
University of Verona

Department of Computer Science

Ph.D. in Computer Science

Automatic extraction of robotic surgery
actions from text and kinematic data

Marco Bombieri

Advisor: Prof. Paolo Fiorini

Co-advisor: Prof. Marco Rospocher

INF/01, XXXV cycle, 2023



Ph.D. Candidate:

Marco Bombieri, Università di Verona

Advisor:

Prof. Paolo Fiorini, Università di Verona

Co-advisor:

Prof. Marco Rospocher, Università di Verona

Thesis reviewers:

Dr. Chiara Ghidini, Fondazione Bruno Kessler

Prof. Myra Spiliopoulou, Otto-von-Guericke-Universität Magdeburg

Thesis committee:

Prof. Paolo Fiorini, Università di Verona

Dr. Chiara Ghidini, Fondazione Bruno Kessler

Prof. Simone Paolo Ponzetto, Universität Mannheim

Prof. Marco Rospocher, Università di Verona

University of Verona

Department of Computer Science

Strada le Grazie 15, Verona, Italy

Ph.D. in Computer Science

Cycle XXXV



To those who supported me





Abstract

The latest generation of robotic systems is becoming increasingly autonomous due to

technological advancements and artificial intelligence. The medical field, particularly

surgery, is also interested in these technologies because automation would benefit sur-

geons and patients. While the research community is active in this direction, commer-

cial surgical robots do not currently operate autonomously due to the risks involved in

dealing with human patients: it is still considered safer to rely on human surgeons’ in-

telligence for decision-making issues. This means that robots must possess human-like

intelligence, including various reasoning capabilities and extensive knowledge, to be-

come more autonomous and credible. As demonstrated by current research in the field,

indeed, one of the most critical aspects in developing autonomous systems is the ac-

quisition and management of knowledge. In particular, a surgical robot must base its

actions on solid procedural surgical knowledge to operate autonomously, safely, and

expertly. This thesis investigates different possibilities for automatically extracting and

managing knowledge from text and kinematic data. In the first part, we investigated the

possibility of extracting procedural surgical knowledge from real intervention descrip-

tions available in textbooks and academic papers on the robotic-surgical domains, by

exploiting Transformer-based pre-trained language models. In particular, we released

SURGICBERTA, a RoBERTa-based pre-trained language model for surgical literature un-

derstanding. It has been used to detect procedural sentences in books and extract pro-

cedural elements from them. Then, with some use cases, we explored the possibilities of

translating written instructions into logical rules usable for robotic planning. Since not

all the knowledge required for automatizing a procedure is written in texts, we introduce

the concept of surgical commonsense, showing how it relates to different autonomy levels.

In the second part of the thesis, we analyzed surgical procedures from a lower granular-

ity level, showing how each surgical gesture is associated with a given combination of

kinematic data.

Sommario

L’ultima generazione di sistemi robotici sta diventando sempre più autonoma grazie ai

progressi tecnologici e all’intelligenza artificiale. Anche il settore medico, in particola-

re quello chirurgico, è interessato a queste tecnologie perché l’automazione si è rivelata

vantaggiosa sia per chirurghi che per i pazienti. Sebbene la comunità scientifica sia attiva



VI

in questa direzione, i robot chirurgici commerciali non operano ancora autonomamente

a causa dei rischi legati al trattamento di pazienti umani. Si ritiene ancora più sicuro

lasciare ai chirurghi umani le varie scelte e decisioni operative. Per diventare più auto-

nomi e credibili, i robot devono dunque possedere un’intelligenza simile a quella umana,

ed avere cioè spiccata capacità di ragionamento e di acquisizione di nuova conoscenza.

Ricerche recenti dimostrano infatti che uno degli aspetti più critici nello sviluppo di si-

stemi autonomi è l’acquisizione e la gestione della conoscenza. In particolare, un robot

chirurgico deve basare le sue azioni su una solida conoscenza chirurgica procedurale per

operare in modo autonomo, sicuro ed esperto. Questa tesi esplora diverse possibilità per

estrarre e gestire automaticamente la conoscenza: da dati testuali e da dati cinematici

raccolti durante l’intervento. Nella prima parte di questa tesi, abbiamo studiato la possi-

bilità di estrarre la conoscenza chirurgica procedurale dalle descrizioni di interventi già

disponibili in libri di testo e articoli accademici nel dominio robotico-chirurgico, sfrut-

tando modelli linguistici pre-addestrati basati sull’architettura neurale Transformer. Ab-

biamo sviluppato in particolare SURGICBERTA, un modello linguistico pre-addestrato

basato su RoBERTa per la comprensione della terminologia e del linguaggio chirurgico.

In particolare, abbiamo usato SURGICBERTA per individuare frasi procedurali nei libri

ed estrarre elementi procedurali da essi. Poi, con alcuni casi d’uso, abbiamo esplorato le

possibilità di tradurre le informazioni estratte in regole logiche utilizzabili per la pia-

nificazione robotica. Poiché non tutte le conoscenze necessarie per automatizzare una

procedura sono descritte nei testi, abbiamo introdotto il concetto di commonsense chi-

rurgico, mostrando come esso sia correlato a diversi livelli di autonomia. Nella seconda

parte della tesi, abbiamo infine analizzato le procedure chirurgiche a un livello di granu-

larità inferiore, mostrando come ogni gesto chirurgico sia associato a una determinata

combinazione di dati cinematici.
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This part presents the objectives and background knowledge required for a complete

understanding of the other parts of this thesis. Chapter 1 presents the importance

of procedural knowledge acquisition and management for developing autonomous

surgical robots. After defining the concept of procedural knowledge and its granu-

larity levels, two ways for its acquisition are presented: top-down approaches ex-

tract knowledge from textbooks, while bottom-up ones from kinematic and video

data. The advantages and disadvantages of both approaches are discussed, and an

overview of the state-of-the-art, which will be deepened in the next parts, is provided.

Chapter 2 presents all the background technologies used in the next parts of this the-

sis.

Part I

Introduction and background

1





1

Introduction

"All we have to decide is what to do with the time that is
given us."

J.R.R Tolkien, The Lord of the Ring

Robotic systems are currently being used in a wide range of practical applications

across multiple fields. Traditionally used in manufactury and assembly lines to per-

form repetitive actions without suffering from fatigue or in jobs that are too hazardous

for humans, robots are now increasingly present in our daily life and in several do-

mains. Among others, the use of robots has revolutionized the medical field, and in

particular, the surgical domain as well: firstly adopted in orthopedics for knee [1, 2] and

spine surgery [3], in the last few decades, robots have been increasingly adopted in la-

paroscopic surgery, in particular urology, gynecology, and general surgery [4]. Further-

more, thanks to the advancements in technology and artificial intelligence, the latest

generation of robotic systems will become increasingly autonomous, thanks to higher

decision-making skills. In accordance to these trends, also the robotic surgery commu-

nity is dealing with automation aspects [5, 6].

Unlikely other fields where autonomous robots may be seen as a threat to work-

ers, the majority of the surgical community recognizes the benefit of bringing auton-

omy in robotic surgery [7] for several reasons. First, surgeons often are overworked to

high levels of fatigue that can cause hand tremors and attention reduction. In these sit-

uations, they may be less capable of performing precision tasks and, therefore, more

prone to make errors. Autonomous robots are unaffected by these issues. Furthermore,

especially in the hospitals of the more isolated cities, it is not always possible to recruit

expert surgeons; having an autonomous robot (maybe remotely controlled by an ex-

pert) capable of operating with quality comparable to that of an experienced surgeon
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can help to reduce the discrepancies and inequalities between operations performed in

different geographical places. Moreover, an autonomous surgical robot may react faster

than the surgeon to unexpected events, and autonomy may compensate for the time

delay in remote telesurgery. This, combined with the greater dexterity of robotic sys-

tems facilitated by their wristed instruments, will further improve minimally-invasive

procedures [8, 9, 10]. Finally, another compelling benefit is that surgeons will no longer

need to be in the same room of the patient thus avoiding stray radiation from X-ray

fluoroscopy devices [11, 12].

Because of the growing interest and benefits of bringing autonomy to robotic surgery,

the scientific literature is discussing how the levels of autonomy can be defined. Follow-

ing the taxonomy first presented for self-driving cars [13], an autonomous robotic sur-

gical system can be classified into five levels of autonomy [14]: at autonomy level 0, the

human performs all tasks and takes all decisions; at autonomy level 1 the robot pro-

vides dexterity and cognitive assistance during the task, sharing controls and actions

with the human; at level 2, the robot is autonomous during specific tasks, i.e., trading

control of the system with human at discrete times; at level 3 the robot generates task

strategies, but the human has the final decisions over the proposed tasks; at level 4 the

robot can make decisions on the complete surgical strategy, but under the supervision

of a qualified doctor; finally, level 5 introduces the full autonomy, i.e., a robotic surgeon

that can perform an entire procedure without supervision.

Nevertheless, at the moment, commercial robots only provide an autonomy level

of 0 and do not perform any action in full autonomy, because of technological and le-

gal reasons. This Ph.D. research is developed within the Autonomous Robotic Surgery

(ARS) project1, which aims at developing methodologies to enable the execution of sur-

gical intervention by a robotic system in complete autonomy. ARS’ research proved that

to reach some level of autonomy, a robotic surgical system has to face different techno-

logical challenges. First, the anatomical environment in surgical procedures is com-

posed of soft tissues that can deform due to the use of surgical instruments or physio-

logical effects such as breathing or heartbeats. Additionally, tissue behavior is complex

to model and can vary greatly among different patients, making it difficult to measure.

Furthermore, the definition of a patient-specific intervention plan is challenging be-

cause it requires integrating notional knowledge (e.g. that contained in textbooks or

pre-operative images) with the surgeons’ way of reasoning and experience. The latter

1 The ARS project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program under grant agreement No. 742671.
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can only be partially extracted from surgery video and kinematic data recorded during

real interventions. Moreover, to address the uncertainties of the anatomical environ-

ment that can arise during surgery, it is important for a surgical robot to be able to

adapt the patient-specific intervention plan during execution based on the current sit-

uation. This is because the anatomical environment may behave differently than what

is expected from pre-operative knowledge. To accomplish this, incorporating strategies

for real-time situation awareness, reasoning, and control into the robot is needed. Fi-

nally, since the operational environment is the human body, errors can be deadly. Con-

sequently, to reach all the above requirements, such a robot has to be endowed with

human-like intelligence that combines different reasoning capabilities with strong no-

tional knowledge. The state of the art is indeed demonstrating that the real core of

the research on autonomous systems is in knowledge and information acquisition and

management [15]: to operate autonomously, safely, and expertly, a surgical robot must

base its actions on solid surgical knowledge. Nowadays, in surgical robotics, the knowl-

edge is manually encoded by domain experts in ontologies [16] or a pre-defined set of

logical instructions [17]. The manual encoding of the prior domain knowledge in a logic

formulation understandable by machines is a limitation and bottleneck in developing

autonomous systems because it requires experts in surgery and computer science, who

may not have the right competencies and are not used to work together. Furthermore,

the manually encoded knowledge is static and it may not cover all complications and

cases during surgery; thus, a way to automatically acquire knowledge from external re-

sources is preferable. Since one of the main challenges an autonomous robotic surgi-

cal system has to face is the automatic acquisition and management of surgical knowl-

edge, this thesis investigates different possibilities for automatically extracting surgical

knowledge from existing resources — primarily free-text books, academic papers, and

written tutorials, but also from kinematic data — to lay the foundations for tomorrow’s

knowledge-based surgical robot.

1.1 Surgical knowledge and its learning

There are two different types of surgical knowledge, both required for the autonomous

execution of surgical intervention [18]: procedural and non-procedural knowledge. The

procedural knowledge encodes instructions needed to perform the specific surgical in-

tervention, being interventions on the body or the positioning of the robot. In general,
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Table 1.1: Examples of procedural and non-procedural sentences in books. In the table,
"P" means Procedural, while "!P" is for Non-procedural. These examples are taken from
the dataset presented in 4.

Type Sentence Explanation
P The peritoneum is then incised. Incision of the peritoneum.
P Using a combination of blunt dissection and electrocautery, the poste-

rior aspect of the pylorus and the proximal duodenum are gently ele-
vated off of the retroperitoneum.

Elevation of the retroperitoneum.

P Allis clamps are used to tension the ileal segment against the catheter
along its antimesenteric edge.

Tension of the ileal segment.

!P As a distinguishing feature, Gerota’s fascia appears pale yellow, com-
pared with the brighter yellow color of the mesentery.

Descriptions of an anatomical fea-
ture.

!P Numerous descriptions of nerve sparing during RARP have been re-
ported in the literature.

Additional in-depth information.

!P Longer operative times were seen with robotic procedures. Information not directly useful to
perform the procedure.

a procedure is an ordered sequence of actions linked together temporally and causally.

An action may be activated when a certain pre-condition is satisfied and reaches its end

state when a certain post-condition occurs. Usually, an action can be executed if ac-

companied by a set of semantic information, such as the "agent", i.e., the one who acts;

the "patient", i.e., the one who undergoes the action; the "instrument", which refers to

the tool used for acting and the "purpose" describing the reason why the action is per-

formed. In addition, other semantic information comprises temporal and spatial pa-

rameters. The non-procedural knowledge encodes instead anatomical knowledge and

other ontological information. It does not include any indication of a specific surgeon’s

action. However, it describes anatomical aspects, exceptional events that can occur

during surgery, and general indications that are not specific to a single intervention

step. To clarify, Table 1.1 shows examples of procedural and non-procedural sentences

taken from the dataset presented in Chapter 4 with the corresponding explanation of

their content.

Low-level information        Motions         Activities        Steps        Phases        Procedure

Fig. 1.1: Granularity axis. Low-level information is relative to video, image, and kine-
matic data.

This thesis only deals with procedural knowledge acquisition and management.
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Procedural knowledge can be expressed according to different granularity levels pre-

sented in [19] and summarized in Figure 1.1. Each level represents the details provided

during the description. In this classification, a procedure (e.g. partial nephrectomy) is

composed of a sequence of main events, called phases, occurring in the procedure (e.g.

tumor excision or final suture). Each phase is then composed of a set of steps, i.e. se-

quences of activities to achieve a surgical objective (e.g. the main steps of the final su-

ture phase are the removal of the trocar, the extraction of the specimen, and the clo-

sure of the skin). Each activity is then composed of a sequence of motions, i.e. surgical

movements involving only one hand trajectory (e.g. pulling the needle to close the su-

ture using the right arm). Finally, low-level information is the raw data, i.e. kinematic

and video captured during the surgery at a given frequency.

Depending on the granularity level at which information is to be extracted, two dif-

ferent approaches can be followed:

• Top-down approach: construct the execution flow of a surgical procedure by exploit-

ing the notional knowledge available in ontologies or books. Starting from these re-

sources, the goal is to develop a plan that a robot can execute.

• Bottom-up approach: starting from the data captured during the execution of a

surgery (kinematics and video), develop methods to infer the surgical process. In

this research domain, an important task is to define features useful for surgical ges-

ture recognition: machine-learning algorithms use them to segment the interven-

tion into phases and steps, deriving the surgical procedure.

The development of an autonomous robotic surgical system will require the integration

of both the notional knowledge extracted from textbooks for understanding high-level

instructions and the low-granularity actions, which can only be learned from data of

actual interventions.

This thesis mainly deals with top-down approaches, particularly with the still un-

explored possibility of extracting procedural surgical knowledge directly from written

resources, such as textbooks, academic papers, and surgical guidelines. The bottom-up

approaches are instead widely discussed in the literature, as shown later in this thesis.

Anyway, the final part of the thesis is dedicated to it, where it is shown that suitable

features from kinematic data captured during the execution of a task can help gesture

understanding by machine learning techniques. In future work, we will explore the pos-

sibility of combining models extracted with top-down approaches with those obtained

with bottom-up ones in a unique knowledge-based model because this is what a hu-
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man surgeon does: the course of study for becoming a surgeon consists of the first part

of theoretical study, in which the surgeon acquires the fundamental theoretical notions

of the profession, and a final part of practice, in which the student, through a cycle of

internships, integrates the theoretical knowledge learned with experience and observa-

tion of seniors.

1.2 Procedural knowledge extraction from text

Theoretical study occupies a predominant and substantial part of the study cycle of

an apprentice surgeon. This is the reason why the literature is teeming with manu-

als, online resources, and academic papers of the highest quality used by universities

around the world. Each book is written by expert surgeons and contains sections de-

scribing the pre- and post-procedure diagnoses, the procedure’s name, a detailed de-

scription of the procedure, and other information. These texts are meant and written

for the understanding of human readers and present the information in unstructured

natural language. Having algorithms capable of understanding the surgical procedures

written in natural language and capable of organizing the procedure content in a more

structured and processable form would pave the way for developing intelligent sur-

gical and clinical systems. If automatically processed by Natural Language Processing

(NLP) techniques, this high-quality procedural information becomes valuable content

that could be exploited in many clinical applications. For example, robots could auto-

matically build or extend a proper surgical knowledge base, reasoning with it in realis-

tic intervention scenarios. Humans could benefit from more structured knowledge in

question-answering sessions, for example, in an early learning phase by medical stu-

dents. However, so far, the extraction of procedural surgical knowledge directly from

written resources such as textbooks, academic papers, or case reports has received little

attention from the scientific community, as current trends mainly focus on the deriva-

tion of knowledge from kinematic and video data captured by endoscopic sensors and

cameras during interventions [17, 20], or on the manual modeling of ontologies, e.g.

[21].

Although not in the surgical domain nor with the purpose of automatizing surgi-

cal interventions, some works, e.g. [22, 23, 24, 25, 26, 27, 28] have explored the task of

procedural knowledge extraction from text. These papers, which will be detailed in the

other chapters of this thesis, propose approaches for extracting procedural knowledge
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Procedural knowledge detection

Procedural knowledge extraction

1. Definition of a Framebank for robotic-surgery (named RSPF)
2. Annotation of procedural sentences using RSPF
3. Training, validation and testing of a semantic role labeler

Predicate disambiguation
Argument disambiguation
Predicate and argument disambiguation

List of procedural sentences

Use of extracted procedural entities for robotic planning

Task description in
a controlled 

language

SRL and rules-
based system and 

manual 
refinements

Task described in a 
logic formalism

Fig. 1.2: Summary of the Part 1 of this thesis (Chapters 3-7). Part 2 is instead composed
by the single Chapter 9.
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in several domains, such as technical documentation, cooking recipes, maintenance

manuals, repair guidelines, and instructions for the synthesis of nanomaterials. While

all these works address the extraction of procedural knowledge from written text and

are thus similar to our foreseen application, they deal with typologies of textual con-

tent substantially different from the description of a surgical procedure. They are dif-

ferent both from the terminological point of view as well as the structural one since

these texts are structurally organized, frequently using numbered/bulleted lists. No es-

tablished standard way to describe a surgical procedure instead exists. In addition, sur-

gical interventions are mainly presented in a prose-like style. Furthermore, recently, re-

searchers are starting to use natural language to generate or control a set of actionable

instructions; some examples are [29, 30, 31]. The proposed tasks use, however, strong

simplification of natural language adopted, and the main purpose is that of translating

concepts in an actionable form rather than the understanding of complex procedural

descriptions. Furthermore, they are not thought for the surgical domain.

While understanding very specialized literature written in free-text, i.e., without re-

curring to a controlled language [32], would be challenging for the traditional NLP

methods, the advent of the transformer neural network architecture with the atten-

tion mechanism [33], and the pre-trained language models [34] have made this task

feasible. Pre-trained language models have demonstrated remarkable performance in

various downstream tasks, including machine translation, sentiment analysis, and text

classification, outperforming traditional machine learning algorithms and rule-based

methods thanks to their ability to learn complex linguistic patterns and contextual re-

lationships from vast amounts of unlabeled text. However, these models are trained on

general English data and may not perform as well in highly specialized domains such

as scientific literature, law, or medicine. In such cases, domain adaptation techniques,

such as fine-tuning or transfer learning, can be used to retrain the pre-trained models

on domain-specific data, allowing them to capture the unique language patterns and

terminologies of the specialized domain. Although domain adaptation techniques are

available, they require a lot of time-consuming activities to find relevant information

in surgery (i.e., defining a proper surgical framebank2) and to annotate the domain-

specific texts that will be used as training material. Both the definition of a framebank

and the annotation of surgical text are complex tasks as they demand the expertise of

both surgical and linguistic professionals.

2 The concept of framebank is defined in Section 2.6
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This thesis fills these literature gaps by proposing different scientific contributions

summarized in Figure 1.2. First, deep learning methods have been exploited to extract

from books sentences containing procedural knowledge discarding those containing

non-procedural ones. Then, to develop a model capable of understanding surgical lan-

guage, this thesis defines a proper surgical framebank, adapting an existing general-

English one to the robotic-surgery domain. The obtained surgical framebank is then

used to annotate a corpus of as-is surgical sentences taken from surgical books and

academic papers. The annotation step has been carried out by exploiting the Semantic

Role Labeling (SRL) style using a semi-automatic technique based on post-editing and

manual corrections. The annotated corpus obtained is then used to train, validate and

test a deep learning, Transformer-based SRL model proving significant improvement in

the surgical natural language understanding task compared with its vanilla model, i.e.

the general English model not specialized for the surgical domain. In addition to the

aforementioned supervised training, unsupervised learning was utilized on a substan-

tial amount of raw text, resulting in the development of a new SRL model that exhibits

enhanced comprehension of surgical literature. The language model obtained from the

non-supervised learning step was then used to solve other NLP tasks, such as surgical

terminology learning and ontological information inference. Finally, a pipeline based

on SRL and some syntactic rules has been adopted to demonstrate how, within simple

language constraints, it is possible to extract a logical template from sentences written

in natural text. This logical template can then be easily translated to a logic planning

formalism, such as Answer Set Programming (ASP)[35] without the need for significant

manual revisions. As a result, the task of logicians is simplified because they no longer

need to be surgical experts.

1.3 Procedural knowledge extraction from kinematics

In the bottom-up direction, the goal is to use low-level input information (mostly kine-

matics, video data or both together) acquired by sensors to recognize higher-level se-

mantic knowledge, such as a list of surgical motions executed by the surgeon [19]. These

motions implicitly contain expert human surgical knowledge because kinematic and

video data is captured during the execution of interventions performed by experts and,

consequently, can be used as the gold standard for teaching low-level robot movements.

They allow an understanding of a surgical procedure with a lower level of granularity
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than that described in textbooks, such as motions or actions. To extract this low-level

knowledge, multi-modal deep-learning techniques have been exploited and applied to

kinematic, video, or other data, such as system events [20, 36, 37, 38]. The most used

methods are based on convolutional neural networks, LSTM, and other classic machine

learning algorithms such as support vector machine and random forest, whose theory

is discussed in 2.5.2. The most common dataset used to train and validate algorithms

are JIGSAWS [39] or others ad-hoc developed [20, 36, 38, 40]. A crucial aspect of these

algorithms is to find accurate features capable of describing each surgical motion, step,

or phase [41, 42, 43]: this aspect will be analyzed in Chapter 9.

The bottom-up approaches have to face some challenges and practical issues. First,

the literature is lacking freely available and realistic datasets, which are difficult to ob-

tain due to patient privacy or commercial issues. Then, it is important to find significant

features to use as input to the learning algorithms; in order for the features to be cal-

culable, the datasets have to contain the relative information, and therefore the right

choice of sensors must be made at the recording stage; however, some of this infor-

mation (e.g. force data) is not always immediate to estimate from the available robotic

tools or may be noisy. Finally, different approaches can lead to different models, and it

is still unclear how to evaluate the differences.

This thesis proposes literature’s improvements in features engineering, showing that

adopting features based on joint robot orientations improves the understanding of the

motions. Since no datasets containing information about robot joints were available in

the literature, one ad-hoc was released.

1.4 Outline of the thesis

Chapter 2 presents all the background technologies used in the next parts of this thesis.

Then, the thesis is split into two parts. The first one (Chapters 3-8) deals with procedural

knowledge detection and extraction from robotic-surgery textbooks. The second one

(Chapter 9) deals instead with procedural knowledge extraction from kinematic data.

Finally, Chapter 10 summarizes the contributions of this thesis and proposes several

possible future research directions. The content of each chapter is summarized in the

introduction paragraph at the beginning of each part.
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1.5 Contributions

The main contributions of this thesis are:

[C.01] The release of SPKS annotated textual resource for procedural surgical sentences

detection (Chapter 4);

[C.02] The development of machine learning methods for procedural surgical sen-

tences detection (Chapter 4);

[C.03] The development of SURGICBERTA, a pre-trained language model specific for

surgical language (Chapter 3);

[C.04] The release of RSPF, a framebank specific for the robotic-surgery procedural lan-

guage (Chapter 5);

[C.05] The annotation of a dataset of as-is textbooks sentences with the RSPF labels

(Chapter 5);

[C.06] The development of deep learning methods to extract procedural surgical knowl-

edge from the text (Chapter 6);

[C.07] The proposal of a pipeline for mapping natural language surgical procedures to

a logic formalism and simulation (Chapter 7);

[C.08] The proposal of a taxonomy of different levels of surgical commonsense knowl-

edge and links with the levels of autonomy (Chapter 8);

[C.09] Development of an annotated dataset for surgical gestures recognition contain-

ing joints-space orientation information (Chapter 9);

[C.10] Proposal of joints-space metrics for surgical gestures recognition (Chapter 9).

1.6 Publications

The main publications resulting from the thesis, with reference to the presented contri-

butions, are:

• Marco Bombieri, Marco Rospocher, Simone Paolo Ponzetto and Paolo Fiorini. The

robotic-surgery propositional bank. Language Resource and Evaluation. June 2023.

[C.05] [44]

• Eleonora Tagliabue, Marco Bombieri, Paolo Fiorini and Diego Dall’Alba: Robotic

surgical systems need commonsense to achieve higher levels of autonomy. Robotics

and Automation Magazine (IEEE). May 2023. [C.08] [45]
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• Marco Bombieri, Marco Rospocher, Simone Paolo Ponzetto and Paolo Fiorini. Ma-

chine understanding surgical actions from intervention procedure textbooks. Com-

puters in Biology and Medicine. January 2023. [C.06] [46]

• Daniele Meli, Marco Bombieri, Diego Dall’Alba and Paolo Fiorini. Inductive learn-

ing of surgical task knowledge from intra-operative expert feedback. 9th Italian Work-

shop on Artificial Intelligence and Robotics (AIRO). December 2022. [C.07] [47]

• Marco Bombieri, Marco Rospocher, Simone Paolo Ponzetto and Paolo Fiorini. The

robotic surgery procedural framebank. Proceedings of the Thirteenth Language Re-

sources and Evaluation Conference (LREC). June 2022. [C.04] [48]

• Marco Bombieri, Marco Rospocher, Diego Dall’Alba and Paolo Fiorini. Automatic

detection of procedural knowledge in robotic-assisted surgical texts. International

Journal of Computer Assisted Radiology and Surgery. April 2021. [C.01,C.02] [18]

• Marco Bombieri, Diego Dall’Alba, Sanat Ramesh, Giovanni Menegozzo and Paolo

Fiorini. Joint-space metrics for automatic robotic surgical gestures classification. 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Octo-

ber 2020. [C.09,C.10] [40]

• Marco Bombieri, Marco Rospocher, Simone Paolo Ponzetto, and Paolo Fiorini. Sur-

gicBERTa: A pre-trained language model for procedural surgical language. Under re-

vision in a journal. Submitted in March 2023. [C.03] [49]

• Marco Bombieri, Daniele Meli, Diego Dall’Alba, Marco Rospocher and Paolo Fior-

ini. Mapping natural language procedures descriptions to linear temporal logic tem-

plates - An application in the robotic-surgery domain. Under revision in a journal.

Submitted in November 2022. [C.07] [50]

Publication contributed during the Ph.D. but not strictly related to the main topic of

the thesis:

• Chia-Chien Hung, Tommaso Green, Robert Litschko, Tornike Tsereteli, Sotaro

Takeshita, Marco Bombieri, Goran Glavas and Simone Paolo Ponzetto: Data Aug-

mentation with Specialized Models for Cross-lingual Open-retrieval Question An-

swering System. Proceedings of the Workshop on Multilingual Information Access

(MIA). July 2022. [51]
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1.7 Released resources and models

• SPKS – annotated dataset for detecting procedural robotic-surgery sentences:

https://gitlab.com/altairLab/spks-dataset
• RSPB – annotated dataset for procedural surgical SRL:

https://gitlab.com/altairLab/robotic-surgery-propositional-bank
• SURGICBERTA– the language model for surgical language understanding:

https://gitlab.com/altairLab/surgicberta
• SURGICBERTA SRL – SURGICBERTA fine-tuned for SRL:

https://gitlab.com/altairLab/surgical_srl
• Dataset for surgical gestures recognition:

https://gitlab.com/altairLab/yeast-dataset

https://gitlab.com/altairLab/spks-dataset
https://gitlab.com/altairLab/robotic-surgery-propositional-bank
https://gitlab.com/altairLab/surgicberta
https://gitlab.com/altairLab/surgical_srl
https://gitlab.com/altairLab/yeast-dataset
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Background

"If I have seen further, it is by standing on the shoulders of
giants."

Isaac Newton

This thesis investigates the application of machine and deep learning techniques to

text or kinematic data for surgical procedural knowledge extraction. This chapter aims

at giving the thesis background by introducing all the technologies used in the research.

In the first part, we briefly introduce the concept of machine and deep learning, focus-

ing on the two main paradigms exploited in this thesis, i.e., supervised and unsuper-

vised learning. The first requires the presence of annotated data to train the models,

while the second requires the availability of a great amount of unlabeled data. Since no

datasets were already available for the procedural robotic-surgery domain, we devel-

oped ad-hoc datasets by using semi-automatic techniques: therefore, this chapter also

describes the techniques for data annotation and the quality metrics used to evaluate

the results. Machine and deep learning techniques described in this chapter can, in our

case, be applied both to textual and kinematic data. Then, the main part of the thesis

deals with NLP techniques applied to texts of the surgical domain: the NLP state-of-the-

art methods are nowadays mostly based on pre-trained large language models, and also

the contributions of this thesis follow this trend. This chapter then introduces the lan-

guage modeling techniques by comparing the recent pre-trained Transformer-based

language models with the most traditional ones. This part will be propaedeutic for the

chapter aimed at defining SURGICBERTA, the Transformer-based pre-trained language

model specific for the procedural surgical language we developed. It is also needed for

the understanding of the other chapters aimed at using SURGICBERTA and the other

state-of-the-art models for procedural sentence detection and procedural knowledge
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extraction. Then, since procedural sentence detection is tackled as a text classification

task, this chapter defines this task by presenting some background knowledge used in

the corresponding chapter. Finally, since the procedural knowledge extraction method

is mostly based on Semantic Role Labeling (SRL), this chapter defines this task, the re-

lated language resources, and the methodological solutions.

2.1 An overview of machine learning

Machine learning is a subfield of Artificial Intelligence (AI) that focuses on developing

algorithms and models that can automatically improve their performance on a spe-

cific task through experience. The main goal of machine learning is to enable com-

puters to learn patterns and make predictions based on data without being explicitly

programmed to do it [52]. As a subfield of machine learning, deep learning is based on

artificial neural networks [53]. Deep learning algorithms use multiple layers of artificial

neurons to process and transform information, allowing them to automatically extract

high-level features from raw data and make predictions. Deep learning algorithms are

particularly well-suited for tasks that involve large amounts of complex data, such as

medical images or free text.

Applications in which the training data comprises examples of the input vectors and

their corresponding target vectors are known as supervised learning problems. This is

the most commonly used type of machine learning, where the algorithm is trained on

a labeled dataset, and the goal is to learn a mapping from inputs to outputs based on

this data. A typical example is that of sentiment analysis, where free-text reviews of a

product are manually annotated with the positive, neutral, and negative labels. These

labels correspond to the target vector and are used as training material for the model.

After training, the obtained model can be used to recognize the customer’s sentiment

in reviews never seen before (i.e., on the test material).

On the other hand, unsupervised learning is used when the dataset is unlabeled, and

the goal is to find patterns or relationships within the data. In more detail, the training

data consists of a set of input vectors without any corresponding target values. The goal

of such unsupervised learning problems may be to discover groups of similar exam-

ples within the data, which is called clustering, or to determine the distribution of data

within the input space, known as density estimation, or to project the data from a high-

dimensional space down to two or three dimensions for visualization. In the context of
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NLP, the techniques used to develop word embeddings (described later in this chap-

ter) are examples of unsupervised learning. In these applications, the goal is to learn

numerical representations of words by training a model on a large corpus of unlabeled

text data by trying to predict the context of a word based on the surrounding words in a

sentence; no manual annotated text is needed.

Alongside supervised and unsupervised learning, reinforcement learning is the third

basic machine learning paradigm. Reinforcement learning is not used in this thesis but

is mentioned just for completeness. This paradigm is concerned with how intelligent

agents ought to take actions in an environment to maximize a "reward" through trial

and error: no labeled data is required. A classic example is that of Tesauro et al. [54],

where a neural network was used to learn to play backgammon to a high standard.

In such an example, the network must learn to take a board position as input, along

with the result of a dice throw, and produce a strong move as output. It is necessary

to properly attribute the reward to all the moves that contributed to achieving victory,

regardless of whether some of them were good and others were not as good.

The next subsections will present the main supervised and unsupervised learning

issues of interest for this thesis.

2.2 Manual data annotation for supervised learning

Manual annotation is the labeling of data by human effort, then used for training su-

pervised machine learning models. Gathering and annotating data are critical steps in

developing supervised machine learning models. A list of best practices must be fol-

lowed during these steps to obtain from training a robust and representative model that

will provide high performance and generalization capabilities during testing to unseen

data. These best practices are described below and can be applied to all types of data,

such as video [55], or text [56].

2.2.1 Quality of the source data.

Collecting relevant and high-quality data is needed to ensure the highest performance

of the supervised learning model. The data should be relevant to the problem to be

solved and should accurately represent the real-world scenario. For some applications,

this includes diversity in terms of demographic and cultural factors, as well as in terms

of the distribution of the target variable. In particular, the data must be accurately
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chosen from realistic sources, avoiding excessive simplifications that could make the

trained model then ineffective in the real world. In the sentiment analysis scenario, for

example, the data should be taken from realistic reviews and not generated in a con-

trived way.

Furthermore, data gathering should be done following ethical considerations, in-

cluding, in some domains, data privacy and security and ensuring that the data was

collected with the informed consent of the individuals involved: these considerations

are particularly important when dealing with sensitive data, such as personal informa-

tion or medical records. In other cases, the data should be subjected to copyright and

then not freely usable and shareable, thus requiring agreements with the data owner. Fi-

nally, to avoid biased models that perform poorly on underrepresented classes, it would

be preferable if the data were balanced, meaning that it equally represents all the differ-

ent classes of the target variable. For example, if the model is trained on the sentiment

analysis classification task, the data should include roughly equal numbers of positive,

neutral, and negative examples. However, in some domains or applications is not al-

ways possible to have balanced data due to the scarcity of available resources: in this

case, balancing techniques can be used [57].

2.2.2 Size of the source data.

Understanding how much data is needed to train a supervised learning model is an-

other paramount aspect. Generally, more high-quality annotated data can help the

model learn more complex patterns and generalize better to unseen data, but not al-

ways enough data is available, and usually, the annotation process is costly and, in some

cases, such as in the medical domain, requires high-specialized personnel difficult to

find. Furthermore, especially for domains, types of data, or tasks still unexplored, it is

impossible to know in advance the amount of data required. A possible way is that of

training the model on an increasing amount of data and observing the performance

trend on the same test dataset. If the performance increases by adding more training

material, it makes sense to annotate other data. Nonetheless, often a trade-off between

costs and benefits has to be found.

