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Abstract

Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that
use flexible instruments to navigate through complex luminal structures of the body, resulting
in reduced invasiveness and improved patient benefits. One of the major challenges in this
field is the accurate and precise control of the instrument inside the human body. Robotics
has emerged as a promising solution to this problem. However, to achieve successful robotic
intraluminal interventions, the control of the instrument needs to be automated to a large
extent.

The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies
the key challenges in this field, which include the need for safe and e�ective tool manipulation,
and the ability to adapt to unexpected changes in the luminal environment. To address these
challenges, the thesis proposes several levels of autonomy that enable the robotic system
to perform individual subtasks autonomously, while still allowing the surgeon to retain
overall control of the procedure. The approach facilitates the development of specialized
algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and
tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a
safety framework that provides formal guarantees to prevent risky actions.

The presented approaches are evaluated through a series of experiments using simulation
and robotic platforms. The experiments demonstrate that subtask automation can improve
the accuracy and e�ciency of tool positioning and tissue manipulation, while also reducing
the cognitive load on the surgeon. The results of this research have the potential to improve
the reliability and safety of intraluminal surgical interventions, ultimately leading to better
outcomes for patients and surgeons.



Sommario

Le procedure intraluminali hanno aperto un nuovo sotto-campo della chirurgia minimamente
invasiva che utilizza strumenti flessibili per navigare attraverso strutture luminali complesse
del corpo, con conseguente riduzione dell’invasività e miglioramento dei benefici per i pazienti.
Una delle principali sfide in questo campo è il controllo accurato e preciso dei dispositivi
medici all’interno del corpo umano. La robotica è emersa come una soluzione promettente
a questo problema. Tuttavia, per ottenere interventi intraluminali robotici di successo, il
controllo del dispositivo medico deve essere automatizzato in larga misura.

La tesi esamina prima lo stato dell’arte nella robotica chirurgica intraluminale e identifica
le sfide chiave in questo campo, che includono la necessità di una manipolazione degli strumenti
sicura ed e�cace e la capacità di adattarsi a cambiamenti imprevisti nell’ambiente luminali.
Per a�rontare queste sfide, la tesi propone diversi livelli di autonomia che consentono al
sistema robotico di eseguire singole sottoattività autonomamente, consentendo comunque al
chirurgo di mantenere il controllo generale della procedura. L’approccio consente di sviluppare
algoritmi specializzati come Deep Reinforcement Learning (DRL) per sottoattività come la
navigazione e la manipolazione dei tessuti per produrre gesti chirurgici robusti. Inoltre, la tesi
propone un quadro di sicurezza che fornisce garanzie formali per prevenire azioni rischiose.

Gli approcci presentati vengono valutati attraverso una serie di esperimenti che utilizzano
piattaforme di simulazione e robotiche. Gli esperimenti dimostrano che l’automazione delle
sottoattività può migliorare l’accuratezza e l’e�cienza del posizionamento degli strumenti e
della manipolazione dei tessuti, riducendo anche il carico cognitivo sul chirurgo. I risultati di
questa ricerca hanno il potenziale per migliorare l’a�dabilità e la sicurezza degli interventi
chirurgici intraluminali, portando infine a migliori risultati per pazienti e chirurghi.



Resumen

Los procedimientos intraluminales han abierto un nuevo subcampo de la cirugía mínimamente
invasiva que utiliza instrumentos flexibles para navegar a través de estructuras luminales
complejas del cuerpo, lo que resulta en una reducción de la invasividad y en beneficios para
los pacientes. Uno de los principales desafíos en este campo es el control preciso y exacto de
los dispositivos médicos dentro del cuerpo humano. La robótica ha surgido como una solución
prometedora para este problema. Sin embargo, para lograr intervenciones intraluminales
robóticas exitosas, el control del dispositivo médico debe estar automatizado en gran medida.

La tesis examina el estado del arte en robótica quirúrgica intraluminal e identifica los
principales desafíos en este campo, que incluyen la necesidad de una manipulación segura y
efectiva de herramientas y la capacidad de adaptarse a cambios inesperados en el entorno
luminal. Para abordar estos desafíos, la tesis propone varios niveles de autonomía que
permiten al sistema robótico realizar sub tareas individualmente de manera autónoma, al
tiempo que permite al cirujano retener el control general del procedimiento. El enfoque
permite el desarrollo de algoritmos especializados como el aprendizaje profundo por refuerzo
(DRL) para sub tareas como la navegación y la manipulación de tejidos para producir gestos
quirúrgicos robustos. Además, la tesis propone un marco de seguridad que proporciona
garantías formales para prevenir acciones riesgosas.

Los enfoques presentados se evalúan mediante una serie de experimentos utilizando
plataformas de simulación y robótica. Los experimentos demuestran que la automatización
de sub tareas puede mejorar la precisión y eficiencia de la posición de la herramienta y
la manipulación de tejidos, al tiempo que reduce la carga cognitiva en el cirujano. Los
resultados de esta investigación tienen el potencial de mejorar la confiabilidad y seguridad de
las intervenciones quirúrgicas intraluminales, lo que finalmente conduce a mejores resultados
para pacientes y cirujanos.



Resum

Les intervencions intraluminals han obert un nou subcamp de la cirurgia mínimament invasiva
que utilitza instruments flexibles per navegar a través de conductes complexes del cos, el que
fa el procés menys invasiu i aporta beneficis per als pacients. Un dels principals reptes en
aquest camp és el control precís dels dispositius mèdics dins del cos humà. La robòtica ha
sorgit com una solució prometedora per a aquest problema. Però per aconseguir intervencions
intraluminals robòtiques exitoses, el control del dispositiu mèdic ha d’estar automatitzat en
gran mesura.

En aquesta tesi s’examina l’estat de l’art en robòtica quirúrgica intraluminal i s’identifiquen
els principals reptes en aquest camp, que inclouen la necessitat d’una manipulació segura
i efectiva de les eines i la capacitat d’adaptar-se a canvis inesperats en aquest entorn.
Per abordar aquests reptes, la tesi proposa diversos nivells d’autonomia que permeten al
sistema robòtic realitzar sub-tasques individualment de manera autònoma, i a la vegada
permet al cirurgià mantenir el control del procediment. L’enfocament del treball permet el
desenvolupament d’algorismes especialitzats com l’aprenentatge profund per reforç (DRL)
per a sub-tasques com la navegació i la manipulació de teixits per produir gestos quirúrgics
robustos. Addicionalment, la tesi proposa un marc de seguretat que ofereix garanties formals
per prevenir accions arriscades.

Les aproximacions presentades són avaluades mitjançant una sèrie d’experiments utilitzant
plataformes de simulació i robòtiques. Els experiments demostren que la automatització
de sub-tasques pot millorar la precisió i l’eficiència de la posició de l’eina i la manipulació
de teixits, reduint a la vegada la càrrega cognitiva del cirurgià. Els resultats d’aquesta la
investigació tenen el potencial de millorar la confiabilitat i la seguretat de les intervencions
quirúrgiques intraluminals, el que finalment dona lloc a millors resultats per a pacients i
cirurgians.
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Chapter 1

Introduction

The field of surgical intervention has been consistently evolving towards less invasive proce-
dures, which have been made possible through the advancements in technology and engineering
[18]. This pursuit has a rich history, dating back to the early innovations such as Bozzini’s
Cystoscope in 1805 [19], Desormeaux’s endoscope in 1853, and Kelling’s laparoscopy attempts
in 1901 [20] [21]. The success of Minimally Invasive Surgery (MIS) has been a driving force
behind the development of advanced technologies, particularly the rod endoscope developed
by Hopkins in the 1960s, which was later improved with the integration of digital cameras
[18].

MIS is a promising alternative to more invasive surgical interventions, such as open
approach, as it significantly reduces the risks of associated mortality and morbidity. One
of the main limitations of MIS is that the clinician’s dexterity and sensory information are
limited compared to open surgery [18]. This loss is because the instruments used in MIS are
much smaller than those used in open surgery, and they are often inserted through narrow
tubes, which limit the ability to manipulate the instruments with precision. Moreover, the
tactile feedback provided by the instruments used in MIS is also limited, as the sense of
touch is diminished due to the use of long, thin instruments. Therefore, robot-assisted MIS
is a significant area of interest which utilizes rigid instruments with dexterous wrists and
high-definition stereo vision systems. The distal dexterous wrists allow clinicians to carry
out complex tissue manipulation tasks with greater ease than was previously possible with
manual laparoscopic tools [22]. Despite the considerable progress in robot-assisted MIS, the
adoption of rigid instruments limited their use to highly space-confined areas such as the
gastrointestinal tract and lung pathways.

To overcome the limitations of rigid instruments in robot-assisted MIS, researchers, in
recent years, have explored the use of snake-like devices [23]). IP are emerging medical
therapies that use the natural lumens to access deep-seated regions of the body (Fig. 1.1).
They are performed with the use of snake-like flexible instruments that can navigate through
the complex intraluminal anatomy.
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Fig. 1.1 IP with their clinical target. (a) Endovascular catheterization (b) Transanal colorectal
procedures with a standard endoscope (c) Transurethral and transvaginal access for prostate
or bladder procedures (d) Transoral procedures for airways or esophagus (e) Transnasal
procedure to access bronchi.

IP have demonstrated marked improvements in patient outcomes, including reduced
blood loss, postoperative trauma, wound site infection, and hospitalization/recovery time [24].
However, the flexible tools used in IP have non-ergonomic designs and present di�culties
in precise control due to the complex mapping between input and output motion. These
design limitation leads to an increased cognitive and physical workload for the clinician [21].
Overall, it is a widely recognized fact that they need to undergo a long learning curve before
becoming proficient in using such highly dexterous instruments [21].

To address these challenges, future generations of surgical robotics will likely provide more
autonomous and dexterous control, resulting in enhanced accuracy, precision, and stability
[25]).
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1.1 Intraluminal procedures (IP)

IP can be classified into two categories: endoluminal and transluminal procedures [18, 22].
Endoluminal procedures are interventions in which instruments are inserted through and
remain within natural body lumens or orifices. On the other hand, transluminal procedures
involve the use of instruments within body lumens, but also incorporate incisions within
lumen walls to access target sites beyond the lumen, as seen in Natural Orifice Transluminal
Endoscopic Surgery.

Examples of endoluminal procedures include transoral interventions in the airways or
esophagus, transanal access to the lower digestive tract, transnasal access to bronchi, and
transurethral bladder and upper urinary tract procedures. Transluminal procedures include
transgastric and transvaginal abdominal procedures, transoesophageal thoracic procedures,
and transanal mesorectal procedures (Fig. 1.1).

In this thesis, the term IP is utilized in an inclusive manner to refer to both endoluminal
and transluminal procedures.

1.1.1 Challenges

The implementation of IP often involves several complex and time-consuming phases, such
as precise navigation to reach the targeted area, detection of abnormal tissue structures, and
dissecting of the infected region [26, 27]. Such subtasks necessitate meticulous manipulation
and control of the interventional instrument. One of the significant challenges during IP
is related to operation in a deformable but confined workspace using a compliant device.
The instruments used for IP must traverse the anatomical passageways while maintaining
contact with the lumen along a significant portion of their length [24]. Such contact events
occur beyond the field of view due to the restrictive perception of the endoluminal or
endovascular tool architecture [22]. These contacts can be hazardous, and their response is
usually challenging to predict, particularly as there is no direct view of the local anatomy. In
addition, the movement of the tools is challenging to predict. Movement at the proximal end
may lead to limited, unexpected or no movement of the distal tip [28]. The factors such as
friction, slack, and deformation of the instrument and the vascular or luminal wall prevent a
desirable 1-to-1 relation between the proximal and distal tip motion.

As a result, clinicians face a steep learning curve in terms of manipulating the tools
within the body while observing a dislocated screen [24]. The visual feedback used in MIS is
often two-dimensional and lacks depth perception, making it di�cult to accurately assess the
spatial relationships between di�erent anatomical structures, creating situational awareness
challenges [1]. To overcome these challenges, clinicians must rely on specialized training and
image-guided navigation aids. Furthermore, the use of surgical tools instead of the hands
results in a loss of sensory information regarding forces, texture, temperature, and sti�ness
[22, 29].
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1.1.2 Snake-like Flexible Robots

The added constraints of IP place higher demands for robots that can provide distal dexterity
in confined spaces. Concurrent developments enabling miniature camera technology have
also been critical for advancing new miniature insertable visualization aids [30]. With the
visualization challenges solved, the last decade has seen a flurry of research activity and
new designs of snake-like robots for IP [22]. The mechanical architecture of flexible robots
can be classified in three backbone types: continuous, discrete and hybrid [31]. Robots
with continuous backbones (often referred to as continuum robots) use a continuous elastic
backbone that is bent by wires, push-pull actuation or by antagonistic pairs of pre-shaped
superelastic tubes. Robots with discrete backbones use articulated linkages, pivots and wire-
compressed cams to form their structure. Hybrid backbone robots use a mixture of flexible
elements (e.g. springs) and linkages to achieve manipulation.

Additionally, design constraints must be taken into account in IP. For instance, IP
often require multiple robotic arms to operate through narrow access channels or anatomical
passageways. This necessitates careful consideration of the design and mounting of the
actuation units for each robotic arm to prevent collisions. Moreover, workspace constraints
often dictate that the robotic arms emanate from a narrow access over-tube, imposing strict
limitations on kinematic dexterity and workspace. A comprehensive survey of commercially
available robotic systems for IP is presented in Chapter 2.

1.1.3 Autonomous Intraluminal Surgery

Despite the advancements in technology, the complexities associated with IP have not been
fully mitigated by the introduction of robotic assistance. The limitations of current robotic
systems, such as the lack of intuitive control due to poor shape-sensing capabilities and tool
dexterity limitations, hinder their ability to e�ectively reduce the procedure’s complexities
[32, 1].

However, the potential benefits of automation in reducing clinicians’ workload and im-
proving the overall outcome of IP are widely acknowledged in the literature [32, 1, 33]. For
example, the use of autonomous navigation assistance could help minimize path-related com-
plications, such as perforation, embolisation, and dissection, caused by excessive interaction
forces between the interventional tools and the lumen or vessels.

With the increasing demand for IP and the scarcity of specialists in this domain [29], the
integration of autonomous control will enable clinicians to adopt a supervisory role and focus
on high-level decisions instead of low-level execution. This approach can decrease the need
for continuous human intervention, resulting in more e�cient and streamlined procedures.

The use of automation in IP holds great potential for both patients and clinicians. As
many IP actions are repetitive and fatiguing, IP can benefit from some degree of supervised
autonomy where specific subtasks are delegated to the robot to perform autonomously under
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Fig. 1.2 Preoperative and intraoperative information is used to devise an interventional plan
comprising a sequence of tasks and then execute it autonomously, replanning if necessary. A
clinician always supervises the procedure and can take control at any time. Adapted from [1]

close supervision by a clinician. Such supervised autonomy can reduce the learning curve and
increase accuracy while also reducing the risk of medical errors caused by human shortcomings,
such as lack of attention, fatigue or poor decision-making [32].

Recently, a framework for the autonomy levels in robot-assisted MIS has been proposed,
which includes di�erent LoA such as robot assistance, task automation, conditional autonomy,
and high-level autonomy [25]. Attanasio et al. and Haidegger et al. have carried out a
comprehensive analysis of this framework and mapped out the distinct features of di�erent
LoA in robot-assisted MIS [33, 1].

Project details

This thesis lies within the AuTonomous intraLuminAl Surgery (ATLAS)a project
that aims to provide autonomous control to smart, flexible robots to propel through
complex deformable tubular structures. The project is a collaborative e�ort from seven
prestigious university research groups, each of which serves as a center of excellence
in a specific field, working together to seamlessly integrate various elements such as
sensors, actuators, modeling, and control. Through the advancement of the state
of the art in robotic surgery and relevant areas, including actuation and sensing
for flexible instruments, automatic instrument localization, surgical workflow and
operation state estimation, context-aware control schemes, and intuitive interface and
guidance systems, the ATLAS project aims to make significant contributions to the
field.

aThe ATLAS project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No 813782. The
project establishes 15 early-stage researchers that are trained with the necessary skills and capabilities
to understand complex surgical robotic challenges. More details of the project can be found at
https://atlas-itn.eu/

However, these studies adopt a top-down approach to defining LoA based on general
features of robot-assisted MIS, which makes it challenging to apply these levels to specific
subtasks such as navigation in IP. To overcome this challenge, a bottom-up approach is

https://atlas-itn.eu/
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required, which considers specific clinical phases and defines LoA based on characteristic
features of subtasks associated with a specific clinical phase.

The inclusion of autonomous features raises several safety, ethical and regulatory concerns
due to incorrect robot behavior. A framework that allows for safety validation in a wide variety
of circumstances is necessary to overcome the regulatory requirements. Such a framework
will enable tracking the source of error, detect deviations from expected functionality, and
implement recovery action [34].

1.1.4 Motion planning

One of the initial steps towards enabling autonomous control for IP is to implement MP
techniques [35]. MP refers to obtaining a path from a start to a goal configuration while
respecting a collision-free workspace.

MP has been well-studied for rigid robotic manipulators [36] and recent studies have
explored MP for flexible continuum robots with a large number of degrees of freedom [37, 38].
However, an organized survey of MP for IP and other biomedical applications using continuum
robotic systems is missing. Therefore, in Chapter 4 of this thesis, we conduct a survey of
existing MP methods for IP, the associated challenges and potential promising directions.
The survey systematically classifies MP into four categories: node-based, sampling-based,
optimization-based, and learning-based methods.

Based on the results of our survey, it is evident that there has been a marked rise in the
adoption of learning-based methodologies that rely on neural network function approximators
for acquiring motion representations. This surge can be attributed to the swift advancement
in computational capabilities and parallel processing, which has made it feasible to estimate
gradients over millions of parameters. In particular, data-driven learning techniques such as
DRL hold significant promise as an alternative to the manual e�ort typically required for
sequential decision-making processes [39]. DRL is an approach that identifies a sequence of
actions aimed at increasing the likelihood of achieving a predefined objective.

DRL was first applied to Atari game environments [40, 41] but has recently been applied
to robotics tasks such as locomotion skills, dexterous manipulation, and grasping [42–45]. In
the healthcare domain, the DRL approach is being studied to produce optimum policies to
suggest interventions and recommend actions, with the aim of reducing human-level bias and
errors [46]. DRL can mimic a human-like learning approach and use electronic health records
to develop treatment policies, intervention suggestion systems, and action recommendation
systems [46]. The robustness of recent DRL algorithms helps developed systems adapt to
sudden environmental changes.

Despite their increasing popularity, their application in the surgical robotics domain
is limited due to safety, ethical, legal, and economic constraints. DRL has been applied
for the manipulation of surgical needle [47], knot tying [48], cutting [49], and learning the
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tensioning policy of soft tissues [50]. However, the application of DRL in learning surgical
tasks often present the policy with low-dimensional representation of observations such
as robot kinematics data, which are widely accepted to be sample-e�cient and trivial to
learn [51–53]. This thesis aims to answer if it is possible to learn the policy directly from
high-dimensional state inputs in an end-to-end manner.

In real-world scenarios, agents trained through DRL can encounter situations that are
potentially dangerous or unsafe. Incorporating safety into DRL algorithms is, therefore, an
essential research area to ensure that DRL agents operate safely and do not cause harm
to themselves, other agents, or the environment. Incorporating safety into DRL involves
designing algorithms that not only maximize rewards but also ensure that the agent behaves
in a safe and responsible manner. This can involve constraining the agent’s actions or placing
limits on its exploration of the environment to avoid dangerous or undesirable outcomes.
Therefore, one of the goals of this thesis is to develop a safety framework to ensure that the
agent’s action will be restricted to a pre-defined safety regime. The formal guarantee of a
safe behavior is of utmost importance before their applicability in real surgical scenarios.

1.2 IP subtask decomposition

We choose transanal colonoscopy as a representative IP in this thesis, which involves the
insertion of an endoscope, a flexible tube with a camera and light at the tip, into the lower
digestive tract through the anus. The endoscope is used to visualize the interior lining of
the rectum and colon to diagnose and treat a variety of conditions. Our choice for selecting
transanal colonoscopy is motivated due to its ability to perform a variety of procedures such
as biopsy, polyp removal and placement of stents and other devices, while being less invasive
compared to other IP.

The workflow of transanal colonoscopy often includes three frequently used subtasks,
namely navigation, abnormal tissue detection, and soft-tissue manipulation, which make up
a significant portion of the overall procedure. Our goal in this thesis lies in automating these
subtasks.

Navigation: The task of lumen navigation is a fundamental aspect of colonoscopy pro-
cedures and involves reaching the end of the lumen or the target area for inspection. The
endoscopic camera provides visual feedback, which is utilized by the endoscopist to advance
the instrument through the lumen. During routine screening procedures, a Flexible Endo-
scope (FE) is first inserted from the rectum to the caecum and then retracted to detect
possible early-stage CRC lesions. A common gesture performed by endoscopists during the
procedure is to centralize the endoscope towards the center of the lumen. Prior research has
attempted to replicate this gesture through rule-based controllers that reduce the distance
between the image center and the detected lumen center [54]. However, these algorithms are
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limited in situations where the endoscope tip approaches the colon wall, which can occur due
to patient movements, peristalsis, or breathing. To address this issue, we propose an adaptive
exploration method that leverages image-based DRL to determine the direction of motion.

Abnormal Tissue Detection: CRC lesions exhibit various features, such as texture,
color, shape, borders, vessels, and size, which allow for classification into neoplastic and
non-neoplastic polyps [55]. Polyps can be further categorized into diminutive (Æ5 mm),
small (6 to 9 mm), and large (Ø10 mm) based on their size [55]. Although larger polyps are
easier to visualize, they also pose a higher risk of malignancy [56]. E�ective early detection
of diminutive and small polyps is crucial to reduce the likelihood of their progression to
large polyps. During a standard procedure, the endoscope tip is positioned in the vicinity of
the target area, and a tissue biopsy is collected using forceps for histological analysis. An
alternative to this method is o�ered by OCT which is a non-contact high-resolution imaging
for polyp characterization [57]. In this thesis, we develop an OCT-based motion policy for
tissue scanning that reduces the need for tissue removal while enabling real-time in-situ
optical measurements to replace ex-situ biopsies.

Soft-tissue Manipulation: If polyp characterization results indicate a high probability
of CRC, a polypectomy procedure is planned based on the polyp’s location and features,
such as Endoscopic Submucosal Disection (ESD) and Endoscopic Mucosa Resection (EMR).
These procedures require the clinician to manipulate the mucosa tissue to identify the cutting
plane, which requires grasping and retracting the tissue repeatedly. The choice of surgical
system for dissection depends on the size and location of the polyp; for instance, the dVSS
may be used for polyps closer to the anal opening, while flexible instruments may be used for
polyps located farther away. In this thesis, we consider the dVSS as the system used for the
polypectomy procedure due to its widespread usage. The tissue manipulation tasks carried
out by the dVSS may require the clinician to switch robotic arms or instruct an assistant with
the desired motion [58], making it an ideal candidate for automation using a DRL method.
Hence, we present multiple approaches to automating the tissue manipulation task using
DRL. It should be noted that while the automation discussed in this study is specifically
implemented on the dVSS, which consists of rigid manipulator, the same principles and
techniques can also be applied to flexible dual-arm robotic systems such as the Single-access
Transluminal Robotic Assistant for Surgeons (STRAS).

1.3 Contributions

The purpose of this thesis is to explore the automation of repetitive surgical subtasks in IP to
enhance the accuracy and safety of these procedures. This would result in a reduction in the
physical burden on clinicians by delegating low-level actions to autonomous systems, thereby
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allowing human operators to focus on high-level decision-making tasks. The challenge lies in
integrating partial automation of these subtasks into the surgical workflow in such a way that
machines and humans can collaborate e�ectively in making decisions and executing actions.

The main contributions of this thesis can be summarized as follows:

1. A framework for classifying levels of dedicated autonomy for IP subtasks that provides
predictable human intervention. The framework provides an intermediate LoA for the
subtasks, which serves to clearly define the boundary between human and automated
control, improving risk and safety management. Additionally, a comprehensive review of
MP techniques for IP robot control is provided, which is an important step in achieving
higher LoA. Limitations of current robotic systems and MP methods are also discussed,
o�ering insight into areas for improvement.

2. Demonstration of end-to-end joint training for perception and control to learn colonoscopy
navigation policies. The proposed method maps raw endoscopic images to the control
signal of the endoscope, referred to as DVC. An open-source colonoscopy simulator
incorporating deformable soft tissue dynamics was developed to support the proposed
navigation method. The method was validated by comparison with data acquired from
expert clinicians, and results showed equivalent navigation performance between DVC
and expert clinicians. A novice user study was also conducted to demonstrate that
supervision of DVC significantly reduces the user workload.

3. An autonomous robot control strategy that employs feedback from a monocular en-
doscopic camera and OCT imaging to detect malignant tissue and assess its health.
The scanning strategy was demonstrated in a synthetic colon environment with varying
lighting conditions and random image quadrants. The ability to perform real-time
diagnosis of CRC using autonomous OCT scanning eliminates the need for ex-situ
biopsy.

4. Application of DRL to automate soft tissue manipulation tasks. Additionally, a LfD
training regime was explored, where expert demonstrations could be used to train
robotic agents. DRL training was carried out in the open-source simulation framework
UnityFlexML, and trained policies were transferred to the real robot.

5. A safe-DRL framework for incorporating safety constraints into the training process
through constrained optimization. The safety of the robotic arms was evaluated using
a FV and model selection tool, providing safety guarantees. The proposed method was
used for colon navigation as well as soft tissue manipulation task.

6. Presentation of a multi-subtask RL methodology that allows complex tasks to be
decomposed into low-level subtasks, which are then learned through DRL methods. A
high-level choreographer combines the trained subtasks to achieve the intended task.
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This thesis addresses limitations that currently prevent the widespread use of DRL
methods in surgical subtask automation. The benefits of training DRL agents in a realistic
simulation environment are emphasized, providing insight into the development of high-level
autonomous IP systems. The contributions of this thesis have the potential to advance the
development and performance of autonomous IP systems, bringing them closer to clinical
application.

1.4 Thesis Structure

This thesis begins with a discussion of the necessity for robotic automation in IP in Chapter 2.
The chapter starts with the significance of developing ethical and safety standards for
e�ective risk management. The existing standards are presented and directions are provided
to integrate autonomous features. Additionally, the autonomy framework developed for
Robot-assisted MIS is also discussed and extended to include IP subtasks. Furthermore,
the chapter presents a comprehensive overview of the commonly practiced IP, including
transanal, transurethral, transoral, transnasal, and endovascular interventions. Moreover, it
highlights the commercially available robotic systems used for these IP and compares their
benefits to manual control and identifies their current limitations.

The core objective of this thesis is to demonstrate the use of RL for subtask automation in
IP. Chapter 3 provides the mathematical background for framing the control problem in an
RL context, and describes the challenges associated with robotics that make the application
of RL a hard problem. We discuss the commonly used RL algorithms and LfD techniques
for generating human-like surgical gestures.

The remainder of the thesis is divided into three parts, each focusing on a surgical subtask,
elaborated in Sec. 1.2. One of the reasons to select the three frequently occuring subtasks was
to show the versatility of the automation system across various task features. The subtasks
have distinct objectives, showcasing the system’s ability to generalize and adapt to diverse
task requirements.

In Part 1, we concentrate on the IP navigation subtasks. Chapter 4 provides a literature
survey of MP methods and summarizes the taxonomy of methods, results, limitations, and
opportunities for improvement. In Chapter 5, we present an image-based endoscope navigation
method called DVC, which maps endoscopic images to the endoscope’s control signal. A
realistic colonoscopy simulator with soft tissue dynamics is developed to perform end-to-end
training. We use the environment to develop a safe-RL framework which adds constraints for
safe colon navigation in Chapter 6. Several RL policies are trained and the one that adheres
to all safety constraints in selected.

In Part 2, we consider the CRC detection subtask, where the aim is to develop detection
techniques that would overcome the need for tissue removal. Chapter 7 shows the use of
OCT imaging as a non-invasive screening technique to scan the suspected tissue and develops
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a control strategy to autonomously scan the tissue. The chapter presents a multi-objective
optimization problem and demonstrates the use of quadratic programming in solving it.
Future work would employ DRL methods developed in Part 1 to to solve the multi-objective
setting.

Part 3 of the thesis focuses on the polypectomy procedure to excise the malignant CRC
tissue. A subtask actively used in polypectomy procedures is tissue manipulation, which we
aim to automate in this part. In Chapter 8, the tissue manipulation task is formulated in a RL
problem where the agent learns the tissue dynamics from multiple interactions. The chapter
employs a state-of-the-art DRL method to learn a tissue manipulation task in simulation,
which can then be translated to a real robot. It further shows how simulation training
can be performed using demonstrations collected from the real robotic system, replicating
human-like gestures. Finally, Chapter 9 proposes a safe-RL method for manipulating soft
tissue constrained within a pre-defined safety workspace. The safe behavior is validated using
FV techniques.

The conclusions and future research directions are presented in Chapter 10.
One of the contribution of this thesis is the introduction of Hierarchical Reinforcement

Learning (HRL) framework detailed in Appendix. 1, in which multiple agents can operate at
di�erent temporal levels to learn longer tasks. Lower-level agents learn to perform low-level
actions to complete subtasks, while higher-level agents learn to sequence subtasks.

1.5 Conclusions

This chapter provides an introduction to IP and the challenges in instrument control. To
address these challenges and reduce the physical burden on the operator, robotic systems
under development aim to o�er low-level motion control capabilities and improved dexterity
while allowing the experts to retain supervisory control using intuitive interfaces.

It is essential to define the levels of autonomy where humans and machines can work
together to make decisions and carry out actions. Existing autonomy frameworks for Robot-
Assisted MIS have been proposed, but their application to IP is not straightforward. This
thesis takes a bottom-up approach, where each subtask can have its own intermediate level
of autonomy. Understanding the subtasks in this manner will enable better risk management
by providing insight into the required level of human intervention.

Data-driven learning methods, such as DRL, are one way to automate surgical subtasks.
In this thesis, DRL is used to demonstrate adaptable colonoscopy navigation and tissue
manipulation skills that match the performance of human experts. The DRL agents are
trained in a realistic simulation environment, and the trained policy is transferred to the real
robot for validation using synthetic phantom experiments.
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In addition, we develop a robot control strategy that uses an OCT sensor to scan and
assess the health of malignant tissue in real-time. This reduces the need for tissue removal
and could replace ex-situ biopsies with in-situ optical measurements.

Despite the potential of DRL in robotics, its application in surgery is limited by various
safety, ethical, legal, and economic constraints. This thesis addresses some of these concerns
by incorporating safety and human bias into the training process, making learning more
e�cient.

The results of this thesis represent early steps towards developing adaptive control for
IP surgical systems. By sharing the simulation environment and methods developed in this
thesis, we aim to encourage wider use of DRL in autonomous surgery.



Chapter 2

Robotic Autonomy for Intraluminal
Procedure

One of the promising features of forthcoming IP robotic systems is autonomy, which grants
the capability to automatically perceive, analyze, plan, and execute actions [59]. Autonomous
robotic systems possess the capacity to handle non-programmed situations and exhibit self-
management and self-guidance [60]. The most noteworthy feature of autonomy is the transfer
of decision-making capacity from a human operator to the robotic system. Two conditions
must be met for this transfer to occur [61]. Firstly, the operator must leave the control
to the robotic system, including associated responsibilities (i.e., the human operator must
demonstrate “trust” in the autonomous system). Secondly, the system must be validated,
meaning that it must adhere to ethical, legal, and certification standards. However, these
certification standards are not yet fully established for medical robotic systems due to a lack
of consideration and a clear understanding of autonomy [62]. Therefore, this chapter first
introduces the ethical and regulatory aspects of autonomy in Sec. 2.1, followed by a definition
of generic Levels of Autonomy (LoA) in Sec. 2.2. We then present the specific LoA for IP
navigation systems in Section 2.3. Finally, an overview of robotic advancements for various
IP is provided in Sec. 2.4, followed by conclusions in Sec. 2.5.

2.1 Ethical and regulatory considerations

The ethical and regulatory considerations of autonomous medical robots can be addressed
from multiple perspectives, including human rights, law, economics, policy, and ethics [63].
Medical robot practitioners have raised concerns about the potential consequences of errors
resulting from decisions made by autonomous systems, which can be caused by incorrect
robot behaviors [64]. Hence, the reliability of these robots is of utmost importance as any
malfunction could lead to hazardous situations with risks of harming the patient or the
medical personnel [64]. Reliability refers to the ability of the surgical robot to perform
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consistently and accurately over time, without compromising patient safety or compromising
the e�ectiveness of the procedure.

The National Artificial Intelligence (AI) Initiative is one of the first research and devel-
opment strategy to focus on promoting the responsible use of AI technologies in United
States in various domains such as healthcare and medical robotics [65]. For medical robotics,
this means developing systems that are accurate and reliable, while also ensuring that they
are safe, transparent, accountable and used ethically and in a way that respects patient
privacy. Similarly, the AI Act for high risk applications is a proposed regulation by the
European Union that seeks to regulate the use of AI in certain high-risk applications [66].
The AI Act defines the role of a human operator, including the obligation to provide human
supervision, the right for a human to override an automated decision, and the right to obtain
human intervention, which forbids full autonomy. Therefore, human intervention needs to be
carefully designed into the system at di�erent levels of integration [67].

The reliability of medical robotics is associated with the notion of certification, which
requires legal approval that the system has reached a particular standard. Several regulatory
standards exist in the robotics domain, such as the International Electrotechnical Commission
(IEC) Technical Report 60601-4-1 [68], which provides guidance towards risk management,
basic safety, and essential performance towards systems with some degrees of autonomy.
However, these standards are not fully developed for autonomous medical robotic systems
due to a lack of clear understanding of autonomy and uncertainty [62, 64].

Fischer et al. identified key aspects to facilitate regulatory development, including
architecture and engineering, requirements and specifications, and verification and validation
issues [62]. Architecture and engineering issues entail making the autonomous system
amenable to inspection and analysis, while requirements and specification issues define the
expected behavior of the system and the intended goal. Verification and validation issues
cover a broad range of techniques at di�erent levels of formality. Upcoming regulations, such
as the AI Act, are expected to drive earlier consideration of safety and system integration
concerns in the design process. Machine decision interpretability, such as Explainable AI [69],
can aid the forensic analysis of human-robot collaboration, and the use of formal methods,
such as mathematical proofs of correctness, can improve validation and reliability.

The introduction of LoA could support regulatory development by providing di�erent
levels of system verification, validation, and improved risk management [62].

2.2 Definition of surgical autonomy

Quantifying the degree of autonomy in robotic systems can be challenging, as the capabilities
of the robot can vary significantly based on the underlying technologies used. In the field of
medical robotics, the introduction of autonomous capabilities in robotic systems is leading to a
significant shift in the role of medical specialists. Traditionally, medical specialists have relied
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on their manual dexterity and interventional skills to diagnose and treat patients. However,
as the capabilities of medical robotic systems continue to increase, medical specialists are
increasingly shifting towards high-level decision-making tasks, relying on the robotic systems
to provide assistance in the more repetitive and routine aspects of medical procedures.

Previous research has outlined five LoA for medical robotic systems, taking into account
the complete clinical procedure and the role of the clinician [25, 33]. At LoA 0, the robot
has no decision autonomy, and the human clinician controls all aspects of the system. At
LoA 1, the robot can assist the clinician, while at LoA 2, it can independently perform
an interventional subtask. At LoA 3, the robot can autonomously perform more extended
segments of the clinical procedure while making low-level cognitive decisions. Finally, at
LoA 4, the robotic system can execute the entire procedure based on human-approved clinical
plans or surgical workflow. LoA 5, which refers to full autonomy where the robotic clinician
can perform the entire procedure better than the human operator, is still in the realm of
science fiction and outside the scope of this thesis [25, 33]. At highest LoA, the robotic system
will exhibit highly sophisticated responses to a variety of sensory data, closely approaching a
level of sensorimotor skills of an expert clinician.

