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“Don’t just say you have read books. Show that through them

you have learned to think better, to be a more discriminating

and reflective person. Books are the training weights of the

mind. They are very helpful, but it would be a bad mistake to

suppose that one has made progress simply by having

internalized their contents.” (Epictetus)



Abstract

In remote immersive visualization systems, real-time 3D perception through RGB-D

cameras, combinedwithmodern Virtual Reality (VR) interfaces, enhances the user’s sense

of presence in a remote scene through 3D reconstruction rendered in a remote immersive

visualization system. Particularly, in situations when there is a need to visualize, explore

and perform tasks in inaccessible environments, too hazardous or distant. However, a

remote visualization system requires the entire pipeline from 3D data acquisition to

VR rendering satisfies the speed, throughput, and high visual realism. Mainly when

using point-cloud, there is a fundamental quality difference between the acquired data

of the physical world and the displayed data because of network latency and throughput

limitations that negatively impact the sense of presence and provoke cybersickness.

This thesis presents state-of-the-art research to address these problems by taking the

human visual system as inspiration, from sensor data acquisition to VR rendering. The

human visual system does not have a uniform vision across the field of view; It has the

sharpest visual acuity at the center of the field of view. The acuity falls off towards the

periphery. The peripheral vision provides lower resolution to guide the eye movements

so that the central vision visits all the interesting crucial parts. As a first contribution,

the thesis developed remote visualization strategies that utilize the acuity fall-off to fa-

cilitate the processing, transmission, buffering, and rendering in VR of 3D reconstructed

scenes while simultaneously reducing throughput requirements and latency. As a sec-

ond contribution, the thesis looked into attentional mechanisms to select and draw user

engagement to specific information from the dynamic spatio-temporal environment. It

proposed a strategy to analyze the remote scene concerning the 3D structure of the scene,

its layout, and the spatial, functional, and semantic relationships between objects in the

scene. The strategy primarily focuses on analyzing the scene with models the human

visual perception uses. It sets a more significant proportion of computational resources

on objects of interest and creates a more realistic visualization. As a supplementary con-

tribution, A new volumetric point-cloud density-based Peak Signal-to-Noise Ratio (PSNR)

metric is proposed to evaluate the introduced techniques. An in-depth evaluation of the

presented systems, comparative examination of the proposed point cloud metric, user

v



studies, and experiments demonstrated that the methods introduced in this thesis are

visually superior while significantly reducing latency and throughput.

Keywords: Telerobotics, Telepresence, Mixed Reality (MR), VR, Augmented Reality (AR),

3D Point cloud Compression, Simultaneous Localization and Mapping (SLAM), Render-

ing.

vi



Contents

List of Figures x

List of Tables xiii

Acronyms xiv

1 First things first 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical foundation 8

2.1 Motivations and Background . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Telepresence and Teleoperation Systems . . . . . . . . . . . . . . 10

2.1.2 Human Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Technological Factors . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The human Visual System . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 The Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 The Visual Pathways . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 The Visual Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Visual Acuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Visual Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.6 Eye Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 3D Scene Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Non-Contact Active . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Non-Contact Passive . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Visual SLAM and 3D Reconstruction . . . . . . . . . . . . . . . . . . . . 32

2.5 Efficient 3D Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



CONTENTS

2.5.1 Rendering Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2 Efficient Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Immersive Visualization Systems For Teleoperation and Telepresence Ap-

plications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Gaze contingent Remote-Immersive Visualization Framework 46

3.1 Exploiting Human Visual System Acuity . . . . . . . . . . . . . . . . . . 47

3.1.1 Foveation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Visual Acuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.3 Image Formation In VR Head-Mounted Displays (HMD)s . . . . 50

3.2 Real-time 3D Data Acquisition and Mapping . . . . . . . . . . . . . . . 52

3.2.1 Map Partitioning and Sampling . . . . . . . . . . . . . . . . . . . 53

3.2.2 Foveated Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Immersive Remote Visualization Framework . . . . . . . . . . . . . . . 58

3.3.1 User Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Remote Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Communication Network . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 Experimental Conditions . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.1 Data Transfer Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.2 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6.3 Latency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6.4 PSNR Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6.5 Quality Of Experience (Quality of experience (QoE)) . . . . . . . 77

3.6.6 Visual Search Assessment . . . . . . . . . . . . . . . . . . . . . . 79

3.6.7 Visual Tracking Assessment . . . . . . . . . . . . . . . . . . . . . 84

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.7.1 Real-World Use Case . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Gaze ContingentObject-Level Remote - Immersive Visualization Framework 89

4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Object Detection and Segmentation . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Semantic Instance Detection and Segmentation . . . . . . . . . . 91

4.2.2 Geometric Instance Detection and Segmentation . . . . . . . . . 92

4.2.3 Mask Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



CONTENTS

4.3 Multiple Object SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Foveated Partitioning and Sampling . . . . . . . . . . . . . . . . . . . . . 97

4.5 Experiment Design And Evaluation Metrics . . . . . . . . . . . . . . . . 99

4.5.1 Experimental Conditions . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6.1 Data Transfer Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6.2 Latency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Everything must come to an end 111

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Achieved results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Future development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 115

Appendices

A Change of basis 130

ix



List of Figures

1.1 Immersive remote visualization pipeline . . . . . . . . . . . . . . . . . . . . 3

2.1 Overview of remote teleoperation . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Information processing and human factors . . . . . . . . . . . . . . . . . . 11

2.3 Visual cues in real and virtual environment . . . . . . . . . . . . . . . . . . 13

2.4 Accommodation, vergence and motion parallax . . . . . . . . . . . . . . . . 14

2.5 Importance of depth cues at different distances . . . . . . . . . . . . . . . . 15

2.6 head movement zones and preferred viewing conditions . . . . . . . . . . . 17

2.7 The human visual pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 The human eye schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 The human eye photoreceptor distribution . . . . . . . . . . . . . . . . . . . 22

2.10 The human brain retinotopic maps . . . . . . . . . . . . . . . . . . . . . . . 24

2.11 The human eye retinal eccentricity and snellen visual acuity . . . . . . . . 26

2.12 3D scene capturing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.13 The Intelrealsense camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.14 The Zed stereo camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.15 Feature based static 3D reconstruction technique . . . . . . . . . . . . . . . 33

2.16 Dynamic 3D reconstruction technique example 1 . . . . . . . . . . . . . . . 34

2.17 Dynamic 3D reconstruction technique example 2 . . . . . . . . . . . . . . . 36

2.18 Graphics rendering pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.19 Rendering pipeline- Geometry processing . . . . . . . . . . . . . . . . . . . 37

2.20 Rendering pipeline- View transform . . . . . . . . . . . . . . . . . . . . . . 38

2.21 Rendering pipeline - perspective and orthographic projection . . . . . . . 39

2.22 Rendering pipeline - rasterization and pixel processing stages . . . . . . . . 40

2.23 Vicarios interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Foveated rendering in VR of a real-time 3D reconstructed remote scene . . 47

3.2 Retinotopic organization and Visual acuity . . . . . . . . . . . . . . . . . . . 48

3.3 Minimum Angle of Resolution against eccentricity . . . . . . . . . . . . . . 49

3.4 Virtual Reality optical model . . . . . . . . . . . . . . . . . . . . . . . . . . 50

x



LIST OF FIGURES

3.5 Real-time 3D reconstruction of a living room and office space . . . . . . . . 53

3.6 Map partitioning on pointclouds . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 3D voxel grid defined by an edge length or voxel size . . . . . . . . . . . . . 55

3.8 Foveated point cloud sampling . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.9 Schema of the proposed Foveated Rendering (FR) framework. . . . . . . . . 58

3.10 schematic showing the coordinate system conversion . . . . . . . . . . . . . 61

3.11 Experimental dataset sample frames . . . . . . . . . . . . . . . . . . . . . . 63

3.12 Reference colored point cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.13 Density estimated on a reference point-cloud . . . . . . . . . . . . . . . . . 66

3.14 Sample frames from the Kitchen area (KIT) dataset . . . . . . . . . . . . . . 70

3.15 The root-mean-square error (RMSE) to evaluate trajectories . . . . . . . . . 71

3.16 Sample frames from the Balloon (BAL) dataset . . . . . . . . . . . . . . . . 72

3.17 Bandwidth required for 3D reconstructed map . . . . . . . . . . . . . . . . 74

3.18 Density difference analysis between experimental conditions . . . . . . . . 77

3.19 System level latency evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.20 End-to-end latency for 3D reconstructed map . . . . . . . . . . . . . . . . . 78

3.21 Per-frame decoding and conversion time in the user site. . . . . . . . . . . . 78

3.22 Conversion and decoding time in the user site . . . . . . . . . . . . . . . . . 80

3.23 Volumetric density based PSNR for raw point cloud . . . . . . . . . . . . . 81

3.24 Volumetric density based PSNR for 3D reconstruction . . . . . . . . . . . . 81

3.25 Quality of experience experiment . . . . . . . . . . . . . . . . . . . . . . . . 82

3.26 Visual search experiment reaction time evaluation . . . . . . . . . . . . . . 82

3.27 Visual search experiment statement 1 response . . . . . . . . . . . . . . . . 83

3.28 Visual search experiment statement 2 response . . . . . . . . . . . . . . . . 83

3.29 Balloon tracking experiment RMSE mean and standard deviation . . . . . . 85

3.30 Real-world remote inspection use case . . . . . . . . . . . . . . . . . . . . . 87

3.31 Benefit-cost ratio against different conditions . . . . . . . . . . . . . . . . . 88

4.1 Object-level remote immersive visualization framework . . . . . . . . . . . 90

4.2 Semantic segmentation masks . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Easily recognized silhouettes . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Convexity and concavity between vertices . . . . . . . . . . . . . . . . . . . 94

4.5 Edge components from depth map . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Semantic and geometric mask merging. . . . . . . . . . . . . . . . . . . . . 96

4.7 Comparison of segmentation between semantic, geometric, and merged seg-

mentation for LIV data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8 Comparison of segmentation between semantic, geometric, and merged seg-

mentation for OFF data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.9 Relative bandwidth reduction 1 . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.10 Relative bandwidth reduction for foveated conditions . . . . . . . . . . . . 105

xi



LIST OF FIGURES

4.11 Relative bandwidth reduction for semantic, geometric, and merged segmenta-

tion for OFF dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.12 Relative bandwidth reduction in percentage for semantic, geometric, and

merged segmentation for OFF dataset foveated . . . . . . . . . . . . . . . . 107

4.13 Relative latency reduction for semantic, geometric, and merged segmentation

for OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.14 Relative latency reduction for semantic, geometric, and merged segmentation

for OFF foveated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.15 Relative latency reduction for semantic, geometric, and merged segmentation

for OFF foveated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.16 Relative latency reduction for semantic, geometric, and merged segmentation

for LIV foveated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xii



List of Tables

2.1 Technological factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Technical specification of 3D scene capture sensors . . . . . . . . . . . . . . 33

3.1 Human retinal regions and their sizes . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Independent-samples t-test for BW - raw point cloud . . . . . . . . . . . . . 73

3.3 Independent-samples t-test for BW - Global Map . . . . . . . . . . . . . . . 73

3.4 Relative compressed bandwidth (MBytes/sec) and latency (ms) . . . . . . . 74

3.5 Compressed Bandwidth and Latency . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Density difference between reference and test conditions . . . . . . . . . . . 75

3.7 Density difference for 3D reconstruction . . . . . . . . . . . . . . . . . . . . 76

3.8 Mean number of points per frame . . . . . . . . . . . . . . . . . . . . . . . . 76

3.9 Comparison of averaged component Latency per frame . . . . . . . . . . . 79

3.10 Independent-samples t-test for latency -raw Point-cloud . . . . . . . . . . . 79

3.11 Independent-samples t-test for Latency - Global Map . . . . . . . . . . . . . 80

3.12 Independent-samples t-test for PSNR - raw pointclouds . . . . . . . . . . . 80

3.13 Visual search reaction time assessment overall p-values . . . . . . . . . . . 81

3.14 Visual search distance estimation errors . . . . . . . . . . . . . . . . . . . . 84

3.15 Wilcoxon Ranksum statstical test for visual search 1 . . . . . . . . . . . . . 84

3.16 Wilcoxon Ranksum statstical test for visual search 2 . . . . . . . . . . . . . 84

3.17 Two-way Students’ T-test on balloon Tracking experiment . . . . . . . . . . 85

4.1 Two-way students’ T-test on BW reduction- raw point cloud 1 . . . . . . . . 104

4.2 Two-way students’ T-test on BW reduction- raw point cloud 2 . . . . . . . . 105

4.3 Two-way students’ T-test on BW reduction- raw point cloud 3 . . . . . . . . 105

4.4 Two-way students’ T-test on BW reduction- raw point cloud 4 . . . . . . . . 106

4.5 Two-way students’ T-test on latency reduction - raw point cloud 1 . . . . . 108

4.6 Two-way students’ T-test on latency reduction - raw point cloud 2 . . . . . 108

4.7 Two-way students’ T-test on latency reduction - raw point cloud 1 . . . . . 109

4.8 Two-way students’ T-test on latency reduction - raw point cloud 1 . . . . . 109

xiii



Acronyms

AR Augmented Reality vi, 10, 20

FOV Field of View 16, 27, 61

FR Foveated Rendering xi, 58, 61, 62, 63, 64, 65, 66, 68, 69, 71, 86, 87, 88, 102

HMD Head-Mounted Displays viii, 6, 28, 50, 51, 58, 59, 61, 62, 69, 72, 90, 102

HVS Human Visual System 2, 3, 4, 5, 6, 8, 12, 20, 42, 45, 46, 91, 97, 109, 111, 112,

113

LGN Lateral Geniculate Nucleus 23

MAR Minimum Angle of Resolution 25, 26, 47, 48, 49, 57, 97, 99, 112

MR Mixed Reality vi

PCL Point Cloud Library 43, 55, 65, 98

PSNR Peak Signal-to-Noise Ratio v, xi, xiii, 3, 66, 67, 72, 76, 77, 80, 81, 86, 87, 113

QoE Quality of experience viii, 3, 77, 82, 86, 112

RT Reaction Time 28, 70, 71, 79, 82, 85

RTP Real-time Transport Protocol 43

RTSP Real Time Streaming Protocol 43

SLAM Simultaneous Localization and Mapping vi, 6, 8, 32, 34, 35, 45, 52, 62

UE Unreal Engine 44, 59, 60, 61, 90

xiv



ACRONYMS

VR Virtual Reality v, vi, viii, x, 1, 2, 3, 5, 6, 8, 10, 20, 28, 42, 43, 44, 46, 47, 50, 58,

59, 61, 62, 69, 87, 90, 113

xv





1

First things first

“The Gladdest moment in human life, methinks, is a Departure

into Unknown Lands.” (Sir Richard Burton)

1.1 Introduction

It is a human nature to explore, communicate, share experiences, and help each other

in remote and close spaces. The rise of modern computing systems and the ability to

transform a physical phenomenon into a digital representation that can be understand

intuitively facilitate these natural needs. Specially, in situations when there is a need

to explore and perform tasks in inaccessible environments, too hazardous or costly for

humans. Recent advances in three-dimensional (3D) scanning sensors, remotely teleop-

erated robots, fast internet communication, and display techniques enable near-instant,

realistic remote visualization without requiring physical presence. Remote visualization

techniques have gained much attention with diverse applications in enabling the control

of robots from a distance (Telerobotics), remote diagnosis, and monitoring of patients

(Telemedicine), entertainment, teleconferencing, remote collaboration, and education.

Most importantly, It has recently received increased interest due to the ongoing COVID-

19 pandemic. Effective remote visualization systems would immeasurably improve the

lives of frontline workers by giving visual feedback to respond to specific emergencies

without requiring physical presence [178].

Different display technologies which rely on mono- or stereo-video displays for desk-

top computers have been proposed for remote visualization, which can display remotely

acquired 3D data. However, 3D Visualization techniques such as VR often use more

advanced displays methods to provide stereo viewing and allow remotely acquired 3D
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data to be visualized with astonishing visual realism and immersion by the user, perceiv-

ing the color and the 3D profile of the remote scene simultaneously: This is a critical

distinguishing factor from other displaying techniques, which suffers from limitations in

terms of fixed or non-adaptable camera viewpoints, occluded views of the remote space,

etc. [18, 75].

Nevertheless, achieving the goal of visualizing the 3D scene convincingly and com-

pellingly that cannot be distinguished from the real world and potentially in real-time

remains one of the most central challenges in VR. The increased data footprint (3D vs

2D) in real-time remote visualization imposes hard constraints regarding resolution, la-

tency, throughput, compression methods, image acquisition, and the visual quality of

the rendering of this information to the user [151, 130]. For instance, latency and low

resolution have been shown to reduce the sense of presence and provoke cybersickness

[102, 147]. For many applications, including Telerobotics for inspection and disaster re-

sponse, these constraints are further exacerbated since the scene is a priori unknown and

should capture the shape and appearance of the scene (3D reconstruction) in real-time

from the RGB-D input data. Remote visualization techniques, therefore, presents the

challenge of appropriately managing the typical data flow from remote data acquisition,

processing, reconstruction, conversion, to compression, encoding, streaming, decoding,

and visualization at the user, while allowing optimal visual quality [119, 130].

At the core of such visualization systems lies the question of how to turn a description

of RGB-D data into a representation that can be presented to a user for visualization.

Herbey, the target, is the essential perceptual channel: the Human Visual System (HVS).

The HVS evolved uniquely: It developed mechanisms capable of detecting from a few

photons to direct sunlight or switching focus from a close object to the distant horizon in a

fraction of seconds. These capabilities are not random, but each detection and movement

caused the central part of the vision to fall upon the environment’s interesting region.

Because vision is not uniform across the field of view, the central vision gives excellent

detail of the interesting region, and the peripheral vision provides low-resolution cues to

guide the eye movements so that the central vision visits all the interesting and crucial

parts of the visual field. These characteristics show that the highest possible uniform

visual quality across the field of view is not always necessary. These characteristics can

be used to develop better and more efficient remote visualization systems.