2.2.3 Quality of the annotations.

When annotating data, it is important to ensure that the annotations are accurate, con-

sistent, and of high quality. The annotators should be knowledgeable about the prob-
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lem and trained to ensure consistent and accurate annotations. The annotations should

also be checked for quality and consistency before being used for training.

The choice of annotators.

Having annotators who are knowledgeable about the domain and task is crucial for

ensuring high-quality annotations. In particular, annotators who have a deep under-

standing of the domain are more likely to make accurate annotations. While general

tasks such as sentiment analysis applied to commonly used product reviews by cus-

tomers who have bought and tried them do not require specific background knowledge

and can be efficiently and effectively carried out by crowdsourcing, other domains (e.g.

medicine, engineering, or linguistics) and tasks (e.g. labeling of tumors in MRI images

[58], annotation of data for natural disasters detection [59] or semantic role labeling

[56]) require expert knowledge both for understanding the domain and the application

task. In these cases, it is important to recruit a team of domain expert annotators.

Furthermore, having more annotators is generally considered better because it im-

proves accuracy by mitigating the potential for bias or errors that a single annotator

may introduce. This makes possible the quantification of the intra-annotator agree-

ment, i.e., the agreement between the annotations made by a single annotator, as com-

pared to the annotations made by other annotators for the same instances. Anyway, in

some NLP applications, such as those related to abusive and offensive language, the

utility of resorting to a single agreement between the annotators is debated: the same

data can be labeled in one way by one annotator and oppositely by another annotator,

depending on their opinions and cultural and demographic background. In some cases,

both opinions may be considered correct. Consequently, both annotations should be

considered true in the gold standard to avoid destroying any personal opinion, nuance,

and rich linguistic knowledge by the agreement and harmonization processes: this con-

cept is known as data perspectivism [60].

Annotation guidelines.

Once a team of annotators is recruited, it is important to define the annotation guide-

lines. Annotation guidelines are instructions or rules that define how data instances

should be annotated for a specific task. The purpose is to reduce possible errors related

to misinterpretation of the task. In particular, annotation guidelines should:

• clearly define the task, including the objectives and the scope of the annotation;
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• provide clear and detailed instructions on how to annotate each data instance, in-

cluding the definition of the labels and the labeling process;

• provide examples of annotated data instances for each label, helping the annotators

to understand the annotation process;

• provide the criteria for quality control, such as inter-annotator agreement, and the

procedures for ensuring the quality of the annotations;

• specify how annotators will receive feedback on their annotations and how they can

ask for any doubts that may emerge during the annotation phase.

Annotation tools.

Using an annotation tool can be useful in data annotation for improving the quality

of the annotations. The set of labels usable for the annotations can be encoded in the

tool, thus helping to reduce noise in the annotations and improving the efficiency of

the annotation process. Furthermore, annotation tools often provide built-in quality

control features, such as the possibility to calculate intra-annotator agreement metrics

described in the next paragraph. Commonly used tools for textual data annotation are,

for example, Inception [61], and BRAT [62], while for video data are CVAT1 and Vott2.

Evaluating manual annotations.

To measure the quality of manual annotations and the agreement between annotators,

the Inter-Annotator Agreement (IAA) has to be calculated. IAA provides an idea about

how clear the annotation guidelines are, how uniformly the annotators interpret them,

and how reproducible the annotation task is. It is thus a crucial step for both the vali-

dation and reproducibility of classification results. The most used metric for IAA when

two annotators are involved is Cohen’s Kappa [63], then generalized by Fleiss’ kappa in

a multi-annotators scenario [64].

Cohen’s kappa (Ck ) is a measure of the degree of agreement between two annotators

beyond chance, considering the agreement that would be expected by chance alone. It

is defined as follows:

Ck = po −pc

1−pc
(2.1)

1 Available at:
https://www.intel.com/content/www/us/en/developer/articles/technical/
computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html

2 Available at: https://github.com/microsoft/VoTT

https://www.intel.com/content/www/us/en/developer/articles/technical/computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html
https://github.com/microsoft/VoTT
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In the formula, po is the proportion of units in which the annotators agreed, calcu-

lated as the number of agreed annotations divided by the total number of annotations.

It represents the actual agreement rate between the annotators and reflects the extent

to which they are consistent in their annotations; pc is instead the proportion of units

for which agreement is expected by chance. It is calculated by multiplying the marginal

frequencies of each annotator, i.e., the proportions of annotations made by each anno-

tator, and taking the sum over all categories.

The po −pc represents the proportion of the cases in which beyond-chance agree-

ment occurred and is the numerator of the coefficient. The coefficient Ck is simply the

proportion of chance-expected disagreements which do not occur, or it is the propor-

tion of agreement after the chance agreement is removed from consideration. The Ck

upper limit is +1.00, and its lower limit falls between zero and −1.00, depending on the

distribution of judgments by the two annotators.

Fleiss’ Kappa is a measure of IAA in data annotation tasks where multiple annota-

tors label the same instances. Unlike Cohen’s Kappa, which is calculated between two

annotators, Fleiss’ Kappa is used to measure IAA between more than two annotators.

The formula for Fleiss’ Kappa is as follows:

Fk = po −pc

1−pc
(2.2)

where po is the average agreement rate between the annotators, calculated as the

sum of the agreement rates for each instance, divided by the total number of instances,

and pc is the expected agreement rate between the annotators, calculated as the sum of

the products of the marginal frequencies of each annotator for each category, divided

by the total number of annotations.

Both the Ck and Fk values (kappa) can be interpreted as follows [65]:

• kappa < 0 : Less than change agreement

• 0.01 < kappa < 0.20 : Slight agreement

• 0.21 < kappa < 0.40 : Fair agreement

• 0.41 < kappa < 0.60 : Moderate agreement

• 0.61 < kappa < 0.80 : Substantial agreement

• 0.81 < kappa < 0.99 : Almost perfect agreement

• kappa = 1.00 : Perfect agreement
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While these metrics are widely adopted in state-of-the-art studies, their limits are

also debated. The interested reader can find more information, for example, in [66].

2.3 Converting text to a numerical representation

For NLP machine learning approaches, text must be converted into a numerical repre-

sentation. Different approaches have been proposed for this purpose and are summa-

rized in the next sections.

2.3.1 Sparse vectors representation: the binary model and TF-IDF

The Bag Of Words (BoW) representation creates a vocabulary of all the unique words

in the corpus and then represents each document as a vector of the frequency of each

word in the vocabulary. In this approach, the histogram of the words within the text is

checked, and each word count is considered a feature. Formally, given a collection of

|D| documents D = {d1,d2, . . . ,d|D|}, each document d j is represented as a vector x j in a

vocabulary V of size |V |, where |V | is the number of unique words. The vocabulary can

be obtained by taking the union of all words in the documents, and a word frequency

matrix X is constructed, where xi j is the frequency of word i in document j . Formally,

the BoW representation of the j − th document can be written as:

x j = [x1 j , x2 j , . . . , x|V | j ] (2.3)

There are two main variants of the BoW model: the binary model and the TF-IDF.

The first one represents each document as a binary vector, where each element of the

vector indicates whether a word from the vocabulary is present or not in the document.

The binary BoW representation is created by setting the value of each element in the

vector to 1 if the corresponding word is present in the document and 0 otherwise. Con-

sequently, in 2.3, xi j = 1 if word i is present in document j , 0 otherwise.

The Term Frequency-Inverse Document Frequency (TF-IDF) is instead a weighting

scheme that is often used in information retrieval and text mining to reflect the im-

portance of a word in a document concerning an entire corpus of documents. TF-IDF

extends the binary model by assigning a weight to each word in a document based on

its term frequency (TF) and inverse document frequency (IDF). The term frequency
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measures the number of times a word occurs in a document, while the inverse docu-

ment frequency down-weights the importance of commonly occurring words and up-

weights the importance of rare words. The TF of a word i in the document j is defined

as:

T Fi , j =
fi , j

n j

Where fi , j is the number of occurrences of the word i in the document j and n j is the

number of words in document j .

The IDF of a word i is instead defined as:

I DFi = l og

( |D|
ni

)
where |D| is the total number of documents in the corpus and ni is the number of doc-

uments containing the word i . Finally, the TF-IDF weight of a word i in document j is

given by:

T F − I DFi j = T Fi j × I DFi

At this point, the same equation 2.3 can be used to define the TF-IDF representation

of document j that can be obtained by computing the TF-IDF weights for all words in

the vocabulary, resulting in a vector x j of length |V |, where |V | is the size of the vocab-

ulary. In 2.3, xi j is now the TF-IDF weight of word i in document j .

Despite not being used in this thesis, there are also alternative weighting functions

to TF-IDF, like the Positive Pointwise Mutual Information (PPMI). PPMI draws on the

intuition that the best way to weigh the association between two words is to ask how

much more the two words co-occur in our corpus than we would have a priori expected

them to appear by chance. The interested reader can find more details in [67, 68].

While widely used in some applications, the BoW models still have disadvantages.

First, BoW only considers the frequency of words in a document, ignoring the order

in which they appear and the context in which they are used, and does not capture

the semantic relationships between words, such as synonymy, antonymy, or polysemy.

This can badly affect the performance of NLP tasks. Finally, it has difficulty handling

rare words specific to a particular domain or text, as they may not appear in the train-

ing data and will be excluded from the vocabulary. Furthermore, with a large vocabu-

lary size, the BoW representation can become high-dimensional and sparse, making it
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computationally expensive to process and store. A more sophisticated approach is to

create a vocabulary of grouped words. This changes the scope of the vocabulary and

allows the BoW to capture more meaning from the document. In this approach, each

token is called a N-gram. For example, a 2-gram (more commonly called a bi-gram) is

a two-word sequence of words, and a 3-gram (more commonly called a tri-gram) is a

three-word sequence of words.

2.3.2 Dense vectors representation: Word2Vec, GloVe and FastText

As stated above, in the BoW representations, text documents are represented as sparse

vectors, where each element in the vector corresponds to a word in the vocabulary,

and the value of each element reflects the importance or frequency of the word in the

document. However, since most words in a document are not used, these representa-

tions are very sparse, with most elements having a value of zero. This can lead to high-

dimensional computationally demanding representations where algorithms perform

poorly.

Dense vectors, instead provide a more compact representation of the data by repre-

senting each word as a dense vector in a lower-dimensional space, where the similarity

between the vectors reflects the semantic similarity between the words. Dense vector

representations are obtained using techniques such as Word2Vec [69, 70], GloVe [71], or

FastText [72].

Word2vec embeddings are static embeddings, meaning the method learns one fixed

embedding for each word in the vocabulary. The word2vec’s intuition is that instead of

counting how often each word w1 occurs near w2, a logistic regression classifier (refer

to Section 2.5 for details on classifiers and the classification task) is trained on a binary

prediction task asking if w1 is likely to show up near w2. The learned classifier weights

are taken as the word embeddings. The running text is implicitly treated as training data

for such a classifier, and thus this method is also called self-supervision.

Another very widely used static embedding model is GloVe [71], short for Global Vec-

tors. GloVe is essentially a log-bilinear model with a weighted least-squares objective.

The main intuition underlying the model is the simple observation that ratios of word-

word co-occurrence probabilities have the potential for encoding some form of mean-

ing. The training objective of GloVe is to learn word vectors such that their dot product

equals the logarithm of the words’ probability of co-occurrence. Owing to the fact that

the logarithm of a ratio equals the difference of logarithms, this objective associates the
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logarithm of ratios of co-occurrence probabilities with vector differences in the word

vector space [71]. Because these ratios can encode some form of meaning, this infor-

mation gets encoded as vector differences as well.

The word2vec and Glove embeddings can not directly deal with out-of-vocabulary

(OOV), i.e., words that appear in a text corpus but were unseen in the training corpus.

To deal with these problems, FastText [72] uses subword models, i.e., it represents

each word as itself plus a bag of constituent n-grams, with special boundary symbols <
and > added to each word. For example, with n = 3 the word surgery would be repre-

sented by the sequence < surgery > plus the character n-grams: < su; urg; rge; ery; ry >.

Then an embedding is learned for each constituent n-gram, and the word surgery is

represented by the sum of all of the embeddings of its constituent n-grams. Unknown

words can be presented only by the sum of the constituent n-grams. Furthermore,

thanks to subword information for representing the meaning of a word, FastText can

handle short texts more effectively than word2vec.

2.4 Language models

A problem related to the representational learning discussed in the previous section is

language modeling since the process of representation learning and feature engineer-

ing often depends on the underlying language models. Language models are a type of

statistical model that uses machine learning algorithms to learn patterns and relation-

ships within text data. There are various types of language models, summarized in the

next sections.

2.4.1 Classical Language Models

In its base formulation, the goal of a statistical language model is that of estimating the

probability of a given sequence of words, W = [w1, w2, . . . , wm], in the language. This

can be represented as:

P (W ) = P (w1, w2, . . . , wm) = P (w1) · (w2|w1) · (w3|w1, w2) · . . . ·P (wm |w1, w2, . . . , wm−1)

=
n∏

i=1
P (wi |w1, w2, . . . , wi−1)
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where m is the length of the sequence of words, wi is the i − th word in the se-

quence, and P (wi |w1, w2, . . . , wi−1) is the conditional probability of the i − th word

given the previous words in the sequence. This represents the probability of observ-

ing word wi in the sequence given the context of the previous words. Each of the terms

P (wi |w1, w2, . . . , wi−1) needs to be estimated directly from the dataset:

P (wi |w1, w2, . . . , wi−1) = P (w1, . . . , wi )

P (w1, . . . , wi−1)
= Count(w1, . . . , wi )

Count(w1, . . . , wi−1)

Issues may arise for large values of the group size i . In such cases, the numerator and

the denominator can be close to 0. To address this problem, the short-memory assump-

tion can be used. According to it, only the last n − 1 tokens are used to estimate the

conditional probability of a token, which results in an n-gram model.

Mathematically, the short-memory assumption for the n-gram model can be written

as follows:

P (wi |w1, . . . , wi−1) ≈ P (wi |wi−n+1, . . . , wi−1) = Count(wi−n+1, . . . , wi )

Count(wi−n+1, . . . , wi−1)

If n = 2, we are referring to a bi-gram model, whereas if n = 3, we are referring to a

tri-gram model.

Language models are strictly related to word embeddings because can be used to

develop them in several ways: the training process of a language model provides a way

to learn word embeddings, by estimating the probabilities of words given the context

information provided by the surrounding words in the sentence.

2.4.2 Transformer-based pre-trained language models

While classical language models have been state-of-the-art in NLP for several years, this

thesis widely uses Transformer based pre-trained language models [34] that have revo-

lutionized the NLP state of the art. BERT (Bidirectional Encoder Representations from

Transformers) was the first paper using this neural architecture. BERT’s key technical

innovation is applying the self-attention model [33] to language modeling. Thanks to it,

the obtained language models learn contextual relations between words (or sub-words)

in a text: since one word can have different meanings in different contexts, attention al-

lows the model to look at other positions in the input sequence for clues that can help

lead to a better encoding for the current word. Unlike directional models, which read
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the text input sequentially (left-to-right or right-to-left), the Transformer encoder reads

the entire sequence of words at once. This characteristic allows the model to learn the

context of a word based on all of its surroundings (left and right of the word). A language

model which is trained with the self-attention mechanism can have a deeper sense of

language context and flow than single-direction language models [34].

From the architectural point of view, in its base form, a transformer includes two

separate mechanisms — an encoder that reads the text input and a decoder that pro-

duces a prediction for the task. Since BERT’s goal is to generate a language model, only

the encoder mechanism is necessary (in contrast, e.g. to denoising autoencoders such

as BART [73]). Figure 2.1 illustrates at a high-level the Transformer encoder.

Fig. 2.1: The Transformer encoder: the input is a sequence of tokens, first embedded
into vectors and then processed in the neural network. The output is a sequence of
vectors of size H , in which each vector corresponds to an input token with the same
index.

BERT also adopts a novel training technique named Masked Language Model (MLM),

which allows bidirectional training. In the MLM task, a token wt is replaced with

〈mask〉 and predicted using all past and future tokens:
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W\t := (w1, . . . , wt−1, wt+1, . . . , w|W |)

During training with MLM, before feeding word sequences into the model, 15% of the

words in each sequence is replaced with a 〈mask〉 token. The model then attempts

to predict the original value of the masked words based on the context provided by

the other non-masked words in the sequence. In technical terms, the prediction of the

output words requires:

• Adding a classification layer on top of the encoder output.

• Multiplying the output vectors by the embedding matrix, transforming them into

the vocabulary dimension.

• Calculating the probability of each word in the vocabulary with softmax.

In addition to MLM, the BERT training process adopts the Next Sentence Prediction

(NSP) strategy. The model receives pairs of sentences as input and learns to predict if

the second sentence in the pair is the subsequent sentence in the original document.

During training, 50% of the inputs are a pair in which the second sentence is the sub-

sequent sentence in the original document, while in the other 50%, a random sentence

from the corpus is chosen as the second sentence. When training the BERT model, MLM

and NSP are trained together to minimize the combined loss function of the two strate-

gies. BERT was trained on 800M words from BooksCorpus and 2,500M words from En-

glish Wikipedia.

From BERT, different variants have been proposed. One of the most famous and

also used in this thesis is RoBERTa (short for “Robustly Optimized BERT Approach”)

[74]. It adopts the same BERT architecture while being trained on a larger dataset that

goes over 160GB of uncompressed text, with sources ranging from the English lan-

guage encyclopedic and news articles to literary works and web content. Representa-

tions learned by such models generally achieve strong performance across many tasks

with datasets of varying sizes drawn from a variety of sources.

One key difference between RoBERTa and BERT is that RoBERTa was trained on a

much larger dataset using a more effective training procedure. In particular, RoBERTa

has improved BERT by:

• removing the NSP objective: the authors experimented with removing NSP loss,

concluding that this removal slightly improves downstream task performance.
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• training with bigger batch sizes and longer sequences: the large batches improve

perplexity and accuracy on the masked language modeling objective; furthermore,

large batches are also easier to parallelize via distributed parallel training.

• training via MLM with dynamic masking, i.e., a masking pattern is generated every

time a sequence is fed to the model.

An interesting aspect of pre-trained language models (both BERT and RoBERTa) is

that they can be fine-tuned for a large number of NLP tasks with a modest amount of

training data and computational resources, achieving state-of-the-art results on many

of them, such as sentiment analysis, textual entailment, and natural language inference,

crucially also across languages [75]. This means that when the pre-training is complete,

the obtained language model is saved as a set of parameters, which can then be loaded

and fine-tuned on a smaller, task-specific dataset, simply adding standard layers on top

of the architecture. The fine-tuning step involves updating the parameters of the pre-

trained model to minimize a task-specific loss function.

2.4.3 Evaluating Language Models with Perplexity

As stated before, in its base formulation, the goal of a statistical language model is to

estimate the probability that a particular word w appears after a sequence of observed

words. The evaluation of language models is therefore based on statistically character-

izing the likelihood of the presence of w after the observed sequence, and Perplexity (P)

is one of the most common metrics adopted for this purpose.

Perplexity is defined as the exponentiated average negative log-likelihood of a se-

quence. For example, if we have a sequence W = (w1, . . . , w|W |), the perplexity of W is:

P (W ) = exp

{
− 1

|W |
|W |∑
i=1

log pθ(wi |w<i )

}
(2.4)

Perplexity is not well defined for language models trained on MLM, such as BERT

and RoBERTa. For these models, we can compute the perplexity from their pseudo-log

likelihood scores (PPL) [76] instead, which corresponds to the sum of conditional log

probabilities of each sentence token [77]. Formally, the pseudo-log likelihood scores

(PPL) of a sentence W = (w1, . . . , w|W |) under a language model with parameters Θ is

defined as:

PPL(W ) :=
|W |∑
t=1

log PMLM(wt |W\t ;Θ)
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where PMLM(wt |W\t ;Θ) is the conditional probability of token wt given all past and

future tokens W\t := (w1, . . . , wt−1, wt+1, . . . , w|W |).

The (pseudo) perplexity PP of a masked language model [78] on a corpus of sen-

tencesW, is then computed as:

PP (W) := exp
(
− 1

N

∑
w∈W

PPL(W )
)

(2.5)

where N is the number of tokens in the corpus.

A lower perplexity value indicates that a model is making more confident and ac-

curate predictions, thus indicating that the model has learned from the training data,

and can well generalize to unseen data. A higher perplexity value indicates that a model

makes less confident and less accurate predictions. This may be due to several factors,

such as overfitting the training data, or a lack of data to learn from. For example, a model

with a perplexity of 2 means that the model is on average twice as uncertain about the

next word in the sequence compared to a model with a perplexity of 1.

2.5 Machine Learning for data classification

2.5.1 Definition

The first part of this thesis mainly deals with procedural sentence detection from sur-

gical textbooks, academic papers, or online textual resources. As later explained in its

dedicated chapter, we treated this task as a text classification problem. The final part

of this thesis instead deals with surgical gesture classification, i.e., the task of recogniz-

ing the surgical gesture given its corresponding associated kinematic data. The goal of

this section is thus to define the classification problem as a special kind of supervised

learning task by explaining the main background technologies later used.

The goal of classification is to take a single observation, extract some useful fea-

tures, and thereby classify the observation into one of a set of discrete classes. The

task of supervised classification is to take an input x and a fixed set of output classes

Y = {y1, y2, . . . , ym} and return a predicted class y ∈ Y .

When the observation is a text, we face a text classification task. In this case, the task

is that of assigning a label to an entire document or sentence. One of the most com-

mon examples is that of the already mentioned sentiment analysis, whose goal is the

extraction of sentiment, i.e., the positive, neutral, or negative orientation that a writer
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expresses toward some object that, according to the specific task, can be a movie, a

book, a product or a person. In this case, the task is a ternary classification task because

there are three classes to choose from. Another classic example is spam detection, the

binary classification task of assigning an email the label spam or not-spam. Finally, one

of the oldest tasks in text classification is assigning a library subject category or topic

label to a text, an important sub-task of information retrieval. In this case, various sets

of subject categories exist and therefore is a multi-class text classification task.

While rule-based approaches have been proposed in the past, nowadays, classifica-

tion is mostly solved via supervised machine learning.

2.5.2 Main algorithms of data classification

Data classification is an instance of machine learning where specific algorithms and

pre-trained models are used to cluster raw data into predefined categories. The most

popular data classification algorithms are summarized below.

Logistic Regression

The Logistic Regression algorithm implements a linear equation with independent or

explanatory variables to predict a response value.

If we have one explanatory variable x1 and one response variable z, then the linear

equation would take the form of:

z =β0 +β1x1

where the coefficients β0 and β1 are the parameters of the model. If there are multi-

ple explanatory variables, then the above equation can be extended to:

z =β0 +β1x1 +β2x2 + . . .+βn xn

The predicted response value z is then converted into a probability value that lies

between 0 and 1 thanks to the sigmoid function:

φ(z) = 1

1+e−z

To map this probability value to a discrete class, a threshold value (also called deci-

sion boundary) has to be chosen. Generally, the decision boundary is set to 0.5.
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Support Vector Machines

Support Vector Machine (SVM) is an approach for supervised machine learning classi-

fication.

Given a set of input data, it tries to determine which of two possible classes each

data point belongs to. It does this by finding the optimal decision boundary. In SVM,

the decision boundary is defined by a line (or hyperplane) that separates the two classes

with the maximum margin. The margin is the distance between the hyperplane and the

closest data points from each class, known as support vectors.

In linear SVM classifiers, the decision boundary is a straight line that separates the

two classes. It is created by finding the line that maximizes the margin between the two

classes, meaning that it tries to maximize the distance between the line and the closest

data points from each class. The SVM algorithm optimizes this line by using a mathe-

matical objective function, which considers the distances between the data points and

the hyperplane.

Mathematically, the linear SVM classifier solves the following optimization problem:

min
w,b

1

2
||w ||2 s.t . yi (w T xi +b) ≥ 1, i = 1,2, . . . ,n (2.6)

where w and b are the parameters of the hyperplane, xi is the i -th feature vector,

yi ∈ {−1,1} is the corresponding label of the i -th instance, and n is the total number

of instances in the training set. The constraint yi (w T xi +b) ≥ 1 ensures that all the in-

stances are correctly classified, and the margin between the hyperplane and the closest

points is at least 1. The objective function 1
2 ||w ||2 encourages a simple and compact

solution.

Once the decision boundary has been determined, new data points can be classified

by measuring their distance from the boundary.

Random Forest Classifier

The random forest [79] consists of many individual decision trees that operate as an

ensemble. Each tree in the random forest outputs a class prediction, and the class with

the most votes becomes our model’s prediction.

More formally, a random forest is an ensemble of different axis-parallel decision

trees trained independently. In the random forest classifier, each non-leaf node is as-

sociated with a split function f (x;θ) :
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f (x;θ) =
{

1 if x(θ1) < θ2

0 otherwise

where θ1 ∈ {1,2, . . . ,d} is the selected feature and θ2 ∈ R is a threshold. The outcome

determines the child node to which x is routed. For instance, 0 may represent the left

child node while 1 may represent the right child node. The leaf nodes of the tree either

store class probability distributions or class labels based on the training samples they

receive. During testing, for a test sample x, each tree returns a probability distribution

pt (y |x) stored on the leaf node it falls into, and the class label is obtained via averaging.

Naive Bayes Classifier

Naive Bayes is a simple algorithm that classifies text based on the probability of the

occurrence of events. This algorithm is based on the Bayes theorem, which helps in

finding the conditional probabilities of events that occurred based on the probabilities

of occurrence of each event. This model also requires a training dataset that contains a

collection of sentences labeled with their respective classes. Using the Bayesian equa-

tion, the probability is calculated for each class with their respective sentences. Based

on the probability value, the algorithm decides whether the sentence belongs to a ques-

tion or statement class.

Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep learning architecture widely used in

images, texts, and audio classification. It is composed of three main layers, named con-

volutional layer, pooling layer, and fully-connected layer.

The convolutional layer is the fundamental building block of a CNN, carrying out

the majority of computations. The actors involved are the input data, a feature de-

tector (also called a filter or kernel), and a feature map. The feature detector is an N -

dimensional (N-D) array of weights that represents the N parts of the input. N is typi-

cally one for text or two for images. The filter is then applied to a portion of the input

data, i.e., a dot product is computed between that portion and the filter. This dot prod-

uct is then stored in an output array. The filter then shifts by a stride and the process

is repeated until the entire input data has been traversed. The output resulting from

this series of dot products is referred to as a feature map, activation map, or convolved

feature. Multiple convolutional layers can be stacked after the initial one, each focusing

on a different aspect of the input. The combination of these individual parts forms a
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hierarchical structure of features, where each sub-layer addresses a distinct portion of

the input and their collective representation captures higher-level patterns.

Pooling layers are responsible for reducing the number of parameters in the in-

put. Similar to the convolutional layer, the pooling operation involves sweeping a filter

across the entire input and applying an aggregation function to the values within the

receptive field, thereby populating the output array. Although some information may

be lost during the pooling process, it aids in reducing complexity, enhancing efficiency,

and mitigating overfitting.

Finally, the fully-connected layer carries out the classification task based on the fea-

tures extracted by the preceding layers and their various filters. It combines these ex-

tracted features to make predictions and assign class probabilities. To do it, a softmax

activation function is generally applied. It takes a vector of real numbers as input and

transforms them into a probability distribution over multiple classes, i.e., ensuring that

the output values range between 0 and 1 and that they sum up to 1, making them inter-

pretable as probabilities. The class with the highest probability is typically selected as

the predicted class label.

Bi-LSTM

A Long Short-Term Memory (LSTM) is a deep learning architecture (recurrent neural

network) capable of processing sequential data in a single direction, from the begin-

ning to the end. Differently, a Bi-LSTM consists of two separate LSTMs that process

the input sequence in opposite directions: one LSTM processes the sequence from the

beginning to the end (the forward LSTM), and another LSTM processes the sequence

from the end to the beginning (the backward LSTM). The outputs of these two LSTMs

are concatenated or summed to provide a final output. Each LSTM network in a Bi-

LSTM architecture comprises a series of repeating LSTM units or cells, each containing

a cell state, an input gate, an output gate, and a forget gate. The cell state is responsible

for storing and updating the memory of the network, while the gates control the flow of

information into and out of the cell.

The network can access past and future information about each element by process-

ing the sequence in both directions. This can be especially useful in speech recognition

or natural language processing, where the context of a given element in the sequence is

essential for determining its meaning.
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2.5.3 Evaluation metrics

Standard metrics for evaluating data classification tasks include precision, recall, F1,

and accuracy. Let TP, TN, FP, and FN denote the number of true positive, true nega-

tive, false positive, and false negative predictions, respectively, made by a classification

model. Let P denote the number of actual positive cases in the data, and let N denote

the number of actual negative cases in the data. Then, the following metrics can be

defined:

Accuracy:
T P +T N

P +N
(2.7)

It measures the proportion of correct predictions made by the model.

Precision:
T P

T P +F P
(2.8)

It measures the proportion of true positive predictions out of all positive predictions

made by the model.

Recall:
T P

P
(2.9)

It measures the proportion of true positive predictions from all actual positive cases in

the data.

F1-score:

2∗
(

precision * recall

pr eci si on + r ecal l

)
(2.10)

It is the harmonic mean of precision and recall, providing a balanced measure of both

metrics.

Micro, macro, and weighted metrics are used to compute evaluation metrics in the

context of multi-class classification, which involves predicting multiple classes.

Micro metrics calculate the overall metric across all classes by summing up the cor-

responding values of true positive, false positive, and false negative across all classes.

This results in a single evaluation score that reflects the overall performance of the

model. Macro metrics calculate the average metric across all classes by averaging the

corresponding values of precision, recall, or F1 score across all classes. This provides

insight into how well the model performs for each class separately. Weighted metrics

are similar to macro metrics, but they take into account the class imbalance by weight-

ing the metrics by the number of samples in each class.
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2.6 Semantic Role Labeling

A big part of this thesis deals with information extraction from procedural surgical texts.

We treated this problem as a Semantic Role Labeling (SRL) task.

2.6.1 Definition

SRL is the task of labeling semantic arguments of predicates in sentences to identify

“Who" does “What" to “Whom", “How", “When" and “Where". Although there is not a

universally adopted notation, in this thesis we refer to the following terminology:

• framebank: it is the lexical resource encoding different predicate’s frames and roles.

• predicate: it is the action to which the various semantic arguments are connected;

• frame: it is the specific meaning that a predicate assumes in a given context; gener-

ally, each frame is accompanied by a list of expected semantic roles.

• role: it is the tag that is used to label the different arguments of a sentence; this tag is

frame-specific but basically answers the question who? or what? or whom? or how?

or when? or where?

• argument: it is the span of text that is labeled with a role.

The typical SRL task is composed of two sub-tasks:

1. Predicate identification and disambiguation: to identify each predicate in a sen-

tence, assigning it the appropriate frame, i.e., the meaning it assumes in the given

context, among the available ones for that lemma codified in the target lexical re-

source;

2. Argument identification and classification: to detect the argument spans or argu-

ment syntactic heads of a predicate, and to assign them the appropriate semantic

role labels according to the target lexical resource.

To better clarify, one example follows. Given the sentence “Yesterday Mary bought the

book from John.", in the predicate identification and disambiguation phase, SRL iden-

tifies that “bought" is the predicate and it has a meaning related to commerce. Then, in

the argument identification and classification, the SRL has to identify that:

• Yesterday is the time reference of when the action is performed;

• Mary is the one who performs the action;

• bought is the action, i.e., the predicate identified and disambiguated in the previous

step;
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• the book is the object undergoing the action, in this case, the object bought;

• John, in this context, is the seller.

The way a sentence is labeled depends on the lexical resource used.

2.6.2 Lexical resources

The two most used lexical resources for SRL are PropBank [56] and FrameNet [80], and

they use different typologies of semantic roles.

PropBank lexical resource

The Proposition Bank, generally referred to as PropBank, is a resource of sentences an-

notated with semantic roles. The English PropBank labels all the sentences in the Penn

TreeBank; the Chinese PropBank labels sentences in the Penn Chinese TreeBank. Be-

cause of the difficulty of defining a universal set of thematic roles, the semantic roles

in PropBank are defined concerning an individual verb sense. Each sense of each verb

thus has a specific set of roles, which are given only numbers rather than names: Arg0,

Arg1, Arg2, and so on. In general, Arg0 represents the one who performs the action,

and Arg1 represents the one who is subjected to the action. The semantics of the other

roles are less consistent, often being defined specifically for each verb. Nonetheless,

there are some generalizations; the Arg2 is often the benefactive, instrument, attribute,

or end state, the Arg3 the start point, the benefactive, instrument, or attribute, and the

Arg4 the endpoint. Here are simplified PropBank entries for two of the senses of the

verb buy:

• buy.01 - purchase

– Arg0: buyer

– Arg1: thing bought

– Arg2: seller

– Arg3: price paid

– Arg4: benefactive

• buy.05 - accept as truth

– Arg0: believer

– Arg1: thing believed
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Such PropBank entries are called frame files; the definitions in the frame file for each

role (“buyer”, “thing bought”) are informal glosses intended to be read by humans

rather than formal definitions.

PropBank also has many non-numbered arguments called ArgMs, (ArgM-TMP, ArgM-

LOC, etc.) representing modification or adjunct meanings. These are relatively stable

across predicates, so they are not listed with each frame file. Data labeled with these

modifiers can be helpful in training systems to detect temporal, location, or directional

modification across predicates. Some of the ArgMs include:

• TMP: when?

• LOC: where?

• DIR: where to/from?

• MNR: how?

• PRP: why?

• ADV: miscellaneous

The above example is instantiated in the PropBank scenario as follows. In the pred-

icate identification and disambiguation phase, PropBank’s SRL identifies that “bought"

is the predicate, and in this sentence, it has, among the different alternative senses for

“buy" codified in PropBank, the meaning buy.01 - purchase. This means that semantic

roles have to be chosen within the frame buy.01 - purchase. In the argument identifica-

tion and classification phase, PropBank’s SRL produces the following output:

“[ArgM-TMP: Yesterday] [Arg0: Mary] [buy.01: bought] [Arg1: the book] [Arg2:

from John]."

The meaning of the labels is specified in the corresponding framebank.

Framenet lexical resource

The FrameNet project [80, 81] is another SRL project. Whereas roles in the PropBank

project are specific to an individual verb, roles in the FrameNet project are specific to a

coherent chunk of commonsense background information concerning a specific con-

cept. For example, the concept buyer, goods, money, and seller are all linked to the same

concept, in this case, the commercial scenario. The idea is then that of grouping words

around a specific concept to which they are related and not around a specific verb. The

same example as before:

“[Time: Yesterday] [Buyer: Mary] [bought] [Goods: the book] [Seller: from John]."
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Also in FrameBank, there exists the concept of core and non-core roles: the firsts are

concept-specific, while the latter express more general properties of time and location

and are more similar to PropBank’s ArgM arguments.

Other lexical resources

Other lexical resources for SRL not used in this thesis are AMR (Abstract Meaning Rep-

resentation) and VerbNet: the interested reader can find more details in [82, 83].

2.6.3 Main semantic role labeling models

SRL is traditionally performed with data-driven methods [84]. Traditional approaches

were based on classifiers trained on manually-engineered textual features: e.g. [85]

proposes a statistical classifier trained using various morpho-syntactic features (e.g.

governing predicate, phrase type). Recent works on SRL leverage deep neural net-

works, shifting from feature engineering to architecture engineering. Several notable

approaches suggest performing SRL in an end-to-end fashion, relying only on raw low-

level input signals (characters/tokens) fed to advanced models, such as multi-layer re-

current networks [86]. More recently, approaches leveraging self-attention techniques

[87] and Transformer-based architectures with pre-trained language models [88] have

been proposed.

