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Abstract

In the last decades, the increasing amount of data available in all fields raises
the necessity to discover new knowledge and explain the hidden information
found.

On one hand, the rapid increase of interest in, and use of, artificial in-
telligence (AI) in computer applications has raised a parallel concern about
its ability (or lack thereof) to provide understandable, or explainable, results
to users. In the biomedical informatics and computer science communities,
there is considerable discussion about the “ un-explainable” nature of artificial
intelligence, where often algorithms and systems leave users, and even devel-
opers, in the dark with respect to how results were obtained. Especially in the
biomedical context, the necessity to explain an artificial intelligence system
result is legitimate of the importance of patient safety.

On the other hand, current database systems enable us to store huge quan-
tities of data. Their analysis through data mining techniques provides the
possibility to extract relevant knowledge and useful hidden information. Rela-
tionships and patterns within these data could provide new medical knowledge.
The analysis of such healthcare/medical data collections could greatly help to
observe the health conditions of the population and extract useful information
that can be exploited in the assessment of healthcare/medical processes. Par-
ticularly, the prediction of medical events is essential for preventing disease,
understanding disease mechanisms, and increasing patient quality of care. In
this context, an important aspect is to verify whether the database content
supports the capability of predicting future events.

In this thesis, we start addressing the problem of explainability, discussing
some of the most significant challenges need to be addressed with scientific and
engineering rigor in a variety of biomedical domains. We analyze the “tempo-
ral component” of explainability, focusing on detailing different perspectives
such as: the use of temporal data, the temporal task, the temporal reasoning,
and the dynamics of explainability in respect to the user perspective and to
knowledge.

Starting from this panorama, we focus our attention on two different tem-
poral data mining techniques.

The first one, based on trend abstractions, starting from the concept of
Trend-Event Pattern and moving through the concept of prediction, we pro-
pose a new kind of predictive temporal patterns, namely Predictive Trend-
Event Patterns (PTE-Ps). The framework aims to combine complex temporal
features to extract a compact and non-redundant predictive set of patterns
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composed by such temporal features.
The second one, based on functional dependencies, we propose a methodol-

ogy for deriving a new kind of approximate temporal functional dependencies,
called Approximate Predictive Functional Dependencies (APFDs), based on
a three-window framework. We then discuss the concept of approximation,
the data complexity of deriving an APFD, the introduction of two new error
measures, and finally the quality of APFDs in terms of coverage and reliability.

Exploiting these methodologies, we analyze intensive care unit data from
the MIMIC dataset.

4



Table of contents

1 Introduction: the general picture 11

2 Background and Related work 17

2.1 The medical domains and data sources . . . . . . . . . . . . . . 17

2.1.1 The clinical domains . . . . . . . . . . . . . . . . . . . . 17

2.1.2 MIMIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Temporal abstractions and pattern discovery . . . . . . . . . . . 26

2.2.1 Temporal abstractions . . . . . . . . . . . . . . . . . . . 27

2.2.2 Trend abstractions . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Temporal association rules (TAR) . . . . . . . . . . . . . 30

2.3 Temporal functional dependency (TFD) and Approximate func-
tional dependency (AFD) . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Functional dependencies . . . . . . . . . . . . . . . . . . 33

2.3.2 Temporal functional dependency (TFD) . . . . . . . . . 34

2.3.3 Approximate functional dependency . . . . . . . . . . . . 35

2.3.4 Approximate temporal functional dependency . . . . . . 39

3 Towards Explainable Artificial Intelligence in Medicine 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 A research field’s description of the current landscape of AI . . . 44

3.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Towards a foundational definition of XAI in Medicine . . . . . . 49

3.4 Questions, propositions, and desiderata in the quest to attain
XAI in medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 What are the requirements for XAI? How can we evalu-
ate the goodness of the provided explanation? . . . . . . 53

3.4.2 If an AI system’s output is understandable, is it auto-
matically explainable? . . . . . . . . . . . . . . . . . . . 56

3.4.3 What is the role of domain understanding in achieving
XAI in medical applications? . . . . . . . . . . . . . . . 57

3.4.4 Can explainability draw us closer to wisdom? . . . . . . 59

3.4.5 Can an AI system that is not explainable be trustworthy? 60

3.4.6 Is XAI in medicine always required? . . . . . . . . . . . 61

3.5 How temporalities and explainability are intertwined? . . . . . . 62

3.6 Conclusions and Research Directions . . . . . . . . . . . . . . . 66

5



4 Discovering Predictive Trend-Event Patterns 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . 70
4.3 The temporal mining framework . . . . . . . . . . . . . . . . . . 72

4.3.1 Trend-Event Features . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Mining Trend-Event Features . . . . . . . . . . . . . . . 78
4.3.3 From TE -Fs to Predictive Trend-Event Patterns . . . . . 80

4.4 Experimental results: Discovering predictive trend-event patterns 82
4.4.1 System Configuration . . . . . . . . . . . . . . . . . . . . 82
4.4.2 Dataset and Data Transformation . . . . . . . . . . . . . 83
4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 A framework for the discovery of predictive temporal func-
tional dependencies 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 A motivating scenario from Clinical Medicine . . . . . . . . . . 90
5.3 The predictive aspects of functional dependencies . . . . . . . . 93
5.4 Defining Predictive FDs . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Extending the target relation into an interval-based re-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Discovering Approximate PFDs . . . . . . . . . . . . . . . . . . 103
5.6 The computational aspects of APFDs . . . . . . . . . . . . . . . 107

5.6.1 Computing APFDs . . . . . . . . . . . . . . . . . . . . . 108
5.6.2 The (data) complexity of deriving an APFD . . . . . . . 108

5.7 Towards the quality of APFD: coverage and reliability . . . . . 114
5.7.1 Dealing with unbalanced datasets . . . . . . . . . . . . . 114
5.7.2 Dealing with reliability . . . . . . . . . . . . . . . . . . . 115

5.8 Experimental results: Discovering Approximate predictive func-
tional dependencies (APFDs) . . . . . . . . . . . . . . . . . . . 116
5.8.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . 116
5.8.2 Experiments using MIMIC-III . . . . . . . . . . . . . . . 118
5.8.3 Experiments using MIMIC-IV . . . . . . . . . . . . . . . 130

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Conclusions 145

7 List of pubblications 147

6



List of Figures

1-1 Graphical structure of this thesis. . . . . . . . . . . . . . . . . . 13

2-1 Overview of the MIMIC-III critical care database from [100].
MICU:Medical Intensive Care Unit, SICU: Surgical Intensive
Care Unit, CCU: Coronary Care Unit, CSRU: Cardiac Surgery
Recovery Unit, NICU: Neonatal Intensive Care Unit. . . . . . . 21

2-2 MIMIC modules structure . . . . . . . . . . . . . . . . . . . . . 23

2-3 MIMIC CORE module structure . . . . . . . . . . . . . . . . . . 24

2-4 MIMIC ED module structure . . . . . . . . . . . . . . . . . . . 24

2-5 MIMIC ICU module structure . . . . . . . . . . . . . . . . . . . 25

2-6 MIMIC hosp module structure . . . . . . . . . . . . . . . . . . . 26

2-7 Complex TAs used to detect patterns of complex shape both (a)
on a single time series MEETS-ID, and (b) on multidimensional
time series BEFORE-ID: in this case an I (increase) episode in
V1 occurs before a D (decrease) episode in V2 (from [155]). . . . 33

2-8 Characteristics of relaxation criteria for RFDs from [38] . . . . 38

3-1 The Venn diagram of Explainability as intersection of Usability,
Usefulness, Interpretability, and Understandability. . . . . . . . 50

3-2 A classification for temporalities of XAI. . . . . . . . . . . . . . 63

4-1 Linear separating hyperplanes for separable and non-separable
cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4-2 All the steps and data needed to mine PTE -Ps. . . . . . . . . . 73

4-3 An example of TE -F. There are two trends, one that precedes
event e (from sprestart to spreend), and a second one right after E
(from spoststart to spostend ). These are both valid trends because they
satisfy every constraint. Moreover, sext1 and sext2 are external
to these trends because they violate either ∆y or max ∆V T . . . . 74

4-4 The level-wise wrapper method used to extract PTE -Ps from
[117]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4-5 On the left, AUPRC and AUROC values for PTE -Ps, W -PPs

and the combination of them. On the right, patterns and unex-
pected patterns: PTE -Ps, W -PPs and the combination of them. 86

5-1 View PatientHistory storing data of a temporal query on
database IcuDB . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7



5-2 Four (simplified) relations of temporal database IcuDB . . . . . 92
5-3 The time windows of the proposed framework: (a) the anchored

and (b) the unanchored –sliding window– case. . . . . . . . . . . 93
5-4 An excerpt of KSE specified in Example 2 and evaluated on the

temporal database IcuDB depicted in Figure 5-2 . . . . . . . . . 96
5-5 An excerpt of KSE specified in Example 3 and evaluated on the

temporal database IcuDB depicted in Figure 5-2 . . . . . . . . . 97
5-6 An excerpt of KSE specified in Example 4 and evaluated on the

temporal database IcuDB depicted in Figure 5-2 . . . . . . . . . 97
5-7 An excerpt of the instance of KSPE specified in Example 5,

evaluated on the temporal database IcuDB depicted in Figure 5-2100
5-8 A relation AkiDiagIntervals that represents different pattern

diagnoses of four hours, on the temporal database IcuDB . . . . 102
5-9 An excerpt of the instance of KSPE specified in Example 7,

evaluated on the temporal database IcuDB depicted in Figure 5-2102
5-10 A KSPE instance, subset of view PatientHistory, depicted in

Figure 5-1 (with the attributes suitably renamed). . . . . . . . . 103
5-11 An instance of KSPE, subset of the instance depicted in Figure

5-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5-12 An instance of KSPE, corresponding to data depicted in Figure

5-1 for PatientHistory. . . . . . . . . . . . . . . . . . . . . . . 106

5-13 An instance of KSPE, where HR
0
, SpO2

1 ε−→ ˙AKI holds with
εg = 0.35, εh = 0.4, εj = 0.4 and with εg = 0.35, εh = 0.2,
εj = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5-14 Attributes values for HR and SPO2 with the associate number
of true and false tuples for AKI, related to the KSPE discussed
in Example 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5-15 Attributes values for HR and SPO2 with the associate number
of true and false tuples for AKI, related to the KSPE discussed
in Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5-16 Queries to calculate the second criterion. . . . . . . . . . . . . . 124

5-17 Value combinations for the not AKI patients, under SpO2
1
,

HR
2
, WBC

2
, Drug

3
, Creatinine

3 → ˙AKI from KSPE 2. . . . 130

5-18 Value combinations under SpO2
1
, HR

2
, WBC

2
, Drug

3
, Creatinine

3

→ ˙AKI from KSPE 2. . . . . . . . . . . . . . . . . . . . . . . . 133
5-19 A general overview of value combinations underDrug

1
, Creatinine

2 →
˙AKI from KSPE 4. . . . . . . . . . . . . . . . . . . . . . . . . . 135

5-20 Value combinations under Drug
1
,WBC

5 → ˙AKI from KSPE 4. 135

8



List of Tables

2.1 Diagnostic criteria for sepsis from [61] . . . . . . . . . . . . . . . 18
2.2 Diagnostic criteria for severe sepsis from [61] . . . . . . . . . . . 18
2.3 AKI is staged for severity according to the following criteria. . . 20

4.1 Excerpt of a sample table needed to obtain Trend-Event features. 78
4.2 Running parameters for PTEPminer. . . . . . . . . . . . . . . . 84
4.3 Values used to define the max hourly increase for each vital sign

considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 The final set containing the most predictive trend-even patterns

with their absolute weight, support and precision. . . . . . . . 85

5.1 Labels in MIMIC-III for Medications . . . . . . . . . . . . . . . 120
5.2 ItemIDs in MIMIC-III for comorbidity, charted events, and lab-

oratory events. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3 Creatinine table after the categorization. . . . . . . . . . . . . . 122
5.4 Lab-events categorization according to clinical literature. . . . . 122
5.5 Chart-events categorization according to clinical literature. . . . 123
5.6 Definition of diagnoses overlap. . . . . . . . . . . . . . . . . . . 126

5.7 KSE with V T
k

= V T
k−1

+ 1 for k = 1, .., 5 . . . . . . . . . . . . 127
5.8 KSPE 1 built from the KSE in Table 5.7 . . . . . . . . . . . . . 127
5.9 KSE with V T

0
< V T

1
< V T

2
< V T

3
. . . . . . . . . . . . . . . 128

5.10 KSPE 2 built from the KSE in Table 5.9 . . . . . . . . . . . . . 128
5.11 KSPE 3 built from the KSE in Table 5.9 . . . . . . . . . . . . . 129
5.12 KSE with V T

k
< V T

k−1
+ 3 for k = 1, .., 5 . . . . . . . . . . . . 129

5.13 KSPE 4 built from the KSE in Table 5.12 . . . . . . . . . . . . 130
5.14 A list of APFDs valid on one of the four KSPEs, with different

error thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.15 Value combinations ofDrug

1
, Creatinine

2
, HR

3
, SpO2

4
,WBC

5 →
˙AKI , common for the cases from KSPE 1. . . . . . . . . . . . . 132

5.16 Value combinations less meaningful related toDrug
1
, Creatinine

2
,

HR
3
,SpO2

4
,WBC

5 → ˙AKI from KSPE 1. . . . . . . . . . . . . 132

5.17 Value combinations common to both classes, related to Drug
1
,

Creatinine
2
, HR

3
,SpO2

4
,WBC

5 → ˙AKI from KSPE 1. . . . . 133

5.18 Value combinations of HR
2
,WBC

2
, Drug

3 → ˙AKI from KSPE
3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.19 Chart-events categorization according to clinical literature. . . . 134

9



5.20 KSE with V T
k
< V T

k−1
+ 5 for k = 1, .., 3 related to the two

first KSPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.21 Extract from KSPE 1 . . . . . . . . . . . . . . . . . . . . . . . . 138
5.22 Extract from KSPE 2 . . . . . . . . . . . . . . . . . . . . . . . . 138
5.23 KSE with V T

k
< V T

k−1
+5 for k = 1, .., 4, related to the second

couple of KSPEs . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.24 Extract from KSPE 3 . . . . . . . . . . . . . . . . . . . . . . . . 139
5.25 Extract from KSPE 4 . . . . . . . . . . . . . . . . . . . . . . . . 139
5.26 KSE with V T

0
< V T

1
< V T

2
< V T

3
, related to the last couple

of KSPEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.27 Extract from KSPE 5 . . . . . . . . . . . . . . . . . . . . . . . 139
5.28 Extract from KSPE 6 . . . . . . . . . . . . . . . . . . . . . . . . 140
5.29 A list of APFDs valid on one of the six KSPEs, with different

error thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.30 A list of value combinations reletad to Creatinine

0
, Diuretics

1 →
˙AKI from KSPE 1. . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.31 A list of value combinations reletad toNephrotoxic
1
Creatinine

3 →
˙AKI from KSPE 4. . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.32 A list of value combinations reletad to Creatinine
0
, Potassium

2
,

Creatinine
3 → ˙AKI from KSPE 4. . . . . . . . . . . . . . . . . 142

5.33 A list of value combinations reletad to Chemoterapy
0
, Creatinine

3 →
˙AKI from KSPE 6. . . . . . . . . . . . . . . . . . . . . . . . . . 142

10



Chapter 1

Introduction: the general
picture

Motivation and context

Modern technologies allow storing huge amounts of data. Traditional manual
data analysis has become insufficient, and methods for efficient computer-based
analysis are indispensable. The ability to extract useful hidden knowledge and
perform actions on the basis of the discovered knowledge is becoming increas-
ingly important. Knowledge discovery in databases is frequently defined as a
process consisting of the following steps: understanding the domain, forming
the data set and cleaning the data, extracting regularities hidden in the data,
thus formulating knowledge seen as patterns or models (data mining), post-
processing of discovered knowledge, and exploiting the results [66]. With the
further objectives of clustering, classification, and prediction, discovering new
information, becomes a characteristic widespread in different domains, such as
finance, information systems security, and, in particular, medicine [167].

Data mining in medicine has been receiving considerable attention since
it provides a way of revealing useful information hidden in clinical data. The
explosion of the number of clinical datasets available for the research activity
is accompanied by the necessity to extract useful knowledge from these data.
Modern technologies give the possibility to clinicians to collect automatically
huge amounts of data. The analysis of such healthcare/medical data collec-
tions could greatly help to gain a deeper insight into the health conditions
of the population and extract useful information that can be exploited in the
assessment of healthcare/medical processes. The massive amount of data de-
rived from electronic medical records is often under-utilized. Such datasets
can be characterized by their incompleteness because of missing parameter
values, incorrectness as a consequence of systematic or random noise in the
data, sparseness as a result of few and/or non-representable patient records
available, and inexactness in the selection of parameters for the given task
[101].

Another important aspect that has to be considered is the intrinsic ne-
cessity to take into account the temporal dimension. This aspect needs to
be considered when representing information within computer-based systems,
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when querying information about temporal features of the represented real
world, when reasoning about time-oriented data, during the design process
of analysis tools for prediction, personalized medicine, and therapy support.
Analyzing time-oriented data enables researchers to discover new temporal
knowledge and gain an understanding of the temporal behavior and tempo-
ral associations present in the data. One of the most meaningful examples of
the clinical domain, where the analysis of the temporal aspect is fundamental,
is given by the intensive care unit domain. In this environment, the health
condition of the patients is constantly monitored, and it is subjected to sev-
eral changes over time. The possibility to analyze the patients’ behavior over
the time, comparing different conditions and situations, discovering hidden
information among the collected data, could greatly increase patient care. It
is particularly interesting to extract not only the recurrent information, but
also have the possibility to predict some specific event that could occur in the
future.

Problem statement and contributions

Faced with this amount of data to be analyzed and understood, the use of
diagnostic AI systems to support clinicians has become an important building
block. Recent advances in artificial intelligence present a relevant opportu-
nity to improve healthcare. However, the translation of research techniques to
effective clinical deployment represents a challenge. The concept of explain-
ability is often the center of debates. In biomedical informatics and computer
science communities, a central point of discussion is the un-explainable na-
ture of Artificial Intelligence (AI), referring to AI algorithms and systems as
black-box. Explainability is a notion that is intrinsically complex and requires
a cooperation among the different involved stakeholders [111]. Such systems
in medicine are often related to decision-support tasks, where data may be in-
complete, uncertain, ambiguous, or missing. Thus, robust, prospective clinical
evaluation is essential to ensure that AI systems are safe and effective.

In this thesis, in Chapter 3, we focus our attention on the description of the
current panorama in the use of explainable AI (XAI) in medicine, examining
the most recent research activities that apply these techniques. We also gave
space to some reflections on the terminologies, and on how to facilitate com-
munication between the different stakeholders. We consider the rapid increase
of interest in, and use of, artificial intelligence (AI) in computer applications
which has raised a parallel concern about its ability (or lack thereof) to pro-
vide understandable, or explainable, output to users. This concern is especially
legitimate in biomedical contexts, where patient safety is of paramount impor-
tance. We explore in depth the concept of explainable AI, or XAI, offering
a functional definition and conceptual framework or model that can be used
when considering XAI. We also consider a series of desiderata for attaining
explainability in AI, each of which touches upon a key domain in biomedicine.
An essential aspect that need to be discussed moving closer to the content of
this thesis is the temporal aspect of XAI. We introduce and decline with exam-
ples some important issues, according to which how we can decline temporality
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Figure 1-1: Graphical structure of this thesis.

in the XAI context. The main concepts of this chapter have been published in
[44].

With the aim of integrating explainability in the context of temporal data
mining, in this thesis we present two different techniques that decline some of
the aspects of temporal XAI, mentioned in Chapter 3.

In Chapter 4, we propose a methodology for deriving a new kind of predic-
tive temporal patterns, called predictive trend-event patterns (PTE -Ps), that
consists of predictive patterns composed by event occurrences and trends of
vital signs, they could influence. PTE -Ps are extracted using a classification
model that considers and combines various predictive pattern candidates and
selects only those that are relevant to improve the performance of the predic-
tion of a specific class (e.g., only those patterns important to predict sepsis).
We provide an original algorithm to mine PTE -Ps and describe the tool we
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implemented for retrieving them, published in [117].
The second approach proposed in Chapter 5, is centered on a new type

of functional dependency, where the final goal is mining temporal functional
dependencies that predict a future event. We show how temporal data min-
ing, precisely mining of functional dependencies, can be fruitfully exploited to
improve prediction, using a motivating example from medicine.

To develop an early prediction model, a window-based data aggregation
approach could be a good starting point, therefore we introduce a new tem-
poral framework based on three temporal windows designed to extract pre-
dictive information. We propose a methodology for deriving a new kind of
approximate temporal functional dependencies, called Approximate Predic-
tive Functional Dependencies (APFDs), based on a three-window framework
Observation Window (OW), Waiting Window (WW), and Prediction Window
(PW). We define a Predictive Functional Dependency, discuss the concept
of approximation for such PFDs, introduce two new error measures, address
the (data) complexity of deriving an APFD, and finally discuss the quality
of APFD in terms of coverage and reliability. A part of the concepts of this
chapter has been already published in [10], where we won the “Mario Stefanelli
Best student paper” award.

We summarize the general overview of this thesis in Figure 1-1.

Structure of the thesis

The overall structure of the thesis is the following:

• Chapter 2 - Background and Related work. In this chapter, we explain
the two medical problems on which we base our preliminary experiments
describing in detail, the main source used throughout the thesis, the
MIMIC dataset. Secondly, we collect the most important contributions
in literature, meaningful for the methods reported in this thesis. We
decide to focus mainly on different data mining techniques temporal ori-
ented. We particularly detail the functional dependencies and its differ-
ent aspects;

• Chapter 3 - Towards Explainable Artificial Intelligence in Medicine. In
this chapter, we address one of the major challenges that must be faced
by researchers in the last years, namely the explainability of AI algo-
rithms. We report a research paper published recently A manifesto on
explainability for artificial intelligence in medicine, in Artificial Intelli-
gence in Medicine. Specifically, with Prof. Carlo Combi and John H
Holmes, I contributed on the foundation of the general idea, compre-
hensive of the Venn diagram, the different aspects to analyze, and the
different applications in clinical fields. In addition, I investigated the
temporal aspects of explainability, discussing some issues on how tem-
poralities and explainability are intertwined;

• Chapter 4 - Discovering Predictive Trend-Event Patterns. We formalize
a new type of temporal predictive pattern. The idea is to extract a com-
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pact set of complex predictive patterns, composed by interval-based data
(i.e., trends) and instantaneous events, through a classification model.
We describe the research work Discovering predictive trend-event pat-
terns in temporal clinical data published at SAC (Symposium on Applied
Computing) 2021;

• Chapter 5 - A framework for the discovery of predictive temporal func-
tional dependencies. We introduced and discussed a novel framework for
extracting APFDs. The approach fits well into the context of the approx-
imate temporal functional dependencies, adding a new aspect that has
never been formalized before. It differs from the previous work because
we dealt with the potential predictiveness of the approximate tempo-
ral functional dependencies, considering the possibility to exploit data
dependencies for the prediction. We describe the already published A
3-Window Framework for the Discovery and Interpretation of Predic-
tive Temporal Functional Dependencies, at International Conference on
Artificial Intelligence in Medicine (AIME 2022), and additional novel
contributions.

• Chapter 6 - Conclusions. We conclude by summarizing the research work
presented in this thesis, discussing limitations, and providing a general
overview of future work.
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Chapter 2

Background and Related work

In this chapter, we recall some basic notions of the clinical domains used in
the thesis. We describe the MIMIC dataset, the data source used for our ex-
periments. In the second part, we introduce the importance of the temporal
component in the data, delineating two main sections, temporal abstraction
and pattern discovery and temporal functional dependencies with their ap-
proximation. We recap the most meaningful examples of temporal abstrac-
tions, recalling the Time Interval Related Patterns (TIRPs), different trend
abstractions, and temporal association rules. Moreover, we give an overview
of different types of approximate functional dependencies, and on their tem-
poral extension. We select different techniques according to the possibility of
explaining the results and their temporal component, a fundamental aspect
throughout the entire thesis.

2.1 The medical domains and data sources

2.1.1 The clinical domains

The increasing incidence of morbidity and mortality caused by multiple organ
failure has paralleled improvements in life-support technologies available to
patients admitted to an intensive care unit (ICU) [28]. Critically ill patients are
typically cared for in ICUs, which specialize in providing continuous monitoring
and advanced therapeutic and diagnostic technologies. Physicians have the
access to a large quantity of data for each patient collected in the electronic
medical records. In these contexts, it is very difficult to identify the most
important information for clinical decisions. Within this panorama, it is crucial
to exploit this amount of data, in order to discover novel information possibly
useful for clinicians.

Sepsis

Sepsis is a systemic, deleterious host response to infection leading to severe
sepsis (acute organ dysfunction secondary to documented or suspected infec-
tion) and septic shock (severe sepsis plus hypotension not reversed with fluid
resuscitation). Severe sepsis and septic shock are major healthcare problems,

17



General variables
Fever (>38.3◦C))
Hypothermia (core temperature<36◦C)
Heart rate>90 min-1 or more than two SD above the normal value for age
Tachypnea
Altered mental status
Significant edema or positive fluid balance (>20 mL/kg over 24 h)
Hyperglycemia (plasma glucose>140 mg/dL or 7.7 mmol/L) in the absence of diabetes
Inflammatory variables
Leukocytosis (WBC count>12,000 µL−1)
Leukopenia (WBC count<4,000 µL−11)
Normal WBC count with greater than 10
Plasma C-reactive protein more than two SD above the normal value
Plasma procalcitonin more than two SD above the normal value
Hemodynamic variables
Arterial hypotension (SBP<90 mmHg, MAP<70 mmHg, or an SBP decrease>40 mmHg in adults or less than two SD below normal for age)
Organ dysfunction variables
Arterial hypoxemia (PaO2/FiO2<300)
Acute oliguria (urine output<0.5 mL kg−1 h−1 for at least 2 h despite adequate fluid resuscitation)
Creatinine increase<0.5 mg/dL or 44.2 lmol/L
Coagulation abnormalities (INR>1.5 or aPTT>60 s)
Ileus (absent bowel sounds)
Thrombocytopenia (platelet count<100,000 µL−1)
Hyperbilirubinemia (plasma total bilirubin>4 mg/dL or 70 lmol/L )
Tissue perfusion variables
Hyperlactatemia (>1 mmol/L )
Decreased capillary refill or mottling

Table 2.1: Diagnostic criteria for sepsis from [61]

Severe sepsis
Severe sepsis definition = sepsis-induced tissue hypoperfusion or organ dysfunction (any of the following thought to be due to the infection)
Sepsis-induced hypotension
Lactate above upper limits laboratory normal
Urine output<0.5 mL kg−1 h−1 1 for more than 2 h despite
adequate fluid resuscitation
Acute lung injury with PaO2/FiO2<50 in the absence of
pneumonia as infection source
Acute lung injury with PaO2/FiO2<200 in the presence of
pneumonia as infection source
Creatinine>2.0 mg/dL (176.8 µmol/L)
Bilirubin>2 mg/dL (34.2 µmol/L)
Platelet count<100,000 lL
Coagulopathy (international normalized ratio>1.5)

Table 2.2: Diagnostic criteria for severe sepsis from [61]

affecting millions of people around the world each year, killing one in four (and
often more), and increasing in incidence [61, 28].

Sepsis is defined as the presence (probable or documented) of infection
together with systemic manifestations of infection. In Table 2.1, we report the
clinical guidelines for the diagnosis of sepsis found in literature [61]. While in
Table 2.2, we report the criteria for the severe sepsis, defined as sepsis plus
sepsis-induced organ dysfunction or tissue hypoperfusion.

Acute kidney injury (AKI)

Acute kidney injury (AKI), previously known as acute renal failure (ARF),
is a syndrome characterized by sudden kidney failure or kidney damage that
occurs within a few hours or a few days and rarely has a sole and distinct
pathophysiology. The need to evaluate the adequacy and efficacy of different
therapeutic protocols, in addition to the possibilities of prevention and/or
limitation of the damage, has led to formulate a classification of the AKI that
also includes slight alterations in the renal function. AKI is not a single-
organ failure clinical event, but a syndrome where the kidney plays an active
role in the progress of multi-organ dysfunction, with different critical clinical
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conditions ranging from a slight increase in creatinine to anuria, namely the
complete cessation of urine flow [116].

The early detection, the prompt treatment and the anticipated interven-
tions, are elements that likely provide benefits for the patient which has the
possibility to avoid temporary support from a dialysis machine or death itself.
AKI is often a quickly-evolving clinical event with high morbidity that repre-
sents an important complication in patients admitted to hospital (10–15% of
all hospitalizations). The mortality rate can be very high, between 50% and
80%, especially for patients in the ICU, where it sometimes exceeds 50% [153].

The major challenge to AKI diagnosis and treatment is that specific syn-
dromes often coexist, without the immediate onset of alarming symptoms
such as chest pain, dyspnea, palsy or blindness; hence, diagnosis requires spe-
cific technical assessments. One of the most important index of illness is the
Glomerular filtration rate (GFR), widely accepted as the best indicator of
renal function in both healthy and ill patients. It measures the amount of
plasma filtered through the glomeruli in a given period of time. However,
GFR is difficult to measure and is commonly estimated from the serum levels
of endogenous filtration markers, such as creatinine. In details, the increase
in serum creatinine levels represents a marker of kidney excretory function,
while a decrease in the urinary output represents a quantitative marker of
urine production.

Different criteria have been used to gather accurate conclusions on the
epidemiology of this syndrome. The first one was the International consensus
criteria introduced by the Acute Dialysis Quality Initiative [23], and afterwards
modified by the AKI Network [123], until 2012 when Kidney Disease Improving
Global Outcomes (KDIGO) [106] provided the new guidelines. The KDIGO
releases their clinical practice guidelines for acute kidney injury (AKI), which
build off of the RIFLE criteria and the AKIN criteria to evaluate, classify and
manage patients with renal insufficiency. The KDIGO definition of AKI has
been broadly used by researchers and physicians and it is defined as any of the
following conditions:

• an increase in serum creatinine by ≥ 0.3 mg/dl ( ≥ 26.5µmol/l) within
48 h;

• an increase in serum creatinine to ≥ 1.5 times baseline within the previ-
ous 7 days;

• a urine volume ≤ 0.5 ml/kg/h for 6 hours.

The KDIGO criteria stage patients according to changes in serum creatinine
and urine output, rather than changes in glomerular filtration rates, apart from
in children younger than 18 years. In the Table 2.3, we report the AKI severity
stages.

2.1.2 MIMIC

In recent years, the digitalization of the health care data has become a central
focus. In the following, we present the two clinical datasets that have been

19



Stage Serum creatinine Urine output
1 1.5–1.9 times baseline OR <0.5 ml/kg/h for 6–12 hours

≥ 0.3 mg/dl (≥ 26.5 mmol/l) increase

2 2.0–2.9 times baseline <0.5 ml/kg/h for ≥ 12 hours

3 3.0 times baseline OR <0.3 ml/kg/h for ≥ 24 hours OR
Increase in serum creatinine to ≥ 4.0 mg/dl (≥ 353.6 mmol/l) OR Anuria for ≥ 12 hours

Table 2.3: AKI is staged for severity according to the following criteria.

used to infer knowledge through techniques described in the next chapters.

MIMIC-III

MIMIC-III is a relational database containing data related to patients, who
were hospitalized within the intensive care units at Beth Israel Deaconess Med-
ical Center between 2001 and 2012; in particular, 53.423 distinct hospital ad-
missions for adult patients who were hospitalized to critical care units from
2001 to 2012, and 7.870 neonates admitted between 2001 and 2008.

Before the insertion in the database, a patient was first deidentified in
accordance with Health Insurance Portability and Accountability Act (HIPAA)
standards using structured data cleansing and date shifting. They removed
all the identifying data elements, such as name, address, telephone number.
In addition, dates were shifted into the future by a random offset for each
individual patient in a consistent manner to preserve intervals. Figure 2-1
represents the general overview of the database.

As a general introduction to the relational database, MIMIC-III consists
of 26 tables, provided as a collection of comma-separated values (CSV) files,
linked by identifiers which usually have the suffix “ID”. HADM ID refers to
a unique hospital admission, SUBJECT ID refers to a unique patient, and
ICUSTAY ID characterizes a single stay in ICU. Data came from two differ-
ent critical care information systems: Philips CareVue Clinical Information
System and iMDsoft MetaVision ICU. Except data relating to fluid intake,
whose tables are characterized by a suffix denoting the data source data, the
other information was merged into one dataset when building the database
tables. MIMIC-III tables are divided in four groups: tables that track the
the patient’s history, tables related to the critical care unit, tables which con-
tain data regarding the hospital record system, and the group of dictionaries
pre-fixed with “D ” which provide definitions for identifiers.

The tables useful to track the patient’s history are the following:

• ADMISSIONS: Every unique hospitalization for each patient in the database
(defines HADM ID);

• CALLOUT: Information regarding when a patient was cleared for ICU
discharge and when the patient was actually discharged;

• ICUSTAYS: Every unique ICU stay in the database (defines ICUSTAY ID);

• PATIENTS: Every unique patient in the database (defines SUBJECT ID);
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Format conversion

Date shifting
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External

MIMIC-III

 Database

Tests
• Laboratory
• Microbiology

Billing
• ICD9
• DRG
• Procedures (CPT)

Demographics
• Admission/discharge dates
• Date of birth/death
• Religion/ethnicity/marital status
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• Vital signs
• Waveforms
• Trends
• Alarms
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• Fluids
• Medications
• Progress notes
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• Discharge summaries
• Radiology (X-ray, CT, MRI, Ultrasound)
• Cardiology (ECHO, ECG)

Orders
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and

corrections

Social Security Death Index

Data archive

 CSRU  NICU  CCU SICUMICU

Figure 2-1: Overview of the MIMIC-III critical care database from [100].
MICU:Medical Intensive Care Unit, SICU: Surgical Intensive Care Unit, CCU:
Coronary Care Unit, CSRU: Cardiac Surgery Recovery Unit, NICU: Neonatal
Intensive Care Unit.

• SERVICES: The clinical service under which a patient is registered;

• TRANSFERS: Patient movement from bed to bed within the hospital,
including ICU admission and discharge.

Of note, each ICUSTAY ID characterizes a single HADM ID and a single
SUBJECT ID. A single SUBJECT ID can correspond to multiple HADM ID,
and multiple ICUSTAY ID (multiple ICU stays either within the same hospi-
talization, or across multiple hospitalizations, or both).

All the tables referred to data collected in the critical care unit are:

• CAREGIVERS: Every caregiver who has recorded data in the database
(defines CGID);

• CHARTEVENTS: All charted observations for patients;

• DATETIMEEVENTS: All recorded observations which are dates, for
example time of dialysis or insertion of lines;

• INPUTEVENTS CV: Intake for patients monitored using the Philips
CareVue system while in the ICU;
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• INPUTEVENTS MV: Intake for patients monitored using the iMDSoft
Metavision system while in the ICU;

• NOTEEVENTS: Deidentified notes, including nursing and physician notes,
ECG reports, imaging reports, and discharge summaries;

• OUTPUTEVENTS: Output information for patients while in the ICU;

• PROCEDUREEVENTS MV: Patient procedures for the subset of pa-
tients who were monitored in the ICU using the iMDSoft MetaVision
system.

Data regarding the hospital record system are recorded in:

• CPTEVENTS: Procedures recorded as Current Procedural Terminology
(CPT) codes;

• DIAGNOSES ICD: Hospital assigned diagnoses, coded using the Interna-
tional Statistical Classification of Diseases and Related Health Problems
(ICD) system;

• DRGCODES: Diagnosis Related Groups (DRG), which are used by the
hospital for billing purposes;

• LABEVENTS: Laboratory measurements for patients both within the
hospital and in out patient clinics;

• MICROBIOLOGYEVENTS: Microbiology measurements and sensitivi-
ties from the hospital database;

• PRESCRIPTIONS: Medications ordered, and not necessarily adminis-
tered, for a given patient;

• PROCEDURES ICD: Patient procedures, coded using the International
Statistical Classification of Diseases and Related Health Problems (ICD)
system.

Another important part is related to dictionaries:

• D CPT: High-level dictionary of Current Procedural Terminology (CPT)
codes;

• D ICD DIAGNOSES: Dictionary of International Statistical Classifica-
tion of Diseases and Related Health Problems (ICD) codes relating to
diagnoses;

• D ICD PROCEDURES: Dictionary of International Statistical Classifi-
cation of Diseases and Related Health Problems (ICD) codes relating to
procedures;

• D ITEMS: Dictionary of ITEMIDs appearing in the MIMIC database,
except those that relate to laboratory tests;

• D LABITEMS: Dictionary of ITEMIDs in the laboratory database that
relate to laboratory tests.
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Figure 2-2: MIMIC modules structure

MIMIC-IV

MIMIC-IV (version 1.0) represents an update to MIMIC-III, which incorpo-
rates contemporary data and improvements on numerous aspects of MIMIC-
III. MIMIC-IV adopts a modular approach to data organization, highlighting
data provenance and facilitating both individual and combined use of disparate
data sources. MIMIC-IV is sourced from two hospital database systems: a cus-
tom hospital wide electronic health record (EHR) and an ICU specific clinical
information system. The entire dataset is divided in four modules: CORE,
HOSP, ED, and ICU. The general structure is visualized in in Figure 2-2.

As shown in Figure 2-3, patients are identified using three identifiers: sub-
ject id is the anonymized version of a patient’s medical record number, hadm id
is the identifier assigned to each patient hospitalization, transfer id is the arti-
ficially generated identifier uniquely assigned to a ward stay for a patient. The
CORE module contains three tables:

• patients: here we have basic information about gender, age, and date of
death (if exists);

• admissions: this table records data about the patient’s admission to
the hospital, including for example timing information for admission,
discharge, and demographic information;

• transfers: this table contains detailed information about patients’ unit
transfers that is, the physical locations of each patient during the hospital
stay.

The ED and ICU modules have a star schema (Figure 2-4 and Figure 2-5).
The ED module contains data for emergency department patients collected

while they are in the ED. The tables involved are:

• edstays: it is the main tracking table for emergency department vis-
its. It provides the admission time to, and the discharge time from the
emergency department.
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Figure 2-3: MIMIC CORE module structure

edstays

medrecon

vitalsign

triage

diagnosis pyxis

Figure 2-4: MIMIC ED module structure

• diagnosis: it provides information about billed diagnoses for each patient;

• triage: it contains information about the patient when he was first triaged
in the emergency department;

• vitalsign: it collects all the vital signs of the patient;

• medrecon: it contains all the information about the medications that a
patient has already taken, before the admission to the emergency depart-
ment;

• pyxis: it provides information on medicine dispensations made via the
Pyxis system, the emergency information system.

The ICU module contains data sourced from the clinical information system
at the Beth Israel Deaconess Medical Center (BIDMC): MetaVision (iMDSoft).
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Figure 2-5: MIMIC ICU module structure

MetaVision tables were denormalized to create a star schema where the icus-
tays and d items tables link to a set of data tables all suffixed with ”events”.
All events tables contain a stay id column allowing identification of the associ-
ated ICU patient in icustays, and an itemid column allowing identification of
the concept documented in d items. The tables within this module are detailed
below:

• d items and icustays: the first table is the dimension table describing
itemid, while the second one contains the tracking information for ICU
stays of each patient. These two tables are linked to the rest of the
“events” tables;

• outputevents: it contains patient outputs;

• inputevents: it contains intravenous and fluid inputs;

• chartevents: it contains charted information occurring during ICU stays;

• datetimeevents: it contains information documented as a date or time;

• procedureevents: it contains procedures documented during the ICU stay
(e.g. ventilation), though not necessarily conducted within the ICU.

The HOSP module contains data derived from the hospital wide EH which,
as shown in Figure 2-6 divided into four sections, namely billing, measure-
ments, medications, and admin. The tables are detailed below:

• hpcsevents: it contains billed events occurring during the hospitalization;

• d hcpcs: it describes CPT codes;

• diagnoses icd: it contains the billed ICD-9/ICD-10 diagnoses for hospi-
talizations;
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Figure 2-6: MIMIC hosp module structure

• d icd diagnoses: it provides a description of ICD-9/ICD-10 billed diag-
noses;

• procedures icd: it contains billed procedures for patients during their
hospital stay;

• d icd procedures: it is description of ICD-9/ICD-10 billed procedures;

• drgcodes: it contains the billed DRG codes for hospitalizations;

• microbiologyevents: it records microbiology cultures;

• d micro: it describes microbiology test codes;

• labevents: it stores the results of all laboratory measurements made for
a single patient;

• d labitems: it provides a description of all lab items;

• prescriptions: it provides information about prescribed medications;

• pharmacy: it provides detailed information regarding filled medications
which were prescribed to the patient;

• emar and emar detail: they record all administrations and information
of a given medicine to an individual patient;

• poe and poe detail: they record all treatments and procedures ordered
via (Provider order entry) POE, the general interface used by the care
providers;

• services: it describes the service s that a patient was admitted under.

2.2 Temporal abstractions and pattern discov-

ery

Healthcare organizations are increasingly collecting large amounts of data re-
lated to their day-by-day activities. The analysis of such healthcare databases
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could greatly help to gain a deeper insight into the health condition of the
population and to extract useful information that can be exploited in the as-
sessment of healthcare processes. In clinical databases, the temporal features
play the primary role [55]. Sometimes clinical data are represented by a set of
time series of numeric values. In order to get a uniform representation of these
data as temporal sequences of events, the clinical data need first to undergo a
pre-processing procedure.