The work presented in this thesis aims to research and develop novel methods that

exploit the characteristics of the HVS to visualize complex, remotely acquired, and recon-

structed point cloud data either in time or bandwidth constraint settings. In addition, it

aims to enhance the quality of the rendering while still maintaining performance. The

point cloud data is challenging because of its size, geometric complexity, and high visual

fidelity requirements. Due to this, remote visualization systems suffer from network

latency and throughput limitations. To this end, the high-level characteristics of the HVS

that are involved when a physical scene is observed and changed into a percept are dis-

cussed. A deep understanding of these characteristics allows the HVS to be defined and

2





CHAPTER 1. FIRST THINGS FIRST

limitations carefully:

Main Research Question: How can we support a real-time immersive remote visual-

ization system for remote Teleoperation and Telepresence applications with state-of-the-art

streaming rates?

This thesis addresses this question using an experimental integrated remote immer-

sive visualization systems approach for remote robotic teleoperation and telepresence

applications. It will build and test a prototype system that includes components from

capturing to rendering, thus integrating networked transmission and 3D compression

components in complete systems. The advantage of such an application-based approach

is that it can shed light on integration issues and optimization strategies between com-

ponents that may have been previously overlooked in the literature. In addition, the

proposed approach will be tested with users, resulting in explorative studies on the bene-

fits of different technical implementations.

This primary research question is further divided into three questions that are ad-

dressed throughout this thesis.

Research Question 1: What are the state-of-the-art immersive remote visualization sys-

tems for telepresence and teleoperation systems, and are there any technological, perceptual,

and cognitive constraints in designing such systems?

The research aims to explore related studies, determine what kind of visualization

systems for remote telepresence and teleoperation systems have been proposed in the

past, and identify which perceptual and cognitive constraints are the challenges in using

such systems.

Research Question 2:What are the advantages and limitations of the HVS, and How can

it be exploited in designing immersive remote viualization systems?

The second research question objective is to study the essential perceptual foundation

and evolution of the HVS that can be used to design efficient interfaces. Most impor-

tantly, the study will investigate different visual acuity, contrast sensitivity models, and

eye physiology to describe the HVS as an optical system.

Research Question 3: How do we design an improved remote visualization system with

reduced latency and throughput requirements using the HVS compared to the current state-of-

the-art techniques?

Immersive visualization system that can support many different bit rates and settings

is beneficial to support real-time remote visualization, especially when they have hard
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constraints on the networking infrastructure and bandwidth availability. Based on these

reasons, this thesis investigates different setups, and it performs experimental analysis to

understand the impact on visual quality for the user and the challenges in the computa-

tional and network performance of the system.

1.3 Summary of Contributions

This thesis builds on the research carried out in several prior works. It adds novel sig-

nificant contributions for remote visualization and rendering, especially when there is

limited computing power and bandwidth constraint. The major contributions and results

are listed below:

1. An overview of the main challenges, building blocks, capabilities, and limitations

of remote visualization techniques for remote teleoperation and telepresence appli-

cations (Chapter 2).

2. An in-depth discussion of the state-of-the-art HVS based systems, covering gaze-

and non-gaze based methods to increase remote visualization efficiency (Chapter

2).

3. A novel approach for remote immersive visualization systems, i.e., differential sam-

pling, streaming, and rendering real-time point-cloud / 3D reconstruction data

in VR, exploiting the human visual acuity and the user’s real-time gaze direction

(Chapter 3).

4. 3D acquisition and reconstruction are the methods that capture the data to visualize,

and they have to meet critical requirements for accuracy, completeness, and speed.

Mainly, it requires robust camera pose tracking and mapping. This thesis presents a

novel approach for 3D reconstruction and remote immersive visualization systems

for dynamic environments. (Chapter 4).

5. A new volumetric density based peak signal-to-noise ratio (PSNR) metric for point-

cloud data is presented to evaluate the proposed approaches (Section 3.5.3.4).

6. User studies and experiments evaluating the impact of the presented approaches

on perceived visual quality, latency and throughput (Section 4.5).

1.4 Outline of The Thesis

The thesis is organized into five chapters, where this first chapter provides a brief intro-

duction to the proposed system and research questions, Chapter 2 of the thesis presents
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the most relevant theoretical foundations to remote visualization systems; It briefly de-

scribes technological and human factors which should be known when designing immer-

sive interfaces for such systems. The subsequent section of this chapter gives an overview

of the HVS. This section details the physiological parts involved in the vision process,

most significantly the discussions of different visual acuity. In section 2.3 and section 2.4,

it presents a brief theoretical foundation of real-world data acquisition sensors and recent

literature on visual SLAM and 3D reconstruction problems. Section 2.5 presents efficient

visualization (rendering) techniques used in graphics. Lastly, an overview of previous

works on 3D tele-immersive systems is presented. The work in this Chapter 2 is based

on the litrature review and the following co-authored publication.

A. Naceri et al. “The Vicarios Virtual Reality Interface for Remote Robotic Teleopera-

tion”. In: Journal of Intelligent & Robotic Systems 101.80 (2021)

Chapter 3 introduces the (mathematical) models that are used to describe the HVS

and presents a gaze-contingent remote visualization approach. Most importantly, the

chapter discusses visual acuity models and the human eye’s optical properties while

using Virtual reality interfaces. Following these models, The chapter presents a server-

client architecture that encapsulates the HVS models. This server-client architecture is

divided into three major parts: the user site, the remote site, and a packetization and

communication network between them. The remote site includes 3D data acquisition,

reconstruction, sampling, compression, and transmission components, and the user site

decode and renders the data in VR HMD. Finally, it compares the end-to-end perfor-

mance (latency and bandwidth) with a user study conducted to evaluate the user quality

experience of the proposed framework. This work has been presented in the following

scientific publication.

Y. Tefera et al. “Towards Foveated Rendering For Immersive Remote Telerobotics”.

In: The International Workshop on Virtual, Augmented, and Mixed-Reality for Human-Robot

Interactions at HRI. 2022

Chapter 4 expands the models proposed in Chapter 3 based on the HVS and presents

a gaze-contingent object-level telepresence system. This chapter proposes a strategy

that mainly focuses on understanding the visual information, extracting semantics from

the data, and characterizing the present and future progress of the scene. This system

follows a server-client architecture proposed in chapter 3 and adds system components

presented in this section. The remote site adds an Information gathering understanding

module. Finally, It compares the proposed framework’s end-to-end performance (latency

and bandwidth) with different quality settings to evaluate the usability.

The final part of the thesis in Chapter 5 comprises a discussion of this research’s main

contributions. Some exciting developments and trends, as well as possible avenues for
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future developments, are contemplated here.

7



2

Theoretical foundation

“Vicarious living is only slightly less impossible than vicarious

eating.” (Mason Cooley)

This thesis chapter presents the most relevant theoretical foundations to immersive

remote visualization techniques and their application in telepresence and telerobotic sys-

tems. It briefly explains technological and human factors which should be known when

designing immersive interfaces. The first section of this chapter gives an overview of

the Human Visual System (HVS); It details the physiological parts involved in the vision

process, most significantly the discussions of different visual acuity. In the subsequent

section 2.3 and section 2.4, it presents a brief theoretical foundation of real-world data ac-

quisition sensors and recent literature on visual Simultaneous Localization and Mapping

(SLAM) and 3D reconstruction problems. Section 2.5 discusses rendering techniques and

methods used for efficient rendering. Last, an overview of previous works on remote

visualization systems for telerobotics applications is presented. This Chapter addresses

the following research questions:

Research Question 1: What are the state-of-the-art immersive remote visualization sys-

tems for telepresence and teleoperation systems, and are there any technological, perceptual,

and cognitive constraints in designing such systems?

Research Question 2:What are the advantages and limitations of the HVS, and How can

it be exploited in designing immersive remote viualization systems?

The Vicarios Virtual Reality (VR) interface system for remote robotic teleoperation

presented in Section 2.6, was done in collaboration withmy colleagues Abdeldjallil Naceri.

I contributed for point cloud streaming, video streaming as well as delay measurements
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and details are provided in our paper:

A. Naceri et al. “The Vicarios Virtual Reality Interface for Remote Robotic Teleopera-

tion”. In: Journal of Intelligent & Robotic Systems 101.80 (2021)

2.1 Motivations and Background

Remote immersive visualization systems has received increased interest in recent times

due in no small measure to the ongoing COVID-19 pandemic. Effective remote visualiza-

tion systems would immeasurably improve the lives of frontline workers, being able to

respond to certain emergencies without requiring physical presence [178]. This section

defines why designing and studying immersive interfaces is valuable for improved inter-

actions in remote visualization systems and to understand the expected effects of such

interfaces on the user. Mainly the following motivations are defined in detail as follows :

1. Improve situational awareness: Situational awareness or situation awareness (SA)

is defined as "the perception of environmental elements and events with respect to

time or space, the comprehension of their meaning, and the projection of their fu-

ture status" [39]. With adequately designed immersive interfaces, users can acquire

information about the environment, i.e., the situation, then provide techniques

to quickly interpret the information and help them with reasoning and decision-

making.

2. Risk prevention: An unsafe (demanding) environment creates physical and psycho-

logical risks because the environment is too dangerous. For instance, nuclear, chem-

ical, disaster response, construction/demolition, mining, submarine tasks, there

are extreme risks to the health and safety of humans. Well-designed immersive

interfaces can provide timely sensor feedback and allow humans to perceive the

risk before it occurs or worsens: It could help to avoid risk and reduce the impact.

3. Effective planning: A user interface with elements that are easy to access, under-

stand, and simple to use could help users to get information according to what

the users needed. For example, interfaces in remote robotic-based tasks and mo-

tion planning help the robot operator to perceive environments where the robot is,

decide how to navigate the environment, understand how to interact with objects.

Before executing the actual task, the user could visualize information about the

robot kinematics and its capabilities in the environment. Interactive interfaces can

provide the operator information regarding the possible approaches for executing

the tasks in the planning phase.
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Figure 2.2: Information processing and related human factors adapted from [172].

and process [110]. Properly designed interfaces can potentially improve these limita-

tions. To support and guide this study, the following questions are considered as primary

questions, among others.

• How to find a balance between how much information to show and for how long to

show it without confusion?

• How to represent multi-dimensional information ( point-clouds, camera streams,

etc.) effectively and efficiently?

• What are the perceptual and cognitive constraints in remote visualization systems?

• How to integrate different sensory information in an ergonomic and user-friendly

manner, while utilizing human cognitive capabilities?

A basic knowledge of how human process information into useful (inter)action is very

valuable in understanding the human factors [13]. Termed as "Information Processing", it

has been studied for many years and different studies have designed different models to

define it. Bowman et al. [13] adapted a high-level staged information processing model

from [172] by mapping it into the three main factors: perception, cognition, and physical

ergonomics Fig. 2.2.

2.1.2.1 Cognition

Cognition refers to the mental processes involved in gaining knowledge and comprehen-

sion. These cognitive processes include thinking, knowing, remembering, judging, and
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problem-solving. Cognitive neuroscience studies consider cognition as the way a human

perceives and conceptually structures the world. Hence, it leads to emotions and behav-

iors. According to Bowman et al. [13] model, stimuli or events which are perceived will

be provided with a meaningful interpretation based on memories of past experiences. In

response to what is perceived, actions may get selected, executed, or information may get

stored in working memory (short-term memory).

Attention Resources:Attention can be seen as a selection process and it could be used

to draw attention to specific information from the dynamic spatio-temporal environment.

Attention process is prone to errors, which can be raised by limitations in our sensory sys-

tem, which leads to an inability to notice visual (change blindness) and auditory changes.

‘Change Blindness’ refers to the surprising difficulty observers have in noticing large

changes to visual scenes [143]). Similarly, errors occur on a temporal basis, especially

when rapid sequences of stimuli occur.

Short and Long-term memories: Working memory has a limited capacity, and atten-

tion resources highly influence it. In contrast, the capacity of our long-term memory

is vast, storing information about our world, concepts, and procedures while not being

directly affected by attention [13].

2.1.2.2 Perception

Visual information processing depends on a complex pattern of intertwined pathways in

the human brain; The moment light meets the retina, the process of sight begins. The

retinal has a layer of cells called photoreceptors. The distribution of the different kinds

of photoreceptors (rods and cones) results in different abilities of the visual system in

the center and the periphery. The center has the highest sensitivity to fine details, and

these abilities deteriorate quickly at the periphery. However, peripheral vision is still

reasonably good in processing motion; this is important for our fast reaction to moving

objects. Details can be found in section 2.2.

Vision provides several cues about the spatial layout (such as depth cues) of objects in

a scene that could be used for selection, manipulation, and navigation tasks. Therefore,

understanding what depth cues the HVS uses and how visual displays provide such cues

is another fundamental mechanism for designing immersive 3D interfaces.

Monocular depth cue is depth information in the retinal image gives us information

about depth and distance. This depth information can be inferred with only a single eye.

These cues consist of static information, including relative size, perspective, interposition,

lighting, and focus cues (image blur and accommodation), as well as dynamic information

such as motion parallax [67]. Figure 2.3 a shows depth cues from a relative size difference.

The smaller circles appear farther away, and the larger object appears closer.

Oclusion happens when one object overlaps another, the partially obscured object is

perceived as being farther away. Figure 2.3 b shows two boxes placed in the distance and

one box overlapping and occluding the other. In that case, the user perceives the occluded
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(a) Accommodation and vergence.

(b) Motion parallax depth cues.

Figure 2.4: Accommodation (top left image), vergence (top right image) and motion
parallax depth cues (bottom image), adapted from [13].

they move farther away. Figure 2.3 d, shows effects of texture gradient on depth cues: the

image on the right is an inverted image of the left. In both images the depth is perceived

[13].

Oculomotor cues are depth cues derived frommuscular tension in the viewer’s visual

system, consisting of accommodation and vergence (Figure 2.5 a). Accommodation is the

process by which the physical stretching and relaxing of the eye lens to focus an object

on the retina. Far away objects require low lens convexity, whereas near objects require

high lens convexity to become focused on the retina. Thus, The state of these eye muscles

in stretching and relaxing provides a cue to depth. Vergence is the process by which the

eyes rotate in equal and opposite directions to fixate an object. Near objects require both

eyes oriented inwards to have the object foveated, whereas far objects require both eyes

oriented along parallel lines of sight.

Motion parallax refers to the fact that objects moving at a constant speed across the

frame will appear to move more if they are closer to an observer than they would if

they were further away (Figure 2.5 b). This can happen when objects move relative to

the viewer (stationary-viewer motion parallax), the viewer moves relative to stationary

objects (moving-viewer motion parallax), or when there is a combination of the two.

Binocular disparity refers to the difference in image location of an object seen by the

14



2.1. MOTIVATIONS AND BACKGROUND

Figure 2.5: The relative importance of depth cues at different distances, adapted from
[27].

left and right eyes. The simple way to understand binocular disparity is to focus on a near

object and alternate opening and closing each eye. Combining these two images through

accommodation and vergence provides a depth cue by presenting a single stereoscopic

image: This effect is referred to as stereopsis [13].

The perception of an object of interest degrades as the distance from the observer in-

creases. This quality reduction directly results from the diminishing quality and availabil-

ity of precise visual cues and an evolutionary advantage given finite cognitive resources

and the relative importance of close objects compared to distant ones. Cutting and James

et al. [27] have discretized perceptual space into three distinct regions defined by the

distance from the human observer: Vista space, Action space, and Personal space.

Figure 2.5 compares the relative strength of depth cues at different distances for com-

paring the depth of objects. Personal space surrounds the observer’s head, generally

within arm’s reach and slightly beyond [26]. Thus, the observer does not typically gener-

ate motion perspective; instead, motion parallax and structure-from-motion information

are generated by observer manipulation to reveal object shape [26]. In this region, oc-

clusion, retinal disparity, relative size, and then convergence and accommodation are

effective. The region beyond personal space is action space. In action space a person can

move quickly within this space and talk within it; occlusion, height in the visual field,

binocular disparity, motion perspective, and relative size are the dominant depth cues.

Vista space occurs beyond 30 m, at least for a pedestrian. The only effective depth cues

in this space are occlusion, height in the visual field, relative size, relative density, and

aerial perspective. The effectiveness of binocular disparity and motion perspective are

negligible.
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In general, occlusion is a persistent depth cue for this sort of comparison. However,

that occlusion and many other depth cues only provide relative depth information. Only

accommodation, vergence, stereopsis, and motion parallax provide information about

absolute depth.

2.1.2.3 Physical Ergonomics

While this thesis mainly focuses on perception and cognition, physical ergonomics are

equally important factors that researchers should study to design systems that can be used

comfortably and effectively. Physical ergonomics concerns the human musculoskeletal

system primarily. It depends on the anatomical capacities of the different human body

parts, which defines how and how well we can perform a specific task. Different body

parts have different comfortable and maximum range motions produced by joints and

muscles. This section looks at the body parts, mainly the head, eye, and ankle, which are

closely related to Head-mounted displays.

An average person can turn their head horizontally 30 ◦ comfortably and a maximum

of 55 ◦. The degrees one can turn the head vertically differ between the head tilting up or

down. Looking up 20 ◦ and looking down 12 ◦ is considered comfortable. The maximum

for looking up is 60 ◦, and looking down is 40 ◦ [114]. To keep the interaction from getting

uncomfortable, one should place the main user interface objects within a comfortable

area. An angle greater than 25 ◦ down forces the neck to constantly keep the head up,

and A bent neck also heightens the risk for pains and diseases [114]. Figure 2.6 a shows

where the comfort zone is, areas with the green color are comfortable, whereas areas with

the red should be avoided for user interaction design.

The neck angle only doesn’t determine how comfortably the user can see in the virtual

world; the Field of View (FOV) and the physiology of the eye determine it as well. In the

relaxed line of sight, when the user is seated with the head up and looking ahead, the

eyes will naturally assume a slight downward gaze of some 10 or 15 ◦ from the vertical.

The eyes could be raised by 48 ◦ and lowered by 66◦ without head movements, but in

practice, the downward eye movement is limited to 24-27◦, beyond that point, the head

and neck are inclined forwards, and the neck muscles come under tension to support

the weight of the head. For this reason, the preferred display zone is between 0 to 30 ◦

down [125]. Figure 2.6 b Left shows the preferred viewing conditions as described in text

and the Right shows the postural stress to neck muscles resulting from a downward line

of sight. T is the torque about the neck; w is the weight of the head and neck; x is the

distance from C7 to the centre of gravity of the head and neck.