2.6.4 Evaluation metrics

The evaluation of SRL methods typically involves comparing the predicted roles for

predicates and arguments to a set of manually annotated gold standard annotations.

The used metrics are precision, recall, and F1-score. These are standard evaluation met-

rics for binary or multiclass classification tasks already discussed in Section 2.5. They

evaluate the ability of the model to correctly identify and classify the semantic roles of

predicates and their arguments.

Two common datasets used for evaluation are CoNLL-2005 [89] and CoNLL-2012

[90], both exploiting PropBank as frameBank.

2.7 Conclusions

This chapter has summarized all concepts and technologies that are used in the other

parts of this thesis. It has introduced the concept of machine and deep learning, and
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best practices to follow during the annotation process, which is a paramount step in

supervised learning. Then, since the majority of the thesis deals with NLP techniques

applied to texts, this chapter has compared traditional language modeling techniques

with the recent pre-trained Transformer-based ones. This chapter has finally defined

some tasks used in the other chapters of this thesis, namely the (textual or kinematic)

data classification and semantic role labeling.



This part presents our contributions to procedural robotic-surgery knowledge ex-

traction from textbooks and academic papers. First, SURGICBERTA, a novel pre-

trained language model for surgical language, is presented in Chapter 3. SURGIC-

BERTA is then used in Chapter 4, together with other state-of-the-art deep learning

methods, to detect in a text the sentences containing procedural knowledge discard-

ing the others. Then, the task of robotic-surgery procedural knowledge understand-

ing is covered by Chapters 5-8. In particular, Chapter 5 defines a proper surgical

framebank, adapting an existing general-English framebank to the robotic-surgery

domain. The obtained resource is used to annotate a corpus for SRL of as-is surgical

sentences taken from surgical books and academic papers in Chapter 6. The resulting

annotated corpus is then used to train, validate and test SURGICBERTA on the SRL

task. Finally, Chapter 7 proposes a pipeline based on SRL and some syntactic rules

to empirically demonstrate how, within simple language constraints, it is possible to

extract a logical template from sentences written in natural language. Finally, since

not all information needed to automate a task is expressed in textbooks, a mapping

between commonsense knowledge and autonomy levels is proposed in Chapter 8 to

guide future research directions.

Part II

Procedural knowledge from surgical textbooks

43
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Developing a pre-trained language model for

surgical language

"Larvatus prodeo [Masked, I go forward]"

René Descartes

3.1 Introduction

While a large number of domain-specific language models have been developed with

an improved understanding of the semantic information in their field of expertise, to

the best of our knowledge, a specialized model specific to the surgical language does

not exist yet, even if the scientific community has shown a growing interest in the ap-

plication of NLP in surgery, especially for the image captioning task [91, 92, 93, 94, 95].

As stated in the introduction, surgical literature is teeming with books, online resources,

and academic papers of the highest quality used by universities worldwide.

This chapter introduces a new pre-trained language model, named SURGICBERTA,

trained on a large quantity of surgical textual material. In more detail, this chapter de-

scribes:

1. the development of SURGICBERTA, a pre-trained language model specific for the

understanding of procedural surgical language;

2. the intrinsic evaluation of SURGICBERTA with respect to the general-purpose model

ROBERTA;

3. a preliminary extrinsic evaluation of SURGICBERTA with respect to ROBERTA, that

is, comparing their performances when employed on different downstream tasks.

SURGICBERTA will also be used in Chapter 4 and 6 for the procedural sentence de-

tection and procedural knowledge extraction tasks, respectively.
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The quantitative assessments are complemented with qualitative analysis on SURGIC-

BERTA, showing that it contains a lot of surgical domain knowledge that could be useful

to enrich existing state-of-the-art surgical knowledge bases. The evaluation indicates

that SURGICBERTA better deals with surgical language than a state-of-the-art yet open-

domain and general-purpose model such as ROBERTA, and therefore can be effectively

exploited in many computer-assisted applications, specifically in the surgical domain.

The chapter is organized as follows: Section 3.2 revises relevant works in this area.

Then, SURGICBERTA is presented in Section 3.3. The required textual data is collected,

extracted, pre-processed, and used for the continuous training of ROBERTA on the

MLM task with domain-specific text. Section 3.4 presents the intrinsic metrics and tasks

used to evaluate SURGICBERTA. Section 3.4.4 reports and qualitatively discusses some

examples of surgical domain knowledge contained in SURGICBERTA. Finally, 3.5 sum-

marizes obtained results and proposes future works.

3.2 State of the art

Pre-trained language models in biomedicine. As stated in 2.4.2, transformer-based

pre-trained language models can be easily fine-tuned for several downstream tasks,

including those relevant to the biomedical domain. The first language models were

built for general English, and thus, as stated in the papers cited in this section, they

may not be particularly adequate to cover specific domains due to frequently missing

domain words or expressions. To overcome this limit, there is the possibility to train

from scratch a model specific to a given domain of interest, such as in [96, 97] where

large models specific to the clinical domain are proposed. Developing such a model

from scratch is very expensive for the computational resources and the training time

required. For this reason, domain-adaptation techniques, such as the MLM described

in Section 2.4.2, have been proposed and widely used in biomedicine, together with

fine-tuning for various downstream tasks. In [98], domain-adaptation is used to obtain

a cancer domain-specific language model for effectively extracting breast cancer phe-

notypes from electronic health records. The authors of [99] developed a pipeline for

pre-trained neural models to classify patients as seizure-free and extract text contain-

ing their seizure frequency and date of last seizure from clinical notes. The first step

of this pipeline is the unsupervised domain adaptation, using progress notes that were

not selected for annotation. The obtained model has been fine-tuned for the classi-
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fication and extraction tasks. Also [100] adopted a domain adaptation technique on

clinical notes from the Medical Information Mart for Intensive Care III database [101]

to extract clinically relevant information. In [102], causal precedence relations are rec-

ognized among the chemical interactions in the biomedical literature to understand

the underlying biological mechanisms. However, detecting such causal relations can be

challenging because annotating such causal relation detection datasets requires con-

siderable expert knowledge and effort. To overcome this limitation, in-domain pretrain-

ing of neural models with knowledge distillation techniques have been adopted, show-

ing that the neural models outperform previous baselines even with a small number

of annotated data. In [103], a domain-adaptation strategy is adopted to encourage the

model to learn features from the context to curate all validated antibiotic resistance

genres, i.e. the ability of bacteria to survive and propagate in the presence of antibi-

otics, from scientific papers. In [104], a domain adaptation technique has been used

to align large language models to new medical domains, showing that, after a proper

adaptation step, they encode some clinical knowledge usable in question-answering

applications. Finally, a domain adaptation technique has been adopted for biomedical

domain adaptation in languages different than English, such as Spanish [105] and Chi-

nese [106], showing the same improvement trend when compared to the corresponding

base models.

However, due to terminological differences between biomedical domains, it is of-

ten difficult to use these models to gain benefits outside the goal they were trained on.

Differences are also in the structure of the sentence: for example, EHRs and clinical

notes are often structured and concise and may use not explained abbreviations. Aca-

demic articles or textbooks use instead a language that, although still highly technical,

is more accessible and accompanied by background information. Therefore, it is gen-

erally accepted that model performance may degrade when evaluated on data with a

different distribution [107]. Consequently, domain adaptation on relevant domain data

is essential to improve performance in very specialized domains [108], and despite the

availability of several biomedical language models, to the best of our knowledge, a pre-

trained surgical language model is still missing. Such a model is essential for mining

surgical procedural knowledge from text and developing intelligent surgical systems.
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SurgicBERTa masked language model

Sentence:

Input: [s] radical prostatectomy is the surgical removal

radical prostatectomy is the surgical removal of the <mask>.

of the <mask> [\s]

[s] radical prostatectomy is the surgical removal of the [\s]

1. prostate
2. tumor
3. specimen
4. …

Output:

The token “prostate” has the highest probability

Fig. 3.1: MLM task used for adapting ROBERTA to the surgical domain. s and \s are
special tokens denoting the sentence’s beginning and end, respectively.

3.3 SurgicBERTa

This section describes the development of SURGICBERTA, the pre-trained language

model for the surgical domain we released. SURGICBERTA has been developed on top

of ROBERTA, the already available English pre-trained language model for the general

domain described in Section 2.4.2.

Starting from ROBERTA, we develop a novel model specific to the surgical domain by

continuously training ROBERTA for the MLM task on a large amount of surgical domain

text. We recall that, in the MLM task, a token wt is replaced with 〈mask〉 and predicted

using all past and future tokens W\t := (w1, ..., wt−1, wt+1, ..., w|W |). Figure 3.1 illustrates

the MLM task used to obtain SURGICBERTA.

In more detail, 300K sentences from surgery books (7 million words) are selected.

To obtain a surgical model as general as possible, the training sentences are selected

from various books covering several heterogeneous surgical domains, from abdominal

surgery to orthopedics, to eye surgery. We searched for surgery books written in En-
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glish on the web pages of several publishing houses. As keywords, we used the name of

the surgical macro-areas (e.g. general surgery, abdominal surgery, gynecology surgery,

eye surgery). From the results, we downloaded the digital version only of the texts to

which our universities have proper legal access. A very minimal pre-processing of the

sentences is performed to remove URLs and bibliographic references.

In more detail, 15% of tokens are selected for possible replacement. Among those se-

lected tokens, 80% are replaced with the special 〈mask〉 token, 10% are left unchanged,

and 10% are replaced by a random token. The model is then trained to predict the initial

masked tokens using cross-entropy loss. Following the ROBERTA approach, tokens are

dynamically masked instead of fixing them statically for the whole dataset during pre-

processing. This improves variability and makes the model more robust when training

for multiple epochs.

3.4 Evaluation

We evaluate SURGICBERTA along several dimensions, comparing it with ROBERTA,

the starting language model used for adaptation to the surgical domain. Section 3.4.1

presents the intrinsic evaluation, and Section 3.4.3 presents the two downstream tasks

we use to evaluate SURGICBERTA, namely surgery and main anatomy link and surgical

terminology acquisition. Chapter 4 will then use SURGICBERTA for the procedural/non-

procedural surgical sentence classification, while Chapter 6 for the surgical information

extraction.

3.4.1 Intrinsic evaluation

Evaluation metrics. In Section 2.4.3, equation 2.5 defined the pseudo-perplexity PP ,

the metric used to evaluate BERT-based language models. By computing PP on a test

corpus for both ROBERTA and SURGICBERTA, we evaluate the model’s ability to predict

the unseen text from the corpus we used for evaluation and take this as an intrinsic eval-

uation metric of the quality of the two models in the surgical domain. The comparison

is fair because ROBERTA and SURGICBERTA share the same tokenizer and vocabulary.

Other intrinsic metrics used in this chapter to evaluate ROBERTA and SURGICBERTA

on the surgical domain are the accuracy of MLM computed on the masked words dur-

ing the evaluation step and the evaluation loss. Accuracy measures how well our model

predicts the masked words by comparing the model predictions with the proper values
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Table 3.1: Perplexity, accuracy and evaluation loss. Bold values mark the better scores
for each metric.

Pre-trained model Perplexity Accuracy Evaluation Loss
ROBERTA 15.410 0.546 2.735
SURGICBERTA 4.30 0.699 1.458

in terms of percentage. Instead, the loss is a value that represents the summation of er-

rors in a model. It measures how well or poorly the model is performing. If the errors

are high, the loss will be high, and the model will not perform well.

Generally, the higher the accuracy in the evaluation dataset and the lower the evalu-

ation loss, the better the model will perform.

Results and discussion. Table 3.1 reports perplexity, accuracy, and loss values of RO-

BERTA and SURGICBERTA obtained during the evaluation of the MLM task. SURGIC-

BERTA has lower perplexity (−11.11), greater accuracy (+15.30%), and lower evaluation

loss (−1.277) than ROBERTA. All obtained results intrinsically confirm that SURGIC-

BERTA better deals with surgical language than ROBERTA.

3.4.2 Extrinsic Evaluation - Task 1

Task definition. The purpose of this task is to associate the name of the surgical pro-

cedure with the corresponding anatomical target or relevant feature to verify if the lan-

guage models have learned this type of knowledge during training. For example, the

prostatectomy has to be associated with prostate, nephrectomy with kidney, and mas-

tectomy with breast. To evaluate our models on this task, we built a dataset consisting

of the definition of 20 different surgical procedures. In particular, surgical procedures

that can be performed with the aid of a robot have been chosen, together with other

very frequent laparoscopic ones. The definitions are retrieved from the web or surgical

manuals not used during the training of the language models. From them, the name of

the corresponding anatomical target has been removed, and the models are asked to

guess it. As evaluation metrics, we consider the ranking of the correct target word with

respect to the others returned by the model, the probability that the model will select

it, the Reciprocal Rank (RR), and the Mean Reciprocal Rank (MRR) [109]. MRR is a mea-

sure to evaluate systems that return a ranked list of answers to queries. In the case of

this task, answers are words returned to fill the 〈mask〉 , i.e. the anatomical part cor-
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responding to the procedure description, and queries are the sentences describing the

procedure. In more detail, for a single query, the RR is defined as 1/rank, where rank

is the position of the correct answer among the ones (sorted by probability, from the

highest to the lowest) predicted by the model. For multiple queries |Q|, the MRR is the

mean of the |Q| RRs, i.e.:

MRR = 1

|Q|
|Q|∑
i=1

1

r anki
= 1

|Q|
|Q|∑
i=1

RRi (3.1)

The vocabulary has not been restricted, i.e. a list of possible candidates to choose from

has not been used so that models can return any word belonging to the vocabulary.

To better clarify with an example, consider the following sentence (i.e. query):

a sacrocolpopexy is a surgical procedure used to treat 〈mask〉 organ prolapse.

Models are asked to fill in the missing word with the correct one, which in the above

example is pelvic. They will propose a list of possible candidates sorted by probability.

For example, for the above sentence, ROBERTA and SURGICBERTA return the correct

word pelvic in the third and first positions, respectively, thus obtaining both an RR of

0.33 and 1.0, respectively. The probability that ROBERTA will select the correct word is

0.043, while the one for SURGICBERTA is 0.33, which is significantly higher.

Results and discussion. This section summarizes the results of the above-described

task, i.e. predicting the anatomical target given the name and a brief definition of the

surgical intervention related to that target. On average, the correct target is returned by

ROBERTA in position 2.35, while SURGICBERTA outperforms ROBERTA proposing the

correct target in position 1.35. The MRR of ROBERTA is 0.731, while that of SURGIC-

BERTA is 0.902. In more detail, 30% of the times SURGICBERTA performs substantially

better than ROBERTA, while the contrary only holds in one case. The violin plots of

Figure 3.2 summarize the obtained RRs on each query sentence: the one for SURGIC-

BERTA is very wide at the top and skinny in the middle and the bottom, while the one

of ROBERTA, albeit having a similar distribution, is much less wide at the top and has

a median weight lower than that of SURGICBERTA. The shape of the distribution indi-

cates that the RRs of SURGICBERTA are highly concentrated around the first quartile,

meaning that the model predicts the proper anatomical target very well. In contrast,

the RRs of ROBERTA are more evenly distributed across the entire range, highlighting
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Fig. 3.2: Reciprocal rank of the predicted word in the task of predicting the anatomical
target given the information of a surgical procedure (Extrinsic Evaluation - Task 1).

lower scores. Also this task confirms the benefit of having specialized ROBERTA for the

surgical language.

3.4.3 Extrinsic Evaluation - Task 2

Task definition. This task is similar to the previous one but applied to a different dataset

and therefore proposed for a different purpose: to verify whether SURGICBERTA mas-

ters the surgical language and can use it more appropriately than ROBERTA. In partic-

ular, a dataset of 50 surgical sentences was collected from different sources, i.e. surgical

books, academic papers, and web pages not used during the MLM training. The sen-

tences were randomly chosen from those that met the following requirements:

• the sentence has not been used to train SURGICBERTA;

• one of the following holds:

– the sentence contains an expression commonly used in surgery. To define fre-

quently used expressions, we have selected those typically abbreviated with an

acronym in papers. In the sentences included in the dataset, the abbreviations

have been substituted with the original expression, and the language models are

asked to complete them correctly in the corresponding context;

– the sentence contains a description of a surgical procedure. In the sentences in-

serted in the dataset, the verb describing the action is masked, and the language

model is asked to guess it based on the context.
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Table 3.2: Mean position, MRR, and mean probability on the task of surgical terminol-
ogy acquisition (Extrinsic Evaluation - Task 2).

Pre-trained model Mean position MRR
ROBERTA 152.720 0.262
SURGICBERTA 7.960 0.658

Fig. 3.3: Reciprocal rank of the predicted word in the task of surgical terminology ac-
quisition (Extrinsic Evaluation - Task 2).

Since the configuration of the task is the same as the previous one, we used the same

metrics adopted for it, i.e. the position in which the correct solution is proposed, the

corresponding probability, the RR, and the MRR.

Results and discussion. Table 3.2 summarizes the obtained results for this task. SURGIC-

BERTA substantially improves all proposed metrics: the SURGICBERTA mean position

is 19.19 times better than the ROBERTA one; the MRR is improved by 0.396. 66% of the

times SURGICBERTA improves the RRs when compared to ROBERTA. Only in two cases

(out of 50) ROBERTA performs better than SURGICBERTA. The violin plots of Figure 3.3

illustrate the RRs of the two language models for each query: while the one for SURGIC-

BERTA is wide at the top, the one for ROBERTA is wide at the bottom. Furthermore,

SURGICBERTA has a median weight much higher than that of ROBERTA. This high-

lights the best accuracy of SURGICBERTA in learning surgical terminology. Also, this

task confirms that SURGICBERTA better captures the surgical language.
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Table 3.3: ROBERTA and SURGICBERTA most probable words for the most used surgi-
cal robots.

ROBERTA SURGICBERTA

Rank Word Probability Word Probability
1 Braun 0.031 Zeus 0.261
2 Juno 0.027 Xi 0.111
3 Hawk 0.017 Si 0.055
4 Orion 0.016 robotic 0.035
5 MRI 0.016 S 0.030

3.4.4 Qualitative analysis

There is a lot of domain information implicit in pre-trained language models [110].

Adapting the domain through continual learning with MLM helps in capturing this

knowledge. However, it is complicated to quantify this domain knowledge objectively

and exhaustively due to the lack of any gold standard for the surgical domain. For this

reason, this section proposes a qualitative analysis, providing examples of domain in-

formation stored in pre-trained language models.

To start with, ROBERTA and SURGICBERTA are asked to return the name of the most

used surgical robot in the operating room. In particular, ROBERTA and SURGICBERTA

are asked to substitute the 〈mask〉 in the following sentence with the most appropriate

five words, ranking them in order of probability:

The most commonly used surgical robot is 〈mask〉 .

Results are reported in Table 3.3. While to the best of our knowledge, none of the top

five words returned by ROBERTA is the name of a surgical robot, Zeus1, Xi2, and Si3

returned by SURGICBERTA are instead examples of surgical robots that have been used

in operating theatres. This means that the continual MLM learning with domain text

has captured this kind of information that is now available in the model.

As reported in Table 3.1, SURGICBERTA has a perplexity substantially lower than RO-

BERTA in the MLM task when applied to surgical literature. This intrinsically means

that SURGICBERTA has learned the surgical language and thus also the composition

1 https://en.wikipedia.org/wiki/ZEUS_robotic_surgical_system
2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193435/
3 https://www.davincisurgerycommunity.com/Systems_I_A/da_Vinci_Si_Si_e

https://en.wikipedia.org/wiki/ZEUS_robotic_surgical_system
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193435/
https://www.davincisurgerycommunity.com/Systems_I_A/da_Vinci_Si_Si_e


3.4 Evaluation 55

Fig. 3.4: Illustration of the critical view of safety method during a cholecystectomy.

Fig. 3.5: Pfannenstiel incision to access the abdomen.

of well-known surgical expressions. Consider the following example highlights how

SURGICBERTA has learned specialized domain terminology. In surgery, the expression

critical view of safety refers to a method of secure identification in open cholecystec-

tomy in which the cystic duct and artery are putatively identified, after which the gall-

bladder is taken off the cystic plate so that the gallbladder is attached only by the two

cystic structures [111] as shown by Figure 3.4.

To verify if ROBERTA and SURGICBERTA know this information, they are asked to

complete the following sentence:

During cholecystectomy, it is important to achieve the critical view of 〈mask〉 .
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SURGICBERTA returns the word safety as 1st result with a probability of 0.3428, while

ROBERTA returns it only at 47th position with the probability of 0.0032.

This section ends with another example of domain knowledge available in SURGIC-

BERTA. In surgery, a Pfannenstiel incision is a type of surgical incision that allows ac-

cess to the abdomen (See Figure 3.5, adapted from [112].). The following test wants to

investigate if pre-trained language models know this information:

The Pfannenstiel is a type of surgical incision that allows access to the 〈mask〉 .

The correct word is abdomen and is retrieved by SURGICBERTA at the 1st position with

probability 0.1267 and by ROBERTA at the 5th position with probability 0.0478, after

the words brain (0.1969), heart (0.1488), skin (0.0713), and vagina (0.0542).

These qualitative examples show that in SURGICBERTA there is much surgical infor-

mation that could be used, for instance, to enrich and complement the one codified in

domain ontologies and knowledge bases.

3.5 Conclusions

This chapter proposed SURGICBERTA, a pre-trained language model fine-tuned for

capturing surgical language and knowledge, i.e. the vocabulary and expertise provided

in surgical books and academic papers.

The building process has been described, and the model has been evaluated both

intrinsically by considering perplexity, accuracy, and evaluation loss during the MLM

task and extrinsically by considering two downstream tasks. All the results confirm that

SURGICBERTA deals with surgical language and knowledge more adequately than RO-

BERTA, a language model targeting general-domain English. Moreover, the potential of

SURGICBERTA has been investigated qualitatively by showing some examples of surgi-

cal domain knowledge available in the model, which could complement other knowl-

edge sources, e.g. state-of-the-art surgical knowledge bases. SURGICBERTA will also be

used in the following chapters for procedural sentence detection and procedural knowl-

edge extraction tasks.
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Detecting sentences containing procedural

knowledge in surgical textbooks

"The ability to simplify means to eliminate the
unnecessary so that the necessary may speak."

Hans Hofmann

4.1 Introduction

This thesis’s main objective is to develop a model able to automatically understand pro-

cedural written text of the robotic-surgical domain. In particular, we mainly target as-is

textbooks and academic papers. Although the main goal of this kind of textual resource

is to describe how to perform a given surgery by listing actions and the way they should

be performed, the instruments to use, and spatial and temporal constraints to follow,

they also contain non-procedural information, such as sentences introducing the his-

tory of the surgery, the number of surgeries of that type performed per year, the different

typologies of patients, the related anatomy, positions and medium size of the organs,

and other ontological information. This means that real-world documents usually de-

scribe surgical processes also including descriptive information, which is not directly

useful to derive a workflow. This chapter tackles the problem of separating procedu-

ral from non-procedural sentences, a preliminary task towards the automatical under-

standing and extraction of procedural surgical sentences. Indeed, the overall research

objective can be split into two main steps: first, procedural sentences i.e. sentences con-

taining procedural knowledge, are recognized in a text; then, the recognized sentences

are used to extract procedural surgical knowledge (objective of the Chapters 5-7).

This chapter presents our novel contribution to address the first of these steps,

which, to our knowledge, has never been investigated before in surgery. We tackle this
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problem as a sentence classification task by applying different machine learning (ML)

and deep learning (DL) algorithms. In addition to consolidated ML approaches avail-

able in the literature and tested in other domains, we experiment with the FastText clas-

sifier (c.f., 2.3.2) since it demonstrated state-of-the-art performance in numerous text

classification tasks. Moreover, we investigate the use of the subword-enriched word em-

beddings returned by FastText as features for a one-Dimensional Convolutional Neural-

Network (1D-CNN) and a Bidirectional Long Short-Term Memory (Bi-LSTM) Neural-

Network, described in 2.5. Finally, we test Transformers-based classification methods

(c.f. 2.4.2), fine-tuning some pre-trained language models for the task.

To train and benchmark all these approaches, we introduce a novel surgical textual

dataset, SPKS (Surgical Procedural Knowledge Sentences), consisting of sentences from

surgical texts that we manually annotated as procedural or non-procedural. We pre-

sented this work in 2021 in [18]. At the end of 2022, we released SURGICBERTA, and, as

part of its evaluation, we compared SURGICBERTA performance with that of its vanilla

version, ROBERTA, on the same task to verify if MLM has led to benefits. Meanwhile,

we have developed an extended version of the dataset, SPKSv1.1, containing more sen-

tences and more procedures, and so we used it for SURGICBERTA and ROBERTA com-

parison. The results of the two experiments are so not directly comparable, but though

out of the research question of the second evaluation, we also report the performance

of the model that obtained the best results during the first evaluation.

In more detail, the following research questions are investigated during the first re-

lease of the dataset:

RQ1 Are the TF-IDF features fed to classic classification algorithms sufficient to de-

tect procedural knowledge in surgical written texts? Is it necessary to resort to more

sophisticated techniques of word embeddings and neural networks? Do more com-

plex methods based on fine-tuning pre-trained language models outperform the

other considered approaches?

RQ2 Do some dataset balancing techniques positively impact the performances of pro-

cedural sentence classification?

In the second evaluation, the following research question is instead investigated:

RQ3 As a continuation of the validation of Chapter 3, does SURGICBERTA better per-

form than ROBERTA also on the procedural robotic-surgery sentence detection

task?

The contribution of this chapter is threefold:
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• the proposal to address the detection of procedural knowledge in surgical texts as a

sentence classification task;

• a novel, publicly-available, manually-annotated surgical textual dataset for bench-

marking classification methods;

• a preliminary assessment on this dataset of various state-of-the-art classification

methods.

4.2 State of the art

As stated before, to the best of our knowledge, works had yet to tackle the problem of de-

tecting procedural sentences in surgical documents. However, approaches for detecting

procedural sentences have been proposed in other domains and applied to typologies

of textual content substantially different than the description of a surgical procedure,

such as repair instructions [23, 25, 27], technical support documentation [22, 23, 26],

instructions for nanomaterials’ synthesis [24], cooking recipes [23, 27], and medical ab-

stracts [113].

In [22], the authors tackle the problem of procedural knowledge detection in tech-

nical documentation as a classification task. They use a linear Support Vector Machine

(SVM) exploiting both linguistic (usage of the imperative, declarative, conditional, or

passive form) and structural (e.g. section/subsection organization, bulleted-list usage)

features, showing that both of them contribute to improving performance.

The authors of [23] address the problem of identifying sentences mentioning ac-

tions in cooking recipes and maintenance manuals, exploiting a CNN fed with word

embeddings. Classification (“relevant”, “irrelevant”) of recipe (for nanomaterials’ syn-

thesis) sentences is also investigated in [24], where the authors use a Naïve Bayes classi-

fier fed with features such as word counts, TF-IDF (Term Frequency–Inverse Document

Frequency) and N-grams.

In [25], the authors pursue the detection of repair instructions in user-generated text

from automotive web communities. Various linguistic (bag-of-words, bag-of-bigrams,

post length, readability index) and structural features (repair instructions are often pro-

vided as bulleted or numbered lists) are fed to several ML methods, from classical ones

(e.g. Random Forest) to Neural-Networks (single and multilayer perceptrons).

In [26], an SVM is applied for detecting procedural sentences in technical support

documentation, where procedures are typically described using lists. Besides tradi-
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tional features, such as TF-IDF, the authors show the effectiveness of exploiting infor-

mation on the list type, contextual features (e.g. sentences introducing a list), and the

usage of imperatives.

The authors of [113] address the detection of procedural knowledge in MEDLINE

abstracts. In their work, procedural knowledge is defined as a set of unit procedures

(each consisting of a Target, Action, and Method) organized for solving a specific pur-

pose. The proposed solution works in two steps. First, SVMs and Conditional Random

Fields (CRFs) are combined for detecting sentences (purpose/solution) that may con-

tain unit procedures, feeding them with content (unigrams and bigrams), position (sen-

tence number in the abstract), neighbor (content features of nearby sentences) and on-

tological features (usage of terms from reference vocabularies). Then, sequence label-

ing with CRFs is performed to identify the components of unit procedures.

Finally, the authors of [27] address the extraction of procedural knowledge from

structured instructional texts. First, they partition sentences into related segments,

from which finite-state grammars are applied to extract procedural elements. Next,

rule-based reasoning is applied to resolve certain types of omissions and ambiguities

in instructions.

While all these works address the detection of procedural knowledge from written

text, the proposed methods have been applied to typologies of textual content substan-

tially different from the description of a surgical procedure. Troubleshooting and prod-

uct documentation, cocking recipes, maintenance manuals, and repair instructions

differ from descriptions of surgical procedures both on the terminological/language

level and the structural one: typically, these kinds of texts are structurally organized,

frequently using numbered/bulleted lists — a characteristic effectively exploited as a

feature in many of the discussed approaches — while no established standard way to

describe a surgical procedure exists. In addition, surgical interventions are mainly pre-

sented in a prose-like style. Indeed, the scenario where structural features cannot be

exploited is considered more challenging to tackle (c.f. [26]).

Furthermore, all the approaches mentioned above have been applied to domains

substantially different from the surgical one. In this regard, the closest work is [113]:

however, MEDLINE abstracts are substantially different from intervention descriptions

(e.g. MEDLINE abstracts are typically semantically divided into blocks such as Objec-

tive, Background, Methods), and the goal of the authors is to identify (a few) method-

ological sentences among an abstract text, while the goal of this task is to identify all
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the sentences in an intervention procedure description that detail some surgical action

performed.

4.3 Proposed procedural surgical sentences detection

methods

In this section, we describe the collected dataset and the proposed methods. Our goal

is not to propose a new state-of-the-art method for text classification but to assess

whether the automatic classification of procedural knowledge in surgical written texts

can be effectively solved with ML or DL text classification techniques.

4.3.1 Dataset

In order to train and test a supervised classification approach to automatically iden-

tify procedural sentences, a dataset of sentences labeled as procedural/non-procedural

is needed. Given the lack of such a dataset in the literature, we manually constructed

and annotated a new dataset, called SPKS (Surgical Procedural Knowledge Sentences)1

composed by 1,958 sentences (37,022 words - 3999 unique words) from a recent surgical

robotics book [114] and from some papers [115, 116, 117]. Different authors produced

these documents and they vary significantly in the writing style: the procedure descrip-

tions are essential and schematic in some cases, while longer sentences enriched with

background information are used in others. The dataset consists of 20 descriptions

of real-world procedures (taken as-is from the sources) from different surgical fields

(urological, gynecological, gastrointestinal, and thoracic). Regarding the book [114], we

have arbitrarily selected without lack of generality a few (among many) of the sections

describing surgical procedures. The complete list of sections used is reported on the

corresponding web page. More precisely, we have only annotated those chapters and

sections that, given their name (e.g. “Operational steps”), are expected to describe the

surgical intervention procedure, leaving out unrelated ones (e.g. “History of Robots and

Robotic Surgery”). This is because our goal is to identify the sentences in a procedure

description that detail some of the surgical actions performed, automatically cleaning

out all those that are not relevant to build a procedural workflow. As we will show later

in the dataset statistics, irrelevant sentences account for a substantial amount.

1 Dataset web-page: https://gitlab.com/altairLab/spks-dataset

https://gitlab.com/altairLab/spks-dataset
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Each sentence in the selected procedure texts was manually annotated as procedu-

ral or non-procedural. As stated in 2.2.3, it is crucial to reduce labeling ambiguities by

providing precise annotation guidelines. Since the same sentence may contain both

procedural and non-procedural information, we provide the following definitions:

• procedural: a sentence describing at least one action by the robot or the human

surgeon, being it an intervention on the body or the positioning of the robot;

• non-procedural: a sentence that does not indicate a specific surgeon action but de-

scribes anatomical aspects, exceptional events that can occur during surgery, and

general indications that are not specific to a single step of the intervention.

To guide the annotation work, we also provided some examples, similar to those re-

ported in Table 1.1. The actual annotation of the 1,958 sentences was performed by a

single human annotator (M.Sc. with “C1” English language proficiency) with a 2-year

experience in the robotic-surgical domain. The annotation of the whole dataset re-

quired approximately 65 working hours for the annotator. As frequently occurs with

text classification tasks, the resulting annotated dataset is slightly unbalanced: ∼64%

of all the sentences are classified as procedural, while the remaining ∼36% as non-

procedural. Approximately one-third of the sentences in the collected text describing

surgical intervention procedures do not describe concrete surgeon actions. Therefore,

these sentences are not relevant for deriving the intervention workflow.

As manual annotation is a rather subjective process, performed in our case by a sin-

gle annotator, in order to assess the general adherence of the annotations produced

with respect to the presented guidelines, we performed an inter-annotation agreement

analysis: 98 sentences, approximately 5% of the overall dataset, were randomly sam-

pled, respecting the procedural/non-procedural balancing of the dataset, and a second

expert (Ph.D. with “C1” English language proficiency, computer science background)

was asked to annotate them following the same guidelines. We obtained a Kappa coef-

ficient of 0.93 which, as stated in 2.2.3, indicates an almost perfect level of agreement

between the two annotators.

At the end of 2022, we released an enlarged version of SPKS (SPKSv1.1), consisting

of 2250 sentences annotated with the same strategies. Of them, ∼ 68% are procedural,

while ∼ 32% are non-procedural. It contains descriptions of 28 robotic-surgery proce-

dures.
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4.3.2 Preprocessing the dataset

First, we tested different combinations of text normalization techniques in order to re-

duce the number of word forms in the original dataset and thus limit noisy features.

In particular, we lowercased each word, we replaced each number with a fixed place-

holder, we removed punctuation, leading/ending white spaces, and stopwords. We also

experimented with combining these techniques with either lemmatization or stem-

ming, but they turned out to be ineffective in our evaluation scenario.

4.3.3 Classifiers

We frame the problem of automatically detecting procedural sentences in surgical

intervention texts as a sentence classification task. To better assess the feasibility of

our approach, we experimented with and compared the performance of different text

classifiers, ranging from classical machine learning to neural network methods and

Transformer-based approaches.

Given the reduced size of the dataset, for each model, we applied the nested k*I-fold

cross-validation protocol with k=10 and I=k-1=9. That is, the dataset is split into 10 sets.

One by one, a set is selected as test set to assess the model performance, while the other

9 are used to fit the model (8 sets - a.k.a. train set) and determine the best hyperparam-

eters2 (1 set - a.k.a. validation set), until all possible combinations have been evaluated.

The model performance is thus the average performance on the 10 test sets of the cor-

responding model trained and tuned (according to the best hyperparameters) on the

remaining 9 sets. This technique ensures no data leakage can occur [119].

We first analyzed some widely used classical ML methods successfully applied for

text classification and described in 2.5.2: namely, Random Forest (c.f. [120]); Linear

Support Vector Machine (c.f. [121]); Multinomial Naïve Bayes (c.f. [79]) and Logistic Re-

gression (c.f. [122]). These classifiers expect numerical feature vectors with a fixed size

rather than the raw text of variable length (c.f. 2.3 ), and therefore sentences have to be

appropriately pre-processed. Specifically, for each term of a sentence in our dataset, we

calculate the TF-IDF measure described in 2.3.1: each sentence is then represented as

a vector, where the components correspond to the most frequent terms of the dataset,

and the value in the components is the TF-IDF measure for that term of the sentence.

