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Abstract. Clinical databases collect large volume of data. Relationships
and patterns within these data could provide new medical knowledge.
Temporal data mining has as major scope the discovery of potential
hidden knowledge from large amounts of data, offering the possibility
to identify different features less visible or hidden to common analysis
techniques. In this work, we show how temporal data mining, precisely
mining of functional dependencies, can be fruitfully exploited to improve
clinical prediction. To develop an early prediction model, a window-based
data aggregation approach could be a good starting point, therefore we
introduce a new temporal framework based on three temporal windows
designed to extract predictive information. In particular, we propose a
methodology for deriving a new kind of predictive temporal patterns.
We exploit the predictive aspect of the approximate temporal functional
dependencies, formally introducing the concept of Predictive Functional
Dependency (PFD), a new type of approximate temporal functional
dependency. We discuss some first results we obtained by pre-processing
and mining ICU data from the MIMIC III database, focusing on func-
tional dependencies predictive of Acute kidney injury (AKI).

Keywords: Temporal data mining · Predictive patterns · Functional
dependencies · Temporal windows

1 Introduction

The increasing use and availability of longitudinal electronic data provide the
opportunity to discover new knowledge from multivariate, time-oriented data,
by using various data mining methods.

Temporal data mining in medicine has been receiving considerable attention
since it provides a way of revealing useful information hidden in the clinical data,
extracting different temporal patterns. The analysis of such healthcare/medical
data collections could greatly help to observe the health conditions of the pop-
ulation and extract useful information that can be exploited in the assessment
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of healthcare/medical processes [2]. For example, together with temporal data
mining, clinical data sources enable us to rapidly generate prediction models
for thousands of clinical problems, for identifying diagnoses, speed medical pro-
cesses, risks prevention, prediction of mortality, and risk stratification [11].

Particularly, prediction of medical events, such as clinical procedures, is essen-
tial for preventing disease, understanding disease mechanism, and increasing
patient quality of care. When we talk about prediction, we associate the well-
known machine learning techniques and the already known black box problem. In
the last two decades, several supervised learning methods have been introduced
[1], but often, it is not possible to understand why machine learning algorithms
are proposing specific predictions. On the contrary, temporal patterns represent
an explainable way to study the intrinsic data dependencies, to allow physicians
to focus on the most interesting and relevant discovered rules.

According to this scenario, the main novelty of this paper is the proposal of
an original temporally-oriented data mining technique for the prediction of clin-
ical diseases. Therefore, we propose a new type of functional dependencies, the
approximate predictive functional dependencies (APFDs). They are evaluated
within a new temporal framework based on three temporal windows: observa-
tion window, waiting window, prediction window.

The paper is organized as follows. In Sect. 2 we briefly describe some related
work, relevant to the topic discussed in this paper. In Sect. 3 we introduce a
new temporal framework based on three temporal windows: observation window,
waiting window, prediction window. Then, we define the entire framework for
the approximate predictive functional dependencies (APFDs), introducing two
new error measures. In Sect. 4 we detail the first application of this framework
on real clinical data from patients hospitalized in Intensive Care Units, using
MIMIC III [6]. In Sect. 5 we draw some conclusions and discuss possible future
work.

2 Related Work

In the context of temporal data mining, various techniques are applied to time-
oriented data to discover knowledge about relationships among different raw data
and abstract concepts, in which the temporal dimension is treated explicitly.

Associations discovery is one of the most common Data Mining (DM) tech-
niques used to extract interesting knowledge from large datasets. Association
rules enable the identification of correlations between the elements of a dataset.
In literature, we find different methods to mine temporal association rules
(TARs) aiming at providing a greater predictive and descriptive potential in dif-
ferent contexts, with a high number of contributions in the context of medicine
and healthcare [13].