2.1.3 Technological Factors

In addition to human factors, This section study various technological factors, which

can affect remote visualization and the user specialy in remote telerobotics application,
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(b) Preferred viewing conditions

(a) Safe head movements zones

Figure 2.6: Safe head movements zones and preferred viewing conditions, Image adopted
from [72] and [125].

especially related to glsFOV, limited depth perception, network latency, etc. To support

and guide this study, the following questions are considered as primary, among others.

• How to present information without confusion?

• How to find a balance between how much information to show and for how long to

show it?

• How to represent the multi-dimensional information (environmental sensors, point-

clouds, camera streams, etc.) effectively and efficiently?

• How operators perceive different information?

• What are the perceptual and cognitive constraints in remote robotic teleoperation?

• How to integrate different sensory information in an ergonomic and user-friendly

manner, while utilizing human cognitive capabilities?

Field of View : Cameras with limited angular view create the so-called "Keyhole"

effect (a sense of trying to understand the environment through a narrow "Soda Straw"

glsFOV). Major consequences of this effect include missing new events, increased diffi-

culty in navigating novel environments, gaps or incoherent models of the explored space,

etc. [175].

17



CHAPTER 2. THEORETICAL FOUNDATION

Orientation and Attitude of the remote robot: When the remote environments are

complex and cues to a robot’s pose are sparse, it becomes easy for a teleoperator using

an egocentric (camera) display to lose situational awareness. To successfully navigate

locally, while globally knowing where the object / region of interest is, the operator needs

to know the robot’s attitude. Attitude (i.e., pitch and roll) of a robotic vehicle may be easy

to reference when there are other familiar objects (e.g., horizon, buildings, trees, etc.) in

the remote environment. However, if those reference points are absent and the on-board

cameras are fixed ones, operators sometimes find it surprisingly hard to accurately assess

the attitude of their robotic vehicles [164]. .

Orientation in the remote environment: Navigation with a traditional (north-up)

map can be challenging at times because of the demand of mental rotation. Track-up

(ego-referenced; rotating viewpoints) maps consistently perform better for local guidance

(i.e., navigation) and north-up maps are better for global awareness [164].

Attitude of the robot: Attitude (i.e., pitch and roll) of a robotic vehicle may be easy

to reference when there are other familiar objects (e.g., horizon, buildings, trees, etc.) in

the remote environment. However, if those reference points are absent and the on-board

cameras are fixed ones, operators sometimes find it surprisingly hard to accurately assess

the attitude of their robotic vehicles [164].

Multiple cameras and viewpoints: The capabilities to see the robot and its local

environment gives the operator a better sense of the robot’s location with respect to

obstacles, victims, or other potential situations [84]. However, the difference in eye-point

and camera viewpoint could create motion sickness [84].

In addition, when handling multiple robots, it can be challenging for the operator to

acquire different contexts rapidly when switching among robots: information in one scene

may not be encoded sufficiently to be compared/integrated when accessed subsequently

(change blindness).

Degraded Depth Perception : Degraded depth perception affects the teleoperator’s

estimation of distance and size and can have profound effects on task effectiveness. In

the case of monocular cameras, the operators have to rely on other cues: such as shadows,

linear perspective, and size consistency.

The effect of degraded depth perception has a higher impact when working in unfa-

miliar and difficult terrain due to lack of apparent size. In addition, remote manipulation

that involves fast movements or analysis of three-dimensionally complex scenes would

be highly affected [34].

Degraded Video Image and Time delays: Degraded video feeds could leave out

essential visual cues for building teleoperators’ mental models of the remote environment.

Different factors such as low bandwidth, low frame rate, low resolution, high latency, and

the number of bits per pixel can create degraded video feeds.

Motion: Teleoperation can be difficult and distracting because of the vibrations and

oscillations of the moving robot, which makes viewing the visual displays and the manual

control/action more challenging [137].
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Factor Effects Suggested solution Ref.#

Field of View

• Restricted FOV affects

target detection and

identification.
• Distance cues may be

lost and depth percep-

tion may be degraded.
• Degraded remote driv-

ing.
• Increased difficulty in

navigating novel envi-

ronments.

• Wider FOV (changeable

FOV ) can be used.
• Stereoscopic 3D dis-

plays.
• Multiple cameras and

single cameras with spe-

cial optics.

[19]

[145]

[161]

[20]

[154]

Orientation

and Attitude

of the Robot
• Difficulty knowing the

robot orientation in the

environment.
• North-up and Track-up

maps.
• Mismatch between ac-

tual and perceived atti-

tude of robot.
• Unawareness of robot’s

inclination and shape.

• Track-up map for navi-

gation.
• North-up map for tasks

involving integration of

spatial relations in the

environment.
• Gravity referenced

view.

[164]

[20]

[43]

[35]

Multiple cam-

eras and View-

points
• Attention switching

and change blindness.
• Motion sickness.
• Egocentric, cognitive

tunneling and Exocen-

tric, loss of immediacy

and true ground view.

• Auditory alerts.
• Multi-modal solutions.
• Peripheral cues for ego-

centric.

[84]

[20]

[116]

[84]

[20]

[116]
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Depth percep-

tion
• Underestimation of dis-

tance and size.
• Degraded navigation,

driving, and telemanip-

ulation.

• Sterioscopic displayes

(SDs).
• Inter-camera distance

should be less than

inter-ocular distance.

[13]

[43]

[20]

Video quality

and time de-

lays
• Degraded motion per-

ception and spatial ori-

entation.
• Degraded target identi-

fication and latency.
• Motion sickness.
• Over actuation when de-

lay is variable.

• Utilize the human cog-

nitive processing speed

which is around 170 ms

(range: 75− 370 ms).
• Augmented reality /

overlaying information.
• Predictive Display (sim-

ulation in VR/AR).
• Robust adaptive algo-

rithm for video stream-

ing.

[98]

[20]

[79]

Motion

• Degradation on accu-

racy and latency.
• Motion sickness.

• Multi modal user inter-

face.
• Tailor interface to vibra-

tory and motion effects.

[76]

[137]

Table 2.1: Summary of different technological factors.

2.2 The human Visual System

Humans perceive visual information through sensory receptors in the eyes. The process

begins when light passes through the cornea, enters the pupil, and gets focused on the lens

onto the retina. This is then processed in the brain, where an image is formed. The visual

system can be divided into three major processing components: The Eye, Visual Pathway

and Visual Cortex( see Figure 2.7). Each component performs a particular analytical

process on the visual information, and the following section describes them in detail in

the subsequent sections. This section gives a brief description of the HVS and the biology

around visual acuity in the central and peripheral regions of the retina.
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process the region of interest in detail. Previous research has investigated if mean-

ingful linguistic information can be obtained from parafoveal visual input while

reading [66, 139].

• The next region that surrounds the Parafovea is called Perifovea, which extends

approximately up to 18◦ of eccentricity. In this region, the density of rods is higher

than that of cones, about 2:1. Consequently, unlike the Fovea and Parafovea, only

rough changes in shapes are perceived in this region [69]. The region beyond 18◦,

and up to about 30◦ of the visual field, is known as the Near-Peripheral Region. It

has the distribution of 2–3 rods between cones [128]. This region is responsible

for the segmentation of visual scenes into texture-defined boundaries (“texture

segregation”) and the extraction of contours for pre-processing in pattern and object

recognition [152].

• The region between 30◦ up to about 60◦ of eccentricity is called the Mid Periph-

eral Region [144]. Although acuity and colour perception degrade rapidly in this

region, researchers have shown that color perception is still possible even at large

eccentricities, up to ∼ 60◦ [48, 52].

• The region at the edge of the visual field (from 60◦ up to nearly 180◦ horizontal

diameter) is called the Far Peripheral Region. This region has widely separated

ganglion cells, and visual functions such as stimulus detection, flicker sensitivity,

and motion detection are still possible here [152].

There is one area approximately 1.5mm across in the retina with no receptors, where

the optic nerve leaves the eye. Because of the absence of receptors, this place is called

the blind spot. Preprocessed electric signals are transmitted over the optical nerve to

higher-level visual pathways. It carries the impulses from the retina’s ganglion cells to

the visual centers in the brain.

2.2.2 The Visual Pathways

Once the signal leaves the eye via the axons of the retinal ganglion cells, they are trans-

ported by the visual pathways to the higher visual center of the cranium, i.e., the skull

(see Figure 2.7). However, these pathways do not passively transport the signal: some

reorganization and processing are performed. Most of the signals from the retina travel

out of the eye in the optic nerve to the Lateral Geniculate Nucleus (LGN) in the thalamus

through the optic chiasm: an X-shaped structure formed by crossing the optic nerves.

Because of this crossing arrangement, the right LGN receives information about the left

visual field, and the left LGN receives information about the right visual field.

Neurons in the LGN have receptive fields that are concentric receptive fields much

like those of the retinal ganglion cells. It is arranged in multiple layers (6 layers) that

are segregated according to the origin of the retinal signal emerging from the retinal
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ganglion cells. As shown in Figure 2.7, The inner two layers are magnocellular, while

the outer four layers are parvocellular. The names come from the retinal ganglion cells

with large (Magno) or small (Parvo) cell bodies. An additional set of neurons, known as

the koniocellular layers, are found ventral to each of the magnocellular and parvocellular

layers.

Magnocellular cells (also called M-cells) are relatively large cells in the ventral region.

Two magnocellular layers(layer 1 and 2) lie inward. They have a large receptive field

on the same side as the retina, but they cannot provide detailed or colored information

but still provide useful static, depth, and motion information. These cells have high

light/dark contrast detection and are more sensitive at low spatial frequencies than high

spatial frequencies [126]. Due to this contrast information, M cells are essential for

detecting luminance changes, performing visual search tasks, and detecting edges [21].

Parvocellular cells, also called P-cells, are relatively small and sensitive to color and

can discriminate fine details than their magnocellular counterparts. By comparison, Par-

vocellular cells have a greater spatial resolution. Still, lower temporal resolution [177],

demonstrating that the visual system consists of several separate and independent subdi-

visions that analyze different aspects of the same retinal image [126].

2.2.3 The Visual Cortex

Ultimately, the signal passes by the visual pathways reach the primary cortical region of

the brain. Based on function and structure, the visual cortex divides into five different

areas (V1 to V5). The approximate positions of different areas of the brain and retinotopic

maps of the human visual cortex are illustrated in Figure 2.10.

V1

V2

V3

V3A

Cerebellum
V4

V3/ VP

Inferotemporal
cortex

Parietal
lobe

Temporal lobe

LGN

MT/ V5

Occipital
lobes

Frontal lobe

Figure 2.10: Approximate positions of different areas of the brain that are responsible for
vision and retinotopic maps in early human visual cortex. Image adapted from [146, 12]

The signal from visual pathways first passes through the thalamus, where it synapses

in a nucleus called the lateral geniculate. This information then leaves the lateral genicu-

late and travels to an area called V1 or striate cortex. Area V1 is located in the occipital
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lobe at the back of the head 2.10). This area is a large cortex area involved in vision: More

than 80 percent of the cortex responds to visual stimuli. Objects close together in the

retina will activate neighboring neurons of the visual cortex. Moreover, the left V1 maps

the right visual field, and the right V1 maps the left visual field with minimal overlap

(figure 2.7). However, within the map, the central area of the visual field is represented by

a greater amount of neural cells to receive a disproportionately large representation [47].

Cells in the visual cortex respond to particular visual features or objects’ attributes in the

visual world. For example, cells in V1 respond most strongly when an edge or contour

placed at a specific orientation. The study by Hubel and Wiesel et al. [63] identified two

functionally different classes of cortical cells in cat and monkey primary visual cortex:

The simple and complex cells. Simple cells respond to stationary or slow-moving stimuli,

and complex cells respond maximally to moving stimuli of a particular orientation.

The Visual cortex 2 (V2) is the secondmajor area in the visual cortex, It receives strong

feedforward connections from V1 (direct and via the pulvinar) and sends strong connec-

tions to V3, V4, and V5. It also sends strong feedback connections to V1. Researchers

have seen that the V2 cells collectively encode information about many complex shape

characteristics: differences in color, spatial frequency, moderately complex patterns, and

object orientation [56]. V2 sends feedback connections to V1 and has feedforward connec-

tions with V3-V5. Information leaving the second visual area splits into the dorsal and

ventral streams, which specialize in processing different aspects of visual information.

The dorsal area is often concerned with object recognition, while the ventral streams

focus on spatial tasks and visual-motor skills.

2.2.4 Visual Acuity

As highlighted briefly in section 2.2.1, the center of our vision, known as the fovea, is

only about 1% of the retina. But, it has the highest density of cone photoreceptor cells,

and the brain’s visual cortex dedicates about 50 % of its area to information coming from

the Fovea [142], which is a very high magnification, and This means that the other bits

have far less cortex. The large representation of the fovea in the cortex is also illustrated

in Figure 2.10. The amount of cortex given to each 1◦ gets smaller further from the center

of vision the cells are encoding.

Daniel and Whitteridge [31] invented the term linear cortical magnification factor (Mc)

to refer to the millimeters of cortex representing 1◦ of visual field at any given eccentricity.

The most popular way of determining visual acuity is to quantitatively represent it in

terms of minimum angle of resolution (Minimum Angle of Resolution (MAR), measured

in arcminutes). In fact, visual acuity is represented as the reciprocal of MAR, but MAR

itself is now quite common in literature [168, 49, 152]. MAR can be understood as the

smallest angle at which two objects in the visual scene are perceived as separate [168].

Since the MAR is the reciprocal of the visual acuity, It can also be understood in rela-

tion to the cortical magnification factor, Mc [24]. Mc accounts for the number of neurons
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the gap between the ends of letter "E" subtends 1 min of arc, each letter subtends a total

of 5 arcmin [11].

2.2.5 Visual Attention

Our lives take place in an overwhelmingly rich visual world — it contains far too much

information to perceive at once, and the visual system’s processing capacity is limited by

the highmetabolic cost of cortical computations. Given these limits, we needmechanisms

to optimally allocate processing resources according to task demands. Typically, we scan

the scene to aim the fovea at a place (area) we want to process more deeply and shift the

fovea to another item [47].

Even though eye movements are an important mechanism of selectively focusing the

fovea, it is also essential to recognize that there is more to attention than just moving the

eyes to look at objects. There are three main types of visual attention:

1. Spatial attention: can be either overt or covert attention; overt attention is defined

as selecting one location over others by moving the eyes to point at that location.

Covert is defined as paying attention without moving the eyes: detecting objects

and locations in the peripheral FOV, followed by an eye movement to that area to

bring the spotlight of our overt attention to the task of seeing [42].

2. Feature-based attention : can be deployed covertly to a specific stimulus feature

(e.g., color, orientation, or motion direction) of objects in the environment, regard-

less of their location.

3. Object-based attention: in which attention is influenced or guided by object struc-

ture [117].

The critical question in scanning the scene is which items or what determines where

we give attention in a scene? The answer to this question is complicated because our

looking behavior depends on several factors, including the scene’s characteristics and the

observer’s knowledge and goals [47]. The scene characteristics include physical properties

of the stimuli such as color, brightness, contrast, or orientation that is stimulus’s saliency

and they stand out to catch our attention. Saliency refers to the visual "attractiveness" or

importance of components and features in the environment.

Capturing attention by stimulus salience is a Bottom-up process mechanism. These

are thought to operate on raw sensory input, rapidly and involuntarily shifting attention

to salient visual features of potential importance. But attention is not just based on what

is bright or stands out. Cognitive factors are also essential; Attention mechanisms that

implement our longer-term cognitive strategies are referred to as Top-down mechanisms

[23].

In this section, we use the term priority to describe the degree to which a location

captures attention due to combining top-down and bottom-up mechanisms. A saliency
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map is a map of saliency values of the visual field. In contrast, a priority map is a map

of priority values. Naturally, when a scene is viewed, a selection process follows the

priority map, such that attention or gaze is more likely to be directed first to locations

of higher priorities, and lower priority areas will be directed following the order of their

priorities. A priority map can be assessed behaviorally by measuring how well observers

discriminate or identify a visual target at the location, given a fixed viewing duration

(the accuracy) and alternatively by their Reaction Time (RT) associated with finding or

identifying a target at its location [182]. Accuracy should increase with the amount of

time the target spends. Therefore, given a fixed viewing duration, greater accuracies

should be coupled to shorter RT for selecting the target location. For example, studies

of visual search often assume that a shorter RT indicates a larger saliency at the location

of the search target. Later in Sec. 3.5.3.6, the thesis evaluates the proposed approach by

conducting visual search experiments to assess the effect of the proposed system.

2.2.6 Eye Tracking

Eye- or Gaze-tracking can provide useful information with regards to the user’s intent,

attention, and their point of regard [85]. In this section, We will review, how the eye

tracking techniques used and progressed, what kind of eye tracking techniques has been

used and what kind of eye-tracking measurements are used to understand the user’s

intent and attention.

Dating as far back as the 18th century, eye tracking has fascinated researchers to

help understand human emotions, needs, as well as mental state [53]. One of the first

eye tracking devices was built by Edmund Huey [64]. Made to understand the reading

process, the trackers were a kind of contact lens with a hole for the pupil, and the eye

movements were tracked using an aluminum pointer connected to the lens. A similar

approach was used by Fitts et al. [44] for their study of the eye movements of pilots during

aircraft landing. Another significant contribution in eye tracking was made by the Alfred

Yarbus [180], showing that the gaze trajectories depended on the task to be executed. He

developed a novel set of devices for recording and compensating for rapid eye movements

[157]. The last three decades has seen a major revolution in eye tracking research and

commercial applications due to the apparent ubiquity artificial intelligence algorithms

and portable and consumer-grade eye tracking devices. Commercially available Head-

MountedDisplays (HMD)s that include eye trackers are the Fove-0, Varjo VR-1, PupilLabs

Core, and the HTC Vive Pro Eye [148].

Commonly used eye-tracking techniques in research are the following [100]: (1)

Videooculography (VOG): video-based eye tracking using head-mounted or remotely-

mounted visible light video cameras; (2) Video-based infrared (IR) pupil-corneal reflec-

tion (PCR): infrared lights to illuminate and measure the intensity of reflected infrared

light; and (3) Electrooculography (EOG): measuring the corneo-retinal standing potential

between the front and the back of the human eye.
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The most commonly used eye tracking metrics are as follows [8]:

• Fixation: Fixation is the maintaining of the eye on a target for some time: long

enough for the brain’s visual system to perceive it. The time span is at least 100 ms,

typically between 200 and 600 ms. Standard metrics used to evaluate fixations are

the number of fixations, the fixation duration, and the fixation position [8].

