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Sommario 
 
L’apparente semplicità con cui compiamo le più diverse azioni utilizzando gli arti 

superiori, dall’afferrare una palla al sollevare un peso, nasconde la complessità del 

sistema necessario per pianificare e controllare l’azione. Un aspetto cruciale per il 

controllo motorio dell’arto superiore è la possibilità di prevedere le conseguenze 

dei nostri gesti. Sebbene questa possibilità sia stata recentemente messa in 

discussione, la letteratura suggerisce che il sistema nervoso centrale utilizzi un 

modello interno forward che partendo dall’informazione sul comando motorio e 

sullo stato iniziale dell’arto, predice il feedback sensoriale che verrà percepito 

durante lo svolgimento dell’azione. 

Il cervelletto è considerato essenziale per l’implementazione di tale modello e tale 

idea è supportata dalle osservazioni condotte su pazienti con lesioni cerebellare, il 

cui comportamento atassico è stato descritto come conseguenza di una disfunzione 

del modello forward. Tuttavia, minore attenzione è stata dedicate al ruolo della 

propriocezione nel controllo motorio anticipatorio degli arti superiori. 

 

L’obiettivo di questo progetto è di indagare differenti aspetti del controllo motorio 

anticipatorio in soggetti sani e in persone con esiti di ictus cerebrale con lesioni 

cerebellari e deficit somatosensoriali. 

 

Nella prima sezione ci siamo posti l’obiettivo di fornire nuove evidenze sul ruolo 

del modello forward nella funzione sensorimotoria dell’arto superiore, con 

riferimento al fenomeno di attenuazione sensoriale secondo cui gli stimoli tattili 

generati da movimento volontari sono percepiti meno intensamente di identici 

stimoli generati da sorgenti esterne. Sono stati inclusi dati da 3 studi 

precedentemente pubblicati per un totale di 375 soggetti. In questi studi ai soggetti 

veniva chiesto di riprodurre in diverse condizioni con l’indice della mano destra 

una pressione che veniva somministrata sull’indice della mano sinistra. La nostra 

analisi ha riguardato il confronto tra condizioni in termini di variabilità tra una 

prova e l’altra. I risultati hanno mostrato che tale variabilità era associate ai livelli 

di attenuazione relativa tra diverse condizioni supportando indirettamente il ruolo 

del modello forward nel fenomeno di attenuazione sensoriale. 
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Nella seconda sezione di questo progetto si è valutato la modulazione della forza di 

presa durante il sollevamento bimanuale di un oggetto in soggetti con ictus 

cerebrale e deficit somatosensoriale. Le procedure di valutazione hanno incluso due 

esercizi di modulazione della forza di presa e un esercizio di sollevamento. Per 

queste valutazioni è stato utilizzato un dispositivo sensorizzato in grado di misurare 

la forza di presa e la posizione dello stesso nello spazio, consentendo di ottenere 

parametri cinematici della prova di sollevamento. Dopo aver validato il protocollo 

sperimentale, sono stati inclusi 11 soggetti sani e 9 pazienti con ictus cerebrale e 

deficit somatosensoriale. La nostra analisi ha mostrato alcuni segni di alterazioni 

della pianificazione motoria nei pazienti con ictus. Nello specifico, tali pazienti 

hanno mostrato alterazione nel timing di esecuzione del picco di forza di presa 

durante il sollevamento. 

 

Nell’ultima sezione del presente lavoro si è valutato il controllo motorio 

anticipatorio durante un gesto di raggiungimento dell’arto superiore in pazienti con 

ictus con lesione cerebellare o con deficit somatosensoriale. Con tale fine è stato 

sviluppato e validato un sistema di valutazione a basso costo della cinematica del 

movimento indice-naso. Sono stati calcolati dei parametri del movimento relativi 

all’accuratezza del gesto, alla sua efficacia e alla pianificazione motoria. Inoltre è 

stato proposto un modello interpretativo dell’atassia cerebellare e sensoriale come 

conseguenze di disfunzioni del controllo motorio anticipatorio. I risultati hanno 

suggerito che pazienti con deficit somatosensoriale sono stati più sensibili 

all’assenza di informazione visiva, rallentando significativamente il movimento 

quando eseguito ad occhi chiusi. I parametri analizzati hanno consentito di catturare 

deficit di pianificazione motoria nei pazienti con lesione cerebellare.  

Il presente lavoro ha evidenziato l’importanza della valutazione del controllo 

motorio anticipatorio in pazienti con esiti di ictus cerebrale. La ricerca futura dovrà 

occuparsi del ruolo del controllo motorio anticipatorio nell’apprendimento e sullo 

studio di strategie riabilitative specifiche per tali disfunzioni. 
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Abstract 
 
A crucial feature of the upper limb motor control is the possibility of predicting the 

consequences of our own movements. The literature suggested that the central 

nervous system uses forward models that, starting from the initial position of the 

upper limb and from the action’s motor command, predict the sensory feedback and 

the future limb’s state during the action execution. The cerebellum is considered a 

crucial structure for the neural implementation of such internal model. This 

evidence is supported by a series of studies that described the cerebellar ataxic 

behavior as a forward model dysfunction. However, less attention has been 

dedicated to the role of somatosensory information in predictive motor control for 

the upper limbs.  

 

The goal of this project was to investigate different aspects of the anticipatory motor 

control in healthy subjects and in people with cerebral stroke with cerebellar lesions 

and somatosensory impairment.  

 

In the first section, we aimed to provide further evidence on the role of the forward 

model in upper limbs sensorimotor function. We focused on the sensory attenuation 

phenomenon, and we performed new analyses on previously recorded data on force 

matching tasks in healthy subjects. We collected data from three experiments 

including a total of 375 subjects. In these experiments a target force was delivered 

on the subjects’ left index finger and they asked to reproduce it in different 

conditions. Our analysis compared the within-subject trial-to-trial variability in the 

matching force between conditions. The results showed that, considering the 

matching force exertion, the trial-to-trial variability was associated with the level 

of tactile perception, corroborating the hypothesis that a predictive mechanism is 

involved in the sensory attenuation phenomenon. 

 

In the second section, we aimed to investigate anticipatory grip force modulation 

deficits during a bimanual object lifting task in patients with stroke and 

somatosensory deficits. The assessment procedures included two force matching 

tasks and a lifting task. We used a sensorized device allowing us to record the grip 
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force with which subjects grasped it and track its position and compute kinematics 

parameters of the lifting. After validating our experimental procedures in healthy 

controls, we included 11 healthy subjects and 9 patients with stroke and 

somatosensory deficits. Our analysis provided some evidence of impaired motor 

planning in patients with CNS stroke sequelae. Specifically, patients with stroke 

showed abnormal timing of maximal grip force exertion during the lifting. 

 

In the last section, we aimed to assess predictive upper limb behavior of a fast and 

repetitive reaching task in patients with cerebellar lesions and patients with 

somatosensory deficits. We developed and validated an accurate low-cost system 

for the kinematic assessment of the index-to-nose task and we compared a group of 

young healthy subjects, and stroke patients with cerebellar lesions or proprioceptive 

impairment. Our analysis measured a set of reaching parameters referring to 

movement accuracy, efficiency and motor planning in a cohort of healthy controls 

and patients affected by CNS stroke. Moreover, we proposed a theoretical 

framework for interpreting sensory and cerebellar ataxia as different forward 

model’s dysfunctions. Our results suggested that patients with somatosensory 

deficit were the most affected by the absence of visual feedback significantly 

reducing movement speed when performing the task with closed eyes. Moreover, 

we found that patients with cerebellar lesions showed signs of impaired movement 

planning.  

This dissertation underlined the importance of assessing predictive motor control 

in patients affected by CNS lesions. Future research should focus on the role of 

anticipatory motor control in motor learning and on the design of rehabilitation 

treatment for forward model dysfunctions. 
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Background  
 

 
Upper limb movement planning: the sensorimotor transformations 

Almost every interaction that we have with the environment occurs by the mean of 

a movement. From the apparently easiest acts of reaching for a cup and drinking to 

the most difficult actions of a professional athlete, the precision and accurateness 

of our movement are of paramount importance. This is particularly relevant in the 

context of the Upper Limb (UL), whose mechanics is particularly complex and 

requires sophisticated control mechanisms. The mechanisms that set the motor 

commands generating our movements and control the effectiveness of those 

movements are complex and involve several structures and areas in the Central 

Nervous System (CNS). This whole chain of events originates from a need or a will 

that is subsequently translated into a goal. For example, being thirsty leads to the 

will to drink and to the aim of reaching for a cup of water. The detailed description 

of the processes that occur before the movement planning is beyond the scope of 

this work, and it will not be dealt with. In contrast, this dissertation will focus on 

the processes that take place from the definition of the motor command to the 

monitoring phase during the UL movement execution. 

The first task the CNS must carry out is localizing the target of the movement. This 

can be an object, like the previous example on the cup of water, or a part of our 

body. In the context of daily life tasks, the visual system is largely responsible for 

target localization. Visual inspection of the environment can allow us to map abject 

in both egocentric and allocentric reference systems (Aagten-Murphy & Bays, 

2019). Then, the position of the object needs to be integrated with the position of 

the upper limb. This means that the locations of the target and the UL must be 

defined in the same coordinates system. The initial UL position is defined by the 

integration of different sensory modalities, including visual feedback, sense of 

position and tactile sensations. Previous studies showed that the CNS uses different 

coordinate systems to carry out this integration process (Soechting & Flanders, 

1989b, 1989a). Seminal experiments suggested that firstly, the visual inspection of 
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the environment leads to the mapping of the target in retinal coordinates. These 

coordinates are then transformed into systems based on the head and, eventually, 

on the shoulder (Soechting & Flanders, 1989b). Evidence of this was obtained by 

observing the spatial errors that subjects made in pointing to a target with their 

index finger and with a stick. The errors’ distribution was consistent with a 

representation of the target in spheric coordinates centered on the shoulder 

(Soechting & Flanders, 1989a).  

Once the coordinates of the target and the hand are defined, the CNS computes the 

trajectory that the hand must follow to reach the object and the corresponding motor 

command. A vast network of frontoparietal connections is responsible for these 

operations. From a general perspective, these circuits allow information on the 

target’s and hand’s position to flow in the premotor cortex, where it is integrated 

with the representation of the goal and is translated into a motor command. These 

processes are usually referred to as sensorimotor transformation (Frey et al., 2011).   

The posterior parietal cortex is the primary neural underpinning for coding the 

target’s position (Frey et al., 2011). Visual in somatosensory inputs are, in fact, 

integrated into parietal areas, primarily in the upper parietal lobule, where bimodal 

neurons responding to both visual and proprioceptive stimuli were found (Rizzolatti 

& Matelli, 2003). Circuits connecting this region with the dorsal premotor cortex 

are important for the control of goal-directed UL and are involved in visually 

controlled pointing and reaching-to-grasp movement. Other parallel circuits 

connect the inferior parietal lobule with the ventral premotor cortex. The object’s 

shape and its association with an appropriate hand posture are coded by these 

circuits. The integration of the somatosensory, visual and goal-related information 

is then used to plan the activities and generate the motor command. 

The internal models 
 
The CNS constructs and uses parametric representations of the physical word to 

plan actions and to define motor commands needed to perform them. These 

representations are often referred to as internal models (Mcnamee & Wolpert, 

2019). The expression has been widely used in the literature with different 
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meanings, and for the sake of clarity, it is useful to revise this concept that will be 

used recurrently in the following chapters. A formal classification of internal 

models has been recently proposed (Mcnamee & Wolpert, 2019). Accordingly, they 

are divided into prior models, perceptual inference models, sensory and motor noise 

models, forward dynamic models, and cognitive maps. Prior models describe the 

priors over sensory signals or the state of the world. The CNS learns during the 

development of several statistical regularities in terms of sensory input that are 

used, in integration with sensory feedback, to infer the body’s or external world’s 

state. Perceptual inference models can be considered as higher-order cognitive 

processes. These types of models are used, for example, to compute a property of 

an object given the related sensory input. On the other hand, models with such 

characteristics are used to compute the probabilities over a latent state that has 

generated a given sensory input. These models are involved in the reafference 

cancellation of the Sensory Attenuation phenomenon (SA), which will be explored 

in more detail in the following sections. Models on sensory and motor noise are 

crucial for the CNS to determine the level of noise (and, in a sense, reliability) of 

the sensory input and motor output. The forward dynamical models take a state at 

a time instant and predict the state of the system in the future. Lastly, the so-called 

cognitive maps can be thought of as a structured organization of state variables that 

help the CNS to deal with complex systems.  

In the framework of the present work, we will refer to the internal model in the 

context of sensorimotor integration, motor planning and motor control. Within this 

framework, internal models are usually defined as systems that simulate internal 

(musculoskeletal) or external (environmental) dynamical processes using sensory 

input, motor commands or prior knowledge (Kawato et al., 1987a). Historically, in 

this context the internal models are divided into two groups: forward models and 

inverse models (M. I. Jordan, 1996a). The inverse models, compute the motor 

command needed for reaching a desired state. The forward models, in contrast, 

compute the evolution of a system in the future given the present state and the motor 

command (Frey et al., 2011; R. S. Johansson & Edin, 1993; Wolpert & Flanagan, 

2001). After a motor command is set in the motor cortex, a copy of the command 

(efferent copy) serves as an input to the forward model along with the estimated 
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previous position of the limb. The forward model predicts the sensory feedback that 

should accompany the execution of the motor command and estimates changes in 

the limb’s position across time (Wolpert & Flanagan, 2001). 

 

The forward model in the upper limb motor control  

Self-monitoring is fundamental to normal functions in planning, controlling, and 

anticipating the consequences of motor acts. Knowledge of the actual position of 

the limb usually comes from the integration of proprioceptive and visual feedback 

along with preliminary information. As we have already seen, a forward model is 

essentially a map that matches the actual state of the body and the motor command 

to the final state and associated sensory feedback (Mcnamee & Wolpert, 2019). In 

order to properly understand the benefits of this mechanism on motor control, it is 

relevant to mention how the CNS monitors the action’s execution and corrects it in 

case of errors (Figure 1). The execution of the motor command gives rise to 

consequent sensory feedback, and this returning afferent signal is compared with 

the predictions of the forward model, allowing online correction of the movement. 

This mechanism is called feedback motor control (Frey et al., 2011).  

Prediction of state estimation 

Although apparently efficient, a system based only on feedback control is affected 

by some drawbacks. The main issue is related to the intrinsic delay in sensory 

information. For humans, sensory loop delays are estimated to be around 100-

150ms for proprioceptive feedback. This means that at each instant, the CNS 

process the sensory information about the state of the system 150 ms before 

(Davidson, 2016) . For fast UL movements that are commonly in the order of 0.5 s, 

this delay can be significant. A system that relies only on feedback control would 

present large out-of-phase excessive oscillations in response to spatial errors. A 

useful and intuitive example of this behavior is thinking about trying to regulate the 

water temperature by having a shower with an unknown faucet (Frey et al., 2011). 

Typically, we would start from having too cold water (error), then we would move 

the faucet to a warmer temperature (correction). However, it would take a few 

seconds for the water to warm up (delay), and we may find the temperature now 
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being too hot (excessive correction). Eventually, after a few trials and errors, we 

may finally be able to adjust the faucet at the right temperature. In the context of 

UL movement control, a forward model that is able to predict the system’s behavior 

and simulate the upcoming state of the body can, in principle, contribute to a 

feedback loop even before the actual feedback comes (Wolpert & Flanagan, 2001). 

This makes the movement robust to sensory feedback delays. Moreover, the 

estimate of the future sensory input can be compared and integrated with the actual 

sensory feedback improving its accurateness (Mcnamee & Wolpert, 2019). Another 

interpretation of the usefulness of a forward model in motor control came from 

(Tanaka et al., 2020). According to the authors, forward model uses the upcoming 

sensory feedback and information on the motor command to update the sensory 

feedback and, doing so, overcome the issue of sensory delay(Tanaka et al., 2020).  

Predictive motor control is crucial to performing accurate and fast movements 

while holding objects. One of the most famous examples of the importance of the 

forward model in this context is the so-called “waiter task”. Imagine a waiter 

holding a tray with a few glasses on it. If the waiter voluntary removes one of the 

glasses from the tray, he will be able to keep the tray stable. However, if someone 

else removes it unpredictably, the waiter will fail to keep the tray stable and may 

push it upward. In the former situation, the waiter reduces the force with which he 

was holding up the tray simultaneously to the object lifting, while in the latter, he 

will react after the removal of the glass as it occurs in a common feedback control 

mechanism. Similar behavior occurs when we move an object upward while 

holding it with one hand. In order to prevent the object’s slippage, we must increase 

the grip force proportionally to the acceleration we transmit to it. Previous studies 

showed that the grip force increases with no delay from the movement onset (R. S. 

Johansson & Edin, 1993). Clearly, if this behavior was driven by tactile feedback, 

the grip force increase would have occurred with the known sensory delay (ca. 

100ms) from the movement as a reaction to the initial slippage. This has been 

interpreted as strong evidence supporting the predictive nature of such a 

phenomenon (Birznieks et al., 1998; R. S. Johansson & Edin, 1993). According to 

this interpretation, the efferent copy of the motor command of lifting the object is 

used by the forward model to predict the consequences of that movement (i.e. the 
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possible object slippage), and this information is used to increase the grip force. 

Notably, in order for the grip force to increase simultaneously to the object’s 

movement, these processes have to be carried out before the movement onset. 

 

 

Figure 1 Schematic representation of the forward model (green) in the context of the upper limb motor 
control. Once the motor command is set in the motor cortex, a copy of this command (Efference Copy) is sent 

to the forward model that integrate it with sensory information on the current state of upper limb. The 
forward model generates the predicted sensory input that is then compared to the actual sensory feedback 

generated by the movement. The discrepancies between these two signals (yellow) allow online correction of 
the motor command via the so-called feedback motor control. 

 
 

The attenuation of sensory re-afference 

The possibility of predicting the sensory feedback from the performance of a 

voluntary action allows distinguishing between stimuli that are the consequence of 

our own actions and stimuli that are unpredictable and come from the external 

environment. This is possible even if, from an anatomical level, this information 

comes from the same receptors and is hence indistinguishable. While taking into 

account the predicted feedback makes the movement kinematics robust to sensory 

delay, this source of feedback, sometimes called re-afference, could, on the other 

hand, increase the overall noise of the sensory information (Bays & Wolpert, 

2007b). Moreover, from a functional perspective, the unexpected and unpredictable 
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external stimuli are arguably the most informative source of feedback. Therefore, 

distinguishing between these two sources of feedback is conceivably useful to 

optimize movement effectiveness. Several mechanisms have been proposed to be 

responsible for attenuating the perception of sensations that are consequences of 

our own actions in order to enhance the processing of external events. However, 

not all these mechanisms involve a forward predictive model. For the sake of 

simplicity, they can be divided into unpredictive general gating mechanisms and 

predictive re-afference cancellation or Sensory Attenuation (SA) phenomenon. The 

former represents a well-known phenomenon responsible for the attenuation of all 

the tactile sensations perceived during a voluntary movement of the UL (Chapman 

et al., 1987).  Recent experiments brought evidence that this attenuated perception 

is triggered by the motor command signal at a spinal cord level (Seki et al., 2003; 

Voss et al., 2006). However, this mechanism acts irrespective of the source of the 

sensory afference. This movement-related gating removes part of the sensations 

coming from voluntary generated movements along with sensations coming from 

external sources. In contrast, the SA phenomenon is thought to selectively attenuate 

only the sensation coming from the voluntary-generated actions, leaving intact the 

intensity of sensations coming from external sources (Figure 2). In recent years, 

several works provided evidence of such a mechanism in tactile sensation (Bays et 

al., 2005, 2006; Bays & Wolpert, 2007a; Shergill et al., 2003, 2013; Wolpe et al., 

2016). In these studies, healthy subjects performed a force matching task. A motor 

torque attached to a lever exerted a target force on the subjects’ left index finger. 

Then, they were asked to reproduce that force using their right index finger by either 

pressing directly on their left index finger (through the lever) or indirectly 

manipulating a slider that controlled the same lever. The former condition was 

called self-condition, while the latter was referred to as external condition. In other 

words, the subjects were asked to compare two tactile sensations: the first being the 

target force and the second being their matching force executed in either self- or 

external conditions. Consistently across different studies, the results showed that 

subjects were more accurate in reproducing the target force in the external 

condition. In contrast, they systematically exaggerated the matching force in the 

self-condition. In this condition, the matching force was exerted using the right 
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index finger right above the left index. Therefore, the forward model predicted that 

this voluntary action would have generated a consequent tactile stimulus on the left 

index. The authors proposed that this mechanism was responsible for the 

attenuation in the perception measured only in the self-condition. Although this 

hypothesis has recently been questioned and alternative explanations have been 

proposed (Press et al., 2020), there is compelling evidence that the SA phenomenon 

involves a predictive forward model (Bays et al., 2006; Kilteni et al., 2020). 

From a general perspective, the ability to predict the sensory input from our own 

actions and its comparison with the actual sensory input can also play a role in the 

discrimination between self- and externally generated sensation. Famous evidence 

for this role was obtained decades ago by studies investigating eye movements, 

from the simple observation that a gentle touch of our eyeball creates the illusion 

that the environment is moving. In contrast, when we voluntary move our eyes to 

explore the environment, we perceive the environment as fixed even if the actual 

movement of the eyeballs is comparable in the two situations (Sperry, 1950; von 

Holst & Mittelstaedt, 1950). Authors were the first to suggest that a copy of the 

motor command of the eyes’ movement (called “corollary discharge”) was used for 

predicting eye movement and cancelled out the effect of motion on the 

environment. Using this mechanism, the CNS would be able to distinguish whether 

the same visual stimulus is generated by a voluntary movement or by an external 

source (the passive movement of the eyeball). This hypothesis has then been 

applied to other domains of sensorimotor behavior (M. Jordan & Rumelhart, 1992).  
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Figure 2 Schematic representation of the attenuation of the predicted sensory feedback. A motor command 
(red) generates a movement and, consequently, sensory feedback (reafference). In this framework, only the 
predicted sensory feedback is subtracted from the sensory reafference enhancing the stimuli resulting from 

external sources (red). 

 
Motor learning 
 
When the predicted and the actual sensory feedback mismatch, the motor system 

can correct the execution of the task and, separately, update the internal models that 

represent the environment’s properties. Suppose, for example, that a tennis player 

is asked to play with a racquet heavier than the one he is used to playing with. The 

first hits would probably not be executed properly, but after a few trials, the player 

should be able to adapt to the new racquet and perform adequately. In case an error 

occurs (e.g. missing a target in a pointing task), the information about the sensory 

prediction is essential for the CNS to understand how the error was made (e.g. in 

which direction and how much the target was missed). This type of learning, often 

called error-based, has been studied in several sensorimotor domains ranging from 

the visual adaptation to an optical prism to reaching movement in force fields 

(Martin et al., 1996; Shadmehr & Mussa-Ivaldi, 1994; Thoroughman & Shadmehr, 

2000). Clinical studies provided compelling evidence that the cerebellum is 

essential for the fast error-based learning (Smith & Shadmehr, 2005; Tseng et al., 

2007). The forward model has also been linked to the learning process through 

observation. Studies showed that observing another person performing an action 
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enhances the observer’s sensorimotor representation of that action (Rizzolatti et al., 

2021). Interestingly, it has been shown that through observation, healthy subjects 

can learn to compensate for perturbation even before the actual exposition to it, 

showing faster adaptation than naive subjects once they face it. It has been 

hypothesized that this behavior involves the ability to predict the errors and their 

corresponding adjustments using a forward model that simulates the action 

performance (Mattar & Gribble, 2005). 

 
Neural substrates 
 
The literature on the neural substrates of forward models is wide and heterogeneous. 

However, there is general strong agreement that the cerebellum and the posterior 

parietal cortex play a crucial role in this mechanism (Mcnamee & Wolpert, 2019). 

Extensive evidence has been brought by lesion studies that matched damaged areas’ 

location with motor control deficits. Generally, subjects with impairment in the 

forward model and in predictive motor control show a peculiar behavior. Although 

the specific features of motor control impairments rely on the etiology of the 

dysfunction, these patients show some common characteristics. Relevant evidence 

on patients with forward motor control impairment came from studies on cerebellar 

lesions. However, impairment in such a function has been showed also in 

psychiatric patients affected by schizophrenia, patients with UL dystonia and 

patients with functional motor disorders (Avanzino et al., 2018; Macerollo et al., 

2015, 2016; Shergill et al., 2005).  

 

Cerebellum 
 
Functional anatomy 
 
The cerebellum is a structure of the CNS located in the posterior cranial fossa, 

posterior to the fourth ventricle, the pons and medulla. The cerebellum is divided 

into two symmetrical hemispheres with a narrow midline zone called the vermis. 

From a functional perspective, the cerebellum can be divided in different areas in a 

medial-to-lateral organization. The medial section is called spino-cerebellum. It 

receives proprioceptive input from the spinal cord, from the dorsal columns and 
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from the spino-cerebellar tract and sends its output mainly via the deep cerebellar 

nuclei to the motor cortex. It is involved in the control of posture and limbs’ 

movements. The lateral areas constitute the neocerebellum, which receives input 

from the cerebral cortex and projects through the deep nuclei to the thalamus, 

specifically to the ventro-lateral nuclei. The neocerebellum is thought to be 

involved in cognitive tasks and action planning. Lastly, the vestibulo-cerebellum 

lies below the cerebellar hemispheres and it is involved mainly in balance control 

and spatial orientation. Although representing around the 10% of the brain volume, 

in humans it contains more than three times the cerebrum’s neurons. A layer of dura 

mater separates it from the cerebrum, called the tentorium cerebelli. It is connected 

with other regions of the CNS through the pons, by six cerebellar peduncles (three 

for each side): superior, middle and inferior. The superior peduncle is mainly an 

output pathway to the cerebral cortex via thalamic nuclei. The middle and inferior 

peduncles convey input fibers to the cerebellar cortex. The former collects 

projections from the pontine nuclei, while the latter from the spinal cord and the 

vestibular nucleus.  

Most of the volume of the cerebellum is made of a fold layer of gray matter called 

cerebellar cortex. Underneath the cortex, the white matter is organized in neural 

streams connecting the cortex to the pons, giving rise to the so-called arbor vitae 

from its characteristic shape in cross-section. Within the white matter, lie four deep 

nuclei composed of gray matter: the dentate, emboliform, globose and fastigii. At 

a cellular level, the cerebellum shows a rather regular organization. The cerebellar 

cortex includes five principal cell’s types: the cells of Purkinje, the granule cells, 

the basket cells, the Golgi cells and the stellate cells (Voogd & Koehler, 2018). The 

cerebellum receives input from the axons of the mossy fibers (carrying information 

from the cerebral cortex, the spinal cord and the vestibular system) and the climbing 

fibers whose cell bodies are in the inferior olive nucleus (Kelly & Shanley, 2016). 

The main output of the cerebellar cortex are the Purkinje cells that project to the 

deep cerebellar nuclei.  

The cerebellar cortex is organized in three layers. From internal to external there 

are: the granular layer, the Purkinje layer and the molecular layer. The granular 

layer owes its name to the granular cells, whose bodies lie in this area. The granular 
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cells’ dendrites make synapsis with the mossy fibers’ axons and with the Golgi 

cells, in a structure called glomerulus. The axons of the granular cells extend their 

projections to the molecular layer originating the so-called parallel fibers. In this 

layer each parallel fiber makes synapsis with dozens of Purkinje cells. The Purkinje 

cells’ body are found in the homonymous layer. Purkinje’s dendrites extend 

externally to the molecular layer where receive input signal from the granular cells’ 

parallel fibers and from the climbing fibers. The Purkinje’s axons exert an 

inhibitory action on the deep cerebellar nuclei via GABAergic synapsis. In the 

molecular layer, along with the parallel fibers, Purkinje dendrites and climbing 

fibers, lie the basket and stellate cells. These cells have an inhibitory action on the 

cerebellar output. From a general perspective, the cerebellum receives input from 

the cerebral cortex through the anterior pontine nuclei, from the spinal cord via the 

spinocerebellar tract and from several nuclei in the brainstem including the inferior 

olivary nucleus. On the other hand, it emits outputs to brainstem nuclei and to the 

cerebral cortex via the thalamus (D’Angelo, 2018). In contrast to the cerebrum, the 

cerebellum control movements of the homolateral hemibody and projects to the 

cerebral contralateral hemisphere. The cerebellum is involved in a neural loop that 

include the cerebral cortex, the brainstem and the thalamus. The sensorimotor areas 

of the cerebral cortex project to the cerebellum through the pontine nuclei. The 

cerebellum integrates the input coming from the cerebral cortex with 

somatosensory information coming from the spinocerebellar tract and send back its 

output to the motor and pre-motor areas of the cerebral cortex through the ventro-

lateral thalamic nuclei (D’ANGELO, 2011; D’Angelo, 2018). Moreover, the 

cerebellum is also provided with information about the motor error of the actions. 

This information is conveyed by the climbing fibers originating in the inferior 

olivary nucleus. When mismatch between the predicted and actual state of the body 

occurs, these fibers discharge through their synapses with Purkinje’s cells in the 

molecular layer of the motor cortex, modulating their output. It is thought that this 

activity can modulate plasticity at the level of cerebellar cortex, allowing the 

cerebellum to modify and update the internal models involved in the specific action 

(D’Angelo, 2018). In this context, learning would be the consequence of a long-

term depression caused by the climbing fibers’ activity.  
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The cerebellum as a locus for the forward model 
 
The position of the cerebellum with respect to the brain and the spinal cord, as well 

as the analysis of its sources of input and output, has suggested the hypothesis that 

this structure operates as a comparator between motor intention and execution 

(D’Angelo, 2018; Tanaka et al., 2020). These observations and emerging theories 

on motor controls have led to the idea that the cerebellum is indeed an ideal locus 

for the implementation of a forward model (Wolpert et al., 1998). According to this 

model, when performing a movement, the motor cortex sends a copy of the 

associated motor command, often called, as we have already seen, an efferent copy. 

The cerebellum integrates this input with information on the contextual state of the 

body from the spinocerebellar tract and the parietal cortex and predicts the future 

state of the body as well as the future sensory feedback. Finally, it integrates this 

predicted sensory feedback with the actual feedback generated by the action 

execution allowing the CNS to perform movement corrections (Wolpert et al., 

1998). In order to perform this prediction, the cerebellum must also have access to 

internal models of the external environment (such as the internal model describing 

an object) and of the body (such as the internal model representing the moment of 

inertia of the upper limb). The cerebellum has also been shown to be crucial for 

adapting forward models to a changing environment (D’Angelo, 2018; Maschke et 

al., 2004). An example of this impaired behavior comes from studies where 

cerebellar patients were asked to perform planar reaching movements with a robotic 

arm under a periodically variable force field (Maschke et al., 2004).  

Notably, the hypothesis that the cerebellum is involved in motor prediction and 

provides this prediction to the cerebral cortex (from which it receives input) implies 

that the current output of the cerebellar nuclei should predict the future input to the 

cerebellar cortex. In a recent electrophysiology study on a monkey, authors tested 

this hypothesis by analyzing the activity of some mossy fibers representing the 

input signal to the cerebellar cortex, some Purkinje’s cells representing the output 

from the cerebellar cortex, and cells in the dentate nucleus, representing the 

cerebellar output (Tanaka et al., 2019). During the recording, the animal was 

performing step-tracking movements with the wrist. Authors found that the firing 

rate of the mossy fibers could be accurately reconstructed from the signal provided 
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by the dentate nucleus’ cells 20-100ms before, supporting the hypothesis that a 

predictive forward model is implemented in the cerebro-cerebellum cortex (Tanaka 

et al., 2019). 