Mining time intervals data is another interesting research field, especially for
the extraction of Time Intervals Related Patterns (TIRPs). In [4], the authors
introduce TIRPClo, an efficient algorithm for the discovery of frequent closed
TIRPs, a compact subset of all the frequent TIRPs based on which their complete
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information can be revealed. In addition, it is possible to use patterns as features
for classification. For example, in [11], the authors propose a framework for
discovering TIRPs only from the cohort of patients having the outcome event.
The results showed that representing the TIRPs using the horizontal support
outperformed the binary and mean duration representations.

Among temporal abstractions, we also find the trend abstractions that focus
on detecting changes in the temporal evolution. In [9], starting from the concept
of Trend-Event Pattern [10] and moving through the concept of prediction, the
authors propose a new kind of predictive temporal patterns, namely Predictive
Trend-Event Patterns (PTE-Ps). The framework aims to combine complex tem-
poral features to extract a compact and non-redundant predictive set of patterns
composed by such temporal features.

Another type of temporal pattern is functional dependency. In literature
there are different extensions, temporal functional dependency (TFD) [3],
approximate functional dependency (AFD) [8], and approximate temporal func-
tional dependencies (ATFDs) [2]. Temporal functional dependencies (TFDs) add
a temporal dimension to classical functional dependencies (FDs) to deal with
temporal data. In [3], Combi et al. propose a new formalism for the representa-
tion of TFDs, involving multiple time granularities. They identify four relevant
classes of TFDs: Pure temporally grouping, Pure temporally evolving, Tempo-
rally mixed, and Temporally hybrid. Moving on, approximate functional depen-
dency (AFD) derives from the concept of plain FD. Given a relation r where
an FD holds for most of the tuples in r, we may identify some tuples for which
that FD does not hold. In [8], Kivinen and Mannila introduce three measures,
known as G1, G2 and G3 considering the number of violating couples of tuples,
the number of tuples that violate the functional dependency, and finally the
minimum number of tuples in r to be deleted for the FD to hold. In [2], the
authors propose the concept of approximate temporal functional dependencies
(ATFDs), which are defined and measured either on temporal granules or on
sliding windows, considering the psychiatry and pharmacovigilance domains.

3 Predictive Functional Dependencies

In this section, we describe a new temporal framework and detail definitions to
mine the approximate predictive functional dependencies (APFDs).

3.1 A 3-Window Framework for the Interpretation of Predictive
Temporal Data

As previously said, data mining in medicine has great potential for discovering
hidden patterns in data sets from the medical domain. In such conditions, we
face the challenge of the extraction of hidden predictive information from large
databases. To develop an early prediction model, a window-based data aggrega-
tion approach could be a good starting point. As far as we know, the prediction
models exploit the use of two-time windows. The first one, called data collection
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or observation window, concerns the collection of data that allows us to predict
the problem of interest, and the second one, the prediction window, in which
the key event occurs. Here, we generalize an approach based on three (possibly
moving) time windows. So that the prediction becomes effective, it is necessary
that clinicians can act before a clinical decline has occurred by: (i) delivering
insights on preventable conditions; (ii) offering contextual information to help
clinical decision-making; (iii) being generally applicable across a different cohort
of patients. The anticipation of a future event is obviously relevant, but the more
significant facet is the time needed to anticipate a future event, that is a key
aspect, especially in medicine. Acknowledge these prerequisites, in this paper we
propose a framework based on three windows: (i) an observation window (OW);
(ii) a waiting window (WW); and (iii) a prediction window (PW). The OW is
considered as a time interval, where the information is collected, and ends when
an event of interest occurs. The WW is held to be the minimum time interval
required to act in order to prevent the event in the prediction window. Finally,
the PW, the time interval when the predicted event occurs.

Fig. 1. 3 window-based framework

3.2 Towards the Definition of Predictive Functional Dependencies

A FD is composed of the antecedent (X) and the consequent (Y). Informally,
for all the couples of tuples t and t′ showing the same value(s) on X, the cor-
responding value(s) on Y for those tuples are identical. In our specific case, we
describe the antecedent as a set of attributes ordered on VT, called predictive
attributes, and the consequent defined as the predicted attribute.