The enabling technologies and the practical applications for di�erent levels are outlined
by Attanasio et al. in [1] while Haidegger et al. [33] provide a top-down classification of
LoA for general robot-assisted MIS. Haidegger’s classification considers four robot cognitive
functions, including generate, execute, select, and monitor options, and the overall LoA is
computed as the normed sum of the four system functions on a linear scale, ranging from 0
(fully manual) to 1 (fully autonomous).

In clinical practice, an interventional procedure workflow is typically decomposed into
several granular levels, such as phases, steps, and gestures [70]. While many of the inter-
ventional phases and skills used in IP are not considered in robot-assisted MIS, such as
luminal navigation, LoA defined for robot-assisted MIS cannot be directly applied to IP.
Moreover, using the approach proposed by Haidegger et al., it is challenging to identify a clear
boundary between human and automated control that is required for specific phases/steps of
robot-assisted MIS. This introduces an additional problem of defining the overall level of the
system that implements di�erent LoA for di�erent phases of the procedure.

Therefore, we propose a bottom-up solution where an intermediate LoA is defined for
specific interventional phases. Such an approach would provide a better comprehension of
the level of human intervention necessary for specific sub-tasks. An assessment of individual
stages can provide a more accurate overall estimation of the system’s autonomy as subtasks
can have varying intermediate LoAs. In this thesis, we consider one of the major subtask
that occurs frequently in most IP i.e. navigation. Navigation is an elongated phase which
consists of advancing the tip of the flexible instrument to reach the targeted area. Although,
we apply the approach of intermediate LoA to a IP subtask, its application to other clinical
subtasks, such as robot-assisted MIS, is straightforward.
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2.3 Levels of autonomy for IP navigation

LoA for robot-assisted MIS has been derived from the degree of autonomy introduced by
IEC in a technical report (IEC/TR 60601-4-1) [68] to propose an initial standardization of
autonomy levels in medical robotics. The report parameterizes Degrees-of-Freedom (DoFs)
along a system’s four cognition-related functions: generate, execute, monitor and select
options. A similar classification approach has been followed by Haidegger et al. for robot-
assisted MIS. We identify three specific cognitive functions for an IP navigation task: 1)
Target localization, 2) Motion planning MP, and 3) Execution and replanning. Target
localization is usually based on preoperative images, such as CT, Magnetic Resonance
Imaging (MRI) or X-Ray imaging. It is a critical feature, as inaccurate target identification
can lead to errors in the subsequent steps. MP refers to the preoperative planning performed
before the procedure. This may be done in static virtual models of the lumen or vessels.
Execution and replanning is an intraoperative phase to carry out the required motion to reach
the target while continuously replanning intraoperatively. It can include target relocalization
when adjustment is needed due to unexpected situations.

Table 2.1 provides an overview of the LoA for IP. LoA 0 requires a human operator to
take full control of target localization, MP and motion execution. Commercially available
robotic system can be considered in this category since the human operator has complete
control of the robotic motion. LoA 1 entails manual target localization and preoperative
planning by a clinician with the robotic system providing assistance during motion execution.
Examples of this level are systems that use external tracking devices and registration methods
to align preoperative data with the intraoperative environment and aid the clinician with
motion execution [71, 14, 72]. Taddese et al. developed a teleoperated magnetically controlled
endoscope that provides navigation assistance through controlled magnetic fields [73]. The
implementation of such systems represents LoA 1, where the manipulator executes the
commands given by the operator.

In LoA 2, the robotic system fully controls the specific steps of navigation. Target
localization is performed by the clinician, who provides input in the form of waypoints or
demonstration trajectories. The path planner uses this information to generate a global
trajectory, and the robotic system carries out the required motion indicated by the path
planner. During execution, the human operator supervises the autonomous navigation
and approves the robot’s actions or overrides them. In LoA 3, the path planner generates
the global path in the preoperative phase without any manual intervention after target
localization by the clinician. LoA 3 also includes the ability to autonomously split the entire
navigation task into specific subtasks. The robotic system executes the motion indicated
by the path planner and adapts to environmental changes through real-time replanning.
The local real-time knowledge provides information about the anatomical environment, and
the motion is adjusted as the autonomously steering is performed. All features, including
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Table 2.1 Descriptive classification of levels of autonomy of IP. H: Performed by a human
operator, M: Performed by a machine. H/M: Performed by a human, assisted by a machine,
M/H: Performed by a machine, assisted by a human. M1: Performed under human supervision.

LoA Description Target
localization

Motion
planning

Execution &
re-planning

0 Direct robot control: The clinician exclusively con-
trols all cognitive functions without any support
or assistance [25]. Most IP systems used in clinical
practice operate at Level-0 autonomy.

H H H

1 Navigation assistant: The human operator main-
tains continuous control of the robotic navigation
intraoperatively; however, it is assisted robotically
during the execution of the motion. Other cogni-
tive functions are carried out manually.

H H or M H/M

2 Navigation using waypoints: The operator pro-
vides discrete high-level navigation tasks such as
waypoints or predefined trajectories. These tra-
jectories are derived during preoperative planning.
The robot carries out the required motion between
the waypoints during the execution time, with the
clinician in a supervisory role to approve or over-
ride the strategy.

H M/H M1 or M/H

3 Semi-autonomous navigation: The final goal of
navigation is provided by a human operator, and
the system generates the strategies required to
carry out the complete navigation task. During
the execution time, it relies on the operator’s
supervision to approve or override the choice. In
IP navigation, the robot would extract waypoints
and then plan the trajectory to reach the point.

H M M1

4 High-level autonomous navigation: This level is
characterized by the ability of the system to make
clinical decisions and execute the control solution
under the clinician’s supervision. The system
should interpret preoperative imaging modalities
such as CT, MRI and ultrasound to detect target
regions and extract all the information required
for proper navigation.

M M M1
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target localization, MP, and execution, are autonomously carried out without any human
intervention by a system reaching LoA 4.

In LoA 4, the key addition is automatic target identification, which requires enabling
technologies such as autonomous segmentation of organs, detection of abnormal tissues and
automatic localization and shape sensing mechanisms [32]. Recent advancements in computer
vision techniques have used deep learning models to segment tumor from CT scans [74]. This
approach can be used to obtain a 3D model and location of the target, which can then be
autonomously tracked in real-time. The robotic system can then execute the navigation
plan during the procedure under the supervision of the human operator. An example of
the proposed LoA for the transanal IP is presented in Fig. 2.1. In Chapter 4, the proposed
LoA will be applied to classify all the works considered in the field of IP. Interested readers
can refer to [75, 76] for a detailed overview of the computer vision techniques required for
supporting the highest LoA.

2.4 Robotic advancements

A significant proportion of robotic systems developed for IP utilize continuum robots [22, 38].
Continuum robots are actuated structures that are composed of multiple segments that form
curved shapes with continuous tangent vectors. They are considered to have an infinite
number of joints and degrees of freedom, making them more flexible and adaptable to di�erent
anatomical configurations [38, 24]. The use of continuum robots in medical robotics has
opened up new possibilities for performing interventions with improved accuracy and safety.

Despite their advantages, continuum robots are highly complex to model, sense, and
control, posing significant challenges for their deployment in clinical practice [24]. To address
these challenges, researchers are actively exploring new technologies to enhance the ability of
these robots to recognize and interact with tissues with greater dexterity and sensory feedback
[1]. These technological advances hold promise for improving the navigation guidance and
building higher LoA.

Currently, some robotic systems are designed to be used in multiple procedures due to
the lack of specific robotic technologies or the adaptability of the systems to di�erent clinical
scenarios [77]. In this section, we discuss the available robotic platforms for IP, focusing on
common IP routes such as transnasal, transoral, transurethral, transanal procedures, and
endovascular interventions, as target clinical applications. We exclude procedures in which
the development of continuum robotic systems is in its infancy or where the navigation phase
does not constitute the predominant phase, such as auditory canal access, transvascular
interventions, and exploratory procedures of the lymphatic system. Fig. 2.2 provides an
overview of the di�erent IP routes considered in this section.
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Fig. 2.1 Case study of LoA for endoscopic navigation for transanal IP. The complete navigation
task is divided into three cognitive functions: target localization through preoperative imaging,
planning the motion preoperatively and executing the motion. (Row 1) Target localization
using preoperative images: The identified target is depicted with a red circle. (Row 2)
Preoperative MP: Path representation inside the colon shown with yellow line. (Row 3)
Motion execution intraoperatively: Intraoperative endoscopic visualization. (left to right).
LoA 0-LoA 4 respectively. For each level, we indicate the agent that operates each cognitive
function. Agent refers to either human operator, path-planning system or robotic manipulator.
In case of two agents, the supervisor agent is depicted on the right side, while the main agent
executing the actions is on the left.

2.4.1 Endovascular interventions

Endovascular interventions are procedures in which a guidewire is introduced through a small
incision in the groin, arm or neck, and is advanced to the desired location to act as a stable
track for the catheter to follow. One of the major challenges in these procedures is the control
of catheters and guidewires, particularly in terms of steering them through a 2D fluoroscopy
image [78, 79]. Navigation is achieved through a combination of insertion, retraction, and
application of torque actions at the proximal end of the catheter and guidewire. This can
produce haptic feedback due to friction between the catheter and the vascular walls [80],
requiring a precise understanding of the 3D anatomy projected in a 2D image plane.

Advancements in robotic technology, such as enhanced instrumentation, imaging, and
navigation, have greatly improved the current state of endovascular procedures. Robotic



2.4 Robotic advancements 20

platforms provide controlled steering of the catheter tip with improved stability, leading
to a growing interest in teleoperated robotic catheterization systems. These systems o�er
reduced radiation exposure, increased precision, elimination of tremors, and improved operator
comfort.

Recent developments in the CorPath™ GRX (Corindus, Waltham, USA) system provide
guided robotic control that allows clinicians to navigate endovascular tools through a joystick.
Other robotic catheter systems, such as the Sensei™ X and Magellan platforms, were
introduced by Hansen Medical (Mountain View, USA) and later acquired by J&J robotics
(New Brunswick, USA). Although they are not commercially available anymore, they are
considered milestones in robotic systems for endovascular interventions [77]. Part of this
technology was incorporated into the Monarch platform (Auris Health, Redwood, USA),
which targets bronchoscopy.

The Hansen systems consist of a wire, a steerable inner leader, and a steerable outer
guide, all of which attach to the robotic system at their proximal ends. Articulation is
achieved using four pull wires (tendon-driven) through a 3D joystick or navigation buttons
on the master workstation. The mechanically driven Amigo™ (Catheter Robotics Inc. Budd
Lake, USA) and the R-One™ (Robocath, Rouen, France) robotic assistance platform allow
standard catheters to be steered in 3 DoFs using an intuitive remote controller that replicates
the standard handle of a catheter. The Niobe™ (Stereotaxis, St. Louis, USA) is a remote
magnetic navigation system in which a magnetic field guides the catheter tip. The tip
deflection is controlled by changing the orientation of outer magnets through a mouse or
joystick at the master workstation.

Although these robotic systems have reported excellent intravascular navigation, the
absence of haptic feedback a�ects the procedural outcome when maneuvering in smaller
vessels such as coronary, cerebral, and visceral vessels [81, 82].

2.4.2 Transanal IP

Transanal colonoscopy is a commonly used procedure for the diagnosis and treatment of
colonic diseases, including CRC [83, 28]. During a standard colonoscopy, a flexible tube is
inserted through the anus and advanced to examine the colon wall [84]. Early detection
and diagnosis of CRC lesions are crucial for improving patient outcomes [28, 84]. However,
the increased workload of endoscopists has raised concerns about the ergonomic aspects
of conventional colonoscopy. Studies have reported work-related musculoskeletal injuries
among colonoscopists, including the hand, wrist, forearm, and shoulder [85, 86]. Although
colonoscopy-related adverse events are rare, the proportion of subjects with risk factors is
increasing. Severe colonoscopic complications such as perforation and bleeding can be fatal
[87, 88]. Furthermore, even well-experienced endoscopists are often limited by the lack of
maneuverability, which can result in around 20% of missed polyp localization [89].
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Fig. 2.2 Selection of some commercial robotic systems for IP. For endovascular interventions:
Corpath™ system (Corindus, Waltham, USA) and Niobe™ system (Stereotaxis, St. Louis,
USA), Sensei–Magellan (Hansen Medical, Mountain View, USA) and Monarch system
(Auris Health, Redwood, USA); For transurethral and transvaginal procedures: Roboflex™
(ELMED, Ankara, Turkey) and Sensei–Magellan (Hansen Medical, Mountain View, USA);
For gastrointestinal transanal procedures: Invendoscope™ (Invendo Medical, Weinheim,
Germany) and Aer-O-Scope (GI View Ltd, Ramat Gan, Israel); For transnasal procedures:
da Vinci (Intuitive Surgical, Sunnyvale, USA) and Flex® (Medrobotics, Raynham, USA)
For bronchoscopic transoral intervention: Monarch system (Auris Health, Redwood, USA),
ION™ (Intuitive Surgical, Sunnyvale, USA), da Vinci (Intuitive Surgical, Sunnyvale, USA)
and Flex® (Medrobotics, Raynham, USA) are used.
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Robotic colonoscopy has been investigated to simplify the use of flexible endoscopes,
reduce procedure time, and improve the overall outcome [83]. Some cost-e�cient solutions
have shown advantages in reducing pain, sedation requirements, and disposability [28]. These
platforms have a self-propelling semi-autonomous or teleoperated navigation system.

Several robotic colonoscopy platforms have received clearance to enter the market, in-
cluding the NeoGuide Endoscopy System (NeoGuide Endoscopy System Inc., Los Gatos,
USA) [90], the Invendoscope™ E210 (Invendo Medical GmbH, Weinheim, Germany), the
Aer-O-Scope System (GI View Ltd., Ramat Gan, Israel)[91], the ColonoSight (Stryker GI Ltd.,
Haifa, Israel) [92], and the Endotics System (ERA Endoscopy Srl, Pisa, Italy) [93]. However,
the NeoGuide Endoscopy system and the ColonoSight are no longer commercially available.
The Neoguide system is a cable-driven system consisting of 16 independent segments, each
with 2 DoFs, position sensors at the tip to obtain the insertion depth, and real-time 3D
mapping of the colon. In contrast, the Invendoscope™ E210 is a single-use, pressure-driven
colonoscope that grows from the tip using a double layer of an inverted sleeve, reducing the
forces applied to the colonic wall. The device has a working channel with electrohydraulic
actuation at the tip.

The ColonoSight is composed of a reusable endoscope wrapped with a disposable sheath
to prevent infection. The locomotion is provided by the air inflated inside the sleeve that
covers an inner tube. The tip consists of a bendable section with two working channels.
The Aer-O-Scope is a disposable self-steering and propelling endoscope that uses electro-
pneumatic actuation through two sealed balloons. Recent proof-of-concept of the device
showed successful caecum intubation with no need for sedation [91]. The Endotic System
uses a remotely controlled disposable colonoscope that mimics inchworm locomotion.

2.4.3 Transurethral and transvaginal IP

Transurethral and transvaginal interventions are commonly used in urological surgeries, in-
cluding bladder cancer resection, radical prostatectomy, partial cystectomy, and nephrectomy
[94, 95]. These interventions involve the use of an endoscopic device to intentionally puncture
a viscera, such as the ureter or urinary bladder, to access the abdominal cavity and perform
intra-abdominal operations [96].

However, the widespread adoption of transurethral and transvaginal access for urological
applications is limited by several challenges. One of the major challenges is the lack of
dedicated, specially designed instruments, resulting in limited distal dexterity, tool accuracy,
and depth perception [97, 95]. These limitations lead to under-resection of tumors and
di�culty in enucleating tissue, especially with minimal tilting of the rigid tools and the
urethral anatomy. These challenges motivate research in robot-assisted techniques for
urological interventions [94].
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In 2008, the Sensei-Magellan system (Hansen Medical, Mountain View, USA), originally
designed for cardiology and angiography, was used for Robotic Flexible Ureteroscopy (fURS)
[98]. Since 2010, ELMED (Ankara, Turkey) has developed the Roboflex™ Avicenna system
for fURS, which directly drives the endoscope and an arm enabling rotation by a joystick. This
system o�ers improved movement precision and better ergonomics compared to traditional
flexible ureteroscopy [99].

2.4.4 Transoral IP

Transoral Endoscopy (TOE) is a standard diagnostic method used to examine the esophagus,
stomach, and proximal duodenum, employing varying lengths of flexible endoscopes such
as gastroscopes (925mm–1.1 m), duodenoscopes (approximately 1.25 m), and enteroscopes
(1.52- 2.2 m) [100]. The success of TOE relies heavily on the technical and decision-making
skills of the operator, with a steep learning curve [101]. Laryngeal lesions are conventionally
treated using standard endoscopic surgical approaches involving a laryngoscope, microscope,
and laser [102]. However, these approaches require the surgeon to work within the limits
of the laryngoscope, resulting in line-of-sight observation limitations [102]. TOE is also
used for bronchoscopy procedures to reach the lungs farther down the airways, employing
bronchoscopes [103]. However, the average diagnostic yield remains low due to limited local
view in the peripheral airways [75]. ElectroMagnetic (EM) navigation was introduced to guide
the bronchoscope through the peripheral pulmonary lesions, but it lacked direct visualization
of the airways, thereby motivating the need for robotic assistance [104].

Currently available robotic systems for TOE include the EASE system (EndoMaster
Pte, Singapore) and EndoSamurai™ (Olympus Medical Systems Corp., Tokyo, Japan). The
EASE system is a teleoperated device that remotely controls the endoscopic medical arms.
The EndoSamurai™ system consists of instruments mounted at the end of the endoscope
for submucosal dissection procedures. Several other robotic systems, currently in the early
development phase, are reviewed in [101].

Commercially available systems for laryngeal procedures include the dVSS (Intuitive
Surgical, Sunnyvale, USA) and the Flex Robotic System (Medrobotics, Raynham, USA)
[105]. The Flex robotic system includes a rigid endoscope controlled through a computer
interface, with two external channels for flexible instruments.

Monarch™ (Auris Health Inc, Redwood, USA) is pioneering robotic endoscopy in bron-
choscopy procedures. The platform consists of an outer sheath, an inner bronchoscope
with 4DoFs steering control, electromagnetic navigation guidance, and continuous peripheral
visualization [104]. Another robotic platform called ION™ Endoluminal System by Intuitive
Surgical includes an articulated, flexible catheter with shape sensing capabilities, providing
positional and shape feedback along with a video probe for live visualization while driving
the catheter [104].
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2.4.5 Transnasal IP

Transnasal IP procedures have been explored for a variety of targets, including sinuses, skull
base, and upper airways. The di�culty in monitoring the progression of sinus diseases,
obtaining a biopsy, and facilitating intervention in the frontal and maxillary sinuses without
visible scarring or bone sca�olding obliterating are some of the challenges faced by this
approach [106]. Conventionally, a flexible endoscope is used in clinical practice. Skull
base surgeries are performed through transnasal access, with a typical target being the
removal of pituitary gland tumors through a transsphenoidal approach [107, 108]. The
endoscopic approach for these surgeries is limited by restricted access, manual manipulation
of interventional tools near susceptible anatomy, and lack of distal dexterity.

The upper airways and throat is another interventional target that is accessible through
the transnasal approach. Transnasal Endoscopy (TNE) is conducted using an ultrathin
endoscope with a shaft diameter of 6 mm inserted through the nasal passage. Once the
instrument is beyond the upper esophageal sphincter, endoscopy is conducted in the standard
fashion. However, TNE has some technical limitations, such as a smaller working channel,
which can result in limited suction and the availability of fewer endoscopic accessories [109].

Robotic systems that have been mentioned in transoral approaches, such as the dVSS
and Flex® Robotic System, have also been used in transnasal interventions [105]. The Flex®
Robotic System is an operator-controlled flexible endoscope system designed primarily for
ear, nose, and throat procedures that include a steerable endoscope and computer-assisted
controllers, with two external channels for the use of compatible 3.5 mm flexible instruments.
However, specific robotic systems with appropriate ergonomics and dimensions suited for
transnasal passage are still under development [105].

2.5 Conclusions

In this chapter, we have discussed the regulatory considerations necessary for approving
medical robotic systems, highlighting recent e�orts in regulating autonomous systems in
safety-critical areas such as surgery. One of the prime concerns for validating medical robotics
is safety, and a framework needs to be developed to track the source of error when the
robot functionality di�ers from expected. However, these regulatory standards are not fully
developed for robot-assisted intervention, and the introduction of levels of autonomy could
support this development by facilitating system verification and validation with improved
risk management.

To this end, we have introduced the LoA in robot-assisted MIS and extended the framework
to IP. We believe that the most promising features of upcoming IP robotic systems are
autonomy, as they provide the ability to perceive, analyze, plan, and take actions automatically.
It should be noted that most autonomous features in development are still in the research
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phase and slowly entering the market. Thus, we have provided an overview of robotic
advancements for various IP routes such as transoral, transanal, transnasal, transurethral
and transvaginal, and endovascular. Robotic systems for IP have shown to improve precision,
dexterity, and visualization during surgical procedures. They have also helped in reducing
patient trauma, hospital stays, and overall costs. These advancements hold great promise for
improving the clinical outcomes and revolutionizing the field of robot-assisted MIS.

Contributions of this chapter

1. LoA for IP: These LoA provide a framework for developing and evaluating
autonomous robotic systems for IP. Advances in robotic technology are enabling
higher LoA in these procedures, which can lead to increased safety, e�ciency,
and accuracy.

2. Overview of commercially existing robotic systems for various IP routes that
include transoral, transanal, transnasal, transurethral and transvaginal, and
endovascular, with their limitations
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Chapter 3

Robotic reinforcement learning for
Surgery: Background

The emergence of deep learning has had a profound impact on numerous areas of machine
learning, resulting in substantial improvements in tasks such as object detection, speech
recognition, and language translation [110]. The central attribute of deep learning is the
ability of Deep Neural Network (DNN) to automatically generate compact, low-dimensional
representations (features) of high-dimensional data, such as images, text, and audio. This
capability has similarly facilitated progress in RL by enabling the resolution of previously
intractable decision-making problems in high-dimensional state and action spaces [111],
commonly referred to as DRL. DRL has demonstrated early success in tasks such as playing
video games, chess, and Go at superhuman levels [112, 41, 113].

Surgical robotics presents a promising domain for evaluating DRL algorithms due to its
ability to combine learning with simultaneous perception and movement in a safety-critical
scenario. The adoption of learning-based methods in surgical robotics research is particularly
appealing as it can empower robots to operate in less structured environments, handle
unknown objects, and learn state representations appropriate for multiple tasks. The field of
robot learning for surgical tasks is situated at the confluence of machine learning, robotics,
and surgery, with RL serving as a seminal mathematical framework for experience-driven
autonomous learning. By enabling surgical robots to learn from their experiences and optimize
their actions, robotic learning has the potential to greatly enhance the precision, e�ciency,
and safety of surgical interventions. Recent research has shown great potential in robotic
control for surgical tasks, such as tissue manipulation and dissection [49, 114].

However, the application of RL to surgical robotics poses several challenges. The cost of
a robot is a significant factor, and numerous design decisions must be made when setting up
the algorithm and the robot. RL algorithms require autonomous collection of experience by
the robot, which raises questions about how learning should be initialized, how to prevent
unsafe behavior, and how to define the goal or reward.
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In this chapter, we provide a comprehensive overview of the RL formulation and a
description of commonly used DRL algorithms. We present the challenges associated with
robotic learning for surgery and the di�erent ways used to mitigate these problems.

3.1 Reinforcement learning formulation

The various IP subtasks that we consider in this thesis, i.e. navigation and tissue manipulation,
are formulated independently in an RL framework where an autonomous agent perceives
a state st from its environment at timestep t. The agent then selects an action at in state
st to interact with the environment. Based on the current state and the chosen action, the
environment and the agent transition to a new state st+1. The state is a su�cient statistic of
the environment and thus contains all the necessary information for the agent to make the
best action selection, which can involve components of the agent, such as the position of its
sensors and actuators.

In this thesis, we experiment with di�erent state-spaces such as the endoscopic image,
which provides the information about the luminal environment and kinematic state information
that provides positional information of the objects present in the surgical scene.

The optimal sequence of actions is determined by the rewards provided by the environment,
which encodes the task objective. Each time the agent and environment transition to a
new state, the environment provides a scalar reward rt+1 to the agent as feedback. The
agent’s objective is to learn the navigation and tissue manipulation policy (control strategy)
fi that maximizes the expected return. Given a state, a policy returns an action to perform.
An optimal policy is any policy that maximizes the expected return in the environment.
However, RL presents a challenge because the agent must learn the consequences of actions
in the environment through trial and error, as it does not have access to a model of the
state transition dynamics, unlike in optimal control. Every interaction with the environment
provides information that the agent uses to update its knowledge.

3.1.1 Markov Decision Process

Formally, RL can be described as a MDP, which consists of the following components:

• A set of states S, along with a distribution of starting states p(s0).

• A set of actions A

• Transition dynamics T (s(t+1)|st,at) that map a state-action pair at time t onto a
distribution of states at time t+1.

• An immediate/instantaneous reward function R(st,at,st+1).

• A discount factor “‘[0,1], where lower values place more emphasis on immediate rewards.
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The term policy (fi) generally refers to a function that maps states to a probability
distribution over actions, i.e., fi : S æ p(A = a|S). In an episodic MDP, where the state is
reset after each episode of length T , the sequence of states, actions and rewards in an episode
is known as a trajectory or rollout of the policy. Each rollout of a policy results in a return
R =

q
T ≠1
t=0 “

t
rt+1, which is the cumulative discounted reward obtained by the agent.

The objective of RL is to find an optimal policy, fi
ú, that maximizes the expected return

from all states:

fi
ú = argmax

fi

E[R|fi] (3.1)

Here, the expectation E is taken over all possible trajectories that can be generated by
following the policy fi.

Two main approaches exist to tackle RL problems: one is based on value functions while
the other relies on policy search [111].

3.1.2 Value Functions

Value function methods are based on estimating the state-value function V
fi(s), which is the

expected return when starting in state s and following fi, henceforth:

V
fi(s) = E[R|s,fi] (3.2)

The optimal policy fi
ú has a corresponding state-value function V

ú(s) and vice-versa, the
optimal state-value function can be defined as

V
ú(s) = max

fi
V

fi(s),s œ S (3.3)

When V
ú(s) available, the optimal policy could be retrieved by choosing among all actions

available at st and picking the action a that maximizes

Est+1≥T (st+1|st,a)[V ú(st+1)]

In the RL setting, the transition dynamics T are unavailable [111, 115]. Therefore, a state
action value function Qfi(s,a) is constructed as an alternative to V

fi, such that the initial
action a is provided, and fi is followed from the succeeding state onwards:

Q
fi(s,a) = E[R|s,a,fi] (3.4)

The best policy, given Q
fi(s,a), can be found by choosing a greedily at every state: argmax

a

Q
fi(s,a)

Under this policy, V
fi(s) can be defined by maximizing Q

fi(s,a) : V
fi(s) = maxaQ

fi(s,a).
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The function Q
fi is learned by exploiting the Markov property and defining the function

as a Bellman equation [116, 39]. The equation takes on a recursive form and is given by:

Q
fi(st,at) = Est+1 [rt+1 +“Q

fi(st+1,fi(st+1))]. (3.5)

This allows for bootstrapping, whereby the current values of the estimate of Q
fi can be

used to improve the estimate.
Temporal Di�erence (TD) methods simulate only one step under current state instead of

reaching the terminal state [39]. The simplest TD method, TD(0) is:

V (st) = V (st)+–(Rt+1 +“V (st+1)≠V (st)) (3.6)

where Rt+1 +“V (st+1) is the estimated value at t+1, called TD target, and Rt+1 +“V (st+1)≠
V (st) is called TD error. In TD(0), after every step, value function is updated with the value
of the next state and reward obtained along the way.

Agents that use TD error to update the value function can be trained using methods
such as Q-learning [117]. The Q-learning update equation is:

Q(st,at) = Q(st,at)+–(Rt+1 +“max
a

Q(st+1,a)≠Q(st,at)) (3.7)

where – œ (0,1] is the step size.

Deep Q-Learning Conventional Q-learning updates Q-values using the TD method and
stores them in a Q-table. However, this approach is not feasible for problems with large
state and action spaces. To address this issue, Mnih et al. proposed the DQN [112], which
combines Q-learning with DNN.

DQN uses a DNN to extract low-level features from raw images of Atari games and
approximate the action-value function without requiring any domain knowledge. The hidden
layer of DQN comprises three convolutional layers and a fully connected layer, as shown
in Fig. 3.1. The output layer produces the Q-value of each action. At time step t, the
approximated value of DQN is given by:

y = R +“max
a

Q(st+1,a;◊) (3.8)

Here, ◊ represents the parameters of the DQN, which are updated by minimizing the Mean
Square Error (MSE) between the approximated and real Q-values.

Another major value-function based method relies on learning the advantage function
Afi(s,a), which di�ers from Qfi by only considering the relative values of state-action pairs
[39]. The advantage function represents the advantage of taking a particular action in a given
state over taking the average action, and is calculated using the relationship Afi = Qfi ≠Vfi.
Learning relative values instead of absolute values is similar to removing the baseline or
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Fig. 3.1 Schematic illustration of a CNN based DQN. The input to the network consists of
a 128◊128 image, followed by three convolutional layers, and a fully connected layer. The
output of the fully connected layer is a probability distribution that indicates the action to
take and the corresponding value of the state.

average level of a signal. This approach simplifies the learning process by focusing on learning
which actions are better than others, rather than trying to learn the actual return of taking an
action. Advantages updates have been incorporated into various DRL algorithms, including
asynchronous RL [118] and high-dimensional continuous control [119].

3.1.3 Policy search

Policy search is a popular approach for solving RL problems that directly search for an
optimal policy fi

ú without maintaining a value function model. Typically, a parameterized
policy fi◊ is chosen and its parameters are updated to maximize the expected return E[R|◊]
using either gradient-based or gradient-free optimization methods [120].

Gradient-free policy search methods require a heuristic search across a predefined class of
models to find better policies [111]. One of the advantages of gradient-free policy search is that
they can optimize non-di�erentiable policies. DNN have been successfully trained to encode
policies using both gradient-free [121, 122] and gradient-based [123, 119, 124, 125] methods.
Although gradient-free optimization is e�ective in covering low-dimensional parameter spaces,
gradient-based training is still the method of choice for most DRL algorithms because of its
sample e�ciency, despite some successes in applying gradient-free methods to large networks
[126].

When constructing a policy directly, it is common to output parameters for a probability
distribution function. For continuous actions, the output can be the mean and standard
deviations of Gaussian distributions, while for discrete actions, the output can be the
individual probabilities of a multinomial distribution. This results in a stochastic policy from
which actions can be directly sampled:

fi◊(a|s) = P (a|s,◊) (3.9)
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Policy gradient Policy gradient methods leverage gradients to improve the parameterized
policy. However, to calculate the expected return, we need to average over all plausible
trajectories generated by the current policy parameterization. Therefore, the performance
measure of policy fi◊ can be defined as the expected return, and expressed as:

J(◊) = Vfi◊ (s) = Efi◊(s)

C
ÿ

a

Q(s,a)fi◊(a|s)
D

(3.10)

The policy gradient theorem can then be used to obtain the equation for policy optimiza-
tion by di�erentiating V with respect to ◊ [127]. This yields:

Ò◊J(◊) = Efi◊(s)

C
ÿ

a

Q(s,a)Ò◊fi◊(a|s)
D

(3.11)

The policy parameters can then be updated by adding the scaled gradient to the current
policy parameters, expressed as:

◊ = ◊ +–Ò◊J (3.12)

where – is the step size.
The Reinforce algorithm [128] is a conventional policy gradient RL algorithm that updates

the policy using estimated cumulative returns from sampled trajectories. The expected value
of the sample’s gradients is an unbiased estimate of the actual gradient, which is the reason
for using Reinforce. The most commonly used variant of Reinforce is the form with a baseline,
which helps to reduce the variance generated when estimating the gradient.

Ò◊J(◊) = Efi◊(s) [Ò◊logfi◊(a|s)(Q(s,a)≠ b)] (3.13)

where b is usually a learned state-value function independent of a.

Actor-Critic methods

Actor-critic methods are a family of RL algorithms that simultaneously learn a policy and
a value function, with the value function being used to evaluate the policy [39]. The actor
generates policies, selects actions and interacts with the environment, and is updated using
gradients calculated from equations 3.11 and 3.12. The critic evaluates the value function of
the actor’s policy at each time step. Various measures can be used to evaluate the actor’s
policy, including the action-value function Q(s,a), state value function V (s), or advantage
function A(s,a).

Advantage Actor-Critic (A3C): Conventional policy gradient algorithms are usually
updated in an on-policy manner, where the policy being used to update the value function
and policy is the same policy that the agent is currently following to select actions. This
approach results in slow policy convergence and low data e�ciency [39]. To speed up the
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training of actor-critic methods, Mnih et al. [118] proposed the asynchronous advantage
actor-critic (A3C) algorithm, which collects data asynchronously. A3C uses N threads to
interact with the environment simultaneously. As each thread has a di�erent environment
setting, the interaction trajectories obtained from each thread are not the same, which speeds
up sample collection. After the samples are collected, each thread completes the training
independently and updates the global model parameters asynchronously. The policy gradient
equation is updated as follows:

Ò◊J(◊) = Efi◊(s) [Ò◊logfi◊(a|s)(Q(s,a)≠V (s))] (3.14)

where (Q(s,a)≠V (s)) is the advantage function.
Trust Region Policy Optimization: In policy optimization equations (3.12), the step size

parameter – plays a crucial role in determining the speed of policy convergence. However,
selecting an appropriate value for – is challenging as an unsuitable value can lead to unstable
or even deteriorated policies. One e�ective solution to this problem is to employ trust regions
that restrict optimization steps to a region where the approximation of the true cost function
is still valid. By constraining the updated policies to be close to previous policies, trust regions
decrease the chance of bad updates and improve the monotonicity of policy performance.
One prominent algorithm that uses trust regions for policy optimization is the Trust Region
Policy Optimization (Trust region policy optimization (TRPO)), which is relatively robust
and applicable to high-dimensional input domains [123].

To implement trust region constraints, TRPO optimizes an advantage estimate with a
quadratic approximation of the Kullback–Leibler (KL) divergence. Although TRPO can be
employed as a pure policy gradient method with a simple baseline, the Generalized Advantage
Estimation (GAE) method by Schulman et al. [119] introduced several advanced variance
reduction baselines to improve performance. The combination of TRPO and GAE has become
a state-of-the-art RL technique in continuous control. However, TRPO is limited by the need
to compute second-order gradients.

A newer algorithm called PPO performs unconstrained optimization, requiring only first-
order gradient information [129]. PPO has two primary variants: an adaptive penalty on the
KL divergence and a heuristic clipped objective that is independent of the KL divergence.
PPO iteratively collects new observations and improves the policy while approximating the
value function. The update function for the PPO policy is given by the following equation:

L(s,a,◊k,◊) = min

A
fi◊(a|s)
fi◊k

(a|s)Â
fi◊k (s,a), g(‘, Âfi◊k (s,a))

B

(3.15)

where ◊k are the parameters of the old policy, and g is defined as:
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g(‘, Â) =

Y
]

[
(1+ ‘)Ât, Ât Ø 0

(1≠ ‘)Ât, Ât < 0
(3.16)

In order to prevent unstable policy updates that can occur when the update step size or
the policy ratio is too large, the PPO algorithm introduces two measures in the objective
function. Firstly, the ratio fi◊(a|s)

fi◊k
(a|s) is constrained to lie within the range of [1 ≠ ‘,1 + ‘].

This ensures that the magnitude of policy updates is limited, thereby preventing significant
fluctuations. Secondly, the objective function includes a min function that selects the lower
value of the two results.

