) for all x, y ∈ X. The p-Wasserstein
distance between µ1 and µ2 is

W p
p (µ1, µ2) = inf

π∈Π(µ1,µ2)

∫

X×X

dpX(x1, x2) dπ(x1, x2).

If µ1, µ2 ∈ Pp(X) then the above infimum is actually a
minimum, and we define

Πp
o(µ1, µ2) =

{
π ∈ Π(µ1, µ2) : W

p
p (µ1, µ2) =∫

X×X

dpX(x1, x2) dπ(x1, x2)
}
.

The space Pp(X) endowed with the Wp-Wasserstein dis-
tance is a complete separable metric space, moreover for
all µ ∈ Pp(X) there exists a sequence {µN}N∈N ⊆ co{δx :
x ∈ supp (µ)} such that Wp(µ

N , µ) → 0 as N → +∞.

Fact 1. When X is compact then for all p ≥ 1 the p-
Wasserstein distances are all equivalent.

Definition 2.2. (Set-valued maps). Let X,Y be sets. A
set-valued map F from X to Y is a map associating to
each x ∈ X a (possible empty) subset F (x) of Y . We will
write F : X ⇒ Y to denote a set-valued map from X to
Y . The graph of a set-valued map F is

graphF := {(x, y) ∈ X × Y : y ∈ F (x)} ⊆ X × Y,

while the domain of F is

domF := {x ∈ X : F (x) �= ∅} ⊆ X.

Given A ⊆ X, we set

graph(F|A) := graphF ∩ (A× Y )

= {(x, y) ∈ A× Y : y ∈ F (x)}.
A selection of F is a map f : domF → Y such that
f(x) ∈ F (x) for all x ∈ domF .

2.1 Mean-Field setting

Let T > 0, Ω ⊂ Rd be a bounded open domain with
boundary of class C1,1, and set I = [0, T ]. Endowed
C0(I;Rd) with the uniform convergence metric, let Γ be
defined by

Γ =
{
γ ∈ AC(I;Rd) : γ(t) ∈ Ω, ∀t ∈ I

}
⊂ C0(I;Rd).

For any x ∈ Ω, we set

Γ[x] = {γ ∈ Γ : γ(0) = x} .
For any t ∈ [0, T ], we denote by et : Γ → Ω the evaluation
map defined by

et(γ) = γ(t), ∀γ ∈ Γ. (1)

Let f : P(Ω) × Ω × Rd → R be a function satisfied the
following conditions.

(L1) There exists a modulus of continuity ω : [0,∞) →
[0,∞) such that

|f(θ1, x, v)− f(θ2, x, v)| ≤ ω(d(θ1, θ2))

for all θ1, θ2 ∈ P(Ω), x ∈ Ω, v ∈ Rd, and d denotes
any p-Wasserstein distance.

(L2) θ �→ f(θ, x, v) is locally Lipschitz for all (x, v) ∈ Ω×
Rd and for a.e. (θ, x, v) ∈ P(Ω)× Ω× Rd,

|Dxf(θ, x, v)| ≤ C(1 + |v|2),
|Dvf(θ, x, v)| ≤ C(1 + |v|),

for some constant C > 0.
(L3) There exist constants c1, c0 > 0 such that

f(θ, x, v) ≥ c1|v|2 − c0,

for all (θ, x, v) ∈ P(Ω)× Ω× Rd.
(L4) v �−→ f(θ, x, v) is convex for all (θ, x) ∈ P(Ω)× Ω.



182	 Rossana Capuani  et al. / IFAC PapersOnLine 55-30 (2022) 180–185

Let g : P(Ω)×Ω → R be a uniformly continuous function
on P(Ω)×Ω, that is, there exists a modulus of continuity
ω : [0,∞) → [0,∞) such that

|g(θ1, x)− g(θ2, x)| ≤ ω(d(θ1, θ2))

for all θ1, θ2 ∈ P(Ω) and x ∈ Ω.

Throughout the paper we suppose that f and g satisfies
the above assumptions.

For all η ∈ P(Γ), we define

Jη[γ] =

∫ T

0

f(et�η, γ(t), γ̇(t)) dt+ g(eT �η, γ(T )), (2)

for any γ ∈ Ω.