Let us consider a database schema DB as a set of temporal relational schemas
{R1, ..., Rn} and a set of corresponding instances {r1, ..., rn}. Any schema Ri has
attributes ZUi ∪ {V T}, where ∀Ri, Rj with i �= j it holds Ui ∩ Uj = ∅. Ui is
a set of attributes representing properties of a patient, which is identified by
attributes Z (hereinafter patient identification attributes). VT is the attribute
representing the temporal dimension of the tuples.

Given a set of relations {r1, ..., rm} according to the data schema DB, a
State expression with schema ZU ∪{V T} where U ≡ UiUj ...Um is defined as

SE ≡ r|ri �� rj �� ...rm

Definition 1 (K-State evolution expression (KSE)). Given a set of State
Expressions {SEα(ZUα ∪{V T}), ..., SEω(ZUω ∪{V T})}, a K-State evolution

expression with schema ZU
0

αU
1

β ..U
k

κ ∪ {V T
0

α, V T
1

β , .., V T
k

κ} is defined as:
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KSE ≡ Θ(SE
0

α, SE
1

β , ...SE
k

κ) with V T
0

< V T
1

< .. < V T
k

and SE
0

α = ρ
Uα,V T→U

0
α,V T

0SEα, SE
1

β = ρ
Uβ ,V T→U

1
β ,V T

1SEβ , . . .
(1)

Function Θ allows different evolutions of the same State Expressions. For exam-
ple, it can represent suitable join of different State Expressions according to the
patient attributes, possibly using the same attribute at different states. It can
allow also the join of tuples at distance k (for k = 1, it joins pairs of consecutive
corresponding tuples) or allow one to join pairs of successive (concerning the
values they take on attribute VT) tuples.

Let us now move to consider the attributes to be considered in the prediction,
i.e., boolean attributes representing the presence/absence of a pathological state.
We can join such attributes to a KSE to build a K-State Prediction Expression.

Definition 2 (K-State Prediction Expression (KSPE)). Given a schema
R ∈ DB, with attributes ZUp ∪{V T}, a K-State Prediction Expression (KSPE)
is defined as:

σ
0≤(V T

k−V T
0
)<OW∧

( ˙V T−V T
0≥OW+WW )∧

( ˙V T−V T
0
<OW+WW+PW )

KSE �� Ṙ

and Ṙ = ρUp,V T→U̇p, ˙V T R

(2)

Analogously to the previous renaming, U̇p represents the overall renaming of
the attribute set of Ṙ, where Ṙ is the patient relation.

Definition 3 (Predictive Functional Dependency (PFD)). Given
a K state prediction expression KSPE with schema ZU

0

αU
1

β ..U
k

κU̇p ∪
{V T

0
, V T

1
, .., V T

k
, ˙V T}, a Predictive Functional Dependency is a FD, of the

following form:

X
h
S

i
...W

j → Ḃ with 0 ≤ h < i... < j ≤ k

where X
h ⊆ U

h
, S

i ⊆ U
i
,W

j ⊆ U
j
and Ḃ ∈ U̇p is the predicted (Boolean) attribute.

(3)

Table 1 represents an example of a general KSPE, where the PFD reported
below holds.
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Table 1. A KSPE where Resprate
0
, SpO2

1
, Drug

2 → ˙AKI holds.

Tuple # Patient RespRate
0

V T
0

SpO2
1

V T
1

Drug
2

V T
2 ˙AKI ˙V T

1 Mark Jones High 1 Low 2 Aspirin 3 F 4

2 Mark Jones High 3 Medium 4 Indapamide 5 T 6

3 Mark Jones Medium 5 Medium 6 Metolazone 7 T 8

4 Mark Jones High 8 Medium 9 Indapamide 10 T 11

5 Viola Thompson Low 2 High 3 Aspirin 4 F 6

6 Viola Thompson Low 3 Medium 4 Indapamide 5 F 7

7 Viola Thompson Low 4 Low 5 Aspirin 2 F 8

8 Paul Walker Medium 1 High 2 Ibuprofen 3 T 5

9 Paul Walker Medium 1 High 2 Sulindac 3 T 5

10 Paul Walker Medium 2 Medium 3 Indapamide 5 T 8

3.3 Discovering Approximate PFDs

The term approximation is about the approximate satisfaction of a normal PFD
X

h
S

i
...W

j → Ḃ.
An APFD f requires the PFD to be satisfied by most tuples of temporal rela-