Analyzing time-oriented data enables researchers to discover new temporal
knowledge and gain understanding regarding the temporal behavior and tem-
poral associations of such data, with the further objectives of clustering, classi-
fication, and prediction. To enhance the capabilities of temporal data analysis,
it is necessary to perform a preprocessing step of meaningful summarization
and interpretations of the time-stamped raw data into interval-based abstrac-
tions, known as temporal abstractions. In general, Temporal Abstraction is
the abstraction and aggregation of a time point series into a symbolic time
intervals series-based representation, suitable for the purposes of data min-
ing. The temporal-abstraction process can use knowledge-based approaches,
which exploit domain-specific knowledge, or data-driven, domain-independent
discretization methods.

2.2.1 Temporal abstractions

The first conceptual model based on temporal abstractions (TAs), was pro-
posed by Shahar in [164], with a method called the Knowledge-Based Temporal
Abstraction (KBTA). This method exploits domain specific knowledge, to gen-
erate state abstractions, as well as more complex abstractions, such as gradi-
ents. In [165], Shahar and Musen defined a general problem-solving method for
interpreting data in time-oriented, knowledge-intensive domains, such as clin-
ical ones: the knowledge-based temporal-abstraction (KBTA) method. The
KBTA framework emphasizes the explict representation of the knowledge re-
quired for abstractions of time oriented clinical data, and facilitates its acqui-
sition, maintenance, reuse and sharing. This method is able to acquire the
relevant knowledge and to define the domain ontology (e.g., security ontology)
based on five KBTA entities and the relations between them (primitive pa-
rameters, abstract parameters, contexts, events and patterns). Five inference
mechanisms are then applied in parallel to derive the high level abstractions
from the raw data. The inputs to these five mechanisms are the primitive
parameters and the events, which are related to raw data, and the outputs are
contexts, abstractions, and patterns.

Time Interval Related Patterns (TIRPs)

TAs can be further mined to discover temporal patterns. These patterns es-
sentially characterize frequent temporal pathways, trajectories, or journeys,
within a given population of entities described by longitudinal multivariate
data. Moskovitch and Shahar [130] propose the KarmaLego algorithm, a highly
efficient method for fast mining of interval-based patterns, by exploiting the
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transitivity of temporal relations and with a highly efficient indexing scheme.
It is a Time Interval Related Patterns (TIRPs) discovery algorithm with a
highly efficient indexing scheme. The KarmaLego algorithm outputs an enu-
meration tree of all of the frequent TIRPs discovered in the given database.
Each discovered TIRP can be found at a leaf of the tree, while its components
(symbolic intervals and temporal relations) appear on the path from the root
of the tree to the leaf. Each TIRP (path) represents a cluster of entities having
similar qualitative temporal relations among their multivariate variables.

Over the years, KarmaLego showed limitations; it referred only to the
discovery of the first instance of a symbolic time interval, or TIRP’s instance,
omitting potentially frequent TIRPs. In 2021, Harel and Moskovitch [78] had
introduced TIRPClo, an efficient algorithm for the complete discovery of only
the frequent closed TIRPs, a compact subset of all the frequent TIRPs based
on which their complete information can be revealed. The algorithm utilizes a
memory-efficient index, and a novel method for data projection, which makes it
the first algorithm to guarantee a complete discovery of frequent closed TIRPs.

In [167], we find a recent example of the TIRPs use in the clinical context.
The authors applied their methodology to three different medical domains: on-
cology, infectious hepatitis, and diabetes. They explore the similarities among
frequent pattern sets of different subject populations, demonstrating that sim-
ilar patient populations share frequent TIRPs. The discovered TIRPs can
indeed be used for various tasks, such as classification or prediction.

In [134] we find another recent example of the use of TIRPs, specifically
a new extension of them. The authors introduce the concept of interger-
TIRPs (iTIRPs), a novel representation for temporal data consisting of fre-
quent TIRPs’ instances for temporal Artificial Neural Networks (ANNs). They
focus on the prediction of the mortality in Type 2 diabetes patients with com-
plications from Chronic Kidney Disease (CKD), using iTIRPs as features for
the classification. The detected TIRPs’ instances are aggregated by counting
their appearance in each time-stamp, which is represented by a vector that rep-
resents the TIRP’s occurrences along time. They demonstrate the potential
use of temporal abstraction for the prediction.

Frequent temporal patterns

Another important topic in temporal data analytics is temporal knowledge
discovery through frequent temporal patterns. Typically, the task is to discover
items that co-occur, or appear together, in basket bags,or other collections.
Agrawal and Srikant [7] introduced the AprioriAll algorithm, which is still
useful in sequential or time intervals mining, defining that a pattern can be
frequent only when its components are initially frequent. In order to find for
example that the pattern “ab” is frequent, first we have to verify that “a” is
frequent and “b” is frequent, otherwise there is no chance that “ab” can be
frequent.

In [17] we find a usage example, where the authors proposed a temporal
pattern mining approach for analyzing electronic medical records data. The
key step is defining a language that can adequately represent the temporal
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dimension of the data. They rely on temporal abstractions [164] and temporal
logic [9] to define patterns able to describe temporal interactions among mul-
tiple time series. They use the class information and mine frequent temporal
patterns for each class label separately using local minimum supports as op-
posed to mining frequent temporal patterns from the entire data using a single
global minimum support. The mining algorithm performs an Apriori-like level-
wise search [7]. Applying frequent temporal pattern mining on data usually
results in a very large number of patterns, most of which may be unimportant
for the classification task. If P is frequent, all instances covered by P are also
covered by all of its subpatterns, which are also in the result of the frequent
pattern mining method. This nested structure causes the problem of spurious
patterns, namely a pattern P that is predictive when evaluated by itself, but
it is redundant given one of its subpatterns. In order for a pattern mining
method to be useful for knowledge discovery, the method should provide the
user with a small set of understandable patterns that are able to capture the
important information in the data.

2.2.2 Trend abstractions

Among different types of temporal abstractions, we find the trend abstractions
which focus on detecting changes in the temporal evolution of a parameter. In
literature, there exist many contributions on time series and temporal trends.

Haimowitz et al. [76] propose a temporal pattern-matching system, called
TrenDx. TrenDx focuses on using efficient general methods to represent and
detect predefined temporal features in raw time-stamped data. Trend tem-
plates characterize typical clinical temporal patterns, such as specific types
correlated to functional states, disease states or normal growth development,
by representing these patterns as temporal and measurement constraints. The
TrenDx system has been developed mainly within the domain of pediatric
growth monitoring, although examples from other domains have been pre-
sented to demonstrate its more general potential.

Wijsen [179]proposes a temporal constraints called trend dependencies (TDs),
which permits to express significant temporal trends. The temporal dimension
is captured by trend dependencies through the concept of time accessibility re-
lation, which can also express time granularities in a simple and elegant way.
Trend dependencies can compare attribute values via some comparison oper-
ators.

Mantovani et al. [119] proposed a new kind of temporal patterns called
Trend-Event Patterns (TE-Ps), namely a family of temporal patterns focused
on the interaction of trends and events. There are many different temporal
abstractions, one of them being represented by trends. Trend abstraction aims
at detecting relevant changes and change rates in the temporal evolution of
a parameter. Trend abstraction entails merge and persistence abstraction,
in order to derive the extents where no change is observed in the value of
the considered parameter. A TE-P is a pattern formed by an event E and
two different trends for the same parameter: one before E and one after E,
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called trendpre and trendpost, respectively; for example: “The increasing trend
of the body temperature of a patient before the administration of Paraceta-
mol and the drug administered determines the decreasing trend of the body
temperature of the same patient after such administration occurs” becomes
[Increasing;Paracetamol;Decreasing].
To derive a TE-P from this scenario, we need to start from the event and more
specifically from the time when such event happened. The parameter values
are thus partitioned according to their timestamp. Every value before the event
could potentially be part of trendpre, while every value after the event could
be in trendpost. In both trends the first parameter value is denoted as tstart,
while the last one is tend. The tuple in trendpre that is closer to the event is
called tpreend, because it is the last tuple of it; while the tuple in trendpost that
is closer to the event is called tstart

post, as it represents the beginning of such
trend. Given the definition of TE-P: a TE-P is a pattern with an expression
of the form: [trendpre;E; trendpost].

2.2.3 Temporal association rules (TAR)

Association rule mining is another method for identifying correlations or de-
pendencies between the elements or values (items) in a dataset [163]. They are
commonly evaluated by making use of the classical measures support and con-
fidence. The support of an itemset I (which will be called Sup(I)) is defined
as the frequency with which I appears in a dataset. Based on this definition,
the measures support and confidence of the rule X → Y are defined as follows:

Support(X → Y ) =
Sup(XY )

|N |
, Confidence(X → Y ) =

Sup(XY )

Sup(X)

where |N | is the number of examples/transactions in the dataset, and Sup(XY)
and Sup(Y) are the support of the itemsets XY and X, respectively.

Typically, such relations are expressed in terms of if-then rules consisting of
different rule antecedents (conditions) and consequents (targets). It represents
a technique with a lot of popularity in data mining research, including medical
data mining. The strength of this technique is the possibility to completely
explore all patterns that occur in the data. The disadvantage is that the
number of association rules could be very large and the outputs could be
difficult to deal with. Hence, it is desirable to reduce the mined rule set as
much as possible while preserving the most important relations found in the
data.

Similar to the previously cited TIRPs, there exists the Temporal Associa-
tion Rules (TARs). In TIRPs mining the temporal operator is applied among
each interval that builds up the pattern. While, according to the definition,
any TAR involves only two elements as we will see in details shortly.

Temporal Association Rules (TARs) are association rules of the kind A→
C , where the antecedent (A) is related to the consequent (C) by some kind of
temporal operator. TARs mining algorithms are aimed at extracting frequent
associations, where frequency is evaluated on the basis of suitable indicators,
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the most utilized being support and confidence. The support gives an indi-
cation of the proportion of cases verifying a specific rule in the population;
confidence instead represents the probability that a subject verifies the rule
given that it verifies its antecedent.

Combi et al. [53] exploited knowledge-based Temporal Abstractions (TAs)
to shift from a time point quantitative representation of time series to a qual-
itative interval-based description of the available data.
A temporal fact f represents a class of episodes of the same type. Each episode
e is associated to the interval when the episode holds. e.start, e.end denote
the starting and ending point of the interval associated to e, respectively. Ef
denotes the set of episodes of a temporal fact f .
Informally we can enunciate: A temporal association rule (TAR) is a temporal
pattern that exists between episodes of temporal facts belonging to a reference
set Facts of Interest (FoI). To specify a TAR it is necessary to introduce the
concept of temporal precedence: relation precedes between two intervals a and
b: a � b⇐⇒ a.start ≤ b.start ∧ a.end ≤ b.end.

Definition 1 (Temporal Association Rule (TAR)). A TAR is an implica-

tion of the form {a1, ..., an}
p−→ c where {a1, ..., an} ⊂ FoI, c ∈ FoI with

c /∈ {a1, ..., an}, and p = 〈LS,GAP,RS〉 is the parameter set determining the
relation between the antecedent and the consequent.

To determine an occurrence of the antecedent, there must exist a non empty
intersection between all the episodes ei corresponding to facts ai, respectively.
More specifically, a (composite) antecedent occurrence has interval [maxStart,
minEnd] where [155]:

max.Start
def
== max(ei.start| 1 ≤ i ≤ n),minEnd

def
== min(ei.end| 1 ≤ i ≤ n)

.
Set p is composed by the following parameters: (i) Left Shift (LS): maxi-

mum distance allowed between maxStart and c.start; (ii) Gap (GAP): max-
imum distance allowed between minEnd and c.start; (iii) Right Shift (RS):
maximum distance allowed between minEnd and c.end.

Definition 2 (Occurrence of a TAR). An episode set {e1, ..., en, ec} is an oc-

currence of a TAR {a1, ..., an}
p−→ c with p = 〈LS,GAP,RS〉, if (i) {e1, ..., en}

is an antecedent occurrence and ec is a consequent episode; (ii) the antecedent
occurrence precedes the consequent episode, i.e., [maxStart, minEnd] � c; (iii)
all the quantitative constraints imposed by p are satisfied.

In [155], Sacchi et al. present an approach to pre-process and interpret
clinical time series. Their idea is to filter the original time series using tem-
poral abstractions an then to interpret the new and derived time series by
both statistical and artificial intelligent methods. Patterns of interest can be
specified on the basis of domain knowledge into a set called Abstractions of
Interest, and rules containing such pattern in the antecedent and in the con-
sequent are extracted. After the development of a TARs mining framework
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mainly oriented to the analysis of clinical data, the framework had been ex-
tended to incorporate also administrative healthcare information into the data
set. The autors, starting from the framework of knowledge-based Temporal
Abstraction [164], propose a new kind of temporal association rule working
on the extraction of the frequent temporal precedence occurrences between
patterns. Discovering occurrences of temporal relationships between patterns
characterizing a time series needs the accomplishment of three conceptual and
procedural steps. First of all, it is necessary to define the patterns and re-
trieve them in the time series; then a formal definition of the relationships
of interest must be given and, finally, an algorithm to search for frequent oc-
currences of such relationships in the dataset must be designed, implemented
and run. Intuitively, a pattern is a behavior or property that we may want
to distinguish in the data. In temporal data, a pattern is usually associated
to a time interval in which such behavior occurs. Moreover, a pattern is of-
ten related to a qualitative representation of the property that we are looking
for, which may be interesting in the problem domain. Here, according to the
data model proposed in [20], temporal data are represented as time-stamped
entities, called events, while their abstract representation is given by TAs as
a sequence of intervals, called episodes. Each episode corresponds to a spe-
cific behavior of interest detected in the time course of the data. TA tasks
could be divided into two subtasks, each one solved by specific mechanisms:
Basic TA, solved by mechanisms that abstract time-stamped data into inter-
vals, and Complex TAs, solved by mechanisms that abstract intervals into
other intervals. Complex TAs are used to detect patterns characterized by
behaviors which cannot be represented by basic TAs. The episode set is eval-
uated according to a pattern specified between episodes of the two composing
episode sets. The complex TA patterns are based on temporal relationships:
more specifically, the temporal relationships investigated correspond to the 13
temporal operators defined in Allen’s algebra [9]. They included: BEFORE,
FINISHES, OVERLAPS, MEETS, STARTS, DURING, their corresponding
inverse relations, and the EQUALS operator. We can thus exploit this kind
of TA to detect a great variety of patterns. Fig.2-7 shows patterns of complex
shape which have been detected both on a single time series, and on multiple
time series.

We find another application of the temporal association rules in medicine,
where the authors used the repository of the Regional Healthcare Agency
(ASL) of Pavia, that maintains a central data repository which stores health-
care data about the population of Pavia area [55]. They specifically focus the
analysis on a sample of patients suffering from Diabetes Mellitus. They per-
form the mining of Temporal Association Rules (TARs) over a set of temporal
sequences of hybrid events, i.e.,events characterized by heterogeneous temporal
nature. Starting from the idea considering a pattern as the occurrence of one
or more contemporary events, here a TAR is defined as a relationship specified
through a temporal operator which holds between an antecedent, consisting
in a pattern of single or multiple cardinality, and a consequent, consisting in
a pattern with single cardinality. A recent example of TARs application [136],
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Figure 2-7: Complex TAs used to detect patterns of complex shape both (a)
on a single time series MEETS-ID, and (b) on multidimensional time series
BEFORE-ID: in this case an I (increase) episode in V1 occurs before a D
(decrease) episode in V2 (from [155]).

where the authors describe the incorporation of frequent TARs as features
to the Naive Bayes classifier for the coronary heart disease (CHD) diagnosis.
The discovered TARs represent associations that combine symbolic time in-
tervals using exclusively the temporal relation Precedes, which is a disjunctive
temporal relation of a number of Allen’s interval relations.

2.3 Temporal functional dependency (TFD) and

Approximate functional dependency (AFD)

2.3.1 Functional dependencies

The concept of fuctional dependency [43] is defined as follows:

Definition 3 (Functional Dependency (FD)). Let r be a relation over the
relational schema R(U): let X, Y ⊆ R be sets of attributes of U . We assert
that r fulfills the functional dependency X → Y (written as r |= X → Y ) if
the following condition holds: ∀t, t′ ∈ r(t[X] = t′[X]⇒ t[Y ] = t′[Y ])

Informally, for all the couples of tuples t and t′ showing the same value(s)
on X, the corresponding value(s) on Y are (or must, if we are specifying a
constraint) identical.

Through the use of functional dependencies, we can express concepts such
as: “for each drug with a given symptom the disease does not change”:

Drug, Symptom→ Disease.
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2.3.2 Temporal functional dependency (TFD)

When considering temporal aspects, we talk about temporal functional depen-
dency (TFD). In literature [181], several kinds of TFDs have been proposed,
and various representation formalisms have been developed [176, 97, 174, 182,
180, 47], usually as temporal extensions of the widely known atemporal func-
tional dependencies.

In [176], the authors present the notion of TFD which concentrates on
temporal granularity and compares tuples valid during the same granule of
some temporal granularity. They define a temporal functional dependency as:

Definition 4. A temporal functional dependency (TFD) over U is an expres-
sion X → HY , where X, Y ⊆ U and H is a granularity. A G-relation I over U
satisfies X → HY if for each granule H ∈ H, the relation {t[U ]|t ∈ I, t(T ) ⊆
H} satisfies the FD X → Y .

In [47], the authors propose a new formalism for the representation of
TFDs, involving multiple time granularities.

Let U be a set of atemporal attributes and VT be a temporal attribute,
representing the valid time of a tuple. A temporal relation r is a relation on a
temporal relation schema R with attributes U ∪ {V T} (r ∈ R). Given a tuple
t ∈ r and an attribute A ∈ U ∪ {V T} , we denote by t[A] the value that t
assumes on A. The temporal attribute V T specifies the valid time of a tuple,
and it takes its value over the time domain T , that is, t[V T ] ∈ T .

They propose a new formalism, whereby a TFD is an expression of the
following form:

[E − Exp(R), t−Group]X → Y

where E−Exp(R) is a relational expression on R, called evolution expression,
t−Group is a mapping N→ 2N, called temporal grouping which specifies how
to group tuples on the basis of the values they take on the temporal attribute
VT , when X → Y is evaluated, and X → Y is a functional dependency.

Four different relevant classes of TFD have been identified:

• Pure temporally grouping TFD: E-Exp(R) returns the original temporal
relation r. Dependencies of this class force the FD X → Y , where
X, Y ⊆ U , to hold over all the maximal sets which include all the tuples
whose V T belongs to the same temporal grouping;

• Pure temporally evolving TFD: E-Exp(R) collects all the tuples modelling
the evolution of an object. No temporal grouping exists: that is, the
temporal grouping collects all the tuples of r in one unique set;

• Temporally mixed TFD: the expression E-Exp(R) collects all the tuples
modelling the evolution of the object. The temporal grouping is applied
to the set of tuples generated by E-Exp(R);

• Temporally hybrid TFDs: First, the evolution expression E-Exp(R) se-
lects those tuples of the given temporal relation that contribute to the
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modeling of the evolution of a real-world object (that is, it removes iso-
lated tuples); then, temporal grouping is applied to the resulting set of
tuples.

In [122], the authors face another temporal aspect, which stems from the
observation that frequent constraint violations in a database may be related
to the fact that the considered (mini) world is changing, while the specified
constraints remain static. FDs violated by current data are then identified and
some approaches are proposed to suitably modify the given FD according to
the new reality represented through the current data.

2.3.3 Approximate functional dependency

In many modern applications it might be necessary to extract properties and
relationships that are not captured through FDs, due to the necessity to ad-
mit exceptions, or to consider similarity rather than equality of data values.
More recently, AFDs have been included in the wider scenario of relaxed FDs
(RFDs), where not only exceptions (i.e., violating tuples) are considered, but
also similarities among attribute values and conditional constraints [36, 38].

In literature [107, 90, 91], the issue of discovering approximate functional
dependencies from data has been largely studied.

Given a set of attributes U , a functional dependency over U is an expression
X → Y , where X, Y ⊆ U . If u is a relation over U , i.e., a finite set of mappings
(called rows or tuples) from U to some domain, then the dependency X → Y
holds in u, or u satisfies X → Y , if all pairs of tuples that agree on X, agree
also on Y . We say that a pair (u, v) of tuples of Y violates the dependency, or
is a violating pair for it, if u[X] = v[X] but u[Y ] 6= v[Y ]).

Given a relation u where an FD holds for most of the tuples in u , we may
identify some tuples for which that FD does not hold. In [107], Kivinen and
Mannila introduced three different measures, known as G1, G2 and G3:

• G1: it considers the number of violating couples of tuples. Formally:

G1(X → Y, r) = |{(t, t′) : t, t′ ∈ r ∧ t[X] = t′[X] ∧ t[Y ] 6= t′[Y ]}|

The related scaled measurement g1 is defined as follows:

g1(X → Y, r) = G1(X → Y, r)/|r|2

where |r| is the cardinality of the relation r, i.e., the number of tuples
belonging to the relation r.

• G2: it considers the number of tuples which violate the functional de-
pendency. Formally:

G2(X → Y, r) = |{t : t ∈ r ∧ ∃t′(t′ ∈ r ∧ t[X] = t′[X] ∧ t[Y ] 6= t′[Y ])}|
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The related scaled measurement g2 is defined as follows:

g2(X → Y, r) = G2(X → Y, r)/|r|

• G3: it considers the minimum number of tuples in r to be deleted for the
FD to hold. Formally: G3(X → Y, r) = |r| −max{|s||s ⊆ r ∧ s |= X →
Y }. The related scaled measurement g3 is defined as:

g3(X → Y, r)p = G3(X → Y, r)/|r|

Therefore, we can define a AFD as follows:

Definition 5 (Approximate Functional Dependency (AFD)). Let r be a re-
lation over the relational schema R: let X, Y ⊆ R be sets of attributes of R.
Relation r fulfills the functional dependency X

ε−→ Y (written as r |= X
ε−→ Y )

if G3(X → Y, r) 6 ε, where ε is the maximum acceptable error defined by the
user.

Among the several AFDs that can be identified over a relation r, the min-
imal AFD is of particular interest, as many other AFDs can then be derived
from the minimal one. We thus define the minimal AFD as follows:

Definition 6 (Minimal Approximate Functional Dependency). Given an AFD
over r, we define X

ε−→ Y to be minimal for r if r |= X
ε−→ Y and ∀X ′ ⊂ X

we have that r 2 X ′ : ε−→ Y .

Through the use of approximate functional dependencies, we can express
concepts such as “for each drug with a given symptom the received diagnosis
does not usually change”:

Drug, Symptom
ε−→ Diagnosis.

In [38], the authors present an overview of the most important RFDs,
focusing on the relaxation criteria. As you can see in Figure 2-8 , they divide
the different proposals in two main categories: attribute comparison using
approximate matching paradigms to compare the attribute values on the left-
hand side (LHS) and the implied attribute values on the right-hand side (RHS);
extent, which indicates whether an RFD is satisfied by a subset or all the tuples.

Since our proposal is more similar to the FDs relaxing on the extent, in this
section we discuss only the literature proposals related to the extent. All these
proposals differ on the method used to specify the subset of tuples for which
the RFD is satisfied, the coverage measure. In general, they use a different
coverage measure defined as:

DTRUE : XEQ

Ψerr(0)−−−−→ YEQ

where Ψ represents the coverage measure, and EQ is the equality constraint.
The first proposal is the purity dependencies (PUDs) [168], which generalize

the canonical FDs based on the notion of impurity measure. Since the attribute
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values of a database relation induce a partition on the set of tuples, we can
observe that a canonical FD X → Y induces two partitions on attribute sets X
and Y, respectively, without impurity. On the other hand, when the impurity
induced by the attribute sets X and Y is greater than 0, but below a given
threshold, a PUD can be used. Formally, let r be a database instance, X and Y
be two sets of attributes, πX and πY be two partitions of the set of tuples of r
induced by the values of X and Y in r, respectively (i.e., πX and πY correspond
to the groups returned by SQL clauses group by X and group by Y). A PUD
is defined as:

DTRUE : XEQ
Θ(πX ,πY )≤ε−−−−−−−→ YEQ

where Θ is a concave and subadditive function that computes the largest im-
purity measure on the blocks in πX relative πY .

Another proposal is the numerical dependencies (NUDs). They are FDs
relaxing on the extent by means of a cardinality constraint. Given a relation
R, and X, Y ⊆ attr(R) , specifies that each tuple t[X] is associated to at most
k different tuples on Y , for some constant k. Formally, a NUD on a relation
R is defined as:

DTRUE : XEQ
card(X,Y )6=k−−−−−−−→ YEQ

where card(X, Y ) = |πY (σ(X=t[X])(r))|, and EQ is the equality constraint..

Constrained functional dependencies (CDs) [115] is another type of RFDs,
which generalizes traditional dependencies, such as functional dependencies,
by expressing that the dependency applies not to an entire relation, but to a
subset of the tuples in the relation described by a constraint. Formally, a CD
on a relation R and class of constraints L, has the form:

Dc : XEQ

Ψerr(0)−−−−→ YEQ

where X, Y ⊆ attr(R), Dc ⊆ dom(R) represents the tuples satisfying the
constraint c ∈ L with variables from attr(R).

A specialization of CDs, are the conditional functional dependencies (CFDs)
[27]. They use conditions to specify the subset of tuples on which a depen-
dency holds. Conditions are less general than CD constraints, since they only
enable the specification of constraints based on the equality operator.

DTr : XEQ

Ψerr(0)−−−−→ YEQ

where DTr is the domain of values satisfying a pattern tableau Tr with at-
tributes in X and Y .

Another example of approximate functional dependencies are the pattern
functional dependencies (PFDs) [147]. These are born from the necessity of
relaxing the traditional integrity constraints which work on the entire attribute
values. Relaxing the constraints of FDs operating on entire attribute values,
they introduce a new type of dependencies that can capture partial attribute
values that follow some regex-like patterns. In this context, a pattern is a
sequence of characters defined over the generalization tree, a tree defined over
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Figure 2-8: Characteristics of relaxation criteria for RFDs from [38]

an alphabet, where each leaf node is a character in Σ and each intermediate
node is a generalization of its child nodes. Formally, a PFD ψ defined over
schema R is a pair R(X → Y ;Tp), where:

• X and Y are sets of attributes from R;

• X → Y is a standard FD, called an embedded FD

• Tp is a tableau with all attributes in X and Y , where for attribute A in
X or Y and each tuple tp ∈ Tp, tp[A] is either a constrained pattern that
matches values in dom(A), or an unnamed variable ⊥ that is used as a
wild card.

Frequent constraint violations in a database may be related to the fact that
the considered (mini) world is changing, while the specified constraints remain
static. Therefore it becomes necessary to identify the FDs violated by the
current data and propose some approaches to appropriately modify the FDs
according to the new reality represented by the current data.

In [122], considering possible mutations of the original database over time,
the authors aim at modifying the integrity constraints so the semantics of the
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database will adhere as much as possible to the changing reality. The goal of
their method was firstly to understand which FDs are violated, and secondly
to repair these FDs by adding attributes to the antecedent of the dependency.
Given a relation schema R, an instance r of R, and all the FDs defined on
it, for each FD F : X → Y , we compute its confidence. If the result is lower
than 1 then the FD is not satisfied and, to repair it, we look for a set of
attributes U in R XY such that, if added to the antecedent of F , generate a
new dependency FD FU : XU → Y whose confidence is 1.

Regarding the dynamism of the data, but not related to the approximation
of FDs, in literature we find another example [159] where the authors deal with
the problem of continuously discovering FDs on dynamic datasets in an efficient
way, and propose an incremental approach to solve it. They propose DY NFD,
the first algorithm that maintains the complete and exact set of minimal, non-
trivial FDs on dynamic data, monitoring any changes in the data (insertion,
update, deletion), and incorporating them as batches into sets of minimal
functional dependencies.

2.3.4 Approximate temporal functional dependency

To conclude the panorama, moving from the definitions of FD, TFD, and AFD,
we need to introduce the concept of approximate temporal functional depen-
dencies (ATFDs). In [46], the authors introduce for the first time the ATFDs,
which are defined and measured either on temporal granules or on sliding win-
dows, and apply them to mine data from psychiatry and pharmacovigilance
domains. In addition, they introduce a new error measure G4, which considers
the minimum number of tuples in r which must be modified for the plain TFD
to hold on all the tuples of r.

According to the taxonomy previously defined, they considered pure tem-
porally grouping TFDs of the form [r, t − Group]X → Y , where t − Group
consists of granularity (Gran) or sliding window (SW) grouping. A temporal
granularity is a partition of a temporal domain in indivisible non-overlapping
groups, i.e., granules, of time points: minutes, hours, days, months, years as
well as working days are granularities [45].

Definition 7 (Grouping by Gran(i)). Two tuples t1, t2 ∈ r belong to the same
temporal group Gran(i) iff t1[V T ], t2[V T ] ∈ Gran(i) where Gran(i) is the ith

granule of granularity Gran.

A sliding window SW (i, k) includes all the time points in interval [i....i+k
-1]. Thus, once we fix the length of the SW over relation r (i.e., k in the
example), every SW over r will feature that length, and will - at most -
include k elements (if relation r has tuples for all the time points of interval
[i...i+ k -1]).

Definition 8 (Grouping by SW (i, k)). Two tuples t1, t2 ∈ r belong to the same
sliding window SW (i, k) iff t1[V T ], t2[V T ] ∈ [i...i+ k -1].
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They evaluate a new error measure G4, which considers the minimum num-
ber of tuples in r which must be modified for the plain TFD to hold on all the
tuples of r.

G4([r, t−Group]X → Y, r) = min{|s| |s ⊆ r∧((r−s)∪w) |= [r, t−Group]X → Y }

where the set w is the minimal one for which the following formula holds:

∀t ∈ s(∃t′ ∈ w(t[U − Y ] = t′[U − Y ] ∧ t[V T ] = t′[V T ]))

The related scaled measurement g4 is defined as

g4(X → Y, r) = G4(X → Y, r)/|r|

The ATFD with different temporal grouping are defined as follows:

Definition 9 (ATFD with Gran grouping). Let r be a relationship over the
relational schema R (U ∪ {V T}): let X, Y ⊆ U be attribute sets of R. Let
Gran be the reference granularity, [r,Gran]X

ε−→ Y holds on relation r if the
introduced error g3([r,Gran]X −→ Y, r) ≤ ε is less than the given threshold ε.

A temporal granularity is a partition of a temporal domain in indivisible
non-overlapping granules.

Definition 10 ( Minimal ATFD with Gran grouping). An ATFD in the form
of [r,Gran]X

ε−→ Y is said to be minimal for r iff r |= [r,Gran]X
ε−→ Y and

∀X ′ ⊂ X we have that r 2 [r,Gran]X ′ :
ε−→ Y .

Definition 11 (ATFD with SW grouping). Let r be a relationship over the
relational schema R (U ∪ {V T}): let X, Y ⊆ U be attribute (sub) sets of R.
Let {i...i + k − 1} be a sliding window (SW) of length k. The approximate
temporal functional dependency [r, {i...i + k − 1}]X ε−→ Y holds on relation r
if the introduced error g4([r, {i...i + k − 1}]X −→ Y, r) ≤ ε is lower than the
given threshold ε.

A sliding window (i,K) includes all the time points in interval [i...i+k−1]
where k is the sliding window length. Fixed a length of an SW over a relation
r, every SW contains at most k elements.

Definition 12 (Minimal ATFD with SW grouping). Given an ATFD over
[r, {i...i+ k− 1}], we define X

ε−→ Y to be minimal for r iff r |= [r, {i...i+ k−
1}]X ε−→ Y and ∀X ′ ⊂ X we have that r 2 [r, {i...i+ k − 1}]X ′ ε−→ Y .

Another example of ATFDs is [2], where the authors present AETAS, a sys-
tem for the discovery of approximate temporal functional dependencies. The
discovered TFDs are mainly pure temporally grouping TFDs with moving win-
dows, according to the classification proposed in [46]. They mine the duration
that lead to identifying temporal outliers., tackling the problem of the sparse-
ness of the data with value imputation, and reducing the noise by enforcing the
rule in the smallest meaningful time bucket. In addition, they consider rules
with constants (similar to conditional functional dependencies) such that spe-
cific durations can be used for specific entities, where the moving window may
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have different values according to specific values of atemporal attributes. The
authors applied these in two different clinical domains: the first one referred
to psychiatry, collecting data about contacts between patients and psychia-
trists, psychologists, and social workers; the second was pharmacovigilance,
collecting data about drug administrations and adverse reactions.

The first domain concerned the Verona Psychiatric Case Register (PCR).
The National Health Service in trust with the University of Verona offers
a public Community-based Psychiatric Service (CPS), providing psychiatric
care to mentally ill as well as psychological care and responses to social needs.
Data about patients are collected in the information system PCR, which has
recorded information about patients’ accesses to this service since 1979. PCR
contained patients’ personal data, patients’ medical record, contact informa-
tion, records education, employment, professional status, type of accommo-
dation, and marital status. PCR is used as a basis to evaluate the direct
management costs for groups of patients, and to monitor the effects coming
from changes in resources, organization, and needs. The clinical purposes in-
clude monitoring of patients to plan future contacts at regular time intervals,
and providing clinicians with reports about admissions and contacts for ev-
ery patient in a given time period.These temporal data can then be used by
psychiatrists, e.g., to identify the number of contacts in different time periods
with respect to different factors such as age, diagnosis. A meaningful example
discussed in this context was: [133days]HealthStructure −→ ContactType.

The second one is Pharmacovigilance (PhV) that collects, analyzes, and
prevents adverse reactions induced by drugs (ADR). The spontaneous report-
ing of ADRs identifies unexpected reactions and informs the regulating au-
thority about them. This practice is valuable, provides early warnings, and
requires limited economic and organizational resources. It also has the advan-
tage of covering every drug on the market and every category of patient. PhV
considers possible relationships between one or more adverse reactions and one
or more drugs, mainly focusing on unknown or completely undocumented re-
lationships. Reports suggest a cause-effect link among ADRs and drugs. Each
report includes patient’s information and the description of the occurred ad-
verse relation. These temporal data are used to investigate any cause-effect
relationship among drugs and reaction(s) in different time periods, or accord-
ing to the time frame of the exposure. A meaningful example discussed in this
context was: [30days]Drug ,AdverseReaction −→ Outcome.
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Chapter 3

Towards Explainable Artificial
Intelligence in Medicine

This chapter is mainly based on “A manifesto on explainability for artificial
intelligence in medicine” [44], which aim is explore in depth the concept of
explainable AI, offering a functional definition and conceptual framework or
model that can be used when considering XAI. This is followed by a series
of desiderata for attaining explainability in AI, each of which touches upon a
key domain in biomedicine. To conclude, considering that one of the central
themes in this thesis is “time”, we discuss the meaning of temporality in XAI
context, explicitly declining different aspects of it.

3.1 Introduction

There is considerable discussion in the biomedical informatics and computer
science communities about the “un-explainable” nature of artificial intelligence
(AI), in that much is made of so-called “black-box” algorithms and systems
that leave users, and even developers, in the dark as to how results were
obtained. As a result, there is growing skepticism about the potential limits of
AI, even in the face of burgeoning interest that at times reflects over-optimism
about it. At the same time, there is a growing community of researchers
who are working to address this skepticism through their work in making AI
explainable, and thus useful and potentially usable to those who employ AI
in their work. This is especially welcome in the domain of biomedicine, where
explainable AI is critically important for clinicians in their daily practice.

As AI (including Machine Learning) becomes increasingly ubiquitous, there
are growing concerns and questions, such as:

• How does an AI algorithm work - what is it doing?

• Does an AI system work as well as an expert?

• Does an AI system do what a user would do, were she in the same
situation?
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• Why can’t the system tell a user how it arrived at a conclusion or made
a decision?

These concerns are of urgent importance and need to be addressed with
scientific and engineering rigor in a variety of biomedical domains, including
clinical decision support systems, patient monitoring, public health surveil-
lance, and biomedical research. However, we in the informatics community
are uniquely positioned to take leadership roles in developing and implement-
ing strategies for improving the explainability of AI systems.

The primary goal of this paper is to present a compelling case for the need
to address gaps in the explainability of AI software and the results presented
to users. We hope to meet this goal by means of a rigorously developed con-
ceptual model for thinking about explainable AI, or XAI, through a thorough
exposition of the work to date and identification of gaps in research and ap-
plication of XAI, and a proposition for how these gaps could be addressed.
Even though many definitions and concepts we will introduce and discuss are
general and may be applicable to many different domains, in the following we
will focus on XAI in Medicine and Health. Indeed, these domains have spe-
cial requirements that make XAI quite idiosyncratic and worthy of particular
attention.

We have structured this chapter as follows: after an introduction to the
problem of explainability, in Section 3.5 we illustrate how temporal elements
can ba part of XAI models; in Section 3.2 we discuss some background on how
informatics and computer science describe the problem, approaches to explain-
ability, and applications of XAI to a variety of key clinical domains; Section
3.3 contains a proposal for a conceptual framework and foundational definition
of XAI; Section 3.4 presents a set of desiderata that would be important to
address XAI moving forward; finally, Section 3.6 sketches some conclusions
and future directions.

3.2 A research field’s description of the cur-

rent landscape of AI

In this section, we will briefly introduce the main aspects that have been dis-
cussed about XAI in general, in the areas of Computer Science and Artificial
Intelligence. Then, we will move to the main specific issues of XAI in Medicine,
ending with some non-exhaustive examples of XAI approaches in clinical do-
mains.

The concept of explainability has a long story in AI. Indeed, since the first
proposals of the so-called “expert systems”, there was the need of having an
explanation of why and how some conclusions were reached by the system
in a complex decision-support task. Such a requirement was, and remains,
extremely important in medicine, as physicians needed to understand why the
system was proposing, for example, a specific diagnosis or treatment regimen.
The need of having some explanation about the output, an AI-based system
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provides, has recently been exacerbated by the adoption of machine learning
(ML) approaches, where the reasoning task is often performed by “black-box”
systems that do not allow one to understand clearly why a specific result has
been reached [111].

In principle, explainability is related to understanding, i.e., having a mental
model of what we are observing. With a slightly different terminology, we
may say that explaining/interpreting consists of providing causes of observed
phenomena in a comprehensible manner through a linguistic description of
its logical and causal relationships [85, 111]. In the context of XAI, we need
to understand the conclusions of a system that is reasoning on some data to
reach some result. Such systems in medicine are often related to a decision-
support task, where data may be incomplete, uncertain, ambiguous, or missing.
Moreover, such data have a high complexity and heterogeneity, being expressed
as often interrelated and intertwined data in various formats such as structured,
semi-structured, or unstructured alphanumeric data, movies, images, sounds,
waveform signals, and so on.

Methods proposed to support explainability are often divided into ante-
hoc and post-hoc approaches. Ante-hoc approaches are related to systems that
allow one to directly understand their mechanisms in providing a result such as
a conclusion (e.g., a diagnosis) or a recommendation (e.g., a treatment option).
Decision trees, rule-based models, and linear approximations are, for example,
commonly considered to be implicitly explainable. Post-hoc approaches try to
provide some explanation to the results reached by ML models, such as those
based on deep neural networks, random forests, support vector machines, and
many others. Post-hoc approaches are, in principle, applicable to different
kinds of AI systems. The difference between these two approaches is that post-
hoc approaches are not considered when designing a system, but deal with the
extraction of explanatory information from an already existing system, which
is usually based on ML “black-box” models. As we will see in this section, the
distinction between post-hoc and ante-hoc approaches is sometimes subtle and
has to be informed by further considerations.

Explainability is thus an inherently multifaceted concept, which still needs
some more effort to have a precise characterization, also from the terminolog-
ical point of view [111]. Let us now consider some dimensions of analysis that
have been recently discussed in the literature.

The content of explanation: What is being explained? Independently
from being either post-hoc or ante-hoc, XAI systems have to be specified and
developed with respect to the subject of the provided explanation. Indeed,
sometimes it is the reasoning mechanism itself that has to be explained. In
this case, explanation focuses on the mechanics of the path that allowed the
system to reach a specific result. Both generic and specific medical knowledge
could be used to this regard. On the other side, explanatory information could
be provided without any reference to the reasoning approach of the system, but
focusing on deriving some form of association/relationship (causality) between
data and corresponding results.
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The stakeholders of explanation: Who needs explainability? Any
kind of explanation needs to be tailored according to its recipients. It was
recently highlighted that many possible stakeholders may be closely related to
any XAI system [111]. In the medical and healthcare settings, among the pos-
sible stakeholders we consider a broad community of users, including clinicians,
technicians, nurses, general practitioners, administrative staff, different kinds
of students, healthcare policy makers, medical informaticians, and patients.
The background knowledge of such stakeholders is often deeply different and
often requires different user-centric solutions and techniques for a successful
explanation.

The goal for explanation: Why is explainability required? Consider-
ing different stakeholders is not sufficient. We have to consider not only who
is the recipient of the explanation, but also why the explanation is required.
Indeed, the same stakeholder may have different motivations and requirements
with respect to XAI systems. As an example, a physician may have different
desiderata that include, variously, education and experience, fairness, ethics,
satisfaction, trust, or controllability, while developers would consider system
acceptance, possibly in addition to those required by a physician. Often such
desiderata are not completely disjoint and may co-exist in a single XAI-system
[111]. According to different desiderata, stakeholders could be looking for an
answer to different questions related to explainability [85]: Why did the algo-
rithm do that? Can I trust these results? How can I correct an error? Are
data meaningful with respect to the required task?