Fact 2. If f has the special form f(et�η, x, v) = L(x, v) +
F (x, et�η), then L and F satisfy the assumptions in
(Cannarsa and Capuani, 2018, Section 3.2), see for more
details (Cannarsa and Capuani, 2018, Remark 3.3).

Definition 2.3. (Constrained equilibrium). Let m0 ∈
P(Ω). We say that η ∈ P(Γ) is a constrained MFG
equilibrium for m0 if

• e0�η = m0

• supp(η) ⊆
⋃

x∈Ω

{
γ ∈ Γ[x] : Jη[γ] = min

Γ[x]
Jη

}
.

In other words, η is a constrained MFG equilibrium for
m0 if for η-a.e. γ ∈ Γ we have that

Jη[γ] ≤ Jη[γ], ∀γ ∈ Γ[γ(0)].

Fact 3. Under our assumptions, there exists at least one
constrained MFG equilibrium, see (Cannarsa and Ca-
puani, 2018, Theorem 3.1).

3. RANDOM-LIFTING OF SET-VALUED MAPS

In this section, we will introduce a more general notion of
random lift of set-valued maps then the one introduced in
(Capuani et al., 2022, Definition 3).
Let X,Y, Z be complete separable metric spaces, and S :
Z×X ⇒ Y be a set valued map. Given z ∈ Z, we denote by
Sz : X ⇒ Y the set valued map x �→ S(z, x). In particular,
(z, x, y) ∈ graphS if and only if (x, y) ∈ graphSz.

Definition 3.1. (Random lift of a general set-valued maps).
The set-valued map Ξ : Z × P(X) ⇒ P(X × Y ) defined
as

Ξ(z, µ) := {η ∈ P(X × Y ) : supp (η) ⊆ graphSz

and pr1�η = µ},
where pr1(x, y) = x for all (x, y) ∈ X × Y , will be
called the random lift of S. Given z ∈ Z, we denote by
Ξz : P(X) ⇒ P(X×Y ) the set valued map µ �→ Ξ(z, µ),
which will be called the random lift of Sz(·).
Definition 3.2. (Evaluation for random lift). Given p ≥ 1,
a map Ep : Pp(X × Y ) → Z will be called an evaluation
for the random lift Ξ(·). We say that an evaluation Ep is
Borel (resp. continuous, Lipschitz ) if Ep : Pp(X×Y ) → Z
is a Borel (resp. continuous, Lipschitz ) map. When Z is a
convex subset of a linear space, we say that Ep is affine if

for all λ ∈ [0, 1], µ ∈ X, and η(i) ∈ Ξz(µ) ∩ Pp(X × Y ),
i = 1, 2, it holds

Ep(λη
(1) + (1− λ)η(2)) = λEp(η

(1)) + (1− λ)Ep(η
(2)).

In the following definition we characterize the set of fixed-
points associated to the random lift Ξ and its evaluation
map.

Definition 3.3. Given an evaluation Ep for the random lift
Ξ(·), we define the set valued map ΥEp

: Z ×Pp(X) ⇒ Z
by setting for all z ∈ Z and µ ∈ Pp(X)

ΥEp
(z, µ) := Ep(Ξ(z, µ) ∩ Pp(X × Y )) ⊆ Z, (3)

and the set valued map A : Pp(X) ⇒ Z by

A (µ) :=
{
z ∈ Z : z ∈ ΥEp

(z, µ)
}
.

Given z ∈ Z, we denote by Υz
Ep

: Pp(X) ⇒ Z the set

valued map µ �→ Υ(z, µ).

Proposition 4. Let X,Y, Z be complete separable metric
spaces. Let S : Z × X ⇒ Y be a set valued map with
random lift Ξ(·).
(1) Ξ(·) has always convex images w.r.t. the linear struc-

ture of (C0
b (X × Y ))′, even if S(·) has not convex

images. Moreover, if Z is a convex subset of a linear
space and Ep is an affine evaluation, we have that
ΥEp(·) has convex or empty images.