Deterministic Policy Gradients: Deterministic Policy Gradient (DPG)s [130] are a recent
development in the context of actor-critic algorithms, extending the standard policy gradient
theorem from stochastic [128] to deterministic policies. DPGs o�er a significant advantage
over stochastic policy gradients in that they only integrate over the state space, rather
than both state and action spaces, thus requiring fewer samples in problems with large
action spaces. In their initial work on DPGs, Silver et al. [130] introduced an o�-policy
actor-critic algorithm that vastly improved upon a stochastic policy gradient equivalent in
high-dimensional continuous control problems. In the context of a deterministic policy, the
selected action a = µ(s) remains unaltered for a given state s. The deterministic policy
gradient is defined as:

Ò◊J(◊) = E

Ë
ÒaQµ(s,a)Ò◊µ(s)|a=µ◊(s)

È
(3.17)

where µ is the deterministic policy function, and Qµ is the corresponding action-value
function. The DDPG algorithm [124] is a specific implementation of DPGs that learns
deterministic policies and expands them into continuous action spaces through an actor-critic
architecture.

3.2 Challenges of robotic learning in IP

In contrast to supervised learning where considerable progress has been made in large-scale,
easy deployment of RL is not yet applicable to surgical robotics. Surgical robotics as a RL
domain di�ers considerably from most well-studied RL benchmark problems.

State Estimation: One major hurdle is that the states and actions of most robotic systems
are inherently continuous (i.e. a set of possible states that can take on infinitely many values
within a given range), and therefore, we must determine how finely to represent them. We
must decide how fine grained the control is that we require over the robot, whether we employ
discretization or function approximation, and what time step we establish. Robotic platforms
for IP pose a particular challenge due to their high-dimensional state and action space arising
from the large number of DoFs and image-based input. As the dimensionality increases,
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the number of required data and computations to cover the entire state-action space grows
exponentially and becomes infeasible, widely known as the “Curse of Dimensionality” [131].
Furthermore, it is often not practical to assume that the true state is entirely observable
and free of noise in robotics RL [132]. These are due to factors such as wear and tear of
robotic hardware, delays in sensing and external conditions such as temperature and lighting.
Therefore, robotic RL is commonly treated as partially observable, and the learning system
must estimate the true state while maintaining uncertainty estimates [39].

Model errors and under-modeling: Obtaining experience on a robotic system is tedious,
expensive and often hard to reproduce. Even getting to the same initial state is almost
impossible for the surgical robotic system due to the dynamic surgical environment. In
order to learn within a reasonable time frame, suitable approximations of state, policy, value
function, and/or system dynamics need to be introduced. While real-world experience is
costly, it usually cannot be replaced by learning in simulations alone. In analytical or learned
models of the system, even small modeling errors can accumulate to substantially di�erent
behavior, at least for highly dynamic tasks. This problem may be inevitable due to the
uncertainty and non-stationarity of the true system dynamics. Hence, algorithms need to be
robust with respect to models that do not capture all the details of the real system. Some
commonly used approaches deal with this problem by incorporating model uncertainty with
artificial noise or carefully choosing reward functions to discourage controllers that generate
frequencies that might excite unmodeled dynamics [133].

Reward Design: Another challenge commonly faced in robot RL is the generation of
appropriate reward functions that guide the learning system quickly to success, which are
needed to cope with the cost of real-world experience. These reward function must be
programmed, or otherwise learned by the robot [45]. In a surgical scenario, assigning a score
to quantify how well a task was completed can be a challenging perceptual problem. In
most of our case studies, we sidestep this di�culty by instrumenting the environment with
additional sensors that provide reward information. For example using an EM tracker to
know the groundtruth 3-D position of the region of interest in an IP. Robotic RL approaches
often need more physically motivated reward-shaping based on continuous values and consider
multi-objective reward functions like minimizing the motor torques while achieving a task. A
learning problem is potentially di�cult if the reward is sparse, there are significant delays
between an action and the associated significant reward, or if the reward is not smooth (i.e.,
very small changes to the policy lead to a drastically di�erent outcome).
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3.3 Tractability Through Representation and Prior Knowl-
edge

Much of the success of RL methods in robotics is largely due to the use of approximate
representations. However, the ability to use such representations e�ectively is tightly linked
to the optimization framework employed. For instance, state-action discretization is a popular
way of reducing the dimensionality of states or actions, and can enhance both policy search
and value function-based methods [134].

Value function-based methods require a function approximator that is both accurate
and robust, in order to capture the value function with su�cient precision while maintain-
ing stability during learning. On the other hand, policy search methods require a policy
representation that controls the complexity of representable policies to enhance learning
speed. Prior knowledge can also play a vital role in guiding the learning process. It can be
incorporated in the form of initial policies, demonstrations, initial models, predefined task
structure, or constraints on the policy such as torque limits or ordering constraints of the
policy parameters [135]. These approaches can significantly reduce the search space, thus
speeding up the learning process. Providing a (partially) successful initial policy enables RL
methods to concentrate on promising regions in the value function or in policy space.

3.3.1 Smart state-action discretization

Discretization of the state and action spaces is a common method for reducing the dimension-
ality of the problem [134]. Several studies have developed manual discretizations for basic
tasks to be learned on real robots [136, 137]. For low-dimensional tasks, discretizations can
be generated straightforwardly by dividing each dimension into a set of regions. However,
the key challenge lies in determining the appropriate number of regions for each dimension,
which enables the system to achieve optimal performance while still learning e�ciently [134].

State spaces can also be constructed based on di�erent features, such as positions, shapes,
and colors, for learning object a�ordances, where both the discrete sets and the mapping
from sensor values to discrete values need to be designed. Instead of manually specifying the
discretizations, adaptive methods can be employed to construct them during the learning
process [138].

3.3.2 Learning from Demonstration (LfD)

Incorporating demonstrations into RL can o�er several advantages. First, it provides a
supervised training set that specifies what actions to perform in states that are encountered.
Such data can be useful for biasing policy action selection [139, 134]. Second, the use of
demonstrations or a hand-crafted initial policy eliminates the need for global exploration of
the policy or state-space of the RL problem. This enables the agent to improve by locally
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optimizing a policy, knowing what states are important, making local optimization methods
feasible [135].

However, the discovery of optimal solutions in the learning framework is limited to local
optima near the demonstrated behavior. This reliance on demonstrations for a favorable
starting point suggests that reducing the necessity for extensive global exploration can
facilitate the learning process. The primary objective of LfD is to enable the robot to acquire
and replicate the demonstrated behavior while also generalizing it to novel and unfamiliar
scenarios [115].

In the LfD approach, a dataset of demonstrations D = (·i,si, ri), i = 1, ...N is collected,
which includes a tuple of trajectories · , state observation s, and possibly reward signals r.
The dataset can be collected either o�ine or online. A common optimization-based approach
learns a policy fi

ú using the collected dataset D, such that

fi
ú = argmin

fi

D(q(„),p(„|fi)) (3.18)

where q(„) is the distribution of features induced by the expert’s policy, p(„|fi) is the
distribution of features induced by the learner following fi, and D(q,p) is a similarity measure
between q and p.

Current LfD methods are commonly categorized into three types: Behavioral cloning
(BC), Inverse Reinforcement Learning (IRL), and adversarial imitation learning [135]. These
methods aim to learn the policy from the demonstrations provided by the expert, either by
directly copying the expert’s behavior, by inferring the expert’s underlying reward function,
or by generating a policy that is indistinguishable from the expert’s behavior, respectively.

Behavioral Cloning (BC) methods aim to learn a policy directly from demonstrated data
by mapping the state to the control input through standard supervised learning methods
[111]. To achieve this, BC methods require a surrogate loss function that quantifies the
di�erence between the demonstrated behavior and the learned policy. One of the simplest
options for a surrogate loss function is the L1-Loss function given by:

lBC(q,p) =
ÿ

i

|qi ≠pi| (3.19)

The method of Inverse Reinforcement Learning (IRL) aims to recover the reward function
that represents the expert’s intention by utilizing the optimality of the expert’s teaching
information, and subsequently utilizes RL methods to derive the final control strategy based
on the recovered reward function [140]. This can be beneficial when the reward function is
the most parsimonious way to describe the desired behavior. The goal of IRL is to obtain
the unique solution for the unknown reward function R(·) from the expert’s trajectories.
However, since a policy can be optimal for multiple reward functions, determining the reward
function is an "ill-posed" problem. To address this issue, various studies have proposed
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additional objective functions that can be optimized, such as the margin between the optimal
and other policies [141, 142] or maximizing entropy [143]. The e�ectiveness of the strategy
generated by IRL may be reduced in an environment that di�ers significantly from the
teaching environment, since IRL assumes the optimality of the expert’s teaching information
[140].

In contrast to BC and IRL methods that only rely on expert teaching information to
learn strategies, adversarial imitation learning methods use Generative Adversarial Network
(GAN) to further optimize the learning strategies [144]. The GAIL technique is a type
of adversarial imitation learning that confronts the generated trajectory with the expert
teaching trajectory, distinguishes the expert trajectory from the imitator trajectory using a
classifier, and iteratively trains the system to minimize the distribution distance between the
two trajectories for complete operational imitation. In this thesis, we employ GAIL to learn
surgical gestures from expert surgeons, as described in Chapter 8.

Generative Adversarial Imitation Learning (GAIL)

GAIL is an imitation learning algorithm based on GAN [144]. The GAIL approach involves a
policy generator G„ and a discriminator D„Õ , where „ and „

Õ denote the parameters associated
with each network. The generator produces exploration trajectories that are evaluated by the
discriminator using a surrogate function to measure the similarity between the generated and
expert policies. This similarity metrics acts as a reward proxy for the RL step. Unlike IRL
methods, GAIL directly generates policies rather than the reward function. The discriminator
is trained to minimize the loss function:

LGAIL = E·„ [log(D„Õ(st,a))]+E·E [log(1≠D„Õ(st,a))] (3.20)

where ·„ and ·E are the trajectories generated by G„ and the expert trajectories, respectively.
The policy generator is often implemented using methods based on stochastic policy, such
as PPO, due to its stable and diverse trajectory generation [129]. PPO generates a wide
sampling range of trajectories that serve as a good training set for the discriminator in GAIL.

3.3.3 Prior Knowledge Through Task Structuring

Task decomposition into hierarchical subtasks or into a sequence of increasingly di�cult tasks
can facilitate learning by providing prior knowledge to the learning process. Decomposition
into subtasks has several advantages such as: (i) subtasks are easier and faster to learn than
learning an overall control policy; (ii) modular behaviors are easier to interpret and can be
adapted to similar tasks [145].

Task decomposition: The concept of breaking down a task into smaller subtasks has been
widely studied in the literature [146, 147], where these subtasks are then coordinated to
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produce a complex behavior. Recently, HRL has emerged as a RL setting where multiple
agents can be trained at various levels of temporal abstraction [148] and can learn di�erent
subtasks using an end-to-end training paradigm. In HRL, agents are trained such that
the low-level agent encodes primitive motor skills while the higher-level policy selects the
low-level agents to complete a task [149, 150]. Similarly, Beyret et al. [151] proposed an
explainable HRL method for a robotic manipulation task that uses HER as a high-level agent
to select goals that are provided as input to the low-level policy. However, in these works,
hierarchical policies are learned end-to-end, leading to instability and sample ine�ciency
due to the lower-level policy changing under a non-stationary high-level policy. To address
this instability limitation, we propose to train the low-level policy independently from the
high-level policy to e�ciently learn a robotic pick and place task, described in Appendix 1.

3.4 Conclusions

Robotic RL for surgical applications presents a number of challenges that are unique to
robotics setting. Some common challenges include high-dimensional continuous state and
action space, partial observability, noise and high sample cost, described in Sec. 3.2.

In this chapter, we provide an overview of commonly used RL methods, and how they
can be approached in the surgical robotics context. For robotic IP, we employ policy gradient
methods such as PPO to automate the navigation task, described in Chapter 5.

Exploration can pose a major limitation in robotic RL. One way to guide the policy
towards an optimal policy and speed up the learning process is by leveraging e�ective represen-
tations, incorporating prior knowledge and task structuring. E�ective representation can be
extracted by simplifying the RL problem by discretization or reducing the dimensionality of
state and action space. We discuss LfD methods such as BC, IRL and GAIL. In the context
of IP, we use GAIL to learn human-like trajectories to automate the tissue manipulation
gesture described in Chapter 8. Finally, we developed a task decomposition method based on
HRL to learn a complex pick and place task, presented in Appendix 1.

Learning in real surgical environment requires various kinds of environmental instrumenta-
tion and human intervention in order to define the reward functions, the reset between trials,
obtain ground truth state and monitor hardware status and ensure safety [152]. Overcoming
these challenges in a scalable way requires designing robotic systems that possess three
capabilities: they are able to (1) learn from their own raw sensory inputs, (2) assign rewards
to their own trials without hand-designed perception systems or instrumentation, and (3)
learn continuously in non-episodic settings without requiring human intervention to manually
reset the environment. A system with these capabilities can autonomously collect large
amounts of real world data – typically crucial for e�ective generalization – without significant
instrumentation in each training environment. Such a system would also bring us significantly
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closer to the goal of embodied learning-based systems that improve continuously through
their own real-world experience.

Besides the challenges associated to the surgical and the robotics domain, current DRL
methods themselves face several drawbacks such as sample ine�ciency and safety that limit
the ability to train robots directly in real world. These DRL related challenged are discussed
in Chapter 4.

Contributions of this chapter

1. Overview of RL literature and commonly used DRL methods.

2. Challenges associated with robotic learning and steps to mitigate them



Part I

Endoscopic Navigation



Chapter 4

Motion planning for Intraluminal
Procedures

Autonomous IP robotics presents a challenging domain for Motion Planning (MP) algorithms
due to the restrictions imposed by patient safety and complex anatomical environments
involved. Navigation in such procedures necessitates e�ective perception, precise control,
and reliable modeling. MP has been an extensively studied field for navigation tasks since
the 1980s, with applications in mobile platforms and robotic manipulators in both indoor
and outdoor industrial settings. In MP, the robot’s geometrical dimensions and kinematic
constraints are considered to obtain a feasible path solution that avoids collisions. The
relationship between the robot’s configuration and task spaces is described by its kinematics.
The configuration space, denoted as C, refers to all possible robot configurations, while
the task space, denoted as T , is the workspace accessible by the robot for each specific
configuration q. The robot kinematics can be expressed in a general form as

T = f(q) q œ C (4.1)

This chapter introduces the survey analysis for MP methods in Sec. 4.1. It presents the
taxonomy and classification of MP algorithms for IP in Sec. 4.2. Each algorithm is discussed
in detail, including its strengths, weaknesses, and validation. The chapter also provides a
comparative analysis of the di�erent MP algorithms, based on their e�ciency, scalability,
and applicability to di�erent types of IP. One of the key to successful clinical translation of
autonomous motion control is to test the methods in simulated environments. Hence, Sec. 4.3
provides an overview of existing virtual and physical simulation platform for common IP.
Finally, we provide the limitation of MP methods in Sec. 4.4.
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4.1 Literature Survey Methodology

A systematic analysis was conducted, following the PRISMA methodology [153], to survey
the developments of automation and MP in IP.

Search method

To conduct the analysis, we used three digital libraries, namely, Google Scholar, Scopus,
and IEEE Xplore. Search queries were programmatically generated using a search term
matrix that was designed to generalize the term "motion planning for intervention". The
search terms were combined with logical operators AND and OR to cover a large search
space in su�cient detail. For example, a search query would take the format of “planning
AND *vascular AND catheter”. A total of 520 entries were obtained from the search, covering
various research topics, application scenarios, and clinical devices.

The search results were automatically managed, retrieved and checked for duplicates
using a python library called Pybliometrics [154]. The list of references was saved as a .csv
file and manually evaluated according to the inclusion criteria. All items that did not meet
the inclusion criteria were excluded. The cuto� date for the earliest work included in the
analysis was 2005, and the latest work was from July 2022. The search methodology is
presented in detail in Sec. 4.1. Fig. 4.1 provides an overview of all the search terms used in
the study and the flow of the conducted review.

Selection criteria

The research work selection criteria were as follows:

1. Only continuum robots were considered for IP, while capsule mobile robots were
excluded (e.g., [155, 156]).

2. Studies on low-level controllers, such as force control, position control, impedance
control, and similar, were excluded.

3. Only full papers written in English were considered. Extended abstracts reporting
preliminary findings were omitted.

4. Transluminal procedures that require incisions, such as hydrocephalus ventricles, were
excluded.

Post processing and analysis

The search script retrieved a total of 11,404 references, which were imported into a spreadsheet
software and screened for inclusion by the authors based on the predefined criteria. The titles
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Fig. 4.1 (a) Search matrix used for the survey (b) PRISMA flow diagram summarizing how
the systematic review was conducted.

of each reference were evaluated, and those meeting the inclusion criteria were shortlisted
while those that did not were excluded. If the inclusion status was unclear from the title,
the paper was included to avoid the inadvertent omission of potentially relevant material.
The systematic review’s process is summarized in the PRISMA flow diagram in Fig. 4.1b.
After the title check, 10,833 references were excluded, and an additional 515 references were
excluded after the abstract check. Nine references were included manually. Ultimately, this
process yielded a list of 65 references.

The outcomes of the various studies were classified based on several criteria, as shown
in Fig. 4.2, including the targeted procedure, the LoA, the MP method, the validation, and
the environment’s dynamics. The MP methods are categorized into subgroups presented in
Fig. 4.3 for an in-depth analysis. The summary of the state-of-the-art on IP MP publications
is presented in Table 4.2, and its development is shown in Fig. 4.4a. In addition to the MP
approach, the distribution of targeted IP procedures is highlighted in Fig. 4.4b. Furthermore,
Table 4.2 indicates that some studies involved intraoperative path replanning with a dynamic
environment (last column).

4.2 Taxonomy on motion planning for IP navigation

The taxonomic classification of MP methods for IP is depicted in Fig. 4.3. The methods can be
categorized into four sub-groups, which are node-based, sampling-based, optimization-based,
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Fig. 4.2 Schematics of the analysis carried out for each paper. These criteria include the
targeted procedure, the level of autonomy, the motion planning method, the validation and
the dynamics of the environment.

and learning-based techniques. These sub-groups are derived from the general taxonomy of
path planning 1 for robots, as presented in [157]. Node-based, also known as graph-based,
algorithms utilize a tree structure and a graph-searching strategy to find a collision-free path.
Sampling-based algorithms, on the other hand, construct a tree structure based on random
samples in the configuration workspace, ensuring that the path found is collision-free and
compatible with the robot’s motion capabilities. Optimization-based algorithms formulate

1Path planning is the problem of finding a collision-free path (a list of discrete setpoints or a continuous
curve) from one configuration (or state) to another. A path is defined in the workspace. Conversely, a
trajectory is a path with a specification of the time at which each configuration is achieved. It can be defined
in the joint space as well. Trajectory planning takes into consideration robot kinematics and dynamics, while
path planning considers only geometric constraints. Both path planning and trajectory planning can be viewed
as a subclass of motion planning. Motion planning is the general term for finding a collision-free motion for
the robot system from one configuration (or state) to another. It defines the change of state at any instant.
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Fig. 4.3 Classification of IP motion planning methods for continuum robots found in literature

the MP problem as a mathematical problem, where an objective function is minimized or
maximized with respect to constraints, and an optimal solution is obtained through a solver.
Finally, learning-based methods employ a MDP to learn a goal-directed policy based on a
reward function. A brief introduction of specific path planning methods in a general field is
provided in Table 4.1.

4.2.1 Node-based algorithms

Node-based algorithms utilize a graph based approach to represent an environment map
where each node represents a configuration of the robot or agent and each edge represents
a feasible transition between two configurations [157]. The algorithms build the graph by
sampling the configuration space of the robot or agent and connecting nodes that are close
enough to each other. The resulting graph is then searched to find a path from the start node
to the goal node using various search algorithms such as Centerline-based Structure (CBS),
Depth First Search (DFS), Breadth First Search (BFS), Dijkstra, potential field, A*, Lifelong
Planning A* (LPA*), and wall-following, as illustrated in Fig. 4.3. Table 4.2 provides a
summary of various MP works for IP that employ node-based methods.

Centerline-based Structure: Geiger et al. extracts the 3D skeleton for bronchoscopy
planning by computing the skeleton of the segmented structure and then converting this
skeleton into a hierarchical tree model of connected branches [158]. The generation of virtual
bronchoscopy is often limited because of insu�cient peripheral bronchi identification resulting
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Fig. 4.4 Chronological development of endoluminal navigation. (a) Motion-planning ap-
proaches (b) The targeted IP procedures. Until 2010, the majority of studies have imple-
mented node-based and sampling algorithms for MP. While lately, with the exponential
increase in computational resources, the field is transitioning towards learning-based methods.

from the limitation in CT airway resolution [158]. Geiger et al. overcomes this limitation
by using peripheral arteries as surrogates. Sánchez et al. [159] obtains the skeleton of
the bronchial anatomy via the fast marching method firstly and then defines the skeleton
branching points as a binary tree (B-tree). Sánchez’ study labels the skeleton branching
points according to their heading direction (1-left, 2-right) and gives a path corresponding
to a sequence of nodes traversing the B-tree. Intraoperatively, a geometry likelihood map
is used to match the current exploration to the path planned preoperatively. The airway
centerlines serve as the natural pathways for navigating through the airway tree. They are
represented by a discrete set of airway branches in [71]. Starting with each target Region
of Interest (ROI) associated airway route, the method from Khare et al. [71] automatically
derives a navigation plan that consists of natural bronchoscope maneuvers abiding by the
rotate-bend-advance paradigm learned by physicians during their training. This work is
evaluated both in phantoms and in a human study. The reported results show that it achieves
a success rate of 97% in airway route navigation and a mean guidance time per diagnostic
site of 52 s.

Wang et al. developed a method to build a navigation information tree based on the
vasculature’s centerline for catheterization [160]. The authors made a tree structure assuming
the vascular system was rigid and interrogated the tree to find the nearest node during
intraoperative navigation. The navigation experiments were carried out on a resin vessel
phantom. Another study proposed a 3D vasculature’s centerline extraction approach via a
Voronoi diagram [161]. It treated the centerlines as the minimal action paths on the Voronoi
diagrams inside the vascular model surface. The experimental results show that the approach
can extract the centerlines of the vessel model. Further Zheng et al. [14] firstly propose
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to extract the preoperative 3D skeleton via a parallel thinning algorithm for medical axis
extraction [162]. Secondly, they propose to use a graph matching method to establish the
correspondence between the 3D preoperative and 2D intraoperative skeletons, extracted from
2D intraoperative fluoroscopic images. However, the proposed graph matching is sensitive
to topology variance and transformation in the sagittal and transverse planes. Some recent
work on transnasal exploration, by [163], proposed central path extraction algorithm based
on pre-planning for the roaming area.

Nevertheless, a common disadvantage of work available in the literature describing this
approach is that they focus on constructing an information structure, but path exploration
inside the information structure is not mentioned [158, 159, 71, 160, 161, 14]. Specifically,
the tree structure is built, but the path solution is not generated autonomously through a
graph search strategy, especially when there are multiple path solutions simultaneously.

Depth First Search: As an extended method to travel the tree formed in [71], the work
by Zang et al. implements a route search strategy of DFS for an integrated endobronchial
ultrasound bronchoscope, exploring a graph by expanding the most promising node along the
depth [72], [164]. In another study by Gibbs et al., a DFS to view sites is regarded as the
first phase search, followed by a second search focusing on a ROI localization phase and a
final refinement to adjust the viewing directions of the bronchoscope [165]. A DFS approach
is also developed in Huang et al. for endovascular interventions [166]. Instead of considering
path length as node weights in the typical DFS approach, this work defines the node weights
as an experience value set by doctors.

The search time and the planned path are significantly dependent on the order of nodes
in that same graph layer. Even though a DFS approach can search for a feasible path by
first exploring the graph along with the depth, it does not ensure that the first path found is
the optimal path.

Breadth First Search: This algorithm was employed in [167] for a magnetically-actuated
catheter to find a path reaching the target along vascular centerline points. However, the BFS
algorithm would take much more time to find a solution in a complex vascular environment
with multi-branches.

Dijkstra: A graph structure based on vasculature’s centerlines that are determined using a
volume growing and a wavefront technique is designed by Schafer et al. in [168]. The optimal
path is then determined using the shortest path algorithms from Dijkstra. However, Schafer
et al. assume that the centerline points are input as an ordered set, which would be a strict
assumption. Moreover, they only report the scenario of a single lumen without branches,
which does not reflect the advantages of the Dijkstra algorithm. A similar method but in a
backward direction is presented by Egger et al. [169]. This work determines an initial path
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by Dijkstra. Users define initial and destination points. After that, the initial path is aligned
with the blood vessel, resulting in the vasculature’s centerline. However, this methodology is
not fully autonomous, and it involves manually tuned parameters. Another work extracts
the centerline and places a series of guiding circular workspaces along the navigation path
that are perpendicular to the path [170]. The circular planes jointly form a safe cylindrical
path from the start to the target. The Dijkstra algorithm is implemented to find the minimal
cumulative cost set of voxels within the airway tree for bronchoscope navigation [171, 172]
and find the shortest path along vasculature’s centerlines [173], [174, 175].

In comparison to DFS, Dijkstra algorithm continuously monitors and verifies the cost
until it reaches the intended target, leading to a greater probability of obtaining an improved
solution. Nevertheless, these researches still focus on tracking anatomical centerlines that are
di�cult to follow precisely and often not desirable. This is because aligning the instrument tip
with the centerline may require excessive forces at more proximal points along the instrument’s
body where contact with the anatomy occurs.

Potential field: The work by Rosell et al. [176] computes the potential field based on
the L1 distance to obstacles. It is used to search a path by wavefront propagation for
bronchoscopy. Rosell’s approach considers the geometry and kinematic constraints while
selecting the best motion according to a cost function. Yang et al. [177] extract centerlines
via a distance field method, establish and navigate the tree after that. However, the authors
only considered the curvature constraint at 180¶ turns along vasculature’s centerlines and
assumed that all the path points have the same Y coordinate. Martin et al. [178] employ a
potential field approach by defining an attractive force from the endoluminal image center
to the colon center. Starting from endoluminal images, the colon is detected via the FAST
edge feature detector, and the center of this area is computed. A linear translation between
the colon center and the image center is reconstructed and regarded as the linear motion
of the colonoscope tip. This work is validated both in the synthetic colon and pig colon
(in-vivo). A similar approach is followed by Zhang et al. where a robotic endoscope platform
is employed to bring surgical instruments at the target site [179]. Girerd et al. [180] use a 3D
point cloud representation of a tubular structure and compute a repulsive force to ensure
that the concentric tube needle tip remains inside the contour.

The Potential field has an advantage in local planning by maintaining the center of the
image close to the center of the cross-section of the lumen or the vessels. Nevertheless, it
only considers a short-term benefit rather than global optimality during this local planning
and might get stuck in a local minimum during global path planning.

A* and Lifelong Planning A*: He et al. [181] compute and optimize endoscopic paths
using the A* algorithm. The e�ectiveness of the preoperatively planned path is verified by an
automatic virtual nasal endoscopy browsing experiment. Ciobirca et al. search shortest airway
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paths through voxels of a bronchus model using the A* algorithm [182]. They claimed that
this method could potentially improve the diagnostic success rate with a system for tracking
the bronchoscope during a real procedure. However, this statement has not been validated
yet. Some studies proposed a path planning method for Concentric Tube Robot (CTR)s in
brain surgery. The authors of these studies build a nearest-neighbor graph and use LPA*
algorithm for e�cient replanning to optimize the insertion pose [183, 184]. Compared to A*,
LPA* [185] can reuse information from previous searches to accelerate future ones. Ravigopal
et al. proposed a modified hybrid A* search algorithm to navigate a tendon-actuated coaxially
aligned steerable guidewire robot along a pre-computed path in 2D vasculature phantoms
under C-arm fluoroscopic guidance [186]. Recently, Huang et al. showed colon navigation
using real-time heuristic searching method, called Learning real-time A* (LRTA*) [187].
LRTA* with designed directional heuristic evaluation shows e�cient performance in colon
exploration compared to BFS and DFS. Directional biasing avoids the need for unnecessary
searches by constraining the next state based on local trends.

A* and LPA* use heuristic information to reach the goal. They can converge very fast
and ensures optimality as well. A* is commonly used for static environments, while LPA*
can adapt to changes in the environment. Nevertheless, the speed execution of A* and LPA*
depends on the accuracy of the heuristic information.

Table 4.1 Background of path-planning methods.

No. Path Planning Description

1. Node-based

a. Centerline-
based Structure
(CBS)

This method is long-established to keep the tip of the instruments away
from the walls [188]. A tree structure is built from the anatomical
information of the lumen, where each node contains the information of
the lumen centerline position and the corresponding lumen radius.

b. Depth First
Search (DFS)

DFS algorithm traverses a graph by exploring as far as possible along
each branch before backtracking [189]

c. Breadth First
Search (BFS)

BFS algorithm [190] starts at the tree root and explores the k-nearest
neighbor nodes at the present depth before moving on to the nodes at
the next depth level.

d. Dijkstra The Dijkstra algorithm [191] is an algorithm for finding the shortest
paths between nodes in a graph. It is also called Shortest Path First
(SPF) algorithm. The Dijkstra algorithm explores a graph by expanding
the node with minimal cost.

e. Potential field Artificial potential field algorithms [192] define a potential field in free
space and treat the robot as a particle that reacts to forces due to these
fields. The potential function is composed of an attractive and repulsive
force, representing the di�erent influences from the target and obstacles,
respectively.
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f. A* & Lifelong
Planning A*
(LPA*)

A-star [193] is an extension of the Dijkstra algorithm, which reduces the
total number of states by introducing heuristic information that estimates
the cost from the current state to the goal state.

g. Wall-following Wall-following algorithms move parallel and keep a certain distance from
the wall according to the feedback received from sensors.

2. Sampling-
based

a. Rapidly-
exploring
Random Tree
(RRT)

RRT [194] and its derivatives are widely used sampling-based methods.
These methods randomly sample in the configuration space or workspace
to generate new tree vertices and connect the collision-free vertices as tree
edges. In addition, these methods can consider the kinematic constraints
(i.e., curvature limitations) during MP.

b. Probabilistic
RoadMap*
(PRM*)

A probabilistic roadmap is a network graph of possible paths in a given
map based on free and occupied spaces [195, 196]. PRM* takes random
samples from the robot’s configuration space, tests them for whether
they are in the free space, and uses a local planner to attempt to connect
these configurations to other nearby configurations. Then, the starting
and goal configurations are added in, and a graph search algorithm is
applied to the resulting graph to determine a path between these two
configurations.

3. Optimization-
based

a. Mathematical
Model

MP can be formulated as a path optimization problem with constraints
on the robot model, such as its kinematic model [197].

b. Evolutionary al-
gorithms

Evolutionary algorithms use bio-inspiration to find approximate solutions
to di�cult optimization problems. [197]. Ant Colony Optimization (ACO)
is one of the population-based metaheuristic algorithms [198]. Artificial
ants incrementally build solutions biased by a pheromone model, i.e. a
set of parameters associated with graph components (either nodes or
edges) whose values are modified at runtime by the ants.

4. Learning-
based

a. Learning from
Demonstrations
(LfD)

LfD is the paradigm where an agent acquires new skills by learning
to imitate an expert. LfD approach is compelling when ideal behavior
cannot be easily scripted, nor defined easily as an optimization problem,
but can be demonstrated [199].

b. Reinforcement
Learning (RL)

In RL, an agent learns to maximise a specific reward signal through
trial and error interaction with the environment by taking actions and
observing the reward [39].
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Wall-following: The study in [200] uses a wall-following algorithm to assist catheter
navigation. Fagogenis et al. [200] employ haptic vision to accomplish wall-following inside the
blood-filled heart for a catheter. The wall-following algorithm could be considered an e�cient
navigation approach if there are few feasible routes to reach the target state. Otherwise, the
solution of a wall-following algorithm cannot ensure optimality.

4.2.2 Sampling-based algorithms

As observable in Table 4.2, di�erent works, in the context of MP for IP, exploit sampling-
based methods. As schematized in Fig. 4.3, algorithms based on Rapidly-exploring Random
Tree (RRT) and its variants and Probabilistic RoadMap* (PRM*) have been proposed.

Rapidly-exploring Random Tree and its variants: The RRT algorithm and its
variants have been extensively studied for their ability to generate optimal paths in virtual
bronchoscopy simulators. Aguilar et al. [201, 202] compared several RRT-based algorithms,
including RRT, RRT-connect, dynamic-domain RRT, and RRT-Connect with dynamic-
domain, and found that RRT-Connect with Dynamic Domain is the optimal method that
requires the least number of samples and computational time for finding the solution path.

Fellmann et al. [203] used a collision-free path via RRT as a baseline and evaluated four
trajectory generation strategies: asynchronous/synchronous point-to-point, rotation before
translation, and translation before rotation. They measured the path length and number
of collisions and found that synchronous point-to-point is the best strategy inside narrow
and straight nasal passages. However, this strategy may not be feasible for larger distances
between intermediate configurations.

Kuntz et al. [204] proposed a three-step planning approach using a RRT-based algorithm
for a transoral lung system comprising a bronchoscope, a CTR, and a bevel-tip needle.
Their approach considers the needle’s steering ability during path planning and respects the
maximum needle steering curvature. The authors demonstrated that the motion planner
could find a motion plan for 36% of the lung nodule locations in 1 second, for 70% in 60
seconds, and for 75% in 1 hour, after performing 50 trials on 50 lung nodule locations. The
time to find a motion plan depends on the steering capability and the target location.

The study in [205] implements an improved RRT algorithm for cerebrovascular inter-
vention. The expansion direction of the random tree is a compromise between the new
randomly sampled node and the target. This strategy can improve the convergence speed of
the algorithm. However, their work did not take into account any constraints of the several
constraints imposed by the catheters such as kinematic limitations and dynamic capabilities.
Alterovitz et al. [206] proposed a Rapidly-exploring RoadMap (RRM) method that initially
explores the configuration space like RRT. Once a path is found, RRM uses a user-specified
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parameter to weigh whether to explore further or to refine the explored space by adding edges
to the current roadmap to find higher-quality paths in the explored space. Their method is
presented for CTRs in a tubular environment with protrusions as bronchus. Some studies
develop the RRM method and improve it with more accurate mechanics-based models in
a skull base surgery scenario and static lung bronchial tubes for CTRs respectively [207],
[208]. In Torres et al. [207], the planner required 1077 s to get a motion plan that avoids
bones, critical blood vessels and healthy brain tissue on the way to the skull base tumor. The
same authors extend the previous studies in [209] by proposing a modified Rapidly-exploring
Random Graph (RRG) method that computes motion plans at interactive rates. If progress
towards the goal can be made by following the roadmap, an A* graph search is used to find
the shortest motion plan to the node nearest the goal. This work improves the computation
cost and allows replanning when the robot tip position changes. However, generating such a
roadmap requires an extensive amount of computation. Therefore, the method could behave
well in a static environment but not in deformable lumens.

Fauser et al. use the formulation of RRT-connect (or bi-directional RRT, Bi-RRT)
introduced earlier by them [210] to solve a common MP problem for instruments that follow
curvature constrained trajectories [211]. In [212], Fauser et al. implement the RRT-connect
algorithm for a catheter in a 3D static aorta model, under the allowed maximal curvature
0.1 mm≠1. Further extension of this work proposes path replanning [213]. Replanning from
di�erent robot position states along the initial path takes place at 0.6(1) s from the start at
the descending aorta to the goal in the left ventricle.

Probabilistic RoadMap*: Kuntz et al. propose a method based on a combination of a
PRM* method and local optimization to plan motions in a point cloud representation of a
nasal cavity anatomy [214]. Point cloud representations, if updated, can accommodate for
the anatomy’s intraoperative changes (i.e., before/after blockage removal). After performing
100 trials, the success rate in the upper airway, colon and skull base scenarios were found
to be 98%, 99% and 98%, respectively. The limitation is that the anatomy model is only
updated within the visible region of the endoscope, while deformations of the rest of the
anatomy are not considered. If tissue deformation is negligible, this planning method could
be used for intraoperative planning. Otherwise, the deformations of the overall model must
be considered beforehand.