The moment, the duration and the frequency of explanation: When,
how long, and how frequently. A further, under-evaluated, issue is re-
lated to when and how frequently an explanation is requested of the system.
Indeed, while näıve and occasional users often require frequent explanations
at any stage of use of the supported AI system, experienced users who are
supposed to use the system in the daily clinical routines, may require less fre-
quent explanations, possibly focusing on rare or unexpected situations. The
level of detail and thus the duration of the explanation may also be different,
according to the specific needs of different stakeholders in different contexts,
with different goals.

The modalities of explanation: How is explainability represented?
Different choices are possible when deciding how to explain. A first option
is to support perceptive interpretability [170]. This concept refers to interpre-
tations that can be humanly perceived, (1) through the highlighting (often
visual) of important input features with respect to a given output (saliency),
(2) through the observation of the stimulation of neurons or groups of neurons
(signal interpretability), and (3) through the composition of logical statements
or sentences that can explain, even indicating causality (verbal interpretabil-
ity). Often, perceptive interpretability is founded on an abstraction of the task
at hand, which focuses on the most important aspects that explain the reached
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solution. Systems based on perceptive interpretability work with different tech-
niques with respect to the ones used for the given task. For example, a fuzzy
rule-based system may be coupled with an artificial neural network (ANN) sys-
tem in diagnosing electrocardiographic (ECG) signals [30]. As for perceptive
interpretability through visual and graphical systems, a widely acknowledged
distinction exists between directly understandable data, which are visualized
through one or two dimensional representations, and multi-dimensional repre-
sentations, which are not directly understandable [85]. A second option is to
consider interpretability by mathematical structures. In this case, either sim-
ple mathematical models are used, or different data-oriented approaches are
used to highlight hidden features of data, such as data clustering, perturba-
tions, data dependencies. Systems which support interpretability via math-
ematical structures consider outputs (which are ultimately perceptive) that
require deeper cognitive processes and background knowledge, before being
interpretable [170].

Further distinctions about the modalities of explanations supported by
different XAI systems consider model-agnostic approaches and model-specific
approaches. While the first approaches attempt to provide explanatory infor-
mation only by observing input/output associations, model-specific approaches
consider also specific features of the model under explanation [111]. A last as-
pect to consider for XAI systems is their scope. Indeed, some contributions
focus on single predictions/classifications of the supported system (i.e., a single
pair of inputs/output). Such systems have a local scope [3, 8], in comparison
with other approaches that have a global scope, which are designed to explain
the overall reasoning mechanism of the model.

Moving closer to applications in medicine, some aspects of AI have been
identified that make XAI systems in medicine challenging but worthy of rig-
orous investigation. Factors as risk and responsibilities, accountability, and
trustworthiness, even though already considered in non-medical domains, be-
come here prominent and multifaceted. As an example, while explainability
is a strong requirement in the clinical domain, as for acceptance, account-
ability, and legal compliance, a certain level of opaqueness can be acceptable
for some clinical users, provided that some functional understanding of the
model is supported, disregarding a possible low-level algorithmic understand-
ing [85, 87, 170].

As XAI in medicine is in an early stage of investigation, some further
issues have to be faced. Among them, the evaluation of XAI systems with
actual end-users will help understand, represent, and satisfy user requirements
[111]. Causability is the term proposed in [85] to explicitly highlight the need
of measurements for the quality of explanations. In this direction, explanation
interfaces have to make the results obtained through the explainable model
both usable and useful to the considered stakeholder. Causability is thus a
measure for the usability of such a human-AI interface.

All the previous arguments we discussed lead to a further, recently high-
lighted consideration [111]. Researching and developing XAI in medicine is
an interdisciplinary task, which requires the active participation of different
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stakeholders, to cover different perspectives. Methodologies for the design of
XAI systems in medicine would require skills from different scientific domains,
such as AI, medical informatics, software engineering, medicine, healthcare,
and cognitive sciences.

3.2.1 Applications

We find many examples in the literature of research activities that are devoted
to exploring XAI in medical domains. Here we report some recent examples
regarding different techniques.

ML algorithms such as neural networks are inherently non-explainable and
are typically referred to as “black-box” models. However, there are some
examples where neural network models can be shown to produce explanatory
descriptions to support the interpretability of the output. In one study, the au-
thors proposed a modular framework, CEFEs (CNN Explainability Framework
for ECG signals), a post-hoc tri-modular evaluation structure that provides lo-
cal interpretations and explanations from convolutional neural networks [121].
The evaluation of the model’s capacity is performed through quantitative in-
terpretability, where the metrics represent the features learned by the model.
In addition, the visualization of the features allows visually correlating the
features. Pennisi et al. employed a novel lung-lobe segmentation network to
identify CT scans of COVID-19 patients and automatically categorize specific
lesions [140]. They integrate the pipeline into a web application to support
radiologists in the investigation of this disease.

In recent years, ensemble learning has achieved excellent results incorpo-
rating explainability. Yeboah et al. present an ensemble clustering-based XAI
model for traumatic brain injury (TBI) prognostic and diagnostic analysis
[183]. The goal is to identify patient subgroups and key phenotypes that
delineate these subgroups using tomography data, exploring the features’ rele-
vance. In another example, the authors proposed an auxiliary decision support
system that combined ensemble learning with case-based reasoning (CBR) to
help physicians improve the accuracy of breast cancer recurrence prediction
[72]. They use extreme gradient boosting (XGBoost) to predict the risk of
breast cancer recurrence, and then use CBR to explain the reason for the pre-
diction. Of note, they conducted a survey of 32 oncologists to assess the utility
of the system as perceived by users, measuring the evaluation of the system
through a questionnaire, leading to a positive assessment by the users of the
system.

There are different examples of the usage of systems that exploit the expla-
nations through rules-based systems extracted from medical data. They gen-
erated explanations in a human-understandable format, increasing the trust to
believe the results given by the support system. El-Sappagh, et al., proposed
a system of fuzzy IF-THEN rules [63]. It integrates reasoning with fuzzy rea-
soning over an ontology. They proposed and implemented a new semantically
interpretable fuzzy rule-based system framework for diabetes diagnosis that is
able to provide accurate decision support as a result. Kavya et al. developed
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an Allergy Diagnosis Support System (ADSS) [103]. They applied several ML
algorithms and then selected the best-performing algorithm using k-fold cross-
validation. In terms of the XAI method, they developed a rule-based approach
by building a random forest. Each path in a tree is represented as an IF-THEN
rule, and these rules are stored in a rule base for expert assessment. Addi-
tionally, the authors developed a mobile application, which can assist junior
clinicians in confirming the diagnostic predictions.

Although the user represents a central aspect in the approaches we have
just seen, the creation of an explainable system to use in a particular context
requires a multi-disciplinary collaboration, involving collaboration with the
stakeholders. Schoonderwoerd et al. presented a case study of an application
of a human-centered design approach for AI-generated explanations [160]. The
approach consisted of three components:

(i) Domain analysis to define the concept and context of explanations;
(ii) Requirements elicitation and assessment to derive the use cases and ex-

planation requirements; and
(iii) The consequential multi-modal interaction design and evaluation to cre-

ate a library of design patterns for explanations.

They apply this system in the context of child health. Dragoni, et al. pro-
posed an XAI system based on logical reasoning that supports the monitoring
of users’ behaviors and persuades them to follow healthy lifestyles [62]. In this
case, the authors first assessed the usability of the application with question-
naires filled out by the user. Second, they validated the correctness of the
explanation generated by the system. Finally, the last evaluation included an
effectiveness analysis of the generated explanations.

3.3 Towards a foundational definition of XAI

in Medicine

We propose a conceptual framework for XAI that captures the intersection
of four characteristics that are typical of any information system, statistical
model, or software application. These characteristics are Interpretability, Un-
derstandability, Usability, and Usefulness, respectively. Interpretability is the
degree to which a user can intuit the cause of a decision and thus the ability
of a user to predict a system’s results [151]. Understandability is the degree
to which a user can ascertain how the system works, and leads directly to
user confidence in the system’s output. Usability is the ease with which a
user can learn to operate, prepare inputs for, and interpret outputs of a sys-
tem or component. Usability thus asks the question “Can one use the system
easily?”. Usefulness, on the other hand, asks the question “Will one use the
system because it meets a user’s needs?”, and is seen as the practical worth or
applicability of a system. A system is unlikely to be useful if it is not usable,
however. As a result, usability is generally a first-order requirement of any
information system or software application [110].

However, when it comes to AI, we are not talking about any information
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Understandability

Interpretability

Usefulness

Usability

Explainability

Figure 3-1: The Venn diagram of Explainability as intersection of Usability,
Usefulness, Interpretability, and Understandability.

system. Rather, AI systems and applications typically realize some kind of
reasoning task, to support some kind of decision-making, such as proposing
a clinical diagnosis or controlling a task in an engineering operation, or to
derive new knowledge/information in some specific context, as mining hidden
patterns in patients’ clinical histories. Perhaps unique to AI applications, we
need two additional dimensions in order to realize an ability to provide user
confidence that the decision was correct, but even more so, the ability for a user
to ascertain how the system works. Thus, we propose that understandability
is one such dimension, and furthermore that it is, in our framework, comple-
mentary to usability. That is, usability is enhanced via understandability: an
AI application that is understandable is more likely to be usable.

The first characteristic of AI systems that we consider to be central to our
framework is interpretability, which we construe as the degree to which a user
can intuit the cause of a decision; in addition, it is the degree to which a human
can consistently predict a model’s results, based on her experience with the
application. Just as understandability and usability are complementary, we
propose that interpretability and usefulness are complementary as well. For
example, a user of an AI application is more likely to find it useful, something
that would meet her needs for a given purpose, if the result or decision made
by the application is interpretable in the face of a real-life contingency.

This framework is illustrated as a Venn diagram in which these four char-
acteristics overlap various points of articulation, but most importantly in the
center, where all are needed when considering explainability, as is shown in
Figure 3-1.

Where these four characteristics intersect is that smallest, yet richest, seg-
ment of the Venn diagram, explainability. Due to the intersectionality of the
four characteristics just described, explainability is a complex concept. It is
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not merely a characteristic of the model, but rather something that emerges
from the intersection of the four characteristics we addressed here. As a result,
we maintain that it is best to describe explainability in a multidimensional way
through addressing a series of seven questions through the lens of others who
have worked extensively in this domain.

The proposed foundational definition of XAI does not explicitly contain any
specific reference to the medical and health domains. Indeed, the concepts
introduced here are general and can be applied to any domain. However,
we would stress here that, to the best of our knowledge, the definition of
explainability as the intersection of four different characteristics is both original
and particularly well suited for medicine and health AI.

As for the novelty of our definition, we identify here two different aspects:
(i) from one general side, we explicitly distinguish the concepts of interpretabil-
ity, understandability, and explainability. Such distinction is not clearly dis-
cussed in the existing literature, where, for example, interpretable and explain-
able are often taken as synonyms (see, for example, [73, 111, 170, 120]). On the
other hand, we explicitly introduced usability and usefulness as first principles
of explainability. Such user-oriented aspects of explainability, even though con-
sidered and highlighted in the considered literature, have not been discussed
as main component of a complex concept as complex as that of explainability.

The highlighted novelty of our foundational definition is also the leverage
for making it especially well-suited for medicine and healthcare. Indeed, in
our view, Medicine and healthcare are characterized by some specific features,
which need to be considered as central for XAI. The first feature consists in
the presence of distributed, heterogeneous decision-making tasks and a second
can be defined as knowledge-intensive domain. The presence of distributed,
heterogeneous decision-making tasks and of the corresponding XAI systems
justify the presence of usability and usefulness in the definition of explainabil-
ity. Indeed, usability and usefulness have to be evaluated according to different
users and tasks. They are not absolute concepts and need to be assessed “on
the field”. The usability of systems that have to be adopted by specialized
physicians in some intensive clinical setting requires it to be evaluated by the
pertinent clinical stakeholders, while, for example, the usability of XAI systems
supporting the communication and shared decision-making among clinicians,
general practitioners, and patients (e.g., in a web app supporting the mental
health monitoring of home patients) should be suitably assessed according to
different explainability requirements, corresponding to different background
knowledge and roles of the involved stakeholders.

Moreover, such knowledge-intensive and decision-intensive tasks require
one to distinguish between interpretability and understandability. Indeed,
while the concept of interpretability is related to the capability of predict-
ing a system’s result, even without being aware of the “internal” structure
and functioning of the system, understandability refers to the capability of
being aware of how the system works. In many intensive decision-based tasks,
such as the prompt reaction to some unexpected change in an ICU patient’s
condition, the interpretability of an AI-based system may emerge as an in-
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dispensable feature. Indeed, the clinician has to be able to recognize how
recorded vital signs are related to the alarms triggered by an AI-based system.
It is worthwhile to stress that interpretability does not mean that the AI-based
system is not important or useful as the user is able to predict the system’s
result. Indeed, the capability of predicting the system’s result, does not mean
that a human can process all the required data in an acceptable way, according
to the requirements either related to the number of patients to consider or to
the real-time results.

On the other hand, interpretability alone is often not sufficient to attain
a necessary level of explainability. Understandability requires that the stake-
holders have to be able to understand how the AI-based system works. In
many medical and healthcare AI-based systems it may be important to have
a deep understanding of the system internal behavior, in a way comprehensi-
ble to the specific clinical stakeholder. Let us continue with the example of
an AI-based system for patient monitoring in ICU. While the AI-based sys-
tem supporting real-time monitoring requires some kind of interpretability, the
same AI-based system in the reporting and data analytics part could require
more explicitly some kind of understandability. Indeed, when doing off-line
data analysis it may be important to understand how the system is able to
derive even unexpected results. As these results have to be related to existing
and evolving medical knowledge, a deep comprehension of system technical-
ities and behaviors would also support a suitable elicitation of new medical
knowledge.

3.4 Questions, propositions, and desiderata in

the quest to attain XAI in medicine

After the proposal of our foundational definition of XAI in Medicine, sup-
ported by some simple examples in clinical domains, let us now move to more
concrete issues that are necessary to consider in the practical development and
use of (explainable) AI-based systems in medicine and healthcare. In the fol-
lowing we will touch on several different issues. After considering the design
of XAI systems in Medicine (What are the requirements for XAI? How can we
evaluate the goodness of the provided explanation?), we will introduce some
further motivation supporting the distinction between understandability and
explainability (If an AI system’s output is understandable, is it automatically
explainable?). Then, we will deal with the importance of modeling the consid-
ered medical domains (What is the role of domain understanding in achieving
XAI in medical applications?). We will then continue with some more abstract
aspects, as they relate to the evolution from data to wisdom through explain-
ability (Can explainability draw us closer to wisdom?), to (Can an AI system
that is not explainable be trustworthy?) and that connecting explainability
and trustworthiness (Can an AI system that is not explainable be trustwor-
thy?). We will end this section by answering the (usually hidden) question: Is
XAI in medicine always required?
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The questions we will deal with in this section complement the foundational
definition we proposed in the previous section and apply such definition with
respect to real-world aspects of XAI in clinical contexts.

3.4.1 What are the requirements for XAI? How can we
evaluate the goodness of the provided explana-
tion?

Proposition: There are tangible, instantiable, user-centered require-
ments that must be met in order to achieve an XAI system; more
specifically, there is the need to measure, interpret, and understand
usability vs. usefulness, and interpretability vs. understandability,
and how those two relate to each other in the context of use and
users, particularly in the context of AI in medicine.

Similar to any information system, systems that employ AI can and should
be developed and evaluated using state-of-the-art methods that can be ex-
tended to the domain of explainability. While validation and verification have
been part of the canon for evaluating AI systems for several decades, these fo-
cus on operability and the accuracy of knowledge representation and inference.
However, neither validation nor verification have fully taken into account the
explainability or interpretability of the results from a user’s perspective. Pro-
posed here are desiderata in two broad domains of requirements for XAI that
would serve to further the development of AI systems that help users to under-
stand how such systems reach conclusions or offer advice. These domains are
linking the cognitive to the explainable, and the evaluation of explainability.

• Linking the cognitive to the explainable: the role of theory. Knowledge
elicitation has long been the central purpose of knowledge engineering,
but it focuses on developing a knowledge base that does not address
the needs of users as they interact with an AI system. This lacuna is
especially evident with regard to the user interface. It is argued here,
and supported in the literature, that qualitative inquiry driven by theo-
retical frameworks is needed to develop user-centered interfaces for ML
in healthcare applications [15]. Theory-driven user interface design that
takes into account the cognitive and behavioral aspects of users is foun-
dational to achieving true explainability. This extends traditional prin-
ciples of user interface design to include aspects of what influences user
interpretation. Such aspects include attitudes and beliefs that may bias
interpretability and subsequently influence users’ confidence and under-
standing of the system and its results. In their recent survey of models for
achieving explainability, Markus et al. provide a framework for choos-
ing the type of explainable interface between model-, attribution-, or
example-based explanations [120]. They advocate for methods for achiev-
ing explainability that are sensitive to the requirements of the problem
domain, and that these should drive the choice of approach, rather than
enforcing a single paradigm of explainability. In a word, they call for an
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agile approach to attaining and evaluating explainability, which is very
much in line with the best practices of information system development
in general. One agile approach to attaining explainability in AI systems
turns to fuzzy set theory and its application to fuzzy reasoning systems.
Such systems provide a plausible paradigm for modeling explainability,
since natural language is one defining characteristic of fuzzy systems.
Alonso Moral et al. argue for this paradigm, showing how user-centered
explainability is connected to fuzzy modeling [124]. Finally, any effort
to establish explainability needs to be linked to the cognitive aspects of
human inference. It is arguable that there is no more urgent need for
this in medical decision making. An example of this kind of cognition is
seen in the principle of ex adiuvantibus, which is the inference leading to
a conclusion, such as the cause of a diseases, that is based on evidence
that the disease responded to a treatment. As an example, one might
infer that a migraine headache was caused by exposure to a specific aller-
gen because an antihistamine was shown to prevent the headache. Such
causal inferences many or may not be correct in practice, but they are
made frequently in clinical practices, and in fact this type of reasoning
is at the heart of allopathic medicine.

• A user-oriented perspective of explainability. The growing research com-
munity in XAI has already developed a number of highly successful
XAI methods [185]. Explainability in this context highlights technically
decision-relevant parts of machine representations and machine models.
For example, parts that contributed to model accuracy during training
or to a particular prediction are visualized by a heatmap, a good and
proven example being the very well known Layer Wise Relevance Propa-
gation (LRP) method [127]. However, this visualization does not refer to
a human model. For this purpose, the concept of causability was intro-
duced, which is defined as the measurable extent to which an explanation
reaches a certain level of causal understanding for a human end-user [85].
Since this concept refers to a human model, it can be used very well to de-
sign and evaluate future human-AI interfaces [87]. These future Human-
AI interfaces must provide a successful mapping between Explainability
and causability and foster contextual understanding and allow the ex-
pert to ask questions and counterfactuals (”what-if” questions) [86]. At
the same time such question-answer interfaces can make use of a human-
in-the-loop, who can bring human experience and conceptual knowledge
to AI processes - something that the best AI algorithms available still
lack. An example that is important for medical AI is the classification
of entities into several classes, where typically, taking into account the
uncertainty about the membership of the classes, entities are classified
as “yes”, “no”, or “maybe”. However, in doing so, it is desirable – espe-
cially in medical problems – to indicate the propensity or probability of
a classification to belong to a single yes or no category. Neural networks
have proven their high performance in crisp classification, however, as we
know, the solution is not comprehensible and therefore difficult or impos-
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sible for a human expert (e.g. a physician) to interpret and understand.
Rule-based systems are in principle explainable, however they are based
on formal inference structures and also have problems with interpretabil-
ity due to their high complexity. We must emphasize that even human
experts sometimes cannot explain, but construct mental models of the
problem and use these models to select the best possible solution. Hudec
et al. propose a classification by aggregation functions of mixed behav-
ior through the variability of ordinal sums of conjunctive and disjunctive
functions [89]. In this way, domain experts should assign only the most
relevant observations regarding the considered attributes. Consequently,
the variability of the functions provides room for ML to learn the best
possible option from the data. Such a solution is tractable, reproducible
and explainable to domain experts.

• Evaluating explainability. Ultimately, explainability is in the eye of the
beholder, i.e., the user. As such it is incumbent on those who aim to
develop XAI systems to account for their usability, but also their useful-
ness. Usability can be measured using modifications of such instruments
as the System Usability Scale (SUS). A detailed retrospective examina-
tion of the SUS is provided in [33]. Modification to this scale would need
to account for the interpretability of the system, including both inputs
and outputs. Another approach to usability assessment is one that fo-
cuses on causality [85, 83]. This approach allows users and developers to
trace inferential pathways and evaluate them for plausibility. As such,
not only can inferential errors be identified rapidly, the reasoning behind
them can, as well. Using this scale, a deep assessment of usability can be
obtained throughout the system development life cycle. Yet another ap-
proach to assessing usability focuses on user-centered reporting of results,
such that users provide important input on and influence over what is
reported by the system. This was shown to be an effective way to ensure
that random forest results were reported in a way that users found them
to be interpretable [141]. However, none of these approaches to evaluat-
ing explainability address the issue of usefulness. While a system may
be usable, it is not necessarily useful, meaning that the system addresses
some important task, telling a user something they did not already know
or infer from available facts or knowledge. To assess usefulness, one needs
to turn to long-term, post-hoc qualitative and quantitative evaluation of
how, when, and why the system is being used and in what contexts does
it fit (or fail to fit) workflows. Another consideration for usefulness is
whether or not a system is used in practice to replace another. This is
especially important in busy clinical settings, where AI systems might be
used to augment medical decision making. However, if a system is not
useful, practitioners will not use it, even though it might be very usable,
or they will use the system but develop workarounds to make it more
useful, sometimes with consequences that are potentially catastrophic to
patients. For this type of evaluation, the frameworks mentioned above
can inform the development of strategies and methods for observing the
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use of AI systems in these contexts in real-time, and the framework-
driven analysis of data obtained during this endeavor.

3.4.2 If an AI system’s output is understandable, is it
automatically explainable?

Proposition: Understanding the output from an AI system is foun-
dational to explainability, but it is only one requirement that has to
be merged with usability, usefulness, and interpretability to compose
explainability.

A central goal of ML is to build a model which summarizes linear and/or
nonlinear patterns in a dataset. Good models are useful for making predictions
in new data and thus have the quality of generalizability, which in turn makes
them useful. Most ML models, such as those derived from neural networks or
gradient boosting, have an underlying mathematical foundation. For example,
a neural network model can be written as a summation of products of weights
and inputs from data and hidden layer nodes. Thus, our knowledge of the
mathematical foundation of a model makes it inherently understandable in
that we know the function that relates the data inputs to the outcome being
predicted. Our understanding can be improved by conducting experiments on
the model by, for example, perturbing inputs and/or model components to
observe their effects on model quality metrics. We can even decompose the
model into linear and nonlinear components using these kinds of perturbation
experiments when combined with entropy-based measures from information
theory, for example. In this way, it is possible to gain a good understanding
of a model. But does understanding translate to explainability?

As previously described, characteristics of XAI include usability, useful-
ness, interpretability, and understandability. Knowing the mathematical basis
of a model does not necessarily make it useful. For example, a neural net-
work model might do a good job of predicting 30-day hospital readmissions
following surgery. Further, the model might generalize well to clinical data
from other hospitals. The model is understandable because the mathematical
basis is known and can be described. Although the model is predictive and
understandable, it might not be useful for reducing readmissions if the fea-
tures include patient demographics such as gender and zip code which can not
be changed to improve the outcome. As another example, consider a neural
network model relating gene expression features to risk of disease, where the
predictive features include a number of housekeeping genes required for the
maintenance and function of all cells. The model might be understandable
and useful, but it might not be interpretable. In other words, it may be diffi-
cult for the domain expert to come up with an explanation for why this set of
genes contributes to disease risk when they impact every cell in the body. This
in turn would limit the ability of a pharmacologist to develop a therapeutic
intervention.

Understanding an ML model is thus a first step toward XAI. While com-
plementary, usability, usefulness, interpretability, and understandability can
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be synergistic. For example, a domain-specific knowledge graph can make a
model more understandable and more interpretable by informing the user of
biological relationships among the features [125]. Further, biomedical ontolo-
gies can facilitate both understanding and interpretation because the feature
relationships have been described through a synthesis of multiple knowledge
sources that capture their semantic meaning [56].

3.4.3 What is the role of domain understanding in achiev-
ing XAI in medical applications?

Proposition: XAI-based systems need to start from modeling the
biomedical and clinical domain in order to obtain a true understand-
ing of the context in which these systems will be used.

As stated by several authors, a key aspect of building biomedical (and in
particular clinical) AI-based systems is to understand the context. For ex-
ample, understanding the context of clinical decisions means to model the
patients’ careflow: identify the key actors of care and the decision-makers, ex-
plicitly define the timing of decisions, and clarify the data collection phases and
their critical elements, including the potential sources of missing data. Only
by deeply analyzing all these aspects it will be possible to design a successful
AI-based system and to properly identify the explainability components. The
real importance of an AI system in medicine is to support the planning and
delivery of medical treatment more than just perform diagnostic labeling [5].
XAI is essential to achieving this goal, in addition to the strategies to induce
trust in AI-supported decisions.

To this end, there is the need for integrating stakeholders and users into
entire AI development life-cycle. Following the approach proposed by Bel-
lazzi and Zupan in [21], a potential strategy is to apply in the design of AI-
based systems the same conceptual model proposed for data mining models
by the Cross Industry Standard Process for Data Mining (CRISP-DM ) pro-
cess model. CRISP-DM has six phases that are helpful to obtain explainable
systems ”by design”:

1. Business understanding;
2. Data understanding;
3. Data preparation;
4. Modeling;
5. Evaluation;
6. Deployment.

While data preparation, modeling, and evaluation are now reported in all ML
textbooks, very often little attention is given to business understanding, data
understanding, and finally deployment. All of those are related to under-
standing the biomedical context, modeling the process and clearly express-
ing the goals. Data needs to be modeled; as well, it should be understood
who and when data are collected, which is often related to the nature of
missing data. Finally, having clearly in mind the deployment scenario is a
key driver for designing XAI approaches. In this phase all actors involved in
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decision making should be involved, resorting to different instruments, from
formal questionnaires to qualitative interviews. Several other development
methodologies could be suitably adopted/extended/adapted when designing
and implementing XAI systems in medicine, where the different stakehold-
ers and the application domain are explicitly dealt with. As an example,
well established methodologies as CommonKADS, supporting the design of
knowledge-intensive systems coupled with UML notations, as well as method-
ologies dealing with the design of ontology- and/or data- based reasoning/-
analytics systems could provide suitable techniques for domain understanding
and modeling [31, 132, 161, 172].

As also reported by the EU white paper [64], AI systems and their decisions
should be explained in a manner that is adapted to the appropriate stakeholder.

Among the specific features of medicine and health, we have to consider
when designing XAI medical applications, we distinguish here:

• The heterogeneous nature of medical data. Medical data consists of im-
ages, movies, biosignals, and structured and unstructured alphanumeric
data from electronic medical records. All of this data needs to be suit-
ably integrated into and consistently and appropriately managed by XAI
medical applications. Even though explainability has been considered for
these different kinds of information systems (see, for example [98, 138]),
further research efforts will have to deal with the elicitation of both vi-
sual and textual knowledge from such kinds of data, often left partially
implicit by skilled physicians [82]. As an example, while radiology is
mainly based on images, which are visually analyzed by radiologists even
by the support of computerized devices, and related natural language re-
ports, oncology deals mainly with knowledge represented in a textual
way, often highly structured (as in the case of chemotherapy guidelines),
while cardiology has a lot of information and related knowledge expressed
through biosignals (e.g., the electrocardiogram) and movies (e.g., echcar-
diograms).

• The presence of highly specialized knowledge in different clinical and
healthcare domains. Specific domains as cardiology, oncology, neurol-
ogy, healthcare policy, and so on, have their own vocabulary, specific
shared knowledge about diagnosis, treatments, and so on [146, 40]. XAI
systems have, thus, to deal with jargon, abbreviations and terminological
heterogeneity, idiosyncratic usage habits, and different kinds of knowl-
edge, as previously stressed, especially when they have to support the
exchange of shared information [150].

• The presence of many different specialized processes, requiring the coor-
dination of different stakeholders. Explainability in medicine and health
is often related to the results of prediction and/or classification tasks
toward diagnosis and/or therapy effects and so on. Besides this “static”
part, clinical tasks as monitoring, diagnosis, therapy, and prognosis are
merged in a “dynamic” context, composed of complex medical or health-
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care processes and pathways. In such processes, different healthcare ac-
tors, as clinicians, epidemiologists, nurses, and technicians, are involved
with different roles. XAI systems cannot avoid facing these intertwined
aspects, related to knowledge, information, processes, and actors, to suit-
ably support specific clinical activities [50].

3.4.4 Can explainability draw us closer to wisdom?

Proposition: Explainability is a requirement to completing the data-
information-knowledge-wisdom spectrum.

Understandability is an essential prerequisite for the transition from infor-
mation to knowledge and provides a path to the realization of knowledge as
wisdom. Explainability can, on the one hand, promote trust on the part of end
users (compare with the previous section), and, on the other hand, promote
understanding and, in turn, trust on the part of developers of algorithms, and
finally also provide new insights. Trust is of eminent importance and is often
underestimated and in order to bring AI into the real world, it must be trust-
worthy [84]. To be trustworthy, any AI must comply with applicable rules and
regulations, adhere to ethical principles [131], follow legal issues [169] and be
implemented in a secure and robust manner. This is particularly required by
the EU High-Level Expert Group on AI 1.

In classical philosophy since ancient Greece, explanations have always been
central, as the word philosophy itself means ”love of wisdom”. A good exam-
ple is the deductive-nomological model of Hempel and Oppenheim (1948) [79]
which is based on a formal structure of scientific explanation of a causal rela-
tionship using natural language. The model consists of two parts, the propo-
sition to be explained (explanandum) and the explanation itself (explanans),
which is composed of general law statements and (empirical) boundary condi-
tions (antecedent statements) as premises. The preliminary work on this was
already served by Karl Popper in his work ”Logic of Research” [144].

Colloquially, explanations differ in their completeness or degree of causal-
ity [139]. In his work, Tim Miller (2019) [126] combined insights from the
social sciences with explanations in AI and divided explanatory questions into
three classes: (1) what-questions, such as ”What event happened?”; (2) how-
questions, such as ”How did this event happen?”; and (3) why-questions, such
as ”Why did this event happen?”.

”Moving closer to wisdom” implies also that physicians and other clini-
cal stakeholders receive some feedback on their own capabilities and attitudes
towards explainability: do we need that AI systems have sophisticated ex-
plainability capabilities when it happens that physicians do not spend any
effort to explain their choices? From one point of view, we could say that
requirements about explainability have to be more strict for AI systems. In-
deed, ”we may hold physicians responsible for their lack of explainability and
potential mistakes,but we cannot do the same with AI” (from [105]). On the

1https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai (access: February, 09,
2022)
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other side, XAI systems can support clinicians in providing even more sound
and founded decisions. In this direction, AI systems have to be considered as
tools that require a specific and sound certification process also with regards
to explainability. Similarly to what happens to marketed drugs, which need
to follow strict certification processes before being approved, also XAI systems
should be formally approved before used in real world clinical and healthcare
contexts. Such kind of approach, followed by a continuous monitoring after
the introduction of such tools in real clinical contexts, would help to clarify
responsibilities both for physicians and for the producers of XAI systems.

3.4.5 Can an AI system that is not explainable be trust-
worthy?

Proposition: XAI is an integral component of trustworthy AI sys-
tems.

In 2019 the EU has published the Ethics Guidelines for trustworthy AI,
which contains a general framework where explainability represents an impor-
tant component2. These guidelines have been used as a basis for some of the
sections of the proposal of the Artificial Intelligence Act released by the Eu-
ropean Commission in April 2021. The guidelines correctly states that ”Trust
in the development, deployment and use of AI systems concerns not only the
technology’s inherent properties, but also the qualities of the socio-technical
systems involving AI applications ... it is not simply components of the AI sys-
tem but the system in its overall context that may or may not engender trust.”
To this end, AI systems should be lawful, i.e., complying with laws and regula-
tions, ethical, i.e., being to ethical principles and robust, both from a technical
and social perspective. The guidelines also provides seven requirements for
implementation of AI trustworthy solutions, including:

• human agency and oversight

• technical robustness and safety

• privacy and data governance

• transparency

• diversity non-discrimination and fairness

• societal and environmental well-being

• accountability.

Explainability is considered as a component of transparency, together with
traceability and communication. In our view explainability has an horizontal
impact which is wider than what is stated in the guidelines. First of all, within
transparency, it has a strong overlap with communication, which is related to

2https://www.aepd.es/sites/default/files/2019-12/ai-ethics-guidelines.pdf
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understandability. Second, explainability is a key component of accountability,
since it provides instrument to keep track of the decisions, going back to the
”reasons-why” an AI tool, or a decision-maker empowered by AI solutions, has
suggested the decision. Finally, it can be considered as a way to ensure tech-
nical robustness, providing explanations about change in decisions related to
changes in the attribute values; this provides ways to control the performance
of the algorithms and identify aberrant situations. Rather interestingly, trust-
worthiness allows to jointly consider two related concepts: explainability and
reliability. “Reliability” is a component of robustness that indicates the de-
gree of trust that we have on the prediction made by an ML model on a single
example [133]. Coupled with local explainability ensures that local predictions
can be used in a safety critical context as medicine is.

3.4.6 Is XAI in medicine always required?

Proposition: Explanations are not always required in order for an
AI model to be useful. Functional specifications obtained from deep
analysis of the problem domain and users should determine when
explainability and interpretability are required.

While many recognize the necessity to incorporate explainability features
in AI models, addressing user needs for understanding AI remains an open
question. As the type of interpretability needed varies depending on the con-
text, it is clear that XAI must take a human-centered approach. The same
explanation may be more or less comprehensible to different users or even to
the same user engaged in different roles and we should not confuse the different
notions of interpretability because each kind serves a different purpose [177].
For instance, we cannot provide algorithm designers and end users with the
same explanations. An ML expert might prefer an explanation that helps them
debug the model and understand its inner-working [184]. In contrast, an end
user might require a causal explanation of predictions to ensure that decisions
informed by those predictions are fair [6].

The use of techniques to explain AI models has become central in human-
centered systems. For example, visual analytics systems help users under-
stand and interact with AI models by providing them with visualizations and
tools that facilitate the exploration, analysis, interaction with AI models. To
close the gap between XAI methods and user needs for transparency, the
human-computer interaction community has called for interdisciplinary col-
laboration [1] and user-centered approaches to explainability [175]. The need
to create effective explainability features in diverse medical applications led to
novel ways to probe user needs. As an explanation can be seen as an answer
to a question, Liao et al. represented user needs for explainability in terms of
questions a user might ask about the AI model, thus creating a question bank,
a list of prototypical user questions that XAI methods can address [112]. It is
essential that model developers understand why an explanation is needed and
what type of explanation is helpful for a given situation.

AI models do not need to be interpretable to be useful [81]. In this context,
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a blanket rejection of black-box methods in decision support systems may be
hasty. For example, suppose an AI model yields accurate predictions that
help clinicians better treat their patients. In that case, it may be useful even
without a detailed explanation of how or why it works. Therefore, it is essential
to identify biomedical applications in which black-box answers generated by
AI models can have a useful role in decision support systems and thus can be
safely used.

When an AI model produces the best results or yields accurate predictions
that help clinicians better treat patients, it may be useful even without detailed
explanations. For example, in reading medical images, trained AI systems
enhance the performance of human radiologists in detecting cancers [11, 108].
That is not to say that AI interpretability is not valuable. In particular, when
AI models are used in an automated fashion, laws and regulations should
require a causal explanation of AI decisions to ensure that they are fair [14].
However, in situations when AI models do not lead to automated decision
making, an explanation may not be needed and auditing [149] together with
judicious testing of AI models via randomized control trials [152] might be
sufficient.

Although the process used by AI models to generate predictions can be lim-
ited and biased, it is also different from human thought processes in ways that
can reveal new connections. This creates a case for using black-box AI models
as tools to guide human inquiry [75, 186]. For example, in a groundbreaking
medical imaging study, a deep learning model was trained to diagnose diabetic
retinopathy from retinal images [74]. The model achieved performance com-
parable to a committee of ophthalmologists. Further, the model accurately
identified several characteristics that are not generally assessed with retinal
images, including cardiological risk factors, age, and gender [143]. No one had
previously noticed gender-based differences in human retinas, so the black-box
observation inspired researchers to investigate how and why male and female
retinas differ.

Moving to a final example, XAI needs to be declined in different ways
in different contexts. Indeed, the explanation requirements regarding clinical
medicine, for example, may have to deal with specialized physicians, who could
have a knowledge in the specific domain that not requires XAI (but an AI
system with certified good performances), while, considering, for example, the
issue of pandemic management, requirements from epidemiology or national
health policies and management could be extremely demanding, as possible
relevant public decisions have to be suitably justified [35].

3.5 How temporalities and explainability are

intertwined?

Until now, we did not consider explicitly the temporalities, which often are an
essential aspect of the overall XAI, especially when focusing on domains from
Medicine and Healthcare. Let us now focus on the different temporalities often
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Figure 3-2: A classification for temporalities of XAI.

subtended by XAI in Medicine. The be on safe ground, we need to explicitly
discuss what we mean by temporality in the context of AI and Computer
Science. In general, both in philosophy, logic, and other branches of science,
temporality refers to the perception of time and to the description of perceived
phenomena having some time-related dimension.

In the computer science and AI areas, temporality has been declined in
different aspects, which have been formally and technically addressed: from
real-time systems [67], to temporal representation and reasoning [26], to tem-
poral data modeling and querying [92, 93], to process modeling [51], to planning
and scheduling [80, 135], to temporal constraints [145], to time and human-
computer interaction [178], without any attempt to being complete.

Moving closer to XAI in Medicine and to the content of this thesis, tempo-
rality is an integral part of “explainability”. Even though it is often implicitly
considered, it deserves to be explicit addressed. Without any attempt to be
complete, we introduce here some important issues, according which tempo-
rality can be declined when introducing XAI in contexts having explicit and
unavoidable temporal aspects.

Thus, as shown in Figure 3-2, temporal explainability may be declined ac-
cording to five different dimensions, not mutually exclusive:
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(i) temporal data;

(ii) temporal reasoning;

(iii) temporal task;

(iv) user-oriented dynamic explainability;

(v) knowledge-oriented dynamic explainability.

Let us now discuss the different dimensions, also by introducing different exam-
ples from literature, which represent the different perspectives about temporal
explainability.

Explainability and temporal data. When we talk about temporal ex-
plainability, we handle a problem based on temporal data. Suppose that the
final goal is the classification, is important to explain to the user, how we ob-
tained these results, which type of temporal aggregation is under the data, or
how long is the history related to a specific entity in the database. In this con-
text, temporal databases, time series analysis and temporal data warehouses
provide a sound starting point for representing and managing data having
temporal dimensions (e.g., valid time, transaction time [95, 94]), for the spec-
ification of temporal, possibly multidimensional queries [49], for the analysis
of temporal behaviors [128]. Explainable approaches have to be able to ex-
plicitly show what is behind the modeling and the extraction of such temporal
information.

Temporal reasoning. Temporal Reasoning and its application to Medicine,
a process of inferring new knowledge from available facts, has long been con-
sidered an essential topic in AI research [52, 4, 26, 42, 68]. In the research
area, many approaches and studies are proposed, as temporal logics, temporal
constraint processing, temporal data mining, and others, which are inherently
explainable, that could support the explainability also towards specific tem-
poral reasoning mechanisms. In [77], for example, the authors focus on fore-
casting on temporal knowledge graphs (KGs), inferring future events based on
past events. So that the users can understand and trust the predictions, as
the predictions made by the learning models are interpretable. That is exactly
why they propose an explainable reasoning approach for forecasting links on
temporal knowledge graphs.

Another example is discussed in [113], where the authors propose TLogic,
a novel symbolic framework based on temporal random walks in temporal
knowledge graphs (tKGs). It is the first approach that directly learns temporal
logical rules from tKGs and applies these rules to the link forecasting task. It
is a rule-based link forecasting framework for tKGs, which starting from the
extraction of temporal walks from the graph and then lifting these walks to a
more abstract, semantic level, obtains temporal rules that can be generalized
to new data.

The temporal task. Another aspect to investigate is the temporal (decision-
based) task supported by a given explainable approach. As we already men-
tioned, explainability in medicine and health is often related to the results
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of prediction and/or classification tasks towards diagnosis and/or therapy ef-
fects and so on. Clinical tasks as monitoring, diagnosis, therapy, and prog-
nosis are merged in a “dynamic” context where temporality is essential. One
of the mainly investigated temporal task, in the context of explainability, is
prediction. For example, the early prediction of mortality and risk of deteri-
oration in COVID-19, can reduce mortality and increase the opportunity to
have a better treatment. Because of the dynamism of the clinical indications
about the disease and sometimes of a sudden deterioration in the condition of
moderate-stage patients, it is crucial to develop an automated model that can
preemptively predict which patients are at risk for ventilator support and mor-
tality. Regarding this, in [13], the authors face the problem of the prediction
of mechanical ventilation, showing how the use of ML algorithms can assist
doctors to predict at-risk patients. Beyond the prediction, even the prevention
in medicine is fundamental. By continuing to use the COVID-19 example,
during the pandemic period, it was a requirement to study which factors were
affecting the hospital admissions. In this respect, in [158], the authors propose
a model that utilizes Formal Concept Analysis (FCA) to explain a machine
learning technique called Long–short Term Memory (LSTM) on a dataset of
hospital admissions due to COVID-19 in the United Kingdom. LSTM is em-
ployed to forecast the factors impacting admission due to COVID-19, while the
FCA method, to develop rules or relationships between the attributes. The
use of FCA to explain LSTM is a preliminary approach to an understandable
and explainable AI.

