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No book can ever be truly accomplished.

As we work around it, we learn enough to find it immature

by the time we step away from it.

-Karl Raimund Popper
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Sommario

L’analisi di dati nell’ambito del microbioma e della metagenomica è stato

il tema principale del mio dottorato. L’obiettivo primario di questa tesi si

muove attorno all’osservazione dei limiti dei metodi per lo studio dell’ab-

bondanza differenziale e culmina con la creazione di un framework analitico

che permette la loro misurazione e comparazione. Come obiettivo secon-

dario, inoltre, la tesi vuole enfatizzare la necessità di una solida analisi

statistica esplorativa ed inferenziale nei dati di metabarcoding, tramite la

presentazione di alcuni casi studio.

Inizio presentando 2 studi strettamente collegati in cui i metodi per l’analisi

di abbondanza differenziale sono i protagonisti. L’analisi di abbondanza

differenziale è lo strumento principale per individuare differenze nelle com-

posizioni delle comunità microbiche in gruppi di campioni di diversa prove-

nienza. Rappresenta quindi il primo passo per la comprensione delle comu-

nità microbiche, delle relazioni tra i loro membri e di questi con l’ambiente.

Il primo studio riguarda un lavoro di confronto tra metodi. A partire da

una collezione di dataset metagenomici, l’obiettivo era di valutare le per-

formance di metodi per l’analisi dell’abbondanza differenziale, anche nati

in altri ambiti di ricerca (e.g., RNA-Seq e single-cell RNA-Seq). Invece,

con il secondo studio presento un software che ho sviluppato grazie ai risul-

tati ottenuti dalla precedente ricerca. Attualmente, il pacchetto software,

in linguaggio R, è disponibile su Bioconductor (i.e., una piattaforma open-

source per l’analisi e la visualizzazione di dati biologici). Esso consente agli

utenti di replicare sui propri dataset il confronto tra metodi per lo studio

dell’abbondanza differenziale e la conseguente analisi delle performance.

Infine, mostro alcune delle sfide che ho incontrato nell’analisi di questo tipo

di dato attraverso 2 casi studio riguardanti il microbioma umano, la sua

composizione e dinamica, sia in stato di salute che malattia. Nel primo

studio, dei soggetti sani sono stati trattati con una mistura di probiotici per

valutare variazioni del microbiota intestinale ed eventuali associazioni con

alcuni aspetti psicologici. Un’attenta analisi esplorativa, l’impiego di tec-



niche di clustering e l’utilizzo di modelli di regressione lineare ad effetti misti

hanno consentito di svelare un forte effetto soggetto-specifico e la presenza

di diversi batteriotipi di partenza che mascheravano l’effetto complessivo

del trattamento probiotico. Invece, nel secondo studio mostro come, a par-

tire da campioni salivari, sono stati individuati dei biomarcatori associati

all’esofagite eosinofila (i.e., una malattia cronica immuno-mediata a carico

dell’esofago che causa disfagia, occlusioni e stenosi esofagee). Nonostante

la bassa numerosità campionaria è stato possibile costruire un modello per

discriminare tra casi e controlli con una buona accuratezza. Anche se an-

cora prematuro, questo risultato rappresenta un passo promettente verso la

diagnosi non invasiva di questa malattia che per il momento viene fatta solo

tramite biopsia esofagea.

Keywords: Microbioma, Analisi di Abbondanza Differenziale, Confronto

tra metodi, Analisi Esplorativa, Analisi dei Dati, Probiotici, Esofagite Eosi-

nofila.



Abstract

Microbiome and metagenomics data analysis has been the main theme of

my PhD programme. As a main goal, the thesis moves from the observed

limitations of the differential abundance analysis tools to a benchmark and

a framework against which they could be measured and compared. Fur-

thermore, as a secondary goal, the presentation of some case studies wants

to emphasise the need for a sound exploratory and inferential statistical

analysis in metabarcoding data.

Firstly, I present two closely related studies in which differential abundance

analysis methods play the main role. The differential abundance analy-

sis is the principal approach to detect differences in microbial community

compositions between different sample groups, and hence, for understand-

ing microbial community structures and the relationships between microbial

compositions and the environment. I start by introducing a benchmarking

study in which differential abundance analysis methods, even from different

domains (e.g., RNA-Seq and single-cell RNA-Seq), were used in a collection

of microbiome datasets to evaluate their performance. Then, I continue

with the presentation of software package that I developed from the results

obtained in the previous research. The software package, in R language, is

currently available on Bioconductor (i.e., an open-source software platform

for analysing and visualising biological data). It allows users to replicate

the benchmarking of differential abundance analysis methods and evalute

their performances on their own datasets.

Secondly, I highlight the microbiome data analysis challenges presenting

two case studies about the human microbiome and its composition and

dynamics in both disease and healthy states. In the first study, healthy

volunteers were treated with a probiotic mixture and the changes in the

gut microbiome were studied in conjunction with some psychological as-

pects. A careful data exploration, clustering, and mixed-effects regression

models, unveiled subject-specific effects and the presence of different bac-

teriotypes which masked the probiotic effect. Instead, in the second study



I show how to identify disease-related microbial biomarkers for eosinophilic

oesophagitis (i.e., a chronic immune-mediated inflammatory disease of the

oesophagus that causes dysphagia, food impaction of the oesophagus, and

esophageal strictures) from saliva. Despite the low sample size it was possi-

ble to train a model to discriminate between case and control states with a

decent accuracy. While still premature, this represents a promising step for

the non-invasive diagnosis of eosinophilic oesophagitis which is now possible

only through esophageal biopsy.

Keywords: Microbiome, Differential Abundance Analysis, Benchmarking,

Data Exploration, Data Analysis, Probiotics, Eosinophilic Oesophagitis.
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Chapter 1

General Introduction

1.1 The Microbiome

1.1.1 Definition

According to the 1988 definition given by Whipps et. al [1], the micro-

biome may be defined as a characteristic microbial community occupying a

reasonably well-defined habitat which has distinct physio-chemical proper-

ties. The term thus not only refers to the microorganisms involved but also

encompasses their theatre of activity.

In 2019, leading microbiome researchers from academic, governmental, and

industry groups representing diverse areas of expertise, considered the def-

inition still valid and extended it by adding two explanatory sentences to

distinguish the terms microbiome and microbiota and emphasise its dy-

namic character [2]. The living microorganisms populating the microbiome

(Prokaryotes [Bacteria, Archaea], Eukaryotes [e.g., Protozoa, Fungi, and Al-

gae]) compose the microbiota, while their “theatre of activity” includes mi-

crobial structures, metabolites, mobile genetic elements (e.g., transposons,

phages, and viruses), and relic DNA (extracellular DNA derived from dead

cells) embedded in the environmental conditions of the habitat. The mi-
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crobiome, which forms a dynamic and interactive micro-ecosystem prone

to change in time and scale, is integrated in macro-ecosystems including

eukaryotic hosts, and is crucial for their functioning and health (Fig. 1.1).

Figure 1.1: A schematic, rearranged from [2], highlighting the composition of the
term microbiome containing both the microbiota (community of microorganisms)
and their “theatre of activity” (structural elements, metabolites/signal molecules,
and the surrounding environmental conditions).

1.1.2 Microbiome research

Microbiome research started back in the seventeenth century originating

from microbiology. Progress in this field has often been driven by the devel-

opment of new equipment, techniques, and technological inventions. Start-

ing from microscopy and cultivation based approaches, passing through elec-

tron and scanning transmission microscopy and the discovery of the DNA,

to date we have sequencing technologies, PCR, and cloning techniques that

enable the investigation of microbial communities using cultivation inde-

pendent, DNA and RNA-based approaches. To this regard, the advent of

the Next Generation Sequencing (NGS) technologies coupled with bioinfor-

matics development, reduced the underlying costs associated with different
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methods and strategies for sequencing genomes. As a result, the scientific

community could enlarge the scope and scale of almost all genomics research

projects. Over the past few decades several large-scale projects and initia-

tives such as the Human Microbiome Project [3], the Earth Microbiome

Project [4], and many others [5–7], began to investigate the microbes that

inhabit the human body, soils, oceans, and elsewhere.

The main scope of microbiome research is certainly the improvement of

health for humans, animals, plants, and the ecosystem as a whole. It is not

a coincidence that microbes are the predominant and the first form of life on

the planet. Their ability to inhabit hostile environments incompatible with

most forms of life demonstrates a spectrum of evolutionary, functional and

metabolic diversity that vastly exceeds that of all other organisms in the tree

of life [8]. Moreover, they cover the surfaces of all other organisms (occupy-

ing internal and even intracellular niches) and influence diverse physiological

activities of their hosts, including nutrition, health–disease status and hence

well-being [8]. Apparently, microbes provide ecosystems’ services that are

crucial to local and global sustainability, whether we are talking about a

human body, a plant, a cultivated field, a farming facility, a food industry,

or a wastewater treatment system.

Just to cite a glaring example, studies suggest that the microbiome of a

newborn is widely stimulated when first exposed to microorganisms during

neonatal life and the type of delivery plays a role in his/her immune system

maturation [9–11], microbiome research in this field shows the need for the

development of strategies for minimising or limiting the impact of caesarean

on the microbiome development, favouring future health [9]. Other emerg-

ing applications of microbiome research in human health are presented by

Cullen and colleagues [12]. Some of them are related to diet and its effect

on gut microbiome composition and function. Indeed, gut microbiota in-

teractions are related to alteration of immune response, susceptibility to or

protection against inflammatory diseases such as irritable bowel syndrome,

irritable bowel disease, and colorectal cancer [13–15]. Diet itself, but also
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probiotics and prebiotics supplementation can be used as an interventional

tool to prevent or ameliorate the symptoms of a growing list of neurologi-

cal disorders including autism, schizophrenia, Parkinson’s disease, multiple

sclerosis, bipolar mood disorders, anxiety, and depression which are asso-

ciated with the gut-brain axis [16] (i.e., the bidirectional communication

network that links the enteric and central nervous systems related to the

neurologic, endocrine, humoral/metabolic, and immune pathways [17]). In

addition, microbiome can also be used as a possible diagnosis/prognosis tool

for a wide range of pathologies, e.g., irritable bowel disease, progression of

diabetes, and others [18, 19]. An example, also detailed in Chapter 6, is

related to the diagnostic power of microbiome in Eosinophilic oEsophagitis

(EoE), a chronic immune-mediated inflammatory disease of the oesophagus

that causes dysphagia, food impaction of the oesophagus, and oesophageal

strictures [20]. Diagnosis is possible through oesophageal biopsy but sali-

vary microbiome analysis in combination with machine learning approaches

could become a valid, cheap, non-invasive test to segregate between EoE and

non-EoE patients [21]. Many other success stories based on microbiome re-

search in the fields of plant health, feed products and livestock health, food

production and human health are presented by Rocìo and colleagues [22].

Among these, we find the boosting of sustainable crop productivity through

nitrogen-fixing microorganisms inoculation in soybean seeds [23], the reduc-

tion of antibiotics use in livestock by improving the animal gut microbiome

through prebiotics and feed additives [24], the identification of sources and

microbial transmission routes for the improvement of food security and hy-

giene through the study of microbiome composition and distribution in a

food-processing plant [25].

In summary, microbiome research has the potential to contribute substan-

tially on many levels to global efforts to achieve sustainability [8]. Nev-

ertheless, microbiome research continues to be prevalently performed one

ecosystem at-a-time, leading to fragmentation of the landscape. Such frag-

mentation shadows new biological concepts to be discovered: patterns in

4



1.1. The Microbiome

microbiome interaction, diversity of functions and roles may not be seen

[26]. As a consequence, international efforts are oriented towards a systems

approach needed to connect research between scientific fields to create a

holistic understanding on how microbiomes can be modulated for desirable

functions.

1.1.3 Microbiome data

As already mentioned, cultivation independent approaches to assess mi-

crobial communities and their metagenomes were enabled by technological

advancements. From a biological sample, DNA, RNA, small molecules,

proteins, and other information can be extracted as summarised in Fig. 1.2

from the work of Weinstock [27].

To better introduce the terminology, the term “metagenomics” was born in

1998 by Handelsman et. al [28], and it refers to the study of the theoreti-

cal collection of all genomes from members in a microbial community from

a specific environment. A decade later, according to Gilbert and Dupont

[7], metagenomics was most appropriately divided into two research areas

driven by technological application: single-gene surveys on one side, and

random shotgun studies of all environmental genes on the other. The first

can be seen as a directed, focused metagenomic study. Briefly, single tar-

gets are amplified using Polymerase Chain Reaction (PCR), and then the

products are sequenced, providing an analysis of the range of different or-

thologs for that target within a given community. This approach is also

called metabarcoding as it relies on the use of several taxonomically infor-

mative amplicon barcodes such as the 16S (e.g., one or more hypervariable

regions of the bacterial small subunit of the 16S ribosomal RNA gene, used

for prokaryotic DNA), 18S (for eukaryotic DNA), and Internal Transciber

Spacer (ITS) (i.e., non coding DNA between genes). In order to investigate

biodiversity paired reads are aggregated into sequences. They were usu-

ally organised into Operational Taxonomic Units (OTUs), i.e., clusters of

sequencing reads that differed by less than a fixed dissimilarity threshold,
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and more recently, into Amplicon Sequence Variantss (ASVs) with a single

nucleotide resolution, thanks to new methods that control errors based on

the quality of the sequencing run [29, 30]. Metabarcoding data can be used

to take a community census and create tables of taxa abundances, com-

pute ecological metrics, perform competition and symbiosis analysis, assess

microbial differential abundance between groups of samples, and so forth.

In the second approach, Whole Metagenome shotgun Sequencing (WMS),

total DNA is isolated from a sample and then sequenced resulting in a

profile of all genes within the community. WMS data can be used to per-

form genome assembly and gene predictions, identify gene variants, study

population genetics, build pathways, and reconstruct the capabilities of a

community.

Nowadays, other authors prefer to divide metagenomics according to the

research aspect it pursues [31]. On one hand, a structural approach to

study the structure of the uncultivated microbial population and the recon-

struction of the complex metabolic network established between community

members [32, 33]. On the other hand, a functional approach to identify

genes that code for a function of interest [34, 35].

Given the latter division, 16S rRNA gene surveys are excluded from the

metagenomics definition. Indeed, in 16S rRNA gene analysis, the study is

focused on a single gene (often a portion of it) used as a taxonomic marker.

Nevertheless, targeted sequencing is a cheap and the most common method

for profiling bacterial communities. Moreover, it is also possible to partly

overcome the limited functional and genetic information. Some recently de-

veloped bioinformatics tools infers the genes and functional capabilities of

the community by leveraging the genome sequences of known microorgan-

isms in databases [27, 36].
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Figure 1.2: Derived from the work of Weinstock [27], this graph depicts the
analysis potential of a microbiome sample. The highlighted section represents
the two main analysis approaches: the Whole Metagenome shotgun Sequencing
(WMS) and the targeted gene survey. The combination of results from both
approaches with the annotated sample metadata allows correlating microbial in-
formation with phenotypes.
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1.2 Microbiome data analysis

1.2.1 Experimental design

Data analysis of a microbiome research should start before the research itself

to help in the design of it. Decades of experience and insights on microbiome

research produced a long list of best practices for carrying out a microbiome

study correctly [37]. Indeed, whether we are considering High Throughput

Sequencing (HTS) of DNA (metagenomics), RNA (metatranscriptomics),

analysis of secreted bioactive compounds (metabolomics), or the analysis

of specific marker genes (metabarcoding), microbiome data are often noisy,

sparse, compositional, and high-dimensional.

Consequently, a good thought out experimental design is mandatory to facil-

itate the analysis and obtain accurate and meaningful results as extensively

explained by Knight et al. [37] and summarised in Fig. 1.3. For example,

cross-sectional studies are useful for finding differences in microbial com-

munities between different groups of samples. However, stratification by

potential confounders such as age, sex, diet, lifestyle factors, medications,

or by sampling depth, atmospheric agents exposure, soil cultivation, de-

pending on the sample type (e.g., human or environmental), is crucial to

unmask spurious associations during the analysis. Differently, longitudinal

studies are well suited to control for confounders and permit to assess the

microbial community stability over time. However, one of the many things

to take into account when designing a longitudinal study is the correct choice

of the sampling times to maximise information and minimise the costs.

Other aspects to consider, especially when biotechnologies are involved, are

the technical factors and sample processing standardisation [37]. Sources of

variability could be introduced in every step of the process, these includes:

kit reagents, primers, sample storage, and other factors.

Finally, a complete and clean sample metadata curation and collection is

crucial for a faster data analysis and the consequent data interpretation.

Even with all these best practices in mind, the analysis of NGS data remains
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challenging due to both the overall complexity of microbial communities and

the intrinsic characteristics of sequencing-generated data.

Figure 1.3: From the work of Knight et al. [37] this figure summarises some
of the factors to take into account when conducting a microbiome experiment. a
Stratification by confounding variables in case-control studies. b Sample site and
collection timing for longitudinal studies. c Sources of technical variation during
the sample processing. d Diet, facility, shipment, cage effect and coprophagy on
animal studies.

1.2.2 Heterogeneity, over-dispersion, compositionality,

intra-dependency, and sparsity in microbiome data

Different people can differ greatly from one another in terms of their micro-

biota and, to make things even more complex, the diversity spanned in body

subsites is comparable with the diversity spanned by completely different

kinds of environments.

While, to some extent, the heterogeneity arising from known biological and

technical factors could be taken into account thanks to well curated meta-

data, unknown variability is difficult to handle and must be assessed during

the exploratory data analysis [38]. Related to high variability, microbiome

data, like other sequencing data, are characterised by over-dispersion. In-

deed, microbial counts can vary from a few units to several thousands for
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the same taxon across specimens.

Each sample is also characterised by its own library size due to different

sequencing efficiency across samples [39]. As a consequence, the number of

reads eligible for quantification are considerably influenced by the different

sequencing depths making the comparison across samples harder. Normal-

isation and transformation methods have been implemented to overcome

these computational challenges [40–42].

Moreover, sequencing instruments can deliver reads only up to a fixed ca-

pacity. Thus, it is proper to think of these data as compositional to high-

light that they represent a random sample of the relative abundance of

the microbes in the ecosystem being studied (see Fig. 1.4) [43]. In gen-

eral, compositionality refers to a statistical framework that deals with data

representing relative proportions or percentages of different parts within a

whole, where the sum of the parts is constant. While NGS and metabar-

coding data, in their raw form, are counts rather than proportions, the

term "compositional" can be used in the context of microbiome analysis

to capture the relative abundance or proportions of different taxa within

a sample or ecosystem. Although the raw NGS data itself is not inher-

ently compositional, the parameter of interest in the analysis is indeed the

proportion or relative abundance of taxa, which can be considered compo-

sitional. It is important to recognize that the compositionality of the data

is distinct from the nature of the data itself. This compositional aspect of

the data provides valuable information about the relationships between the

parts, i.e., the microbes in the ecosystem, and should be analysed after the

proper transformations [44]. Compositionality of data is not the only reason

for considering the existence of some relationships between the mapped mi-

croorganisms in the dataset. Indeed, the microbiota is a cooperative system,

whereby microorganisms interact in a biological or biochemical relationship,

including mutualistic or antagonistic relationships [45]. This inter-variable

dependency should be appropriately modelled by either including into the

statistical analyses a dependency structure or using multivariate approaches

10
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[45, 46].

Together with the high microbiota variability among samples and the com-

positionality of the data, we find another fundamental characteristic of mi-

crobiome datasets: sparsity, i.e., a high number of null values. Zero counts

could have originated from microbes that are not present in the sample for

biological reasons (structural or biological zeroes), by relatively rare mi-

crobes compared to others in the specimen, for which the sequencing depth

was not sufficient (sampling zeroes), or by technical bias that inhibits the

measurement of specific transcripts (technical zeroes) [47]. Sparsity can

be handled simply by discarding rare features, with the inevitable loss of

information, or by using more sophisticated statistical methodologies and

computational techniques which models the zero inflation or that differently

manage zeroes.

1.2.3 Quality control and ecological exploration

According to the state of the art guidelines, also detailed in the online

book “Orchestrating Microbiome Analysis” [48], the quality control and ex-

ploration of microbiome data is the first step for any further analysis and

model building.

Technical biases should not affect the dataset and standard summaries and

graphical representations should raise awareness towards the presence of

outliers, patterns, batches, contaminants, and so forth. Abundance and

prevalence metrics, i.e., the frequency of samples where certain microbes

were detected, can be graphically assessed (Fig. 1.5 a, b). This to focus on

changes which pertain to the majority of the samples, or identify rare mi-

crobes, which may be conditionally abundant in a small number of samples.

Library size comparisons allow to detect outliers or, in combination with

the number of distinct sequences, depicts whether the sampling depth was

sufficient to estimate microbial diversity (Fig. 1.5 c, d).

Indeed, microbial diversity estimation is a central topic in microbiome data

analysis. α-diversity is used to describe the within-sample diversity and
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Figure 1.4: From the work of Gloor et al. [43] this figure elucidates the compo-
sitional nature of HTS data. a Illustrates that the data observed after sequencing
a set of nucleic acids from a bacterial population cannot inform on the absolute
abundance of molecules. The number of counts in a HTS dataset reflect the pro-
portion of counts per feature (OTU, gene, etc.) per sample, multiplied by the
sequencing depth. Therefore, only the relative abundances are available. b The
bar plots show the difference between the count of molecules and the proportion
of molecules for two features, A (red) and B (gray) in three samples. The top
bar graphs show the total counts for three samples, and the height of the color
illustrates the total count of the feature. When the three samples are sequenced
we lose the absolute count information and only have relative abundances, pro-
portions, or “normalised counts” as shown in the bottom bar graph. Note that
features A and B in samples 2 and 3 appear with the same relative abundances,
even though the counts in the environment are different. c The table shows real
and perceived changes for each sample if we transition from one sample to an-
other.
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1.2. Microbiome data analysis

several metrics are available. Many α-diversity indexes are based on a com-

bination of sample richness and evenness such as the Shannon, Simpson, and

Inverse Simpson indices. Sample richness is the simplest measure, it consists

in counting up the observed number of different taxa in a sample. Differ-

ently, the evenness is the extent to which species are evenly distributed.

Other α-diversity measures are based on phylogenetic information instead.

While α-diversity focuses on community variation within a sample, β-diversity

describes the between-sample dissimilarities. Bray-Curtis index (for compo-

sitional data), Jaccard index (for presence/absence data), Aitchison distance

(i.e., the euclidean distance for CLR transformed abundances), and the

UniFrac distances (based on the phylogenetic information) are some of the

most common beta diversity measures. To evaluate and visualise these dis-

similarities, ordination methods are used. They summarise community data

by producing a low-dimensional ordination space in which similar species

and samples are plotted close together, and dissimilar species and samples

are placed far apart [50]. The most common ordination methods used in

microbiome research belong to the exploratory multivariate methods [51].

They include Principal Component Analysis (PCA), Non-metric MultiDi-

mensional Scaling (NMDS), and Principal Coordinates Analysis (PCoA).

Alternatively, when the aim of the ordination is to study the association

between community composition and variables of interest, interpretive mul-

tivariate methods such as ReDundancy Analysis (RDA) and Canonical Cor-

respondence Analysis (CCA) can be used [51].

When the actual statistical significance values for community differences

between groups of samples are of interest, the PERMutational ANalysis Of

VAriance (PERMANOVA) [52] is a widely used non-parametric multivariate

approach. Not only does it assess the group’s centroids closeness in the

ordinated space, but it also allows the study of group dispersions.

Introducing machine learning approaches, supervised or unsupervised clus-

tering techniques can be used to find groups of samples which share simi-

lar community profiles. Finally, discriminative multivariate methods such
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1.2. Microbiome data analysis
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1.2. Microbiome data analysis

as Support Vector Machines (SVM), Random Forests (RF), sparse Partial

Least Squares Discriminant Analysis (sPLS-DA), and others are an exten-

sion of the interpretive multivariate techniques used to maximise the sepa-

ration of samples among different classes. The so-called loadings, i.e., the

coefficients computed by these methods, measure the relative contribution

of each member of the community (or a subset of it) to the separation.

These kinds of methods also permit the class prediction of new samples

based on the microbial community composition, opening them to a poten-

tial diagnostic use.

While newcomers in microbiome analysis tend to employ simpler exploratory

techniques, interpretive and discriminatory ordination approaches with a

more rigorous multivariate hypothesis testing are taking place. The latter

enable the linking of ecological and functional measures of microbial com-

munities with environmental gradients, host (patient) information, and time

and space variables [51]. Nevertheless, great caution must be taken when

using complex multivariate methods. Indeed, the increased complexity may

solve spurious results due to otherwise simplistic method’s assumptions but,

in return, they could also result in a lower interpretability [53].

1.2.4 Differential abundance analysis

The identification of microbial taxa whose abundance is different across

groups of samples is one of the main goals in microbiome data analysis.

Just to cite a common application, the identified microbial taxa could of-

fer biological insights into disease mechanisms and potentially be further

explored as biomarkers for disease prevention, diagnosis, and treatment.

Numerous Differential Abundance Analysis (DAA) methods have been pro-

posed in the past decades, e.g., [40, 54–59], (and keep being proposed, e.g.,

[60, 61]), trying to address the challenging characteristics of microbiome

data. See Table 1.1 for a list of DAA tools included in the latest reviews

in the field [62–64]. According to Yang and Chen [62], one way to differen-

tiate between DAA tools is based on how they address zero inflation, i.e.,
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1.2. Microbiome data analysis

sparsity, and compositional effect.

In an over-dispersed count model, an overdispersion parameter is estimated

to model the variability of the data as well as the level of sparsity. In this

context, sampling and biological zeroes (i.e., those due to insufficient sam-

pling depth and those genuinely not present in the sample, respectively)

are treated as any other count value within the count distribution and it is

generally not possible to distinguish between them. While for the majority

of low-abundance taxa it is reasonable to assume all zeroes as a combina-

tion of both sampling and biological zeroes, this may not hold for more

abundant ones [47]. Indeed, for more abundant taxa, it becomes less likely

that all zero counts can be solely attributed to sampling limitations or

insufficient sequencing depth. In these instances, there is a higher probabil-

ity that some of the zeroes are primarily due to biological absences rather

than sampling artefacts. To this regard, mixture models are more flexi-

ble. A mixture component in zero specifically handles the structural zeroes,

i.e., those which are truly absent from a group of samples due to biologi-

cal reasons, while the non-zero mixture component acts like the previously

described over-dispersed count models. The extra parameter for the struc-

tural zero component significantly increases the modelling capability for

zero-inflated counts. However, the increased complexity translates to more

computational burden, potential overfitting, and the consequent power loss

and estimates’ instability. Finally, hurdle models refer to those that di-

vide the modelling stage into two parts to correct for excess zeros. The

first part determines whether the response outcome is a zero (of any type)

or a positive count via a binary model (e.g., by using logistic regression).