(2) If S(·) has closed graph then Ξ(·) has closed graph.
(3) Given z ∈ Z, suppose that for every compact K ⊆ X

the set graph
(
Sz
|K

)
is compact in X × Y . Then

for every relative compact K ⊆ P(X), the set

Ξz(K ) :=
⋃

µ∈K

Ξz(µ) is relative compact.

Proof.

(1) Given (z, µ) ∈ Z × P(X), ηi ∈ Ξ(z, µ), i = 0, 1, and
λ ∈ [0, 1], set ηλ = λη1 + (1− λ)η0, and notice that

supp (ηλ) ⊆supp (η0) ∪ supp (η1) ⊆ graphSz,

ηλ

(
pr−1

1 (A)
)
=λη1

(
pr−1

1 (A)
)
+ (1− λ)η2

(
pr−1

1 (A)
)

=λµ(A) + (1− λ)µ(A) = µ(A),

for all Borel set A ⊆ X, and so pr1�ηλ = µ.
The last assertion follows from the fact that, by

definition, an affine evaluation sends convex sets to
convex sets, and Ξz(µ)∩Pp(X × Y ) is either empty
or convex.

(2) Suppose that S has closed graph. Let (z, µ,η) ∈
graphΞ and (x, y) ∈ supp (η). First we prove that
pr1�η = µ and (z, x, y) ∈ graphS = graphS. Indeed,
let {(zn, µn,ηn)}n∈N ⊆ graphΞ be a sequence con-
verging to (z, µ,η) ∈ Z × P(X)× P(X × Y ). Since
pr1 is continuous, we have that {pr1�ηn}n∈N narrowly
converges to pr1�η, and therefore, since pr1�ηn = µn,
for all ∈ N, by passing to the limit we get pr1�η = µ.
On the other hand, recalling Proposition 5.1.8 in
Ambrosio et al. (2008), for every (x, y) ∈ supp (η)
there exists a sequence {(xn, yn)}n∈N converging to
(x, y) and with (xn, yn) ∈ supp (ηn) ⊆ graphSzn for
all n ∈ N. In particular, we have that (zn, xn, yn) →
(z, x, y) in Z × X × Y , so (z, x, y) ∈ graphS. This
implies (x, y) ∈ graphSz, so supp (η) ⊆ Sz. Thus
(z, µ,η) ∈ graphΞ, and therefore graphΞ is closed.

(3) By Prokhorov’s theorem (see e.g. Theorem 5.1.3 in
Ambrosio et al. (2008)), for every ε > 0 there exists
a compact set Kε ⊆ X such that µ(X \Kε) ≤ ε for
all µ ∈ K . By (2), for all η ∈ Ξz(K ) it holds

η
(
(X × Y ) \ graph

(
Sz
|Kε

))
= µ(X \Kε) ≤ ε.
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Let g : P(Ω)×Ω → R be a uniformly continuous function
on P(Ω)×Ω, that is, there exists a modulus of continuity
ω : [0,∞) → [0,∞) such that

|g(θ1, x)− g(θ2, x)| ≤ ω(d(θ1, θ2))

for all θ1, θ2 ∈ P(Ω) and x ∈ Ω.

Throughout the paper we suppose that f and g satisfies
the above assumptions.

For all η ∈ P(Γ), we define

Jη[γ] =

∫ T

0

f(et�η, γ(t), γ̇(t)) dt+ g(eT �η, γ(T )), (2)

for any γ ∈ Ω.

Fact 2. If f has the special form f(et�η, x, v) = L(x, v) +
F (x, et�η), then L and F satisfy the assumptions in
(Cannarsa and Capuani, 2018, Section 3.2), see for more
details (Cannarsa and Capuani, 2018, Remark 3.3).

Definition 2.3. (Constrained equilibrium). Let m0 ∈
P(Ω). We say that η ∈ P(Γ) is a constrained MFG
equilibrium for m0 if

• e0�η = m0

• supp(η) ⊆
⋃

x∈Ω

{
γ ∈ Γ[x] : Jη[γ] = min

Γ[x]
Jη

}
.

In other words, η is a constrained MFG equilibrium for
m0 if for η-a.e. γ ∈ Γ we have that

Jη[γ] ≤ Jη[γ], ∀γ ∈ Γ[γ(0)].