User-oriented dynamic explainability. Another aspect to consider is
the possibility to produce a dynamic explanation, which changes over the time,
according to the user preferences. Recently, regarding the user-oriented dy-
namic explainability, many models have been designed to incorporate temporal
information into recommender system to capture user dynamic preferences.

Considering again COVID-19, during the pandemic period when clinicians
started to consider different therapeutic options, trying to cure patients with-
out any benchmarks, it was essential to understand as soon as possible which
was the most effective therapy. Over the time, they collected information
about different responses and adverse events, having an idea on the possible
therapies. Having an automated system to evaluate the multiple therapies
for different types of patients according to the novel knowledge collected from
clinical practice, would have been fundamental to support clinicians in their
decisions. In general, this idea can be related to the recommendation systems,
where the dynamic user preferences are used to define personal recommenda-
tions.

In [113], for example, the authors face the problem of simultaneously mul-
timodel explanation generation and dynamic user preference modeling in the
context of explainable dynamic personalized recommendations. The proposed
model, Attentive Recurrent Neural Network (Ante-RNN), allows combining
visual image information with text descriptions for better recommendation.
They study how the short term preference modeling can capture user’s long-
term interest dynamics. The learned attention weights can in turn help to
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provide reasonable interpretations of recommendation results. Then, a novel
dynamic contextual attention mechanism is incorporated into Ante-RNN for
modeling the complicated correlations among recent items and strengthening
the user’s short-term interests. Another example of recommendation system
is discussed in [41]. The authors build a novel Dynamic Explainable Rec-
ommender (called DER) for more accurate user modeling and explanations.
Specifically, with the desire to make a recommender system more interpretable,
they design a time-aware gated recurrent unit (GRU) to model user dynamic
preferences. Exploiting user reviews, they can provide adaptive recommenda-
tion explanations according to the user dynamic preference.

Knowledge-oriented dynamic explainability. Continuing to use
COVID-19 as an example of clinical domain, in accordance with the previous
temporal tasks, we have also to consider the dynamic aspects of medical knowl-
edge. During the pandemic, indeed, the dynamism of the clinical indications
or the clinical results reasoned that even the explainable AI became dynamic.
Novel information may influence the results of an AI algorithm, which has the
need to reanalyze the data to produce updated knowledge. Thus explainable
approaches should also have the capability of explaining how and why some
knowledge supporting/derived-from them changed over time and how such
change influenced the obtained results.

3.6 Conclusions and Research Directions

The issue of explainability in AI is evolving at a rapid pace. As we have seen
in this paper, there has been considerable research into XAI, but there is still
much to be done. We note here five broad areas where more research is needed.

• Bridging the gap between symbolic (ante hoc) and sub-symbolic
(black-box) approaches. Sub-symbolic ML approaches and symbolic
ones are currently considered by two research communities, having often
completely different perspectives and background. XAI requires that
such dichotomy has to be overcame. Indeed, symbolic approaches, as
the ones related to logics-based proposals, ontologies, query systems,
Bayesian networks, and so on, would be grounded in order to use them
in establishing explainability [154]. Research on the seamless proposal of
“hybrid” systems, merging both sub-symbolic and symbolic approaches
still requires a lot of joint efforts.

• Engineering explainability into intelligent systems. An impor-
tant, even fundamental question is whether and how explainability can
actually be engineered into AI. Even given our conceptual framework
for thinking about XAI (Section 2), we still need to address the idiosyn-
crasies of individual intelligent systems as well as those of their users. We
contend that more specialized research into the structural, functional,
and behavioral characteristics of these systems and the environments in
which they are situated should be the targets of rigorous mixed-methods
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research that encompasses the entire system ecology, from in silico to in
vivo contexts.

• Evaluating and improving the effects of explainable components
and approaches. The evaluation of intelligent systems, as a scientific
and methodological discipline, is changing, yet there needs to be more
systematic investigation and implementation of these methods. Too of-
ten, there is emphasis on the accuracy of a decision made by such systems,
typical as a proportion- whether in terms of overall accuracy (percent
”correct”), or more nuanced indicators such as sensitivity, specificity,
predictive values, or their derivatives such as the F-score or areas under
the receiver operating characteristic curve or under the precision-recall
curve. None of these well-used metrics indicate anything about the ef-
fects of the system on user beliefs, attitudes, or behavior. These are
effects that require, again, deep mixed-methods research, this time ap-
plied to evaluating the effects of XAI (or its absence) on such issues as
user acceptability, actions taken (or not) based on the results offered by
the system, and overall impact on clinical or other workflows.

• Determining when explainability is needed. Is explainability al-
ways needed? This is a fair question, indeed. AI systems (or ”subsys-
tems” that work in the background to provide some inference to assist
another systems might not require real-time explainability. A feature
selection algorithm as part of a knowledge discovery or decision mak-
ing workflow is one example if such an AI. However, we would argue
that in order for software developers who need to use such subsystems in
their work, explainability to them is critically important. They have to
know how that subsystem works and why. But to the end-user of that
workflow, it might not be so important in real-time. Rather, an in-depth
description of the entire workflow and its components should be provided
so the end-user understands how the overall system works. This situa-
tion begs the question again: ”Is explainability always needed?”. The
answer, we propose here, is yes, but titrated to the needs of the user at
particular times or in response to specific events.

• Investigating the design of user-centered and user-tailored ex-
plainability artifacts. If there were ever a more urgent need for rigor-
ous research into user-centered design, it is hard to see one that surpasses
the field of XAI. Such design, as noted, must be sensitive to workflow
contexts, certainly, but there are other equally important considerations.
One of the most important of these is the involvement of users into the
design process. Rapid prototype design paradigms should be used in
order to keep users involved during all phases of the development and
implementation of AI systems. We already do this to some extent in the
field of knowledge engineering, although history is full of examples where
gaps in knowledge acquisition and representation have led to system fail-
ures, some with catastrophic results
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• Empowering Explainability with temporal dimensions. XAI in
Medicine cannot avoid to consider temporality. In this direction, many
specific concepts and techniques, inherently explainable, have been intro-
duced in research areas, as temporal logics, temporal databases, tempo-
ral data mining and temporal information visualization, just to mention
some of them. Specific research efforts are now required to extend/adap-
t/use these results to make XAI systems effective and sound.

We hope that our examination of the issues involved in developing XAI systems-
our manifesto, if you will- will not be construed as the definitive work in this
area. Rather, hope that the issues we considered here will stimulate further
thought and hopefully fruitful research and development of XAI systems, par-
ticularly in medical contexts, but extending beyond to other contexts as well.
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Chapter 4

Discovering Predictive
Trend-Event Patterns

In this chapter, we present a new proposal, which exploits frequent temporal
pattern mining and predictive pattern mining. Before the introduction of this
technique, we briefly describe the fundamental notions of Support Vector Ma-
chine (SVM), a classification model we used for predicting patterns. Then we
introduce the problem, proposing a new kind of predictive temporal pattern
called Predictive Trend-Event Pattern (PTE -P). It consists of multi-
ple complex temporal features, where trends related to patient parameters and
related medical events are suitably represented [117]. Considering the tempo-
ral specification of explainability presented in Section 3.5 of Chapter 3, this
technique is related to temporal data and the temporal task, in this case the
prediction, in fact, we exploit the temporal component of data in MIMIC-III
database to predict the sepsis onset.

4.1 Introduction

The opportunity to store huge volumes of data offered by modern technologies
gives the possibility to extract useful knowledge. Recently, many proposals
have developed powerful tools that extract qualitative patterns from data to
assess temporal relationships between such patterns [18, 88, 102]. Although
there are many differences in their general approach, all these proposals focus
on extracting/modeling temporal precedence relationships among patterns. No
surprise that a core motivation for temporal data mining is to infer and ver-
ify hypotheses about the potential cause-effect interaction between medically-
relevant events [156]. The increasing use and availability of longitudinal elec-
tronic data represent a significant opportunity to discover new knowledge from
multivariate, time-oriented data. Often, in clinical domains, there is an intrin-
sic need to have a consistent intermediate interpretation layer, which explicitly
identifies possible relationships between clinical patient data and events, such
as drug intakes, and so on. The detection of specific temporal patterns, i.e.,
time intervals in which one or more time series assume a behavior of inter-
est, plays a key role in such contexts. A research field that focuses on this
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direction is temporal data mining, working on structured and semi-structured
data. Considering the current literature and the need for meaningful summary
information for most of the medical domains, we wanted to combine complex
temporal features/patterns1, composed by interval-based data and instanta-
neous events, with a wrapper-based algorithm which extracts a compact and
non-redundant set of predictive patterns.

The idea is to integrate frequent temporal pattern mining and predictive
pattern mining, using statistical tests and a classification model in order to
obtain a set of predictive temporal patterns for a class of interest (e.g., a
given pathology). Before introducing the methodology, we briefly recall the
basic notions of support vector machines, which are used in our framework.
We propose an original mining methodology for discovering a compact set of
highly predictive temporal patterns to ensure that every pattern in the result
offers a significant predictive advantage to describe the class of interest. The
new kind of predictive temporal pattern proposed is the Predictive Trend-
Event Pattern, namely PTE -P, which consists of multiple complex tempo-
ral features, where trends related to patient parameters and related medical
events are suitably represented. We apply the proposed methodology to the
prediction of sepsis, considering Medical Information Mart for Intensive Care
(MIMIC)[100] medical record data.

4.2 Support Vector Machines

Support vector machines (SVM), introduced by Cortes and Vapnik [173], are
the most famous and employed supervised discriminative classifier. Their suc-
cess is given by the concept simplicity, their basis on strong mathematical
foundations and statistical learning theory, and their accuracy. As a binary
classifier, the central focus is finding a hyperplane that separates the samples
of different outcomes. An SVM model represents samples as points in space,
mapped in a way where samples of the two different categories are divided by
a clear gap that is as wide as possible. When new samples are added, SVM
maps them into that same space and predicts their category.

If the two classes are linearly separable, there exist many different hyper-
planes that allow the perfect separation of the two classes. The simplest model
of SVM is the so-called maximal margin classifier [59]. SVMs find an optimal
hyperplane with a maximum distance to the closest point of the two classes.
The instances which are closest to the optimal hyperplane are called support
vectors.

We will start with the simplest case: linear machines trained on separable
data. We label the training data xi, yi, i = 1, ..., l, yi ∈ {−1, 1}. Suppose we
have some hyperplane that separates the positive from the negative examples.
The points x which lie on the hyperplane satisfy w ·+b = 0, where w is normal

1Hereinafter, we will use the expression temporal features instead of temporal patterns, to
avoid any confusion between temporal patterns and predictive patterns, each of them being
a possible collection of temporal patterns

70



to the hyperplane, |b|/‖w‖ is the perpendicular distance from the hyperplane
to the origin, and ‖w‖ is the Euclidean norm of w. Let d+(d−) be the short-
est distance from the separating hyperplane to the closest positive (negative)
example. Define the “margin” of a separating hyperplane to be d+ + d− . For
the linearly separable case, the support vector algorithm simply looks for the
separating hyperplane with the largest margin. Suppose that all the training
data satisfy the following constraints:

xi · w + b ≥ +1 for yi = +1

xi · w + b ≤ −1 for yi = −1

These can be combined into one set of inequalities:

yi(xi · w + b)− 1 ≥ 0 ∀i

This results in a quadratic constrained optimization problem. To solve it:
transform the constrained problem into an unconstrained one using Lagrange
multipliers

L =
1

2
wT · w −

N∑
i=1

αi(yi(xi · wT + b)− 1)

The solution is obtained as a linear combination of the points of the training
set.

{wopt} =
N∑
i=1

αiyixi

αi = 0 means that the i-th point does not contribute to the solution. αi 6= 0
are called support vectors. Now the goal is to maximize the margin and min-
imize the “errors”. We have to change the objective function to be minimized
by assigning an extra cost for errors:

arg min
w,b

1

2
wTw + C

N∑
i=1

ξis.t. yi(xi · w + b)− 1 ≥ 1− ξi ξi ≥ 0

The solution is again given by:

{wopt} =
N∑
i=1

αiyixi

where N is the number of support vectors. Thus, the only difference from the
optimal hyperplane case is that the αi now has an upper bound of C.

L =
1

2
‖w‖2 + C

∑
i

ξi −
∑
i

αi{yi(xi · wT + b)− 1 + ξi)} −
∑
i

µiξi

With real data sets, the hyperplane that would clearly separate the samples
most often does not exist. To solve this problem, the solution is to relax the
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(a) Linear separating hyperplanes for the separable case.
The support vectors are circled.
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(b) Linear separating hyperplanes for the non-separable case.
The support vectors are circled.
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Figure 4-1: Linear separating hyperplanes for separable and non-separable
cases.

constraints by inserting in the formulation the so-called slack variables ξi =
1, ..., l, which admit that the hyperplane misclassifies some samples. In [58]
the authors proposed the soft margin method, where the goal is to maximize
the margin and minimize the “errors”.

xi · w + b ≥ +1− ξi for yi = +1

xi · w + b ≤ −1 + ξi for yi = −1

ξi ≥ 0 ∀i
There are cases for which a hyperplane represents a too simplistic solution.

The idea is to project the samples into a higher dimensional space where
discrimination is easier. Finding the optimal hyperplane provides a linear
classifier. Besides such linear kernels, SVMs are frequently used with non-
linear kernels which in essence transform the original attribute space to a new,
higher dimensional one in which the linear classifier is inferred. There exist
different kernel functions, the most popular are polynomial, radial basis and
sigmoid functions. The choice of the appropriate kernel should in principle
depend on the properties of the data set and problem domain.

4.3 The temporal mining framework

In this section, we illustrate the new methodological framework and the basic
steps needed to obtain a new kind of predictive temporal pattern, namely
Predictive Trend-Event Patterns (PTE -Ps).

The framework aims at combining complex temporal features, composed of
interval-based data (trends) and instantaneous events, with a wrapper-based
algorithm that uses statistical tests and a classification model to extract a com-
pact and non-redundant predictive set of patterns composed by such temporal
features.
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Figure 4-2: All the steps and data needed to mine PTE -Ps.

Figure 4-2 shows the main steps of the proposed methodology, consisting
of two main phases:

• Phase 1: An Extract/ Transform/Load (ETL) process (Step 1.A) re-
trieves suitable data from a temporal database. Trend-Event Features
are then mined as an intermediate result (Step 1.B).

• Phase 2: All the mined Trend-Event Features are transformed into cor-
responding itemsets, in order to evaluate their goodness using a classi-
fication model (Step 2.A). A Predictive Wrapper mining algorithm is
then able to obtain a set of Predictive Trend-Event Patterns, by using a
greedy approach to select and evaluate the patterns (Step 2.B).

The following subsections describe in detail these phases and the related
concepts.

4.3.1 Trend-Event Features

Let us now introduce the specific complex temporal feature we will consider,
named Trend-Event Feature(TE -F). Figure 4-3 provides a visual representa-
tion of the main concepts of TE -Fs.

Let us consider a time series of samples related to systolic blood pressure
measurements and some possibly related events, e.g., a drug intake (Figure 4-
3). Raw measure data related to systolic blood pressure measures are depicted
as scattered points, where every point represents a tuple, and its position is
given by its valid time VT and its measure. Event e, is represented by a vertical
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Figure 4-3: An example of TE -F. There are two trends, one that precedes
event e (from sprestart to spreend), and a second one right after E (from spoststart to spostend ).
These are both valid trends because they satisfy every constraint. Moreover,
sext1 and sext2 are external to these trends because they violate either ∆y or
max ∆V T .

line, placed on its corresponding VT. It could be related to, for example, some
drugs given to the patient.

Every tuple before the event could potentially be part of the trend before
it (trend pre), while every tuple after the event could be in trend post. In both
trends, the first tuple is denoted as sstart, while the last one is send. TE -Fs

are based on the assumption that there can only be one single event for a VT.
Thus, if many events occur at the same time, they will be merged in a single
composite event. For example, let the event be a single drug administered to
a patient: if at a certain moment, the patient receives two different drugs, the
event will be composed of the conjunction of these two drugs, and it will differ
from the events formed by these two drugs taken separately.

A trend is graphically represented by a segment line from sstart to send,
and every other point of such trend should lay in this segment. However, this
is an unlikely scenario with real data and it is necessary to allow a threshold
to admit a point to be part of the trend. The sample sext1 represents the
violation of the above constraint: a trend from sprestart to sext1 excludes many
tuples in-between and consequently it is not a valid trend.

Let us now define these concepts more formally in a relational setting, by
considering a classical temporal schema R = U ∪ {V T} where R is a set of
atemporal attributes and V T is an attribute denoting the valid time of each
tuple. We may safely assume Dom(V T ) = R. Given an attribute M ∈ U ,
we say that M is a measure if and only if Dom(M) is a metric space. We
assume that for all measures M it holds Dom(M) = R. A trend is formed by
tuples of some measurement M in U that satisfy the following criteria. First,
tuples must share the same values for some non-empty dimensions D ⊆ U .
Dimensions allow one to specify that measures are related to the same entity,
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e.g., dimensions could be used to consider only tuples related to the same
patient or admission. Also, tuples must be temporally ordered using their VT.
It means that, given an instance r of R, two tuples s, s′ satisfy s → s′ if and
only if s[D] = s′[D], s[V T ] < s′[V T ], there is no tuple s′′ in r with s′′[D] = s[D]
s.t. s[V T ] < s′′[V T ] < s′[V T ]. In the following, we assume that there are no
tuples with the same VT. Given a trend tr, we denote with sstart the first tuple
of tr, and with send the last one. Moreover, tr is a non-empty set of tuples
tr = {sstart, . . . , send} satisfying sstart → . . . → send. Implicitly, it means that
∀si ∈ tr, sstart[V T ] < si[V T ] < send[V T ]. Let e be the tuple that denotes
the event, and let us assume that E is the attribute, whose values represent
the possible occurring events (i.e., e[E] ∈ E))). For each tuple si ∈ trpre,
si[V T ] ≤ e[V T ]; while for each tuple si ∈ trpost, si[V T ] > e[V T ].

There are some constraints necessary to determine a valid trend. Some of
them are tuple-related and some are trend-related. As shown in Figure 4-3,
a trend must satisfy all the following conditions on measures and on VT to
hold:

• minNumTuples - It denotes the minimum number of tuples needed to
form a trend. Even though just two tuples could build a trend, this
parameter allows us to better define meaningful trends. In other words,
there is a trend if:

send∑
sstart

sk ≥ minNumTuples

• max ∆V T - It expresses the maximum time distance between two adjacent
tuples to be part of the same trend. Given two tuples sm ∈ tr and sm+1,
sm+1 ∈ tr if t[V T ]m+1 − t[V T ]m ≤ max ∆V T . This is useful to avoid
those measures that are taken too far away from the other, becoming
irrelevant to the trend itself.

• max ∆start - It represents the maximum delay between a trend and an
event e. A trend is insightful if the measurement closest to the event is
measured within a negligible time distance, which is max ∆start.

• min ∆duration - It represents the minimum span of a trend from an event.
Controlling the time distance of a trend from an event is of central im-
portance. This parameter is necessary to avoid those trends having most
measures concentrated in a small time frame that is too close to the
event.

• max ∆duration - It is complementary of min ∆duration and characterizes the
maximum time span of a trend from an event. It is particularly useful
when the goal is to extract trends for testing the short-term effects of
a certain event. max ∆duration is different from max ∆V T because it is
related to the whole trend, while max ∆V T considers couples of adjacent
tuples within the trend.
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• ∆y - It represents the threshold where the difference between the measure
and its position in the line is negligible, and must hold for all the tuples
in tr. Given s ∈ tr, let si[M ] the projection of t[M ] on tr, namely:

si[M ] = (s[V T ]− sstart[V T ]) ∗m+ sstart[M ]

where

m =
send[M ]− sstart[M ]

send[V T ]− sstart[V T ]

there is a trend tr if ∀s[M ] ∈ {sstart[M ], . . . , send[M ]} then si[M ]−∆y≤
s[M ] ≤ si[M ]+∆y.

If all the constraints depicted above hold, then we have a valid trend tr.
The trend is then labeled using the alphabet Σtrend = {increasing, steady,
decreasing}. To label a trend correctly, we need to calculate its weighted rate
of change with respect to the measure of the starting point, that is:

changeRate =
send[M ]− sstart[M ]

send[V T ]− sstart[V T ]
∗ 100

sstart[M ]

For the simplicity of the example, we assume that sstart[M ] 6= 0. We define a
new parameter maxIncrease as a threshold for changeRate, and we determine
the label of a trend as follows:

• increasing : changeRate > maxIncrease

• decreasing : changeRate < - (maxIncrease)

• steady : otherwise

Through these parameters, clinicians can finely tune the trend extraction,
to focus on those they consider appropriate for the kind of event and measure-
ment they are analyzing.

Now we are ready to define TE -F:

Definition 13. A Trend-Event Feature (TE-F) is a complex temporal feature
with an expression of the form

[measure; trend pre ∈ {increasing, steady, decreasing}; ev ∈ E;
trend post ∈ {increasing, steady, decreasing}]

For example, let ev be a tuple containing for attribute adminDrug attribute
the value propofol. Complex temporal features like “A patient’s respiratory
rate was increasing before the administration of propofol. After such adminis-
tration, the respiratory rate was steady” would be represented through TE -F

[respRate; increasing ; propofol ; steady ].
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Algorithm 1: Extraction of trpost from the Trend-Event Feature min-
ing algorithm
Input: measuresList, eventsList, currentEventIndex
Output: trendpost(trendType)

1 nextMIndex = eventsList[currentEventIndex](closestMeasureIndex)
2 /* Check max ∆start */

3 if (measuresList[nextMIndex](VT) - eventsList[currentEventIndex](VT) <
max ∆start) then

4 spoststart = measuresList[nextMIndex]

5 /* Discover of spostend */

6 index = nextMIndex + 1
7 while index ¡ measuresList.size do

8 spostprevious = measuresList[index - 1]

9 spostcurrent = measuresList[index]
10 /* Check max ∆V T and max ∆duration */

11 if (spostcurrent(VT) - spostprevious(VT) > max ∆V T || spostcurrent(VT) -

eventsList[currentEventIndex](VT) > max ∆duration) then
12 break

13 isOverDeltaY = false

14 foreach (spostk ∈ {spoststart+1, . . . , s
post
current}) do

/* spostproj represents the projection of spostk on the trend

line. */

15 spostproj(M) =
spostcurrent(M)−spoststart(M)

spostcurrent(V T )−spoststart(V T )
*(spostideal(VT) - spoststart(VT)) +

spoststart(M);
16 /* Check ∆y (percentage) */

17 if (spostk (M) > spostproj(M) +
spostproj(M)∗∆y

100 or spostk (M) <

spostproj(M)− spostproj(M)∗∆y

100 ) then

18 isOverDeltaY = true
19 break

20 if isOverDeltaY = true then break;
21 index++

22 spostend = measuresList[index - 1]
23 /* Check minNumTuples and min ∆duration */

24 if (index - 1 - nextMIndex > minNumTuples && spostend (VT) -
eventsList[currentEventIndex](VT) > min ∆duration) then

/* [omitted calculation of the changeRate of trendpost] */

25 /* Labeling */

26 if (trendpost(changeRate) > maxIncrease) then return
trendpost(trendType) = INCREASING ;

27 else if (trendpost(changeRate) < maxIncrease) then return
trendpost(trendType) = DECREASING ;

28 else return trendpost(trendType) = STEADY ;

29 else
30 return null

31 else
32 return null
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Tuple # VT PatientID Event Measure

1 12/10/2019 11:25 1 - 55
2 12/10/2019 11:55 1 - 57
3 12/10/2019 12:25 1 - 58
4 12/10/2019 12:55 1 - 62
5 12/10/2019 13:25 1 - 65
6 12/10/2019 13:30 1 drug1 -
7 12/10/2019 13:55 1 - 65
8 12/10/2019 14:25 1 - 62
9 12/10/2019 14:55 1 - 67
10 12/10/2019 15:25 1 - 69
11 12/10/2019 15:55 1 - 62

12 12/10/2019 14:25 2 - 55
13 12/10/2019 14:55 2 - 57
14 12/10/2019 15:25 2 - 58
15 12/10/2019 15:55 2 - 62
16 12/10/2019 16:25 2 - 60
17 12/10/2019 16:55 2 - 61
18 12/10/2019 17:25 2 - 62
19 12/10/2019 17:30 2 drug2 -
20 12/10/2019 17:55 2 - 67
21 12/10/2019 18:25 2 - 69
22 12/10/2019 18:55 2 - 71

Table 4.1: Excerpt of a sample table needed to obtain Trend-Event features.

4.3.2 Mining Trend-Event Features

The first step needed to obtain PTE -Ps is through the retrieval of Trend-
Event Features (TE -Fs) from a traditional relational clinical database con-
taining time-stamped data. Trend-Event Features (TE -Fs) are complex
features composed by an event and the two trends immediately before/after
such event.

First of all, it is necessary to perform an Extract/Transform/Load (ETL)
process in order to model data coming from different tables and reduce them
to a simplified common structure. Each different kind of measure considered
needs its own table, with attributes VT, PatientID, Event, and Measure, that
represent the valid time of the tuple, a unique identifier for a patient (or an
admission), the medically relevant event, and the measure we are interested
in, respectively.

Table 4.1 represents a small example of data we may have after our ETL
process. To extract TE -Fs, we need to partition the table grouping data by
PatientID. That is, in the example of Table 4.1, it extracts a TE -F from tuple
1 to 11, and another one from 12 to 22.

The first goal is to discover every possible event and then possibly derive
a trend before and after it. To speed up this process, we create two different
lists:
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• measuresList - containing only the measures and VT of such partition,
ordered by their VT

• eventsList - containing all the events of such partition, their VT, and
the index of the closest measure that is after them

These lists avoid checking sequentially whether any tuple represents either
an event or a measure.

In the following, we describe the Algorithm 1 that derives the trend that
succeeded an event (i.e., trendpost). The derivation of the trend that preceded
the event is specular to this one, and thus, it is omitted. The algorithm is
performed for each event. If we are not able to retrieve either a valid trendpre

or a valid trendpost for an event, the current event is ignored, and the whole
process restarts for the next one. The pseudocode in Algorithm 1 helps to
better understand the following steps.

1. Check for max ∆start. Given the event and the first measure after it (i.e.,
spoststart), we have to check that the difference of their VT is lower than
max ∆start.

2. Discover spostend . A loop through measuresList finds the final point of
the trend, called spostend . Initially, it is the measure right before spoststart,
and for each iteration it becomes the next tuple in measuresList if all
the measures from spoststart to spostend satisfy all the constraints. The steps
performed within a single loop are thus:

(a) Check for max ∆V T and max ∆duration. It is necessary to check if the
temporal distance between the current tuple and the previous one is
less than max ∆V T , and the temporal distance between the current
tuple and the event is less than max ∆duration. If these constraints
are not satisfied, we exit the loop.

(b) Check for ∆y. As all the measures of a trend must lay within a
vertical threshold ∆yfrom the line from sprestart to spreend, we have to
check that every tuple spostk satisfies this constraint. If there is some
violation of it, we cannot have a valid trend with the current spostend .

3. Check minNumTuples and min ∆duration. After spostend is finally retrieved,
we verify that the number of measures in the current trend is greater
than minNumTuples. Now, we can also check if the length of the trend
satisfies the min ∆duration constraint.

4. Labeling. Finally, we label our trendpost according to its changeRate and
the constraint maxIncrease.

Finally, we need to check whether an event influenced them or not. To
verify this condition, we consider a new line from sprestart to spostend . If all the
tuples in-between satisfy the constraint with respect to ∆y, then we could build
a single trend from sprestart to spostend . In this case, the event is not influencing the
trends related to the considered measure. Thus, we do not derive any TE -F.
After all these steps, we finally obtain a TE -F.
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4.3.3 From TE -Fs to Predictive Trend-Event Patterns

TE -Fs represent all the temporal complex features that hold for each patient.
Here, we want to use all these features together and verify if other patients
experienced them, perhaps related to some common pathological state.

Our goal is to obtain a small set of predictive and non-redundant patterns.
To achieve that, we developed an algorithm that relies upon the minimum
predictive pattern (MPP) mining approach proposed in [16] and its extension
presented in [118].

Before the detailed explanation of the algorithm, it is necessary to further
extend and define the properties of a pattern in our temporal context.

Definition 14. Let Σ = {i1, i2, . . . , ik} denote a set of k items. Σ is also called
the alphabet.

Assume an item I = (tf, bval), where tf is a (possibly temporal) feature and
bval is a boolean value.

Definition 15. An itemset pattern is a conjunction of items: P = i1∧, . . . ,∧ik.

If a pattern contains k items, we will call it a k-pattern (an item is a
1-pattern).

Thus, for features being TE -Fs, we define a 1-Predictive Trend-Event
Pattern (1-PTE -P) as a 1-pattern with an expression of the form

[m & trend pre & ev & trend post = { true | false }]

where m is the name of a measure, trend pre and trend post ∈ {increasing, steady,
decreasing} and ev ∈ E . An instance of such 1-PTE -P could be written as

[Resp. Rate & increasing & propofol & steady = true]

A k-Predictive Trend-Event Pattern (k-PTE -P) is a k-pattern with
an expression of the form

{[m1 & trpre
1 & ev1 & trpost

1 = { true | false }]
[m2 & trpre

2 & ev2 & trpost
2 = { true | false }], ...,

[mk & trpre
k & evk & trpost

k = { true | false }]}

where mi stands for a name of a measure, trprei and trendposti ∈ {increasing,
steady, decreasing} and evi ∈ E , for i = 1, 2, k.

Let D = {t1, t2, . . . , tn} be a set of n transactions. Each transaction t ∈ D
is unique (i.e., has a unique transaction ID), and contains a subset of items in
Σ. More specifically, in our context, a transaction may contain, for example,
all the TE -Fs of a patient’s hospital admission.

The instances that contain pattern P define a group DP = {tj|P ∈ tj}. We
say that pattern P is a subpattern of pattern P ′, denoted as P ⊂ P ′, if every
item in P is contained in P ′. Note that the empty pattern Φ defines the entire
population. If P is a subpattern of P ′ (P ⊂ P ′), then DP is a supergroup of
DP ′ (DP ⊇ DP ′).
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In the new dataset built upon TE -Fs, to derive PTE -Ps, a transaction repre-
sents the overall set of TE -Fs related to a single patient admission, represented
as 1-PTE -Ps.

Extracting predictive patterns

We are interested in mining patterns that are predictive of class c, e.g., a
patient pathological state. For pattern P , we can define a predictive pattern
(or a rule) R: P ⇒ c with respect to class label c. The confidence of R is the
precision (or posterior probability of c in the group DP ). Note that confidence
of Φ⇒ c is the prior probability of c. We say that rule R′: P ′ ⇒ c′ is a subrule
of rule R: P ⇒ c if c′ = c and P ′ ⊂ P .

Let Ω = {P1, ..., Pm} be a set of patterns predictive of c.
The support of pattern P in D, denoted as sup(P,D), is the fraction of

transactions t in D that contains P .

supp(P ) =
|{t|t ∈ D ∧ P ⊆ t}|

|D|
=
|DP |
|D|

Given a user-specified minimum support threshold σ, we say that P is a
frequent pattern if supp(P, D) ≥ σ.

Frequent pattern mining represents our first step in the direction of ex-
tracting predictive patterns. We adopt the Apriori algorithm to eliminate all
the patterns below a minimum support threshold.

Then, we filter the remaining patterns through the binomial test, to keep
only the ones that significantly improve the confidence of simpler patterns
(i.e., all of its subpatterns), thus obtaining a set of MPPs. Using SVM as a
classification model with respect to the given pathological state for patients,
we perform an additional selection over the MPPs, to further eliminate non-
essential and overlapping patterns, thus selecting a minimal set. The minimal
set is evaluated according to how the Area Under the Precision-Recall Curve
(AUPRC) improves for the considered classification.

Even though the Area Under the Receiver Operating Characteristics curve
(AUROC) is currently considered the standard method to assess the accu-
racy of predictive distribution models, Davis and Goadrich [60] suggest that
AUPRC is more informative than AUROC when dealing with highly unbal-
anced datasets. Given the fact that precision is directly influenced by class
imbalance, the Precision-Recall curves are more suitable to highlight differ-
ences between models derived from highly imbalanced data sets. Indeed, the
AUROC curves plot False Positive Rate (FPR) vs. True Positive Rate (TPR),
and thus the effect of true negatives for unbalanced sets could bias the final
result. For this reason, to judge and compare the quality of different sets of
predictive patterns, we use the AUPRC.

Building compact sets of predictive patterns efficiently

To avoid the full pattern subset search, it is necessary to adopt a greedy
approach that generates, examines, and selects the patterns level-wise, where
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Figure 4-4: The level-wise wrapper method used to extract PTE -Ps from [117].

a level k covers all k-patterns. For each level, we retrieve the set of MPPs;
then, we use them to construct the final set of patterns greedily. We move
from level 1 pattern sets to level k pattern sets. At each level k, we follow
a bottom-up approach: we create the subset of patterns Ω starting from the
most specific patterns (level k of patterns) and greedily adding to the set more
general patterns of lower complexity (i.e., patterns of previous levels, from
k − 1 to 1). The reason for using the bottom-up greedy search process is that
it tends to retain a greater number of the more specific patterns.

Figure 4-4 summarizes this level-wise approach: when all the k-level pat-
terns have been tested, we start testing {k − 1, . . . , 1}-level patterns in com-
bination with the pattern set Ω. The greedy search algorithm on level j, with
k > j ≥ 1, works by first testing each j-pattern in combination with those in
the current pattern set Ω. Each of these combinations is ranked in terms of
the AUPRC score. This ranking defines the order in which all the j-level pat-
terns are sequentially tested. If they successfully improve the AUPRC score,
they are individually added to the resulting set of patterns Ω. When all the
1-patterns have been tested, Ω represents the best set of predictive patterns
for level k. We compare its score against the one for level k− 1: if it improves
the overall score, we start to retrieve Ω for k + 1-level patterns and we stop
this process only if the score is not improving over the previous level, or if it
is not possible to add new patterns at the current level.

The evaluation of patterns is performed as follows: the dataset D is split
into the training and test sets (70% and 30%, respectively). All the pattern
selection and learning are always done on the training set, using the test set
only for the final evaluation. We use multiple internal validation splits of the
training data to make the comparison. Tuples are reshuffled 10 times, and for
every reshuffle 80% of the data is used as the internal training set while the
remaining 20% is the internal validation set. The goodness for a specific set
of patterns Ω is then estimated by averaging the AUPRC score for all internal
splits obtained through reshuffling.

4.4 Experimental results: Discovering predic-

tive trend-event patterns

4.4.1 System Configuration

To mine PTE -Ps on the MIMIC-III dataset, we develop a running prototype for
mining analysis, named PTEPminer (Predictive Trend-Event Pattern miner).
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PTEPminer is a Java-based system that extracts PTE -Ps and allows the
user to configure multiple parameters, such as: ∆y, max ∆start, max ∆V T ,
min ∆duration, max ∆duration, minNumTuples, max increase (defined as max
hourly increase), and the name of attributes corresponding to patient ID, VT,
trend parameters, and events. Moreover, it allows us to define the percentage
of the training set, as well as the number of internal reshuffling for the training
set. PTEPminer is tested on a machine with an Intel Core i7-6700 and 32 GB
of RAM, equipped with Windows 10 64-bit, Java 13, and PostgreSQL 12.

4.4.2 Dataset and Data Transformation

Our methodology has been applied in the clinical domain of the Intensive
Care Unit (ICU), to mine MIMIC-III data [100], aiming at identifying PTE -Ps

predictive of sepsis.

An ETL process was necessary to transform the MIMIC-III raw data into a
form that we could use to mine PTE -Ps. To obtain TE -Fs, we use five different
tables.

Chartevents, contains all the vital signs of the admitted patients, and
we used it to extract measurements of heart rate, diastolic and systolic blood
pressure, white blood cells, body temperature, and also the ID of the admitted
patient associated to them.

Table Inputevents MV contains information about any fluid adminis-
trated to the patients, and we used it to extract some of them. In particular,
we decided to analyze some drugs usually administered to patients with sep-
sis [29], such as: phenylephrine, norepinephrine, vancomycin, pantoprazole,
piperacillin, dopamine, ciprofloxacin, epinephrine, and vasopressin. Moreover,
we also extracted more generic medications, such as metoprolol, potassium
chloride, and omeprazole.

Table D Items allows one to label every event or measure related to a
patient correctly.

Finally, the fourth table Patients is needed to extract only adult patients,
while the fifth one, Admissions, is used to verify that every measure and event
happened within the admission period.

These tables are joined together, grouping measures and events for each
patient and ordering them by VT. If multiple drugs are given to a patient at
the same time (i.e., same VT ), they are grouped together and not treated as
separate events. For example, if a patient received ibuprofen and atenolol at
the same VT, their influence on vital signs are analyzed together even if the
medications are stored in two different records.

To summarize, there is a new table for each vital sign considered, and all
the tables contain four attributes: PatientID, VT, Event, and Measure.

From these tables, we obtain TE -Fs, which need some further transforma-
tions to become PTE -Ps. Predictive trend-event patterns are retrieved from a
single new table that needs to be created. In this table, each row represents a
single patient admission, while the attributes are made by all the discovered
TE -Fs. Finally, the class to predict must be added as another attribute. To
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this extent, we extract from table Diagnoses ICD diagnoses related to sepsis
and severe sepsis cases.

4.4.3 Results

For our test, we tune PTEPminer to extract TE -Fs with the parameters shown
in Table 4.2 and 4.3. The first table contains values used independently from
the vital signs considered, while the second one focuses on the maximum hourly
increase, in percentage, that we used to label a trend as increasing, steady, or
decreasing, respectively.

max max min max ∆y minnum
∆start ∆V T ∆duration ∆duration (%) Tuples

2 h 6 h 2 h 12 h 10 6

Table 4.2: Running parameters for PTEPminer.

HR DBP SBP WBC Temp
Max Hourly
Increase (%)

6.0 2.5 2.5 6.0 0.5

Table 4.3: Values used to define the max hourly increase for each vital sign
considered.

We were able to retrieve 129 534 TE -Fs related to 2109 different patients’
admissions. We identified 1433 different kinds of TE -Fsand used them to
create the corresponding PTE -Ps. We then used PTEPminer to extract only
the subset of PTE -Ps that maximize the prediction of sepsis. Let us note
that, in our data, there were 603 diagnoses of sepsis or severe sepsis over
2109 admissions. Overall, 46 patterns were extracted in the most predictive
set of PTE -Ps, with a score of 0.7690 obtained on the test data. This set
was composed of 29 1-patterns and 17 2-patterns. Table 4.4 shows the top-
ten patterns w.r.t. their absolute weight, which gives information about their
relevance for the discrimination of the classes through SVM, along with the
support, and precision of each pattern assigned by the final classification model.