 
 
The posterior parietal cortex  
 
Functional anatomy 
 

The parietal cortex is the mesial and lateral surface of the brain that extends in a 

region from the central sulcus and the lateral Sylvian fissure to the parieto-occipital 

sulcus and the cingulate sulcus. This broad region of the cerebral cortex can be 

divided into two areas: an anterior part that includes the primary and secondary 

somatosensory cortex within the postcentral gyrus, and the posterior part, which is 

divided into superior and inferior parietal lobule with respect to the intraparietal 

sulcus. The inferior parietal lobule involves the supramarginal and the angular 

gyrus and corresponds to Brodmann areas 39 and 40, while the superior parietal 

lobule includes a part of the lateral surface and a part of the mesial surface of the 

brain corresponding to Brodmann areas 5 and 7. The molecular architecture of the 

parietal cortex, like other areas of the neocortex, is composed of six layers: 

molecular, external granular, external pyramidal, internal granular, internal 

pyramidal and a multiform layer (Caspers & Zilles, 2018). The molecular layer is 

the most external and is formed mostly of dendritic tufts of the pyramidal neurons 

of the deeper layers and glial cells. The molecular layer receives inputs mostly from 

other areas of the brain cortex as well as from thalamic nuclei (Rubio-Garrido et 

al., 2009). The external granular layer contains stellate cells and pyramidal neurons 

of small dimensions, while the external pyramidal layer contains larger pyramidal 

neurons. This layer is considered to be the most relevant source of cortico-cortical 

efference. Also, stellate cells and pyramidal neurons lie in the internal granular and 

pyramidal layers. However, these layers receive input from thalamic nuclei and 

send output to the basal ganglia. The deeper layer, the multiform, is connected to 

the thalamus, which sends its output signals. The neocortex is functionally 
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organized in columns extending through the six cortical layers connecting them 

(Mountcastle, 1997).  

The posterior parietal cortex is part of the association cortex, a region of the human 

brain that integrates and modulates multimodal stimuli. This cortex area is a key 

node in the sensorimotor network that connects prefrontal and parietal areas. 

Several parallel streams connect these two brain areas, each stream carrying 

different information to and from the prefrontal areas. One of the main paths is the 

superior longitudinal fascicle that connects the posterior parietal cortex extensively 

with the frontal cortex. It can be divided into three bundles. The most dorsal 

connects mesial and lateral pars of the superior parietal lobule with supplementary 

motor cortex and dorsolateral premotor cortex. Lastly, the middle bundle extends 

between the intraparietal sulcus and lateral areas of the premotor and prefrontal 

cortex. The ventral stream connects the inferior parietal lobule with the 

ventrolateral premotor and prefrontal areas (Caspers & Zilles, 2018). A second 

relevant stream parallel to the superior longitudinal fascicle is the so-called arcuate 

fascicle. The arcuate fascicle bridges the inferior parietal lobule and the superior 

temporal cortex with the inferior frontal gyrus. Although mainly involved in 

cortico-cortical connections, the posterior parietal cortex also conveys information 

to the basal ganglia and the thalamus, from which it receives information about the 

sensory state of the body (Caspers & Zilles, 2018). Both the inferior and superior 

parietal lobe project to the putamen and caudate nucleus (Yeterian & Pandya, 

1993).  

These extensive connections are involved in controlling the interaction with objects 

and in understanding and controlling UL actions (Binkofski & Buccino, 2018).  

 
 
The posterior parietal cortex codes the upper limb’s predicted sensory feedback 

As mentioned in the previous sections, the posterior parietal cortex is a relevant 

node in the sensorimotor network responsible for sensory and motor representation 

in the cerebral cortex. This area is crucial for multimodal sensory integration and 

use this integration for guiding the ULs’ movements. Patients with lesions in this 

area showed impairment in identifying the required motor behavior to perform an 
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action, along with difficulties in planning skilled movements and distinctive 

impairments of the UL apraxia syndrome (Goldenberg, 2013). Previous evidence 

suggested that also the parietal cortex plays is involved in the implementation of a 

forward model. The connection with motor and premotor areas candidate the 

posterior parietal cortex to be the ideal locus for the representation of the UL 

predicted sensory feedback, an essential feature of a forward model (Johnson et al., 

1996). Neurons in the posterior parietal cortex, within the superior parietal lobule, 

showed activation consistent with a representation of future body’s state (Mulliken 

et al., 2008). Moreover, the inhibition of these neurons via transcranial magnetic 

stimulation resulted in impairment in correcting reaching movement trajectories 

based on forward state estimation (Desmurget et al., 1999).  Neurophysiological 

studies in monkeys found that neurons in the posterior parietal cortex showed 

significant activation in the planning phase of a reaching movement, an activity 

coherent with the idea that these neurons encode the intention to reach a target 

(Snyder et al., 1997). Evidence in support of this hypothesis comes from studies 

that found discharge in posterior parietal cortex’s (Area 5 Brodmann) neurons 

before the movement starts (Kalaska et al., 1983). It is thought that this activity may 

represent the integration of information about the motor command in order to 

predict the consequent sensory input. Moreover, this early activation was found 

even in subjects with deafferentation, ruling out the possibility that it was caused 

by movement-related actual sensory input (Seal et al., 1982).  

The posterior parietal cortex plays a role also in the mechanism of SA, or re-

afference cancellation and in matching between predicted and actual sensory 

feedback. A functional-MRI study investigated sensorimotor Blood Oxygenation 

Level-Dependent (BOLD) response during finger tapping (Shergill et al., 2013). 

Subjects were required to tap with their right index finger a lever which transmitted 

the force to the left index finger synchronously, with a delay of 500 ms, or not at 

all. The setting was that right and left index fingers were aligned, so the subjects 

had the illusion that they were touching their left index with their own right index. 

The results showed that the activation of the SII cerebral cortex was significantly 

reduced when left finger sensation was perceived as a direct consequence of the 

right index self-generated movement. Authors suggested that SII could, therefore, 
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play an essential role in encoding SA using the forward-model output of sensory 

prediction. Moreover, the temporary inhibition of neurons in the posterior parietal 

cortex using transcranial magnetic stimulation was shown to affect the subjects’ 

sense of agency during a reaching task, closely linked to the ability to predict 

sensory feedback (Desmurget et al., 1999). These findings suggested that the 

posterior parietal cortex may be responsible for maintaining a time-related 

representation of UL’s action that relies on a forward model and not only a feedback 

mechanism. This representation could be used to overcome the issue of the time 

delay of sensory feedback during the UL movements.  

Forward model dysfunctions  
 
The crucial role of the cerebellum in implementing the forward model is suggested 

also by studies on patients with cerebellar lesions. These patients manifest typical 

UL sensorimotor symptoms that are collected under the umbrella of the cerebellar 

ataxia syndrome, which includes clumsiness, lacking smoothness and multi-joint 

coordination, spatial errors while pointing to a target (i.e. dysmetria) and irregular 

movements repetitions (Day et al., 1998; Lisberger & Thach, 2013; Manto et al., 

2012). This can be related to both the lower limbs (gait ataxia) and the upper limbs. 

Multi-joint movements are usually more affected than single-joint ones. Dysmetria 

is the inability to accurately point to a target. Subjects affected by dysmetria make 

spatial errors when performing reaching movement, either overshooting or 

undershooting the target. Another typical UL cerebellar sign is the intentional 

tremor, which consists of large oscillations in the last phase of a reaching movement 

when approaching the target. Although a cerebellar lesion does not affect 

somatosensation or strength, these sensorimotor signs cause significant impairment 

and can have a devastating effect in terms of disability and quality of life. Some of 

the typical UL motor dysfunctions in patients with cerebellar lesions have been 

described as the consequence of an impaired forward or inverse model. On one 

hand spatial errors of overshooting or undershooting the target during reaching (i.e. 

dysmetria) was showed to be effectively modeled as an impairment of an inverse 

model and a miscalculation of UL’s inertia (Bhanpuri et al., 2014). Interestingly, 

Bhanpuri et al. found that those patients who systematically overshot the target 
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showed kinematics parameters compatible with an underestimate of their forearm’s 

moment of inertia. In contrast, patients that undershoot the target moved as they 

were overestimating their forearm’s moment of inertia. Moreover, by altering the 

dynamic of the robot the subjects were interacting with, the authors were able to 

correct patients’ movement accuracy (Bhanpuri et al., 2014). These results brought 

strong evidence that the cerebellum is crucial for maintaining accurate internal 

models of dynamics necessary for an inverse model.  

On the other hand, the lack of smoothness, the excessive oscillations approaching 

the target and errors in movement planning have been interpreted as the 

consequence of patients’ inability of anticipating the consequences of voluntary 

movements, consistent with an impairment of a forward model (Frey et al., 2011). 

Relying only on delayed somatosensory feedback for motor control, these subjects 

perform instable UL reaching movements with exaggerated oscillations while 

approaching the target  (Bhanpuri et al., 2014; Cabaraux et al., 2020; Frey et al., 

2011; Manto et al., 2012; Wolpert & Ghahramani, 2000). According to this idea, in 

these patients the cerebellum receives the efference copy based on a theoretically 

correct limbs’ position estimation provided by the somatosensory system. 

However, cerebellar lesions may impair the computation of the predicted body’s 

state, i.e., the output of the forward model. Being the information provided for 

internal feedback correction unreliable, the system is forced to rely mainly on 

delayed feedback control, using information on ULs’ position provided by the 

dorsal columns to the somatosensory areas of the parietal cortex. This would lead 

to the typical excessive oscillations observed in cerebellar patients in the last phase 

of a reaching movement. Moreover, the inability of predicting the consequences of 

the voluntary movement and result in impaired movement’s planning.  

 

Recent literature suggested that, along with the cerebellum, the forward model’s 

neural underpinning consist of a complex cerebro-cerebellar network including the 

sensorimotor cortex, and the Posterior Parietal Cortex (PPC). Interestingly, similar 

to cerebellar patients, patients with CNS lesions involving the spinothalamocortical 

pathway, the thalamus, the primary somatosensory cortex and other parietal areas 

involved in the proprioception sense, show dysmetria, lack of smoothness and 
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irregular movements, a syndrome often called sensory ataxia (Ghika et al., 1994; 

Melo & Bogousslavsky, 1992; Osumi et al., 2018, Caplan, 2012). This behavior is 

exacerbated when patients are prevented from using vision to compensate for 

proprioceptive deficits (Klingner & Witte, 2018). Although it has been previously 

suggested that patients with sensory ataxia due to stroke showed signs of both 

feedback and feedforward motor control deficits, limited attention has been paid in 

describing the role of somatosensory information in the forward model. (Osumi et 

al., 2018). 

 

Besides brain injured patients, forward model dysfunctions have been found also in 

patients with functional motor disorders and with schizophrenia (Macerollo et al., 

2015; Pareés et al., 2014; Shergill et al., 2005, 2014). Relevantly, the lack of 

attenuation of self-evoked sensory input has been related to the impairment in the 

sense of agency, a common deficit of both these category of patients (Shergill et 

al., 2014). A recent study of Macerollo et al. (Macerollo et al., 2015) investigated 

the inhibition of sensory evoked potentials in patients affected by functional motor 

disorders. The sensory evoked potentials were recorded by stimulating the right 

median nerve in two conditions: resting and self-paced finger movements. In the 

former subjects were sitting in a resting position during the stimulation, in the latter 

the nerve stimulation was triggered by subject’s homolateral index abduction. 

Authors found that in the voluntary triggered condition patients showed reduced 

attenuation of sensory potentials compared to healthy controls suggesting 

impairment in the ability to predict sensory consequences of self-initiated actions 

(Macerollo et al., 2015).  In line with these findings were the results of another 

recent study where patients with functional movement disorders were tested in a 

force matching task similar to the one performed in Shergill et al (Shergill et al., 

2003). A motor torque attached to a lever exerted target force on subjects’ left index 

finger. Then, they were asked to reproduce that force with their right hand either by 

directly pressing to their left index (through a force sensor) or by manipulating a 

robotic device that indirectly controlled the motor torque acting on the lever. In line 

with previous experiments, healthy controls were accurate in reproducing the force 

in the latter condition, while they underestimated the matching force they exerted 
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in the direct condition (they exerted a force greater than the target force). This 

behavior has been interpreted as a sign of SA phenomenon (Bays & Wolpert, 

2007a; Shergill et al., 2003). In contrast, patients showed no difference in the 

matching force intensity between condition corroborating the hypothesis that in 

patients with functional motor disorders impairment in sense of agency and lack of 

SA may be correlated (Pareés et al., 2014). Sense of agency is also a typical 

impairment of patients with schizophrenia. Some of positive symptoms that affect 

these patients, like delusion control and sensory hallucinations, has been interpreted 

as a result of misattribution of voluntary actions as externally generated (Shergill et 

al., 2014). A previous study testing the SA phenomenon in these patients following 

the paradigm of Shergill et al (Shergill et al., 2003) found that patients with 

schizophrenia have reduce SA compared to healthy controls (Shergill et al., 2005). 

More recently, a functional-MRI study investigated sensorimotor Blood 

Oxygenation Level-Dependent (BOLD) response during a tapping task, 

reproducing the paradigm of Shergill et al (Shergill et al., 2013) in patients with 

schizophrenia. Subjects were required to tap with their right index finger a lever 

which transmitted the force to the left index finger synchronously, asynchronously 

with a delay of 500 ms, or not at all. Compared to healthy controls, patients showed 

lower levels of attenuation in SII activity. Moreover, the reduction on SII activity 

attenuation was associated with hallucinatory severity underlying the importance 

of this parietal area for the coding of the forward model’s output (Shergill et al., 

2014). 

 

Overall, this evidence suggests that in a wide range of neurologic dysfunctions, 

predictive UL motor control impairments not related to primary sensorimotor 

deficits may play a key role in affecting patients’ behavior. The investigation of 

such impairments could improve our understanding of these dysfunction and 

eventually lay the foundation for the design of specific rehabilitative trainings. 
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Project’s aim 

The aim of this project was to investigate different aspects of the anticipatory motor 

control in healthy subjects and forward model dysfunctions in stroke patients with 

cerebellar lesions and somatosensory impairment. 

Firstly, we aimed to provide further evidence on the role of the forward model in 

sensorimotor function of the upper limb. Specifically, we aimed to perform new 

analysis on previously recorded data (Bays & Wolpert, 2007a; Shergill et al., 2005; 

Wolpe et al., 2016) on the sensory attenuation phenomenon to shed new light on 

the mechanism involved in such phenomenon. 

Secondly, we aimed to investigate anticipatory grip force modulation deficits 

during the bimanual object lifting in patients with stroke and somatosensory 

deficits. 

Lastly, we aimed to use an accurate low-cost movement analysis system to assess 

predictive upper limb behavior in the index-to-nose task in patients with cerebellar 

lesions and patients with somatosensory deficits.  

These investigations would improve our understanding of predictive aspects of 

motor control in healthy subjects and patients with stroke and, eventually, allow us 

to design effective and specific rehabilitation interventions. 
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Predicted sensory feedback and sensory attenuation 
phenomenon* 
 

Background 
 
Sensory attenuation (SA) is a phenomenon associated with voluntary movement 

where there is a different perception of identical sensory inputs depending on 

whether they are self-generated or externally generated (Macerollo et al., 2015). 

This phenomenon has been mostly investigated using force matching tasks, since 

the seminal study by Shergill and colleagues (Shergill et al., 2003). In their setting, 

firstly a motor torque applied a constant force to the tip of the participants’ resting 

left index finger. Then, the participants were asked to match the force with their 

right index finger either by pressing on themselves left index finger through a force 

transducer (Figure 3 top, "self-condition") or by moving a joystick that indirectly 

controlled the force output of motor torque (Figure 3 bottom "Joysitck condition"). 

Their results showed that while in the joystick condition the subjects were relatively 

accurate in reproducing the target force, in the self-condition they systematically 

overshot the target force. In other words, the self-generated matching forces were 

perceived as weaker than externally generated forces of the same magnitude. The 

authors suggested that the predictive forward model played a crucial role in this 

behavior (Shergill et al., 2003). Specifically, their hypothesis was that in the self-

condition the forward model could predict that the force exerted with the right index 

finger would generate a tactile sensation on the left index fingertip. This prediction 

would then be used to attenuate the intensity of the actual tactile feedback. In 

contrast, given the artificial setting of the joystick condition, it was virtually 

impossible for the forward model to directly associate the movement of the right 

index finger with the consequent tactile sensation in the contralateral hand. 

Therefore, no attenuation was found in this condition. 

 

 
* This section was performed during a visiting period at the Bayslab within the Department of 
Psychology of the University of Cambridge (UK) under the supervision of dr. Paul Bays 
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Figure 3 The bimanual task used in Shergill et al., 2003) 

 
 
The hypothesis that a forward model is essential for the SA phenomenon brings 

some implications. Firstly, SA should be measured only in situations where the 

subject is able to predict the sensory feedback. Secondly, in a real-world scenario, 

when several different somatosensory inputs are simultaneously involved, only the 

predicted part of this input should be attenuated. Lastly, the presence of a prediction 

should be sufficient to measure an attenuation of the predicted feedback.  

 

Only the predicted part of the sensory feedback is attenuated 
 
A series of works in the last 15 years addressed these aspects. As previously 

mentioned, the results from Shergill’s experiment (Shergill et al., 2003) 

corroborated the idea that tactile attenuation can be measured only if the sensory 

consequences of subject’s action are predictable (self-condition) and it cannot be 

measured when the subject’s action and the feedback are simultaneous but not 

directly related (joystick condition).  

 
However, in principle it could be possible that tactile attenuation was the 

consequence of a general gating mechanism and not a specific predictive 

phenomenon. It is well known that during an arm movement the sensitivity and the 

ability to detect different tactile sensation is reduced (Chapman et al., 1987). This 

reduction of perception acuity begins prior to the movement onset and is triggered 

by the motor command in the motor cortex, as previous TMS studies showed, and 

is measured irrespective of the source of the stimulus (Voss et al., 2006). To 

disentangle between these hypothesis, Bays & Wolpert performed a study where 
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the subjects were asked to assess the intensity of an electrical stimulus on their left 

index fingertip either while resting or pressing on the same finger with their right 

index finger through a lever (Bays & Wolpert, 2007a). Authors found that, although 

they measured attenuation of tactile perception as in previous study, the perceived 

intensity of the electrical stimulus’ intensity was not reduced by the concomitant 

pression exerted with their right index. This suggested that the perception of 

externally generated and unpredictable stimuli (like the electrical stimulus in this 

experiment) is not attenuated even when a simultaneous predictable stimulus 

(pression by the right index) is recorded. Moreover, in a similar setting another 

study showed that it was possible to measure tactile attenuation even if the right 

index does not perform any touch ruling out the hypothesis that the tactile sensation 

on the active finger modulate the perception of the left index finger (Bays et al., 

2006). In this case, the experimental setting included a mobile lever attached to a 

motor torque, and a force sensor placed a few centimeters above it, vertically 

aligned. When the subjects tapped on the force sensor with their right index finger 

the lever was actioned and tapped on the left index underneath. Once again, the 

setting was meant to maximise the feeling that the force felt on the left index finger 

was a consequence of the pression exerted with the right index. Authors included a 

condition in which when subjects were performing the active tap, the force sensor 

placed above the lever shifted unexpectedly, making them fail to touch it. However, 

also in this condition the underneath lever exerted the tap as expected. Interestingly, 

even in this condition the perception of the tactile stimulus on the left index was 

attenuated. In these trials subjects believed they would have touched the force 

sensor and, therefore, the forward model based on the efferent copy of that 

movement was likely to predict the consequent tap perceived on the left index. In 

other words, this study showed that the prediction of the touch is sufficient to 

generate the attenuation of the tactile feedback even without the touch itself, 

bringing strong evidence on the predictive nature of the SA phenomenon. 
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Temporal and spatial coherence are necessary to measure attenuation 
 
The influence of temporal discrepancy between the predicted and actual feedback 

on the tactile attenuation was corroborated by another experiment (Bays et al., 

2005). Here, an experimental setting similar to the one used in (Bays et al., 2006) 

was used. However, in this study the temporal delay between the two taps was 

manipulated so the tap on the left index could occur in a range of 300ms earlier or 

later the active tap varying from trial to trial. Subjects were then asked to report the 

perceived magnitude of tactile sensation on the left index. The results showed that 

the attenuation was measured only when the active pression and the tactile sensation 

were temporally coherent, and the effect rapidly decreased with the increase of the 

time interval between the active force exertion and the tap perception. Specifically, 

the attenuation was significant when the testing tap occurred within a time interval 

of ±100ms from the active tap (Bays et al., 2005).   

A slightly different setting was used to perform a force-matching task to test 

whether the level of tactile attenuation measured in the self-generated actions 

depends on the spatial separation between hands or on the magnitude matching 

force exerted and force perceived (Bays & Wolpert, 2007a). Authors used a system 

with two levers, one attached to a motor torque that exerted the force on the 

subjects’ left index finger (active lever), and one that served as a force sensor, and 

measured the matching force the subjects applied with the right index (on the 

passive lever). This setting allowed to manipulate either the lateral separation 

between the active and the passive levers or the gain between the force measured 

by the passive lever and the force exerted by the active one (in this condition the 

levers were vertically aligned). As for the former aim, three conditions were tested. 

In the first one the two levers were aligned one above the other, reproducing the 

self-condition in (Shergill et al., 2003). In the other two conditions the levers were 

placed with a lateral separation of 10cm and 30cm respectively. The comparison of 

subjects’ accuracy in reproducing the target force between conditions showed that 

higher level of attenuation was found in the condition where the two levers were 

vertically aligned while significant lower attenuation levels were measured in the 

other conditions. As for the second experiment, three different gain levels were 
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compared. In the first condition the gain was set at 1x, essentially reproducing the 

aligned condition of the former experiment. In a second condition the gain was set 

at 0.5x, so when subjects tried to match the target force exerting a force of 2N the 

force simultaneously exerted by the active lever was 1N. In a third condition the 

gain was 2x. This comparison showed no differences in terms of the magnitude of 

attenuation.  

 

Patients with impaired sense of agency showed reduced attenuation 
 
The SA phenomenon has been investigated also in patients with impairment in the 

sense of agency. Patients with this disturb show difficulties in discriminating 

between self- and external-elicited actions. It has been postulated that the sense of 

agency is related to the ability to predict the consequences of our own actions 

(Feinberg, 1978). The forward model is thought to play a crucial role in this 

prediction and therefore it is conceivable that these patients would present 

impairment in predictive motor control.  

The same force-matching paradigm of the Shergill’s study (Shergill et al., 2003) 

was used in studies that investigated this phenomenon including patients with 

schizophrenia (Shergill et al., 2005, 2014) and functional motor disorders (Pareés 

et al., 2014): patients were asked to match with their right index finger a target force 

presented by a lever to their left index either by pressing directly on their left finger 

through the lever (self-condition) or by manipulating a joystick that indirectly 

controlled the lever. In line with previous results, healthy controls exaggerated the 

matching force performed in the self-condition (that is they underestimated the 

tactile sensation on the left index). In contrast with patients with schizophrenia and 

functional motor disorders performed more accurately than healthy controls in the 

self-condition showing lower level of tactile attenuation. These findings were 

interpretated as a consequence of impairment in the forward model. Similar results 

suggesting a dysfunction in SA has been found using slightly different experimental 

procedures in other movement and psychiatric disorders like dystonia, and 

functional movement disorders (Macerollo et al., 2015, 2016; Pareés et al., 2014). 

Overall, these works suggest that the deficits in the prediction of the sensory 
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consequence of a movement delivered by a forward model are deeply involved in 

the SA reduction. 

The neural underpinning of the SA phenomenon is still under debate. While, as 

mentioned in previous chapters, there is compelling evidence that the cerebellum 

plays a key role in the prediction of the consequences of voluntary movements, 

there is less agreement on where the output of the forward model is coded in the 

CNS. Some neuro-imaging studies tried to address such question focusing on the 

SA phenomenon. A similar apparatus than the one used in (Bays et al., 2006)was 

recently used in a functional-MRI study on healthy subjects (Shergill et al., 2013, 

2014) to investigate sensorimotor Blood Oxygenation Level-Dependent (BOLD) 

response in different tasks involving touch. Subjects were required to tap with their 

right index finger on a lever that transmitted the force to the left index finger 

synchronously, asynchronously with a delay of 500 ms, or did not at all. The results 

showed that the activation of SII cerebral cortex was significantly reduced when 

left finger sensation was perceived as a direct consequence of the right index self-

generated movement. Authors suggested that SII could, therefore, play an essential 

role in encoding SA using the forward-model output of sensory prediction.  

 

These findings taken together suggest that when a voluntary action is performed, a 

forward model based on the efferent copy of the motor command predicts the 

sensory consequences of that action. When the movement is performed, the tactile 

sensory feedback that matched the predicted sensory input is perceived as 

attenuated. However, the comparison between the predicted and the actual feedback 

seems to concern general features of the tactile perception like temporal and spatial 

coherence rather than the intensity of the stimulus. In fact, in the aforementioned 

experiments, when temporal delay or spatial separation between the two hands was 

introduced, the attenuation was reduced (Bays et al., 2006; Bays & Wolpert, 2007a) 

On the other hand, when the right index action and the sensation on the left index 

were spatially and temporally matched, no reduction in attenuation was measured 

even when the force perceived was significantly more intense or weaker than the 

force exerted(Bays & Wolpert, 2007a).  
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Alternative accounts for the sensory attenuation phenomenon 
 
Recently, this topic has gained new interest.  Other research groups proposed new 

models for interpreting the SA phenomenon that don’t involve any predictive 

mechanisms. Most of these claims are based on the attempt of applying the theory 

Bayesian inference in human perception (Press et al., 2020; Yon et al., 2018). 

The theory of Bayesian inference in the context of motor control describes how the 

CNS deals with noisy perceptual feedback. Sensory organs in human body have 

indeed limited resolution and the signal they transmit is affected by intrinsic 

electrical noise. These limitations result in uncertainty about the true value of the 

stimulus. The Bayesian inference theory hypothesizes that, in order to overcome 

this issue, the CNS combines the noisy feedback with prior knowledge about the 

probability of a certain state of the body to be realistic in a specific situation (usually 

referred as “prior”) (Bays & Wolpert, 2007b). This integration is used to improve 

the accurateness of the sensory estimate and can be applied both to sensory input 

referring to the external environment (for example the position of an object) or to 

internal state perception (the position of the arm). The final estimate of the sensory 

information obtained by the integration of noisy sensory input and the prior is called 

“posterior” and can be though as the probability of a specific state to be true given 

a sensory input. The mathematical formulation of this integration assigns to the 

strength of the prior belief a real number between zero and one, and computes the 

posterior as follows: 

 

𝑃(𝑠𝑡𝑎𝑡𝑒|𝑠𝑜𝑛𝑠𝑜𝑟𝑦 𝑖𝑛𝑝𝑢𝑡) =
𝑃(𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑖𝑛𝑝𝑢𝑡|𝑠𝑡𝑎𝑡𝑒) 𝑃(𝑠𝑡𝑎𝑡𝑒)

𝑃(𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑖𝑛𝑝𝑢𝑡)  (1) 

 

 

Where P(state|sensory input) is the posterior estimate of the state (e.g. the position 

of the subject’s right hand), P(state) represents the strength of the belief of the prior 

(e.g. the fact that the distance between the body and the hand has to be shorter than 

the length of the upper limb). P(sensory input|state) is often referred to as the 

likelihood of the state equal to the probability of having the sensory input given the 

hypothesized state. This model has been proved to accurately describe the human 

behavior in different situations. In general, the Bayesian inference effectively 
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describes those situations where the sensory input is particularly noisy and subjects 

have to rely more on their prior beliefs, e.g. when visual feedback is perturbated or 

shaded. Specifically, it has been showed that in experimental setting the higher the 

noise applied to the visual feedback about the hand’s position, the more the subjects 

relied on the prior and the less on the actual visual feedback (Körding & Wolpert, 

2004). 

 

Recently, it has been argued that the Bayesian theory is inconsistent with SA 

phenomenon as it was previously described (Press et al., 2020; Thomas et al., 2020; 

Yon et al., 2018). The Bayesian theory in this context is used to suggest that we are 

biased to perceive what we are expecting. Authors claimed that the application of 

the Bayesian inference to a situation where sensorimotor prediction are made (for 

example in the self-condition in the force-matching task in (Shergill et al., 2003), 

the prediction itself should sharpen the perception rather than suppress it as it was 

suggested. To corroborate their hypothesis, Yon et al. tested healthy subjects in a 

task where human participants were required to execute either index or little finger 

abductions while observing an avatar hand on a screen (Yon et al., 2018). The avatar 

hand performed finger abduction simultaneously to subjects’ movement in two 

conditions: congruent (same finger) or incongruent (different finger). While 

performing the finger abduction, the subjects’ neural activity was recorded using 

functional magnetic resonance imaging (fMRI). Participants were asked to judge 

about which avatar’s hand finger moved. Authors found superior accuracy in those 

trials when the avatar’s and subjects’ hand were moving the same finger. Moreover, 

the analysis of fMRI data showed that in the congruent trials there was a reduction 

in activity of those voxels tuned away from the expected stimulus (Yon et al., 2018). 

With the aim of reconciling their results and their hypothesis with previous findings 

on SA phenomenon, the authors proposed a new model, called “sharpening model”. 

According to this model, the expectation of a sensory input increases the activity of 

the cortical sensory units tuned to that stimulus while suppressing the activity of 

other units. This was intended in contrast to the cancellation model where the 

prediction suppresses the activity of related sensory units leading to SA. Authors 

concluded that previously observed attenuations of predicted tactile stimuli may 
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reflect a dampening of responses in units tuned to unexpected stimuli, rather than 

the activity suppression in expected sensory units, questioning the previous 

interpretation of the SA phenomenon (Yon et al., 2018). Moreover, in a more recent 

paper, the same authors proposed a new model called “opposing process theory” 

(Press et al., 2020). This theory distinguishes between two different scenarios 

according to whether the presented stimulus was expected or unexpected. The 

novelty of this proposal was that in the latter condition a biochemical process that 

involves catecholamine release would boost the perception of the stimulus, 

eventually enhancing its perception. The authors suggested that the difference 

between the expectation and the actual stimulus, in terms of distance between the 

two probability distributions, may be quantified using the Kullback-Leibler 

divergence. In other words, high values of Kullback-Leibler divergence may trigger 

the catecholamine release and modulate the subject’s perception (Press et al., 2020). 

 

Within this topic other authors proposed that the attenuation measured in (Shergill 

et al., 2003) may be the consequence of a mechanism of enhancement of activity of 

neurons that codes for the predicted stimuli rather than its suppression(Roussel et 

al., 2013). It has been suggested that if the baseline activity level of those neurons 

increases, the relative enhancement of activity due to the stimulus presentation 

would be relatively weaker compared to the case of an unpredicted stimulus of 

identical intensity. This relative reduction in increased activity could result in the 

subjects’ attenuated perception previously found. Interestingly, Dogge et al. 

proposed that the prediction of the sensory consequence of our actions may relies 

on two distinct paths (Dogge et al., 2019). The first one is consistent with the 

classical idea of forward model based on an efferent copy expressed in (Wolpert & 

Flanagan, 2001). The second one relies on alternative prediction mechanisms that, 

in principle, don’t need a forward model to be performed. Authors suggested that 

the first path may be used in overlearned and body-related predictions where the 

evidence for a forward model are compelling. In contrast in environment-related 

events, the CNS may use the latter path and the prediction may be independent to 

the motor system(Dogge et al., 2019). 
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Moreover, a recent preprint paper from Kilteni & Ehrsson aimed to disentangle the 

predictive SA phenomenon from an unpredictive and generic gating mechanism 

(Kilteni & Ehrsson, 2020). In their experiment, healthy subjects received two taps 

on their left index finger. The first one was a test tap of fixed intensity while the 

second one was a comparison tap of variable intensity. They were asked to tell 

which one they felt stronger. The protocol involved the manipulation of two factors: 

the state of the left limb (whether the left limb was resting or moving while 

receiving the test tap), and the origin of the tap (whether the test tap was triggered 

by the subject himself or by an external motor). The manipulation of these two 

factors led to four conditions: resting and self-tap, moving and self-tap, resting and 

external-tap and moving and self-tap. While the movement of the left arm 

attenuated the perception of both the self-tap and the external-tap (compatible with 

a gating mechanism), the conditions in which the tap was self-generated showed 

greater attenuation compared to the external-tap (suggesting a SA). Their findings 

suggested that gating and sensory attenuation phenomena are independent and don’t 

interact each other, providing evidence in support of the hypothesis that a predictive 

forward model is essential for the SA phenomenon (Kilteni & Ehrsson, 2020). 
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Hypothesis and project aim 
 
Although there is strong evidence suggesting that the SA phenomenon relies on a 

predictive mechanism, the recent literature has brought new interest on this topic 

and questioned this hypothesis. The literature on SA mainly focused on subjects’ 

accuracy in force matching tasks, where the underestimation of the tactile stimulus 

in a self-like condition led to systematic errors in the matching force (Bays & 

Wolpert, 2007a). In contrast, according to recent papers, also a generic gating 

mechanism could account for those results (Press et al., 2020). Within the 

framework of the force matching tasks, a new perspective that could help to 

disentangle this issue is the analysis of the trial-to-trial variability (rather than the 

accuracy) of the matching forces.  