tion r. It allows a very small portion of tuples of r to violate the dependency. If
it is less than or equal to the satisfaction threshold ε, f is approximately satisfied
on r. Several methods have been proposed to calculate the error measure. In the
context of PFDs, we reconsider a measure proposed in [8] and we introduce two
other error measures, specifically tailored to the predictive purpose of APFDs.

Considering a general KSPE w over a schema ZU
0

αU
1

β ..U
k

κU̇p ∪
{V T

0
, V T

1
, .., V T

k
, ˙V T} and any set s ⊆ w, where the PFD holds, we define

three error measures. We start from G3 that considers the minimum number of
tuples in r to be deleted to obtain a relation where the PFD holds. This measure
is defined as follows:

Definition 4 (Error measure G3). Given a PFD expressed as in Definition
3, the error measure G3 is expressed as:

G3 = |w| − max
{

|s| | s ⊆ w ∧ s |= X
h

S
i
...W

j → Ḃ
}

(4)

The related scaled measurement g3 is defined as g3 = G3/|w|.
Secondly, we introduce H3 that considers the maximality focused on the

number of patients that we accept to loose for the sake of the PFD. This maxi-
mality permits to delete patients with a very low number of tuples, which could
generate noise in our dataset. H3 can be formalized as follows:

Definition 5 (Error measure H3). Given a PFD expressed as in Definition
3, the error measure H3 is expressed as:

H3 = |{t [Z] | ∃t ∈ w} | − max
s

{∣∣∣
{
t [Z] | ∃t ∈ s ∧ s ⊆ w ∧ s |= X

h
S
i
...W

j → Ḃ
}∣∣∣

}
(5)

The related scaled measurement h3 is defined as h3 = H3/|{t [Z] | ∃t ∈ w}|.
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Finally, we can formalize J3 that focuses on the number of tuples for each
patient we accept to delete in order to satisfy the PFD. This error is very use-
ful to ensure to maintain enough information for each patient, ensuring to be
consistent.

Definition 6 (Error measure J3). Given a PFD expressed as in Definition
3, the error measure J3 can be formalized as follows:

J3 = max
(v∈{t[Z]|t∈s})

{|{t [Z] |t ∈ w ∧ t [Z] = v}| − | {t [Z] |t ∈ s ∧ t [Z] = v} |} (6)

The related scaled measurement j3 weights each term of J3 with respect to
the number of tuples in w having value v for t [Z].

After the introduction of these three error measures, we are now ready to
define the approximate predictive functional dependency as follows:

Definition 7 (Approximate Predictive Functional Dependency
(APFD)). Let w be a relationship over a K-state prediction expression: let X, Ḃ
⊆ R be sets of attributes of R. Relation w fulfills the functional dependency
X

h
S

i
...W

j ε−→ Ḃ (written as w |= X
h

S
i
...W

j ε−→ Ḃ) if G(X
h

S
i
...W

j ε−→
Ḃ, w) ≤ ε, where ε =< εg, εh, εj > and 0 ≤ ε < 1 is the maximum accept-
able error defined by the user. G is the corresponding error of the previously
introduced measures.

Among the several APFDs that can be detected over a relation w, the min-
imal APFD is particularly interesting. We thus define the minimal APFD as
follows:

Definition 8 (Minimal APFD). An APFD X
h

S
i
...W

j ε−→ Ḃ is minimal for
w, if w |= X

h
S

i
...W

j ε−→ Ḃ and ∀ V ⊂ X
h

S
i
...W

j
we have that w � V

ε−→ Ḃ.

As an example, according to the data in Table 1, the APFD SPO2
1
,Drug

2 ε−→
˙AKI holds with ε = 0.1. Indeed it is enough the delete tuple 6, to have the

corresponding PFD satisfied.