In the set, we can identify 33 patterns (out of 46) that match exactly
sepsis-related symptoms and/or treatments, and 11 more patterns related to
Pantoprazole. Pantoprazole is a proton pump inhibitor (PPI) and, even though
it is not used to treat sepsis, PPIs are used to treat stress-related mucosal
damage (SRMD). SRMD is an erosive gastritis of unclear pathophysiology,
which can occur rapidly after a severe insult such as trauma, surgery, sepsis,
or burns [32]. In other words, it is still reasonable to mine patterns with
Pantoprazole, because it is weakly related to sepsis. Finally, there are only
three patterns that include one item that refers to an event we would consider
weakly related to sepsis.
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Pattern Weight Support Precision

HR & Steady & Norepinephrine & Steady = true 0.6174 0.3381 0.5691
DBP& Steady & Pantoprazole & Steady = true ∧ DBP & Decreasing & Norepinephrine & Steady = true 0.4377 0.0278 0.7317
DBP& Steady & Vasopressin & Steady = true 0.3289 0.0237 0.5143
HR & Steady & Vasopressin & Steady = true∧ HR & Steady & Ciprofloxacin & Steady = true 0.3223 0.0501 0.7568
Systolic Blood Pressure & Increasing & Piperacillin & Steady = true 0.2403 0.0576 0.3882
HR & Steady & Norepinephrine & Steady = true ∧ DBP & Steady & Pantoprazole & Increasing = true 0.2277 0.0264 0.7179
HR & Steady & Norepinephrine & Steady = true ∧ DBP & Steady & Pantoprazole & Steady = true 0.2246 0.0556 0.6463
HR & Steady & 2xNorepinephrine & Steady = true 0.2231 0.1280 0.6772
DBP & Decreasing & Norepinephrine & Steady = true 0.2144 0.0976 0.5556
SBP & Steady & 3xPhenylephrine & Steady = true 0.2073 0.0386 0.5614
SBP & Increasing & 3xNorepinephrine & Steady = true 0.1949 0.0257 0.5789
HR & Steady & Vasopressin & Steady = true ∧ HR & Steady & 2xNorepinephrine & Steady = true 0.1865 0.0589 0.7701
SBP & Decreasing & Piperacillin & Steady = true ∧ HR & Steady & Norepinephrine & Steady = true 0.1849 0.0278 0.7317
HR & Steady & Piperacillin & Steady = ttrue 0.1841 0.2920 0.4362
HR & Steady & Norepinephrine & Steady = true ∧ DBP& Decreasing & Vancomycin & Steady = true 0.1784 0.0427 0.6984
DBP & Increasing & Vancomycin & Increasing = true 0.1689 0.0257 0.4737
SBP & Steady & Norepinephrine & Decreasing = true 0.1671 0.0860 0.6535
HR & Steady & Vancomycin & Steady = true 0.1640 0.5982 0.3681
SBP & Increasing & Piperacillin & Decreasing = true 0.1530 0.0332 0.4082
HR & Steady & Vancomycin—Piperacillin & Steady = true 0.1387 0.0420 0.4032
DBP& Increasing & 3xPhenylephrine & Steady = true 0.1364 0.0264 0.4103
HR & Steady & Pantoprazole & Steady = true ∧ DBP & Steady & Piperacillin & Decreasing = true 0.1305 0.0305 0.5778
DBP & Steady & Ciprofloxacin & Increasing = true 0.1292 0.0339 0.4400
HR & Steady & Pantoprazole & Steady = true ∧ DBP & Increasing & Phenylephrine & Decreasing = true 0.1237 0.0237 0.6286
SBP & Increasing & Phenylephrine & Steady = true 0.1179 0.0738 0.4128
SBP & Increasing & Phenylephrine & Steady = true ∧ HR & Steady & Piperacillin & Steady = true 0.1139 0.0312 0.6087
DBP & Decreasing & Piperacillin & Increasing = true 0.0919 0.0230 0.4118
DBP & Increasing & Vancomycin & Steady = true 0.0888 0.0732 0.3981
DBP & Steady & Piperacillin & Decreasing = true 0.0886 0.0508 0.4667
DBP & Steady & Piperacillin & Steady = true 0.0865 0.1016 0.4533
HR & Steady & Pantoprazole & Steady = true ∧ DBP & Steady & Potassium Chloride & Increasing = true 0.0852 0.0583 0.4651
HR & Decreasing & Norepinephrine & Steady = true 0.0796 0.0935 0.6014
DBP & Decreasing & Piperacillin & Steady = true 0.0722 0.0562 0.4819
HR & Steady & Vancomycin & Steady = true∧ HR & Steady & Potassium Chloride & Increasing = true 0.0657 0.0705 0.4615
HR & Steady & Pantoprazole & Steady = true∧ HR & Steady & Ciprofloxacin & Steady = true 0.0654 0.1152 0.4765
DBP& Steady & Potassium Chloride & Increasing = true 0.0612 0.1159 0.3509
SBP & Decreasing & Norepinephrine & Increasing = true 0.0574 0.0583 0.6047
SBP & Steady & Pantoprazole & Steady = true ∧ DBP & Decreasing & Norepinephrine & Steady = true 0.0489 0.0257 0.7105
DBP & Increasing & Vancomycin & Decreasing = true 0.0459 0.0318 0.3830
HR & Steady & Vancomycin & Steady = true∧ HR & Steady & Pantoprazole & Steady = true 0.0323 0.2541 0.4533
SBP & Decreasing & Norepinephrine & Decreasing = true 0.0235 0.0495 0.6164
HR & Steady & Vancomycin & Steady = true ∧ DBP & Steady & Pantoprazole & Steady = true 0.0227 0.0745 0.5091
HR & Steady & Ciprofloxacin & Steady = true 0.0197 0.2378 0.3875
SBP & Steady & Ciprofloxacin & Increasing = true 0.0072 0.0271 0.4250
HR & Steady & Pantoprazole & Steady = true 0.0057 0.3516 0.3815
HR & Steady & Vancomycin & Steady = true ∧ DBP & Increasing & Phenylephrine & Decreasing = true 0.0049 0.0359 0.5472

Table 4.4: The final set containing the most predictive trend-even patterns
with their absolute weight, support and precision.

We compare results about our mined PTE -Ps with those using the wrapper
predictive patterns (W -PPs) proposed in [118]. Even though we use AUPRC
for evaluating the quality of the predictive rule set, we report also the AUROC
values, in order to give a comprehensive view of the results.

Figure 4-5 summarizes the obtained results. We tested W -PPs on the same
dataset, and we obtained an AUPRC of 0.5184 over 24 429 patients’ admissions.
We also test W -PPs using only those admissions with at least one valid TE -F,
to compare W -PPs and PTE -Ps on the same set of admissions (W -PPs SA). In
this case, AUPRC of W -PPs SA increases to 0.6718 but it is still lower than
the one obtained for PTE -Ps. As opposed to PTE -Ps, W -PPs treat separately
vital signs and drug administrations (i.e., an item refers only to a vital sign, or
to a drug administration). Moreover, W -PPs are completely atemporal, thus
ignoring any temporal evolution of the underlying data. It is fundamental to
notice that the focus on this particular comparison should not be only on the
overall score, but also on the intrinsic meaning that these two different kinds
of patterns are offering.

Finally, we test a combination of PTE -Ps and W -PPs: in this environment,
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Figure 4-5: On the left, AUPRC and AUROC values for PTE -Ps, W -PPs and
the combination of them. On the right, patterns and unexpected patterns:
PTE -Ps, W -PPs and the combination of them.

PTEPminer decides what kind of predictive patterns to select. Compared to
the best set of PTE -Ps, this setting slightly increases the overall AUPRC score
to 0.7707, but it also increases the number of discovered patterns (70) as well as
the ones weakly related to sepsis (7). The final set of these combined patterns
is composed of 106 items, 65 are PTE -Ps and 41 W -PPs.

4.5 Conclusions

We introduce a new type of predictive temporal patterns, the PTEPs. They
address the problem of extracting a compact set of complex predictive pat-
terns, composed of interval-based data (i.e., trends) and instantaneous events,
through a classification model. The new temporal knowledge associated to
these predictive patterns determines a huge difference from the atemporal pat-
terns discovered with previous approaches, and it makes difficult any kind of
direct comparison between the two sets. Nonetheless, with these preliminary
experiments, we show that it is also possible to use both kinds of patterns
combined together. Anyhow, it is key to focus on the meaning of the mined
sets of patterns and the importance of temporal knowledge, rather than a mere
score comparison. Our results, although preliminary, show that PTEPminer
could be an interesting tool for mining clinical temporal data. The findings
presented here have the potential to be effective predictive patterns for sep-
sis. The results of the analyses represent a first step, which still needs to be
validated in a more detailed and clinically-oriented way by clinicians. As a
next step, we will explore with clinicians if there are particularly interesting
patterns among the expected and the unexpected ones, and especially which
importance they assign to them, according to their specific medical knowledge.
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Chapter 5

A framework for the discovery
of predictive temporal
functional dependencies

In this chapter, we propose a methodology for deriving a new kind of ap-
proximate temporal functional dependencies, called Approximate Predictive
Functional Dependencies (APFDs), based on a three-window framework. We
then discuss the computational aspects of APFDs, the reliability of the de-
rived APFDs, and report some results in deriving APFDs from real clinical
data using MIMIC-III and MIMIC-IV datasets, related to patients from In-
tensive Care Units. Considering the temporal specification of explainability
presented in Section 3.5 of Chapter 3, APFDs considers temporal data and
temporal task, in this case, the prediction of the onset of Acute Kidney In-
jury (AKI). In addition, they focus also on temporal reasoning, supporting the
explainability also towards specific temporal reasoning mechanisms.

Let us notice that in this work, we are aiming in mining APFDs, building a
new framework which includes the formal definitions of the dependencies and
the mining part, motivating and illustrating a 3-window model. We decided
to focus on the proposal of the methodological framework and its novelties
with respect to the use of TFDs to support the prediction task. As the frame-
work has many specific aspects, we preferred to present the formal relational
calculus-based definitions of the single general concepts together with a point-
wise exemplification. As concerns, the theoretical aspects should be considered
when introducing a new class of approximate TFDs, for example satisfiability,
the logical implication and inference rules, and finally, the axiomatizability,
were not covered. They could be interesting research directions, but out of the
scope of this thesis.

5.1 Introduction

Data mining has been receiving considerable attention. Such mining tech-
niques provide a way to extract relevant knowledge and useful information
hidden in the (often huge) amount of data available in many different con-
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texts. In particular, temporal data mining techniques are able to exploit the
available knowledge to support decision-making. They offer the possibility
of obtaining a considerable understanding of various domain-specific phenom-
ena and the potential for the development of accurate classification models
[130, 157].

Knowledge from databases may be expressed by discovering patterns and
data dependencies. Database dependencies express relevant characteristics of
datasets, thereby enabling various critical analyses of data. Functional depen-
dencies (FDs) are among the most important data dependencies for (relational)
databases. In literature, there are different extensions of functional dependen-
cies, from the temporal functional dependencies, which deal with data tem-
poralities [180, 174, 97, 176, 47], to the approximate functional dependencies
that hold on most tuples of a database [107, 90, 91, 114].

In a context where current systems enable us to store huge quantities of
data, another important role of data mining is towards supporting predictions.
Prediction is often associated with well-known machine learning techniques.
These algorithms are used in many domains, and different performance met-
rics are adopted for each different problem, e.g., precision and recall are widely
accepted in the information retrieval domain [12, 34], while in medicine the
stakeholders prefer the ROC curve [57]. Often it is not possible to under-
stand why machine learning algorithms are proposing specific predictions and
such already known black-box problem [39] interferes with the communication
between data scientists and domain experts, as the need for explainability is
not fully supported. A workaround to overcome this problem is to exploit
explainable temporal data mining techniques, able to possibly reveal intrinsic
data dependencies. For example, focusing on the medical domain without loss
of generality, through such techniques, clinical data sources would enable us
to rapidly generate prediction models for thousands of clinical problems, sup-
port clinical decision-making, speed up medical processes, prevent and stratify
risks, predict mortality, and improve the patient quality of life [129, 22, 19].
In this regard, discovering temporal patterns represents an explainable way of
studying hidden data dependencies, supporting clinicians to focus on the most
interesting and relevant discovered temporal data associations.

Moving to the database context, in the last decade Functional Dependen-
cies (FDs), a well-known concept allowing the representation of dependencies
between attribute sets in a database, received renewed attention [37, 157, 46,
24, 109] from different points of view and for different goals. Indeed, from one
side, FDs are effective in specifying data constraints, which must be verified
and satisfied by the considered data repositories/lakes (now possibly consist-
ing of many databases, which evolve as for the required constraints over time)
[122, 159]. Indeed, data quality is becoming an urgent topic in the current
context, where the huge amount of data are processed on a daily basis, often
without any verifiable data quality process [65, 148]. On the other side, FDs
have been proposed as a way of mining data, i.e., by discovering those FDs
that hold on most data. The considered approximation may be heterogeneous
and deal with both null values, quantitative data, data deletion/updates, and
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so on [38, 24, 107, 70, 109].

Temporal Functional Dependencies (TFDs) received some interest since
the nineties, initially as a way for specifying constraints on temporal data
[181, 47, 25], and, more recently, as a mining approach in their approximate
version, looking for hidden temporal patterns inside data [46, 157, 54].

To the best of our knowledge, TFDs have not yet been considered for the
prediction task. Such decision-support task is mainly devoted to the prediction
of some (future) event based on a (past) data history. Thus, as time is an
inherent feature of this task, TFDs are interesting candidates as a formal tool,
for discovering the predictivity of the stored data. Within this context, in this
chapter we propose and discuss an original temporally-oriented data mining
framework for the prediction of future events through the identification of
recurring past temporal data patterns, expressed as Approximate Predictive
Functional Dependencies (APFDs), according to a 3-window -based temporal
framework. New kinds of error and related thresholds are introduced, to deal
with the required approximation. The main novelty can be summarized in
the formalization of a new framework to exploit the predictive aspect of the
APFDs, according to the following specific aspects:

• We introduce a new temporal framework based on three temporal win-
dows: observation window (OW), waiting window (WW), and prediction
window (PW). The waiting window is explicitly introduced to create a
time span before the prediction for being able to (possibly) manage the
predicted event.

• We define and exemplify the entire framework for the approximate pre-
dictive functional dependencies (APFDs) in a formal way through declar-
ative formulas in relational calculus. It allows the representation of tem-
poral patterns (made by attribute values) related to a set of observed
entities (e.g., patients) and characterizes their predictivity, with respect
to a target attribute (e.g., a disease).

• We introduce two new error measures: H3, focused on the number of
entities we accept to lose, in order to deal with entities that create ”noise”
in the dataset; J3, focused on the number of tuples for each entity we
accept to lose, in order to satisfy the APFD, avoiding the situation where
an entity remains with few tuples, so with without enough information
to evaluate the prediction on it.

A preliminary and simplified proposal of this framework has been sketched
in [10], in the context of medical data mining.

The chapter unfolds as follows. Section 4.2 contains the related work; in
Section 5.2 we discuss a motivating scenario from the clinical field; in Section
5.3 we introduce the 3-window-based framework for prediction and the formal-
ization of the PFDs; in Section 5.6 we discuss and evaluate the goodness of the
predictivity of APFDs; finally, in Section 5.9 we draw some conclusions and
sketch out possible directions.
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5.2 A motivating scenario from Clinical Medicine

Nowadays, technology allows us to collect automatically huge amounts of med-
ical information. A key point to be considered is the temporal component, nec-
essary for a correct representation of the information within computer-based
systems, for querying information, for reasoning about time, for the design
process of analysis tools for prediction, for personalized medicine and finally
for therapy support. To illustrate the relevance and the potential meaning
of our approach, we consider a real-world example from the domain of Inten-
sive Care Unit (ICU) focusing on patients suffering from Acute Kidney Injury
(AKI) [171], used as a reference throughout the chapter.

Intensive care units provide critical care and life support for most severely
ill and injured patients in the hospital. Patients are constantly monitored and
subjected to laboratory tests, in order to detect the deterioration of conditions
or the occurrence of various adverse events influencing the already fragile state.
Clinicians record parameters such as the administered drugs, levels of differ-
ent indicators for example blood urea nitrogen, calcium, chloride, creatinine,
hemoglobin, platelet, potassium, prothrombin time, partial thromboplastin
time, and white blood count, and finally different measures such as arterial
blood pressure, heart rate, systolic blood pressure, diastolic blood pressure,
respiratory rate, temperature, oxygen saturation and glucose.

In ICU, Acute Kidney Injury is a frequent clinical problem, characterized
by a sudden loss of the ability of the kidneys to excrete wastes, concentrate
urine, store electrolytes, and maintain fluid balance [162].

In 2012, KDIGO (Kidney Disease: Improving Global Outcomes) published
specific guidelines [106] for the definition of AKI, where a patient receives the
diagnosis if one of the following criteria is satisfied: (i) an increase in serum
creatinine by ≥ 0.3 mg/dl (≥ 26.5 µmol/l) within 48 h, (ii) an increase in
serum creatinine to ≥ 1.5 times baseline within the previous 7 days and (iii) a
urine volume ≤ 0.5 ml/kg/h for 6 hours.

Figure 5-2 represents a simplified view of a real-world clinical database, con-
taining ICU patients’ data. Relations VitalSigns, SpO2, VitalSigns, Drug,
and AKIDiag, represent examples for clinical data related to vital sign moni-
toring, blood tests, drug therapies, and diagnosed AKI, respectively. Let us as-
sume that the considered database, named after IcuDB, is a temporal database,
i.e., a database composed by temporal relations. Any temporal relation is char-
acterized by a special attribute, named VT for Valid Time, representing the
timepoint when the information represented in a tuple, is true in the modeled
world [96].

As we are interested in discovering whether some clinical data features
allow the early identification of AKI patients, let us assume that we derive
through a suitable query the (possibly materialized) view PatientHistory.
It represents different ordered states of patients, according to the different
valid times, we would like to associate to a final state, specifying whether
the patient has AKI. For each patient, PatientHistory stores the patient’s
name, the heart rate, the oxygen saturation, the administered drug– associated
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Tuple # Patient HR VTHR SpO2 VTSPO2 Drug VTDrug AKI VTAKI

1 Daisy High 9 Low 11 Aspirin 13 False 18
2 Daisy Low 2 High 4 Aspirin 6 False 18
3 Daisy Low 2 High 4 Aspirin 6 False 12
4 Daisy Medium 5 Medium 7 Indapamide 9 False 18
5 Luke Low 7 High 8 Ibuprofen 12 True 17
6 Luke Low 7 High 8 Ibuprofen 12 True 21
7 Luke Medium 9 High 13 Sulindac 14 True 17
8 Luke Medium 9 High 13 Sulindac 14 True 21
9 Stevie High 1 Low 2 Aspirin 5 True 10
10 Stevie High 1 Low 2 Aspirin 5 False 12
11 Stevie High 1 Low 2 Aspirin 5 False 9
12 Stevie High 1 Low 2 Indapamide 7 False 9
... Stevie ... ... ... ... ... ... ... ...
36 Stevie Medium 4 Medium 7 Metolazone 8 False 12

Figure 5-1: View PatientHistory storing data of a temporal query on
database IcuDB

with the three considered states, respectively–, the diagnosis of AKI, and the
different valid times, by means of attributes Patient, HR, SpO2, Drug, AKI,
and the associated valid time attributes, respectively. We assume that valid
times are always given in terms of hours (starting from the admission time of
each patient, taken as the origin of time domain). Figure 5-1 (partially) shows
a possible instance of PatientHistory describing a clinical history of three
patients, Daisy, Luke, and Stevie, who undergo five different drugs, some of
them specific for the AKI treatment, respectively. Such history can be derived
from the data contained in the temporal database IcuDB. Moreover, some
constraints have been specified, as we will discuss in the following, with respect
to the allowed temporal distances between such ordered states and between
them and the following AKI diagnosis. Many different research questions arise
from the introduced context, which are of general interest.

• Firstly, clinicians could be interested in discovering properties, relevant
from the clinical point of view. Within this perspective, could we support
the prediction of a future diagnosis by building suitable clinical histories?
More generally, may we be able to support predictive tasks through the
data analysis of such temporal histories?

• May we consider different (temporal) requirements when composing such
data histories? Indeed, it could be of interest to specify some constraints
restricting, for example, the time distances between the different states.

• May we also consider different requirements for predictions? Indeed,
predictions are useful only if they come early enough to allow suitable
prevention of the (possibly) predicted negative outcome. In the consid-
ered context, predicting AKI just a moment before its occurrence could
not be useful to avoid negative effects on the patient health.

• Which kinds of error thresholds are we allowed to specify for deriving
reliable predictions? Indeed, it could be that, after discovering that
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VitalSigns

Tuple # Patient HR BP VT

1 Daisy Low Normo 2

2 Daisy Medium Normo 5

3 Daisy High Hypo 9

4 Luke Low Hyper 7

5 Luke Medium Hyper 9

6 Luke Medium Normo 15

7 Stevie High Hyper 1

8 Stevie High Normo 3

9 Stevie Medium Hyper 4

10 Stevie High Hyper 5

SpO2
Tuple # Patient SpO2 VT

1 Daisy High 4

2 Daisy Medium 7

3 Daisy Low 11

4 Luke High 8

5 Luke High 13

6 Luke Medium 18

7 Stevie Low 2

8 Stevie Medium 5

9 Stevie Medium 6

10 Stevie Medium 7

Drug

Tuple # Patient Drug VT

1 Daisy Aspirin 6

2 Daisy Indapamide 9

3 Daisy Aspirin 13

4 Luke Ibuprofen 12

5 Luke Sulindac 14

6 Luke Indapamide 20

7 Stevie Aspirin 5

8 Stevie Indapamide 7

9 Stevie Metolazone 8

10 Stevie Indapamide 9

AkiDiag

Tuple # Patient AKI VT

1 Daisy False 9

2 Daisy False 12

3 Daisy False 18

4 Luke True 14

5 Luke True 17

6 Luke True 21

7 Stevie True 6

8 Stevie False 9

9 Stevie True 10

10 Stevie False 12

Figure 5-2: Four (simplified) relations of temporal database IcuDB

some tuples do not support the prediction, we would like to specify other
thresholds to make the prediction reliable. As an example, we may allow
(or not) some patients have their tuples completely discarded, as the
overall condition of these patients makes them “outliers” with respect to
the considered prediction.

• After discovering whether some features (i.e., attributes) support the
prediction of future events, are we able to discover which data values are
related to specific clinical outcomes? Even though explainable methods
would be applied in supporting the early identification of AKI patients,
having the capability of relating some specific value patterns to the AKI
presence/absence is of great importance for physicians [44].

In the following, we will use IcuDB data, depicted in Figure 5-2, to exemplify
the different aspects of our proposal. Different examples will also consider some
fragments of the overall database. The tuple enumeration used here and in
the following examples comes from running suitable queries in a PostgreSQL
corresponding database and is used just for referencing specific tuples and for
giving the idea of the overall cardinality of the query result/relation.
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Figure 5-3: The time windows of the proposed framework: (a) the anchored
and (b) the unanchored –sliding window– case.

5.3 The predictive aspects of functional de-

pendencies

In this section, firstly we delineate the problem at hand, and introduce a 3-
window model for the interpretation of predictive temporal data; then we illus-
trate the definitions needed to obtain a Predictive Functional Dependency and
finally, we analyze the concept of approximation for the Predictive Functional
Dependencies.

In general, the prediction models exploit the use of two-time windows,
namely (i) a data collection (or observation) window, and (ii) a prediction
window. Even though there are approaches [69, 142] which consider a third
temporal window, to the best of our knowledge, a general and formal pre-
diction framework considering three different time windows has not yet been
considered in the data mining literature.

According to this view, depicted in Figure 5-3,
1. Decisions are taken after gathering information for some time span (Ob-

servation Window : OW).
2. After the moment when a decision is taken, we have to execute all the

related actions and (possibly) wait for a while (Waiting Window : WW).
Indeed, not all the performed actions have an instantaneous effect.

3. The last temporal window refers to when the possible effects of the deci-
sion are observable and thus we can evaluate the suitability of the taken
decision (Prediction Window : PW).

It is worth noting that the span of such windows may be different and
could be also composed by a single time-point. Moreover, the Waiting Window
could be missing, i.e., of zero length, in case of decisions having an immediate
observable effect.

In general, we may identify different orthogonal features for the introduced
time windows.
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A first distinction is between (i) anchored and (ii) unanchored time win-
dows. Indeed, with anchored time windows, we are able to represent specific
periods of the considered time axis. An example of anchored time windows
for the motivating scenario could consist of specifying OW as the first 4 hours
from the admission to the ICU, the following 2 hours as WW (i.e., the fifth and
sixth hour after the ICU admission), ending with the PW from the seventh
to the tenth hour after the ICU admission. Figure 5-3 a) depicts the three
anchored windows, the time-point corresponding to the decision moment, and
a possible temporal evolution of some observed quantitative parameter, hav-
ing some exponential behavior. On the other side, unanchored time windows
represent windows that “move” through the time axis, constraining only the
distance between the considered data. An example of such kind of windows for
our scenario could consist in specifying again 4 hours, 2 hours, and 4 hours for
OW, WW, and PW, respectively, but not anchored to any point of the time
axis. Figure 5-3 b) represents two partially overlapping views, representing
unanchored time windows. In this case, we may consider a possibly infinite
number of unanchored (sliding) windows, even by specifying the width of the
step size of sliding.

A second subtle distinction, which may provide different results for pre-
diction and is orthogonal concerning the distinction between anchored and
unanchored time windows, is between (i) fixed-length and (ii) variable-length
time windows. Indeed, OW, and consequently the following WW and PW,
could be either of fixed length, without any further constraint related to the
temporal position of data inside it, or of variable length, and thus ending with
the last time point associated to the data to consider in the window. In this
case, the WW would start even before the maximum span allowed to OW. For
example, we may require that valid times for HR, SPO2, and Drug have to be
within an OW of 6 hours, with a WW of two hours. Such OW could be of
fixed length and thus we would consider AKI valid times after 8 hours from
the beginning of OW. However, we could also require such valid times to be
within the same maximum time span, but with an OW ending with the valid
time of drug data. In this case, WW would possibly start even before the delay
of 6 hours from the valid time of HR and consequently, the AKI valid time
could be before 8 hours from the beginning of OW. In the following, unless
differently specified, we will mainly consider fixed-length windows.

5.4 Defining Predictive FDs

Let us start by briefly recalling the concept of FD in the context of relational
databases. Let r be a relation over the relational schema R(U) and let X, Y ⊆
U . r fulfills the functional dependency X,→ Y (written as r |= X,→ Y ) if
∀t, t′ ∈ r(t[X] = t′[X],→ t[Y ] = t′[Y ]).

As we will discuss in the following, the main idea here is to propose, step by
step, a general framework allowing the definition of “specialized” functional
dependencies having the antecedent composed by a set of attributes, called
predictive attributes, ordered according to the corresponding valid times, and
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the consequent defined as the predicted boolean attribute. Let us consider a
database DB as a set of temporal relational schemata {R1, ..., Rn} and a set of
corresponding relations {r1, ..., rn}. Any schema Ri has attributes ZUi∪{V T},
where ∀Ri, Rj with i 6= j it holds Ui∩Uj = ∅. Ui is a set of attributes represent-
ing properties of an entity, which is identified by attributes Z (hereinafter the
entity attributes). VT is the attribute representing the temporal dimension of
the tuples.

Definition 16 (State expression (SE)). Given a set of relation schemata
R1, ...Rn of database DB, a State expression with schema ZU∪{V T} where
U ⊆ UiUj...Um is defined as:

RSE ≡ {t | ∃ti, ..., tj, ...tm(Ri(ti)... ∧Rj(tj)... ∧Rm(tm)∧
t[Z ∪ (Ui ∩ U) ∪ {V T}] = ti[Z ∪ (Ui ∩ U) ∪ {V T}]...∧
t[Z ∪ (Uj ∩ U) ∪ {V T}] = tj[Z ∪ (Uj ∩ U) ∪ {V T}]∧
t[Z ∪ (Um ∩ U) ∪ {V T}] = tm[Z ∪ (Um ∩ U) ∪ {V T}])}

Example 1. As depicted in Figure 5-1, relation PatientHistory considers
three different states for patients, where different attributes are considered for
each state. The SE allowing us to focus on attribute HR is defined as

HRSE ≡ {t : {Patient ,HR,VT} | ∃t1(VitalSigns(t1)∧t = t1[Patient ,HR])}

Let us now move to the definition of relational expression ables to represent
the evolution of information through different temporal states.

Definition 17 (K-State evolution expression (KSE)). Given a set of State

Expressions SE, a K-State evolution expression with schema ZU
0
U

1
..U

k∪
{V T 0

, V T
1
, .., V T

k} is defined as:

RKSE ≡ Θ(RSE
0 , RSE

1 , ...RSE
k )

where RSE
0 , RSE

1 , ...RSE
k ∈ SE and any RSE

i has schema ZU i ∪ {V T i} with
0 ≤ i ≤ k.

For any RKSE the following formula holds

∀t(RKSE(t)→ (t[V T
0
] < t[V T

1
] ∧ .. ∧ t[V T k−1

] < t[V T
k
]∧

∃t0(RSE
0 (t0) ∧ t[ZU0 ∪ {V T 0}] = t0[ZU0 ∪ {V T 0}])∧

∃t1(RSE
1 (t1) ∧ t[ZU1 ∪ {V T 1}] = t1[ZU1 ∪ {V T 1}]) ∧ ...∧

∃tk(RSE
k (tk) ∧ t[ZU

k ∪ {V T k}] = tk[ZU
k ∪ {V T k}]))

Expression Θ allows the specification of different evolutions of State Ex-
pressions. While the definition forces some basic “structural” properties, the
specification of how to compose such data evolution, which is heavily depen-
dent on the considered application domain, is left to the designer of the KSE.
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Tuple # Patient HR
0

V T
0

SpO2

1
V T

1
Drug

2
V T

2

1 Stevie High 1 Low 2 Indapamide 9
2 Stevie High 1 Low 2 Metolamide 8
3 Stevie High 1 Low 2 Indapamide 7
4 Stevie High 1 Low 2 Aspirin 5
5 Stevie Medium 4 Medium 5 Indapamide 9
.. ... ... ... ... ... ... ...
34 Daisy Low 2 High 4 Aspirin 13
35 Daisy Low 2 High 4 Indapamide 9
.. ... ... ... ... ... ... ...
53 Luke Medium 15 Medium 18 Indapamide 20

Figure 5-4: An excerpt of KSE specified in Example 2 and evaluated on the
temporal database IcuDB depicted in Figure 5-2

The basic properties we called structural are mainly related to (i) the associ-
ation of different SEs according to the entity attributes, (ii) to the temporal
order between SEs, whose attributes are (iii) suitably renamed according to
the given order.

Among the different possible KSEs we distinguish here
1. simple KSEs;
2. metric KSEs, where constraints on the temporal distances between SEs

are specified;
3. KSEs with “next” SEs;
4. KSEs with “next” SEs and metric constraints.

The previous definition of K-state evolution expression is the most simple one,
allowing to join k ordered states of entities. In general, we may think of more
complex expressions, still retaining the idea of representing k-state evolutions
of entities but with more strict temporal requirements as those introduced by
[47] for next views, where states are required to be one the next of the other
(i.e., without any state in between).

Example 2. Figure 5-4 depicts an excerpt of the instance of a simple KSE,
composed by 3 SEs HRSE, SpOSE

2 , DrugSE, where HRSE has been defined
in Example 1, SpOSE

2 ≡ SpO2, Drug
SE ≡ Drug, with respect to the database

IcuDB depicted in Figure 5-1. The KSE expression Θ(HRSE, SpOSE
2 , DrugSE)

corresponds to the simplest query, mainly requiring only the temporal order
between the different states considered.

SimPatEvKSE ≡ {t | t[V T 0
] < t[V T

1
] ∧ t[V T 1

] < t[V T
2
]∧

∃t0(HRSE(t0) ∧ t[Patient,HR0
, V T

0
] = t0[Patient,HR, V T ])∧

∃t1(SpOSE
2 (t1) ∧ t[Patient, SpO2

1
, V T

1
] = t1[Patient, SpO2, V T ])∧

∃t2(DrugSE(t2) ∧ t[Patient,Drug2
, V T

2
] = t2[Patient,Drug, V T ])}
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Tuple # Patient HR
0

V T
0

SpO2

1
V T

1
Drug

2
V T

2

1 Stevie High 1 Low 2 Aspirin 5
2 Stevie High 3 Medium 6 Indapamide 7
3 Stevie Medium 4 Medium 6 Indapamide 7
4 Stevie High 5 Medium 6 Indapamide 7
5 Stevie High 1 Medium 5 Indapamide 7
.. ... ... ... ... ... ... ...
26 Daisy Low 2 High 4 Aspirin 6
27 Daisy Medium 5 Medium 7 Indapamide 9
.. ... ... ... ... ... ... ...
31 Luke Medium 15 Medium 18 Indapamide 20

Figure 5-5: An excerpt of KSE specified in Example 3 and evaluated on the
temporal database IcuDB depicted in Figure 5-2

Tuple # Patient HR
0

V T
0

SpO2

1
V T

1
Drug

2
V T

2

1 Stevie High 1 Low 2 Aspirin 5
2 Stevie Medium 4 Medium 5 Indapamide 9
.. ... ... ... ... ... ... ...
35 Daisy Low 2 High 4 Indapamide 9
.. ... ... ... ... ... ... ...

Figure 5-6: An excerpt of KSE specified in Example 4 and evaluated on the
temporal database IcuDB depicted in Figure 5-2

Example 3. Figure 5-5 depicts an excerpt of the instance of a metric KSE
composed by 3 SEs HRSE, SpOSE

2 , DrugSE, where HRSE has been defined

in Example 1, SpOSE
2 ≡ SpO2, Drug

SE ≡ Drug, and t[V T
k
] − t[V T

k−1
] <

3 for k = 1, 2, for any tuple t of the KSE. The metric KSE expression
Θ(HRSE, SpOSE

2 , DrugSE) requires that the different states are within 4 time
units from the previous one and corresponds to the following query

MetPatEvKSE ≡ {t | t[V T 1
]− t[V T 0

] ≤ 4 ∧ t[V T 2
]− t[V T 1

] ≤ 4∧

∃t0 ∈ HRSE(t[Patient,HR
0
, V T

0
] = t0[Patient,HR, V T ]) ∧

∃t1 ∈ SpOSE
2 (t[Patient, SpO2

1
, V T

1
] = t1[Patient, SpO2, V T ]) ∧

∃t2 ∈ DrugSE(t[Patient,Drug
2
, V T

2
] = t1[Patient,Drug, V T ])}

Example 4. Figure 5-6 depicts an excerpt of the instance of a KSE com-
posed by 3 “next” SEs HRSE, SpOSE

2 , DrugSE, where HRSE has been de-
fined in Example 1, SpOSE

2 ≡ SpO2, Drug
SE ≡ Drug, with respect to the

database IcuDB depicted in Figure 5-1. The figures show only tuples of Fig-
ure 5-4 which satisfy also the further next condition. The KSE expression
Θ(HRSE, SpOSE

2 , DrugSE) corresponds to a query, mainly requiring the tem-
poral order between the different states considered and the absence of other
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intermediate SEs.

NextPatEvKSE ≡ {t | t[V T 0
] < t[V T

1
] ∧ t[V T 1

] < t[V T
2
] ∧

∃t0, t1, t2(HRSE(t0) ∧ t[Patient,HR0
, V T

0
] = t0[Patient,HR, V T ] ∧

SpOSE
2 (t1) ∧ t[Patient, SpO2

1
, V T

1
] = t1[Patient, SpO2, V T ] ∧

DrugSE(t2) ∧ t[Patient,Drug2
, V T

2
] = t2[Patient,Drug, V T ] ∧

¬∃t′1, t′2(SpOSE
2 (t′1) ∧DrugSE(t′2) ∧

t[Patient, SpO2
1
] = t′1[Patient, SpO2] ∧

t[Patient,Drug
2
] = t′2[Patient,Drug] ∧

t[V T
0
] < t′1[V T ] ∧ t′1[V T ] < t[V T

1
] ∧

t[V T
1
] < t′2[V T ] ∧ t′2[V T ] < t[V T

2
]))}

Once considered the predictive attributes, we turn now our attention to the
predicted attribute. For sake of simplicity, we focus on a (single) boolean at-
tribute, which will be used as the value representing the status to be predicted.
The extension of our approach to a multiclass prediction is straightforward.

Definition 18 (Target expression (TE)). Given a relation schema R ∈ DB
containing some boolean attribute B, a Target expression is defined as:
RTE ≡ {t : ZḂ ∪ { ˙V T} | ∃t′(R(t′) ∧ t[ZḂ ∪ { ˙V T}] = t′[ZB ∪ {V T}])}

Mainly, with this definition, we are renaming and projecting the relation
schema and the attribute, we will focus on as for prediction. It is worth ob-
serving that such renaming, together with that of KSEs, is required to possibly
use the same relation schemata with different roles in the following definition
of prediction expressions.

To observe the data for prediction, we use the 3-window framework, either
through anchored windows, as in Definition 19, by setting the starting point
of OW to a specific time point, or through sliding windows, as in Definition
20, by sliding the windows through the entire database time span.

Accordingly, we will consider two different kinds of K-State Prediction Ex-
pressions (KSPEs).

Definition 19 (K-State Prediction Expression with anchored windows). Given

a K-State Evolution Expression RKSE with schema ZU
0
U

1
..U

k∪ {V T 0
, V T

1
, ..,

V T
k}, a target expression RTE, with attributes ZḂ∪{ ˙V T}, and three anchored

time windows (i.e., intervals) OW,WW,PW (i.e., the observation window, the
waiting window, and the prediction window, respectively), an anchored K-State
Prediction Expression RaKSPE is defined as:

RaKSPE ≡ {t | RKSE(t[ZU
0
U

1
..U

k ∪ {V T 0
, V T

1
, .., V T

k}]) ∧

RTE(t[ZḂ ∪ { ˙V T}]) ∧ t[V T 0
] ≥ OWs ∧ t[V T

k
] ≤ OWs +OW∧

t[ ˙V T ] > OWs +OW +WW ∧ t[ ˙V T ] < OWs +OW +WW + PW}
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where OWs denotes the anchor timepoint (i.e., the lower bound) of the obser-
vation window.

Definition 20 (K-State Prediction Expression with unanchored windows).

Given a K-State Evolution Expression RKSE with schema ZU
0
U

1
..U

k∪ {V T 0
,

V T
1
, .., V T

k} and a target expression RTE, with attributes ZḂ ∪ { ˙V T}, and
three anchored time windows (i.e., intervals) OW,WW,PW (i.e., the obser-
vation window, the waiting window, and the prediction window, respectively),
an unanchored K-State Prediction Expression RmKSPE is defined as:

RuKSPE ≡ {t | RKSE(t[ZU
0
U

1
..U

k ∪ {V T 0
, V T

1
, .., V T

k}]) ∧

RTE(t[ZḂ ∪ { ˙V T}]) ∧ t[V T k]− t[V T 0
] ≤ OW∧

t[ ˙V T ]− t[V T 0
] > OW +WW ∧ t[ ˙V T ]− t[V T 0

] < OW +WW + PW}

As we already underlined, without loss of generality, we are considered both
anchored and unanchored fixed-length time windows. The versions of such
prediction expressions with variable-length time windows would be obtained
by replacing the conjunctions of Definitions 19 and 20

.. ∧ t[ ˙V T ] > OWs +OW +WW ∧ t[ ˙V T ] < OWs +OW +WW + PW..

and

.. ∧ t[ ˙V T ]− t[V T 0
] > OW +WW ∧ t[ ˙V T ]− t[V T 0

] < OW +WW + PW..

with

.. ∧ t[ ˙V T ] > OWs + t[V T
k
] +WW ∧ t[ ˙V T ] < OWs + t[V T

k
] +WW + PW..

and

.. ∧ t[ ˙V T ]− t[V T k] > WW ∧ t[ ˙V T ]− t[V T k] < WW + PW.., respectively

Moreover, such prediction expressions could be easily extended to consider
only some specific target tuples within PW, e.g., the first one and/or the last
one, and so on. It is worth pointing out that, in the definition of both met-
ric KSEs and of KSPEs, we make use of a nonstandard (arithmetic) selection

condition, containing for example, (t[V T
k
]− t[V T 0

]) or (OW +WW + PW ).
However, such can be turned into a standard relational algebra/calculus ex-
pression, as shown in detail in [48].

Example 5. Assuming a length of 6 hours for the OW, a length of 2 hours for
the WW, and a length of 10 hours for the PW, we may specify a suitable KSPE
for the prediction of AKI diagnosis, by considering relations of database IcuDB,
SE HRSE, TE AkiDiagTE, simply obtained by suitably renaming attributes of
the database relation AkiDiag, and KSE MetPatEvKSE, specified in Examples
1 and 3, respectively.
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Tuple # Patient HR
0

V T
0

SpO2

1
V T

1
Drug

2
V T

2 ˙AKI ˙V T
1 Daisy High 9 Low 11 Aspirin 13 False 18
2 Daisy Low 2 High 4 Aspirin 6 False 12
3 Daisy Low 2 High 4 Aspirin 6 False 18
4 Daisy Medium 5 Medium 7 Indapamide 9 False 18
5 Luke Low 7 High 8 Ibuprofen 12 True 17
6 Luke Low 7 High 8 Ibuprofen 12 True 21
7 Luke Medium 9 High 13 Sulindac 14 True 21
8 Stevie High 1 Low 2 Aspirin 5 True 10
9 Stevie High 1 Low 2 Aspirin 5 False 12
... ... ... ... ... ... ... ... ... ...

19 Stevie High 3 Medium 7 Metolazone 8 False 12

Figure 5-7: An excerpt of the instance of KSPE specified in Example 5, eval-
uated on the temporal database IcuDB depicted in Figure 5-2

AKIPredmKSPE ≡

{t |MetPatEvKSE(t[{Pat,HR0
SpO2

1
, Drug

2
, V T

0
, V T

1
, V T

2}]) ∧

AkiDiagTE(t[{Pat, ˙AKI, ˙V T}]) ∧ t[V T 2
]− t[V T 0

] ≤ 6∧

t[ ˙V T ]− t[V T 0
] > 6 + 2 ∧ t[ ˙V T ]− t[V T 0

] < 6 + 2 + 10}

Figure 5-7 depicts an excerpt of the evaluation of such KSPE on the database
IcuDB, using the SEs and KSEs specified in the previous examples.

Example 6. Let us consider the simple KSE SimPatEvKSE specified in Ex-
ample 2. We may build a KSPE for AKI prediction, by specifying an OW of 6
hours a WW of 1 hour and a PW of 10 hours. The evaluation of such KSPE
on IcuDB would return the relation (partially) depicted in Figure 5-1, with the
corresponding attributes suitably renamed.

5.4.1 Extending the target relation into an interval-based
relation

Considering the predicted attribute, it could be interesting to observe some
temporal properties over time intervals. For example, we can observe some
temporal patterns which are valid within a period of interest.

Following, we define a new target relation, based on intervals, an extended
version of K-State prediction Expression with anchored windows 22, and fi-
nally an extended version of K-State prediction Expression with unanchored
windows 23.