4.2.3 Optimization-based algorithm

MP can be formulated as an optimization problem and solved by numerical solvers [197].
Moreover, these methods can be programmed to consider also the robotic kinematics.
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Mathematical model: An optimization-based planning algorithm that optimizes the
insertion length and orientation angle of each tube for a CTR with five tubes is proposed by
Lyons et al. [215]. Firstly, the authors formulate the MP problem as a non-linear constrained
optimization problem. Secondly, the constraint is moved to the objective function, and the
problem is converted to a series of unconstrained optimization problems. Lastly, the optimal
solution is found using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm [216] and Armijo’s Rule [217]. The robot kinematics is modeled using a physically-
based simulation that incorporates beam mechanics. This work is evaluated in simulation
on a patient’s lung anatomy. However, the computational time of the proposed method
is high, which restricts the possibility of applying it to real-time scenarios. Moreover, the
authors manually define the skeleton and treat the structure as a rigid body, confining its
applicability.

Qi et al. [218] present an inverse kinematics MP approach for continuum robots, which
formulates the problem as an optimization based on the backbone curve method. The
kinematic model is built on the premise of piecewise constant curvature, with the technique
minimizing the distance to the vasculature’s centerline under kinematic constraints. The
algorithm can be executed in real-time with an average advancement speed of 0.4mm/s. The
method considers the constrained optimization problem within the overall configuration space,
avoiding the reduction of the search space. However, the approach processes the optimization
problem independently at each step without considering long-term cumulative cost, resulting
in optimal inverse kinematics that may not be globally optimal.

Guo et al.[219] proposed a directional modeling approach for a teleoperated catheter
and a hybrid evaluation function to determine the optimal trajectory. The e�ectiveness of
this method was evaluated through wall-hit experiments, and the response time of obstacle
avoidance with and without path planning was compared. However, this approach relies on
exhaustive enumeration to find the optimal solution, which sacrifices time to obtain a solution.
On the other hand, Abah et al.[220] formulated the path planning problem as a nonlinear
least-squares problem, aiming to minimize the passive deflection of the steerable catheter by
matching the shape of the steerable segment to that of the cerebrovascular. Nonetheless, the
vascular centerline may not be the optimal reference route.

Evolutionary algorithms: Gao et al.[221] proposed an improved version of the ACO
method that considers factors such as catheter diameter, vascular length, diameter, curvature,
and torsion to plan an optimal vascular path. However, the method’s computational time
ranged from 2 s to 30 s, with an average of 12.32 s, which limits its application in real-time
scenarios. Li et al.[222] proposed a fast path planning approach that satisfies the steerable
catheter curvature constraint using a local Genetic Algorithm (GA) optimization. The
method achieves a low computational time cost of 0.191±0.102s while ensuring compliance
with the robot curvature constraint.
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4.2.4 Learning-based algorithms

Learning-based methods have emerged as a promising solution for real-time MP. These
methods rely on statistical techniques like Hidden Markov models (HMMs), DNN and
dynamical models to map perceptual and behavioral spaces. Among learning methods,
two sub-fields have been identified as relevant to the context of this research: LfD and RL
approaches.

Learning from Demonstrations (LfD): Rafii-Tari et al. present a system for human-
robot collaboration in catheterization using hierarchical HMMs [223]. The system decomposes
catheterization into a sequence of motion primitives, which are modeled as HMMs and learned
using a LfD approach. A high-level HMM is also learned to sequence these motion primitives.
The authors justify the use of hierarchical HMMs due to their ability to handle spatial and
temporal variability across multiple demonstrations, while also allowing for motion sequence
generation and recognition of new motions. In another study by the same authors, a semi-
automated approach for navigation is proposed where guidewire manipulation is controlled
manually, and catheter motion is automated by the robot [224]. Catheter motion is modeled
using a Gaussian Mixture Model (GMM) to create a representation of temporally aligned
phase data generated from demonstrations. Chi et al. expand on this work by demonstrating
subject-specific variability among type I aortic arches by incorporating anatomical information
obtained from preoperative image data [225]. Expectation maximization is used to perform
maximum-likelihood estimation to learn model parameters in all of the above methods.

Chi et al. propose a LfD method based on Dynamical Movement Primitives (DMPs) [13].
DMPs are compact representations for motion primitives formed by a set of dynamic system
equations [226]. The study uses DMPs to avoid unwanted contacts between the catheter tip
and the vessel wall. DMPs are trained from human demonstrations and used to generate
motion trajectories for the proposed robotic catheterization platform. The proposed methods
can adapt to di�erent flow simulations, vascular models, and catheterization tasks.

In a recent continuation of their prior study, Chi et al. improve the RL part by including
model-free GAIL loss that learns from multiple demonstrations of an expert [227]. In this work,
the catheterization policies adapt to the real-world setup and successfully imitate the task
despite unknown simulated parameters such as blood flow and tissue-tool interaction. Zhao
et al. propose a GAN framework by combining CNN and Long Short Term Memory (LSTM)
[228] to estimate suitable manipulation actions for catheterization. The DNNs are trained
using expert demonstration data and evaluated in a phantom with a grayscale camera
simulating X-ray imaging.
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Reinforcement Learning: Trovato [230] developed a hardware system for a robotic
endoscope that showed how classic RL algorithms such as State-Action-Reward-State-Action
(SARSA) and Q-learning could be used to control the voltage for propulsion and determine
the forward and backward motion of the robot.

However, the state-of-the-art in RL algorithms has shifted towards DRL which employs
DNN to learn from high-dimensional and unstructured state inputs with minimal feature
engineering to accomplish tasks [112]. Behr et al. [231], Karstensen et al. [232], and Meng
et al. [229] proposed a closed-loop control systems based on DRL that use the kinematic
coordinates of the guidewire tip and manipulator as input to generate continuous actions
for each degree of freedom for rotation and translation. Karstensen et al. [235] showed the
translation of this approach to ex-vivo veins of a porcine liver. The authors considered two
control settings: a discrete action space and a continuous action setting. They found that
DQN trains faster, while DDPG achieves more stable results and requires less domain-specific
knowledge for reward calculation.

To further improve closed-loop control, You et al. [85] and Kweon et al. [233] automated
control of the catheter using DRL based on image inputs in addition to the kinematic
information of the catheter. They trained a policy in a simulator and showed its translation
to a real robotic system using the tip position from an aurora sensor sent to the simulator to
realize the virtual image input.

In addition to endoscopy, DRL is also being explored in other medical applications such
as tracheotomy. Athiniotis et al. [12] used a snake-like clinical robot to navigate down the
airway autonomously. They employed a DQN based navigation policy that utilizes images
from a monocular camera mounted on its tip, which serves as an assistive device for medical
personnel to perform endoscopic intubation with minimal human intervention.

4.3 Evaluation environments

The development of autonomous systems presents significant challenges during the design
and validation phases. Implementing autonomous control algorithms on robotic systems
without prior testing can lead to hardware failure and unpredictable behaviors, resulting in
dangerous clinical situations and injuries [236]. Therefore, it is essential to have a controlled
environment to evaluate algorithms without the risk of hardware breakdown.

Virtual environments provide an excellent platform to simulate both robotic and clinical
scenarios [237]. Simulations are a safe, fast, and cost-e�ective solution that allows exploration
of how autonomous robots should be designed and controlled for safe operation and optimal
performance. Two primary ways in which simulations can aid in automating robotic tasks
are discussed herein.

Firstly, simulations can be customized to model multiple agents, environmental conditions,
and their interactions, thereby allowing for the analysis of the system’s response to various
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settings, identifying potential problems and predicting hazardous situations. Simulations
can be employed during the development stage to optimize system behavior and design
fail-safe strategies. Additionally, during task execution, simulations can be utilized whenever
decision-making is involved to predict the outcome of possible actions. Secondly, simulation
provides a versatile environment for generating large amounts of data that can be used to
train several MP algorithms. Successful learning requires a large database, which can be
compensated for using realistic synthetic data generated by simulation

Additionally, such virtual setups can be used to train clinicians and surgeons in complex
surgical procedures. In the following sections, we highlight the various simulated environments
used in the context of IP and their deployment in realistic phantoms.

4.3.1 Simulation environment

There are several techniques used to govern the behavior of the instrument in di�erent
environments. A widely adopted method is the Finite Element Method (FEM) [238, 239],
which involves dividing the tool into basic elements connected by nodes. The goal is to obtain
a function that solves the equilibrium equations for the elements, incorporating geometry and
material information [4, 10, 240]. In these studies, the instrument is modeled as discrete rigid
bodies serially linked to one another. Another frequently used approach is the mass-spring
model, which views the instrument as a network of masses connected by springs [6, 241]. In
this method, the springs introduce flexibility into the model while constraining the distance
between masses. Additional modeling methods include rigid multibody links that divide
the instrument into a collection of rigid bodies joined by massless springs [242, 243], and
hybrid methods that merge multiple techniques to model various segments of the instrument
[244, 245].

The reconstruction of the luminal model involves the segmentation and rendering of
medical images using software such as 3D Slicer [246] or VTK/VMTK toolkit library [247].
Previous studies have utilized CT images to perform simulations in a reconstructed 3D static
bronchus for the guidance of bronchoscopy [248], or in a 3D static aorta model [169, 161, 213].
Similarly, the spatial anatomy of the nasal cavity was constructed based on the patient’s CT
medical image sequence [181, 183, 184]. Furthermore, Kuntz et al. generated real patient
point cloud scenarios from endoscopic video of a patient’s upper airway near the epiglottis
and the colon [214].

The realistic simulation environment design also encompasses the instrument-lumen
interaction, including contact forces and friction. The lumen is commonly considered a rigid
object with a circular cross-section in most studies [241]. Collision detection in recent works is
achieved by bounding volumes approximation [4, 2]. Regarding frictional forces, a quasi-static
approach is often used, where velocities and accelerations are low, and the frictional e�ect is
disregarded [4, 2]. In [7], the fluid dynamics of blood flow inside a vessel is investigated. The
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fluid dynamics is implemented and simulated on SimVascular [249], which is an open-source
pipeline for cardiovascular simulation.

Recently, Behr et al. developed a simulated environment for cardiovascular IP using the
SOFA library [231]. SOFA is an open-source library specially designed for interactive medical
simulation and is considered as a benchmark for simulating medical scenes with accurate
physics and rendering [250]. It allows objects to be represented with various bio-mechanical
properties and visual displays, making it well-suited for developing complex, stable, and
high-performance scenes. Meanwhile, You et al. utilized the Unity engine to simulate catheter
movements, which allowed for body translation, rotation, and tip bending for three DoFs
control [85]. The Unity game engine is known for its modularity and advanced features
implemented in separate plugins, which makes it well-suited for medical simulation.

Athiniotis et al. developed a simulation for endo-tracheal intubation using the Gazebo
simulator [185]. To simplify the task, the authors employed a follow-the-leader mechanism
and limited the learning to the movement of the robot tip. Gazebo is a widely used robotic
simulator that o�ers realistic rendering of environments and has been successfully applied in
endoscopic robotic surgery [251].

In the context of colonoscopy simulation, previous works have proposed various approaches.
For instance, Yi et al. [252] developed a simulator with a haptic interface that allows for
the "jiggling motion" to straighten the colonoscope and shorten the bowel. Meanwhile, De et
al. [9] incorporated loop formation by modeling the tissues surrounding the colon. Jung et
al. [8] presented a skeleton-driven real-time deformation model for the colon and endoscope,
which consisted of a cylindrical lattice enclosing the triangle mesh of the colon surface.

Recently, PBD has been proposed by Muller et al. [253] and used for modeling continuum
robots such as an urethroscope [5]. This technique is fast, stable and controllable and directly
manipulates the particles of the mesh in a quasi-static manner, without the use of forces and
impulses.

For transnasal surgeries, a 3D model of the brain and underlying structures was recon-
structed using CT scans and MRI [11].

Table 4.3 Summary of publications on simulation environment for endoluminal navigation

Method References Highlights Physics engine/

graphics renderer

Lumen

Point [12] Bronchoscope Gazebo Static

FEM [4], [10], [240], [231] Catheters OpenGL-Visual C++ SOFA Static/Dynamic
(Rod-based) [254] Colonoscopy Ansys LS-DYNA Dynamic

Mass-spring [6, 241] Catheters:
Contact forces, friction

Visual C++, H3D, VTK Small deformations

[8] Colonoscopy Visual C++, OpenGL Dynamic: Mass-spring

Hybrid [245, 244] Catheters: Collisions Bullet, OpenSceneGraph Static

Rigid-links [85], [242, 243] Catheters Unity Static
[9] Colonoscopy OpenGL, Visual C++ Dynamic: Mass-spring

Position-based
Dynamics [5] Urethroscope CHAI3D (C++, OpenGL) Static
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Fig. 4.5 Schematics of simulation scenes used for endoluminal procedures. (A) Di�erent
models used for soft-object simulation [2–5], (B) Di�erent simulation anatomies used for
catheter insertion procedures, with additional constraints such as Blood flow, catheter motion
and reconstruction from patient-specific data [4, 6, 7](C) Colon and endoscope deformation
model for simulated colonoscopy [8, 9]. Dynamic cardiovascular lumen: Image superposition
[10] (D) Urethroscopy procedure simulation with the catheter in SOFA [5] (E) 3D models
for transnasal surgeries using MRI data and CT scans [11] (F) Simplified Bronchoscopy
environment designed in Gazebo [12].
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Fig. 4.6 Experimental setups for testing motion control in intraluminal procedures (A)
Proposed experimental setups with di�erent aortic arches [13] (B) blood circulation with a
pumper and phantom deformations with a string [14] (C) Bronchoscopy setup for testing the
guidance system [15](D) Various phantoms for colonoscopy [16]

4.3.2 Real Robotic setup

One crucial step in demonstrating the successful performance of a MP algorithm is to validate
its feasibility in a realistic setup or phantoms. For instance, Schafer et al.[168] validated
their method in a 3D rigid carotid artery phantom, while Wang et al. [160] carried out their
experiments in a 3D rigid resin vessel phantom for catheterization. In their work, qi et al.
and You et al. used a 3D printed heart model for their experiments [218, 85]. Zheng et
al. reconstructed an abdominal aortic aneurysm using 3D pre-operative CT images and 2D
intra-operative fluoroscopic images [14]. Simulation, phantom as in Fig. 4.6 (B) and patient
data sets have been used to validate the proposed framework.

Rafii-Tari et al. [224, 223] and Chi et al. [13, 225] evaluated their proposed framework for
cannulation of the left subclavian and right common carotid arteries using two silicone-based,
anthropomorphic phantoms of the aortic arch. The robotic catheter driver, equipped with two
servo motors and a PID controller, is used to drive the catheter along the desired trajectory.
Navigation is facilitated by a camera placed on top of the phantom that provides a 2D
projected image, and a graphical user interface that displays the current and upcoming
positions. The catheter tip motion is captured using six-DoFs EM position sensors attached
to the catheter tip.
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Ratnayaka et al. [255] presented successful real-time MRI needle access of target vessels
and endograft delivery in animal models, as shown in Fig.4.6(C). Fagogenis et al. [200]
conducted in-vivo and ex-vitro experiments using a designed catheter in the blood-filled
heart. Trovato et al. [230] conducted in-vivo and in-vitro experiments in swine colon using a
standard robotic endoscope.

4.4 Limitations of MP and improvements

The need for automation in IP will increasingly demand the adoption of novel MP techniques
capable of working in unstructured and dynamic luminal environments. MP for continuum
robots is a complex problem because many configurations exist with multiple internal DoFs
that have to be coordinated to achieve the desired motion [256, 38]. 32 of 65 publications
consider MP for the robot without considering its kinematics, as shown in Table 4.2. This
oversight suggests that future studies need to focus on the robotic constraints for active MP.
Furthermore, replanning is required to adapt the current plan to deformable environments
using sensorial information. The objective of replanning is to reduce the navigation error
measured according to defined metrics. Therefore, the computational e�ciency of MP
becomes essential for real-time scenarios. This section highlights the limitations of MP that
hinder their universal application in IP procedures and insights that can improve them.

Node-based: The searching strategy of node-based algorithms is based on specific cost
functions. The optimality and completeness of the solution obtained using this strategy could
be guaranteed. However, (i) node-based algorithms usually lack the consideration to satisfy
robot capability during MP, such as robots’ kinematic constraints; (ii) the uncertainty of
sensing is rarely considered; (iii) the proposed methods are only applied in rigid environments,
tissue deformations during procedures are not incorporated; (iv) node-based algorithms
usually rely on the thorough anatomical graph structures. Accurate reconstructions of the
anatomical environment in the preoperative phase are needed to build the data structure
and search inside it. The mentioned limitations reduce the usability of these methods. In
theory, they may work, but in practice, they are di�cult to apply for autonomous real-time
navigation in real-life conditions.

Some novel studies on the path planning of a steerable needle for neurosurgery could
give some inspiration for IP, as these studies consider curvature constraints of a robotic
needle. Parallel path exploration is used in the Adaptive Fractal Trees (AFT) proposed for a
programmable bevel-tip steerable needle [257]. This method uses fractal theory and Graphics
Processing Units (GPUs) architecture to parallelize the planning process, and enhance the
computation performance and online replanning, as demonstrated with simulated 3D liver
needle insertions. An Adaptive Hermite Fractal Tree (AHFT) is later proposed, where the
AFT is combined with optimized geometric Hermite curves that allow performing a path
planning strategy satisfying the heading and targeting curvature constraints [258]. Although
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developed and tested only for a preoperative neurosurgical scenario, AHFT is well-suited for
GPU parallelization for rapid replanning.

Sampling and Optimization based: Sampling and optimization-based techniques are
capable of considering robot-specific characteristics, but their e�cacy is significantly influenced
by the robot’s model. For soft continuum robots, such as those used in IP, the modeling
approaches and the incorporation of soft constraints for obstacle avoidance present significant
challenges that remain under investigation [24]. While sampling-based techniques have the
advantage of reducing computational time as compared to optimization-based approaches,
they do not necessarily guarantee optimality of the solution, owing to their intrinsic property
of random sampling. Therefore, finding a feasible path solution is not always guaranteed with
these methods. On the other hand, optimization-based approaches are often time-consuming
and applied mainly in static environments for preoperative MP.

Hybrid approaches, which combine di�erent methods, have the potential to improve
performance and address the limitations of individual methods. Learning-based approaches,
which are emerging in the field, can be integrated with other methods to overcome their
limitations. For instance, Wang et al. proposed a hybrid approach for MP in narrow passages
by combining RL and RRT algorithms [259]. This approach improves local space exploration
and ensures e�cient global path planning. Other authors have also proposed hybrid MP
methods for IP navigation. For example, Meng et al. presented a hybrid method using BFS
and GA for micro-robot navigation in blood vessels of rat liver, with the aim of minimizing
energy consumption [156].

Research in optimization-based methods is also ongoing, particularly for achieving optimal
preoperative planning under complex constraints. For example, Granna et al. implemented
Particle Swarm Optimization (PSO) for a CTR system in neurosurgery [260], while Pourmanda
et al. employed dynamic programming for micro-robot path planning in rigid arteries based on
a minimum e�ort criterion [261]. However, achieving intraoperative MP requires techniques
for reducing the search space of constrained optimization problems. In this regard, Howell et
al. propose an augmented Lagrangian trajectory optimizer solver that can handle general
nonlinear state and input constraints while o�ering fast convergence and numerical robustness
[262]. In the context of IP MP, an optimization solver with reduced search space could be
potentially applied for e�cient intraoperative planning.

Learning-based:
The recent shift towards learning-based approaches, as shown in Fig. 4.4, has proven

successful in adapting to unseen scenarios. Therefore, the interest of this thesis lies in the
application of RL for IP subtask automation.

DRL requires a huge amount of training data due to their inherent complexity, a large
number of parameters involved and the learning optimization [110]. Therefore, a massive
amount of data need to be acquired, moved, stored, annotated and queried in an e�cient way
[263]. In the surgical domain, high-quality diverse information is rarely available [75]. Various
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groups have proposed shared standards for device integration, data acquisition systems and
scalable infrastructure for data transmission such as the CONDOR (Connected Optimized
Network and Data in Operating Rooms) project (https://condor-h2020.eu/) and OR black
box [264]. A general trend to overcome data limitation is through the use of simulators.
Therefore, the first milestone of this thesis is to develop a realistic simulator described in
Chapter 5 and Chapter 8.

One of the major concerns with implementing DRL is safety [265]. DRL relies on
DNN, which may exhibit unexpected behavior for unseen data beyond the training regime.
The guarantee of safe behavior using DNN is still an open problem, necessitating the
incorporation of safety constraints to avoid hazardous actions. Some studies have proposed
safe-RL frameworks for safety-critical applications that use barrier functions to limit robot
actuation within a secure workspace. To address this issue, a safe-RL framework that employs
reward shaping and Formal Verification FV tools has been proposed and is discussed in
Chapter 6 and Chapter 9.

The performance of commonly used DRL methods is highly sensitive to the hyper-
parameters settings, and may vary substantially between runs. It is unlikely that a single
RL algorithm would perform equivalently in a heterogeneous robotic control problem. Even
for closely related tasks, appropriate methods need to be carefully selected. The user must
determine when there is su�cient prior knowledge, and when learning can begin. Reliable
and safe learning is a challenge that can be broadly classified into two groups: (1) reducing
sensitivity to hyper-parameters, and (2) reducing issues associated with local optima.

To address the former challenge, we experiment with state-of-the-art algorithms that are
robust to hyper-parameter settings, such as PPO, and with methods that can automatically
tune their own hyper-parameters, such as Soft Actor Critic (SAC). The second challenge to
reliable and stable learning is local optima, which can arise due to unstable policy updates.
To overcome the problem of unstable policy updates, when the step size between successive
policy updates is too large, we use f-divergence methods, such as KL-divergence, to constrain
the policy search from being greedy [266].

LfD is a commonly used approach for learning human-like gestures [53]. However, its
drawback lies in the requirement for a large number of demonstrations for proper training,
which is often impractical in clinical settings due to time, resource and ethical constraints.
Additionally, LfD only allows the robot to perform as well as the human demonstrations, as
significant deviations from the demonstrated behavior can result in unstable policy learning
[266]. To address this issue, we propose implementing divergence minimization between
the expert and the learning policy [267] through the use of GAIL. GAIL allows the use
of demonstrations to guide the exploration during the learning phase, reducing the time
required to find an improved control policy that departs from the demonstrated behavior[144].
Moreover, it facilitates the convergence towards a policy that performs better than the
demonstrations provided. The combination of imitation learning and RL losses ensures that
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the policy eventually outperforms the demonstrated behavior and avoids significant deviation
during training.

An example of LfD-based planning method for multi-section continuum robots is presented
by Seleem et al., who propose two novel approaches to generate motion demonstrations: a
flexible input interface that allows humans to demonstrate di�erent motions for the robot
end-e�ector and the Microsoft Kinect sensor, which provides motion demonstrations faster
via human arm movements [268]. Future prospects include designing a user-friendly human-
machine interface to collect useful demonstrations and developing methods to combine
exploration-based RL with the collected demonstrations.

Other drawbacks of robotic DRL and directions that can be taken to mitigate them are
elaborated in Chapter 9.

4.5 Conclusions

In summary, MP is a critical aspect of IP automation, and the development of e�cient
and reliable MP algorithms is essential for the adoption of autonomy in the clinical setting.
In this chapter, we provide a comprehensive overview of MP techniques used in IP. We
categorize the MP methods into four types: node-based, sampling-based, optimization-based,
and learning-based. We highlight the limitations associated with these methods and provide
suggestions for future research. Node-based methods are simple and easy to implement but
may not work well for complex environments. Sampling-based methods are more suitable
for complex environments but require more computational resources. Optimization-based
methods aim to find the optimal solution but can be computationally expensive. Learning-
based methods require large amounts of data but are more e�cient and can adapt to changes
in the environment.

Further research is needed to address the limitations of existing methods and to develop
new methods that can overcome the challenges associated with automation in clinical settings.

Contributions of this chapter

1. Taxonomy of MP methods for IP

2. Limitations and improvement in MP for e�ective IP navigation.
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Chapter 5

Colonoscopy Navigation using deep
visuomotor control

5.1 Introduction

In 2020, there were 1.9 million new cases of CRC detected globally, resulting in a mortality
of 935 thousand people [269]. The World Health Organization (WHO) predicts an average
annual increase of 3% worldwide for the next two decades [270]. Early detection is crucial for
improving the survival rate, which decreases to below 5% at Stage IV and is close to 100% at
Stage 0 [271]. Colonoscopy screening programs are considered the most e�ective method for
detecting and treating lower-gastrointestinal pathologies, particularly CRC, which is the third
most prevalent form of cancer globally [272]. The screening process involves the insertion of
a FE up to the rectum. Then, the FE is slowly withdrawn while searching for early-stage
CRC lesions. However, as discussed in Chapter 2, FE-based procedures are complex and
require extensive training to master due to the non-intuitive mapping between the endoscope
tip and the control steering knobs [83].

As a result, these procedures are susceptible to human errors, which causes significant
discomfort and pain to patients due to the tissue stretching associated with FE manipulation
[187]. One of the main causes of pain is looping, where the FE advances into the colon
without a corresponding progression of the tip. Looping also increases the risk of colon
perforation and massive bleeding [28]. Additionally, endoscopists are at risk of work-related
musculoskeletal injuries due to awkward neck and body posturing [273]. Furthermore, the
shortage of adequately trained endoscopists compared to the increasing clinical demand for
colonoscopy procedures can result in the potential loss of human lives [274].

To address the limitations of traditional FEs, researchers have been investigating various
methods to improve the performance of colonoscopy. One promising approach is the use of
robotic systems, which have been shown to provide improved dexterity, precision, and control
over traditional manual colonoscopy. Wireless capsule endoscopes have been developed since
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Fig. 5.1 Deep Visuomotor Control (DVC) flow diagram. The environment provides a state
observation St. The DVC agent uses the state input to generate an action at that is applied
to the environment. During the training phase, DVC learns a task-conditioned policy fi„

to perform autonomous colonoscopy navigation. In the evaluation phase, the clinicians can
supervise and override DVC decisions through action atÕ .

they are non-invasive, painless and do not require sedation [275]. However, these devices lack
the control of the endoscopic point of view, increasing the risk of missing pathological areas
[83]. Therefore, current research e�orts are focused on developing navigation systems using
robotized FE, such as the STRAS system [276], or magnetic actuated FEs [277].

Robotized FEs introduce automation technologies to enhance human operator abilities,
particularly by adding autonomous navigation, which is the most time-consuming step of a
routine colonoscopy procedure [178]. By allowing endoscopists to focus on the clinical aspect
of the procedure rather than the manual control of FE, the overall procedure outcome can
be improved, and training time reduced [187].

During the navigation phase, the clinician primarily uses visual feedback from the FE
camera to advance through the lumen [278]. A common gesture observed during a colonoscopy
procedure is to centralize the target direction of the endoscope towards the lumen center.
Rule-based controllers have been developed to replicate this gesture by reducing the distance
error between the image center and the detected lumen center [54]. However, these algorithms
fail when the tip of the endoscope approaches close to the colon wall due to loss of lumen’s
center view and camera occlusion. This frequently occurs due to the colon’s highly deformable
nature and variable mobility caused by patient movements, peristalsis, and breathing, leading
to changes in lumen diameter and haustral folds that make lumen detection challenging.
Such situations require human interventions to correct the motion direction, or they can be
handled by adaptive exploration methods, as proposed in this work.

Rule-based controllers are gradually being replaced by data-driven approaches such as
DRL since they provide greater degree of adaptability [51, 52]. However, the use of DRL in
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learning surgical task policies has been limited to low-dimensional physical state features
such as robot kinematic data, which are considered to be sample-e�cient and easy to learn
[52, 279]. This thesis proposes an image-based DRL approach for endoscopic control (Fig. 5.1)
that focuses on learning the navigation task by developing an end-to-end 1 policy to map
raw endoscopic images to the control signal of the endoscope, called Deep Visuomotor
Control (DVC). We evaluate the DVC control primarily through a user study with 20 expert
GastroIntestinal (GI) endoscopists who perform the navigation task in a realistic virtual
simulator.

While the introduction of autonomous navigation can improve clinical practice by relieving
clinicians from demanding cognitive and physical tasks, maintaining human supervision is
highly desirable in safety-critical areas such as medical robotics to address ethical and legal
concerns [66]. Therefore, it is necessary to consider human-in-the-loop for the deployment of
DVC in realistic surgical scenarios. Thus, we conducted a second user study with 20 novice
participants to demonstrate that non-expert users can easily supervise autonomous navigation
and that DVC reduces the need for human intervention compared to a state-of-the-art method.

5.2 Automated control for colonoscopy

Magnetic guided endoscopes have been the subject of several studies [277, 178, 187]. However,
extending the navigation methods presented in [277] to complex non-linear trajectories is
challenging, as it is based on following simple predefined trajectories. While heuristic path
planning algorithms are used to generate a feasible path in a colon map [187], this approach
employs force-based real-time sensing for navigation, which is still not widely available
in existing endoscopic devices. Furthermore, interpreting robotic actions without scene
visualization is challenging and not suitable for human supervision.

In [178], a static perception model is developed, which extracts the center of the lumen from
raw image observation, with control of the endoscope position and orientation imparted by a
proportional controller that aligns the endoscopic image with the center of the lumen. However,
similar rule-based controllers previously developed in [54] require significant manual tasking
for non-linear components such as analytically computing image jacobian and interaction
matrix [280]. Moreover, lumen detection could be unstable and prone to errors due to the
dynamic nature of the colon and its sharp bends. These scenarios require a vision-based
control system to improve during policy training, which is limited with hand-engineered
features for perception [280].

1An end-to-end mapping refers to a type of model architecture that directly maps the input data to the
output data, without using intermediate representations or feature engineering. In this context, it refers to a
single neural network that related the raw endoscopic image date to the corresponding control signal of the
endoscope without any intermediate steps
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Learning end-to-end visuomotor representations for direct control using DRL overcomes
these limitations without separately designing perception and control models and o�ers the
ability to improve model parameters while training [45, 281].

Several frameworks have been proposed in the literature for training DRL policies to
automate surgical tasks involving manipulation of rigid and deformable objects [51, 52, 282,
283]. These frameworks utilize simplified environments specifically designed for robot-assisted
surgery to learn instrument control during the procedure. Recently, [284] proposed a DRL
method for optimizing the endoscopic camera viewpoint. However, the low-dimensional
state information used for training DRL algorithms, such as kinematic values of the robot,
position of target etc. [51, 52, 282, 284], may not be su�cient to capture the complexity of
real colonoscopy scenarios where accurate endoscope kinematics cannot be captured due to
sensing limitations [187], and intra-operative guidance is solely based on visual feedback.

5.3 Simulation platform

As discussed in Chapter 4, simulations provide a safe and cost-e�ective solution for testing
and validating the behavior of the system in various environments, identifying potential
issues and designing fail-safe strategies. Despite the numerous advantages of simulation,
there remain several challenges that hinder its extensive use in robotics, such as the di�culty
in selecting and calibrating models. Defining a scenario for robotic simulation requires the
choice of various models, including robot dynamics, perception systems, environment, and
interactions with the environment. These models require the selection of a large set of
parameters, which can be daunting as the complexity of models increases, such as in highly
deformable and dynamic environments with friction between objects and multiple interaction
agents. Parameterizing models can be a time-consuming and tedious process, relying on
ad-hoc parameter identification strategies or trial-and-error attempts to fine-tune the model
until the desired behavior is achieved. Model selection also involves a trade-o� between
accuracy and computation time, depending on the application. Selecting a complex model
without correct parameters may lead to worse results that take longer to obtain than simpler
models.

To address these challenges, we build a colonoscopy simulation framework 2 using the
popular graphics engine and a real-time 3D development platform Unity with the integration
of SOFA and Unity Machine Learning Agents toolkit (ML-Agents). SOFA allows to create
complex medical simulations such as organ deformation and collisions, while ML-Agents
enables Unity to serve as an interactive platform for training of neural network based agents
using DRL.

2This development was carried out as a collaborative e�ort with Early-Stage Researcher (ESR) 15 of the
ATLAS project, described in Chapter 1. ESR 15 further used it for developing a hands-free user interface
with several input devices such as the haptic and the joystick devices.
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5.3.1 Colon simulation

Fig. 5.2 3D colon model construction. The 3D model is extracted from real patient CT scan
to generate volumetric meshes. Mucosa textures from real endoscopy images are added to
the meshes [17].

In order to create realistic colon simulation, a CT colonography dataset from the Cancer
Imaging Archive is utilized to derive the colon models [285]. A semi-automated segmentation
approach is used to segment the 3D models of the bowel [286], as depicted in Fig. 5.2. The
segmented models are further refined, and volumetric and superficial meshes are generated
by importing them to Blender. As a subsequent step, textures are generated using the Kvasir
dataset, which comprises actual endoscopy images obtained from di�erent patients [287]. To
create the primary mucosa texture, a combination of various endoscopy images is stitched
together and applied to the inner surface of the model. This process ensures the generation
of clear, continuous, and non-blurry mucosa walls. Following the creation of the main mucosa
textures, veins are incorporated onto the walls by extracting vein networks from images within
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the Kvasir dataset. To extract the veins from real endoscopic images, a grayscale conversion
is performed, and median filtering is applied to the pixels. Furthermore, a contrast-limited
adaptive histogram equalization technique is employed to enhance the contrast of the grayscale
image, making the veins appear darker than their surroundings. These extracted veins are
then applied to the mucosa texture images, utilizing random distributions to determine the
location, rotation, and size of the veins, with mean and standard deviation values determined
empirically. Finally, the 3D model is unwrapped, and the resulting mesh model is divided
into rectangular segments. These segments are uniformly projected onto the created UV
texture map, ensuring repetitive placement throughout the model.

To enhance the visual quality and realism of the default Unity pipeline, we have incorpo-
rated the High Definition Render Pipeline (HDRP). The HDRP focuses on di�erentiating
materials under various lighting conditions while ensuring consistent illumination, thereby
ensuring that all objects in the scene interact with light in a uniform manner. The HDRP
shaders o�er several features that contribute to achieving more realistic visuals and simulating
real endoscopy images. For example, the addition of a white coat mask to the organ material
creates a reflection e�ect on the 3D organ surfaces when illuminated by light sources. Addi-
tionally, HDRP allows us to mimic the characteristics of endoscopic camera views, such as
vignetting, fish-eye distortion, and chromatic aberration. Vignetting refers to the darkening
of the periphery in an endoscopy image, while chromatic aberration manifests as blurred
edges between areas of high contrast. These e�ects are directly applied to the image bu�er
of the virtual camera, enabling real-time rendering capabilities.

In order to simulate the soft deformable mechanics of organs, we have integrated
SofaAPAPI-Unity3D, an interface that enables Unity’s PhysX Engine to leverage SOFA’s
more physically accurate models for tissue deformation [17]. This approach ensures that
the colon simulation is not only accurate in terms of mechanical behavior but also visually
realistic, which is crucial for training and education purposes.

Endoscope simulation - The simulation scenario is similar to a magnetically guided FE
where external magnets control the motion of the magnetic tip while the tether follows the
tip passively. However, we neglect the e�ect of the endoscope tether in this preliminary
simulator version due to multiple collision points with the colon model that could lead to
simulation instability. The endoscope tip is modeled as a rigid capsule with a weight of
20g, a length of 36mm, and a diameter of 14mm. An angular drag of 4 rad/sec2 is added
to account for the frictional resistance. The endoscope tip has four degrees of freedom for
motion, including translation (insertion/retraction), roll, and bending in two perpendicular
directions (pitch/yaw), as shown in Fig. 5.3. The endoscope tip also embeds a camera, which
allows for visual inspection during the simulation process.
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Fig. 5.3 Representation of the local frame at the endoscope tip. The X-Y plane of the camera
is parallel to the image frame, while the z-axis represents the direction of insertion. Tip
bending is carried out on the X-Y plane while the roll is carried on the z-axis. DVC uses a
low-resolution image as state input. The green region represents the detected lumen center.