The classifiers are then trained using these vectors as features.

2 For tuning hyperparameters, we either relied on built-in auto-tune functionalities (c.f., FastText) or the
HyperBand algorithm [118].
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We then decided to test the effectiveness of FastText (described in 2.3.2) for detect-

ing procedural knowledge in written surgical text. In particular, we used the classifier

presented in [123], i.e. a multinomial logistic regression method where each input sen-

tence is encoded as a sentence vector, obtained by averaging the FastText word repre-

sentations of all the words in the sentence. We used it because it has been widely used

for numerous text classification tasks, such as mail classification [124] or toxic speech

detection [125], and explicit content detection [126].

We also tested some neural-network classifiers, in particular, a 1-Dimension Convo-

lutional Neural-Network (1D-CNN) and the Bi-LSTM that proved to be very effective in

many different classification tasks and domains (e.g. [127, 128]). Given the possibility

of building the FastText word embeddings separately from the FastText classifier, both

neural approaches considered were fed with the same sentence vectors used to train

and evaluate the FastText classifier. This also allows us to directly compare the efficient

linear classifier implemented in FastText and the more advanced neural approaches.

Finally, we also tested BERT performance, fine-tuning it on the sentence classifica-

tion task. As explained in 2.4.2, differently from the other word representations, word

vectors in BERT are contextualized, meaning that the embedding of a word will be dif-

ferent according to the sentence in which it is used. Since BERT has been trained on

general domain texts, which are substantially different from the robotic-surgery docu-

ments we are working with, we also decided to use ClinicalBERT [97], a language model

pre-trained on clinical notes and Electronic Health Records (EHR). While still differ-

ent from surgical procedure descriptions, these texts are certainly closer to the robotic-

assisted surgery domain than those used for training BERT. Finally, in addition to the

evaluation reported in [18], we also tested SURGICBERTA and ROBERTA on SPKSv1.1

to measure the benefit of MLM on this downstream task. To fine-tune BERT, Clinical-

BERT, ROBERTA, and SURGICBERTA for procedural sentence classification in robotic-

assisted surgical texts, we modified the base model to produce a classification output

(procedural/non-procedural). This is achieved by adding a classification layer on top of

the pre-trained models and then by training the entire model on our annotated dataset

until the resulting end-to-end model is well-suited for our task. In detail, we use a sin-

gle linear layer for the sentence classification part, similar to what is done in [97]. Note

that some pre-processing of the dataset has to be performed to use its texts to fine-tune

BERT, ClinicalBERT, ROBERTA, and SURGICBERTA, such as word tokenization and in-

dex mapping to the tokenizer vocabulary and fixed-length normalization (by truncation

or padding) of all texts.



4.4 Results and Discussion 65

4.4 Results and Discussion

4.4.1 Evaluation on SPKS dataset (v1.0)

Table 4.1: Aggregated classification performance of the tested methods. “[bal]” indi-
cates training on a 50-50 balanced dataset (upsampling).

Method A Macro Weighted

P R F1 wP wR wF1

RandomForest 0.740 0.743 0.678 0.686 0.741 0.740 0.721
MultinomialNaïveBayes 0.737 0.785 0.655 0.657 0.767 0.737 0.701
LinearSVM 0.723 0.770 0.636 0.633 0.753 0.723 0.681
LogisticRegression 0.694 0.770 0.590 0.562 0.745 0.694 0.626
FastText 0.786 0.771 0.765 0.767 0.784 0.786 0.785
FastText[bal] 0.788 0.773 0.767 0.770 0.786 0.788 0.787
1D-CNN 0.829 0.816 0.828 0.820 0.835 0.829 0.831
1D-CNN[bal] 0.833 0.819 0.827 0.823 0.836 0.833 0.834
BiLSTM 0.867 0.857 0.856 0.857 0.867 0.867 0.867
BiLSTM[bal] 0.870 0.862 0.855 0.859 0.869 0.870 0.869
BERT 0.864 0.859 0.845 0.851 0.863 0.864 0.863
BERT[bal] 0.862 0.859 0.840 0.847 0.861 0.862 0.860
ClinicalBERT 0.872 0.866 0.856 0.860 0.871 0.871 0.871
ClinicalBERT[bal] 0.866 0.862 0.846 0.853 0.865 0.866 0.865

To address the research questions RQ1 and RQ2 presented in 4.1, we compare the

prediction of the various classifiers against some gold annotations (i.e. a set of sen-

tences annotated with a procedural/non-procedural label), using the metrics presented

in 2.5.3, in particular the Macro-Averaged Metrics, i.e. Precision (P), Recall (R), F-Score

(F1), the Weight-Averaged Metrics, i.e. w-Precision (wP), w-Recall (wR), w-F-Score (wF1);

and, Accuracy (A).

In the first four rows of Table 4.1, we report the classification performance of the

classical ML algorithms that exploit TF-IDF as features. The considered ML approaches

based on TF-IDF have mediocre performance when used to solve this task. This could

be due to the unbalanced dataset, which is difficult to handle with standard ML algo-

rithms. Classical ML approaches are often biased towards the majority class (F1 scores
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Table 4.2: Classification performance of the tested methods per class. “[bal]” indicates
training on a 50-50 balanced dataset (upsampling).

Method Procedural Non-Procedural

P R F1 P R F1

RandomForest 0.738 0.913 0.816 0.747 0.443 0.556
MultinomialNaïveBayes 0.717 0.965 0.823 0.852 0.344 0.491
LinearSVM 0.706 0.964 0.815 0.835 0.308 0.450
LogisticRegression 0.678 0.981 0.802 0.861 0.199 0.323
FastText 0.821 0.846 0.833 0.720 0.683 0.701
FastText[bal] 0.824 0.846 0.835 0.722 0.689 0.705
1D-CNN 0.889 0.834 0.861 0.742 0.821 0.780
1D-CNN[bal] 0.881 0.851 0.866 0.758 0.803 0.780
BiLSTM 0.894 0.896 0.895 0.820 0.817 0.818
BiLSTM[bal] 0.887 0.910 0.898 0.837 0.801 0.819
BERT 0.875 0.916 0.895 0.843 0.775 0.808
BERT[bal] 0.867 0.922 0.894 0.850 0.757 0.801
ClinicalBERT 0.886 0.915 0.900 0.845 0.797 0.821
ClinicalBERT[bal] 0.874 0.922 0.897 0.851 0.871 0.809

on the procedural class are substantially higher than on the non-procedural one), not

considering the data distribution. In the worst case, minority classes are treated as

outliers and ignored. Moreover, TF-IDF cannot account for the similarity between the

words in a document since each word is independently presented as an index. Among

the considered ML algorithms, Random-Forest obtains the highest F1 scores.

The fifth row of Table 4.1 summarizes the performance of the FastText classifier. All

scores demonstrate that FastText obtains much higher classification performance than

the best-considered ML method (Ra-Fo). In particular, it improves 10.56% over Macro-

F1 and 8.15% over Weighted-F1.

We then fed the FastText word embeddings learned on the dataset to a 1D-CNN and

a Bi-LSTM. In our task, the adoption of more complex classification models allows us to

substantially improve performance, as confirmed by the seventh and ninth rows of the

Table. The 1D-CNN improves the Macro-F1 of 6.46% and the Weighted-F1 of 5.54%, and

the Bi-LSTM contributes to improving the Macro-F1 of 10.50% and on the Weighted-

F1 of 9.45% with respect to FastText performance. The downside is the computational
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time: with the configurations used in the experiments, FastText is 8 times faster than

the 1D-CNN and 40 times faster than the Bi-LSTM.

Finally, the eleventh and thirteenth rows of the Table show that it is possible to

achieve high classification performance using transformer-based pre-trained language

models. In particular, ClinicalBERT performs slightly better than Bi-LSTM (+ 0.12% of

Macro-F1 and + 0.22% of Weighted-F1), while BERT performs slightly worse than Bi-

LSTM. Computational-wise, fine-tuning transformers-based models on our dataset is 4

times slower than training Bi-LSTM.

We also investigated whether it is possible to boost classification performance by

balancing the dataset. More precisely, we have applied standard random over-sampling

techniques (i.e. the addition of a random set of copies of the minority class samples to

the data) [57] to obtain a perfectly balanced (50% procedural / 50% non-procedural)

training material, reassessing classification performance. Given the inadequate perfor-

mance of classical ML algorithms, we have limited this analysis only to the three ap-

proaches that use subword word embeddings as features and to transformers-based

methods. As shown in the rows of Table 4.1 tagged with [bal], adopting upsampling

techniques does not substantially improve classification results. Indeed, in the case of

transformer-based models, balancing the dataset actually has some (limited) detrimen-

tal effects. While summarized by the results of Table 4.1, we reported the per-class clas-

sification performance for completeness in Table 4.2.

Answer to research questions RQ1 and RQ2

Based on the reported results, we can answer RQ1 by stating that the considered

ML methods fed with TF-IDF features do not solve the problem satisfactorily. Using

subword-enriched word embeddings fed to neural networks allows for substantially

improved results, achieving overall good performance for the considered classification

task (Bi-LSTM wF1 = 0.869 with balancing). Concerning pre-trained language models, a

further (marginal) improvement is observed exploiting ClinicalBERT, while fine-tuning

the general-domain BERT leads to lower classification performance than Bi-LSTM,

showing that, for the considered task, more advanced (yet computationally demand-

ing) techniques do not necessarily produce better results. Overall, the results are sat-

isfactory, confirming the feasibility of automatically detecting procedural sentences in

surgical intervention descriptions. We believe there is room for improvement, for exam-

ple, by enlarging the dataset. Moreover, we cannot positively answer RQ2, as we exper-
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imentally observed that the adoption of upsampling techniques on the minority class

does not substantially improve the performance for detecting procedural knowledge.

Considerations on the size of the dataset

We finally wondered if a dataset of 1,958 sentences is large enough for the optimal train-

ing of learning approaches for this task and if there is room to further improve the re-

sults by increasing the number of sentences in the dataset. To answer this question, we

studied the evolution of the Macro-F1 when varying the size of the training dataset. Fig-

ure 4.1 (left) shows this analysis considering the FastText classifier. The curve tends to

flatten out when reaching approximately 800 sentences in the Train dataset, thus possi-

bly suggesting that adding more samples will unlikely yield substantially better perfor-

mances. Figure 4.1 (center) shows the same analysis considering the Bi-LSTM classifier.

The slope of the curve, especially approaching the total size of the training dataset, is

constantly increasing and does not flatten out. Despite a less prominent increase rate, a

similar trend is obtained for the same analysis on the classifier based on ClinicalBERT,

shown in Figure 4.1 (right). These trends somehow suggest that by increasing the num-

ber of samples of the dataset, classification performances might be further improved

for these two methods.

Interestingly, the Figure also shows that ClinicalBERT’s fine-tuning on our dataset

works very well, even for very limited-size datasets (F1>0.8 with just 400 samples).

Fig. 4.1: The trend of Macro-F1 of the FastText, Bi-LSTM, and ClinicalBERT classifiers,
obtained by varying the number of training samples.
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Table 4.3: Aggregated classification performance of the tested methods in the second
setting.

Method A Macro Weighted

P R F1 wP wR wF1

ClinicalBERT 0.856 0.840 0.823 0.831 0.854 0.856 0.855
RoBERTa 0.872 0.860 0.841 0.849 0.871 0.872 0.871
SurgicBERTa 0.886 0.880 0.853 0.864 0.885 0.886 0.884

Table 4.4: Classification performance of the tested methods per class in the second
setting.

Method Procedural Non-Procedural

P R F1 P R F1

ClinicalBERT 0.879 0.915 0.897 0.801 0.731 0.764
RoBERTa 0.889 0.928 0.908 0.831 0.753 0.790
SurgicBERTa 0.894 0.945 0.919 0.865 0.762 0.810

4.4.2 Evaluation related to the assessment of SurgicBERTa

To address the research question RQ3 presented in 4.1 and to continue the SURGIC-

BERTA evaluation of Chapter 3, we compare the prediction obtained by SURGICBERTA

with that obtained by its vanilla ROBERTA. Since for this evaluation the enlarged ver-

sion of SPKS was used (SPKSv1.1), the results are not directly comparable to the ones

reported in the previous section. To put the scores in perspective with the outcomes

of the previous evaluation, we report also the performance of ClinicalBERT (the best

performing model in the previous evaluation) on this extended dataset.

The second setting’s procedural sentence detection task results have been reported

in Tables 4.3 and 4.4, where higher results are in bold. SURGICBERTA improves all

the performance metrics compared to ROBERTA and ClinicalBERT on both procedu-

ral and non-procedural classes. Overall, averaging the performances on both classes,

SURGICBERTA improves the accuracy of 0.014, Macro-F1 of 0.033 and Weighted-F1 of

0.029 when compared with its base version ROBERTA, confirming the benefit of having

a domain-specific language for surgical-related text classification. We can thus posi-
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tively answer RQ3 because SURGICBERTA, obtained by ROBERTA with the MLM do-

main adaptation technique, achieves higher performance.

4.5 Conclusions

This chapter aimed to introduce and investigate the problem, never tackled before, of

detecting procedural knowledge in written surgical intervention descriptions. In partic-

ular, we tested the effectiveness of various ML algorithms operating on TF-IDF features,

observing their poor performance. Better scores are achieved using the linear classifi-

cation algorithm implemented by FastText, which works on subword enriched words-

embeddings and finally, using the embeddings returned by FastText as the input fea-

tures of some neural networks (1D-CNN, Bi-LSTM). Finally, using ClinicalBERT to de-

tect procedural sentences in robotic-surgical texts proved to be a good choice. From the

experiments, it also emerged that balancing the number of class samples in the train-

ing dataset does not lead to a substantial performance boost. The second evaluation

continues the extrinsic evaluation of SURGICBERTA presented in Chapter 3, confirm-

ing that SURGICBERTA better deals with surgical language-related tasks than its vanilla

version ROBERTA.

The goal of this chapter was not to identify the best possible algorithm to tackle this

problem nor to identify the highest classification scores achievable. The goal was, in-

deed, to provide a first assessment of the feasibility of the task using competitive meth-

ods. Indeed, we conjecture that the obtained results can still be improved. Concern-

ing the dataset, enlarging it may be beneficial, also in light of the consideration re-

ported toward the end of Section 4.4: to potentially speed up the annotation process,

active learning could be worth investigating (i.e. collecting gold annotations by ask-

ing human evaluators to accept or correct the sentence classification predicted by the

trained model). Furthermore, in this chapter, we tackled the procedural sentence de-

tection task using information solely from the sentence to be classified. The integration

of additional context-related (e.g. when a sentence is preceded by another “signaling”

sentence or it appears in a bullet/numbered list) is worth investigating, in line with the

recent work presented in [22].

This work is a preparatory activity toward extracting structured surgical interven-

tion workflows from written procedural documents, a challenging and, to the best of
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our knowledge, never investigated task in the surgical domain, which we address in the

following chapters.





5

An annotated resource for procedural

knowledge extraction in surgery

The beginning of wisdom is the definition of terms.

Sentence attributed to Socrates

5.1 Introduction

In the previous chapter, we proposed different methods to detect procedural sen-

tences in as-is textbooks and academic papers. Recalling Figure 1.2, the extracted sen-

tences are then sent to the second stage of the pipeline, dealing with the proper ex-

traction of procedural elements, such as the actions to be performed, the agent exe-

cuting them, the surgical instruments to use, spatial and temporal constraints to re-

spect while performing a given action, the goal, and so on. The purpose of the second

stage of the pipeline is to extract relational information based on actions and actors

involved in them. To extract this kind of information, as described in 2.6, Semantic

Role Labeling (SRL) techniques [85] have shown to be a promising and viable solu-

tion [129, 130]. These methods are based on shallow semantic parsing and produce

predicate-argument structures of sentences. In most semantic theories, predicates are

verbs, verbal nouns, and other verb forms. They are mainly based on PropBank [56] and

FrameNet [131] lexical resources already described in 2.6.2. PropBank-based SRL meth-

ods are successfully used in numerous NLP applications, such as conversation analy-

sis [132], video understanding [130], information extraction and ontology population

[133], mining of event logs written in natural language [129] or automatic image cap-

tioning [134]. However, the performance of the current SRL systems on out-of-domain

testing examples is often very poor [135]. This is because PropBank annotations focus
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on general-purpose, newswire texts and do not fully cover specific domains, such as, in

our case, the surgical one. Furthermore, a critical element in very specialized domains

and in particular in the bio-medical one, is the lack of available dataset to train and

validate models. Published papers often used private datasets, which are rarely shared,

primarily due to patient privacy concerns [136], hindering the replication of the results.

The most popular datasets and databases in the bio-medical NLP are MIMIC [101], the

ones from i2b2 challenges (e.g. [137] for concept extraction), and the one from SemEval

challenges (e.g. [138] for temporal relations extraction from clinical narratives). Unfor-

tunately, none contains annotations of procedural surgical descriptions for semantic

information extraction.

With this chapter, we aim to fill this gap and extend PropBank so that its frames are

suitable for representing the semantic roles typically required in the procedural surgical

domain.

This chapter’s main contribution is the public release of a new linguistic resource

that extends PropBank with frames describing actions and participants in the robotic-

assisted surgical domain and releasing an annotated dataset to train and test auto-

matic models. We named this resource Robotic Surgery Propositional Bank (RSPB). This

material is essential for adapting SRL methods from other domains to the procedural

robotic-surgical one.

5.2 State of the art

Researchers traditionally have built NLP lexical resources targeting general-domain

English, which is syntactically and semantically different from domain-specific usage

[139] as well as other languages [140, 141, 142]. Therefore, these resources cannot be di-

rectly exploited in very specific domains or with other languages, and different methods

have been proposed to adapt them to specific needs. This section summarises some

works that have adapted the general linguistic resources to a specific domain or lan-

guages other than English.

Many works on updating English frame banks have been carried out in various fields,

such as the clinical [139, 143], the biomedical [144, 145], and other non-biomedical do-

mains such as software analysis and cooking recipes [146, 147].

[139] has considered texts written in different laparoscopic cholecystectomy opera-

tional notes stating that the language is significantly different from general English and
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existing semantic resources have limited coverage of the action verbs frequently occur-

ring in operative notes. Based on these observations, the authors have surveyed the us-

age of each verb in the sample dataset to determine each verb’s meanings and semantic

arguments. In this way, they have extracted a set of differently used verbs, and, follow-

ing the PropBank guidelines, they have defined specific frames for them. This work,

however, has considered only surgical, non-robotic procedures taken only from gas-

trointestinal surgery notes that use more schematic language than descriptions taken

from textbooks used in our work. Finally, no annotated dataset with these newly defined

frames was provided, hindering the possibility of benchmarking available SRL tools on

the considered domain.

[143] has annotated clinical narratives with layers of syntactic and semantic labels

to facilitate advances in clinical NLP. Following PropBank guidelines, new frames have

been defined. Although the dataset deal with a clinical language, this chapter con-

siders a more specialized level, i.e. descriptions of robotic-surgical procedures, a re-

stricted subset of the clinical domain considered by the paper (which includes disor-

ders, physiology, chemicals and groups, and anatomical notions). Unfortunately, the

related dataset is no longer freely accessible due to copyright issues [148].

[144] has presented a corpus of PropBank-style annotations for biomedical journal

abstracts. The work has analyzed 30 biomedical verbs adding or modifying their mean-

ing starting from general English resources. Then, a semi-automatic method was ap-

plied to annotate a collection of MEDLINE abstracts selected from the search results

with the following keywords: human, blood cells, and transcription factors. First, pred-

icate candidates were identified; then, an automatic tool was used to produce biomed-

ical semantic roles; finally, the resulting annotations were manually corrected. In [145],

a new resource that provides VerbNet-style [83] frames for biomedical verbs is released,

together with the presentation of key differences between the general and biomedical

domain, and the design choices made to accurately capture the meaning and properties

of verbs used in biomedical texts. The conclusion is that leveraging a specialized Verb-

Net helps systems to improve verb classification and thus to tackle better challenging

NLP tasks in biomedicine. The two previous works have dealt with a biomedical lan-

guage that is still far from the procedural surgical one; moreover, the second one has

dealt with VerbNet classes that are quite different from the PropBank frames adopted

in this chapter.

Outside the medical domain, [147] has proposed a method for automatically ex-

tracting semantic information from software requirements specifications. First, fre-
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quent verbs were selected from software requirement specification documents in the

e-commerce domain to build the semantic frames for them. Then, selected sentences

were annotated for using them as training material to benchmark different machine-

learning methods.

[146] has proposed a new annotated dataset for extracting recipe information. The

authors have defined ad-hoc entity types (action, food, tool, duration, temperature,

condition clause, purpose clause, and others) and relation types following the method-

ology of PropBank. Then a corpus was annotated and used to benchmark a neural span-

based model extracting entities and relationships.

Finally, [149] has applied a transformer-based SRL approach to map legislation from

semi-free text to structured manually defined frames composed of fixed semantic roles.

The domain is completely different from the one in our paper, but the approach bears

some similarities.

Several works also propose PropBank language-specific lexicons for languages other

than English, both for specialized or general domains. For example, [150] has per-

formed an SRL task in Tamil Biomedicine texts, extracting domain-specific verbs and

related semantic roles. [140, 141, 142] instead have built a general-domain PropBank

specific for Turkish, Persian, and Russian, respectively. [151] has stated that despite the

availability of SRL resources in different languages, building a single multilingual SRL

labeler is almost impractical because of the differences in semantic labels and frame

banks. To provide a possible solution to these issues, it has provided a family of auto-

generated PropBanks for 23 languages from 8 language families, together with a small

set of manually annotated sentences for Polish (100), Portuguese (3779), and English

(16622), to enable the construction of SRL models for resource-poor languages by an-

notating the text in different languages with a layer of universal semantic role labeling

annotation.

5.3 Building the Robotic-Surgery Procedural Propositional

Bank

The Robotic Surgery Propositional Bank (RSPB) is an extension of PropBank [56] for the

robotic-surgical domain. The standard PropBank is described in 2.6.2 and consists of:

• a framebank, i.e. a collection of frames (a.k.a., meaning or senses) for lemmas denot-

ing predicates (verbs or nominalized verbs). Frames are specific to a given lemma,
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Fig. 5.1: High level diagram of the method described in Section 5.3.1 for the framing of
surgical domain verbs and annotation.

and each lemma has one (mono-sense lemma) or more (polysemous lemma) asso-

ciated frames. Moreover, each frame specifies its semantic roles, i.e. the different la-
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bels that can be used to semantically characterize the arguments of the correspond-

ing predicate;

• a corpus of text annotated (according to the framebank) with information about

basic semantic propositions.

Following the steps described in [56], also the development of RSPB is divided into two

parts, namely the creation of a lexicon of frames files (RSPF, i.e. Robotic Surgery Proce-

dural Framebank) summarised in Section 5.3.1), and the annotated dataset with RSPF’s

labels, presented in 5.3.2.

Figure 5.1 shows a general overview of both steps: in the domain-verb framing pro-

cess, some automatic methods extract lemmas describing actions from robotic-assisted

surgical texts. How often they appear in the target domain (freq_i) is compared to how

often they appear in OntoNotes [152] (freq_i’). If freq_i ≫ freq_i’, i.e. the ratio between

the two is higher than a given threshold, then the respective lemma is sent to a team

of human linguistic experts that verify to which of the categories described in Section

5.3.1 the lemma belongs, modifying the corresponding frameset if necessary. The final

frameset is validated by a clinician and publicly released. During the annotation step,

a team of annotators is hired and trained. Annotation guidelines are written, and sen-

tences to annotate are provided. Then, the annotation process is performed. Quality

checks are periodically carried out and, if necessary, the training step is resumed.

5.3.1 The Robotic Surgery Procedural Framebank

Two strategies are applied for identifying procedural verbs and nouns used in the

robotic-surgical domain, leveraging the available SPKS corpus. The first one deals with

the detection of actions expressed by nominalized verbs, and it is based on keyword ex-

traction. The second method is based on Part-Of-Speech (POS) tagging, and it is used

to detect actions expressed by verbs. Their combination, together with additional low-

frequency or missing candidates suggested by the clinician during the validation phase,

offers broad coverage of the robotic-surgery actions for considered domains.

Adapting PropBank to the robotic-surgical domain

RSPF is an adaptation of PropBank’s 3.1 version [56] to the robotic-surgical domain. By

analyzing the semantic use of each lemma describing an action identified in the SPKS

corpus with respect to the PropBank framebank, each candidate is assigned to one of

the four categories described in Table 5.1.
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Table 5.1: Categories to which each candidate lemmas is assigned.

Category Description

PRESENT

The lemma is already present in PropBank, and there is a frame file that adequately describes the
use of the predicate. For this lemma, PropBank already describes appropriate semantic roles as core
entities.

MISSING_ROLE

The lemma is already present in PropBank, and there is a frame file that adequately describes the use
of the predicate. This frame, however, does not include domain-specific semantic roles often used
in the robotic-surgical domain.

MISSING_FRAME
The lemma is already present in PropBank, but a proper frame needs to
be included, as the existing ones describe different meanings.

MISSING_LEMMA The lemma is not present in PropBank.

If a lemma is assigned to the PRESENT class, no changes are needed since PropBank

already covers the robotic-surgical usage (i.e. there is a frame for the lemma that per-

fectly describes that usage of the predicate).

If a lemma is assigned to the MISSING_ROLE class, some semantic roles important for

the robotic-surgery domain are missing, and therefore they must be added. The lemma

to retract is an example of an action belonging to this category. For it, PropBank offers

the “retract.01: to take back" frame, which covers the specific meaning of the surgical

domain. However, only two roles are proposed for it:

• Arg0: taker back, agent

• Arg1: thing retracted

The verb to retract is, however, used very often in the robotic-surgery domain, together

with additional information that allows describing the action better: the instrument

used for the retraction, the technique and/or manner, and the ending point or the indi-

cation of how much to retract.

A candidate lemma may be assigned to the MISSING_FRAME class for two different rea-

sons: i) the usage of the lemma is semantically and entirely different from all the frames

covered in PropBank, and there is no overlap between the existing and new semantic

roles; ii) the meaning is not entirely new, but the existing frames are too broad to be

helpful for the robotic-surgery domain, i.e. the new frame deals with a subset of the

meaning captured by (some of) the old ones. An example of the first case is the verb to
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grasp. For it, PropBank offers a single meaning “grasp.01: to take hold of, comprehend"

with two semantic roles:

• Arg0: grasper

• Arg1: thing grasped

The robotic-surgical domain uses this lemma with a significantly different meaning, i.e.

“to clasp or embrace especially with the fingers or arms". For it, important information

is also the grasper, the thing grasped, the instrument used for grasping, and important

spatial indications for correct grasping. An example of the second case is the verb to ap-

proximate. For it, PropBank has the frame “approximate.01: to be close or similar, cause

to come near to or approach again" with only two roles:

• Arg0: entity coming close

• Arg1: entity coming close to

It offers a broader meaning than the specialized one used in the robotic-surgery domain

(“to come near in position, to bring near"), which is typically enriched with the following

information: agent, entity coming close, entity coming close to, instrument and spatial

indications.

Finally, an example of a lemma of class MISSING_LEMMA is the noun “kocherization".

In surgery, it refers to “an operative maneuver to mobilize the duodenum before perform-

ing other procedures locally or before incising the duodenum". For it, important informa-

tion is the agent, and the anatomical entity to be kocherized.

Collecting domain-specific lemmas

To extend PropBank to the procedural robotic-surgical domain, those verbs (or nom-

inalized verbs) that are typical of the surgical domain must be identified. The SPKS

dataset, presented in Chapter 4, is used to extract the domain actions of the procedu-

ral robotic-surgical domain. For the comparison with general English, we have instead

considered the OntoNotes dataset. It is an extensively annotated dataset comprising

various text genres such as news, conversational telephone speech, weblogs, usenet

newsgroups, broadcast, and talk shows.

The two methods presented below extract domain-specific actions from SPKS. For

each domain-specific predicate, it is necessary to check which of the categories de-

scribed in Table 5.1 the lemma belongs and proceed with framing. Table 5.2 shows 10

examples of actions expressed by nouns identified by the first method and 10 examples



5.3 Building the Robotic-Surgery Procedural Propositional Bank 81

Table 5.2: (Left) Example of nominalized actions extracted using the first method with
the indication of the verb they refer to (“—" means missing the corresponding verb)
and the modification required. (Right) Example of domain lemmas extracted using the
second method with the indication of the type of modification required.

Nominalized actions Verbs
<Placement , Place , PRESENT >; <Extraperitonealize , MISSING_LEMMA >

<Reflection , Reflect , MISSING_FRAME >; <Resect , MISSING_ROLE >

<Retraction , Retract , MISSING_ROLE >; <Spatulate , MISSING_LEMMA >

<Exposure , Expose , PRESENT >; <Skeletonize , MISSING_LEMMA >

<Resection , Resect , MISSING_ROLE >; <Kocherize , MISSING_LEMMA >

<Mobilization ,Mobilize , MISSING_FRAME >; <Insufflate , MISSING_LEMMA >

<Traction , — , MISSING_LEMMA >; <Redock , MISSING_LEMMA >

<Administration , Administer , PRESENT >; <Detubularize , MISSING_LEMMA >

<Identification , Identify , MISSING_FRAME >; <Grasp , MISSING_FRAME >

<Excision , Excise , MISSING_ROLE > <Incise , MISSING_ROLE >

of verbs identified by the second method. For each of them, the indication of the type of

modification requested on PropBank is reported. Finally, as frequency-based methods

for extracting domain terminology may miss some particular terms rarely used in the

text (thus ensuring high precision but low recall), the final list of extracted candidate

verbs and nominalized verbs were also double-checked by the clinician in the valida-

tion phase, for a suggestion of possible missing domain-relevant verbs (and some ex-

amples of usage), thus improving the overall coverage of the domain. These additional

verbs were then formalized in RSPF following the same framing process described.

Finding frame-evoking nouns

In medical English, actions can be frequently expressed using nouns rather than verbs.

Below are two semantically equivalent sentences, where in the first, the concept is ex-

pressed using a verb, and in the second using a nominalized verb:

• At this point, the surgeon sutures the vein.

• At this point, a suturation of the vein is carried out.

For nouns, we addressed the task of domain action detection as a keyword extraction

problem, i.e. identifying the lexical entities that best represent the domain according to
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a reference corpus. In particular, we have adopted the unsupervised method proposed

in [153].

From the output of the algorithm, only nominalized verbs are selected. Since the

most common morphological process involved in nominalization is the derivation,

which can be defined as the creation of a new lexeme by the addition of an affix (i.e. a

bound grammatical morpheme) [154], obtained results are filtered keeping only those

words ending with one of the following suffixes: “-sion", “-son", “-tion", “ness", “-

ment", “-ery", “-ence", “-ance", “-ure", “-ize", “-ify". False positives are finally removed

from the list by manual revision.

Finding frame-evoking verbs

For verbs, a simple approach that compares the frequency of terms used to describe

actions between the SPKS and OntoNotes corpora is used. For each token of the do-

main text, its POS tag [155] and the number of its occurrences are calculated. Only the

tokens whose POS tag denotes a verb (i.e. VB, VBP, VBZ, VBD, VBN or VBG) are re-

tained. Lemmatization is then applied, and each token (e.g. “cauterized", “cauterizes",

“cauterizing") is associated with the corresponding lemma (resp., “cauterize"), aggre-

gating number of occurrences appropriately. For each obtained lemma, the frequency

with which it appears in domain sentences is then compared with the one the same

lemma appears in OntoNotes. Finally, only those lemmas that are very frequent in the

domain sentences and only rarely used in OntoNotes (i.e. in which the ratio between

the two frequencies is higher than a given threshold empirically set) are considered as

“in domain".

To clarify, this method identifies as “in domain" verbs like “cauterize", “detubolarize"

and “extraperitonealize", because they are frequent in surgery and rarely used in gen-

eral English, and therefore the ratio between the frequencies of these verbs in the two

domains is very high. On the other hand, the method recognizes verbs such as “need",

“aid" and “see" as general English because they appear in the two corpora with similar

frequencies.

Framing of domain-actions

The processes described allow to obtain a list of domain verbs and nominalized verbs

associated with a list of SPKS sentences where they are used. Domain experts then an-
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Fig. 5.2: XML file for the “approximate" lemma. It contains the number of the frame
(02), with its informal definition (to come near in position, to bring near). It then enu-
merates a list of semantic core roles (numbered from 0 to 4) and provides an annotation
example.

alyze each lemma and the respective sentences to understand which of the categories

described in Table 5.1 the lemma belongs.

The framing was performed by three linguistic experts with a 3-year of experience in

the robotic-surgical domain and validated by a clinician. All frames are collected in XML

files. Figure 5.2 is an example of the corresponding XML file for the lemma approximate.
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In the case MISSING_LEMMA, the lemma is not present in PropBank, and thus it is an

unknown word for the resource. Domain experts, therefore, perform the following ac-

tions:

(i) they add the new lemma to the resource;

(ii) they add a new frame to the inserted lemma;

(iii) they provide a textual definition of the meaning of that lemma in the surgical do-

main taken from online medical dictionaries, in particular, Webster Dictionary1 and

The Free Medical Dictionary2;

(iv) they add appropriate semantic core roles;

(v) they add at least one example of SRL-style annotation for the new frame

In the case MISSING_FRAME, the lemma is already in the resource but with inappro-

priate frames. In this case, domain experts perform only steps (ii)-(v).

In the case MISSING_ROLE, the lemma is already in the resource with an appropriate

frame but with an inappropriate set of core roles. In this case, steps (iv-v) are performed.

Finally, in the case PRESENT, the lemma is already in the resource, with an appropri-

ate frame and core roles. None of the previous steps are performed.

During step (iv), a role is considered as core if arguments playing that role occur

with high frequency in the corpus’ sentences that use that lemma (i.e. it is present in

more than 50% of sentences where the lemma is used)3 or, independently of its usage

in the corpus, if it is considered fundamental by domain experts for interpreting and

representing the action.

Framing effort

The framing step is quite expensive because it is carried out manually by personnel who

must have expertise both in linguistics (SRL annotations in PropBank style) and in the

robotic-surgical domain. The framing step took about 80 hours to be completed.

5.3.2 The Robotic Surgery Procedural Propositional Bank

This section presents the annotation process of sentences from the robotic-surgical do-

main according to the frames and roles defined in RSPF. SRL is traditionally framed as

1 https://www.merriam-webster.com/medical
2 https://medical-dictionary.thefreedictionary.com
3 If for a lemma the associated sentences are less than 5, experts are instructed to retrieve additional examples

through a web search.

https://www.merriam-webster.com/medical
https://medical-dictionary.thefreedictionary.com
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either a dependency-based [156] or a span-based [89] labeling task. Given a predicate

in a sentence, the difference between the two settings is in the formalism used to repre-

sent its arguments. Span-based SRL requires the identification and classification of the

entire textual span of an argument, whereas dependency-based SRL is concerned with

labeling only the head of the argument. In the dataset developed in this work, sentences

are annotated in span-based fashion.

The team

A team of four people with different roles carried out the annotation process. In more

detail, the team is composed by:

• Two annotators. They are bachelor’s students of linguistics. During their studies,

they have already encountered issues related to the semantic annotation of cor-

pora and successfully passed the relevant exams. However, they never delved into

PropBank-style annotation. They have excellent knowledge of the English language

(C1 language level) but do not know the medical domain. They were involved in the

project with a student collaboration contract of 150 hours each. They were exclu-

sively concerned with the annotation work.