• Saccade: A saccade represents the rapid eye movement between two consecutive

fixations. This quick jumps of 2° or longer that take about 30–120ms each. Standard

metrics used to evaluate are the saccadic amplitude (i.e. the distance the saccade

traveled), the saccadic duration, and the saccadic velocity in degrees per second [8].

• Smooth Pursuit: A Smooth Pursuit is a much slower tracking movement of the eyes

intended to stabilize the moving stimulus on the focus. These movements are under

voluntary control meaning the observer can choose whether or not to track a moving

stimulus [8].

• Scanpath: A scanpath is a sequence of fixations and saccades in chronological order

that represents the pattern of eye movements. Standard metrics used to evaluate

scanpath are the distances between sequence fixations and scanpath duration [8].

2.3 3D Scene Capture

The advances in the field of telepresence and 3D reconstruction are especially attributed

to the ready availability of good quality, low cost, consumer grade 3D scene capturing sen-

sors (RGB-D cameras) [183]. RGB-D cameras, such as Microsoft Kinect, Intel Realsense,

ZED cameras, etc. [82, 181, 118], have contributed profoundly to the advancement of

novel algorithms in real-time point-cloud acquisition. These cameras combine their low-

cost advantage with being lightweight, capturing pixel-level color and depth images at

different resolutions, and at real-time rates (25 ∼ 30 Hz) [183].This section briefly sum-

marizes the technologies for 3d scene capture and their use in this thesis.

State of the art in 3D capture indicates that several techniques have been developed

and used for 3D scene acquisition. One could perhaps classify 3D scanning techniques

into two types: contact and non-contact. Non-contact solutions can be further divided

into two main categories, active and passive [160].

2.3.1 Contact

Contact 3D capturing techniques use Coordinate Measuring Machines (CMM) composed

of mechanical arms that touch the surface of objects along user-defined profiles. The

arm could be autonomous and touches the surface using a predefined, regular, grid, The

precisions of such 3D captures can be in the order of microns. The scanner mechanism

may have three different forms [160] :
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Figure 2.12: Relation between relative depth and measured disparity, Image adapted
from [162].

• A carriage system with rigid arms held tightly in perpendicular relationship and

each axis gliding along a track.

• An articulated arm with rigid bones and high precision angular sensors. The lo-

cation of the end of the arm involves complex math calculating the wrist rotation

angle and hinge angle of each joint.

• A combination of both methods may be used, such as an articulated arm suspended

from a traveling carriage, for mapping large objects with interior cavities or over-

lapping surface .

2.3.2 Non-Contact Active

Active scanners work by emitting an infrared dot pattern with an infrared projector

and receiving it. Possible types of emissions used include light, ultrasound, or x-ray.

Microsoft introduced the popular Kinect 1 sensor which is based on structured light, and

Intel Realsense later introduced active infrared (IR) stereo depth sensors.

The first generation Kinect V1 camera is a light-coded range camera that contains rgb

camera, infrared projectors and detectors that map the depth through structured light.

The depth information is computed by triangulation of the received and original infrared

patterns. The principle is shown in Figure 2.12 where Zp is the distance to the object,

Zo the distance to the reference plane, the distance between the IR camera (C) and laser

projector (L) and d is the disparity between the two triangulated patterns, B is baseline

between the infrared camera center and the laser projector (L) and f is the focal length.

Then the depth of a scene point Zp can be computed using the Equation 2.2.

Zp =
Zo

1+ Zo
f .Bd

(2.2)

Alternatively, the Microsoft Kinect V1 has been replaced by a new device (Kinect V2)

which is based on Time of Flight (ToF) principle. The basic operating principle is the one

of continuous wave ToF sensors . The ToF depth sensing principle is based on measuring
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the distance the light has travelled. This is done by modulating the light and measuring

the phase shift introduced at the receiver compared to the original signal [30]. Some more

details of this technology is listed on Table 2.2.

Meanwhile, Intel built an active IR stereo depth sensing family, Intel RealSense [16]:

the D415 and the D435 models. Such devices differ from each other mainly in the glsFOV

angles and in the exposition time of the camera-integrated shutter. The infrared laser

projector projects non-visible structured IR pattern to improve depth accuracy in scenes

as shown in Figure 2.13. The left and right infrared cameras capture the scene and the

depth values for each pixel can be calculated by correlating the points on the left image

to the right image. The focal length f and the baseline b between the two cameras are

assumed to be known and the depth estimation problem becomes a disparity search along

the scan line. Given the output disparity d, the the maximum Z value (depth) is obtained

by the following formula:

Depthzmax =
f ∗ b

d
(2.3)

where

f (pixels) =
1
2
Xres(pixels)

tan HFOV
2

(2.4)

Where Xres is the horizontal resolution of the imager. HFOV is the horizontal field

of view which is 90◦ for Model D435 and 65◦ for Model D415. The minimum Z value

(MinZ) is defined by the following equation, taking into account that the camera searches

in a disparity range of 126 bits [16] .

Depthzmin =
f ∗ b

d +126
(2.5)

Additional technical specification for Model D415 is detailed on Table 2.2.

2.3.3 Non-Contact Passive

Non-contact passive 3D scanning solutions do not emit any kind of radiation themselves,

but instead rely on detecting reflected ambient radiation. Most solutions of this type

detect visible light because it is a readily available ambient radiation. One of the most

recent developed stereo sensors is the ZED camera, it has two high-resolution cameras

that capture images (left and right) at the same time and transmit them to an external

computer device for processing [118]. The depth is estimated using triangulation(re-

projection) from the geometric model of non-distorted rectified cameras Figure 2.14.

Assuming that the two cameras are co-planar with parallel optical axes and same focal

length fl = fr , the depth Z of each point L is calculated by the Equation 2.6, here B is the

baseline distance and xi l − xir is the disparity value.

Z =
f ∗B

xi l + xir
(2.6)

31





2.4. VISUAL SLAM AND 3D RECONSTRUCTION

Item Value
IntelRealsense D415 Kinect v2 ZED

Depth technology Active IR stereo Time of Flight (ToF) Stereo Camera
Depth Resolution 1280x720@30fps 512x424@30fps 2208x1242@15fps
Color Resolution 1920x1080@30fps 1920x1080@30fps 2208x1242 @15fps
Min Depth Distance 0.3 m 0.5 m 0.3 m
Max Range ∼ 10 m 4.5 m 40 m
Depth Field of View 69.4◦x42.5◦(±3◦) 70◦x60◦ 90◦ x 60◦

Baseline 55 mm 75 mm 120 mm

Table 2.2: The technical specification of 3D scene capture sensors

(a) (b)

Figure 2.15: (a) Sparse reconstruction of a map using feature-based approaches [101] and
(b) a dense reconstruction of an office [170].

These challenges have motivated the development of dense mapping techniques that

aim to use information from every pixel from the input frames to create 3D maps Figure

(b) 2.15. The most widely used dense 3D reconstruction algorithms have mostly followed

two strains: volumetric (voxel-based (see subsection 2.5.2.3)) and point-wise (surfel-based

(see subsection 2.5.2.2)). After the popularity of KinectFusion [70], volumetric reconstruc-

tion has become the predominant approach. The depth map from the RGB-D camera is

used to store the truncated signed distance to the closest surface in each voxel. This is

parallelizable, whereas the 3D mesh surface representation is extracted from the voxel

volume using the Marching Cubes algorithm [13]. The camera tracking is done with the

Iterative Closest Point algorithm (ICP). KinectFusion matched the increasing popularity

in GPGPU with the high-quality real-time depth maps provided by the Kinect sensor 2.3

to produce a system capable of camera frame rate dense 3D reconstruction. However,

in spite of their popularity, volumetric methods have been shown to lack flexibility, e.g.,

expensive loop closures, fixed voxel resolution and voxel size limiting the quality of thee

reconstruction, etc. [138].

The surfel-based approach instead represents the scene with a set of points [81, 170].

The point, i.e., surfel coordinates can be updated very efficiently, and the method is in-

herently adaptive for higher resolution requirements. It applies local model-to-model

surface loop closure optimizations frequently as possible. This allows the system to stay
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Figure 2.16: The Moving Person scene. Person sits on a chair, is reconstructed, and
then moves. Dynamic parts occupy much of the field-of-view and cause ICP errors with
previous approaches (top row). Segmenting the dynamics (A) and ignoring them during
pose estimation (B) allows increased robustness (bottom row) [80]

close to the mode of the map distribution while utilizing global loop closure to recover

from arbitrary drift and maintain global consistency. The main limitation is the computa-

tionally expensive meshing method required to generate continuous surfaces [138]. Both

these approaches are currently being investigated in the research community [138, 28,

74].

Most sparse and dense 3D Reconstruction for static environments assumes the en-

vironment is static. Moving objects might be detected as outliers and ignored, which

creates a failure of camera tracking and cannot robustly handle scene motion. For these

challenges, a real-time dynamic environment reconstruction system is necessary. More

recently, many researchers have begun exploring this area. Keller et al. [80] presented a

simple and flat point-based representation, which directly works with the input acquired

from range/depth sensors and dynamic objects are initially indicated by outliers in point

correspondences during ICP and used a point-based region growing procedure to identify

dynamic regions. These regions are excluded from the camera pose estimate, and their

corresponding points in the global model are reset to unstable status, leading to a natural

propagation of scene changes into our depth map fusion as shown in Figure 2.16.

More recently, researchers have begun to leverage Deep Neural Networks and their

ability to learn from large amounts of training data to improve 3D reconstruction. This

technique can add semantic information to the SLAM, enhancing the dense, dynamic 3D

reconstruction. This approach is usually referred to as "semantic SLAM" that includes the

semantic information into the SLAM process to improve the performance and represen-

tation by providing high-level understanding, robust performance, resource awareness,
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and task-driven perception.

Xujie et al. [77] categorized the approaches of dealing with dynamic objects in visual

SLAM into three main directions:

• Deforming the whole world in a non-rigid manner in order to include a moving

object [112].

• Specifically building a single static background model while ignoring all possibly

moving objects and thus improving the accuracy of camera tracking [71] [141]

[4][7].

• Modeling the dynamic components by creating sub-maps for every possibly rigidly

moving object in the scene while fusing corresponding information into these sub-

maps [132] [5][131] [176] [109] [105] [153] [50].

The reconstruction of dynamic scenes is computationally and algorithmically more

challenging than its static reconstruction counterpart. Modeling the non-rigid motion of

general deforming scenes requires orders of magnitude more parameters than the static

reconstruction problem [112]. In general, finding the optimal deformation is a high-

dimensional and highly non-convex optimization problem that is challenging to solve,

especially if real-time performance is the target.

A recent research approach in dynamic 3D reconstruction working at a maximum

of 5Hz [131], demonstrates the challenges in this domain. The proposed approach is a

multi-instance dynamic RGBD SLAM system takes full advantage of using instance-level

semantic segmentation: Mask R-CNN [55]. Although, the semantic segmentation pro-

vides good object masks, it suffers from latency (around 5 Hz) and object bounderis leak

into boundaries. For this reason the proposed approch applied a geometric segmentation

algorithm, based on an analysis of depth discontinuities and surface normals. The same

semantic segmentation technique Mask R-CNN is used by Xu et al. [176] and Bescos et

al. [7] to find semantic instances. The research work by Xu et al. [176] (see Figure 2.17)

used an octree-based volumetric representation, that follows geometric edge refinement

to solve leaked mask boundaries and this work can run at 2-3 Hz on a CPU, excluding

the instance segmentation. The work by Bescos et al. [7] named : DynSLAM tracking,

mapping and inpainting in dynamic scenes. Using the semantic segmentation most of the

dynamic objects can be segmented. However, there are objects that cannot be detected by

this approach because they are not a priori dynamic, but movable. For this reason they

proposed to use multi-view geometry models to assign keypoints in to static and dynamic

objects.

Dense semantic SLAM beyond indoor scene reconstruction was proposed by Bescos et

al. [5]. The techniques uses a volumetric representation based on voxel block hashing for

large scale environment. A stereo camera is used to infer the egomotion and reconstruct

the surrounding world. The system estimate the 3D motion of each new detection using
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Figure 2.17: Qualitative demonstration of the work MID-Fusion [176] input RGB (top
row), semantic class prediction (middle row) and geometry reconstruction result (bottom
row).

the scene flow and semantic segmentation information, comparing it to the camera ego-

motion to classify each object as static, dynamic, or uncertain. The semantic segmentation

process uses Multi-task Network Cascades (MNC) [29]. The system is capable of running

on a PC at approximately 2.5Hz.

2.5 Efficient 3D Rendering

A rendering pipeline generates 2D images of a 3D scene, given a specific camera pose

and light sources. Once a real-time point cloud is acquired or reconstructed, the graphics

pipeline turns the 3D scene into 2D displays for visualization. The pose and shapes of

the 3D scene are determined by their geometry, the environment’s characteristics, and

the camera’s placement in that environment. The appearance of the objects is affected

by material properties, light sources, textures (images applied to surfaces), and shading

equations [3]. The steps required for the rendering process rely on the software, hard-

ware, and desired display characteristics. The most used universal graphics application

program interfaces are Direct3D [150] and OpenGL [83]. The most common rendering

pipeline is presented in the following section.

2.5.1 Rendering Pipeline

A real-time graphics rendering pipeline consists of several stages, each performing part

of a larger task. These stages execute in parallel on hardware on graphics cards and

general-purpose graphics processing units (GPGPU’s). A coarse division of the real-time

rendering pipeline into four main stages — application, geometry processing, rasteriza-

tion, and pixel processing as shown in Figure 2.18.
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a location in world space and a direction used to place and aim the camera. After the

camera has been placed and oriented in world space, the view transform is applied. The

view transform’s purpose is to place the camera in the origin of the world coordinate

system and aim its direction down the positive or negative z-axis (depending on the

implementation), aligning the geometry in the same way as shown in the Figure 2.20.

After the view transformation is applied, the new coordinate system is known as the view

coordinate system or view space.

Figure 2.20: The view transform, adopted from [3].

(2) Vertex Shading: To produce a realistic scene, it is not sufficient to render the shape

and position of objects, but their appearance must be modeled. Shading is the operation

performed to determine the effect of a light source on the geometry. To produce a realistic

scene, it is not sufficient to render the shape and position of objects, but their appearance

must be modeled. Shading is the operation performed to determine the effect of a light

source on the geometry. The shading process involves computing a shading equation at

various points on the object. Typically, some of these computations are performed during

geometry processing on a model’s vertices, and others may be performed during per-pixel

processing [3].

(3) Projection: The rendering pipeline perform projection and clipping, which trans-

forms the view volume into a unit cube with its extreme points at (−1,−1,−1) and (1,1,1).

That makes it easier for the rasterizer to render things. This unit cube is called canonical

view volume. There are two main types of view volumes of interest: orthographic and

perspective projections.

Orthographic projection is the simplest type: it consists of simply projecting points

and vectors parallel onto a plane . The view volume is a rectangular box that is then

transformed into a unit cube by the projection transform. The main characteristic of an

orthographic projection is that lines that are parallel before the transformation remain

parallel after it (see Figure 2.21-right).

The perspective projection is a more complex case. In this projection, the farther an

object is from view, the smaller it appears after the transformation. In contrast to the

orthographic projection, parallel lines may converge at the horizon (see Figure 2.21-left).
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an overview of general strategies that improve the efficiency of 3D geometry rendering.

2.5.2.1 Polygon Simplification

One of the early works used to improve rendering performance is by adapting a sampling

function that reduces the complexity of the input 3D scene. A technique used to simplify

a 3D scene is a static polygon simplificationmethod; this technique can be categorized into

two parts: geometric simplification and topology simplification. The most basic geomet-

ric simplification techniques are vertex clustering or vertex removal techniques [58] [165].

However, as discrete changes between the models from the set can become visible, dy-

namic simplification methods have been developed to simplify the model continuously at

runtime, which makes the algorithm for a dynamic continuous level-of-detail and easier

for network streaming [3].

2.5.2.2 Point-Based Approaches

Levoy et al. [133] presented a 3D geometry representation and rendering technique based

on points. A more lightweight rendering of large-scale hundreds of millions of polygon

can be derived by removing or averaging nearby points in the set, directing to Point-Based

approaches. Pfister et al. [124] presented point primitives without explicit connectivity

representation technique called surface elements (surfels). These surface elements store

positions, normals, weight, radius and color. Surfels are rendered using an octree-based

approach and splatting. A more detailed survey on point-based rendering techniques can

be found here [135].

2.5.2.3 Voxel-Based Approaches

Voxel-Based approaches are another way of simplifying the rendering process. Voxel-grids

are a regular grid structure of different attributes; the regularity in the structure makes

them well suited for Level of Detail approaches as coarser representations of a scene can

be represented by downsampling the 3D grid to a grid with a lower resolution. Laine

and Karras [88] presented a compact data structure for storing voxels and an efficient

algorithm for performing ray casts using voxel grid structures.

2.5.2.4 Model-Driven Approaches

Further researchers have proposed a Model-driven approach that augments the tech-

niques described above: This techniques exploit human perception. One of the early

works is an image-driven simplification, a framework that uses images to decide which

portions of a model to simplify [92]. Similar to this work, Scoggins et al. [140] presented

a method to enable matching of level-of-detail (LOD) models to image-plane resolution.

A relationship is developed between image sampling rate, viewing distance, object projec-

tion, and expected image error due to LOD approximations. These techniques measure
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the perceived quality of the output based on the view or image contrast and the spatial

frequency. However, they do not focus specifically on textures and effects caused by

dynamic lighting, as this needs a deeper knowledge of low-level perceptual processes.

Research work byWilliams et al. [173] presented amodel of low-level human vision to

estimate the perceptibility of local simplification operations in a view-dependent Multi-

Triangulation structure. Their algorithm improves on prior perceptual simplification

approaches by accounting for textured models and dynamic lighting effects. A high-

level perception and attention mechanism have been investigated to preserve the salient

features of the mesh using attention mechanisms [61].