Then conditioning on it being positive, the second stage models the level

of the outcome which is a truncated-at-zero count outcome (e.g., truncated

Gaussian, truncated Negative Binomial, truncated Poisson). From the as-

sessment of Xu and colleagues [65], hurdle models have similar goodness of

fit and parameter estimation for the count component as their correspond-

ing Zero-Inflated models. However, the estimation and interpretation of the
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1.2. Microbiome data analysis

parameters for the zero components differs, and hurdle models are more

stable when structural zeroes are absent.

Another way to handle sparsity is through zero replacement. Many zero

imputation methods are available in the literature [66] and rely on pseudo-

count addition (e.g., MaAsLin2 [67], ANCOM [59], ANCOM-II [68], and

ANCOM-BC [60]) or a combination of pseudo-counts/uninformative or in-

formative priors assumptions in a Bayesian fashion (e.g., ALDEx2 assumes

an uninformative prior Dirichlet distribution on the taxa proportions and

a multinomial sampling process for the observed counts [57], eBay uses an

Empirical Bayes approach with an informative prior estimated from the

data to improve estimation efficiency [69]). Finally, zeroes may also be left

untreated (e.g., LDM [70] and DACOMP [71]).

Regarding the compositional structure of microbiome data, DAA tools lever-

age four main strategies to address it:

• The robust normalisation approach calculates normalisation factors or

size factors to be used as offsets in count-based models or as divider

to obtain normalised counts. Their aim is to capture the invariant

part of the count distribution and be robust to outliers and differen-

tial features. These methods mostly rely on the assumption that the

dataset to be normalised has a large invariant part and the majority

of features do not change with respect to the condition under study

[72]. Example of these are summarised in Table 1.2 and they are the

Total Sum Scaling (TSS), Trimmed Mean of M-values (TMM) (used

by edgeR [56]), Relative Log Expression (RLE) and its variant for

sparse data (used by DESeq2 [73]), Cumulative Sum Scaling (CSS)

(used by metagenomeSeq [40]), Centred Log-Ratio (CLR) (used by

ALDEx2 [57]), Geometric Mean of Pairwise Ratios (GMPR) (used by

the Omnibus test [72, 74]), and Wrench [54].

• To extend the previous, the reference taxa approach aims to find one

taxon or a set of taxa that are relatively invariant with respect to

the condition of interest and then use it or them to construct the
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1.2. Microbiome data analysis

size factors. This is pursued through network based normalisation to

find invariant taxa (e.g., in RioNorm2 [75]), inspecting the median

standard deviations of all the pairwise comparisons and choosing taxa

below a critical threshold as a reference (e.g., DACOMP [71]), or

finding a taxon or a group of them which makes the least discoveries

in DAA (e.g., in RAIDA [76]).

• The pairwise log ratios approach (e.g., used by ANCOM [59] and by

DACOMP [71] prior to selecting the reference set of taxa) relies on the

fact that the log ratios between non-DA taxa are considered constant

and independent from the grouping variable. Therefore, it is expected

that a high number of rejections per taxon will be a DA indication.

• The latest developed bias-correction approach (e.g., as implemented

in ANCOM-BC [60] or linDA [61]) takes into account that each sam-

ple is an unknown fraction of a unit volume of the ecosystem, and the

sampling fraction varies from sample to sample. Exploiting the fact

that a large number of taxa on each specimen is available, the infor-

mation across taxa can be borrowed to estimate the sampling fraction

bias [60]. Then it is included in linear regression models as an offset

term to address the bias.

Given the DAA methods’ variety, both in terms of theoretical assumptions

and results, several attempts have been made to systematically benchmark

DAA tools against one another [62, 64, 77–81]. They agree that none of

the existing DAA methods can be applied blindly to any real microbiome

dataset. According to Yang and Chen [62], an ideal DAA method should

be scalable, to permit the analysis of large scale studies, flexible, to allow

covariates adjustments and adapt to several experimental designs, robust,

and powerful, being able to control false discoveries without sacrificing its

ability to identify true findings. Robustness and power are critically needed

to yield reliable microbiome biomarkers, increase the reproducibility across

microbiome studies, and ultimately reduce the development cost. Indeed,

the authors conclude that the applicability of an existing DAA method
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1.2. Microbiome data analysis

depends on specific settings, which are usually unknown a priori. Thus,

they propose zicoSeq, a new tool drawing the strengths of other good per-

forming methods [62]. Alternatively, the latest recommendations in DAA

tool’s choice provide for the use of more than one method simultaneously

to retrieve a general consensus [48, 80, 81] or direct assessment of tools’

performances on simulated or user’s datasets to obtain the best performing

method [64, 82, 83] (one of the benchmarking research and its application

are proposed in Chapter 3 and 4).
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1.2. Microbiome data analysis

Normalisation Short description Citation

Centred Log-
Ratio (CLR)

For each sample, the counts are divided by their
geometric mean, followed by log transformation.
Thus, the CLR size factor is the geometric mean
of the counts in a sample.

[44]

Cumulative Sum
Scaling (CSS)

The CSS size factor is the cumulative sum of
counts up to a percentile determined by a data-
driven approach.

[40]

Geometric Mean
of Pairwise Ra-
tios (GMPR)

For each sample, the GMPR method calculates the
pairwise ratios to all other samples for each fea-
ture. The size factor is then the geometric mean
of the median ratios for all features.

[72]

Rarefaction Random subsampling of sequences from the initial
sample library to a selected library size (usually
the lowest library size among all the samples is
used).

[102]

Relative Log Ex-
pression (RLE)

The RLE method calculates the geometric means
(only for the positive counts in presence of zeroes)
of all features as a “reference,” and all samples are
compared to the “reference” to produce ratios for
all features. The median ratio is then taken to be
the RLE size factor.

[55]

Total Sum Scal-
ing (TSS)

The TSS size factor is simply the total number of
reads in the sample.

Trimmed Mean
of M-values
(TMM)

The TMM method first selects a reference sam-
ple, then all other samples are compared to the
reference sample. The weighted trimmed mean of
log-ratios between each pair of samples is then cal-
culated as the TMM size factor.

[103]

Wrench Wrench models feature-wise proportion ratios to a
reference sample using a hurdle log-normal model,
where a compositional scale factor is included so
that the log fold changes on the absolute abun-
dance level is centred at 0 (the majority of the
taxa do not change).

[54]

Table 1.2: From the work of Yang and Chen [62], a list of the most used nor-
malisation methods for microbiome data.
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1.2. Microbiome data analysis

1.2.5 Integrative analysis and networks

As already widely discussed, microbes do not work in isolation. They coor-

dinate with one another to form highly organised functional modules, com-

peting for representation within ecological niches. Moreover, they operate

in their “theatre of activity” interacting with microbial and environmental

structural elements [1]. It is then straightforward to think about the many

associations between the microbiome and covariates including metabolites,

antibiotic usage, environmental factors, and host genetics that can influence

host health [104]. To go beyond the reductionism of DAA, methods that

know how to address this biological complexity are necessary [105].

Integrative analysis and correlation networks can be used. These analyses

are reviewed by an extensive survey by Lutz and colleagues [63]. The goal

of integrative analysis is to identify and quantify associations between the

microbiome and covariates. The common biological motivation of each inte-

grative method is to determine if associations exist between any of microbial

features and the available covariates while controlling for the phenotypic re-

sponse. Lutz and colleagues [63], discuss four methods for integrative analy-

sis including Dirichlet-Multinomial Regression [106], Dirichlet-Multinomial

Bayesian Variable Selection [107], Bayesian Zero-Inflated Negative Binomial

[108], and a Dirichlet-Multinomial Linear Model with Bayesian variable se-

lection [109]. Differently, the goal of network analysis is to build microbiome

networks that describe microbial ecological associations (i.e., taxa-taxa de-

pendencies). These are useful to help in discovering fundamental properties

and mechanisms of microbial ecosystems. To make inferences about micro-

bial interactions several tools are available. They can be divided into two

groups: the correlation-based and the partial correlation-based methods.

Correlation-based methods include SparCC (Sparse Correlations for Com-

positional data) [110], CCLasso (Correlation inference for Compositional

data through Lasso) [111], and REBACCA (Regularized Estimation of the

BAsis Covariance based on Compositional dAta) [112]. Partial correlation-

based methods include SpiecEasi (SParse InversE Covariance Estimation
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for Ecological Association Inference) [113] and HARMONIES (Hybrid Ap-

proach foR MicrobiOme Network Inferences via Exploiting Sparsity) [114].

Instead, SPRING (SemiParametric Rank-based approach for INference in

Graphical model) [115] employs both correlation and partial correlation

methods under a semi-parametric setting.

1.3 Conclusions

Microbiome research progress, as for many other research areas, is directly

driven by technological advancements, the development of new techniques,

and the continuous cross-talk between the two.

As an example, the technological advancements of the last decades allowed

the study of microbiomes through culture-free approaches. The big amount

of produced data required the creation and use of statistical tools for their

analysis to get the first biological insights. With them, the instrument lim-

its were uncovered and new analysis tools were developed to overcome or

address them, where possible, and get more reliable, robust, unbiased, and

hence reproducible results. Some of the analysis tools were too computa-

tional intensive to be used and reality’s simplifications were necessary to

permit the analysis. However, with the assessment of instruments’ limits,

adjustments and improvement of them were made possible, restarting the

cycle.

As a result, different research fields often borrowed statistical tools to anal-

yse similar data structures, despite differences in how the data was gener-

ated. However, this practice could lead to model misspecification and as-

sumptions being violated. While some of the theoretical assumptions made

by the statistical tools were biologically justifiable, others became obsolete

due to the advent of more powerful computing machines, new technologies,

or a change in perspective. For instance, in RNA sequencing experiments,

it is typically assumed that only a minority of transcripts are differentially

expressed, whereas in metabarcoding experiments, the differentially abun-
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dant microbes may not be a minority. Nevertheless, many of the current

normalisation methods used in microbiome data analysis are based on the

assumption that only a minority of features are differentially abundant.

Some delay is needed to let the community update their analysis framework

once a new method has been developed or a new biological insight has

found its way to be included in a tool. One reason is the distance in time

between the theoretical conceptualisation of new biological information to

leverage and its actual implementation in a tool that makes it actually

available to the majority of the data scientists working in the field. Another

reason which could present after the release of the first tool, is the increasing

number of available tools that are developed introducing variants and little

improvements and the impossibility of trying them all.

The statistical tools needed to handle the increasing complexity of the data

will continue to evolve. The biggest challenge in complexity comprehen-

sion is however, interpretability. It is difficult to discern the meaning of a

complex model used to describe an equally complex system. Despite this,

researchers must strive to develop statistical tools that are not only capa-

ble of handling complexity but also provide meaningful interpretations of

the obtained results. This requires a deep understanding of the underlying

biological processes and a willingness to explore new approaches to data

analysis.

Microbiome research is addressing many challenges, and it will keep doing

it. Systematic reviews of the available tools and up-to-date guidelines are

essential to handle the challenges in a collaborative and focused effort. This

puts the basis for enhancing the development of new approaches beginning

from a solid starting point where the criticisms and the limits of current

methodology are clear. Contamination of competencies of experts in statis-

tics, science, and technology will help build on the ideas to offer reliable

and interpretable solutions to the many important quests of microbiome

research.
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Chapter 2

About this thesis

2.1 Thesis structure

After a master degree in Statistical Sciences, microbiome data analysis has

been the main objective of my PhD programme. From my first approach

to metabarcoding data I realised the overwhelming variety, and sometimes

complexity, of statistical tools available to pursue the many research ques-

tions I was facing. Only through a process of gradually understanding

the interplay between biological mechanisms and data-generating processes

have I been able to understand the most appropriate statistical tools for the

situation at hand.

The objective of this thesis is to describe my scientific research and its

challenges through a collection of 4 research articles that I published during

the last 3 years of PhD. As a main goal, the thesis moves from the observed

limitations of the DAA tools to a benchmark and a framework against which

they could be measured and compared. As a secondary goal, some case

studies of metabarcoding analysis highlight the need for sound exploratory

and inferential statistical analysis. The thesis is divided into two parts as

follows.
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2.1. Thesis structure

In Part I - Differential Abundance Analysis, I present two closely related

studies in which DAA methods play the main role. As explained in de-

tail in Chapter 1, DAA consists of a variety of methods and is one of the

most important approaches for detecting differences in microbial community

composition between different sample groups, for understanding microbial

community structures, and the relationships between microbial composi-

tions and the environment. The aim was to illustrate how different DA

methods lead to different results and how to choose the right methods for

each dataset. First, in Chapter 3, I present a benchmarking study [1] in

which DA methods from different domains were used in a collection of mi-

crobiome datasets to evaluate their performance. Here I performed the data

analyses and curated the code repository. As a consequence of the results

obtained in chapter 3, I realised that a benchmarking study alone, despite

its comprehensiveness, was not sufficient to drive methodological decisions

on an every-day basis, indiscriminately for all microbiome datasets, due

to the peculiarities of each one. For this reason I developed benchdamic

[2], presented in Chapter 4, a ready-to-use R application available on the

Bioconductor platform (i.e., an open-source software platform for analyz-

ing and visualizing biological data) that allows users to replicate DAA’s

performance evaluation on their own datasets. Here my contribution in-

volved the package development and maintenance, including the creation of

an extensive manual.

An equally important aspect of my PhD programme is well represented

by the many collaborations which allowed me to extensively interact with

clinicians, microbiologists and other researchers. They allowed me to i)

test exploratory and DAA methods and best practices on real data and ii)

study the human microbiome and its composition and dynamics in both

disease and healthy states. For example, in the research of Guidetti and

colleagues [3] I performed the metabarcoding data analysis for a randomized

double-blind crossover study, evaluating the effects of a probiotics mixture

in a group of 61 subjects (2-16 years) with an Autism Spectrum Disorder
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2.1. Thesis structure

diagnosis. Instead, in the research of Solito et al. [4], we assessed the impact

of a probiotic supplementation in pediatric obesity on weight, metabolic

alterations, selected gut microbial groups, and functionality. The study

design was a cross-over, double-blind, randomized control trial involving

101 youths (6-18 years) with obesity and insulin-resistance on diet. Here, I

used the mixed-effects models to perform statistical analyses and I was able

to highlight the beneficial effects of the probiotics on insulin sensitivity. In

another work, I performed the metabarcoding data analysis in a double-

blind, placebo-controlled, pilot study of Facchin et al. [5]. 49 patients (19

with Crohn’s disease and 30 with ulcerative colitis) were randomized to

oral administration of microencapsulated-sodium-butyrate or placebo for 2

months. Here we showed that sodium-butyrate supplementation seems to

be associated with the growth of bacteria able to produce Short Chain Fatty

Acid (SCFA) with potentially anti-inflammatory action.

Thus, in part II - Case Studies, I present two other papers where I played a

major role. They are an observational study of healthy individuals taking

probiotics [6] and a clinical research to identify disease-related biomarkers

[7]. In Chapter 5, healthy volunteers were treated with a probiotic mixture

and the changes in the gut microbiome were studied in conjunction with

some psychological aspects [6]. This study was extremely useful to highlight

exploratory data analysis difficulties. In brief, an unsupervised clustering

approach on ordinated samples allowed the separation of the individuals

in several groups associated to different putative bacteriotypes (i.e., stable

clusters of bacterial communities that co-exist together). Apparently, each

bacteriotype reacted differently to the probiotic intake and its global effect

was confounded by their presence. Instead, chapter 6 explored the poten-

tial of DAA methods to identify disease-related microbial biomarkers for

Eosinophilic oEsophagitis (EoE) (i.e., a chronic immune-mediated inflam-

matory disease of the oesophagus that causes dysphagia, food impaction

of the oesophagus, and esophageal strictures) from saliva [7]. A promis-

ing result was obtained for the non-invasive diagnosis of EoE which is now
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possible only through esophageal biopsy.
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Chapter 3

Assessment of statistical methods

from single cell, bulk RNA-Seq,

and metagenomics applied to

microbiome data

The work described in this chapter is taken from: M. Calgaro, C. Ro-

mualdi, L. Waldron, D. Risso, N. Vitulo; Assessment of statistical meth-

ods from single cell, bulk RNA-Seq, and metagenomics applied to micro-

biome data. Genome Biol 21, 191 (2020). https: // doi. org/ 10. 1186/

s13059-020-02104-1
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Chapter 3. Assessment of statistical methods from single cell, bulk
RNA-Seq, and metagenomics applied to microbiome data

Contributions

DR, CR, and NV conceived the project. LW co-developed the evaluation

strategies. MC and DR drafted the manuscript. LW, CR, and NV reviewed

and edited the manuscript. MC performed the data analyses and curated

the code repository. All Authors read and approved the final manuscript.

Challenges and future perspectives

This article is my first attempt to explore the tools of Differential Abundance

Analysis (DAA). It arose from a practical problem I faced in other projects

when I had to select a DAA tool from a long list to detect Differential

Abundant (DA) features between two groups of samples. Each tool gave

different results, also depending on the choice of normalisation and filtering.

Although there was some agreement between the methods, it was important

for me to understand if there was one method that was superior to the

others.

Given my background in statistical sciences, I first examined the assump-

tions of the tools based on parametric distributions and found that there

was little assessment of the appropriateness of these assumptions for the

real data. For this reason, I began to benchmark tools for DAA. I focused

not only on whether the assumptions of the tools held, but also examined

false discovery rates, concordance of results, and power. The main challenge

of this project, which continues in the next chapter, was to move from the

observed limitations of the DAA tools to a framework against which they

could be measured and compared. This was made possible through a pro-

cess of trial and error that allowed the other authors and I to select the most

communicative analyses. Another aspect that required a lot of effort was

the development of appropriate visualisation tools, looking for the proper

graphical output to make the interpretation of the results easier, especially

for non-expert data-scientists.

As mentioned in the first chapter, at the time of writing this thesis, sev-

eral new DAA tools has been developed and published. Nevertheless, the
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findings described in the paper are still valid and are partially confirmed by

independent studies.

Article location

https://doi.org/10.1186/s13059-020-02104-1

Supplementary material

The supplementary material for this article consists of 2 additional files

available at https://genomebiology.biomedcentral.com/articles/10.

1186/s13059-020-02104-1#additional-information.

3.1 Abstract

Background

The correct identification of differentially abundant microbial taxa between

experimental conditions is a methodological and computational challenge.

Recent work has produced methods to deal with the high sparsity and

compositionality characteristic of microbiome data, but independent bench-

marks comparing these to alternatives developed for RNA-Seq data analysis

are lacking.

Results

We compare methods developed for single-cell and bulk RNA-Seq, and

specifically for microbiome data, in terms of suitability of distributional

assumptions, ability to control false discoveries, concordance, power, and

correct identification of differentially abundant genera. We benchmark

these methods using 100 manually curated datasets from 16S and whole

metagenome shotgun sequencing.
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Conclusions

The multivariate and compositional methods developed specifically for mi-

crobiome analysis did not outperform univariate methods developed for dif-

ferential expression analysis of RNA-Seq data. We recommend a careful

exploratory data analysis prior to application of any inferential model and

we present a framework to help scientists make an informed choice of anal-

ysis methods in a dataset-specific manner.

3.2 Background

Study of the microbiome, the uncultured collection of microbes present in

most environments, is a novel application of high-throughput sequencing

that shares certain similarities but important differences from other appli-

cations of DNA and RNA sequencing. Common approaches for microbiome

studies are based on deep sequencing of amplicons of universal marker-genes,

such as the 16S rRNA gene, or on Whole Metagenome shotgun Sequencing

(WMS). Community taxonomic composition can be estimated from micro-

biome data by assigning each read to the most plausible microbial lineage

using a reference annotated database, with a higher taxonomic resolution in

WMS than in 16S [1, 2]. The final output of such analyses usually consists

of a large, highly sparse, taxa per sample count table.

Differential Abundance Analysis (DAA) is one of the primary approaches to

identify differences in the microbial community composition between sam-

ples and to understand the structures of microbial communities and the as-

sociations between microbial compositions and the environment. DA anal-

ysis has commonly been performed using methods adapted from RNA-Seq

analysis; however, characteristics specific to microbiome data make differ-

ential abundance analysis challenging. Compared to other high-throughput

sequencing techniques such as RNA-Seq, metagenomic data are sparse, i.e.,

the taxa count matrix contains many zeros. This sparsity can be explained

by both biological and technical reasons: some taxa are very rare and
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present only in a few samples, while others are very lowly represented and

cannot be detected because of an insufficient sequencing depth or other

technical reasons.

In recent years, single cell RNA-Seq (scRNA-Seq) has revolutionised the

field of transcriptomics, providing new insight on the transcriptional pro-

gram of individual cells, casting light on complex, heterogeneous tissues, and

revealing rare cell populations with distinct gene expression profiles [3–6].

However, due to the relatively inefficient mRNA capture rate, scRNA-Seq

data are characterised by dropout events, which leads to an excess of zero

read counts compared to bulk RNA-Seq data [7, 8]. Thus, with the advent

of this technology, new statistical models accounting for dropout events have

been proposed. The similarities with respect to sparsity observed in both

scRNA-Seq and metagenomics data led us to pose the question of whether

statistical methods developed for the differential expression of scRNA-Seq

data perform well on metagenomic DA analysis.

Some benchmarking efforts have compared the performance of methods [9–

12] both adapted from bulk RNA-Seq and developed for microbiome DAA

[13, 14]. While some tools exist to guide researchers [15], a general consensus

on the best approach is still missing, especially regarding the methods’ ca-

pability of controlling false discoveries. In this study, we benchmark several

statistical models and methods developed for metagenomics [13, 14, 16–18],

bulk RNA-Seq [19–21], and, for the first time, scRNA-Seq [7, 8, 22–24] on

a collection of manually curated 16S and WMS [25, 26] real data as well

as on a comprehensive set of simulations. We include in the comparison

several tools that take into account the compositional nature of the data:

they achieve this through the use of the DM distribution (e.g., ALDEx2),

Multinomial distribution with reference frames (Songbird), or the Centred

Log-Ratio (CLR) transformation (e.g., ALDEx2, mixMC). The novelty of

our benchmarking efforts is twofold. First, we include in the comparison

novel methods recently developed in the scRNA-Seq and metagenomics lit-

eratures; second, unlike previous efforts, our conclusions are based on several
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performance metrics on real data that range from type I error control and

goodness of fit to replicability across datasets, concordance among methods,

and enrichment for expected DA microbial taxa.

3.3 Results

We benchmarked a total of 18 approaches (Additional file 1: Supplementary

Table S2) on 100 real datasets (Additional file 1: Supplementary Table S1),

evaluating goodness of fit, type I error control, concordance, and power

through (i) reliability of DA results in real data based on enrichment analysis

and (ii) specificity and sensitivity using 28,800 simulated datasets (Fig. 3.1;

Additional file 2: Supplementary Table S4).

The benchmarked methods include both DA methods specifically proposed

in the metagenomics literature and methods proposed in the single-cell and

bulk RNA-Seq fields. The manually curated real datasets span a variety

of body sites and characteristics (e.g., sequencing depth, alpha and beta

diversity). The diversity of the data allowed us to test each method on a

variety of circumstances, ranging from very sparse, very diverse datasets, to

less sparse, less diverse ones.

We first analyzed 18 16S, 82 WMS, and 28 scRNA-Seq public datasets in

order to assess whether scRNA-Seq and metagenomic data are compara-

ble in terms of sparsity. We observed overlap in the fractions of zero counts

between the scRNA-Seq, WMS, and 16S, but with scRNA-Seq datasets hav-

ing a lower distribution of sparsities (ranging from 12 to 75%) as compared

to 16S (ranging from 55 to 83%) and WMS datasets (ranging from 35 to

89%) whose distributions of zero frequencies were not significantly different

from each other (Wilcoxon test, W=734, p-value=0.377, Additional file 1:

Supplementary Fig. S1 a, b). To establish whether the difference between

scRNA-Seq and metagenomic data was due to the different number of fea-

tures and samples, which are intrinsically related to sparsity, we explored

the role of library size and experimental protocol (Additional file 1: Sup-
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Figure 3.1: Starting from 41 Projects collected in 2 manually curated data repos-
itories (HMP16SData and curatedMetagenomicData Bioconductor packages), 18
16S and 82 WMS datasets were downloaded. Biological samples belonged to sev-
eral body sites (e.g., oral cavity), body subsites (e.g., tongue dorsum), and condi-
tions (e.g., healthy vs. disease). Feature per sample count tables were used in order
to evaluate several objectives: goodness of fit for 5 parametric distributions, type
I error control, concordance, and power for 18 differential abundance detection
methods. Methods developed for metagenomics, bulk-RNA-Seq, or scRNA-Seq
were ranked using empirical evaluations of the above-cited objectives.
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plementary Fig. S1 c). scRNA-Seq datasets showed a marked difference

in terms of the number of features and sparsity, as they are derived from

different experimental protocols. Full-length data (e.g., Smart-seq) are on

average sparser than droplet-based data (e.g., Drop-seq) but both are less

sparse than 16S and WMS.

These results indicate that metagenomic data are even more sparse than

scRNA-Seq, and thus that zero-inflated models designed for scRNA-Seq

could, at least in principle, have good performance in a metagenomic con-

text.

3.3.1 Goodness of fit

As different methods rely on different statistical distributions to perform

DA analysis, we started our benchmark by assessing the Goodness Of Fit

(GOF) of the statistical models underlying each method on the full set

of 16S and WMS data. For each model, we evaluated its ability to cor-

rectly estimate the mean counts and the probability of observing a zero

(Fig. 3.2). We evaluated five distributions: (1) the Negative Binomial (NB)

used in edgeR [19] and DeSeq2 [20], (2) the Zero-Inflated Negative Bino-

mial (ZINB) used in ZINB-WaVE [23], (3) the truncated Gaussian Hurdle

model of MAST [7], (4) the Zero-Inflated Gaussian (ZIG) mixture model

of metagenomeSeq [13], and (5) the Dirichlet-Multinomial (DM) distribu-

tion underlying ALDEx2 [14]. The truncated Gaussian Hurdle model was

evaluated following two data transformations, the default logarithm of the

counts per million (logCPM) and the logarithm of the counts rescaled by

the median library size (see the Methods section). Similarly, the ZIG dis-

tribution was evaluated considering the scaling factors rescaled by either

one thousand (as implemented in the metagenomeSeq Bioconductor pack-

age) and by the median scaling factor (as suggested in the original paper).

We assessed the goodness of fit for each of these models using the stool

samples from the Human Microbiome Project (HMP) as a representative

dataset (Fig. 3.2 a–d); all other datasets gave similar results (Additional file
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1: Supplementary Fig. S2). A useful feature of this dataset is that a subset

of samples was processed both with 16S and WMS and hence can be used to

compare the distributional differences of the two data types. Furthermore,

this dataset includes only healthy subjects in a narrow age range, providing

a good testing ground for covariate-free models.

The NB distribution showed the lowest root mean square error (RMSE, see

the Methods section) for the mean count estimation, followed by the ZINB

distribution (Fig. 3.2 a, b). This was true for both 16S and WMS data, in

most of the considered datasets (Additional file 1: Supplementary Fig. S2).