Here the underlying hypothesis is that the SA phenomenon is the result of a 

predictive mechanism that attenuates the perception of predictable sensory stimuli. 

Moreover, our hypothesis is that the level of attenuation is not fixed and depends 

on the accuracy of the prediction. That is, the higher the congruency between the 

predicted and the actual tactile stimuli (in terms of spatial and temporal coherence) 

the higher the level of attenuation. This would mean that the level of attenuation is 

set on subject’s estimate and is subjective to a certain amount of variability. When 

subjects are asked to match a target force in a self-like condition, if a forward model 

is involved, the incoming tactile stimulus is compared to the predicted sensory 

feedback leading, in case of congruence between each other, to attenuation. This 

comparison process along with the variability of the level of attenuation would 

generate some extra noise on top of the tactile stimulus’ intrinsic sensory noise. 

Consequently, the extra noise would lead to an increase in variability of tactile 

perception intensity and, eventually, to an increase in variability of the matching 

force. Noteworthy, this process would not occur in external conditions where there 

is no attenuation. Therefore, if our hypothesis is true, the trial-to-trial variability of 

the matching forces in a self-like condition would be greater than the variability in 

a related external condition. Most importantly, since a generic gating mechanism 

would not account for this difference in trial-to-trial variability, this analysis could 

help to disentangle between the forward model and the gating hypothesis. 
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This project aimed to compare the within-subject trial-to-trial variability in the 

matching forces between self and external condition. For this analysis, previously 

collected data from different force matching tasks were used. The secondary aim 

was to model the subjects’ behavioral responses in different force matching tasks 

investigating SA. 

 

Methods 
 
Data collection 
 
We collected data from three previous experiments on force matching tasks (Bays 

& Wolpert, 2007a; Shergill et al., 2005; Wolpe et al., 2016). This project has been 

carried out at the Bayslab within the Department of Psychology of the University 

of Cambridge (UK). 

 

• Study 1: force matching task on healthy subjects and schizophrenic patients 

(Shergill et al., 2005) 

In this study that, for the sake of simplicity, we will call “Study 1”, authors 

reproduced the paradigm of Shergill et al. (Shergill et al., 2003) on healthy controls 

and patients affected by schizophrenia. After being provided with a target force on 

their left index pulp, subjects were asked to reproduce that force in two conditions: 

a “self-condition” in which subjects matched the target force by pushing on a lever 

placed right above their left index, and a “joystick condition” in which subjects 

controlled the lever indirectly by manipulating a joystick. This study involved 19 

healthy controls and 19 patients. Each subject was provided with a target force 

randomly varying between five levels between 0.5N and 2.75N. Each subject 

underwent 16 trials for each condition and force level. The authors compared the 

subjects’ accuracy in reproducing the target force. The schizophrenic patients 

showed lower level of attenuation in the self-condition compared to healthy 

controls.   

 

• Study 2: force matching task with gain and distance manipulation (Bays & 

Wolpert, 2007a) 
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This study, herein called “Study 2”, the setting consisted of two levers, one attached 

to a motor torque exerted the target and the matching force on the left index finger 

(active lever), while another lever served as a force sensor and measured the 

matching force exerted with the right index (passive lever). This experiment 

included 12 healthy subjects. This setting allows the authors to manipulate the 

lateral separation between the two levers and the gain between the force measured 

by the passive lever and the force produced by the active lever. In the first 

experiment the authors compared three conditions according to the distance 

between the two levers: 0 cm, 10 cm, and 30 cm. In the first “direct” condition, the 

levers were vertically aligned reproducing the self-condition of the Study 1. This 

“direct” condition was used in the second experiment in all the conditions, where 

the authors manipulated the gain between the force exerted by the subject and the 

force exerted by the motor torque. Again, three conditions were compared 

according to the gain: 1x, 2x and 0.5x. In other words, when a subject exerted a 

matching force of 1N, the motor torque transmitted a force of either 0.5N, 1N, or 

2N to the left index. The target force was set randomly between five level of 

intensity ranging from 1N to 3N. This study involved sixteen healthy subjects who 

performed eight trials for each target force level and each condition. The results 

showed that the lateral separation between the levers reduced the attenuation level. 

In contrast the gain manipulation did not affect the attenuation level and no 

difference between the conditions was found. 

 

• Study 3: force matching task with elderly subjects (Wolpe et al., 2016) 

This study reproduced the paradigm of the Study 1 (Shergill et al., 2005) comparing 

a self-condition and a slider (joystick) condition in a force matching task. Here, the 

target force level varied between four levels from 1N and 2.5N. This study included 

a large sample of 325 subjects of different ages, ranging from 18 to 88 years old. 

Each subject performed 8 trials for each target force level and condition. Subjects 

were grouped into three age groups: young, middle-aged, and elderly and the level 

of attenuation was compared between groups. The results showed that the 

attenuation was greater in the older subjects compared to the young group.  
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Aim 1: the analysis of the within-subjects trial-to-trial matching force’s variability 
 
To investigate whether the SA phenomenon found in the included studies was the 

result of a predictive forward model or a general gating mechanism, we analyzed 

the within-subjects trial-to-trial variability in the matching force comparing 

different conditions. We focused on the comparison between conditions that had 

showed different level of attenuation. Specifically, for the Studies 1 and 3 we 

compared variability between self and joystick conditions. For the Study 2 we 

firstly compared the direct condition with the 30cm condition and the 10cm 

condition with the 30cm conditions (for the sake of simplicity the “direct” and the 

10cm conditions will be referred as “self” conditions in the comparisons). Then, we 

compared the direct condition with the conditions with gain 2x and 0.5x separately 

(the direct condition will be referred as the “self” condition). As for the Study 3, 

accordingly to the study of Wolpe and colleagues, we grouped the subjects into 

three age groups: young subjects (18-39 years old), middle-aged subjects (40-64 

years old) and older subjects (age t 65 years old) (Wolpe et al., 2016). Given the 

different behavior of these groups in terms of attenuation levels, the analysis was 

performed on the three groups separately. 

 

 
Data analysis 
 
The single-subject trial-to-trial variability in the matching force was computed as 

the standard deviation of the matching forces values for each target force level. 

Then, for each target force level the single-subject standard deviations were 

averaged across subjects. Analogously, the matching force values were averaged 

for each subject and for each target force level, and the mean across subjects was 

then computed for each target force level separately. From a general perspective, it 

is well known that the variability of a measure depends on the magnitude of the 

measure itself, that is the greater the value, the greater the associated variability. In 

our analysis it could be argued that a greater variability in the self-like conditions’ 

matching force could be simply a consequence of the greater force exerted by 
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subjects in these conditions. To rule out this hypothesis, we analyzed the mean 

standard deviation of the matching force as a function of the target force level for 

conditions self and joystick separately.  

Specifically, we used a linear regression model including the mean standard 

deviation as a dependent variable and the mean matching force for each target force 

level as the independent variable. Note that we assumed that between the two 

conditions only a change in the intercept would occur. We included the factor c 

representing the conditions assuming the value 0 for joystick condition and 1 for 

self-condition: 
 

𝜎𝑚 = 𝛾1𝐹𝑚 + 𝑐𝛾2𝐹𝑚 + 𝛽1 (2) 

 

Where Vm is the standard deviation of the mean matching force, Fm is the mean 

matching force, J1 and J2 are the coefficients so that J1 is the angular coefficient of 

the regression line for the condition joystick and J1 + J2   is the angular coefficient 

of the regression line for the condition self, c is the factor indicating the condition 

and E1 represent the intercept of both the regression lines. The subject was 

considered as a random factor. This approach allowed us to quantify the relative 

variability between the two conditions as follows:  

 

𝑉 =
𝛾1 + 𝛾2
𝛾1

 (3) 

 
Values greater than 1 suggest a different relation between the matching force and 

its variability between the two conditions.  

Analogously, we used a similar model to estimate the attenuation between the 

conditions, with the mean matching force as the dependent variable and the target 

force as the independent variable: 
 

𝐹𝑚 = α1𝐹𝑡 + 𝑐α2𝐹𝑡 + β2 (4) 

 

Where Fm and Ft are the matching and the target force respectively, c is the factor 

indicating the condition (c=0 for joystick condition and c=1 for self-condition), D1 
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and D2 are the estimated angular coefficients and E2 is the intercept. The subject 

was considered as a random factor. Also, we estimated the relative attenuation 

between conditions using the coefficient A: 

 

𝐴 =
α1 + α2
α1

 (5) 

 

Data from the included studies were analyzed. For studies 1 and 3 condition self 

and joystick were compared. For the study 1 healthy controls and patients were 

analyzed separately. When analyzing the study 3 subjects were divided into three 

groups based on their age. Concerning the study 2, we performed two comparisons 

for each experiment. Specifically, we compared the condition the condition with no 

distance between the levers with the 30cm condition and the 10cm condition with 

the 30cm. Then we compared the condition with no gain change with the 2x gain 

condition and the conditions with gain 0.5x and 2x.  

Finally, we compared the coefficients A and V for each comparison. Given our 

hypothesis, we expected the coefficients to be in a direct relationship so that the 

greater the relative attenuation between two conditions, the greater the relative 

difference in matching force trial-to-trial variability. 
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Results 
 
The following plots represents the results from the three analyzed studies (Figures 

4-12) 
 

• Study 1: comparison between self and joystick conditions in healthy 

controls and patients with schizophrenia (Shergill et al., 2005). 

Healthy controls: 

 
Figure 4 Study 1, healthy controls. Left: matching force in joystick (black) and self-condition 
(red) as a function of the target force. Right: trial-to-trial standard deviation as a function of 

the matching force in joystick (black) and self-condition (red). Error bars show standard error. 
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Patients with schizophrenia 

 

 
Figure 5 Study 1, patients with schizophrenia. Left: matching force in joystick (black) and 

self-condition (red) as a function of the target force. Right: trial-to-trial standard deviation as 
a function of the matching force in joystick (black) and self-condition (red). Error bars show 

standard error. 
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• Study 2: comparison between condition 0cm and 30cm and between 10cm 

and 30cm and comparison between condition gain 1x and 0.5x (Bays & 

Wolpert, 2007a) 

Spatial separation: comparison between condition 0 cm and condition 30 cm 

 
Figure 6 Study 2. Comparison between spatial separation between the levers 30cm (black) 

and 0cm (red). Left: matching force as a function of the target force. Right: trial-to-trial 
standard deviation as a function of the matching force. Error bars show standard error. 
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Force: 
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Spatial separation: comparison between condition 0 cm and condition 10 cm 

 
Figure 7 Study 2. Comparison between spatial separation between the levers 10cm (black) 

and 0cm (red). Left: matching force as a function of the target force. Right: trial-to-trial 
standard deviation as a function of the matching force. Error bars show standard error. 
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Comparison between different gains: 1x and 2x 

 
Figure 8 Study 2: comparison between different gains: 1x (red) and 2x (black). Left: matching 
force as a function of the target force. Right: trial-to-trial standard deviation as a function of 

the matching force. Error bars show standard error. 
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Force: 
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Comparison between different gains: 1x and 0.5x 

 
 

Figure 9 Study 2: comparison between different gains: 1x (red) and 0.5x (black). Left: 
matching force as a function of the target force. Right: trial-to-trial standard deviation as a 

function of the matching force. Error bars show standard error. 
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• Study 3: comparison between self and joystick conditions in young subjects 

(18-39 years old), middle-age subjects (40-65 years old), older subjects (65+ 

years old) (Wolpe et al., 2016). 

 

Young subjects: 

 
Figure 10 Study 3, young subjects. Left: matching force in slider (black) and self condition 
(red) as a function of the target force. Right: trial-to-trial standard deviation as a function of 
the matching force in slider (black) and self condition (red). Error bars show standard error. 
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Middle-age subjects: 

 

 
Figure 11 Study 3, middle-age subjects. Left: matching force in slider (black) and self-

condition (red) as a function of the target force. Right: trial-to-trial standard deviation as a 
function of the matching force in slider (black) and self-condition (red). Error bars show 

standard error. 
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Older subjects: 

 
Figure 12 Study 3, older subjects. Left: matching force in slider (black) and self-condition 
(red) as a function of the target force. Right: trial-to-trial standard deviation as a function 
of the matching force in slider (black) and self-condition (red). Error bars show standard 

error. 
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Then we compared the V and A coefficients for each comparison (Table 1) finding 

a direct relationship as showed in Figure 13. 

 

 
Table 1 Attenuation factor and excess in variability for each comparison 

Comparison Attenuation factor Excess in variability 
Study 1 - healthy 2.235 2.452 
Study 1 - patients 1.52 1.821 

Study 2 - separation 30-0 cm 1.133 1.206 
Study 2 - separation 10-0 cm 1.142 1.224 

Study 2 - gain 2x-1x 1.015 0.985 
Study 2 - gain 0.5x-1x 1.04 0.956 

Study 3 - young 1.474 1.406 
Study 3 - middle-aged 1.753 1.521 

Study 3 - Elderly 2.322 1.929 
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Figure 13 Association between the excess in variability and attenuation factor in different 
comparisons 

 

The association between V and A was statistically significant with a Pearson’s 

correlation coefficient R2=0.8 (p<0.001). 

 

Aim 2: to model the subjects’ behavioral responses in different force matching 
tasks 
 
In the second part of this project we modeled the subject’s performance across the 

force matching tasks of the included studies. At a single-subject level we modeled 

the mean matching force in the self-condition for each target force level as a 

function of the mean matching force in the joystick condition. The first study on 

this kind of task (Shergill et al., 2003) suggested that between the matching force 

in the two conditions there was a linear relationship so that when plotting the mean 

matching force and the target force levels the two conditions were regressed with 
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lines with different slopes. This suggested that the amount of attenuation was 

proportional to the target force. In contrast, other analysis showed that plotting the 

mean matching force in the self-condition and the target force levels, the regression 

line had an intercept different from 0 but a slope not different from 1, suggesting a 

fixed level of attenuation irrespective to the target force levels (Bays & Wolpert, 

2007a). To distinguish between these hypothesis two models were fitted to the data. 

The previous analysis showed that when comparing two conditions, the greater the 

relative attenuation coefficient V, the greater the relative difference in matching 

force variability A. Therefore, when building the model we assumed that the trial-

to-trial matching force variability in the self-condition was greater than the 

variability in the joystick condition. We modeled the following comparisons: for 

the Studies 1 and 3 we compared variability between self and joystick conditions. 

For the Study 2 we firstly compared the direct condition with the 30cm condition 

(for the sake of simplicity the “direct” conditions will be referred as “self” 

conditions in the comparisons). Then, we compared the direct condition with the 

conditions with gain 2x (the direct condition will be referred as the “self” 

condition). In contrast to the previous analysis, in the Study 3 the data were not 

grouped for subjects’ age given that the analysis was performed at a single-subject 

level. Given the different behavior of these groups in terms of attenuation levels, 

the analysis was performed on the three groups separately. 

 

 

Data analysis 
 

The distribution of the matching force trials allowed us to model the subjects’ 

responses in the joystick condition following a normal distribution. Then, we 

defined two models that described the matching force in the self-condition 

depending on the matching force in the joystick condition and on the attenuation 

factor (also normally distributed). We considered the attenuation factor to be 

invariant to different target force levels.  

Two models were fitted to the data from each subject for all the target force level: 
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Model 1: 𝐹𝑠 = 𝐾𝐹𝑗  (6) 

    

Model 2: 𝐹𝑠 = 𝐾 + 𝐹𝑗 (7) 

 

Where Fs is the mean matching force in the self-condition, K is the attenuation 

factor, Fj is the mean matching force in the joystick condition for each target force 

level. According to these models, the standard deviation of Fs could be estimated 

following the rules of the propagation of uncertainty: 

Model 1: σ𝐹𝑠 = √σ𝑘2σ𝐹𝑗2 + 𝐾2σ𝐹𝑗2 + 𝐹𝑗
2σ𝑘2  (8) 

 

Model 2: σ𝐹𝑠 = √σ𝑘2 + σ𝐹𝑗2  (9) 

 

The two models were fitted to the data of each subject and had 2 + 2n free 

parameters, n being the number of target force levels: two parameters referred to 

the mean and the standard deviation of the attenuation factor (K, VK), and two 

referred to the mean and standard deviation of the matching force in the joystick 

condition for each target force level (Fj, VFj). 

Notably, estimating VFs in Model 1 we approximated Fs to follow a normal 

distribution. However, in principle, the product of two normally distributed 

variables doesn’t follow a normal symmetric distribution. Therefore, we fitted a 

third model (Model 3) to the data that took into account this consideration and 

described Fs as normally distributed with a skewness different from zero. Following 

the description of the three moments of the product of two normally distributed 

variables provided by Sejias-Macìas (Seijas-Macìas & Oliveira, 2012), we were 

able to estimate the shape D of the skewed distribution of Fs as a function of the 

mean and standard deviation of the two factors’ distributions K and Fj: 

 

Model 3: 𝐹𝑠 = 𝐾𝐹𝑗 (10) 

 

 𝜎𝐹𝑠 = √𝜎𝑘2𝜎𝐹𝑗2 + 𝐾
2𝜎𝐹𝑗2 + 𝐹𝑗

2𝜎𝑘2 (11) 
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 (12) 

 

 

 

Where D is the third moment of the Fs distribution, Pk and PFj were the mean of the 

attenuation factor and the matching force in the joystick condition respectively.  

To check the accuracy of the three models we compared the predicted values of the 

attenuation factor K and the measured attenuation for each subject. For Models 1 

and 3 the measured attenuation was computed as the mean ratio between the mean 

matching force in the self-condition and the mean matching force in the joystick 

condition for each target force level. In contrast, for Model 2, the measured 

attenuation was estimated as the mean difference between the mean matching force 

in the self-condition and the mean matching force in the joystick condition for each 

target force level. The residuals’ distribution was then inspected for each model.  

Finally, the models’ performances were compared using a repeated-measures 

ANOVA between the single-subjects log-likelihood values for each model.  
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Results 
 
The results of the three models’ performances are reported consequently (Figures 

14-18): 

 
 

• Study 1: comparison between self and joystick conditions in healthy 

controls and patients with schizophrenia (Shergill et al., 2005). 

Healthy subjects: 

 

 
Figure 14 Healthy controls. Left: measured attenuation as a function of predicted 

attenuation for each subject, unity line in green. Right: residuals as a function of the 
predicted attenuation (fitted values). Top: Model 1, middle: model 2, bottom: model 3. 
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Single-subject log likelihood between-models comparison using repeated-measure 

ANOVA showed a significant effect of the model:  
 

Within Subjects Effects  
Cases  Sum of Squares  df  Mean Square  F  p  

Model   201.138   2   100.569   3.378   0.048   
Residuals   893.215   30   29.774         

 

The post-hoc analysis was performed using t-test for paired-samples and the 

Bonferroni’s correction for multiple comparisons showed a significant difference 

comparing Model 2 and Model 3. Specifically, the analysis suggested that the 

Model 3 performed significantly better than Model 2, having greater log-likelihood 

values: 

 

Post Hoc Comparisons - Model  
  Mean Difference  SE  t  p bonf  
Model 1   Model 2   2.897   1.929   1.502   0.431   
    Model 3   -2.096   1.929   -1.086   0.858   
Model 2   Model 3   -4.993   1.929   -2.588   0.044   

Note.  P-value adjusted for comparing a family of 3  
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Patients with schizophrenia: 

 
Figure 15 Patients with schizophrenia. Left: measured attenuation as a function of 

predicted attenuation for each subject, unity line in green. Right: residuals as a function of 
the predicted attenuation (fitted values). Top: Model 1, middle: model 2, bottom: model 

3. 
 

Single-subject log likelihood between-models comparison using repeated-measure 

ANOVA showed no significant effect of the model. 
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• Study 2: comparison between condition 0cm and 30cm (Bays & Wolpert, 

2007a) 

 

 
Figure 16 Comparison between levers’ separation 30cm and 0cm. Left: measured 

attenuation as a function of predicted attenuation for each subject, unity line in green. 
Right: residuals as a function of the predicted attenuation (fitted values). Top: Model 1, 

middle: model 2, bottom: model 3. 
 

 

Single-subject log likelihood between-models comparison using repeated-measure 

ANOVA showed no significant effect of the model. 
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• Study 2: comparison between condition with gain 1x and 2x (Bays & Wolpert, 

2007a) 

 
Figure 17 Comparison between gain 2x and 1x. Left: measured attenuation as a function 

of predicted attenuation for each subject, unity line in green. Right: residuals as a function 
of the predicted attenuation (fitted values). Top: Model 1, middle: model 2, bottom: 

model 3. 

 
Single-subject log likelihood between-models comparison using repeated-measure 

ANOVA showed no significant effect of the model. 
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• Study 3: comparison between self and joystick conditions in 320 subjects 

with different ages (Wolpe et al., 2016). 

 

 
Figure 18 Study 3. Left: measured attenuation as a function of predicted attenuation for 

each subject, unity line in green. Right: residuals as a function of the predicted 
attenuation (fitted values). Top: Model 1, middle: model 2, bottom: model 3. 
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Single-subject log likelihood between-models comparison using repeated-measure 

ANOVA showed a significant effect of the model:  

 

Within Subjects Effects  
Cases  Sum of Squares  df  Mean Square  F  p  

Model   1257.840    2    628.920    43.559    < .001    
Residuals   9009.552   624   14.438         

 

The post-hoc analysis was performed using t-test for paired-samples and the 

Bonferroni’s correction for multiple comparisons showed a significant difference 

comparing Model 3 to both Model 1 and 2. Specifically, the analysis suggested that 

the Model 3 outperformed the other models, having greater log-likelihood values: 

 
Post Hoc Comparisons - Model  
  Mean Difference  SE  t  p holm  
Model 1   Model2   0.651   0.304   2.144   0.032   
    Model 3   -2.064   0.304   -6.795   < .001   
Model 2   Model 3   -2.715   0.304   -8.939   < .001   

Note.  P-value adjusted for comparing a family of 3  
 
 
Lastly, for data from the Study 3, we analyzed the relationship between the 

attenuation coefficients K and subjects’ age (Figure 19). This analysis aimed to 

corroborate the findings of the original study that suggested an increased level of 

attenuation with increased age (Wolpe et al., 2016). A linear regression was 

performed with the attenuation coefficient K as the dependent variable and the age 

as the independent variable. Seven subjects were excluded from this analysis after 

inspecting the residuals’ distribution. 
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Figure 19 Top: Study 3, attenuation parameters and subjects’ age. Bottom: normal 

probability plot of residuals for attenuation parameters and subjects’ age. 

 

 

 

The linear regression showed a weak but significant positive correlation between 

attenuation factor and subjects’ age (R=0.32 p<0.001). 
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Discussion 
 
This project aimed to analyze the within-subject trial-to-trial variability in force 

matching tasks in order to test the forward model hypothesis within the framework 

of the sensory attenuation phenomenon. Our results showed that when comparing 

two conditions in a force matching task, the relative level of attenuation was directly 

associated with the relative trial-to-trial variability. These results supported the idea 

that a forward model plays a key role in the SA phenomenon. According to this 

hypothesis, when performing a voluntary action, a copy of the motor command is 

sent to a forward model that predicts the tactile sensory feedback that the action 

performance would generate. As the movement is then executed, the comparison 

between the actual and the predicted tactile sensory feedback would lead to the 

attenuation of the predicted part of the feedback.  

 

Recent studies argued against the forward model hypothesis  (Press et al., 2020; 

Roussel et al., 2013; Thomas et al., 2020; Yon et al., 2020). Authors claimed that 

their suggestion is based on the vast literature on Bayesian inference theory of 

perception. According to this theory, the CNS combine the sensory feedback with 

prior knowledge about the probability of a certain state of the body to be realistic 

in a specific situation (Körding & Wolpert, 2004; Mcnamee & Wolpert, 2019). As 

a result, the subject’s perception is biased to his/her prior and the strength of this 

bias depends on the stimulus’ noise: the noisier the stimulus, the greater the bias.  

Previous studies showed that the CNS uses the Bayesian inference in a variety of 

behavioral tasks involving the UL including pointing to a target, and force 

estimation  (Körding et al., 2004; Körding & Wolpert, 2004; Tassinari et al., 2006). 

This evidence was then interpreted in the recent literature leading to the idea that 

the expectation of a sensory stimulus enhances its perception rather than suppress 

it (Press et al., 2020). Moreover, this was considered incompatible with the SA 

phenomenon according to which the expected stimulus should be attenuated. A 

series of experiments aimed to corroborate this hypothesis. Yon et al. tested healthy 

subjects in a task where human participants were required to execute either index 

or little finger abductions while observing an avatar hand on a screen (Yon et al., 

2018). The avatar hand performed finger abduction simultaneously to subjects’ 
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movement in two conditions: congruent (same finger) or incongruent (different 

finger). Participants were asked to judge about which avatar’s hand finger moved. 

Authors found superior accuracy in those trials when the avatar’s and subjects’ hand 

moved the same finger. In another recent preprint paper, authors modified the 

paradigm widely used in SA experiments of Shergill (Shergill et al., 2003) to test 

subject’s perception of force intensity in different conditions (Thomas et al., 2020). 

In the first experiment subjects were asked to compare the intensity of two taps on 

their left index finger. The first one was delivered in two conditions: either triggered 

by a downward movement of their right index or delivered while resting. The first 

condition was further divided in two subconditions according to whether subject, 

during their right index downward movement, touched a sensor or their movement 

was recorded using a motion tracker. In this experiment authors found that the touch 

of the sensor was crucial in order to find attenuation comparing the active and the 

resting conditions. In a second experiment subjects were trained to expect a tap on 

the left index or middle finger if they moved downward or upward the right index 

respectively. After the training subjects underwent the experimental session in 

which a third of the trails did not respect the association experienced during the 

training, provided the subjects with a tap on the unexpected finger. In this 

experiment also, subjects were asked to compare the intensity this test tap with a 

comparison tap delivered subsequently. The results suggested that subjects 

perceived (relatively to the comparison tap) the tap in the expected condition as 

more intense compared to the unexpected condition, apparently in contrast to what 

previously found in similar experiments (Thomas et al., 2020). Taking together 

these recent studies, the authors proposed that the previous findings on sensory 

tactile attenuation in force matching tasks (Bays et al., 2005, 2006; Bays & Wolpert, 

2007a; Shergill et al., 2003, 2005, 2013, 2014; Wolpe et al., 2016, 2018) were to 

be meant as the results of a general unpredictive gating mechanism and that the 

measured attenuation was triggered by the tactile sensation on the active finger 

(right index finger) rather than being the effect of a predictive cancellation (Press 

et al., 2020). However, a careful look at these recent experiments that tried to 

confute the forward model hypothesis suggests that their findings are not 

necessarily in contrast with the SA literature. The prediction of the action’s sensory 
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consequences requires an internal model of that specific behavior, and therefore the 

association between movement and sensory feedback needs to have been 

experienced dozens (if not hundreds) of times throughout the subject’s life. In 

contrast, the association, for example, between moving upward the right index 

finger and expecting a tap in the left index placed below it like in the study of 

Thomas et al. (Thomas et al., 2020), does not occur often in natural environment. 

In that context subjects did learn to expect a tap on their left index, but that learning 

may have relied on more general prediction mechanism that does not necessary 

involve a forward model, as suggested in a recent review on this topic (Dogge et 

al., 2019). Following this interpretation, when subjects moved upward their finger, 

a forward model may have predicted the proprioceptive feedback directly related to 

that movement but not the tapping on the left index finger. For this reason, it is not 

surprising that the authors did not find any attenuation of perception in that task. In 

another of these studies the authors investigated the subjects’ accuracy of detecting 

a finger movement in an avatar’s hand following their hand’s movement (Yon et 

al., 2018). In this case as well, following the previous reasoning, it can be argued 

that the visual detection of a movement does not rely on a predictive process 

involving a forward model. Finally, in some of these studies subjects were 

observing avatar’s hands moving while recent literature suggested that 

somatosensory attenuation does not occur in action observation (Kilteni et al., 

2021). 

 

In the present study, we aimed to provide further evidence for the predictive nature 

of the SA phenomenon. The underlying idea of our project was that the amount of 

attenuation depends on the accurateness of the prediction: the more it is accurate, 

the more the perception is attenuated. Notably, the accuracy of the prediction is 

herein to be intended in terms of spatial and temporal coherence rather than 

intensity. A variable level of attenuation and the neural process that implements the 

comparison between the predicted and the actual sensory signals would generate 

additional noise to the sensory feedback. This sensory noise would lead to an 

additional variability in reproducing that force in a force matching task. Moreover, 

this process would occur only in the conditions where  attenuation is found. In 
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contrast, if there isn’t any predictive mechanism involved in this process, no 

additional noise would be generated. We compared the level of relative attenuation 

and the trial-to-trial variability between two conditions in different force matching 

tasks. We found that the levels of relative attenuation were positively associated 

with the relative variability in reproducing the force perceived. This finding is 

consistent across different settings and different comparisons and provides 

evidence for an anticipatory mechanism responsible for the sensory attenuation 

phenomenon. 

 

Previous studies attempted to quantify the amount of attenuation in force matching 

tasks. Some studies suggested that the amount of attenuation was proportional to 

the matching force intensity (Shergill et al., 2003, 2005), while later metanalysis 

claimed that perception of the tactile sensation was attenuated by a fixed amount 

irrespective to the matching force magnitude (Bays & Wolpert, 2007a). To solve 

this partial disagreement, we modeled the subjects’ behavior in different force 

matching tasks that included the comparison of two conditions: one in which 

attenuation was found (self-condition) and one in which it wasn’t (joystick/slider 

condition). The model that better captured the single subject’ performance assumed 

a direct proportionality between the matching force in the self and external 

conditions and their ratio being the attenuation level. This model outperformed the 

alternative model where a constant difference between the matching forces in the 

two conditions was hypothesized. Notably, for the sake of simplicity, we have been 

referring to the compared conditions as self or joystick. However, this model 

captured the subjects’ behavior also comparing conditions where no relative 

attenuation was found like in the experiment from the work from Bays and Wolpert 

(Bays & Wolpert, 2007a). 

 

The physiological meaning of the SA phenomenon represents a challenging 

question. Previous studies suggested that the attenuation of the predictive part of 

sensory feedback has the scope of enhancing the salience of unexpected external 

stimuli (Bays & Wolpert, 2007a). Other studies highlighted the importance of such 

mechanism in discriminating between self-generated and externally generated 
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stimuli contributing to the sense of agency (Macerollo et al., 2015, 2016; Pareés et 

al., 2014). Our findings don’t provide further evidence on the physiological purpose 

of the SA phenomenon. However, considering the remarkable amount of literature 

on this topic, some considerations can be made. Firstly, it is noteworthy that, 

according to our results, the comparison between the actual and predicted feedback, 

along with its attenuation, corrupt the sensory information with additional noise. So 

one could ask why the CNS should attenuate the perception of a predicted tactile 

stimulus. From a practical perspective, as it has previously suggested, the 

attenuation of the predicted part of the sensory feedback can have the final effect 

of enhancing the unexpected stimuli, which are the most informative part of 

somatosensory signals during the movement (Bays & Wolpert, 2007a). For 

example, during an object’s manipulation the increase of a tactile stimulus’ 

intensity can be caused either by a change in the object’s shape, such as a 

protuberance, or by the increase of pression that we generate on it with our holding. 

The attenuation of the tactile sensation in the latter situation could be useful for 

distinguishing between the former and the latter situations, ultimately improving 

our knowledge on the object’s shape. Moreover, imaging studies suggested that the 

inhibition of the activity of SII, may be associated with the phenomenon of SA. 

From an efficiency perspective, it could be useful for the CNS to allocate less 

resources for the coding of tactile perception that could be predicted. Therefore, the 

SA could be considered a mechanism by which the CNS optimize its activity 

allocating more resources to the coding of the unexpected stimuli. 

 

To conclude, our analysis provided further evidence supporting the forward model 

hypothesis for the prediction of the sensory input arising from voluntary actions. 