2.5.2.5 Gaze-Contingent Approaches

Head and eye trackers as well as inertial measurement units can be utilized to simplify

a 3D geometry Level of Detail. This techniques is called Gaze-Contingent approaches

[165][96, 122]. This approach can be used to simplify simplify geometry progressively

based on the gaze. The degree of mesh simplification is controlled by a perceptual model

that exploits the visual acuity and the contrast sensitivity of the HVS. A large and growing

body of research has investigated how to utilize the HVS. Guenter et al. [49] presented

one of the first foveated rendering techniques to accelerate graphics computation. They

proposed the rendering of three eccentricity layers around the user’s fixation point and

each layer’s parameters were set by calculating the visual acuity. Stengel et al. [149]

proposed gaze-contingent rendering that only shades visible features of the image while

cost-effectively interpolating the remaining features, leading to a reduction of fragments

needed to be shaded by 50% to 80%. The work by Bruder et al. [15] used a sampling

mask computed based on visual acuity fall-off using the Linde-Buzo-Gray algorithm. The

sampling mask is used to reconstruct the image based on Voronoi cells using natural

neighbor interpolation, and apply temporal smoothing to attenuate sampling artifacts. In

the commercial domain, more and more VR headsets are exploiting foveated rendering

for increased realism and reduced graphical demands [17].

2.6 Immersive Visualization Systems For Teleoperation and

Telepresence Applications

The majority of research works for Telepresence or Teleoperation applications, provided

video interface through monocular and stereoscopic 360◦ videos [97]. Unfortunately,

these interfaces only allow users to see from a fixed direction [33]. Furthermore, they

do not respond to any head motion such as moving left/right, forward/backward, or

up/down. Immersive Teleoperation interfaces require a freedom of motion in six degrees

of freedom so that users can see the correct views, regardless of where the user is and

where the user is looking. Researchers have long seen the advantages of using 3D VR

environments in telepresence [6, 106]. The more recent investigations have focused on
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using affordable VR devices in live human telepresence as well as remote human-robot

interaction [119, 93], integrating VR graphics engine softwares (e.g., Unity3D, Unreal)

with compatible hardware. However, as noted previously, most traditional approaches

have been limited in their scope for telepresence [97, 18, 75].

On the other hand, VR-based immersive interfaces for robotic teleoperation have

gained a lot of traction in recent literature, which include models of the remote robots

along with the real-time point-cloud rendering inside VR as well as gesture tracking

approaches and real-time stereo video [123, 87, 93, 159, 171, 130]. Most of these ap-

proaches rely on standard encoding and communication protocols, e.g., those included

in ROS [127], Point Cloud Library (PCL) [134], UDP-based streaming protocols (Real-

time Transport Protocol (RTP), Real Time Streaming Protocol (RTSP)) for video / image

formats.

Maimone et al. [99] were one of the first researchers to investigate a telepresence sys-

tem offering fully dynamic, real-time 3D scene capture and viewpoint flexibility through

head-tracked stereo 3D display. Orts-Escolano et al. [119] presented "holoportation" do-

ing high quality 3D reconstruction for small fixed-sized regions of interest. Authors in

[41, 107] present remote exploration telepresence systems for large- and small-scale re-

gions of interest with reconstruction and real-time streaming of 3D data. Researchers

at the University of Bonn have taken this idea further with simultaneous immersive live

telepresence for multiple users for remote robotic telepresence and collaboration [167,

151]. These systems use one entity (robot or another user) to capture the data, a cloud-

based real-time reconstruction framework that does camera localization and volumetric

fusion in real-time. It consists of a cloud server to manage the global scene model, control

the data transmission according to the requests by remotely connected users, and visual-

ization components that update the locally generated meshes for the individual remote

users. This system uses voxel block hashing for low latency streaming and reconstruction

of the environment for remote users. The authors evaluated the proposed system for

live-telepresence as well they evaluate its use for robot teleoperation and showing it’s

benefits over purely 2D video-based teleoperation. User experience evaluation showed

that the proposed system was well-suited for teleoperation and allowed moving the robot

to target positions more efficiently; users had a high degree of situation awareness and

self-localization in the simultaneously captured scene and could easily assess the terrain

for navigation purposes.

A good example of an immersive visualization system for remote telerobotic appli-

cations can be found in research work by research work by Naceri et.al. [108]. In this

research work, the authors showed a system named "Vicarios", a VR based interface to

facilitate intuitive real-time remote teleoperation while utilizing the inherent benefits of

VR, including immersive visualization, freedom of user viewpoint selection, and fluidity

of interaction through natural action interfaces. As shown in Figure 2.23, The setup have

different components for the user, the remote environment, and a visualization interface.

A gesture/motion controllers at the user site convey the commands to the remote robots.
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Figure 2.23: Vicarios interface: the user teleoperating a remote robotic arm using the HTC
vive pro VR system, Unreal Engine (UE) VR graphics engine, Remote camera provides
video and depth feedback in real-time, image adapted from [108].

The remote environment and the robot model are rendered virtually in the VR interface.

Between the user and the remote environment a communication network is established

to allow a real-time data exchange, i.e., sending commands, receiving remote robot status,

and receiving real-time video and point-cloud information. The authors did user studies

to understand the performance and utility of the interface and test the effectiveness of the

different features, including teleporting and viewpoint-independent motion mapping. In

particular, they performed hypothesis testing to assess the impact on the user, positive or

negative, of the Vicarios VR-based interface, against the traditional video-only interface.

The findings of this study suggest that users’ performance with the VR-based interface

was either similar to or better than the baseline traditional stereo video feedback, sup-

porting the realistic nature of their VR-based immersive interfaces. This study concludes

that latency is an inevitable problem in teleoperation interfaces that profoundly alters

the operators’ performance.
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2.7 Conclusion

This chapter presented the most relevant theoretical foundations to remote telepresence

and telerobotics systems; It briefly described the technology and gives an overview of

recent research works on 3D tele-immersive systems (section 2.1.1). Furthermore, It

explained why designing and studying immersive interfaces is valuable for improved

interactions in remote visualization systems, especially how to present complex remote

scenes into a representation that can be presented to a user 2.1. The section presented the

essential psychological and physiological principles of the human user, and following it

presented technological factors in Immersive visualization systems. Section 2.2 presented

a general overview of the HVS and its limitations and the associated models to describe

key visual processes or mechanisms; it briefly presented the limitations and potentials of

the human vision and presented how the vision in the periphery differs from that near

the center. In addition, It looked briefly at the separate brain areas that determine our

perception of different qualities.

Later, Section 2.3 provided more insight into remote sites (environment) by studying

state of the art in environmental scene acquisition techniques, mainly 3D capture tech-

niques, and then provided an insight on how to create a realistic, high-quality virtual

environment from the acquired information using visual SLAM techniques (section 2.4)

and finally, it briefly described how to visualize (render) the information to the user, once

a real-time point cloud is acquired or reconstructed, the graphics pipeline renders the

3D scene for the head-mounted display, This implies rendering the scene twice, once for

each eye (section 2.5).

In Section 2.5.2, the thesis discussed the problem of efficient rendering when there is

a requirement for efficient and realistic visualization. It discuss on how to have high pixel

density and refresh rates for realism, interaction, and immersion. It discussed different

approaches for efficient rendering. The final section in this chapter has discussed different

state of the art literature works in immersive visualization systems for teleoperation and

telepresence applications.
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3

Gaze contingent Remote-Immersive

Visualization Framework

“Every day the urge grows stronger to get hold of an object at

very close range by way of its likeness, its reproduction.”

(Walter Benjamin, 1936)

The previous chapters presented a brief investigation of the state-of-the-art immersive

interfaces for telepresence and teleoperation systems and technological, perceptual, and

cognitive constraints in designing such systems. The next step taken in this chapter is

to develop immersive remote visualization framework that utilizes acuity fall-off in the

HVS to facilitate the processing, transmission, buffering, and rendering in VR of dense

3D reconstructed scenes while simultaneously reducing throughput requirements and

latency. This chapter addresses research question 3:

Research Question 3: How do we design an improved remote visualization system using

the HVS with reduced latency and throughput requirements compared to the current state of

the art techniques?

The work in this chapter is based on the following publication:

Journal: Towards Foveated Rendering For Immersive Remote Telepresence, Yonas

Tefera, Dario Mazzanti, Sara Anastasi, Darwin G. Caldwell, Paolo Fiorini, and N. Desh-

pande, The Eurographics Association, 2022.

Conference: Towards FoveatedRendering For Immersive Remote Telerobotics, Yonas











3.1. EXPLOITING HUMAN VISUAL SYSTEM ACUITY

with the eye relief distance, deye equation, given by Eq. (3.6).

d = d
′

∗
f

f − d ′
(3.5)

dvi = d + deye (3.6)

h = h
′

∗Ml = h
′

∗
f

f − d ′

w = w
′

∗Ml = w
′

∗
f

f − d ′

(3.7)

Eq. (3.7) gives the width and height (in units of length) of the virtual image, which

is essentially that of the virtual image scaled by Ml . Eq. (3.8) instead confirms that the

resolution of the virtual image in pixels is the same as that of the microdisplay.

hp = h
′

p

wp = w
′

p

(3.8)

3.1.3.1 Foveation In The Virtual Image

The virtual image inside the HMD can be understood to be the 3D data being shown to a

remote user in immersive remote visualization system. Projecting the foveated regions of

the human eye on to the virtual image implies introducing concentric regions in it that

correspond to the retinal fovea regions. These concentric regions would be centered on

the center of the human eye gaze on the virtual image. That is, the regions would move

around the virtual image as the eye gaze moves. Each region would have a specific radius

and its associated visual acuity, i.e., degradation in quality. Fig. 3.4 shows an example of

the foveal regions on the virtual image.

Since the intention is to project the retinal regions, to calculate the radius of each

concentric region, the eccentricity values noted in Table 3.1 can be used. The radii rn
∀n ∈ {0...N }, for each of the N retinal regions are calculated using the tangent of the

corresponding eccentricity, scaled by the distance dV i , as noted in Equation (3.9).

rn = tan(en) ∗ d
V i (3.9)

Conversely, to know which part on the virtual image lies in which concentric region,

the angle subtended by the objects in the virtual image at the eye can be used. As seen

in Fig. 3.4, the visual angle subtended by an object on the virtual image in the region r1
at the eye is given by e1 in degrees of arc. The projected length of the object is measured
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from the center O which is on pixels (xo, yo) and point q at a position (xq, yq) (in pixels),

and is calculated as,

d(O,q) =

√

(

(xq − xo) ∗w

wp

)2

+

(

(yq − yo) ∗ h

hp

)2

(3.10)

The subtended angle can then be calculated using,

e1 = arctan

(

d(O,q)
dV i

)

(3.11)

3.2 Real-time 3D Data Acquisition and Mapping

The acquisition and reconstruction module acquires RGB-D images from the RGB-D

cameras, e.g., Intel RealSense, ZED stereo camera, section 2.3. The mapping pipeline

leverages the state-of-the-art real-time dense visual SLAM system, ElasticFusion [170],

and adds functionalities, as explained in the following.

The map M is represented using an unordered list of surfels [124], where each surfel

M
s has a position p ∈ R3, a normal n ∈ R3, a color c ∈ R3, a weight w ∈ R, a radius r ∈ R,

an initialization timestamp t0, and a current timestamp t. The camera intrinsic matrix

K is defined by: (i) the focal lengths fx and fy in the direction of the camera’s x− and y−

axes, (ii) a principal point in the image (cx, cy), and (iii) the radial and tangential distortion

coefficients k1, k2 and p1,p2 respectively. The domain of the image space in the incoming

RGB-D frame is defined asΩ ⊂N
2, with the color image C having pixel color c : Ω→N

3,

and the depth map D having pixel depth d : Ω→ R.

Given K, the 3D back-projection of a pixel ui = [xi , yi ]
T ∈ Ω for a given depth value

d(ui ) ∈D is defined as pi(ui ,d(ui )) =K−1 [ui ,1]
T d(ui ). Over all pixels ui , this converts the

RGB-D frame into a 3D map model. Further, the perspective projection of the 3D point

p(x,y,z) is defined as u = π(Kp), where π(p) = [x/z,y/z]T denotes the dehomogenization

operation. The intensity value of the pixel u ∈ Ω in the color image C with color c(u) =

[c1, c2, c3]T is defined as I(u,C) = (c1 + c2 + c3)/3.

At each time step t, Ct and Dt are registered into the map model Mby estimating the

global pose of the camera Pt , with rotation Rt ∈ SO(3) and translation tt ∈ SE(3) with

respect to the previous pose estimate Pt−1. This registration provides the relative change

from t to t − 1.

Pt =













Rt tt
0 0 0 1













∈ SE(3) (3.12)

The alignment between the current colorCt and depthmapDt with those of the active

map model from the previous pose estimates, is achieved by minimizing a joint tracking
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error Etrack , composed of the geometric and photometric error functions Eicp and Ergb

respectively.

Etrack = Eicp +wrgbErgb (3.13)

The weight wrgb is empirically set to 0.1 reflecting the difference in units between the

two error terms [169]. The geometric error function Eicp estimates the back-projection

error from the current depth map Dt to the model depth map from t − 1.

Eicp =
∑

i

((

vi −
(

exp(ξ̂) ·T · vit
))

·ni
)2

(3.14)

Here vit is the back-projection of the ith vertex in Dt . vi and ni represent the corre-

sponding vertex and normal in themodel depthmap from t−1. T is the current estimation

of the transformation of the camera pose from t − 1 to t, and exp(ξ) is the matrix expo-

nential that maps a member of the Lie algebra se(3) to a member of the corresponding

Lie group SE(3) [170].

ua = π
(

K · exp(ξ̂) ·T ·p(u,Dt)
)

Ergb =
∑

u∈Ω

(I(u,Ct)− I(u
a,Ca

t−1))
2 (3.15)

Similarly, the color from the current frame Ct and the map model color estimate

Ca
t−1 is used to find the photometric error Ergb (intensity difference) between pixels. To

minimize the function in Eq. 4.7, the Gauss-Newton non-linear least-squares method is

used from [170]. The process continues iteratively to generate the 3D reconstructed scene

in real-time. Figure 3.5 shows two sample 3D reconstructed scenes.

(i) (ii)

Figure 3.5: Real-time 3D reconstruction of a living room and office space, captured in
real-time.

3.2.1 Map Partitioning and Sampling

For brevity, the symbol M is used interchangeably for both, the real-time point-cloud and

the global surfel map. The density of M, especially at high resolutions, implies increased

computational complexity and more graphical and time resources for streaming it in
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the point-of-view of voxelization. To overcome this issue, we take advantage of the parti-

tioned point cloud and calculate one dV i value for the entire P0 region, approximated as

the distance from the eye to the 3D centroid of point-cloud in the region, Eq. (4.11).

pc0 =
1

NP0

















NP0
∑

i=1

xi ,

NP0
∑

i=1

yi ,

NP0
∑

i=1

zi

















(3.18)

dV i
0 = d(eye,pc0) (3.19)

, where NP0
is the number of points of the point cloud in the fovea region P0. Then, Eq.

(4.10) is re-written as Eq. (4.13) to give the voxel size v0 for the region.

v0 = dV i
0 ∗ tan(MAR0) (3.20)

Once the voxelization of region P0 is finalized, for the subsequent concentric regions

from P1 to Pn, the voxel sizes are correlated with the linear MAR relationship in Fig.

3.3. Using the voxel size for P0 as the base size, as the eccentricity angle of the regions

increases, so do the voxel sizes, in proportion to the increasing MAR. This correlation is

captured in Eq. (4.14), ∀n ∈ {1, ...,N }.

MARn =m ·En +MAR0

vn =
MARn

MARn−1
∗ vn−1

(3.21)

The increasing voxel size away from the fovea region implies more and more points of

the point-cloud in the corresponding regions are now accommodatedwithin a single voxel.

Therefore, when the down-sampling step is applied, the approximation of the point-cloud

within a voxel is done over progressively dense voxels. For the down-sampling part, since

the region P0 is the fovea region, which should have the highest visual acuity, it is left

untouched, with the density of the point cloud in the region remaining the same as

that determined by the incoming global map density, M0. The down-sampling in the

subsequent peripheral regions is done by approximating the point-cloud within each

voxel with its 3D centroid, using Eq. (4.15).

pcvn (x,y,z) =
1

N v
Pn



















N v
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N v
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∑

i=1
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(3.22)

Here N v
Pn

is the number of points in voxel v of the region Pn (∀n ∈ {1...N }). This

process not only reduces the point-cloud data, but also maintains the shape characteristics

of the point-cloud, allowing a more accurate approximation of the surface. Fig. 3.7

shows the sample voxel grids for the different regions, while Fig. 3.8 shows the centroid

approximation of the point-cloud.
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3.3.1 User Site

The user site manages the: (1) decoding and rendering of the streamed point-cloud data,

(2) tracking of the eye-gaze and HMD pose, and (3) real-time transfer of this information

to the remote site.

To visualize and explore the incoming point-cloud, a VR-based interface is designed

using the UE graphics engine on Windows 10. This creates the immersive remote visu-

alization system environment for the user. As noted earlier, there is an interdependence

between the user site and the remote site, in that, the eye-gaze data from the user site

is required for the foveation model at the remote site. The foveated point-cloud is then

streamed back to the user site to be rendered for visualization. Furthermore, the user site

and the remote site are independent environments with their respective reference frames.

It is therefore necessary to implement appropriate transformations among all the entities

to ensure correct data exchange and conversion. As shown in Figure 3.10, the reference

frames are as follows: UE world coordinate frame U, HMD coordinate frame E, and the

gaze direction vector E ~D ∈ R3 on E.

To calculate the correct gaze pose in U, transforming E ~D from E → U is required,

through the head pose UH on U, as follows:

U ~D =U H ·E ~D (3.23)

This gaze direction U ~D, along with the head pose H are communicated to the remote

site for further processing. Further, the received point-cloud from the remote site is

visualized in UE and needs to be positioned based on the pose of the camera positioned

at the remote site. At the remote site, the coordinate system of the camera pose, OP is

in OpenGL, O. The pose has to be transformed, using a change-of-basis matrix, into the

UE coordinate system. UE uses a left-handed, z-up coordinate system, while the camera

coordinates of OpenGL use a right-handed coordinate system, y-up. Eq. (3.24) provides

the coordinate transformation formula, where B is the change-of-basis transformation

matrix (see Appendix A).