4 Deriving APFDs: an Experimental Evaluation

4.1 Dataset and Data Transformation

To illustrate the relevance and the potential meaning of our proposal, we con-
sider a real-world example from the domain of Intensive Care Unit (ICU) with
patients suffering from Acute Kidney Injury (AKI). Acute Kidney Injury is a
frequent clinical problem, associated with a mortality of 50–80%, characterized
by a sudden loss of the ability of the kidneys to excrete wastes, concentrate urine,
store electrolytes, and maintain fluid balance [12]. A ground-truth label for the
diagnosis of AKI is added using the internationally accepted KDIGO criteria [7].
A patient receives the diagnosis of AKI if one of the following criteria is valid:
(i) an increase in serum creatinine by ≥ 0.3 mg/dl ( ≥ 26.5µmol/l) within 48 h,
(ii) an increase in serum creatinine to ≥ 1.5 times baseline within the previous
7 d and (iii) a urine volume ≤ 0.5 ml/kg/h for 6 h.
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Our methodology is applied using the MIMIC III (Medical Information Mart
for Intensive Care) dataset [6], a freely accessible relational database of de-
identified patients, hospitalized in the intensive care units at Beth Israel Dea-
coness Medical Center between 2001 and 2012.

An ETL (Extract, Transform, Load) process is necessary to transform the
MIMIC-III raw data in a form useful for mining the APFDs. To obtain SEs, we
use four tables. Prescriptions provides information about the administered med-
ications, for a given patient. We mainly consider the following categories: diuret-
ics, Non-steroidal anti-inflammatory drugs (NSAID), radio contrast agents, and
angiotensin. Chartevents contains information about vital signs measured at
the bedside. We mainly consider diastolic blood pressure, glucose, heart rate
and temperature. D items is the reference table needed to label every measure
related to a patient. Labevents was used to extract the information about serum
creatinine and urine, useful for the diagnosis of AKI.

Because of the high number of measures, we applied three aggregate func-
tions, minimum, maximum and average every specified time interval. Moreover,
Chartevents and Labevents contain numerical variables, so we categorize the
measures into “low, medium, high” according to clinical literature.

To summarize, there is a new table for each considered vital sign, which
contains: icustay id, minimum, maximum, and average of the measure and the
valid time expressed by an interval. From these tables, we create different SEs
in order to obtain a KSE. PFDs are retrieved from a KSPE, generated joining
a KSE and the patient table Ṙ, through an algorithm inspired by TANE [5], a
popular approximate functional dependency detection algorithm.

4.2 Results

The final scope of these experiments is to find significant PDFs for the AKI
diagnosis. We illustrate the results obtained with the following 3-window frame-
work: an observation window of 48 h, where we collect all the measures related
to each patient, a waiting window of 12 h where we do not consider any event,
and then a prediction window where there is the onset of the illness according
to one of the KDIGO criteria or the discharge from the ward with any crite-
ria satisfied, of 72h hours. Starting from a cohort of 50711 patients, we extract
subjects that receive a diagnosis or a discharge from the ICU, at least after
60 h from the admission in ICU, namely the duration of the observation and the
waiting windows, thus obtaining 7930 patients. Among these patients, there are
6024 controls and 1906 cases. Starting from the literature [14], we considered
six measures: creatinine, glucose, administered drugs, respiratory rate, diastolic
pressure, oxygen saturation, and body temperature. We take into consideration
the average of each measure every 6 h, a time interval sufficiently long to reduce
the number of records, obtaining significant results.

We generate three different KSPEs based on three different Θ expressions:

– a KSE with four states where except for the first state composed of one
measure, the other three states involve two measures recorded at the same
valid time, temporally ordered, i.e., V T

0
< V T

1
< V T

2
< V T

3
.
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– a KSE with four states where, except for the first state composed of one
measure, the other three states involve two measures recorded at the same
valid time, temporally ordered where V T

k
= V T

k−1
+ 1 for k = 1, .., 3.