Fact 3. Under our assumptions, there exists at least one
constrained MFG equilibrium, see (Cannarsa and Ca-
puani, 2018, Theorem 3.1).

3. RANDOM-LIFTING OF SET-VALUED MAPS

In this section, we will introduce a more general notion of
random lift of set-valued maps then the one introduced in
(Capuani et al., 2022, Definition 3).
Let X,Y, Z be complete separable metric spaces, and S :
Z×X ⇒ Y be a set valued map. Given z ∈ Z, we denote by
Sz : X ⇒ Y the set valued map x �→ S(z, x). In particular,
(z, x, y) ∈ graphS if and only if (x, y) ∈ graphSz.

Definition 3.1. (Random lift of a general set-valued maps).
The set-valued map Ξ : Z × P(X) ⇒ P(X × Y ) defined
as

Ξ(z, µ) := {η ∈ P(X × Y ) : supp (η) ⊆ graphSz

and pr1�η = µ},
where pr1(x, y) = x for all (x, y) ∈ X × Y , will be
called the random lift of S. Given z ∈ Z, we denote by
Ξz : P(X) ⇒ P(X×Y ) the set valued map µ �→ Ξ(z, µ),
which will be called the random lift of Sz(·).
Definition 3.2. (Evaluation for random lift). Given p ≥ 1,
a map Ep : Pp(X × Y ) → Z will be called an evaluation
for the random lift Ξ(·). We say that an evaluation Ep is
Borel (resp. continuous, Lipschitz ) if Ep : Pp(X×Y ) → Z
is a Borel (resp. continuous, Lipschitz ) map. When Z is a
convex subset of a linear space, we say that Ep is affine if

for all λ ∈ [0, 1], µ ∈ X, and η(i) ∈ Ξz(µ) ∩ Pp(X × Y ),
i = 1, 2, it holds

Ep(λη
(1) + (1− λ)η(2)) = λEp(η

(1)) + (1− λ)Ep(η
(2)).

In the following definition we characterize the set of fixed-
points associated to the random lift Ξ and its evaluation
map.

Definition 3.3. Given an evaluation Ep for the random lift
Ξ(·), we define the set valued map ΥEp

: Z ×Pp(X) ⇒ Z
by setting for all z ∈ Z and µ ∈ Pp(X)

ΥEp
(z, µ) := Ep(Ξ(z, µ) ∩ Pp(X × Y )) ⊆ Z, (3)

and the set valued map A : Pp(X) ⇒ Z by

A (µ) :=
{
z ∈ Z : z ∈ ΥEp

(z, µ)
}
.

Given z ∈ Z, we denote by Υz
Ep

: Pp(X) ⇒ Z the set

valued map µ �→ Υ(z, µ).

Proposition 4. Let X,Y, Z be complete separable metric
spaces. Let S : Z × X ⇒ Y be a set valued map with
random lift Ξ(·).
(1) Ξ(·) has always convex images w.r.t. the linear struc-

ture of (C0
b (X × Y ))′, even if S(·) has not convex

images. Moreover, if Z is a convex subset of a linear
space and Ep is an affine evaluation, we have that
ΥEp(·) has convex or empty images.

(2) If S(·) has closed graph then Ξ(·) has closed graph.
(3) Given z ∈ Z, suppose that for every compact K ⊆ X

the set graph
(
Sz
|K

)
is compact in X × Y . Then

for every relative compact K ⊆ P(X), the set

Ξz(K ) :=
⋃

µ∈K

Ξz(µ) is relative compact.

Proof.

(1) Given (z, µ) ∈ Z × P(X), ηi ∈ Ξ(z, µ), i = 0, 1, and
λ ∈ [0, 1], set ηλ = λη1 + (1− λ)η0, and notice that

supp (ηλ) ⊆supp (η0) ∪ supp (η1) ⊆ graphSz,

ηλ

(
pr−1

1 (A)
)
=λη1

(
pr−1

1 (A)
)
+ (1− λ)η2

(
pr−1

1 (A)
)

=λµ(A) + (1− λ)µ(A) = µ(A),

for all Borel set A ⊆ X, and so pr1�ηλ = µ.
The last assertion follows from the fact that, by

definition, an affine evaluation sends convex sets to
convex sets, and Ξz(µ)∩Pp(X × Y ) is either empty
or convex.