Moreover, for both distributions, the difference between the estimated and

observed means was symmetrically distributed around zero, indicating that

the models did not systematically under- or overestimate the mean abun-

dances (Fig. 3.2 a, b; Additional file 1: Supplementary Fig. S2). Conversely,

the ZIG distribution consistently underestimated the observed means, both

for 16S and WMS and independently on the scaling factors (Fig. 3.2 a, b).

The Hurdle model was sensitive to the choice of the transformation: rescal-

ing by the median library size rather than by one million reduced the RMSE

in both 16S and WMS data (Fig. 3.2 a, b). This was particularly evident

in 16S data (Fig. 3.2 a), in which the default logCPM values resulted in a

substantial overestimation of the mean count, while the median library size

scaling led to underestimation. Given the clear problems with logCPM, we

only used the median library size for MAST and the median scaling factor

for metagenomeSeq in all subsequent analyses. The DM distribution over-

estimated observed means for low-mean count features and underestimated

observed values for high-mean count features. This overestimation effect

was more evident in WMS than in 16S.

Concerning the ability of models to estimate the probability of observing a

zero (referred to as zero probability difference, ZPD), we found that Hurdle

models provided good estimates of the observed zero proportion for 16S (Fig.

3.2 c) and WMS datasets (Fig. 3.2 d). The NB and ZINB distributions, on

the other hand, tended to overestimate the zero probability for features with
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Figure 3.2: a Mean-Difference (MD) plot and Root Mean Squared Errors
(RMSE) for HMP 16S Stool samples. b MD plot and RMSE for HMP WMS Stool
samples. c Average rank heatmap for MD performances in HMP 16S datasets,
HMP WMS datasets and all other WMS datasets. The value inside each tile refers
to the average RMSE value on which ranks are computed. d Zero Probability-
Difference (ZPD) (see the Methods section) plot and RMSE for HMP 16S Stool
samples. e ZPD plot and RMSE for HMP WMS Stool samples. f Average rank
heatmap for ZPD performances in HMP 16S datasets, HMP WMS datasets, and
all other WMS datasets. The value inside each tile refers to the average RMSE
value on which ranks are computed.
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a low observed proportion of zero counts in 16S (Fig. 3.2 c). In WMS data,

the ZINB distribution perfectly fitted the observed proportion of zeros, while

the NB and DM models tended to underestimate it (Fig. 3.2 d). Finally, the

ZIG distribution always underestimated the observed proportion of zeros,

especially for highly sparse features (Fig. 3.2 c, d).

In summary, across all datasets, the best fitting distributions were the NB

and ZINB: the NB distribution seemed to be particularly well-suited for 16S

datasets, while the ZINB distribution seemed to better fit WMS data (Fig.

3.2 e). We hypothesise that this is due to the different sequencing depths

of the two platforms. In fact, while our 16S datasets have an average of

4891 reads per sample, in WMS, the mean depth is 3.6 × 108 (3 × 108 for

HMP). To confirm this observation, we carried out a simulation experiment

by down-sampling reads from deep-sequenced WMS samples (rarefaction):

while the need for zero inflation seemed to diminish as we got closer to the

number of reads typical of the corresponding 16S experiments, the profile

did not completely match between approaches (Fig. Additional file 1: Sup-

plementary Fig. S4 b). This suggests that, while sequencing depth is an

important contributing factor, it is not enough to completely explain the

distributional differences between the two platforms.

3.3.2 Type I error control

We next sought to evaluate type I error rate control of each method, i.e.,

the probability of the statistical test to call a feature DA when it is not.

To do so, we considered mock comparisons between the same biological

Stool HMP samples (using the same Random Sample IDentifier (RSID) in

both 16S and WMS), in which no true DA is present. Briefly, we randomly

assigned each sample to one of two experimental groups and performed DA

analysis between these groups, repeating the process 1000 times (see the

Methods section for additional details). In this setting, the p-values of a

perfect test should be uniformly distributed between 0 and 1 [27] and the

False Positive Rate (FPR or observed α), which is the observed proportion
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of significant tests, should match the nominal value (e.g., α = 0.05).

To evaluate the impact of both the normalisation step and the estimation

and testing step in bulk RNA-Seq inspired methods, we included in the

comparison both edgeR with its default normalisation (TMM), as well as

with DESeq2 recommended normalisation (“poscounts,” i.e., the geometric

mean of the positive counts) and vice versa (see Additional file 1: Supple-

mentary Table S2). Similarly, because the zinbwave observational weights

can be used to apply several bulk RNA-Seq methods to single-cell data [24],

we have included in the comparison edgeR, DESeq2, and limma-voom with

zinbwave weights.

The qq-plots and Kolmogorov-Smirnov (KS) statistics in Fig. 3.3 show that

most methods achieved a p-value distribution reasonably close to the ex-

pected uniform. Notable exceptions in the 16S experiment were edgeR with

TMM normalisation and robust dispersion estimation (edgeR_TMM_ro-

bustDisp), metagenomeSeq, and ALDEx2 (Fig. 3.3 a, b). While the former

two appeared to employ liberal tests, the latter was conservative in the

range of p-values that are typically of interest (0–0.1). In the WMS data,

departure from uniformity was observed for metagenomeSeq and edgeR_-

TMM_robustDisp, and limma_voom_TMM_zinbwave, which employed

liberal tests, as well as corncob_LRT, ALDEx2, and scde, which were con-

servative in the range of interest (Fig. 3.3 c, d). We note that in the context

of DA, liberal tests will lead to many false discoveries, while conservative

tests will control the type I error at a cost of reduced power, potentially

hindering true discoveries.

We next recorded the FPR by each method (by definition all discoveries are

false positives in this experiment) and compared it to its expected nominal

value. This analysis confirmed the tendencies observed in Fig. 3.3 a, b

and c, d. In particular, edgeR_TMM_robustDisp and metagenomeSeq

were very liberal in both 16S (Fig. 3.3 e) and WMS data (Fig. 3.3 f); in

the case of metagenomeSeq, as much as 30% of the features were deemed

DA in the 16S datasets when claiming a nominal FPR of 5% (Fig. 3.3 e).
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Figure 3.3: a Quantile-quantile plot from 0 to 1 and 0 to 0.1 zoom for DA
methods in 41 16S HMP stool samples. Average curves for mock comparisons
are reported. b Kolmogorov-Smirnov statistic boxplots for DA methods in 41 16S
HMP stool samples. c Quantile-quantile plot from 0 to 1 and 0 to 0.1 zoom for DA
methods in 41 WMS HMP stool samples. Average curves for mock comparisons
are reported. d Kolmogorov-Smirnov statistic boxplots for DA methods in 41
WMS HMP stool samples. e Boxplots of the proportion of raw p-values lower
than the commonly used thresholds for the nominal α (0.01, 0.05, and 0.1) for 41
16S stool samples. f Boxplots of the proportion of raw p-values lower than the
commonly used thresholds for the nominal α (0.01, 0.05, and 0.1) for 41 WMS
stool samples.
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ALDEx2, scde, and MAST, albeit conservative, were able to control type I

error. In between these two extremes, edgeR, DESeq2, and limma showed

an observed FPR slightly higher than its nominal value. In particular,

DESeq2-based methods, limma-voom, and MAST were very close to the

nominal FPR for 16S (Fig. 3.3 e), while limma-voom, MAST, and corncob

(with Wald test) were the closest in WMS data (Fig. 3.3 f). Of note,

corncob seemed slightly conservative in WMS data and slightly liberal in

16S data, with LRT being closer than Wald to the nominal value in 16S

(Fig. 3.3 e) and vice versa in WMS data (Fig. 3.3 f). The zinbwave weights

showed mixed results: DESeq2 with zinbwave weights was better than the

unweighted versions in WMS, while the weights did not help edgeR and

limma in controlling the type I error rate. Taken together, these results

suggest that the majority of the methods do not control the type I error

rate, both in 16S and WMS data, confirming previous findings [10, 12].

However, for most approaches, the observed FPR is only slightly higher

than its nominal value, making the practical impact of this result unclear.

3.3.3 Between-method concordance

We measured the ability of each method to produce replicable results in

independent data in six datasets [25, 26, 28–30] (Additional file 1: Supple-

mentary Table S3) that showed different α- and β-diversity, as well as dif-

ferent amounts of DA between two experimental conditions (Additional file

1: Supplementary Fig. S5). Each dataset was randomly split in two equally

sized subsets and each method was separately applied to each subset. The

process was repeated 100 times (see the Methods section for details). To

assess the ability of methods to return concordant results from independent

samples, we employed the Concordance At the Top (CAT) [31]measure to

assess Between Methods Concordance (BMC) by comparing the list of DA

features across methods in the subset (ranked by p-value when available or

by importance in the case of the songbird and mixMC; see Methods). We

used BMC to (i) group methods based on their degree of agreement and (ii)
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identify those methods sharing the largest amount of discoveries with the

majority of the other methods. Although concordance is not a guarantee

of validity, it is a requirement of validity, so methods sharing the largest

amount of discoveries with the majority of other methods may be more

likely to also be producing valid results.

Concordance analysis performed on 16S Tongue Dorsum vs. Stool dataset

(Fig. 3.4 a) showed that the methods clustered within two distinct groups:

the first comprising all methods that include a TMM normalisation step,

songbird, and scde, the second containing all the other approaches (Fig. 3.4

a). Even within the second group, methods segregated by normalisation,

as can be seen by the tight clustering of all the methods that include a

poscount normalisation step (Fig. 3.4 a). This indicates that, in 16S data,

the choice of the normalisation has a pronounced effect on inferential results,

even more so than the choice of the statistical test. A similar result was

previously observed in bulk RNA-Seq data [32]. The use of observational

weights to account for zero inflation did not seem to matter in these data,

and in general, scRNA-Seq methods did not agree with each other (Fig.

3.4 a). Similarly, the clustering did not separate compositional and non-

compositional methods (Fig. 3.4 a). We noted that metagenomeSeq was

not concordant with any other method and that the two corncob approaches

formed a tight group, confirming that modelling strategies have more impact

than the choice of the test statistics in these data.

A different picture emerged from the analysis of the WMS data (Fig. 3.4

b). Here, methods are clustered by the testing approach. The bottom

cluster comprised the bulk RNA-Seq methods with the inclusion of the

Wilcoxon nonparametric approach, metagenomeSeq, and mixMC. The mid-

dle cluster consisted of the zinbwave methods and ALDEx2. The top cluster

comprised MAST, corncob, scde, and songbird. Overall, mixMC and the

methods based on NB generalised linear models showed the highest BMC

values. When observational weights were added to those models, the BMC

decreased, but still a good level of concordance was observed with their
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respective unweighted version.

We noted that the BMC is highly dataset-specific and depends on the

amount of DA between the compared groups. Indeed, BMC decreased with

decreased beta diversity of the dataset, and the role of normalisation became

less clear (Additional file 1: Supplementary Fig. S6).

3.3.4 Within-method concordance

The CAT metric was used again for assessing the Within Method Concor-

dance (WMC), i.e., the amount of concordance of the results of each method

on the two random subsets.

WMC was clearly dataset-dependent, showing high levels of concordance in

datasets with a high differential signal (e.g., tongue vs. stool, Fig. 3.5 a) and

low concordance in datasets with a low differential signal (e.g., supragingival

vs. subgingival, Fig. 3.5 e). Overall, the replicability of results in WMS

studies was slightly higher than that of 16S datasets.

In terms of method comparison, corncob showed high levels of concordance

in WMS datasets but lower concordance in all 16S datasets (Fig. 3.5). Sim-

ilarly, songbird showed the highest concordance in mid (Fig. 3.5 d) and low

(Fig. 3.5 f) diversity WMS datasets but did not perform well in 16S (espe-

cially for the highly diverse TongueDorsum vs. Stool comparison; Fig. 3.5

a).

The addition of zinbwave weights to edgeR, DESeq2, and limma-voom

did not always help: it was sometimes detrimental, e.g., for edgeR in the

schizophrenia dataset (Fig. 3.5 d) and sometimes led to an improvement in

replicability, e.g., for limma-voom in the Tongue Dorsum vs. Stool dataset

(Fig. 3.5 a). The schizophrenia dataset had the lowest sample size among all

the datasets evaluated, suggesting that sample size may play an important

role in estimating zinbwave weights.

While this analysis confirmed the unsatisfactory performance of metagenome-

Seq (Fig. 3.5 a, b, and f), ALDEx2, which was very conservative in terms of

type I error control (Fig. 3.3), showed overall good performance, with the
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notable exception of the high-diversity WMS dataset (Fig. 3.5 b), for which

it was the worst performing method. To sum up, the highest concordance

was measured, in all WMS datasets, by the corncob-based and songbird

methods, while RNA-Seq methods performed better in 16S datasets, con-

firming that the two platforms yield substantially different data. mixMC

was the only method that never showed poor concordance regardless of the

technology or of the diversity of the compared groups.

Taken together, these analyses suggest that both BMC and WMC are highly

dependent on the amount of DA observed in the dataset: higher DA leads

to a higher concordance. Moreover, WMC was similar among the compared

methods, indicating that the replicability of the DA results depends more

on the strength of DA than on the choice of the method (Fig. 3.5).

3.3.5 Enrichment analysis

While mock comparisons and random splits allowed us to evaluate model

fit and concordance, these analyses do not assess the correctness of the

discoveries. Even the method with the highest WMC could nonetheless

consistently identify false positive DA taxa.

While the lack of ground truth makes it challenging to assess the validity of

DA results in real data, enrichment analysis [33] can provide an alternative

solution to rank methods in terms of their ability to identify as significant

taxa that are known to be differentially abundant between two groups.

Here, we leveraged the peculiar environment of the gingival site: the supragin-

gival biofilm is directly exposed to the open atmosphere of the oral cavity,

favoring the growth of aerobic species. In the subgingival biofilm, however,

the atmospheric conditions gradually become strict anaerobic, favoring the

growth of anaerobic species [34]. From the comparison of the two sites, we

thus expected to find an abundance of aerobic microbes in the supragingi-

val plaque and of anaerobic bacteria in the subgingival plaque. DA analysis

should reflect this difference by finding an enrichment of aerobic (anaerobic)

bacteria among the DA taxa with a positive (negative) log-fold-change.
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Figure 3.5: a Boxplot of WMC on high diversity 16S datasets: Tongue Dor-
sum vs. Stool. Due to the high sparsity and low sample size of the dataset, the
Concordance At the Top (CAT) at rank 100 was not computable for corncob
methods: it was possible to estimate the model only for a few features. b Boxplot
of WMC on high diversity WMS datasets: Tongue Dorsum vs. Stool. c Boxplot
of WMC on mid diversity 16S datasets: Buccal Mucosa vs. Attached Keratinised
Gingiva. d Boxplot of WMC on mid diversity WMS datasets: Schizophrenic vs.
Healthy Control saliva samples. e Boxplot of WMC on low diversity 16S datasets:
Supragingival vs. Subgingival plaque. f Boxplot of WMC on low diversity WMS
datasets: Colon Rectal Cancer patient vs. Healthy Control stool samples.
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We tested this hypothesis by comparing 38 16S supragingival and subgin-

gival samples (for a total of 76 samples) from the HMP (see the Methods

section for details). The DA methods showed a wide range of power, iden-

tifying 2 (ALDEx2) through 305 (metagenomeSeq) significantly DA taxa

(Fig. 3.6 a). However, almost all methods correctly found an enrichment of

anaerobic microbes among the taxa under-abundant in supragingival and an

enrichment of aerobic microbes among the over-abundant ones (Fig. 3.6 a;

Fig. Additional file 1: Supplementary Fig. S7). Furthermore, as expected,

no enrichment was found for facultative anaerobic microbes, which are able

to switch between aerobic and anaerobic respiration (Fig. 3.6 a).

Although most methods performed well, scde, ALDEx2, and MAST had

too low power to detect any enrichment (at 0.05 significance level), as their

number of identified DA taxa was very low (Fig. 3.6 a). This analysis con-

firmed the conservative behavior of these methods in 16S data (Fig. 3.3 e).

Finally, metagenomeSeq and edgeR with robust dispersion estimation found

the correct enrichments, but they also identified many anaerobic taxa with

a positive log-fold-change (Fig. 3.6 a), confirming their liberal tendencies

(Fig. 3.3 e). Overall, these results were confirmed by the same compari-

son in WMS data (Fig. Additional file 1: Supplementary Fig. S8), but the

reduced sample size of our WMS dataset resulted in a reduced power to

detect DA for all methods (see the Methods section).

To explore the ability of each method to correctly rank the DA taxa inde-

pendently of its power, we tested whether over-abundant aerobic taxa and

under-abundant anaerobic taxa were more likely to be ranked at the top

when ranking taxa by each method’s test statistics. To do so, we consid-

ered the top K taxa (with K from 1 to 20%; see the Methods section) and

computed the difference between putative true positives (TP; over-abundant

aerobic taxa and under-abundant anaerobic taxa) and putative false posi-

tives (FP; under-abundant aerobic taxa and over-abundant anaerobic taxa;

Fig. 3.6 b). Reassuringly, increasing the threshold resulted in a larger dif-

ference between TP and FP for most methods (Fig. 3.6 b), indicating that
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Figure 3.6: 38vs38 Supragingival vs. Subgingival Plaque 16S samples. a Barplot
of the enrichment tests performed on the DA taxa found by each method using an
adjusted p-value of 0.1 as threshold for significance (top 10% ranked taxa for song-
bird). Each bar represents the number of findings, UP-Abundant in Supragingival
or DOWN-Abundant in Supragingival Plaque compared to Subgingival Plaque,
regarding aerobic, anaerobic, and facultative anaerobic taxa metabolism. A Fisher
exact test was performed to establish the enrichment significance represented with
signif. codes. b Difference between putative true positives (TP) and putative false
positives (FP) (y-axis) for several significance thresholds (x-axis). Each thresh-
old represents the top percent ranked taxa, using the ordered raw p-value lists
as reference (loading values for mixMC and differentials for songbird). c Aerobic
metabolism taxa mutually found by 3 or more methods from the subset of the
representative methods. d Anaerobic metabolism taxa mutually found by 8 or
more methods from the subset of the representative methods.
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independently of their power, most methods are able to highly rank true pos-

itive taxa. This becomes particularly important for the methods with a low

power, suggesting that in these cases a more liberal p-value threshold may

be applied. However, metagenomeSeq’s performance deteriorates after the

10% threshold, suggesting that this method starts to identify more false pos-

itives (Fig. 3.6 b): this is particularly problematic since its adjusted p-value

threshold identifies 34% of DA taxa. Among the other methods, MAST

and ALDEx2 showed a consistently lower performance, while limma-voom

was the best performer at permissive thresholds, and songbird was the best

performer at strict thresholds (Fig. 3.6 b).

The majority of aerobic taxa were found DA by just a handful of methods,

with only 15 out of 75 unique aerobic taxa identified as DA by 3 or more

representative methods (see Methods; Fig. 3.6 c). All of them belonged to

the genera Cardiobacterium, Neisseria, Lautropia, Corynebacterium, found

to be among the most prevalent genera in supragingival plaques in an inde-

pendent study [35]. On the other hand, 57 out of 161 unique anaerobic taxa

were found DA by 5 or more representative methods (see Methods; Fig. 3.6

d; Additional file 1: Supplementary Fig. S9). Among these, Fusobacterium,

Prevotella, Porphyromonas, Treponema are known to be abundant in the

subgingival plaque [36, 37]. Despite the small sample size for WMS data

(n=10), enrichment and DA analysis were largely consistent, including sev-

eral strains of Neisseria and several species of Treponema found to be DA

(Additional file 1: Supplementary Fig. S8 c, d). Overall, similar methods

tended to identify a higher number of mutual taxa, confirming our previ-

ous findings in the concordance analysis (Additional file 1: Supplementary

Fig. S6) and highlighting how different statistical test and normalisation

approaches have a big impact on the identified DA.

3.3.6 Parametric simulations

Given the results of our GOF analysis (Fig. 3.2), we only used the NB

and ZINB distributions to simulate 7200 and 19,200 scenarios, respectively,
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mimicking both 16S and WMS data. The simulated data differed in sample

size, proportion of DA features, effect size, proportion of zeros, and whether

there was an interaction between the amount of zeros and DA (sparsity

effect, see the Methods section for details).

In general, we found that the results confirmed our expectations that meth-

ods perform well on simulated data that conforms to the assumptions of

the method (Additional file 2: Supplementary Fig. S11). The parametric

distribution that generated the data had a great influence on the method

performances and the methods that rely on NB and ZINB generally per-

formed better compared to the other methods. As an example, MAST,

which showed overall good results in real data, did not behave in simula-

tions, partly because of the misspecified model with respect to the data

generating distribution.

As expected, all methods’ performances increased as the sample size and/or

the effect size increased. Confirming our real data results, we finally ob-

served that metagenomeSeq, scde, and edgeR-robust performed poorly. De-

tails on the simulated data analysis can be found in Additional file 2.

3.4 Discussion

We investigated different theoretical and practical issues related to the anal-

ysis of metagenomic data. The main objective of the study was to compare

several DA detection methods adapted from bulk RNA-Seq, scRNA-Seq, or

specifically developed for metagenomics. Unsurprisingly, there is no single

method that outperforms all others in all the tested scenarios. As is often

the case in high-throughput biology, the results are data-dependent and

careful data exploration is needed to make an informed decision on which

workflow to apply to a specific dataset. We recommend applying our ex-

ploratory analysis framework to gain useful insights about the assumptions

of each method and their suitability given the data at hand. To this end,

we provide all the R scripts to easily reproduce the analyses of this paper
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on any given dataset (see the Availability of data and materials section).

Our GOF analysis highlighted the advantages of using count models for the

analysis of metagenomics data. The goodness of fit of zero-inflated models

seemed dependent on whether the data come from 16S or WMS experi-

ments. The difference between these two approaches translates to different

count data structures: while for WMS many features are characterised by a

clearly visible bimodal distribution (with a point mass at zero and another

mass, quite far from zero, at the second positive mode), 16S data are as

sparse as or even more sparse than WMS data, presenting for many fea-

tures a less clearly bimodal distribution (Additional file 1: Supplementary

Fig. S4 a). This difference is probably due to a mix of factors: primarily

sequencing depth, but also different taxonomic classification between tech-

nologies (entire metagenomic sequences versus clusters of similar amplicon

sequences), bioinformatics methods for data preprocessing, etc. However,

comparing the distribution of several genera on the same samples assayed

with 16S and WMS, we observed that many of the zero counts were consis-

tent across platforms and very different read depths, suggesting that many

observed zeros are biological and not technical in nature (Fig. Additional

file 1: Supplementary Fig. S4 a). Further analyses are needed to inspect this

unsolved issue and related efforts are ongoing in the scRNA-Seq literature,

where similar differences are observed between protocols with and without

unique molecular identifiers [38, 39].

Metagenomic data are inherently compositional, but whether incorporating

compositionality into the statistical model provides benefits greater than

the tradeoffs they may introduce is a debated topic in the literature [9, 13,

40–42]. While other data resulting from sequencing are also compositional,

some in the microbiome data analysis community believe that composition-

ality has greater relevance in metagenomics due to the potential presence

of dominant microbes. Here, we found that compositional methods did not

outperform non-compositional methods designed for count data, indicating

that their benefits did not outweigh the drawbacks they may introduce.
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This can be explained by two considerations. First, some compositional

methods assume that the data arise from a multinomial distribution, with

n trials (reads) and a vector p indicating the probability of the reads to be

mapped to each taxon. In metagenomic studies, we have a large n (number

of sequenced reads) and small p (since there are many taxa, the probabil-

ity of each read to map to any given taxon is small). In this setting, the

Poisson distribution is a good approximation of the multinomial. Similarly,

the NB is a good approximation of the DM [31]. Secondly, some normal-

isations, such as the geometric mean method implemented in DESeq2 or

the trimmed mean of M-values of edgeR, have size factors mathematically

equivalent or very similar to the CLR proposed by Aitchison [40, 43]. This

has been shown to reduce the impact of compositionality on DA results [44].

We did not test the ANCOM package [45] because it was too slow for as-

sessment. However, we included three recent analysis methods that address

compositionality, namely, ALDEx2, songbird, and mixMC. This allowed us

to perform an adequate assessment of compositional vs. non-compositional

approaches. Similarly, multivariate methods, such as songbird and mixMC,

did not outperform methods based on univariate tests, suggesting that these

simpler approaches are often sufficient to detect the most relevant biological

signals.

The lack of ground truth makes the assessment of DA correctness very

challenging. However, we can rely on mock datasets, within-method con-

cordance, and enrichment analysis to obtain a principled ranking of method

performances (Fig. 3.7). Although each analysis by itself does not imply

correctness, taken together these assessments are a good proxy to evaluate

methods performances in terms of their ability to limit the amount of false

discoveries, give replicable results in datasets contrasting the same groups,

and identify as significant the taxa that are expected to be DA.

The parametric simulation framework is useful to inspect how individual

characteristics of the data-generating distribution impact the sensitivity

and specificity of the methods. As the entire analysis was supported by
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Figure 3.7: Overall method ranking based on 5 evaluation criteria. Average nor-
malised ranks range from 0 to 1, lower values correspond to better performances.
The type I error columns are based on the analysis of the 1000 mock comparisons
from HMP 16S and WMS Stool datasets; the concordance analysis column is
based on the average WMC values across the 100 random subset comparisons for
each of the 6 datasets used. The power enrichment analysis and computational
time columns are based on the Supragingival vs. Subgingival Plaque 16S dataset
evaluations. Each method’s ordering is computed using the first 4 columns. Since
the type I error analysis was not available for songbird and mixMC, these meth-
ods were not included in the final ranking.
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real data, we decided to focus only on a very simple but easily reproducible

implementation of the NB and ZINB distributions for the simulations. The

choice was justified by our GOF analysis on real datasets. Unsurprisingly,

the sample size and the effect size were the characteristics that had the

most impact on method performances. This translates into an evident sug-

gestion for experimental design: large sample sizes are needed to detect low

effect sizes. Our simulation framework can in principle be used for power

calculations in the context of DA analysis.

In the 16S dataset used for the enrichment analysis, with a total of 76 sam-

ples and almost 900 unique taxa, the most time-consuming methods were

scde and songbird with more than 5 minutes needed to identify DA taxa.

ALDEx2 and corncob-based methods took about 40s, zinbwave-weighted

methods took approximately 20s while mixMC, MAST and seurat_wilcoxon

around 10s. DESeq2 and edgeR were under the 10s with limma-voom which

was the fastest method taking less than a second (Fig. 3.7). A consistent

ranking was found in simulated datasets with interesting changes deter-

mined by different sample-sizes (Additional file 2: Supplementary Table S5

and Supplementary Fig. S10).