Definition 21 (Interval-based Target expression ( ˜TE)). Given a relation
schema R ∈ DB containing an attribute B (i.e. a pattern), an Interval-based
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Target expression ˜TE is defined as:

R
˜TE ≡ {t : ZḂ ∪ { ˙V T start, ˙V T end} | ∃t′(R(t′) ∧ t[ZḂ ∪ { ˙V T start, ˙V T end}] =

t′[ZB ∪ {V Tstart, V Tend}])}

Definition 22 (Extended K-State Prediction Expression with anchored win-

dows). Given a K-State Evolution Expression RKSE with schema ZU
0
U

1
..U

k∪
{V T 0

, V T
1
, .., V T

k}, an Interval-based Target expression R
˜TE, with attributes

ZḂ∪{ ˙V T start, ˙V T end}, and three anchored time windows (i.e., intervals) OW ,
WW , PW (i.e., the observation window, the waiting window, and the predic-
tion window, respectively), an extended anchored K-State Prediction Expres-
sion RaKSPE is defined as:

RaKSPE ≡ {t | RKSE(t[ZU
0
U

1
..U

k ∪ {V T 0
, V T

1
, .., V T

k}]) ∧

R
˜TE(t[ZḂ ∪ { ˙V T start, ˙V T end}]) ∧

t[V T
0
] ≥ OWs ∧ t[V T

k
] ≤ OWs +OW∧

t[ ˙V T start] > OWs +OW +WW∧
t[ ˙V T end] < OWs +OW +WW + PW}

where OWs denotes the anchor timepoint (i.e., the lower bound) of the
observation window.

Definition 23 (Extended K-State Prediction Expression with unanchored

windows). Given a K-State Evolution Expression RKSE with schema ZU
0
U

1
..U

k

∪ {V T 0
, V T

1
, .., V T

k} and an Interval-based Target expression RTE, with at-
tributes ZḂ ∪ { ˙V T start, ˙V T end}, , and three anchored time windows (i.e., in-
tervals) OW,WW,PW (i.e., the observation window, the waiting window, and
the prediction window, respectively), an extended unanchored K-State Predic-
tion Expression RmKSPE is defined as:

RuKSPE ≡ {t | RKSE(t[ZU
0
U

1
..U

k ∪ {V T 0
, V T

1
, .., V T

k}]) ∧

R
˜TE(t[ZḂ ∪ { ˙V T start, ˙V T end}]) ∧

t[V T
k
]− t[V T 0

] ≤ OW∧

t[ ˙V T start]− t[V T
0
] > OW +WW∧

t[ ˙V T end]− t[V T
0
] < OW +WW + PW}

Example 7. Assuming to use the same framework as in Example 5, a length
of 6 hours for the OW, a length of 2 hours for the WW, and a length of
10 hours for the PW, we may specify a suitable KSPE for the prediction of
AKI diagnosis, by considering relations of database IcuDB, SE HRSE, ˜TE
AkiDiagIntervals

˜TE in Figure 5-8, simply obtained by suitably renaming at-
tributes of the database relation AkiDiagIntervals, and KSE MetPatEvKSE,
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Tuple # Patient ˙AKI ˙V T start ˙V T end
1 Daisy FTFF 9 12
2 Daisy TFFT 13 16
3 Daisy FFTF 17 20
4 Luke FTFF 14 17
5 Luke FTFF 18 21
6 Luke FFFT 22 25
7 Stevie FFFT 6 9
8 Stevie TTTF 10 13
9 Stevie FFTF 14 17
10 Stevie FTTF 18 21

Figure 5-8: A relation AkiDiagIntervals that represents different pattern
diagnoses of four hours, on the temporal database IcuDB

Tuple # Patient HR
0

V T
0

SpO2

1
V T

1
Drug

2
V T

2 ˙AKI ˙V T start ˙V T end
1 Daisy High 9 Low 11 Aspirin 13 FFTF 17 20
2 Daisy Low 2 High 4 Aspirin 6 FTFF 9 12
3 Daisy Low 2 High 4 Aspirin 6 TFFT 13 16
4 Daisy Medium 5 Medium 7 Indapamide 9 TFFT 13 16
5 Daisy Medium 5 Medium 7 Indapamide 9 FFTF 17 20
5 Luke Low 7 High 8 Ibuprofen 12 FTFF 14 17
6 Luke Low 7 High 8 Ibuprofen 12 FTFF 18 21
7 Luke Medium 9 High 13 Sulindac 14 TFFF 18 21
7 Luke Medium 9 High 13 Sulindac 14 FFFT 22 25
8 Stevie High 1 Low 2 Aspirin 5 FFTF 14 17

Figure 5-9: An excerpt of the instance of KSPE specified in Example 7, eval-
uated on the temporal database IcuDB depicted in Figure 5-2

specified in Examples 1 and 3, respectively.

AkiPredPatternmKSPE ≡

{t |MetPatEvKSE(t[{Pat,HR0
SpO2

1
, Drug

2
, V T

0
, V T

1
, V T

2}]) ∧

AkiDiagIntervals
˜TE(t[{Pat, ˙AKI, ˙V T start, ˙V T end}]) ∧

t[V T
2
]− t[V T 0

] ≤ 6 ∧ t[ ˙V T start]− t[V T
0
] > 6 + 2 ∧

t[ ˙V T end]− t[V T
0
] < 6 + 2 + 10}

Figure 5-9 depicts an excerpt of the evaluation of such KSPE on the
database IcuDB, using the SEs and KSEs specified in the previous examples.

After having built such kind of expressions, allowing the association, for a
given entity, of ordered state values and a final target attribute value, repre-
senting the state we want to predict according to the given time windows, we
can, finally, introduce some special FDs, where the consequent corresponds to
the target attribute and the antecedent is composed by a (sub)set of attributes
representing different evolving states of the given entity. In other words, given
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Tuple # Patient HR
0

V T
0

SpO2

1
V T

1
Drug

2
V T

2 ˙AKI ˙V T
1 Daisy High 9 Low 11 Aspirin 13 False 18
2 Daisy Low 2 High 4 Aspirin 6 False 18
3 Daisy Low 2 High 4 Aspirin 6 False 12
4 Daisy Medium 5 Medium 7 Indapamide 9 False 18
7 Luke Medium 9 High 13 Sulindac 14 True 17
8 Luke Medium 9 High 13 Sulindac 14 True 21
10 Stevie High 1 Low 2 Aspirin 5 False 12
11 Stevie High 1 Low 2 Aspirin 5 False 9
12 Stevie High 1 Low 2 Indapamide 7 False 9
36 Stevie Medium 4 Medium 7 Metolazone 8 False 12

Figure 5-10: A KSPE instance, subset of view PatientHistory, depicted in
Figure 5-1 (with the attributes suitably renamed).

a KSPE, we introduce the definition of Predictive Functional Dependency as
follows:

Definition 24 (Predictive Functional Dependency (PFD)). Given a KSPE

with schema ZU
0
U

1
..U

k
Ḃ∪{V T 0

, V T
1
, .., V T

k
, ˙V T}, or with schema ZU

0
U

1
..

U
k
Ḃ ∪ {V T 0

, V T
1
, .., V T

k
, ˙V T start, ˙V T end}, a Predictive Functional Depen-

dency is an FD of the following form:

X
h
S
i
...W

j → Ḃ

with 0 ≤ h < i < ... < j ≤ k

where X
h ⊆ U

h
, S

i ⊆ U
i
, ...,W

j ⊆ U
j

and Ḃ is the predicted attribute (boolean or pattern values)or the interval-based
attribute.

Example 8. Let us consider the relation depicted in Figure 5-10, which con-
tains a subset of tuples of view PatientHistory discussed in Section 5.2, with
suitably renamed attributes. It is straightforward to observe that the PFDs

HR
0
, SpO2

1 → ˙AKI and Drug
2 → ˙AKI hold. On the other side, PFDs

HR
0 → ˙AKI and SpO2

1 → ˙AKI do not hold.

5.5 Discovering Approximate PFDs

To mine PFDs, we need to deal with some kind of approximation, as it could
happen that some PFDs hold on a subset of the given KSPE and we have
to evaluate whether considering such subset is acceptable with respect to the
prediction task supported by the considered PFDs. In other words, we require
a PFD f to be satisfied by most tuples of a KSPE instance w. A very small
portion of tuples of w is allowed to violate the dependency. Violating tuples are
used to calculate an error measure g(f, w). If it is less than or equal to a given
threshold ε, f is approximately satisfied on w. A number of methods have
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been proposed to compute the error measure [71]. In the context of predictive
functional dependencies, we consider one of the measures proposed in [107] and
introduce two error measures, specifically tailored to the predictive purpose of
approximate PFDs.

Considering a KSPE instance w over a schema ZU
0
U

1
..U

k
U̇p∪{V T

0
, V T

1
,

.., V T
k
, ˙V T} and any set s ⊆ w, the first error measure G3 considers the

minimum number of tuples in w to be deleted to obtain a relation where the
FD holds [107]. In our context, it is expressed as:

Definition 25 (Error measure G3). Given a PFD X
h
S
i
...W

j → Ḃ, a KPSE

instance w with schema ZU
0
U

1
..U

k
Ḃ ∪{V T 0

, V T
1
, .., V T

k
, ˙V T}, where X

h ⊆
U
h
, S

i ⊆ U
i
,W

j ⊆ U
j
, and any relation s ⊆ w, such that s |= X

h
S
i
...W

j →
Ḃ, the error measure G3is expressed as:

G3(w, s) = |w| − |s|
The related scaled measurement g3 is defined as:

g3(w, s) =
G3(w, s)

|w|

Example 9. Considering the KSPE instance (fragment) in Figure 5-7, the

predictive functional dependency HR
0
, SpO2

1 → ˙AKI is not satisfied because

of tuples 1, 8 and 9, where values ”High” and ”Low” for HR
0

and SpO2

1

are associated both to ”True” and ”False” values of target attribute ˙AKI ; and

because of tuples 2,3, 5, and 6, where values ”Low” and ”High” for HR
0

and

SpO2

1
are associated both to ”True” and ”False”. Looking at the minimum

number of tuples to be deleted to obtain a relation where the PFD holds, we
may delete tuples 2,3, and 8. In this case, g3 is equal to 0.3.

Let us now introduce some new kinds of error, which may be of interest
in the context of prediction. The first issue is related to consider an error, no
longer focused on the number of tuples that we have to delete to satisfy the
PFD, but focused on the number of entities that we accept to discard for the
sake of the PFD. The new error measure H3 permits, for example, to disregard
data of entities with a very low number of tuples, which could create noise in
our dataset.

Definition 26 (Error measure H3). Given a PFD X
h
S
i
...W

j → Ḃ, a KPSE

instance w with schema ZU
0
U

1
..U

k
Ḃ ∪{V T 0

, V T
1
, .., V T

k
, ˙V T}, where X

h ⊆
U
h
, S

i ⊆ U
i
,W

j ⊆ U
j
, and any relation s ⊆ w, such that s |= X

h
S
i
...W

j →
Ḃ, the error measure H3 is expressed as:

H3(w, s) = |{t[Z] | ∃t ∈ w}| − |{t[Z] | ∃t ∈ s}|
The related scaled measurement h3 is defined as:

h3(w, s) =
H3(w, s)

|{t[Z] | ∃t ∈ w}|
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Tuple # Patient HR
0

V T
0

SpO2

1
V T

1
Drug

2
V T

2 ˙AKI ˙V T
1 Daisy High 9 Low 11 Aspirin 13 False 18
2 Daisy Low 2 High 4 Aspirin 6 False 12
3 Daisy Low 2 High 4 Aspirin 6 False 18
4 Daisy Medium 5 Medium 7 Indapamide 9 False 18
5 Luke Low 7 High 8 Ibuprofen 12 True 17
6 Luke Low 7 High 8 Ibuprofen 12 True 21
8 Stevie High 1 Low 2 Aspirin 5 True 10
9 Stevie High 1 Low 2 Aspirin 5 False 12
19 Stevie High 3 Medium 7 Metolazone 8 False 12

Figure 5-11: An instance of KSPE, subset of the instance depicted in Figure
5-7.

Example 10. Considering the KSPE instance in Figure 5-11, the PFD HR
0

, SpO2

1 → ˙AKI , is not satisfied because of tuples 1, 8, and 9, and of tuples
2,3,5, and 6. A first option for having such PFD satisfied would be to delete
tuples 2,3, and 8. In this case, all the entities, i.e., patients, of the KSPE
instance would be still represented, and, thus, h3 = 0. A second option would
consist in deleting tuples 5,6, and 8. In this case, Luke’s tuples would disappear
completely, and thus h3 would be 1/3.

Finally, considering the number of tuples for each entity we accept to dis-
card in order to satisfy the PFD, we formalize the last error measure, namely
J3. It ensures to maintain enough “consistent” information for each entity.

Definition 27 (Error measure J3). Given a PFD X
h
S
i
...W

j → Ḃ, a KPSE

instance w with schema ZU
0
U

1
..U

k
Ḃ ∪{V T 0

, V T
1
, .., V T

k
, ˙V T}, where X

h ⊆
U
h
, S

i ⊆ U
i
,W

j ⊆ U
j
, and any relation s ⊆ w, such that s |= X

h
S
i
...W

j →
Ḃ, the error measure J3 is expressed as:

J3(w, s) = max
(v∈{t[Z]|t∈s})

{|{t[Z]|t ∈ w∧ t[Z] = v}|− |{t[Z]|t ∈ s∧ t[Z] = v}|}

The related scaled measurement j3 is defined as follows:

j3(w, s) = max
(v∈{t[Z]|t∈s})

{|{t[Z]|t ∈ w ∧ t[Z] = v}| − |{t[Z]|t ∈ s ∧ t[Z] = v}|
|{t[Z]|t ∈ w ∧ t[Z] = v}|

}

Example 11. Considering the instance of KSPE in Figure 5-12, the PFD

HR
0
, SpO2

1
,→ ˙AKI would hold if we accept to delete tuples 1, 5, and 6.

Thus, for entity, i.e., patient, Daisy we delete one tuple over 4, while for Luke
we delete two tuples over 4. Thus, j3 is 0.5.

According to the introduced error measures, we are now able to define an
approximate predictive functional dependency as follows:
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Tuple # Patient HR
0

V T
0

SpO2

1
V T

1
Drug

2
V T

2 ˙AKI ˙V T
1 Daisy High 9 Low 11 Aspirin 13 False 18
2 Daisy Low 2 High 4 Aspirin 6 False 18
3 Daisy Low 2 High 4 Aspirin 6 False 12
4 Daisy Medium 5 Medium 7 Indapamide 9 False 18
5 Luke Low 7 High 8 Ibuprofen 12 True 17
6 Luke Low 7 High 8 Ibuprofen 12 True 21
7 Luke Medium 9 High 13 Sulindac 14 True 17
8 Luke Medium 9 High 13 Sulindac 14 True 21
9 Stevie High 1 Low 2 Aspirin 5 True 10
10 Stevie High 1 Low 2 Aspirin 5 False 12
11 Stevie High 1 Low 2 Aspirin 5 False 9
12 Stevie High 1 Low 2 Indapamide 7 False 9
36 Stevie Medium 4 Medium 7 Metolazone 8 False 12

Figure 5-12: An instance of KSPE, corresponding to data depicted in Figure
5-1 for PatientHistory.

Definition 28 (Approximate Predictive Functional Dependency (APFD)).

Given a KPSE instance w with schema ZU
0
U

1
..U

k
Ḃ∪{V T 0

, V T
1
, .., V T

k
, ˙V T},

w fulfills the APFD X
h
S
i
...W

j ε−→ Ḃ (written as w |= X
h
S
i
...W

j ε−→ Ḃ),

where ε =< εg, εh, εj > and X
h ⊆ U

h
, S

i ⊆ U
i
,W

j ⊆ U
j
, if a relation s ⊆ w

exists such that s |= X
h
S
i
...W

j → Ḃ with g3 ≤ εg ∧ h3 ≤ εh ∧ j3 ≤ εj. In
other words, εg, εh, εj are the maximum acceptable errors defined by the user
for g3, h3, and j3, respectively.

Example 12. Suppose that our final goal is to preserve at least the 65% of the
tuples (εg = 0.35), the 80% of the patients (εh = 0.2), and the 50% of the tuples

for each patient (εj = 0.5). In Figure 5-13, the PFD HR
0
, SpO2

1 → ˙AKI is
satisfied by considering a (sub)instance s by deleting tuples 2, 3, 9, 13, and 15.
Thus, in this case, g3 = 5/16, h3 = 1/3, as tuples for Daisy would disappear;
and j3 = 3/10 as we delete tuples of Stevie, besides those of Daisy. It is easy
to see that g3 < εg, j3 < εj, while h3 > εh. On the other side, if we consider
the instance s′, by deleting tuples 5, 6, 9, 13, and 15, we would observe that
the PFD is still satisfied, while g3 = 5/16, h3 = 0, and j3 = 2/4. In this case,
all the errors are below or equal to the given thresholds. Thus, we can say that

w |= HR
0
, SpO2

1 ε−→ ˙AKI with ε ≡< 0.35, 0.2, 0.5 >.
If we set the error thresholds as εg = 0.35, εh = 0.4, and εj = 0.3 (mainly

we accept to discard some more patients, but we increase the number of tuples

per patient we want to preserve), we can observe that s |= HR
0
, SpO2

1 → ˙AKI ,

while s′ 6|= HR
0
, SpO2

1 → ˙AKI. Thus, w |= HR
0
, SpO2

1 ε−→ ˙AKI also with
ε ≡< 0.35, 0.4, 0.4 >.

It is easy to prove that if w |= X
h
S
i
...W

j ε−→ Ḃ, it will also hold w |=
X
h
S
i
...V

i1
...W

j
...Z

j1 ε−→ Ḃ, where X
h
S
i
...W

j ⊂ X
h
S
i
...V

i1
...W

j
...Z

j1
.

As an example, as w |= HR
0
, SpO2

1 ε−→ ˙AKI for the KPSE instance w de-

picted in Figure 5-13, it is also the case that w |= HR
0
, SpO2

1
, Drug

2 ε−→ ˙AKI.
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Tuple # Patient HR
0

V T
0

SpO2

1
V T

1
Drug

2
V T

2 ˙AKI ˙V T
2 Daisy Low 2 High 4 Aspirin 6 False 18
3 Daisy Low 2 High 4 Aspirin 6 False 12
5 Luke Low 7 High 8 Ibuprofen 12 True 17
6 Luke Low 7 High 8 Ibuprofen 12 True 21
7 Luke Medium 9 High 13 Sulindac 14 True 17
8 Luke Medium 9 High 13 Sulindac 14 True 21
9 Stevie High 1 Low 2 Aspirin 5 True 10
10 Stevie High 1 Low 2 Aspirin 5 False 12
11 Stevie High 1 Low 2 Aspirin 5 False 9
12 Stevie High 1 Low 2 Indapamide 7 False 9
13 Stevie High 1 Low 2 Indapamide 7 True 10
14 Stevie High 1 Low 2 Indapamide 7 False 12
15 Stevie High 1 Medium 5 Indapamide 7 False 9
17 Stevie High 1 Medium 5 Indapamide 7 True 10
18 Stevie High 1 Medium 6 Indapamide 7 True 10
36 Stevie Medium 4 Medium 7 Metolazone 8 False 12

Figure 5-13: An instance of KSPE, where HR
0
, SpO2

1 ε−→ ˙AKI holds with
εg = 0.35, εh = 0.4, εj = 0.4 and with εg = 0.35, εh = 0.2, εj = 0.5.

After adding the new attribute Drug
2

in the antecedent, nothing changes for

KSPE instance s ⊆ w, for which HR
0
, SpO2

1 → ˙AKI holds.

As we are interested in finding the minimum predictive attribute set, here
we introduce the definition of minimal APFDs as follows:

Definition 29 (Minimal APFD). An APFD X
h
S
i
...W

j ε−→ Ḃ is minimal for

w, if w |= X
h
S
i
...W

j ε−→ Ḃ and ∀V ⊂ X
h
S
i
...W

j
we have that w 2 V

ε−→ Ḃ.

Minimal APFDs provide the most compact representation of the existing
dependencies.

Example 13. Considering the KSPE w depicted in Figure 5-13, it is straight-
forward to observe that the following two APFDs hold for ε ≡< 0.35, 0.4, 0.4 >
and are minimal.

w |= HR
0
, SpO2

1 ε−→ ˙AKI

w |= Drug
2 ε−→ ˙AKI

As for the minimality of the first APFD, both SpO2

1 ε−→ ˙AKI and HR
0 ε−→

˙AKI cannot satisfy the first threshold, i.e., g3 ≤ 0.35

5.6 The computational aspects of APFDs

In this section, we discuss computational aspects related to the extraction of
APFDs.
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5.6.1 Computing APFDs

The computational approaches for deriving AFDs focus on error g3 for the
considered relation w, and thus, they mainly derive a maximal (sub) relation
s ⊆ w that satisfies the related FDs [107, 109]. In literature, there are several
algorithms for the discovery of functional dependencies, among which there is
TANE [91]. As for the first experimental evaluations, we adopted a suboptimal
solution, on top of the well-known TANE [91] algorithm, a popular approxi-
mate functional dependency detection algorithm, customizing it to mine only
approximate functional dependencies with a fixed consequent, the predicted
attribute Ḃ.

To find all minimal non-trivial dependencies, TANE works as follows. It
starts the search from singleton sets of attributes and works its way to larger
attribute sets through the set containment lattice level by level. When the
algorithm is processing a set X, it tests dependencies of the form X\A →
A, where A ∈ X. This guarantees that only non-trivial dependencies are
considered.

In our proposal, we compute all the Approximate Predictive Functional
Dependencies, considering the three errors, g3, h3, j3.

Given a KSPE instance w and the predicted attribute Ḃ, our approach is
mainly based on the following steps:

• Derive s by TANE, such that g3 ≤ εg;

• Check on s that h3 ≤ εh;

• If the previous check is fine, check j3 ≤ εj.

It is easy to observe that this approach while extracting APFDs that are
satisfied by w, according to the given thresholds, could exclude other APFDs
that are associated to some s, which is not maximal, i.e., minimal with respect
to g3, but still satisfies g3 ≤ εg. And such s could satisfy also the other
thresholds.

It is well known the complexity of deriving AFDs is exponential in the num-
ber of attributes [91, 109], while the complexity of checking a single dependency
is linear in the number of tuples (data complexity). In our proposal, as the
“maximality” of s is related to a composite error threshold ε=< εg, εh, εj >
and many possible relations s would be derived to evaluate a single APFD, the
data complexity needs to be deeply studied and evaluated. We will specifically
deal with this issue in the next Section 5.6.2.

5.6.2 The (data) complexity of deriving an APFD

As we said before, to obtain a set s ⊆ w which satisfies an APFD, we have to
consider the three different thresholds.

This section is devoted to the theoretical analysis of the complexity to
derive a relation s ⊆ w considering the error thresholdsG3 andH3. We reduced
the problem in hand to a general 3SAT problem, showing that checking an
APFD considering all the three thresholds belongs to the class NP .
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Before starting with the theoretical analysis let us recall that an instance
of SAT problem is a logical formula formed by a conjunction of disjunctive
clauses. Namely, each clause is a disjunction of literals, and the general formula
is a conjunction of disjunctive clauses. Therefore, an instance of SAT is a
conjunction of clauses, each of them representable as a set of literals. In the
specific case of 3SAT , each clause has exactly 3 literals [137].

Let us now introduce a simple relation representing any KSPE. To discuss
the complexity of checking an APFD, it is enough to consider a relation having
a single attribute (Z) representing the entity attribute, a single attribute (A)
representing the antecedent, the predicted attribute (Ḃ). Moreover, let us
assume that the domain of all attributes is N or a subset of it (the predicted
values for Ḃ will be either 0 or 1, to represent boolean values). Thus, we
will consider a relation w with schema W (A, Ḃ, Z). Before introducing the
two problems and then proving the NP-hardness of checking APFDs by a
suitable reduction to an NP problem, let us introduce a simple reformulation
of the satisfaction of error thresholds for G3 and H3 by a relation w in terms of
conflict resolution (in the following we will make use of the standard projection
operation π of relational algebra).

Definition 30. Given a relation w ⊂ N3, a natural number 0 ≤ k < |w|, and
a natural number 0 ≤ h < |πZ(w)| we say that w admits a conflict resolution
of order (k, h) if there exists a subset w− ⊆ w such that:

1. |w−| ≤ k
2. for every pair of triplets (a, ḃ, z), (a′, ḃ′, z′) ∈ w \w− if a = a′ then ḃ = ḃ′;
3. |πZ(w)| − |πZ(w \ w−)| ≤ h.

According to the introduced simplified form of KSPE and the previous
definition of conflict resolution, we may now represent the problem of checking
an APFD as in the following. It is worth noting that the order (k, h) of the
conflict resolution represents the thresholds for errors G3 and H3, respectively.

Problem 1. Given a relation w ⊂ N3, a natural number 0 ≤ k < |w|, and a
natural number 0 ≤ h < |πZ(w)| determine whether or not w admits a conflict
resolution of order (k, h).

Now, we introduce the problem, well-known in the literature, we will use
for the reduction.

Problem 2. Given an instance C of 3SAT in which each clause features only
positive literals, C = {{a1

1, a
1
2, a

1
3}, . . . , {an1 , an2 , an3}}, with variable set A =

{aij : 1 ≤ i ≤ n, 1 ≤ j ≤ 3}, and a number 0 ≤ p < |C| determine whether or
not there exists an assignment σ : A → {0, 1}1 such that |{i : σ(ai1) = σ(ai2) =
σ(ai3)}| ≤ p and C is satisfied.

For the sake of brevity, given a clause {ai1, ai2, ai3} in C = {{a1
1, a

1
2, a

1
3}, . . . ,

{an1 , an2 , an3}} and an assignment σ : A → {0, 1} we say that {ai1, ai2, ai3} is
homogeneous w.r.t σ, or simply homogeneous when σ is clear from the context,

1here 0 and 1 represent the logical values false and true, respectively.
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if and only if σ(ai1) = σ(ai2) = σ(ai3). Then, Problem 2 may be equivalently
redefined as: given a set of clauses C = {{a1

1, a
1
2, a

1
3}, . . . , {an1 , an2 , an3}} deciding

whether or not there exists an assignment σ for the variables in C that makes
C satisfied and at most p clauses of C homogeneous w.r.t σ.

The complexity of Problem 2 is well known, as in the following theorem.

Theorem 1. Problem 2 is NP-Complete [137].

The following theorem proves that checking an APFD according to the
introduced error thresholds is NP-hard.

Theorem 2. Problem 1 is NP-Hard.

Proof. The proof is by reduction from Problem 2. Let C = {{a1
1, a

1
2, a

1
3}, . . . ,

{an1 , an2 , an3}} and p an instance of Problem 2. We introduce the following
relation wC = {(aij, 0, 2i) : 1 ≤ i ≤ n, 1 ≤ j ≤ 3} ∪ {(aij, 1, 2i + 1) : 1 ≤ i ≤
n, 1 ≤ j ≤ 3}. It is easy to observe that |wC | = 6|C| and wC may be generated
in polynomial space from C. Let us define a function clause : wC → {1, . . . , n}
defined as:

clause(aij, ḃ, z) =

{
z
2

if z is even

(z−1)
2

otherwise
.

Let us observe that function clause is well-defined and maps each element
(aij, ḃ, z) ∈ wC to the index of the clause which corresponds to it in the above
construction. Now we prove that (C, p) is a positive instance of Problem 2 if
and only if (wC , |wC |, p) is a positive instance of Problem 1.

For the left-to-right direction, let us assume that C = {{a1
1, a

1
2, a

1
3}, . . . ,

{an1 , an2 , an3}} and p is a positive instance of Problem 2. Let A the set of all and
only variables which appear in C. Thus, there exists an assignment σ : A →
{0, 1} and at most p distinct indexes i1, . . . ip such that σ(aik1 ) = σ(aik2 ) = σ(aik3 )
for each 1 ≤ k ≤ p. Let w−C = {(aij, 1, 2i) : σ(aij) = 0}∪{(aij, 0, 2i+1) : σ(aij) =
1}. Let us observe that w−C ⊆ wC . For proving that w−C satisfies the three
conditions of Definition 30 for the pair (|wC |, p) we need to prove the following
useful property:

(OddEvenProperty) for each 1 ≤ i ≤ n we have that {2i, 2i+ 1}∩πZ(wC \
w−C ) 6= ∅.

Informally speaking property (OddEvenProperty) states that for every pos-
sible value 2i ∈ πZ(wC \ w−C ) it is not the case that both 2i and 2i+ 1 do not
belong to πZ(wC \ w−C ). Let us assume by contradiction that there exists an
index i with 1 ≤ i ≤ n for which 2i /∈ πZ(wC \w−C ) and 2i+ 1 /∈ πZ(wC \w−C ).
Thus, for each j with 1 ≤ j ≤ 3 all the tuples of the form (aij, 1, 2i) and
(aij, 0, 2i + 1) belong to w−C . Let us take any index j with 1 ≤ j ≤ 3. We
have (aij, 1, 2i), (a

i
j, 0, 2i + 1) ∈ w−C . By definition of w−C from (aij, 1, 2i) ∈ w−C

we have that σ(aij) = 0, and from (aij, 0, 2i + 1) ∈ w−C we have that σ(aij) = 1
(contradiction).

Now we are ready to prove that conditions 1., 2., and 3. of Definition 30
are satisfied by the pair |wC | and p and thus (wC , |wC |, p) is a positive instance
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of Problem 1. Condition 1. of Definition 30 imposes that |w−C | ≤ |wC | which is
trivially satisfied since w−C ⊆ wC . Condition 2. of Definition 30 imposes that
for every pair of triplets (aij, ḃ, z), (a

i′
j , ḃ
′, z′) ∈ wC \ w−C if aij = ai

′

j′ , i.e., they
represent the occurrence of the same variable possibly in two distinct clauses
we have ḃ = ḃ′. Let us assume by contradiction that this is not the case, then
there exists (aij, 0, z), (a

i′

j′ , 1, z
′) ∈ wC \w−C for some z, z′ ∈ {2, . . . , 2n+ 1} with

aij = ai
′

j′ . By definition of w−C the fact that (aij, 0, z) ∈ wC \ w−C means that

σ(aij) = 0 while (ai
′

j′ , 1, z
′) ∈ wC \ w−C means that σ(ai

′

j′) = 1 since aij = ai
′

j′ we
have a contradiction.

Condition 3. of Definition 30 imposes that |πZ(wC)| − |πZ(wC \ w−C )| ≤ p.
Let us assume by contradiction that there exist p+ 1 distinct indexes 2 ≤ i1 <
. . . < ip+1 ≤ 2n+ 1 such that ij /∈ πZ(wC \ w−C ) for every 1 ≤ j ≤ p+ 1. This
means that for every 1 ≤ j ≤ p+1 if ij is even (resp., odd) then (aiq, 1, ij) ∈ w−C
(resp., (aiq, 0, ij) ∈ w−C ) for each 1 ≤ q ≤ 3 and thus by definition of w−C we
have σ(aiq) = 0 for each 1 ≤ q ≤ 3, thus the clause ij/2 (resp., (ij − 1)/2) is
homogeneous w.r.t to σ.

Since, σ is a “witness” that (C, p) is a positive instance of Problem1 we
have that is the number of clauses homogeneous w.r.t σ is at most p. Since
we just proved that 2 ≤ i1 < . . . < ip+1 ≤ 2n + 1 may be associated to p + 1
homogeneous clauses then there exist 1 ≤ j′ < p + 1 such that ij′ is even and
ij′+1 = ij′ + 1 because at least two distinct indexes among i1, . . . , ip+1 must be
mapped to the same clause. However, by applying the (OddEvenProperty) on
ij′ , ij′+1 we have that at least one among ij′ and ij′+1 must belong to πZ(wC \
w−C ) and thus we have a contradiction.

For the right-to-left direction, let us assume that wC and (|wC |, p) is a
positive instance of Problem 1. Thus, there exists w−C ⊆ wC and a function
f : A′ → {0, 1} with A′ ⊆ A such that:

• for all (a, ḃ) ∈ πAḂ(wC \ w−C ) we have ḃ = f(a);
• |πZ(wC)| − |πZ(wC \ w−C )| ≤ p.

Let us assume w.l.o.g. that w−C is minimal, that is for every (a, ḃ) ∈ πAḂ(w−C )
we have that there exists (a, ḃ′) ∈ πAḂ(wC \ w−C ) with ḃ 6= ḃ′. In other words,
any tuple in πAḂ(w−C ) “conflicts” with at least one tuple in πAḂ(wC \ w−C ).
Under this assumption, we may easily prove that A′ = A. Let us assume
by contradiction that A′ ⊂ A. Thus, there exists a ∈ A \ A′ such that
(a, 0), (a, 1) ∈ πAḂ(w−C ). If we take w=

C = w−C \ {(a, 0, z) : (a, 0, z) ∈ w−C}
we have that wC \ w=

C admits a (|wC |, p′) conflict resolution with p′ ≤ p
since, informally speaking, we are possibly “reducing” the size of w−C . By
construction, we have that {(a, 0, z) : (a, 0, z) ∈ w−C} 6= ∅ because since
a ∈ A we have that there exists at least one clause {ai1, ai2, ai3} in C for
which aij = a for some j ∈ {1, 2, 3} and thus (a, 0, 2i + 1) ∈ wC . Thus,
we can conclude that w−C is not minimal (contradiction). By having A′ = A
we can now claim that f is also a completely defined assignment for C. Let
us prove that f is an assignment that makes at most p clauses in C homo-
geneous. Let us assume by contradiction that f makes at least p + 1 dis-
tinct clauses homogeneous and let i1 < . . . < ip+1 be the indexes of such
clauses. By construction and by minimality of w−C , let us assume that for
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every 1 ≤ h ≤ p + 1 either (aihj , 0, 2i + 1) ∈ wC \ w−C for every j ∈ {1, 2, 3}
– in such a case f(aih1 ) = f(aih2 ) = f(aih3 ) = 0–, or (aih1 , 0, 2i) ∈ wC \ w−C
for every j ∈ {1, 2, 3} – in such a case f(aih1 ) = f(aih2 ) = f(aih3 ) = 1. This
means that for each 1 ≤ h ≤ p + 1, if f(aih1 ) = f(aih2 ) = f(aih3 ) = 1, we
have 2ih ∈ πZ(wC \ w−C ) and 2ih + 1 /∈ πZ(wC \ w−C ). Symmetrically, for each
1 ≤ h ≤ p + 1 if f(aih1 ) = f(aih2 ) = f(aih3 ) = 0 we have 2ih /∈ πZ(wC \ w−C )
and 2ih + 1 ∈ πZ(wC \ w−C ). Let U = {2i1, 2i2 + 1, . . . , 2ip+1, 2ip+1 + 1}.
We can conclude that πZ(wC \ w−C ) ∩ U and πZ(w−C ) ∩ U is a bi-partition
of U with |πZ(wC \ w−C ) ∩ U | = |πZ(w−C ) ∩ U | = p + 1. Since we have
(πZ(w−C )∩U)∩ πZ(wC \w−C ) = ∅ and trivially πZ(w−C )∩U ⊆ πZ(wC), we have
that (πZ(w−C )∩U) ⊆ (πZ(wC) \ πZ(wC \w−C )) and, thus, |πZ(w−C )∩U | = p+ 1
≤ |πZ(wC)| − |πZ(wC \w−C )|. Thus |πZ(wC)| − |πZ(wC \w−C )| ≥ p+ 1 (contra-
diction).

As we just proved, the problem of verifying any APFD even only consider-
ingH3 is NP-Hard. Algorithm 2 represents a guess and check non-deterministic
algorithm to solve the general problem, namely to verify all three errors. This
algorithm shows that the verification of the three errors is an NP-complete
problem. In the following algorithms, the symbol . precedes comments.

Algorithm 2: ApproximateDependencyCheck
Input: an instance w of relation W , and three real numbers εg3 , εh3 , and

εj3 in [0, 1]
Output: a relation s ⊆ w s.t. s |= A→ Ḃ, g3(w, s) ≥ 1− εg3 ,

h3(w, s) ≥ 1− εh3 , j3(w, s) ≥ 1− εj3
1 begin
2 guess s ⊆ w

. Check if s |= A→ Ḃ
3 for v ∈ πA(s) do
4 if |πḂ(σA=v(s))| ≥ 2 then

5 fail

. Check g3(w, s)6 if |s||w| < 1− εg3 then

7 fail

. Check h3(w, s)8 if |πZ(s)|
|πZ(w)| < 1− εh3 then

9 fail

. Check j3(w, s)
10 for z ∈ πZ(s): do

11 if |σZ=z(s)|
|σZ=z(w)| < 1− εj3 then

12 fail

13 return s
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Algorithm 3: DeterministicADC
Input: an instance w of the relation W , and three real numbers εg3 , εh3 ,

and εj3 in [0, 1]
Output: a relation s ⊆ w s.t. s |= A→ Ḃ, g3(w, s) ≥ 1− εg3 ,

h3(w, s) ≥ 1− εh3 , j3(w, s) ≥ 1− εj3
. Prepare data for initial call according to epsilons

1 begin
2 del← bεg3 |w|c
3 count← εh3b|πZ(w)|c
4 for z ∈ πZ(w): do
5 thresholds[z]← bεj3 |σZ=z(w)|c
6 return RecADC(w, del, count, thresholds)

7 Function RecADC(w, del, count, thresholds):
. This is the last recursive call before success

8 if w = ∅ then
9 return ∅

10 let a ∈ πA(w)
. For each value of B

11 for boolean val ∈ {0, 1} do
. del tuples: tuples removed according to selection

12 del tuples← σA=a∧Ḃ=boolean val(w)
13 s← σA=a∧Ḃ=¬boolean val(w)
14 out← {}
15 for z ∈ πZ(del tuples): do
16 thresholds′[z]← thresholds[z]− |σZ=z(del tuples)|
17 if thresholds′[z] < 0 ≤ thresholds[z] then
18 out← out ∪ {z}

. out: the z groups that must disappear, since their

tuples passed below the threshold εj3 in the current

state

19 if count− |out| ≥ 0 then
. count′: represent the z groups still to be

considered

20 count′ ← count− |out|
21 del tuples← del tuples ∪ σZ=z:z∈out(w)
22 if del − |del tuples| ≥ 0 then

. If the final test succeeds, we proceed with the

recursive call on the updated values

23 del′ ← del − |del tuples|
24 w′ ← w \ (del tuples ∪ s)
25 s′ ← RecADC(w′, del′, count′, thresholds′)
26 if s′ 6= fail then
27 return s ∪ s′

28 return fail
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Proved that the Problem 1 is NP-Hard, it is now necessary to find a de-
terministic algorithm that could stop the analysis of a relation, as soon as
it verifies that the relation cannot satisfy the given APFD. Algorithm 3 pro-
vides the pseudo-code of such algorithm. The general idea of this algorithm
is searching for a solution considering one tuple at a time, until it is possible
to generate a solution, which satisfies the selected thresholds. Throughout the
code, w is the entire relation. del, count, thresholds represent the counters
that control the errors. del counts the number of remaining tuples, count con-
trols the number of remaining entities, and thresholds verifies the number of
remaining tuples for each entity. After a trivial check about the (non) empti-
ness of relation w, for each value a ∈ πA(w), we try one boolean value and
verify the dependency, if it fails, we try the second boolean value and verify
the dependency. If both choices failed, then the algorithm fails. If one of the
boolean values satisfies the thresholds, we update the counters, building at
every step an intermediate relation s′, as long as the thresholds are satisfied.

5.7 Towards the quality of APFD: coverage

and reliability

We face the issue of the “predictivity” of the discovered APFDs, discussing
about different ways of evaluating the “quality” of our dataset and of the
derived APFDs.

5.7.1 Dealing with unbalanced datasets

First of all, it is interesting to understand whether the approximation is consis-
tent according to the predicted class (e.g., the patients diagnosed with AKI).
As the data could be heavily unbalanced, it could of interest to understand
whether the approximation derived a relation s which is similar to the original
relation w, as for the number of tuples with true/false values for the predicted
attribute.

We could calculate the ratio of “true” tuples in w, i.e., p1 = |{t|t∈w∧t[Ḃ]}|
|w| ,

then calculate the ratio of “true” tuples in s, i.e., p2 = |{t|t∈s∧t[Ḃ]}|
|s| , and define

p as the ratio between these two values. p could be a useful indicator to check
if the ratio of “true” tuples in s did not heavily change with respect to the
“true” tuples in w.

Figures 5-14 and 5-15 report the combinations of values for HR and SPO2

and the related number of “true” and “false” tuples with respect to AKI, for
KSPEs discussed in Examples 5 and 6, respectively. In both cases we have five
possible combinations of values; the ratio between tuples related to AKI and
the total number of tuples is 8/36 for relation of Figure 5-15, and 5/19 for that
in Figure 5-14. As it is usual in medical domains, both datasets are unbalanced.
However, it is important to observe as this unbalancedness may vary (from 22%
to 26%) even according to slightly different evolution expressions for the same
database. For example, in our case, from the same small database examples
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HR SPO2 AKI-true AKI-false
High Low 1 2
High Medium 1 9
Low High 2 2
Medium High 1 0
Medium Medium 0 1

Figure 5-14: Attributes values for HR and SPO2 with the associate number of
true and false tuples for AKI, related to the KSPE discussed in Example 6

HR SPO2 AKI-true AKI-false
High Low 2 5
High Medium 2 12
Low High 2 2
Medium High 2 0
Medium Medium 0 9

Figure 5-15: Attributes values for HR and SPO2 with the associate number of
true and false tuples for AKI, related to the KSPE discussed in Example 5

and with two different KSEs, we obtain two different KSPE instances, where
in the first case the value combination Medium–Medium for attributes HR and
SPO2 is present in 9 tuples (Figure 5-14), while in the second case is appearing
in just one tuple (Figure 5-15).