• The project leader. He is a Ph.D. candidate in computer science. He deals with NLP

issues applied to medicine. He has the same English language level as the annota-

tors. He was in charge of training, coordinating, and revising the annotation team

by answering doubts, refining the guidelines based on annotation errors, and set-

ting up the annotation tool.

• The surgeon. He responded to the doubts collected and presented by the project

leader.

The two annotators annotated the total number of the sentences with the following

proportions respecting the needs and timing of each: the first one annotated approxi-

mately 65% of the sentences while the second the remaining 35%. During the annota-

tion, the project leader revised approximately 1/5 of their annotations to find recurring

errors and improve the guidelines accordingly. The annotators processed and labeled

a different number of sentences at the same time: this shows that the task, due to the

high concentration and the fatigue load, lends itself to being carried out differently ac-

cording to human characteristics and skills. Due to cost reduction strategy and financial

possibilities, the surgeon was just involved in answering doubts instead of having him

participate directly in the annotation process.
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Text to annotate

The team annotated sentences of different surgical procedures taken from an extended

version of the procedural part of the SPKS dataset. The sentences vary significantly in

the writing style: the procedure descriptions are essential and schematic in some cases,

while longer sentences enriched with background information are used in others. In

total, we relied on 1,559 annotated sentences describing 28 surgical procedures of four

different robotic-surgery sub-domains. All the sentences are, therefore, procedural in

the sense described in [18]. Approximately 80% of the sentences are taken from robotic-

surgery textbooks describing how-tos of surgical procedures, while 20% from academic

papers or case reports dealing with academic research on surgical procedures or de-

scriptions of real interventions on specific patients.

Training process

Despite having basic knowledge of linguistics and semantic roles annotation, the anno-

tators did not know the PropBank style of annotating text spans. In the first step, during

two workshops of one hour each, the project leader introduced the annotators to the

project, the ultimate purpose of these annotations, PropBank and PropBank style SRL

annotation, and the annotation tool.

At the end of these workshops, the annotators were asked to annotate 15 general

English sentences of increasing complexity following the PropBank annotation guide-

lines. In the end, the annotation was evaluated by the project leader. The process was

repeated with new sentences until a 90% inter-annotator agreement with the project

leader was reached, following a similar approach to the one presented in [157].

Then, the project leader introduced RSPF to the annotators, focusing on the differ-

ences compared to PropBank. The same annotation experiments were conducted, but

this time on surgical domain sentences instead of general English ones. Although the

annotation guidelines are similar, this experiment was intended to measure the anno-

tators’ understanding of the surgical text. The project leader analyzed and discussed

the errors of the annotators and refined the guidelines providing them with more ex-

planations to fill the doubts until an 85% inter-annotator agreement with the project

leader was reached.4 Both arguments labeling and the choice of predicate’s meaning

were evaluated.
4 We targeted a lower threshold for the agreement to balance the high specificity of the surgical domain and the

annotation costs.
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Then, during the actual annotation of the whole dataset, the project leader analyzed

20% of the sentences of the two annotators and organized weekly meetings with them

to discuss possible mistakes and answer their doubts. The annotators were then asked

to revise the labeling if needed be and to double-check the previous annotations in light

of the new indications.

At the end of the dataset annotation process, 60 SPKS sentences were assigned to

both annotators, which were asked to annotate them in parallel without confronting

each other. The inter-annotator agreement on these annotations was finally calculated

on predicates and argument labels (score reported and discussed later in this section).

The annotation tool and post-editing technique

To reduce the annotation effort, a semi-automatic annotation approach was adopted.

In a first step, the dataset was processed with a general English span-based SRL tool [158]

for automatically obtaining PropBank annotations of the sentences in CoNLL-2012 for-

mat.

The annotations thus automatically obtained were uploaded on a server running

Inception [61], a tool supporting SRL-style text labeling. Inception has been set up to

allow user-friendly SRL annotation of the sentences. The annotators were asked to post-

edit and revise the PropBank annotations according to RSPF and the guidelines. That

is, instead of having to annotate the sentences from scratch manually, the annotators

were asked to revise (i.e. adding missing annotations, deleting incorrect annotations,

changing wrong PropBank frames and roles to appropriate RSPF ones) the automati-

cally provided candidate annotations, so to reduce the annotation workload substan-

tially.

Figure 5.3 shows an excerpt of the tool’s graphical user interface with an example

of annotation and the corresponding content in CoNLL-2012 format, which is directly

readable by state-of-the-art SRL methods.

Annotation process and guidelines

The RSPB dataset follows the PropBank style of annotating predicates and semantic

arguments (c.f. 2.6.2). Accordingly, similarly to PropBank, our corpus is a collection of

sentences with verbs and nominalized verbs annotated with the corresponding frame-

set in RSPF, together with their related arguments labeled with semantic roles.
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Fig. 5.3: On top, annotation example of one sentence through Inception tool graphi-
cal interface. In red are predicate annotations, while in yellow are arguments related to
the corresponding predicate. The annotation is finally exported in CoNLL-2012 format,
and it is directly processable by state-of-the-art SRL tools. Of the CoNLL-2012 fields,
only the following columns have been annotated: the 3rd (identification number of the
token), the 4th (list of tokens in the sentence), the 7th and 8th (predicate and corre-
sponding frame number), and from the 12th to the second-last containing CoNLL-2012
annotations. In this sentence, three predicates are present: the first (minimize.01) is
linked with only one argument (Arg1), the second (place.01) with two (ArgM-PRP, Arg1,
and Arg2), and the third (place.01) with two (Arg1 and Arg2) whose meanings are con-
tained in RSPF.
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These semantic arguments are labeled according to some predefined categories (e.g.

Arg0, Arg1, Arg2) whose specific meaning typically varies according to the predicate

considered. The set of roles of each predicate is outlined in the corresponding RSPF

frame that gives both semantic and syntactic information about each sense, together

with correspondences between the number and semantics. Numbered arguments (e.g.

Arg0, Arg1, Arg2) reflect either the arguments that are required for the valency of a pred-

icate (e.g. agent, patient, benefactive) or those that occur with high frequency in actual

usage (e.g. instrument, surgical technique, important spatial constraints) as explained

in Section 5.3.1. In addition to numbered roles, RSPF also adopts the same modifiers

of PropBank (e.g. ArgM-TMP, ArgM-PRP). The annotation of sentences with this infor-

mation creates a dataset, which is then used as training and testing data in Chapter

6. However, for the annotations to be reliable, following a rigorous annotation process

and precise guidelines is necessary (c.f., 2.2.3). Since our corpus is a specialization of

PropBank to the surgical domain, it inherits a good part of the annotation guidelines

from it.

The main tasks of the Robotic-Surgery Propositional Bank annotation are:

(i) to identify the predicates of the sentence if not already labeled by the automatic

tool.

(ii) to choose a sense in RSPF for each predicate or verify if the one automatically as-

signed is correct;

(iii) to label core arguments for each predicate or verify if the labels automatically as-

signed are correct.

(iv) to label modifiers arguments if present or verify if the labels automatically assigned

to them are correct.

For each sentence, step (i) is related to the predicate-level annotation. The annota-

tors have to check the correctness of the automatically identified predicates and iden-

tify missing annotations (i.e. predicates not tagged as such by the automatic tool). If

the algorithm has marked as a predicate a token that does not cover this role, it must

be removed with all the annotations of the related arguments. This case is relatively

rare since state-of-the-art algorithms tend to have a rather high ability to identify pred-

icates. Examples that can sometimes mislead algorithms are those that contain highly-

specialized domain expressions such as running suture, which in surgery indicates a

particular technique for closing the deep portion of surgical defects under moderate

tension, while an algorithm not trained in medical language could interpret it as to run
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verb. Furthermore, the tool we used for automatically generating the candidate anno-

tations also annotated modals and copulas. The annotators were asked to remove them

(as verb) since for procedural knowledge extraction, i.e. the extraction of surgical ac-

tions and semantic arguments linked to them, we deemed them not relevant. Annota-

tions of the modals have been kept however at the modifier argument level (with argu-

ments ArgM-MOD) because they can be helpful to specify the obligatory nature of the

corresponding action. Finally, in this step, some nominalized verbs, i.e. nouns that re-

fer to actions, have been annotated as predicates. At this point, step (i) is finished, and

annotators continue with step (ii).

Step (ii) is still related to the predicate level. At this point, the annotators have a list of

predicates to disambiguate using the corresponding RSPF file. For most of the general

English predicates, the automatic tool will have already proposed an appropriate sense

which must only be verified by the annotators. If for it RSPF distinguishes two or more

verb senses, annotators are asked to choose the one that best suits the context. Some-

times, the process is straightforward because RSPF has only one available sense. This

is the case of mono-sense predicates, either specific to the surgical domain (e.g. skele-

tonize, detubularize or kocherize) or general English ones (e.g. accomplish or avoid). In

other cases, the disambiguation is more complex because there are multiple senses in

RSPF. Cases of this type can be further divided into two sub-categories:

• one of the lemma’s senses is specifically used just in the surgical domain, while the

other general English senses are rarely used in surgical procedural texts. An example

is the lemma grasp, for which RSPF has two senses: grasp.01: “to take hold of, com-

prehend" clearly related to a general English usage; grasp.02: “to clasp or embrace

especially with the fingers or arms" specific to the surgical use. In this case, the dis-

ambiguation is typically straightforward, as the general English sense is not or only

rarely used in surgical text;

• the lemma has both general English and surgical-specific senses that may both oc-

cur in surgical procedural texts. An example is the lemma follow, for which RSPF has

9 senses. Although sense 09 “move behind in the same direction" has been added for

surgical purposes, other general English senses are also used in surgical texts, for ex-

ample, the 01. “be subsequent, temporally or spatially". The disambiguation in these

cases is more complex, and the annotators are asked to reflect well on the meaning

of the sentence, comparing it with available examples in RSPF, and to discuss with

the project leader if necessary.
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During step (ii), occasionally, annotators may come across predicates that do not yet

have an existing entry in RSPF.5 In these cases, annotators are instructed to contact

the project leader to describe the situation and report the corresponding dataset’s sen-

tence. The project leader analyzes the corresponding sentence and lemma, and then he

decides whether to add this lemma to RSPF (because it is a lemma with a surgical sense

that was not covered in the initial construction of RSPF) or to ignore the case (when

the lemma is only a rarely used surgical slang). The project leader may also consult the

surgeon to make an informed decision.

Once the correct meaning of a predicate has been identified, annotators proceed

with step (iii), the argument-level annotation. While Arg0 is typically relative to the one

who performs the action and Arg1 is typically relative to the one who undergoes it, for

the other numbered arguments RSPF has to be checked more carefully. The annotators

have to analyze all the arguments (both core and modifier) automatically identified by

the tool, as well as possible arguments in the text not annotated by the automatic pre-

processing, which are then added from scratch by the annotators. For core arguments,

if the annotation label is incorrect, the most appropriate numbering must be inserted.

For the arguments automatically labeled as a modifier, the annotators have to check if

a more appropriate core role is available in the roleset of the frame and if so, to replace

the modifier with it.

Since the tool used for obtaining the first draft of the annotations is trained on gen-

eral English text, i.e. it does not know the RSPF-specific frames and roles added in the

extension of PropBank, the case of spans annotated automatically with a modifier (for

PropBank) instead of core role (for RPSF) is quite frequent. Two examples follow:

• In the sentence “The proximal rectum is grasped using laparoscopic forceps.", a

PropBank-based SRL tool will likely recognize “using a laparoscopic forceps" as a

generic ArgM-MNR entity while in RSPF, the instrument that should be used to grasp

something is labeled as Arg2 of the sense 02 of the lemma grasp.

• In the sentence “The gastric pouch is created using a perigastric technique.", a Prop-

Bank based SRL tool will likely recognize “using a perigrastric technique" as a generic

5 In some cases, this situation may occur due to some lemmatization error of the automatic SRL tool providing the
candidate annotations, something that the annotators can easily fix by choosing the correct lemma and sense in
RSPF.
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ArgM-MNR entity, similarly to the previous example, while in RSPF, the surgical

technique is identified with the core role Arg5 of the sense 01 of the lemma create.6

RSPF contains annotation examples to help annotators. In most cases, choosing a

role is straightforward, given the verb-specific definition of the label in the frame files.

However, it may be difficult to understand how to annotate a span of very specialized

text in some cases. The annotators must decide between the available labels basing

either on the explanations/examples provided in RSPF or by searching online for the

meaning of unknown domain words. If the doubt persists, the project leader is con-

sulted.

During step (iv), for modifier arguments not to be translated into an RSPF core role

according to step (iii), annotators are asked to verify whether the annotations proposed

by the automatic tool are consistent with the guidelines of the original PropBank and if

not to correct them. RSPF does not add new modifier tags to PropBank, so no changes

to its guidelines were necessary for these aspects.

Regarding which token to include in the span of the annotation (c.f., span bound-

aries) and corresponding exceptions, the same indications as in PropBank’s guidelines

are given to the annotators.

Inter-annotator Agreement

Agreement between the two annotators has been measured at the end of the process

on a sample of 60 sentences annotated by both, using the kappa statistic (c.f., 2.2.3).

The kappa statistic has been computed for predicates and arguments, obtaining the

values 0.89 and 0.88, respectively. These values denote an almost perfect level of agree-

ment between the annotators, reassuring of the adequacy of the annotation process

and guidelines.

Annotation effort

The training and annotation process required a total of 450 hours. Each annotator was

employed for 150 hours. In particular, the annotators were asked to annotate for a max-

imum of 1 hour per session to reduce errors due to fatigue or boredom from the repet-

itive task. The project leader coordinated the annotation work for another 150 hours.

6 These two examples show one of the benefits of RSPF over PropBank, for the surgical domain: it allows to bet-
ter discriminate, with specific core roles, instruments, and techniques, two substantially different entities in the
surgical domain, which otherwise will be indistinguishably merged in the ArgM-MNR modifier role in PropBank.
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In total, the whole process required 6 months to be carried out. Additional effort was

required to set up the annotation tool and write down the guidelines’ first version.

5.4 The Robotic-Surgery PropBank

Both the framebank and the dataset resulting from the annotation process described

in Sections 5.3.1 and 5.3.2 are publicly available.7 This section presents and discusses

some statistics about them. In more detail, Section 5.4.1 presents RSPF, while 5.4.2 the

annotated dataset.

5.4.1 The framebank (RSPF)

Table 5.3: Semantic type of the core roles added to modified lemmas.

Type Description Subtype Number

Who and What

Core-role roles indicating who (or what) performs the action and who (or what) instead un-
dergoes it. Often they respectively coincide with the robotic or the human operator and the
anatomical part that is object of the action.

Agent 44

Patient 46

How
Core-role arguments indicating how the action is performed by specifying the surgical tech-
nique or the manner to follow to carry out the action, or the instrument to use.

Manner or technique 36

Instrument used 30

Spatial information

Core-role arguments specifying different kind of spatial information to know during the ex-
ecution the corresponding action. These core-roles reply to questions “where?" or “through
which passage or port?" or “starting from where?" or “ending where?" or final other frame-
specific information such as orientation or spatial constraint to follow for safety reasons.

Where 22

Through 9

Starting point 2

Ending point 4

Other 32

Purpose
Core-role argument explicitly describing the purpose of the main action. It is inserted as
core-role only if very frequently present in our sample sentences. — 6

Other Core-roles very specific to a particular lemma and thus not fitting in any of the above classes. — 13

Using the method described in Section 5.3.1, 252 lemmas have been analyzed. At

least one modification among those described in Table 5.1 has been requested in 109

cases. In particular, of the 252 analyzed lemmas, 24 belong to MISSING_LEMMA case, i.e.

7 https://gitlab.com/altairLab/robotic-surgery-propositional-bank

https://gitlab.com/altairLab/robotic-surgery-propositional-bank
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new lemmas (verbs or nouns) that describe very specific actions of the surgical domain

not yet present in the original PropBank have been added. 22 lemmas belong to MISS-

ING_FRAME case, i.e. new senses have been added to existing lemmas describing mean-

ings not already covered by PropBank. Finally, 63 lemmas suffer from MISSING_ROLE

problem, and thus corresponding existing predicate’s sense has been enriched with new

semantic roles frequently used in robotic surgery. Considering the new lemmas added,

new frames added to existing lemmas, and the new core roles added to existing frames,

a total of 244 core roles have been inserted. Table 5.3 shows the semantic type of core

roles added for the robotic-surgical domain lemmas. The table considers all core roles

added, both in existing frames and in new frames: while the number of core roles added

in the first row of the table is quite high, most of them are due to MISSING_LEMMA and

MISSING_FRAME, i.e. from frames not yet present in the original PropBank.

The nature of the semantic roles inserted highlights that, in the surgical procedural

language, it is of utmost importance to indicate for each action that describes an op-

eration, who or what performs the action (Arg0), the anatomical part that undergoes

the action (often Arg1), the instrument with which to perform the action, the surgical

technique to adopt, the purpose, and a series of spatial information that helps locate

the target anatomy within the human body. Overall, the number of newly introduced

and modified lemmas and frames indicates that the extension of PropBank to cover

the robotic-surgical domain is substantial and that procedural surgical language differs

from general English in terms of both predicates used and the roles required.

5.4.2 The Annotated Dataset

Dataset-level statistics

Following the annotation process and guidelines described in Section 5.3.2, the first an-

notated dataset specific for SRL of robotic-surgery textbooks was obtained. 28 surgical

operative descriptions have been annotated for 1,559 sentences and 32,448 tokens. The

obtained dataset is composed of 12,202 annotations. Of them, 3,601 are predicate-level

annotations, and 8,601 are argument-level annotations, both core, and modifier. Figure

5.4 shows more detail about this dataset’s distribution of core and modifier arguments.

A high percentage of the modifier arguments (left side of the figure) in the annotated

dataset is covered by TMP. It provides temporal relationships between predicates, and

thus, it is helpful to give a chronological order to the actions that must be performed

for the correct execution of the robotic-surgical procedure. There are also many tokens



5.4 The Robotic-Surgery PropBank 95

annotated with the MOD label: mostly tokens likes “can", “must", “might", “may", and

“would" are annotated in this way. Specifying these arguments is helpful for extract-

ing information on the mandatoriness of surgical actions or events that may occur in

certain circumstances. Finally, other frequent modifier arguments are MNR, which en-

rich the corresponding predicate with generic information about how action should

occur, and ADV, which in our dataset primarily identifies the span of texts containing

conditional operators (if, then, else, or otherwise). Identifying spans of text tagged with

this label is crucial for automatically reconstructing a workflow from text, i.e. to repre-

sent the surgical process in a more structured and schematic way, as confirmed in the

use-case of Chapter 7. The remaining arguments describe spatial, purposeful, or other

information not labeled with any core role.

The most frequent core arguments in the dataset (right side of the figure) is Arg1.

Unlike the other core arguments, it has well-defined semantics. It plays the role of pa-

tient, i.e. the object that undergoes the action described by the predicate to which it

belongs. Also, Arg0 has a well-defined semantic in most verbs (i.e. the agent who per-

forms the action described in the corresponding predicate), but it is not so frequent in

this dataset. This observation was also made in [139]: in most cases, the agent did not

occur in sample sentences as most actions in procedural language are described in a

passive voice, and the agent in operative notes or procedural textbooks that is typically

the surgeon, the assistant, or the robot is omitted from the text. There is no well-defined

semantics for the core arguments of higher numbers since it varies according to the

frame considered. However, Arg2, Arg3, and Arg4 are also frequent and often associated

with a surgical instrument, technique, or spatial information.

Procedure-level statistics

As stated before, 28 different robotic-surgery descriptions have been annotated. The

average number of sentences per procedure is approximately 56. The shorter descrip-

tion is 10 sentences long, while the longer one comprises 123 sentences. These val-

ues are very different from that of other procedural descriptions. For example, in [159],

a dataset of nano-material synthesis procedural descriptions is presented, and they

reported 9 sentences per procedure on average. In [160], procedural corpora about

kitchen and automotive domains were presented, and an average of 12 sentences per

description was reported. This means that the robotic-surgical procedures described in
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Fig. 5.4: Arguments-level annotations. The pie-chart in the center shows the distribu-
tion of semantic arguments between modifier, core and referent (i.e. core argument in
cases of co-reference) in our annotated dataset. In total, annotated 5,777 core argu-
ments, 2,759 modifier arguments and 65 referent of other core arguments.

textbooks can be much longer and more detailed than the procedural descriptions of

other domains and sources, at least the ones considered so far in the literature.

Finally, our procedures have a mean of approximately 129 predicates (with a mini-

mum of 21 and a maximum of 257) and are composed of a mean of 1,161 tokens (with

a minimum of 201 and a maximum of 2,457).

Sentence-level statistics

A sentence of the robotic-surgery procedural domain has 2.31 predicates on average

(minimum is 1, and the maximum is 9) and is composed of 5.52 arguments on average

(minimum is 1 and the maximum is 20). Finally, it has 20.81 tokens on average (mini-

mum is 5, and the maximum is 81). This last value can be compared with [159], where

the authors observed that a sentence for nano-material synthesis has 26 tokens on av-

erage, and with [160], where the authors reported that a procedural sentence of the
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kitchen or automotive domain is composed of 12 tokens on average. Also, this compar-

ison suggests that depending on the domain, author, source, and purpose, more or less

complex procedural sentences exist, and those from robotic-surgery textbooks tend to

be among the most complex ones.

Predicate-level statistics

In total, this dataset uses 452 different predicate labels. Of them, 410 are used with only

one sense, while 42 can have different meanings. In more detail, 100% of MISSING_LEMMA

lemmas are mono-sense, meaning that there are not multiple surgical senses for very

specialized domain lemmas; furthermore, approximately 70% of MISSING_FRAME lem-

mas and 85% of MISSING_ROLE lemmas are used with only one sense in our dataset.

These statistics show that the procedural surgical language extensively uses mono-

sense predicates. Furthermore, even for lemmas with multiple senses available in RSPF,

one is typically used much more frequently in the robotic-surgery domain than all the

other senses. More in detail, for each predicate p present in the dataset with at least two

different meanings, denoting with αp the frequency of the most common sense for the

analyzed predicate with respect to the total number of occurrences in the dataset, we

observe that αp is on average 0.77: that is, the most frequent sense is used in almost 8

times out of 10 of the occurrences of that predicate in the dataset, confirming that also

for polysemous RSPF lemmas, only one sense is mainly used in the dataset.

Table 5.4 shows examples of predicates, with the specification of the number of

senses with which they appear in the dataset, together with the information on the most

frequently used sense and the corresponding percentage of occurrence.

Finally, from a tenses point of view, approximately 56% of annotated predicates are

in the passive or past tense, 25% are in a present or imperative tense, 14% in present

participle or gerund form, and 5% in a nominalized form.

5.5 Conclusions

This chapter presented the first annotated resource for improving robotic-surgical NLP.

The dataset consists of a corpus collecting sentences from textbooks and academic pa-

pers describing different robotic-surgical procedures that have been manually anno-

tated in the PropBank-style exploiting an extension of its framebank. In detail, the con-

struction of the dataset followed two steps: in the first one, a framebank specific to the
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Table 5.4: Examples of 10 different predicates with the indication of the number of
senses with which they appear in the dataset (S-text), the number of senses in the RSPF
(S-RSPF), and the reference to the most frequently used sense with the corresponding
percentage of occurrence.

Lemma S-text S-RSPF Most frequent sense (% of occurrence)
Follow 4 9 [01] be subsequent, temporally or spatially (60.98)
Come 3 9 [01] motion (60.00)
Pass 3 11 [08] push through a passage (91.18)
Keep 3 6 [04] maintain some prepositional relationship (54.55)
Use 2 3 [01] to take advantage of, utilise (99.67)
Locate 2 2 [01] (cause to) be located in (66.67)
Introduce 2 3 [03] To put or place into something, to insert into (99.92)
Start 2 5 [01] Start (99.94)
Stop 1 3 [01] Stop, putting a stop to (100.00)
Enter 1 2 [01] Enter, go in (100.00)

surgical domain (RSPF) has been defined. In the second step, RSPF was applied to man-

ually annotate sentences, taken without modification, from robotic-surgical texts. The

annotation was performed at two levels: predicate level, where predicates are identified

and disambiguated with respect to RSPF, and arguments level, where the same tasks

are performed for the semantic arguments of each predicate. To perform the annota-

tion, a team of collaborators with different roles has been engaged: two annotators, one

project leader, and one clinician for final validation. The annotators were duly trained

on PropBank, SRL, and RSPF, with theoretical workshops and an iterative training pro-

cess. The resulting resource is used in the next Chapter to develop a SRL model specific

for the procedural robotic-surgery domain.
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Extracting procedural knowledge in surgical

textbooks

"Who, What, Where, When, With what, Why, How."

The seven circumstances, associated with Hermagoras
and Aristotle

6.1 Introduction

As stated in Chapter 1, extracting procedural robotic-surgical knowledge directly from

textbooks is an opportunity towards the development of autonomous surgical robots

that could automatically build or extend a proper surgical knowledge-base, reasoning

with it in realistic intervention scenarios. Also humans could benefit from it for ques-

tion answering applications, usable for example in an early learning phase by medical

students.

In the previous chapter we presented a framebank and the corresponding dataset

containing procedural robotic-surgery sentences annotated with semantic roles, named

RSPB. In this chapter, we use RSPB to train an SRL model thus proposing a first bench-

mark on extracting detailed surgical actions from available robotic-surgery procedu-

ral textbooks and papers. Exploiting ROBERTA, BIOMEDROBERTA and SURGICBERTA

(c.f. Chapter 3) pre-trained language models, we first investigate a zero-shot scenario

(i.e. the scenario where no additional SRL-annotated domain-specific data is used) and

compare the obtained results with a full fine-tuning setting (i.e. the scenario where

SRL-annotated domain-specific data is used). In the assessment, we explore different

dataset splits (one in-domain and two out-of-domain) and we investigate also the ef-

fectiveness of the approach in a few-shot learning scenario (i.e. the scenario where only

a portion of the SRL-annotated domain-specific sentences is used for training).
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In more detail, we compare all the considered and contributed models in an exten-

sive quantitative evaluation, concretely investigating the following research questions:

• RQ1: How well can general-English and bio-medical pre-trained language models

perform SRL on surgical annotated texts without resorting to supervised learning

(i.e. zero-shot learning)?

• RQ2: Does fine-tuning on surgical annotated texts substantially improve the perfor-

mance with respect to the zero-shot setting using off-the-shelf models available in

the literature?

• RQ3: How many annotated data are needed to attain substantial improvements via

supervised learning for this task (i.e. few-shot learning)?

• RQ4: Does further unsupervised learning of pre-trained language models (as in

SURGICBERTA) help to better understand surgical language?

• RQ5: Are the SRL models able to generalize over different surgical sub-domains?

Besides exploiting the standard evaluation measures for the SRL task, we also propose

a new way for evaluating SRL systems, based on the joint disambiguation of argu-

ments and predicates, i.e. on the correct disambiguation of semantic arguments with

respect to the correct framing of the actual predicate. Results show that the fine-tuning

of SURGICBERTA on the SRL task allows to achieve the highest performance on all splits

and on all sub-tasks.

6.2 State of the art

While the field of biomedical NLP has a long history – see, among others, [161] for an

overview and the proceedings of the long-standing ACL Workshop on Biomedical Lan-

guage Processing [162] for up-to-date contributions – to the best of our knowledge, no

works have tackled so far the problem of extracting procedural knowledge from surgical

books or academic papers.

Nevertheless, the literature includes various approaches for extracting relevant in-

formation from medical or surgical operative notes using NLP or extracting procedu-

ral information from other non-surgical domains. Consequently, this section overviews

relevant previous works in two different related areas: the first part discusses recent

relevant applications of NLP techniques to the bio-medical and surgical domains; the

second part presents papers dealing with the extraction of procedural knowledge from

texts, considering also domains other than the bio-medical one.
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Application of NLP techniques to bio-medical domains.

This paragraph summarises some recent and relevant applications of NLP techniques

to bio-medical and surgical domains. In [163], the authors use logistic regression with

unigrams and unique concept identifiers from the unified medical language system to

automatically predict the severity of chest injury after trauma from clinical notes. [164]

proposes rule-based NLP algorithms to automatically extract surgery-specific data ele-

ments (category of knee arthroplasty, laterality, constraint type, whether patella resur-

facing was performed or not, and implant model numbers) from knee arthroplasty

operative notes: the main objective was to decrease the need for costly manual chart

review and to improve data quality using NLP techniques. In [165], they use informa-

tion extraction techniques applied to operative notes to detect the presence of variables

associated with periprosthetic joint infection, including the growth of cultured organ-

isms, documentation of inflammation, presence of sinus tract, and purulence. In [166],

the authors use an extreme gradient boosting NLP machine learning algorithm [167]

for automated detection of incidental durotomies in free-text operative notes of pa-

tients undergoing lumbar spine surgery. The clinical goal is to automatically survey the

incidental durotomy that could be potential implications for postoperative recovery,

patient-reported outcomes, length of stay, and costs. In [113], the authors address the

detection of procedural knowledge in MEDLINE abstracts. In their work, procedural

knowledge is defined as a set of unit procedures (each consisting of a Target, Action,

and Method) organized for solving a specific purpose. The proposed solution works

in two steps. First, support vector machines and conditional random fields are com-

bined for detecting sentences (purpose/solution) that may contain unit procedures,

feeding them with content (unigrams and bigrams), position (sentence number in the

abstract), neighbor (content features of nearby sentences) and ontological features (us-

age of terms from reference vocabularies). Then, sequence labeling with CRFs is per-

formed to identify the components of unit procedures. In [168], the authors propose an

NLP approach to automatically label right ventricular dysfunction size, and the func-

tion [169] from echocardiographic free text reports. In particular, manually annotated

written reports were used to fine-tune a 12-layer BERT model pre-trained on a large

dataset. The remaining written reports are used as test material. The extracted labels are

finally used to annotate image data, training a 4-layer 3D convolutional neural network.

In [170], NLP is used for adverse event detection from radiology reports and follow-up

telephone call notes. In particular, hip dislocation after a primary total hip replacement
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[171] is used as a case study. Radiology reports are manually labeled into three cate-

gories (current dislocation, evidence of previous dislocation, and no dislocation). In

comparison, telephone notes are organized into two categories (evidence of previous

dislocation and no dislocation). Then, the performance of different machine learning

and deep learning models is compared. In [172] is observed that textual radiology re-

ports contain relevant information for determining the likelihood of radiology signs of

COVID-19 in the lungs. Machine Learning NLP approaches and SNOMED-CT reference

terminology [173] are thus adopted to detect COVID-19-related disorders within radi-

ology reports automatically.

These studies are examples of NLP applications in the medical domain. However, the

texts’ typology differs remarkably from ours: they mainly analyze medical notes, often

written in highly structured language or abstracts, while we analyze free-text technical

manuals or papers. Finally, the purpose is different: our goal is to lay the foundations

for extracting a synthetic workflow by mining descriptions of surgical procedures abun-

dantly available in the literature, while theirs is mainly focused on helping surgeons or

assistants to analyze available data.

Procedural knowledge extraction.

More similar in terms of the overarching goal but more diverse in the application do-

main are the studies that, similarly to our work, propose approaches for extracting pro-

cedural knowledge for domains other than the biomedical one. In Chapter 4 we already

presented some of these papers for the related problem of procedural sentence detec-

tion, but this paragraph explains their contributions to the procedural knowledge ex-

traction one. In [22], the authors tackle the problem of procedural knowledge extrac-

tion in technical documentation as a multi-class classification task using Support Vec-

tor Machine with linguistic and structural features, but they do not extract sentence-

level procedural entities, such as words expressing actions, agents, or instruments. The

authors of [23] address the mining of cooking recipes and maintenance manuals, for-

malizing the task into the multi-grained text classification task: first, they detect pro-

cedural sentences, then they recognize their semantics (procedure begins or ends and

successive, optional and concurrency relations), and finally they assign semantic roles

(only action’s executor, action name and direct object are considered) to words in a

procedural sentence. They adopted a deep learning model that encodes BERT word

vectors extracted from input sentences using a BI-LSTM to capture inherent clues in a

sentence and a CNN to capture local ngram features. A multi-layer perceptron module
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is finally used to perform the word-level predictions. Recipe for nanomaterials’ synthe-

sis has been mined in [24], where, after having classified each sentence as relevant or

non-relevant, they adopt a rule-based parser to extract recipes, i.e. a set of specific ac-

tions that are applied to a set of recognized base materials during the synthesis of nano-

materials. In [25], the authors address the problem of extracting repair instructions in

user-generated text from automotive web communities. In particular, they use ngrams,

domain-specific lexical features (e.g. text length, readability index, occurrences of enu-

merations and URLs), and syntactical features to feed several machine-learning meth-

ods. Their goal is to classify texts as containing repair instruction or not, and thus they

do not deal with sentence-level procedural entity extraction. In [26], the authors ex-

tract procedural information in technical support documentation, where procedures

are typically described using lists. They aim at extracting decision points within pro-

cedures, identifying blocks of instructions corresponding to these decision points, and

mapping instructions within a decision block. To do it, they developed a manually an-

notated dataset and exploited parse-tree-based syntactical rules. Also, the authors of

[27] address the extraction of procedural knowledge from structured instructional texts,

exploiting finite-state grammars. In particular, they aimed to extract procedural entities

such as conditions, actions verbs, agents, instruments, and temporal or spatial parame-

ters. Furthermore, recent deep-learning-based NLP techniques have recently been ap-

plied to extract business processes from Standard Operating Procedure documents [28].

All these works address the extraction of procedural knowledge from written text and

are thus similar to our foreseen application, They, however, deal with typologies of tex-

tual content substantially different from the description of a surgical procedure. Trou-

bleshooting and product documentation, cocking recipes, maintenance manuals, and

repair instructions differ significantly from descriptions of surgical procedures. They

are different both from the terminological and structural points of view.

6.3 Method

We framed extracting procedural surgical knowledge from the text as an SRL problem

since SRL is also applied for information extraction in various biomedical domains [174,

175, 176]. The related theory about SRL is described in 2.6. In this chapter, we use the

PropBank-based SRL, exploiting the Robotic-Surgery Propositional Bank described in

Chapter 5.
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Figure 6.1 summarises the proposed approach.
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Fig. 6.1: Overview of our approach for procedural surgical knowledge extraction. The
pipeline is composed of three stages (top to bottom): (i) the collection of surgical texts
from the web and a simple pre-processing (grey box - Chapter 3). (ii) Using the data
from the grey box, we adapt the ROBERTA pre-trained language model to the surgi-
cal domain, obtaining SURGICBERTA (right part of the blue box - Chapter 3); (iii) We
then fine-tune SURGICBERTA in a supervised way on the downstream SRL task using
general-English and RSPB datasets (red box - this chapter); SURGICBERTA thus learns
the surgical SRL task. (iv) With the performance evaluation step (green box), we evalu-
ate the obtained model on a further test dataset consisting of SRL-style annotated sur-
gical sentences (this chapter).
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We recall that the typical SRL task is composed of two sub-tasks. The first is the pred-

icate identification and disambiguation task. It is aimed to identify each predicate in a

sentence, assigning it the appropriate meaning (i.e. sense in RSPF) in the given con-

text, among the available ones for that predicate lemma codified in the target lexical

resource. The second is the argument identification and classification task. It aims to

detect the argument spans or syntactic argument heads of a predicate and assign them

the appropriate semantic role labels according to the target lexical resource.

As an example in the robotic-surgery domain, consider the following sentence, fo-

cusing on the verb “grasp":

“Using the cadiere grasper (robot arm #3), grasp the soft tissues along the lesser

curvature of the stomach to straighten out the lga perpendicular to the celiac

axis."