5.4 Deep Visuomotor control

DRL background - The colon navigation problem is formalized into a MDP represented by
a tuple (S,A,R,P,“,T ), where S denotes the state space, A is the action space, P is the
transition probability distribution, R is the reward space, “ œ [0,1] is the discount factor
and T is the time horizon per episode. At each time step t, the environment produces an
observation st œ S. The agent generates an action at œ A based on a policy fi(st), applies it
to the environment, and receives a reward rt œ R [129]. As a result, the agent transitions to
a new state st+1 drawn from the transition function p(st+1|st,at), p œ P, or terminates the
episode at state sT .

Learning algorithm - The agent’s goal is to learn a stochastic behavior policy fi with param-
eters „, fi„ : S æ P(A), that maximizes the expected future discounted reward E[

q
T ≠1
i=0 “

i
ri].

We selected PPO [129] as the DRL algorithm for our study, as it has demonstrated high
performance in terms of wall-clock training time and hyper-parameter tuning. Although
our aim was not to propose a novel DRL method, but rather to conduct a user study to
evaluate the performance of image-based DRL in colonoscopy navigation. The PPO algorithm
comprises a value and policy network that use shared parameters to predict the action vector
(a) and estimate the state value (V ), respectively. In the training session, we set the length
of each episode as 10k iteration steps, “ = 0.99, and the batch size and the learning rate
hyperparameters as 64 and 3e-4, respectively. The PPO clip ratio was 0.2, with 4 mini-batches
per epoch and 4 epochs per iteration. We added a loss term proportional to negative policy
entropy, with a coe�cient of 0.01. Each training session lasted for 1.5 million iteration steps,
which was su�cient for the reward function to converge (Fig. 5.7).
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Action space - During the preliminary manual control of the endoscope, it was observed
that the visibility of the lumen was hampered when the endoscope was directed towards
the colon wall, especially at sharp turns. Hence, it is crucial to avoid endoscope translation
in such scenarios. Therefore, we devised an action strategy where translation motion with
a constant velocity of vend = 10mm/sec is executed only when the lumen is detected. The
action space is composed of discrete angular rotation values in the three degrees of freedom
at the endoscope tip, ”◊j = –, – œ 0,≠1,+1 in the j

th spatial dimension. In the tip local
reference frame, j œ x,y,z corresponds to the alignment of orientation in the horizontal and
vertical directions in the image plane and the endoscope roll, respectively (Fig. 5.3). In cases
where the lumen is not visible, the endoscope’s translation velocity is set to zero, allowing
only orientation changes to detect the lumen.

Observation space and policy - The sensory input to the DVC agent is composed of down-
scaled endoscopic images. The RGB images rendered by the endoscopic camera (1024x1024
pixels) are downscaled to 128x128 pixels. This down-scaling was carried out to reduce
the computational complexity of the training process (i.e. sample e�ciency and wall-clock
training time), based on prior RL literature [39, 134]. The policy fi„ is represented by a
CNN architecture consisting of two convolutional layers (as depicted in Fig. 5.1) that encode
visual scene representations. The details of the network are publicly available on the project
website3. The output of the CNN is fed into a combination of fully connected layers and
a LSTM layer to represent time-dependent behavior. Each layer has 128 rectified units,
followed by linear connections to the output logits fit for each action at and a value estimate
Vt. A softmax function transforms the logits into action probabilities. The entire network is
trained end-to-end to acquire task-specific visual features.

Fig. 5.4 Proposed adaptive threshold segmentation pipeline for lumen detection. Each RGB
frame captured by the endoscopic camera is passed through the adaptive filter to detect
the dark pixels a) original RGB frame b) Image mask for the detected lumen (in green) c)
distance vector between the image center Pc and the centroid of the detected darkest regions
PL.

3https://github.com/Ameyapores/DVC
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Table 5.1 Navigation parameters used for validation with their description

Navigation
metrics Description

1 Time of
insertion
(TOI)

TOI is measured from the time point where the initial movement of the endoscope is
detected to the time point when the caecum is reached.

2 Perforation Perforation refers to the scenario when excessive force is applied on the colon wall
(especially at the turning point) that can lead to severe injuries. Studies based on
tensile property analysis of human rectal tissue reported the maximum elongation of
62% [288]. The average diameter of the colon models used is 5cm, hence a threshold
of ”d = 3cm is decided to classify the deformation as perforation.

3 Normalized
distance
traveled

Distance traveled is crucial as multiple backward motions, reversing the direction, can
lead to suboptimal trajectories. The distance traveled is measured using the position
values of the endoscope tip. This distance is normalized by the centerline distance
of the colon model in order to compare among di�erent colon models. Normalized
distance above 1 indicates a path distance longer than the centerline path, while a
normalized distance below 1 indicates a shorter path than the centerline was followed.

4 Average LD Lumen centralization is believed to create smooth insertion trajectories hence the
lumen distance in the image plane is recorded at each timepoint. This distance is
normalized by the size of the image to get a value in [0,1]. Lumen distance value 0
denotes that the image center (Pc) coincides with the detected lumen (PL), and value
1 denotes that the detected lumen is at the farthest point.

Reward function - The objective of the navigation task is to complete the procedure
without any complications by successfully tracking the colon. The successful tracking of the
colon is achieved when the lumen center PL is close to the image center Pc. To this end, we
design a dense reward function rt(st,at) as follows:

rt(st,at) =

Y
]

[
C(1≠ (||PL ≠Pc||2/Dmax)), L = 1

≠1, L = 0
(5.1)

where Dmax = 1/2ú (Imagewidth) = 64, is the normalization factor which is the maximum
distance possible, L represents the lumen detection flag, (1 denotes lumen detected, 0 denotes
no lumen detected), the hyperparameter C is chosen as 1. Additionally, the agent is provided
with a reward of +10 upon reaching the end of the colon and -10 if it returns to the starting
point, in order to incentivize unidirectional movement towards the caecum.

In order to detect the colon lumen in the endoscope image, a real-time threshold segmen-
tation algorithm is implemented [289]. The algorithm is capable of running at 30 frames per
second. Initially, the image is segmented to detect the darkest and most distinct region, with
the assumption that this region contains the distal lumen with the highest probability. To
perform the segmentation, the RGB image is converted to grayscale, and a circular region is
cropped from the center of the image with a diameter equal to the image width, to eliminate
the vignette e�ect on the corners. The resulting segmentation is illustrated in Fig. 5.4.
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5.5 Experimental Validation

The experimental goal is to compare the navigation performance of the DVC agents, the
baseline rule-based control method [178], and the endoscopists. To achieve this objective,
a pipeline is created to record the position and orientation values of the endoscope, lumen
distance in the image space, colon deformations, and camera image in the developed simu-
lator. These parameters are synchronized and recorded during the experiments using the
labstreaminglayer software, which is a unified system for collecting time-series measurements
[290].

5.5.1 Endoscopist data acquisition

A group of 20 expert GI endoscopists (with more than four years of experience) were asked
to make navigation attempts in the colonoscopy simulation scene developed in Sec. 5.3. Due
to the time constraints and COVID regulations at the hospital4, only four colon models
could be selected considering the opinion of domain experts to represent progressively more
complex scenarios (Fig. 5.5). The endoscopists were instructed to navigate the colon models
from the rectum to the caecum using a PlayStation joystick device. The colon model C0,
which depicts a simplified colon model that conforms with the shape and size of the average
human colon, was used to familiarize the endoscopists with the controls before beginning
the trials. The trials began with the endoscopist’s attempts on the C1 colon, followed by
randomized attempts on C2 and C3. The randomization between C2 and C3 was introduced
to identify performance bias based on the colon model.

Fig. 5.5 Colon models used in the experimental phase. (From left to right) ranked in increasing
complexity order, C0, C1, C2 and C3 colon models. The model complexity is characterized
by the centerline distance of the model from rectum to caecum, and the number of acute
bending, i.e. >90 degree, which is estimated through visual inspection.

4Ospedale Le Molinette (Torino, Italy)
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5.5.2 Training DVC

We conduct three experiments to validate DVC’s performance in navigation. Firstly, we aim
to determine the sample e�ciency of training DVC on di�erent levels of colon complexity. We
train DVC agents separately using the same colon models as those used in the endoscopist
experiment.

Secondly, we establish a comparative analysis between DVC and endoscopists by following
a similar experimental workflow as in the endoscopist experiments. In this experiment, DVC
is only trained on the C0 model and tested on C1, C2, and C3 colons.

Thirdly, we train DVC on the C0 model, followed by training on the C1 model to test if
training on a complex colon after a simple one improves performance. To ensure that the
overall iteration steps for DVC training are limited to at 1.5 million, we terminate training
on C0 after 1 million iteration steps and then load it back to train on C1 for 500k iteration
steps. Table 5.3 provides an overview of the experiments.

5.5.3 Supervision

To evaluate the performance of the rule-based controller and the DVC in a supervision task,
we recruited 20 novice participants with no endoscopy experience. The participants were
asked to supervise the navigation of the endoscope through C1, C2, and C3 colon models,
using one of the following control strategies in each trial:

Fig. 5.6 (a) Navigation experiments with endoscopists (b) Novice user supervision while
navigating by autonomous control strategies. supervision is printed on the screen, indicating
the switch to manual control. When the endoscope is oriented towards the lumen (green
point), the user can give back the control to the autonomous agent. A low-resolution (128x128
pixels) image is displayed to facilitate interpretability of machine decisions, however users
have the option to change to high resolution (1024x1024 pixel) display.

1. Manual control: Participants were instructed to control the endoscope exclusively using
a joystick throughout the procedure.
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2. Rule-based baseline [178]: A proportional controller was generated for orientation
control that aligned the image center (Pc) to the detected lumen (PL) using the Lumen
Distance (Lumen Distance (LD)) as follows:

”◊ = —

C
PLx ≠Pcx

PLy ≠Pcy

D

(5.2)

The rule-based controller required manual supervision when the lumen center was not
detected (Fig. 5.6).

3. DVC: A fully trained DV CC0 was deployed. The DVC was given 50 iteration steps
(�t = 50) to search for the lumen when it was not detected. After �t steps, the DVC
notified the requirement of human supervision, and manual control was activated. The
user had an override option to take control when unsafe behavior was encountered, e.g.,
collision with the colon wall or reversing the direction of motion. Once manual control
was active, participants could navigate the endoscope safely and return control to the
DVC or rule-based controller.

The number of interventions by the participant was recorded during each attempt. After
all the trials, participants completed a NASA Task Load Index (TLX) questionnaire [291] to
score their human-perceived workload.

Data Analysis - The navigation performance is evaluated using four di�erent parameters.
Time of Insertion (TOI) and the number of colon perforations are qualitative assessment
measures for colonoscopy procedures [292]. In addition, average LD and the normalized
distance traveled are two metrics introduced in this study to measure the accuracy of the
trajectories. The details of each parameter are elaborated in Table 5.1. Any navigation
attempt where the user or DVC reversed direction of motion and returned to the rectum, or
caused heavy perforation to destabilise the colon model, is considered a failed attempt.

5.6 Results and discussion

The learning curves for the DVC trained on di�erent levels of colon complexity are shown in
Fig. 5.7. The colon model C0 is the simplest, and therefore the DVC agent achieves high
reward values in relatively fewer steps than in other colon models. A high reward indicates
successful completion of the navigation task. In contrast, the C2 model is highly complex,
and the agent requires 1.2 million steps to achieve high-reward convergence. The learning
curve for the C1 model lies between those for C0 and C2, indicating that training time is
related to colon complexity. However, it is important to note that DV CC0 is capable of
navigating other complex colon models, indicating that it has acquired task-specific features
that can be generalized to other colon models (Table 5.3).
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Fig. 5.7 Learning curve of DVC trained on varying complexity of colon, using three colon
models. Cumulative reward is normalized in the range [≠1,1]. The shaded area spans the
range of values obtained when training the agent starting from five di�erent initialization
seeds.

Comparative analysis - The results of a comparative analysis between the performance of
20 endoscopists and 10 di�erent DVC agents trained on the C0 model are presented. The
simulation was validated by expert clinicians, who positively evaluated the joystick used
to navigate the endoscope as intuitive, user-friendly and easy to learn. The comparison
of average LD, number of perforations, completion time and normalized distance traveled
showed significant di�erences between the endoscopists and DVC. DVC demonstrated precise
tip centralization and less number of perforations compared to endoscopists. This di�erence
may be attributed to clinicians’ tendency to push the colon wall at acute bends due to the
rigid constraints of clinically available FEs. On the other hand, DVC is trained on reward
feedback to minimize LD and stay centralized to avoid contact with the wall. The normalized
distance and TOI did not show substantial di�erences between the two groups, but there
was more variance in the endoscopists’ performance. Some followed convoluted trajectories,
while others followed smoother trajectories, resulting in higher or lower normalized distances
and TOI. Trajectories executed by endoscopists and DVC agents for di�erent colon models
are shown in Fig. 5.9, where the smoothness of a trajectory is estimated using a jerk index J
(cm/sec

3). The average performance of DVC agents remained consistent across di�erent colon
models, while the endoscopists showed wide variance in their optimal trajectory performance.

The results of splitting the training process into two colon models, DV CC0+C1 , and
evaluating its performance on other colon models are presented in Table 5.3. Notably,
DV CC0+C1 shows improved lumen detection performance compared to DV CC0 , which reaches
high rewards at 500k iteration steps, indicating no additional feedback to improve the
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(a) Lumen distance (b) Perforations

(c) Normalized distance (d) Time of insertion

Fig. 5.8 Navigation performance comparison plots between DVC and endoscopists. Several
parameters are plotted a) Lumen distance, b) perforations, c) Normalized distance, d) Time
of insertion.

Table 5.2 NASA Task Load Index for novice users. Lower score indicate good user experience

Manual
control

Rule-based
control DVC

Mental demand 63 33 18
Physical demand 65 38 9
Temporal demand 30 47 17

Performance 25 34 12
E�ort 57 38 10

Frustration 42 41 12
Mean workload 47 38 13



5.6 Results and discussion 81

(a) C1 (b) C2 (c) C3

Fig. 5.9 Trajectory plot of DVC, complex and smoothest endoscopist performance for a) C1
b) C2 3) C3 models respectively.

Table 5.3 Comparison between DVC and Endoscopists

DV CC0 DV CC0+C1

Average
LD

Perforation TOI Normalised
distance

Average
LD

Perforation TOI Normalised
distance

C0 0.27±0.01 0.5±0.25 1.37±0.05 0.84±0.02 0.24±0.02 1±1 1.32±0.03 0.84±0.02
C1 0.30±0.01 3.3±1.5 1.74±0.04 0.88±0.08 0.25±0.01 3.3±0.5 1.70±0.07 0.82±0.03
C2 0.36±0.03 5±1 2.22±0.2 0.97±0.03 0.28±0.01 4.6±0.5 1.89±0.03 0.85±0.01
C3 0.35±0.02 4.6±0.5 2.15±0.23 0.92±0.08 0.29±0.03 3±1 1.78±0.05 0.89±0.09

Mean 0.31±0.04 5.0±1.2 2.20±0.75 0.90±0.04 0.23±0.04 4.3±1.2 1.96±0.59 0.86±0.04

performance. We speculate that DV CC0 may reach suboptimal local minima. In contrast,
when DV CC0 is loaded to train on C1, it encounters acute bends that o�er the potential to
maximize the cumulative reward. However, there is no significant improvement observed in
other navigation parameters, including perforation,TOI, and normalized distance.

Supervision - The study included two types of human interventions: those where the user
overrides the control due to unsafe behavior, and those where the system demands human
supervision. The rule-based baseline required an average of 5 ± 1.8 human interventions
for user override and 2.5±1.5 interventions when the system demanded human control. In
contrast, the DVC system required an average of 0.1 ± 0.5 human interventions for user
override and 0.05 ± 0.2 interventions when the system demanded human control. This
di�erence can be attributed to DVC’s adaptability in searching for new insertion directions
when the lumen is not easily detected, a feature lacking in the rule-based controller.

The study also evaluated the participants’ perceived workload using the NASA-TLX survey.
The results showed that manual control and rule-based controller were more demanding in
all task load categories compared to DVC. Participants reported a substantial workload
reduction when using DVC. Table 5.2 presents the NASA-TLX scores for each control
strategy.
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5.7 Conclusion

Autonomous colonoscopy navigation has been an area of active research, but prior works have
relied on heuristic control policies that cannot adapt to situations where detecting lumen is
challenging, leading to frequent human interventions. To overcome this limitation, we propose
an end-to-end DRL-based controller (DVC) that learns a mapping between endoscopic images
and the endoscope’s control signal, such as tip orientation. The proposed method has been
validated in a simulated environment for colonoscopy that closely mimics the soft tissue
dynamics of the colon tissue.

The simulation platform is modular, scalable, and open-sourced, and it can receive
inputs from di�erent devices and systems, such as playstation joystick, keyboard, and haptic
devices. Furthermore, it is realistic in terms of timing, visual, and mechanical rendering,
combining CPU and GPU implementations. The navigation performance of DVC has been
compared to the motion data acquired from 20 GI endoscopists. The experimental validation
shows that DVC has an equivalent performance in terms of the time of insertion and the
distance traveled. However, DVC reduces the number of perforations and shows e�cient
lumen tracking, improving safety. Moreover, a novice user study has been conducted to
demonstrate that supervision of DVC control significantly reduces the user workload, with
overall performance comparable to expert GI endoscopists.

While the results are promising, there are some limitations of this work. First, it is not
straightforward to know the direction of motion of the endoscope. Hence, the newer version of
the virtual scene will simulate the endoscope body dynamics, providing the insertion length.
Second, if the robot needs to learn from raw image observations, it also needs to evaluate the
reward function from raw image observations, which requires a hand-designed perception
system. This can be mitigated by using online user interaction through human-in-the-loop
RL, which can be implemented by using the eye gaze tracking collected during the acquisition
of motion data from the GI endoscopists while guiding the navigation.

The results obtained in Table 5.3 present an opportunity to study curriculum learning-
based setup, where colon navigation can be trained in increasing levels of colon complexity.
Future work will demonstrate the formal validation of the realism of the proposed virtual
simulator. Overall, the proposed method can significantly reduce the workload of the
endoscopists and improve the safety of colonoscopy navigation. It has the potential to be
deployed in real-world scenarios with further development and validation.
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Contributions of this chapter

1. Autonomous colonoscopy navigation using DRL based approach that combines
visual perception and motor control in an end-to-end manner, called DVC.

2. The approach is evaluated through a user study with novice and expert endo-
scopists, demonstrating the feasibility and potential of the proposed method. The
study shows that the proposed approach is able to improve navigation accuracy,
while reducing the workload and cognitive e�ort required by the endoscopist.
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and Systems (IROS), pp. 9582-9588. IEEE, 2022.



Chapter 6

Constrained Reinforcement
Learning for Safe Colon Navigation

6.1 Introduction

The development of autonomous navigation systems has been proposed as a promising
approach to improve the performance of colonoscopy. Autonomous navigation systems based
on visual information use di�erent processing techniques, which rely on the assumption that
the region of maximum depth within an image represents a valuable target for immediate
heading adjustment [293]. The assessment of lumen depth using the contours of surrounding
structures has been proposed in [26, 294]. However, large structures such as haustral folds
may not be noticeable in images, specifically in the presence of obstruction or at sharp turns
when an endoscope faces the colon wall for most of the movement. Rather than the contours,
most methods for autonomous navigation rely on recognizing the darkest or deepest region
in endoscopic images to adjust the endoscope heading. These techniques are typically simple
to execute and many studies have examined di�erent techniques for segmentation of dark
regions utilizing optical flow [295] or image intensity [293, 178]. All of these approaches
require hand-engineered visual features, which are generally arduous to create. In contrast,
Lazo et al. proposed a CNN-based approach for lumen segmentation that does not require
hand-crafted solutions and tends to generalize better when trained on a large amount of data
[296].

Irrespective of the method used for detection, a rule-based controller is commonly used
to minimize error with respect to the center of the endoscopic image. These controllers are
typically based on the Proportional-Integral-Derivative approach [296, 178, 26] or finite state
machines [294], but they are not robust to changes in the estimates provided. Such changes
can arise from errors in the segmentation method or dynamic deformations of the anatomy.
To address these limitations, an end-to-end mapping between endoscopic images and control
signals was proposed using a DRL approach in Chapter 5. This approach requires a reward
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function that minimizes Lumen Distance (LD), which, in turn, requires lumen detection. In
this work, we aim to develop an end-to-end DRL approach that is independent of a separate
perception system.

Despite the promising results of applying DRL in robotic systems, the implementation of
such methods in real-world surgical settings raises concerns about safety. Safety is a critical
aspect of surgical procedures, and any system used in such settings must prioritize patient
well-being. One major challenge of DRL methods is their vulnerability to unanticipated
behaviors in situations that were not encountered during training. These unanticipated
behaviors could result in potentially harmful consequences for patients [297, 298]. Therefore,
it is crucial to thoroughly evaluate the safety of any robotic system that employs DRL
methods before clinical deployment.

Constrained Reinforcement Learning (CRL) provides a way to tackle safety by restricting
the agents from taking potentially unsafe actions through the incorporation of an additional
cost function that should be minimized. While the reward function incentivizes desirable
behavior, the cost function penalizes unwanted actions. However, achieving a perfect zero-cost
result through numerical optimization in DRL is often impractical, so a threshold is set as
a maximum acceptable value for the cumulative cost. Examples of algorithms to face this
challenging problem include the Interior-point policy optimization (IPO) algorithm [299],
which utilizes a logarithmic barrier function, Constrained Policy Optimization (CPO) [300],
based on the concept of safe policy improvement or Safety-Oriented Search (SOS) [301], which
incorporates a genetic step in the training loop. This thesis focuses on the L-PPO algorithm,
which utilizes the Lagrangian dual relaxation of a constrained optimization problem [302].
The L-PPO algorithm o�ers a simple and e�cient method for updating constraints, while
inheriting all the strengths of the PPO algorithm, such as trust-region policy improvement
and first-order optimization.

The use of safety specifications in CRL methods approximates the risk of a state over the
trajectory, but does not guarantee overall safety [303]. It is therefore important to ensure that
the agent never makes decisions that could result in safety violations. This validation requires
estimating the risk of safety violations without executing the action. Running the network
over many experiments and collecting the unsafe configurations can be time-consuming and
can only give an empirical evaluation without any guarantee of safety [304]. To overcome
these limitations, this thesis proposes the use of Formal Verification (FV) to mathematically
guarantee that the agent’s actions remain in the safe regime before deployment. However,
the high-dimensional, non-linear, and complex structure of DNN used in DRL presents a
challenging NP-Hard problem for providing formal guarantees [305].

Several investigations have proposed various methods to address the challenge of applying
FV to real-world DNNs [304], including quantitative verification techniques [306]. Recently,
researchers have extended the FV framework to DRL systems [307, 308] and applied it to
robot-assisted MIS [309]. However, previous FV methods applied to robot-assisted surgical
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Fig. 6.1 Safe-RL framework proposed in this work. Agents are trained in a Constrained
MDP setting with soft constraints. The trained policies are examined with the FV tool
which identifies the safety violations. Policies without safety violations are selected for final
deployment to ensure a completely safe behavior.

setups merely identify states that may result in safety violations, without utilizing the
outcomes for other scalable goals, such as model selection. In this research, we employ
VeriNet, an advanced FV tool [310], to create a model selection strategy that can formally
verify a vast array of policies and detect those that do not exhibit any safety violations,
ensuring complete safety (as shown in Fig. 6.1).

Thus, our proposed framework integrates the following characteristics: (1) An end-to-
end DRL technique for colon navigation, which removes the necessity for a distinct lumen
detection system. (2) A CRL methodology that restricts the policy in a predetermined safe
state-space to decrease the likelihood of dangerous actions. (3) A model selection approach
that chooses policies that meet all safety requirements, with each policy formally verified to
detect safety violations.

The proposed framework is assessed in a virtually simulated colonoscopy environment that
precisely imitates the colon tissue’s dynamics. We evaluate the colon navigation performance
and safety of the proposed CRL approach compared to the standard DRL approach. By
utilizing the model selection strategy, we identify policies that guarantee complete safety for
CRL while none for DRL. This study emphasizes that the integration of CRL and FV can
enhance safety in autonomous colonoscopy navigation.
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6.2 Problem Statement

In this section, we briefly introduce the safety objectives for autonomous navigation. The
colonoscopy environment developed in Chapter 5 is used as a validation testbed.

6.2.1 Overview of the safety Framework

The traditional approach of relying on the region of greatest depth as the immediate heading
adjustment goal is vulnerable to various external factors such as lighting conditions, focal
length, and the surrounding tissue geometry, leading to an unreliable target for precise
navigation [296, 178, 26]. Moreover, it overlooks the 3D structure of the surrounding
anatomy, restricting the endoscope’s ability to navigate through tight bends (as shown in
Fig. 6.2) where many images may not be well-centered within the lumen (as depicted in
Fig. 6.3a). Consequently, the endoscope may capture close-up views of the lumen wall that
are highly illuminated due to reflection. Therefore, defining safety objectives that prevent
the endoscope from moving orthogonally to the colon wall, which may cause perforation, can
lead to a safer trajectory.

Henceforth, we establish two safety indices for our study: (1) Soft constraints that guide
the agent to avoid collisions with the colon wall through safety probability analysis and
optimization. Incorporating these constraints during training leads to CRL, where the agent
learns to take actions that conform to safe configurations. (2) Hard constraints that impose
strict restrictions on the system to prevent it from entering unsafe regions, such as perforation.
We identify that movement towards the illuminated region of the image can result in a
trajectory orthogonal to the wall. To address this, we introduce a set of four hard constraints,
denoted as safety properties (�), based on brightness thresholds in di�erent image regions.
If the threshold is exceeded, the robot must restrict its actions in that direction.

Enforcing hard constraints is a challenging task for CRL methods as they often rely on
indirect constraints based on the expectation of cumulative cost [304, 300]. In our work,
we aim to leverage FV techniques to analyze the policy and evaluate its adherence to the
specified hard constraints.

6.3 Constrained Reinforcement Learning

6.3.1 Deep Reinforcement Learning

The aim of a DRL algorithm is to determine a policy that maximizes the expected cumulative
reward over a trajectory. Mathematically, this can be represented as follows:

max
fi◊œ�

Jr(fi◊) := E· ≥ fi◊[R(·)] (6.1)
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Fig. 6.2 An illustration of a capsule endoscope positioned inside the lumen facing an upcoming
turn, showing the point of greatest depth (darkest point) and the lumen center. Navigation
towards the deepest point can lead to biased motion towards the inner wall of the turn,
potentially resulting in camera occlusion and collision with the wall, as demonstrated in (a)
and (b). The right-hand side square boxes display the endoscopic view, with (a) depicting
the similar views of two endoscope tips, while (b) shows that endoscope 1 approaches the
wall more closely than endoscope 2 while following the line of greatest depth.

Here, fi◊ represents a policy parameterized by ◊, · refers to a trajectory, and R(·) denotes
the cumulative reward received along that trajectory. Similar to Chapter 5, we continue to
use PPO as a consolidated algorithm for incorporating the safety constraints.

Observation Space

The observation space is characterized as a low-dimensional discretization of the endoscopic
image, represented by a 4x4 matrix, as shown in Fig. 6.3b. The image is first divided into four
regions along each dimension, and each square region is assigned a normalized average value
of the underlying pixels. This discretization step is carried out to simplify the definition of
safety properties and preserve the local features of the image. The resulting 2-D down-scaled
image is then flattened into a list of 16 values, which form the input to the DRL algorithm.

Action space

The action space consists of five distinct actions, which are associated with the movement
in one of the four cardinal directions (a1 :up, a2 :down, a3 :right, and a4 :left), and an
additional action a0 :center that sets the angular velocity to zero. The agent moves at a
constant linear velocity of 3 mm/s. The angular velocity, which determines the rotation of
the endoscope tip, is dependent on the specific action selected and corresponds to a fixed
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Fig. 6.3 (a) Endoscopic view with the allowed actions. (b) Discrete representation of the
input space used for the agent.

angle of 0.017 rad/s in the two degrees of freedom. To facilitate the input-output mapping,
the DNN controller has been designed with 5 output neurons (one for each action) and 16
input nodes, which is consistent with the discretized image representation discussed in the
previous subsection.

Reward function

:
We design a reward function that incentivizes the agent to reduce the distance from the

end of the colon while minimizing the interactions with the colon wall. The function provides
a high positive reward to the agent for successfully completing the task, a small penalty for
touching the colon wall, and an additional penalty that scales with the distance between the
agent and the end of the colon. The mathematical expression of the reward function is as
follows:

Rt =

Y
__]

__[

10 reaches the end
≠— touches the wall
(≠distt) ·÷ otherwise

(6.2)

where distt is the centerline distance from the end of the colon at time t. The centerline
distance for each colon model is estimated prior to training using checkpoints. ÷ is a
normalization factor, and — is a fixed penalty for each collision. The values of ÷ and — are
empirically set to 0.001 and 0.01, respectively, in our experiments.
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6.3.2 Constrained DRL and Lagrangian-PPO

In the preceding sections, we provided an overview of the optimal policy for an MDP. However,
in scenarios where safety is critical, it is crucial for an agent to ensure additional essential
behaviors that supersede the achievement of the primary task [302]. For example, during
colonoscopy navigation, preventing the perforation of the lumen wall is of greater importance
than reaching the destination, despite the latter being the primary objective [294].

To address this issue, a Constrained Markov Decision Process (CMDP) is typically used
to model the problem. CMDP is an extension of a standard MDP that incorporates an
additional signal, the cost function, denoted as C : S ◊A æ R, and a threshold value d œ R
that limits the expected value of the cost. Although we consider only one cost function and
its corresponding threshold for simplicity, the framework can be extended to handle multiple
constraints. The set of feasible policies for a CMDP is formally defined as:

�C := {fi◊ œ � : ’k, JC(fi◊) Æ d} (6.3)

where JC(fi◊) is the expected cost function over the trajectory and d is the corresponding
threshold.

To find a policy ◊ œ �C that maximizes the reward while satisfying the constraints, a
constrained DRL algorithm can encode this problem as a constrained optimization problem
in the following form:

max
fi◊

Jr(fi◊), s.t. JC(fi◊) Æ d (6.4)

One feasible approach to integrate the constraints in an optimization problem is by
utilizing Lagrange multipliers. In the context of DRL, a possible technique is to transform
the constrained problem into its dual unconstrained counterpart. The objective function for
optimization can be expressed as follows, which can be maximized using any policy gradient
algorithm:

J(◊) = min
fi◊

max
⁄Ø0

L(fi◊,⁄) (6.5)

where L(fi◊,⁄) = Jr(fi◊)≠⁄(JC(fi◊)≠d).
For maximizing the objective function, various DRL algorithms can be utilized, with

one of the common choices being PPO. Recent studies have reported promising results by
using Lagrangian dual optimization together with PPO [302]. In our proposed framework,
we incorporate a cost function into the same reward function used in PPO. The cost function
assumes a value of 1 only when the capsule interacts with the wall, and 0 otherwise. A cost
threshold value of 500 is selected to balance the safety of the capsule while maintaining its
reward performance, as discussed in Sec. 6.5.
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Fig. 6.4 Illustration of four safety properties designed, namely �¿,�ø,�æ, and �Ω . When
the scope is close to the upper, lower, left, or right lumen wall, the respective row/column
squares in the input space have high illumination with values in [0.8,1], hence the agent
should not move in that direction.

6.4 Formal Verification

The FV of DNNs can be represented by the mathematical tuple R = ÈF ,P,QÍ [304, 305].
Here, F denotes a trained DNN, P represents a precondition for the input, and Q defines a
postcondition on the output. The precondition P specifies the allowable input configurations,
while the postcondition Q describes the required output results that must be verified.

The verification process entails demonstrating the existence of at least one concrete input
vector x̨ that satisfies the given constraints, as expressed in the following assertion:

÷; x̨; |;P(x̨)·Q(F(x̨)) (6.6)

The verification algorithm utilizes a search procedure to determine if an input vector x̨ that
satisfies the precondition P and the postcondition Q exists, and outputs SAT if such an input
exists [305].

In this study, we introduce a set of safety properties, represented as �¿,�ø,�Ω and �æ,
that ensure the safe operation of the agent during colonoscopy, as depicted in Fig. 6.4. These
safety properties are formulated using the input values x0, ...,x15 œ x̨ of F , where x0 and x15
denote the values of the upper-left and bottom-right squares, respectively. Additionally, the
five possible actions that the agent can take are denoted as a0, ...,a4 and are highlighted in
Fig. 6.3a.

The precondition P is expressed using hyper-rectangles, represented as intervals, with
one interval assigned to each possible input value. There are two types of intervals used to
encode P: the interval [0,0.6] denotes a safe image area that is free of obstacles, while the
interval [0.8,1] represents a bright image area, indicating that the agent is in close proximity
to the colon wall (as shown in Fig. 6.4). The postcondition Q requires the agent to select
any action other than ai, which corresponds to the unsafe action of scope motion towards
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the illumination direction. Therefore, to verify these properties, a FV tool searches for a
single input x̨ that satisfies P and for which F satisfies the negation of the postcondition,
i.e., a configuration in which the agent selects the unsafe action ai. If no such configuration
is found, then the original property holds.

It is crucial to note that the safety properties we have defined in our study indicate the
action that the agent should avoid in an unsafe situation. However, they do not specify the
alternative action that should be taken instead. This is an essential aspect since it ensures
that the agent is not restricted to a specific action, which may limit its ability to discover
innovative and optimal strategies. Rather, the focus is solely on preventing the most harmful
actions.

6.5 Experimental Validation

In this section, we present the results of the empirical evaluation of the proposed framework.
The experiments aim to address the following research questions: (Q1) How does a constrained
approach a�ect the training and performance of the agent in autonomous colon navigation?
(Q2) Can minimizing violations of soft constraints lead to the elimination of hard constraint
violations?

6.5.1 Experimental setup

The evaluation of the proposed framework is based on four colon models of varying complexity,
which were used in Chapter 5. These models have varying complexity characterized by their
length and the number of acute bending angles that exceed 90¶.

The primary objective of the evaluation of the proposed framework is to assess the
di�erences in training between the proposed CRL (L-PPO) and standard DRL (PPO)
approaches. The evaluation was carried out using the following steps. (S1) 5000 policies were
trained on the hardest colon model using di�erent random initialization. (S2) The best 300
policies were selected based on their success rate during training, which is the number of
times the agent successfully reaches the colon end in 100 consecutive trials while minimizing
the number of collisions with the walls. (S3) These 300 policies were evaluated on other colon
models, and the navigation performance based on the average distance traveled by the scope
on each colon model was recorded. (S4) FV was performed on the 300 policies to obtain a
policy that shows no safety violation for final deployment. All data were obtained using an
RTX 2070 graphics board and an i7-9700k processor.

While carrying out S3, in addition to the considered methods, we also implement PPOlum.
PPOlum is a baseline PPO method that was trained using a lumen centralization reward
function proposed in Chapter 5. The average distance traveled by the endoscope tip is a
significant factor in evaluating trajectories as multiple backward motions or reversing the
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direction of motion may lead to suboptimal trajectories. The measurement of the distance
traveled was performed using the position values of the endoscope tip that were normalized
by the centerline distance of the colon model.

Table 6.1 Average distance traveled results.

Colon 0 Colon 1 Colon 2 Colon 3
PPOlum [234] 0.84 0.85 0.97 0.92

PPO 0.86 0.92 0.99 0.91
L-PPO 0.88 0.81 0.92 0.84

(a) Expected returns (b) Cumulative Cost

Fig. 6.5 Average performance vs the number of episodes of PPO and L-PPO over ten seeds
(a) Average reward and (b) cumulative cost. Solid blue and red dashed lines are the empirical
mean, while shaded regions represent the standard deviation. Black dashed line is the cost
threshold

6.5.2 Training results

Fig. 6.5a presents the learning curves of PPO and L-PPO, indicating a similar performance
between the two algorithms, with both achieving high reward values at approximately
400 episodes. The results demonstrate that L-PPO successfully enforces constraints by
maintaining a constraint cost below the limit value at 300 episodes, while PPO’s constraint
cost remains above the limit. It is important to note that a single collision can produce a
large number of interactions, depending on the number of timesteps the agent remains in
contact with the wall. These findings suggest that, on average, L-PPO may achieve better
constraint satisfaction than PPO.