3.5 Conclusions

As already noted in recent publications [10–12], the perfect method does

not exist. However, taken together, our analyses suggested that limma-

voom, corncob, and DESeq2 showed the most consistent performance across

all datasets, metagenomeSeq had the worst performance, and scde and

ALDEx2 suffered from low power (Fig. 3.7). Among compositional data

analysis methods, songbird showed a greater ability to identify the correct

taxa in the enrichment analysis, while mixMC had a better within-method

concordance.

In general, we recommend a careful exploratory data analysis and we present

a framework that can help scientists make an informed choice in a dataset-
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specific manner. We did not find evidence that bespoke differential abun-

dance methods outperform methods developed for the differential expression

analysis of RNA-Seq data. However, our analyses also suggested that fur-

ther research is required to overcome the limitations of currently available

methods: in this respect, new directions in DA method development, e.g.,

leveraging the phylogenetic tree [46, 47], log-contrast models [48], or com-

positional balances [49] are promising, but efforts to make these methods

scalable are needed.

3.6 Methods

3.6.1 Datasets

The HMP16Sdata [25] (v1.2.0) and curatedMetagnomicData [26] (v1.12.3)

Bioconductor packages were used to download high-quality, uniformly pro-

cessed, and manually annotated human microbiome profiles for thousands

of people, using 16S and WMS technologies, respectively. HMP16SData

comprises the collection of 16S data from the Human Microbiome Project,

while curatedMetagnomicData contains data from several projects. Gene-

level counts for a collection of public scRNA-Seq datasets were downloaded

from the scRNA-Seq (v1.99.8) Bioconductor package.

While the latter datasets are used only for a comparison between technolo-

gies, the former are widely used for all the analyses. A complete index with

dataset usage is reported in Additional file 1: Supplementary Table S1.

Phyloseq objects were obtained from the HMP16SData and curatedMetage-

nomicData packages using the function as_phyloseq() and setting the

bugs.as.phyloseq=TRUE argument, respectively. The otu_table and sam-

ple_data slots of the phyloseq objects that contain, respectively, the taxa

count table and the metadata associated to each sample were used for all

downstream analyses. For the WMS datasets, absolute raw count data were

estimated from the metaPhlAn2-produced relative count data by multiply-

ing the columns of the ExpressionSet data by the number of reads for each
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sample, as found in the pData column “number_reads” (counts=TRUE ar-

gument).

HMP16SData was split by body subsite in order to obtain 18 separated

datasets. Stool and Tongue Dorsum datasets were selected for example

purposes thanks to their high sample size. The same was done on curat-

edMetagenomicData HMP dataset, obtaining 9 datasets. Moreover, for the

evaluation of type I error control, 41 stool samples with equal RSID, in

both 16S and WMS, were used to compare DA methods. For each research

project, curatedMetagenomicData was split by body site and treatment or

disease condition, in order to create homogeneous sample datasets. A total

of 82 WMS datasets were created.

A total of 100 datasets were evaluated; however, for the CAT analysis,

datasets not split by condition or body subsite were evaluated (e.g., Tongue

Dorsum vs. Stool in HMP, 2012 for both 16S and WMS).

To consider the complexity and the variety of several experimental scenarios,

an attempt to select a wide variety of datasets for the analysis was done. The

datasets were chosen based on several criteria: sample size, homogeneity of

the samples, or availability of the same subjects (identified by RSID) assayed

by both technologies.

3.6.2 Statistical models

The following distributions were fitted to each dataset, either by directly

modelling the read counts or by first applying a logarithmic transformation:

• Negative Binomial (NB) model, as implemented in the edgeR (v3.24.3)

Bioconductor package (on read counts);

• Zero-Inflated Negative Binomial (ZINB), as implemented in the zinb-

wave (v1.4.2) Bioconductor package (on read counts);

• Truncated Gaussian hurdle model, as implemented in the MAST

(v1.8.2) Bioconductor package (on log count);

• Zero-Inflated Gaussian (ZIG), as implemented in the metagenomeSeq

(v1.24.1) Bioconductor package (on log count).
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• Dirichlet-Multinomial (DM), as implemented in the MGLM (v0.2.0)

CRAN R package.

Negative Binomial (NB)

The edgeR Bioconductor package was used to implement the NB model. In

particular, normalisation factors were calculated with the Trimmed Mean

of M-values (TMM) normalisation [50] using the calcNormFactors function;

common, trended, and tagwise dispersions were estimated by estimateDisp,

and a NB generalised log-linear model was fit to the read counts of each

feature, using the glmFit function.

Zero-Inflated Negative Binomial (ZINB)

The zinbwave Bioconductor package was used to implement the ZINB

model. We fitted a ZINB distribution using the zinbFit function. As ex-

plained in the original paper, the method can account for various known

and unknown technical and biological effects [23]. However, to avoid giving

unfair advantages to this method, we did not include any latent factor in

the model (K=0 ). We estimated a common dispersion for all features (com-

mon_dispersion=TRUE ) and we set the likelihood penalisation parameter

epsilon to 1e10 (within the recommended set of values [24]).

Truncated Gaussian Hurdle model

We used the implementation of the MAST Bioconductor package. After

a log2 transformation of the reascaled counts with a pseudocount of 1,

a zero-truncated Gaussian distribution was modelled through generalised

regression on positive counts, while a logistic regression modelled feature

expression/abundance rate. As suggested in the MAST paper [7], cell de-

tection rate (CDR) which is computed as the proportion of positive count

features for each sample, was added as a covariate in the discrete and con-

tinuous model matrices as a normalisation factor.
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Zero-Inflated Gaussian (ZIG)

The metagenomeSeq Bioconductor package was used to implement a ZIG

model for log2 transformed counts with a pseudocount of 1, rescaled by the

median of all normalisation factors or by 1e03 which gives the interpretation

of “count per thousand” to the offsets. The CumNormStat and CumNorm

functions were used to perform Cumulative Sum Scaling (CSS) normalisa-

tion, which accounts for specific data characteristics. Normalisation factors

were included in the regression through the fitZig function.

Note that both MAST and metagenomeSeq were applied to the nor-

malised, log-transformed data. We evaluated both models, using their de-

fault scale factor log2
(

counts·106
libSize

+ 1
)

for MAST and log2
(
normFacts

1000
+ 1

)
for

metagenomeSeq, as well as by rescaling the data to the median library size

[13], log2
(

counts·median(libSize)
libSize

+ 1
)

and log2

(
normFacts

median(normFacts)

)
, respectively.

Dirichlet-Multinomial (DM)

The MGLM package was used to fit a DM regression model for counts.

The MGLMreg function with dist="DM" allowed the implementation of

the above model and the estimation of the parameter values.

3.6.3 Goodness of fit

To evaluate the goodness of fit of the models, we computed the Mean-

Differences (MD) between the estimated and observed values for several

datasets.

For each model, we evaluated two distinct aspects: its ability to correctly

estimate the mean counts (plotted in logarithmic scale with a pseudo-count

of 1) and its ability to correctly estimate the probability of observing a zero,

computed as the difference between the probability of observing a zero count

according to the model and the observed zero frequencies (Zero Probability-

Difference, ZPD). We summarised the results by computing the Root Mean

Squared Errors (RMSE) of the two estimators. The lower the RMSE, the
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better the fit of the model.

This analysis was repeated for 100 datasets available in HMP16SData and

curatedMetagenomicData (Additional file 1: Supplementary Table S1 and

Supplementary Fig. S2).

Assuming homogeneity between samples inside the same body subsite or

study condition, we specified a model consisting of only an intercept or

including a normalisation covariate.

3.6.4 Differential abundance detection methods

DESeq2

The DESeq2 (v1.22.2) Bioconductor package fits a NB model for count

data. DESeq2 default data normalisation is the so-called Relative Log Ex-

pression (RLE) based on scaling each sample by the median ratio of the

sample counts over the geometric mean counts across samples. As 16S and

WMS data sparsity may lead to a geometric mean of zero, it is replaced

by nth root of the product of the non-zero counts (which is the geometric

mean of the positive count values) as proposed in the phyloseq package [51]

and implemented in the DESeq2 estimateSizeFactors function with option

type=“poscounts”. We also tested DESeq2 with TMM normalisation (see

below). As proposed in [24], observational weights were supplied in the

weights slot of the DESeqDataSet class object to account for zero inflation.

Observational weights were computed by the computeObservationalWeights

function of the zinbwave package. To test for DA, we used a Likelihood

Ratio Test (LRT) to compare the reduced model (intercept only) to the

full model with intercept and group variable. The p-values were adjusted

for multiple testing via the Benjamini-Hochberg (BH) procedure. Some p-

values were set to NA via the cooksCutoff argument that prevents rare or

outlier features from being tested.
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edgeR

The edgeR Bioconductor package fits a NB distribution, similarly to DE-

Seq2. The two approaches differ mainly in the normalisation, dispersion

parameter estimation, and default statistical test. We examined differ-

ent procedures by varying the normalisation and the dispersion parame-

ter estimation: edgeR_TMM_standard involves TMM normalisation and

tagwise dispersion estimation through the calcNormFactors and estimate-

Disp functions, respectively (with default values). Analogously to DE-

Seq2, “poscounts” normalisation was used in addition to TMM in edgeR_-

poscounts_standard to investigate the normalisation impact. We also eval-

uated the impact of employing a robust dispersion estimation, accompa-

nied with a quasi-likelihood F test through the estimateGLMRobustDisp

and glmQLFit functions respectively (edgeR_TMM_robustDisp). As with

DESeq2, zinbwave observational weights were included in the weights slot

of the DGEList object in edgeR_TMM_zinbwave to account for zero infla-

tion, through a weighted F test. BH correction was used to adjust p-values

for multiple testing.

Limma-voom

The limma Bioconductor package (v3.38.3) includes a voom function that

(i) transforms previously normalised counts to logCPM, (ii) estimates a

mean-variance relationship, and (iii) uses this to compute appropriate

observational-level weights [21]. To adapt the limma-voom framework to

zero-inflation, zinbwave weights have been multiplied by voom weights as

done previously [24]. The residual degrees of freedom of the linear model

were adjusted before the empirical Bayes variance shrinkage and were prop-

agated to the moderated statistical tests. BH correction method was used

to correct p-values.
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ALDEx2

ALDEx2 is a Bioconductor package (v1.14.1) that uses a DM model to in-

fer abundance from counts [14]. The aldex method infers biological and

sampling variation to calculate the expected false discovery rate, given the

variation, based on several tests. Technical variation within each sam-

ple is estimated using Monte-Carlo draws from the Dirichlet distribution.

This distribution maintains the proportional nature of the data while scale-

invariance and sub-compositionally coherence of data is ensured by CLR.

This removes the need for a between-sample normalisation step. In order

to obtain symmetric CLRs, the iqlr argument is applied, which takes, as

the denominator of the log-ratio, the geometric mean of those features with

variance calculated from the CLR between the first and the third quan-

tile. Statistical testing is done through Wilcoxon rank sum test, even if

Welch’s t, Kruskal-Wallis, generalised linear models, and correlation tests

were available. BH correction method was used to correct the p-values for

multiple testing.

metagenomeSeq

metagenomeSeq is a Bioconductor package designed to address the effects

of both normalisation and under-sampling of microbial communities on dis-

ease association detection and testing feature correlations. The underlying

statistical distribution for log2(count + 1) is assumed to be a ZIG mixture

model. The mixture parameter is modelled through a logistic regression

depending on library sizes, while the Gaussian part of the model is a gener-

alised linear model with a sample-specific intercept which represent the sam-

ple baseline, a sample-specific offset computed by CSS normalisation and

another parameter which represents the experimental group of the sample.

We opted for the implementation suggested in the original publication [13],

where CSS scaling factors are divided by the median of all the scaling factors

instead of dividing them by 1000 (as done in the Bioconductor package).

An Expectation-Maximisation algorithm is performed by the fitZig func-
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tion to estimate all the parameters. An empirical Bayes approach is used

for variance estimation and a moderated t test is performed to identify dif-

ferentially abundant features between conditions. BH correction method

was used to account for multiple testing.

Corncob

corncob is an R package (v0.1.0 [52]) for the differential abundance and

differential variability analysis of microbiome data [17]. Specifically, corn-

cob is designed to account for the challenges of modelling sequencing data

from microbial abundance studies. It is based on a hierarchical model in

which the latent relative abundance of each taxon is modelled as a beta

distribution, and the observed absolute presence of a taxon is modelled as

a binomial process with the previously specified beta as the probability of

success. This hierarchical structure gives flexibility to the method, which

can account for changes in the average count values as well as their dis-

persion. A generalised linear model framework, with a logit link function,

is used to allow the study of covariates in the feature count distributions.

The model fit is performed by maximum likelihood using the trust region

optimisation algorithm [17]. Likelihood-ratio or Wald tests can be used to

test the null hypothesis of no DA.

Songbird

songbird is a python package [53] that ranks microbes that are changing

the most relative to each other [16]. The method is based on a composi-

tional approach in which the underlying count distribution is assumed to be

multinomial. The coefficients from multinomial regression can be ranked to

determine which taxa are changing the most between samples. The com-

positionality is addressed using the differential abundance of each taxon as

reference to each other when they are ranked numerically. Since songbird

has been developed as an extension tool for Qiime2, we converted all our

data tables to the .biom format to serve as input for this method. The
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authors’ suggested analysis pipeline requires several manual adjustments to

the tuning parameters on the basis of the comparison of the results after

several runs, making it difficult to implement this method within a bench-

marking framework. For this reason, we used the default values for all the

tuning parameters.

mixMC

mixMC is a multivariate framework implemented in mixOmics, a Biocon-

ductor package (v6.6.1), for omic data analysis [18]. It handles compo-

sitional and sparse data, repeated-measures experiments, and multiclass

problems. After the addition of a pseudo-count value of 1, the TSS nor-

malisation is applied to the count table and the CLR transformation is per-

formed to account for compositionality. The method is based on a Partial

Least Squares Discriminant Analysis (PLS-DA), a multivariate regression

model which maximises the covariance between linear combinations of the

feature counts and the outcome (in our case, a dummy variable indicating

the body site/group of each sample). Covariance maximisation is achieved

in a sequential manner via the use of latent component scores [18]. Each

component is a linear combination of the feature counts and characterises

a source of covariation between the feature and the groups. The sparse

version of PLS-DA, sPLS-DA uses Lasso penalisations to select the most

discriminative features in the PLS-DA model. The penalisation is applied

component-wise and the resulting selected features reflect the particular

source of covariance in the data highlighted by each PLS component. We

specified the number of features to select per component at 100 or more,

and we optimised it using leave-one-out cross-validation. Since we always

compared two groups in this manuscript, only the first component is neces-

sary for the analysis. The multivariate regression coefficients, one for each

feature, were ranked in order to obtain the most discriminant features for

the first component.
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MAST

MAST is a Bioconductor package for managing and analysing quantitative

PCR and sequencing-based single-cell gene expression data, as well as data

from other types of single-cell assays. The package also provides function-

ality for significance testing of differential expression using a Hurdle model.

Zero rate represents the discrete part, modelled as a binomial distribution

while log2

(
countsi,j ·median(libSize)

libSizej
+ 1

)
where i and j represent the ith feature

and the jth sample, respectively, is used for the continuous part, modelled

as a Gaussian distribution. The kind of data considered, different from

scRNA-Seq, does not allow the usage of the adaptive thresholding proce-

dure suggested in the original publication [7]. Indeed, because of the amount

of feature loss, if adaptive thresholding is applied, the comparison of MAST

with other methods would be unfair. However, a normalisation variable

is included in the model. This variable captures information about each

feature sparsity related to all the others; hence, it helps to yield more in-

terpretable results and decreases background correlation between features.

The function zlm fits the Hurdle model for each feature: the regression coef-

ficients of the discrete component are regularised using a Bayesian approach

as implemented in the bayesglm function; regularisation of the continuous

model variance parameter helps to increase the robustness of feature-level

differential expression analysis when a feature is only present in a few sam-

ples. Because the discrete and continuous parts are defined conditionally in-

dependent for each feature, tests with asymptotic χ2 null distributions, such

as the likelihood-ratio or Wald tests, can be summed and remain asymp-

totically χ2, with the degrees of freedom of the component tests added. BH

correction method was used to correct p-values.

Seurat with Wilcoxon rank sum test

Seurat (v2.3.4) R package is a data analysis toolkit for the analysis of

scRNA-Seq [22]. Briefly, counts were scaled, centred, and log-normalised.

Wilcoxon rank sum test for detecting differentially abundant features was
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performed via the FindMarkers function. Rare features, which are present

in a fraction lower than 0.1 of all samples, and weak signal features, which

have a log fold change between conditions lower than 0.25, are not tested.

BH correction method was used to correct p-values.

SCDE

The scde Bioconductor package (v1.99.1) with flexmix package (v2.3-13)

implements a Bayesian model for scRNA-Seq data [8]. Read counts observed

for each gene are modelled using a mixture of a NB distribution (for the

amplified/detected transcripts) and low-level Poisson distribution (for the

unobserved or background-level signal of genes that failed to amplify or were

not detected for other reasons). The scde.error.models function was used to

fit the error models on which all subsequent calculations rely. The fitting

process is based on a subset of robust genes detected in multiple cross-cell

comparisons. Error models for each group of cells were fitted independently

(using two different sets of “robust” genes). Translating in a metagenomic

context, cells correspond to samples and genes to taxa or amplicon sequence

variants. Some adjustments were needed to calibrate some function default

values such as the minimum number of features to use when determining the

expected abundance magnitude during model fitting. This option, defined

by the min.size.entries argument, set by default at 2000, was too big for

many 16S or WMS experiment scenarios: as we usually observe around 1000

total features per dataset (after filtering out rare ones), we decided to replace

2000 with the 20% of the total number of features, obtaining a dataset-

specific value. Particularly, poor samples may result in abnormal fits and

were removed as suggested in the scde manual. To test for differential

expression between the two groups of samples a Bayesian approach was used:

incorporating evidence provided by the measurements of individual samples,

the posterior probability of a feature being present at any given average

level in each subpopulation was estimated. To moderate the impact of

high-magnitude outlier events, bootstrap resampling was used and posterior
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probability of abundance fold-change between groups was computed.

3.6.5 Type I error control

For this analysis, we used the collection of HMP Stool samples in

HMP16SData and curatedMetagenomicData. The Multi-Dimensional Scal-

ing (MDS) plot of the beta diversity did not show patterns associated with

known variables (Additional file 1: Supplementary Fig. S3); hence, we as-

sumed no differential abundance. All samples with the same RSID in 16S

and WMS were selected in order to easily compare the two technologies.

Forty-one biological samples were included.

Starting from the 41 samples, we randomly split the samples into two

groups: 21 assigned to group 1 and 20 to group 2. We repeated the pro-

cedure 1000 times. We applied the DA methods to each randomly split

dataset. Every method returned a p-value for each feature. DESeq2, seu-

rat_wilcoxon, and corncob methods returned some NA p-values. This is

due to feature exclusion criteria, based on distributional assumptions, per-

formed by these methods (see above), or convergence issues.

We compared the distribution of the observed p-values to the theoretical uni-

form distribution, as no truly DA features are present. This was summarised

in the qq-plot where the bisector represents a perfect correspondence be-

tween observed and theoretical quantiles of p-values. For each theoretical

quantile, the corresponding observed quantile was obtained averaging the

observed p-values’ quantiles from all 1000 datasets. Departure from unifor-

mity was evaluated with a Kolmogorov-Smirnov statistic. p-values were also

used to compare the number of false discoveries with 3 common thresholds:

0.01, 0.05, and 0.1.

3.6.6 Concordance

We used the Concordance At the Top (CAT) to evaluate concordance for

each differential abundance method. Starting from two lists of ranked fea-

tures (by p-values, fold-changes, or other measures), the CAT statistic was
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computed in the following way. For a given integer i, concordance is de-

fined as the cardinality of the intersection of the top i elements of each list,

divided by i, i.e., #(L1:i∩M1:i)
i

, where L and M represent the two lists. This

concordance was computed for values of i from 1 to R.

Depending on the study, only a minority of features may be expected to be

differentially abundant between two experimental conditions. Hence, the

expected number of differentially abundant features is a good choice as the

maximum rank R. In fact, CAT displays high variability for low ranks as

few features are involved, while concordance tends to 1 as R approaches

the total number of features, becoming uninformative. We set R = 100,

considering this number biologically relevant and high enough to permit an

accurate concordance evaluation. In our filtered data, the total number of

features was close to 1000, and 100 corresponds to 10% of total taxa. We

used CAT for two different analyses:

• Between Methods Concordance (BMC), in which a method was com-

pared to other methods in the same dataset;

• Within Method Concordance (WMC), in which a method is compared

to itself in random splits of the datasets.

To summarise this information for all pairwise method comparisons, we

computed the area under the curve, hence giving a better score to two

methods that are consistently concordant for all values of i from 1 to 100.

We selected several datasets, with different α- and β-diversity, for our con-

cordance analysis. Additional file 1: Table S3 describes the six datasets

used. For each dataset, the same sample selection step, described next, was

used.

The concordance evaluation algorithm can be easily summarised by the

following steps:

1. Each dataset was randomly divided in half to obtain two subsets (Sub-

set1 and Subset2) with two balanced groups;

2. DA analysis between the groups was performed with all evaluated

methods independently on each subset;
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3. For each method, the list of features ordered by p-values (or differen-

tials, or loadings) obtained from Subset1 was compared to the analo-

gous list obtained from Subset2 and used to evaluate WMC;

4. For each method, the list of features ordered by p-values (or differen-

tials, or loadings) obtained from Subset1 was compared to the analo-

gous list obtained from Subset1 by all the other methods and used to

evaluate BMC for Subset1. The same was done in Subset2;

5. Steps 1–4 were repeated 100 times; and

6. WMC and BMC were averaged across the 100 values (and between

Subset1 and Subset2 for BMC) to obtain the final values.

Sample selection step

For each dataset, a subset was chosen in order to have a balanced number

of samples for each condition. In lower diversity studies (e.g., Subgingival

vs. Supragingival Plaque) different biological samples from the same sub-

ject may be strongly correlated. Hence, we selected only one sample per

individual, no matter the condition. To further increase the homogeneity

of the datasets, we selected only samples from the same sequencing center.

3.6.7 Enrichment analysis

The same low-diversity dataset used in the concordance analysis (i.e., 16S

Subgingival vs. Supragingival Plaque) was used for the enrichment anal-

ysis. The dataset is balanced as it is composed of 38 samples for each

body subsite, for a total of 76 samples. DA analysis was performed us-

ing Subgingival Plaque as the reference level. Taxa with an adjusted p-

value less than 0.1 were chosen as DA, for all the methods except song-

bird and mixMC that return a list of differentials and loadings, respec-

tively. For songbird, a threshold corresponding to the 10% of the total

number of taxa was chosen to select the most associated taxa for the

considered comparison. mixMC implements a variable selection proce-

dure that automatically selects the most discriminant taxa. We anno-
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tated each taxon with the information on genus-level metabolism (avail-

able at https://github.com/waldronlab/nychanesmicrobiome), classi-

fying each taxon in aerobic, anaerobic, facultative anaerobic, or unassigned.

Enrichment analysis was performed via a Fisher exact test, using the func-

tion fisher.test (table, alternative=“greater”) where table is a contingency

table. Six contingency tables were built for each method to inspect enrich-

ment of the following:

• Over-abundant (UP) aerobic taxa in Supragingival Plaque;

• Under-abundant (DOWN) aerobic taxa in Subgingival Plaque;

• Over-abundant (UP) anaerobic taxa in Supragingival Plaque;

• Under-abundant (DOWN) anaerobic taxa in Subgingival Plaque;

• Over-abundant (UP) facultative anaerobic taxa in Supragingival

Plaque; and

• Under-abundant (DOWN) facultative anaerobic taxa in Subgingival

Plaque.

All the information retrieved from the enrichment analysis was summarised

in a bar plot, where for each method, the number of differentially abundant

taxa together with their direction were represented as a positive (negative)

bar for over- (under-) abundant taxa in Supragingival Plaque samples, col-

ored by genus level metabolism.

To calculate log odds-ratio for each contingency table, the Haldane-

Anscombe correction is applied since it allows the odds-ratio calculation

in presence of zero cells. Briefly, it consists in adding a pseudo-count value

of 0.5 to each cell of the contingency table to calculate the odds-ratio and

a pseudo-count value of 1 to calculate the variance.

To compare all the evaluated methods without considering their power, the

followings steps were followed:

1. Raw p-values, songbird’s differentials, and mixMC’s loadings were

properly ordered;

2. Several thresholds from 1 to 20% of the top ranked taxa in the previ-

ously ordered lists were used to select the DA taxa for each method;
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3. Putative true positives (TP) were calculated as the sum of aero-

bic taxa over-abundant in Supragingival Plaque and anaerobic taxa

under-abundant in Supragingival Plaque;

4. Putative false positives (FP) were calculated as the sum of aero-

bic taxa under-abundant in Supragingival Plaque and anaerobic taxa

over-abundant in Supragingival Plaque; and

5. The differences between Putative TP and Putative FP were plotted.

To rank all the methods, the same difference was computed, this time using

the list of DA taxa based on the adjusted p-values less than 0.1 and the

10% threshold for songbird.

To inspect the concordance of DA taxa between methods, mutual find-

ings were collected and added between the methods. As similar methods

tend to identify the same taxa, only one method for each normalisation

or weighting procedure was considered as representative. This subset con-

tains edgeR with TMM normalisation, DESeq2 with poscounts normalisa-

tion, limma-voom with TMM normalisation, MAST, scde, seurat-wilcoxon,

corncob (Wald test), mgsZig, ALDEx2, mixMC, and songbird. The taxa

found by most methods in this subset were extracted, but for the graphical

representation, all methods were reintroduced.

The same analysis was performed in the WMS dataset. However, the sam-

ple size was limited to only 5 for the subgingival body subsite, while 88

(with unique RSID) for the supragingival site. For this reason, a 5 vs. 5

sample analysis was performed, randomly selecting five samples from the

supragingival dataset. Songbird was not included in the analysis because

of an error during the parameter estimation that we were not able to solve.

Given the low sample-size, corncob methods with bootstrap were added to

the analysis.

3.6.8 Parametric simulations

Several real datasets were used as templates for the simulations:

• 41 Stool samples available for both 16S and WMS from HMP.
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• 208 16S samples and 90 WMS samples of Tongue Dorsum body subsite

from HMP.

• 67 Stool and 56 Oral cavity WMS data of Fijian adult women from

BritoIl_2016.

Each dataset was filtered to obtain only a sample per individual. 16S and

WMS samples were pruned to keep sequencing runs with library sizes of

more than 103 and 106, respectively. Moreover, only features present in

more than 1 sample with more than 10 reads were kept. After the data

filtering step, the simulation framework was established, by specifying the

parametric distribution and other data characteristics, described in Addi-

tional file 2: Supplementary Table S4.

For each combination of parameters, we simulated 50 datasets, yielding

a total of 28,800 simulations. Variables to be included in the simulation

framework were chosen based on the role they may play in the analysis of

a real experiment.