These findings are in line with a recent work of Kilteni et al. that demonstrated that 

SA and general unpredictive gating mechanism are different and independent 

phenomena (Kilteni & Ehrsson, 2020), in contrast to recent literature that argued 

against this idea (Press et al., 2020). The study of this predictive mechanism is 

crucial not only for improving our understanding of the somatosensory perception 

in healthy individuals, but also to shed new lights on predictive motor control 

dysfunctions that can affect subjects with CNS lesions. 
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Bimanual object lifting  
 
Predictive estimation of the consequences of upper limb’s movements is essential 

for performing the rapid and precise movements commonly observed in object 

manipulation. Along with the consequences of the voluntary movement on our own 

upper limb, when dealing with an object the CNS must take into account the 

properties of the object itself. These properties include weight, surface grip, mass 

distribution, temperature, material, and generally all the tactile sensations that 

would arise after the touch. The lift of an object is indeed a complex action that 

involves both the control of the upper limb and the hand-object interaction. 

Specifically, when we move an object from position A to position B, we need to 

modulate the grip force accordingly to the acceleration we apply to prevent the 

object to slip out. That is the greater the acceleration, the greater the grip force 

needed.  These complex actions are supported by somatosensory feedback that 

provide the CNS with tactile and proprioceptive information. Cutaneous 

mechanoreceptors respond to skin deformation and pression, while intrafusal 

muscle fibers along with joint capsules generate information on dynamic properties 

related to the UL’s kinematics or the object  

 

This behavior has been widely investigated by assessing the anticipatory grip force 

modulation during the lifting of an object of known properties (Flanagan et al., 

2001; R. S. Johansson & Edin, 1993; Y. Li et al., 2011; Nowak et al., 2005). When 

moving the UL while grasping an object, predictive state estimation was usually 

associated with an increase of grip force before the UL movement onset. This 

anticipatory reaction is crucial in order to prevent the object slippage during the 

movement (Flanagan & Wing, 1997; Frenkel-Toledo et al., 2019). Therefore, it has 

been suggested that the anticipatory grip force modulation is based on an internal 

model of prediction of the movement consequences of the voluntary action of the 

object lifting, possibly representing an indirect measure of a forward model 

(Flanagan et al., 2001; Nowak et al., 2013). Anticipatory grip force has been 

investigated in people affected by central nervous system stroke sequelae. Stroke 

subjects presented delayed grip force onset (Blennerhassett et al., 2008; 

Hermsdörfer et al., 2003; Nowak et al., 2013) and, likely to compensate for these 
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deficits, produced exaggerate grip force (Nowak et al., 2013). Interestingly, tactile 

sensitivity deficits but seemed not to affect timing onset of grip forces (Hermsdörfer 

et al., 2003). 

In contrast to the robust literature body concerning unimanual object lifting, 

bimanual force modulation in lifting task has not been widely investigated. 

Moreover, while movement prediction deficits in unimanual load lifting of the 

affected hand of stroke subjects are relatively well-defined, there is no clear 

evidence whether the coupling of ULs could improve these deficits or not. 

Furthermore, the question about the unilateral or bilateral nature of UL forward 

model is still under debate (Frey et al., 2011). 

 

The present section aimed to investigate the anticipatory behaviour during a 

bimanual object lifting in people affected by stroke. The secondary aim was to 

investigate the bimanual force control deficit in coupled tasks in healthy young and 

elderly subjects. Given the central role of cerebellum and somatosensory areas in 

the anticipatory grip behaviour, we focused on patients with lesions to these 

cerebral areas.  
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Age related changes in bimanual force control  

Several common daily activities performed with force and kinematics coupling 

between two hands, such as holding or moving a large box, or holding a can and 

simultaneously unscrewing its tap, require bimanual coordination (Krishnan & 

Jaric, 2010; Swinnen & Wenderoth, 2004). Although in these actions the temporal 

and spatial coordination between the two hands seems easy and natural, the central 

nervous system must deal with the complex upper limbs’ mechanical properties, 

share control between arms, and integrate sensory feedback from both sides of the 

body (Córdova Bulens et al., 2018). Performing bimanual actions involves an 

extensive network of cortical and subcortical structures, including the primary 

sensorimotor, premotor, supplementary motor, parietal associative cortices, 

cerebellum and basal ganglia (Swinnen, 2002). During bimanual actions, the 

sensorimotor cortices have distinctive activity compared with unimanual tasks 

(Long et al., 2016; Nair et al., 2003; Serrien et al., 2003) and the corpus callosum 

has a crucial role in the interaction between the two hemispheres (Long et al., 2016). 

Neurological diseases such as stroke, Parkinson’s disease and multiple sclerosis 

impact the ability to perform these bimanual actions (Gorniak et al., 2014; Kang 

and Cauraugh, 2014; Yan et al., 2015; Ballardini et al., 2019b). Also, aging affects 

bimanual coordination (Maes et al., 2017), both in motion (C.-H. Lin et al., 2014) 

and force tasks (Y. Jin, Seong, et al., 2019).  

Deficits in bimanual force control tasks in older adults could be due both to central 

factors, as changes in the structures and the physiology of the nervous system (Fjell 

et al., 2014; Goble et al., 2010) and peripheral aspects, as diminished tactile 

sensibility and degenerative process of the neuromuscular systems (McNeil, 2005). 

These changes determine weaker hand-grip strength, higher variability, and lower 

accuracy in isometric bimanual force matching task (Hu & Newell, 2011; Y. Jin, 

Seong, et al., 2019; Kubota et al., 2012; C.-H. Lin et al., 2014, 2019), increased 

reaction time (Fozard et al., 1994), decreased bimanual (Y. Jin, Seong, et al., 2019; 

C.-H. Lin et al., 2014; Vieluf et al., 2015) and impaired manipulation abilities 

(Sebastjan et al., 2017), compared to young adults.  
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Here, we focus on bimanual isometric force tasks. The ability to produce bilaterally 

isometric force has been studied mainly in tasks where subjects are required to 

produce maximal forces or match constant and time-variant force levels (Kang & 

Cauraugh, 2014; C.-H. Lin et al., 2019). Most of these studies were limited to hand-

grip (Jaric et al., 2005, 2006) or single-digit force (Kang & Cauraugh, 2014; C.-H. 

Lin et al., 2014; Long et al., 2016; Patel et al., 2019), i.e., tasks where the force is 

due to distal muscles. Instead, several daily living activities as holding large objects 

also require the control of proximal muscles, i.e., upper arm and shoulders’ 

muscles. Different muscle districts could significantly determine force control 

performance in terms of accuracy, variability and bilateral asymmetries. Moreover, 

in several studies often the two hands are evaluated separately, under the 

assumption of mutual single-hand independence, while bimanual control is 

characterized by specific and unique features, including between-hands interaction, 

that are poorly investigated (Y. Jin, Kim, et al., 2019; Kennedy et al., 2016; 

Morrison & Newell, 1998; Serrien & Wiesendanger, 2001). Most of the studies 

where the two hands are evaluated together focused their analysis on the overall 

performance of both hands (Ferrand & Jaric, 2006; Kang & Cauraugh, 2018), while 

only a few works investigated the strategies of each hand and their coupling, 

investigating asymmetries and differences due to the specialization of each 

hemisphere or to handedness (Hu et al., 2011; X. Jin et al., 2011). Therefore the 

knowledge about bilateral asymmetry when the hands' performance are evaluated 

simultaneously is still limited (Takagi et al., 2020). 

Force control studies in healthy right-handed subjects, where the hands are tested 

sequentially or separately, found that the right-dominant hand tends to produce 

more force when matching the force previously produced by the other hand. This 

behavior was found for hand-grip (Lafargue et al., 2003; Mitchell et al., 2017) and 

isometric fingers force tasks (Henningsen et al., 1995). The reason for this behavior 

is that the right-dominant hand is usually stronger (Armstrong & Oldham, 1999; 

Incel et al., 2002), and less noisy in several motor tasks (Kubota et al., 2012). The 

right hand applied more force than the other hand also in the isometric concurrent 

tasks proposed by (Davis, 2007), where the force was applied by the fingers, 

involving distal muscles. However, O'Sullivan et al. (O’Sullivan et al., 2009), 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905146/#B23
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focusing on a bilateral finger force control task, demonstrated that in bimanual tasks 

where the two hands act concurrently, the control responsibility is shared among 

the two sides: the brain decides the role of each hand based on its strength and 

variability. This evidence was confirmed by (Salimpour & Shadmehr, 2014a), 

investigating a bimanual task in which people chose how much force to produce 

simultaneously with each arm so that their sum would equal a target. They applied 

forces toward eight different directions on two quasi-static handles, involving also 

proximal muscles. The right-dominant hand applied more force than the other one 

only in specific directions, and because it was less noisy, not stronger. If the right-

dominant hand is generally the strongest, the hand variability, instead, depends on 

several factors, including the proposed task, the muscles involved, and the 

population age, leading to different results in lateral asymmetries (K. Li & Wei, 

2014). Specifically, with age, the variability in task performance of the dominant 

right arm tends to increase (Vaillancourt & Newell, 2003). Several studies reported 

with age a loss of the advantage of this hand (e.g. (Kalisch et al., 2006; Vaillancourt 

& Newell, 2003)) due to its higher rate of decrease in performance. However, the 

literature results also provide conflicting or task-dependent evidence reporting an 

increase in right-dominant hand use (Weller & Latimer-Sayer, 1985) or not change 

(Cabeza, 2001; Hausmann et al., 2003).  

The purpose of this study was to investigate task performance, bilateral 

coordination, and lateral asymmetries in young and elderly healthy right-handed 

subjects during a bimanual isometric force task requiring an essential contribution 

of the upper arm and shoulder muscles. Subjects were explicitly asked to 

simultaneously apply the same amount of isometric force pushing with the palm 

and fingers on two decoupled plates corresponding to a sensorized object's lateral 

faces. They were asked to reach, following a time variant-profile, three target 

forces, corresponding to 8 N, 20 N, 40 N applied by each arm.  

The main hypothesis is that since in this task, subjects use three muscle groups - 

postural stabilizers (abdomen, pelvis and back), muscles supporting the execution 

of force exertion (shoulder, trunk), and the muscles responsible for the isometric 

force production (forearm and hand) (Sebastjan et al., 2017) - strategies and 
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performance in our task will differ from strategies and performance observed in 

power grip or the application of a force by single fingers: a higher level of proximal 

muscle recruitment could reflect different motor control strategies than those 

associated with distal muscle recruitment in fine movements.   

Our results showed that older subjects had higher errors and more variable force 

profiles, and most of them undershoot the highest force level. They also had more 

asymmetric performance between the two hands, although the hand applying more 

forces varied across subjects and depended on the target force. Interestingly, for the 

lower target force when strength was less important, for our subject population the 

% of force applied by the left non-dominant hand correlated with its variability. 

 

Methods 
 

Assessment procedure has been carried out on a cohort of healthy subjects in order 

to collect normative data. Two groups were compared: sixteen young healthy 

subjects (YG; age = 24.65±1.32(std) years) and sixteen older subjects (OG; age = 

75.25±6.6(std) years). All the subjects were right-hander. The study protocol has 

been approved by the ethic committee Comitato per l’Approvazione della Ricerca 

sull’ Uomo (CARU) of the Verona University, submission number: 22/2019. 
 

 

Participants 
 
Thirty-one healthy volunteers participated in our study. The exclusion criteria were 

the presence of musculoskeletal injuries or any other neurological condition, history 

of surgery or pain affecting upper limbs, normal or corrected to normal visual and 

auditory abilities. To be included in the study, subjects had to be right-handed 

according to the Edinburgh Handedness Inventory (EHI score > 60) (Oldfield, 

1971) and between 18 and 30 years old or between 65 and 85 years old. The two 

ranges corresponded to two different cohorts: sixteen participants (age = 

24.65±1.32(std) years, 10 female, Edinburgh Test Score: 89.62±14.28) have been 

enrolled in the ‘younger group’ (YG) and the other fifteen (age = 76.66±6.61(std) 
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years, 7 female, Edinburgh Test Score: 96.66±8.99) in the ‘older group’ (OG). We 

verified no statistically significant difference between the two groups in terms of 

gender (Chi-squared test p=0.15) and hand-dominance (t-test p=0.07). 

This study was conformed to the ethical standards of the 1964 Declaration of 

Helsinki and all the study procedures and documents, including the consent form, 

were approved by Verona University Institutional Review Board (CARU n. 

22/2019). All participants provided written informed consent to participate in the 

study and publish the results in the de-identified form. 

 

Bisbox device 
 
The device used in this experiment, Bisbox 2.0, is a sensorized rectangular box, a 

new and lighter (0.8 kg) version of the prototype described in (Galofaro et al., 

2019). The dimensions of the box were 15×35×25 cm (height × width × depth). The 

35 cm length was chosen to match the participants' average inter-shoulder distance, 

who should hold the device with the two hands placed on the two smaller faces. 

These smaller faces consisted of a rigid frame connected to the box frame via three 

load cells (mod. CZL635, Phidgets Inc., Calgary, Canada; full-range scale of 5 kg; 

precision of 0.05% and linearity of 0.05% FS) for measuring the force applied 

during the experiment (each plate: overall accuracy after offset calibration r 0.3N 

in the range 0-60 N). The sensorized box could be used stand-alone, with a memory 

card for data recording, or, as in this experiment, connected to a laptop via wireless 

communication (Wi-Fi network connection through a WIPY 3.0 microcontroller, 

programming language: Python). The laptop ran the software that controlled the 

experiment and provided instructions and feedback to the participants on a screen. 

The user interface was developed in Python 2.7.9 with the open source libraries 

OpenGl and Pygame. In this experiment, the Bisbox was secured to a table with a 

system that allowed to avoid any movement of the device and to decouple the force 

applied by the two hands on each of its two lateral plates. 

Experimental setup 
 
Participants sat in an armless chair in front of a 24“ monitor placed ~ 0.5 m away 

from the subject's chest. The height of both table and chair was adjustable so that 
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the forearms rested on the table with shoulders in ~20 deg flexion and elbows at 

~110 deg flexion. The hands were positioned fully open on the lateral sides of the 

device. A schematic representation of the setup is shown in Figure 20 A. 

Dynamic bimanual force trajectory task 
 
Subjects were asked to keep a cursor on top of the sides of an isosceles trapezoid, 

displayed on a computer screen (Figure 20 A). The cursor was programmed to move 

horizontally from left to right with respect to the subject, at the constant speed of 

0.85cm/s, regardless of the subjects’ actions. The sum of the force applied by the 

participants’ hands on the lateral plates of Bisbox controlled the height (i.e., the 

vertical displacement) of the cursor (1 N = 0.30 cm). When no forces were applied, 

the center of the cursor was on the lower side of the trapezoid, corresponding to his 

major base. Each trial consisted of four phases of equal duration (two constant and 

two time-variant, Figure 20 B): 

Phase 1) Increment phase, 𝐼, where the cursor should move upward and rightward 

along one leg of the trapezoid. In this phase, subjects had to gradually increase the 

applied force, starting from 0 N and reaching the maximum force level after 3.5s. 

Phase 2 & 3) Holding phases, 𝐻1 𝑎𝑛𝑑 𝐻2, where the cursor should stay at the same 

height, moving rightward along the top side, i.e., the minor base of the trapezoid. 

Thus, subjects had to maintain the same maximum force for 7s. 𝐻1 accounted for 

the first 3.5 s, and 𝐻2, for the last 3.5s.  

Phase 4) Decrement phase, D, where the cursor should move downward and 

rightward along the other leg of the trapezoid. In this phase, subjects had to 

gradually decrease the force reaching the 0 level in 3.5 seconds. 

A trial lasted 14 seconds, and subjects paused for 6 seconds between trials.  

In each trial, subjects had to reach with the sum of the force applied by the two 

hands one of the following three maximum force levels presented in random order: 

low (L=16 N), medium (M=40 N) and high (H=80 N). Three minor bases of the 

trapezoids corresponding to these three force levels were always displayed in grey 

on the screen, while for each trial, the sides of the trapezoidal shape to match were 

highlighted with a white line (thickness 0.8 cm) against a black background. The 

cursor was a red square of 0.4 cm side length. 
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The experimental session consisted of 30 trials, i.e., ten trials for each value of the 

maximal target force. An initial phase of familiarization was provided to explain 

the task sequence and how to perform it correctly. 

 

Data analysis 
The raw force signals from the six load cells were recorded at 50 Hz and filtered 

using a 4th order low-pass Butterworth filter with a 10 Hz cutoff frequency before 

computing the performance metrics described in the following paragraph. 

Indicators were computed for each of the above-mentioned phases and for the entire 

trial. For each subject, we averaged the values obtained for the same target force. 

 

Bimanual task performance. 

We computed three parameters to evaluate the accuracy in controlling the total 

force applied by the two hands.  

 

• Root-Mean-Squared Error (RMSE) measures the deviation of the 

participant’s total force output from the target force trajectory (Lodha et al., 

2010). Higher values for relative RMSE indicate less accuracy of total force 

output. It is defined as:  

 

 
Figure 20 . (A) Schematic representation of the setup. Subjects sat on an armless chair and pressed 
laterally the fixed device (designed with Fusion 360) following the visual cue on the screen (red 
cursor). All three trajectories (grey lines) were depicted on the screen and for each trial one of these 
was evidenced (continuous white line). (B) Ideal trajectories (L, M and H, evidenced on y-axis) that 
subjects had to follow. All the phases are evidenced by shaded areas: increasing phase (I, orange), 
holding phase 1 (H1, light grey), holding phase 2 (H2, dark grey) and decreasing phase (D, blue). 
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𝑅𝑀𝑆𝐸 = √1
𝑁∑

(𝐹𝑀𝑖 − 𝐹𝐷𝑖)2
𝑁

𝑖=1

 (13) 

  

where 𝐹𝑀𝑖 is the measured total force at the sample i and 𝐹𝐷𝑖 the corresponding 

desired force.  N is the total number of samples considered either on a single phase 

or on the entire trial. 

 

• Bias  Error (BE), the systematic component of the error, computed as the 

signed difference between the participant’s total force output and the target 

force:  

 

𝐵𝐸 =
1
𝑁∑(𝐹𝑀𝑖 − 𝐹𝐷𝑖)

𝑁

𝑖=1

 (14) 

 

Positive values indicate an overshoot of the target force, negative values an 

undershoot (Schmidt et al., 1988; Marini et al., 2016; Ballardini et al., 2019a).    

 

• Coefficient of Variation (CV), a measure of force variability (standard 

deviation) of the total force expressed as a percentage of the mean force 

output (Galganski et al., 1993):  

 

𝐶𝑉(%) =
𝑠𝑡𝑑(𝑑𝑒𝑡𝑟𝑒𝑛𝑑(𝐹𝑀))

|mean (𝐹𝑀)| ∗ 100 (15) 

 

                             

Where 𝐹𝑀 is the vector of the samples from force trajectory in each phase. We 

computed the standard deviation (std) of this signal after removing the best straight-

fit line from the data (least-squares method, Matlab function detrend).  

Differences between the force applied by each hand. 

To determine the difference between the two hands while performing the bimanual 

task, we computed: 
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• Symmetry Index (SI), a measure of force symmetry between the two hands, 

computed as follow: 

 

𝑆𝐼 =
1
𝑁∑(1 − 

|𝐹𝑀𝐿𝑖 − 𝐹𝑀𝑅𝑖 |
𝐹𝑀𝑖

) ∗ 100
𝑁

𝑖=1

 (16) 

 

when the contribution % of the right-dominant (𝐹𝑀𝑅) and left-non dominant (𝐹𝑀𝐿) 

hands are equal, the symmetry index is 100, 0 instead indicated that the total force 

FM  is completely due only to one of the two hands. To remove contributions of 

noise, we computed this indicator on the average force profile (averaged over the 

10 trial repetitions with equal target force) of each hand. 

 

• Left Hand Force (LHF). This parameter indicated what % of the total force 

output (𝐹𝑀) was applied by the left – non dominant hand (𝐹𝑀𝐿)(Lodha et 

al., 2012):  

 

𝑆𝐼 =
1
𝑁∑(1 − 

|𝐹𝑀𝐿𝑖 − 𝐹𝑀𝑅𝑖 |
𝐹𝑀𝑖

) ∗ 100
𝑁

𝑖=1

 (17) 

 

• Correlation between right-dominant and left-non dominant hand. To 

estimates the coordination between the two hands, we evaluated the 

temporal correlation between left (𝐹𝑀𝐿)- and right-hand force (FMR) outputs 

within each trial by cross-correlating the forces applied by the two hands: 

 

𝑅𝑥𝑦(𝜏) = ∫ 𝐹𝑀𝐿∗(𝑡)𝐹𝑀𝑅(𝑡 + 𝜏)𝑑𝜏
∞

−∞

 (18) 

 

(* denotes complex conjugation) and we computed the maximum 

correlation Correlation = max
𝜏
𝑅𝑥𝑦(𝜏) and the Time Delay between the two 

signals Lag= max
𝜏
𝑅𝑥𝑦(𝜏). 
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• 𝐶𝑉𝐻. This parameter assesses the force variation of each hand by 

considering, instead of the total force 𝐹𝐻, the force produced by each hand 

(H = L (left-non dominant) or R (right-dominant)). This outcome is similar 

to the CV (Equation 15) but defined for each hand force FMH instead of the 

total one: 

 

𝐶𝑉𝐻(%) =
𝑠𝑡𝑑 (𝑑𝑒𝑡𝑟𝑒𝑛𝑑(𝐹𝐻))

|𝑚𝑒𝑎𝑛(𝐹𝐻)|
∗ 100 (19) 

 

To further understand these results, we modelled the relationship between the 

parameter LHF and the parameter 𝐶𝑉𝐿 by mean of simple linear regression. 

 

Statistical analysis 
 
Normality was assessed by the Kolmogorov-Smirnov test, and sphericity condition 

for repeated measures ANOVA was assessed by the Mauchly test. These conditions 

were always verified. For all indicators, we performed a repeated-measures 

ANOVA (rANOVA) with one between-subjects factor: ‘Group’ (2 levels: YG and 

OG) and two within-subjects factors: ‘Target Force’ (3 levels: L, M and H) and 

‘Phase’ (4 levels: I, 𝐻1, 𝐻2 and D), and their interaction. Moreover, for the metrics 

𝐶𝑉𝐻 we include a further within-subjects factor: ‘Side’ (2 levels: ‘left-non 

dominant’ and ‘right-dominant’). We also performed a post-hoc analysis (Fisher’s 

LSD test) to investigate statistically significant main and interaction effects. The 

significance level was set at p<0.05. The p-values were reported with correction for 

multiple comparisons by the Bonferroni method (Hsu, 1996). 
 

Results 
 
The total force profiles applied by the two hands (Figure 21 A) highlighted that 

most subjects in the OG undershot the highest target level, while the two groups 

were more similar in terms of accuracy for the low and intermediate levels. By 

looking at the single force hand contribution (Figure 21 B), younger subjects 

applied similar forces with both hands for all target levels. Instead, for most of the 

older subjects, each hand's contribution to the total force was more asymmetric, and 
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the hand applying more force differed among subjects (high inter-subject 

variability) and depended on the force level. The analysis of these indicators 

confirmed and further extended these results. 

In the following, we reported metrics computed for OG and YG groups related to 

each of the four phases (I, H1, H2, D) of the force profile separately and for the 

overall force profile (i.e., entire force profile considering all the I,H1,H2,D phases). 

 In all the related figures, we evidenced only the principal statistical effect 

(between-subjects factor: YG versus OG). The other effects (within-subject factor, 

interaction and post-hoc analysis) are described in the text. All values reported in 

the following text and in the figures are referred to (mean±SE).  

Bimanual task performance. Older and younger participants had significantly 

different overall bimanual accuracy expressed in terms of RMSE (Figure 22 A, 

‘Group’ effect: F(1, 32) = 91.68, p<0.001), i.e., the younger subjects had lower 

RMSE in all phases for all the target forces.  

As expected, for both groups, the RMSE and the difference between the RMSE of 

the two groups increased with the target force (‘Target Force’ effect: 

F(2,32)=189.48, p<0.001, interaction effect: ‘Group*Target Force’: F(2,32)=6.81, 

p<0.001). 
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Figure 21 Trajectories (mean ± std) of each group for every target force, the first column 
is relative to the younger group (YG) while the second one is relative to the older group 
(OG). (A) Total Force: sum of the right-dominant and left-non dominant hand’s forces: 
blue line indicates the YG while the magenta line denotes the OG. (B) Hand Force: force 
applied by each single hand, green lines indicate the left contribution while dark-green ones 
the right hand. 
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Finally, both groups had higher errors in the I and D phases (time-variant) than in 

the holding phases (H1 and H2) and evidenced higher errors in the first holding 

phase compared to the second one (‘Phase’ effect F(3,32)=34.11, p<0.001; 

‘Group*Phase’ interaction effect: F(3,32)=0.88, p=0.453). The post-hoc analysis 

 
 

Figure 22 Bimanual performance metrics A) RMSE. B) BE. C) CV. Each metric is 
computed for the three force targets (L, M and H, as indicated in the x-axis). Blue 
colour denotes young adults (YG), magenta old adults (OG). As illustrated by the 
right-top legend, for each condition, each bar illustrates the parameter computed 
during one of the four phases, as indicated in the graph by the trapezoidal shape 
above them, while the right-ward fully coloured bar represents the metrics 
computed for the overall trajectory 
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confirmed that errors in I and D were significantly higher compared to both H1 and 

H2 (p<0.001 for all comparisons). Also, comparing the two holding phases, the 

RMSE was slightly higher in the first than in the second (p=0.01); this difference 

was higher for the OG. Instead, the RMSE was not significantly different between 

I and D phases (p=0.457).  

  

To further understand these results, we investigated the presence of a bias on the 

overall force exertion by computing the BE parameter (Figure 22 B), whose 

positive and negative values indicate respectively a systematic tendency to 

overshoot and undershoot the required level of force. 

The bias error was in general small for both groups, but the two groups were 

significantly different (‘Group’ effect: F(1, 32)=11.24, p<0.001). The difference 

depended on the target level and the phase of the trial (interaction effects: 

‘Group*Target Force’: F(2,32)=9.56, p<0.001 and ‘Group*Phase’: 

F(3,32)=12.02, p<0.001). We also found significant main effects of the ‘Phase’ 

factor (F(3,32)=12.04, p<0.001). Specifically, both groups had negligible bias 

errors at the lower and medium target in all phases, for the highest target force (H), 

the bias error magnitude increased for both groups. However, while the YG 

overshoot the target force in all phases except the D phase, the OG, on average, 

tend to undershoot the target force in all phases but in the I phase, having difficulties 

in reaching and maintaining the required maximum force. 

 

As for the variability (CV, Figure 22 C) of the overall applied force, the OG force 

was affected by higher variability than that of the YG (‘Group’ effect: 

F(1,32)=144.79, p<0.001). Both the variability factor and the difference in 

variability between groups depended on the phases (‘Phase’ effect: 

F(3,32)=328.27, p<0.001; interaction effect ‘Group*Phase’: F(3,32)=20.53, 

p<0.001). The CV was higher in the I and D phases for both groups and all target 

forces than in the holding phases (post-hoc: p<0.001, for all comparisons). Also, 

comparing the two holding phases, the CV was higher in the first than in the second 

(post-hoc: p=0.006), although this difference was higher for the OG. Instead, for 

both groups there was no statistical difference comparing the I and D phases (post-
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hoc: p=0.523). Finally, for the OG, the CV was on average higher for the lowest 

target force than for the intermediate and the highest target force (‘Target Force’ 

effect F(2,32)=7.98, p=0.001, post-hoc respectively p=0.001 and p=0.002) while 

there was no statistically significant difference between the two other levels 

(p=0.993).   

 

Differences between the forces applied by the two hands. We asked the subjects 

to control the cursor by applying the same amount of force with the two hands. OG 

applied forces less symmetrically than the YG (Figure 23A, ‘Group’ effect: F(1, 

32) = 56.78, p=0.02). The SI increased with the target force amplitude 

(‘Group*Target Force’ interaction effect: F(2,32)=15.38, p=0.004, post-hoc 

‘Group’ for all target force : p<0.001).  
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Figure 23 . Single hand performance. Blue color denotes young adults, magenta elderly 
adults As illustrated by the right-top legend, for each condition, each bar illustrates the 
parameter computed during one of the four phases, as indicated in the graph by the 
trapezoidal shape above them, while the right-ward fully colored bar represents the metrics 
computed for the overall trajectory. Each metric shows the 3 levels of force that are 
evidenced on the x-axis (L, M and H). A) Symmetry Index. B) 𝐶𝑉𝐻 – Coefficient of 
Variation of the force produced by each hand (the pedix H denotes that the metrics is 
illustrated for both the left (colored bar) and the right hand (grey bar)). C) Correlation. 
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While the hand applying more force varied across subjects, for the lower target 

force, most of the participants belonging to the OG group relied more on the right-

dominant hand, behaviour not observed in the younger group (LHF: ‘Group*Target 

Force’ interaction effect: F(2,32)=156.78, p<0.001, post-hoc between groups at the 

lower target force p<0.001).  

The coefficients of variation of the left-non dominant and right-dominant hand 

(𝐶𝑉𝐻=𝐿,𝑅, Figure 23B) were similar for the YG. Instead, the OG had a higher CV 

for the left-non dominant than for the right-dominant arm (‘Group*Side’ effect: 

F(1,32)=20.52, p<0.001; post-hoc ‘Side’ YG: p=0.476, OG: p<0.001). This effect 

was observable for all target forces and in all phases, although it was more marked 

in the I and D phases. 

Interestingly, the % of force applied by the left hand (LHF) for the lower target 

force (L), where we observed the higher differences between populations, 

significantly correlated with its coefficient of variation CVL  (R^2=0.43, p<0.001): 

the higher CVL, the lower the contribution of the left-non dominant hand. 

Interestingly the % of force applied by the left-non dominant hand had a similar 

correlation with CVL /CVR (R^2=0.42, p<0.001), while a lower correlation was 

observed when considering the CVR  (R^2=0.20, p=0.01). These correlations 

disappeared for the higher forces (R^2  < 0.01 for both M and H targets force, Figure 

24).  

The two groups were also significantly different regarding the Correlation (Figure 

23C) between the left-non dominant and the right-dominant hand forces profiles 

(‘Group’ effect: F(1,32)=19.41, p<0.001), but not in terms of Time Delay (‘Group’ 

effect: F(1,32)=1.54 p=0.215). The Correlation increased significantly with the 

increase of the target force for both groups targets (‘Target Force’ effect: 

F(2,32)=220.27, p<0.001), although in a different way for the two groups (‘Target 

Force*Group’ interaction effect: F(2,32)=4.82, p=0.009). In particular, the post-

hoc analysis highlighted for the YG significant differences between the lowest level 

(L) and both the intermediate level (M) and the highest level (H) (post-hoc L-M 

and L-H: p<0.001 in both cases), but no difference between M and H target force 

levels (p=0.689). For the OG group, instead, we found significant differences 

between all levels (post-hoc: L-M and L-H p<0.001, M-H p=0.02). As expected, 
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both groups had higher values of Correlation in the I and D phases than in the 

holding phases (‘Phase’ effect: F(3,32)=127.81, p<0.001; interaction effect 

‘Group*Phase’: F(3,32)=2.22, p=0.08) and for the two higher target forces (‘Target 

Force*Phase’ interaction effect: F(6,32)=5.03, p<0.001). In the latter, the 

difference between force levels was mainly due to the holding phases. The post-hoc 

analysis evidenced higher values of Correlation in the I and D phases compared to 

the holding phases (p<0.001 for all comparisons) and significant differences 

between the two holding phases (p<0.001). 

 

 
Figure 24 . LHF versus 𝐶𝑉𝐿 – Left Hand Force versus Coefficient of Variation of the force 
produced by the left-non dominant hand. The dotted lines denote the confidence interval 
(95%), while the continuous line represents the regression line for each target force (left: 
Lower target force; middle: Medium target force; right: higher target force) computed for 
both groups. 
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Discussion 
 
From the first moment in which we are born, we interact with the outside world 

through touch, and haptic interactions allow us to understand the environment and 

to learn how planning and controlling our actions. We build and modify these 

abilities as we move through different stages of life, also adapting our motor skills 

to the changes in our brain and body.  

The nerve fibers that are projected to the cerebral cortex through the corpus 

callosum are significantly reduced with aging, affecting the interhemispheric 

communication (C.-H. Lin et al., 2014; Ota et al., 2006), increasing the difficulty 

to perform bimanual actions (Geschwind & Kaplan, 1998; Preilowski, 1972). The 

bimanual force control and its changes with age is mainly studied focusing on the 

pressure exerted by individual fingers without considering the joints complexity 

presented by the arms as a whole.  