(2) Suppose that S has closed graph. Let (z, µ,η) ∈
graphΞ and (x, y) ∈ supp (η). First we prove that
pr1�η = µ and (z, x, y) ∈ graphS = graphS. Indeed,
let {(zn, µn,ηn)}n∈N ⊆ graphΞ be a sequence con-
verging to (z, µ,η) ∈ Z × P(X)× P(X × Y ). Since
pr1 is continuous, we have that {pr1�ηn}n∈N narrowly
converges to pr1�η, and therefore, since pr1�ηn = µn,
for all ∈ N, by passing to the limit we get pr1�η = µ.
On the other hand, recalling Proposition 5.1.8 in
Ambrosio et al. (2008), for every (x, y) ∈ supp (η)
there exists a sequence {(xn, yn)}n∈N converging to
(x, y) and with (xn, yn) ∈ supp (ηn) ⊆ graphSzn for
all n ∈ N. In particular, we have that (zn, xn, yn) →
(z, x, y) in Z × X × Y , so (z, x, y) ∈ graphS. This
implies (x, y) ∈ graphSz, so supp (η) ⊆ Sz. Thus
(z, µ,η) ∈ graphΞ, and therefore graphΞ is closed.

(3) By Prokhorov’s theorem (see e.g. Theorem 5.1.3 in
Ambrosio et al. (2008)), for every ε > 0 there exists
a compact set Kε ⊆ X such that µ(X \Kε) ≤ ε for
all µ ∈ K . By (2), for all η ∈ Ξz(K ) it holds

η
(
(X × Y ) \ graph

(
Sz
|Kε

))
= µ(X \Kε) ≤ ε.

Since by assumption graph
(
S|Kε

)
is compact in X×

Y , we have that Ξz(K ) is relatively compact in
P(X × Y ) again by Prokhorov’s theorem.

Theorem 5. (Fixed point). Let X be a compact metric
space. Let p ≥ 1, and Z be a subset of a linear space.
Suppose that

(i) (z, x) �→ Sz(x) is upper semicontinuous with nonempty
compact images;

(ii) Ep is a continuous affine evaluation;
(iii) there exists a compact convex set K ⊆ Z such that

Υz
Ep
(µ) ⊆ K for all z ∈ K, µ ∈ Pp(X);

(iv) if we endow K with the topology inherited by Z, we
have that

· every point of K has a base of convex (not
necessarily open) neighborhoods,

· the map K × K × [0, 1] → K defined by
(k1, k2, λ) �→ λk1 + (1− λ)k2 is continuous.

Then A (µ) �= ∅ for all µ ∈ Pp(X) and A is upper
semicontinuous.

Proof. Under the assumptions on K, according to Law-
son (1976) and Roberts (1978), there exists a locally con-
vex topological vector space L , a subset LK ⊆ L and
an homeomorphism h : K → LK satisfying h(λz1 + (1 −
λ)z2) = λh(z1) + (1− λ)h(z2) for all z1, z2 ∈ K, λ ∈ [0, 1],
where LK will be endowed with the topology inherited by
L . Set LK := h(K). Notice that LK is compact since K
is compact and h is continuous.

Given µ ∈ Pp(X), the set-valued map � �→ h(Υ
h−1(�)
Ep

(µ))

from LK ⇒ LK has non-empty compact images and
closed graph since h(·) is an homeomorphism and ΥEp

has closed graph and compact images by our assumptions
on X and Ep. Moreover, it has convex images since h(·)
sends convex sets to convex sets, and the images are all
contained in a common compact set. By Kakutani-Fan-
Glicksberg fixed point theorem (see e.g. Theorem 13.1 in
Pata (2019)), this set-valued map admits a fixed point,

i.e., there exists �̄ ∈ LK such that �̄ ∈ h(Υ
h−1(�̄)
Ep

(µ)).