In the predicate identification and disambiguation phase, “grasp" is recognized as a

predicate, assigning it the RSPF meaning of grasp.02: “to clasp or embrace especially with

the fingers or arms", rather than grasp.01: “to take hold of, comprehend". Then, in the

argument identification and classification phase, SRL produces the following output:

“[Arg2: Using the cadiere grasper (robot arm #3)], [grasp.02 grasp] [Arg1: the soft

tissues] [Arg3: along the lesser curvature of the stomach to straighten out the lga

perpendicular to the celiac axis]."

where, for the sense grasp.02 in RSPF, Arg2 represents the “instrument used for grasp-

ing", Arg1 is the “thing grasped", and Arg3 identifies an “important spatial indication for

correct grasping".

Another example for the verb “dissect" follows:

“The lymphatic tissue is dissected off with meticulous hemostatic and lymphatic

control, using bipolar electrocautery and hem-o-lok®clips, to improve visualiza-

tion."

is annotated as:

“[Arg-1: The lymphatic tissue] is [dissect.02 dissected] off [Arg-3: with meticu-

lous hemostatic and lymphatic control], [Arg-2: using bipolar electrocautery and

hem-o-lok® clips], [ArgM-PRP: to improve visualization.]"

where Arg-1 is the entity dissected, Arg-3 is the surgical technique, Arg-2 is the instru-

ment, and ArgM-PRP is the modifier role for purpose.
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6.3.1 The SRL neural architecture adopted

As stated in 2.6.3, SRL is traditionally performed with data-driven methods. Since re-

cent approaches leverage self-attention techniques [87] and Transformer-based archi-

tectures with pre-trained language models [88], in this work, we also follow this trend

and adopt a neural approach, thus addressing the SRL task in an end-to-end fashion

while testing different pre-trained language models. The pre-trained language mod-

els considered in this chapter are the state-of-the-art ROBERTA (described in 2.4.2),

BIOMEDROBERTA [177] and SURGICBERTA, the one we contributed in Chapter 3. In

particular, BIOMEDROBERTA is obtained from ROBERTA via continuous pre-training

on 2.68M full-text biomedical papers from S2ORC [178]. This amounts to 7.55B tokens

and 47GB of data. With this configuration, we want to implicitly verify if the biomedical

domain is similar to the surgical one and if we can obtain performance improvements

by adopting a more accurate pre-trained language model than the general domain RO-

BERTA. All pre-trained language models use the same transformer-based architecture

[33] and are trained with an MLM objective.

The word representations learned in the pre-trained models have then been reused

for the SRL task through fine-tuning. In more detail, the SRL models used in this chap-

ter are instantiated on top of the ROBERTA encoder (the same also used by BIOMEDRO-

BERTA and SURGICBERTA). At its core, the system is a standard BIO tagger whose ob-

jective is to assign a label of the form B-X (beginning of argument with role X), I-X (con-

tinuing of argument with role X) or O (not an argument) to the tokens of the sentence,

with respect to the considered predicate. Figure 6.2 illustrates the neural architecture

we use. First, we encode the input text using contextualized word embeddings for each

token using the pre-trained language model; we then use linear transformations of the

word embeddings to obtain a concatenated input for a two-layer ReLU, which is next

input to a linear layer followed by softmax activation to produce a probability distribu-

tion over labels for each word (to avoid overfitting, a standard dropout layer [179] with

probability 0.5 is used). To capture the sequential dependencies between labels, we use

a standard CRF layer [180] to produce at testing the most probable label sequence using

standard Viterbi decoding.

For training and validation, the CoNLL-2012 dataset [90], a large-scale (∼ 318k anno-

tated SRL predicates), multi-genre general-English corpus, is used to train and validate

the “zero-shot" models, while RSPB dataset is used in combination with CoNLL-2012 for
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the “few shot" and “full fine-tuning" models that will be described later. RSPB contains

four different robotic-surgery domains:

• Urology - 51.51% of the sentences;

• Gastrointestinal procedures - 24.82% of the sentences;

• Thoracic procedures - 13.02% of the sentences;

• Gynecology - 10.65% of the sentences.

We therefore used the CoNLL-2012 dataset to make the architecture learn the stan-

dard SRL task and RSPB to specialize the model to understand better the surgical lan-

guage and to perform the SRL task in the given surgical sub-domains.

Both datasets (CoNLL-2012 and RSPB) adhere to the PropBank way of annotating

predicates and semantic arguments. Evaluation is carried out on different test splits of

the robotic-surgery annotated dataset, detailed next in Section 6.3.2. Sentences of the

test sets were never seen during the training and validation phase.

In all experiments, we inform the model about the tokens playing the predicate’s

role. Differently from [88], we do not use the gold frame sense since our purpose is also

to evaluate the model’s ability to disambiguate the predicate meaning correctly. The

predicate disambiguation adopts a similar architecture.

6.3.2 Splits of the robotic-surgery annotated dataset

Due to the high computational costs needed for training, validating and testing the

SRL models, we adopted the classical evaluation protocol of manually splitting the

RSPB dataset into three components (train, validation, and test) instead of following

a more computationally demanding cross-validation protocol. More in detail, we split

the robotic-surgery annotated dataset into three different combinations:

• BAL: the split train-test-validation is balanced between different surgical domains.

The procedures are split into train-test-validation, preserving the number of sen-

tences per domain (thoracic, gynecological, urological, gastrointestinal). Then, 80%

of sentences are used to train (10% of them are removed and used to validate the

dataset) and 20% as a test dataset. A similar approach is also used by [56].

• GYN: train and validation datasets contain all the sentences of thoracic, gastroin-

testinal, and urological descriptions. The test dataset contains only sentences of the

gynecological domain. No sentences describing gynecological surgeries were seen

during the training and validation steps.
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Fig. 6.2: The neural architecture used for SRL. Sentences are tokenized and each token
is input to a pre-trained language model to produce a contextualized representation,
which is then fed into ReLU layers and a linear layer. Next, a softmax layer produces a
probability distribution over the labels. A CRF layer finally captures dependencies be-
tween labels by decoding the resulting representations into the most probable label
sequence.

• THO: train and validation datasets contain all the sentences of gynecological, gas-

trointestinal, and urological descriptions. The test dataset contains only sentences

of the thoracic domain. No sentences describing thoracic surgeries were seen dur-

ing the training and validation steps.
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The BAL split wants to investigate the ability of the method to learn a general surgical

domain procedural language from a limited set of annotated sentences. The GYN and

THO splits1 aim instead to verify if the annotations are general across different surgi-

cal sub-domains, i.e. if the models trained on them perform comparably with the one

trained with the BAL split. Table 6.1 summarizes some statistics about the splits.

Table 6.1: Statistics of the different splits. The numbers outside the parenthesis rep-
resent the percentage of the corresponding semantic argument in the respective train
+ validation or test datasets: the sum by columns of the numbers outside the paren-
thesis is 100. The parenthesis numbers represent the corresponding argument’s split in
the train + validation and test dataset. For each argument, the sum of the number in
the parenthesis of train + validation and test datasets is 100. The same is for predicates
(Preds in table).

Split BAL THO GYN

Arg Train+Val (%) Test (%) Train+Val (%) Test (%) Train+Val (%) Test (%)

PREDS (80.20) (19.80) (87.46) (12.54) (89.28) (10.71)

ARG-0 5.50 (81.90) 4.96 (18.10) 5.15 (81.74) 7.64 (18.26) 5.40 (87.26) 6.01 (12.74)
ARG-1 40.48 (80.21)40.71 (19.79) 41.84 (87.22)40.66 (12.78) 42.03 (89.31)38.34 (10.69)
ARG-2 13.18 (83.56)10.56 (16.44) 12.96 (87.52)12.26 (12.48) 13.05 (89.87)11.21 (10.13)
ARG-3 4.94 (75.95) 6.37 (24.05) 5.50 (87.26) 5.34 (12.74) 5.69 (91.93) 3.80 (8.07)
ARG-4 2.81 (69.29) 5.07 (30.71) 3.67 (90.43) 2.58 (9.57) 3.72 (93.40) 2.00 (6.60)
ARG-5 0.54 (82.22) 0.47 (17.78) 0.55 (89.13) 0.44 (10.87) 0.49 (80.43) 0.90 (19.57)
ARG-6 0.07 (55.56) 0.24 (44.44) 0.13 (0.90) 0.09 (0.10) 0.11 (0.89) 0.10 (0.11)

ARGM 32.48 (80.71)31.62 (19.29) 30.20 (86.60)30.99 (13.40) 29.51 (85.66)37.64 (14.34)

6.3.3 Fine-tuning of language models on the SRL downstream task

Using the neural architecture and the language models of Section 6.3.1, the general-

English CoNLL-2012, and RSPB, we trained 18 different models, six for each split. In par-

1 Although any of the sub-domains in the SPKS dataset could have been chosen as a test set while training on
the others, given the relatively small size of the robotic-surgery annotated dataset, we opted for testing on these
two domains as they are the smaller ones and thus maximize the size of the available material (from the other
domains) used for training.
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ticular, for each one, we fine-tuned ROBERTA, BIOMEDROBERTA, and SURGICBERTA

on two different scenarios:

• Zero-Shot: we fine-tuned the language models only on CoNLL-2012 annotated data

(train and validation sets), i.e. on non-surgical data. We then evaluated the obtained

models on the surgical test set for the various splits;

• Full Fine-Tuning: starting from the fine-tuned models of the Zero-Shot scenario, we

continued to fine-tune them on the train and validation sets for the different splits

of the robotic-surgery annotated dataset. We then evaluated the resulting models

on the corresponding surgical test set according to the split, the same used in the

Zero-Shot scenario.

Transformer-based language models are known for their capability to achieve high

scores also when fine-tuned with a limited amount of task-specific training material

(Few-Shot learning [181]). This capability is beneficial in situations of a scarcity of an-

notated data due to few resources or costly content annotation, such as the robotic-

surgical one. We thus decided to run some experiments to assess whether this also

holds for the surgical SRL task. We created various subsets of the train and validation

splits for the BAL scenario of the robotic-surgical annotated dataset, having a number

of sentences that are respectively of 0%, 1%, 5%, 10%, 25%, 50% and 100% of the initial

training and validation sets. We then trained the SURGICBERTA model on these differ-

ent subsets, validating them on the same reference test set.

Following the guidelines provided by the authors of [88], we performed the fine-

tuning of the models on the downstream SRL task in two stages, with the following

suggested configurations:

• stage 1: fine-tuning using cross-entropy loss for 30 epochs with learning rate 3×
10−5;

• stage 2: further fine-tuning using the combined loss for additional 5 epochs with a

lower learning rate (1×10−5.)

Details on the loss functions used can be found in [88].

6.3.4 Evaluation methodology

Performance is evaluated according to three different dimensions:

• argument identification and disambiguation: the capability of assigning the cor-

rect semantic role label to the predicate arguments mentioned in the text, after



6.3 Method 111

identifying it. This is the traditional dimension used for benchmarking SRL tools

[84, 88, 182], adopted also in the CoNLL-2012 Shared Task evaluation (and corre-

sponding script);

• predicate disambiguation: the capability of assigning the correct RSPF frame (i.e.

meaning) to the predicate in the text. In our domain setting, this evaluation is partic-

ularly useful to assess if the models are capable to discriminate the domain-specific

usage of some verbs with respect to their general-English usage;

• predicate-argument disambiguation: the capability of assigning the correct seman-

tic role label to the predicate arguments as well as to assign the correct sense (i.e.

frame) to the corresponding predicate.

The first two dimensions correspond to the two standard SRL sub-tasks, while the

third one aims at combining the correctness of both dimensions. To the best of our

knowledge, the assessment of this combined predicate-argument disambiguation per-

formance was not addressed in previous works and evaluation campaigns, although we

deem it particularly relevant for assessing SRL performance, especially for Propbank-

style annotations: indeed, as arguments are defined in RSPF (and PropBank) according

to predicate senses (i.e. different senses of the same predicate have different semantic

roles), if a tool correctly predicts the role label (e.g. Arg-1) for the argument but fails

to disambiguate the sense of the corresponding predicate (e.g. proposing dissect.02 in-

stead of correct dissect.01), it fails in predicting the actual semantic arguments for that

predicate, as it predicted a semantic role but for a different predicate sense. Note that

these cases are not handled by the standard CoNLL-2012 argument disambiguation, for

which the role assigned to an argument is correct independently of the disambiguated

sense of the corresponding predicate.

In practice, the evaluation compares the annotations made on the sentence with the

gold ones. Namely, for each token of the sentence, the predicted annotation is com-

pared with the gold one. For the first dimension, only the labels of the arguments are

considered, while in the second dimension, only the labels of predicates are used. Fi-

nally, for the third dimension, the comparison is performed on enriched labels derived

from the raw ones as follows: the argument label on each token (both gold and pre-

dicted) is concatenated with the label of the corresponding predicate sense so that the

same annotation contains both information on the role of the argument and the pred-

icate sense to which that role refers. Then, for each dimension, performance is com-
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puted with standard metrics for classification tasks, i.e. precision, recall, and F1-score

described in 2.6.4.

6.3.5 Computational aspects

All models are computed using one NVIDIA RTX A6000 GPU, with 48 GB of GPU mem-

ory, with the (one-time) MLM training required for building SURGICBERTA taking ap-

proximately 8 hours.

Since the compared models share the same SRL neural architecture and vary in the

language model used, we observed no significant difference in the time required for

fine-tuning them on the annotated dataset. Indeed, each model has required approxi-

mately 20 hours for this step. Although the training time is substantial, once the models

have been trained, getting the annotations automatically on the test sentences is ex-

tremely fast, taking approximately 15 seconds on the largest test split, consisting of ap-

proximately 400 sentences (i.e. roughly 0.04 seconds per sentence): exploiting already

available models, the extraction of surgical actions and related semantic information

from a sentence is almost instantaneous.

6.4 Results

In this section, we report and discuss the results obtained using the methods described

in Section 6.3. Each score reported in the section is the average over three distinct runs

of the considered method.

6.4.1 Argument disambiguation

We first evaluate the obtained models on the traditional argument disambiguation task.

The results are reported in Table 6.2.

The results show that having annotated domain data available is essential to improve

the arguments’ disambiguation performance. In fact, fine-tuning the language models

with some domain data allows us to significantly increase considered metrics on all

splits. By focusing on the F1 metric of the BAL split, moving from a zero-shot scenario

to a full fine-tuning one, we improve the performance of 0.061 for ROBERTA, of 0.065

for BIOMEDROBERTA and of 0.063 for SURGICBERTA. Similar considerations hold for

precision (ROBERTA +0.057; BIOMEDROBERTA +0.061 and SURGICBERTA +0.054) and
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Table 6.2: Performance (overall) on the arguments-disambiguation task for BAL, THO
and GYN splits. FFT means Full Fine-Tuning scenario, while ZS stands for Zero-Shot
scenario. The best scores are highlighted in bold.

SPLIT BAL THO GYN
MODEL P R F1 P R F1 P R F1

ROBERTAZS 0.714 0.688 0.701 0.692 0.677 0.685 0.775 0.767 0.771
BIOMEDROBERTAZS 0.718 0.696 0.707 0.708 0.684 0.696 0.788 0.777 0.782
SURGICBERTAZS 0.724 0.696 0.710 0.726 0.700 0.713 0.827 0.781 0.775

ROBERTAFFT 0.771 0.752 0.762 0.753 0.744 0.748 0.799 0.781 0.790
BIOMEDROBERTAFFT 0.779 0.764 0.772 0.756 0.738 0.747 0.798 0.794 0.796
SURGICBERTAFFT 0.778 0.768 0.773 0.759 0.749 0.753 0.813 0.796 0.804

recall (ROBERTA +0.064; BIOMEDROBERTA +0.065 and SURGICBERTA +0.072). These

results confirm that using domain annotated data helps the models to both improve

the proportion of positive identifications that was actually correct and the proportion

of actual positives that were identified correctly. This is in line with what was expected:

being RSPF an extension of PropBank for the surgical domain, the CoNLL-2012 dataset,

the only SRL training material used for the zero-shot models, does not contain anno-

tated examples for some of the labels of RSPF (the ones in RSPF but not in PropBank),

and thus it won’t be able to predict them on the test set, where some of these labels are

likely to occur. Furthermore, the domain annotated data is fundamental to accurately

understanding the surgical procedural language which often has different needs than

those of general-English [48].

Similar considerations also apply to the performance on the THO split: the full fine-

tuning improves precision (ROBERTA +0.061; BIOMEDROBERTA +0.048 and SURGIC-

BERTA +0.033), recall (ROBERTA +0.067; BIOMEDROBERTA +0.054 and SURGICBERTA

+0.049) and F1-score (ROBERTA +0.063; BIOMEDROBERTA +0.051 and SURGICBERTA

+0.040) for all considered models. The improvement between zero-shot and full-fine

tuning is comparable to that observed for the BAL split. Full fine-tuning typically im-
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proves the performance over zero-shot learning also on the GYN split, although the

improvement is somehow restrained with respect to the other two splits: precision (RO-

BERTA +0.024; BIOMEDROBERTA +0.010 and SURGICBERTA −0.014), recall (ROBERTA

+0.014; BIOMEDROBERTA +0.017 and SURGICBERTA +0.016) and F1-score (ROBERTA

+0.019; BIOMEDROBERTA +0.014 and SURGICBERTA +0.029). This minor improve-

ment may be due to the presence of fewer sentences in the GYN split that require an-

notation using the RSPF specializations (i.e. those labels in RSPF but not in PropBank):

this is somehow confirmed by the significantly higher values obtained with zero-shot

on GYN than on the other two splits. We can thus answer RQ1 and RQ2: injecting do-

main sentences in the training step helps to substantially improve performance in all

compared scenarios (RQ2), also when leveraging general-English and biomedical mod-

els (RQ1), whose zero-shot scores are lower than the full fine-tuned ones. Also, RQ5 has

a positive answer since the improvement from zero-shot to full fine-tuning is compara-

ble between the different splits, showing that the models perform reasonably well when

tested on surgical sub-domains not seen during training.

Note that SURGICBERTA achieves the best results in both the zero-shot and full fine-

tuning scenarios for almost all metrics of all splits.2 This confirms that using unsuper-

vised domain adaptation techniques such as MLM can improve performance even in

the presence of few or no annotated data. It is interesting to note that SURGICBERTA

also improves performance compared to BIOMEDROBERTA, which has been special-

ized in biomedical domain texts. This means that the procedural robotic-surgical do-

main, which is a specialized subset of the biomedical one, uses a “distinct” language

that deserves appropriate, specialized training resources to be adequately covered by

language models. We can thus positively answer RQ4.

Table 6.3 goes deeper into the analysis and compares the fine-grained performance,

argument-by-argument, by the baseline model (i.e. ROBERTA in the zero-shot scenario

- ROBERTAZS) with those obtained by the best model for the BAL split (i.e. SURGIC-

BERTA in a full fine-tuning scenario - SURGICBERTAFFT ). The detailed results show

that full-fine tuning for the BAL split improves the disambiguation of almost all core

and modifier arguments. The most substantial improvements are among the core num-

bered arguments (i.e. Arg-N with N ∈ 0..6. Quite often, especially for N ≥ 3, these are

the ones not present in the standard PropBank but introduced in RSPF, and therefore

are very specialized arguments of the surgical domain never seen in CoNLL-2012 data.

2 The only exception is in the zero-shot scenario for the F1 metric of the GYN split, where BIOMEDROBERTA attains
a slightly better score.
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Table 6.3: A fine-grained comparison between a baseline model and the best model for
the argument disambiguation task. Best F1 scores are highlighted in bold.

MODEL ROBERTAZS SURGICBERTAFFT

ARGUMENT P R F1 P R F1

ARG-0 0.696 0.655 0.675 0.879 0.691 0.773
ARG-1 0.903 0.890 0.896 0.911 0.926 0.919
ARG-2 0.647 0.553 0.596 0.671 0.603 0.635
ARG-3 0.000 0.000 0.000 0.554 0.380 0.451
ARG-4 0.000 0.000 0.000 0.614 0.628 0.621
ARG-5 0.000 0.000 0.000 0.000 0.000 0.000
ARG-6 0.000 0.000 0.000 1.000 0.250 0.400
ARGM-ADJ 0.000 0.000 0.000 0.000 0.000 0.000
ARGM-ADV 0.564 0.585 0.574 0.553 0.491 0.520
ARGM-CAU 0.500 1.000 0.667 0.500 1.000 0.667
ARGM-DIR 0.154 0.240 0.188 0.292 0.280 0.286
ARGM-DIS 0.500 0.286 0.364 0.429 0.429 0.429
ARGM-EXT 0.500 1.000 0.667 0.500 1.000 0.667
ARGM-GOL 0.000 0.000 0.000 0.000 0.000 0.000
ARGM-LOC 0.381 0.500 0.432 0.436 0.578 0.514
ARGM-MNR 0.267 0.722 0.390 0.544 0.681 0.605
ARGM-MOD 0.988 0.976 0.982 0.988 1.000 0.994
ARGM-NEG 1.000 1.000 1.000 1.000 1.000 1.000
ARGM-PNC 0.000 0.000 0.000 0.000 0.000 0.000
ARGM-PRD 0.000 0.000 0.000 0.000 0.000 0.000
ARGM-PRP 0.754 0.754 0.754 0.708 0.807 0.754
ARGM-TMP 0.827 0.865 0.845 0.865 0.865 0.865
R-ARG0 1.000 1.000 1.000 1.000 1.000 1.000
R-ARG1 0.857 1.000 0.923 0.857 1.000 0.923
R-ARG2 1.000 1.000 1.000 0.000 0.000 0.741
R-ARGM-LOC 1.000 1.000 1.000 0.500 1.000 0.667

This, again, answers RQ1, since although the zero-shot scenario with ROBERTA obtains

acceptable results, using more specific language models and annotated data allows for

improved performance.
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6.4.2 Predicate and Predicate-argument disambiguation

Table 6.4 shows the results of the other two dimensions considered in our analysis, i.e.

predicate disambiguation and predicate-argument disambiguation. For predicate dis-

ambiguation, as the used SRL tool was configured to work with gold predicate men-

tions (i.e. having an oracle that predicts whether a token denotes a predicate or not),3

for predicate disambiguation we only report the accuracy score, as in this setting, by

definition, P=R=F1=Acc.

Table 6.4: Performance (overall) on the predicate disambiguation and predicate-
argument disambiguation tasks for BAL, THO, and GYN splits. The best scores are high-
lighted in bold.

SPLIT BAL THO GYN

TASK Pred Pred-Args Pred Pred-Args Pred Pred-Args
MODEL Acc P R F1 Acc P R F1 Acc P R F1

ROBERTAZS 0.731 0.544 0.525 0.534 0.769 0.555 0.543 0.549 0.835 0.649 0.642 0.645
BIOMEDROBERTAZS 0.748 0.560 0.543 0.551 0.777 0.573 0.555 0.564 0.810 0.641 0.632 0.636
SURGICBERTAZS 0.735 0.565 0.544 0.555 0.732 0.559 0.540 0.549 0.827 0.646 0.643 0.645

ROBERTAFFT 0.907 0.706 0.689 0.697 0.910 0.680 0.672 0.676 0.930 0.745 0.729 0.737
BIOMEDROBERTAFFT 0.897 0.707 0.694 0.700 0.887 0.669 0.653 0.661 0.935 0.752 0.748 0.750
SURGICBERTAFFT 0.925 0.737 0.727 0.732 0.910 0.690 0.680 0.685 0.938 0.756 0.741 0.749

Similar considerations as the one reported for argument disambiguation also hold

for these two assessments: using domain annotations allows for improving the per-

formance of the models. The improvements are comparable and very noticeable for

the BAL and THO splits, while they are less substantial in the GYN split. Also for the

predicate disambiguation and the predicate-argument disambiguation tasks, using a

domain language model (i.e. SURGICBERTA) often improves performance. The most

3 Note that this is by no means a limitation of the comparison conducted in our work as: (i) predicates can be easily
spotted via part-pf-speech tagging, considering only the tokens labeled as Verb, or Proper Nouns having specific
suffixes (e.g. -ize, -ation); and (ii), this applies for all the models considered in the assessment.



6.4 Results 117

substantial improvements are achieved within the full-fine tuning scenario. Again, this

confirms the trends of the data observed on argument disambiguation, thus confirming

the answers for RQ1, RQ2, RQ4, and RQ5.

Furthermore, note that the scores for argument disambiguation in Table 6.2 are sub-

stantially lower than the ones for predicate-argument disambiguation reported in Table

6.4. For example, SURGICBERTAFFT obtains an F1 of 0.773 for argument disambiguation

in BAL split and only a 0.732 (i.e. −0.041) in predicate-arguments disambiguation. The

difference in the scores between argument disambiguation and predicate-arguments

disambiguation is even larger in the Zero-Shot scenario (e.g. 0.701 vs. 0.534 for RO-

BERTAZS. That is, in many cases, while the argument label proposed by the models

may be correct per se (i.e. ignoring the predicate to which the argument refers), it ac-

tually denotes the argument label for a wrong predicate sense, and therefore a wrong

argument label in the end, since argument labels are predicate-sense specific in re-

sources such as PropBank. This further confirms the relevance of considering the pro-

posed joint predicate-argument disambiguation performance in SRL evaluations, in

addition to the standard (and independent) argument disambiguation and predicate

disambiguation.

6.4.3 Few-shot Learning

Finally, Figure 6.3 shows the few-shot learning curve of the SURGICBERTA model, ob-

tained by varying the number of training (and validation) sentences. This assessment

allows us to address RQ3.

The curve shows that if the number of added domain annotations is too small, a

detrimental effect is obtained for all the analyzed metrics (P, R, and F1). However, with

at least 15% of the training material (approximately 190 sentences), the performance

constantly grows as annotations are added. Indeed, the curve shows a positive trend

also when using all the available domain annotated material (i.e. full fine-tuning), thus

suggesting that further improvements are likely by injecting additional annotated ex-

amples. However, as stated in Chapter 5, the data annotation for the SRL task in the

surgical domain is quite demanding, requiring both linguistic and surgical skills, and

its cost is not negligible. This analysis answers RQ3.
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Fig. 6.3: Few-Shot performance of SURGICBERTA model by varying the number of
training (and validation) domain sentences.

6.5 Conclusions

In this chapter, we tackled the problem of automatically extracting procedural surgical

knowledge from available surgical text materials, such as textbooks and academic pa-

pers. Given a text, the goal is to extract structured information about the surgical actions

described, the agents performing them, the anatomical parts involved, the tools used,

and so on. We proposed to frame the problem as an SRL task and to apply a state-of-the-

art approach based on Transformer-based language models. In detail, we experimented

with different models: ROBERTA (general-English), BIOMEDROBERTA (biomedical do-

main), and SURGICBERTA, the pre-trained language model we presented in Chapter

3. We assessed the performance of the models in different, classical scenarios: the

zero-shot scenario, where no domain-specific SRL training data is used, and the full

fine-tuning scenario, where the models are additionally trained with SRL annotated

sentences according to the predicate and roles defined in RSPF, a recently proposed

PropBank-style resource covering the typical actions (and related information) of the

surgical domain.

Results show that: (i) existing state-of-the-art tools, trained on general-English data,

have low performance in extracting structured procedural content in robotic-surgery
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procedural texts; (ii) exploiting language models unsupervisely trained on domain-

related (BIOMEDROBERTA) or domain-specific data (SURGICBERTA) helps to improve

the SRL performance even in the zero-shot scenario; (iii) supervised training with

domain-specific SRL data substantially improves the performance of all models on all

the SRL evaluation dimensions investigated, i.e. predicate disambiguation, argument

disambiguation, and predicate-argument disambiguation. This suggests that for adapt-

ing general SRL methods to unexplored, specific domains like the surgical one, some

domain-specific SRL manual annotation like the one performed in Chapter 5 is neces-

sary.





7

Towards robotic-surgery task planning from text

The expert in anything was once a beginner.

Helen Hayes

7.1 Introduction

In the previous chapters, we developed language models to extract complex surgical

procedures from as-is textbooks. This chapter aims to introduce a use case and show

how, after having defined some constraints on the language, the SRL method, together

with other rule-based methods, can help the engineer write the logic rules needed to

define the plan for the robot. In particular, we propose AUTOMATE (lAngUage To lOgic

teMplATEs), a pipeline that helps the translation of natural language instructions to lin-

ear temporal logic (LTL). However, this chapter uses a controlled language and a gen-

eral English language model. We made this choice for two reasons. First, state of the

art in autonomous surgical robotics mainly uses two tasks as benchmarks: peg transfer

and tissue retraction, presented later. Although performed with surgical robots, they are

still simplified tasks whose description does not require particularly complex surgical

expressions. Nonetheless, as the surgical robotics community moves to more realistic

and complex benchmarks requiring more specialized surgical language, the models de-

veloped in the previous chapters will allow for more in-depth language understanding.

Secondly, we started this use case when RSPB, SURGICBERTA, and its fine-tuned ver-

sion on the SRL task were not yet available.

The purposes of this chapter are to empirically show that SRL technology is a fun-

damental tool to extract logical entities from procedural natural language text and to
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highlight the technological deficiencies for achieving a completely automated transla-

tion. As future work, beyond the purpose of this thesis, we will test the SRL fine-tuned

release of SURGICBERTA for task planning.

7.2 Surgical language analysis

As stated before, this chapter uses controlled language, i.e. we impose constraints on

how a procedure can be expressed. Nevertheless, to impose suitable language con-

straints, we analyze in this section the linguistic and stylistic properties of texts describ-

ing robotic-surgery procedures. Specifically, we are interested in three aspects that are

essential to extract useful task knowledge for autonomous execution:

- the description of robot setup relevant to identify agents of the task, i.e. surgical instru-

ments;

- the action representations, i.e. how operations of the procedure are expressed in do-

main language;

- the causal and temporal flow of actions, e.g. conditions for specific operations and

temporal duration.

For our analysis, we considered the resources used to develop the SPKS dataset de-

scribed in Chapter 4.

7.2.1 Robot setup

Analyzing the structure of surgical manuals used in creating the SPKS dataset, we noted

that an initial part of the description is often dedicated to the robot’s setup, instruments’

docking, and patient positioning. These parts are often described in a separate para-

graph, indicated by titles such as Port Placement and Instruments, Robotic Setup and

Patient Positioning, or similar. The setup of the robot is often described with the incre-

mental numbering of arms (e.g. first and second arm), indicating which instruments are

mounted on them, using verbs such as equip, place, install, use, mount and attach. The

procedural description is instead preceded by evoking titles such as Procedural Details,

Key Operative Steps, or Surgical Technique. In these sections, however, frequent are also

non-procedural sentences describing properties of specific anatomical parts or other

considerations not necessary for actual task execution.
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Table 7.1: Common linguistic styles usable to express the action of grasping anatom-
ical tissue using a particular surgical instrument. In (Id. 1), the action is expressed in
the present tense, and the human is the agent; In (Id. 2), the action is expressed in the
passive tense, and the human is the agent; In (Id. 3), the action introduced by the verb
to use and human is the agent; In (Id. 4), the action is expressed in the imperative tense,
and the agent is not specified; In (Id. 5), the action is expressed in the present tense, and
the instrument is the agent;

Id. Example

1 The surgeon grasps the tissue with forceps
2 The tissue is grasped by the surgeon with forceps
3 The surgeon uses the forceps to grasp the tissue
4 To grasp the tissue with forceps
5 Forceps grasps the tissue

7.2.2 Action representation

In surgery, actions are typically expressed using different styles and verbal tenses. Ta-

ble 7.1 reports several examples of the action of grasping an anatomical tissue using a

particular surgical instrument, expressed following different styles. For the verbal tense,

we note that the same procedural action can be described using the imperative (Id. 4),

passive (Id. 2), or present (Ids. 1, 3 and 5) form. Modal verbs and phrasal verbs are also

frequent. Furthermore, verbs as use, employ and synonyms are often used in procedural

texts to introduce the main action that must be performed (Id. 3). The main action is ac-

companied by a list of procedural entities, such as the agent performing the action, the

target anatomical part affected by the action, and the surgical instrument used to carry

out the action. These entities may be either expressed explicitly, or taken for granted

(e.g. with pronouns or references to previous sentences). The agent may either be a hu-

man operator (surgeon, operating room assistant, nurse) (Ids. 1, 2, and 3) or coincide

with the surgical instrument (Id. 5).

7.2.3 Causal and temporal flows

We are also interested in analyzing how the following causal and temporal relations are

expressed in surgical expert-written texts:

- conditions required for facts to become true, or actions to become feasible;
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- temporal sequences between facts and actions;

- loop iterations defining perduration of (sequences of) actions and facts or stop condi-

tions of the corresponding action.

Conditions are mostly expressed with statements containing if / otherwise words

(≈ 85%) or with expressions as in case / otherwise (≈ 15%). Temporal sequences are

mostly conveyed with sentences containing then (≈ 67%), when (≈ 6%), after (≈ 8%),

before (≈ 5%), once (≈ 13%) words; moreover, when two actions appear in consecutive

sentences, they are often assumed to be part of a temporal sequence. Finally, loop it-

erations are almost exclusively expressed in sentences containing the until preposition

and accompanied by expressions such as continue to or repeat (or synonyms) action

until some condition occurs.

7.2.4 Language variability

One difficulty that emerged during the analysis is the use of alternative forms to de-

scribe the same concept. Synonyms can be used for actions (e.g. "move", "go" and "ap-

proach" are used with the same meaning), or different expressions can refer to the same

anatomical parts (e.g. "renal tissue", "kidney tissue"). The synonym management could

be tricky in surgical texts since their detection requires not available adequate domain-

specific lexical resources. In this work, we adopt a standard general state-of-the-art so-

lution based on WordNet [183], leaving more advanced techniques for future works.

7.2.5 Language constraints for surgical texts

Based on the observations made in Sections 7.2.1-7.2.4, we propose some language

constraints which preserve most of the generality of the surgical domain language yet

favouring the processing with NLP tools. For temporal and causal relations, we allow

only expressions whose frequency in SPKS dataset is ≥ 10%, in order to reach a tradeoff

between language generality and NLP performance. The following choices are made for

our benchmark texts:

• The elements of the robot are described with incremental numbering (e.g. first arm

and second arm);

• The robotic setup is described in the first paragraph; docking of instruments to the

robot can be only described by verbs such as equip, place, install, use, mount and

attach;
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• verbs are expressed in active or passive form, at present or imperative tense. Verbs

such as use and synonyms are allowed to introduce the main action;

• The list of usable instruments is a-priori known (e.g. described in state-of-the-art

ontologies such as [184]);

• instruments may or may not coincide with agents, i.e. with those who perform the

action;

• conditions can be only expressed with if / otherwise and in case / otherwise state-

ments;

• temporal sequences can only contain then and once connectors;

• loop iterations can only be expressed with until / repeat constructs; the action to

be repeated must be explicitly indicated and has to coincide with a verb already

mentioned before in the text;

• The use of synonyms is limited to those statically recognized by the state-of-the-art

resources, such as WordNet [183];

• Standard logic connectors (e.g. and, or) are allowed in texts to specify more or alter-

native actions in the same sentence.

7.3 Benchmark tasks

This section describes the surgical training tasks chosen for experimental validation,

presenting texts written by experts in the domain used as validation. The texts follow the

language constraints defined in the previous section. For both tasks, we consider two

different ways of writing the procedural description: one written from the point of view

of the autonomous robot (i.e. the robot as the agent) and one from the point of view of a

surgeon using the surgical robot (i.e. the surgeon as agent). Besides being a reference for

the surgical robotic community, these tasks also represent concrete examples of robotic

manipulation tasks. Thus they are relevant both to validate the potential generality of

the AUTOMATE pipeline and interesting for the more generic problem of robotic and

process automation from texts.