In this study, we investigated the performance and lateral asymmetries of younger 

and older subjects in a bimanual isometric force matching task, where subjects had 

to control the forces exerted by their hands against a sensorized object for matching 

constant and time-variant force profiles. Three different levels of maximum force 

were required: low, medium and high. To correctly solve the task, subjects had to 

satisfy three specific requirements: i) using both distal and proximal upper limb 

muscles; ii) simultaneously controlling the two arms to achieve a shared goal; iii) 

both arms acting symmetrically.  

The older subjects significantly had lower accuracy and higher coefficients of force 

variation for both hands than younger subjects in all conditions. Interesting, for 

most of them, the left-non dominant hand was noisier than the other hand. Also, in 

the older participants, bilateral forces were more asymmetric, but with different 

hand preference/dominance among subjects. This asymmetry decreased with the 

higher target levels. For the lower target force, where the asymmetries were more 

evident, subjects that exerted greater force with the left-non dominant hand were 

mainly those with lower left-non dominant hand variability. Conversely, subjects 

with higher left-non dominant hand variability relied more on the right-dominant 

hand to generate greater force.  
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As expected, we discovered significant differences concerning the different phases 

of the matched force profile: both groups showed lower accuracy (RMSE), higher 

variability (CV), and higher hands force correlation (Correlation) along with the 

time-variant phases compared to the constant ones; this result was more evident for 

the older group. Finally, we denoted lower accuracy, higher variability, and higher 

correlation, comparing the first holding phase with the second one  

In the following paragraphs, we discuss these findings in detail. 

 

Older subjects had lower accuracy and more variable performance in all 

conditions. 

Aging is associated with a variation in the metabolic processes of the brain (Hyder 

& Rothman, 2012; A.-L. Lin & Rothman, 2014) and with a degenerative process of 

the neuromuscular systems: the muscles fibers decrease together with the motor 

neuron number and firing rate, resulting in a reduced number of motor units 

(McNeil et al., 2005). This is combined with a reduced nerve conduction velocity 

(Jagga et al., 2011; Norris et al., 1953; Palve & Palve, 2018).  

Several studies describe lower accuracy and higher variability while controlling 

force by older participants (Kapur et al., 2010), (Hu & Newell, 2011), (C.-H. Lin et 

al., 2019), (Sosnoff & Newell, 2006), (Vaillancourt et al., 2003), (C.-H. Lin et al., 

2014). In our task, the reduced muscle strength (Kubota et al., 2012; C.-H. Lin et 

al., 2019; Rantanen et al., 1999) and a faster fatigue onset (Hunter et al., 2016) for 

the older subjects could account for their undershooting the highest target force. 

Although we mitigated the last two factors by selecting three force levels that all 

our subjects were able to reach and we interspaced pauses among trials, the request 

of applying a force of 40 N repetitively with each hand could have been exceedingly 

challenging for the older subjects. 

The increased variability we observed in older subjects instead could be associate 

with the decrease of the acuity of the somatosensory feedback and with increased 

widespread cortical activity and reduced functional connectivity during the 

execution of motor tasks characterized by reduced interhemispheric inhibition 

(Fujiyama et al., 2016; Goble et al., 2010; Hermans et al., 2018; Monteiro et al., 

2020). This increased activity has been referred to as either a compensatory 
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phenomenon reflecting higher cognitive demand for the elderly to accomplish the 

motor tasks or a differentiation deficit reflecting an impairment in recruiting 

specific and segregated cortical areas (Heuninckx et al., 2005), (Heuninckx et al., 

2008), and (Sala-Llonch et al., 2015). In line with this evidence, Vieluf et al. (Vieluf 

et al., 2018) found that during bimanual force matching tasks, a frontal activation 

shift compared with younger subjects, suggesting a more substantial use of 

cognitive resources like focused attention. This factor can account for a further 

increase in force variability in bimanual task with age (Rudisch et al., 2020).  

Older subjects had higher asymmetry between the two body’ sides: the arm 

applying more force varied across subjects and depended on the force target.  

Several studies (Mutha et al., 2013; Sainburg, 2002; Wang & Sainburg, 2007) 

suggested that differences in the upper limbs motor performance could be 

interpreted as a consequence of upper limbs specialization, rather than a mere 

superiority of the dominant arm. Specifically, in reaching-to-target tasks, while the 

dominant upper limb maximized predictive control mechanisms that accounted for 

high precision in movement direction and trajectory, the non-dominant hand 

stabilizes the arm at the desired goal position by specifying the impedance around 

that position. This hypothesis was tested mainly in unimanual studies and/or by 

looking at the two hands' independent performance. Few studies focused on 

bimanual tasks where the two hands were physically coupled. Recent findings shed 

new light on the phenomenon of hand dominance and preference, highlighting that 

it is significantly more complicated than it appeared. Woytowicz et al. (Woytowicz 

et al., 2018) found a better stabilization performance of the left-non dominant hand 

in a task where the hands were coupled together by spring and had to reach a target 

position, moving one while holding steady the other. Instead, Takagi et al. (Takagi 

et al., 2020) found a more significant contribution -in terms of co-contraction- of 

the right-dominant arm investigating a task of hold and transport of a sizeable 

oscillating box. These two findings support the hypothesis that the right - dominant 

hand had a leading contribution in the bimanual stabilization task, while the left–

non dominant one is ‘only’ better at compensating the right-dominant hand’s 

interaction forces.  
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In our study the task was isometric, thus not influenced by the superiority in 

dynamic tasks of the right hand (Blakemore et al. 1998). The two arms performed 

a congruent task, as in (Takagi et al., 2020), but they were visually and not 

physically coupled, although they had to reach the same force goal. These isometric 

visually coupled tasks were mainly investigated for fingers or hand-grip forces. In 

these cases, a higher force contribution of the strongest hand, i.e., the right-

dominant, was found. However, the CNS is supposed to assign control authority 

based on each arm's strength and noise (O’Sullivan et al., 2009). While the strongest 

arm is usually the right-dominant arm, noise can depend on task requirements as 

the muscle districts involved or the specific target directions. In fact, in a task also 

involving proximal muscles (Salimpour & Shadmehr, 2014b), a higher contribution 

of the right-dominant hand was found only for specific directions. Also, our task 

involves proximal muscles. As for the strength factor, lateralization is preserved in 

older subjects, although associated with a decreased asymmetry in between-hands 

dexterity (Teixeira, 2008) (Sale & Semmler, 2005). As for the noise factor, the 

somatosensory receptors can be affected by side-asymmetric changes with age 

(Iandolo et al., 2019), and this would increase the sensory feedback noise on one of 

the two sides of the body. These two findings could suggest that the control 

authority might vary individually, depending on sensorimotor noise. This evidence 

is confirmed by our data for the lower target force, requiring finer control and lower 

strength: there was a significant relationship between the relative amount of force 

exerted by the left-non dominant hand and the variability of such force. This relation 

was not observed for the higher forces when strength became more important for 

solving the task. 

 

Both groups had more difficulty matching a time-variant than a constant force 

profile, and this difficulty was more remarkable for the older group. 

Both groups' performance was more accurate and affected by lower variability 

when maintaining a constant force level than when matching a time-variant force 

profile. This result was expected and supported by other literature results (Kubota 

et al., 2012). More interestingly, the elderly group’s performance showed higher 

differences between constant and variant - time phases compared to young 
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participants. The previous reporting suggested that aging is associated with an 

impaired ability to rapidly vary the force exerted (Kubota et al., 2012). In the study 

by Voelcker-Rehage et al. (Voelcker-Rehage & Alberts, 2005), the older adults 

performed as accurately as young subjects in static grasping force matching tasks, 

while their performance was significantly reduced in the time-variant tasks. Also, 

in our task, the two populations' force profiles highlighted the older subjects' more 

difficulty to change the control of the force from time-variant to constant (this 

reflected on the higher error o the first constant phase with respect to the second). 

Several factors associated with the deterioration of the sensorimotor system could 

account for this phenomenon. First, the cognitive demand could be more relevant 

when rapid changes are required (Goble et al., 2010). Second, the decline in the 

motor neuron firing rate and the number of motor units associated with aging could 

slow down the modulation rate of the force exerted (Kubota et al., 2012).  

 

Both populations had higher hands force correlation in the time-variant phases 

compared to the constant ones. 

The bimanual coupling was investigated by computing the force profile cross-

correlation (Correlation) between hands. We discovered that both groups 

evidenced higher correlation along with the time-variant phases compared to the 

constant ones. Patel et al. (Patel et al., 2019) evidenced that higher correlation 

coefficients are associated with less accurate young and healthy adults' 

performances. The literature also emphasized the role of between-hands decoupling 

in the bimanual force control tasks as it could foster error compensation strategies 

(Patel et al., 2019), (Hu & Newell, 2011). Our data also support this result, finding 

higher hands force correlation (and lower accuracy) along with the time-variant 

phases compared to the constant ones.  

A limitation of our work was the absence of a concurrent muscle activity assessment 

that we plan to address it in a future study. This will allow us quantifying the 

contribution and the activation timing of both proximal and distal muscles involved 

in the task. This will also detect possible onset of fatigue that we tried to avoid 

interspacing resting phases between trials. Moreover, we made two protocol 

choices that could have determined the present results. First, we decided to select 
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three-force levels equal for all subjects, not proportional to each individual’s 

maximum force, after verifying that the highest level, 40N for each hand, was a 

force level reachable by all participants. Second, we explicitly asked participants to 

apply equal force with the two hands, not allowing them to freely choose their 

strategy. It would be interesting to investigate if a different instruction would lead 

to equal or different results.  

This study aims at delivering a general view on the age-related changes in the 

physiological aspects influencing the modulation of bimanual isometric force, 

involving, at the same time, both proximal and distal muscles. The results are 

promising, and the device and the protocol could be integrated as assessment tool 

into clinical practice, while exploring its potential as rehabilitative instrument. 

Indeed, force modulation is crucial in multiple daily activities and the recovery of 

this ability is an import goal for several people suffering from different neurological 

diseases.  
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Modulation of grip force in bimanual object lifting task in patients with 
stroke 
 

 
Introduction 
 
Predictive estimation of the consequences of upper limb’s movements is essential 

for the rapid movements commonly observed in object manipulation. The act of 

grasping and lifting an object requires a complex coordination between the force 

used to grasp the object (usually referred as the grip force) and the force exerted to 

move the object in the space (lift force). This action involves spatial exploration, 

motor planning, multisensory integration, and both predictive and reactive control 

strategies (Frey et al., 2011). Seminal works from Johannson and Westling firstly 

described the sophisticated system of tactile machanoreceptors responsible for 

conveying information about distinct mechanical events involved in object’s 

grasping (Johansson & Flanagan, 2009; Johansson & Westling, 1984). However, 

tactile feedback is affected by intrinsic sensory delay and in case of unexpected 

perturbation, the reaction time has been estimated being 100ms or longer (R. S. 

Johansson & Flanagan, 2009). This is what happens, for example, when we lift an 

object that is heavier than expected or when an external unpredicted perturbation is 

exerted on the object we are holding: tactile receptors signal the initial slippage to 

which we react, with a certain delay, increasing the grip force to avoid the object to 

fall. In contrast, a series of studies showed that if the perturbation is the 

consequence of a voluntary action (for example when we move our upper limb 

while holding an object), we are able to increase the grip force synchronously or 

even in advance to the movement resulting in a more efficient performance (Gordon 

et al., 1993; R. S. Johansson & Westling, 1984). It has been proposed that this 

behavior is made possible by a predictive forward model that uses information 

about the movement’s motor command and the object’s properties to predict the 

sensorial and kinematic consequences of our action (Blakemore et al., 2001; 

Wolpert & Flanagan, 2001). The CNS is then able to use this prediction to modulate 

the grip force in order to compensate in advance the effect of the perturbation. For 

this reason, the behavior during objects’ lifting has been widely investigated to 
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assess subjects’ sensorimotor control strategies or impairments in predictive motor 

control (Flanagan & Wing, 1997; Hermsdörfer et al., 2003; R. S. Johansson & Cole, 

1994; Nowak et al., 2013). Specifically, the time coherence and relative delay 

between lift and grip force modulation is considered to reflect crucial aspects of 

forward model in object lifting (Flanagan & Wing, 1995; R. S. Johansson & 

Flanagan, 2009). Moreover, studies on healthy subjects showed that, typically, 

during an object lifting the grip force increase around 200ms before the movement 

onset. The grip force is then modulated proportionally to the acceleration 

transferred to the object being usually 10% to 40% greater than the minimum 

required to preserve a safety margin in case of unexpected events (R. S. Johansson 

& Flanagan, 2009). 

The neural substrates of these processes are not yet fully understood. However, 

there is compelling evidence that the cerebellum, the sensorimotor cortex and the 

posterior parietal cortex play a crucial role (Ehrsson et al., 2003, Welniarz et al., 

2021, Boecker et al., 2005 Kawato et al., 2003). Specifically, a solid line of research 

that have identified the cerebellum as the ideal locus for a forward model coding 

(Mcnamee & Wolpert, 2019; Tanaka et al., 2019, 2020; Wolpert et al., 1998). 

Moreover, neuroimaging studies supported on healthy controls supported these 

findings and pointed out the involvement of the cerebellum in grip force modulation 

during object holding (Kawato et al., 2003). Furthermore, the posterior parietal 

cortex has been previously claimed to be responsible for coding predicted tactile 

sensory feedback (Shergill et al., 2013). Therefore, patients with lesions involving 

parietal cortex areas or sensory nuclei of the thalamus may show predictive motor 

control deficits not just because of the lack of somatosensory input (like in 

peripheral anesthesia) but as the result of the disruption of the forward model’s 

neural substrate.  

Several studies investigated predictive motor control in objects’ lifting tasks in 

cerebellar patients and subjects with somatosensory impairments. It is well known 

that tactile somatosensory deficits have devastating effects on manipulation and 

their role in objects’ lifting task has widely been investigated in the last decades 

both in patients with peripheric and central lesions (R. S. Johansson & Flanagan, 
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2009). The importance of tactile feedback while grasping an object is variable 

according to the level of predictability of the action. The time relationship between 

grip and load force has been showed to be relatively preserved in patients with 

peripheric sensory deficits (Nowak et al., 2001, 2002, 2003; Parry et al., 2021). 

However, other reports found impairment in predictive grip force modulation in 

deafferentiated patients suggesting the disruption of prediction of timing of load 

fluctuation (Cole et al., 2003; Monzée et al., 2003; Nowak et al., 2004). Taken 

together, these findings suggested that sensory information is important for 

maintaining a precise forward model of dynamic grip force control although some 

deafferentated patients may be able to use alternative cues, like visual input or 

previous learning to use residual internal predictive models (Hermsdörfer et al., 

2008). While extensive literature investigated objects’ lifting tasks in patients with 

peripheric somatosensory deficits, fewer studies focused on patients with sensory 

deficits due to CNS lesions (Cole et al., 2003; Monzée et al., 2003; Nowak et al., 

2001, 2002, 2003, 2004). Some studies found that stroke subjects presented delayed 

grip force onset (Blennerhassett et al., 2008; Hermsdörfer et al., 2003; Nowak et 

al., 2013) and, likely to compensate for these deficits, produced exaggerate grip 

force (Nowak et al., 2013). In contrast, other reports found that tactile sensitivity 

deficits seemed not to affect the timing onset of grip forces in respect to the load 

forces (Hermsdörfer et al., 2003). Patients with lesions in the parietal cortex due to 

stroke present unique features that distinguish them from patients with 

somatosensory deficits from peripheral lesions. Firstly, although the tactile 

sensitivity may be severely impaired, these patients are rarely affected by complete 

anesthesia and some residual somatosensory perception may be preserved. 

Moreover, even in case of severe lesion in somatosensory areas, the parietal cortex 

is not the only endpoint of somatosensory input. For example, the cerebellum is 

provided with somatosensory input and uses this information to monitor the 

movements and trigger its correction in case of necessity (Tanaka et al., 2019, 2020; 

Wolpert et al., 1998). However, the anticipatory motor control deficits in patients 

with lesion in somatosensory areas have been overlooked. 

Little is known on the performance of subjects with CNS lesions in bimanual object 

lifting tasks. Bimanual tasks are important for people with focal CNS lesion like 
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stroke because unilateral functional impairments may be compensated by the help 

of the non-affected hand. Bimanual motor control is characterized by specific and 

unique features, including between-hands interaction, that have been poorly 

investigated even in healthy controls (Y. Jin, et al., 2019; Kennedy et al., 2016; 

Morrison & Newell, 1998; Serrien & Wiesendanger, 2001). Most importantly, 

while holding an object bimanually, the two hands are coupled so that the force 

exerted by one hand is perceived by the other and vice versa. Previous studies on 

task that involved the two-hands interactions showed that the CNS is able to predict 

the tactile feedback on one hand originated by a force exerted by the other hand 

(Bays & Wolpert, 2007a). This mechanism may help patients with unilateral 

somatosensory impairment during bimanual object lifting. This extra source of 

tactile information could, in principle, improve patients’ predictive behavior 

measured in terms of grip and lift force temporal coupling, in contrast to previous 

findings on unimanual lifting tasks (Cole et al., 2003; Monzée et al., 2003; Nowak 

et al., 2004). The investigation of bimanual objects lifting task in patients with 

unilateral CNS lesions may improve our knowledge on whether and how the CNS 

is able to exploit sensory input from the unaffected hand to improve predictive 

motor control deficits.  

The present study aimed to investigate the anticipatory grip force behavior and 

bimanual force control in bimanual tasks in patients with lesion to somatosensory 

areas of the CNS due to stroke and mild UL functional impairment. We 

hypothesized that the somatosensory deficits may cause specific anticipatory 

behavioral deficits that alter the subjects’ ability of modulate the grip force during 

a lifting task. 

Methods 
 
Participants 
 
Patients with cerebral stroke and age-matched healthy volunteers were recruited. 

Participants were recruited from the Neuromotor and Cognitive Rehabilitation 

Research Centre (CRRNC) of the University of Verona, Italy. For healthy controls, 

the exclusion criteria were the presence of musculoskeletal injuries or any other 
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neurological condition, history of surgery or pain affecting upper limbs, normal or 

corrected to normal visual and auditory abilities. For stroke subjects (SP), the 

inclusion criteria were: age t 18 year old, diagnosis of stroke confirmed by a 

specialist in neurology and by radiologic findings (CT or MR), lesion in 

somatosensory areas including thalamic somatosensory nuclei and parietal cortex, 

Trunk Control Test score = 100/100, strength of shoulder abductors and elbow 

flexors t 3/5 MRC (Medical Research Council Scale for Muscle Strength), notable 

to full UL capacity (Fugle-Mayer assessment scale score (FMA) t 48) (Hoonhorst 

et al., 2015).  

Exclusion criteria were the presence of severe cognitive, visual or communication 

impairments and other concomitant neurological or orthopaedic diseases interfering 

with patients’ capacity of providing the informed consent or performing the 

required task. 

This study was conformed to the ethical standards of the 1964 Declaration of 

Helsinki and all the study procedures and documents, including the consent form, 

were approved by Verona University Institutional Review Board (CARU n. 

22/2019). All participants provided written informed consent to participate in the 

study and publish the results in the de-identified form. 

 

Clinical assessment 
 

Strength, function, and proprioception of upper limb were assessed using a battery 

of clinical scales. The Motricity Index (MI) is a well-known scale for the 

assessment of limb strength testing shoulder abduction, elbow flexion and pinch 

grip (score range 0-99, greater score indicates better performance) (Collin & Wade, 

1990). The Fugl-Meyer assessment scale for upper limb (FMA-UL) is a measure of 

UL function that includes 33 items assessing reflex, activity, muscle strength and 

movement control (score range 0-66, greater score indicates better performance) 

(Fugl-Meyer et al., 1975). The Erasmus MC modifications to the Nottingham 

Sensory Assessment (EmNSA) was used to assess proprioceptive deficits of 

patients with stroke. It includes tasks investigating light touch, pressure, pinprick, 
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sharp-blunt discrimination, and proprioception (score range 0-40, greater score 

indicates better performance)(Stolk-Hornsveld et al., 2006).  

 
Bisbox device 
 
The device used in this experiment, Bisbox 2.0, is a sensorized rectangular box, a 

new and lighter (0.8 kg) version of the prototype described in (Galofaro et al., 2019) 

showed in Figure 25. The dimensions of the box were 15×35×25 cm (height × width 

× depth). The 35 cm length was chosen to match the participants' average inter-

shoulder distance, who should hold the device with the two hands placed on the two 

smaller faces. Each lateral face is composed of two rigid 3D-printed plates in 

PolyLactide Acid. Between these plates three load cells (Micro Load Cell CZL635; 

full-range scale of 5kg; precision of 0.05% and linearity of 0.05% FS) are placed in 

a triangular configuration so the force applied by the user on the external plate is 

sensed by the cells and measured by the device. At the center of the bottom part of 

the device there was a 3D-printed rigid plate that encloses a micro-controller 

(Raspberry Pi, model 3B+, CPU frequency: 1400MHz) and a tracking camera 

(RealSense T265, Intel), and a battery (24800mAh, output 3.1A). The micro-

controller is connected via USB to both the tracking camera and the external 

battery.  

The sensorized box was connected to a laptop via wireless communication. The 

laptop ran the software that controlled the experiment and provided instructions and 

visual feedback, according to the task executed, to the participants. The device was 

used being placed on a table in front of the user. 

 

Experimental procedures 
 
Participants sat in an armless chair in front of a 24“ monitor placed ~ 0.5 m away 

from the subject's chest. The height of the chair was adjustable so that the forearms 

rested on the table with shoulders in ~20 deg flexion and elbows at ~110 deg 

flexion. The hands were positioned fully open on the lateral sides of the device. A 

schematic representation of the device is shown in Figure 25 and a representation 

of the experimental setting is shown in Figure 20. All subjects performed three 

consecutive tasks: a fixed-force matching task, time-varying force matching task 
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and a lifting task. At the beginning of the session, the Maximal Voluntary Isometric 

force (MVC) was measured. The subject was asked to squeeze the box three times 

with a resting period of 2 minutes after each trial. The MVC was computed as the 

mean of the three trials and was used to normalize the target force levels in the 

matching tasks. Each subject completed 21 trials for the two force matching tasks, 

seven trials for each target force level that was set at 10%, 25% and 50% of the 

MVC, presented in pseudorandom order. In the fixed-force matching task subjects 

were provided with visual feedback of the target force and the force they were 

exerting during the trial, both represented as a horizontal bar in the PC screen. After 

a familiarization phase, they were asked to align the bar representing the force they 

were exerting with the target force’s bar as accurately as possible. Each trial lasted 

5 seconds. Visual feedback was provided also in the time-varying force matching 

task. Here subjects were asked to control the height of a squared cursor of 0.5cm 

side by modulating the force exerted on the device’s lateral plates: the greater the 

force, the higher the square moved. Independently of subjects’ performance, in each 

trial the cursor moved rightward at a constant speed of 0.85cm/s. In this task 

subjects were asked to keep the cursor on top of the sides of an isosceles trapezoid, 

displayed on the computer screen. Therefore, the task was divided into four phases 

each lasting 3.5s: increment phase, to consecutive holding phases and a decrement 

phase where subjects had to gradually increase, keeping constant and decrease the 

force exerted respectively. The force level of the holding phases varies between 

trials in a pseudorandom order as in the fixed-force matching task: 10%, 25% and 

50% of the MVIF. Each trial lasted 14 seconds, followed by a rest of 6 seconds. 

Lastly, in the lifting task, subjects were asked to grasp the device by the lateral force 

plates and lift it, hold it at ~30cm height for ~3s and replace it on the table. A ruler 

of 30cm length gave visual feedback about the ideal height to reach while holding 

the box. 
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Figure 25 The customized BiSBox used in this experiment 

 

Outcome measures 
 
For the force matching tasks, the accuracy of the matching and the synchronization 

between hands were measured.  

• Root-Mean-Squared Error (RMSE) measures the deviation of the 

participant’s total force output from the target force trajectory (Lodha et al., 

2010). Higher values for relative RMSE indicate less accuracy of total force 

output. It is defined as:  

𝑅𝑀𝑆𝐸 = √1
𝑁∑

(𝐹𝑀𝑖 − 𝐹𝐷𝑖)2
𝑁

𝑖=1

 (13) 

 

where 𝐹𝑀𝑖 is the measured total force at the sample i and 𝐹𝐷𝑖 the corresponding 

desired force.  N is the total number of samples considered either on a single phase 

or on the entire trial. 

 

• Bias  Error (BE), the systematic component of the error, computed as the 

signed difference between the participant’s total force output and the target 

force:  

𝐵𝐸 =
1
𝑁∑(𝐹𝑀𝑖 − 𝐹𝐷𝑖)

𝑁

𝑖=1

 (14) 

 

Positive values indicate an overshoot of the target force, negative values an 

undershoot (Schmidt et al., 1988; Marini et al., 2016; Ballardini et al., 2019a).    
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• Coefficient of Variation (CV), a measure of force variability (standard 

deviation) of the total force expressed as a percentage of the mean force 

output (Galganski et al., 1993):  

 

𝐶𝑉(%) =
𝑠𝑡𝑑(𝑑𝑒𝑡𝑟𝑒𝑛𝑑(𝐹𝑀))

|mean (𝐹𝑀)| ∗ 100 (15) 

 

                             

Where 𝐹𝑀 is the vector of the samples from force trajectory in each phase. We 

computed the standard deviation (std) of this signal after removing the best straight-

fit line from the data (least-squares method, Matlab function detrend).  

 

For the lifting tasks a set of behavioral features was computed, comprehending 

different motor control aspects as anticipatory motor control, movement planning 

and movement efficiency: 

• Maximal total force: the peak force applied on the device in each trial during 

the lifting; 

• Normalized maximal total force: the maximal total force divided by the 

MVC performed by the subject before starting the assessment procedures; 

• Peak ratio between force exerted and lifting velocity; 

• Absolute time when applied force reached its peak; 

• The ratio between the force during the holding phase and the lifting phase; 

• Time between the peak force and the starting of the holding phase (i.e. the 

ending of the lifting); 

• Time between the force onset and the lifting movement onset; 

• Coefficient of variation during the holding phase (as previously defined in 

Eq. 15). 
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Data Analysis 
 
In the fixed-force matching tasks, only the last 2.5s of each trial were analyzed, in 

order to avoid the initial force increasing. Moreover, the first trial for each target 

force level for the matching tasks and the first three trials for the lifting task were 

excluded from the analysis. In the lifting task, the onset of the lifting and holding 

phases were identified with an automatic algorithm and visually checked by an 

experimenter. 

Data distribution was checked using the Shapiro-Wilk test. For the analysis of the 

fixed-force matching task a repeated measure ANOVA was used with the force 

level as a within-group factor and “group” as between-group factor. For the time-

varying force matching task an ANOVA was performed with two withing-group 

factors: force level and task phase, and one between group factor: “group”. Where 

sphericity assumption was violated according to Mauchly’s test, the Greenhouse-

Geisser correction was used. Post-hoc analysis was performed using Holm-

Bonferroni method. Lastly, for the analysis of the lifting task a t-test for unpaired 

samples or Mann-Whitney test was used according to data distribution.  
 
Results 
 
Eleven healthy subjects and nine patients with stroke have been included. 

Demographic characteristics of included subjects are listed in Table 2. Table 3 

shows clinical features of SP.  
 
 

 

Table 2 Demographic data of healthy subjects and patients with stroke 

Group 
Age 

Sex (M/F) Laterality 
(R/L) mean sd 

Healthy 58,5 16,8 5/6 11/0 
Patients 65,0 11,4 7/2 8/1 
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Table 3 Clinical data from patients with stroke 

Patient 
Time since 

stroke onset 
(months) 

Lesion 
side Lesion site Ictus 

aetiology 
FMA 
- UL EmNSA MI 

1 2 L Thalamus Ischaemic 60 40 100 

2 4 R Thalamus- posterior 
internal capsule Hemorragic 50 34 91 

3 8 L 
Caudate - lenticular 

nuclei - Internal capsule 
(posterior limb) 

Ischaemic 66 40 100 

4 8 R Fronto - parietal lobe Ischaemic 61 40 100 

5 2 R Thalamus Ischaemic 62 40 100 

6 8 L Internal capsule 
(posterior limb) Ischaemic 62 15 76 

7 5 R Parietal lobe Hemorragic 53 29 76 

8 3 L Temporo - occipital 
lobes Ischaemic 60 37 100 

9 3 R Thalamus, Internal 
capsule (posterior limb) Ischaemic 54 36 100 

 
 
There was no significant difference (p=0.77) between the MVC exerted by the 

healthy subjects (155.5 r 30.9 N) and patients with stroke (151.3 r 31.1 N). 

The analysis of the fixed-force matching task showed an effect of force level on the 

RMSE (F=21.92; p<0.001; Kp2=0.55). The post hoc analysis showed significantly 

greater RMSE in the high force level compared to both medium and low force levels 

(low vs high: t=-6.329; p<0.001 Cohen’s d=-1.42; medium vs high: t=-4.85; 

p<0.001; Cohen’s d=-1.08) (Figure 26, top left). In terms of bias error, the ANOVA 

showed significant effect of force level (F=47.80; p<0.001; Kp2=0.73) and a 

significant interaction “force level” * ”group” (F=5.52; p=0.02; Kp2=0.24). The 

post-hoc analysis found significant difference between the three force levels, with 

the high and medium levels being negative, suggesting undershooting of the target 

force and the low level being positive suggesting overshooting of the target force 

(low vs medium: t=4.56, p<0.001, Cohen’s d=1.02; low vs high: t=9.77, p<0.001, 

Cohen’s d=2.19; medium vs high: t=5.21, p<0.001, Cohen’s d=1.17). The 

comparison between groups within the same force level showed a significant 

difference in the high force level (t=3.36; p=0.013) with SP showing greater error 

compared to healthy controls (Figure 26, top right). Finally, the analysis of the 

coefficient of variation did not show any significant affect (Figure 26, bottom). 
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As for the time-varying force matching task, in terms of the RMSE, the ANOVA 

showed significant effect of the task’s phase (F=65.23; p<0.001; Kp2=0.79), force 

level (F=143.08; p<0.001; Kp2=0.89), and significant interaction “phase” * “force 

level” (F=15.84; p<0.001; Kp2=0.48). The post-hoc comparison between the target 

force levels found significant difference between the low and medium force levels 

(t=-6.58, p<0.001, Cohen’s d=-1.51), between low and high force levels (t=-16.79, 

p<0.001, Cohen’s d=-3.85) and between medium and high force levels (t=-10.2, 

p<0.001, Cohen’s d=-2.34). Within the same force level, the post-hoc analysis for 

the effect of the task’s phase found significant effect between phase 1 and phases 2 

and 3 (t=7.08, p<0.001, Cohen’s d=1.62 and t=9.13, p<0.001, Cohen’s d=2.01 

respectively) and between phase 4 and phases 1, 2 and 3 (t=2.91, p=0.01, Cohen’s 

d=0.67; t=10.00, p<0.001, Cohen’s d=2.29 and t=12.05, p<0.001, Cohen’s d=2.76 

respectively) (Figure 27 top left). Analogously, for the bias error significant effects 

were found for movement’s phase (F=53.45, p<0.001; Kp2=0.76), force level 

(F=5.22, p<0.019; Kp2=0.24) and significant interaction “phase” * “force level” 

(F=16.08; p<0.001; Kp2=0.49). Here the post-hoc analysis on the force levels 

comparisons found significant differences between the high force level and the 

medium (t=-2.47, p=0.037, Cohen’s d=-0.57) and the low force levels (t=-3.05, 

p=0.014, Cohen’s d=-0.70). The post-hoc comparisons between task’s phases found 

significant difference between phase 4 and phases 1 (t=10.36, p<0.001, Cohen’s 

d=2.38), phase 2 (t=10.60, p<0.001, Cohen’s d=2.43) and phase 3 (t=10.02, 

p<0.001, Cohen’s d=2.30) (Figure 27 top right). Lastly, also the analysis of the 

coefficient of variation showed significant effects of the force level (F=105.94, 

p<0.001; Kp2=0.86), task’s phase (F=125.70, p<0.001; Kp2=0.88) and significant 

“force level” * “task’s phase” interaction (F=36.54, p<0.001; Kp2=0.68). Overall, 

the low force level showed greater coefficient of variation compared to the medium 

(t=12.73, p<0.001, Cohen’s d=2.92) and high force levels (t=12.48, p<0.001, 

Cohen’s d=2.86). In terms of between-phases comparison the phase 1 showed 

greater coefficient of variation than phase 2 (t=14.59, p<0.001, Cohen’s d=3.35) 

phase 3 (t=15.33, p<0.001, Cohen’s d=3.52) and phase 4 (t=2.75, p<0.001, Cohen’s 

d=0.63). Moreover, subjects’ performance in phase 4 had greater coefficient of 
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variation than phase 2 (t=11.84, p<0.001, Cohen’s d=2.72) and phase 3 (t=12.58, 

p<0.001, Cohen’s d=2.89) (Figure 27, bottom). 