NB and ZINB are simple parametric distributions, easy to fit on real data

through a reliable Bioconductor package, and above all, seemed to fit 16S

and WMS data better than other statistical models (see Fig. 3.2). The

zinbSim function from the zinbwave Bioconductor package easily allows the

user to generate both NB and ZINB counts after the zinbFit function esti-

mates model parameters from real data. The user can set several options

in zinbFit, we used epsilon=1e14, common_dispersion=TRUE, and K=0.

Generating two experimental groups requires the specification of enough

samples for each condition and a more or less substantial biological differ-

ence between them.

Sample size is a crucial parameter: many pilot studies start with 10 or even

fewer samples per condition, while clinical trials and case-control studies

may need more samples in order to achieve the needed power. We included

10, 20, and 40 samples per condition in our simulation framework.

We considered two different scenarios for the number of features simulated

as DA: 10%, representing a case where the majority of the features are not
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DA, a common assumption made by analysis methods; and 50%, a more

extreme comparison. Similarly, we simulated a fold change difference for

the DA features of 2 or 5. This is obviously a simplification, since in reality,

a continuum gradient of fold effects is present. Nevertheless, it allowed us

to characterise the role of the effect size in the performance of the meth-

ods. For the DA features, the fold change between conditions was applied

to the mean parameter of the ZINB or NB distributions, with or without

“compensation” as introduced by [10]. Without compensation, the absolute

abundance of a small group of features responds to a physiological change.

This simple procedure modifies the mean relative abundances of all features,

a microbiologist would only want to detect the small group that initially re-

acted to the physiological change. For this reason, significant results for

other features will be considered as false discoveries. Compensation pre-

vents the changes in DA features to influence the other, non-DA, features.

The procedure comprises the following steps:

1. The relative mean for each feature is computed using estimated mean

parameter of NB.

2. 10 or 50% of features are randomly sampled.

3. If there is no compensation, half of their relative means are mul-

tiplied by foldEffect while the remainings are divided by foldEffect

generating up- and down-regulated features, respectively. If there is

compensation, 1
1+foldEffect

of the selected feature relative means are

multiplied by foldEffect while the remaining ones are multiplied by
a
b
(1 − foldEffect) + 1, where a is the sum of the relative means of

the features that will be up-regulated while b is the sum of the features

that will be down-regulated.

4. The resulting relative means are normalised to sum to 1.

Sparsity is a key characteristic of metagenomic data. The case in which a

bacterial species presence rate varies between conditions was emulated in

the simulation framework via the so called sparsityEffect variable. Acting

on the mixture parameter of the ZINB model it is possible to exacerbate
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down-regulation and up-regulation of a feature, adding zeros for the former

and reducing zeroes for the latter. This scenario provided by 0 (no sparsity

change at all), 0.05 and 0.15 of sparsity change should help methods to

identify more differentially abundant features. As the mixing parameter

can only take values between 0 and 1, when the additive sparsity effect

yielded a value outside this range, it was forced to the closer limit.

The previously described DA methods were tested in each of the simu-

lated datasets (50 for each set of simulation framework parameters) and the

adjusted p-values were used to compute the False Positive Rate (FPR=1-

Specificity) and the True Positive Rate (TPR=Sensitivity). Partial areas

under the receiver operating characteristic (pAUROC) curve with an FPR

from 0 to 0.1 values were computed and then averaged in order to obtain a

single value for each set of variables.

3.6.9 Computational complexity

To measure the computational times for all the 18 methods, we used the

Subgingival vs. Supragingival Plaque HMP 16S dataset where a total of 76

samples and approximately 900 taxa were available. The evaluation was

performed on a laptop computer with O.S. Windows 10 64bit, Intel® i7-

8th Gen CPU with 16GB of RAM. Moreover, the Stool 16S and WMS

parametric simulation datasets (9200 total datasets) were used in order to

measure each method’s computational complexity (except for mixMC and

songbird). Time evaluation was performed on a single core for each dataset

where all methods are tested sequentially and then properly averaged with

the values of all the simulations. The methods’ performance evaluations in

power analysis on the 28,800 total parametric simulations were performed

in the same way, equally dividing the simulated datasets across 30 cores.

The working machine was a Linux x86_64 architecture server with 2 Intel®

Xeon® Gold 6140 CPU with 2.30 GHz for a total of 72 CPUs and 128 GB

of RAM.
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3.6.10 Availability of data and materials

The real datasets used in this article are available in the HMP16SData

Bioconductor package [25], available at https://bioconductor.org/

packages/HMP16SData, and in the curatedMetagenomicData Bioconduc-

tor package [26], available at https://bioconductor.org/packages/

curatedMetagenomicData. The scripts to reproduce all analyses and figures

of this article are available at https://github.com/mcalgaro93/sc2meta

[54] under a MIT license (archived source code at time of publication:

https://zenodo.org/record/3942108#.XwyN1ygzZPY).
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Chapter 4. benchdamic: benchmarking of differential abundance methods
for microbiome data

Contributions

MC and NV conceived the project. CR and DR co-developed the evaluation

strategies. MC drafted the manuscript. DR, CR, and NV reviewed and

edited the manuscript. MC developed the package and curated its manual.

All Authors read and approved the final manuscript.

Challenges and future perspectives

This work represents the most tangible result of my doctoral programme.

While the previous chapter assessed many of the available tools for Differ-

ential Abundance Analysis (DAA), in this chapter I explain the structure

of an R software package that can be used to perform such evaluations on

a generic dataset. The package itself is easily described in a few pages, but

the real content is represented by its comprehensive manual and its utility.

Thousands of lines of code, dozens of functions, and their parameters are

intended to provide flexibility and robustness. The main challenges in cre-

ating this package, named benchdamic, were: organising the code, optimis-

ing it, and maintaining the manual. These challenges were also the main

requirements to join the Bioconductor project. Bioconductor is an open-

source software platform for the analysis and visualisation of biological data.

Since joining the platform in October 2021, the package has reached a wide

audience with more than 400 downloads.

A lot has changed in the last year when this application note article was pub-

lished: parallel processing has been enabled for the most time-consuming

tasks, code quality has been further improved and more DAA tools have

been introduced. From a practical point of view, the introduction of a new

DAA tool is associated with many problems. On the one hand, it requires

input and output management to ensure comparability with the other tools.

On the other hand, it leads to increased complexity of the package, both

computationally and methodologically speaking. While the latter problem

could be solved by increasing computation times or, where possible, by code

optimisation, input and output management requires some special precau-
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tions. For this reason, I am continuously updating the package and in the

meantime have set up a section of the manual where users can learn how to

add custom tools themselves.

The future of benchdamic is focused on improving and adding new DAA

tools. Indeed, new normalisations, DAA tools, or similar approaches will

be released.

Article location

https://academic.oup.com/bioinformatics/article/39/1/btac778/

6881076

Supplementary material

The supplementary material for this article consists of a static

version of the package manual at the time of the publication.

It is available at the supplementary-data section of the jour-

nal page https://academic.oup.com/bioinformatics/article/39/1/

btac778/6881076#supplementary-data. Alternatively, the up-to-date

package vignette is available at the Bioconductor repository https://www.

bioconductor.org/packages/release/bioc/html/benchdamic.html

4.1 Abstract

Recently, an increasing amount of methodological approaches have been

proposed to tackle the complexity of metagenomics and microbiome data.

In this scenario, reproducibility and replicability have become two criti-

cal issues, and the development of computational frameworks for the com-

parative evaluations of such methods is of utmost importance. Here, we

present benchdamic, a Bioconductor package to benchmark methods for

the identification of differentially abundant taxa. benchdamic is available

as an open-source R package available through the Bioconcutor project at

https://bioconductor.org/packages/benchdamic/.
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4.2. Introduction

4.2 Introduction

Differential abundance (DA) analysis identifies significant differences in the

microbial community composition between groups of samples, providing

new insights on the composition of microbial communities and on their

associations with the environment. Although many approaches have been

proposed for DA analysis, it is widely recognised that the best method (i.e.,

a method with performances uniformly better than all the others) does not

exist and that a careful exploratory data analysis is necessary to address

methodological choices [1–5].

Building on our previous work [1], we present the benchdamic R/Bioconduc-

tor package, which provides a computational framework to guide researchers

in the selection of the method that best fits their data.

The structure of benchdamic can be summarized into 4 main parts (Fig.

4.1). Each section is developed to answer specific questions when compar-

ing samples from different experimental groups, namely: i) the ability for

a given statistical distribution to successfully fit the input data, with par-

ticular focus on sparsity and their count nature; ii) the ability of the DA

methods to control the type I error; iii) the concordance among methods;

and iv) the accuracy of the findings based on a priori biological knowledge.

Altogether, benchdamic is a flexible and customisable framework that can

be used for the benchmarking of new and existing DA methods.

4.3 Implementation

benchdamic builds on existing R/Bioconductor infrastructure packages: the

primary input of benchdamic’s main functions is a phyloseq or a TreeSum-

marizedExperiment object [6, 7]. Ready-to-use normalisation and DA meth-

ods included in benchdamic are based on the edgeR [8], DESeq2 [9], limma-

voom [10–12], metagenomeSeq [13], ALDEx2 [14, 15], corncob [16], MAST

[17], Seurat [18], dearseq [19], NOISeq [20], ANCOMBC [21, 22], and zinb-

wave [23, 24] packages. Combinations of parameters are possible as well as
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4.3. Implementation

Figure 4.1: Graphical abstract. Each box on the right represents a step of
the analysis where information about the research question, type of input data,
working functions, and outputs are reported.

the inclusion of custom methods (Additional file: Section 3).

In the following sections, we briefly outline the main functionality of the

package. See [1] for technical details on how these metrics are computed.

4.3.1 Goodness of fit

DA statistical models are based on different statistical distributions. Five

different distributions are available in benchdamic for testing the goodness

of fit on user-provided data: Negative Binomial, Zero-Inflated Negative Bi-

nomial, Zero-Inflated Gaussian, Truncated Gaussian, Dirichlet-Multinomial

(Additional file: Section 2). Goodness of fit is measured by the ability of

each method to correctly estimate the average counts and the probability

of observing a zero.

4.3.2 Type I error control

To investigate the Type I error rate control of each DA method (i.e., the

probability of the statistical test to call a feature DA when it is not) mock
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datasets with no true DA are generated starting from the user-provided

data (Additional file: Section 4).

Briefly, the dataset is split into two random subsets and DA analysis, based

on a chosen list of methods, is performed. The process is repeated N times

(N ≥ 1000 suggested). The performances of each method are then summa-

rized and graphically represented considering the false positive rate, false

discovery rate, and departure from uniformity for the p-values distribution.

4.3.3 Concordance

benchdamic can be used to measure the Between Methods Concordance

(BMC), in which a DA method is compared to other methods in the same

dataset, and the Within Method Concordance (WMC), in which a method

is compared to itself in two random subsets of the same dataset (Additional

file: Section 5). Firstly, the dataset is randomly divided in half to obtain

two subsets (Subset1 and Subset2) with samples from two or more biological

groups, then DA analysis is performed between two groups, independently

on each subset. The process is repeated N times (N ≥ 100 suggested) and

average WMC and BMC metrics are computed and summarized using a

heatmap representation.

4.3.4 Enrichment analysis

Enrichment analysis can provide an alternative way of ranking methods

in terms of their ability to identify, as significantly different, taxa that are

known to be differentially abundant between two groups. DA analysis needs

to be performed on a dataset where some a priori knowledge is available

(Additional file: Section 6). Given the direction of the DA features (over-

or under-abundant) and the expected group in which the features should

be differentially abundant according to the prior knowledge, several contin-

gency tables are created for each DA method. A Fisher exact test is then

performed to test the enrichment and the DA features identified by more

than one method are highlighted. Additionally, the users will be able to
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rank the methods based on the difference between the total number of True

Positives and False Positives for several thresholds (based on p-values, ad-

justed p-values, or other statistics). The same approach can also be used to

perform power analysis using simulated data (Additional file: Section 6.8)

4.4 Conclusions

The benchdamic R/Bioconductor package aims to be a support tool for the

identification of DA microbial taxa and the benchmarking of new methods.

We envision two main uses of our package: (i) for practitioners interested

in performing DA analysis on a new dataset, benchdamic can be used to

identify the best DA methods among those already in the literature; (ii) for

method developers interested in benchmarking their new approach, bench-

damic can be used as an impartial tool to evaluate the relative merits of the

new method compared to what is already available. benchdamic is available

as an open-source package through the Bioconductor project. The package

includes a vignette with a detailed tutorial.

The future of benchdamic is oriented to the addition of new aspects of

analysis, e.g., new normalisation methods and new DA approaches.
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Chapter 5

Metabarcoding analysis of gut

microbiota of healthy individuals

reveals impact of probiotic and

maltodextrin consumption

The work described in this chapter is taken from: M. Calgaro, M. Pan-

dolfo, E. Salvetti, A. Marotta, I. Larini, M. Pane, A. Amoruso, A. Del

Casale, N. Vitulo, M. Fiorio and G.E. Felis; Metabarcoding analysis of

gut microbiota of healthy individuals reveals impact of probiotic and mal-

todextrin consumption. Beneficial Microbes 12:2, 121-136 (2021). https:

// doi. org/ 10. 3920/ BM2020. 0137
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Chapter 5. Metabarcoding analysis of gut microbiota of healthy
individuals reveals impact of probiotic and maltodextrin consumption

Contributions

MP1 performed the bioinformatics analysis, MC performed the statistical

analyses. AM and MF helped in the interpretation of psychological vari-

ables. MP2 and AA supplied the probiotics and the placebo. ADC provided

support for the trial. MC, MP, ES, and IL drafted the manuscript. NV and

GEF reviewed and edited the manuscript. All Authors read and approved

the final manuscript.

Challenges and future perspectives

The work of Marotta and colleagues [1] showed that probiotics intake ex-

erted a positive effect on sleep quality and a general improvement across

time in different aspects of the profile of mood state, like sadness, anger,

and fatigue in 33 healthy individuals. This work extends the findings of that

publication by conducting a metabarcoding analysing of the stool samples

collected from the same cohort during the experiment.

From an analytical perspective, the complexity of this experiment lies in

its longitudinal nature. Initially, the analyses were meaningless due to the

heterogeneity of the samples. The baseline microbiota of each subject could

respond differently to probiotics or placebo assumption. Only through care-

ful exploratory data analysis was I able to establish the presence of different

groups of subjects in the β-diversities of the samples at baseline. This al-

lowed the other authors and I to hypothesise the presence of 3 or 4 groups

of subjects who had a similar microbiota. Finally, 3 groups of subjects were

selected through a data-driven approach that favoured the best clustering

performance.

In the context of sample heterogeneity, another challenge in this study was

that the strong sample-specific effect over time masked the probiotics or

placebo effects. To adjust the data for the sample-specific effects, I sought

to examine the first principal coordinates of the ordinated β-diversities using

mixed effects regression models. This approach, in combination with the

3 previously identified subject groups, allowed me to identify differential
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probiotics and placebo effects over time between groups.

The major limitation of this study was the small sample size, which became

even more apparent when I started working on the subgroups of patients.

This limited the scope of the research, which was more observational, and

the results became more specific to this dataset. Nutritional data were also

collected, but without proper refinement (e.g., by adopting some macronu-

trient groups) they were useless.

As a future perspective, a higher sample size is needed to address covari-

ates, including diet, physical activity habits, and seasonal aspects related

to psychological states (e.g., exams and other stressful periods of the year).

In addition, the collection of metabolomics and metagenomics data, beyond

metabarcoding, could facilitate a more comprehensive investigation of the

causal relationships between probiotics intake, psychological variables, and

thus the gut-brain axis.
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The supplementary material for this article consists of 1 additional
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5.1 Abstract

In a previously published double-blind, placebo-controlled study, we showed

that probiotics intake exerted a positive effect on sleep quality and a general

improvement across time in different aspects of the profile of mood state,

like sadness, anger, and fatigue in 33 healthy individuals. The present work

investigates the impact of the probiotic product, constituted of Limosilac-

tobacillus fermentum LF16, Lacticaseibacillus rhamnosus LR06, Lactiplan-
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tibacillus plantarum LP01 (all former members of Lactobacillus genus), and

Bifidobacterium longum 04, on the gut microbiota composition of the same

cohort through a metabarcoding analysis. Both the placebo and probiotic

treatments had a significant impact on the microbiota composition. Statisti-

cal analysis showed that the microbiota of the individuals could be clustered

into three groups, or bacteriotypes, at the baseline, and, inherently, bacte-

rial compositions were linked to different responses to probiotic and placebo

intakes. Interestingly, L. rhamnosus and L. fermentum were retrieved in

the probiotic-treated cohort, while a bifidogenic effect of maltodextrin, used

as placebo, was observed. The present study shed light on the importance

of defining bacteriotypes to assess the impact of interventions on the gut

microbiota and allowed to reveal microbial components which could be re-

lated to positive effects (i.e., sleep quality improvement) to be verified in

further studies.

5.2 Introduction

A great interest has emerged in the last years on the impact of the gut-

brain axis in psychiatric disorders, pointing to stressed and unhealthy con-

ditions of the microbial communities inside the human gut as possible causes

for psychological diseases and conditions, such as depression, anxiety and

schizophrenia [1, 2].

It has been observed that the gut microbiota communicates with the brain,

exerting effects over several neurobiological mechanisms and related sys-

tems; among these the hypothalamic-pituitary-adrenal axis, the immune

system, the tryptophan metabolism and the production of various neuroac-

tive compounds [2].

For those reasons, the gut microbiota has become a new target to obtain

antidepressant effects; remarkably, the diversity of studies performed and

the functional redundancy of the microbiome make it difficult to understand

if specific microbial components are more related than others to psychiatric
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symptoms [3].

Since microbiota composition can be modified in a variety of ways, such as

through the use of probiotics, prebiotics and dietary changes [3, 4], several

clinical and translational studies have been published over the years, show-

ing that the prolonged prebiotic and probiotic consumption can positively

affect aspects of mood, anxiety, and cognition in both healthy individuals

as well as in patients diagnosed with clinical psychiatric disorders [2, 4, 5].

However, in some clinical trials, lack of evidence of an effect on depression

and related symptoms have also been reported either in depressed [6] as

well as in healthy individuals (in particular in older adults [4]) even though

probiotic strains used were also previously successfully applied.

Probiotic supplements used in clinical trials for the treatment of depression,

either alone [7–9], in combination with prebiotics (i.e., galactooligosaccha-

rides) [10], or as adjunctive therapy with antidepressants (i.e., sertraline)

[11] mainly include Lactobacillus (L. acidophilus, L. helveticus, L. brevis, L.

casei, and L. salivarius), Lactococcus (L. lactis) and Bifidobacterium spp.

(B. bifidum, B. lactis, and B. longum). Generally speaking, such treatments

led to (1) a significant reduction of depression scores on Hospital Anxiety

and Depression Scale and improvement of the cognitive reactivity scores

in mild/moderate depression patients [8, 9], (2) a decrease of the anxiety

symptoms in individuals with anxiety disorders [11] and (3) an improvement

of the depression scores on Beck Depression Inventory in patients with a di-

agnosis of Major Depressive Disorder (MDD) [7, 10].

In healthy subjects, administration of probiotics (L. casei Shirota, B. bi-

fidum W23, B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei

W56, L. salivarius W24, and L. lactis W19 and W58) improved the mood

of subjects having lowest baseline mood levels and in general reduced the

cognitive reactivity to sadness [12, 13].

Moreover, in other two studies led by Messaoudi et al. [14] and Moham-

madi et al. [15], a significant reduction in overall anxiety and depression

scores was shown after the treatment with L. helveticus R0052 and B.
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longum R0175 as well as with a polybiotic combination of various Lac-

tobacillus strains (L. acidophilus, L. delbrueckii subsp. bulgaricus, L. casei,

and L. rhamnosus), Bifidobacterium (B. breve, B. longum) and Streptococ-

cus thermophilus strains. Besides mood, anxiety and depression scores, it

has also been shown that the short-term administration of L. gasseri im-

proved stress-associated symptoms in terms of sleep disturbance [16].

Within the framework of the impact of probiotics on mood, we have previ-

ously reported [5] on a double-blind, placebo-controlled study on 33 healthy

volunteers who received daily either a probiotic mixture containing Limosi-

lactobacillus fermentum LF16, Lacticaseibacillus rhamnosus LR06, Lac-

tiplantibacillus plantarum LP01 (former members of Lactobacillus genus,

[17]), and B. longum 04 in maltodextrin, or a maltodextrin-only placebo,

for 6 weeks, followed by a 3-weeks washout (Fig. 5.1). Data obtained showed

that the probiotics exerted a general improvement and persistence over time

in different aspects of the mood state, including sadness, anger, and fatigue,

accompanied by improvement in the sleep quality, which indicates that pro-

biotics may increase the production of neuroactive precursors involved in

emotional modulation, brain functions and circadian rhythms. These find-

ings corroborated the positive effect of probiotics on mental well-being, pos-

sibly determining changes in cognitive strategies to deal with problems by

reducing sensitivity to negative situations.

The aim of the present study was to apply metabarcoding analysis of the

faecal microbiota to determine (1) the microbial arrangement at baseline in

the same cohort of healthy adults, which were randomised based on other

characteristics, and (2) determine the effects of the probiotic and placebo

consumption during and after the administration.
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Figure 5.1: Experimental design of the study.

5.3 Materials and Methods

5.3.1 Sample collection

The samples analysed derive from 33 healthy subjects enrolled in the study.

Stool samples and psychological variables were collected at four time points

(see Additional file: Supplementary Table S1): before the intake of probi-

otic/placebo (T0), at 3 (T1) and 6 (T2) weeks after the first intake and at

the end of the third week of washout (T3).

The experimental group received 42 sachets of the product (one for each

day), each containing 4 × 109 cfu/active fluorescent units (AFU) of four

probiotic species: L. fermentum LF16 (DSM 26956), L. rhamnosus LR06

(DSM 21981), L. plantarum LP01 (LMG P-21021), and B. longum 04

(DSM 23233) in 2.5 g of freeze-dried powder mixture containing maltodex-

trin (around 85% of the total weight) (Probiotical S.p.A., Novara, Italy).

The control group received 42 sachets of placebo, each containing 2.5 g of

maltodextrin in powder form. The placebo powder was indistinguishable

from the probiotics powder in colour, taste, and smell. Participants were

instructed to dissolve the powder in water or milk and drink it in the morn-

ing with breakfast. The probiotic sachets were analysed by Biolab Research

S.r.l. (Novara, Italy), via flow cytometry (ISO 19344:2015 IDF 232:2015,
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≥ 4× 109 AFU) and plate count method (Biolab Research Method 014-06,

≥ 4 × 109 cfu) to confirm target cell count. Product stability was moni-

tored to ensure minimum cell counts were maintained. The study was ap-

proved by the Ethical committee of Verona Hospital (Azienda Ospedaliera

Universitaria Integrata, AOUI Verona, 766CESC) and it is registered in

https://ClinicalTrials.gov with the number ID: NCT03539263.

5.3.2 Library preparation and sequencing

The 132 collected samples from 33 healthy subjects were stored at -20 °C

until analysis. DNA extraction and sequencing were performed at BMR Ge-

nomics S.r.l. (Padua, Italy). DNA was isolated with the Mobio Powerfecal

kit (Mo Bio Laboratories, Inc., Carlsbad, CA, USA) adapted for QIAcube

HT extractor (Qiagen, Hilden, Germany). V3-V4 regions of 16S rRNA

gene were amplified with previously described primers [18], modified with

forward and reverse overhangs necessary for dual index library preparation

generating amplicons of ∼ 460 bp. The paired-end sequencing of the 16S

rRNA gene amplicons was performed using the MiSeq Illumina platform

(dual-indexing approach, 2 × 300 bp) (Illumina, San Diego, CA, USA). A

mock community was included as control. The resulting output was a set

of 264 raw files in FASTQ format. All the reads have been submitted to

SRA archive and are available under the bioproject PRJNA644097

5.3.3 Bioinformatics data analysis

The whole analysis was performed on R (v3.6.1, R Core Team, 2019). Pri-

marily, the FASTQ sequences were analysed using DADA2 (v1.13) [19], a

tool that implements an error correction model and allows to identify exact

sample sequences that differ as little as a single nucleotide. The final output

of DADA2 was an Amplicon Sequence Variants (ASV) table which recorded

the number of times each ASV was observed in each sample. DADA2 was

run as described in https://benjjneb.github.io/dada2/bigdata.html

using default parameters. In order to improve the overall quality of the
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sequences, the reads were filtered and trimmed using the filterAndTrim

function implemented in DADA2. Consequently, to remove low quality

bases at the end of reads, the truncLen option was set to (280, 220)

for the forward and reverse FASTQ files respectively. Similarly, to re-

move adapter sequences at the 5’ end, the trimLeft option was set to

(17, 21), for forward and reverse reads respectively. The removeBimer-

aDenovo function was used to remove chimeras, via consensus method,

and then the collapseNoMismatch function collapsed together all the reads

that are identical up to shifts or length variation. Finally, the taxo-

nomic assignment was performed using the naïve Bayesian classifier method

implemented in DADA2 (assignTaxonomy and addSpecies functions) us-

ing as reference the EzBioCloud 16S database for QIIME pipeline (ver-

sion 2018.05, https://ezbiocloud.net/resources/16s_download), cor-

rectly formatted to work with the taxonomic classifier implemented within

DADA2 (https://benjjneb.github.io/dada2/assign.html). A phylo-

genetic tree of the ASVs was obtained using the function AlignSeq im-

plemented in DECIPHER (v2.12) [20], an R package to create multiple

sequence alignments. FastTree (v2.1.10) [21] was used to create the final

tree.

5.3.4 Data quality assessment and filtering

Rarefaction curves on raw data were evaluated to assess the species rich-

ness among samples as a function of the sequencing depth. Data were

pre-processed filtering taxa (ASVs) with low prevalence (where preva-

lence is the fraction of total samples in which an ASV is observed), set-

ting a threshold of 0.5% for the cumulative relative abundance across all

the samples; furthermore, taxa present in less than 2 samples were dis-

carded. Synergistetes phylum members taxa (cumulative relative abun-

dance=0.34%) and Lentisphaerae phylum members taxa (cumulative rela-

tive abundance=0.03%) were discarded by this filter. The pre-processing

output data were then transformed to their relative abundances, and the 10
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most present genera were plotted to phylum level. Mann-Whitney tests were

performed on ASVs detected in these genera and the Benjamini-Hochberg

correction was applied to adjust the p-values because of multiple testing.

In order to investigate the presence of probiotic related taxa, a further

taxonomy classification was performed. The softwares Kraken2 [22] and

Bracken [23] were used to check both raw FASTQ data and DADA2 in-

ferred list of ASV, using two different pre-built Kraken2/Bracken databases

(minikraken2_v2_8GB_201904 and k2_standard_16gb_20200919) and a

custom database containing bacteria, archaea, virus, fungi and plants se-

quences, built using RefSeq [24] sequences.