The results of average distance traveled is shown in Table 6.1. Our examination shows
that all three algorithms, including PPOlum, achieve a 100% success rate in navigating all
colon models by reaching the end of the colon. These results suggest that DRL can be trained
without a lumen centralization reward, by using a global objective of reaching the colon end.
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Table 6.2 Results of model selection. SAT indicates property violation

Safety Properties
�ø �¿ �Ω �æ Model Selection

Method SAT SAT SAT SAT Completely safe model
PPO 300 246 80 167 0

L-PPO 221 198 53 161 3

Additionally, the distance traveled by the scope normalized by the centerline distance of the
colon model was recorded for all policies. The obtained values suggest that a shorter path
than the centerline is followed.

6.5.3 Formal verification results

To address Q2, FV is conducted on the 300 policies trained using each methodology. Table 6.2
provides the violations for PPO and L-PPO across all four safety properties. Specifically, for
each safety property, the table reports the SAT values indicating the number of models that
violate that particular property. Notably, it is observed that for the first safety property �ø,
which pertains to the situation where the upper part of the image is very bright and does not
require an upward action from the agent, all 300 PPO policies violate the safety property.
The observed violation is not straightforward to interpret, and it may be attributed to the
infrequent exposure of the agent to such setups during the training process. It is plausible to
suggest that the lack of su�cient training data for these specific scenarios may have hindered
the agent’s ability to learn the corresponding actions that adhere to the prescribed safety
property.

The results presented in Table 6.2 demonstrate that L-PPO has fewer violations compared
to PPO, providing evidence that the inclusion of soft constraints during training leads to a
reduction in hard constraint violations. Fig. 6.6c illustrates the locations of the hard constraint
violations for PPO on one of the colon models. The violations occur predominantly at sharp
bends, which are crucial points for the correct execution of the colonoscopy procedure.

This analysis aims to determine if it is feasible to identify a policy that adheres to all the
hard constraints. As evidenced by Table 6.2, three models satisfying all the hard constraints
were identified in the case of L-PPO, while no policies conforming to the same standards were
observed in the case of PPO, thus demonstrating the e�ectiveness of the proposed framework.
It is worth noting that the L-PPO utilized in prior experiments (such as Table 6.1) is one of
the three safe policies.

The vulnerability of DNNs and the necessity of using FV in safety-critical scenarios are
emphasized by Fig. 6.6. Specifically, Fig. 6.6 displays the results of the analysis on a policy
trained with PPO, wherein Fig. 6.6b shows an input on which the tested model acts safely,
without violating the property, while an adversarial input is discovered by the formal verifier
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Fig. 6.6 (a)Adversarial example discovered with FV for the safety property �ø. (b) A small
perturbation in the square marked green, the agent shows safe behavior. (c) Hard constraint
violation positions for one of the PPO policies marked with green crosses.

with the same property �ø in Fig. 6.6a. The figure illustrates that the input only di�ers by
0.1 in the 6th value; however, this insignificant alteration causes the network to output a
secure action in one case and a potentially dangerous action in the other, underscoring the
criticality of utilizing FV to ensure safety in DNN-based systems.

6.6 Conclusions

We have investigated the challenges associated with the deployment of DRL for autonomous
colonoscopy navigation in a virtual simulation. DRL-based methods have demonstrated the
ability to successfully traverse patient-specific colon models with comparable performance
to that of expert clinicians [234]. Nevertheless, these methods are susceptible to adversarial
attacks, which could result in safety violations with potentially fatal consequences. Con-
sequently, we exploit a CRL approach that ensures soft safety constraints through a cost
function of safety violations. However, enforcing hard constraints through this methodology
is di�cult. To this end, we propose a model selection strategy that harnesses FV to evaluate
the safety of a vast pool of policies trained using CRL. The FV is a modular framework
capable of verifying any given set of safety properties and is able to provide guarantees of
safe behavior prior to deployment. From the 300 policies trained using CRL, we identified
three policies that adhered to all safety constraints, compared to no policies that met the
same criterion for standard DRL.
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Contributions of this chapter

1. An end-to-end DRL method for colon navigation that eliminates the need for a
separate lumen detection system.

2. A CRL approach that constrains the policy in a pre-defined safe state-space to
minimize potentially dangerous actions.

3. A model selection strategy that selects policies satisfying all safety constraints,
with each policy formally verified to check for its safety violations.
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Casals, Paolo Fiorini, and Diego Dall’Alba. "Constrained Reinforcement Learn-
ing and Formal Verification for Safe Colonoscopy Navigation." arXiv preprint
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CRC detection



Chapter 7

CRC diagnosis using OCT scanning

7.1 Introduction

Colorectal polyps are widely recognized as a significant precursor to CRC. Polyps can be
classified into neoplastic and non-neoplastic polyps based on their features such as color,
shape, texture, size, borders, and vessels. The size of polyps plays a crucial role in determining
the degree of malignancy, with larger polyps posing a higher risk [56]. Early detection of
diminutive and small polyps is essential to reduce the risk of metastasis.

The current standard for CRC diagnosis is colonoscopy screening, where a flexible
endoscope is used for visual inspection of the colon walls [83]. In case of suspicion of
precancerous tissue, a biopsy is performed, and the tissue sample is sent for histological
analysis. If the results indicate a high probability of CRC percussion, the polyp is removed
using specific polyp removal procedures such as polypectomy, endoscopic mucosa resection,
or endoscopic submucosa dissection.

However, visual inspection alone is not su�cient for early detection of small or diminutive
polyps, leading to missed early-stage malignancies [311, 312]. Additionally, visual inspection
also reduces the e�cacy of the screening after polyp removal, as clumps of tumor cells may
persist beneath the mucosal layer [313]. To address these limitations, an enhanced imaging
modality is needed to improve the e�cacy of CRC surveillance.

OCT o�ers a high-resolution cross-sectional imaging approach for the characterization of
polyps [57]. This imaging modality is non-invasive and provides near-microscopic resolution
images of tissue with millimetric penetration depth, which minimizes the necessity of tissue
removal and ex-situ biopsies. Several studies have demonstrated that OCT accurately
di�erentiates normal from abnormal colonic tissue with promising success [57].

Robotic FE platforms such as STRAS [314] provide the opportunity to mount external
sensors like OCT probes on the distal part of the endoscope bodies [315] (as depicted in
Fig. 7.1). OCT probes for endoscopy require miniaturization of optics, leading to limited
field of view and depth perception of around 5 mm. Thus, to expand the field of view, the
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Fig. 7.1 (a) STRAS robotic setup. (b) Motorized OCT probe.

operator must manually scan the area of interest using the probe while maintaining contact
with the tissue, which increases the risk of missing lesions and do not ensure correct scanning
pattern [315]. In order to perform the scanning task, the operator must control multiple DoFs,
while relying on both the endoscopic camera and the OCT images, which is di�cult even
in telemanipulation mode. This telemanipulation task is challenging since the conventional
monocular camera on the endoscopic robot can only provide 2D images of the tissue surface
and the OCT probe. Moreover, it is di�cult to estimate the distance between the tissue and
the probe using OCT images when the distance is beyond the perception range. Therefore,
autonomous scanning via IBVS will benefit clinicians by extending the OCT field of view
and reducing their physical workload, allowing them to concentrate on real-time diagnosis.
Due to the relatively large surface area of the colon wall compared to the working space of
the OCT probe, an e�cient scanning strategy is necessary to cover the region of interest
within the time constraints of the procedure.

This study proposes a novel autonomous scanning approach for real-time polyp diagnosis
in the colon. The scanning process is segmented into four subtasks as follows:

S1 : Eye-in-hand IBVS - The control mechanism used in this task is IBVS, which moves
the endoscope body towards the lumen center using visual information. The detailed
explanation of the endoscope control mechanism is given in Sec. 7.4.

S2 : Eye-to-hand IBVS - This subtask entails controlling the OCT probe to reach the
visually detected polyp. The control of the OCT probe is achieved through IBVS. The
specifications of the OCT probe and the approach towards the polyp are provided in
Sec. 7.5.2 and Sec. 7.5.3, respectively.
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Fig. 7.2 Overview of experimental setup depicting the realistic colon model, the lumen, OCT
probe and the endoscope body.

S3 : OCT Scanning - In this subtask, the OCT probe is maneuvered to scan the area of
the polyp. The movement of the OCT probe is determined based on the information
obtained from the previous subtasks.

S4 : Polyp Assessment - This subtask involves image-based inference to classify the health
of the polyp in real-time. The classification of the tissue is based on the information
obtained from the OCT scans. The detailed process of tissue classification can be found
in Sec. 7.5.5.

In each subtask, multiple objectives might be present, and these objectives are defined
under di�erent reference frames. To address this issue, we adopt the Hierarchical Quadratic
Programming (HQP) formulation of the optimization function for each objective, described
in Sec. 7.3.2. The e�cacy of this approach is evaluated through tests conducted on a realistic
colon model [316], which simulates visual and surface tissue features. Our results demonstrate
that this approach can perform real-time scanning of the tissue surface to assess the health
of tissue from normal to precancerous stages.

7.2 Related Works

Eye-in-hand IBVS: In recent years, several works have explored the development of robot-
assisted colonoscopy navigation, which aims to provide a more e�cient and accurate method
for colon examination. The primary objective of these works is to assign the target direction
of the endoscope motion towards the estimated center of the lumen. To achieve this objective,
various techniques have been used, including lumen centralization control strategies described
earlier in Chapter 5 and Chapter 6 [178, 54, 294, 234, 296].

Eye-to-hand IBVS: Martin et. al. [317] and Zhongkai et. al. [179] developed an
autonomous biopsy method for endoscopic procedures where the tool channel projection
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is aligned with the tissue target. Both of these approaches employed the use of multiple
viewpoints to estimate the position and depth of the target tissue. In an e�ort to reduce
the distance error between the target tissue and the probe, Zhang et. al. [318] proposed a
marker-based OCT probe detection approach. The OCT probe stops at the contact detection
point, thus reducing the risk of tissue damage during the procedure. However, the use of
artificial fiducial markers can be a limitation, as it requires manual placement of the markers
and may interfere with the visual inspection of the tissue. To address this limitation, our
proposed approach is marker-less OCT probe detection using image segmentation with CNNs.
By eliminating the need for markers, the system is able to achieve greater accuracy and
flexibility, allowing for a more e�ective implementation of the Eye-to-hand IBVS method in
endoscopic procedures.

OCT Scanning: Obtaining volumetric information using OCT involves rotating and
pulling back a side-focused optical probe inside a static sheath. The cylindrical area defined
by the length of the pullback stroke and the working distance of the optics determines the
optical scanning area [319]. Although manual scanning can be performed by moving the
endoscope, it has limited capabilities in terms of sampling uniformity, leading to an irregular
pattern [320]. The commonly used OCT scanning patterns, such as circular, spiral, and
raster scanning, cannot be employed in an endoscopic OCT probe due to the miniaturized
optics that reduce the field of view. As OCT collects only one-dimensional information in
a single measurement, scanning is necessary for obtaining volumetric information. Several
previous works have proposed to move the tissue for scanning [321–323], but this approach
is not feasible in colonoscopic scenario. Recently, a study by Zhang et al. [318] proposed
an OCT scanning approach based on a designed 3D curvature trajectory. However, this
approach has the disadvantage of low overlapping of information between sequential scans,
making volumetric reconstruction more di�cult. To address these limitations, we propose an
automatic scanning strategy using a steerable OCT catheter to improve imaging performance
while scanning areas larger than the field of view of a low-profile OCT probe.

Polyp assessment : OCT has been demonstrated to e�ectively distinguish between
normal and abnormal tissue in various organs, providing an optical biopsy-like approach
in both human and murine colorectal models [324, 325]. However, the implementation of
this technology in a clinical setting is challenging due to the large volume of data generated
and the intricate qualitative variations between normal and abnormal tissue [57]. The study
by Zeng et al. [57] was the first to demonstrate real-time in-situ characterization of polyps
through manual OCT scanning. Similarly, in this study, we employed a method for polyp
assessment utilizing autonomous OCT scanning.
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7.3 Optimization based control formulation

Optimization-based control formulation is a mathematical framework used to design controllers
for complex systems with multiple objectives and constraints. It involves finding a control law
that minimizes a cost function subject to constraints on the system’s dynamics, input/output
variables, and physical limitations. We use the STRAS robotic system to illustrate the control
formulation.

7.3.1 System Specification

The STRAS robotic platform [326] was designed for performing intraluminal endoscopic
procedures, such as ESD. It consists of a flexible endoscope that allows the user to perform
telemanipulation with a camera and instruments (arms) at its tip (Fig. 7.1. The endoscope
has four DoFs and is capable of horizontal and vertical bending, rotation, and translation
along its axis. The endoscope body has three channels, with two of them equipped with
surgical instruments and one for fluid management.

The Constant Curvature Model (CCM) is used to represent the flexible segments of
the robotic structure [326]. The configuration variable q is set as q = [qR,qE ]T , with qR

representing the configuration variables of the OCT probe set in the right channel of the
endoscope body and qE representing the configuration variables of the endoscope. The
configuration variables for the endoscope can be expressed as qE = [—Eh ,—Ez ,–E , tE ] which
describe the horizontal and vertical bending, rotation, and translation, respectively.

The lateral and vertical displacement of the endoscope is limited to ±5 cm. For such
small displacements, the camera motion can be modeled as movement in the x-y plane. The
Homogeneous Transformation Matrix (HTM) wTTT

E describes the endoscope tip position with
its translational component, wpE = pos(wTTT

E). Here, w refers to the world frame of reference
while E refers to the endoscope frame of reference. The endoscope Jacobian wJE œ R3x4 is
taken from prior camera displacement measurements in a controlled scenario [318] such that
the endoscope velocity (wṗE) is defined as:

wṗE = wJEq̇E (7.1)

The endoscope houses the arms, such that motion of the endoscope impacts arms position
in the world frame. Yet, arm motion are independent of the body in the endoscope frame.
Similarly to the endoscope kinematics model, the OCT probe is modeled using the CCM, as
in prior implementations of the STRAS platform for OCT probe control. The tip position
of the probe with respect to the endoscope camera frame is described by the translational
component of the HTM, EpR = pos(ETTT

R). The OCT probe is described as qR = [—R,–R, tR]
with — being the OCT probe bending, – the rotation and t the translational component,
such that the Jacobian JR œ R3x3 is set as:
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EṗR = EJRq̇R (7.2)

7.3.2 Hierarchical Quadratic formulation

The optimal control velocity of the system, ṗı
m is denoted as the combination of the optimal

velocity of the endoscope tip, ṗı

E
and the OCT probe, ṗı

R
, described by the following equation:

ṗı

m =

S

WU
wṗı

E,m

Eṗı

R,m

T

XV , m œ [S1,S2,S3,S4] (7.3)

where m denotes the subtasks in the range of [S1,S2,S3,S4], and the velocity of each
subtask is determined by the target position. To achieve independent speeds for each XY Z

component in the two controllable subsystems (OCT probe arm and endoscope), the current
axis position (·)t and the desired axis position (·)d are used to set each component velocity,
as described below:

ṗ
ı

m,u = (pm,u,t ≠pm,u,d)km,u , u œ [x,y,z] (7.4)

where ku is a scalar gain with units [1
s
]. Since each desired velocity is represented in

a di�erent reference frame, we stack the desired velocities for each subtask in the general
Jacobian as:

J =
C

wJE 0
0 EJR

D

. (7.5)

At each m subtask, di�erent desired Cartesian velocities can be set, the required joint
velocity is computed by solving the optimization formulation:

min
q̇

ÎJm q̇≠ ṗı

mÎ2 . (7.6)

Where the underscript term m present on the Jacobian and the desired speed denotes a
specific formulation per each subtask, e�ectively modifying the system behavior. Expression
(7.6) can be formulated as a Quadratic Programming (QP) problem [318]. Constraints and
limits are introduced in the QP form allowing to e�ectively implement collision avoidance
and reducing the movement towards joint limits, such that:

min
q̇

1
2 q̇T Hq̇ + cT q̇ (7.7)

s.t. Aq̇ Æ b (7.8)

q̇min Æ q̇ Æ q̇max (7.9)
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where the H =
ÿ

m

“mHm, c =
ÿ

m

“mcm, and “m is a term that specify the hierarchy of the

m subtask. Each semi-positive matrix Hm is formalized as Hm = JT
mJm with J{6x7}, and the

cm vector defined as cm = ≠kmJT
mṗı

m, with km a proportional gain for the subtask of units
[1
s
]. The optimization variable is set as q̇{7x1} = [q̇R, q̇E ]T . Di�erent “m values are defined

for each m task; if a subtask is not active, “m = 0 nullifying such substask. When “m ”= 0
the solver [327] will compute a q̇ that gradually reaches the multiple velocity objectives.
An overview of how each Jacobian Jm and desired velocities ṗı

m is formulated per each m

subtask is presented on the following sections.

7.4 Endoscope Control

The aim of the endoscopic visual servoing is to center the lumen in the image. The image-
detection module provides the image position of the polyp, represented by pp.

Fig. 7.3 Global navigation with information from endoscopic camera. (A) Real-time endoscopic
image segmentation for lumen, polyp and OCT probe localization.

7.4.1 Image position control

Lumen alignment is performed to complete subtask S1 by matching lumen image position
pl = (px

l ,p
y

l
) to normalized image center pc = (px

c ,p
y
c ). Note that the OCT probe is not

deployed in this subtask. Therefore the control velocity required for lumen alignment is
determined as follows:

ṗı

S1 =

S

WU
wṗı

E,S1

Eṗı

R,S1

T

XV , wṗı

E,S1 =

S

WWU

(px

l
≠p

x
c )kx,S1

(py

l
≠p

y
c )ky,S1

0

T

XXV , Eṗı

R,S1 =
Ë
0{3x1}

È
(7.10)
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with ku,S1 being the specified gain per each point component. The values of p
x
c and p

x
c

are assigned as 0.5. While the task Jacobian is set as:

JS1 =
C
0 0
0 wJE

D

(7.11)

7.5 OCT probe control

7.5.1 Polyp detection

The detection of polyps in the phantom is accomplished through the utilization of supervised
deep learning techniques. The creation of the training set was achieved by acquiring images
through the telemanipulation of the robot. These images, with a resolution of 720 ◊ 576
pixels, were manually annotated by identifying the polyp region in the images, which were
then di�erentiated from the background. To enhance the robustness of the training process,
the 100 collected images were augmented. A U-NET architecture [328] was implemented
and trained using a supervised approach on the annotated image dataset. The output of the
trained U-NET was utilized to estimate the center of mass of the detected polyp, denoted as
pp.

7.5.2 Probe specification and model

In this study, we utilize planar radial B-scan images that are obtained through the integration
of an endoscopic OCT catheter with a diameter of 3.5 mm [315] into the instrument channel
of the STRAS [326]. The distal end of the instrument is equipped with a transparent sheath,
allowing for three-dimensional OCT imaging using a side-focusing optical probe that is
rotatable and has two proximal external scanning actuators. The OCT imaging system is
built around the Axsun engine and includes a 1310 nm center wavelength swept source laser
and 100 kHz A-line rate.

The OCT catheter is compatible with the instrument channel of a robotized flexible
interventional endoscope and the resulting OCT image stream is stabilized using a CNN
based method [329, 330]. After stabilization, the image is segmented to calculate the distance
and direction between the scanning center and the surrounding tissue.

7.5.3 Polyp approach by OCT probe IBVS

The OCT probe position pOCT = (px

OCT
,p

y

OCT
) is set to match image polyp position pp =

(px
p ,p

y
p) while being within the OCT detection range to perform pull-back. The objective

velocities are defined as:
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ṗı

S2 =

S

WU
wṗı

E,S2

Eṗı

R,S2

T

XV , wṗı

E,S2 =

S

WU
0{2x1}

µ1

T

XV , wṗı

R,S2 =

S

WWU

(px
p ≠pOCT )kx,S2

(py
p ≠pOCT )ky,S2

0

T

XXV (7.12)

where µ1 is a constant term to e�ectively translate the endoscope while aligning with
the lumen. When the OCT probe is close to the tissue position, the endoscope translation
is stopped i.e. if z(pOCT ≠ pp) Æ ÷z, µ1 = 0. ÷z = 4mm is the threshold we setup for the
closeness with the OCT detection range set to 5mm. When the distance between the OCT
probe and polyp is above the threshold, µ1 ¥ 2mm/sec. Currently, we consider polyp position
in quadrant 1 of the endoscopic image for this preliminary study where the entire quadrant
is reachable by the probe.

7.5.4 OCT contact control

After S2 is completed, subtask S3 is initiated. We have proposed a scanning strategy that
uses multiple parallel translational pullbacks (as depicted in Fig. 7.4c). This method o�ers
several advantages. Firstly, the relative longitudinal position between the reference object
(i.e. the protective sheath) and the rotation lens is fixed, providing stability for the OCT
imaging. Secondly, this scanning strategy allows for the acquisition of a stack of B-scan slices
that are highly aligned with each other for each pullback, reducing the need for correction. If
further volumetric reconstruction is required for diagnostic purposes, a volumetric stitching
algorithm [331] can be used to connect the small volumes obtained from each pullback.

The multi-pullback strategy was chosen over the swiping pullback strategy due to the
shape of the colon lumen. After gas inflation, the colon lumen maintains a certain level of
cylindrical shape. However, swiping the instrument along the inner surface of the lumen
can result in large instrument displacement. On the other hand, translational pullback is
well-suited for cylindrical lumens regardless of size, and moving along the lumen wall requires
less compensation of displacement during the scanning process. Algorithm 1 provides the
meta-code for the OCT scanning strategy.

7.5.5 OCT tissue health classification

Drawing inspiration from the work presented in [57], which demonstrated the ability to
di�erentiate healthy colon tissue from pathological tissue using layer features obtained from
cross-sectional images acquired using OCT, we have sought to realize the identification of
unhealthy colon tissue based on a previously proposed layer contour segmentation algorithm
[332]. As depicted in Fig. 7.4-e, the algorithm processes OCT images in the polar domain to
determine the positions of tissue layers and outputs the classification results based on the
layer segmentation.
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Fig. 7.4 Scanning strategies for colon lumen with robotized endoscopic OCT. (a) shows our
system manually operated within a colon, which is one of our previous work on OCT/STRAS
integration [315], and in (b) we rotate the colon tissue phantom to simulate such lumen
environment. (c) shows OCT swiping pullback following a repeat arc trajectory, and (d)
shows another scanning strategy that utilizes multiple parallel translation pullbacks. (e)
Classify healthy/unhealthy tissue using OCT images. OCT images are processed in polar
domain for multi-surface segmentation and reconstructed in Cartesian for display. In healthy
tissue muscle/submucosa layers (M/S) have clear boundary[316], while in unhealthy tissue
submucosa layer disappears.

7.6 Experiments

To verify the validity of the proposed HQP control approach, five trials were conducted for
polyp evaluation.

7.6.1 Overview of the implementation

The workflow of the experiments is presented in Fig. 7.5. The STRAS platform is randomly
positioned within the synthetic colon model, due to the limitations in translation on the
STRAS system which was designed to prioritize complex intraluminal surgical gestures rather
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Algorithm 1 OCT local scanning
1: while true do
2: Obtain translation position state tk

3: assign probe translation �t:
4: if reach distal limit then
5: tk+1 = tk ≠�t

6: else
7: tk+1 = tk +�t

8: Set target contact as ct

9: Compute distance value dk and contact region size ck from OCT image
10: fix bending bx = 0, obtain outward bending state by,k

11: Compute contact error Ek = ct ≠ (ck ≠dk)
12: Compute new target bending by,k+1 = by,k +P (Ek)+D(Ek)
13: set target translation tk+1, and bending bx, by,k+1 to STRAS follower

than intraluminal navigation. The limits of the platform were modified for each subtask in
the experimental setup.

Fig. 7.5 Flowchart of the autonomous scanning and tissue classification workflow

7.6.2 Results

We conducted our experiments on the ascending colon section of the LM-107 Colonoscopy
Simulator (KOKEN, Japan), which contains a white polyp that can be placed in a predeter-
mined location. Our main goals were twofold: first, to demonstrate the robustness of polyp
detection in di�erent lighting conditions, and second, to employ an OCT probe for tissue
scanning.

To achieve the first goal, we implemented the image position control method outlined in
the previous section and evaluated polyp detection under varying luminosity conditions, as
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Fig. 7.6 a) Image guided control. Sequence of frames obtained from the monocular camera
while aligning towards the polyp (i) in normal lighting conditions, (ii) in varying lighting
conditions, (iii) Experiment two: translating and aligning towards the detected polyp. b)
Top: Deployment of the OCT probe. Bottom: Data generated while tissue scanning. c) Plot
of evolution of Ex,Ey and dOCT for the second experiment performed.

shown in Fig. 7.6a. It is important to note that the OCT probe was not utilized during these
experiments.

Our second objective is to perform simultaneous tasks of aligning with the center of
the lumen, S1, and deploying the OCT probe to reach the polyp, S2. To achieve this, we
implement the image position control and translation experiments as illustrated in Fig. 7.6a.
The distance between the center of the image (red dot) and the center of mass of the detected
polyp (green dot) is shown in blue.

In Fig. 7.6b (bottom), the polyp surface detection in the OCT image and the corresponding
endoscopic image in the top row are shown. The green line represents the polyp surface,
while the blue line shows the sheath of the OCT catheter probe. When the endoscope is not
aligned with the polyp, both lines remain straight, as the polyp is outside the field of view of
the OCT probe. However, as the endoscope approaches the polyp, a peak point occurs in the
green line, indicating the presence of an object near the probe. The peak point grows larger
as the endoscope advances towards the polyp, and finally touches the blue line when the
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probe is about to collide with the polyp. Thus, the feedback from the OCT image prevents
collision.

The plot for the error in the experiments is shown in Fig. 7.6c. We set a safety bu�er of 10
seconds (830 steps) for visual inspection at a step rate of 50Hz. After this bu�er period, the
pixel error E starts reducing, and the dOCT also starts decreasing after 1300 steps, indicating
that the probe has come close enough to the polyp to provide a measurement with less error.

Subsequently, we executed an automatic scanning process utilizing a predefined multi-
pullback approach and assessed the polyps. To achieve this, fake polyps were created by
utilizing dragonskin ecoflex that disrupted the underlying tissue layers. We observe that our
system outputs 100% accuracy in identifying such abnormalities.

7.7 Conclusion and Future work

In conclusion, our research demonstrates the potential of steerable endoscopic OCT catheter
robotization for autonomous scanning of malignant tissue. We have presented a comprehensive
strategy that integrates lumen and polyp detection, navigation following the lumen centerline,
probe alignment to reach the polyp, tissue scanning and assessment in real-time.

The potential benefits of implementing automatic scanning in clinical settings are signifi-
cant, as it would allow the clinician to focus on medical diagnosis rather than controlling the
catheter device. With free hands, the operator can stop scanning at a particular point to
examine the area more closely without losing track of the current position.

There is however, one major limitation that the chosen robot model is based on a constant
curvature assumption. This model does have limitations, including a lack of compliance with
the actual robot’s behaviour, which may result in deviations from expected performance.

Future work will focus on increasing the complexity of the testbed to demonstrate more
robust control, using scanning volume metrics to maximize the area scanned around the
polyp [319], and developing a DRL strategy to optimize all control objectives in an end-to-
end manner. These advancements will significantly reduce the amount of hand-engineering
required for each subtask, allowing for more e�cient and e�ective autonomous scanning of
malignant tissue in clinical settings.

Contributions of this chapter

1. An autonomous scanning strategy for real-time CRC polyp diagnosis. The
system integrates the following features: Eye-in-hand IBVS, Eye-to-hand IBVS,
OCT Scanning and Polyp Assessment. These objectives are encoded in a QP
formulation of the optimization functions.
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Part III

Tissue manipulation



Chapter 8

Learning soft tissue manipulation

8.1 Introduction

Colonoscopy enables the resection of adenomatous polyps, which are known CRC precursors,
through procedures like Endoscopic Mucossal Resection EMR or Endoscopic Submucosal
Dissection ESD. These procedures employ dual-channel flexible endoscopes alongside passive
instruments inserted into the channels [333]. However, these tools are not ideal for complex
surgical procedures, as they lack the ability to independently control surgical tools and
the endoscopic camera, do not enable triangulation, and are deficient in DoFs. As a result,
endoscopic removal of polyps becomes challenging when they are large, flat, situated in high-
risk locations, or di�cult to access [334]. Inadequate retraction and an unstable view lead to
a high incidence of complications, such as muscular layer perforation and high recurrence
rates [335].

Therefore, the use of ESD and EMR procedures is restricted mainly to eastern countries
where the prevalence of digestive cancers is high, and where endoscopists receive intensive
training in flexible endoscope manipulation [336]. In contrast, in western countries, only a
few experienced endoscopists perform these procedures routinely [276]. Few flexible robotic
platforms have been developed which provide more DoFs and simultaneous bimanual control
of instruments from comfortable master consoles such as the acstras [276] and Endosamurai
[337] robotic systems. However, these platforms are still in research phase and have not
received clinical certification.

Conventional robotic systems, such as the dVSS, have been used for transanal MIS
[338]. The dVSS consists of three robotic arms, called PSM, equipped with articulated MIS
instruments and controlled by the surgeon via a console with two master handlers.

A substantial portion of the polyp excision procedure involves mobilizing and manipulating
tissue, including the grasping and lifting of a thin layer of tissue to access an underlying
area [339]. This gesture, known as TR, is necessary in multiple stages of the surgery and
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involves interacting with soft tissues having varying physical and geometric properties, such
as sti�ness and viscoelasticity, which show high variability both inter and intra-subject.

When using the dVSS, TR is temporarily carried out using the third PSM or additional
instruments are used controlled by an assistant operator [58]. This requires the surgeon to
either switch between robotic arms during the surgery with a di�erent set of visuomotor
feedback and limited perception or instruct an assistant with the desired motion [58]. Such
a protocol increases the surgeon’s cognitive load, as well as the risks of tissue damage and
instrument collision. As a result, automating the TR subtask can benefit surgeons by enabling
them to focus on critical aspects of the surgery and potentially improve the overall outcome.

The key obstacle in automating robotic tissue manipulation is the need to account for
the dynamic behavior of soft tissues interacting with the anatomical environment. Some
researchers have attempted to automate TR using standard motion control algorithms. For
example, Nagy et al. proposed an approach for TR that uses soft computing methods
based on images, where three methods based on proportional control, HMMs and fuzzy logic
are validated [340]. Attanasio et al. developed a trajectory planner based on coordinates
extracted directly from intra-operative image feed [58]. However, both of these methods
automated TR using pre-defined movement sequences without considering tissue dynamics,
which may limit their applicability in realistic anatomical environments. In other works, such
as [341, 342], researchers employed standard path planning methods, such as probabilistic
roadmaps, to generate an optimal plan for the task using biomechanical simulations in the
preoperative phase, accounting for the deformation properties of the anatomy. Nevertheless,
all these approaches rely on hand-crafted control policies, which can make executing complex
nonlinear trajectories and behaviors challenging.

Most of the prior works concerning the automation of actions involving soft tissues
manipulation has relied heavily on the use of LfD, where a task is learned by imitating an
expert’s behavior [343, 344, 49, 345]. Reiley et al. proposed a LfD-based framework that uses
Gaussian Mixture Models (GMM) to generate motion [346]. Recently, a similar approach
using GMM has been used to learn dynamic motion primitives from demonstrations given by
expert surgeons [345]. Osa et al. introduced an iterative technique to learn a single reference
trajectory for knot tying [48]. However, a single demonstration is not su�cient to model a
manipulation skill e�ectively. Schulman et al. used a trajectory transfer algorithm to learn
from demonstrations for the task of suturing [343]. Murali et al. developed a method to
segment demonstrations into motion sequences [49].

Although LfD is a preferred approach, as it allows for proper interaction with deformable
tissues without the need to explicitly design policies, the robustness of learned tasks to
changes in initial conditions or the environment is strongly influenced by the amount and
variety of expert demonstrations provided to the system [139]. Collecting a dataset with a vast
repertoire of trajectories from multiple experts and varying initial conditions is impractical
and often unfeasible in clinical settings. Furthermore, with LfD, the robot’s performance can
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only match the level of expertise demonstrated by the human, with no additional information
to improve the learned behavior.

Recent developments in surgical subtask automation have demonstrated a growing interest
in utilizing data-driven approaches, such as DRL [51, 347]. Several studies have employed
DRL-based approaches to learn tensioning policies for multiple pinch point cutting tasks
involving surgical soft tissues [114, 347]. Shin et al. employed an RL-based approach to learn
model predictive control for tissue dynamics [50], whereas Pedram et al. used handcrafted
features to incorporate prior knowledge in a vision-based RL approach [348].

However, a major drawback of DRL approaches is that agents only achieve robust per-
formance after exploring a large number of possible policy options, requiring long training
consisting of a significant number of attempts, which is not practical in real surgical robotic
systems. Consequently, existing DRL-based works learn surgical tasks in simulated environ-
ments to enable the many trial and error attempts required to train agents in controlled
settings. Simulations provide a testbed to predict unsafe or dangerous situations and prevent
their execution in the real world.

Nevertheless, a key challenge when training in simulation is to minimize the reality gap,
i.e., the discrepancy between the simulated and real environments, to enable successful
deployment of the learnt policies in the real world, which is known as a sim-to-real approach
[349]. In the context of robot-assisted MIS, this implies that the simulation should consider
both the deformable properties of the anatomy and the interaction with surgical tools. This
limitation is inherent in dVRL! (dVRL!), a simulation framework to train DRL agents
for surgical tasks proposed by Richter et al. [51], which supports only rigid objects. Due
to the reality gap, simulation-learnt behaviors have only been transferred to real surgical
robotic systems for simplified geometries [114]. Recently, Xu et al. have proposed SurRoL, a
simulation-based platform for DRL that can simulate deformable objects and is interfaced
with the da Vinci Research Kit (dVRK) [282]. SurRoL shows promise for successful transfer
of behaviors learnt in simulation to the real world.

Recent studies have suggested the combination of LfD and DRL to benefit from the
strengths of both approaches and overcome their limitations [350]. In particular, demon-
strations can be used to guide the exploration process during learning, reducing the time
required to find an improved control policy that may di�er from the demonstrated behavior.
GAIL has shown to be a promising approach in endovascular manipulators but has not yet
been tested in Robot-assisted MIS [351].

This chapter presents the UnityFlexML framework, a general and modular tool that
utilizes RL methods to learn task automation in simulated surgical environments involving
deformable objects. UnityFlexML serves as an interface between a realistic simulation of
deformable anatomy, the surgical robotic system, and learning-based methods. Our main
contribution is to prototype and test DRL and LfD techniques in automating the TR subtask
using UnityFlexML. We demonstrate that the learnt policies can be successfully transferred
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Fig. 8.1 UnityFlexML framework. The simulated dVSS arms interact with deformable tissues,
modeled using PBD method. Example scene (a) at rest, (b) during tissue manipulation.

to the real system without additional training, thanks to the high level of realism achieved
by the simulation environment.

8.2 UnityFlexML: a framework to learn surgical tasks in
simulation

UnityFlexML1 is a modular framework which enables the utilization of learning-based methods
for task learning in a simulated surgical environment that incorporates deformable objects
(refer to Fig. 8.1). The developed platform interfaces the real dVRK with a simulation of the
surgical environment. We demonstrate that our simulated environment can be e�ectively
employed to train a DRL agent to manipulate soft tissues, and the acquired policy can be
successfully deployed to the dVSS, which is controlled through the dVRK [352].

8.2.1 Robot Platform

Our work involves a single dVRK unit, specifically the PSM arm. To simplify the observable
state space for the RL agent in both the simulator and the real robot, we control the motion
of the PSM EE in Cartesian space while keeping the EE orientation constant, as done in [51].
As long as the kinematic model for the surgical tool is loaded in simulation, the platform can
accommodate any possible surgical tool. Thus, the state of the PSM EE can be described
by its position pt and gripper state (gt œ 0,1, open/close). Similar to [51], we normalize the
PSM positions with respect to the workspace, which is defined by the PSM joint limits and
obstacles in the environment. This normalization facilitates generalization of learned policies
to various joint configurations. In addition, we assume that the 3D model of the anatomical
environment is available, which is extracted from pre-operative images such as MRI, and this
allows us to determine the position of the tumor area of interest q.