 

Lastly the between-group comparison of the lifting task performance showed that 

patients exerted a relatively grater force in respect of their MVC during the lifting 

of the box (t=2.35, p=0.033, Cohen’s d=1.14), (Figure 28 top right and Figure 29 

left). Moreover, the time interval between the peak force instant and the starting of 

the holding phase (i.e. the ending of the lifting phase) was significantly greater in 

patients compared to healthy subjects (Mann-Whitney U:  61.0, p=0.015) (Figure 

28 bottom left and Figure 29 right).  

 

The association between behavioral performance and clinical impairment assessed 

with clinical scales was assessed using a linear correlation analysis but did not show 

any statistically significant association. 

 
Figure 26 Results from fixed-force matching task. Green: patients with somatosensory 
deficits; Blue: healthy controls. Top left: RMSE, top right: Bias error, bottom: coefficient 
of variation. Error bars show standard errors. ° statistically significant post-hoc 
comparisons between different force levels (adjusted p<0.05). * statistically significant 
post-hoc between-groups comparisons (adjusted p<0.05). 
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Figure 27 Results from time-varying force matching task. Green: patients with 
somatosensory deficits; Blue: healthy controls. Top left: RMSE, top right: Bias error, 
bottom: coefficient of variation. The % of MVC distinguish between low, middle and high 
force levels respectively. For each force level results are showed for each of the 4 task’s 
phases. Error bars show standard errors. ° statistically significant post-hoc comparisons 
between different force levels (adjusted p<0.05).  * statistically significant post-hoc 
between-phases comparisons (adjusted p<0.05). 
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Figure 28 Results from lifting task. Top from left to right: ratio between mean force during 
holding and peak force during lifting, time between grip force onset and movement onset, 
coefficient of variation, peak ratio between force exerted and lifting velocity, normalized 
maximal total force; bottom from left to right: time when force reached its peak, maximal 
total force, time between the peak force and start of the holding phase. Green: patients with 
somatosensory deficits; Blue: healthy controls. Error bars show standard errors. * 
statistically significant between-groups comparisons (p<0.05). 

 
 

*

*
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Figure 29 Raincloud plots of the normalized maximal force exerted during the lifting (top 
left), time interval between maximal force exertion and ending of lifting (top right) and 
absolute maximal force exerted (MF) (bottom) Green: healthy controls, Orange: stroke 

patients. 

  
Discussion 
 
This study aimed to assess the impairments in bimanual anticipatory grip force and 

bimanual force control in patients with cerebral stroke and somatosensory 

impairment. Within this aim we recruited a convenient sample of eleven healthy 

subjects and nine patients with stroke sequalae and mild functional UL impairment. 

We used a newly designed device that allow us measuring the force applied on it 

and its position in space to assess subjects’ performance in three tasks: a fixed force 

matching task, a time varying forc matching task and a lifting task. Our analysis 

showed that in the patients we recruited the ability of modulating the bimanual force 

in force matching tasks was relatively preserved. However, the analysis of the 

lifting task suggested that patients presented some deficits in force modulation 

related to movement planning. 

 

Although the overall patients’ performance in the force matching tasks was not 

significantly different from the healthy subject’s, we were able to measure some 

mild deficits both on terms of accuracy and grip force variability. Specifically, the 

patients were less accurate in matching a fixed target force, especially for greater 

target force level relatively their MVC. Also, there was a tendency to significance 
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in the between-group comparison in terms of the CV across different force levels 

(ANOVA group effect: F=3.83, p=0.66) suggesting that patients exerted a less 

steady bimanual force. However, there are some factors worth to mention that could 

explain the relatively good overall patients’ performance in these tasks. Firstly, we 

recruited patients with mild to moderate UL functional impairment and all the 

patients had FMA-UL score of at least 50/66. Secondly, although all the patients 

reported subjective impaired tactile sensation, we purposely included also patients 

with very mild somatosensory impairment as documented by the EmNSA scores. 

Thirdly, the design of the task enabled patients to rely on the tactile feedback of 

both hands, potentially allowing the patients to compensate for tactile deficits in the 

affected hand. Lastly, in the matching tasks patients were provided with visual 

feedback of the target force and the force exerted. Therefore, on one hand it was 

not surprising that subjects with mild post-stroke impairment could perform in line 

with age-matched healthy controls in force matching tasks. On the other hand, our 

data suggest that bimanual grasping and visual feedback of the force exerted may 

help patients to compensate for force modulation impairments related to sensory 

deficits. Specifically, the stroke patient’s reliability on visual feedback may 

partially explain the between-group difference in terms of grip force variability in 

the fixed-force matching task. However, it is relevant to mention that we were not 

able to entirely rule out the hypothesis that the relatively small sample size of this 

study may partially affect the results since the post-hoc power analysis revealed 

achieved power overall greater that 0.75 for “conditions”*”group” interaction but 

lower than 0.6 for between group comparisons. 

 

These considerations apply also to the time-varying force matching task where no 

significant between-group difference was detected. We found that both groups were 

less accurate in reproducing the target force in phase 1 and 4, i.e. when the target 

force was ramping up and down respectively. In terms of bias error, the phase 4 

was the most challenging and subjects systematically overshot the target force. This 

behavior is consistent with a delayed decreasing of the exerted force in the task’s 

phase 4 and was found in both healthy controls and stroke survivors. Our data 

corroborated previous findings showing poorer performance both in terms of 
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accuracy and variability in matching a time-varying force compared to a fixed force 

(Kubota et al., 2012). Moreover, previous literature suggested that aging is 

associated with an impaired ability to rapidly vary the force exerted possibly 

making these tasks challenging for both patients with stroke and age-matched 

healthy controls included in our study (Kubota et al., 2012; Voelcker-Rehage & 

Alberts, 2005b). 

Interestingly, although there was an inverse relationship between the subjects’ 

accuracy and the target force level, the analysis on the CV showed an opposite 

trend: the higher the target force level, the lower the CV. However, this is not to be 

meant as a decrease of the absolute variability in the trials with the greater target 

force. In contrast, this suggested that the variability increase is not proportional to 

the force exerted.  

 

The lifting task allowed us to detect the anticipatory grip force behavior in patients 

with somatosensory deficits. We did not find between-group significant difference 

in terms of time between the grip force onset and the movement start. The 

synchronization between the grip force and the holding force has been considered 

a peculiar feature of anticipatory behavior in object manipulation and has been 

widely investigated in healthy subjects and patients with sensory deficits due to 

either peripheric or CNS lesions (R. S. Johansson & Flanagan, 2009). In line with 

our results, previous studies showed that the time relationship between grip and 

load force is relatively preserved in stroke patients with sensory deficits 

(Hermsdörfer et al., 2003). It is conceivable that these patients may be able to use 

alternative cues, like visual input or previous learning to use residual internal 

predictive models (Hermsdörfer et al., 2003). In our experiment patients might also 

have taken advantage of the sensory information from the unaffected hand, that 

could have fed the forward model of the lifting action (Wolpert & Ghahramani, 

2000). However, we found that patients exerted a greater normalized grip force 

during the lifting phase compared to healthy controls, suggesting an increased effort 

for lifting the BiSBox device. Notably this difference is likely not to be related to 

patients’ strength deficits since we measured no significant difference in terms of 

MVC and we found a tendency to significant between-group difference in favor of 
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the SP group in the absolute maximal force exerted (t=1.925, p=0.07; Figure 29 

bottom). In contrast, it is conceivable that our results corroborated previous 

research that found exaggerated grip force in patients with tactile sensory deficits 

due to stroke (Nowak et al., 2013). Moreover, we found that subjects in the SP 

group showed significantly longer delay between the time they reached the peak 

grip force and the end of the lifting. This may indirectly suggest that patients with 

stroke reached the peak force earlier, exerting a greater force, in order to make sure 

to avoid the device’s slipping, and then took longer time to decrease the grip force 

and to approach the ending of the lifting (i.e the holding phase). In other words, 

patients were not able to estimate the grip force needed to lift the device and showed 

an altered timing of grip force modulation during the lifting phase. It is important 

to underline that the force matching tasks did not show any impairment in force 

modulation that could account for the between-group differences we measured in 

the lifting task. On one hand this may suggested that the lifting task unveiled 

specific motor planning impairment. On the other hand, this showed that during the 

force matching tasks patients might have relied on visual feedback to compensate 

for tactile sensory deficits. Finally, we were not able to find a learning effect across 

trials in the lifting task. We tried to account for this factor allowing the subjects to 

perform some trials before recording and eliminating the first three trials of the 

session. However, the greater force exerted by the patients may also be a 

consequence of an altered internal model of the device, which they hadn’t had 

experienced before. The tactile sensation deficit, may have played a role in this 

behavior, altering the patients’ sensorial experience of the object and making them 

slower than healthy controls in building its internal model (Nowak et al., 2004).  

 

Noteworthy, in the present experiment we did not measure object’s affordance. This 

concept was introduced in the late 70’s and suggests that the mere vision of an 

object elicits a CNS pre-activation related to the different ways of possible 

interaction with it, even in the absence of the intent of acting. This ability is shaped 

by the object’s physical properties the subjects had previously experienced or 

deduced by its observation. Although this concept is indeed related to motor 

planning and, therefore, to anticipatory motor control, and it is of interest for people 
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affected by stroke, we designed this experiment with the aim of ruling out as much 

as possible its influence. Object’s affordance is in fact also involved in action 

selection and complex cognitive functions of paramount importance in motor 

behavior but of higher cognitive level then the predictive mechanism investigated 

in this study. Therefore, we design a setting where the experimenter made as clear 

as possible to the subject the device’s grasping modality. Moreover, in the starting 

position the participants were asked to place their hands in the immediate 

proximities of the device’s lateral force plates (avoiding touching them), with the 

aim of minimizing the UL’s movements before the contact. Nevertheless, it would 

be informative for future studies to focus on a broader concept of anticipatory motor 

control, including in their investigations object’s affordance and action selection 

impairment in patients with CNS stroke. 

 

In conclusion, in the present study we used newly designed BiSBox device that 

allowed us to measure the grip force exerted along with kinematic parameters 

during a lifting task. Our analysis provided some evidence of impaired motor 

planning in patients with CNS stroke sequelae and somatosensory deficits. 

However, this study is affected by some limitations. Most importantly, the limited 

sample size did not provide sufficient statistical power in some comparisons, 

especially concerning the lifting task. Future works shall aim to reproduce these 

results with a greater sample, and to investigate learning effect across multiple 

repetition of lifting task in patients with stroke sequelae and sensory deficits. 
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Kinematic analysis of the index-to-nose task 
 
 
The ability to perform fast and accurate reaching movements is essential for 

interacting with the environment using the upper limbs. Accurate control of fast UL 

movements requires that the motor system has access to information about the 

outcome of its commands. Although the somatosensory and visual feedback are the 

principal source of this information, relying only on such information leads to poor 

movement control. In fact, A sensorimotor feedback loop in human somatosensory 

system is indeed affected by a delay of the order of 80-150 ms which is remarkably 

long in the context of fast reaching (Scott, 2016). Therefore, a system that relies 

only on such a feedback control would result unstable and perform unnecessarily 

large out-of-phase corrections. A forward model could solve this issue providing 

the CNS with a prediction of the future sensory input that can feed an internal 

feedback loop before the actual sensory feedback is available (Mcnamee & 

Wolpert, 2019). The combination of forward model prediction and delayed sensory 

feedback ensures fast and stable movement performance.  

There is compelling evidence that the cerebellum plays a key role in the 

implementation of a forward model (Kawato et al., 1987a; Tanaka et al., 2020; 

Wolpert & Ghahramani, 2000). Interestingly, recent literature suggested that the 

parietal cortex, and specifically the Posterior Parietal Cortex (PPC), is involved in 

the representation of the future state of the body and, through broad connections 

with the primary somatosensory cortex, contributes to the sense of proprioception 

(Cui, 2016; Desmurget et al., 1999; Parkinson et al., 2010; Reichenbach et al., 

2014). Although upper limb reaching behavior in patients with somatosensory 

deficits caused by CNS lesions has been extensively studied, limited attention has 

been paid to the influence of these kind of deficits on predictive motor control. 

 

The aim of this section was to analyze a 3-D reaching movement of stroke patients 

with cerebellar and somatosensory impairments and to compare their movements’ 

kinematics with normative data on healthy age-matched subjects. With this aim we 

used an innovative technology for kinematic analysis based on a markerless system 

able to automatically reconstruct the human body’s figure during movements. 
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Firstly, we tested the accuracy of this system on assessing upper limb’s kinematics 

in comparison with the golden standard represented by an 8-camera optoelectronic 

motion capture system (Vicon, Oxford Metrics Ltd., Oxford, UK). Secondly, we 

used the markerless system to assess patients with stroke sequelae and healthy 

controls. 

 

We hypothesized that patients would show abnormal kinematic pattern early after 

the movement onset and that error compensation during the movement would be 

consistent with a delayed control carried out by a feedback controller. The results 

would provide new insights in the mechanism underpinning the forward model in 

the context of upper limb movements.  
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On the Pose Estimation Software for Measuring Movement Features in the 
Finger-to-Nose Test1 
 
Introduction 

Upper Limb’s (UL) movements are of paramount importance for effectively 

interact with the environment and to perform our daily activities. Among all the 

sensorimotor consequences of a cerebral stroke, UL impairments are one of the 

most disabling, leading to lack of independence and reduced quality of life (Hatem 

et al., 2016; Stinear et al., 2020). Stroke can affect all the domains involved in the 

UL movements, including somatosensation and strength along with motor control 

processes (Hatem et al., 2016). In clinical setting, sensorimotor and functional 

impairments of the UL are quantified using a variety of assessment scales in which 

the clinician visually scores the patient’s ability of performing a defined action or 

movement (de los Reyes-Guzmán et al., 2014).  

To overcome the lack of objectivity and the examiner- dependency of this clinical 

assessment, in the last decades new technological development has provided 

innovative and accurate tools for movement analysis. The most used tools for 

instrumental UL movement assessment are inertial measurement units (IMUs), 

optoelectronic systems for kinematic analysis and robotic devices (de los Reyes-

Guzmán et al., 2014). Each of these tools are more appropriate and accurate in 

measuring specific movement’s features. On the other hand, the use of such devices 

can alter the subject’s performance introducing some additional sensorimotor 

inputs (like the sense of touch of the device or the device resistance to the motion) 

that can affect the movement performance (Schwarz et al., 2019). 

Similar limitations have led to an increasing interest in adopting human pose 

estimation (HPE) software in the context of human motion analysis (Mehdizadeh 

et al., 2021). Beside the classical application fields, such as, sport performance 

 
1 © 2022 IEEE. Reprinted, with permission, from E. Martini, N. Valè, M. Boldo, A. Righetti, N. 
Smania and N. Bombieri, "On the Pose Estimation Software for Measuring Movement Features in 
the Finger-to-Nose Test," 2022 IEEE International Conference on Digital Health (ICDH), 2022, 
pp. 77-86, doi: 10.1109/ICDH55609.2022.00021. 
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analysis, human computer interaction, and action recognition, several research 

works started to adopt and evaluate such a computer vision technology for the 

analysis of pathological gait detection (Guo et al., 2021). In all these contexts, 

platforms based on human pose estimation software have proven to achieve good 

trade-off between accuracy, costs, portability, and easy of use. To the best of our 

knowledge, there is no work in literature that evaluates quantitatively the accuracy 

of pose estimation software in measuring UL movements, and in particular, in the 

UL kinematic assessment to extrapolate movement parameters. In this work we 

present an extended quantitative evaluation of HPE software for measuring 

movement parameters in the Finger-to-Nose Test - FNT (see Figure 30). We 

selected one of the most widespread and accurate pose estimation software (i.e., 

Openpose (Cao et al., 2021) and adopted a convolutional neural network trained for 

detecting detailed human body keypoints, including fingertips and nose. Then, we 

identified a meaning- ful set of kinematics features for the FNT and we defined the 

procedures to extrapolate each feature measurements from the sequence of 

keypoints provided by HPE software. We present the evaluation of the software 

accuracy by using an 8-camera infra-red motion capture system (i.e., Oxford Vicon) 

as ground truth on a set of 15 healthy and 5 post-stroke patients.  

Finally, we addressed the problem of automating the param- eter extrapolation. 

Measuring the movement parameters for the FNT through both optoelectronics as 

well as video-based systems rely on the time segmentation of the video streams, in 

which start and stop of movements have to be identified. To avoid this error-prone 

manual step and subjectivity issues in the whole extrapolation pipeline, we propose 

an algorithm that implements the Automatic Time Segmentation (ATSA). We 

measured the accuracy of such an algorithm versus the time segmentation manually 

extrapolated by an operator from the video streams, on set of 26 healthy and 26 

post-stroke subjects.  



 123 

 

Figure 30 Extrapolation of movement features in the FNT through pose estimation 
software. 

Background and related work 

While strength, somatosensory and functional impairments have been widely 

studied and the literature have proposed a range of assessment measurements 

addressed to these domains, motor control impairments are more challenging to be 

measured (Santisteban et al., 2016). These impairments can arise as a consequence 

of primary sensorimotor deficits or from specific motor control processes’ 

dysfunctions such as feedback or feedforward impairments (Frey et al., 2011). In 

these cases, the patient’s strength and somatosensory functions could be normal, 

but when the patient is asked to perform an UL movement, this would be inaccurate, 

presenting a variety of abnormalities ranging from lack of smoothness, abnormal 

velocity and acceleration patterns or lack of coordination between different joints, 

eventually leading to inability to perform functional activities (Bastian et al., 1996). 

The assessment of motor control impairments in clinical practice is challenging as 

it requires the measurement of the upper limb’s kinematics during the execution of 

a functional movement. In this context, reaching and pointing tasks are the most 

commonly investigated movements in clinical settings. Patients are asked to 

perform fast UL’s movements to touch a target, usually with the index fingertip. 
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The target can be placed in front of them or can be a part of patient’s body like the 

tip of his/her nose (index-to-nose task). The index-to-nose task (FNT) is commonly 

performed during the neurological exam to assess patient’s UL motor control 

impairments (Schmitz-Hubsch et al., 2006). In the assessing of these pointing 

movements, clinicians focus their observation on movement tremor, deviations 

from the ideal trajectory, spatial errors in target reaching (dysmetria), excess of 

speed or slowness and multi-joints coordination. However, this kind of clinical 

evaluation via movement observation is subjective to personal interpretation, and 

affected by lack of sensitivity, poor reproducibility and resolution, and floor and 

ceiling effects (Krabben et al., 2011) and previous literature recommended the 

application of instrumental movement assessment in stroke rehabilitation (Kwakkel 

et al., 2017). Furthermore, a recent research suggested that the kinematic analysis 

of the FNT provides clinicians with information not available from standard 

movement observation (G. M. Johansson et al., 2017). 

Although the literature is heterogeneous in defining the metrics of interest, previous 

reviews suggested a set of parameters to be used when assessing the UL movements 

(de los Reyes-Guzmán et al., 2014; Garro et al., 2021; Nordin et al., 2014; Zollo et 

al., 2011). Concerning the kinematics of the hand (the end-point in a reaching task) 

the review of De Los Reyes-Guzmàn et al. identified a set of metrics, each 

examining a specific aspect of UL’s movement computed from hand’s trajectory, 

speed and acceleration profile(de los Reyes-Guzmán et al., 2014). The mostly 

investigated include the time of execution, the maximum hand velocity throughout 

the movement, the path ratio (the ratio between the straight line linking the start 

position and the target and the length of the actual trajectory), the number of 

velocity peaks throughout the movement, the time to peak velocity, the target error 

and the jerk (de los Reyes-Guzmán et al., 2014).  

The most used tools for instrumental UL movement assessment are inertial 

measurement units (IMUs), optoelectronic systems for kinematic analysis and 

robotic devices (de los Reyes-Guzmán et al., 2014). Each of these tools are more 

appropriate and accurate in measuring specific movement’s features. The inertial 

sensors measure angular velocity and linear acceleration in orthogonal axis referred 
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to a reference system based on the sensor itself. However, recent versions of IMUs 

include magnetometers that allow identifying the orientation of the sensor respect 

to the Earth’s magnetic field. IMUs have the advantage of being relatively 

inexpensive, and are particularly useful for measuring the subjects’ level of activity 

in their daily life (Leuenberger et al., 2017). Specifically, previous studies used data 

from IMUs to compare the overall level of activity of the affected and unaffected 

arms (Lee et al., 2018). However, the fact that stroke subjects’ UL movement are 

often slow and irregular, hampers their use in the assessment of specific and multi-

joints movement like reaching tasks and require sophisticated feature extraction 

techniques (Krishna et al., 2019; Maceira-Elvira et al., 2019). The most commonly 

extracted features using IMUs include movement intensity, signal amplitude, signal 

energy and data from the frequency domain (Maceira-Elvira et al., 2019). 

Kinematic three-dimensional analysis involves retroreflective markers fixed to the 

patient’s body that reflect the light emitted by the cameras (Roche et al., 2019). The 

cameras detect the marker’s position in the 3-D space and related software are able 

to reconstruct the marker’s trajectories and derive its velocity and acceleration 

patterns (Adans-Dester et al., 2020). Given that the markers are extremely light and 

small (around 1 cm3), these systems have limited interference with patients’ 

movement. However, the setting preparation is time consuming and the cameras 

are expensive. Moreover, the assessment is subjected by the examiner’s precision 

of placing the markers on the landmarks. Optoelctronic systems are useful for 

assessing kinematics parameters of UL reaching while they are less accurate in 

estimating the movement’s dynamics. In the context of a reaching task, the 

reconstruction of the markers’ trajectories allows extracting a series of features 

including, velocity patterns, time and position of peak velocity, the number of 

velocity peak and others (de los Reyes-Guzmán et al., 2014).  

Finally, robotic devices represent another cornerstone of the instrumental UL 

movement analysis in stroke subjects. Although they have been primarily used as a 

rehabilitative tool to assist the physiotherapist during the treatment, robotic devices 

can provide a variety of data including torques, forces and position that can be used 

to assess the patient’s movements (Garro et al., 2021; Scott & Dukelow, 2011). In 

the last decades they have been widely used in this field allowing neuroscientists to 
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perform seminal studies on human UL movement control and stroke rehabilitation 

(Resulaj et al., 2009; Rodgers et al., 2019). Robotic devices allow the assessment 

of several UL’s movement features referring to different domains. Interestingly, 

along with parameters related to primary sensorimotor impairments like strength or 

proprioceptive deficits, these devices provide data that clinicians can use to infer 

UL’s motor control deficits including movement smoothness, peak velocity, spatial 

errors and trajectory’s abnormalities (Nordin et al., 2014; Resulaj et al., 2009). 

Measuring human pose variables using computer vision has been increasingly 

applied in the recent years to assess mobility and risks of fall as well as to identify 

gait features in parkinsonism and other neurological diseases (Rupprechter et al., 

2021; Sabo et al., 2020). Quantifying gait pathology with commodity cameras 

increases access to quantitative motion analysis in clinics and at home and enables 

researchers to conduct large-scale studies of neurological and musculoskeletal 

disorders (Kidziński et al., 2020).  

Several solutions have been also proposed to combine hu- man pose estimation with 

CNN architectures for classification between normal and pathological gait in 

humans, with ability to provide information about the detected alterations from the 

extracted skeletal (Rohan et al., 2020). To achieve high accuracy, the majority of 

these solutions rely on OpenPose (Cao et al., 2021), an open-source framework that 

uses a non-parametric representation (i.e., part affinity fields - PAFs) to associate 

body parts with individuals in the image.  

Some solutions adopt the Kinect sensor to estimate the 3D skeleton. In (Antico et 

al., 2021), the authors compared the accuracy of the new Azure Kinect DK and 

shown that such a sensor is highly accurate in tracking body movements.  

More advanced solutions have been recently proposed to implement 3D HPE with 

RGB cameras. An example is the mobile system presented by Guo et al. (Guo et 

al., 2019)to track humans and analyze their gait in canonical coordinates based on 

a single RGB-D camera. To alleviate the effects of viewpoint diversity, Wei et al. 

proposed a view-invariant 3D HPE module (Wei et al., 2020). Zimmermann et al. 
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demonstrated that HPE by leveraging both RGB and depth images performs better 

than using depth data alone (Zimmermann et al., 2018).  

In (Mehdizadeh et al., 2021), the authors compared the accuracy of three different 

HPE software (AlphaPose, OpenPose, Detectron) for gait analysis by considering 

a 3D motion capture system as golden model. They underlined that there are 

important opportunities to evaluate models capable of 3D pose estimation in video 

data, improve the training of pose-tracking algorithms for older adult and clinical 

populations, and develop video-based 3D pose trackers specifically optimized for 

quantitative gait measurement. A similar comparison between 2D HPE with 

Openpose and the Vicon motion capture system has been presented in (Ota et al., 

2021). The authors evaluated the software accuracy to measure pelvic segment 

angles, hip, knee, and ankle joint angles during treadmill walking and running. An 

orthogonal analysis of the 2D HPE accuracy has been conducted in (Åberg et al., 

2021). The results underline that such a CNN-based method for extraction of gait 

parameters from video appears suitable for valid and reliable quantification of gait.  

To the best of our knowledge, the quantitative evaluation of the pose estimation 

software at the state of the art in measuring UL movements is missing. This work 

focuses on measuring the achieved accuracy and understanding whether the 

discrepancy between this technology and a motion capture system can lead to 

different clinical interpretations.  

 

Figure 31 Overview of the per-frame elaboration of the human pose estimation software. 
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Methods 
 
Kinematic testing protocol 

An 8-camera motion capture system (Vicon, Oxford Metrics Ltd., Oxford, UK) was 

used to track the upper body during movements. The data, recorded at 100 Hz, were 

assumed as golden model. Six markers were placed by a physiotherapist on each 

subject’s UL. The selected landmarks were: Styloid processes, Humeral Lateral and 

Medial epicondyles, Humeral Lesser tubercle, Acromion. Subjects were sitting on 

a chair, 45 cm high with a backrest, in the center of the room and were assessed 

while performing the FNT.  

During each trial, study participants were instructed to reach at a self-selected speed 

their nose. In the starting position the subjects sat still with their shoulder abducted 

at 90°, fully extended elbow and hand closed into a fist except for the index. They 

kept this position until the examiner’s ”Start” signal. At this point they were asked 

to touch their nose with the index fingertip flexing their elbow. Each video take 

consisted of 7 consecutive index-to-nose movements for each UL with eyes open. 

Between each trial, subjects were provided with ”stop” and ”go” signals by a 

physiotherapist. The task was recorded by both the RGB-D camera and the opto-

electronic system simultaneously. The resulting signals from the two devices have 

been synchronized by cross-correlation in post processing.  

Participants 
 

This study included healthy participants and post-stroke patients. Participants were 

recruited from the Neuromotor and Cognitive Rehabilitation Research Centre 

(CRRNC) of the University of Verona, Italy. All participants were informed 

regarding the experimental nature of the study and informed consent was obtained 

from all subjects. Healthy controls with no concomitant UL pain or mobility 

impairment and no history of neurological diseases were recruited. The local ethics 

committee approved the study. Post-stroke outpatients were recruited according to 

the following selection criteria. Inclusion criteria were: age ≥ 18, diagnosis of stroke 

confirmed by a specialist in neurology and by radiologic findings (CT or MRI), 
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time from stroke ≤ 1 year, Trunk Control Test score = 100/100, strength of shoulder 

abductors and elbow flexors ≥ 3/5 MRC (Medical Research Council Scale for 

Muscle Strength), signature of the informed consent. Exclusion criteria were the 

presence of severe cognitive, visual or communication impairments and other 

concomitant neurological or orthopedic diseases interfering with patients’ capacity 

of providing the informed consent or performing the required task. 

Data Analysis 

The human pose estimation software retrieves each frame of the video sequence 

from an input camera as shown in Figure 31. For each frame fi, the software 

performs an inference step through a convolutional neural network (CNN) to 

extrapolate the set KPS of keypoints:  

KPS = {kpfij : i = 1..|V F|, j = 1..|CNN kps|}    (20) 

where |CNN kps| is the maximum number of keypoints detected thorugh the 

adopted CNN per frame, and |V F | is the number of video frames processed.  

We selected Openpose (Cao et al., 2021), as it is one of the most accurate and 

widespread HPE solutions at the state of the art (Mehdizadeh et al., 2021). We 

selected the BODY 25 model trained with the COCO (T.-Y. Lin et al., 2014) and 

MPII datasets (Andriluka et al., 2014) to extrapolate a set K P S of 25 keypoints, 

including nose and wrist. We configured Openpose to include the hand detector 

feature (Simon et al., 2017), which allows us to extend the original set of keypoints 

with additional 20 keypoints to include the fingertip. We adopted an Intel 

RealSense D415 RGB-D as input camera. Each frame consists of an RGB image 

(848×480×3 8-bit matrix) and a depth image (848×480 16-bit matrix). To extract 

the 3D coordinates in space of each keypoint, the platform implements the 

interpolation of the 2D coordinates extrapolated by Openpose with the depth matrix 

information as for the back-projection algorithm (Hartley, 2004).  

Each final keypoint kpfij = (x, y, z) represents a joint of the human skeleton, where 

x, y, and z are the 3D coordinates of the keypoint. In particular, we evaluated the 

movement features through the keypoints associated to the nose (kpfi nose), finger 
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tip (kpfi finger), and wrist (kpfi wrist), as shown in Figure 31 We define fonset and 

foffset the couple of video frames that identify the start (see Figure. 31) and stop 

(when the subject touches the nose with the index fingertip) of the FNT movement, 

respectively. We define tonset and toffset the time instants (time stamps) associated 

to frames fonset and foffset, respectively.  

Previous studies on stroke subjects that included upper limb kinematic assessment 

focused on a variety of movement parameters referring to either time or spatial 

domains (de los Reyes-Guzmán et al., 2014; Shi et al., 2011). A recent literature 

review suggests the most relevant features in the assessment of stroke subjects. 

Following these indications, we focus on the following ten features.  

1) Movement duration: In the time domain, the movement duration indicates the 

time interval from the start of the movement to the target reaching. The movement 

duration is clearly linked to the average velocity of the subject’s hand and can be 

interpreted as a measure of movement efficiency. Previous studies suggested that 

stroke subjects perform slower movements compared to healthy age-matched 

controls (Adans-Dester et al., 2020). We define movement duration T as follows: 

T = toffset − tonset  (21) 

2) Length of the hand trajectories: In the spatial domain, the total displacement 

measures the length (in cm) of the hand trajectory in the three-dimensional space 

(Wu et al., 2007a). This measure can be interpreted as an indication of directness 

of the movement. The longer the hand path, the less direct and efficient is the 

movement. Referring to stroke subjects, straighter movements with shorted hand 

trajectories has been linked to improved movement planning and multi-joints 

coordination abilities (Archambault et al., 1999). Considering the distance between 

two 3D keypoints:  

dist(𝑎, 𝑏) = √(𝑥𝑎 − 𝑥𝑏)2 + (𝑦𝑎 − 𝑦𝑏)2 + (𝑧𝑎 − 𝑧𝑏)2 (22) 
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we define the trajectory length l of the hand as the sum of the absolute distances 

(∆p) between subsequent positions of the wrist keypoint:  

Δ𝑝 = {dist(𝑘𝑝𝑤𝑟𝑖𝑠𝑡
𝑓𝑖 , 𝑘𝑝𝑤𝑟𝑖𝑠𝑡

𝑓𝑖−1 ): 𝑖 = 2. . 𝑛} (23) 

𝑙 =∑Δ𝑝𝑖

𝑛

𝑖=2

 (24) 

3) Normalized cartesian velocity shape: Cartesian velocity is the magnitude of the 

velocity vector of the index finger. The shape of the velocity pattern is commonly 

used by clinicians to evaluate from a behavioural perspective the quality of the 

subject’s movement. It is well known that the kinematic profile of a pointing task 

is rather consistent across healthy subjects. The velocity pattern of the index finger 

shows a roughly symmetric bell-shape with the velocity peak approximately at half 

of the movement (Day et al., 1998). In the clinical practice, when a 3D movement 

analysis is performed, the velocity pattern evaluation is performed by visually 

inspecting the hand velocity as a function of the movement progression, expressed 

as a percentage of the entire movement. To compare movements from subjects with 

different anthropometric features, it is necessary to normalize the data regarding 

absolute speed and time execution of the movement. Eqn 25 defines the velocity 

displacement vector v in terms of position distances ∆p (eqn(23) by considering 

kpfi wrist as observed keypoint) over the time elapsed between subsequent 

positions ∆t: 

𝑣 = {
Δ𝑝𝑖
Δ𝑡𝑖

: 𝑖 = 2. . 𝑛} (25) 

Δ𝑡 = {𝑡𝑖 − 𝑡𝑖−1: 𝑖 = 2. . 𝑛} (26) 

We define the normalized cartesian velocity vnorm and the normalized time vector 

tnorm as follows:  

𝑣norm = {
𝑣𝑖 − 𝑣min

𝑣max − 𝑣min
: 𝑖 = 2. . 𝑛} (27) 
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𝑡norm = {
𝑡𝑖 − 𝑡1
𝑡𝑛 − 𝑡1

: 𝑖 = 2. . 𝑛} (28) 

Where 

𝑣max = max
𝑖∈{2..𝑛}

𝑣𝑖 (29) 

𝑣min = min
𝑖∈{2..𝑛}

𝑣𝑖 (30) 

4) Average velocity: It represents the mean three- dimensional velocity of the hand 

relative to the subject’s body. The mean velocity can be considered as a general 

measure of efficiency of the upper limb movement. In order for a movement to be 

effectively used in the domestic and daily environment, this has to be sufficiently 

precise and fast. On the other hand, the overall mean velocity of the movement is a 

relatively rough parameter and does not capture any specific abnormalities in the 

velocity pattern of the movement. Previous studies showed that stroke subjects 

perform the FNT slower than healthy controls (Day et al., 1998; Honda et al., 2020). 