5.3.5 Biodiversity measurements

Shannon-Wiener index was used to calculate α-diversity, which was plot-

ted stratifying the samples according to time points, gender and treatment

type; the Kruskal-Wallis tests were performed to verify statistical differ-

ences in the α-diversity among the samples. To measure β-diversity, data

were normalised by three different methods (Cumulative Sum Scaling [CSS],

Total Sum Scaling [TSS], Rarefaction) through the phyloseq_transform_-

css, phyloseq_standardize_otu_abundance, and rarefy_even_depth func-

tions respectively. The first two functions are part of the vmikk/metag-

Misc package (https://github.com/vmikk/metagMisc) while the latter

belongs to the phyloseq package (v1.30.0) [25]. Each type of normalised data

was inspected using four different distance metrics (Unweighted UniFrac,

Weighted UniFrac, Bray-Curtis, Jaccard) and ordinated using the Princi-

pal Coordinates Analysis (PCoA) and Detrended Correspondence Analysis

(DCA) ordination methods, through the ordinate function of the Vegan

package (v2.5-5) [26].

A rigorous procedure was applied to evaluate the best combination of nor-

malisation, distance metric, and ordination method. Normalisation based

on rarefaction was not considered as it performs very similarly to TSS due

to the similar library sizes between samples.
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At first, a hierarchical clustering was applied to the β-diversity bidimen-

sional plot at the baseline grouping the samples in 3 and 4 groups. To test

which of the two clustering methods performed better, the homogeneity

of the cluster dispersions were tested using PERMANOVA F-test on be-

tadisper function’s output. A significant p-value indicated that the cluster

dispersions were not homogeneous and that data needed to be taken with

care. Secondly, the silhouette value was calculated, that is a measure of how

similar an object is to its own cluster (cohesion) compared to other clus-

ters (separation). The silhouette ranged from -1 to +1, where a high value

indicated that the object was well matched to its own cluster and poorly

matched to neighbouring clusters. If most objects had a high value, then

the clustering configuration was appropriate. On the other hand, if many

samples had a low or negative value, then the clustering configuration might

have too many or too few clusters. Finally, the cluster memberships found

at the baseline were extended to all the other time points; cluster dispersions

and silhouette indexes were computed again to verify the performances of

the clustering on the whole dataset.

5.3.6 Mixed effects regression models statistical anal-

ysis

Amongst all the tested combinations, the TSS-normalised data, ordinated

using the PCoA method and the unweighted-UniFrac distance metric,

showed the most consistent results in cluster dispersions homogeneity and

silhouettes, hence it was chosen for deeper exploration. To investigate the

biological meaning of each PCoA coordinate, mixed effects regression model

analysis was performed on each, using the lme function of the nlme package

(v3.1-140) [27].

Firstly, the model formulation involved the Sample variable as a random

component for each individual, and several categorical variables as fixed ef-

fects, such as TimePoint, Gender, Treatment and their interactions. Since

all the variables were categorical, the regression framework set a baseline
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formed by TimePoint=T0, Treatment=Placebo and Gender=Female sam-

ples. Variable significance was guaranteed through an iterative process.

Starting from the complete model, nonsignificant variables were dropped

one by one. Every time a variable was dropped a Likelihood Ratio Test

(LRT) was performed in order to compare the likelihood of the model with

the likelihood of the nested one (p-value<0.1). This procedure allowed us

to reach the most informative as well as parsimonious formulation of the

model. Moreover, two versions of each model were compared: the first,

where no correlation structure was specified, and the second, where the

type of correlation was specified as an AR(1) process through the option

correlation=corAR1(form= 1|Sample) of lme function.

Secondly, mixed effects regression models were used to study correlation

between sample variables and the PCoA components, with the new infor-

mation about cluster memberships. The TimePoint, Gender, Treatment

and Cluster variables were tested in the model, together with the interac-

tions between TimePoint and Gender, TimePoint and Treatment, Time-

Point and Cluster, Treatment and Cluster, and TimePoint, Treatment and

Cluster. The already described model selection procedure was performed to

choose the best model.

5.3.7 Biomarkers investigation

To retrieve information about the most discriminant features (Amplicon

Sequence Variantss, ASVs) of the clusters identified with the hierarchical

clustering procedure, a discriminant analysis was computed using PLS-

DA and sPLS-DA methods. Following the default mixOmics (v6.8) [28,

29] pipeline (https://mixomics.org/case-studies/splsda-srbct/), a

pseudo-count value of 1 was added to the counts table, which was then

normalised with TSS and CLR transformed. At first, the pipeline was

performed on the clusters at baseline T0 to identify the most discrimi-

nant ASVs of each group. The discriminant analysis was then applied

to each significant interaction resulted from the mixed effects models, to
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investigate the effect of treatments. For each interaction a summary im-

age was plotted using the HotLoadings function of the homonym package

(https://github.com/mcalgaro93/HotLoadings), displaying the discrim-

inant ASVs loadings and the related heatmap.

5.3.8 Psychological variables analysis

To find significant associations between psychological variables, treatments

and clusters, Wilcoxon Rank Sum tests were performed between time points

T0 and T1, T0 and T2, and T0 and T3 for placebo and probiotics groups.

The p-values were also corrected for multiple testing using the Benjamini-

Hochberg correction method.

5.4 Results

5.4.1 16S metabarcoding sequencing depth and taxon-

omy classification

A total of 5,382,700 paired-end sequences (an average of 40,778 reads per

sample) with a read length of 300 bp were obtained from the samples of

the 33 subjects summarised in Fig. 5.1. After read quality assessment, de-

noising and chimera filtering, 1,728 different ASVs were obtained. ASVs

artefacts were removed with several filters and a total of 730 unique ASVs

were obtained (Additional file: Supplementary Fig. S1). The taxonomy

classification allowed to identify 10 phyla, 20 classes (730 ASVs), 27 orders

(728 ASVs), 46 families (727 ASVs), 170 genera (720 ASVs) and 263 species

(273 ASVs). The comparison of rarefaction curves (Additional file: Supple-

mentary Fig. S2) as a function of sampling depth showed that all curves

are close to saturation, therefore the richness of the samples has been fully

observed or sequenced. The only exception was for subject number 8 at

time point T2 that had a library size of 538, while the second lower had a

value of 8,848; for this reason, the former was discarded from the analysis.
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The most abundant phylum was Firmicutes, with a relative frequency of

62.3% followed by Bacteroidetes 17.9%, Proteobacteria 9.1%, Verrucomi-

crobia 4.9%, and Actinobacteria 4.7%. The remaining 1% accounted for

Euryarchaeota, Tenericutes, Saccharibacteria, Fusobacteria and Cyanobac-

teria. At genus level, the most abundant populations were Agathobac-

ter, Blautia, Dialister, Faecalibacterium, Ruminococcus, Subdoligranulum

(belonging to Firmicutes phylum), Bacteroides (Bacteroidetes phylum),

Escherichia(Proteobacteria phylum), Akkermansia (Verrucomicrobia phy-

lum), and Bifidobacterium (Actinobacteria phylum) (Additional file: Sup-

plementary Fig. S3).

5.4.2 α-diversity analysis confirmed that the subjects

of the cohort were comparable

Samples were stratified according to TimePoint, Treatment (placebo or pro-

biotics) and Gender using Shannon-Wiener index, as shown in Additional

file: Supplementary Fig. S4. No significant differences among samples were

observed, neither in the experimental nor in the control group (Kruskal-

Wallis tests had p-value>0.05). This finding was in line with expectations,

as the subjects enrolled in the study were comparable when related to their

internal diversity; neither alterations nor major shifts were expected on gut

microbiota species richness or evenness regarding probiotic consumers.

5.4.3 β-diversity analysis revealed three clusters and a

strong sample-specific effect

The flow chart in Additional file: Supplementary Fig. S5, summarises the

following steps of the analysis. All the β-diversity plots are shown in Addi-

tional file: Supplementary Fig. S6, while the homogeneity of cluster disper-

sions and silhouettes are presented in the Additional file: Supplementary

Results S1. The choice of the number of clusters was performed using only

the samples at T0, which represents a snapshot of the microbiome com-
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position before any type of treatment and allows to stratify the samples

according to different bacteriotypes.

The identification of the best combination of number of clusters, normal-

isations, distances, and type of ordinations was then chosen. Specifically,

the metrics that performed better in terms of homogeneity of cluster dis-

persions and silhouette values, when the cluster membership was extended

also to all the other time points, were selected. Three clusters grouping

with PCoA ordination method, based on unweighted UniFrac distances and

TSS normalisation (Fig. 5.2 a-c), produced the most consistent results (see

Materials and Methods - Biodiversity measurements and Additional file:

Supplementary Results S1, for details). Indeed, using these combinations

of metrics, the stability of the clusters was maximised over time. In other

words, the clusters identified at T0 tended to be the most consistent when

the information of cluster membership is extended also to the other time

points. The underlying idea was that the microbial signatures of the bacteri-

otype we identified at T0 should be stable over time, even though individual

hosts may switch between enterotypes over long time periods [30].

The composition of each cluster is reported in Table 5.1. As expected,

samples of the same subject tended to form close subclusters, regardless the

considered time point or treatment (Additional file: Supplementary Fig.

S7). This suggests that the differences among subjects are stronger than

the effects determined by the treatment.

Cluster Placebo Probiotic

1 9 12

2 3 3

3 3 3

Table 5.1: Cluster membership for individuals at the baseline (TimePoint=T0 ).
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Figure 5.2: a Bidimensional representation of β-diversity for the samples in
TimePoint=T0 (PCoA ordination method on UniFrac distance matrix of TSS
normalised count data). Coloured by cluster membership obtained cutting the
dendrogram in b in order to obtain 3 groups of individuals (see Materials and
Methods for details of normalisation, distance, and ordination’s choice). b Hi-
erarchical clustering dendrogram built with the complete linkage method on the
euclidean distance matrix. Distance matrix based on PCoA1 and PCoA2 coor-
dinates of the β-diversity for the samples in TimePoint=T0 (PCoA ordination
method on UniFrac distance matrix of TSS normalised count data). c Tridimen-
sional representation of β-diversity coloured by cluster membership for the sam-
ples in all time points (PCoA ordination method on UniFrac distance matrix of
TSS normalised count data). d Linear mixed effects regression model coefficients.
Blue (orange) coloured tiles represent a negative (positive) effect of the variable
referred to the model baseline (TimePoint=T0, Gender=F, Treatment=Placebo,
Cluster=1 ). Statistically significant (p-value<0.1) effects are represented by red
squared tiles.
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5.4.4 Mixed effects regression models found associa-

tions between β-diversity and sample variables

To inspect the variability held by the first four coordinates of the PCoA,

four mixed effects regression models were at first estimated without con-

sidering cluster membership (see Materials and Methods). This regression

framework allowed us to find significant correlations between PCoA coor-

dinates and metadata such as Gender, Treatment and TimePoint and to

remove sample-specific effects. In this context, we implicitly considered the

Treatment=Placebo, Gender=Female, and TimePoint=T0 as the baseline

level. As shown in Additional file: Supplementary Fig. S8, a correlation

between the Treatment variable and the fourth component of the PCoA

was found, while the third component showed a statistically significant dif-

ference in Gender at time point T3 compared to the baseline. This first

analysis did not allow us to identify any statistically significant effects for

the interactions between time points and treatments.

To further investigate if adding bacteryotype information would help in

identifying significant effects for the interactions between time points and

treatments, new mixed effects regression models were estimated adding the

cluster membership variable as a fixed effect to the framework. Several sig-

nificant interactions between time points and treatments were found for the

third coordinate (Fig. 5.2 d): (1) TimePoint=T1, Treatment=Probiotic and

Cluster=3 ; (2) TimePoint=T2, Treatment=Probiotic and Cluster=2 ; (3)

TimePoint=T2, Treatment=Probiotic and Cluster=3 ; (4) TimePoint=T3,

Treatment=Probiotic and Cluster=2. Clusters 2 and 3 were commonly af-

fected by the variable TimePoint=T2 compared to the baseline: Cluster 2

responded later in the treatment (time points T2 and T3) while Cluster 3

responded at the beginning (time points T1 and T2). Although each in-

teraction should be interpreted very carefully, these results highlighted a

difference between the considered variable categories and the baseline (T0,

Placebo, Cluster 1). Biologically speaking, the identified interactions could

be an indicator of a distinct effect of the treatment considering different
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groups/bacteriotypes.

5.4.5 sPLS-DA analysis showed that clusters were

characterised by a specific bacteriotype

A sPLS-DA analysis was performed to identify the most discriminant ASVs

at the baseline T0. This multivariate approach identified two main com-

ponents which were able to discriminate the clusters. The first component

highlighted 5 taxa associated with Cluster 3 (Fig. 5.3 a): all the mem-

bers of this group were characterised by the presence of SV33, assigned to

Methanobrevibacter smithii, while 66% of them also displayed Sporobacter,

Eubacterium, and Oscillibacter spp. (SV168, SV256, SV37).

The second component highlighted the top 30 taxa associated with Clusters

1, 2 and 3 which created two different patterns as shown in the heatmap

(Fig. 5.3 b). Cluster 1 individuals showed the general presence of Faecal-

ibacterium spp. (SV3, SV14), while Cluster 3 were also characterised by

Faecalibacterium spp. and Alistipesputredinis (SV4 and SV39); in Cluster

2, the second component revealed the presence of SV94-Eubacterium and

SV77-Lachnospiraceae in almost all the members; 50% of them were also

characterised by Blautia spp. (SV562).

5.4.6 Lacticaseibacillus rhamnosus is the only probiotic

SV that increases significantly in the probiotic

cohort in Cluster 1 and 2

The sPLS-DA analysis revealed that SV232, associated with L. rhamnosus,

was present in the probiotic cohort at time point T1 and T2 in Cluster 1 and

Cluster 2, respectively (Additional file: Supplementary Results S2 a, g). As

for bifidobacteria, SV34 associated with B. longum was found to increase in

Cluster 1 at T2 (where it was abundant also in the placebo individuals) and

T3 (Additional file: Supplementary Results S2 e, k). Interestingly, other

Sequence Variant (SV)s associated with Bifidobacterium spp. displayed a
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5.4. Results

Figure 5.3: a sPLS-DA analysis at the baseline (TimePoint=T0 ). Loading
values represent the 5 discriminant taxa of the first component, associated with
Cluster 3. Bigger the loading absolute value, stronger the association. Heatmap
shows the CLR values of the discriminant taxa in all the samples. b sPLS-DA
analysis at the baseline (TimePoint=T0 ). Loading values represent the first 30
(out of 135) most discriminant taxa of the second component, associated with
Cluster 2 and Cluster 1. Bigger the loading absolute value, stronger the associa-
tion. Heatmap shows the CLR values of the discriminant taxa in all the samples.
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different behaviour: SV228 was found to increase in the placebo cohort in

Cluster 1 at T1 (Additional file: Supplementary Results S2 b), while the

relative abundance of SV121 and SV15 decreased in Cluster 1 and 2 at

T3 (Additional file: Supplementary Results S2 l, m). These observations

showed that L. rhamnosus is the only probiotic SV that increases during

the probiotic administration until T1 and T2 in Cluster 1 and Cluster 2,

respectively.

5.4.7 Bacteriotypes changed distinctly in the probiotic

and placebo cohorts

The probiotic intake in Cluster 1 was associated with an increase of Co-

proiciproducens leptum (Clostridium letpum), Romboutsia timonensis and

Mogibacterium spp. (SV264, SV25 and SV664) from T1 to T3, respec-

tively; the same cohort displayed a decrease of SVs related to Butyricimonas

(SV785), Lachnospira (SV144) and Faecalibacterium spp. (SV4) at the same

time points (Additional file: Supplementary Results S2 a, e, k). The placebo

individuals featured a decrease of Butyricimonas, Alistipes, and Ruthenibac-

terium lactatiformans (SV774, SV465 and SV90) and a higher abundance

of Anaerotignum (SV370), S. thermophilus (ST32) and Turicibacter spp.

(SV56) from T1 to T3 (Additional file: Supplementary Results S2 b, f, l).

Individuals who took probiotics in Cluster 2 showed a significant decrease

of Ruminococcaceae (SV348) in T2 (Additional file: Supplementary Re-

sults S2 g) while the placebo group were characterised by an increment of

Alistipesonderdonkii (SV73) and Lachnospiraceae spp. (SV144) in T2 and

T3, respectively, and a drop of Blautia spp. (SV562) and Clostridium spp.

(SV512) in the same time points (Additional file: Supplementary Results

S2 h, n).

In Cluster 3, Phascolarctobacterium faecium (SV97) and Subdoligranulum

spp. (SV16) distinguished the probiotic cohort at T1 and T2 which, con-

versely, showed negative CLR values for Dialister invisus (SV5) and Eu-

bacterium spp. (SV256) at the same time points (Additional file: Supple-
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mentary Results S2 d, j); this latter species (SV94) increased together with

Roseburia hominis (SV161) in the placebo subjects, which also showed a

decrease of Intestinibacter bartlettii (SV63) and Bacteroides (SV47) at T1

and T2, respectively (Additional file: Supplementary Results S2 c, i).

5.4.8 Maltodextrin exerted an effect on the bacterio-

type of each cluster

Since maltodextrins are included both in the placebo and in the probiotic

products, their impact on each cluster’s bacteriotype (included Cluster 1)

was investigated (Additional file: Supplementary Results S3). Focusing on

SVs related to probiotics, SV34 - B. longum generally increased in members

of Cluster 1 at T2 and T3 and in Cluster 2 at T1 (Additional file: Supple-

mentary Results S3 b, d, g); as for SVs related to other Bifidobacterium spp.

a general reduction of SV121 and SV15 was observed in both probiotic and

placebo groups in Cluster 1 at T2 and in Cluster 2 at T3 (Additional file:

Supplementary Results S3 g, h).

Considering other taxa, Cluster 1 was characterised by a general increase in

relative abundance of S. thermophilus (SV32), R. timonensis (SV25), Turi-

cibacter spp. (SV56), and a decrease of Butyricimonas spp. (SV774) and

Lachnospira spp. (SV144) from T1 to T3 (Additional file: Supplementary

Results S3 a, d, g).

Cluster 2 individuals were characterised by higher levels of Faecalibacterium

(SV14), and Roseburiainulinivorans (SV54) at T1 and T3; while SVs related

to Escherichia (SV1), Agathobaculum (SV87), Blautia (SV17), and Eubac-

terium (SV94) decreased from T1 to T3 (Additional file: Supplementary

Results S3 b, e, h).

Finally, in Cluster 3 positive CLR values were associated to Anaerotignum,

Pseudoflavonifractor and Sporobacter (SV282, SV428, SV145) while neg-

ative values were related to D. invisus (SV5), Bacteroides (SV140) and

Blautia obeum (SV29) (Additional file: Supplementary Results S3 c, f, i).
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5.4.9 Sequence variants related to Limosilactobacillus

fermentum were detected in only one individual

treated with probiotics

ASVs associated with L. fermentum and L. plantarum, included in the

probiotic product, were investigated and checked through the 16S-based

ID tool of EzBioCloud.net, https://ezbiocloud.net/identify; database

version 2020.10.12). SV1273 associated with L. fermentum was detected

only in one probiotic cohort sample at T1, while conflicting results were

obtained using different databases related to L. plantarum, confirming that

the V3-V4 region for this species is not informative (Fig. 5.4).

5.4.10 Sleep quality and mood changes were detected

in probiotics treated individuals of Cluster 1

As shown in Fig. 5.5 a, a significant reduction (p-value=0.03) was detected

between time points T0-T1 and confirmed for T0-T2 and T0-T3 for the

Pittsburgh Sleep Quality Index (PSQI). The PSQI global score is inversely

correlated to the sleep quality (the lower the score, the better the sleep

quality). The identified reduction indicates a sleep quality improvement for

the probiotics treated individuals of Cluster 1.

Other significant changes were detected for the depression, anger, and fa-

tigue subscales of the Profile Of Mood State (POMS) psychological vari-

ables. Specifically, between T0-T1 and T0-T3 for anger (p-value=0.08,

0.02; Fig. 5.5 b) and depression (p-value=0.08, 0.06; Fig. 5.5 c) indexes,

and between T0-T1 (p-value=0.04), T0-T2 (p-value=0.02), and T0-T3 (p-

value=0.03) for the fatigue subscale (Fig. 5.5 d). It is noteworthy a clear

descending trend for all mentioned psychological variables also in Cluster 3,

even though these differences were not significant, probably due to the low

sample size of the cluster. A similar pattern was not visible in Cluster 2.
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Figure 5.4: The species related to the probiotic compound were isolated and
plotted in this barplot. The relative abundances percentages were zoomed to
visualise the portion from 0 to 0.3 and stratified by time points and treatment
type. The Bifidobacterium longum species is present in each time point for both
the treatment types, showing a shared increasing trend. Limosilactobacillus fer-
mentum was detected only for the second time point (T1) in the probiotic cohort.
Lacticaseibacillus rhamnosus taxa were detected for both the second and the third
time points, relative to the probiotic cohort.
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Figure 5.5: Wilcoxon Rank Sum tests between time points T0-T1, T0-T2, T0-
T3. P-values are corrected for multiple testing using the Benjamini-Hochberg
correction method and only adjusted p-values lower than 0.1 are reported. a PSQI,
stratified by cluster and treatment. b Anger subscale for the POMS psychological
variable, stratified by cluster and treatment. c Depression subscale for the POMS
psychological variable, stratified by cluster and treatment. d Fatigue subscale for
the POMS psychological variable, stratified by cluster and treatment.
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5.5 Discussion

5.5.1 Biodiversity measures stratified individuals in

three clusters related to their microbiota

In the present work the possible effect caused by the intake of B. longum, L.

fermentum, L. rhamnosus and L. plantarum strains for 6 weeks (followed

by a 3 week-washout) on the gut microbiota composition of a cohort of 33

healthy subjects was investigated.

A robust bioinformatic pipeline was implemented to analyse and charac-

terise the metabarcoding data; a series of exploratory analyses were per-

formed targeting particular effects with a possible biological correspondence,

which could be related to the cognitive and emotional improvements we as-

sessed in our previous study [5]. Biodiversity measures did not detect a

significant diversity within the samples (α-diversity) but a sample-specific

effect was found between samples (β-diversity). This finding led to perform

a statistical analysis using a mixed effects model, through which several

minor significant effects were found. The 33 individuals were clustered into

three groups/bacteriotypes at the baseline; each one of them responded

distinctly to the treatments. Cluster 1 and 2 were most impacted by the

probiotic treatment, while Cluster 3 responded more to the placebo treat-

ment. Furthermore, Cluster 1 responded throughout the whole treatment,

while Cluster 2 and Cluster 3 had, respectively, a late and an early response.

Those behaviours reinforce the concept that individuals with diverse bac-

teriotypes might respond differently to the same treatment. In addition,

stratification of individuals according to their bacterial composition may be

useful to better understand and predict the responses to specific treatments,

such as probiotic interventions [31, 32].
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5.5.2 Maltodextrin has a bifidogenic effect

Focusing on SVs related to the probiotic species, it was observed that

some Bifidobacterium-related SVs (SV15 and SV121) decreased both in

the placebo and probiotic groups, but others, such as SV34 - B. longum

and SV228 - Bifidobacterium significantly increased in the placebo cohort

both in Cluster 1 and Cluster 2. Their presence in the control subjects,

who were administered maltodextrin, is also in line with data reported

in a previous work [33] where authors observed that the majority of the

culturable bifidobacterial strains (including 10 strains of B. longum) were

capable of growing in maltodextrin rich media. Tandon and colleagues [34]

observed the same behaviour of the bifidobacterial population in a random-

ized, double-blind, placebo-controlled, dose-response relationship study led

to investigate the efficacy of fructo-oligosaccharides on human gut micro-

biota, where maltodextrin was used as control.

From this perspective, this study does not include a true placebo cohort

which may have prevented to capture time dependent oscillations in abun-

dances of relevant taxa; further, since maltodextrins are broadly used as

placebo treatment, their bifidogenic effect needs to be deeply evaluated

in future clinical trials involving bifidobacteria. Considering our data, we

suggest that participants of this study were subjected to two different treat-

ments rather than one: a "synbiotic" administration (probiotics and mal-

todextrin) and a "prebiotic" assumption (maltodextrin).

5.5.3 Cluster 1 individuals displayed different gut com-

position following the prebiotic and synbiotic

treatments

The gut composition of individuals who received the synbiotics in Cluster 1

are selectively characterised by the presence of L. rhamnosus and C. leptum

at the beginning of the treatments and then of Mogibacterium (described

in 2000 to include strains isolated from the human periodontal environment
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[35]) at the end. C. leptum belongs to Clostridium Cluster IV which was

reduced in patients with depression and anhedonia and it was negatively as-

sociated with scores in Quick Inventory of Depressive Symptoms-Self-Rated

(QIDS-SR) and the Generalized Anxiety Disorder (GAD)-7 [36]. The ef-

fect of probiotics administration on the abundance of C. leptum was also

observed by Sato and colleagues [37] where patients with type-2 diabetes

had higher counts of C. leptum after 16 weeks of probiotics (L. casei Shi-

rota) assumption. The synbiotic treatment specifically reduced the levels of

Faecalibacterium, which was among the signature taxa of this cluster. This

taxon is usually lower in MDD patients but there is still a lack of congruence

across investigations [3, 38].

The prebiotic treatment is associated with higher levels of Anaerotignum

(described in 2017 following the isolation of strains from a methanogenic

reactor [39]), S. thermophilus, Turicibacter and D. invisus. Among these

species, it is interesting to report that a reduced abundance of Turicibacter

spp. was observed in socially defeated mice and it was strongly correlated to

pro-inflammatory cytokine changes within the prefrontal cortex [40]. How-

ever, this has to be further investigated, as Turicibacter levels were also

found to be higher in depressed subjects [41]. As for D. invisus, it is usu-

ally lower in MDD patients and in other autoimmune diseases, including

Crohn’s disease, ulcerative colitis and rheumatoid arthritis [42].

Prebiotic administration was also related to reduced levels of Butyricimonas,

Lachnospira, Alistipes and R. lactatiformans (isolated in 2016 from human

faeces [43]). The decrease of Butyricimonas spp. may have a positive effect

on the individuals: Butyricimonas members were found to be at higher

levels in the gut microbiota of patients with clinically significant depression

compared to control patients [44]. As for Lachnospira, no consensus data

have been obtained so far, as Cheung and colleagues reported that this

taxon could be related to MDD as well as to healthy subjects [3, 38].

A significant association with depression was shown for Alistipes both in

human cases as well as in mice subjected to stress over an extended time
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period. Since high levels of this taxon in the gut microbiota were also

linked to chronic fatigue syndrome and Irritable Bowel Syndrome (IBS), it

has been suggested that Alistipes may promote depression through inflam-

matory pathways. In addition, Alistipes species are indole-positive and may

thus influence tryptophan availability (the precursor of serotonin), disrupt-

ing the balance in the intestinal serotonergic system [45]. They are also high

metabolisers of proteins and amino acids and, as such, they could trigger

the production of toxic compounds such as ammonia, putrescine, and phe-

nol [3]. However, these data are not concordant with what observed from

Zheng and colleagues who reported that Alistipes were overrepresented in

healthy control subjects compared to patients diagnosed with MDD [46].