1publicly available at https://gitlab.com/altairLab/unityflexml

https://gitlab.com/altairLab/unityflexml
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8.2.2 Simulation Environment

Our simulation framework is built on the Unity3D engine, a game development platform that
has shown potential in medical simulations [353]. The modularity of Unity makes it easy for
users to customize the environment scene and to use advanced features provided by separate
plugins. Specifically, our framework relies on two main Unity plugins: the Machine Learning
Agents Toolkit (ML-Agents), for training intelligent agents [354], and NVIDIA FleX, for
simulating soft object deformations [355].

Deformable bodies are simulated using the PBD approach, which leverages the optimized
implementation provided by NVIDIA FleX. This approach has been demonstrated to accu-
rately model soft tissue deformations in a computationally e�cient and numerically stable
manner [353]. These qualities are particularly important for our framework, which must
enable the simulated agent to undertake multiple interactions with the environment within
a short period to facilitate e�cient training, while also minimizing the risk of simulation
instability.

Our choice to simulate anatomical deformations using PBD rather than the finite element
method is motivated by the superior performance of PBD in terms of computational e�ciency
and numerical stability. In the context of our framework, where the robotic agent performs
numerous interactions with the environment, these aspects are essential to enable e�cient
training and ensure that the simulation remains stable.

To simulate the robotic part, we implemented closed form inverse kinematics of the PSM
to enable Cartesian space control of the manipulator. Communication between Unity3D
and Robot Operating System (ROS) is achieved using UDP-based communication, following
the method described in [356]. During each simulation step, the robotic system is allowed
to perform a very small motion increment, which makes the impact of the robot’s dynamic
behavior negligible and therefore not accounted for in the simulation [51]. Grasping of an
object is modeled as an atomic event triggered when the relative distance with the EE is less
than 2,mm in our simulated environment.

8.3 Learning tissue retraction within UnityFlexML

Our study focuses on learning the soft TR task using the UnityFlexML platform. Specifically,
we consider a transanal MIS procedure for partial nephrectomy using the dVSS as our
experimental setup. The TR task involves manipulating the highly deformable perirenal
fat tissue to reach the adipose tissue covering the kidney, grasp it, and lift it to expose the
tumor.

To achieve our goal, we adapt two approaches, namely a standard DRL approach and
GAIL, to train agents in the simulated environment. Our study is motivated by the availability
of synthetic phantoms for immediate testing with the real system. In the following sections,
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(a) (b)

Fig. 8.2 (a) In our setup the PSM interacts with silicone fat tissue covering a kidney phantom.
The simulated scene controlling PSM movements within UnityFlexML can be seen in the
background. (b) The calibration board used to uniquely map all the components of our real
experimental setup to the UnityFlexML environment.

we elaborate on our experimental setup and explain how we modify the two approaches to
learn the TR task using the UnityFlexML platform.

8.3.1 Experimental Setup

Our real experimental setup consists of a synthetic kidney phantom covered with silicone fat
tissue, shown in Fig. 8.2a. The interaction between the agent and the fat tissue is limited to
a 90 x 90 mm square region, which is firmly secured to the top section of the kidney. To hold
the silicone patch in place, we have created a custom-designed rigid structure that allows
us to determine the exact position of the fat and kidney in both the simulated and real
environments. To initiate the experiment, the square region of fat tissue is allowed to fall
on the kidney phantom under the influence of gravity. Our experimental scenario involves a
single PSM arm that is equipped with the Large Needle Driver. All simulation experiments,
including agent training and dVRK control, are conducted on a workstation that is equipped
with an AMD Ryzen 3700X processor and NVIDIA TitanX GPU.

UnityFlexML environment: Simulation

The simulation environment in UnityFlexML is initialized with a 3D model of the kidney
phantom and the position of the tumor q, obtained from segmentation of the CT of the
phantom. To minimize the reality gap between the simulated and real adipose tissue, we
perform an optimization procedure to determine the PBD deformation parameters that
best represent the behavior of the synthetic fat tissue. A genetic algorithm is employed to
optimize the PBD parameters that impact the deformable behavior of the tissue that the
robot interacts with. The optimization is carried out using preliminary experiments in which
a teleoperated PSM arm lifts the fat tissue from a planar configuration that is rigidly fixed
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(a) (b)

Fig. 8.3 One of the experiments of the optimization process. The fat tissue is anchored to
the calibration board (right side in the figure). (a) Rest condition; (b) Deformed condition.
Point cloud of the deformed tissue is acquired with the depth camera shown on the right.

on one side. We define N = 5 di�erent pinch points along the fat contour and L = 3 di�erent
levels of lifting for each pinch point. The ground truth positions of the fat tissue are obtained
using an Intel RealSense D435 Depth camera (Intel Corporation, Santa Clara, USA), whose
position is defined relative to a custom calibration board that ensures the alignment between
the simulated and real environment (Fig. 8.2b).

The values for the cluster spacing, cluster radius, and cluster sti�ness parameters that
optimally control the PBD implementation of NVIDIA FleX are estimated by minimizing
the error ‘ as follows:

‘ = 1
N

Nÿ

n=1

Lÿ

l=1

Mÿ

m=1
||xPBD(l,n)≠xPCL(l,n)|| (8.1)

where ||.|| represents the Euclidean distance between the position of the M particles
defining the fat in simulation xPBD, at deformation level l and pinch point n, and the closest
point of the corresponding point cloud xPCL. The acquired point cloud has been decimated
to bring the number of points comparable to M . The diameter of the PBD particles is set to
3mm (i.e., the width of our tissue sample), which allows to describe the dynamics of the fat
tissue with a single layer of particles. The constraints and the range of allowed values for
each parameter are set according to [353].

The optimization process yielded optimal values for the cluster spacing, radius, and
sti�ness parameters, which were found to be 0.127, 0.095, and 0.361 respectively. These
values resulted in an average error of approximately 3 mm between the simulated and ground
truth point clouds, which is in line with the dimensions of PBD particles. The optimized
values were then utilized to accurately depict the deformable properties of the fat tissue in
the simulation environment.
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Robotic setup

The crucial first step for transferring the learned policy from the simulation scene to the real
dVRK system is the precise alignment of the two environments. To achieve this, we reach
several points on the calibration board displayed in Fig. 8.2b to map the poses of the PSM
in a common reference space. The accurate registration of the two environments is of utmost
importance for our application, as all the movements of the da Vinci arm in the real system
are directly controlled by the simulated environment. Additionally, since there is no visual
feedback used in these preliminary experiments, grasping events are triggered in simulation
upon detecting collision events between the end-e�ector and the fat, and the corresponding
action is transmitted to the real system. Therefore, it is vital to ensure accurate registration
to avoid any inconsistencies between the two environments. The mean positioning error of
the PSM arm is 1.7 mm.

8.3.2 Learning methods

In this study, we represent the agent using the EE of the da Vinci PSM, which interacts with
the surrounding anatomical environment. The initial state of the environment is assumed to
be known from pre-operative data. Our objective is to move the PSM arm from a pre-defined
initial position p0 to a position close to the tumor q, grasp the fat and lift it to a pre-defined
final position pT in order to expose the tumor. To ensure that the learned motion primitives
are robust to di�erent initial configurations, the EE starts from a di�erent position p0 after
each episode (2500 timesteps) during training. The position pT , on the other hand, remains
fixed throughout the training experiments. We define the state space using kinematics
information to describe the current robot state and environment at time t:

The state and action space of the environment is:

St = [pt,q,pT , ||pt ≠q||, ||pt ≠pT ||]

At = [�t,gt]
(8.2)

where ||.|| is the Euclidean distance. �t,i = 0.5–, – œ {0,≠1,+1} tells the agent if it has
to remain still, move backward or forward by 0.5mm in the ith spatial dimension, while
gt œ {0,1} represents the gripper state (open/close).

The feasibility of using UnityFlexML to learn a surgical task is evaluated using two
possible strategies: a standard DRL approach and GAIL.

8.3.3 DRL setting

We use a consolidated DRL algorithm called PPO (described in Sec. 3.1.3) provided by
Unity3D ML-Agents plugin [357]. The architecture of the actor-critic networks of the PPO
agent used is shown in Fig. 8.4.
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For the training phase, we design a reward function which changes depending on the
current gripper state:

r(st) =

Y
]

[
||pt ≠q||úk ≠0.5, if gt = 0

||pt ≠pT ||úk, if gt = 1
(8.3)

where k is a normalization factor which depends on the volume in which PSM can move.
When the gripper is open, the reward encourages the PSM to move towards the tumor.
On the other hand, when the EE has grasped the tissue, it is pushed towards the target
position. During the training phase, rewards are accumulated at each episode, which ends
after 2500 steps. As this approach is a pure DRL method, it is entirely trained in simulation.
Henceforth, we refer to this setting as "PPO".

Fig. 8.4 Network architecture of GAIL and PPO. PPO consists of a policy (actor) and Value
network. The policy network acts as Generator for GAIL. Generated trajectories and expert
trajectories are passed to the Discriminator. Discriminator learns a probability function
which classifies the generator trajectory as expert or non-expert. The network layer details
are depicted inside each box in the format (hidden units, activation) respectively.

8.3.4 GAIL setting

The second approach considered in this study is based on the learning paradigm of GAIL,
which uses a policy generator that builds on PPO. The architecture of the network used for
this approach is illustrated in Fig. 8.4. The loss function employed in this setting is a linear
combination of DRL and GAIL losses, with –LDRL + —LGAIL representing the weighting
factors for the two loss functions. Our initial investigation into hyper-parameter tuning
revealed that the best performance was achieved with – = 0.2 and — = 0.8, as other values
resulted in slower convergence.
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Training a GAIL agent requires the collection of trajectory demonstrations. In this study,
task demonstrations were obtained on the real dVRK and transferred to the UnityFlexML
framework. The acquired trajectories were repetitive fat lifting tasks performed by an expert
user. As the expert user was aware of the final objective of exposing the tumor, the grasp
position was near the tumor for all the demonstrations. Additionally, the expert user was
instructed to vary the trajectories by starting each demonstration from a di�erent initial
position above the fat surface.

Acquisition of task demonstrations from the real environment leverages the communication
pipeline provided by UnityFlexML (Fig. 8.5). Registration between the simulated and real
environment is guaranteed following the same registration process described in [52]. The
joint values are sent to UnityFlexML through UDP sockets and the desired configuration is
reached with direct kinematics. Each recorded demonstration consists of the set of kinematic
observations that define the state space (Sec. 8.3.2) and the corresponding actions at each
timestep. An important aspect of this implementation is the challenge associated when we
reset each episode. In the simulation, as soon as the target position is reached, the grasp
is released and the episode resets. The position of the EE is then immediately teleported
to the next initial point. Such an instantaneous reset strategy is di�cult to model in the
real robotic system. Hence during the recording of expert demonstration, a delay of some
timesteps has been added between the moment when the grasp is released and the beginning
of the next episode, to allow repositioning. We make use of 35 continuous episodes recordings.
Although our simulation framework supports demonstration recordings using a keyboard or a
joystick, the established communication pipeline between dVRK and UnityFlexML is crucial
since it helps to acquire demonstrations directly with the real robotic system, thus without
deviating from the surgical workflow.

The acquisition of task demonstrations from the real environment is facilitated by the
communication pipeline provided by UnityFlexML (as depicted in Fig. 8.5). To ensure
registration between the simulated and real environment, the same registration process as
described in [52] is followed. The joint values are sent to UnityFlexML via UDP sockets and
the desired configuration is achieved using direct kinematics. Each recorded demonstration
comprises the set of kinematic observations that define the state space (as discussed in
Sec. 8.3.2) and the corresponding actions taken at each timestep.

An important challenge in this implementation is associated with resetting each episode. In
the simulation, the reset strategy involves an immediate release of the grasp and teleportation
of the EE to the next initial point once the target position is reached, e�ectively resetting
the episode. However, replicating this strategy in the real robotic system is challenging. To
address this, a delay of several timesteps has been added during the recording of expert
demonstrations between the moment the grasp is released and the start of the next episode,
allowing for necessary repositioning. We have recorded 35 continuous episodes during
expert demonstrations using the established communication pipeline between the dVRK and
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UnityFlexML. Although our simulation framework supports demonstration recordings using a
keyboard or a joystick, acquiring demonstrations directly with the real robotic system via the
established communication pipeline is essential as it helps to obtain demonstrations without
deviating from the surgical workflow.

Fig. 8.5 The proposed methodology of LfD for the tissue retraction surgical gesture. (a)
Expert demonstrations are performed and recorded using the dVRK console (b) Robotic
agent is trained within a simulated environment. (c) The learnt policy is translated to the
real robotic system.

8.3.5 Evaluation metrics

Evaluation metrics have been defined to assess the suitability of the presented framework
for learning surgical tasks. Specifically, the performance of the considered methods to learn
the TR task is tested when training within UnityFlexML. The high level of realism of the
simulated environment created within UnityFlexML not only allows for training the methods
with a sim-to-real approach but also provides a platform for testing the presented methods
in realistic settings. As a consequence, the learnt behavior is tested both in a simulated
environment, provided by UnityFlexML, and in the real one, in a sim-to-real fashion. To
evaluate the performance of the algorithms, two criteria are considered: sample e�ciency
and optimality of the accomplished task.

Sample e�ciency is defined as the amount of experience an algorithm needs to learn a
behavior by interacting with the environment. It is estimated as the number of time steps
required by each algorithm to reach high reward values. On the other hand, optimality of
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the learnt behavior represents the ability of each method to make the tumor visible upon
task completion, and is assessed using a TE metrics. To compute TE, the image captured by
an endoscope positioned in front of the kidney is considered for both the simulated and real
setup. A circular region of interest around the tumor is selected, and the visible portion of
the tumor is extracted by applying a mask with HSV bounds matching tumor color (Fig. 8.9).
The TE is then computed as the percentage of tumor pixels that are visible within the region
of interest, normalized in the range [0, 1].

8.4 Autonomous tissue retraction in simulation

Fig. 8.6 Sequence of action frames for task completion in simulation: (a) approach, (b) grasp,
(c) retract, (d) expose. Perspective of the simulated camera is overlaid on the bottom left of
each simulator frame.

The performance of the two presented methods in achieving the TR task is evaluated
in simulation after training within UnityFlexML (Fig. 8.6). The evaluation experiment
involves the trained agents performing the TR task starting from 49 di�erent positions. These
positions are uniformly sampled on a 7x7 regular grid above the portion of the fat tissue.
This experiment is designed to assess the robustness of the learned behavior of the agents
to di�erent starting positions p0 of the EE. The TE metrics is used to evaluate the agents’
performance each time the EE reaches pt.

8.4.1 Results and Discussion

The results and discussion of the experiment are presented in this section. The learning curves
of the two considered learning configurations, i.e., GAIL and PPO, are shown in Fig. 8.7.
Both methods aim to maximize the cumulative reward, but they exhibit di�erent learning
patterns. The learning curve of GAIL is smooth and monotonous, gradually increasing
towards high-reward values. In contrast, the curve of PPO shows a modular reward trend,
requiring 2.5 million steps to learn the approach behavior and interaction with the fat, and
another 1 million steps to learn the retract behavior.

It is observed that GAIL is more sample e�cient than PPO since it requires fewer steps
to learn the task. This experiment confirms that incorporating human demonstrations can
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make the learning process more e�cient than the baseline PPO, highlighting the benefits of
incorporating human knowledge into the learning process.

Fig. 8.7 The obtained learning curve for GAIL and PPO. Cumulative reward is normalized
in the range [≠1,0]. The shaded area spans the range of values obtained when training the
agent starting from three di�erent initialization seeds.

The plot in Fig. 8.8 shows the results of the simulation experiment, where the TE from
the simulated camera was analyzed depending on the starting position of the PSM arm above
and outside the boundary of the fat tissue. The agents trained with both PPO and GAIL
were able to grasp the tissue and partially expose the tumor when starting from the distal
part of the tissue, which is the part farthest from the fixed region. However, it was observed
that PPO achieved little or no tumor exposure when the starting EE position was close to
the fat attachment (Fig. 8.8a), even though the agent has learned how to perform the task
correctly (Fig. 8.7). It seems that, when p0 is initialized close to the fixed fat region, the
agent is not able to move towards a reasonable grasping point, thus causing the tumor not to
be exposed. This suggests that the reward function used in the experiment was suboptimal
for the task, as it encouraged the agent to approach the known position of the tumor, but
abruptly changed as soon as the EE was in contact with the tissue, regardless of its current
grasping position. Therefore, the agent might end up grasping at a suboptimal location,
which is not ideal for exposing the tumor. Manually tuning the reward function to encode
complex task objectives such as tumor exposure might be challenging, especially relying on
kinematic data alone. However, including a TE-dependent term into the reward function
could potentially improve the learned behavior towards the task objective. Preliminary
evaluation with a reward function including a TE-dependent term did not show significant
improvements in the results, possibly due to the sparse reward scenario where TE is always
zero before grasping. Future works will investigate this further.
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Fig. 8.8 Simulation experiments: TE from the camera at di�erent initial positions, of the
PSM for (a) PPO, (b) GAIL. The color of each subregion is related to the percentage of
visible tumor area when p0 belongs to that subregion. The fat boundary from the top view
is depicted in red dashed lines whereas the fat attachment is shown in the solid red line

In contrast, the incorporation of human demonstrations using GAIL results in a learnt
behavior that enables the successful exposure of the tumor regardless of the initial position of
the PSM arm (Fig. 8.8b). It is important to note that the strategy employed by the human
demonstrator involves moving and grasping towards points in close proximity to the tumor,
with the objective of maximizing exposure. The primary di�erence between the behavior
learnt by PPO and GAIL lies in the selection of the grasping point at di�erent starting
positions. Specifically, when the starting position is above the attached area, GAIL grasps
closer to the tumor, resulting in a higher TE, as it learns to imitate the human operator who
moves towards the most appropriate points to maximize exposure.

8.5 Sim-to-real autonomous tissue retraction

Fig. 8.9 Sequence of action frames for task completion in real world setup, with the circular
mask used to compute TE metrics. (a) approach (TE=0%), (b) grasp (TE=0%), (c) retract
(TE=≥15%), (d) tumor exposure (TE=100%). The real camera is placed in front of the
phantom, in the same position as in the simulation (which does not correspond to the
viewpoint of these pictures).
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The behavior learnt with the considered approaches using UnityFlexML is transferred
to the real robotic platform. Two main factors a�ect the ability to achieve this transfer.
Firstly, the level of realism of the simulated environment used for training plays a critical
role, as the agent can only learn the correct task if the reality gap is minimized. Secondly,
the accuracy of alignment between the simulated and real environments plays a crucial role,
as all movements of the dVRK arm in the real system are controlled via the simulated robot,
including the grasping action.

8.5.1 Results and Discussion

Fig. 8.10 Real grasp experiments: TE from the camera when starting from di�erent initial
positions of the EE, using (a) PPO (b) GAIL. The portion of fat tissue which is not considered
for the experiments is colored in gray.

We have successfully replicated the learned behavior from the simulated environment
to the real robotic platform without any inconsistencies. The end-e�ector of the dVRK
arm was able to contact the fat tissue and reach the target point from all di�erent initial
positions. The TE percentage starting from various points above the real fat tissue is depicted
in Fig. 8.10. To avoid tissue tearing that may occur during grasping too close to the attached
area, we did not attempt starting positions near the attachment when testing the behavior
learned with PPO, which is represented as the unattempted gray region in Fig. 8.10a.

When considering the average TE over all trials from di�erent starting points, PPO
achieves an average TE of 0.38 while GAIL obtains an average TE of 0.90. Comparing the
results obtained for GAIL and PPO, it is evident that GAIL is able to reach higher overall
exposure and is more robust to changes in the initial PSM position. GAIL is also capable of
achieving tumor exposure from starting points that were unattempted for PPO, indicating a
more optimal learned trajectory and superior overall performance. This observation suggests
that the initial PSM position significantly a�ects the performance of PPO, while GAIL is
capable of achieving optimal performance regardless of the starting position, consistent with
the results obtained in the simulated experiments. In summary, our results demonstrate that
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using demonstrations is a robust and superior approach compared to PPO in both simulated
and real-world experiments.

8.6 Conclusion

In this chapter, we have developed and implemented UnityFlexML, a modular framework that
enables simulation of deformable objects. Through UnityFlexML, standard DRL approaches
can be trained in simulation and the learnt behavior can be translated to the real robotic
system (specifically, dVRK). Moreover, expert users can execute tasks on the real system
and these executions can be used for DRL training in simulation.

Furthermore, we have presented an LfD methodology based on GAIL for automating TR.
This approach can learn generalized, human-like trajectories in a sample-e�cient manner by
utilizing a well-established DRL architecture. Our experiments in simulation and the real
environment demonstrate that while both baseline DRL methods and GAIL can complete the
task, the latter can reduce the required number of steps and produce near-human trajectories,
thus improving the learning process. The policies learnt by both methods exhibit robust
performance when deployed on the dVRK.

However, there are some limitations to this study. The underlying assumption is based
on knowing the target positional coordinates (such as tumor position) pre-operatively. In
reality, the TR surgical gesture may need to be carried out as an exploratory subtask
without a known target. Hence, our future work will focus on utilizing visual information
to estimate the kinematic coordinates of various image features, as described in [58, 358].
Furthermore, further experimentation is needed to assess the impact of the quality and
number of demonstrations required to learn optimal behavior for di�erent surgical gestures,
involving experts with varying levels of expertise. Additionally, it is important to consider
the safety issues that may arise due to free exploration of the state space, which may result
in dangerous movements. Therefore, in future work, we plan to incorporate safety constraints
through a Safe-RL technique [359].
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Contributions of this chapter

1. Introduction of UnityFlexML, an open-source modular framework that provides
an interface among a realistic simulation environment supporting deformable
objects, the surgical robotic system and learning-based methods. UnityFlexML
is available at https://gitlab.com/altairLab/unityflexml.

2. The proposed framework has the required features to allow learning a surgical
task (i.e., tissue retraction) both using a standard DRL method and a strategy
combining DRL with LfD.

3. The learnt policy translates directly to the surgical robotic system thanks to the
da Vinci Research Kit (dVRK), without further training.
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2020.
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Chapter 9

Safety in tissue manipulation using
formal verification

9.1 Introduction

In Chapter 8, a comprehensive examination of recent advancements in surgical subtask
automation was undertaken, and it was noted that a growing interest has emerged in utilizing
data-driven methodologies, such as DRL [51, 347]. Despite their promising results, the
training of DRL methods is premised on the e�cient exploration of state space and does
not explicitly account for the risk associated with actions [265]. DRL algorithms find an
optimal policy by maximizing long-term rewards, but this does not address the potential for
infrequent negative rewards, which may correspond to high-risk actions.

To address this challenge, DRL models are typically trained in virtual environments. This
approach is particularly useful for robot-assisted MIS where strict ethical, legal, and economic
constraints require the validation of automation methods in a simulated environment before
implementation in real-world scenarios. Recent works have proposed surgical simulation
environments suitable for training DRL algorithms [51, 52]. Nevertheless, concerns regarding
the safety of DRL methods have limited their deployment in a clinical setting.

The guarantee of a provable behavior using DRL remains an open problem, and its
resolution is crucial for building trustworthy solutions for universal applications [360]. While
DRL methods have shown promising results in surgical subtask automation, the lack of
consideration of risk and provable behavior remains a challenge that must be addressed to
ensure the safe and reliable deployment of these methods in a clinical setting.

The concept of safety, and its counterpart, risk, is closely tied to the inherent uncertainty
and stochasticity of the environment. Di�erent perspectives have resulted in various definitions
of safety, as reviewed in [361]. In the context of this chapter, we define safety as a condition
that is unlikely to result in harm or injury. Humans must classify environmental states as
safe and unsafe, and agents are deemed safe if they never encounter unsafe states.
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To address safety in DRL, a recent research direction involves incorporating auxiliary
objectives into the training process to enhance safety. Multi-objective RL seeks to optimize
an additional cost function that measures safety [362], for example, by counting the number
of collisions. However, the challenge of explicitly learning behavior over multiple objectives
can result in either an average policy [363] or scalability issues [362]. Similarly, Constrained
RL [364] introduces safety constraints during the training phase by limiting the accumulation
of the cost function. However, these approaches lead to a significant trade-o� in functional
performance as the constraints severely restrict the exploration process, a�ecting the learned
behavior.

A more intuitive approach to address safety in well-defined tasks is through reward
shaping [265]. The idea is to use domain knowledge to design proxy reward functions that
lead the trained policy to perform desired safe behaviors, which can be naturally incorporated
into well-defined training procedures such as the one considered in our work. In conclusion,
incorporating safety into DRL remains a challenge, but reward shaping o�ers a promising
approach for well-defined tasks.

We described in Chapter 6 that the utilization of DNN as the underlying mechanism
for DRL decision making can result in unforeseeable behavior if the network encounters
input data that falls outside of the training regime. Thus, ensuring that the DNN never
produces decisions that lead to safety violations is crucial. Such validation requires estimating
violations without executing the network, i.e. without performing the actions in a DRL setup.
Running the network over many experiments and counting the unsafe configurations can be
time-consuming and can only give an empirical evaluation without any guarantee of safety
[360].

One of the earliest approaches to evaluate the robust nature of DNN was ReluPlex [305],
which aimed to find the largest neighborhood in the feature space that guaranteed that no
point within that area would change the classifier’s decision (i.e., small perturbations in the
input does not change the network decision). However, such verification is NP-complete and
does not scale well in large input spaces [365]. Another approach, formal analysis using interval
algebra [366], has been adopted to verify handcrafted safety properties [307]. FastLin [367]
utilized the linear approximation of ReLU units to o�er an e�cient and scalable algorithm,
while Neurify [368] relied on symbolic interval analysis to provide a strict estimation of output
bounds within a subset of the input space. However, these methods cannot be easily adapted
to DRL scenarios, where a network encodes a sequential decision-making problem and lacks
metrics to evaluate safety.

For these reasons, we have adapted standard approaches and formulated a FV tool that
enables us to mathematically guarantee the safety of the learned behaviors with respect to
pre-defined safety rules, referred to as properties. Furthermore, we have defined a metrics,
called the violation rate, which allows for the evaluation of how often a trained DRL model
(under small adversarial perturbations) will violate these properties.
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In summary, we present a Safe-DRL framework for the automation of the TR surgical
subtask. The safety issue in TR is defined as a set of properties that outline the safe oper-
ating parameters, ensuring that the PSM does not collide with surrounding anatomy. To
assess safety, we employ a FV analysis that quantifies the likelihood of unsafe configura-
tions relative to the established safety rules. The experimental scene consists of a virtual
environment (developed in Chapter 8) for a robot-assisted MIS procedure that extensively
requires manipulation and TR of fat tissue that covers the kidney to expose the region of
interest (see Fig. 9.1a). One of the challenges in automating TR is to accommodate the
variable and dynamic properties of the deformable tissue while preserving the surrounding
structures [358]. Our contribution addresses this challenge by introducing a framework for
safely automating surgical subtasks using DRL methods and by providing a tool for FV to
evaluate the compliance with safety properties.

9.2 Safe-DRL for TR

Our aim in this study is to successfully perform the task of TR, which involves exposing
the tumor while avoiding interaction with the surrounding organs and tissues. In order to
do so, we consider a surgical scenario that involves the use of a dVSS robotic PSM and
several organs, including a kidney covered by a layer of perirenal fat tissue (as illustrated in
Fig. 9.1a). We utilize the UnityFlexML framework to simulate the behavior of the deformable
fat tissue, as described in Chapter 8.

As depicted in Fig. 9.1b, UnityFlexML allows for the integration of mesh colliders in our
3D organ models, enabling automatic detection of collisions between the PSM and anatomical
organs. This, in turn, enables us to shape the rewards based on collision information.
Specifically, a collision is defined as an atomic event that occurs when the bounds of two or
more meshes intersect with each other. By appropriately shaping the colliders for the various
components in our training scenario, we are able to detect and avoid undesired collisions.

9.2.1 Observation and Action Space

The DRL algorithm utilized in this work is embodied in the PSM EE. This is in accordance
with the approach described in Chapter 8, where it is assumed that anatomical information,
such as the location of organs and tumors, is obtained from pre-operative data. The task of
TR involves moving the PSM from an initial position p0 to the desired position ptumour close
to the tumor, and lifting the fat tissue to reach the target location ptarget, thereby exposing
the tumor. It is important to note that during training, the initial position of the PSM p0
is randomly determined at the start of each episode. The state and action spaces of the
environment are defined as follows:
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Fig. 9.1 Virtual scene used to simulate the TR task. (a) The yellow tissue represents the
renal adipose tissue that needs to be retracted to expose the tumor (green sphere) embedded
in the underlying kidney (not visible in the picture). (b) Explanatory overview of the safe
EE workspace (light blue cylinder) and the mesh colliders (green lines) for the spinal column.

St = [gt,pt,pi,Îpt ≠piÎ]

At = [�t,j ]
(9.1)

where gt œ {0,1} is the gripper state (open or close), pt is the position of the EE, pi is either
ptumor in the first part of the trajectory (i.e., gt = 0) or ptarget in the lifting part (i.e., gt =
1), and Î.Î is the Euclidean distance between the EE current position and the current target.
In the action space, �t,j = 0.5– (with – œ {0,≠1,+1} controls the EE to move backward or
forward by 0.5mm in the jth spacial dimension, or remain still.

9.2.2 Reward Shaping

The state of the gripper, gt, plays a crucial role in determining the goal in the agent’s
observation space. As a result, the reward function is designed based on the value of gt and
the proximity to the goal. The mesh collision system of UnityFlexML is utilized to impose
a penalty term, c, to the reward when the EE moves outside of the designated workspace
(depicted as a light blue cylinder in Fig. 9.1b) or the PSM arm comes into contact with any
of the organs.

r(st) =

Y
]

[
≠(Îpt ≠ptumourÎ ·k ≠0.5)≠ c, if gt = 0

≠Îpt ≠ptargetÎ ·k ≠ c, if gt = 1
(9.2)

where k is a normalization factor, and c is a constant penalty set to 1 in case of collisions.
Note that the scalar quantity of -0.5 is added to restrict the reward in the range [-1.0, -0.5]
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Fig. 9.2 Explanatory output analysis of (left) decision-making problem with two outputs and
one subdivision, and (right) output analysis with three outputs and multiple subdivisions

before grasping and [-0.5,0] after grasping. The reward function encourages the PSM to
move towards the tumor when the gripper is open and towards the target position when the
gripper is closed.

9.2.3 Training Algorithm

To evaluate the performance of various DRL algorithms, we interfaced the UnityFlexML
environment with an external Python-based DRL software module. Among the algorithms
considered, including Twin Delayed DDPG (TD3) [369], Soft Actor-Critic (SAC) [370],
PPO [371] and others discussed in Chapter 3, we chose PPO as it demonstrated the best
overall returns in terms of hyperparameter tuning and training time. Our main objective
was not to obtain the best performance, but rather to demonstrate the impact of safety
constraints in DRL training. In particular, we used the ‘-clipped implementation with ‘ = 0.2
as recommended in [371].

9.2.4 Formal Analysis

Our framework for FV aims to determine the compliance of a set of properties by either
confirming satisfaction or providing instances that contradict the properties. Our approach
involves formalizing the safety properties using the methodology presented by Liu et al. [360].
This methodology expresses the relationship between inputs and outputs as follows:

� : x0 œ [a0, b0]· ...·xn œ [an, bn] ∆ yj œ [c,d] (9.3)

where xk œ X (i.e., input space), with k œ [0,n], where n denotes the size of input states (i.e.
dimension of X) and yj is a generic output of the network. Here, ak, bk, c,d œ R represents
the input and output bounds, respectively.

The property formulation is intended to confirm if the network’s output falls within a
specified range. However, in the context of DRL, the network represents a decision-making
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issue where each output node signifies the value or likelihood of a specific action. The agent
opts for the action with the highest probability or value with some degree of randomness.
Hence, we reformulate Proposition. 9.3 to examine if one of the output values is lower than
the others as follows:

� : x0 œ [a0, b0]· ...·xn œ [an, bn] ∆ yj > yi (9.4)

To verify the property, we rely on the Moore’s comparison rules for intervals [366, 372].
In particular, assuming yi = [a,b] (a,b œ {ak},{bk}) and yj = [c,d], we obtain the proposition:

b < c ∆ yi < yj (9.5)

To obtain an estimation of the output given an input interval, we utilize a layer-by-layer
propagation approach 1. However, even if the estimated bounds perfectly match the real
maximum and minimum values that the output nodes could assume, as shown in Fig. 9.2
(left), we cannot formally guarantee that the property is respected. For example, in the figure,
y1 is lower than y0 throughout the entire input domain, but due to the estimated bound
limits of y0 = [a,b] and y1 = [c,d], we cannot formally determine whether the decision-making
property is proved or denied using Proposition 9.5, because d⌅ a. To summarize, FV based on
Proposition 9.5 only considers the estimated bound limits to verify a property and therefore,
typically fails at directly verifying properties on large input domains.

To overcome this challenge, we propose dividing the input domain of the property into a
set of sub-intervals (subarea) and analyzing them independently. Fig. 9.2 (right) illustrates
this process, where the sub-intervals allow for a better estimation of the output function’s
shapes and bounds, making it easier to apply the Moore rules for the interval comparison. It
is possible for a situation similar to Fig. 9.2 (left) to occur in a certain subarea. To address
this, we can recursively iterate the process until d < a (property verified) or c > b (property
violated) for that particular subarea. In the right Fig. 9.2, the property y1 < y0 is proven for
the entire domain, while the property y1 < y2 is clearly violated in the second half of the
input domain.

This formulation represents one of the first attempts to apply formal analysis techniques
to a RL problem.

9.2.5 Violation Rate

In this section, we introduce a novel metrics, derived from our FV approach, to assess the
safety of a trained model with regards to a specified set of safety properties. Conventional
verification algorithms have the drawback of only providing a binary outcome, either "yes" if
the property holds across the input domain or "no" if the property is violated in at least one

1Project implementation: https://github.com/Ameyapores/SafeRLSurgery
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point. Our proposal involves computing the percentage of the input domain that violates the
desired properties to evaluate the model’s safety. The approach entails keeping track of the
sub-interval size at each iteration of our method that violates the properties. Ultimately, we
obtain a violation rate which is the size of the violating sub-intervals normalized by the initial
size of the input domain. The violation rate serves as an upper bound on the probability of
violating the safety properties.

9.3 Safety Evaluation

The task of TR is split into two stages: approaching the tumor and retracting the fat tissue
once it has been grasped. Our aim is to demonstrate that the overall safety of the surgical
procedure can be increased by utilizing safety criteria, such as the collision penalty. To
achieve this, we have established safe workspaces for both subtasks, where there is no collision
between the PSM and the surrounding tissue within the workspace. Fig. 9.1b depicts the
safe workspace for the approach phase. This reflects the surgical scenario in which we avoid
collisions with hard anatomical structures, such as the ribs and spinal column, that can result
in serious consequences, whilst ignoring the collision with soft tissues near the area of interest.

For each workspace, we have defined safety properties, including an upper and lower
bound, so that a configuration of the PSM that satisfies the property is considered safe.
In the approach phase, we have established properties for each direction in the Cartesian
space, with �1R and �1L representing the left and right constraints in the x-direction, and
�2R, �3R, and �3L representing the constraints in the y and z directions, respectively. It
is important to note that, for the approach phase, we do not impose an upper limit on the
y-axis �2L as there are no obstacles in that direction. Similar properties, �4R ≠�6L, have
been defined for the retract phase. A detailed description of all proposed properties can be
found in Table 9.2.