Set z̄ = h−1(�̄) ∈ K, we have z̄ ∈ Υz̄
Ep
(µ), thus z̄ ∈ A (µ),

which concludes the proof.

In Theorem 5, we note that the assumption (iv) can be
dropped if Z is a locally convex topological vector space.

4. APPLICATION TO CONSTRAINED MEAN FIELD
GAMES PROBLEM

In this section we provide an application of previously
described construction. More precisely, we show that the
constrained MFG equilibria are fixed-points of a suitable
set-valued map built in terms of random lift. Choosing
Z = P(Γ), X = Ω (which is compact) and Y = Γ
in the Defintion 3.1, we can rewrite S and the random
lift Ξ of S as S : P(Γ) × Ω ⇒ Γ and Ξ : P(Γ) ×
P(Ω) ⇒ P(Ω× Γ), respectively. Taking into account the
construction of constrained MFG equilbria in Section 2.1,
we have to define S·, in terms of a set of minimizers of
the functional J ·, defined in (2). In this framework, fixed

θ ∈ P(Γ) the set-valued map SJ,θ
I : Ω ⇒ Γ and its lift

ΞJ,θ
I : P(Ω) ⇒ P(Ω× Γ) are defined as follows

• for all x ∈ Ω

SJ,θ
I (x) =

{
γ ∈ Γ[x] : Jθ[γ] = min

Γ[x]
Jθ

}
,

where Jθ is defined in (2);
• for all µ ∈ P(Ω)

ΞJ,θ
I (µ) =

{
η ∈ P(Ω× Γ) : supp (η) ⊆ graphSJ,θ

I

and (e0 ◦ pr2)�η = µ
}
,

where e0 is given by (1) and we define pr2 : Ω×Γ → Γ
by pr2(x, γ) = γ.

Moreover, for any p ≥ 1 the evaluation map Ep : Pp(Ω×
Γ) ⇒ P(Γ) for the random lift Ξ is defined by Ep(η) =
pr2�η. Therefore, we get

Ep(Ξ
J,θ
I (µ)) = ΥJ,θ

I (µ) ⊆ P(Γ), (4)

where ΥJ,θ
I : Pp(Ω) ⇒ P(Γ). Finally, we define A J,θ

I :

Pp(Ω) ⇒ P(Γ) to be the set-valued map given by

A J,θ
I (µ) := {θ ∈ P(Γ) : θ ∈ ΥJ,θ

I (µ)},
i.e., A J,θ

I (µ) is the set of fixed points of θ �→ ΥJ,θ
I (µ).

Theorem 6. Let µ ∈ P(Ω). There exists at least one

θ ∈ P(Γ) such that θ ∈ A J,θ
I (µ). Moreover, the fixed-

point θ ∈ A J,θ
I (µ) is a constrained MFG equilibrium for

µ.

Proof. In order to apply Theorem 5, we have to prove
that (i) − (iv) hold. First of all, using (Cannarsa and
Capuani, 2018, Lemma 3.3) and (Cannarsa and Capuani,
2018, Lemma 3.4) we have that for all x ∈ Ω and for all

θ ∈ P(Γ) the set-valued map SJ,θ
I has closed graph and

nonempty images. Moreover, all minimizers γ ∈ SJ,θ
I (x)

are 1
2 -Holder continuous of constant M > 0. Indeed, for

all γ ∈ SJ,θ
I (x) we have by (L3)

c1

∫ T

0

|γ̇(t)|2 dt− Tc0 ≤ Jθ[γ] ≤ Jθ[γ̂],

where γ̂(t) = x for all t ∈ I, noticing that γ̂ ∈ Γ[x]. This
yields ||γ̇||2L2 ≤ M , where M is defined as

M2 =
T

c1


 max
ζ∈P(Ω)

x∈Ω

f(ζ, x, 0) + c0


+ max

ζ∈P(Ω)

x∈Ω

|g(ζ, x)|

where c0 and c1 are the constants in (L3). Therefore, we
have that

SJ,θ
I (x) ⊂ K := {γ ∈ C0,1/2(I;Rd) : ||γ||C0,1/2 ≤ M +R},

where R is the minimum radius of the ball B of center 0
that contains Ω̄ and the norm ||γ||C0,1/2 is defined as

||γ||C0,1/2 = |γ(0)|+ sup
t,s∈I
t�=s

|γ(t)− γ(s)|
|t− s|1/2

.