7.3.1 Peg transfer

The peg transfer (Figure 7.1a) is a training task from the Fundamentals of Laparoscopic

Surgery (FLS) [185], recognized as a benchmark for performance assessment in au-

tonomous robotic surgery [186]. The setup consists of three patient-side arms of the



126 7 Towards robotic-surgery task planning from text

(a) Peg transfer.
(b) Tissue retraction (ROI in red, APs sewed in top
left.

Fig. 7.1: The setup for the benchmark surgical training tasks with dVRK.

DaVinci Research Kit (dVRK), the research version of the DaVinci surgical robot, two

equipped with graspers (first arm and second arm), and one for the camera. The grasp-

ing arms operate on a peg base with up to four colored rings, with the goal of placing

them on the same-colored pegs. Several constraints influence the workflow of execu-

tion. In particular, rings can be picked only from the closest arm, and can be placed

on a peg only by the closest arm to it. As a consequence, one single arm can pick and

place a ring (e.g. the right with the red ring in Figure 7.1a), or transfer from one arm to

the other may be needed (e.g. the blue ring in Figure 7.1a). Furthermore, rings may be

initially placed on grey pegs; thus, extraction may be needed before moving them to the

peg or transfer point.

Text descriptions

PEG TRANSFER - Robot as agent

The setup has three arms. The first and second arms are equipped with grippers, while the third arm has a camera

mounted on it for vision. 4 rings of different colors (red, green, blue, yellow) are placed on a base with 4 colored pegs

and 4 grey pegs. First, the camera identifies the rings. Then, the first and second arm open the grippers. The camera

selects one colored ring in the scene. If the ring is close to first arm, the first arm attains it; otherwise, the second arm

reaches the ring. Then, the gripper grasps the ring. Once the ring is on a peg, the arm raises it. Then, if the peg with

the same ring’s color is close to the arm, the arm reaches it; otherwise, it transfers the ring to the other arm. If the

gripper is at the peg, the ring is placed on the peg. Then, the arm opens the gripper and goes to home position. The

camera selects a ring to grasp and the procedure repeats until all visible rings are not on the same-colored pegs.



7.3 Benchmark tasks 127

PEG TRANSFER - Surgeon as agent

The setup has three arms. The first and second arms are equipped with grippers, while the third arm has a camera

mounted on it for vision. 4 rings of different colors (red, green, blue, yellow) are placed on a base with 4 colored pegs

and 4 grey pegs. First, the surgeon identifies rings via camera. Once rings are detected, the surgeon opens grippers

of first and second arms and use camera to select one colored ring in the scene. If the ring is close to first arm, the

surgeon uses first arm to reach it; otherwise, the second arm is used to reach the ring. Once reached, the surgeon

employs the grippers to grasp the ring. If the ring is on a peg, with help of the arm the surgeon raises it. Then, if the

peg with the same ring’s color is close to the arm, they use grippers to reach it; otherwise, the ring is transferred to

the other arm. If the gripper is at the peg, the surgeon places the ring on the peg, then opens the gripper and moves

the arms to home position. The surgeon finally uses third arm to identify a ring to grasp and the procedure repeats

until all rings are not on the same-colored pegs.

7.3.2 Tissue retraction

Tissue retraction (Figure 7.1b) is a benchmark task for evaluating the performance of

autonomous surgical systems [187]. The robotic setup is the same as peg transfer. The

goal is to reveal a (red in figure) Region Of Interest (ROI), e.g. a tumor, hidden below a

(rectangular) flap of soft (e.g. adipose) tissue (yellow in figure). The ROI can be exposed

by grasping and pulling the tissue with one arm. Candidate grasping points are equally

spaced on the tissue surface, discretizing it in a N ×N grid of sub-flaps and consider-

ing their centroids as possible targets for arms. For safe manipulation, the set of can-

didate grasping points is restricted, excluding ones that lie within sub-flaps containing

Attachment Points (APs), where the tissue is anchored to surrounding anatomies. Given

a randomly selected grasping point, the closest arm executes the task. Pulling does not

always ensure task completion. In fact, an arm can pull up to a pre-defined extent, de-

pending on workspace constraints imposed, e.g. by the anatomy of the patient. Fur-

thermore, pulling must be interrupted in case the force exerted by the arm is too high,

in order to avoid tissue damage. If pulling is not successful, the robotic tool can move

the tissue away from the camera, in order to fold it and ease ROI exposure. In case this

action fails (e.g. due to high force on tissue) or is not successful, a new grasping point is

selected.
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Text description

TISSUE RETRACTION - Robot as agent

The setup consists of three robotic arms. First arm and second arm are equipped with grippers, while third arm holds

a camera for vision. A flap of adipose tissue is attached to surrounding anatomies at some points (APs), and covers a

region of interest (ROI). The camera identifies the APs. First and second arms open the grippers. The camera selects

a point on the tissue if it is far from APs. In case the point is close to first arm, the point is reached by first arm;

otherwise, the second arm reaches the point. Then, the gripper grasps the tissue and raises it up. The arm lifts the

tissue until a maximum height is reached, or maximum force is reached, or the ROI is visible. If the ROI is not visible

in case of raising, the gripper goes towards the centre of tissue, horizontally. If the ROI is still not visible, the arm

opens the gripper and goes upwards, the third arm selects a different grasping point and the procedure is repeated.

TISSUE RETRACTION - Surgeon as agent

The setup consists of three robotic arms. First arm and second arm are equipped with grippers, while third arm holds

a camera for vision. A flap of adipose tissue is attached to surrounding anatomies at some points (APs), and covers

a region of interest (ROI). The surgeon uses camera to identify APs. Then, the surgeon opens first and second arm

grippers. The surgeon exploits camera in order to select a point on the tissue if it is far from APs. If the point is close

to first arm, the first arm is used to reach it; otherwise, the surgeon uses the second arm to reach the point. Then,

the surgeon grasps the tissue with gripper and raises it. Using the arm, the surgeon lifts the tissue until a maximum

height is reached, or maximum force is reached, or the ROI is visible. If the ROI is not visible in case of raising, the

surgeon moves the gripper towards the centre of tissue horizontally. If the ROI is still not visible, the surgeon opens

the gripper and moves it upwards, use the camera arm to select a different grasping point and the procedure is

repeated.

7.4 AUTOMATE pipeline

A schematic representation of the proposed pipeline is shown in Figure 7.2. The first

step is filtering procedural knowledge from textual resources to select only robot setup

information and procedural sentences. These are processed by a SRL module and some

filtering rules that highlight the main action of each sentence together with procedural

entities such as agent, object, instrument and causal / temporal information. The out-

put of this module is then automatically translated to LTL formalism.

Before describing single steps in more detail, supported by clarifying examples from

our benchmark tasks, we explain how synonyms and natural language variability are

managed through the whole pipeline.

7.4.1 Synonyms and natural language variability

A complex feature of natural language is the extensive use of synonyms and alternative

forms to express similar concepts. A module for reducing the language variability based
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Fig. 7.2: Overview of the proposed AUTOMATE approach for automatic translation of
procedural texts to executable ASP rules.

on the resolution of synonyms is fundamental to restructure the natural language de-

scription of a procedure. In this chapter, we exploit WordNet’s synsets [183] to identify

and cluster synonyms. Wordnet is a large lexical database of English verbs, adjectives

and adverbs, organized into sets of cognitive synonyms (synsets).

For instance, in peg transfer text with the robot as agent, consider the sentence:

If the ring is close to first arm, the first arm attains it; otherwise, the second arm reaches the ring.

Verbs reach and attain belong to the same synset in WordNet, so they are recognized

as synonyms for the same action. WordNet is designed for general English and there-

fore may fail to fully cover all the terms used in surgical language: we leave a WordNet

specialization to the domain as a future work. Anyway, this section is meant to empha-

size that a module of reduction of natural language variability through resolution of

synonyms is fundamental to structure the natural language description of a procedure.

7.4.2 Identifying robot setup and procedural sentences

Before pruning non-procedural sentences from texts, we need to extract robotic setup

information. As explained in Section 7.2.5, this knowledge is contained in the first para-
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graph of surgical text descriptions and we assume to know in advance the list of all

instrument’s names: this is not a strict requirement since surgical instruments are com-

mon to most procedures, and ontologies, as the one presented in [184], already contain

general surgical knowledge, in particular about surgical instruments. We then build a

semantic connection between arms and instruments, searching for verbs listed in Sec-

tion 7.2.5 (e.g. equip, place, install, use and synonyms). In this way, arms and instru-

ments can be used interchangeably in the procedural description.

As an example, consider the text for the peg transfer task, with the surgeon as an

agent:

The setup has three arms.

The first and second arms are equipped with grippers, while the third arm has a camera mounted on it for

vision.

Assuming camera and grippers to be known as surgical instruments, they are linked to

third arm and first and second arm, respectively, after identifying the words equipped

and mounted as setup-evoking terms. This means that in descriptions, we can use, for

example, third arm and camera with the same meaning.

Afterward, we can exploit the methodology proposed in Chapter 4 to select only pro-

cedural sentences in surgical texts. For instance, consider the following sentence from

the text for tissue retraction with the robot as an agent:

A flap of adipose tissue is attached to surrounding anatomies at some points (APs), and covers a region of

interest (ROI).

The sentence describes the anatomical setting and, being classified as non-procedural,

it is not processed further.

7.4.3 Procedural knowledge extraction

For each identified procedural sentence, we extract actions and relevant semantic in-

formation, which represent the procedural knowledge needed for LTL template extrac-

tion. To this purpose, we exploit PropBank-based SRL described in 2.6.2 and some rules

defined on the language constraints presented in Section 7.2.5.

Selecting main action

Given a procedural sentence, we first use Part-Of-Speech (POS) algorithm [155] to iden-

tify verbs (hence potential actions). However, multiple verbs may occur in a sentence.
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For instance, consider the following excerpt from the text for peg transfer, with the sur-

geon as agent:

If the ring is close to first arm, the surgeon uses first arm to reach it; [...]

Three verbs are identified in this sentence, i.e. is, uses and reach. However, only reach

is the main action. In order to identify it, we proceed as follows: first, we exclude -ing

forms, modals and auxiliaries (e.g. is), as well as verbs such as use and its synonyms,

which only introduce main task actions; we then exclude all the candidate verbs that

appear in a span of text that SRL has labeled with semantic roles referred to causal and

temporal relations (c.f., next section). This approach is robust with respect to different

verbal forms, e.g. passive verbs.

Identifying semantic roles

Semantic roles from SRL must be matched to the relevant meanings for task procedural

description, i.e.:

• the agent who performs the action

• the object (e.g. anatomical part) undergoing the action

• the instrument (or robotic arm) used to perform the action

• causal and temporal relations such as conditions, temporal sequences and loops

Assuming the language constraints from Section 7.2.5, we combine the spotting of con-

nectors (e.g. if, until) and semantic roles to detect causal / temporal information. In

particular, for detecting conditions, spans of text labeled by the SRL with ArgM-ADV

(adverbial modifiers) or ArgM-DIS (discourse Markers) and respecting the form pre-

sented in Section 7.2.5 (i.e. containing if / otherwise or in case words) are selected. A

similar approach is adopted for loops and temporal sequences, by selecting spans of

text labeled with ArgM-TMP (temporal markers) and containing connectors (i) then and

once for temporal sequences and (ii) repeat / until for loops.

In order to identify agents, objects and instruments, we need a different strategy for

robot-as-agent and surgeon-as-agent scenarios. In the first scenario, the robot’ arm or

instrument plays the role of agent and thus span of texts labeled with Arg0 are selected.

Instead, the object of the action always plays the role of proto-patient, and thus spans of

text labeled as Arg1 are selected. For instance, in the tissue retraction text, the sentence

The camera selects a point on the tissue if it is far from APs. is labeled as:

[Arg0: The camera] [V: selects] [Arg1: a point on the tissue] [ArgM-ADV: if it is far from APs].
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Thus, by looking at the arguments labeled with Arg0 (camera) and Arg1 (point on the

tissue), the agent and the object of the action (to select) are identified respectively.

When the surgeon is the agent, the situation is more complex because the instru-

ment/arm is not the agent (Arg0) and, if mentioned, it occurs in other roles of the

corresponding action. In particular, the instrument/arm can be contained either in a

core argument (Arg2 or Arg3) or a non-core argument (ArgM-MNR), depending on the

specific verb. For instance, in the peg transfer scenario, the sentence First, the surgeon

identifies rings via camera is annotated via SRL as:

[ArgM-TMP: First], [Arg0: the surgeon] [V: identifies] [Arg1: rings] [ArgM-MNR: via camera].

The span via camera is labeled as an ArgM-MNR.

In this case, we can rely on available resources (e.g. a knowledge base or ontology

such as [184]) listing surgical instruments and we search the sentence for mentions of

these instruments within arguments labeled as Arg-MNR, Arg2, or Arg3 by SRL. In the

considered example, camera is a candidate instrument, it is labeled as ArgM-MNR, and

thus is recognized as the instrument for the identify action.

The use of SRL also for instrument detection has to be necessarily performed since

not all mentions of medical instruments in a sentence refer to the actual usage of an

instrument to perform the main action. In particular, it has to be applied after iden-

tifying the candidate arguments possibly containing the instrument. For instance, the

sentence The surgeon uses the first arm to grasp scissors mentions scissors, a surgical in-

strument, but without referring to its usage to perform the action herein described (to

grasp). Indeed, SRL returns the following annotations:

[Arg0: The surgeon] uses the first arm to [V: grasp] [Arg1: scissors].

That is, scissors is correctly recognized as the thing grasped (Arg1 of grasp), and not as

the instrument used to perform the grasping (i.e, Arg2, Arg3, or ArgM-MNR).

7.4.4 From SRL to LTL relations

The output of SRL highlights relevant semantic information about task knowledge. This

section shows how this information is automatically translated to LTL logic templates

representing procedural relations for the task. Consider the following example sen-

tences from the texts of our benchmark tasks (the same considerations apply also to

the other sentences of the benchmark tasks):

(A 1): In case the point is close to first arm, point is reached by first arm; otherwise, the second arm reaches

point.
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(A 2): Then, the gripper grasps the tissue.

(A 3): The arm lifts the tissue until a maximum height is reached, or maximum force is reached, or the ROI

is visible.

The output of SRL and filtering steps described before is, respectively:

(B 1): [ArgM-ADV: In case the point is close to first arm,] [Arg1: the point] is [V: reached] [Arg0: by first arm;]

[ArgM-ADV: otherwise] [Arg0: the second arm] [V: reaches] [Arg1: the point.]

(B 2): [ArgM-TMP: Then,] [Arg0: the gripper] [V: grasps] [Arg1: the tissue.]

(B 3): [Arg0: The arm] [V: lifts] [Arg1: the tissue] [ArgM-TMP: until a maximum height is reached, or maxi-

mum force is reached, or the ROI is visible.]

In order to highlight relevant semantic entities (verb, agents, objects, and tempo-

ral/causal information), these can be re-written in a more convenient predicate form

as follows, with the verb as the name of the predicate with ordered arguments agent -

object - additional information:

(C 1):

reach(the first arm, the point, ADV: in case the point is close to first arm)

reach(the second arm, a point on the tissue, ADV:otherwise)

(C 2):

grasp(first arm, the tissue, TMP:then)

(C 3):

raise(first arm, the tissue, TMP:until a maximum height is reached, or maximum force is reached,

or the ROI is visible.

Annotations (C 1) correctly split sentence (A 1) into two main reach actions, having

either first arm or second arm as agent and a point on the tissue as object / anatomi-

cal target. SRL correctly identifies the conditions if / otherwise as ADV roles. Sentence

(A 2) leads to annotation (C 2), where the temporal relation then is also marked. The

agent gripper is automatically translated to first arm, following instruments recogni-

tion from the robot’s setup description (see Section 7.4.2). Finally, in sentence (A 3), the

until temporal relation is recognized. Furthermore, the main action lift is automatically

translated to the synonym raise, which is arbitrarily chosen as the representative lemma

of the synset in WordNet (see Section 7.4.1) containing both lift and raise.

Given the SRL output, we translate logic / temporal connectors defined in the lan-

guage constraints to corresponding LTL operators. This can be done automatically, as-

suming such an injective map exists. We obtain the following LTL rule templates:
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(D 1):

reach(first arm, a point on the tissue) ← the point is close to first arm
reach(second arm, a point on the tissue) ← ¬ the point is close to first arm

(D 2):

◦ grasp(first arm, tissue)

(D 3):

raise(first arm, tissue) U (maximum height is reached ∨
maximum force is reached ∨ the ROI is visible)

where U denotes until operator, ◦ is the next operator, ← is the logic implication, ∨
is logic disjunction and ¬ is logic negation.

7.4.5 From LTL templates to executable logic program

LTL templates encode task actions, agents, relevant objects / anatomical parts, and

temporal/causal relations, which determine the flow of execution. However, they must

be translated to the syntax of a specific logic program, in order to actually implement

an autonomous task planner for robotics.

A logic program represents a domain of interest with a signature and axioms. The

signature is the alphabet of the domain, defining its relevant attributes. Attributes may

be statics, i.e. domain attributes whose values do not change over time, or fluents, i.e.

time-dependent domain attributes. Attributes may be terms, atoms, predicates of terms

(e.g. atom(t1, ..., tn) is an atom with terms t1,...,n as arguments), and their classical or

default negations (respectively, ¬a, meaning that a is false, or not a, meaning that a is not

known to be true). Values of terms are constants (either integers, Booleans or strings). A

term whose value is assigned is ground, and an atom is ground if its terms are ground.

Axioms are logical relations between attributes. A causal rule h ← b1, ..., bn defines

preconditions b1,...,n (body of the rule) for the head h. A rule with an empty head defines a

constraint, meaning that body atoms cannot be ground concurrently. Axioms can also

represent temporal relations between atoms, thanks to the definition of an explicit time

variable t for fluents1. For instance, a(t) ← b(t-1) is equivalent to the next operator in

LTL, meaning that a occurs at the subsequent time step with respect to b; similarly, a(t)

← a(t-1), ¬ b(t) encodes LTL release operator, meaning that a keeps holding until b does

not.
1 There exist logic programming frameworks, e.g. telingo [188], which implement LTL operators. However, we con-

sider the explicit temporal variable definition to adhere to ASP syntax, which is more popular in the robotics and
AI community.
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In the classical representation of task knowledge, statics typically define agents and

invariant environmental resources, while fluents are actions and dynamic environmen-

tal features. Axioms encode task specification, capturing the causal relations between

the agents and the environment, following the pattern precondition → action → effect

with constraints proposed in the Planning Domain Definition Language (PDDL) [189].

As an example, consider LTL relation (D 1), defining the precondition for reaching ac-

tion. Assuming that the point is close to first arm is encoded with an atom close(first

arm, tissue point), being first arm and tissue point constant values for domain variables

Agent and Object, respectively, we can write the following axiom:

reach(Agent, Object, t)← close(Agent, Object, t).

LTL templates can then be automatically implemented in the formalism of a logic

program with the following steps:

• implementation of LTL operators in the specific logic programming syntax;

• definition of variables and atoms, with variables lifting information retrieved from

SRL (e.g. reach(Agent, Object), which can be lifted from reach(first arm, tissue)).

Representing operators is trivial since they are implemented in any logic program. The

second step, however, requires yet missing information. In particular, underlined parts

in LTL templates (D 1 - D 3) represent low-level concepts and variables, which at the

moment need to be encoded by a logic programming expert manually. They mostly rep-

resent commonsense knowledge (e.g. the point is close to first arm, associated with the

notion of spatial distance, or ROI visibility and maximum force measurement), which

are not related to the specific procedure, but rather to the generic surgical and robotic

domains. Hence, similarly to instrument knowledge (see Section 7.4.2), we can assume

these concepts are stored and retrieved from clinical domain [190] or even general-

scope ontologies [191], in order to make the translation to an executable logic program

possible.

7.5 Application of AUTOMATE

In this section, we empirically test the utility of AUTOMATE. In other words, we verify

that the extracted task knowledge is correct and general enough to compute suitable
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plans for our benchmark robotic tasks, given any possible initial environmental con-

text. This requires:

1. implementation of LTL templates into a specific logic programming language for

autonomous planning;

2. implementation of low-level routines for robotic motion planning/control and per-

ception, needed for environmental context evaluation and instantiations of LTL

predicates;

3. an environment to replicate the benchmark tasks and the robot.

To address the first requirement, we implement LTL templates in the formalism of ASP,

specifically with Clingo 5 [192] software for ASP representation and solving (i.e. plan

computation). For the second requirement, we adopt the framework for integrated

planning and execution of surgical robotic tasks proposed in [193], including the dVRK

and vision sensors. For the third requirement, we create simulation environments for

the peg transfer and tissue retraction.

We empirically evaluate the quality of the extracted task specifications in terms of

planning success and planning computational performance.

The planning success measures the percentage of successful generation of task plans

in a set of random environmental contexts. It is important that random contexts are

representative of the variability of the task, hence lead to the generation of multiple

workflows of execution. Hence, we randomize relevant variables for our two benchmark

tasks, for a total of 100 different contexts for each task.

The computational performance is calculated as the time required by Clingo solver

to find a first plan (i.e. neglecting possible re-planning in case bad events occur), given

some initial environmental context. We evaluate this metric for increasing size of each

domain of interest, which affects the number of variables/atoms to be grounded by

ASP. For each complexity class of context configuration, we replicate 20 executions to

calculate the mean and variance of Clingo’s planning time. In this way, we can analyze

the evolution of computational effort as task complexity increases.

For both metrics, we compare the performance of the extracted ASP program with

the ASP task description written by an expert in both of the domain and the logic syn-

tax, following PDDL-like classical representation. Standard task description from PDDL

does not always match LTL formulas extracted from texts with NLP. For example, con-

sider relation D 2. It specifies that grasp shall occur after the previous action (reach).

This can be encoded as:
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grasp(Agent, Object, t)← reach(Agent, Object, t-1).

In classical PDDL representation, a specific effect for reach should be defined, which

then acts as a precondition to reach. An example is provided below:

at(Agent, Object, t)← reach(Agent, Object, t-1).

grasp(Agent, Object, t)← at(Agent, Object, t).

where at(Agent, Object, t) is a fluent representing the location of an arm with respect to

an object.

7.5.1 Peg transfer

In the peg transfer domain, the simulation is implemented in CoppeliaSim.2 The per-

ception module is in charge of identifying locations of rings, pegs, and robotic arms,

in order to instantiate LTL predicates properly (e.g. distances between rings and arms)

[193].

Planning success

Domain variables which influence the workflow of execution, hence are relevant for

assessing planning success, are:

• number of visible rings (affecting the number of required actions to complete the

task successfully);

• placement of rings on the pegs, which requires extraction before bringing them to

the pegs;

• relative positions of rings with respect to arms, affecting reachability conditions and

thus possibly requires a transfer between arms before placement on pegs.

Hence, we generate random scenarios as follows:

• 19 scenarios present only 1 ring, 30 scenarios 2 rings, 22 scenarios 3 rings, and 29

scenarios 4 rings3;

• 84 / 100 scenarios present at least one ring on a peg, so they require extraction;

• 80 / 100 scenarios require transferring of rings between arms.

2 https://www.coppeliarobotics.com/
3 The maximum number of rings in the scene is set as of FLS specifications [185].

https://www.coppeliarobotics.com/
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(a)

(b)

Fig. 7.3: On top, the ratio between planning times with ASP program from text and
hand-written ASP program, for 100 random initial configurations (sorted and clustered
by plan length) of peg transfer task. In the bottom, mean and standard planning times
for the two ASP programs vs. plan length. In the box, focus on the results for ASP encod-
ing extracted by AUTOMATE (same units as the main plot).

The task is considered successful when all visible rings are placed on the same-colored

pegs. In all scenarios, a 100% success rate is achieved with both ASP programs.
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Computational performance

The complexity classes for the ring transfer are defined by the same variables random-

ized for planning success evaluation. In fact, the number of rings and actions to be

executed for each of them affects the plan length, hence the number of atoms to be

grounded by Clingo. Hence, we consider the same scenarios as above and arrange them

by plan length, reporting mean and standard deviation for each cluster of scenarios

with the same plan length.

In particular, Figure 7.3a shows the ratio between the planning time with the ASP

program extracted from text and the expert-written one. Except for shorter plans, the

ratio is< 1 when plan length is> 12, meaning that extracted ASP task knowledge is more

efficient for the solver. Moreover, the ratio decreases significantly for longer plans.

This is even more evident in Figure 7.3b, showing the planning time for both ASP

programs against the plan length. As the plan length increases, the computational per-

formance of the ASP program extracted from text scales linearly with the length of

the plan, thus significantly better than the hand-written program with quadratic pro-

gression. This happens because of the different ASP representation, with the classical

PDDL-like formalization possibly having more axioms as explained at the beginning of

Section 7.5. In fact, Clingo computes plan grounding atoms iteratively, starting from ini-

tial conditions and propagating through axioms. Hence, more or longer axioms require

more computational time.

Notice that the two ASP programs generate plans with different lengths, though un-

der the same initial configurations. This depends on a slightly different action represen-

tation. For instance, in the text description, there are actions as selecting a target ring

with camera which are captured by SRL and then converted to LTL / ASP predicates.

However, such actions are not properly moving actions, so they do not affect the work-

flow of execution. Hence they are not encoded by the expert writing ASP program from

scratch.

7.5.2 Tissue retraction

For tissue retraction, we assume that the grasping points may be selected in a dis-

cretized set, obtained as follows:

1. the rectangular tissue flap is discretized as a N ×N grid;

2. candidate grasping points are centroids of cells in the grid.
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At LTL / ASP level, a variable for the candidate grasping point is added, with a unique

identifier for each point in {1, ..., N 2}. We use a simulation within the Sofa framework4 to

emulate soft tissue deformation via finite element methods. The simulated perception

module is in charge of identifying locations of grasping points and APs on the tissue and

measuring ROI final visibility. In this way, it is possible to ground LTL / ASP predicates

and reason on task knowledge to compute a plan, which is then executed by the motion

planning and control module.

Planning success

Variables that affect the workflow of execution are:

• initial grasping and pulling of the tissue may not be sufficient to expose ROI, so re-

planning (either further pulling or moving away from the camera) may be useful;

• a different arm (PSM) may be needed to grasp the tissue, depending on the chosen

grasping point, which depends on APs locations (recall that arms should not operate

close to APs).

Hence, we generate random contexts with fixed N = 5 grid discretization, specifically 35

/ 100 requiring re-planning and 67 / 100 requiring usage of the first arm. The task is con-

sidered to be successfully executed if the final ROI exposure percentage is > 70%. When

the hand-written ASP program is implemented for task planning, the planning success

rate is 98%, against 94% with the ASP program extracted from text. However, the mean

and standard deviation of ROI exposure with hand-written ASP program and extracted

from text (considering only successful task executions) are respectively 92.26%±9.53%

(100% median) and 97.47%±6.90% (100% median). Overall, extracted ASP encoding has

similar performance on planning success with respect to expert-written one.

Computational performance

The planning time with Clingo depends mainly on the number of candidate grasping

points, i.e. the grid discretization parameter N since it increases the number of ASP

variables. On the contrary, the specific location of ROI does not affect the computa-

tional complexity since we only evaluate the initial planning time, i.e. neglecting any

re-planning occurrence. Then, we consider different N × N grid discretizations of the

tissue flap, with N ∈ {5, ...,15}, and randomize 20 different locations of APs and ROI for

4 https://www.sofa-framework.org/

https://www.sofa-framework.org/
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(a)

(b)

Fig. 7.4: On top, the ratio (mean ± standard deviation) between planning times with
ASP program from text and hand-written ASP program for tissue retraction task, for
different size N of grid discretization of the tissue (100 initial configurations per size).
In the bottom, mean and standard planning times for the two ASP programs vs. grid
size.

each of them. In other words, a complexity class of scenarios for the tissue retraction

task is represented by the value of N .

In Figure 7.4a we show the ratio between planning times obtained with the ASP pro-

gram extracted from text and the hand-written one. The ratio is always < 1, meaning
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that ASP axioms extracted from text are more efficient than hand-written ones. The

ratio does not significantly vary for different tissue discretizations, while the absolute

discrepancy between planning times for the two ASP programs increases (Figure 7.4b).

Thus, extracted ASP task knowledge is still slightly more efficient for the ASP solver.

7.6 Discussion

This chapter empirically shows that it is possible to extract procedural information with

NLP techniques, in the form of LTL relations, from text written by a domain expert. The

extracted knowledge can then be easily translated into any logic programming formal-

ism for autonomous planning. A solver for the task planning problem (Clingo in our

experiments) is then able to compute a suitable plan, given any random initial context,

with a similar percentage of success as a logic program written by an expert both of

the domain and the logic paradigm. Furthermore, we found that the logic program ex-

tracted from text is computationally more convenient for the solver since less time is

needed for plan computation, thanks to the more efficient formalization with respect

to PDDL-like specifications in the precondition-action-effect paradigm. However, one of

the goals of this chapter is also to highlight the issues that still remain to be addressed.

In this chapter, we applied a general-English model on a controlled language, built

on purpose to be correctly interpreted by state-of-the-art tools. Moving to completely

unconstrained natural language, interpretation problems are likely to increase, espe-

cially in a domain such as surgery, where the plan must be certified before being per-

formed. In that case, the use of SURGICBERTA presented in Chapter 3 will be nec-

essary to understand the procedural surgical language better. Another similar prob-

lem is related to the specific domain lexicon that is sometimes used, which is com-

pletely unknown to state-of-the-art resources. For example, one limitation concerns

synonyms and alternative expressions for the same concept. Often general-English re-

sources (such as WordNet used in this chapter) are not effective in dealing with the

surgical domain, and further research should be carried out to enrich them with surgi-

cal terminology and expressions manually. For example, the verb excise can sometimes

be used with the same meaning as remove, but this does not emerge from WordNet.

Furthermore, in order to automate the entire process without requiring human in-

tervention, we should deal with the intrinsic incompleteness of natural language de-

scriptions that often leave some knowledge unsaid. This is the case, for instance, of spe-
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cific encoding of environmental fluents (see Section 7.4.4) that have to be filled man-

ually: at the moment, this pipeline significantly helps the programmer to write a logic

program encoding effective task representation, for example, it can identify actions,

agents, relevant environmental/domain entities as target objects and anatomies, and

semantic roles which can be directly mapped to LTL syntax. Hence, the programmer

shall only convert LTL expressions to a specific logic program syntax (e.g. ASP), with no

required awareness of the specific task/surgical procedure. Anyway, encoding of envi-

ronmental information, instead, is mostly related to commonsense concepts (e.g. spa-

tial information) or the considered domain at large (e.g. surgery) rather than the specific

task. The concept of commonsense is analyzed in Chapter 8.

Another important aspect to be considered is the difference between classical PDDL-

style task knowledge representation and text-extracted one. Experimental results have

evidenced that ASP programs extracted from the text are not only adequate to represent

the domains of the two tasks considered in this chapter, but they are also more efficient,

i.e. the planning time required by state-of-the-art Clingo solver is reduced (the amount

of the improvement depends on the specific task domain). This is probably related to

the different complexity of axioms between classical and extracted representations.

A final point to be discussed is completeness of LTL relations extracted from text, i.e.

their adequacy to represent all possible task occurrencies (i.e. initial configurations) and

guarantee successful task completion. Procedural texts usually describe a limited range

of possible scenarios. Unexpected events and conditions (originated, e.g. by the un-

certainty of pre-operative information, intra-operative anomalies, and patient-specific

clinical situation) may not be described. This also happens in the training tasks studied

in this chapter. For instance, consider the peg transfer task. In the analyzed initial con-

figurations of rings on the peg base, we have allowed rings to be placed either on grey

or no pegs. However, rings may also be placed on colored pegs. An example is shown

in Figure 7.5. The blue and red rings occupy red and blue pegs, respectively, and they

are all reachable only by first (right) arm. Obviously, we could enrich the description

by adding a final paragraph in the text where all well-known exceptions are described,

similarly to what is done for the robot setup. However, when the plan is not complete,

human intervention must always be requested.
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Fig. 7.5: An anomalous condition for peg transfer task, where colored pegs are occu-
pied.

7.7 Conclusion

In this chapter, we have presented AUTOMATE, a pipeline exploiting SRL for proce-

dural task knowledge extraction from text. We empirically showed that starting from

specifications in controlled language, it is possible to exploit SRL techniques for extract-

ing task actions (with relevant semantic information as agents and targets/objects) and

LTL templates from textual procedural descriptions. In the context of two benchmark

surgical training tasks, which also exemplify the more general domain of robotic ma-

nipulation, we have then translated extracted knowledge to the state-of-the-art logic

programming ASP formalism, and compared it with respect to classical PDDL-like rep-

resentations written by domain and logic experts. Experiments in randomized simula-

tions of the scenarios have shown the improved performance in terms of planning time

when considering text-extracted ASP representations, and the suitability to solve the

task planning problem successfully. Anyway, this work is a preliminary step towards the

exploitation and understanding of the knowledge contained in domain-specific man-

uals and has as its main goal that of highlighting research directions open for investi-

gation. One of the main limitations is that, for extracting meaningful robotic domain-

specific procedural knowledge and allowing a higher language variability, an adaption

of WordNet (or similar resources) to surgical English is necessary. While in simple pro-

cedures written in a controlled language, the translation is feasible, state-of-the-art al-

gorithms and resources will probably face more challenges in more complex scenarios.

Another main issue is the lack of commonsense knowledge in procedural descriptions.
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Work needs to be done on the representation of commonsense in surgery. The next

Chapter goes further on the problem of commonsense knowledge management.





8

The need for commonsense knowledge in

autonomous surgical robots

How much do we know at any time? Much more, or so I
believe, than we know we know.”

Agatha Christie, The Moving Finger

8.1 Introduction

Chapters 3-7 have shown that automatic extraction of surgical procedures from surgi-

cal textbooks is a challenging but not impossible task. One main issue is that textbooks

do not include the large amount of implicit knowledge that humans use during surgical

tasks. Indeed, while executing a surgical procedure, surgeons do not only rely on their

specific medical knowledge but also on a set of skills that are “obvious" to them and

allow them to intuitively evaluate and react to the intervention evolution. Such skills

belong to what is usually called commonsense, which is essential to carry out an inter-

vention. While general commonsense refers to all the basic concepts about the world

and belongs to all human beings (e.g. the fact that a needle must be inserted from tip

to eye), we believe that field-specific commonsense is developed depending on individ-

ual experiences within a field of expertise. In surgery, field-specific commonsense is the

“glue" knowledge that is not explicitly described in surgical manuals, but it is acquired

during the long surgical training. For example, a textbook does not explicitly describe

how the needle should be held nor how it should be inserted in the human body, but

this knowledge is known by domain experts. Understanding how to describe, repre-

sent and learn this knowledge is paramount to developing autonomous robotics sur-

gical systems. The importance and challenges of commonsense have been discussed
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in other fields [194, 195], but to the best of our knowledge this aspect has not yet been

addressed in robotic surgery.

8.2 Commonsense and surgery

In the following, we refer to the granularity classification of surgical procedures in

phases, steps, actions, and motions proposed by Lalys et al. [19] and presented in Chap-

ter 1. Based on these definitions and in-depth discussions with surgeons, we propose a

preliminary classification of surgical knowledge into four levels:

1. Procedural knowledge is the description of the sequence of phases required to per-

form a procedure, as can be learned from surgical manuals (c.f. 1.1). It does provide

general information about the specific steps, but it does not specify the parameters

of each step, i.e. the physical quantities that instantiate individual actions and mo-

tions, such as the motion velocity or the force to be applied.