5.7.2 Dealing with reliability

Moreover, we have to pay attention both to the number of distinct attribute
value combinations of tuples of s and to the number of tuples corresponding to
such value combinations. Indeed, if there is a reasonable number of tuples for
each attribute value combination, we may say that the prediction is “reliable”.
Instead, if there are some value combinations having a very low number of
corresponding tuples in s, we obtain a prediction that is focused on specific
combinations, possibly not completely reliable.

On the other side, if s has a restricted number of predictive attribute value
combinations, it may be that the prediction is not providing any hint for too
many possible missing attribute value combinations. In the examples provided
in Figures 5-14 and 5-15 we may obtain either a relation s by taking only one
value combination (over 5) for AKI patients or a relation with two different
value combinations for AKI patients. Even though the original database is
small, it shows that we need to deeply analyze also the data underlying a
given APFD.

These two aspects together lead to consider the entropy [166] of both s and
w. The general formula for the entropy is

H = −
∑

pi log pi
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where in our case i is the number of combinations.
In general the entropy of s is higher than the entropy of w, because deleting

tuples that do not hold for the set of APFDs , we loose combinations that
arise the entropy. Going into details, the value of entropy could give an idea
of the combinations distribution. A high entropy means having different value
combinations where the distribution of occurrences is very similar. A low
entropy means having cases where the number of occurrences is very high, and
cases where the number of occurrences is very low. Even in this case, analyzing
the ratio between the entropy of w and the entropy of s can be a further way of
describing our dataset, in order to obtain an intuition of the lost combinations
and the probability distribution.

For example:

Example 14. For the KSPE instance represented in Figure 5-14 the entropy
of w is 2.3, while that of s is 2.001; for the KPSE instance represented in
Figure 5-15 the entropy of w is 2.4, while that of s is 2.05.

5.8 Experimental results: Discovering Approx-

imate predictive functional dependencies

(APFDs)

5.8.1 Data preparation

Especially in medicine, the new generation systems collect a considerable
amount of data. These systems monitor the patient status, continuously pro-
viding new data to clinicians, which have to be analyzed and understood.

We evaluated the use of APFDs in the context of Intensive Care Unit (ICU)
with Acute Kidney Injury (AKI). AKI is described as sudden loss of kidney
function characterized by an increasing in serum creatinine levels and a re-
duced urinary output, involving not only the kidney excretory function, but
also tissue injury [104]. As data source for the analyses, we use two differ-
ent databases: Medical Information Mart for Intensive Care III (MIMIC-III)
and Medical Information Mart for Intensive Care IV (MIMIC-IV). MIMIC-
III [100] contains data associated with 53.423 distinct hospital admissions for
adult patients who were hospitalized to the critical care units of the Beth Israel
Deaconess Medical Center from 2001 to 2012. It is a collection of 26 tables,
regarding demographic data, vital sign measurements made at the bedside, lab-
oratory test results, procedures, medications, observations and notes charted
by care providers, procedure and diagnostic codes, imaging reports, and mor-
tality. MIMIC-IV dataset [99] is a public database of patients admitted to the
Beth Israel Deaconess Medical Center (BIDMC) in Boston, USA. It contains
de-identified data of patients admitted to ICU or the emergency department
(ED) between 2008 and 2019.

During this preliminary phase, it could be necessary to implement a pro-
cedure useful to prepare the data for the next steps. Within this procedure,
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we may have to deal with issues such as missing values, temporal aggregation
(if needed), granularity definition, categorization of numerical values, and last
but not least, create an evolving diagnosis over the time span. Not all the
issues are always present, and if present, may have different shades according
to the problem in hand, especially for the evolving diagnosis. Following, we
detail the different issues and possible solutions.

Missing values

The task of temporal modeling in electronic health record (EHR) data is very
challenging because the data is multivariate and the time series for clinical vari-
ables are acquired asynchronously, which means they are measured at different
time moments and are irregularly sampled in time.

In general a variable can be regarded as missing if the value of the variable
(outcome or covariate) for the patient is not observed. In contexts as ICU,
where patients are constantly monitored, not all values are recorded.

Considering the diagnosis of AKI, creatinine and urine are the primary
measures in order to diagnose the onset of the illness [106]. Creatinine values
are obtained from laboratory exams, therefor if in the database there is a
missing value, probably is a real missing information, maybe because clinicians
did not prescribe a laboratory test. Instead, regarding urine, a missing value
may depend on a record error in the database. In ICU patients are catheterized,
and the monitoring is continuous, so we can assume to have all the values.

To overcome this problem, we use a function presented in [49], in which we
consider the calculation of missing measures using a linear function, although
our approach can be generalized for arbitrary functions, according to the mat-
ter in hand. By using a simple linear monotonic function, we assume that
the measure increases linearly over time. Given a measure M, its value v, an
interval-based coordinate in, and an interval l , the Calc function is defined as
follows:

Calc(M, v, in, l) =
v · (end(∩(l, in))− start(∩(l, in)) + 1)

end(in)− start(in) + 1

This function allows us to have all the urine values, suitable to evaluate
the status of the patient.

Value aggregation and categorization

In ICU, multiple monitoring systems generate a large quantities of measure-
ments. To evaluate a temporal evolution that involves a long time span, it
could be useful to aggregate values according to maximum, minimum, or aver-
age functions every suitably long interval, predefined according to the problem
in hand. This technique reduces the amount of data to deal with, without
missing information from the constant patient’s monitoring.

Another considerable aspect is the categorization for the numerical values.
In a dataset, variables may be classified into two main categories: categori-
cal and numeric, described as discrete or continuous. The categorization of
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numerical values, according to clinical literature, reducing the variability, and
homogenize the data, thus simplifying the discovery of recurrent temporal pat-
terns. Again there is no loss of information, as we bring the data to a more
generic level, inn order to facilitate the analysis.

Defining the granularity for the data

In large databases, it is often likely to deal with different granularities. In this
framework it is important to deal with a single granularity which guarantees
that the temporal evolution expressions are all based on the same time span.

In our case, a useful approach is to fix a shared granularity to all measure-
ments, for example one granule could be represented by an interval of one hour,
and we calculate the valid times as distances from a fixed baseline. The valid
time of each measure is calculated as a difference from the admission to ICU,
in terms of one-hour interval. This allows us to perform temporal differences
because measures are all based on the same unit of time.

Evolving diagnosis

Depending on the disease’s nature, observing the diagnosis only once at a
specific time point may not be representative of the health status of the patient.
For all diseases that can have an evolution over time, because they may be
reversible or only a health condition, the instant diagnosis is not sufficient to
provide a prediction. For example, monitoring the diagnosis over time, means
having the possibility to observe how vital signs change according the health
state, or a drug’s influence over the time span.

Another important aspect to consider is the possibility to anticipate a sud-
den change in the patient’s health, to preserve the subject’s condition. Hav-
ing a continuous monitoring of the diagnosis, enables to improve the medical
condition, modify therapies, formulate a more precise prognosis and possibly
anticipate complications.

Since our framework is based on building temporal evolutions that predict
a future event, we think that is appropriate to study also the evolution over
the time of the future event.

5.8.2 Experiments using MIMIC-III

System Configuration

To mine APFDs on the MIMIC-III dataset, we test the entire framework, from
the ETL prcedures to the KSPEs on a server with 16 core, 12 GB of RAM, 1TB
disk, equipped with Ubuntu 18.04 and Postgres 12. We mine the APFDs from
the generated KSPEs on a machine with a 2,3 GHz Intel Core i9 8 core, 16 GB
of RAM, equipped with macOS Catalina 10.15.7, Python 2.7. During the ETL
procedure, to build a K-State evolution Expression, the computational time
to obtain a table increases, increasing the number of temporal states, from
seconds to hours (with seven states). While mining the APFDs, according to
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the K-State prediction Expression dimension, usually the algorithm takes few
minutes.

Data extraction

To generate the cohort of patients, we perform an ETL process from the
raw data of MIMIC -III, through an implementation via PostgreSQL and
PL/pgSQL.

Initially, considering PATIENTS and ICUSTAYS tables, we extract the
50.711 patients admitted to ICU with age between 14 and 89, recorded the
cohort into TOT ICUSTAYS table.

Features extraction: aggregation, categorization

We extract the most relevant features to predict the risk of the AKI onset,
and to understand which are the combinations of values that can be possibly
significant in order to characterize the sick and healthy patients.

The main MIMIC-III tables used during the features extraction phase are:
ADMISSIONS, PATIENTS, LABEVENTS, CHARTEVENTS, OUTPUTEVENTS,
D ICD DIAGNOSES, PRESCRIPTIONS, D LABITEMS and D ITEMS. We
consider the features in different groups:

• Demographics: Gender, age and ethnicity;

• Medications: Drugs administered to the patients during the ICU hos-
pitalization. Four categories were considered: Diuretics, Non-Steroidal
Anti-Inflammatory Drugs (NSAID), Angiotensin and Radiocontrast agents;

• Comorbidities: Presence of more than one disease or condition in the
same patient at the same time such as congestive heart failure, peripheral
vascular, hypertension, diabetes, myocardial infarction (MI), coronary
artery disease (CAD), liver disease, cirrhosis, jaundice and sepsis;

• Chart-events: Vital signs measured at the bedside like diastolic blood
pressure, glucose, heart rate, mean arterial blood pressure, respiration
rate, SpO2, systolic blood pressure and temperature;

• Lab-events: laboratory test result such as bicarbonate, blood urea ni-
trogen (BUN), calcium, chloride, creatinine, hemoglobin, international
normalized ratio (INR), platelet, potassium, prothrombin time (PT),
partial thromboplastin time (PTT) and white blood count (WBC).

The used itemIDs or labels for MIMIC-III dataset are reported in Tables 5.1
and 5.2.

First, by joining the cohort with CHARTEVENTS or LABEVENTS ta-
bles, we obtain the table which contains all the measurements of the considered
features, recorded during the ICU stay of the patient. After that, we perform a
categorization into ’low’, ’medium’, ’high’, according to the clinical literature,
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CATEGORY FEATURES LABEL IN MIMIC-III
Medications Diuretics ”Hydrochlorothiazide”, ”Atenolol -Chlorthalidone”

”Chlorthalidone”, ”Eplerenone”,
”benazepril-hydrochlorothiazide”, ”olmesartan/hydrochlorothiazide”,
”Indapamide”, ”Triamterene-Hydrochlorothiazide”,
”hydrochlorothiazide”, ”Metolazone”, ”Torsemide ”,
”Furosemide”, ”Furosemide (Elixir)”,”Triamterene”,
”NEO* PO*Furosemide(10mg/1ml)”, ”NEO*IV*Furosemide”,
”Bumetanide”,”Ethacrynic acid”,
”Amiloride HCl”, ”Spironolactone”,
”NEO*PO* Spironolactone”, ”Eplerenone(INSPRA)”,
”HCTZ/Triamterene (Maxzide)”, ”triamterenehydrochlorothiazid”

NSAID ”Aspirin”, ”Aspirin EC”,
”Aspirin Desensitization (AERD)”, ”aspirin”,
”Aspirin Desensitization (Angioedema)”, ”Aspirin (Rectal)”,
”Aspirin Desens”, ”Dipyridamole-Aspirin”,
”Butalbital-Aspirin-Caffeine”, ”Aspirin 325 mg or placebo ”,
”Aspirin 81 mg/ Placebo”, ”Aspirin 81 mg /Placebo”,
”Aspirin Childrens”, ”Aspirin (Buffered)”,
”Aspirin-Caffeine-Butalbital”, ”Aspirin Desensitization”,
”Aspirin 325mg or placebo ”, ”Aspirin 81 mg /placebo”,
”Aspirin 325mg/ placebo”, ”Excedrin Aspirin Free”,
”Aspirin 325 mg or Placebo”, ”Aspirin 81 mg or placebo ”
”Celecoxib”, ”celecoxib”, ”Celebrex”, ”diclofenac sodium”,
”Diclofenac Sodium DR”,”Voltaren-XR”, ”Diflunisal”,
”Etodolac”, ”Ibuprofen”, ”Naproxen”, ”Aleve”,
”Ibuprofen Suspension”, ”Indomethacin Sodium”,
”NEO*IV*Indomethacin Sodium”,
”Indomethacin”, ”Indomethacin XR”,
”Ketorolac”, ”Ketorolac Tromethamine”,
”ketorolac”, ”Ketorolac TroMETHamine”,
”Nabumetone”, ”nabumetone”,
”Piroxicam”, ”Salsalate”, ”Sulindac”

Radio ”Ethiodol”
Angiotensin ”amlodipine-benazepril”, ”Benazepril”,

”benazepril”, ”Benazepril HCl”,
”benazepril-hydrochlorothiazide”,”Lotensin”,
”Captopril”,”NEO*PO*Captopril”,
”Enalaprilat”, ”Enalapril Maleate”,
”Fosinopril”, ”Fosinopril Sodium”,
”Lisinopril”, ”Zestril”,
”Moexipril HCl”, ”Moexipril”,
”Quinapril”, ”Ramipril”, ”Altace”,
”Trandolapril”, ”Candesartan”, ”Candesartan Cilexetil”,
Cilexetil”, ”candesartan”,
”Atacand”,”Atacand HCT”,
”Irbesartan”,”irbesartan”,
”*NF* Irbesartan”,”Avapro”,
”Losartan Potassium”, ”Losartan”,
”Hyzaar(Losartan/HCTZ)”, ”olmesartan/hydrochlorothiazide”,
”Olmesartan”,”olmesartan”,
”Benicar”, ”Benicar HCT”,
”Micardis HCT”, ”Micardis”,
”Valsartan”,”*NF*Valsartan”,
”Diovan”, ”Diovan/Hydrochlorthiazide”,
”Diovan HCT”, ”tabletsCandesartan”

Table 5.1: Labels in MIMIC-III for Medications
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CATEGORY FEATURES ITEMID/ICD9 CODE IN MIMIC III
Comorbidity Congestive heart failure 4280

Peripheral vascular 44389- 4439 - 74769 - l9972 - 74760
Hypertension 4019 - 4011 - 3482 - 36504 - 40591 - 40501

4010 - 4160 - 64212 - 64292 - 64291 - 40509
64211 - 64213 - 64214 - 40599 - 40511 - 40519
45930 - 64290 - 64293 - 64294 - 64210

Diabetes 25083 - 25073 - 25082 - 25043 - 25063 - 25053
25093 - 25072 - 2535 - 25003 - 25062 - 25052
25042 - 25092 - 25002 - 24971 -25013 - 25081
24961 - 24951 - 24981 - 24941 - 24991 - 25071
25023 - 25011 - 25031 - 25033 - 25041 - 25012
25080 - 24911 - 24960 - 24950 - 24950 - 24990
25021 - 25061 - 25051 - 25091 - 25001 - 25070
25022 - 25020 - 25010 - 25060 - 25030 - 25050
25032 - 25040 - 25090 - 25000 - 24970 - 24920
24921 - 24910 - 24930 - 24931 - 24980 - 24940
24900 - 24901

Liver disease 5718 - 5719 - 5728
Coronary Artery Disease (CAD) 41412 - 41406 - 74685 - 4142 - 41401
Cirrhosis 5716 - 5715 - 5712
Jaundice 7824 - 7745 - 77431 - 7741 - 77439 - 77430

7744 - 7746 - 7742 - l7740
Myocardial Infarction 41081 - 41091 - 4110 - 41082 - 41092

41080- 41090 - 41032 - 41030 - 412
41011 - 41001 - 41041 - 41021 - 41031
41052 - 41050 - 41181 - 41012 - 41010
41002 - 41000 - 41042 - 41040 - 41022
41020 - 41051 - 42979

Sepsis 99591 - 99592 - 67020 - 67024 - 67022
Charted events Heart rate 211, 220045

Systolic blood pressure (SysBP) 5 - 442 - 455 - 6701 - 220179 - 220050
Diastolic blood pressure (DiasBP) 8368 - 844 - 8555 - 220180 - 22005
Mean arterial blood pressure (MeanBP) 456 - 52 - 6702 - 443 - 220052

220181 - 225312
Respiration rate (Resprate) 618 - 615 - 220210 - 224690
Temperature 223762 - 676 - 223761 - 678
Sp02 646 - 2220277
Glucose 807 - 811 - 1529 - 3745 - 3744

225664 - 220621 - 226537
Laboratory events Bicarbonate 50882

Blood Urea Nitrogen (BUN) 51006
Chloride 50902 - 50806
Creatinine 50912
Hemoglobin 51221 - 50810
International Normalized Ratio (INR) 51237
Platelet 51265
Potassium 50971 - 50822
Prothrombin Time (PT) 51274
Partial Thromboplastin Time (PTT) 51275
White Blood Count (WBC) 51301 - 51300
Calcium 50893
Urine 40055 - 43175 - 40069 - 40094 - 40715

40473 - 40085 - 40057 - 40056 - 40405
40428 - 40086 - 40096 - 40651

Table 5.2: ItemIDs in MIMIC-III for comorbidity, charted events, and labora-
tory events.
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Patient ID Creatinine Value Valid time Category
38272437 2 2 high
38036146 2 264 high
39084108 1 23 high
32928326 1 41 normal
30673979 2 4 high
31695091 1 104 normal
30866972 2 180 high
34381316 6 81 high
30571521 2 44 high
34995591 1 151 high

Table 5.3: Creatinine table after the categorization.

Feature Low Medium High
Bicarbonate <23 23-28 >28
Blood Urea Nitrogen (BUN) <5 5-20 >20
Calcium <8.5 8.5-10.5 >10.5
Cloride <96 96-106 >106
Creatinine <0.6 (M), <0.5 (W) 0.6-1.2(M), 0.5-1.1 (W) >1.2(M), >1.1 (W)
Hemoglobin <14 (M), <12 (W) 14-18(M), 12-16 (W) >18 (M), >16 (W)
Hematocrit <40 (M), <36 (W) 40-54(M), 36-48 (W) >54 (M), >48 (W)
International Normalized Ratio (INR) <0.8 0.8-1.2 >1.2
Platelet <150 150-400 >400
Potassium <3.5 3.5-5.5 >5.5
Prothrombin Time (PT) <10 10-13 >13
Partial Thromboplastin Time (PTT) <25 25-35 >35
White Blood Count (WBC) <4.5 4.5-11 >11

Table 5.4: Lab-events categorization according to clinical literature.

reducing the variability, thus simplifying the discovery of recurrent temporal
patterns. For the creatinine and hematocrit measures, we categorize also ac-
cording to the sex of the patient. The results are stored into a new column
attribute, named as the feature considered. You can see an example in Table
5.3. Tables 5.5 and 5.4 display the thresholds used for the categorization of
laboratory test and charted observations.

To assign a valid time to each measure, we calculate each valid time as a
difference from the charttime of the measure and the admission to ICU, using
intervals of 6 hours as granule. We divide the time span until the discharge
from the ICU, or the death of the patient. Namely, we give the value 1, if the
difference is from 0 to 5, the value 2 if the difference is from 6 to 11 and so on.
For each icustay id, we compute the average, the minimum and the maximum
of the values in each interval. We label the entire cohort of patients according
to the KDIGO criteria, reported in Chapter 2.1 in two different ways. The
first one is a punctual diagnosis, when the patient complies with at least one
of the three criteria, we label this subject as AKI (1), otherwise NOT AKI (0).
The second one is a persistence diagnosis, from the admission to the discharge
from the ICU , we evaluate the conditions of the patient every specified time
interval, and define the subject as AKI (1), or NOT AKI (0).

122



Feature Low Medium High
Diastolic Blood Pressure (DiasBP) <60 60-80 >80
Glucose <72 70-108 >108
Heart Rate <60 60-100 >100
Mean arterial Blood Pressure (MeanBP) <70 70-100 >100
Respiration Rate <12 12-20 >20
SpO 2 <96 96-100 >100
Systolic Blood Pressure (SysBP) <90 90-120 >120
Temperature <36.1 (celsius) 36.1-37.5 (celsius) >37.5 (celsius)

Table 5.5: Chart-events categorization according to clinical literature.

Patient labeling

In this experimental set, we perform two different types of labelling, both
related to the general KDIGO criteria. The first one is performed considering
a single event for the diagnosis of the patient, the second one considering
successive events of diagnosis, for the entire ICU hospitalization.

Single event labeling
Considering the first criterion (Increase in serum creatinine by ≥ 0.3 mg/dl
(≥ 26.5 µmol/l) within 48 hours) for identifying AKI patients, we use the
cohort of patients recorded in TOT ICUSTAYS and LABEVENTS table in
order to obtain the CREATININES table, which collects all the serum creati-
nine values recorded during the hospitalization in ICU of each patient. Then,
we create the CREATININE PATIENTS table which contains for each ICUS-
TAY ID the AKI flag (0,1), and the AKI TIME attribute that corresponds to
the CHARTTIME of the measurement during which there is a serum creatine
increase. This increase is computed for every interval of 48 hours, starting
from the admission to ICU until the end of stay. The number of patients for
which there is an increase greater than or equal to 0.3 mg/dl within 48 hours
is 11.184.

Afterwards, according to the second criterion (Increase in serum creati-
nine to≥ 1.5 times baseline, within the previous 7 days), from the initial
cohort in TOT ICUSTAYS and LABEVENTS table, we create the CRE-
ATININE BASELINE table. For each ICUSTAY ID, we find the correspond-
ing creatinine baseline which is equal to the mean of the serum creatinine
values within 7 days prior the admission to the ICU. The execution of the
queries in Figure 5-16 retrieved the AKI patients. The result is stored in the
AKI BASELINE table which includes 3.966 AKI patients.

At the end, we evaluate the third criterion (Urine volume <0.5 ml/kg/h
for 6 hours). Firstly, we create the ICUSTAY WEIGHT table with the aver-
age weight per ICU stay for each patient, joining the CHARTEVENTS and
TOT ICUSTAYS tables.

Then, by joining the OUTPUTEVENTS, TOT ICUSTAYS and ICUS-
TAY WEIGHT tables, we compute for each patient all the urine values with
their corresponding CHARTTIME. The result, combined with the correspond-
ing weight for each patient, is stored in the URINE MEASURES table. Start-
ing with the first urine measurement in the ICU stay, we calculate the urine
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CREATE TABLE creatinine_baseline AS

SELECT I. icustay_id ,

ROUND ( cast (avg(C. valuenum ) AS numeric ) ,2) AS baseline

FROM mimic . labevents C, tot_icustays I

WHERE itemid =50912

AND C. hadm_id =I. hadm_id

AND C. charttime >= I. intime - interval ’7 day ’

AND C. charttime < I. intime

AND I. age between 14 AND 89

GROUP BY I. icustay_id ;

CREATE TABLE aki_baseline AS

SELECT I. icustay_id , min ( charttime ) AS aki_time

FROM mimic . labevents l, creatinine_baseline c, tot_icustays I

WHERE l. hadm_id = I. hadm_id

AND c. icustay_id = I. icustay_id

AND l. itemid = 50912

AND l. valuenum is not NULL

AND l. charttime >= I. intime

AND l. charttime <= I. outtime

AND l. valuenum >= 1.5* c. baseline

AND I. age BETWEEN 14 AND 89

GROUP BY I. icustay_id

ORDER BY I. icustay_id;

Figure 5-16: Queries to calculate the second criterion.

rate for each interval of 6 hours. We create the URINE PATIENTS table
which contains 21.887 AKI patients. We record for each ICUSTAY ID the
corresponding AKI flag (0 ,1) and the related AKI TIME, namely the time of
the last urine measurement in the 6 hours interval as AKI time. After retriev-
ing all the AKI patients according to different KDIGO criteria, we combine
the three obtained tables CREATININE PATIENTS, AKI BASELINE and
URINE PATIENTS into a single result table TOT PATIENTS that contains
25.740 patients diagnosed with AKI. Here, for each ICUSTAY ID, we store the
INTIME and OUTTIME attributes that respectively represent the time when
the patient is admitted to the ICU and when the patient is discharged from
the ICU, the corresponding AKI TIME and AKI values.

The left outer join between TOT ICUSTAYS, TOT PATIENTS and AD-
MISSIONS tables is carried out to find the ALL PATIENTS table containing
all the ICUSTAY IDs with their corresponding diagnosis and some information
about the patients, like HADM ID, INTIME, OUTTIME, AGE, GENDER,
ETHNICITY, AKI and AKI TIME. The value of the AKI TIME for the pa-
tients affected by AKI corresponds to the date and time during which the AKI
was diagnosed, which otherwise is equal to NULL if the patient did not get
AKI. We compute the AKI TIME as a new value evaluated as a difference
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from the admission to ICU and the AKI TIME, with a six hours interval as
granule. For example, if the diagnosis is in the first six hours, the related VT
is equal to 1.

Multiple events labeling
In the second part of the work we recompute the diagnosis, reproducing the
persistence of the diagnosis according to the three KDIGO criteria. For the
first and third criteria, we implement the queries using PL/pgSQL, whereas
the second criterion is calculated using PostgreSQL.

For patients who die during the permanence in ICU, we consider only the
values from the admission to ICU to the death time. For patients who are
discharged from the ICU alive, we consider measures from the admission to
the discharge from the ICU. We start considering the first criterion. For the
patients hospitalized in ICU for a period of time less than 48 hours, we apply
the criteria during this interval. Instead, for the patients who stay in ICU
for a period of time longer than 48 hours, we calculate the increase of the
serum creatinine every 48 hours, starting from the INTIME (date and time
of the patient admission to the ICU), and moving this sliding window every
24 hours. If in the considered interval, there are less than 2 measurements,
the increase could not be calculated, therefore the corresponding diagnosis is
”NOT DEFINED”. Otherwise, if there are at least two values, we calculate
the criteria, defining the patients as ”TRUE” if there is an increase in serum
creatinine ≥ 0.3 mg/dl within 48 hours, otherwise ”FALSE”. Thus, for each
ICUSTAY ID, we store the 48 hours overlapped diagnoses in the ILL attribute
which could take values ”AKI”, ”NOT AKI”, or ”NOT DEFINED” with the
corresponding START INTERVAL and END INTERVAL during which the
increase is computed. The diagnosis occurs at the end of the interval, so in
correspondence of the END INTERVAL value.

For the second criterion, we calculate the BASELINE table containing for
each ICUSTAY ID the corresponding START INTERVAL and
END INTERVAL, related respectively to the seventh day before the admission
to the ICU and the INTIME, and the attribute ILL which took ”TRUE” or
”FALSE” value.

To find AKI patients according to the third criterion, we consider only the
ICUSTAY IDs that were hospitalized for a period of time greater than 6 hours,
due to the definition of the criterion. Starting from the INTIME, we calculate
the urine rate for each 6 hours interval, moving the sliding window every 3
hours. If the number of measurements inside the considered interval is at least
two, then we assign the diagnosis, otherwise we apply the Calc function 5.8.1.

To solve the problem of overlapped intervals, we use the smallest granule
(in our case 3 hours according to the third criterion), to define the diagnosis
as follow (Table 5.6):

• if there is at least one ”AKI” value, the final diagnosis will be ”AKI”;

• if there is a ”NOT AKI” in an ambiguous situation, the final diagnosis
will be ”NOT AKI”;
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Diagnosis 1 Diagnosis 2 Final diagnosis
AKI AKI AKI
AKI NOT AKI AKI
AKI NOT DEFINED AKI
NOT AKI NOT AKI NOT AKI
NOT AKI NOT DEFINED NOT AKI
NOT DEFINED NOT DEFINED NOT DEFINED

Table 5.6: Definition of diagnoses overlap.

• if there is a double ambiguous situation, we will have the label ”NOT
DEFINED”.

Discovering APFDs from MIMIC-III

For this experimental set, we consider the four categories of medications: di-
uretics, Non-Steroidal Anti-Inflammatory Drugs (NSAID), angiotensin and ra-
diocontrast agents. For the chartevents we consider heart rate, SpO2, and
body temperature. For the labevents, we consider laboratory test of serum
creatinine, urine and white blood cell count (WBC).

We choose a 3-window moving framework base on: an observation window
of 36 hours, where we collect all the measures related to each patient, a waiting
window of 12 hours where we do not consider any event, and then a prediction
window of 72 hours, where there is the onset of the illness according to one of
the KDIGO criteria, or the discharge from the ward when any criteria satisfied.

We generated four different KSPEs with unanchored widow, with three
different Θ expressions. The first and the second KSPEs regard a single event
as diagnosis (as we showed in section 5.4), instead the other two are related
to the diagnosis expressed as an attribute diagnosis pattern (as we showed in
section 5.4.1). Specifically the attribute is represented by the concatenation of
the last three changes in the diagnosis before the discharge from the ICU or
the death in ICU. Whereby:

• A KSPE with six temporal states, where each temporal state is composed

of one measure, temporally ordered, where V T
k

= V T
k−1

+ 1 for k =
1, .., 5. This KSPE involves 456 patients, and the following features:
drugs, creatinine,heart rate, SpO2, WBC, body temperture; (KSPE 1)

• A KSPE with three temporal states, each one composed of two measures

recorded at the same valid time, temporally ordered, i.e., V T
0
< V T

1
<

V T
2
. This KSPE involves 1.913 patients, and body temperture-SpO2,

heart rate - WBC, drugs-creatinine (KSPE 2);

• A KSPE with three temporal states, each one composed of two measures

recorded at the same valid time, temporally ordered, i.e., V T
0
< V T

1
<

V T
2

This KSPE involves 319 patients, and body temperture-SpO2, heart
rate - WBC, drugs-creatinine. (KSPE 3)
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Patient ID Drug
0

V T 0 Creatinine
1

V T 1 Heartrate
2

V T 2 SpO2
3

V T 3 WBC
4

V T 4 Temperature
5

V T 5

200069 diuretics 4 medium 5 medium 6 medium 7 medium 8 medium 9
200143 diuretics 45 high 46 medium 47 low 48 medium 49 medium 50
200147 NSAID 1 medium 2 high 3 medium 4 high 5 medium 6
200147 diuretics 1 medium 2 high 3 medium 4 high 5 medium 6
200206 diuretics 7 medium 8 medium 9 medium 10 low 11 high 12
200206 diuretics 3 medium 4 medium 5 low 6 low 7 medium 8
200231 NSAID 6 high 7 medium 8 low 9 medium 10 medium 11
200349 diuretics 2 high 3 low 4 medium 5 high 6 medium 7
200375 diuretics 85 low 86 high 87 medium 88 medium 89 medium 90
200387 diuretics 2 high 3 low 4 medium 5 medium 6 high 7

Table 5.7: KSE with V T
k

= V T
k−1

+ 1 for k = 1, .., 5

Patient ID Drug
0

V T 0 Creatinine
1

V T 1 Heartrate
2

V T 2 SpO2
3

V T 3 WBC
4

V T 4 Temperature
5

V T 5 ˙AKI ˙V T
200147 diuretics 1 medium 2 high 3 medium 4 high 5 medium 6 1 10
200147 NSAID 1 medium 2 high 3 medium 4 high 5 medium 6 1 10
2001231 NSAID 6 high 7 medium 8 low 9 medium 10 medium 11 1 15
200349 diuretics 2 high 3 low 4 medium 5 high 6 medium 7 0 14
200711 NSAID 1 medium 2 high 3 low 4 high 5 high 6 0 11
200206 diuretics 1 medium 2 medium 3 medium 4 medium 5 medium 6 1 13
200231 NSAID 1 high 2 medium 3 medium 4 medium 5 medium 6 0 13
200349 NSAID 2 high 3 medium 4 medium 5 high 6 medium 7 0 14
200375 diuretics 6 low 7 medium 8 low 9 high 10 medium 11 0 21
200387 angiotensin 1 high 2 medium 3 medium 4 high 5 low 6 0 12

Table 5.8: KSPE 1 built from the KSE in Table 5.7

• A KSPE with six temporal states, where each temporal state is com-

posed of one measure, temporally ordered, where V T
k
< V T

k−1
+ 3 for

k = 1, .., 5. This KSPE involves 192 patients,and the following features:
drugs, creatinine,heart rate, SpO2, WBC, body temperture; (KSPE 4)

Starting to analyze the first KSPE, we build a K-state evolution expression
of six temporal states obtaining 1705 rows and 1165 distinct patients. In Table
5.7, we show an extract from the related table.

Applying a 3-window framework of 36 hours for the observation window, 12
hours for the waiting window, and 72 hours for the prediction window, under
the following condition:

(KSE.V T2 −KSE.V T0 < 7) and (PAT.V TAKI −KSE.V T0 > 8) and

(PAT.V TAKI −KSE.V T0 ≤ 20)

we obtain a KSPE containing 587 rows and 456 distinct patients, 150 cases
and 306 controls. In the following Table 5.8, we report an extract of this
KSPE.

Regarding the second KSPE, we build a K-state evolution expression of
three temporal states obtaining 2.471.277 rows and 3.071 distinct patients. In
Table 5.9, we show an extract from the related table.

We obtain a KSPE containing 7.020 rows and 1913 distinct patients, 539
cases and 1374 controls. In the following Table 5.10, we report an extract of
this KSPE.

Regarding the third KSPE, we use the previous K-state evolution expres-
sion as in KSPE 3 obtaining a KSPE with 1171 row, related to 234 patient
with ”false true false”, and 85 with ”true false true” patterns. In this case, true
is equivalent to AKI diagnosis, and false is equivalent to NOT AKI diagnosis.
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Patient ID Bodytemperature
0

SpO2
0

V T 0 Heartrate
1

WBC
1

V T 1 Drug
2

Creatinine
2

V T 2

278886 medium medium 14 low medium 16 nsaid high 20
215169 high low 9 medium medium 11 nsaid medium 15
243028 high medium 13 medium high 14 angiotensin medium 18
259387 high medium 3 high medium 7 diuretics high 9
278228 high low 4 medium medium 7 diuretics medium 10
210104 medium medium 5 high high 6 diuretics medium 11
228264 medium medium 5 medium high 6 diuretics high 9
249613 medium medium 4 medium high 6 nsaid medium 10
206666 medium low 4 high medium 5 diuretics medium 9
208435 high medium 1 medium high 2 diuretics medium 6

Table 5.9: KSE with V T
0
< V T

1
< V T

2
< V T

3

Patient ID Bodytemperature
0

SpO2
0

V T 0 Heartrate
1

WBC
1

V T 1 Drug
2

Creatinine
2

V T 2 ˙AKI ˙V T
200069 high low 3 high high 5 NSAID medium 8 0 12
200069 high medium 3 high high 5 NSAID medium 8 0 12
200087 medium medium 9 high medium 11 diuretics low 15 0 18
206767 medium medium 6 medium high 9 NSAID medium 12 1 18
200159 high medium 1 high medium 3 diuretics medium 5 1 12
200159 medium medium 1 high medium 2 diuretics medium 5 1 12
237104 medium medium 6 medium high 8 diuretics medium 12 0 19
205719 high low 6 medium high 7 diuretics high 11 0 18
200168 low medium 9 high high 10 NSAID medium 14 0 25
269692 medium medium 2 medium high 3 fiuretics medium 6 1 14

Table 5.10: KSPE 2 built from the KSE in Table 5.9

In Table 5.11, we show an extract.
Regarding the last KSPE, we build a K-state evolution expression of three

temporal states obtaining 102.011 rows and 5.300 distinct patients. In Table
5.12, we show an extract from the related table.

We obtained a KSPE containing 699 rows and 192 distinct patients, 142
”false true false” and 50 ”true false true” patterns. In this case, true is equiv-
alent to AKI diagnosis, and false is equivalent to NOT AKI diagnosis. In the
following Table 5.13, we report an extract of this KSPE.

In Table 5.14, we report some of the obtained APFDs, with the corre-
sponding error thresholds, through the use of our algorithm inspired by TANE.
We select some APFDs in order to give an idea of the data under this type of
functional dependency. Starting from the first KSPE, we analyze the APFD

Drug
1
, Creatinine

2
,

HR
3
, SpO2

4
,WBC

5 → ˙AKI . In Table 5.15, we report the more common or
peculiar value combinations for the AKI patients. From this, we can deduce
that these value combinations for this temporal evolution, could delineate a
profile for a AKI patient.

On the other hand, in Table 5.16 we report some value combinations for the
same APFD, which have the same occurrences in the two classes, so probably
they are not very meaningful to predict the onset of the illness.

In Table 5.17, we show some value combinations common to both classes,
but with a discrete difference between the two groups. In this case, each
combination could be evaluated to be descriptive for one group with respect
to the other one.

Anther way to visualize the results, is the use of bar plots. In this case, we

choose to visualize the results for SpO2
1
, HR

2
,WBC

2
, Drug

3
, Creatinine

3
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Patient ID Bodytemperature
0

SpO2
0

V T 0 Heartrate
1

WBC
1

V T 1 Drug
2

Creatinine
2

V T 2 ˙AKI
240724 medium medium 5 medium high 7 nsaid medium 11 false true false
200300 high medium 3 medium high 5 diuretics medium 9 true false true
284078 medium medium 1 medium medium 2 diuretics medium 6 true false true
224518 high medium 2 medium high 4 angiotensin low 8 false true false
244689 medium medium 10 medium medium 11 diuretics high 12 true false true
209456 medium medium 5 low medium 7 nsaid high 11 false true false
263777 medium medium 5 medium medium 6 nsaid medium 10 false true false
216553 medium medium 2 medium medium 4 diuretics high 6 true false true
259999 low medium 1 medium medium 2 nsaid medium 6 false true false
200300 high medium 3 medium high 5 nsaid medium 9 true false true

Table 5.11: KSPE 3 built from the KSE in Table 5.9

Patient ID Drug
0

V T 0 Creatinine
1

V T 1 Heartrate
2

V T 2 SpO2
3

V T 3 WBC
4

V T 4 Temperature
5

V T 5

252871 nsaid 2 medium 3 medium 4 medium 5 high 6 medium 7
247632 nsaid 4 low 5 medium 6 low 7 medium 9 medium 10
269227 diuretics 2 medium 3 medium 5 low 6 high 7 high 8
291422 nsaid 5 medium 6 medium 7 medium 9 medium 10 high 11
235055 diuretics 6 medium 7 medium 8 low 10 medium 11 medium 12
200099 diuretics 1 medium 2 medium 3 low 4 high 5 low 6
259127 diuretics 1 medium 2 medium 4 medium 5 high 6 medium 7
257861 nsaid 6 high 7 medium 8 low 10 medium 11 medium 12
287402 diuretics 5 medium 6 low 7 low 9 medium 10 medium 11
218006 diuretics 1 medium 2 medium 4 medium 5 medium 6 medium 7

Table 5.12: KSE with V T
k
< V T

k−1
+ 3 for k = 1, .., 5

→ ˙AKI from KSPE 2. In Figure 5-17, we visualize the value combinations
most common in NOT AKI patients, but also present in the other class.

Instead, in Figure 5-18, we visualize all the combinations, which probably
are not meaningful for any class in study, because of the comparable number
of occurrences.

Analyzing the APFD HR
2
,WBC

2
, Drug

3 → ˙AKI of the KSPE 3, we can
observe the distribution of value combinations in the two different trends of
diagnoses. These trends are composed of three diagnoses, that correspond to
the last three diagnoses before the end of hospitalization in ICU.

In Table 5.18, it is possible to observe that there are some combinations
under the APFD which characterize only one trend of diagnoses. They are the
most interesting ones, because they probably identify this trend of diagnoses.
There are other combinations which delineate both classes. In this case, when
the difference is small, this combination could not be meaningful for neither
of the classes.

Figures 5-19 and 5-20 are referred to the last KSPE. In the first one, we

examine the APFD Drug
1
, Creatinine

2 → ˙AKI . We have a different distri-
bution of occurrences in the majority of combinations, with only one peculiar
combination for the ”false true false” trend, and one combination probably
meaningless, because the occurrences are the same for both trends. In the sec-

ond one, we examine the APFD Creatinine
2
, BodyTemperature

6 → ˙AKI . In
this case, we have different combinations which depict one trend of diagnoses,
except for one combination that is peculiar of the other trend.
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Patient ID Drug
0

V T 0 Creatinine
1

V T 1 Heartrate
2

V T 2 SpO2
3

V T 3 WBC
4

V T 4 Temperature
5

V T 5 ˙AKI
272370 angiotensin 5 medium 6 medium 7 medium 9 medium 10 medium 11 true false true
252028 diuretics 6 medium 7 high 8 low 10 medium 11 low 12 false true false
226798 diuretics 2 high 3 medium 4 medium 6 high 7 high 8 false true false
200684 diuretics 6 medium 7 high 8 low 10 medium 11 medium 12 true false true
221263 diuretics 1 medium 2 medium 3 medium 4 medium 6 medium 7 false true false
216535 diuretics 1 medium 2 high 3 low 4 medium 5 high 6 true false true
200081 diuretics 6 medium 7 medium 8 low 9 medium 11 high 12 false true false
220938 diuretics 7 medium 8 medium 9 medium 10 medium 11 medium 12 false true false
226822 diuretics 6 high 7 medium 8 low 9 medium 10 low 12 false true false
239043 diuretics 1 medium 2 medium 3 medium 4 high 6 medium 7 true false true

Table 5.13: KSPE 4 built from the KSE in Table 5.12
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Figure 5-17: Value combinations for the not AKI patients, under SpO2
1
, HR

2
,

WBC
2
, Drug

3
, Creatinine

3 → ˙AKI from KSPE 2.