5.5.4 Prebiotic treatment in Cluster 2 has an opposite

effect of the synbiotic in Cluster 1

In Cluster 2, the prebiotic supplementation induced a general oscillation

of the abundance levels of Eubacterium, Blautia and Lachnospiraceae spp.

which characterised the bacteriotype of this group. Kim and colleagues

[47] suggested that the reduction in the relative abundances of Eubacterium

is related to the increase of the brain-derived neurotrophic factor in the

serum, improving brain functions. On the contrary respect to Cluster 1,

the comparison between the prebiotic and synbiotic treatments showed that

Alistipes spp. and Lachnospira spp. increased in Cluster 2 individuals.

The synbiotic intervention specifically led to a lower abundance of Ru-

minococcaceae (heterotypic synonym of family Oscillispiraceae): at fam-

ily level, it was observed that these taxa were lower in depressed subjects

compared to the control group [44] and were correlated with behavioural

changes induced by stress in mice [48]. Conversely, prebiotics reduced the

levels of Blautia, Clostridium, Escherichia, and Agathobaculum spp. al-

though no data have been reported yet on the association of Agathobaculum

(a strictly anaerobic and butyrate-producing strain isolated from the faeces

of a healthy 23-year-old Korean female [49]), with stress-related disorders
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and there is a lack of consensus related to the presence of Escherichia in

MDD patients, this effect could be considered beneficial for this cluster, as

both Blautia spp. and Clostridium are usually found at higher levels in pa-

tients with MDD [3, 44]. Conversely, Faecalibacterium and R. inulinivorans

increased at the end of prebiotic treatment: this species has been shown

to have beneficial effects in specific conditions (i.e., atherosclerosis, [50])

but no particular correlation has been found with mental or stress-related

disorders [3].

5.5.5 Treatments in Cluster 3 changed the relative

abundance of Phascholarctobacterium faecium,

Subdoligranulum, and Eubacterium

The assumption of the synbiotic in Cluster 3 individuals increased the rel-

ative abundance of Subdoligranulum and P. faecium and Eubacterium spp.

(which characterised the bacteriotype at the baseline). It is interesting to

note that P. faecium and, in general, family Acidaminococcaceae are more

correlated to patients with active MDD [44] and with both IBS and depres-

sion [51] rather that with healthy subjects. On the contrary, Subdoligranu-

lum are depleted in subjects with IBS and depression, so its presence in the

synbiotic cohort can be interpreted as a positive effect of this treatment [52].

This taxon is capable of producing Short Chain Fatty Acids (SCFAs) (in

particular butyrate) that protect the intestinal mucosa and regulate the im-

mune system. More specifically, SCFAs play an important role in the differ-

entiation of T cells and as histone deacetylase inhibitors, which were found

to have immunosuppressive and anti-inflammatory functions and have been

explored as potential novel antidepressants [3]. R. hominis, Anaerotignum

spp. (similarly to Cluster 1), Pseudoflavonifractor, Eubacterium (conversely

to the synbiotic treatment) and Sporobacter (among the signature taxa of

this cluster) were significantly abundant following the prebiotic treatment

while I. bartletti, Bacteroides and B. obeum decreased. Sporobacter and
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Pseudoflavonifractor are among the common taxa found in the human gut

microbiota; as for R. hominis, although no data are available regarding the

direct positive or negative connection of this species and stress-related disor-

ders, the reduction in the abundance of butyrate-producing Lachnospiraceae

members, (including R. hominis) which are beneficial for the integrity and

function of intestinal barrier, was involved in the formation of stress-induced

visceral hypersensitivity for which R. hominis was proposed as a candidate

potential probiotic [53]. As for I. bartlettii, it is interesting to report that

it was found more frequently in the faecal samples of children with neu-

rodevelopmental disorders compared to the control subjects [54]. Finally,

Bacteroides spp. exhibited divergent directionality and were found to be

associated both with MDD as well as with healthy status, so no conclusions

can be made on the effect of their reduction in this cohort [38].

5.6 Conclusions

Although no consensus observations on the biological significance of particu-

lar components of the gut microbiota on mood disorders have been obtained

yet, the present study shows that both the "synbiotic" and the "prebiotic"

intake over a period of 6 weeks significantly changed the composition of the

gut microbiota.

A debate is still ongoing whether the probiotic supplementation alters suc-

cessfully the microbiota composition [55]; in this perspective, Pinto-Sanchez

and colleagues [9] observed that probiotic administration in patients with

IBS led to changes in urine metabolic profiles, brain activity and to antide-

pressant effects, but no detectable effects on the gut microbiota composition

were noticed. Nevertheless, it has been demonstrated that probiotic treat-

ments impact on both the gut microbiota gene expression (with potential

anti-inflammatory effects) and the gut barrier function (as also shown by

the probiotic strains used in the present study – M. Pane, personal commu-

nication); which can lead to an effect on the cognitive function [8].
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Overall, this study offers evidence that probiotics supplementation has vari-

able impacts depending on the gut microbiota bacteriotypes (i.e., Cluster

1, 2 and 3). In some cases, the shifts were towards microbial populations

generally related to a healthy mood status (i.e., higher abundance of C.

leptum and Subdoligranulum in Cluster 1 and 3, respectively) and suggests

some mechanisms (i.e., SCFA production related to Subdoligranulum) which

might rationalise the positive effects of the supplementation on the depres-

sive mood state and sleep quality we observed in our previous work [5].

Particularly, variations of microbiota compositions were found to be sta-

tistically related to sleep quality improvement and to a descending rate of

depression, anger and fatigue in probiotic-treated individuals of Cluster 1.

Overall, these findings should be interpreted with caution: first of all, fur-

ther studies are necessary on a larger and more homogeneous cohort of

individuals, taking fully into account the effects of gender, diet, body mass

index, presence of inflammation, bacteriotypes, and other factors that may

be important covariates affecting the faecal microbiota.

As for diet, it is well established that it is one of the major modulators

of the microbiota, therefore its monitoring is of utmost interest to bet-

ter understand microbial dynamics and link them to other metabolic and

physiological parameters [56]. However, the monitoring of young healthy in-

dividuals for 6 weeks (9 including washout) proved to be a very challenging

task, with too partial data that could not be used for associations.

Indeed, in this study, we tried to move from an effectiveness perspective

(the whole cohort) to an efficacy-focused one (the clusters/bacteriotypes),

revealing some complexities on the microbial background related to the ef-

fects described by Marotta et al. [5] on almost the same cohort. Shedding

light on these variables, especially on a healthy individual’s cohort, is ex-

pected to allow a better development of psychobiotic treatment strategies.

This will contribute to the definition of probiotics as an adjunct therapy or

for the prevention of mood-related disorders.
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Chapter 6

Salivary microbiota composition

may discriminate between

patients with eosinophilic

oesophagitis (EoE) and non-EoE

subjects

The work described in this chapter is taken from: S. Facchin, M. Calgaro,

M. Pandolfo, F. Caldart, M. Ghisa, E. Greco, E. Sattin, G. Valle, E. S.

Dellon, N. Vitulo, E. V. Savarino; Salivary microbiota composition may

discriminate between patients with eosinophilic oesophagitis (EoE) and non-

EoE subjects. Aliment Pharmacol Ther. 2022; 56: 450-462. https: //
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SF, MC, NV and EVS conceptualised the work. SF, MP, MG curated the

metadata. SF, MC, MP, ESD, NV, EVS drafted the original manuscript.

ES and GV processed the biological samples. MC, MP, and NV performed

the bioinformatics and statistical analyses. FC acquired the fundings and

administered the project with MG and EG, under the management of EVS.

NV, GV, and ESD supervised the project at various stages with EVS as the

principal investigator.

Challenges and future perspectives

In this work, saliva samples and oesophageal biopses were collected prospec-

tively from 49 adult patients, either diagnosed with Eosinophilic oEsophagi-

tis (EoE) or with symptoms of oesophageal disfunction, undergoing upper

endoscopy. The first aim was to characterise the salivary, oesophageal, and

gastric microbiome in EoE patients through 16S rRNA analysis. Instead,

the second objective was to correlate the findings with this specific disease

and its activity from saliva samples. Indeed, the high accessibility of saliva

samples during routine outpatient visits, combined with high-throughput

technologies, could produce huge amounts of data. Statistical models could

be trained on these data and used to help clinicians in diagnosis and prog-

nosis, moving towards a more personalised medicine approach.

In the context of this research the main challenge was the low sample size

which could reduce the scope of the results by reflecting specific micro-

bial characteristics of this cohort. Despite the low sample size and all

the derived limits, I was able to train a classifier based on a sparse Par-

tial Least Squares Discriminant Analysis (sPLS-DA), and validate it on a

second group of samples, to discriminate between cases and controls with

decent accuracy. sPLS-DA is an extension of the popular Partial Least

Squares Discriminant Analysis (PLS-DA) method, specifically designed to

handle high-dimensional data with a limited number of samples. One key

advantage of sPLS-DA over traditional PLS-DA is its ability to achieve

148



6.1. Summary

sparsity, i.e., the property of having only a subset of features that are truly

informative for discrimination, while the remaining features are effectively

disregarded. This is achieved through LASSO penalisation, by incorporat-

ing a penalty into the model optimisation process. This penalty encourages

a smaller subset of features to have non-zero coefficients, effectively select-

ing the most informative variables for discrimination while shrinking the

rest towards zero. The sparsity level parameter can be determined using

cross-validation and is chosen based on a performance metric, such as clas-

sification accuracy.

The future perspectives of this project rely on the inclusion of more samples,

both by directly sampling new saliva specimens from patients during routine

outpatient visits and by integrating available data from public repositories

or other similar research. In both cases, but especially in the latter, the

batch effect correction holds the key to successful integration.

Article location

https://onlinelibrary.wiley.com/doi/full/10.1111/apt.17091

Supplementary material

The supplementary material for this article consists of 3 addi-

tional files available at https://onlinelibrary.wiley.com/doi/full/

10.1111/apt.17091#support-information-section

6.1 Summary

Background

Data on the role of the microbiome in adult patients with Eosinophilic

oEsophagitis (EoE) are limited.
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Aims

To prospectively collect and characterise the salivary, oesophageal and gas-

tric microbiome in patients with EoE, further correlating the findings with

disease activity.

Methods

Adult patients with symptoms of oesophageal dysfunction undergoing up-

per endoscopy were consecutively enrolled. Patients were classified as EoE

patients, in case of more than 15 eosinophils per high-power field, or non-

EoE controls, in case of lack of eosinophilic infiltration. Before and during

endoscopy, saliva, oesophageal and gastric fundus biopsies were collected.

Microbiota assessment was performed by 16S rRNA analysis. A sparse Par-

tial Least Squares Discriminant Analysis (sPLS-DA) was implemented to

identify biomarkers.

Results

Saliva samples were collected from 29 EoE patients and 20 non-EoE con-

trols; biopsies from 25 EoE and 5 non-EoE controls. In saliva samples, 23

Amplicon Sequence Variants (ASVs) were positively associated with EoE

and 27 ASVs with controls, making it possible to discriminate between EoE

and non-EoE patients with a Classification Error (CE) of 24%. In a vali-

dation cohort, the accuracy, sensitivity, specificity, positive predictive value

and negative predictive value of this model were 78.6%, 80%, 75%, 80% and

60%, respectively. Moreover, the analysis of oesophageal microbiota sam-

ples observed a clear microbial pattern able to discriminate between active

and inactive EoE (CE=8%).

Conclusions

Our preliminary data suggest that salivary metabarcoding analysis in com-

bination with machine learning approaches could become a valid, cheap,

non-invasive test to segregate between EoE and non-EoE patients.
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6.2 Introduction

Eosinophilic oEsophagitis (EoE) is an allergen/immune-mediated disease

characterised by symptoms of oesophageal dysfunction and eosinophilic in-

filtration of the oesophageal mucosa in the absence of secondary causes of

eosinophilia [1]. The prevalence (0.5-1 case per 1000) and the incidence (5-10

cases per 100,000 per year) markedly increased in the last decade and is now

considered to be one of the most important causes of dysphagia in children

and young adults. The diagnosis is based on suggestive clinical features (e.g.

dysphagia and/or bolus impaction), the presence of eosinophilic inflamma-

tion (≥15 eosinophils per High-Power Field [eos/HPF] in at least one of

multiple oesophageal biopsies) and exclusion of other causes of eosinophilia

[2, 3]. EoE affects more males than females (3:1), and the mean age at

diagnosis is between 30 and 50 years in adults and 5 and 10 years among

children [4].

The pathogenesis is still uncertain. Among genetic factors, thymic stromal

lymphopoietin (TSLP), Calpain 14 (CAPN14), chemokine C-C motif Lig-

and 26 (STAT6) appear to be involved in the development of EoE [5, 6].

Moreover, environmental factors, including aero- and alimentary allergens,

and early life conditions (e.g., caesarean section, use of antibiotics, preterm

birth) seem to have a predominant role in causing EoE and suggest that

alterations in the microbiota may play a role in EoE pathogenesis [7–9]. In

this context, the role of oesophageal microbiome has been evaluated in the

evolution of this disease. In fact, a change in the composition or in the load

of gastrointestinal microbiota has been involved in molecular pathogenic

pathways and in promoting diseases [10–12].

To date, little is known about the possible role of the gut microbiome in

EoE, with most of the studies focusing on oesophageal and salivary micro-

biome [13–17]. These preliminary studies showed that active EoE is asso-

ciated with an increase in Haemophilus, Neisseria, and Corynebacterium

in the oesophageal microbiome and, in contrast, inactive EoE patients and

healthy controls have a predominance of Gram-positive (especially Strep-
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tococcus) bacteria [13–15, 18]. Comparing the salivary microbiome to the

oesophageal one in paediatric EoE patients, a study demonstrated that

both have an abundance of Streptococcus, Neisseria, and Prevotella [14].

Moreover, there are no data on the composition of the gastric microbiome

in EoE subjects, whereas in healthy subjects it seems to be composed by

Actinobacteria (Rothia, Actinomyces, and Micrococcus), Bacteroidetes (Pre-

votella), Firmicutes (Streptococcus and Bacillus), and Proteobacteria (H.

pylori, Haemophilus, Actinobacillus, and Neisseria) [19–22].

Given the limited knowledge about the characteristics of salivary, oe-

sophageal, and gastric microbiome in EoE and its correlation with the pro-

gression of the disease, we aimed to prospectively collect and characterise

the salivary, gastric, and oesophageal microbiome in active and inactive EoE

patients, and to correlate these findings with disease activity.

6.3 Methods

6.3.1 Study design and case definitions

Adult patients with symptoms of oesophageal dysfunction undergoing Oe-

sophagoGastroDuodenoscopy (OGD) with biopsies at Gastroenterology

Unit, Academic Hospital of Padua (Italy), between October 2018 and

November 2020 were consecutively and prospectively enrolled. The diag-

nosis of EoE was established according to international guidelines in case

of symptoms of oesophageal dysfunction, the presence of an eosinophilic

inflammation (≥15 eos/HPF in at least one of the multiple oesophageal

biopsies), and the exclusion of other causes of eosinophilia [2, 3]. Active

EoE and inactive disease were defined per the 2018 consensus guidelines

as a peak eosinophil count of ≥ or <15 eos/HPF in all oesophageal biop-

sies performed, respectively [23–25]. To compare the gastro-oesophageal

microbiome, adult control patients with gastro-oesophageal symptoms but

lacking of eosinophilic inflammation were included. Moreover, additional

control patients were enrolled to obtain a higher number of saliva samples
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for in-depth analysis. Some of them underwent endoscopy and biopsies

during the same endoscopic sessions for oesophageal symptoms and had a

normal upper gastrointestinal endoscopy, while others were EoE patients

who underwent follow-up visits to monitor the maintenance of remission

and agreed to participate.

The study was approved by the Regional Ethical Committee for Clinical

Trials (n=3312/AO/14 and n=4204/AO/17). Written informed consent

was obtained from all eligible participants before participation.

6.3.2 Clinical, endoscopic, and histological data

Clinical data including demographics, coexisting allergic conditions (e.g.,

allergic rhinitis, asthma, food allergies, environmental allergies, pharmaco-

logical allergies), current and recent (within 4 weeks) exposure to medica-

tion like Proton Pump Inhibitors (PPI) and topical corticosteroids, were

recorded at the time of the endoscopy. All OGDs were performed by an

EoE-trained investigator (EVS) and any oesophageal mucosal changes such

as oedema (0-2), rings (0-3), exudates (0-2), furrows (0-2), and strictures

(0-1) were recorded for the evaluation of EREFS scores (range 0-10; higher

scores indicate more severe endoscopic findings) [26].

6.3.3 Biopsies sample collection and preprocessing

We obtained from each patient at least six oesophageal biopsies (i.e., from

the upper, middle, and lower sites) for histology for EoE diagnosis and

monitoring (in the case of follow-up endoscopies). For the microbiota anal-

ysis, we obtained one biopsy from the upper, middle, lower oesophagus, and

one from the gastric fundus conserved in a lysis/stabilisation solution until

analysis. An expert gastrointestinal pathologist analysed the oesophageal

biopsies to determine the Eosinophilic oEsophagitis Histologic Scoring Sys-

tem (EoEHSS) score, based on features of: intensity of eosinophilic inflam-

mation, basal zone hyperplasia, dilated intercellular spaces, eosinophilic mi-

croabscess, eosinophil surface layering, surface epithelial alterations, dysker-
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atotic epithelial cells, and lamina propria thickness when present [27]. Duo-

denal and gastric biopsies were also collected for the histopathologic eval-

uation of gastritis, H. pylori infection, and eosinophilic infiltration, in par-

ticular, to exclude cases of concomitant eosinophilic gastritis or enteritis

[27].

6.3.4 Saliva sample collection and preprocessing

Saliva samples were collected just before the OGD. Per standard protocol,

participants were fasting for at least 6 hours before the upper endoscopy.

After providing informed consent, between 1 and 2 ml of saliva were col-

lected in Omnigene-oral kit (DNAgenotek). Among the additional EoE

cases who did not undergo endoscopic assessment, saliva was collected be-

fore outpatient clinics, but they were asked to respect the same conditions

of the patients who underwent the upper endoscopy (i.e. fasting for at least

6 hours before collection). The samples were stored at -20°C until further

analysis.

6.3.5 Illumina 16S library construction

Next Generation Sequencing (NGS) protocol was performed by BMR ge-

nomics (Padua) using standard techniques. Briefly: V3-V4 regions of 16S

rRNA gene were amplified using the primers Pro341F: 5’-CCT ACG GGN

BGC ASC AG-3’ and Pro805R: Rev 5’-GAC TAC NVG GGT ATC TAA

TCC-3’ [28]. Primers were modified with forward overhang: 5’-TCG TCG

GCA GCG TCA GAT GTG TAT AAG AGA CAG [locus-specific sequence]-

3’ and with reverse overhang: 5’-GTC TCG TGG GCT CGG AGA TGT

GTA TAA GAG ACA G [locus-specific sequence]-3’ necessary for dual-index

library preparation, following Illumina protocol [29]. Samples (saliva and

biopsies) were normalised, pooled, and run on Illumina MiSeq with a 2×300

bp approach.
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6.3.6 Bioinformatics data analysis

Analysis was performed using R (v4.0.4) (R Core Team, 2019). Primar-

ily, the sequences in FASTQ format were analysed using DADA2 (v1.18),

a tool that implements an error correction model and allows the iden-

tification of exact sample sequences that differ as little as a single nu-

cleotide [30]. The final output of DADA2 was an Amplicon Sequence

Variants (ASVs) table which recorded the number of times each ASV

was observed in each sample. DADA2 was run as described in https:

//benjjneb.github.io/dada2/bigdata.html using default parameters.

To improve the overall quality of the sequences, the reads were filtered

and trimmed using the filterAndTrim function implemented in DADA2.

Consequently, to remove low-quality bases at the end of reads, the trun-

cLen option was set to (290; 250) for the forward and reverse FASTQ

files, respectively. Similarly, to remove adapter sequences at the 5’ end,

the trimLeft option was set to (17; 21), for forward and reverse reads, re-

spectively. The removeBimeraDenovo function was used to remove chi-

maeras, via consensus method and then collapseNoMismatch function col-

lapsed together all the reads that were identical up to shifts or length vari-

ation. Finally, the taxonomic assignment was performed using the naïve

Bayesian classifier method implemented in DADA2 (assignTaxonomy and

addSpecies functions) using as reference the Silva 16S database (Version

138), correctly formatted to work with the taxonomic classifier implemented

within DADA2 (https://benjjneb.github.io/dada2/assign.html) [31].

A phylogenetic tree of the ASVs was obtained using the function AlignSeq

implemented in DECIPHER (v2.16.1) an R package to create multiple se-

quence alignments [32]. FastTree (v2.1.11) was used to create the phylo-

genetic tree [33]. The phyloseq package was used to perform all the down-

stream analysis in the R environment [34].
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6.3.7 Data quality assessment and filtering

Rarefaction curves on raw data were evaluated to assess the species rich-

ness among samples as a function of the sequencing depth. Data were

pre-processed filtering taxa (ASVs) with a low average relative abundance,

setting a threshold of 0.005%; furthermore, taxa present in less than two

samples were discarded. Phylum members of Chloroflexi (cumulative rel-

ative abundance=0.0001%), Armatimonadota (0.0001%), Acidobacteriota

(0.0002%), Abditibacteriota (0.0003%), Verrucomicrobiota (0.0007%), and

Desulfobacterota (0.002%) taxa were discarded by this filter. The counts

of all the ASVs were collapsed together by genus and by phylum, and the

10 most present genera were plotted to phylum level. Mann-Whitney tests

were performed to test relative abundance differences across active disease

activity, inactive disease activity, and control samples at phylum level and

for each of the 10 most abundant genera.

6.3.8 Biodiversity measurements

Shannon-Wiener index was used to calculate α-diversity, which was plot-

ted by stratifying the samples according to body site and disease activ-

ity. Mann-Whitney tests were performed to verify statistical differences

in the α-diversity across active disease activity, inactive disease activity,

and control samples. To measure β-diversity, data were normalised us-

ing the Total Sum Scaling (TSS) normalisation through the phyloseq_stan-

dardize_otu_abundance function of the vmikk/metagMisc package (https:

//github.com/vmikk/metagMisc). Bray-Curtis distance metrics was used

to measure diversity between sample counts and the Principal Coordinates

Analysis (PCoA) ordination method was used to ordinate the samples in a

reduced dimensional space using the ordinate function of the Vegan pack-

age (v2.5-7) [35]. To test the multivariate homogeneity of group dispersions,

betadisper function of the latter package was used. Finally, the PERMu-

tational ANalysis Of VAriance (PERMANOVA) was performed, using the
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adonis and the adonis_pairwise functions, in order to investigate disease

activity and condition contributions on the β-diversity variability.

6.3.9 Biomarkers identification

A discriminant analysis was computed using sparse Partial Least Squares

Discriminant Analysis (sPLS-DA) methods to identify possible biomarkers

associated with the condition (EoE vs non-EoE), disease activity (active

based on ≥15 eos/HPF vs inactive based on <15 eos/HPF) in the three

oesophageal biopsies, and the EREFS score. In particular, following the de-

fault mixOmics (v6.14) pipeline (https://mixomics.org/case-studies/

splsda-srbct/), a pseudo-count value of 1 was added to the raw counts,

which were then normalised with TSS and Centred Log-Ratio (CLR) trans-

formed [36, 37]. This compositional approach is based on the CLR value

which is computed through the ratio of an ASV abundance, and the geo-

metric mean of all the other ASV abundances in the sample. A positive

(or negative) value of the CLR indicates that the abundance of the con-

sidered ASV is CLR-fold bigger (or smaller) than the geometric mean of

the abundances of all the ASVs. Consequently, a zero value does not indi-

cate the absence, instead, it indicates that the difference between the ASV’s

abundance and the geometric mean of the abundances is null.

The sPLS-DA classification performance was measured with a machine

learning approach through the function tune.splsda. The tuning was per-

formed with a leave-one-out Cross Validation (CV) process, and a prediction

distance (maximal distance) was chosen to predict class membership across

all CV runs. The ability of the model to correctly classify samples was sum-

marised by the Classification Error (CE) which is computable by subtracting

the classification accuracy to 1: Classification error=1-Accuracy. Accuracy

is computable as TP+TN
TP+FP+TN+FN

, where TP, TN, FP, and FN are the true

positives, true negatives, false positives, and false negatives, respectively.

For each comparison a summary image was plotted using the HotLoadings

function (https://github.com/mcalgaro93/HotLoadings), displaying the
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discriminant ASVs loadings and the related heatmap.

Finally, to establish the adequacy of the model, it was tested in a validation

set of 14 saliva samples. Accuracy, specificity, sensitivity, positive predictive

value, and negative predictive value were computed.

6.3.10 Statistical analysis

When continuous parameters were compared, a non-parametric test (Mann-

Whitney test or Kruskal-Wallis) was used, while the proportions were com-

pared using Fisher’s exact test. For the relative abundance analysis, to

assess the main microbial differences between EoE and non-EoE patients,

Mann-Whitney tests were performed, independently, on the relative abun-

dances of the 10 most abundant genera at phylum level, stratifying the sam-

ples by body site. To better characterise and identify potential biomarkers

for EoE condition, differences in the microbial compositions between EoE

and non-EoE subjects, for each body site we conducted a multivariate anal-

ysis based on sPLS-DA data. The sPLS-DA is a variation of the Partial

Least Squares Discriminant Analysis (PLS-DA) and enables the selection

of the most predictive or discriminative features in the data to classify the

samples. The sPLS-DA performs variable selection and classification in a

one-step procedure. This compositional approach is based on the CLR val-

ues that indicate the abundance of a taxa relative to the average (geometric

mean) abundance of all the other taxa in the sample. To this respect, when

interpreting the results, it is important to remember that we examined ra-

tios between values, that was the change in abundance of a taxon relative

to all others in the data set, rather than abundances. Moreover, sPLS-

DA analyses in saliva, oesophagus (all segments considered together), and

gastric fundus were conducted to investigate whether specific taxa were as-

sociated with active or inactive-EoE. Finally, to investigate the differences

between the three oesophageal biopsies of each subject and the association

with eos/HPF counts, sPLS-DA was performed.
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6.4 Results

6.4.1 Demographics and clinical parameters

Of 49 adults enrolled (mean age 35 years, range 18-76 years), 29 were EoE-

patients (16 inactive and 13 active), and 20 were non-EoE controls. Saliva

samples were collected from all the subjects, whereas biopsies for micro-

biome assessment were collected from 25 out of 29 EoE patients and only

5 out of 20 non-EoE controls. The latter five non-EoE controls, they had

symptoms of oesophageal dysfunction, lack of eosinophilic inflammation at

upper endoscopy, and no previous treatment with proton pump inhibitors.