However, especially in stroke subjects, a faster pointing movement does not 

necessarily mean a more precise and effective reaching. We define the average 

velocity as 𝑣(𝑎𝑣𝑔) =
𝑙
𝑇
 , l and T from Eqns. 24 and 21, respectively. 

5) Peak velocity: The absolute value of the peak velocity is the maximum of the 

absolute three-dimensional speed throughout the entire movement. It is a measure 

of how fast the subject can perform a reaching movement irrespective to its 

precision. The higher the correlation between the peak velocity and the mean 

velocity, the more consistent and repetitive the movements are. In contrast, great 

values of velocity peak in association with relatively slow average velocity suggest 

high speed variability and possibly longer and sub-optimal trajectories. The 

literature suggests that moderately impaired stroke subjects have lower amplitude 

in peak velocity (Johansson et al., 2017).  Eqn 29 defines this feature.  

6) Percentage of movement time with max velocity: The percentage of movement 

when the maximum of velocity occurs is the proportion of movement time spent 

between the start of the movement and the velocity peak (Johansson et al., 2017). 
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This feature is related to the ability of movement planning and feed-forward motor 

control (Wu et al., 2007b). It is well known that in healthy subjects the velocity 

peak is reached roughly at half of the movement, while previous reports showed 

that stroke subjects tend to show left-shifted velocity profile, due to the earlier 

occurrence of the maximum of velocity (Johansson et al., 2017). This common 

behavior can be interpreted as a strategy to improve the control in the latter part of 

the movement, when the hand is slowing down. This could help the subjects to 

improve the precision of the pointing, which is the ultimate goal of a pointing task 

such as the FNT. The time percentage of movement of maximum velocity tmax% is 

the jth element of the normalized time vector tnorm (Eqn 28), where j is the index of 

the maximum element in velocity vector v (Eqn 25):  

𝑡max\% = 𝑡𝑛𝑜𝑟𝑚 𝑗 ⋅ 100 (31) 

𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈{2..𝑛}𝑣𝑖 (32) 

7) Percentage of spatial position at max velocity: The peak of the velocity can be 

described in terms of position relative to the hand path length. Along with temporal 

occurrence, in healthy subjects the velocity peak is reached around the half of the 

movement path. In stroke subjects however the spatial and temporal relative 

occurrence of the maximum of speed may not coincide. For example, while it has 

been previously reported that patients with stroke tend to anticipate the timing of 

velocity peak (Johansson et al., 2017), this may not be the case for the spatial 

position of the peak. Overall, this feature provides information about the symmetry 

of the movement in the acceleration and deceleration phases. Eqn 33 represents this 

feature by dividing the sum of the first j elements of ∆p with the trajectory length l 

(Eqn 24), where j is the index of the absolute maximum in velocity vector v (Eqn 

25):  

Δ𝑝max\% =
∑ Δ𝑝𝑖
𝑗
𝑖=2
𝑙 ⋅ 100 (33) 

𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈{2..𝑛}𝑣𝑖 (34) 
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8) Number of velocity relative peaks: Along with the over- all speed and accuracy 

of the movement, previous studies on upper limb kinematic included in their 

analysis the movement smoothness. Although this feature can be estimated in 

different ways, the most common one involves the sum of the local maximum of 

the three-dimensional velocity throughout the movement (G. M. Johansson et al., 

2017; K.-C. Lin et al., 2007; Wu et al., 2007a). A perfectly smooth reaching should 

include only one local peak of velocity (in this case an absolute peak of velocity) 

while the presence of more peaks suggest that a number of corrections have been 

performed during the movement. The vector of velocity peaks vpeaks is composed 

by the local maxima of the velocity vector vi, obtained in (6), as follows:  

𝑣peaks =  {𝑣𝑖|𝑖 ∈ {2. . 𝑛 − 1} ∧ 𝑣𝑖 > 𝑣𝑖−1 ∧ 𝑣𝑖 > 𝑣𝑖+1} (35) 

 

9) Early movement velocity after 150 ms: The early phase of a reaching movement 

is of particular interest from a motor control perspective. Given that the 

proprioceptive feedback is affected by an intrinsic delay of 150/200 ms, in this time 

window after movement onset, the feedback is not yet available, and movement is 

led only by feed-forward motor control. From a clinical perspective, the hand speed 

within this time window is of paramount importance in a reaching task kinematic 

analysis. It has been previously showed that velocity abnormalities in this early 

movement phase are likely to be related of inverse model impairment in patients 

with cerebellar lesions (Bhanpuri et al., 2014). This parameter is impossible to 

assess in a daily clinical setting when patients are assessed by a physician without 

the use of accurate systems for upper limb movement analysis. We define this 

feature as follows:  

𝑣(150𝑚𝑠) = {𝑣𝑖|𝑖 ∈ {2. . 𝑛} ∧ 𝑡𝑖 = 0.150} (36) 

10) Normalized cartesian acceleration shape: The acceleration phase is said to be 

related to the pre-planned aspects of movement where asymmetries between the 

acceleration and deceleration phases suggests impairments in feed-forward motor 

control (Grosskopf & Kuhtz-Buschbeck, 2006). The acceleration phase is defined 
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as the movement sections between the movement start and the absolute velocity 

peak. In contrast, the deceleration phase is defined as the remaining part of the 

reaching, until the touch of the nose. We define the acceleration displacement 

vector a in Eqn 37 by dividing the velocity v (Eqn 25) with the time elapsed between 

subsequent positions ∆t. The normalized cartesian acceleration norm is obtained as 

for equation 40:  

𝑎 = {
𝑣𝑖

𝑡𝑖 − 𝑡𝑖−1
: 𝑖 = 3. . 𝑛} (37) 

𝑎(𝑚𝑎𝑥) = max
𝑖∈{3..𝑛}

𝑎𝑖 (38) 

𝑎(𝑚𝑖𝑛) = min
𝑖∈{3..𝑛}

𝑎𝑖  (39) 

𝑎norm =
𝑎𝑖 − 𝑎min

𝑎max − 𝑎min
: 𝑖 = 3. . 𝑛 (40) 

At the state of the art, the couple fonset and foffset (and the corresponding tonset and 

toffset) are identified manually for each FNT movement by an operator. Coderre et 

al. (Coderre et al., 2010) suggested a semi-automatic method for such a task through 

a sliding backward algorithm. It consists of a first coarse segmentation step, by 

which the operator manually identifies the movements from the video sequence. 

Then, from each phase, they extrapolate tonset and toffset by comparing the wrist 

velocity against a velocity threshold (5% of the maximum wrist velocity). The 

threshold allows the algorithm to distinguish the stationary from the movement 

state. Even though this approach achieves a fair accuracy w.r.t. the totally manual 

segmentation, it requires a manual and subjective intervention. In addition, due to 

the natural fluctuation of the wrist velocity between subsequent movements, it 

becomes sensitively inaccurate without the manual intervention.  
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Figure 32 Example of automatic vs. manual segmentation: (a) Wrist velocity of a sequence 
of seven movements. Numbered boxes zoom in the first three couples of onset and offset 
instants identified by the proposed algorithm from the velocity vector and those identified 
manually from the video images. (b) First condition holding that identifies an onset. (c) 
Duration condition holding that discards a false positive segment 

 

We propose an Automatic Time Segmentation Algorithm - ATSA (Figure 33) that 

implements the fully automatic movement segmentation in O(|V F |) by analysing 

the velocity displacement vector (Eqn 25) of the wrist. In our experimental setup, 

for a fair comparison w.r.t. the manual segmentation, we considered the 2D velocity 

of the wrist (axes x and y in Figure 31) as it is the velocity observable by the human 

operator. Then, we propose two velocity thresholds, which identify the start of the 

voluntary movement and the confirmation of the temporally continuous movement. 

We heuristically identified these two values in 2% and 3% of the maximum wrist 

velocity (v2% and v3% in the following). The algorithm definition is independent 

from these values.  

Starting from frame f0, the algorithm extrapolates every couples of instants tonset 

and toffset that represent the movements in the video. For each frame, it searches for 

a candidate onset instant to that satisfies the following conditions:  

• Every tonset identified in the previous frames has to be coupled with a 

corresponding toffset, so that the Tonset and Toffset have the same number of 

elements. This allows us to detect only complete FNT movements.  



 137 

• Wrist velocity at instant i (vi in the algorithm) is higher than the velocity 

threshold v2%, while ti−1 is lower than v2%. This allows identifying ti as the 

start of the voluntary movement.  

• After an interval of k3% frames, the wrist velocity has to become greater than 

the second threshold v3%. This allows to confirm the temporally continuous 

movement and to avoid false positive movements due to fluctuations. Figure 

32 shows, for example, the onset candidate (red line) identified in the first 

movement of the sequence of Figure 32 a.  

 

 

Figure 33 Onset-Offset automatic segmentation algorithm. 

 

The algorithm (Figure 33) identifies the subsequent offset by searching for the 

instant in which the wrist velocity goes lower than the first threshold (e.g., Figure 

32c).  

To prevent false positive due to larger shakes, the algorithm also implements a 

movement duration check (line 10, Figure 33). If the difference between the 
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candidate offset and onset is below a pre-defined duration threshold (kduration), both 

candidates are discarded (e.g., Figure 32d). Following the definitions of voluntary 

movement and temporally continuous movement proposed in literature 

(Daunoraviciene et al., 2018; Wagner et al., 2008), and by considering the 

architectural characteristics of our camera (i.e., sampling rate), we set k3% = 35 

frames and kduration = 0.4 s for our experimental analysis.  

Results 
 
To measure the accuracy of the HPE software, 15 control subjects (7 males and 8 

females) and 5 patients were involved. To measure the accuracy of the automatic 

segmentation algorithm, 26 control subjects (13 males and 13 females) and 20 

patients with stroke (10 males and 10 females) participated in the study. The mean 

age of the control subjects was 28.2 ± 5.1 years and that of the patients was 63.4 ± 

13.4 years. Clinical and demographic data are reported in Table 4 
 

Table 4 Post-stroke group clinical and demographic features. 

Patient Sex Age Affected 
limb 

Time since stroke 
onset (days) 

Type of 
ictus 

0 Male 53 Right 39 Ischemic 
1 Male 55 Right 207 Ischemic 
2 Female 63 Left 181 Hemorrhagic 
3 Male 60 Right 36 Hemorrhagic 
4 Male 59 Left 59 Ischemic 

 
Accuracy of the extracted features 
 
The values of the features presented were compared using the opto-electronic 

system as ground truth. For this analysis, data from 15 healthy controls and 5 stroke 

patients were included: 30 video takes were recorded for healthy subjects and 10 

for post-stroke patients, each consisting of 7 index-to-nose trials. Marker-less and 

marker-based data were manually split in onset and offset by a clinician watching 

the videos. Due to errors during the acquisition, 2 video takes have been excluded 

from the analysis (healthy subject n.3 left arm, and healthy subjects n. 7 right arm) 

leading to a total of 38 video takes and 266 movements analyzed. Table 5 reports 

the measure of each feature extrapolated from the markerless system (Openpose) 

and the corresponding accuracy, which is defined as the difference w.r.t. the 



 139 

measure extrapolated with the MoCap. In general, no significant difference in the 

measurements between the control group and the post-stroke group (i.e., mean 

absolute error - MAE) has been observed for every feature.  

 
Accuracy of time segmentation 
 

The accuracy of the automatic segmentation algorithm has been evaluated w.r.t. the 

manual segmentation performed by experienced clinicians who analyzed the 

videos. For this analysis 26 healthy controls and 20 stroke patients were included. 

Each subject completed 2 video takes (one for each arm) leading to a total of 364 

index-to nose movements for healthy controls and 280 for stroke patients. Figure 

34 shows the results. Overall, we measured a MAE of the automatic approach equal 

to 0.057s (0.051s for the control group, and 0.066s for the post-stroke group). 

Finally, we evaluated the impact of the automatic segmentation step on the accuracy 

of the HPE software in measuring the movement features. As expected, we found 

that ATSA affects the overall software accuracy. On the other hand, the differences 

between the measures extrapolated with the HPE software with manual 

segmentation with those extrapolated with the automatic segmentation are 

negligible (see Table 6 vs. Table 5 for automatic vs. manual, respectively). In 

particular, considering the MoCap as ground truth, ATSA increases the error of the 

HPE software less than 1.7% in measuring the trajectory length and position 

percentage of maximum velocity. The additional error is less than 3% when 

measuring the maximum velocity, average velocity, and time percentage of 

maximum velocity. The error increases up to 5% for the number of velocity peaks 

and velocity after 150 ms.  

Overall, the normalized shape of velocity and acceleration are closely approximated 

(see Table 7), with correlation coefficient ρ > 0.93 and pval < 0.001.  

 

 

 

 

 



 140 

Table 5 Kinematic outcomes of the Finger-to-Nose test in all participants. The features are 
obtained with the markerless system, and the error is the difference between the marker-
less system values and the golden model. Features from both systems are obtained with 
manual time segmentation, performed by an expert clinician  
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Figure 34 Distribution of the differences between onset/offset start time detected by the 
ATSA and onset/offset start time detected by manual segmentation, assumed as ground 
truth. 
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Table 6 Kinematic outcomes of the FNT in all participants. The measures are obtained with 
the markerless system, and the error is the difference between the markerless system values 
and the golden model. Features from the markerless system are obtained with ATSA, while 
ground-truth features come from the manual time segmentation, performed by an expert 
clinician.  
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Table 7 Mean Absolute Error (MAE), Root-Mean-Square Deviation (RMSD), and 
Correlation Coefficient (pval < 0.001) between the velocity/acceleration shape from the 
marker-less system and the marker-based system. Shapes from the marker-less system are 
obtained using both manual segmentation and automatic segmentation  
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Discussion 
 
The present study aimed to assess the accuracy of a marker- less system for motion 

analysis of the FNT in healthy controls and patients affected by cerebral stroke. We 

focused on a set of clinically meaningful movement features and we compared the 

values obtained using the hpe software device with a the values obtained with a 

marker-based system, commonly considered the golden model. Our comparison 

showed that the markerless device is significantly accurate in estimating all the 

features investigated, except for the early movement’s velocity. Therefore, it can 

represent a useful tool for the UL movement analysis in people affected by stroke.  

Kinematic motion analysis is widely used in clinical practice, especially for the 

assessment of gait. In contrast, the UL movement analysis presents several peculiar 

challenges that have hampered its diffusion. Firstly, while the locomotion is clearly 

the most relevant activity performed with the lower limbs, the UL can perform a 

variety of functionally relevant tasks like pointing, reaching and grasping in 

different directions. Consequently, there is a lack of agreement on standard 

protocols for the kinematic assessment of the UL. Secondly, the mechanic 

complexity of the UL allows the same task to be performed with a remarkable inter-

subjects variability hampering the comparison between subjects. Lastly, in contrast 

to the locomotion, where a well-defined movement, the step, is repeated several 

times making relatively easy the segmentation of a single gait cycle, it is typically 

hard to define accurately the movement onset in most of the UL common tasks.  

In the present paper we proposed an assessment protocol of UL movement aiming 

to overcome these issues. We chose the FNT since it is a well known task 

commonly assessed in the usual neurological examination. This task is easy to 

standardize since the starting point and the target are intrinsically defined 

maximizing its repeatability in different settings. Moreover, we proposed a method 

for automatically identify the movement’s start and end allowing automatic 

segmentation. Notably, the ATSA offers some advantages avoiding examiner- 

dependency and fastening the analysis process. The problem of movement 

segmentation has been often overlooked in the literature, and several studies didn’t 

mention how they tackle this issue (Adans-Dester et al., 2020; Honda et al., 2020; 

Wu et al., 2007b). Overall, the most commonly used method to identify movement 
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onset uses a velocity threshold (3-5% of peak velocity or 2-5 cm/s) and identifies 

the instant when the hand speed overcomes this threshold (Chen et al., 2021; 

Coderre et al., 2010; Grosskopf & Kuhtz-Buschbeck, 2006; G. M. Johansson et al., 

2017), or using pressure-sensitive switches (K.-C. Lin et al., 2007). However, it has 

been suggested that this method should not be considered reliable when assessing 

stroke subjects’ UL movements (Coderre et al., 2010). Coderre and colleagues 

proposed a complex method for identifying the movement onset based on the 

integration of hand speed and position relative to the starting point (Coderre et al., 

2010). In their study participants performed the task using an exoskeleton robot 

making easier to define the starting position across trials but inevitably affecting 

the patients’ movement (Schwarz et al., 2019). Therefore it can be argued that our 

method improve the procedures described in the existing literature and, on the other 

hand, did not include any additional devices that could alter the subjects’ natural 

movement. In the present analysis, the application of our ATSA showed that when 

compared to manual segmentation performed by two clinicians via a frame-by-

frame analysis, the automatic labelling had a mean error of 0.57s. This error led to 

a mean absolute error in the movement duration of 0.052s and 0.098s for healthy 

controls and patients with stroke respectively. Notably, considering the sample rate 

of the hpe software’s camera, this time error corresponds to a 3 to 6 frames, a 

remarkable accurateness since, even by a single- frame manual analysis it is 

sometimes hard to identify the exact movement’s start and end and there can be 

disagreement between raters. Moreover, for movement’s duration, the literature 

suggested a relative Minimal Detectable Change (rMDC) of 38-98%, far greater 

than the error associated with our automatic segmentation being between 18% and 

0.6% of the entire movement’s duration (Wagner et al., 2008). An exception was 

the early movement’s velocity computed after 150ms from the movement’s onset. 

The error between the values obtained with hpe software and with the MoCap 

system seemed to be too large to be considered reliable. However, this error is likely 

to depend almost entirely on the automatic segmentation method and not on the hpe 

software analysis per se. Moreover, this feature is rarely used in common clinical 

assessment and it has mainly been used for research purposes (Bhanpuri et al., 
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2014). Our analysis suggests that to compute this feature, manual movement’s 

segmentation should be recommended.  

A recent systematic review on UL kinematic analysis identified most used and 

clinically meaningful kinematic metrics referring to different movement domains 

(Schwarz et al., 2019). Based on these recommendations our analysis included 

parameters on movement accuracy, planning, smoothness and efficiency. We then 

com- pared the metrics’ values obtained with the hpe software and MoCap systems. 

Overall, the accurateness of the hpe software system did not change between the 

analysis of healthy controls and patients with stroke. Movement duration, trajectory 

length, average and maximum velocity, time and position percentage of peak 

velocity reported a relative mean absolute error of 3- 5%. The question about 

whether this error could affect clinical interpretation of the measurement is crucial. 

Only few studies attempted to estimate psychometric properties of UL kinematic 

analysis during different tasks (Alt Murphy et al., 2013; Wagner et al., 2008). 

Noteworthy, Wagner and colleagues estimated the rMDC of a series of kinematic 

metrics in the FNT in subjects with cerebral stroke using a MoCap system (Wagner 

et al., 2008). Their finding suggested that the (rMDC) for the features we analyzed 

are significantly greater than the mean absolute errors that we found between hpe 

software and MoCap. Specifically, authors suggested the rMDC being 24- 61% for 

the peak velocity value and 45-81% for the time to peak velocity. Moreover, another 

study that analyzed the FNT in patients with stroke suggested that a peak velocity 

difference of 0.6 m/s, and 8% of time to peak velocity can differentiate between 

mild and moderate stroke subjects (G. M. Johansson et al., 2017). On the other 

hand, when assessing the effect of a rehabilitation treatment on kinematic 

parameters in a reaching task, previous researches found that an increase of 9% of 

the time percentage of peak velocity and of 6% of the spatial percentage of peak 

velocity were statistically significant (Adans-Dester et al., 2020; K.-C. Lin et al., 

2007). The early velocity after 150ms from the movement onset has been rarely 

investigated in the literature, although it provides useful information on the 

anticipatory motor control and movement planning and it has previously been 

associated with ballistic movement’s accuracy in cerebellar stroke patients 

(Bhanpuri et al., 2014). We measured values of early velocity compatible to their 
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previous results. However for this feature we found a mean absolute error of 

extremely variable across subjects ranging from 1% to 90%. It is conceivable that 

this amount of error for some subjects refers to inaccuracy of automatic 

identification of movements’ onset specifically for subjects with stroke. These 

results suggest that for computing this specific feature, when assessing subjects 

with cerebral stroke, manual segmentation should be recommended. Along with 

numeric parameters, velocity and acceleration pattern inspection provides useful 

information to clinicians. In terms of hand’s velocity pattern, the comparison 

between the measures obtained with the hpe software system and the MoCap 

system showed very strong correlations both for healthy controls and patients with 

stroke with mean rho values being 0.941 and 0.947 respectively.  

To conclude, the comparison with the literature suggests that the hpe software 

system can provide reliable and accurate kinematic data that clinicians can use for 

improving the clinical UL assessment in patients with stroke.  

Finally, from a clinical setting perspective, markerless movement analysis provides 

some relevant advantages com- pare to standard MoCap systems. Firstly, the 

assessment is less time consuming since there is no more the need of place the 

markers on the subjects’ landmarks. Secondly, the hpe software system is portable 

and allows performing the analysis in wards, gyms and ambulatory care settings. 

Lastly, these devices are remarkably cheaper than MoCap systems available in the 

market.  
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Motor control impairment in upper limbs’ reaching task in people with 
cerebellar and somatosensory deficits 
 
Introduction 
 
The ability of performing fast and accurate movements using Upper Limbs (ULs) 

is one of the most remarkable aspects of human motor behavior. However, the 

apparent ease with which we reach, grasp, and manipulate different objects in our 

daily life conceals the complex mechanisms involved in movement planning, 

execution and control. The study of these mechanisms has attracted a rich body of 

literature in the last decades and different models have been proposed (Feldman, 

2015; Todorov & Jordan, 2002; Wolpert & Ghahramani, 2000). Overall, there is 

compelling evidence that the Central Nervous System (CNS) uses internal models 

of the motor system and environmental dynamic properties to optimize 

sensorimotor behavior (Mcnamee & Wolpert, 2019). These models act as a 

representation of the external word allowing an organism to simulate and predict 

the consequences of its actions without performing it (Mcnamee & Wolpert, 2019). 

Specifically, a forward model integrates a copy of the motor command (often 

referred as “efference copy”) with sensory information about limbs’ position and 

predicts the future body’s state and sensory feedback (M. I. Jordan, 1996b).  

Although its existence has been questioned in some recent works (Press et al., 

2020), the literature suggested that a forward model is essential to perform fast and 

accurate ULs movements offering a solution for the problem of intrinsic latency 

that affects the somatosensory system (Wolpert & Flanagan, 2001). A sensorimotor 

feedback loop in human somatosensory system is indeed affected by a delay of the 

order of 80-150ms which is remarkably long in the context of fast reaching (Scott, 

2016). Therefore, a system that relies only on such a feedback control would result 

unstable and perform unnecessarily large out-of-phase corrections. A forward 

model could solve this issue providing the CNS with a prediction of the future 

sensory input that can feed an internal feedback loop before the actual sensory 

feedback is available (Mcnamee & Wolpert, 2019). Such internal model is thought 

to be responsible for a range of ULs’ sensorimotor behavior ranging from grip force 

modulation while grasping and moving an object (Flanagan & Wing, 1997; R. S. 

Johansson & Flanagan, 2009), to perception attenuation of self-produced tactile 
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stimuli (Bays et al., 2006; Bays & Wolpert, 2007a) and it is likely to be involved in 

the sense of agency (Pareés et al., 2014; Shergill et al., 2005). 

 

The cerebellum has been suggested to play a key role in the implementation of a 

forward model (Kawato et al., 1987a; Tanaka et al., 2020; Wolpert & Ghahramani, 

2000). Its cortex receives projections from the motor areas of the cerebral cortex, 

which can convey information about the motor command via pontine nuclei, and 

from the spinal cord through the spinocerebellar tracts that provides proprioceptive 

information. The cerebellum is therefore located in an ideal position to integrate in 

its cortex the efference copy with the somatosensory information and provide the 

cerebral motor, premotor and parietal cortices with the output of a forward model 

through the deep cerebellar nuclei via the thalamus (Bostan et al., 2013; D’Angelo, 

2018). Moreover, recent neurophysiological studies showed that the current activity 

of the deep cerebellar nuclei can predict the future input to the cerebellar cortex via 

the mossy fibers corroborating the idea that the predictive computations involved 

in the forward model are represented in this cerebro-cerebellar loop (Tanaka et al., 

2019).  

The crucial role of the cerebellum is suggested also by studies on patients with 

cerebellar lesions. These patients manifest typical UL sensorimotor symptoms that 

are collected under the umbrella of the cerebellar ataxia syndrome, which includes 

clumsiness, lacking smoothness and multi-joint coordination, spatial errors while 

pointing to a target (i.e. dysmetria) and irregular movements repetitions (Day et al., 

1998; Lisberger & Thach, 2013; Manto et al., 2012).  

Some of the typical UL motor dysfunctions in patients with cerebellar lesions have 

been described as the consequence of an impaired forward or inverse model. On 

one hand spatial errors of overshooting or undershooting the target during reaching 

(i.e. dysmetria) was showed to be effectively modeled as an impairment of an 

inverse model and a miscalculation of UL’s inertia (Bhanpuri et al., 2014). On the 

other hand, the lack of smoothness, the excessive oscillations approaching the target 

and errors in movement planning have been interpreted as the consequence of 

patients’ inability of anticipating the consequences of voluntary movements, 

consistent with an impairment of a forward model (Frey et al., 2011). Relying only 
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on delayed somatosensory feedback for motor control, these subjects perform 

instable UL reaching movements with exaggerated oscillations while approaching 

the target  (Bhanpuri et al., 2014; Cabaraux et al., 2020; Frey et al., 2011; Manto et 

al., 2012; Wolpert & Ghahramani, 2000). According to this idea, in these patients 

the cerebellum receives the efference copy based on a theoretically correct limbs’ 

position estimation provided by the somatosensory system. However, cerebellar 

lesions may impair the computation of the predicted body’s state, i.e., the output of 

the forward model. Being the information provided for internal feedback correction 

unreliable, the system is forced to rely mainly on delayed feedback control, using 

information on ULs’ position provided by the dorsal columns to the somatosensory 

areas of the parietal cortex. This would lead to the typical excessive oscillations 

observed in cerebellar patients in the last phase of a reaching movement. Moreover, 

the inability of predicting the consequences of the voluntary movement and result 

in impaired movement’s planning.  

 

Recent literature suggested that, along with the cerebellum, the forward model’s 

neural underpinning consist of a complex cerebro-cerebellar network including the 

sensorimotor cortex, and the Posterior Parietal Cortex (PPC). The PCC is indeed 

involved in the representation of the future state of the body and, through broad 

connections with the primary somatosensory cortex, contributes to the sense of 

proprioception (Cui, 2016; Desmurget et al., 1999; Parkinson et al., 2010; 

Reichenbach et al., 2014). Moreover, imaging studies provided evidence that the 

activity of the secondary somatosensory area in the parietal cortex (SII) represents 

the output of the forward model, suggesting its involvement in the representation 

of the sensory consequences of voluntary actions (Shergill et al., 2013). 

Interestingly, similar to cerebellar patients, patients with CNS lesions involving the 

spinothalamocortical pathway, the thalamus, the primary somatosensory cortex and 

other parietal areas involved in the proprioception sense, show dysmetria, lack of 

smoothness and irregular movements, a syndrome often called sensory ataxia 

(Ghika et al., 1994; Melo & Bogousslavsky, 1992; Osumi et al., 2018, Caplan, 

2012). This behavior is exacerbated when patients are prevented from using vision 

to compensate for proprioceptive deficits (Klingner & Witte, 2018). Although it has 
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been previously suggested that patients with sensory ataxia due to stroke showed 

signs of both feedback and feedforward motor control deficits, limited attention has 

been paid in describing the role of somatosensory information in the forward model. 

(Osumi et al., 2018). 

 

Here we proposed a theoretical framework for interpreting sensory and cerebellar 

ataxia as different forward model’s dysfunctions. Given the architecture of the 

forward model, it is conceivable that a somatosensory deficit would impair the 

ability of predicting the consequences of a voluntary movement. From a 

computational perspective, the impairment of the ULs’ position sense due to CNS 

stroke, would affect the initial body’s state estimate from which the movement is 

planned through the sensorimotor transformations (Soechting & Flanders, 1989b, 

1989a). Although the vision system can partially compensate for these deficits, 

planning the movement from unreliable information would result in inappropriate 

motor command and, eventually, an altered efference copy. In principle, the 

forward model in these patients is preserved (given that the cerebellum is intact), 

however the unreliable efference copy would affect the output of the forward model 

itself. Moreover, the lesion of CNS structures involved in the position sense would 

compromise patient’s ability of correcting the movements using the feedback motor 

control in the absence of vision. This interpretation is in line with previous literature 

suggesting analogies between sensorimotor deficits of cerebellar patients and 

patients with impaired proprioception. In fact, these patients have been reported to 

have difficulties in anticipating interaction torques originating from voluntary 

movements as a consequence of the inability of sending predictive signals that can 

anticipate motor errors (Frey et al., 2011).  Also, brain stimulation studies using 

transcranic magnetic stimulation to suppress activity of the posterior parietal cortex, 

impaired the healthy subject’s ability to correct movements trajectories from 

unexpected perturbation if unable to see the hand (Reichenbach et al., 2014).  

 

The idea that the cerebellum and the posterior parietal cortex are crucial for 

predictive aspects of UL movement control during reaching tasks been corroborated 
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by several lesional studies that investigated sensorimotor UL behavior of patients 

with CNS lesions.  

However, to the best of our knowledge, this is the first attempt to describe UL motor 

deficits in cerebellar and sensory ataxia in pointing task using a single theoretical 

framework for sensorimotor control. The present observational study assessed the 

kinematic profile of an UL pointing task in patients with CNS lesions and healthy 

controls. We aimed to compare movement’s kinematics in patients with cerebellar 

lesions and patients with somatosensory impairment testing our theoretical 

framework. Our hypothesis is that, although both groups would be characterized by 

ataxic behavior, different movement features’ alterations would be detected. 

Specifically, we expect the cerebellar patients to present altered motor planning 

with relatively preserved feedback motor control, performing effective trajectories 

corrections. In contrast, we expect patients with somatosensory impairment to be 

significantly reliant on vision and to present impaired forward and feedback motor 

control showing larger pointing spatial errors and anticipated velocity peaks trying 

to slow down to visually guide the last movement’s phase. 

 

 

METHODS 
 

Participants 
 
Patients with cerebral stroke and young healthy volunteers (HS) were recruited. 