UP = B ·O P ·B−1 (3.24)

At the user site, rendering the received real-time dynamic point-cloud data from the

remote site requires a high speed large data transfer, as well as efficient and high quality

visualization. To meet these requirements, the following modules were developed, as

seen in Figure 3.9:

1. Single / Parallel streamer: The incoming point-cloud can be received as a single

stream, combining all the foveated regions of the point-cloud, or as parallel separate

streams of the regions. Single streams have the advantage of synchronized data, but

can be very heavy in terms of bandwidth requirements. Parallel streams can help

the network optimize the data transmission, reducing simultaneous bandwidth
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requirement. However, parallel streams may also suffer from varying data trans-

mission rates due to network delays and size differences. To address this issue, all

streamed point-cloud regions are timestamped and a buffer resource module is cre-

ated at the user site for software synchronization using the local clock synchronized

with a central NTP server [1].

2. A real-time point-cloud decoder: that decompresses the data received at the user

site. The decoding module includes the state-of-the-art point-cloud codec algorithm

from [103] and uses the Boost ASIO over a TCP socket for data transfer.

3. Conversion system: Each decoded point-cloud region Pn(∀n ∈ 1, ...,N ) has to be

converted into a texture for visualization, where the reference frame of the received

data has to be transformed into that of the user site, i.e., the UE graphics engine

coordinate system.

4. A rendering system: The data should be transferred to the GPU and made accessi-

ble to the graphics engine shader for real-time rendering.

3.3.2 Remote Site

The remote site system consists of modules for acquisition, reconstruction, sampling,

and streaming of 3D reconstructed maps, as shown on figure 3.9. The RGB-D data

acquired will go through a software pipeline as described in detail in section 3.2 for real-

time reconstruction. While real-time reconstruction is in progress, a parallel module will

receive information about head pose UH and the gaze direction U ~D from the user site. The

coordinate system of the head pose UH and the gaze direction U ~D has to be transformed

from the UE frame, U, to the remote site OpenGL coordinate system, O, using a similar

change-of-basis matrix, Eq. (3.25). Here: Q is the change-of-basis transformation matrix

from UE to OpenGL. Figure 3.10 left, shows the reference frames of the remote site and

they are described as follows: OpenGL world coordinate frame O and the camera frame

C.

OH =Q ·U H ·Q−1

O ~D =Q ·U ~D ·Q−1
(3.25)

As noted in section 3.2, in every frame the color image C and depth map D are

registered into the mapmodelMby estimating the global pose of the camera P. Therefore,

the gaze direction vector O ~D and the head pose OH have to be transformed into the camera

coordinate frame, in order to perform map partitioning and sampling.

CH = P−1 ·O H

C ~D = P−1 ·O ~D
(3.26)
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interact with the VR environment through the Tobii gaze tracker and the HMD

gesture controllers.

3. Remote site acquisition hardware: The ZED stereoscopic camera and the Intel Re-

alsense RGB-D camera were used for implementation. The remote site computing

unit consisted of an MSI GE63 Raider laptop with Intel Core i7-8750H CPU @ 2.20

GHz, 12 cores and with an Nvidia GP104M Graphics card running Ubuntu Linux.

4. Communication hardware: A point-to-point direct Ethernet LAN connection was

used between the server and the client, passing through the NightHawk Pro Gaming

(SX10) 10 Gbit/s switch.

3.5 Experiment Design

The experiment design focused on the evaluation of the FR framework using online and

acquired datasets, through defined experimental conditions and benchmarked against

defined objective metrics.

3.5.1 Datasets

To allow a thorough evaluation of the framework implementation, the strategy was to use

datasets that would help test it against benchmarks available in literature. For this, it was

decided to use two known static world datasets from literature, available online. Further,

to ensure that the complete FR framework pipeline is evaluated, two real world datasets

were acquired using the remote site hardware described earlier and sample images are

shown in Figure 3.11.

For the online datasets, the ICL-NUIM synthetic dataset was used, which provides

benchmarking for RGB-D, Visual Odometry, and SLAM algorithms [51]. It consists of

two different scenes, the living room (LIV) and the office room (OFF) provided with the

ground truth. Being static worlds, these datasets are not enough to reflect the dynamics

of a real world environment.

The two acquired real world datasets consisted of (i) a kitchen area (KIT) with ar-

ranged objects, e.g., microwave, utensils, glasses, etc., and (ii) a dynamic scene with a

moving balloon (BAL), captured in a lab area (inspired by the TUM dynamic scene dataset

[121]).

3.5.2 Experimental Conditions

The experimental analysis was performed to understand the impact of the FR framework

on visual quality for the user as well as the changes in the computational and network

performance of the system. Taking reference from the six foveation regions mentioned in

Table 3.1, three test foveation conditions were created, each having a different combina-

tion of the regions projected into the point-clouds.
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(a) Kitchen area (KIT)

(c) Office   room (OFF)

(b) Balloon (BAL)

(d)  Living  room  (LIV)

Figure 3.11: Sample frames from the 4 evaluation datasets.

• F1: The visual field of the point-cloud is divided into four regions based on the

eccentricity angles, (i) Fovea (5◦), (ii) Parafovea (8◦), (iii) Perifovea (18◦), and (iv) the

rest of the point-cloud. The foveated sampling in the first three regions follows the

strategy outlined in sec. 3.2.2 for progressive down-sampling. The 4th region, i.e.,

the remaining point-cloud is sampled using the voxel sizes for the far peripheral

region in Eq. (4.14). The hypothesis is that in this condition, the reduction in

visual quality would be evident, but it would also offer the highest computational /

network performance gain.

• F2: The visual field is divided into five regions - the Fovea, Parafovea, and Perifovea

(as above), then the near peripheral region (up to 30◦), and then the rest of the point-

cloud. Here again, the foveated sampling strategy is as in the F1 condition, with

the addition of the near peripheral region before the rest of the point-cloud. This

mapping is chosen as the middle point, an expected intuitive balance between the

visual quality degradation and the performance gain.

• F3: The visual filed is divided into six regions - the Fovea, Parafovea, Perifovea, and

near peripheral (as above), then the mid peripheral region (60◦), and then the rest of

the point-cloud in the far peripheral region. With this mapping, the visual quality

reduction is expected to be the least likely to be detected, but it would offer the least

computational / network performance gain, that could still sufficiently justify the

use of the FR framework.

In addition to the three conditions above, two reference conditions are created to

represent the two ends of the scale, no sampling to full sampling, to allow comparison
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with the FR framework.

• F0: The point-cloud in the visual field is not divided into regions. The sampling

strategy is applied across the whole point-cloud, using the voxel size of the far pe-

ripheral region in Eq. (4.14). This condition simulates the approach of uniformly

down-sampling a point-cloud before streaming it to a remote user, to save band-

width.

• FREF: The visual field is left untouched and the FR framework is not applied. On

this condition there is no visual field division and foveated sampling, it keeps the

acquired point-cloud as is and streams it to the user site.

3.5.3 Evaluation Metrics

The evaluation metrics utilized for the experiments help analyze the performance of the

FR framework in terms of the benefits it provides as well as the costs it imposes, when

implemented as part of an immersive remote visualization system system. The evaluation

is therefore carried out both through a quantitative (objective) and subjective assessment.

The quantitative metrics help objectively evaluate the FR framework in terms of:

1. The amount of data that can be reduced while streaming 3D reconstruction / point-

cloud data from remote site.

2. The improvement, or otherwise, in the data transfer rate in streaming.

3. The improvement, or otherwise, in the end-to-end latency.

4. The effect of the data reduction on the quality of the visualization for the user.

The subjective metrics help understand the user experience for having the FR frame-

work in an immersive remote visualization system setup at the user site.

3.5.3.1 Data reduction

The FR framework provides a method of reducing the number of points in a point-cloud,

i.e., the overall density, while maintaining the highest density in the center of the gaze

fixation. To evaluate this density reduction, a density estimation method proposed by

[45] is used. The volumetric density of a point-cloud is computed by counting the number

of neighbors N v
P
for each point p in the point-cloud P that lie inside a spherical volume v,

as seen in Eq. 3.27. NP is the total number of points in point-cloud P, and the spherical

volume is based on a radius R, whose value is by averaging the leaf size across foveated

regions.

Figure 3.12 illustrates a colored pointcloud and Figure 3.13 shows the concept of

the volumetric density for a sample point-cloud in color scale. To analyse the reduction

offered by the foveated conditions against the reference conditions, a density difference
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vddf in Eq. (3.28) is computed by subtracting the densities of the conditions under

consideration. vddf will show how much the density in particular conditions is changing

due to the application of the FR framework.

vdp =
N v

P

4
3 ·π ·R

3
...∀p ∈P (3.27)

vd
df
p = vd

ref
p − vd

test
p (3.28)

3.5.3.2 Data Transfer Rate

Any reduction in the amount of data for the point-cloud streaming would improve the

overall network data transfer rate between the user and remote sites. To measure this

rate,the network data packet analysis tool, Wireshark [136], was used.

Figure 3.12: Reference colored point cloud.

3.5.3.3 Latency

With the reduction in the data and the improvement in the data transfer rate, the FR

framework can potentially reduce the end-to-end latency for the data transfer, where the

acquisition and rendering are in physically separated environments. To understand the

contributing factors in determining the proposed system’s overall latency, it is decompose

it into sub-modules.

As briefly described in section 3.3, the FR framework is composed of modules, e.g.,

acquisition, mapping, conversion, etc., both on the user and the remote sites. The latency

analysis was done by measuring the latency for each of the modules: (1) on the remote

site - from reading RGB-D images (log-read), ray-casting, converting the global map into

PCL data structures (conversion), to sampling; and (2) on the user site, the decoding,
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Figure 3.13: Volume density estimated (VDref ) - in color scale.Point Density estimated
on the reference point-cloud using CloudCompare; r refers to the sphere radius used for
density estimation.

conversion, and rendering system modules. There are some hardware and software parts

of the framework, which have their latencies specified: (1) the HTC Vive Pro Eye has a

minimum declared eye tracker latency of around 8ms(120Hz); (2) The use of the ROS-

bridge network to communicate this to the remote site, implies publishing it through the

ROS gaze pose publisher at 10ms(100Hz).

3.5.3.4 Objective Quality Assessment

The FR framework facilitates reduction of data of the 3D reconstruction point-cloud.

However, this can result in degradation of the visual quality when the point-cloud is

rendered to the user. To understand this degradation, we propose to use the Peak Signal-

to-Noise Ratio (Peak Signal-to-Noise Ratio (PSNR)) metric, drawing inspiration from the

video compression research community.

The effect of the foveated sampling is to change the geometry, i.e., to distort the origi-

nal point-cloud. To assess this, the Point-to-Point PSNR-based geometry quality metrics is

frequently used as a measure of the distortion introduced by MPEG compression [2]. In

the case of point-clouds, this metric is calculated as follows: (1) First the point-to-point

symmetric root mean square (rms) distance is calculated between a pair of point-clouds,

e.g., between point-clouds in the FREF and F1 conditions, using the shortest distance

calculation1. The shortest distance calculation is done by measuring the shortest distance

between every point in one point-cloud and its nearest corresponding point in the second

point-cloud; (2) The PSNR is defined as a ratio of the diagonal distance of a bounding box

1“symmetric” implies the rms value is calculated in both directions, i.e., from FREF to F1 and vice versa.
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of the overall point-cloud over the symmetric rms distance value as shown in Eq. (3.29).

drms(P1,P2) =
1

√

NP1

NP1
∑

i=1

‖pi
P1
− pi

P2
‖2

dsym(P1,P2) =max(drms(P1,P2),drms(P2,P1))

PSNRpp = 10 · log10
‖maxx,y,z(P1)‖

2
2

(

dsym(P1,P2)
)2

(3.29)

NP1
is the number of points in point-cloud P1. pP1

represents a point in the point-

cloud P1, while pP2
is its closest corresponding point in P2.

In applications related to 3D reconstruction / point-clouds, the Point-to-Point metric

can be sensitive to size differences and noise when calculating the peak signal estimation.

For instance, the peak signal estimation for large and small size point-clouds, even when

applied with the same amount of distortion, would be different, and it will produce a

higher PSNR value for the large point-cloud and small value for the smaller size point

cloud. This should not be the case since each point-cloud has the same distortions. In

order to avoid this size and noise sensitivity, another PSNR metric, based on volumetric

density, is proposed here. This metric utilized two different volumetric density values for

the point-clouds under consideration: (1) its general volumetric density, as given by Eq.

(3.27). Here too, a symmetric density difference is calculated for the point-clouds; and (2)

its maximum volumetric density as the peak signal.

For the symmetric density difference calculation, for every point p in the point-cloud

P1, the closest corresponding point pnn ∈P2 is found. The vector vdP1
and vdP2

are then

estimated using Eq. (3.27). For the peak signal, the volumetric density is calculated with

the k-nearest neighbor approach, as seen in Eq. (3.30), to account for the distribution of

the density across the point-cloud, and avoid any skew in the values due to sensor noise.

vdp∈P1
=
1
k

k
∑

i=1

N v
P1

4
3 ·π ·R

3
,

vdmax
P1

= max
∀p∈P1

(

vdp

)

(3.30)

The value of k=10 was found experimentally, The density-based PSNR is calculated

similar to the point-to-point metric discussed earlier, as a ratio of the maximum density

of a reference point-cloud to the symmetric rms error in the general densities. Eq. (3.31)
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provides the equations to be used.

vdrms(P1,P2) =

√

√

√

√

1
NP1

NP1
∑

i=1

[

vdi
P1
− vdi

P2

]2

vdsym(P1,P2) =max (vdrms(P1,P2)),vd
rms(P2,P1))

PSNRvd = 10 · log10
(vdmax

P1
)2

(vdsym(P1,P2))
2

(3.31)

3.5.3.5 Subjective Quality Assessment

A user study is conducted to assess the user experience of the FR framework, especially

from the point-of-view of immersive remote visualization system systems, in situations

where there is a limited networking resources. The following two research questions were

considered in the study (adapted from the research work [166]):

Research Question 1: Can subjects differentiate between scenes with varying graphical

contexts, streamed with and without the proposed system?

Research Question 2: How do different combinations of the foveated regions impact sub-

jective quality perception?

This questions are answered through the user study as discussed here. Although liter-

ature is replete with several methodologies for subjective quality assessment for images

and videos, the same cannot be said for point-clouds. The most relevant methods were

found in [111, 62] and the ITU-T P.919 [68] for 3D videos and graphics and FR. Taking

inspiration from these, the Double Stimulus Impairment Scale (DSIS) was adopted for

this user study [68]. The method involves conducting the user trials in short sessions,

where the subjects are presented with the unimpaired condition, immediately followed

by the impaired (altered) condition of the stimulus for a comparative judgement. In this

case, the stimulus is the point-cloud (foveated vs. non-foveated). The subjects are then

asked to rate the alteration in the second presented stimulus using the following 5-point

scale [68], on whether it is:

• (5) imperceptible

• (4) perceptible, but not annoying

• (3) slightly annoying

• (2) annoying
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• (1) very annoying

The hypothesis for the study is that “it is easy to tell that a scene is visually represented

in a foveated way.” The expectation is that hypothesis is nullified, i.e., subjects are NOT

able to distinguish easily between the foveated and non-foveated representations. The

study is conducted over multiple sessions, with at least a five-minute break in between to

avoid fatigue. For initial training, subjects are allowed to familiarize themselves with the

VR HMD and the use of the gesture controller device for interaction. For the trial itself,

in each session, subjects are first presented with the FREF condition of a point-cloud,

followed by a 3-second pause, with one of the altered conditions (F0 - F3) following

immediately after. The sequence among F0 - F3 is randomized across subjects. The

subjects are asked to rate their assessment of the impairment on the 5-point scale within

each session itself. The arithmetic mean opinion score (MOS) is calculated for each

condition, averaged over all subjects.

3.5.3.6 Subjective Visual Search Assessment

As briefly described in section 2.2.5, The visual world is overwhelmingly rich — it con-

tains far too much information to perceive at once, and the visual system’s processing

capacity is limited by the high metabolic cost of cortical computations. Given these limits,

the human visual system needs mechanisms to optimally allocate processing resources

according to task demands. Typically, It scan the scene to aim the fovea at a place (salient

regions) that It want to process more deeply and shift to another item. Several studies

has shown that targets presented near fixation point (fovea) are, in fact, found more ef-

ficiently than are targets presented at more peripheral locations. However when targets

presented away from fovea accuracy reduces and increase search times and number of

eye movements [174, 38]. It takes longer to find a target in the periphery because fewer

cortical neurons are devoted to the analysis of peripheral visual information (cortical

magnification) Section 2.2. The human visual system have evolved gaze-shifting mecha-

nisms to overcome these limitations [95]. In addition, eye movements are also guided by

information about the target, including basic features color, size, orientation, and shape.

Adding distractors that share the same features with the target element affects the perfor-

mance: leading to significant increases in response times during the search [38, 36, 115,

54].

In applications such as search and rescue using remotely controlled robots, It is very

important to act fast when possible survivors (targets) might be trapped amongst the

debris. However, the environment could be destroyed and unstructured, which adds

additional distractors to the target. Target locations should be assessed with time and

bandwidth constraints in mind. Several methodologies has been proposed to measure

the performance of visual search. Taking inspiration from a research work [115], A

user study is conducted to assess attentional and distracter effects while using the FR

framework. Especially from the point-of-view of immersive remote visualiation systems,
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Research Question: How accurately an average subject would be able to find a target

visual stimulus amongst other visual stimuli (distracters) when presented in different foveation

conditions ?

The hypothesis for this study is that "Search performance and reaction time (RT) met-

rics are improved when a target is presented with high discriminability and foveated way

(as against non-foveated way). (Expectation: hypothesis is sustained, i.e., foveated repre-

sentation improves the search accuracy and reduces latency when searching a target.)

3.5.3.7 Subjective Tracking Performance Assessment

The FR framework provides a method of reducing the number of points in a point

cloud,i.e., the overall density, while maintaining the highest density in the center of

the gaze fixation, and the point density on the peripheral field of view is low. This study

aims to assess the effect of peripheral quality loss on improving accuracy and reducing

latency when tracking moving objects.