By Ascoli-Arzelà’s Theorem, K is a compact set in
C0(I;Rd). By (Aubin and Frankowska, 2009, Proposition

1.4.8) (θ, x) �→ SJ,θ
I (x) is upper semicontinuous with
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nonempty compact images. Since Ep is the projection on
the second component, the assumptions of Theorem 5 are
satisfied. Therefore, for any µ ∈ P(Ω) there exists at least

one θ ∈ P(Γ) such that θ ∈ A J,θ
I (µ).

Disintegrating θ w.r.t. the map γ �→ γ(a) from Γ to Ω
yields θ = µ ⊗ θx, where {θx}x∈Ω is a Borel family of
probability measures, uniquely defined µ-a.e. and for µ-
a.e. x ∈ Ω and θx-a.e. γ ∈ Γ, we have that γ(a) = x. Thus

γ is a minimizer of Jθ, in particular (x, γ) ∈ graphSJ,θ
I .

This completes the proof.

5. CONCLUSION

The proposed technique to lift set-valued map can be
generalized to the case of noncompact state space. To this
aim, more careful a priori estimates on the minimizers are
needed, and the choice of a particular Wasserstein distance
becomes relevant.

Beside the lift of set-valued maps associating to a point
the minimizing curves of an integral functional starting
from that point, it can be taken into account also the lift
of the solution map for a differential inclusion satifying
certain structural assumptions, or generalized character-
istics of some classes of Hamiltonian PDE, with potential
applications to gradient flow of certain classes of functional
defined in the Wasserstein space.

The state constraints considered in the last section are
a special class of state constraints defined in the under-
lying finite-dimensional space on the trajectory of each
agent. The treatment of more general state constraints (of
nonlocal type) penalizing for instance concentrations or
rarefaction seems to be quite complicated, due to their
low regularity property.
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flows in metric spaces and in the space of probabil-
ity measures. Lectures in Mathematics ETH Zürich.
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Cavagnari, G., Savaré, G., and Sodini, G.E. (2021). Dissi-
pative probability vector fields and generation of evolu-
tion semigroups in wasserstein spaces. arXiv.

Huang, M., Caines, P.E., and Malhamé, R.P. (2007).
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nonempty compact images. Since Ep is the projection on
the second component, the assumptions of Theorem 5 are
satisfied. Therefore, for any µ ∈ P(Ω) there exists at least

one θ ∈ P(Γ) such that θ ∈ A J,θ
I (µ).

Disintegrating θ w.r.t. the map γ �→ γ(a) from Γ to Ω
yields θ = µ ⊗ θx, where {θx}x∈Ω is a Borel family of
probability measures, uniquely defined µ-a.e. and for µ-
a.e. x ∈ Ω and θx-a.e. γ ∈ Γ, we have that γ(a) = x. Thus

γ is a minimizer of Jθ, in particular (x, γ) ∈ graphSJ,θ
I .

This completes the proof.

5. CONCLUSION

The proposed technique to lift set-valued map can be
generalized to the case of noncompact state space. To this
aim, more careful a priori estimates on the minimizers are
needed, and the choice of a particular Wasserstein distance
becomes relevant.

Beside the lift of set-valued maps associating to a point
the minimizing curves of an integral functional starting
from that point, it can be taken into account also the lift
of the solution map for a differential inclusion satifying
certain structural assumptions, or generalized character-
istics of some classes of Hamiltonian PDE, with potential
applications to gradient flow of certain classes of functional
defined in the Wasserstein space.

The state constraints considered in the last section are
a special class of state constraints defined in the under-
lying finite-dimensional space on the trajectory of each
agent. The treatment of more general state constraints (of
nonlocal type) penalizing for instance concentrations or
rarefaction seems to be quite complicated, due to their
low regularity property.
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Birkhäuser Verlag, Basel, second edition.

Aubin, J.P. and Frankowska, H. (2009). Set-valued anal-
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