We have trained the PPO algorithm with these safety properties, referred to as Safe-
PPO, by penalizing the agent if it violates these properties, i.e. by moving outside the safe
workspace, as described in Sec. 9.2.2. Our experiments include a comparison between the
performance of Safe-PPO in achieving high rewards and that of PPO that does not take into
account safety constraints, referred to as Unsafe-PPO. We also report the violation rate of
all properties for both Safe-PPO and Unsafe-PPO using formal analysis.

Additionally, to determine the impact of each considered property on the overall behavior,
we have conducted an ablation study, in which we have trained PPO using a subset of
properties and calculated the violation rate. Table 9.1 provides details of the selected policies
that have been trained considering various properties.

Subsequently, we assess the feasibility of determining beforehand the input states that may
result in unsafe configurations using the trained Safe-PPO model. Our FV tool partitions
the input domain into smaller intervals and then iteratively refines the division using various
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Table 9.1 Considered policies used in the ablation study.

Brains Properties used for training

Safe-PPO All properties (�1R ≠�6L)
Unsafe-PPO No properties
Primitive Safe-PPO Safe-PPO in early stages (after 400 epochs) of the training

(�1R ≠�6L))
Policy4 First set of properties (�1R,�1L,�2R)
Policy5 Second block of properties (�3R,�3L,�4R)
Policy6 Last set of properties (�4L,�5R,�5L,�6R,�6L)

heuristics until it can prove or disprove the violation criteria for each interval, as detailed
in Sec. 9.2.4. This allows us to identify all state values of the considered inputs that could
result in violations for the DRL policy. To determine whether a standard execution using
Safe-PPO encounters states that cause violations, we analyze the inputs over 1000 episodes
and visualize the state distribution.

Furthermore, we evaluate the model’s capability in exposing the tumor using the TE
metric. TE calculates the normalized percentage of the tumor surface that is visible from
a camera placed in front of the area of interest. The safe workspace is divided into a 5x5
grid aligned with the x-z plane, as shown in Figure 9.1b. The EE is positioned at each point
in the grid and the number of pixels of the tumor is recorded through the camera. This
assessment enables us to examine the e�ect of the safety constraints on tumor exposure as
the initial position of the EE is varied.

9.3.1 Results and Discussion

In the training phase, both Safe-PPO and Unsafe-PPO policies completed the task in
approximately 800 epochs, with each epoch consisting of 2000 time steps. As depicted in
Fig. 9.3, the average reward achieved as a function of training steps shows that both policies
learned the first phase of approaching the lesion quickly. However, Safe-PPO incurred a
collision penalty at the start, which Unsafe-PPO did not. As a result, Safe-PPO remained
lower in reward compared to Unsafe-PPO until 400 epochs. After 400 epochs, Safe-PPO
correctly learned the trajectories to approach the lesion while avoiding unsafe configurations,
leading to a higher reward. The rewards showed a significant increase at 800 epochs, which
can be attributed to the learning of safe trajectories for the retract phase.
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Fig. 9.3 The obtained learning curves for Safe-PPO and Unsafe PPO. The curves are averaged
over four di�erent seeds and smoothed over 25 epochs.

Fig. 9.4 Top-view of safe EE workspace showing the TE from di�erent starting points (a)
Unsafe-PPO (b) Safe-PPO. The marked circle shows the safe workspace projection, while
the dashed pink line represents the attachment region. See text for more details.
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The results of the violation rate for the ablation studies using FV are presented in
Table 9.2. The policies that were trained are listed in Table 9.1. The mean global violation
rate for Safe-PPO is 3.07%, while the mean violation rate for Unsafe-PPO is 27%. This
demonstrates that incorporating safety criteria through the use of a collision penalty can
significantly increase the safety of the procedure.

However, reporting the average violation rate alone does not provide a clear understanding
of the distribution of violations, as some properties may be more critical than others in
terms of the damage that can be caused if violated. For example, a significant proportion
of the violations for Safe-PPO correspond to property �1L. This highlights the di�culty in
satisfying this property due to the presence of a complex obstacle, such as the spinal column,
in that direction.

During the early stages of training, Primitive Safe-PPO incurs several collision penalties,
which initially reduces the overall safety of the trajectory (refer to the third column in
Table 9.2). As a result, it has a higher violation rate for several properties. Properties �2L

and �6R have a 0% violation rate for all policies, demonstrating that all policies remain
within the safety limits for these properties.

Policies 4, 5, and 6 consider a subset of properties during their training and have an average
global violation rate that falls between that of Safe-PPO and Unsafe-PPO. These policies
show 0% violations for the properties considered in their training, but have a significantly
higher violation rate for other properties. This could be due to compensatory behavior, in
which optimizing for one set of properties results in unsafe configurations for other properties.
Further investigation is necessary to fully understand the high violation rates for certain
properties.

In Safe-PPO, the states that can result in violation are represented by using a FV tool as
shown in Fig. 9.5 (left), whereas the states encountered during standard execution are shown
in Fig. 9.5 (right). The observation space consists of a 7-dimensional continuous input and a
discrete input for grasping (as described in Sec. 9.2.1). In order to visualize the states in 2
dimensions, the values for the x and z motion of the EE are fixed by sampling from a normal
distribution for each episode, and the FV tool is applied to the entire input domain of the
EE movement in the y-direction and the target distance.

Fig. 9.5 (right) indicates a linear relationship between the EE movement in the y-direction
and the target distance, while Fig. 9.5 (left) shows that the majority of state violations occur
for lower values of EE Y in the range [0.0,0.2] and higher values of target distance in the
range [0.5,0.8]. These violations are non-intuitive as they may be caused by violations in
other state inputs, which are normally sampled. The figure demonstrates that Safe-PPO
rarely encounters states that result in a violation. Even if such adversarial perturbations
occur infrequently in a real-world robotic system, they can lead to fatal consequences. By
using the proposed FV tool, these hazardous states can be identified in advance by the policy.
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Fig. 9.5 (left) State values that cause a violation for Safe-PPO derived using the FV tool and
(right) State distribution in a standard execution of Safe-PPO (1000 episodes). We describe
the relationship between two-state inputs, i.e. normalized EE movement in the y-direction
and target distance, to simplify visualization and use static values for other inputs.

It should be noted that incorporating safety constraints into the training loop does not
increase computational time. The FV is an o�ine process carried out after training and
does not impact the learned behavior. The TE matrix obtained for both Unsafe-PPO and
Safe-PPO is shown in Fig. 9.4. The two methods show similar TE at all considered grid
locations, with average TE being almost identical for both methods at 0.42 for Unsafe-PPO
and 0.41 for Safe-PPO. This demonstrates that adding safety conditions does not a�ect
overall task performance, providing a safety guarantee with optimal performance in terms of
TE.

In the proximal region of the fat tissue attachment, the TE is low, corresponding to the
upper area of the plots in Fig. 9.4. In this region, the EE grasps the fat tissue near the
attachment and reaches the target position without any TE. This behavior is likely due to
the fact that the reward function changes dramatically upon grasping the fat and does not
penalize if the grasping point is far from the tumor. However, in the regions distal from
the attachment, the grasping point comes closer to the tumor, thereby exposing the tumor.
Future research will aim to improve this behavior by introducing the TE factor into the
reward function.

9.4 Conclusions

In this study, we aim to mitigate the risks associated with actions taken during the training of
DRL in safety-critical scenarios, such as surgical robotics. We propose the Safe-RL framework,
which enables the incorporation of safety constraints through reward shaping. Additionally,
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we develop a FV tool to assess the extent of safety violations caused by a DRL policy. This
tool allows us to identify states that may result in safety violations prior to model execution.

We demonstrate our approach by automating the task of TR, a common task in MIS, in
a virtual environment. TR poses the risk of surrounding tissue damage if the robotic EE
exceeds the workspace limits. To mitigate this risk, we design a safe workspace and add
safety criteria for violations. Our results demonstrate increased safety and more reliable
trajectories when using the safety protocol compared to traditional DRL methods without
safety considerations.

In future work, we plan to implement the FV controller during model execution to prevent
undesirable actions, and conduct experiments on a real robotic system using the simulation
pipeline established in previous studies [52]. Further research is also needed to extend the
applicability of the learned policies to di�erent surgical scenarios. A key finding from this
study is the importance of prioritizing di�erent properties, as some may be more important
than others. By assigning weights to di�erent properties based on prior knowledge of the
surgical scenario, it may be possible to achieve even safer behavior.

Contributions of this chapter

1. A Safe-RL framework for automating surgical subtasks, where safety problem
can be encoded as a set of properties that provide limits to the safe workspace.

2. A FV tool for evaluating the violation of safety properties. This tool gives the
probability of unsafe configurations over the designed set of properties.

Publications linked to this chapter

1. Ameya Pore, Davide Corsi, Enrico Marchesini, Diego Dall’Alba, Alicia Casals,
Alessandro Farinelli, Paolo Fiorini. "Safe reinforcement learning using formal
verification for TR in autonomous robotic-assisted surgery" In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
3261-3266. IEEE, 2020.



Chapter 10

Conclusions and Future work

The primary objective of this thesis is to explore the potential of automating IP subtasks
using data-driven approaches such as DRL to overcome the limitations of available clinical
approaches.

IP involve the use of snake-like flexible instruments that present several maneuverability
challenges. The continuous contact with the lumen wall and non-intuitive input-output
relationship make the procedure challenging for human operators. In Chapter 2, the challenges
with current IP instruments are discussed, highlighting the need for IP robotic assistance to
reduce the physical and cognitive load on the clinicians.

The existing robotic systems in the market o�er minimum autonomy, with the human
operator controlling the robotic systems for the entire duration of the procedure. The thesis
provides an overview of these commercially available IP robotic systems, highlighting their
shortcomings. The learning curve for control systems is steep, requiring the clinicians to
undergo extensive training processes with di�erent sensorimotor feedback. Hence, the aim
of this thesis is to increase the level of autonomy through subtask automation, placing the
clinicians in a supervisory role.

One of the ways of incorporating automation is through low-level MP, which involves
generating a smooth, collision-free, and optimal path for a robotic system to move from
an initial configuration to a desired final configuration, while considering constraints and
obstacles. An overview of the various MP methods for IP was presented in Chapter 4, including
Node-based, Sampling-based, Optimization-based, and Learning-based methods. Our survey
revealed that the recent advancements in DNN have led to an increased implementation of
learning-based techniques, due to their ability to approximate non-linear functions. DRL has
emerged as a suitable candidate for robotic automation. The hypothesis of this thesis is that
DRL algorithms can reach near human performance on IP subtasks.

The validation of medical robotic systems is critical and safety is one of the most important
considerations. In order to ensure that the robotic system behaves in a safe manner, it is a
common practice to test the system in a simulated environment. There are several methods
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of simulation, including heuristic and continuum mechanical modeling [237], discussed in
Chapter 4. However, it is important to find a balance between simulation accuracy and
computation time. Hence, in this thesis, a real-time realistic characteristic simulation
environment was developed for colonoscopy and robot-assisted MIS carried out using the
dVSS. This simulation environment o�ers a realistic representation of the procedures, ensuring
that the safety of the robotic system can be thoroughly evaluated and validated before it is
used in a clinical setting.

Autonomous colonoscopy navigation has garnered significant attention as a promising
approach for improving the accuracy and safety of endoscopic examinations. However,
conventional techniques utilizing heuristic control policies have limitations in adapting to
challenging scenarios where accurate detection of the colonic lumen becomes a major hindrance
and requires frequent human intervention. In an e�ort to address these challenges, we present
a novel approach for autonomous colonoscopy navigation using DVC. Our method leverages
the ability of DVC to learn a mapping between endoscopic images and the control signal,
thereby allowing for real-time control of the endoscope. To evaluate the e�ectiveness of our
approach, we conducted a comprehensive performance comparison between our DVC control
and motion data collected from 20 expert endoscopists.

The results of our evaluation showed that the performance of DVC control was equivalent
to that of the expert endoscopists in terms of the time of insertion and the distance traveled.
However, the DVC approach showed significant improvements in terms of reducing the
number of colon wall collisions and e�cient lumen tracking, thereby enhancing the safety of
the examination. Additionally, a second novice user study was conducted to demonstrate the
potential benefits of the DVC control in reducing user workload with overall performance
comparable to that of expert endoscopists.

Our proposed DVC method open up avenues for further studies towards increasing the
safety, accuracy and e�ciency of the colonoscopy procedure with improved user workload
compared to traditional heuristic control policies. We propose a constrained RL framework
in which safety constraints could be added to avoid undesirable actions. Furthermore, we
provide a model selection tool that can provide formal guarantees of a safe behavior.

Further, we present a novel approach towards an e�cient and non-invasive solution for
CRC tissue scans. Our proposed solution involves the integration of OCT with a robotic
FE to provide an e�ective method for detecting and scanning abnormal tissue. To achieve
this, we developed an autonomous robotic control strategy that leverages feedback from
a monocular endoscopic camera and OCT imaging. The control strategy is formulated as
an optimization problem, taking into account the orientation, depth and position of the
endoscopic 2D image. This problem is then solved using a QP approach. Our approach
demonstrates the feasibility of targeted OCT scanning and o�ers a potential solution for
reducing the need for tissue biopsies. Additionally, we have validated our approach through
experiments conducted in a synthetic colon environment, in varying lighting conditions.
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The identification of malignant tissue requires a meticulous approach to ensure the safe
removal of the tissue while minimizing any damage to the surrounding areas. The TR gesture
is a critical aspect of the polypectomy procedure, which involves manipulating the tissue
to retract and dissect it. To address the challenges associated with TR, we developed a
simulation environment using the dVSS PSM to simulate the TR gesture. We showed that
a DRL agent trained in simulation can be transferred to the real system with remarkable
success. Additionally, we proposed a LfD methodology for TR automation based on GAIL,
which enables the agent to learn from a small set of real demonstrations and be deployed in
the real environment.

To address the safety concerns associated with DRL training, we introduced the Safe-DRL
framework. This framework enables the addition of safety constraints through reward shaping
and the evaluation of policy violations through FV. This allows us to identify potential states
that may cause safety violations and prevent them from happening. The risks associated
with TR mainly consist of surrounding tissue damage if the robotic end-e�ector exceeds the
workspace limits. To mitigate this risk, we designed a safe workspace and added safety criteria
to prevent workspace violations. Our results showed that incorporating safety protocols
increased the safety of the TR task and improved the reliability of the trajectories performed
using the Safe-DRL framework.

10.1 Future research directions

Reaching higher LoA in navigation requires accurate control, enhanced shape-sensing ca-
pabilities, tissue modeling capability and e�cient MP. In this section, we discuss various
missing capabilities in current IP robotic systems that hinder the development of a LoA 4
navigation system. Specifically, we divide the section in two parts. First we discuss the
upcoming low-level technologies to enhance robotic capabilities. In the first part, we will
examine the emerging low-level technologies that can enhance the capabilities of robots.
Without advancements in these technologies, it would be challenging, if not impossible, to
enhance MP. Second, we describe strategies to mitigate the challenges specific to applying
DRL to real robot learning, since the major contribution of the thesis lies in implementing
DRL based MP for IP subtask automation.

10.1.1 Robotic capabilities

In this subsection, we discuss the various actuation methods employed in continuum robots,
including multi-link systems and soft robotics. We also explore the importance of propriocep-
tion and shape-sensing in achieving precise motion control, and the challenges associated
with accurately modeling the lumen or vessels. Finally, we examine the role of intraoperative
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imaging modalities and Simultaneous Localization And Mapping (SLAM) in lumen/vessel
modeling.

Robotics actuation

Continuum robots employed in IP procedures are developed based on di�erent designs and
technologies. For instance, several continuum instruments use concentric tube mechanisms or
multi-link systems [38, 37]. Soft-robotics systems are an emerging paradigm that can enable
multi-steering capabilities and complex stress-less interventions through narrow passageways
[373]. IP scenarios reflect an environment where the snake-like robot can use the wall as
a support to propel forward. Bio-inspired robots imitate biological systems such as snake
locomotion [374, 375], octopus tentacles [376], elephant trunks [377], and mammalian spine
[378]. Some studies have modeled the contact forces and friction for obstacle-aided dynamics
of the snake [374]. Research on obstacle-aided locomotion can help to develop adaptive motion
to operate in a constrained endoluminal environment. Some early robotic prototypes include
flexible joint mechanism prototype [378], and a tendon-driven snake robot [379]. Furthermore,
some works have proposed MP algorithms for serpentine robots [380, 375]. Elephant trunk
models have been of interest in the field of soft hyper-redundant robots. The standard
structural design includes a trunk backbone with multiple segments [381, 377]. Another
model for bio-inspiration is the Octopus tentacles. A recent study has developed prototypes
using fluid actuators that mimic the octopus tentacle behavior [376]. Pressure-driven eversion
of flexible, thin-walled tubes, called vine robots, has shown increased applications to navigate
confined spaces [382].

Proprioception and Shape-sensing

To achieve precise and reliable motion control of continuum robots, accurate and real-time
shape sensing is needed. However, accurately modeling the robot shape is challenging due to
friction, backlash and the inherent deformable nature of the lumen or vessels and inevitable
collisions with the anatomy [383]. Some emerging techniques for shape reconstruction together
with tip localization rely on Fiber Bragg Gratings (FBG) and EM sensors [383–385]. FBG-
enabled sensing techniques can provide real-time force measurement and shape estimation
without requiring kinematic-based modeling. Multiple miniature EM sensors attached along
the continuum robot have been applied to track and localize the robot. Moreover, computer
vision techniques can be utilized to estimate the pose of the robot [386].

Lumen/vessel modeling

Intraoperative imaging modalities such as ultrasound and optical computed tomography can
support direct observation and visualization [387, 316]. For computer-assisted navigation,
SLAM has been successfully demonstrated in inferring dense and detailed depth maps and
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lumen reconstruction [76]. Depth prediction models are developed recently to estimate lumen
features [388].

10.1.2 Outstanding challenges in DRL and strategies for its mitigation

Simulation

While we show that learning based methods such as DRL can be used for surgical subtask
automation, one of the major bottleneck in the successful deployment of DRL is the need for
a highly accurate simulated environment that perfectly resembles an open-world environment.
While collecting enough real data on the physical system is slow and expensive, simulation can
run orders of magnitude faster than real-time, and can start many instances simultaneously.
However, it is challenging to generalize the knowledge gained through training in a simulator
to a real situation, called the “sim-to-real" reality gap due to the discrepancies between
reality and virtual environment that occur due to modeling errors [389]. This issue becomes
particularly significant when working with image-based approaches due to the large visual
domain gap between simulated and real images. Various methodologies for bridging this
gap and transferring image-based policies are explored. One such approach is Domain
Randomization (DR), which mitigates the sim-to-real gap by introducing random variations
to visual parameters in the simulation, such as texture and lighting. This allows the trained
policy to learn generalized and task-relevant visual features. While DR approaches have
demonstrated successful translation into reality, they can be challenging to tune and may be
highly specific to certain tasks [390]. Recent studies have attempted to bridge this visual
sim-to-real gap with an image-based DRL pipeline based on pixel-level domain adaptation
using methods such as Cycle-GAN and contrastive unsupervised translation [349].

Currently, in the development of an image-based navigation policy based on DVC (dis-
cussed in Chapter 5), the validation was carried out in a virtually simulated domain. The goal
of our future works would be to deploy the method in a real robotized FE such as STRAS with
realistic clinical scenarios. This would require implementing the above mentioned sim-to-real
techniques.

Sample e�ciency

Some classes of RL algorithms are much more e�cient that others. RL algorithms can be
categorized into model-based versus model-free methods. Model-based algorithms choose
optimal action by leveraging a model of the environment. The agent may learn from the
experience generated using this model instead of collected in the real environment. Thus the
amount of data required for model-based methods is usually much less than their model-free
counterparts. The downside is that these methods require to have access to such a model,
which is often challenging to acquire in practice. For example: tissue deformations are
challenging to model. One future direction would be to train a deformation model of the
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tissue using neural network such as U-Mesh [391]. This model can be further used to train
DRL agents.

In model-based RL, demonstration data can also be aggregated with the agent’s experience
to produce better models. However, in contrast to the model-free setting, for model-based RL
this approach can be quite e�ective, because it would enable the learned model to capture
correct dynamics in important parts of the state space. When combined with a good planning
method, which can also use the demonstrations (e.g., as a proposal distribution), including
demonstrations into the model training dataset can enable a robot to perform complex
behaviors which would be extremely di�cult to discover automatically [392].

The DRL methods used in this thesis are on-policy algorithms that use a sample coming
from the latest policy that is being trained. O�ine training o�ers potential as a large volume
of data can be used to pre-train the robot. In such a setting, samples can be reused multiple
times across back-propagations, hundreds or thousands of times without any over-fitting in
complex visual tasks.

With this thesis, we have shown that subtask automation of IP can greatly reduce the
workload of the clinicians. Learning-based methods are one of the potential candidates to
develop adaptable and task generalizable surgical skills. Despite the promising results already
obtained, the methods proposed in this thesis o�er margin for improvement such as

1. Improved task generalization: One of the key challenges in surgical robotics is the need
to generalize learned policies to new surgical scenarios. There is a need to develop
algorithms that can handle novel scenarios, including novel anatomies, instruments,
and surgical tasks. This requires designing more complex reward functions that capture
the nuances of surgical performance.

2. Real-time safety guarantees: Safety is a critical concern in surgical robotics. It is
essential to develop algorithms that can provide real-time safety guarantees and prevent
dangerous actions. This requires designing algorithms that can learn safe policies while
minimizing negative interactions with the environment.

3. Multi-modal sensing and perception: Robotic systems should be able to sense and
perceive the surgical environment in real-time. There is a need to develop algorithms
that can handle di�erent modalities of sensing, including vision, haptics, and other
forms of sensory information.

4. Adaptive control strategies: The dynamics of surgical procedures are highly variable
and can change quickly. There is a need to develop adaptive control strategies that can
handle these variations and maintain stable control over the robot.

5. Human-robot collaboration: Finally, there is a need to develop algorithms that can
enable e�ective human-robot collaboration in surgical procedures. This requires design-
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ing algorithms that can handle natural language commands, understand the surgeon’s
intent, and adapt to changes in the surgical plan.

These improvement could bring the applicability of autonomous systems closer to real
clinical conditions, thus opening space for new exciting research directions.
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Appendix A

Appendix: Hierarchical Task
Decomposition using DRL for pick
and place task

Robot learning has gained increasing attention in recent years, particularly with the develop-
ment of DRL methods, which have demonstrated breakthroughs in dexterous manipulation
[393], grasping [43], and navigation for locomotion tasks [42]. However, a significant challenge
that hinders the universal adoption of DRL in robotics is the data-hungry training regime,
which requires millions of trial and error attempts to learn goal-directed behaviors, making
it impractical in real robotic hardware [394]. Furthermore, existing DRL methods learn
complex tasks end-to-end, leading to overfitting of training idiosyncrasies and making them
less adaptable to other tasks, which results in poor sample e�ciency [394]. As a result, when
solving problems that are highly similar to a pretrained task, new DRL policies have to be
trained from scratch, which leads to a wastage of computation power.

Compared to end-to-end DRL methods, LfD approaches have been developed to be more
e�cient. These approaches involve training a neural network to replicate the expert’s behavior
from a dataset of reference trajectories. However, to achieve adequate training, a substantial
number of demonstrations and specialized data-acquisition hardware and instrumentation,
such as virtual reality or teleoperation units, are required [53]. LfD’s e�cacy is limited since
it can only perform as well as the reference trajectory, without any additional feedback for
improvement. Moreover, common LfD techniques such as BC are susceptible to compounding
errors in long time horizon tasks [395].

An alternative approach to learning long time horizon tasks is through the use of HRL.
HRL is a RL setting that enables training of multiple agents at varying levels of temporal
abstraction [148]. This approach involves training low-level agents to encode primitive motor
skills, while the higher-level policy selects which low-level agents are to be used to complete a
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task, following an end-to-end training paradigm [149, 150]. Beyret et al.. [151] proposed an
explainable HRL method for a robotic manipulation task that employs HER as a high-level
agent to decide on goals that are given as input to the low-level policy. Although hierarchical
policies are learned end-to-end in these works, they often observe instability, leading to
sample ine�ciency, wherein the lower level policy changes under a non-stationary high-level
policy.

In order to address the issue of unstable policy update in hierarchical policies, researchers
have explored multi-subtask approaches that use modularization of neural networks to encode
certain attributes of a complex control problem [396, 397]. These attributes are trained
separately and combined in various ways to produce versatile behaviors. For instance, Yang
et al. proposed a method that employs pre-trained motor skills parameterized by a DNN
and fused them to generate various locomotion behaviors [396]. Similarly, Devine et al..
studied modular neural network policies for learning transferable skills across multiple tasks
and robots [397]. Xu et al.. used parallel attribute networks to combine parallel skills
simultaneously [145], while Pore et al.. trained individual subtask networks using BC and
then combined them using a high-level DRL network [398]. One of the benefits of using
subtask networks is that they are easier and faster to train compared to learning an overall
control policy [145]. Additionally, modular behaviors are easier to interpret and can be
adapted to similar tasks. However, designing subtask networks requires a priori knowledge of
the task, which can be less demanding than expert demonstrations in LfD [396].

Therefore, we hypothesize that a complex control task can be simplified into high-level
subtasks using the human operator’s domain knowledge. These subtasks can then be learned
using DRL techniques, allowing for a learned policy that considers the robot’s environment
and mechanical constraints rather than human bias from demonstrations. Specifically, we
focus on a pick-and-place task and manually decompose it into three subtasks: approaching
the object, grasping the object, and retracting the object to a target position. To train these
subtasks, we use a low-level DRL policy called the Low-level Subtask Expert (LSE) that
learns each subtask independently with a sub-goal directed reward function. To coordinate
the subtasks, we employ a High-Level Choreographer (HLC) DRL policy that learns to
sequence the subtasks to achieve the desired behaviors. Our proposed approach is illustrated
in Fig. A.1. Previous research has also explored the use of modular subtask networks for
complex control tasks [396, 397, 145, 398].

Our research contribution entails the development of a multi-subtask DRL approach
for pick and place tasks, which we compare to an established LfD baseline. Moreover, we
demonstrate the e�cacy of our method by transferring the learned policies to a physical
robotic system and evaluating its performance in grasping objects with various geometric
shapes.
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Fig. A.1 Summary diagram of the hierarchical architecture proposed in this paper. The pick
and place task is divided into Low-level Subtask Experts (LSE), namely approach, manipulate
and retract. These subtasks are coordinated using a High Level Choreographer (HLC).

Fig. A.2 Schematic overview of the LSE training and evaluation process: All the LSE are
trained independently (from left to right) approach, manipulate and retract respectively.
The LSE policy fi is updated o�ine by sampling from a replay bu�er after 300 steps using
DDPG+HER. The policy is evaluated after each epoch by using hand-engineered solution
for other subtasks by computing the success rate on 100 episodes.

Training the Low-level Subtask Expert (LSE)

The goal of the LSE is to learn an optimal policy and task representations to perform specific
subtasks. To achieve this, we formulate a MDP for LSE. Within each subtask ui (where
i,1 Æ i Æ 3), at each time step t, the agent receives a state input St from the environment
E, executes an action at, and transitions to the next state St+1. We use the Deep DDPG
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algorithm (Sec. 3.1.3) coupled with HER to train the LSE policy fiui , as it has been shown
to be a promising approach for end-to-end pick tasks [399, 400].

The state inputs to the agent are vector observations that provide kinematic information,
such as position, velocity, and orientation, of the object and the robotic gripper. The action
output of LSE consists of x, y, and z positions. Each LSE is parameterized by a neural
network that includes three fully connected layers and one final linear output layer. The
network architecture can be found in the project code 1.

During the training process, for each subtask ui, a list of tuples (st,agt,sgt,st+1) is stored
in the replay bu�er at each episode (i.e., 300 steps), where st is the observation at the
beginning of the episode, agt is the achieved goal after taking actions during the episode (i.e.,
the new gripper position), sgt is the goal of the subtask during the episode, and st+1 is the
new state after completing the action in the environment. We design a dense reward function
rt that is defined as:

rt = ≠d(agt ≠sgt)

This function returns the negative Cartesian distance d between the achieved goal and
the subtask goal at each timestep.

The DDPG+HER algorithm samples state observations from the replay bu�er and updates
fiui every 300 steps. After each epoch (15k steps), the performance of the LSE is evaluated
using hand-engineered actions for the subtasks that are not being trained. Figure A.2 provides
a schematic overview of the described method. Hand-engineered solutions are pre-configured
action values used to reach a desired target state. For the evaluation process of the approach
subtask, the action output from the LSE network is used, and hand-engineered actions are
used for the manipulate and retract subtasks.

Thus, if at the end of the episode, the block fails to be placed at the target position, it
implies that the approach part has not been successful and needs further training. Note that
the engineered solutions are only used to reach an intended position before training a specific
LSE module and for the evaluation phase to test whether the robot can successfully complete
the task.

High Level Choreographer (HLC)

Once the LSEs are trained, a HLC is established to learn a policy that choreographs the
subtasks to complete the task temporally. At a given timestep t

Õ, the HLC operates in state
stÕ , selects a subtask ui, and receives a reward rtÕ upon completion of the subtask. The agent
then transitions to a state stÕ+1, which corresponds to the state after executing the subtask.
Here, we use an actor-critic network architecture, as introduced in Sec. 3.1.3, where the actor

1Project code: https://github.com/LM095/DRL-for-Pick-and-Place-Task-subtasks

https://github.com/LM095/DRL-for-Pick-and-Place-Task-subtasks
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Fig. A.3 Pick and place task (a) accomplished with end-to-end learning strategy with
DDPG+HER and our LSE DDPG+HER. (b) failure with a thin cylindrical object for
end-to-end strategy (c) success with a narrow cylindrical object for the agent trained with
our LSE strategy. (d) failure with a small box object for the agent trained with end-to-end
strategy. (e) success with a small box object for the agent trained with our LSE strategy.

policy selects one of the subtasks [398]. The network consists of a recurrent layer followed by
two independent, fully connected layers serving as the actor and critic.

As the output of the HLC is a discrete action value, we employ an asynchronous Actor-
Critic (Advantage Actor-Critic (A3C)) training strategy to learn the HLC policy [118]. We
define a sparse reward function rtÕ , where the HLC receives a positive reward if the robot
successfully places the block at the target position by selecting the correct subtask sequence.

Fig. A.4 Di�erent environments used for experiments (a) PandaPickAndPlace-v0 (b) Franka
Emika Robot used for real robot demonstrations.

Experiments

To evaluate the e�ectiveness of our proposed approach, we conducted two sets of experiments.
Firstly, we conduct a comparative study between our proposed LSE approach and a baseline
LSE trained via BC [398]. BC has been shown to be an e�cient baseline compared to
end-to-end DRL methods. Secondly, we demonstrate the successful translation of the learned
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policy from simulation to a real robotic system. The training methods are performed on an
Intel Core i7 9th Gen system.

Simulation Experiments: PandaPickAndPlace-v0 We use the Mujoco simulation engine
environment, PandaPickAndPlace-v0, which includes the Panda robot, as shown in Fig.A.4a.
Once an LSE reaches a high success rate, the network weights are saved, and a similar
strategy is used to train the remaining subtasks. After training all the subtasks, we load the
network weights and train the HLC to choreograph the subtasks temporally. We compare
the training performance of each subtask using two methods trained via DDPG+HER and
BC, following the schematics shown in Fig.A.2.

Real Robot Experiments In the second part of our experiments, we establish communi-
cation between the simulation environment and the real robot using a ROS node, which
interfaces with the Moveit framework [? ]. The poses generated by the actions in the
PandaPickAndPlace-v0 environment are processed by Moveit to generate the complete trajec-
tory while observing the physical constraints of the real robot. Furthermore, a homogeneous
transformation is applied to change the reference frame, which lies at the gripper center in
the simulation scene, to the panda base frame in the real robot.

Lastly, we demonstrate the reusability of the subtasks by fine-tuning the LSE to grasp
di�erent types of objects, such as a cylinder and a block of di�erent dimensions, used in the
training procedure (see Fig. A.3). An end-to-end learning approach would require complete
retraining for di�erent objects. The proposed LSE approach provides a possibility to change
one of the subtasks without a�ecting other trained subtasks. Using a subset of behaviors is
not possible in end-to-end learning. Therefore, in our proposed method, we use the trained
LSE on the block pick-and-place task and fine-tune the grasping for the retract subtask,
whereas we directly deploy the behaviors learned in the end-to-end learning.

Results

This study aimed to compare the performance of a DRL technique for training a LfD system,
called LSE, with a supervised BC baseline. Fig. A.5 depicts the sample e�ciency of the
LSE strategy trained via DDPG+HER and BC learning methods. The peak represents the
maximum success reached by each method for each subtask, where the first peak denotes
the completion of training the approach subtask, the second peak denotes the completion of
the training of manipulate subtask, and the third peak indicates the training of the retract
subtask.

The results demonstrate that DDPG+HER outperforms BC, reaching 100% success in
218k steps, while BC takes 372k steps. Moreover, DDPG+HER shows a smooth, monotonous
learning curve compared to BC, which does not stabilize immediately after reaching high
success values. Overall, DDPG+HER shows less variance compared to BC. There is a
significant di�erence between the learning curve for the retract behavior, which is a temporally
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Fig. A.5 Performance comparison of our training strategy using DDPG+HER and BC. Each
experiment is executed independently three times with di�erent seeds. Success is quantified
as the percentage of successful grasp as a function of training steps.

elongated subtask compared to other subtasks. Due to the long horizon task, BC seems
to su�er from the compounding error caused by a covariate shift. Hence, we observe that
DDPG+HER is faster in learning for the retract subtask.

Table A.1 shows the comparison of the training performance of the methods presented in
this work. In particular, we analyze two possible strategies: a subtask approach using BC
and a new methodology proposed in this paper. For the strategies that use subtasks, we
define LSE1 as the approach, LSE2 as the manipulate, and LSE3 as the retract.

DDPG+HER using subtask decomposition is the best performing approach, and the
results suggest that following the subtask approach, training can be more e�ective if we
use a DRL algorithm than supervised BC. The behavior learned by DDPG+HER is more
robust and does not require the collection of expert demonstrations, which can be time-
consuming and often reflects less variability. Moreover, training using a subtask approach
shows a significant reduction in both steps (by ≥ 77%) and time (by ≥ 75%) with respect to
end-to-end training and therefore is the best training strategy in this context.

We compare the actions learned by a subtask-based LSE policy and an end-to-end policy.
To this end, we analyze their activation patterns in the Cartesian space for ten episodes,
using trained LSEs and the end-to-end model, respectively. The analysis is based on the
premise that the initial environment conditions are the same for both policies.

As shown in Fig. A.6, the actions generated by the LSE networks are in the proximity
of the hand-engineered actions, indicating that the learned behavior is specialized to the
particular subtask. However, there is a slight deviation in the manipulate activation of
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Table A.1 Performance of methods for the same level of success rate

Number of steps Total time

LSE1 LSE2 LSE3 HLC Total

DDPG+HER
end-to-end

- - - - 1.4M ≥1h

BC LSE 152k 52k 168k 98k 470k ≥25 min
DDPG+HER
LSE

150k 30k 38k 98k 316k ≥18 min

Fig. A.6 LSE specialization analysis using di�erent training strategies. Samples representing
activation patterns using (a) hand-engineered solutions (b) learned using our subtask approach
(c) learned using an end-to-end strategy for ten episodes.

hand-engineered and learned behaviors, which may be attributed to near-zero manipulation
activations and overfitting. On the other hand, the network activations for the end-to-end
approach do not exhibit any specific pattern, verifying our hypothesis that the LSE approach
makes the task tractable compared to an end-to-end approach.

Furthermore, we conducted real robot experiments using the subtask approach and
end-to-end training methods. The results, shown in Fig. A.3, indicate that using the subtask
approach, the robot can pick up various objects, whereas using an end-to-end training method,
the robot can only complete the block pickup for which it was trained and fails in grasping
all other objects. Additionally, the LSE approach allows for fine-tuning of the gripper closure
for a particular subtask, enabling the robot to grasp di�erent types of objects that are not
possible with an end-to-end policy. These findings confirm that the subtask approach can
generate robust behavior by fine-tuning a subset of the subtask.
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