Subjects were asked to follow (track) a moving balloon; the balloon trajectory and

eye-gaze trajectory in 3D are used to calculate the trajectory error (RMSE). The errors are

calculated by measuring the closest distance to the target trajectory. Figure 3.16 shows

the error calculation for the ith measurement point, where Am is the gaze trajectory and

Tk is the ground truth ballon trajectory. Maximum error is the highest value of err, and

root-mean-square-error (RMSE) as shown in Figure 3.16 where N is the total number of

measurement points.

The research question defined for this experiment is the following:

Research Question: How accurately subjects would be able to track/follow a dynamically

moving object with and without the proposed system ?

�xation path (Ai)

ballon path (Tk)

Figure 3.15: Evaluating the RMSE based on the target trajectories.

The hypothesis for this study is that "Accuracy and latency metrics are improved

when a scene with moving objects is visually represented in a foveated way (as against

non-foveated way). (Expectation: hypothesis is sustained, i.e., foveated representation

improves the accuracy and reduces latency when tracking moving objects).
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condition and the relative percentage reductions in the values as compared to the FREF

condition. The foveation conditions offer reductions in the range of, on average: F0 =

75%, F1 = 82%, F2 = 77.9%, and F3 = 68.5%, against FREF, all statistically significant

(p-values<<0.05): Table 3.3 shows more detail. Fig. 3.17 shows how the bandwidth num-

bers increase over time, as the map grows, for all the conditions for one sample trial. The

bandwidth increase over time is much slower for the foveation conditions. Estimating the

slopes of the trends through linear data fitting provides the following values: F0 = 0.0021,

F1 = 0.0023, F2 = 0.0026, F3 = 0.0030, and FREF = 0.0247. The foveation conditions rise

almost 10 times less steeply than the FREF condition.

Table 3.2: Independent-samples t-test data transfer rate (BW)- raw Point-cloud.

mean
Parameter - P1 Parameter - P2 P1 P2 t p Signif: Y/N

FREF F0 1.16 0.46 12.14 0.00 Y
FREF F1 1.16 0.79 5.56 0.00 Y
FREF F2 1.16 0.87 4.27 0.00 Y
FREF F3 1.16 0.93 3.46 0.00 Y
F0 F1 0.46 0.79 -5.14 0.00 Y
F0 F2 0.46 0.87 -6.16 0.00 Y
F0 F3 0.46 0.93 -7.60 0.00 Y
F1 F2 0.79 0.87 -1.04 0.30 N
F1 F3 0.79 0.93 -2.04 0.04 Y
F2 F3 0.87 0.93 -0.92 0.36 N

Table 3.3: Independent-samples t-test for BW - Global Map

mean
Parameter - P1 Parameter - P2 P1 P2 %age reducn p Signif: Y/N

FREF F0 1.606 0.183 87.261 0.00 Y
FREF F1 1.606 0.303 78.069 0.00 Y
FREF F2 1.606 0.371 72.894 0.00 Y
FREF F3 1.606 0.398 71.472 0.00 Y

using %age reduction
F0 F1 87.261 78.069 9.192 0.00 Y
F0 F2 87.261 72.894 14.366 0.00 Y
F0 F3 87.261 71.472 15.789 0.00 Y
F1 F2 78.069 72.894 5.175 0.00 Y
F1 F3 78.069 71.472 6.598 0.00 Y
F2 F3 72.894 71.472 1.423 0.42 N

3.6.2 Data Reduction

To compare the data reduction of the proposed system, the spacing between points (den-

sity) estimated for each condition and then the difference between the reference and test

conditions is estimated, the density difference is summarized in the Table 3.7. On average,
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Table 3.9: Comparison of averaged component Latency per frame on the evaluated
datasets. (Gray rows are remote site values)

Component OFF LIV
F0 F1 F2 F3 FREF F0 F1 F2 F3 FREF

Log-read 4 4 4 4 4 4 4 4 4 4
Partitioning 0.0 0.3 0.3 0.3 0.0 0.0 0.3 0.3 0.3 0.0
Conversion 141 150 156 156 284 112 103 106 192 297
Sampling 88 53 57 65 0 121 87 63 73 0
Encoding 137 118 131 139 611 104 122 133 136 812

Decoding 117 131 136 138 550 98 114 136 142 592
Conversion 4 4.3 4.7 6 24 3.2 4.9 4.6 5.2 30
Rendering 14 14 14 14 14 14 14 14 14 14

Total(ms) 505 484 503 522 1487 397 449 461 566 1750

Table 3.10: Independent-samples t-test for latency on raw Point-cloud.

mean
Parameter - P1 Parameter - P2 P1 P2 t p Signif: Y/N

FREF F0 605.25 171.25 73.98 0.00 Y
FREF F1 605.25 213.42 74.95 0.00 Y
FREF F2 605.25 59.35 59.35 0.00 Y
FREF F3 605.25 57.63 57.63 0.00 Y
F0 F1 171.25 213.42 -9.23 0.00 Y
F0 F2 171.25 258.08 -17.05 0.00 Y
F0 F3 171.25 254.81 -15.90 0.00 Y
F1 F2 213.42 258.08 -9.76 0.00 Y
F1 F3 213.42 254.81 -8.71 0.00 Y
F2 F3 258.08 254.81 0.62 0.54 N

3.6.6 Visual Search Assessment

The mean Reaction time (RT) of correct response trials was calculated per condition. The

data was treated to remove outliers; data beyond the 5th percentile and 95th percentile

threshold ) for each column was removed using the MATLAB "quantile" function. The

analysis considers both the high discrimnablity and low discrimnablity data together, The

remaining data has about 42 points in each column. However, this data is NOT normally

distributed; instead, it is log-normally distributed. The log of each column was taken,

and then the Two-way Students’ T-test was used to compare the means (log) of the data

distributions.

As shown in Figure 3.26, the mean and standard deviation of participants in condition

F0 gives a mean of (µ = 1219.6,σ = 883), showing that participants were very slow and

the large standard deviation indicates that the RT in this condition is farther away from

the mean. The mean and standard deviation for the F1 condition is (µ = 512,σ = 198), for

F2 (µ = 442.4,σ = 283), F3 (µ = 288.9,σ = 138.2), and FREF (µ = 248.8,σ = 120.8). The
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Figure 3.27: Participants response for statement 1 in both High and Low discriminability
experiments.
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Figure 3.28: Participants response for statement 2 in both High and Low discriminability
experiments.

For the success rates in statement 2, results of the user studies, as seen in Fig. 3.28

reviled that participants in F0 condition responded neither agree nor disagree with there

performance compared to the other conditions. Specifically, the average response for this

experiment is three and a statistical analysis with a Wilcoxon Ranksum Test in Table.

3.17 for this condition is statistically significant (p − values << 0.0) in its difference of

median value when compared to all the other conditions. Participants response on the

other comparisons in average is more than four, that indicates participants are satisfied

with there performance and a statistical analysis between F1 vs. F3, F1 vs. FREF and F2

vs. F3 is statistically significant. but, all the other comparisons do not show statistically

significant difference.
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Table 3.14: Distance estimation errors for both High and Low discriminability experi-
ments.

F0 F1 F2 F3 FREF
Overall Errors 11 5 15 16 7
Errors by "1" step 7 4 14 16 4
Errors by "2" steps 4 1 1 0 3
Errors - under estimation 8 4 14 6 6
Errors - over estimation 3 1 1 10 1

Table 3.15: Wilcoxon Ranksum Test for Statement 1 for both High and Low discriminabil-
ity experiments .

F0 F1 F2 F3 FREF
F0 << << 0 << 0 << 0
F1 0.2097 0.0129 0.0253
F2 0.0653 0.1111
F3 0.5195
FREF

Table 3.16: Wilcoxon Ranksum Test for Statement 2 for both High and Low discriminabil-
ity experiments .

F0 F1 F2 F3 FREF
F0 << 0 << 0 << 0 << 0
F1 0.1106 0.0012 0.0166
F2 0.0277 0.1587
F3 0.8079
FREF

3.6.7 Visual Tracking Assessment

For the visual tracking assessment, the mean and standard deviation of the RMSE is ana-

lyzed; the analysis considers both pink and yellow balloon data together for reputability.

The data was organized in columns, one for each condition - F0, F1, F2, F3, and FREF -

each column had 5106 points and was treated to remove outliers: The data beyond the

5th percentile and 95th percentile threshold (using the MATLAB "quantile" function) for

each column was removed. After removing the outliers, The remaining data has about

4595 points in each column. However, this data is NOT normally distributed - instead

is "log-normally distributed". The log of each column was taken, and then the Two-way

Students’ T-test was used to compare the means (of the log) of the data distributions.

As seen in Fig. 3.29, The user study results revealed a smaller error for condition

F2 compared to the other conditions. Mainly, The mean, standard deviation for the F2

condition is (µ = 0.1498,σ = 0.1074) and the Two-way Students’ T-test showed that it is

statistically significant (p − values << 0.0). In other words, this implies the F2 condition

is a optimal condition between quality and latency requirements: latency increases from

84





CHAPTER 3. GAZE CONTINGENT REMOTE-IMMERSIVE VISUALIZATION

FRAMEWORK

difference when compared among each other. For the success rates in statement 2, results

of the user studies indicate all participants succeeded in performing the task, and the

statistical test revealed none of the conditions show any statistically significant difference

when compared against the others.

3.7 Discussion

The four metrics analysed here offer a cost-benefit understanding of the tested conditions,

i.e., the benefits in bandwidth and latency vs. the costs in PSNR and QoE. For instance,

the F0 condition as expected, offers the most benefit for bandwidth and latency, but the

costs in PSNR and QoE are the highest. Whereas the FREF condition is the ideal in terms

of PSNR and QoE, the overall analysis demonstrates that the foveated conditions together

provide the optimal cost-benefit ratio, as compared to both F0 and FREF conditions. The

perceived degradations are seen to not significantly impact QoE. A deeper analysis shows

that the F3 condition performs significantly better in the benefit metrics, while its costs

are also not significantly worse than FREF. As expected, the F1 condition falls at the

lower end within the 3 conditions, but still offers significantly higher benefit on latency

and bandwidth. The F2 condition offers a good cost-benefit compromise between the two

conditions. Here, the flexibility of the FR framework offers a key advantage. Real-time

usage requirements and a user-selectable approach can allow users the choice among

the three conditions, being able to switch among them as required. The FR framework

contributes to the state-of-the-art in enhancing the 3D scene visualization experience in

immersive remote visualization system.

3.7.1 Real-World Use Case

To demonstrate a real-world application with the FR framework, the remote inspection

use case is discussed here. Such tasks generally involve a remotely controlled vehicle

with on-board cameras and sensors, and have hard constraints on the networking infras-

tructure and bandwidth availability. Figure 3.30 shows the original and foveated point-

clouds of a captured real-world 3D scene side-by-side, where high latency and bandwidth

statistics for the original point-cloud are noted. In such cases, the FR framework can be

switched on to substantially reduce the stress on the network resources, without signif-

icantly impacting user experience, and helping maintain presence in immersive remote

visualization system.

3.8 Conclusions and Future Work

This chapter presented a novel FR based visualization pipeline that utilizes the acuity

fall-off in human visual systems. The approach facilitates the processing, transmission,

and rendering of dense point-clouds / 3D reconstructed scenes while simultaneously
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Gaze Contingent Object-Level

Remote - Immersive Visualization

Framework

“We often engage the defense mechanism of tunnel vision, just

to keep ourselves focused on our daily lives. This makes us

terribly jaded in our perception of what is really around us.”

(Vera Nazarian)

“If ever there was a more perfect picture of love, it was the

silhouette of this couple standing at the window with the full

moon behind them in a star filled sky.” ( Jason Medina)

As briefly discussed in section 2.1.2, vision is a sense that remote users are heavily de-

pendent upon while using immersive remote visualization systems. Various applications,

such as working with remotely teleoperated robots for disaster response applications,

require operators to give attention or sustained focus on their task fully, processing all

inputs and filtering relevant information to execute the appropriate action. This intense

use of perceptual and cognitive skills may lead to mental and physical workload, which

may cause fatal hazards and cause negative implications on task performance.

A considerable emphasis has to be given to human attention mechanisms because it

has its limits as a resource when provided with multiple information. On the other side,

It can be seen as a selection process and could be used to draw engagement to specific

information from the dynamic spatio-temporal scene — it filters out information that is

not needed and frees resources for the task at hand. However, It is prone to errors that

can be raised by limitations in the sensory system, which leads to an inability to notice

significant visual changes.

This chapter proposed a remote visualization system by exploiting the benefit and

limitation of human attention mechanisms to facilitate the processing, streaming, and

rendering of 3D data to a remote user, thereby reducing the amount of data transmitted.

The acquired remote scene can contain several physical objects of various types (e.g.,

people, vehicles) interacting with each other or their environment. A scene understanding
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for the communication network and communication network described in detail in

Section 3.3.3 is used here.

4.2 Object Detection and Segmentation

Visual information provided to a user can contain many physical objects of various types

(e.g., people, vehicles...). Inspired by the human visual perception and attention mech-

anisms, object detection and segmentation technique was proposed to extract the most

relevant information from the input RGB-D signal for further processing. This section

carefully investigates how the human vision consciously perceives objects in the environ-

ment. Moreover, how it retrieves what these objects are from memory in daily lives to

construct a coherent view of reality. This section proposes two strategies for extracting in-

formation about the scene: semantic and geometric instance detection and segmentation

strategies.

4.2.1 Semantic Instance Detection and Segmentation

Semantic scene understanding and segmentation strategies aim to identify target objects

in the input RGB data and determine the categories and position information to achieve

machine vision understanding. Computers get trained or instructed to perceive and un-

derstand just like HVS by following human brain functionalities. Numerous approaches

have been proposed to mimic the HVS; one of the first vision-based object-based detectors

was proposed by Viola and Jones [163]. This work mainly focused on detecting faces in an

image using harr-like features and Adaboost feature classification. Following this work,

researchers used object detection by manually extracting feature models such as HOG

(histogram of oriented gradient), SIFT (scale-invariant feature transform), Haar (Haar-

like features), and other classic algorithms along with Support Vector Machines (SVMs)

based classifiers [94, 104, 40, 73, 89, 113].

With the evolution of neural networks, inspired by simplified models of neurons in

the brain recent algorithms can extract scene information robustly in the presence of

different objects in the entire scene. The most famous examples are R-CNN (region-based

convolutional neural networks) [46] and the YOLO (you only look once) [129]. R-CNN

is a two-stage detection algorithm; The first stage identifies a subset of regions in an

image that might contain an object. It uses selective search to identify several bounding-

box object region candidates and then independently extracts features from each region

for classification. YOLO instead looks at parts of the image with high probabilities of

containing the object. The algorithm uses a single convolutional network to predict the

bounding boxes and the class probabilities.

These two techniques focus primarily on performance over speed instead a research

work by Bolya et al., [10] proposed a real-time instance segmentation framework using

one-stage object detectors which performs instance segmentation by breaking into two
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parallel tasks. The framework is trained on Microsoft’s Common Objects in Context

dataset (COCO), the most popular object detection dataset [91]. The dataset contains

300,000 segmented images with 80 different categories of objects with exact location

labels. This segmentation framework gives a simple, fully convolutional model for real-

time (> 30f ps) instance segmentation which is higher than the current state of the art

works. For this reason, the semantic segmentation pipeline of the proposed framework is

based on this work.

(a) Color Image (b) Masks with Label and confidence (c) Mask 1 (d) Mask 2

Figure 4.2: Semantic segmentation pipeline outputs. (a) Input color image, (b) semantic
information overlayed on the input color image, (c) and (d) shows the output masks.

As shown in Figure 4.1, the semantic segmentation pipeline takes the input RGB

image Ct and It gives as an out put a semantic information: object masks mt: Ω → R

and for all detected masks ∀mt ∈ Ct it gives a confidence pt ∈ {0,100}, bounding boxes

bt :Ω→N
4 and class IDs It ∈ {0,100}. In the following step, object masks mt with more

than 50 % confidence score pt value are selected and this value is used as a threshold

to filter out false positives and ensure that a predicted bounding box and masks have a

certain minimum score.

While this system provides good semantic information such as masks, class categories,

and exact location, it has three limitations:

1. Limited number of object categories - It doesn’t detect objects outside the 80 prede-

fined categories.

2. Object masks are not flawless – It does not always perform an excellent accurate

segmentation at the edge or border of objects.

3. The pipeline runs in parallel with the rendering system; the prediction time needs

to meet the real-time requirements of the rendering system

Thus to overcome all this three limitations, this chapter proposes a geometry-based

object segmentation pipeline in parallel.

4.2.2 Geometric Instance Detection and Segmentation

Perceiving a visual scene needs a complex understanding of color, shading, shape, motion,

texture, and context information, as described at the beginning of this section, making it

challenging to understand these pieces of information simultaneously. It is natural then
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from the current depth map Dt to the model depth map from t − 1.

E
icp
m =

∑

i

((

vi −
(

exp(ξ̂m) ·T · v
i
t

))

·ni
)2

(4.8)

Here vit is the back-projection of the ith vertex in Dt . vi and ni represent the corre-

sponding vertex and normal in themodel depthmap from t−1. T is the current estimation

of the transformation of the camera pose from t − 1 to t, and exp(ξ) is the matrix expo-

nential that maps a member of the Lie algebra se(3) to a member of the corresponding

Lie group SE(3) [170].

ua = π
(

K · exp(ξ̂m) ·T ·p(u,Dt)
)

E
rgb
m =

∑

u∈Ω

(I(u,Ct)− I(u
a,Ca

t−1))
2 (4.9)

Similarly, the color from the current frame Ct and the map model color estimate Ca
t−1

is used to find the photometric error (intensity difference) between pixels. To minimize

the function in Eq. 4.7, the Gauss-Newton non-linear least-squares method is used from

[170].

4.4 Foveated Partitioning and Sampling

As introduced in Section 2.2, Table 3.1, and Figure 3.2-A, the HVS has the highest visual

acuity at the center of the visual field and reduces monotonically towards the periphery

based on the distribution of the photoreceptors. This distribution is defined as Foveation

in section 3.1.1. Section 3.1.2 briefly describes the most popular way of determining

Visual acuity quantitatively in terms of the minimum angle of resolution (MAR, measured

in arcminutes), which is the smallest angle at which two objects in the visual scene are

perceived as separate by the human eye. The relationship between MAR and eccentricity

can be approximated as a linear model, Eq. 3.2. Given this definition, a map object

selection and partitioning concept is defined in this section.