Demographic and clinical characteristics of the whole population are de-

tailed in Table 6.1. The groups were comparable for age (EoE patients’ In-

terQuartile Range [IQR] 25-50 years vs non-EoE patients’ IQR 27-48 years,

p-value=0.63), while they differed in terms of sex (p-value=0.01). At the

time of OGD for microbiome samples, 26 out of 29 (90%) EoE patients were

taking PPIs and the proportion was comparable in both inactive (88%) and

active-EoE (92%) groups (p-value=1) but not between all the EoE patients

and the controls (55%, p-value=0.01).
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Features EoE patients
Inactive
EoE

Active
EoE Controls p-value

(N=16) (N=13) (N=20)
Demographics
Male, n % 14 88% 10 77% 8 40% 0.01a

Age, median (IQR) 37
(25–52)

29
(21–43)

39
(27–47) 0.65b

Clinical symptoms, n %
Dysphagia 3 19% 4 31% 0 0% 0.02a
Bolus impaction 2 13% 4 31% 2 10% 0.29
Heartburn/regurgitation 4 25% 4 31% 6 30% 1.00
Chest pain 1 6% 1 8% 1 5% 1.00
Abdominal pain 1 6% 4 31% 7 35% 0.09
Nausea/vomiting 1 6% 0 0% 1 5% 1.00
Allergic comorbidities, n %
Rhino/conjunctivitis 4 25% 6 46% 1 5% 0.02
Asthma 2 13% 3 23% 1 5% 0.35
Food allergies 1 6% 3 23% 1 5% 0.29
Environmental allergies 3 19% 7 54% 2 10% 0.02
Other atopic manifestations
(e.g., atopic dermatitis)

1 6% 2 15% 3 15% 0.75

Therapies, n %
Proton pump inhibitors 14 88% 12 92% 11 55% 0.03
Topical steroids 7 44% 9 69% 0 0% 0.00
Endoscopy lesions, n %
Edema 2 13% 2 15% — 1.00
Rings 3 19% 10 77% — 0.00
Exudates 7 44% 8 62% — 0.46
Furrows 4 25% 6 46% — 0.27
Stricture 2 13% 1 8% — 1.00
Histology, median (IQR)

eos/HPFc 1
(0–3.25)

35
(20–45) — 0.00d

16S Analysis, n %
Saliva 16 100% 13 100% 20 75%
Upper oesophagus 15 94% 10 77% 5 25%
Middle oesophagus 15 94% 10 77% 5 25%
Lower oesophagus 15 94% 10 77% 5 25%
Gastric Fundus 15 94% 10 77% 5 25%
a Fisher’s exact test.
b Kruskal–Wallis rank sum test.
c We consider the highest eosinophilic peak in one of the biopsies.
d Mann–Whitney test.

Table 6.1: Demographic and clinical characteristics of the whole population.
P-values refer to the comparisons between EoE and non-EoE patients.
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6.4.2 Microbial composition of the samples according

to body sites

The 16S rRNA metabarcoding analysis of saliva samples was performed for

a total of 16 inactive-EoE patients, 13 active-EoE patients, and 20 non-

EoE controls. Moreover, the 16S rRNA metabarcoding analysis of gastro-

oesophageal mucosal samples was performed for 15 inactive-EoE patients,

10 active-EoE patients, and 5 non-EoE controls. They resulted in 761 ASVs

with a median of 62,333 bacterial reads (IQR 46532, 71358) per sample re-

tained after data processing, quality control, and filtering (Additional file

1: Supplementary Fig. S1-S4). The most abundant phyla overall were Fir-

micutes, Bacteroidota, and Proteobacteria with more than 86% of the to-

tal counts, followed by Fusobacteriota, Actinobacteriota, Patescibacteria,

Campilobacterota, and some other low abundant phyla (Additional file 1:

Supplementary Table S1). At the genus level, the 10 most abundant gen-

era were Streptococcus, Prevotella, Haemophilus, Veillonella, and Neisseria

which contributed to the 60% of the total counts, followed by Fusobac-

terium, Alloprevotella, Actinobacillus, Porphyromonas, and Gemella which

contained almost the 25% of the counts (Additional file 1: Supplementary

Table S2).

α-diversity was different between body sites, displaying a significantly higher

Shannon index in saliva and gastric fundus, compared to the three oe-

sophageal segments (Fig. 6.1 a). β-diversity (Fig. 6.1 b) showed that

the dispersion of the samples was homogeneous between body sites, while

it was significantly different between active/inactive EoE patients (p-

value=0.026), active vs non-EoE patients (p-value=0.015) and tended to be

significant between inactive and non-EoE patients (p-value=0.093). Con-

sidering the homogeneity of variances between body sites, PERMANOVA

analysis highlighted that body sites were significantly associated with the

β-diversity measurements (p-value=0.001). Specifically, the pairwise com-

parisons between body sites displayed non-significant differences only be-

tween the three oesophageal segments. Of the total 761 ASVs, 550 were
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present in all the body sites, while 15 of them were present exclusively in

saliva and 25 were present exclusively in the oesophagus (in more than one

tract: Fig. 6.1 c).

6.4.3 Oesophageal, gastric, and salivary microbiome

composition between EoE and non-EoE patients

Microbial composition by site in active, inactive EoE, and non-EoE samples

is summarised in Fig. 6.2 where the 10 most abundant genera are reported.

No significant differences were found comparing their relative abundances

(see Methods and Additional file 2 for details). However, a minor trend

was observed for Bacteroidota phylum that resulted to be less abundant

(unadjusted p-value=0.03) in gastric fundus samples of EoE patients com-

pared to that of non-EoE (30% vs 36.7%; Additional file 2 a). Similarly, the

Neisseria genus was found to be more abundant (unadjusted p-value=0.04)

among the saliva samples of EoE patients compared to that of non-EoE

(11.09% vs 7.39%; Additional file 2 c).

A similar microbial-richness was shown by the α-diversity analysis between

EoE and non-EoE samples stratified by body sites (Fig. 6.1 d), although

the α-diversity values of non-EoE were slightly higher than those of EoE

without reaching statistical significance. Similarly, the first two principal

coordinates of β-diversity were unable to show a clear separation between

EoE and non-EoE patients (Fig. 6.1 b).

To further investigate differences in the microbial composition, we applied

a multivariate statistical analysis based on sPLS-DA to identify possible

biomarkers associated with EoE and non-EoE patients. The analysis per-

formed on the saliva samples revealed that a group of 50 ASVs were able to

discriminate between EoE and non-EoE patients with a classification error

of 24%. In particular, 23 of them were positively associated with EoE sam-

ples, while the remaining 27 were positively associated with the non-EoE

ones. Among the most discriminant ASVs positively associated with EoE

samples, we found Streptococcus cristatus, Prevotella oris, Veillonella mas-
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siliensis, and Peptostreptococcus stomatis spp., together with ASVs of [Eu-

bacterium] nodatum group, Porphyromonas, Alloprevotella, Selenomonas,

and other Streptococcus genera. Conversely, among the ASVs associated

with non-EoE patients, we found members belonging to Prevotella, Allo-

prevotella, Porphyromonas, Neisseria, and Streptococcus genera, along with

Mogibacterium, [Eubacterium] brachy group genera, and Haemophilus pitt-

maniae spp. (Fig. 6.3).

To establish the adequacy of the model, this was validated on a set of 14

saliva samples (10 from EoE patients and 4 from non-EoE controls) which

was comparable to the group where the model was estimated in terms of

demographics and clinical characteristics of the patients. As shown in Ad-

ditional file 1: Supplementary Fig. S8, 8 out of 10 EoE patients and 3 out of

4 non-EoE patients were classified as true positives and true negatives, re-

spectively. The classification accuracy, sensitivity, specificity, positive pre-

dictive value, and negative predictive value of the above-specified model

were 78.6%, 80%, 75%, 80%, and 60%, respectively.

The sPLS-DA analysis was also performed on the gastric and oesophageal

samples and the results are detailed in the Additional file 1: Supplementary

Table S3 and Additional file 3.

6.4.4 Oesophageal, gastric, and salivary microbiome

composition between active- and inactive-EoE

No significant differences were found in terms of relative abundance analysis.

However, a minor trend was observed for Neisseria genus that resulted to

be less abundant (unadjusted p-value=0.04) in mid oesophagus samples of

active-EoE patients compared to that of inactive-EoE (3.02% vs 7.27%; see

Additional file 2 b). On the contrary, the Actinobacillus genus was found

to be slightly more abundant (unadjusted p-value=0.04) among the gastric

fundus samples of active-EoE patients compared to that of inactive-EoE

(6.48% vs 2.06%; see Additional file 2 d).

The α-diversity analysis performed on active and inactive-EoE, stratified by
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body sites, showed a similar microbial-richness (Additional file 1: Supple-

mentary Fig. S5). The first two principal coordinates in β-diversity did not

show any clear difference between active and inactive-EoE patients (Addi-

tional file 1: Supplementary Fig. S6).

Regarding the analysis to identify a potential biomarker for disease activ-

ity in EoE, a group of 151 discriminant ASVs was found in saliva sam-

ples between active and inactive-EoE patients, with a classification error of

48%. Among the top 50 ASVs (Fig. 6.4), 22 were associated with active-

EoE samples, while the remaining 28 were associated with inactive-EoE.

We found, as biomarkers of active disease, Catonella morbi, Haemophilus

parainfluenzae species and various ASVs belonging to Prevotella, Allopre-

votella, Actinobacillus, Treponema, and Mycoplasma genera. Instead, other

Prevotella genera were associated with inactive-EoE samples, together with

gingivalis and leadbatteri species of Capnocytophaga genera, Streptococcus,

and Actinomyces genera. Moreover, Oribacterium asaccharolyticum and

Streptococcus cristatus species were characterised by some samples with

negative CLR values in active-EoE samples. Further information about the

biomarkers found in the other body sites are available in Additional file 3.

6.4.5 Oesophageal microbiome composition according

to the different sites and eosinophil counts in EoE

patients

With a classification error of 17%, sPLS-DA revealed that 243 ASVs were

associated with the dichotomic separation of the histological values (<15

eos/HPF and ≥15 eos/HPF). Fig. 6.5 reports the top 50 discriminant

ASVs showing a heterogeneous scenario. Members of the Actinobacillus,

Bergeyella, Porphyromonas, and Alloprevotella genera were associated with

biological samples with ≥15 eos/HPF, while Oribacterium asaccharoloty-

cum, Streptococcus cristatus, Veillonella atypica, Prevotella melaninogenica

species, and others were associated with <15 eos/HPF. Interestingly, for

167

https://onlinelibrary.wiley.com/doi/full/10.1111/apt.17091#support-information-section
https://onlinelibrary.wiley.com/doi/full/10.1111/apt.17091#support-information-section
https://onlinelibrary.wiley.com/doi/full/10.1111/apt.17091#support-information-section


6.4. Results

S
V

277|g:C
atonella,s:m

orbi
S

V
309|f:P

revotellaceae,g:P
revotella

S
V

392|f:P
revotellaceae,g:A

lloprevotella
S

V
5|f:P

asteurellaceae,g:A
ctinobacillus

S
V

248|o:V
eillonellales−

S
elenom

onadales,f:V
eillonellaceae

S
V

754|f:S
pirochaetaceae,g:Treponem

a
S

V
182|o:P

eptostreptococcales−
T

issierellales,f:P
arvim

onas
S

V
353|f:M

ycoplasm
ataceae,g:M

ycoplasm
a

S
V

149|g:H
aem

ophilus,s:parainfluenzae
S

V
415|f:P

revotellaceae,g:P
revotella

S
V

208|f:P
orphyrom

onadaceae,g:P
orphyrom

onas
S

V
606|f:P

eptococcaceae,g:P
eptococcus

S
V

533|c:C
lostridia,o:C

lostridia vadinB
B

60 group
S

V
178|f:P

revotellaceae,g:A
lloprevotella

S
V

162|f:C
am

pylobacteraceae,g:C
am

pylobacter
S

V
452|g:Treponem

a,s:lecithinolyticum
S

V
240|f:C

am
pylobacteraceae,g:C

am
pylobacter

S
V

418|g:P
revotella,s:denticola

S
V

150|g:N
eisseria,s:flavescens

S
V

109|g:V
eillonella,s:m

assiliensis
S

V
354|f:P

revotellaceae,g:A
lloprevotella

S
V

777|g:P
revotella,s:m

elaninogenica
S

V
23|g:C

am
pylobacter,s:concisus

S
V

216|f:V
eillonellaceae,g:V

eillonella
S

V
303|f:W

eeksellaceae,g:B
ergeyella

S
V

724|f:V
eillonellaceae,g:V

eillonella
S

V
270|g:H

aem
ophilus,s:pittm

aniae
S

V
186|g:Treponem

a,s:vincentii
S

V
46|g:R

othia,s:m
ucilaginosa

S
V

50|f:P
revotellaceae,g:A

lloprevotella
S

V
432|f:B

urkholderiaceae,g:Lautropia
S

V
570|f:F

lavobacteriaceae,g:C
apnocytophaga

S
V

147|g:H
aem

ophilus,s:haem
olyticus

S
V

62|f:P
revotellaceae,g:P

revotella
S

V
376|g:C

apnocytophaga,s:granulosa
S

V
582|g:S

treptococcus,s:peroris
S

V
8|f:N

eisseriaceae,g:N
eisseria

S
V

347|f:N
eisseriaceae,g:N

eisseria
S

V
624|f:F

lavobacteriaceae,g:C
apnocytophaga

S
V

344|f:A
ctinom

ycetaceae,g:A
ctinom

yces
S

V
15|f:S

treptococcaceae,g:S
treptococcus

S
V

286|g:A
ggregatibacter,s:kilianii

S
V

496|f:A
ctinom

ycetaceae,g:A
ctinom

yces
S

V
86|g:S

treptococcus,s:cristatus
S

V
317|g:C

apnocytophaga,s:leadbetteri
S

V
133|g:O

ribacterium
,s:asaccharolyticum

S
V

420|f:A
ctinom

ycetaceae,g:A
ctinom

yces
S

V
164|f:S

treptococcaceae,g:S
treptococcus

S
V

167|g:C
apnocytophaga,s:gingivalis

S
V

180|f:P
revotellaceae,g:P

revotella

−
0.2

−
0.1

0.0
0.1

0.2
Loading

Taxonomic features

D
IS

E
A

S
E

.A
C

T
IV

IT
Y

: 
A

C
T

IV
E

IN
A

C
T

IV
E

Loadings −
 1 com

ponent

sP
LS

−
D

A
 −

 A
C

T
IV

E
 vs IN

A
C

T
IV

E
 −

 S
aliva

A
C

T
IV

E
IN

A
C

T
IV

E

S1
S101
S102
S104
S11
S12
S13
S14
S15
S16

S3

S5

S7

S10
S103
S17
S18
S19

S2
S20
S21
S22
S23
S24
S25

S4

S6

S8

S9

S
am

ple

−
2

0
2

4
C

entered Log R
atio

F
igu

re
6.4:

sP
LS-D

A
analysis

ofsaliva
sam

ples.
Loading

values
(on

the
left)

represent
the

discrim
inant

taxa
ofthe

first
com

ponent,associated
w

ith
the

clinical
status.

B
igger

the
loading

absolute
value,

stronger
the

association.
H

eatm
ap

(on
the

right)
show

s
the

C
LR

values
of

the
discrim

inant
taxa

in
allthe

sam
ples.

168



6.5. Discussion

some patients and for some ASVs, such as for patients S1, S11, and S3,

SV208 - Porphyromonas CLR values were homogeneous across oesophageal

segments even if the histological values were different between biopsies of

the same patient. Except for a few rare cases (the top 5 most discriminant

taxa), it was difficult to identify a microbial pattern common to multiple

samples.

6.5 Discussion

The pathogenesis of EoE is still uncertain. Recent studies hypothesised a

role of the oesophageal microbiome in both molecular pathogenesis and as

a predisposing risk factor for disease development. However, prospective

data, including multiple analyses not limited to the saliva or single-site oe-

sophagus are lacking. Thus, we performed this prospective pilot study to

characterise mainly the salivary and partially the oesophageal, and gastric

microbiome in EoE and to correlate it with disease activity, with the final

aim of discriminating a microbial signature (or a complex of signatures) be-

tween patients with EoE compared to patients with oesophageal symptoms

due to a non-EoE condition.

Using a sPLS-DA we observed that in saliva samples, 23 ASVs associated

with EoE and 27 ASVs associated with non-EoE were able to discriminate

between EoE and non-EoE patients with a reasonably low classification er-

ror (CE=24%). We also validated the model on an additional small sample

of patients, observing a 78.6% accuracy, 80% sensitivity, and 75% specificity.

This represents a promising result considering the ease of collecting salivary

samples from our patients as compared to the more cumbersome execution

of upper endoscopy and suggests the potential utility of saliva microbiome

assessment as a non-invasive disease marker to be confirmed in future larger

studies. In contrast, the analysis of oesophageal microbiota samples did not

identify a specific microbial pattern that distinguished between the study

groups, in agreement with a recent study which observed that there were
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no significant differences in the oesophageal microbiome between newly di-

agnosed EoE cases and non-EoE controls in adults, or within EoE cases

based on clinical features [38]. However, it is true that the small number of

samples available does not allow us to reach conclusive results on this issue.

To the best of our knowledge, this is the first study comparing the sali-

vary microbiome with the oesophageal microbiome examining multiple oe-

sophageal biopsy sites and the gastric microbiome in patients with EoE.

From an analysis divided by collection site, we highlighted a substantial

difference between salivary and oesophageal microbiota, with greater intra-

diversity in saliva and gastric fundus than in the oesophagus (Fig. 6.1 a).

This microbiological difference may be explained by PPI administration in

the majority of our subjects with the consequent increase of intragastric pH

and loss of barrier effect of the stomach. Moreover, the same results were

observed in both EoE and non-EoE subjects, suggesting that this differ-

ence was not influenced by any pathological condition. On the other hand,

we cannot exclude that this microbiological difference between saliva and

oesophageal microbiome could be due to the presence of atopic patholo-

gies presented by both non-EoE controls and EoE patients. Indeed, it has

been reported that both eosinophils and basophils can kill bacteria, the for-

mer through a number of antimicrobial products including granule cationic

proteins and defensins, and the latter through extracellular traps. These

products could modify the local microbiota in atopic diseases where there

is a significant infiltration of these granulocytes [39].

In this study, we also tried to compare the composition of the salivary,

gastric, and oesophageal microbiome in active and inactive EoE. The anal-

ysis of oesophageal microbiota samples observed a clear microbial pattern

able to discriminate between active and inactive EoE (CE=8%), while the

performances in identifying active and inactive-EoE of salivary and gastric

fundus microbiota patterns were less precise (CE=48% and 40%, respec-

tively). Thus, our findings suggest that salivary samples seem less practical

to be used for segregating EoE patients according to their disease activity,
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due to the fact that a large group of 151 discriminant ASVs was found

in saliva samples between active and inactive-EoE patients. Considering

the top 50, 22 ASVs were associated with active-EoE and 28 were associ-

ated with inactive-EoE. Similarly, a recent study has tried to correlate the

modification of the salivary microbiome to disease activity, both in terms

of endoscopic activity according to the EREFS score and histologic activ-

ity according to the EoEHSS score [15]. Hiremath et al. found a higher

abundance of Haemophilus in patients with active EoE and higher EREFS

and EoEHSS scores associated with this bacteria [15]. On the other hand,

we observed that a microbial signature characterising the salivary micro-

biota of active patients (Catonella morbi) was also abundant in some gas-

tric biopsy samples. Catonella morbi is a non-motile, non-spore forming,

obligate anaerobic Gram-negative rod that ferments carbohydrates and pro-

duces major amounts of acetic acid and smaller amounts of formic and lactic

acids. Catonella morbi is a normal inhabitant of the oral cavity and has

been suggested to be associated with marginal periodontitis. This signa-

ture has been also associated with different disorders, including endodontic

lesions and coronary heart disease, and oral squamous cell carcinoma [40].

Catonella morbi is not the only microbial signature characterising the sali-

vary microbiota in EoE patients to be associated with periodontal diseases.

Indeed, in the EoE salivary microbiome, at least two well-characterised

signatures (Prevotella oris and Alloprevotella tannerae), and other genera

(Prevotella, Selenomonas, and Phorphyromonas) were associated with oral

cavity diseases [41].

At the oesophageal level, we showed a Bacteroidota predominance (Porphy-

romonas, Alloprevotella, and Bergeyella) in active-EoE patients, which is in

contrast with other studies, while patients with the inactive disease showed

an undifferentiated presence of Firmicutes, Bacteroidota, and Proteobac-

teria (Additional file 1) [13, 15, 18, 42]. An additional sPLS-DA analysis

was performed to verify whether different microbial signatures were present

on the surface of oesophageal biopsies characterised by <15 eos/HPF com-
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pared to biopsies characterised by ≥15 eos/HPF. We showed members of the

Actinobacillus, Bergeyella, Porphyromonas, and Alloprevotella genera were

positively associated with biological samples with eos/HPF ≥15. These

are Gram-negative microbial signatures associated mainly with the oral

cavity (Porphyromonas and Alloprevotella) or with the respiratory tract

(Actinobacillus) and sometimes associated with endocarditis (Actinobacil-

lus, Bergeyella). On the other hand, bacteria associated with eos/HPF

<15 histologies as Oribacterium asaccharolyticum and Streptococcus crista-

tus Gram-positive or Veillonella atypica, Prevotella melaninogenica Gram-

negative are species differently associated with the healthy oral microbiota.

A limitation of the study is related to relatively small sample size and the low

number of biopsy samples collected from non-EoE controls. This prevented

us from clearly evaluating biopsy microbial signatures as possible discrimi-

nating signatures. However, we opted for this approach because our initial

preliminary analysis on a few EoE subjects and non-EoE controls did not

show relevant differences for the oesophageal and gastric microbiome and

therefore, we decided to focus more on salivary evaluation. Our decision

was also supported by a recent meta-analysis underlining the importance

of oral microbiome assessment to predict in the future various oesophageal

diseases via oral samples that can be easily obtained as compared to oe-

sophageal samples [43]. Another limitation is represented by the lack of

metabolomic analysis, which could have provided more data on the role

of the oesophageal microbiome on EoE. A further limitation includes the

lack of control of factors that could influence the microbiome composition

as well as the demographic differences observed between our EoE patients

and non-EoE controls, including diet, drugs, and gender. However, previous

studies showed that diet, gender, and PPI have no or limited effect on the

salivary microbiota composition [44], whereas data on topical steroids are

lacking. On the other hand, previous studies suggested that drugs like PPIs

and topical steroids may have a role in changing gastro-oesophageal micro-

biome composition [42]. Then again, some points of strengths should be
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emphasised. This pilot study had a prospective design, which allowed us to

collect all the patients’ data and control for confounding factors. Moreover,

we collected samples of different types and locations from the same subjects,

providing a more clear and comprehensive analysis of the microbiome char-

acteristics of the upper GI tract, both in disease and healthy state, whereas

previous studies focused on salivary or oesophageal microbiome only. Fi-

nally, we correlated the microbiome characteristics with clinical features to

increase our understanding of the complex interaction between the upper

GI tract microbiome and EoE. Another point of strength should be em-

phasised: the ease of saliva sampling. Saliva is easy and non-invasive to

collect and offers an attractive biofluid for diagnosis and prognostic value.

Alterations in salivary microbial ecology are linked to increasing numbers

of oral and systemic disease states [45]. Emergent knowledge of the sali-

vary microbiome alongside that of the gut microbiome may offer significant

potential for applications in precision or P4 medicine (predictive, preventa-

tive, personalised, participatory). The gold standard in the diagnosis of EoE

will remain OGDs for many years to come. However, in the near future,

our preliminary data suggest that the analysis of the salivary microbiota

will help for a better management of patients with oesophageal dysfunction

leading to a more rapid and efficient screening of the population to refer for

endoscopy in order to confirm the diagnosis of EoE.

In conclusion, our data confirmed that microbial signatures of Actinobacillus

and Haemophilus characterise the salivary microbiota of patients with EoE

compared to control patients [17]. Additionally, the discriminant analysis

allowed us to characterise a plethora of bacteria in the saliva (as many as 23

positive signatures and 27 negative microbial signatures for EoE patients)

whose interaction could be involved in EoE pathogenesis. Moreover, in

this pilot study, the validation of our machine learning model, allowed us

to reach a sensitivity of 80% and a specificity of 75% for EoE diagnosis.

Thus, the metabarcoding analysis of saliva samples in combination with

classification methods based on machine learning approaches could become
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a valid, cheap, non-invasive discriminating test between EoE and non-EoE

patients.
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Chapter 7

Conclusions

This thesis has tried to retrace my PhD journey from my first attempt to

extensively explore differential abundance analysis tools to some real data

analyses in microbiome research. Ultimately, the goal has been to better

understand and manage the increasing complexity of microbiome data.

On the one hand, the benchmarking research and its application (bench-

damic) is an attempt to put the basis for developing new approaches from a

solid starting point where the criticisms and limitations of current method-

ology become clearer. Indeed, the wide availability of DAA methods and the

consequent choice of the best DAA tool for the dataset under analysis is still

an open question. Keeping benchdamic up to date, by adding DAA tools

as they are released, would allow practitioners to choose the right method

for their data and developers to assess the relative merits of a new method

compared to those already available. As an inspection window, benchdamic

could become a valid tool to pursue the scope of an easier access to valuable,

but sometimes underestimated, methodological and theoretical evaluations.

To this regard, the development of appropriate visualisation tools will in-

crease ability to interpret results, especially for non-experts. Sharing the

package with the research community is another priority that I have been

taking into account. Firstly, by enhancing the content published in the

Bioconductor platform and, secondly, by presenting the package as a short

talk and instructor-led live demo at the conferences. Taken together, this
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allowed me to highlight weak spots and receive valuable feedbacks.

On the other hand, the research about the probiotics in healthy individuals

and the other, about the Eosinophilic Oesophagitis, represent two of the

most significant contributions I have made during this three years where I

had the chance to collaborate in several research projects. In conclusion,

both researches have shown that exploratory data analysis and appropriate

statistical tools are crucial for obtaining meaningful information from micro-

biome data, despite small sample sizes. Several ideas for future analytical

approaches have been generated, such as exploring mixed effects regression

models in greater depth and improving the visual presentation of their re-

sults in longitudinal studies. Moreover, the encountered limitations have

given rise to opportunities for future developments, including data integra-

tion and the enlargement of datasets using available sources in literature.

By continuing to explore new avenues of research and development, we can

gain a deeper understanding of the complex world of microbiome data and

its implications not only for human health but also for the health of other

living organisms and ecosystems. As Walt Disney famously said, "we keep

moving forward, opening new doors, and doing new things, because we’re

curious and curiosity keeps leading us down new paths."
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