– a KSE with seven states, temporally ordered.

We mine the minimal APFDs, where the approximation is given by G3. In
the three KSPEs, we obtain results using a margin error over 0.2. To achieve
functional dependencies with more than one antecedent, we have to consider
a margin error between 0.2 and 0.3. Getting closer to 0.3, the temporal states
keep dropping until the results of functional dependencies consist of a single
antecedent.

In Table 2, we report some functional dependencies regarding the three
KSPEs. As we discussed before, it is possible to observe the drop which is
inversely proportional to the epsilon value. For each KSPE, we select a PFD
to show some value combinations peculiar of the cases, reported in Table 3.

Table 2. A list of PFDs valid on one of the three KPSEs, with a certain epsilon value.

PFD Epsilon KSPE

Creat
0
, Drug

1
, Diastolic

1
, RespRate

2
, Glucose

2
, Temperature

3
, SpO2

3 → ˙AKI 0,27 KSPE 1

Creat
0
, Drug

1
, Diastolic

1
, Glucose

2
, Temperature

3
, SpO2

3 → ˙AKI 0,28 KSPE 1

Diastolic
1
, RespRate

2
, Glucose

2
, Temperature

3
, SpO2

3 → ˙AKI 0,29 KSPE 1

Creat
0
, Drug

1
, RespRate

2
, Glucose

2
, Temperature

3
, SpO2

3 → ˙AKI 0,25 KSPE 2

Creat
0
, RespRate

2
, Glucose

2
, Temperature

3 → ˙AKI 0,28 KSPE 2

RespRate
2
, Glucose

2
, Temperature

3
, SpO2

3 → ˙AKI 0,30 KSPE 2

Creat
0
, Drug

1
, Diastolic

2
, RespRate

3
, Glucose

4
, Temperature

5
, SpO2

6 → ˙AKI 0,23 KSPE 3

Creat
0
, Diastolic

2
, RespRate

3
, Glucose

4
, Temperature

5 → ˙AKI 0,26 KSPE 3

Creat
0
, Diastolic

2
, RespRate

3
, Temperature

5 → ˙AKI 0,28 KSPE 3

Table 3. (a) Creat
0
, Drug

1
, Diastolic

1
, RespRate

2
, Glucose

2
, Temperature

3
, SpO2

3 → ˙AKI,

(b) Creat
0
, RespRate

2
, Glucose

2
, Temperature

3 → ˙AKI,

(c) Creat
0
, Diastolic

2
, RespRate

3
, Temperature

5 → ˙AKI

Num. Value comb. F T

#1 high, diu, low, med, med, low, low 13 39

#2 high, nsaid, low, med, high, low, med 0 23

#3 low, diu, med, high, high, high, med 15 35

#4 high, diu, low, med, high, low, med 30 50

#5 high, diu, med, high, med, low, med 28 47

(a) Value combinations of KSPE 1

Num. Value comb. F T

#1 high, high, med, low 3 7

#2 low, high, med, high 2 7

#3 high, med, high, low 2 4

#4 low, med, high, med 0 4

#5 high, med, low, med 1 3

(b) Value combinations of KSPE 2

Num. Value comb. F T

#1 high, low, high, low 7 20

#2 high, low, med, low 4 14

#3 med, high, high, med 8 13

#4 med, med, low, high 2 7

#5 med, high, high, low 0 6

(c) Value combinations of KSPE 3
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(a) Value comb. of KPSE 1 (b) Value comb. of KPSE 2 (c) Value comb. of KPSE 3

Fig. 2. Graphic representation of value combinations, reported in Table 3

5 Conclusions

In this paper, we introduced and discussed a novel framework for APFDs. The
approach fits well into the context of the approximate temporal functional depen-
dencies, adding a new aspect that has never been formalized before. It differs
from the previous work because we dealt with the potential predictiveness of
the approximate temporal functional dependencies, considering the possibility
to exploit data dependencies for the prediction. As future work, we plan to con-
sider the algorithmic aspects taking into account all the proposed error measures.
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