4.4.0.1 Object Selection and Map Partitioning

The map partitioning concept introduced in section 3.2.1 is extended here for each inde-

pendent mapMm, This symbol is used interchangeably for the live map and the global 3D

reconstruction map for each independent model. Applying the foveation model to each

segmented object map Mm implies projecting the retinal fovea regions into each object to

partition it into concentric conical regions Ms
m . After projecting the retinal fovea regions,

the foveated regions Ms
m is then resampled to approximate the monotonically decreasing

visual acuity in the foveation model.
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Algorithm 2: Object Selection and Map Partitioning Algorithm

Input: M0...N /* independent Maps to be partitioned */

L /* Gaze direction vector */

e0 . . .n /* Eccentricity angles */

foreach Mm ∀m ∈ 0..N do
foreach surfel Pi in the map Mm do

B← proj
Pi
L /* projection of Pi on L */

dvi ← ‖ ~HB‖ /* dist. between H and B */

d← PB⊥L /* shortest distance */

for j=1 to max(e) do

rj ← tan
(

ej
)

∗ dvi /* calc. radii rj */

end

/* put Pi into the maps M
0
m ...Ms

m */

if d < r0 AND IsForground then
M

0
m← Pi ;

else if d > r0 AND d ≤ r1 then
M

1
m← Pi ;

...
else

M
s
m← Pi

end
end

end

4.4.0.2 Object Map Sampling

The partitioned regions for each object map M
s
mis down-sampled according to the acuity

drop-off. Each independent map M
s
m is converted into a PCL point-cloud data structure,

Pn for each M
s
n region ∀n ∈ {0...N }. Then, to implement the sampling, the R

3 space of

each Pn region needs to be further partitioned into an axis-aligned regular grid of cubes

as shown in Fig. 3.6. This process of re-partitioning the regions is defined in section 3.2.2

and named as voxelization [134] and the discrete grid elements are called voxels.

This voxelization and down-sampling is a three-step process: (1) calculating the vol-

ume of the voxel grid in each region, which is the point-cloud distribution along x-, y-,

and z-axes; (2) calculating the voxel size, i.e., dimension, vn, for the voxelization in each

region, and (3) down-sampling by approximating the point-cloud inside each voxel by its

3D centroid point.

For the voxel size, v, consider the voxelization of the central fovea region, P0. The

smallest angle a healthy human with a normal visual acuity of 20/20 can discern is 1

arcminute, i.e., 0.016667◦. In Eq. (3.2) therefore, MAR0 = 0.016667◦. Eq. 4.10 calculates

the smallest visually resolvable object length.

l = dvi ∗ tan(MAR0) (4.10)

The important consideration here is the value of dvi , which is the distance to the image

along the gaze vector L. In Alg. 1, a dvi value for each surfel is calculated. In contrast,
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here in order to down-sample the region based on the voxelization, we calculate one dvi

value for the entire P0 region, approximated as the distance from H(hx,hy,hz) to the 3D

centroid of the point-cloud in the region, Eq. (4.11).

pc0 =
1

NP0
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(4.11)

dvi0 = d(H,pc0) (4.12)

where NP0
is the number of point cloud points in P0, and H is the eye gaze origin. Then,

Eq. (4.10) is re-written as Eq. (4.13) to give the voxel size v0 for the region.

v0 = dvi0 ∗ tan(MAR0) (4.13)

Once the voxelization of region P0 is finalized, for the subsequent concentric regions

from P1 to Pn, the voxel sizes are correlated through the linear MAR relationship. Eq.

(4.14) shows that as the eccentricity angle of the regions increases, so do the voxel sizes.

MARn =m ·En +MAR0

vn =
MARn

MARn−1
∗ vn−1

(4.14)

The increasing voxel size away from the fovea region implies more and more surfels

of the point-cloud of the corresponding regions are now accommodated within each

single voxel of that region. Therefore, when the down-sampling step is applied, the

approximation of the point-cloud within a voxel is done over progressively dense voxels.

For the down-sampling part, the region P0 being the fovea region is left untouched so

its density is the same as the incoming global map density, i.e., the resolution set for the

RGB-D camera. The down-sampling in the subsequent regions is done by approximating

the point-cloud within each voxel with its 3D centroid, using Eq. (4.15).
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(4.15)

Here N v
Pn

is the number of points in voxel v of the region Pn (∀n ∈ {1...N }). Figure 3.6

shows the centroid approximation of the point-cloud, while Fig. 3.8 shows the sample

voxel grids for the different regions.

4.5 Experiment Design And Evaluation Metrics

The proposed technique exploits the acuity fall-off and attention mechanisms to facili-

tate the processing, streaming, and rendering of 3D data to a remote user at the object

level, thereby reducing the amount of data transmitted, introducing new use cases, and
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streaming. The experiment design focused on evaluating the proposed system based on

the following use-cases and applications:

• Priority objects visualization: Object masks with their id can be selected and

streamed with different quality and streaming speed priorities; for example, seman-

tically segmented objects have semantic information such as masks, class categories,

and their exact location. While geometrically segmented objects do not have this

information. The viewer may start visualizing the semantically segmented objects

with high priority and geometrically segmented objects with low priority to save

computational and bandwidth resources, which helps speed up processing at the

user and remote side to meet real-time requirements.

• Objects filtering: Since all the objects in the scene are visualized at the object level,

viewers may choose to not stream objects with low interest for example background

objects. In addition, the remote site encoder can avoid processing and stream such

objects to free computational and bandwidth resources.

• Objects of interest: An object of great interest can be selected and visualized only

by assigning algorithmic and computational resources.

• Background visualization: Background objects can be visualized based on the re-

quirements of the use case. Undesirable foreground objects can be removed, and

only background objects can be visualized independently of other objects.

The experiment uses the two synthetic dataset of a living room environment and an

office room (OFF), (LIV), seen in Fig. 3.11 and discussed in section 3.5.1.

4.5.1 Experimental Conditions

The experiment and evaluation phase is divided in two sets: with and without foveated

partitioning and sampling detailed in section 4.4.

4.5.1.1 Experiment Condition Set One

In the first set of the experiment, three test conditions without applying foveated parti-

tioning and sampling were created as follows:

• SEMA: This test condition only consists semantically segmented regions using the

technique proposed in section 4.2.1. The hypothesis is that the reduction in visual

quality would be evident in this condition. However, it would also offer the high-

est computational /network performance gain by filtering out unknown objects

and keeping only relevant or interesting objects based on semantic segmentation

information.
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• GEOM: All segmented regions using geometry-based segmentation from section

4.2.2 are used. This test condition is chosen to test the geometry-based segmentation,

and it could give more regions than the semantic segmentation pipeline. This

condition can act as a middle point and expected intuitive balance between the

visual quality degradation and the performance gain.

• MERG: Point-cloud in this condition are from semantic and geometric mask merg-

ing in section 4.2.3. All the geometric masks are merged with the semantic masks

with this test condition. The visual quality reduction is expected to be the least

likely to be detected. However, it would offer the least computational / network

performance gain that could still sufficiently justify the use of the proposed system.

In addition to the three conditions above, one additional condition is created to repre-

sent the reference , i.e., no-sampling.

• REF: The raw point-cloud is left untouched and the proposed system is not applied.

This condition is used as the base reference condition, against which all the other

conditions SEMA, GEOM and MERG conditions are compared.

4.5.1.2 Experiment Condition Set Two

In the second set of the experiment, three test conditions by applying foveated partition-

ing and sampling on the point cloud were created by dividing the visual field into six

regions - the Fovea, Parafovea, Perifovea, and near peripheral (as above) mid-peripheral

region (60 ◦), and then the rest of the point-cloud in the far peripheral region. The visual

quality reduction is expected to be the least likely to be detected, but it would offer com-

putational / network performance gain by additionally applying the foveated partitioning

and sampling technique.

• SEMA_FOV: This test condition only consists semantically segmented regions by

applying the foveated partitioning and sampling technique.

• GEOM_FOV:All segmented regions using geometry-based segmentation with foveated

partitioning and sampling.

• MERG_FOV: Point-cloud in this condition are from semantic and geometric mask

merged with the foveated partitioning and sampling applied.

These second set of the experimental conditions are compared with one additional

reference condition

• FOV: This condition applies the foveated partitioning and sampling technique on

the raw pointcloud without any segmentation technique. The visual field is divided

into six regions - the Fovea, Parafovea, Perifovea, and near peripheral (as above) mid-

peripheral region (60 ◦), and then the rest of the point-cloud in the far peripheral

region.
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4.5.2 Evaluation Metrics

The evaluation metrics utilized for the experiments help analyze the performance of the

FR framework in terms of the benefits it provides and the costs it imposes when imple-

mented as part of an immersive remote visualization system. Therefore, the evaluation

is conducted in a quantitative (objective) assessment to evaluate the algorithmic and

computational performance in terms of:

• Data Transfer Rate: The improvement, or otherwise, in the data transfer rate in

streaming.

• Latency Reduction: The improvement, or otherwise, in the end-to-end latency.

4.6 Results and Analysis

Similar to the procedures section 3.6 followed, five randomized HMD positions with

varying distances to the center of the datasets were used to evaluate the objective met-

rics. Two hundred frames were tested for each HMD position from each dataset for each

experimental condition. The 3D reconstruction analysis was done on the OFF and LIV

datasets, and the data is averaged over 5 randomized HMD positions.

Frame 15

Input 

Semantic

segmentation

Geomteric

segmentation

Merged

segmentation

Frame 155 Frame 370 Frame 510

Figure 4.7: The figure shows the comparison of segmentation between semantic, geomet-
ric, and merged segmentation for LIV data set. The red arrow indicates missing regions,
and the green arrow indicates missing regions completed by merging masks.
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A visual comparison of the LIV and OFF segmentation output is shown in Fig 4.7

and Fig. 4.8. Both figures compare the semantic, geometric, and merged segmentation

outputs. As expected object masks are not flawless, both segmentation techniques does

not always perform an excellent accurate segmentation at the edge or border of objects.

The red arrow indicates the missing or over segmented regions and blue arrow indicates

regions completed by merging segmentation using both techniques. By calculating the

Intersection over Union (IOU) between semantic and geometric segmentation mask, if it

is higher than a threshold of 50 %, the geometric mask is merged with the semantic mask,

and missing regions are completed.

Frame 6

Input 

Semantic

segmentation

Geomteric

segmentation

Merged

segmentation

Frame 95 Frame 133 Frame 336

Figure 4.8: The figure shows the comparison of segmentation between semantic, geomet-
ric, and merged segmentation for OFF data set. The red arrow indicates missing regions,
and the green arrow indicates missing regions completed by merging masks.

4.6.1 Data Transfer Rate

Table 4.1 and Fig.4.9 reports the average bandwidth required for LIV dataset point-cloud

streaming in the first phase of the experiment without applying the foveation techniques

and the relative percentage reduction in bandwidth as compared to the REF condition.

The mean bandwidth required for the SEMA condition gives an average 49% reduction as

compared with REF and the statistical t-test analysis showed the reduction is significant

(p-values<<0.00). The relative bandwidth reduction for GEOM condition is in average

38% reduction and statistical t-test analysis showed statistically significant compared to
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Everything must come to an end

“The world is full of magic things, patiently waiting for our

senses to grow sharper.” (William Butler Yeats)

5.1 Conclusion

A close understanding of relevant theoretical foundations to remote visualization systems

and technological and human factors that should be known when designing immersive

interfaces has tremendous potential to improve the quality, the speed of communication,

and the perception of remote environments. In order to develop better and more efficient

remote visualization systems, it is also important to understand how to exploit the HVS

or use the potential of human visual perception. Such understanding will help us to

enhance the quality and speed of remote visualization systems by facilitating the pro-

cessing, transmission, buffering, and rendering of remotely reconstructed environments

while simultaneously reducing throughput and latency requirements. This thesis showed

some of the potential and limitations of the HVS and how to exploit them for remote

visualization. In this final chapter, we summarize the significant contributions of the

results of this work and discuss future work.

5.2 Achieved results

In the rest of this section, we provide a summary of the research questions that were

addressed in this Thesis:

Main Research Question: How can we support a real-time immersive remote visual-

ization system for remote Teleoperation and Telepresence applications with state-of-the-art
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streaming rates?

This research question has been addressed throughout this thesis by developing a

remote visualization system in Chapters 3 and 4. It showed that by exploiting the HVS

features, remotely acquired real-time 3D data can be visualized to the user efficiently,

which helps to reduce the bandwidth and latency and does not significantly impact the

QoE.

Research Question 1: What are the state-of-the-art immersive remote visualization sys-

tems for telepresence and teleoperation systems, and What are the technological, perceptual,

and cognitive constraints in designing such systems?

This research question has been addressed by performing a detailed literature review

and developing experimental setups to understand the current state-of-the-art remote

visualization systems for remote telepresence and teleoperation applications. It looked

in detail at technological factors related to the field of view, camera orientation and view-

points, degraded depth perception, time delays, and motion. In addition, It looked into

cognitive and perceptual limitations; the Cognitive limitations looked into mental pro-

cesses involved in gaining knowledge and comprehension, and the perceptual factors

looked different visual cues that are processed when interacting with real or virtual envi-

ronments.

Research Question 2:What are the advantages and limitations of the HVS, and How can

it be exploited in designing immersive remote visualization systems?

This research question was thoroughly addressed in Chapters 3 and 4; these two chap-

ters presented the essential physiological and perceptual foundation and features of the

HVS that can be used to design efficient visualization systems and proposed models to

describe these. Chapter 3, looked into the characteristics of the human eye, specifically

on the distribution of the photoreceptors in the retina: cones and rods. The cone density

is highest in the central region of the retina and reduces monotonically to a reasonably

even density into the peripheral retina region and proposed a model to quantitatively

represent it in terms of the MAR. Chapter 4 looked into the human attention mecha-

nisms: specifically to select and to draw engagement to specific information from the

dynamic spatio-temporal environment. The peripheral vision provides low-resolution

cues to guide the eye movements so that the central vision visits all the interesting and

crucial parts of the visual field. The chapter used this information to detect, segment, and

assign semantic labels to interesting and crucial parts of the scene and used the acuity

model proposed in chapter 3 to facilitate the remote visualization.

Research Question 3: How do we design an improved remote visualization system with
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reduced latency and throughput requirements using the HVS compared to the current state-of-

the-art techniques?

In the design of remote visualization systems inspired by human vision, user studies

and experiments are fundamental tools to understand the limitations and potentials of the

proposed system. The thesis designed and proposed different experiments and evaluation

metrics. For applications such as remote inspection, search and rescue, and high-quality

visualization, carefully designed experiments are proposed. The thesis evaluated and

compared different experimental conditions and latency and throughput requirements in

these experiments. It also proposed a novel volumetric point-cloud density based PSNR

metric to evaluate the quality of the proposed approaches.

5.3 Future development

In this final section, The thesis presents a list of possible improvements and continual

developments that need to be addressed in future work or by other researchers. Al-

though this section could have listed many more important future developments, the

lists presented here are those that we consider a great challenge to an immersive remote

visualization, hoping that this will serve as a research agenda for future work.

• Improvement to Discontinuities at Region Boundaries: The proposed foveated

rendering-based visualization pipeline in Chapter 3 uses the photoreceptors den-

sity distribution in HVS to facilitate the processing, transmission, buffering, and

rendering in VR of dense point clouds / 3D reconstructed scenes. The chapter

proposed to approximate the retina as being formed of discrete concentric regions,

which helps to process and stream point-cloud in order to meet perceptual and per-

formance requirements. However, discrete concentric regions create discontinuities

at region boundaries, creating aliasing artifacts. In general, if real-time requirement

is not of high priority, These artifacts can be fixed by creating more regions and

taking more samples to counteract artifacts. For specific scenarios that require a

high-quality visualization and interactivity such as, the visual search experiment

in section 3.5.3.6.

• Development of Foveated and Object based Point Cloud compression: Develop-

ing a point-cloud based remote visualization system requires a real-time processing,

streaming, and high-quality representations. The foveated rendering-based visu-

alization pipeline proposed in Chapter 3 has the potential to substantially reduce

point cloud resolution in the visual periphery, with hardly noticeable perceptual

quality degradations. This can be a key idea to create a compression ratio that will

have a low compression ratio at the fixation point and progressively increasing com-

pression ratios towards the periphery. Similarly, knowledge about the remote scene

that can contain several physical objects of various types (e.g., people, vehicles) can
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be used to allocate different compression ratios to the objects of interest, and users

can personalize to render streamed content.

• Gaze Direction and View Port Prediction: One of the key objectives of this thesis

was to propose a strategy to create a novel remote visualization system that satis-

fies speed, throughput, and visual quality requirements in real time. The thesis

demonstrated how to balance visual quality degradation and the performance gain

to understand the impact through experiments. Thus, to find a perfect balance

between quality and performance gain, it is necessary to develop new approaches

that allow a remote site point cloud streamer to deliver predicted viewpoints using

saliency, history of head orientation, and fixation points to predict future head and

gaze position.

• Availability of Specific Benchmarks and Datasets: Although this thesis used a

dataset from ICL-NUIM synthetic dataset and introduced the kitchen area (KIT)

and a dynamic scene a moving balloon (BAL) benchmark dataset (section 3.5.1.) We

believe that more benchmark dataset that can consider different dynamic behavior

of remote scenes is highly needed for future evaluation.
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A

Change of basis

This section provides the coordinate transformation process. Consider an nxn Unreal

matrixMu and think of it as the standard representation of a transformation TMu : Rn→

Rn. If we pick a different basis v1, ..., vn of Rn , what matrix C represents TMu with

respect to Opengl’s Coordinates Mg . Looking at OpenGl from Unreal’s point of view we

could say that:

• +Xg corresponds to +Yu

• +Yg corresponds to −Zu

• +Zg corresponds to +Xu

This translates in the following matrix (columns “represent” X, Y, Z):

C =



































0 1 0 0

0 0 −1 0

1 0 0 0

0 0 0 1



































(A.1)

The rotation matrix from Unreal to Opengl can be retrieved by the by using the

formula defined in eq A.2:

Mg = CMuC
−1 (A.2)
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