Participants were recruited from the Neuromotor and Cognitive Rehabilitation 

Research Centre (CRRNC) of the University of Verona, Italy. For healthy controls, 

the exclusion criteria were the presence of musculoskeletal injuries or any other 

neurological condition, history of surgery or pain affecting upper limbs, normal or 

corrected to normal visual and auditory abilities. For stroke subjects, the inclusion 

criteria were: age t 18 year old, diagnosis of stroke confirmed by a specialist in 

neurology and by radiologic findings (CT or MR), lesion in somatosensory areas 

including thalamic somatosensory nuclei, parietal cortex, posterior limb of the 

internal capsule, cerebellum, cerebellar pedunculi, strength of shoulder abductors 

and elbow flexors t 3/5 MRC (Medical Research Council Scale for Muscle 



 153 

Strength), limited to full UL capacity (Fugle-Mayer assessment scale score (FMA) 

t 31) (Hoonhorst et al., 2015).  

Exclusion criteria were the presence of severe cognitive, visual or communication 

impairments and other concomitant neurological or orthopaedic diseases interfering 

with patients’ capacity of providing the informed consent or performing the 

required task. 

The assessment procedure in this study were approved (approval number 

2320CESC) by the local Ethics Committee (Comitato Etico per la Sperimentazione 

Clinica delle Province di Verona e Rovigo) and was carried out according to the 

Declaration of Helsinki. All participants provided written informed consent to 

participate in the study.  

 

Clinical assessment 
 

Strength, function, and proprioception of upper limb were assessed using a battery 

of clinical scales. The Motricity Index (MI) is a well-known scale for the 

assessment of limb strength testing pinch grip, elbow flexion and shoulder 

abduction (score range 0-99, greater score indicates better performance) (Collin & 

Wade, 1990). The Fugl-Meyer assessment scale for upper limb (FMA-UL) is a 

measure of UL function that includes 33 items assessing reflex, activity, muscle 

strength and movement control (score range 0-66, greater score indicates better 

performance) (Fugl-Meyer et al., 1975). The Erasmus MC modifications to the 

Nottingham Sensory Assessment (EmNSA) was used to assess proprioceptive 

deficits of patients with stroke. It includes tasks investigating light touch, pressure, 

pinprick, sharp-blunt discrimination, and proprioception (score range 0-40, greater 

score indicates better performance)(Stolk-Hornsveld et al., 2006). To assess the 

limb’s ataxia in patients with cerebellar lesions the International Cooperative 

Ataxia Rating Scale (ICARS) was used. It is composed in 4 subscales investigating 

posture and gait disorders, kinetic function, speech disorder and oculomotor 

disorders. In this study only the section 2 (kinetinc function) was administered. This 

section includes 7 tasks resulting in a score ranging from 0 to 52 where the higher 

the score the more severe the impairment (Schmitz-Hübsch et al., 2006).  
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Instrumental assessment 
 

The index-to-nose task was assessed: subjects sat comfortably on an armchair, 

abducted the shoulder at 90° and extended the elbow. From this starting position, 

they were asked to touch the tip of their nose with the index fingertip at a self-

selected speed.  Patients were told that they were supposed to prioritize the reaching 

accuracy over the movement’s velocity. This task was chosen as it is one of the 

most common UL movement assessed during a clinical neurologic evaluation both 

for patients with cerebellar disorders and patients with proprioception impairments. 

Moreover, it is included in the ICARS scale, which is a well-known validated 

clinical scale for the assessment of UL’s ataxia (Schmitz-Hübsch et al., 2006). All 

the subjects performed the task seven times with both upper limbs in two 

conditions: eyes open (EO) and eyes closed (EC). Between each trial, subjects were 

provided with ”stop” and ”go” signals by a physiotherapist. The task was recorded 

by an RGB-D camera Intel RealSense D415 RGB-D placed 2m in front of the 

subjects and keypoints were extracted using Openpose software (Cao et al., 2021). 

Data Analysis  
 

We extracted eight movement’s features related to movement’s accuracy, 

efficiency and anticipatory motor control and motor planning. The analyzed 

parameters are listed in Table 8. For a formal definition of the features readers may 

refer to (Martini et al., 2022).  
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Table 8 Outline of the analyzed movevent's features 

Feature Notation Description 

Movement duration time 

The movement duration indicates the time interval from the 
start of the movement to the target reaching. In the present 
analysis the movement’s onset and offset were manually 

identified via a frame-by-frame video inspection. It is 
considered a measure of movement’s efficiency. 

Average velocity Vel 
It represents the mean three-dimensional velocity of the 

hand relative to the subject’s body. It is considered a 
measure of movement’s efficiency. 

Peak velocity PeakVel 
The absolute value of the peak velocity is the maximum of 
the absolute three-dimensional speed throughout the entire 

movement. It is considered a measure of movement’s 
efficiency. 

Percentage of 

movement time where 

peak velocity was 

reached 

tmax% 
The percentage of movement duration when the maximum 
of velocity occurs is the proportion of movement time spent 
between the start of the movement and the velocity peak. It 

is considered a measure of motor planning. 

Percentage of 

movement trajectory 

where peak velocity 

was reached 

pmax% 
The percentage of movement trajectory when the maximum 

of velocity occurs. It is considered a measure of motor 
planning. 

Early movement 

velocity 
EV 

The absolute three-dimensional velocity 150ms after the 
movement’s onset. It is considered a measure of motor 

planning and movement’s efficiency. 

Dysmetria along the x 

axis 
DysmX 

The distance between index fingertip and the nose tip on 
the horizontal axis when the finger’s velocity drops to 0 
m/s for the first time. Positive values indicate target’s 

overshooting and negative values indicate target’s 
undershooting. It is considered a measure of motor 

accuracy. 

Dysmetria Dysm 
The absolute distance between index fingertip and the nose 
tip on the frontal plane when the finger’s velocity drops to 
0 m/s for the first time. It is considered a measure of motor 

accuracy. 

 

Patients were divided into two groups according to the lesion site: one group 

including patients with lesion involving thalamic somatosensory nuclei, parietal 

cortex, posterior limb of the internal capsule (SP) and the other group including 

patients with lesion involving the cerebellum or cerebellar pedunculi (CP). For each 

subject the features’ values were averaged across movements and descriptive 

statistics was carried out. Data distribution was checked using the Shapiro-Wilk 

test. A repeated measure 2x3 ANOVA was used with “Eyes Open” (EO) and “Eyes 
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Closed” (EC) as within-group factor and “group” as a between group factor. Post 

hoc analyses were carried out using Holm-Bonferroni test. Data from the impaired 

limb were used for stroke patients while data from the non-dominant arm were used 

for healthy controls. For these analyses, the absolute value of the x axis dysmetria 

was used. Associations between movement’s parameters were tested using a 

spearman’s or Pearson’s correlation according to data distribution. All the analysis 

were carried out using JASP software (Version 0.15). 

 

Results 
 

A convenient sample of 12 healthy subjects (HS), 12 patients with somatosensory 

deficits (SP) and 9 patients with cerebellar lesions (CP). Demographic and clinical 

data of the included subjects are listed in Table 9 and Table 10 respectively. 

 

Table 9 Demographic characteristics of the included subjects. Data are reported as mean 
r standard deviation. 

Group Age (years) 
Mean r sd 

Laterality 
(R/L) Sex (M/F) 

HS (n=12) 29.0 r 2.9 11/1 7/5 

SP (n=12) 62.4 r 13.6 12/0 7/5 

CP (n=9) 66.9 r 25.2 9/0 8/1 
 

Table 10 Clinical characteristics of the included patients. Between groups comparison was 
performed using t-test for unpaired samples or chi-square test for categorial variable 

 
SP (n=12) CP (n=9) 

Between group 

comparison 

mean sd mean sd p-value 

Time since 

stroke onset 

(months) 

2.6 1.8 3.6 4.2 n.s. 

Affected arm 

(R/L) 
7/5 6/2  

FMA-UL 52.2 12.7 58.9 5.4 n.s. 

MI 80.2 23.0 86.6 10.7 n.s. 

ICARS   24.3 10.3  

EmNSA 30.2 9.8    
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The repeated measure ANOVA showed significant group effect for the movement’s 

duration (time) (F=4.083 p=0.027 Kp2=0.22), average velocity (Vel) (F=13.591 

p<.001 Kp2=0.48), peak velocity (PeakVel) (F=10.696 p<.001 Kp2=0.41) and early 

movement velocity (EV) (F=12.759 p<.001 Kp2=0.47) (Figure 35, Table 11). Post 

hoc analysis revealed that SP group was overall slower than HS group (time: t=2.76 

p=0.029 Cohen’s d=0.49; Vel: t=-4.277 p<.001 Cohen’s d=-0.76; PeakVel: t=-

3.640 p=.002 Cohen’s d=0.64; EV: t=-4.130 p<.001 Cohen’s d=-0.73). Similarly, 

CP were slower than HS as for average velocity (t=-4.58 p<.001 Cohen’s d=-0.81), 

peak velocity (t=-4.18 p=.001 Cohen’s d=-0.74 and early velocity (t=-4.45 p<.001 

Cohen’s d=-0.79) The ANOVA analysis of absolute value of dysmetria along the 

horizontal axis (x axis) found a significant effect of group. The post hoc 

comparisons showed that patients in the CP had smaller deviation from the target 

in the x axis than HS group (t=-3.119 p=0.012 Cohen’s d=-0.55) (Figure 35). 

Moreover, a within group effect on movement duration was found (F=4.52 p=0.04 

Kp2=0.14) and the post hoc analysis showed that overall the subjects took more time 

to point at their nose in EC condition compared to the EO condition (time: t=2.13 

p=0.04 Cohen’s d=0.38) (Figure 35). Post-hoc within-groups analysis found 

tendency to significant difference in the SP group (t=-3.029 pholm=0.06). 

 

Interestingly we found that functional UL impairment assessed with the FMA-UL 

was not associated with any of the movement parameters for SP and CP. 

Analogously the somatosensory deficit measured with the EmNSA did not correlate 

with any of the analyzed features. In contrast, ICARS score was inversely correlated 

to the early velocity and the peak velocity in the EC condition: the greater the 

severity of the cerebellar ataxia, the slower the movement, both in terms of initial 

velocity and peak velocity. Moreover, only in the CP group we found that the 

dysmetria along the horizontal axis was directly associated with the absolute value 

of the peak velocity and the position of the velocity peak through the index finger’s 

trajectory (pmax%). Specifically, those patients that reached the velocity peak after 

the half of the movement trajectory length tended to overshoot the target, while 

patients who reached the velocity peak earlier undershoot the target (Figure 36).  
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Table 11 Repeated measure ANOVA results. *: group effect of the repeated measure 
ANOVA. Data are reported as mean r standard deviation. 

Feature Condition HS SP CP 
Between group 

comparison* 

time 

EO 
1.140 r 

0.277 

1.934 r 

0.996 

1.932 r 

0.449 
F=4.083 

p=0.027 

Kp
2=0.22 EC 

1.160 r 

0.234 

2.729 r 

2.299 

2.165 r 

0.698 

Vel 

EO 
0.590 r 

0.133 

0.388 r 

0.146 

0.361r 

0.089 
F=13.581 

p<.001 

Kp
2=0.48 EC 

0.571 r 

0.130  

0.345 r 

0.147 

0.310 r 

0.066 

PeakVel 

EO 
0.878 r 

0.199 

0.637 r 

0.189 

0.591 r 

0.134 
F=10.696 

p<.001 

Kp
2=0.41 EC 

0.854 r 

0.194 

0.596 r 

0.181 

0.538 r 

0.101 

tmax% 

EO 
45.250 r 

4.070 

41.250 r 

10.323 

39.222 r 

7.678 
n.s. 

EC 
44.000 r 

4.472 

40.583 r 

14.902 

36.750 r 

8.013 

pmax% 

EO 
46.417 r 

7.229 

44.250 r 

8.966 

42.333 r 

8.617 
n.s. 

EC 
47.583 r 

47.583 

49.200 r 

15.069 

43.625 r 

9.899 

EV 

EO 
0.624 r 

0.155 

0.408 r 

0.165 

0.373 r 

0.088 
F=12.759 

p<.001 

Kp
2=0.47 EC 

0.610 r 

0.149 

0.359 r 

0.162 

0.322 r 

0.072 

DysmX 

(absolute 

value) 

EO 
0.051 r 

0.017 

0.039 r 

0.031 

0.017 r 

0.018 
F=4.866 

p=.015 

Kp
2=0.25 EC 

0.047 r 

0.029 

0.034 r 

0.033 

0.020 r 

0.012 

Dysm 

EO 
0.053 r 

0.019 

0.052 r 

0.034 

0.028 r 

0.018 
n.s. 

EC 
0.052 r 

0.026 

0.047 r 

0.036 

0.031 r 

0.016 
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Figure 35 Post hoc plots of the repeated measure ANOVA. Top left: mean velocity; top 

center: velocity peak; bottom left: movement duration; bottom center: early velocity; 
right: dysmetria along the horizontal axis. *: post hoc between group comparison p<0.05; 

°: post hoc within group comparison p<0.05. CP: Cerebellar Patients; HS: Healthy 
Subjects; SP: patients with sensory impairment; EO: Eyes Open; EC: Eyes Closed. Error 

bars represents standard error of the mean. 
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Figure 36 Scatter plots for the x-axis dysmetria as a function of peak velocity (left) and 

position of the velocity peak (right) in the CP group.  
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Discussion 
 

The present study aimed to compare UL movement’s kinematics in an index-to-

nose task in patients with cerebellar lesions and patients with somatosensory 

impairment with young healthy controls. We performed this analysis to test our 

theoretical framework aiming to describe patient’s sensory and cerebellar ataxic 

behavior as a consequence of a forward model impairment. With this aim we 

extrapolated a series of movement features related to anticipatory motor control and 

motor planning (tmax%, pmax%, EV) movement’s accuracy (DysmX, Dysm) and 

movement’s efficiency (time, Vel, PeakVel). Overall, the included stroke patients 

performed the movement less efficiently than HS, being slower in terms of early 

velocity, peak velocity and average velocity. This was not surprising given that 

some patients had functional and strength impairment measured with FMA-UL and 

MI and was already reported in studies investigating UL kinematics in stroke 

subjects (G. M. Johansson et al., 2017; Thrane et al., 2020). However, neither UL 

strength or function or proprioception (assessed with EmNSA) was associated with 

movement’s velocity, suggesting that movement slowness was not related to 

primary sensorimotor impairment. This was partially in contrast with previous 

studies that found that UL strength was strongly associated with reaching speed 

(Wagner et al., 2006, 2007). However, this strong association was found 

particularly in the acute phase after stroke (Wagner et al., 2006) and only a small 

amount of variance of reaching performance was found to be explained by 

sensorimotor impairments in the subacute phase of recovery (Wagner et al., 2007). 

On the other hand, in CP group ICARS score was inversely correlated to movement 

early and mean velocity. That is the more severe the ataxia, the slower the 

movement was performed. It is conceivable that patients with more severe 

cerebellar ataxia performed slower movements to try to compensate their ataxic 

behavior and control oscillations, especially when visual feedback was provided.  

In line with previous literature, SP group was the most affected by the lack of visual 

feedback. The results from movement duration analysis showed that these patients 

slowed down the movement in the EC condition more than the other groups, 

corroborating previous findings (Miall et al., 2019). This was not surprising as 

previous literature extensively described the importance of visual feedback for 
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patients with somatosensory deficits (Klingner & Witte, 2018).  In this study, to 

assess movement accuracy we quantified dysmetria as the absolute value of the 

distance between the index fingertip and the tip of the nose when the hand’s velocity 

reaches 0m/s for the first time after movement onset. Moreover, we analyzed the x 

axis (horizontal axis) component of the finger-nose distance, since previous 

literature suggested that this component of dysmetria is of relevance for patients 

with cerebellar ataxia (Bhanpuri et al., 2014). Unexpectedly, the CP group showed 

significant lower values of the x axis dysmetria compared to HC. Some factors 

might explain this result. Firstly, it is noteworthy that in HS group, in contrast to 

the CP group, this component of dysmetria is relevantly larger than the y axis 

component (perpendicular to the movement direction) and account almost for all 

the index-nose distance at the end of the movement. This suggested that the x axis 

dysmetria in healthy subjects should be considered as natural inter-subject 

variability in the way of touching their nose. Although instructed to touch their nose 

with the index fingertip, some subjects naturally performed the movement touching 

the nose with their index knuckle or the middle phalanx. Accordingly, almost all 

healthy overshot the target as confirmed by the signed values of the DysmX. 

Secondly, the values of the measured x-axis dysmetria are limited to few 

centimeters, and, although statistically significant, these between-group difference 

could be considered as not behaviorally relevant. Finally, although this is an 

appropriate parameter to assess movement accuracy, it could not capture ataxic 

oscillations approaching the target unless patients stopped completely their hand. 

The included patients had not such severe ataxia and this could explain the 

remarkable accuracy we measured with this parameter. 

 

Our analysis did not find between group differences in terms of movement planning 

parameters (tmax%, pmax%). It is well known that in healthy subjects the velocity peak 

is reached roughly at half of the movement, while previous reports showed that 

stroke subjects tend to present left-shifted velocity profile, due to the earlier 

occurrence of the maximum of velocity (G. M. Johansson et al., 2017). Although 

in the present study no between-group difference was found, these parameters were 

differently associated with other movement’s features within the three groups. 
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Specifically, in HS and SP groups the pmax% was not correlated to other movement’s 

parameters suggesting that the velocity peak position may depend only on the 

trajectory length. In these groups irrespective to the movement’s velocity, the 

velocity peak was reached between 40% and 50% of trajectory length as previous 

seminal studies found (G. M. Johansson et al., 2017). In contrast, the tmax% was 

significantly and directly associated with the movement peak velocity. In other 

words, patients who performed the movement with slower velocity reached the 

velocity peak earlier compared to the faster patients. This is in line with previous 

findings suggesting that patients with stroke tend to anticipate the timing of velocity 

peak (G. M. Johansson et al., 2017). Extending the second phase of the movement, 

stroke patients tried to maximize the movement accuracy, facilitating the control of 

the hand while approaching the target. It is conceivable that this behavior could be 

an attempt to compensate for sensory feedback impairment in the SP group. 

The position of the velocity peak in a reaching movement is commonly associated 

to movement planning. Our results showed that only in the CP group the pmax% was 

directly associated with the DysmX. Subjects that reached the velocity peak in the 

second half of the movement trajectory overshot the target while subjects that 

reached the velocity peak in the first half, undershot their nose. This could suggest 

that for cerebellar patients the target overshooting or undershooting in an index-to-

nose task may be related to an impairment in movement planning rather than to an 

altered feedback control, as hypothesized and supported by previous literature 

(Cabaraux et al., 2020). In this respect a previous study analyzed a fast reaching 

movement using a manipulandum in patients with cerebellar ataxia and found that 

the amount of the target over- or undershooting was inversely associated to the early 

movement velocity (Bhanpuri et al., 2013). This finding supported the idea that 

cerebellar lesions may disrupt UL’s inverse model and that dysmetria related to 

cerebellar ataxia may be a consequence to an altered internal model of the UL. Our 

results did not corroborate this hypothesis. Although we did find evidence for 

impaired motor planning in the CP group, in our task the early velocity was not 

associated with target’s over-undershooting. It is conceivable that the relative 

complexity of index-to-nose task compared to the task investigated by Bhanpuri 

and colleagues jeopardized this association. In fact, in contrast to their setting, the 
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index-to-nose task is a three-dimensional pointing movement with significantly 

wider amplitude. Eventually, it is important to underline that the relatively small 

sample size may have hampered the analysis power and prevent to find significant 

between-group differences, especially when comparing features related to 

movement planning. 

 

To summarize, the kinematic analysis of the finger-to-nose task allowed us to 

investigate UL movement dysfunction in patients with somatosensory deficits and 

cerebellar lesions due to stroke. As hypothesized, we found some evidence of 

impaired motor planning in patients with cerebellar lesion since the spatial error in 

pointing the nose was associated with the position of the velocity peak and absolute 

value of peak velocity. These associations could be interpreted as patients’ 

difficulties in adjusting hand’s velocity to the planned trajectory. We speculate that 

this behavior found only in the CP group could be related to an impairment of the 

forward model as previous literature suggested (Frey et al., 2011; Nowak et al., 

2007; Tanaka et al., 2020). Also, we found that patients in the SP group were the 

most affected by the absence of vision in the as they significantly reduced the 

movement velocity in the EC condition. This is in line with a strong research body 

that underlined the crucial role of visual feedback in movement control for patients 

with somatosensory deficits. Moreover, the association between slower velocity 

peak and anticipated tmax% could be a sign of impaired sensory feedback and this 

association was found only in the SP group and not in the CP group. In conclusion, 

our analysis did not provide conclusive evidence of forward model impairment in 

patients with somatosensory deficits (Osumi et al., 2018). In contrast, in line 

previous literature we suggested impairment in using sensory feedback to control 

UL reaching movement in patients with impaired somatosensation and impaired 

motor planning and forward model in patients with cerebellar lesions. 
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General discussion and conclusions 
 

The goal of this project was to investigate different aspects of the anticipatory motor 

control in healthy subjects and in stroke patients with cerebellar and somatosensory 

impairment. 

In the first section of this dissertation, we aimed to provide further evidence on the 

role of the forward model in sensorimotor function of the upper limb. We focused 

on the sensory attenuation phenomenon, and we performed new analysis on 

previously recorded data on force matching tasks (Bays & Wolpert, 2007a; Shergill 

et al., 2005; Wolpe et al., 2016). In the Shergill’s and Wolpe’s studies subjects were 

delivered with a target force exerted by a motor torque through a lever on their left 

index fingertip. Then they were asked to match that force with their right index 

finger by either directly press on their left index through the lever on top of the left 

index (self condition) or indirectly controlling a slider that was actioning the motor 

torque attached to the lever (slider condition) (see Figure 3).  In the Bays’ study, 

authors used a setting with two levers to perform the force matching task: one lever 

acted on the left index finger as previously described experiment and one measured 

the matching force exerted with the right index finger. This setting allowed the 

authors to manipulate the lateral separation between the two levers and the gain 

between the force measured by the passive lever and the force produced by the 

active lever. In the self conditions of the Shergill’s and Wolpe’s studies and when 

the two levers were vertically aligned in the Bays’ study, authors found that subjects 

underestimated the force they were exerting, overshooting the target force. In 

contrast they were more accurate in the slider condition or in case of lateral 

separation between the two levers (and the hands). Their findings supported the 

idea that when a forward model can predict the sensory consequence of a voluntary 

action, this prediction is then used to attenuate the consequent tactile sensations. 

When this computation was not possible given the artificial setting (i.e. in the slider 

condition), such attenuation was not measured. Although this strong line of 

research, recently some studies argued against the forward model hypothesis  (Press 

et al., 2020; Roussel et al., 2013; Thomas et al., 2020; Yon et al., 2020). Taking 
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together, these recent studies proposed that the previous findings on sensory tactile 

attenuation in force matching tasks (Bays et al., 2005, 2006; Bays & Wolpert, 

2007a; Shergill et al., 2003, 2005, 2013, 2014; Wolpe et al., 2016, 2018) were the 

results of a general unpredictive gating mechanism that occurs whenever a limb is 

actively moved (Press et al., 2020). 

To disentangle between these two hypotheses, we performed a new analysis 

focused on the trial-to-trial variability in force matching in conditions with different 

level of attenuation. The underlying idea of our project was that the amount of 

attenuation depends on the accurateness of the prediction: the more accurate it is, 

the more attenuated is the perception. Notably, the accuracy of the prediction is 

herein to be intended in terms of spatial and temporal coherence rather than 

intensity. We found that the within-subject relative level of attenuation between two 

conditions was associated to the within-subject trial to trial variability. These results 

corroborated the forward model hypothesis: the involvement of a forward model in 

modulating the intensity of the tactile perception in these conditions, might be 

responsible for an extra source of sensory noise, eventually translated in the 

measured increased matching force’s trial-to-trial variability. Moreover, we 

modeled the subjects’ responses in the analyzed force matching tasks, and we found 

that a model in which the attenuation factor is the ratio between the matching forces 

in the self and slider conditions condition best captured the subjects’ behavior. We 

propose that our results are relevant from different perspectives. On one hand, our 

analysis underlined the strong connection between motor and sensory aspects of 

actions: when performing a voluntary action, from the motor command the 

prediction of the sensory consequences of the movement influences and modulates 

the intensity of the perception of the consequent sensory stimuli. These aspects 

should be taken into account by research on motor control, especially concerning 

the upper limbs. On the other hand, our analysis suggested, in line with previous 

evidence (Shergill et al., 2005, 2014), that impairment in the forward model may 

result in misperception of self-generated tactile stimuli compared to healthy adults. 

Further research should focus on this topic investigating selective predictive motor 

control impairment and its sensory consequences in different cohorts. Several 

questions on the SA phenomenon remains unanswered and the physiological 
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meaning of such phenomenon is still unclear. Previous studies suggested that the 

attenuation of the predictive part of sensory feedback has the scope of enhancing 

the salience of unexpected external stimuli (Bays & Wolpert, 2007a). Other studies 

highlighted the importance of such mechanism in discriminating between self-

generated and externally generated stimuli contributing to the sense of agency. Our 

findings don’t provide further evidence on the physiological purpose of the SA 

phenomenon. Further research should aim to investigate this issue with new 

experimental procedure, possibly investigating other sensory domains in addition 

to tactile stimuli. 

In the second section of this dissertation, we aimed to investigate anticipatory grip 

force modulation deficits during a bimanual object lifting task in patients with 

stroke and somatosensory deficits. The lift of an object is a complex action that 

involves both the control of the upper limb and the hand-object interaction. This 

behavior has been widely investigated by assessing the anticipatory grip force 

modulation during the lifting of an object of known properties (Flanagan et al., 

2001; R. S. Johansson & Edin, 1993; Y. Li et al., 2011; Nowak et al., 2005). When 

moving the UL while grasping an object, predictive state estimation was usually 

associated with an increase of grip force before the UL movement onset. This 

anticipatory reaction is crucial in order to prevent the object slippage during the 

movement (Flanagan & Wing, 1997; Frenkel-Toledo et al., 2019). In contrast to the 

robust literature body concerning unimanual object lifting, bimanual force 

modulation in lifting task has not been widely investigated. In order to identify 

specific impairments in the anticipatory grip force exertion, we firstly investigated 

patients’ ability of bimanually modulating the grip force. In the first chapter we 

validated our experimental procedure on a sample of young and elderly healthy 

volunteers. Subjects were assessed in a fixed-force matching task and a time-

varying force matching task. The target force was shown on a computer screen and 

visual feedback of the exerted force was provided (Figure 20). Our setting allowed 

us to detect older subjects’ significant lower accuracy and force stability compared 

to younger subjects. This was expected given that aging is associated with a 

variation in the metabolic processes of the brain (Hyder & Rothman, 2012; A.-L. 

Lin & Rothman, 2014) and with a degenerative process of the neuromuscular 
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system affecting nerves conduction velocity (Jagga et al., 2011; Norris et al., 1953; 

Palve & Palve, 2018). In the second chapter we modified the BiSBox device to 

include a depth camera enabling the device’s position tracking. We recruited a 

convenient sample of healthy subjects and patients with somatosensory impairment 

due to CNS stroke. Previous findings suggested that sensory information is 

important for maintaining a precise forward model of dynamic grip force control 

(Hermsdörfer et al., 2008). However, limited research investigated objects’ lifting 

tasks in patients with sensory deficits due to CNS lesions. Some studies found that 

stroke subjects presented delayed grip force onset (Blennerhassett et al., 2008; 

Hermsdörfer et al., 2003; Nowak et al., 2013) and, likely to compensate for these 

deficits, produced exaggerate grip force (Nowak et al., 2013). In contrast, other 

reports found that tactile sensitivity deficits seemed not to affect the timing onset 

of grip forces in respect to the load forces (Hermsdörfer et al., 2003).  

In our study, subjects performed a fixed-force matching task, a time-varying force 

matching task, and a lifting task. Our analysis showed that in the patients we 

recruited the ability of modulating the bimanual force in force matching tasks was 

relatively preserved. However, the analysis of the lifting task suggested that patients 

presented some deficits in force modulation related to movement planning. 

Specifically, the lifting task allowed us to detect the anticipatory grip force behavior 

in patients with somatosensory deficits. In line with previous results, (Hermsdörfer 

et al., 2003), we found that the synchronization between the grip force and the 

holding force was preserved in the stroke patients. It is conceivable that these 

patients may be able to use alternative cues, like visual input, or previous learning, 

to use residual internal predictive models (Hermsdörfer et al., 2003). However, our 

results showed that patients exerted an exaggerated grip force to carry out the 

lifting, likely to compensate for sensory deficits and to ensure to avoid object 

slipping. It is conceivable that these patients may be able to use alternative cues, 

like visual input or previous learning to use residual internal predictive models 

(Hermsdörfer et al., 2003). This may indirectly suggest that sensory patients were 

not able to estimate the grip force needed to lift the device and showed an altered 

timing of grip force modulation during the lifting phase. The tactile sensation 

deficit, may have played a role in this behavior, altering the patients’ sensorial 



 169 

experience of the object and making them slower than healthy controls in building 

its internal model (Nowak et al., 2004). 

 

In the last section of this dissertation, we aimed to use an accurate low-cost 

movement analysis system to assess predictive upper limb behavior of a fast and 

repetitive reaching task in patients with cerebellar lesions and patients with 

somatosensory deficits. Previous literature suggested that a forward model enabling 

to predict the sensory and kinematic consequences of a voluntary UL action is 

essential to perform fast and accurate reaching and pointing movements (Wolpert 

& Ghahramani, 2000). The cerebellum has been identified as an ideal locus for the 

neural underpinning of such predictive model (Kawato et al., 1987b; Tanaka et al., 

2020; Wolpert & Ghahramani, 2000). However, limited research has focused on 

the role of proprioception in feedforward motor control and on the effects of 

somatosensory deficits on a forward model of the UL. We developed an accurate 

low-cost system for the kinematic assessment of the index-to-nose task and we 

compared a group of young healthy subjects, and stroke patients with cerebellar 

lesions or proprioceptive impairment. This system was composed of an Intel 

RealSense D415 RGB-D as input camera and we selected one of the most 

widespread and accurate pose estimation software Openpose (Cao et al., 2021) and 

adopted a convolutional neural network trained for detecting detailed human body 

keypoints, including fingertips and nose. In the first chapter we tested the accuracy 

of our system using an optoelectronic motion analysis system as a gold standard 

(Vicon, Oxford Metrics Ltd., Oxford, UK). We found that our system was overall 

accurate in measuring the most common kinematic parameters in pointing tasks 

including movement velocity, spatial accuracy of pointing, and position of the 

velocity peak throughout the movement trajectory. In the second chapter we used 

this experimental setting to measure a set of reaching parameters referring to 

movement accuracy, efficiency and motor planning in a cohort of healthy controls 

and patients affected by CNS stroke involving the cerebellum or the somatosensory 

cortex and thalamus.  

We proposed a theoretical framework for interpreting sensory and cerebellar ataxia 

as different forward model’s dysfunctions. As expected, we found that the included 
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stroke patients performed the movement less efficiently than healthy controls, being 

slower in terms of early velocity, peak velocity and average velocity. Interestingly 

patients’ movement speed was not associated with functional UL impairments, 

suggesting that specific motor control deficits might play a role forcing the patients 

to slow down hand velocity to compensate. As hypothesized, our results suggested 

that patients with somatosensory deficit were the most affected by the absence of 

visual feedback significantly reducing movement speed when performing the task 

with closed eyes. Moreover, we found that patients with cerebellar lesions showed 

signs of impaired movement planning. Specifically, for cerebellar patients the target 

overshooting or undershooting in an index-to-nose task may be related to an 

impairment in movement planning rather than to an altered feedback control, as 

suggested by previous literature (Cabaraux et al., 2020). We speculate that this 

behavior found only in the CP group could be related to an impairment of the 

forward model as previous literature suggested (Frey et al., 2011; Nowak et al., 

2007; Tanaka et al., 2020). In contrast, we did not find direct evidence of impaired 

motor planning and forward motor control in patients with somatosensory deficits.  

Overall, we investigated different aspects of predictive motor control related to 

forward models of the upper limb. On one hand our results corroborated previous 

findings on the role of forward models in tactile perception. On the other hand, this 

dissertation underlined the importance of assessing predictive motor control in 

patients affected by CNS lesions. Future research should focus on the role of 

anticipatory motor control in motor learning and on the design of rehabilitation 

treatment for forward model dysfunctions. 
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