5.8.3 Experiments using MIMIC-IV

System Configuration

To mine APFDs on the MIMIC-IV dataset, we test the entire framework, from
the ETL prcedures to the KSPEs on a server with 16 shared core, 12 GB of
RAM, 1TB disk, equipped with Ubuntu 18.04 and Postgres 12. We mine the
APFDs from the generated KSPEs on a machine with a 2,3 GHz Intel Core
i9 8 core, 16 GB of RAM, equipped with macOS Catalina 10.15.7, Python
2.7. During the ETL procedure, to build a K-State evolution Expression,
the computational time to obtain a table increases, increasing the number of
temporal states, from seconds to hours (with seven states). While mining the
APFDs, according to the K-State prediction Expression dimension, usually
the algorithm takes few minutes.

Data extraction

To transform the MIMIC-IV raw data in a form useful for mining the APFDs,
we apply an ETL process, again using PostgreSQL and PL/pgSQL. Consid-
ering tables PATIENTS AND ICUSTAYS, we select patients from 18 to 90,
obtaining 73.729 subjects.
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APFD εg εh εj KSPE

Creatinine
2
, HR

3
, SpO2

4
,WBC

5
, BodyTemperature

6 → ˙AKI 29% 30% 30% KSPE #1

Drug
1
, Creatinine

2
, HR

3
, SpO2

4
,WBC

5
, BodyTemperature

6 → ˙AKI 29% 28% 50% KSPE #1

Drug
1
, Creatinine

2
, HR

3
, SpO2

4
,WBC

5 → ˙AKI 29% 28% 70% KSPE #1

Drug
1
, Creatinine

2
, SpO2

4
,WBC

5
, BodyTemperature

6 → ˙AKI 29% 28% 70% KSPE #1

BodyTemperature
1
, SpO2

1
, HR

2
,WBC

2
, Drug

3
, Creatinine

3 → ˙AKI 20% 0% 0% KSPE #2

BodyTemperature
1
, HR

2
,WBC

2
, Drug

3
, Creatinine

3 → ˙AKI 21% 0% 0% KSPE #2

BodyTemperature
1
,WBC

2
, Drug

3
, Creatinine

3 → ˙AKI 22% 0% 0% KSPE #2

BodyTemperature
1
, SpO2

1
, HR

2
, Drug

3
, Creatinine

3 → ˙AKI 22% 0% 0% KSPE #2

SpO2
1
, HR

2
,WBC

2
, Drug

3
, Creatinine

3 → ˙AKI 22% 0% 0% KSPE #2

BodyTemperature
1
, SpO2

1
, HR

2
,WBC

2
, Creatinine

3 → ˙AKI 22% 0% 0% KSPE #2

BodyTemperature
1
, SpO2

1
, HR

2
,WBC

2
, Drug

3 → ˙AKI 22% 0% 0% KSPE #2

BodyTemperature
1
, SpO2

1
, Drug

3
, Creatinine

3 → ˙AKI 28.72% 35% 35% KSPE #3

HR
2
,WBC

2
, Drug

3 → ˙AKI 28.72% 35% 35% KSPE #3

Drug
1
, Creatinine

2
, HR

3
, SpO2

4
,WBC

5
, BodyTemperature

6 → ˙AKI 15% 0% 0% KSPE #4

Drug
1
, Creatinine

2
, HR

3
,WBC

5
, BodyTemperature

6 → ˙AKI 18% 0% 0% KSPE #4

Drug
1
, HR

3
, SpO2

4
,WBC

5
, BodyTemperature

6 → ˙AKI 18% 0% 0% KSPE #4

Creatinine
2
, HR

3
, SpO2

4
, ,WBC

5
, BodyTemperature

6 → ˙AKI 18% 0% 0% KSPE #4

SpO2
4
, BodyTemperature

6 → ˙AKI 23% 0% 0% KSPE #4

Drug
1
, Creatinine

2 → ˙AKI 23% 0% 0% KSPE #4

WBC
5
, BodyTemperature

6 → ˙AKI 23% 0% 0% KSPE #4

Drug
1
, BodyTemperature

6 → ˙AKI 23% 0% 0% KSPE #4

Creatinine
2
, BodyTemperature

6 → ˙AKI 23% 0% 0% KSPE #4

HR
3
, BodyTemperature

6 → ˙AKI 23% 0% 0% KSPE #4

Drug
1
,WBC

5 → ˙AKI 23% 0% 0% KSPE #4

Creatinine
2
, HR

3 → ˙AKI 23% 0% 0% KSPE #4

Creatinine
2
,WBC

5 → ˙AKI 23% 0% 0% KSPE #4

Table 5.14: A list of APFDs valid on one of the four KSPEs, with different
error thresholds.

Feature extraction: aggregation, categorization

As we explained in Chapter 2.1, MIMIC-IV is divided into different modules.
For this experimental set, from the Core module, we use the patients and

admissions tables. The admissions table contains information regarding the
patient’s admision to the hospital, for example the time of admission and
discharge, demographic information, and the source of admission.

From the hosp module, we consider prescriptions, labevents, d labitems
tables. Prescription table contains information about the prescribed medica-
tions. We consider three different classes of drugs:

• Diuretic drugs: nebivolol, moexipril, sotalol, lisinopril, carvedilol, Methyl-
dopa, propranolol, benazepril, ambrisentan, clonidine, triamterene, pin-
dolol, furosemide, bosentan, minoxidil, hydrochlorothiazide, spironolac-
tone, tolvaptan, irbesartan, chlorothiazide, prazosin, bumetanide, quinapril,
labetalol, amiloride, doxazosin, atenolol, diazoxide, metoprolol, esmolol,
candesartan, nadolol, losartan, captopril, valsartan, trandolapril, acebu-
tolol, hydralazine, metolazone, eplerenone, ramipril, aliskiren, maciten-
tan, guanfacine.

• Nephrotoxic drugs: gentamicin, vancomycin, salsalate, nabumetone, to-
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Drug
1

Creatinine
2

HR
3

SpO2
4

WBC
5

Cases Controls
diuretics medium medium low high 12 10
nsaid medium medium low medium 6 2
diuretics medium high low medium 6 4
nsaid high high medium medium 5 1
angiotensin medium medium low medium 3 2
diuretics low medium medium high 3 2
angiotensin low medium low high 2 0
nsaid high low medium medium 2 1
angiotensin medium low medium medium 1 0
diuretics high high low high 1 0
angiotensin medium low low medium 1 0
diuretics low medium low medium 1 0
nsaid high high low high 1 0
angiotensin medium high medium low 1 0
angiotensin medium medium low low 1 0

Table 5.15: Value combinations ofDrug
1
, Creatinine

2
, HR

3
, SpO2

4
,WBC

5 →
˙AKI , common for the cases from KSPE 1.

Drug
1

Creatinine
2

HR
3

SpO2
4

WBC
5

nsaid high high low medium
diuretics high low medium high
diuretics high medium low low
angiotensin medium high low medium
angiotensin medium high medium high
nsaid low medium low high
nsaid low medium medium high

Table 5.16: Value combinations less meaningful related toDrug
1
, Creatinine

2
,

HR
3
,SpO2

4
,WBC

5 → ˙AKI from KSPE 1.

bramycin, sulindac, ketorolac, amikaci, naproxen, ibuprofen.

• Chemotherapy drugs: pemetrexed, eribulin, ibrutinib, cabozantinib, as-
paraginase, everolimus,pegaspargase, mitomycin, gemcitabine, gemtuzumab
ozogamicin, bendamustine, carfilzomib, erlotinib, lenvatinib, dabrafenib,
bleomycin, imatinib, nivolumab, ruxolitinib, oxaliplatin, decitabine, fluo-
rouracil, temsirolimus, dactinomycin, dasatinib, etoposide, capecitabine,
osimertinib, irinotecan, mitoxantrone, idarubicin, pertuzumab, arsenic
trioxide, trametinib, bevacizumab, venetoclax, anagrelide, vincristine,
dacarbazine, vemurafenib, brentuximab vedotin, ixazomib, pentostatin,
rituximab, methotrexate, sunitinib, alemtuzumab, cetuximab, crizotinib,
axitinib,bortezomib, temozolomide, cytarabine, cisplatin, panitumumab,
cladribine, azacitidine, paclitaxel, ifosfamide, enasidenib, tretinoin, mi-
dostaurin, lapatinib, pralatrexate, carboplatin, cyclophosphamide, lorla-
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Drug
1

Creatinine
2

HR
3

SpO2
4

WBC
5

diuretics medium medium medium medium
diuretics medium medium medium high
diuretics high medium medium medium
angiotensin medium medium medium medium
nsaid medium medium medium medium

Table 5.17: Value combinations common to both classes, related to Drug
1
,

Creatinine
2
, HR

3
,SpO2

4
,WBC

5 → ˙AKI from KSPE 1.
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Figure 5-18: Value combinations under SpO2
1
, HR

2
, WBC

2
, Drug

3
,

Creatinine
3 → ˙AKI from KSPE 2.

tinib, trastuzumab, sorafenib, busulfan, mercaptopurine, celecoxib, daunoru-
bicin, porfimer sodium, melphalan, pembrolizumab, clofarabine, doxoru-
bicin.

The labevents table contains results of all laboratory measurements made
for a single patient. In our experiment, we considered the creatinines and
urine values. The d labitems table is the dictionary for the hospital laboratory
database.

The last one is the ICU module, where we consider d items, chartevents,
icustays, outputevents. The d items table is a table that described all itemid.
The chartevents table contains all charted items occurring during the ICU
stay. We consider the heart rate (item id = 220047), SpO2 (item id=220277),
potassium (item id= 52452, 50822, 52610, 50971), and calcium (item id=
221456, 227525, 228317, 229618, 229640). The icustays tables considers all
the logistic information regarding the hospitalization in ICU.

We consider all the values recorded in ICU, so the story of the patient is
delineated from the admission to ICU, to the discharge from the ICU, or the
time of death, if the patient dies before the discharge.
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HR
2

WBC
2

Drug
3

false true false true false true
low medium diuretics 6 0
low medium nsaid 2 0
low high diuretics 3 0
high low diuretics 8 0
low high nsaid 2 0
low high angiotensin 1 0
high medium angiotensin 12 1
medium low angiotensin 8 2
medium low nsaid 1 3
medium medium angiotensin 34 6
medium low diuretics 20 7
high medium diuretics 33 9
high high nsaid 16 11
high medium nsaid 6 11
high high diuretics 25 11
medium high angiotensin 42 17
medium high nsaid 183 53
medium high diuretics 196 63

Table 5.18: Value combinations of HR
2
,WBC

2
, Drug

3 → ˙AKI from KSPE
3.

Table 5.19: Chart-events categorization according to clinical literature.

Feature Low Medium High
Hear rate ≤60 60-100 ≥100
SpO2 ≤95 95-98 ≥98
Potassium ≤3.5 3.5-5 ≥5
Calcium ≤2.2 2.2-2.6 ≥2.6

In this set of experiments, we decide to use all recorded values of the fea-
tures that we considered, namely heart rate, SpO2, potassium, calcium, and
blood pressure. Therefore, we do not perform any type of aggregation. Instead,
we decide to perform a categorization, following the thresholds reported in Ta-
ble 5.19, into ’low’, ’medium’, ’high’, according to the clinical literature. Also
the choice of which drugs to consider, is based on the clinical literature. It is
well known that Nephrotoxic drugs contribute to AKI in hospitalized patients,
and chemotherapeutics and antimicrobials have direct chemical nephrotoxic-
ity. These drugs, cleared via the kidneys (vancomycin), induce the kidney
dysfunction leading the accumulation of the drug and its metabolites [104].

Finally for each feature, we consider as valid time the distance in hours
from the admission to ICU to the valid time of the measure. We use 1 hour
interval as granule.
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Figure 5-19: A general overview of value combinations under
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, Creatinine

2 → ˙AKI from KSPE 4.
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Figure 5-20: Value combinations under Drug
1
,WBC

5 → ˙AKI from KSPE 4.

Patient labeling

We label the patients according to the different severity stages reported in
Chapter 2.1. If a patient is healthy, we label it with a 0, otherwise with 1,2, or
3 according to the severity stages. We evaluate each patient from the admission
to ICU until the discharge or time of death.

Regarding the first important measure, the serum creatinine (item id=50912),
we evaluate the criteria by applying a moving window of 48 hours, according
to the KDIGO general guidelines, and moving this window 24 hours forward
every time. Starting from the first recorded value, we scan all the measure-
ments, from the admission to ICU, to the last available time window. More
precisely: for the baseline analysis, we consider the mean of the values of seven
days before the admission to ICU. We label the patients considering different
stages, which are the following:
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• Stage 1: 1.5-1.9 times the baseline OR ≥ 0.3 mg/dl within 48 hours;

• Stage 2: 2.0-2.9 times the baseline;

• Stage 3: 3.0 times the baseline OR ≥ 4.0 mg/dl within 48 hours.

Regarding the second important measure, the urine output, we evaluate
the first stage with a 6 hours window, the second one with 12 hours window,
and the third one with 24 hours window, by moving these windows 1 hours
forward every time. Even in this case, to evaluate the urine output for the
diagnosis, we need to consider the weight of the patient. More precisely, we
consider the following criteria to define the stage of AKI diagnosis:

• Stage 1: <0.5 m/kg/h/h for 6 hours;

• Stage 2: <0.5 m/kg for 12 interval of times;

• Stage 3: <0.3 ml/kg/h for ≥ 24 hours, or Anuria for ≥ 12 hours

Since urine is a value constantly measured in ICU, but not always recorded,
we apply the Calc function reported in the previous Section 5.8.2, to calculate
those measurements not explicitly recorded in the database. We apply this
function, in other to deal with missing values, obtaining a diagnosis response
for each time interval. For each patient, we scan the ICU stay with differ-
ent time intervals according to the considered criteria. Regarding the first
criterion, we evaluate 6-hours intervals, moving forward 1 hour every time.
Regarding the second criterion, we scan the story of the patient from the
admission divided it in 12-hours intervals, moving forward 1 hour every time.
For the third criterion, we consider 24-hours intervals moving forward 12 hours
every time.

We check continuously the clinical situation defined by an absence of urine
values for 12 hours. In this case, we declare an ”Anuria” situation. At the end
of the labeling phase, we compare the results from different criteria , taking
the most severe stage, every three hours.

Discovering APFDs from MIMIC-IV

Here, we report some of the results obtained with the following 3-window
moving framework: an observation window of 48 hours, where we collect all
the measures related to each patient, a waiting window of 12 hours where
we do not consider any event, and then a prediction window of 72 hours. We
generated six different KSPEs with two different Θ expressions. Three of them
refer to single event diagnosis (as we showed in section 5.4), the others refer
to the pattern attribute (as we showed in section 5.4.1), where a pattern is
composed of 3 diagnoses, one every three hours. Whereby:

• A KSPE with three temporal states, temporally ordered, i.e., V T
k
<

V T
k−1

+5 for k = 1, .., 3. This KSPE involves 3618 patients and considers
the following features: creatinine, diuretics, and creatinine, and a single
event for the diagnosis; (KSPE 1)
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Patient ID Creatinine
0

V T
0

Diuretics
1

V T
1

Creatinine
2

V T
2

39971339 high 87 furosemide 91 high 95
37401376 high 30 bumetanide 31 high 32
37886887 normal 49 furosemide 52 normal 55
32097635 high 83 bumetanide 87 high 90
36601636 high 0 furosemide 2 high 3
34185841 high 119 furosemide 120 high 123
31441718 high 70 furosemide 72 high 74
38576850 high 30 furosemide 33 high 36
34304021 high 375 captopril 379 high 383
32266080 normal 117 hydralazine 120 normal 124

Table 5.20: KSE with V T
k
< V T

k−1
+ 5 for k = 1, .., 3 related to the two first

KSPE

• A KSPE with three temporal states, temporally ordered, i.e., V T
k
<

V T
k−1

+5 for k = 1, .., 3. This KSPE involves 3143 patients and considers
the following features: creatinine, diuretics, and creatinine, and multiple
events for the diagnosis; (KSPE 2)

• A KSPE with four temporal states, temporally ordered, i.e., V T
k
<

V T
k−1

+5 for k = 1, .., 4. This KSPE involves 1240 patients and considers
the following features: creatinine, nephrotoxic drugs, potassium, and
creatinine, and a single event for the diagnosis; (KSPE 3)

• A KSPE with four temporal states, temporally ordered, i.e., V T
k
<

V T
k−1

+ 5 for k = 1, .., 4.. This KSPE involves 1108 patients and con-
siders the following features: creatinine, nephrotoxic drugs, potassium,
and creatinine, and multiple events for the diagnosis; (KSPE 4)

• A KSPE with four temporal states, temporally ordered, i.e., V T
0
<

V T
1
< V T

2
< V T

3
. It involves 19 patients and considers the following

features: chemotherapeutics, diuretics, nephrotoxic drugs, and creati-
nine, and a single event for the diagnosis; (KSPE 5)

• A KSPE with four temporal states, temporally ordered, i.e., V T
0
<

V T
1
< V T

2
< V T

3
. This KSPE involved 19 patients and considers the

following features: chemotherapeutics, diuretics, nephrotoxic drugs, and
creatinine, and multiple events for the diagnosis (KSPE 6).

Starting the analyze from the first two KSPEs, which derived from the
same KSE, in Table 5.20, we report and extract from this KSE.

In Tables 5.21 and 5.22, we report an extract from the KSPE 1 and 2.
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Patient ID Creatinine
0

V T
0

Diuretics
1

V T
1

Creatinine
2

V T
2 ˙AKI ˙V T

37584582 high 11 furosemide 15 high 17 3 91
38020942 high 291 furosemide 292 high 296 0 357
32686570 high 21 furosemide 25 high 28 3 97
31435957 high 141 furosemide 143 high 145 0 229
32310637 normal 287 furosemide 288 normal 290 0 358
38957578 high 73 furosemide 76 high 78 3 194
34144864 normal 135 hydralazine 136 normal 139 3 249
30773739 high 126 furosemide 129 high 132 0 208
33958927 high 30 furosemide 33 high 34 3 132
39902669 high 35 furosemide 37 high 41 1 164

Table 5.21: Extract from KSPE 1

Patient ID Creatinine
0

V T
0

Diuretics
1

V T
1

Creatinine
2

V T
2 ˙AKI ˙V T

39845441 high 61 hydralazine 65 high 68 111 163
39986775 high 67 furosemide 69 high 71 111 190
31272962 high 129 labetalol 132 high 136 333 226
39659993 normal 127 furosemide 130 normal 132 333 226
34567413 high 0 furosemide 2 high 5 333 73
34353119 low 127 hydralazine 131 low 134 110 217
34294044 high 8 bumetanide 11 high 14 333 82
31452403 normal 1 furosemide 4 normal 7 333 91
30463812 high 18 furosemide 20 high 21 333 109
34185841 high 70 furosemide 72 high 75 000 145

Table 5.22: Extract from KSPE 2

Patient ID Creatinine
0

V T
0

Nephrotoxic
1

V T
1

Potassium
2

V T
2

Creatinine
3

V T
3

34058245 high 0 vancomycin 3 normal 4 high 8
30515259 normal 16 vancomycin 17 normal 19 normal 20
39554302 high 681 vancomycin 682 low 686 high 688
38400237 high 128 vancomycin 132 normal 136 high 139
38118363 high 5 vancomycin 7 normal 9 high 11
32307723 normal 0 vancomycin 2 normal 5 normal 9
36838455 normal 12 vancomycin 13 high 17 high 19
33434203 normal 0 vancomycin 1 normal 4 normal 8
31043947 normal 8 vancomycin 9 normal 12 high 16
31299423 high 6 vancomycin 7 high 10 high 11

Table 5.23: KSE with V T
k
< V T

k−1
+ 5 for k = 1, .., 4, related to the second

couple of KSPEs

The second couple of KSPEs derive from the same KSE. In Table 5.23, we
report and extract from this KSE. In Tables 5.24 and 5.25 we report an extract
from the KSPE 3 and 4.
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Patient ID Creatinine
0

V T
0

Nephrotoxic
1

V T
1

Potassium
2

V T
2

Creatinine
3

V T
3 ˙AKI ˙V T

35645463 high 1 vancomycin 4 high 8 high 12 3 72
36415396 high 11 vancomycin 14 normal 16 high 20 3 133
38889793 high 8 vancomycin 11 high 15 high 17 3 117
36886134 low 6 vancomycin 9 normal 12 low 16 1 66
38722664 high 7 vancomycin 9 high 13 high 16 3 109
34230481 high 0 vancomycin 4 high 6 high 8 0 110
39786399 high 6 vancomycin 7 low 10 high 12 3 109
35157183 normal 1 vancomycin 3 normal 6 normal 7 3 62
34913252 high 10 vancomycin 12 low 13 high 17 0 101
37278580 low 53 ketorolac 54 normal 57 low 61 0 138

Table 5.24: Extract from KSPE 3

Patient ID Creatinine
0

V T
0

Nephrotoxic
1

V T
1

Potassium
2

V T
2

Creatinine
3

V T
3 ˙AKI ˙V T

39939179 high 75 vancomycin 78 normal 81 high 82 222 172
36814961 high 55 vancomycin 57 normal 58 high 60 333 154
32025098 high 107 vancomycin 111 normal 113 high 117 333 208
31573495 normal 1 vancomycin 4 low 8 normal 12 300 109
36779265 high 21 vancomycin 23 normal 25 high 27 333 91
35645463 high 1 vancomycin 4 high 8 high 12 333 100
30849103 high 6 vancomycin 9 high 13 high 16 333 82
34294167 low 17 vancomycin 19 normal 21 normal 24 333 145
34702715 high 0 vancomycin 2 normal 5 high 8 000 73
32385234 high 150 vancomycin 151 high 152 high 154 333 235

Table 5.25: Extract from KSPE 4

Patient ID Chemoterapic
0

V T
0

Diuretics
1

V T
1

Nephrotoxic
2

V T
2

Creatinine
3

V T
3

30281768 rituximab 118 furosemide 358 vancomycin 474 low 482
37270064 etoposide 82 labetalol 196 vancomycin 400 low 775
37270064 rituximab 138 esmolol 233 vancomycin 306 high 388
32075128 rituximab 161 furosemide 210 vancomycin 346 normal 351
35611327 cisplatin 76 furosemide 175 vancomycin 289 high 304
37270064 etoposide 82 labetalol 237 vancomycin 320 low 601
37270064 etoposide 161 furosemide 187 vancomycin 400 low 769
37270064 etoposide 228 clonidine 281 vancomycin 306 low 829
37270064 rituximab 161 labetalol 266 vancomycin 320 low 650
37270064 rituximab 123 labetalol 204 vancomycin 306 low 619

Table 5.26: KSE with V T
0
< V T

1
< V T

2
< V T

3
, related to the last couple

of KSPEs

Patient ID Chemoterapic
0

V T
0

Diuretics
1

V T
1

Nephrotoxic
2

V T
2

Creatinine
3

V T
3 ˙AKI ˙V T

33992578 cisplatin 48 furosemide 63 vancomycin 87 high 197 3 147
32616999 cyclophosphamide 178 labetalol 181 vancomycin 198 high 212 3 243
38685284 cyclophosphamide 146 furosemide 165 vancomycin 167 high 293 3 237
33992578 cisplatin 48 furosemide 63 vancomycin 87 low 341 3 129
35759009 rituximab 237 metolazone 262 vancomycin 263 high 524 1 333
36770877 bortezomib 218 furosemide 238 vancomycin 259 normal 346 3 302
36214523 cisplatin 81 furosemide 94 vancomycin 99 high 159 2 174
33992578 cisplatin 48 furosemide 63 vancomycin 87 high 391 1 119
39659993 venetoclax 50 furosemide 49 vancomycin 91 normal 203 0 164
33992578 cisplatin 48 furosemide 63 vancomycin 88 high 284 2 114

Table 5.27: Extract from KSPE 5
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Patient ID Chemoterapic
0

V T
0

Diuretics
1

V T
1

Nephrotoxic
2

V T
2

Creatinine
3

V T
3 ˙AKI ˙V T

30281768 rituximab 441 furosemide 434 vancomycin 474 low 491 333 523
30281768 rituximab 441 furosemide 465 vancomycin 474 low 590 333 532
32616999 cyclophosphamide 178 labetalol 172 vancomycin 198 high 302 333 271
33020731 etoposide 164 furosemide 172 vancomycin 189 high 269 111 289
33992578 cisplatin 48 furosemide 63 vancomycin 87 high 197 333 136
37054128 crizotinib 52 furosemide 61 vancomycin 72 high 281 333 181
32616999 cyclophosphamide 178 labetalol 172 vancomycin 196 high 249 333 253
33992578 cisplatin 48 furosemide 63 vancomycin 70 high 225 221 118
32492710 venetoclax 27 furosemide 9 vancomycin 14 high 19 333 46
36038690 cyclophosphamide 274 furosemide 282 vancomycin 317 low 386 333 379

Table 5.28: Extract from KSPE 6

APFD εg εh εj KSPE

Diuretics
1
, Creatinine

2 → ˙AKI 48.1% 5% 98% KSPE #1

Creatinine
0
, Diuretics

1 → ˙AKI 48.1% 5% 98% KSPE #1

Creatinine
0
, Diuretics

1
, Creatinine

2 → ˙AKI 51.1% 0% 30% KSPE #2

Creatinine
0
, Creatinine

2 → ˙AKI 51.3% 0% 30% KSPE #2

Diuretics
1 → ˙AKI 51.3% 0% 30% KSPE #2

Creatinine
0
, Nephrotoxic

1
, Potassium

2
, Creatinine

3 → ˙AKI 40% 5% 98% KSPE #3

Creatinine
0
, Nephrotoxic

1 → ˙AKI 40.5% 5% 98% KSPE #3

Nephrotoxic
1
, Creatinine

3 → ˙AKI 40.5% 5% 98% KSPE #3

Nephrotoxic
1
, Potassium

2 → ˙AKI 40.5% 5% 98% KSPE #3

Creatinine
0
, Potassium

2
, Creatinine

3 → ˙AKI 40.5% 5% 98% KSPE #3

Creatinine
0
, Nephrotoxic

1 → ˙AKI 43% 0% 17% KSPE #4

Nephrotoxic
1
, Creatinine

3 → ˙AKI 43% 0% 17% KSPE #4

Nephrotoxic
1
, Potassium

2 → ˙AKI 43% 0% 17% KSPE #4

Creatinine
0
, Potassium

2
, Creatinine

3 → ˙AKI 43% 0% 17% KSPE #4

Chemoterapy
0
, Diuretics

1 → ˙AKI 51.3% 0% 30% KSPE #5

Chemoterapy
0
, Creatinine

3 → ˙AKI 51.3% 0% 30% KSPE #5

Chemoterapy
0
, Creatinine

3 → ˙AKI 40% 0% 30% KSPE #5

Chemoterapy
0
, Creatinine

3 → ˙AKI 40% 0% 25% KSPE #5

Chemoterapy
0
, Diuretics

1 → ˙AKI 45% 0% 20% KSPE #5

Chemoterapy
0
, Diuretics

1 → ˙AKI 45% 0% 25% KSPE #5

Chemoterapy
0
, Creatinine

3 → ˙AKI 45% 0% 25% KSPE #5

Chemoterapy
0
, Creatinine

3 → ˙AKI 55% 0% 30% KSPE #6

Chemoterapy
0
, Diuretics

1 → ˙AKI 55% 0% 30% KSPE #6

Table 5.29: A list of APFDs valid on one of the six KSPEs, with different error
thresholds.

Finally, in Table 5.26, we report an extract from the KSE which generate
the last couple of KSPEs. In Table 5.27, we report an extract of the KSPE 5.

In Table 5.28, we report an extract of the KSPE 6.
In Table 5.29, we report some of the obtained APFDs with the correspond-

ing error thresholds. Taking as example the APFD, Creatinine
0
, Diuretics

1 →
˙AKI related to the first KPSE , in Table 5.30 we report the combinations pe-

culiar to the highest level of severity, and on the contrary, the combinations of
the healthy patient. Instead, the other combinations, are less meaningful, be-
cause of the occurrence of the same combination in the healthy and the severe
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patients.

Creatinine
0

Diuretics
1

Healthy Stage 1 Stage 2 Stage 3
high propranolol 0 0 0 42
low spironolactone 0 0 0 12
high moexipril 37 0 0 0
low metolazone 72 0 0 0
high prazosin 9 0 0 63
low hydrochlorothiazide 16 0 0 52
normal doxazosin 32 0 0 20
normal propranolol 160 0 0 128
normal ramipril 41 0 0 31

Table 5.30: A list of value combinations reletad to Creatinine
0
, Diuretics

1 →
˙AKI from KSPE 1.

Nephrotoxic
1

Creatinine
3

000 012 233 333
amikacin normal 6 0 0 15
amikacin high 0 0 0 45
gentamicin normal 60 0 0 50
gentamicin high 30 0 0 110
ibuprofen normal 0 0 0 28
ketorolac low 3 0 0 27
ketorolac high 51 0 0 87
ketorolac normal 51 0 3 102
vancomycin high 2625 3 246 16164
vancomycin normal 2034 6 81 3945
vancomycin low 387 0 21 711

Table 5.31: A list of value combinations reletad to Nephrotoxic
1

Creatinine
3 → ˙AKI from KSPE 4.

In Table 5.31, we collect different value combinations for four type of pat-
terns. Let us notice that there are some combinations common between dif-
ferent patterns, and then we have combinations peculiar for any diagnoses
trend. In this case it is possible to delineate some desiderable profiles which
distinguish the different temporal patterns.

Another example is reported In Table 5.32. We collect different value com-
binations for the same type of patterns. Let us notice that these are 12 combi-
nations common in patterns of healthy patients, and severe ill patients. Most
of them, demonstrate an improvement in the creatinine values.

In Table 5.33, we find interesting value combinations from the last KSPE

with the dependency Chemoterapy
0
, Creatinine

3 → ˙AKI . They are combi-
nations which recognize only severe ill patients.
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Creatinine
0

Potassium
2

Creatinine
3

000 012 233 333
low normal high 27 0 0 15
high low normal 36 0 0 120
high normal normal 171 0 0 147
high high low 3 0 0 9
high low low 48 0 0 24
normal high low 9 0 0 9
high high normal 27 0 0 192
low normal normal 39 0 0 48
low high low 39 0 0 24
normal normal low 39 0 0 51
normal low high 18 0 0 72
normal normal high 54 0 0 384

Table 5.32: A list of value combinations reletad to Creatinine
0
, Potassium

2
,

Creatinine
3 → ˙AKI from KSPE 4.

Chemoterapy
0

Creatinine
3

000 012 233 333
crizotinib high 0 0 0 528
gemcitabine high 0 0 0 42
gemcitabine normal 0 0 0 63
idarubicin high 0 0 0 273
methotrexate normal 0 0 0 27
carboplatin high 0 0 0 0
rituximab high 0 0 0 324

Table 5.33: A list of value combinations reletad to Chemoterapy
0
,

Creatinine
3 → ˙AKI from KSPE 6.

5.9 Conclusions

In this Chapter, we introduced a 3-window framework for the specification and
evaluation of APFDs, dealing with the capability of exploiting data dependen-
cies for the prediction task. The declarative framework, which we represented
through relational calculus queries and formulas, allows one to consider dif-
ferent kinds of anchored and unanchored time windows, as well as different
evolution expressions. Evolution expressions are able to represent different
kinds of temporal history, related to domain-depending entities (e.g, patients),
which may be derived from the stored temporal data. Approximate predictive
functional dependencies have then been introduced to mine data with respect
to the prediction task. Such APFDs have been specified with respect to three
different kinds of errors, not only related to the number of tuples to be deleted
for having the corresponding FD holding, but also to the number of entities not
having tuples considered by the given FD, and by the percentage of tuples, we
admit to discard for any entity. Many examples have been provided to support
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the different aspects we discussed in the chapter. We also discussed some criti-
cal issues we have to deal with when considering real-world databases, as those
related to the computational aspects, or to the presence of unbalanced data,
and so on. We finally applied our approach to real clinical data, specifically
to MIMIC III dataset, obtaining results that demonstrate the applicability of
this new type of temporal pattern mining in medicine, but also in other con-
texts where the core of the problem is finding temporal patterns in the past to
predict a future event. As a future work, we will face the issues discussed in
Section 5.6, both related to the computational aspects and to the analysis of
the reliability of APFDs with respect to data features. Moreover, we plan to
consider different types of predicted consequent, as temporal predictive pat-
terns, composed by a suitable history of events we need to control and manage
through prediction.
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Chapter 6

Conclusions

In this thesis, we addressed the problem of explainability, discussing just some
of the most significant challenges that need to be addressed with scientific and
engineering rigor in a variety of biomedical domains. In literature, there is
still a lack of different topics such as bridging the gap between symbolic (ante
hoc) and sub-symbolic (black-box) approaches, engineering explainability into
intelligent systems, evaluating and improving the effects of explainable compo-
nents and approaches, determining when explainability is needed. All of these
could be new future research directions.

Among the different challenges, we addressed the concept of predictivity
in the context of temporal data mining in the clinical domain, analyzing how
temporality and explainability are intertwined. The first research direction was
focused on the introduction a new kind of Predictive Temporal Pattern, called
Predictive Trend-Event Patterns (PTE-Ps). The new temporal knowledge
associated with these predictive patterns determined a notable difference from
the atemporal patterns. With preliminary results, we showed that it is possible
to find effective predictive patterns for certain illness.

As a second research direction, we proposed a methodology for deriving
a new kind of approximate temporal functional dependencies, called Approx-
imate Predictive Functional Dependencies (APFDs), based on a new three-
window framework base on the Observation Window (OW), the Waiting Win-
dow (WW) and the Prediction Window (PW). The declarative framework,
which we represented through relational calculus queries and formulas, allows
one to consider different kinds of anchored and unanchored time windows,
as well as different evolution expressions. Evolution expressions are able to
represent a different kind of temporal histories, related to domain-depending
entities (e.g, patients), which may be derived from the stored temporal data.
APFDs have been specified with respect to three different kinds of errors, not
only related to the number of tuples to be deleted for having the corresponding
FD holding, but also to the number of entities not having tuples considered by
the given FD, and by the percentage of tuples, we admit to discard for any en-
tity. So we preferred to present the formal relational calculus-based definitions
of the single general concepts together with a pointwise exemplification. As a
future work, we plan to consider different types of the predicted consequent, as
temporal predictive patterns, composed by a suitable history of events we need
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to control and manage through prediction. For the theoretical aspects, other
interesting research directions could be the satisfiability, the logical implication
and inference rules, and the axiomatizability.
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Chapter 7

List of pubblications

In this list of publications, there are the research publication reported in the
different chapters of the thesis, and in addition there are other publication
written during this PhD.

• A manifesto on explainability for artificial intelligence in medicine, Carlo
Combi, Beatrice Amico, Riccardo Bellazzi, Andreas Holzinger, Jason H
Moore, Marinka Zitnik, John H Holmes, Artificial Intelligence in Medicine,
Vol. 133, 102423, Elsevier 2022

• A 3-Window Framework for the Discovery and Interpretation of Pre-
dictive Temporal Functional Dependencies, Beatrice Amico and Carlo
Combi, Artificial Intelligence in Medicine - 20th International Confer-
ence on Artificial Intelligence in Medicine, AIME 2022, Vol. 13263 of
LNCS, pages 299–309, Springer 2022, Best Student Paper Award
Winner, doi:10.1007/978-3-031-09342-5 29

• A Reproducible ETL Approach for Window-based Prediction of Acute
Kidney Injury in Critical Care Unit and Some Preliminary Results with
Support Vector Machines, Isabela A. Chiorean, Beatrice Amico, Carlo
Combi, John H. Holmes, IEEE International Conference on Bioinfor-
matics and Biomedicine, BIBM 2021, pages 3532–3539, IEEE 2021,
doi:10.1109/BIBM52615.2021.9669143

• Discovering predictive trend-event patterns in temporal clinical data, Mat-
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• Latent class trajectory modeling of 2-component Disease Activity Score in
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to biologic disease-modifying antirheumatic drugs, Arianna Dagliati, Dar-
ren Plant, Nisha Nair, Meghna Jani, Beatrice Amico, Niels Peek, and
Ann W Morgan, John Isaacs, Anthony G Wilson, Kimme L Hyrich, and
others, Arthritis & Rheumatology, Vol.72-10, pages=1632–1642, Wiley
Online Library 2020

148



Bibliography

[1] Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y Lim, and Mohan
Kankanhalli. Trends and trajectories for explainable, accountable and
intelligible systems: An HCI research agenda. In Proceedings of the
International Conference on Human Computer Interaction, CHI, pages
1–18, 2018.

[2] Ziawasch Abedjan, Cuneyt G Akcora, Mourad Ouzzani, Paolo Papotti,
and Michael Stonebraker. Temporal rules discovery for web data clean-
ing. Proceedings of the VLDB Endowment, 9(4):336–347, 2015.

[3] Ajaya Adhikari, David MJ Tax, Riccardo Satta, and Matthias Faeth.
LEAFAGE: Example-based and Feature importance-based Explanations
for Black-box ML models. In 2019 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), pages 1–7. IEEE, 2019.

[4] Klaus-Peter Adlassnig, Carlo Combi, Amar K. Das, Elpida T. Keravnou,
and Giuseppe Pozzi. Temporal representation and reasoning in medicine:
Research directions and challenges. Artif. Intell. Medicine, 38(2):101–
113, 2006.

[5] J Adler-Milstein, JH Chen, and G Dhaliwal. Next-generation Artifi-
cial Intelligence for Diagnosis: From Predicting Diagnostic Labels to
”Wayfinding”. JAMA, 2021.

[6] Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. Towards a
Unified Framework for Fair and Stable Graph Representation Learning.
Proceedings of Conference on Uncertainty in Artificial Intelligence, UAI,
2021.

[7] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining
association rules. In Proc. 20th int. conf. very large data bases, VLDB,
volume 1215, pages 487–499. Citeseer, 1994.

[8] Seyoung Ahn, Jeehyeong Kim, Soo Young Park, and Sunghyun Cho.
Explaining Deep Learning-Based Traffic Classification Using a Genetic
Algorithm. IEEE Access, 9:4738–4751, 2020.

[9] James F Allen. Towards a general theory of action and time. Artificial
intelligence, 23(2):123–154, 1984.

149



[10] Beatrice Amico and Carlo Combi. A 3-window framework for the Discov-
ery and Interpretation of Predictive Temporal Functional Dependencies.
In International Conference on Artificial Intelligence in Medicine, pages
299–309. Springer, 2022.

[11] Diego Ardila, Atilla P Kiraly, Sujeeth Bharadwaj, Bokyung Choi,
Joshua J Reicher, Lily Peng, Daniel Tse, Mozziyar Etemadi, Wenxing
Ye, Greg Corrado, et al. End-to-end lung cancer screening with three-
dimensional deep learning on low-dose chest computed tomography. Na-
ture Medicine, 25(6):954–961, 2019.

[12] Monika Arora, Uma Kanjilal, and Dinesh Varshney. Evaluation of infor-
mation retrieval: precision and recall. International Journal of Indian
Culture and Business Management, 12(2):224–236, 2016.

[13] Nida Aslam. Explainable Artificial Intelligence Approach for the Early
Prediction of Ventilator Support and Mortality in COVID-19 Patients.
Computation, 10(3):36, 2022.

[14] Boris Babic, Sara Gerke, Theodoros Evgeniou, and I Glenn Cohen. Be-
ware explanations from AI in health care. Science, 373(6552):284–286,
2021.

[15] Amie J Barda, Christopher M Horvat, and Harry Hochheiser. A quali-
tative research framework for the design of user-centered displays of ex-
planations for machine learning model predictions in healthcare. BMC
medical informatics and decision making, 20(1):1–16, 2020.

[16] Iyad Batal and Milos Hauskrecht. Constructing classification features
using minimal predictive patterns. In Proceedings of the international
conference on Information and knowledge management (CIKM), 2010.

[17] Iyad Batal, Hamed Valizadegan, Gregory F Cooper, and Milos
Hauskrecht. A temporal pattern mining approach for classifying elec-
tronic health record data. ACM Transactions on Intelligent Systems
and Technology (TIST), 4(4):1–22, 2013.

[18] Riccardo Bellazzi, Cristiana Larizza, Paolo Magni, and Roberto Bel-
lazzi. Temporal data mining for the quality assessment of hemodialysis
services. Artificial Intelligence in Medicine, 34(1):25 – 39, 2005.

[19] Riccardo Bellazzi, Cristiana Larizza, Paolo Magni, and Roberto Bel-
lazzi. Temporal data mining for the quality assessment of hemodialysis
services. Artificial intelligence in medicine, 34(1):25–39, 2005.

[20] Riccardo Bellazzi, Cristiana Larizza, and Alberto Riva. Temporal ab-
stractions for interpreting diabetic patients monitoring data. Intelligent
Data Analysis, 2(1-4):97–122, 1998.

150



[21] Riccardo Bellazzi and Blaz Zupan. Predictive data mining in clinical
medicine: current issues and guidelines. International Journal of Medical
Informatics, 77(2):81–97, 2008.

[22] Riccardo Bellazzi and Blaz Zupan. Predictive data mining in clinical
medicine: current issues and guidelines. International journal of medical
informatics, 77(2):81–97, 2008.

[23] Rinaldo Bellomo, Claudio Ronco, John A Kellum, Ravindra L Mehta,
and Paul Palevsky. Acute renal failure–definition, outcome measures, an-
imal models, fluid therapy and information technology needs: the second
international consensus conference of the acute dialysis quality initiative
(ADQI) group. Critical care, 8(4):1–9, 2004.
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