2. Surgical commonsense is a field-specific commonsense and encompasses all those

skills surgeons acquire while experiencing (assisting and performing) a specific pro-

cedure multiple times. It allows for defining the sequence of elementary actions

needed to perform the surgical task and intuitively setting their parameters. It also

includes the capability to interpret surgical situations and thoroughly understand

correlations, causes, and consequences of actions and thus select the best surgical

technique for each specific situation.

3. Medical commonsense is another subset of field-specific commonsense, that is not

specific to a single surgical procedure and is acquired during medical studies. For

example, it includes the knowledge of basic anatomical concepts (positions and

functions of organs), the high-level understanding of how surgical actions impact

anatomy, the evolution of the patient’s prognosis after surgery and medications.

4. General commonsense is commonsense that surgeons have as human beings. It rep-

resents the basic knowledge of the world, is acquired while experiencing everyday

situations, and helps infer the meaning and behavior of things.

This classification is not always crisp, because it depends on the context. The same

concept can refer to one or to another type of commonsense. For example, knowing the

effects of a complex surgical action on the internal organs requires surgical knowledge

and experience (and thus surgical commonsense) that may not be required in simpler

and standard cases, when only medical commonsense may be sufficient.
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The renorrhaphy 
sutures can now be 

introduced and 
temporarily situated 
near the operative 

field.

Procedural knowledge: 
suturing is a phase of the intervention.

Surgical commonsense: 
The following steps are required to perform a suture:
• Grasping the needle (a)
• Moving close to the insertion point (b)
• Inserting the needle (c)
• …
Furthermore:
• What does “near the operative field” mean?
• When and how should the needle be inserted according to

the current anatomical configuration?
• Which suture technique is preferable in this specific case?

Medical commonsense: 
• How does a suture generally impact on tissues?
• How to treat the patient after the surgery?
• What medications are required?
• …

General commonsense:
• The needle should be inserted from tip to eye.
• …

(a) (b) (c)

tip

eye

suturing
Partial nephrectomy:

Fig. 8.1: Procedural knowledge enriched with surgical, medical and general common-
sense.

To clarify the proposed classification, we introduce Fig. 8.1 that describes the com-

monsense knowledge required during the suturing phase of a partial nephrectomy in-

tervention. This classification can be adapted to other surgical phases or procedures.

The sentence at the top is taken from a surgical textbook [114] and represents the

procedural knowledge of the intervention. However, it does neither describe how to as-

sess the conditions of a good suture, nor how to select the best surgical approach to

connect the tissues, nor it lists the individual steps and actions needed to accomplish

it (surgical commonsense). Furthermore, it neither describes the effect that generally a

suture causes on tissue nor how to pharmacologically treat the patient after the surgery

(medical commonsense), nor it provides the implicit general knowledge about objects

involved in the suture, e.g. a needle is needed, and it must be grasped, inserted and

extracted (general commonsense).

Despite these missing details, surgeons are able to perform the intervention after

reading a manual. This is possible because they can leverage their broader background

that glues information together. Surgical textbooks alone are not sufficient to fully de-

scribe an intervention, and an autonomous surgical robot must acquire the same level
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of knowledge mentioned above to perform the surgical task and to properly handle the

situations occurring.

8.3 Mapping commonsense skills to autonomy levels in

surgery.

The different levels of autonomy proposed by Yang et al. [14] and summarized in Chap-

ter 1 are obviously associated with different levels of knowledge, and we propose the

classification schematized in Fig. 8.2. In particular, the sophisticated capabilities re-

quired to reach high autonomy levels are implicitly connected to the breadth of the

required commonsense knowledge.

Fig. 8.2: Mapping between autonomy levels and the required knowledge levels. Higher
autonomy requires broader knowledge. “CS" stands for “commonsense".

Current surgical robots are teleoperated systems with some assistive function (level

of autonomy 0 and 1), and have no knowledge of the steps to be performed but simply

monitor some working variables, such as current levels, maximum speed, and electrical

noise. The specific phases and steps of the intervention are determined by the surgeon

who directly controls the surgical actions.

However, even when autonomous functions are limited (levels 0 -1) a certain amount

of commonsense knowledge is implicitly included in the control algorithms and data

analysis methods. For example, autonomy level 0 has specific actions that include e.g.

tremor suppression and maintaining orientation during clutching. At level 1, the robot
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provides dexterity and cognitive support to the human for specific actions or tasks, but

not for strategic decisions (plans) or actions, and all commonsense reasoning is pro-

vided by the surgeon.

When a surgical robot is able to execute some individual actions (levels of autonomy

2 and 3), it would require the presence of surgical commonsense. In fact, the robot would

need to perform some basic reasoning on the patient-specific pathology and anatomy,

with the surgeon ready to intervene if needed. Referring to Fig. 8.1, the robot would

have to interpret the “near the operative field”, and decide where to insert the needle

given the patient’s anatomy. Furthermore, in the example above, the robot would have

to know that a suture needs a surgical needle, which has to be grasped with a specific

orientation for optimal insertion. It has to control motion parameters (force and veloc-

ity) during the insertion and it has to know how to close the suture. Some concepts of

medical commonsense would be needed to give the autonomous robotic surgical sys-

tem more autonomy and connect multiple phases of an intervention. For example, the

autonomous robotic surgical system needs to know the human anatomy and how each

step impacts it. However, it is not always easy to identify a sharp division between surgi-

cal commonsense and medical commonsense, since a combination of both is necessary

to specialize a well-defined textbook procedure into the real intervention.

To achieve higher autonomy, an autonomous robotic surgical system must be able

to make autonomous decisions related to the complete procedure. It will generate, se-

lect, execute, and monitor a surgical plan, adapt it to different anatomies, and react

to unexpected situations. Enhanced sensing, situation awareness, and reasoning tech-

nologies are key to achieving such capabilities [5], together with a broader common-

sense to properly assess and react to the situation. While medical commonsense would

allow reaching high autonomy (level 4), fully autonomous systems (level 5) would need

the integration of general commonsense because decisions would be required that go

outside the medical field, such as lifting and moving objects, turning on and off devices

and lights, understanding human emotions.

8.4 Conclusion

As long as surgical robots maintain an assistive role, they can rely on the common-

sense of the operating surgeons. As soon as they become aids or surgical colleagues,

they must be able to perform commonsense reasoning on their own, making it crucial
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to understand how to deal with this kind of knowledge. The map between common-

sense types and autonomy levels proposed in this chapter aims to make the problem

more tractable and encourage researchers to fill the scientific and technological gaps

related to commonsense knowledge and reasoning.

Data-driven deep learning algorithms, such as large language models and genera-

tive language models are a promising approach to embedding commonsense into a

process since data implicitly encode common sense knowledge. However, this com-

monsense is neither explicitly formalized nor identified, thus process reasoning is not

directly explainable to the user, and it violates also the upcoming regulations on us-

ing artificial intelligence methods in safety-critical systems. For these reasons, we feel

that commonsense in surgical robotics will be an interesting research direction to be

investigated, as discussed in 10.2.



While the previous part dealt with procedural knowledge extraction from text, this

part presents our contribution to procedural knowledge extraction from kinematic

data recorded during the execution of a surgical task performed by an expert surgeon.

In particular, a set of novel joint-space orientation-based features are designed and

used with supervised machine learning to recognize surgical gestures, i.e., procedural

knowledge at a lower granularity level.

Part III

Procedural knowledge from kinematic data
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9

Procedural knowledge understanding from

kinematic data

"Teaching is the highest form of understanding."

Aristotle

9.1 Introduction

In the previous part of this thesis, we investigated the possibility of automatically un-

derstanding the robotic-surgery literature by exploiting pre-trained Transformer-based

language models. These approaches aim to extract a plan from textual descriptions.

Books, academic papers, and operative surgical guidelines are written by domain ex-

perts and thus are highly reliable. Nevertheless, as stated in Chapter 8, not all opera-

tive information is written but has to be learned from experience: much is unsaid and

falls within the sphere of surgical, medical, and general commonsense. One example

of commonsense knowledge not explicitly explained in textbooks is the guidelines for

performing surgical gestures, i.e. the best kinematic movements of the intervention in

a low-level granularity. We define "surgical competence" as the skill level required to

safely perform a surgical procedure [196]. The surgical competence, in a specific phase

of the intervention, comprises factors such as the velocity with which to move the in-

struments, the instruments’ motion radius, the force to be applied in lifting or pulling a

tissue, the optimal orientation of the instruments to avoid collisions with other objects

(other operating instruments or anatomy), or the position of the endoscopic camera

which allows the best view of the operative scene. These elements cannot be learned

from textbooks but only from practical experience. Numerous studies show that the

surgeon’s expertise directly impacts the patient’s post-operation health status [15, 196].
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The same principle will be applied to autonomous robots: to guarantee a safe inter-

vention, they must know how to map high-level textual instructions or concepts with

optimal kinematic movements. Numerous practical curricula exist related to robotic

surgery training aimed at teaching the best kinematic movements in a given situation.

However, standardized training protocol has yet to be defined and validated [197]. In

this chapter, we propose qualitative metrics to describe how a gesture, i.e. low-level

kinematic surgical movements, must be performed, a precursor task, together with that

of gesture recognition for achieving the goal of objective evaluation of surgical skills

[196]. This chapter, therefore, considers the problem of the surgical gesture classifica-

tion task. From spans of kinematic data, the goal is to label them with the proper textual

description by choosing the best set of features able to describe the movement. The list

of labels is a-priori defined.

State-of-the-art research has proposed and validated metrics based on the motion

of instruments to use as features for automatically classifying surgical gestures [41].

Most have been derived from those developed for standard minimally invasive surgery.

They are based only on Cartesian space motion analysis, mainly end-effector veloci-

ties and accelerations or total distance [42]. Other proposed metrics are based on tools

orientation [41] or forces applied during gripping of interaction with the environment

[43]. However, the computation of these metrics requires access to low-level surgical

robotics kinematic data, which in the past was challenging to obtain due to manufac-

turer trade secrets and user/patient privacy. This fact limited the development and ex-

ploitation of such advanced metrics. The limited number of publicly available datasets

for classifying surgical gesture metrics confirms this difficulty. This situation has re-

cently changed thanks to the introduction of research platforms, such as DaVinci Re-

search Kit (dVRK) [198] and Raven II [199], which enables the acquisition of low-level

kinematics and status variables.

In this chapter, we present a series of orientation-based metrics that can be used to-

gether with the more traditional Cartesian-based metrics to objectively indicate how a

surgical gesture should be performed. These metrics, calculated in Cartesian and joint

space, are used in this work as input features to an automatic classification algorithm.

Since existing open source datasets, such as JIGSAWS [39], only present information in

the Cartesian space, we also introduce a novel surgical dataset containing information

in both spaces, Cartesian and joints. This dataset lets us objectively describe how a sur-

gical gesture should be performed. The experimental results show that applying metrics

in the joint space significantly improves the automatic classification results compared
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to those obtained by applying the metrics to the Cartesian space only, as described by

[41].

9.2 Method

In 9.2.1, the novel dataset is described, together with temporal and spacial calibrations

techniques used. The novel joints-space orientation metrics are presented in 9.2.2 while

9.2.3 presents the evaluation strategy.

9.2.1 The new dataset

The structure of the DaVinci slave robotic manipulator used to do experimental valida-

tion is described in Figure 9.1. It can be divided into two parts: the Base Unit, i.e. the

first three joints of the robot, and the Instrument Unit, i.e. the last three. The acquired

dataset consists of 42 suturing trials performed by a single expert user. The dominant

right-hand expert has over 50 hours of experience with the DaVinci surgical robotic sys-

tem. Trials are divided into two sets: the first 20 use a different phantom position than

the last 20, where the phantom is turned 45 degrees clockwise. Trials 21 and 42 con-

tain not the suturing task but two helpful procedures for spatial calibration. Figure 9.2

illustrates the training phantom used for the experimental validation and the standard

reference system defined. Each trial is executed in a different section of the phantom,

represented by letters A, B, C, and D. The trials follow lettering ordering (clockwise or-

dering starting from the vertical section). Each trial consists of a 3-pass suturing task

executed with a 1/2 circle suture needle following reference points present in the phan-

tom.

Each trial consists of 10 Comma Separated Value (CSV) files containing raw kine-

matic data (time, position, and orientation) and two videos reproducing the surgical

scene captured by two endoscopic cameras. Files contained in the dataset are listed

below:

• (ECM|PSM1|PSM2|MTML|MTMR) _position_Cartesian_current.csv: they contain

temporal information about position and orientation in the cartesian 3D space of

the ECM, PSM1, PSM2, MTML, and MTMR respectively 1

1 ECM: Endoscopic Camera Manipulator; PSM: Patient Side Manipulator; MTML: Master Tool Manipulator Left;
MTMR: Master Tool Manipulator Right.
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Fig. 9.1: Schematic representation of the considered robotic manipulator with joints
configuration: Base unit (left) and Instrument unit (right).

A

B

C

D

Fig. 9.2: Axes of the phantom (z-axis outward). Orange boxes represent the different
sections of the phantom used for performing the different trials. See text for more de-
tails.
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• (ECM|PSM1|PSM2|MTML|MTMR) _state_joint_current.csv: contain temporal in-

formation about position, velocity, and effort of each joint for ECM, PSM1, PSM2,

MTML, and MTMR respectively. joints are: outer-yaw, outer-pitch, insertion, outer-

roll, outer-wrist-pitch e outer-wrist-yaw.

The Cartesian position and the orientation of MTM and PSM are calculated starting

from the joint angles using direct kinematics. Velocities in the joint space are computed

directly by the dVRK robot controller. Acceleration and jerks are instead calculated with

numerical derivation using a finite element method. Finally, we performed a spatial

and temporal calibration of the robot’s kinematics to have a single reference system

representing all the robot’s components.

Temporal Calibration

During the surgical task, MTM, PSM, and ECM kinematics were captured, and videos

were recorded using two cameras (Left and Right): kinematics are gathered with a fre-

quency of 100Hz (every 10 ms), but the video frames are updated at 25Hz (40 ms).

Therefore, kinematics need to be synchronized to the video frames. Consequently, the

description at a specific time t obtained by kinematic analysis is inconsistent with the

same time t by video analysis. To synchronize the kinematics with video frames tempo-

rally is necessary to map each frame to the corresponding kinematic representation.

To solve the problem, we calculated the instant in which each task starts by analyz-

ing both kinematics (obtaining t0_ki n) and video frames (obtaining t0_vi deo). For kine-

matics, we calculate the Euclidean distance in 3D space traveled by PSMs between two

successive updates, assuming that without any movement, kinematics always return

approximately the same value. The value will not be precisely zero due to noise in the

sensors. When at time t the returned distance is higher than an experimentally esti-

mated threshold, we assume that t = t0_ki n . For videos, we did similarity analysis be-

tween adjacent frames to detect movement; the time when the first motion is visible

from the video is t0_vi deo . For similarity analysis, we explored two alternatives: MSE

(Mean Square Error) [200] metric and SSIM (Structural Similarity) [200] metric. In this

application, the first metric provided more accurate results; thus, we used it in the fi-

nal synchronization. [201, 202, 203] prove the effectiveness of the MSE metric for mo-

tion detection. Given t0_ki n and t0_vi deo the desynchronization between kinematics and

video is expressed as:

∆t_psm = t0_ki n − t0_vi deo
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Then, the initial synchronized time is:

t0_s ynch = t0_vi deo +∆t_psm

A further problem arises: as mentioned above kinematics sampling rate is greater than

the frames sampling rate, so t0_s ynch found is just a fictitious timestamp that will not

exactly match any real timestamp: we decided to associate it with the nearest (but not

future) timestamp. Figure 9.3 illustrates the temporal calibration problem.

Time

Time

Time

Start of motion

Start of motion

Start of motion

Δt_PSM2

Δt_PSM1

Video

PSM1

PSM2

Fig. 9.3: Diagram representing the temporal calibration problem with different data
streams and temporal offset considered in this work.

Spatial Calibration

PSM1 and PSM2 have independent spatial reference frames; the task is to rotate and

translate frames to uniform them in a unique reference frame named world. After that,

world has to be mapped into the camera’s reference space to have a uniform spatial

view of the scene. The world is the phantom where the suturing task is executed; on it,

nine fiducials (see Figure 9.4) are selected, and for each, the Cartesian position is mea-

sured. The goal is to align the two sets of 3D points by finding the best rotation and

translation. In particular, as shape and size are preserved during rotation and transla-

tion, a Euclidean transformation is used, as described in [43, 204].
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With this procedure, all PSMs have been mapped to world; then, world has to be

mapped to the camera space. The goal is to find the pose of an object having a calibrated

camera, locations of n 3D points of an object, and the corresponding 2D projections.

This problem is known in the literature as Perspective-n-Point problem [205], and we

solved it using functions provided by the OpenCV library.

Fig. 9.4: Right camera endoscope image extracted from trial 22 showing the rotated po-
sitioning of the phantom. Numbered points indicate ordered fiducials used for spatial
calibration

9.2.2 Metrics

Given the above dataset, we manually divided it into different temporal segments cor-

responding to surgical actions or gestures. We followed the guidelines in the literature

(JIGSAWS convention [39]), to which extensions were made to consider using both

hands. Table 9.1 summarizes the elementary sub-operations with corresponding an-

notation labels (in bold our extension to JIGSAWS nomenclature).

For each segment, the metrics below described are computed. They are an extension

of those introduced in [206] to consider both the Cartesian and the joint spaces.

The first straightforward metric is Task Time, defined as:

T = tIi+1 − tIi (9.1)
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Table 9.1: Labels used for gesture annotation in the proposed dataset. Bold font indi-
cates additional label introduced with respect to original JIGSAWS convention

Gesture Description

G1 Reaching for needle with right hand
G2 Positioning needle with right hand
G3 Pushing needle through tissue with right hand
G4 Transferring needle from left to right
G5 Moving to center with needle in grip
G6 Pulling suture with left hand
G7 Pulling suture with right hand
G8 Orienting needle with right hand
G12 Reaching for needle with left hand
G15 Pulling suture with both hands
G20 Positioning needle with left hand
G21 Pushing needle through tissue with left hand
G22 Transferring needle from right to left
G23 Orienting needle with left hand

where tIi+1 and tIi are the timestamps corresponding to the beginning of segment num-

ber i and i +1, respectively.

Total distance traveled between two successive frames is defined as:

∆di ,i+1 = ∥[∆xi ,∆yi ,∆zi ]∥ (9.2)

where ∆xi , ∆yi , ∆zi are the differences between frame i and i +1 with respect to x, y , z

positions, respectively and ∥·∥ is the Euclidean norm. Using ∆d j , j+1 we can define Path

Length as:

P =
N−1∑
j=1

∆d j , j+1 (9.3)

where N is the number of samples composing the gesture.

In the joint space, the Angular Displacement joint (ADIJ) metric for the joint k is

defined as:
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AD I Jk =
N−1∑
i=1

|∆Θi+1,i | (9.4)

The angle∆Θi+1,i represents the orientation change between pairs of consecutive sam-

ples for the joint k.

In the joint space, the Time Angular Displacement joint (TADJ) for the joint k is de-

fined as:

T AD Jk = 1

T

N−1∑
i=1

|∆Θi ,i+1| (9.5)

where T is the duration of the surgical action and k is the joint number.

Finally, the metric Rate Of Change Joint (ROCJ) is defined as:

ROC Jk = 1

N −1

N−1∑
i=1

ωi (9.6)

whereωi is the angular speed of the joint number k in the frame i and N is the number

of samples.

In addition, joint data contains information about joint effort (e.g. joint motor cur-

rent, joint force, or torque) as a scalar value τi . We therefore introduce the mean effort

(MEJ), which represents how the joint k interacts with the environment:

ME Jk = 1

N −1

N−1∑
i=1

τi (9.7)

It is possible to extend these formulas to consider the average value of metrics on

all joints of the base/instrument part of the robot described in Figure 9.3. Let Mk be a

metric calculated on a general joint k (Mk can be AD I J , T AD J , ROC J or ME J ). The

value of this metric on joints of the base unit is expressible as:

Mbase_uni t =
1

3

3∑
k=1

Mk (9.8)

while the value of this metric on joints of the instrument unit is expressible as:

Mi nst_uni t = 1

3

6∑
k=4

Mk (9.9)
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The dataset we contributed is the first one containing information on the joint space,

thus making the calculation of joint space metrics feasible.

9.2.3 Automatic classification

To further investigate the ability of the previously described metrics to discriminate ges-

tures, we trained a model classifier that, given a set of metrics, automatically recognizes

the gesture. We use the random forest classifier described in 2.5 implemented from the

sklean library for the following reasons [207, 208]:

• it shows the highest performance when applied on the general dataset without hy-

per tuning parameters that were outside the scope of this article [209];

• it has improved explainability since it is possible to characterize the Mean Decrease

Impurity (MDI) to state the variable’s importance [210];

Due to the high imbalances in the number of gestures reported in Figure 9.5 we val-

idate our classifier using Stratified k Fold(SKF) methodology. In SKF cross-validation,

the folds are created in a way that they contain approximately the same proportion of

labels as the original dataset. Since the lowest number of samples for a gesture is n = 5,

we create 5 test and train sets. This was done to maintain nearly 20% of samples for test-

ing and guarantee the presence of each gesture in the splits. Performance is evaluated

by using the metrics defined in 2.5.3.

9.3 Results and discussions

9.3.1 Temporal and Spatial calibration

The mean temporal desynchronization between video frames and PSMs is 140ms. The

mean error for spatial calibration is 1.5 mm for PSM1 and 1.6 mm for PSM2.

9.3.2 Automatic classification of surgical gestures

This section reports the results obtained from the automatic classification of surgical

gestures using the metrics presented in the section 9.2.2 as features. Specifically, we

analyzed the contribution of pose (distance and acceleration), orientation (cartesian

space and joint space), and effort (joint space) metrics to gesture classification, observ-

ing changes in accuracy performance.
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Fig. 9.5: Histogram for gestures distribution, considering only gesture labels annotated
in the proposed dataset.

Table 9.2: Average classification accuracy, considering the different subset of metrics
considered for the experimental evaluation

Features Average Accuracy

Joint space 83.01%
Cartesian space 75.27%

All metrics 86.51%

In table 9.2, we report the mean accuracy obtained using Stratified k Fold (k = 5)

methodology on three metrics groups. The highest average accuracy, with a score of

86.51%, is obtained using cartesian and joint space. In Figure 9.6, we show that few

features are highly discriminative for the dataset since the average accuracy increases

quickly. The ten most important metrics used for automatic classification are reported

below:

1. distance on z-axis of PSM1;

2. acceleration on z-axis of PSM1;

3. distance on z-axis of PSM2;
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Table 9.3: Precision, recall and F-Score of considered surgical gestures

Gestures
Cartesian space Joints space Cartesian + Joint

P R F1 P R F1 P R F1
G1 0.715 0.643 0.664 0.786 0.836 0.799 0.856 0.836 0.836
G2 0.903 0.920 0.904 0.810 0.900 0.849 0.876 0.900 0.881
G3 0.853 0.880 0.860 0.833 0.9200 0.873 0.860 0.920 0.887
G4 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000
G5 0.650 0.646 0.634 0.675 0.8143 0.726 0.784 0.836 0.791
G6 0.895 0.943 0.912 0.949 0.971 0.960 0.909 0.971 0.937
G7 0.805 0.946 0.866 0.883 0.975 0.925 0.883 1.00 0.937
G8 0.627 0.652 0.622 0.799 0.724 0.745 0.844 0.843 0.836

G12 0.785 0.757 0.758 0.893 0.893 0.889 0.910 0.868 0.886
G15 0.733 0.550 0.625 0.500 0.250 0.327 0.833 0.417 0.534
G20 0.914 0.750 0.759 0.950 0.800 0.855 0.920 0.950 0.927
G21 1.00 0.850 0.880 1.000 0.900 0.933 1.000 0.900 0.933
G22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
G23 0.581 0.686 0.611 0.721 0.771 0.722 0.792 0.857 0.794

4. acceleration on z-axis of PSM2;

5. mean effort on sixth joint of PSM2;

6. mean effort on sixth joint of PSM1;

7. mean effort on PSM2’s Instrument Unit;

8. angular Displacement of PSM2’s fifth joint;

9. rate of change of PSM1;

10. angular Displacement of PSM2’s forth joint.

Five (shown in bold) out of the ten most important features are from joint space and six

of them are orientation-based features.

Furthermore, the joint space analysis (made possible by the dataset we introduced)

improves the classification quality. Also, the joints’ sub-division in two classes (base

unit and instrument unit) allows for obtaining important features for the classification.

Table 9.3 reports Precision, Recall, and F-Score for each gesture and three groups of

metrics: cartesian space metrics, joints space metrics, and combined analysis of carte-

sian and joint metrics. Table 9.3 shows that some gestures have better metric scores in

the proposed joint space, and most of the gestures are better recognized in the com-
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Fig. 9.6: Accuracy curve considering an increasing number of features.

bined cartesian and joint space. Our hypothesis that joint space helps to capture more

information and improves the performance of the model is validated: our proposed

orientation-based metrics in joint space are a good set of features that can be used in

developing an automated classification of surgical gestures.

The classification method, however, fails for some gestures, like, for example, for G4

(Transferring needle from left to right) and G22 (Transferring needle from right to left).

The reason is that the number of occurrences of such gestures is very low: 4 occurrences

for G4 and six occurrences for G22. Another reason could be related to the intrinsic

similarity of G4 and G22: from the kinematic variable, it is difficult to estimate which

instrument is holding the needle and therefore distinguish between these two gestures.

9.4 Conclusion

With the work presented in this chapter, we addressed the lack in the literature about

using orientation-based metrics in cartesian and joint space to objectively describe

the characteristics of a surgical gesture composing the surgery. The effectiveness of

the metrics has been validated using them as features for an automatic classification

algorithm. Some surgical sub-operations can be well described using metrics based

on cartesian position, while others can be described using orientation-based metrics

instead. We have also introduced a new dataset containing cartesian and joint space
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information. It was used to make experimental validation of the proposed metrics. In

conclusion, surgical competence, which refers to the skill level required to perform a

surgical procedure safely, involves factors such as the speed of instrument movement,

range of action, force applied, optimal instrument orientation, and camera position.

Practical experience is required to learn how to perform surgical gestures expertly, and

it cannot be learned from textbooks. The combination of notional and practical knowl-

edge will allow the development of autonomous robotics surgical systems, as suggested

in Chapter 8.



This part summarizes the contributions of the first and second parts of this thesis

and discusses obtained results. Finally, it proposes related future research directions.

Part IV

Final remarks

169
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Conclusions, limitations and future works

"End? No, the journey doesn’t end here"

Gandalf in "The Lord of the Ring",
J.R.R. Tolkien

10.1 Conclusions

The development of autonomous robotic surgical systems is a rapidly growing re-

search field that holds tremendous promise for the future of medicine. Research on

autonomous robots has demonstrated that, nowadays, the real core of the research is in

automatic knowledge acquisition and management. For these systems to operate safely

and expertly, they must be built on a solid foundation of surgical knowledge. Actually,

domain experts manually encode this knowledge in ontologies or pre-defined logical

instructions. This manual process is time-consuming and requires surgery and com-

puter science expertise, making it a bottleneck in developing autonomous systems. Fur-

thermore, this manually encoded knowledge may not cover all possible complications

and cases that can arise during surgery but which are instead documented in textbooks

and in surgical case reports. To overcome these limitations, this thesis investigated au-

tomatic knowledge acquisition and management possibilities. This involves extracting

knowledge from external resources, such as free-text books, academic papers, written

tutorials, and kinematic data captured during surgical procedures.

The first part of this thesis is dedicated to procedural knowledge extraction from as-

is textbooks and academic papers describing how to perform a given surgery. First, in

Chapter 3 we pre-trained a novel language model on surgical literature, named SURGIC-

BERTA. Then, this model was used, together with other state-of-the-art approaches to
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detect sentences containing procedural information in robotic surgery in Chapter 4. To

do so, we framed the problem as a sentence classification task, solved via supervised

machine learning. To train and test those models, we collected a novel dataset con-

taining sentences of the robotic-surgery domain, manually annotated as procedural or

non-procedural, accordingly to their content. Then, once filtered out a set of procedural

sentences and discarded all the others, we faced the problem of procedural knowledge

extraction from them in Chapters 5-7. We solved this problem by exploiting language

models and fine-tuning them for the SRL task. In particular, since no training and test-

ing material were available, we developed an ad-hoc dataset in Chapter 5: following the

PropBank way of annotating semantic information, we organized the work in two parts:

the first is defining important information in robotic surgery to annotate surgical sen-

tences, while the second is the actual annotation. Exploiting the obtained dataset and

fine-tuning the pre-trained SURGICBERTA language model developed in Chapter 3, we

obtained an SRL model able to recognize and discriminate surgical content in proce-

dural sentences in Chapter 6. We finally exploited SRL in some simple use cases to em-

pirically investigate the possibility of translating natural language descriptions, under

some language constraints, into logical rules in Chapter 7. Reflections made on the first

part’s chapters convinced us that some information needed to automatize a robotic-

surgery intervention is missing in textbooks because it belongs to what we name com-

monsense knowledge that can only be acquired by practical experience. To stimulate

future research in this direction, we so proposed a mapping between the levels of au-

tonomous surgical systems and the kind of required knowledge in Chapter 8.

Finally, in the second part of this thesis, we investigated the possibility of acquir-

ing knowledge directly from kinematic data, in particular, to recognize how a surgical

action expertly executed can be described with joint-space orientation-based metrics.

We believe this thesis has the potential to pave the way for several research directions

as it is the first to propose using the information written in textbooks to automate the

surgical operative process. Obviously, there is still much to be done: limitations and

possible future works are discussed in Section 10.2.

10.2 Limitations and future works

This section briefly discusses the main limitations of this thesis and presents future

work projects to improve or enrich the current analysis.
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Chapter 3 presented SURGICBERTA, the pre-trained language model for surgical lan-

guage. In developing it, we collected books and academic papers from sources that our

universities have free access to. Anyway, by doing so, we may therefore have excluded

some valid resources. Furthermore, the choice of various texts is not balanced by surgi-

cal domain and other subdomains may not have been included at all: testing SURGIC-

BERTA in surgical domains different from the ones it was trained could strengthen the

analysis. Also, SURGICBERTA is currently trained only with English-language texts, but

a lot of written material is also available in other languages: including them may in-

crease its usability. In conclusion, enlarging and enriching the dataset used to develop

SURGICBERTA in these ways could increase model performance. Chapter 4 presented a

method for detecting procedural sentences in surgical books and academic papers. The

method assumes that procedural information is present only in sentences describing

at least one action to perform. However, this could be simplistic because some proce-

dural details can also be implicitly present in sentences describing the background or

the features of the procedure. The detection of procedural knowledge hidden in other

types of sentences would therefore require further research. Also here, enlarging the

dataset with novel surgical domains may be useful to strengthen the analysis in future

work. Chapters 5 and 6 presented an annotated dataset and a method for extracting

procedural entities from sentences. The proposed dataset and the described method

also work at the sentence level, following the standard SRL approach. While this is cor-

rect in most cases, there may be procedural elements of the same action described in

different sentences. The proposed dataset could therefore be enriched by also annotat-

ing these cases and the method could be perfected to identify and link them correctly.

Furthermore, the same considerations done for the dataset used to develop SURGIC-

BERTA can be applied: extending the dataset and the models in a multilingual scenario

would be undoubtedly helpful in making these tools more accessible and usable by

anyone. Chapter 7 presented a preliminary pipeline for extracting procedural work-

flows from robotic-surgery procedural descriptions. This method could be improved

by using the models proposed in previous chapters, by further investigating the lan-

guage variability, and by exploring similar works in completely different domains, such

as business processes [28]: this could create an interesting synergy between the two

fields. Furthermore, developing a surgical WordNet containing surgical synsets or en-

riching RSPF with surgical synonyms can also be helpful to deal with language variabil-

ity. Chapter 8 presented one of the problems related to procedural knowledge extraction

from written texts: the lack of commonsense-related information, often not explicit in
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written material thought for humans: this presents the problem and possible solutions

that can be explored with future research. Among all, exploiting large language mod-

els, as demonstrated in [211] can be a viable solution. These models can be prompted

to extract information, similarly to what we did in Chapter 3 with the qualitative eval-

uation. Commonsense knowledge can also be inferred from kinematic data captured

during the surgery, so research can be conducted to extend that proposed in Chapter 9.

While commonsense skills can be learned implicitly from kinematic or video data, the

problem of confirming the appropriateness and completeness of the available datasets

remains. In fact, robust learning is feasible only by having large amounts of available

data, which is difficult to obtain in the surgical domain. Finally, Chapter 9 presented

one contribution in the bottom-up direction. The analysis could be enriched by adopt-

ing recent deep-learning methods, thus avoiding an explicit feature engineering task.

Furthermore, the combination of the methods described in the first part with this con-

tribution remains an open task.

Additional related chapter-independent future research directions follow. As illus-

trated in Figure 1.2, the thesis’s first part is composed of two stages: the first is related

to procedural sentence detection, while the second deals with procedural elements un-

derstanding from procedural sentences. The system is now developed as a two-stage

pipeline, tackling the two tasks separately. This requires the training and testing of two

different models. To overcome this issue, we plan to develop a model to detect procedu-

ral sentences and extract procedural elements (with SRL) from them in an end-to-end

fashion. This will simplify both the training and final evaluation, helping to avoid the

propagation of errors from the first to the second stages.

Another related research direction will be comparing how different surgeons with

different expertise levels write the same procedure, e.g. with greater or lesser detail.

Developed models and resources can simplify the translation of natural surgical lan-

guage to logical language, independently from the surgeon’s expertise and background.

Using these resources to translate equivalent descriptions of the same procedure into

a unique, simplified form can also help to certify the obtained logical plan and limit

the number of security assertions to develop. At the same time, we plan to develop a

text editor that assists the surgeon in writing procedural descriptions providing in real-

time the interpretation the model gave of the given sentence and eventually suggesting

changes. In this phase, realistic intervention descriptions will be used, requiring the use

of SURGICBERTA. While in this thesis, we used pre-trained language models for infor-

mation extraction, thus only using the encoder part of the Transformer architecture, an
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interesting application will be to use also the decoder to generate output text. This ap-

plication is especially interesting after the release of large language models such as GPT

[212], GLaM [213], LaMDA [214], Gopher [215], Megatron-Turing NLG [216], and PaLM

[217]. In the context of this thesis, the encoder part could be used to extract information

from written materials, and the decoder part to produce the corresponding logic plan.

Knowledge-based approaches can also be implemented relying on ontologies, which

provide a suitable way to represent entities and relations. Surgical ontologies like On-

toSPM [184] could be extended to integrate, or aligned with, broader knowledge bases

that include general commonsense knowledge and reasoning, like CyC and Concept-

Net [218]. A possible path would be investigating ways to merge knowledge bases that

are developed independently for different purposes[219], thus obtaining a representa-

tion that includes procedural knowledge, surgery-specific commonsense, and general

commonsense.

Furthermore, combining bottom-up with top-down approaches in a unique knowl-

edge based model will be extremely interesting and crucial for obtaining higher levels

of autonomy in robotic surgery.

Finally, this thesis lays the groundwork for extracting procedural knowledge from

texts in a format that autonomous surgical robots could understand and use to de-

fine an intervention plan. A high-level limitation is, however, that its practical valida-

tion remains nowadays challenging because there are still no robots capable of per-

forming similar operations autonomously due to technological and ethical reasons. For

this point, all related future research must therefore be multidisciplinary to address the

complexity of the topic in the best possible way.
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