
UNIVERSITY OF VERONA

DEPARTMENT OF
Computer Science

GRADUATE SCHOOL OF
Natural Sciences and Engineering

DOCTORAL PROGRAM IN
Computer Science

XXXIV cycle (2018)

Collision Avoidance and Dynamic Modeling for
Wheeled Mobile Robots

and Industrial Manipulators

S.S.D. ING - INF/05

Coordinator: Prof. Massimo Merro

Advisor: Prof. Riccardo Muradore
Co-Advisor: Prof. Luca Di Persio

Candidate: Federico Vesentini

2

Contents

1 Introduction 5
1.1 Thesis Outline . 6

1.1.1 Velocity Obstacle for Mobile Robots and
Manipulators . 7

1.1.2 Dynamic Modeling for Delta Robots 8
1.1.3 Stochastic Modeling of Mobile Robots 9

2 Velocity Obstacle for Mobile Robots and Manipulators 11
2.1 Related Works . 11
2.2 Velocity Obstacle paradigm . 14
2.3 Taxonomy of Velocity Obstacle methods 16

2.3.1 Reciprocal Velocity Obstacle 18
2.3.2 Optimal Reciprocal Collision Avoidance 20
2.3.3 Generalized Velocity Obstacle 22
2.3.4 Non-Linear Velocity Obstacle 22
2.3.5 Acceleration Velocity Obstacle 23
2.3.6 Hybrid Reciprocal Velocity Obstacle 24
2.3.7 Non-holonomic Optimal Reciprocal Collision

Avoidance . 26
2.3.8 Goal Velocity Obstacle 27
2.3.9 Optimal Velocity Selection for Velocity Obstacle 28

2.4 Velocity Obstacle for Constrained Agents 30
2.4.1 Problem Statement and Background 31
2.4.2 Trajectory Planner . 33
2.4.3 Simulation Results . 36

2.5 Velocity Obstacle for Planar Manipulators 38
2.5.1 VO-based Planner . 39
2.5.2 Simulation Results . 43

3 Dynamics Modeling for Delta Robots 47
3.1 Related Works . 47
3.2 Delta Robot D3-1200 Kinematic Structure 50

3.2.1 Direct Kinematics . 51
3.2.2 Inverse Kinematics . 51
3.2.3 Dynamic Parameters . 52

3.3 Gray-Box Model Identification and Payload Estimation 52

3

3.3.1 The Simplified Dynamic Model 53
3.3.2 Gray-Box Model Identification and Friction

Estimation . 56
3.3.3 Payload Estimation . 58
3.3.4 Experimental Results . 59
3.3.5 Feed-forward Control . 62

3.4 Novel Inverse Dynamic Model 62
3.4.1 Kinetic Energy Contribution 64
3.4.2 Potential Energy Contribution 65
3.4.3 Delta Robot Novel Inverse Dynamics 65
3.4.4 Experimental Validation 71
3.4.5 Computational Complexity 76

4 Stochastic Modeling for Mobile Robots 79
4.1 Related Works . 79
4.2 Deterministic Dynamics . 80

4.2.1 Robot Diagram . 81
4.2.2 External Forces . 82
4.2.3 Equations of Motion . 83
4.2.4 Hybrid System . 87

4.3 Brownian-Markov Stochastic Model for WMR 88
4.3.1 Derivation of Stochastic Equations 88
4.3.2 Hybrid Stochastic Brownian-Markov model 91
4.3.3 Existence and Uniqueness of Solutions 92

4.4 Simulation Setup . 94
4.4.1 Robot Controller . 94
4.4.2 Setup Parameters . 95

4.5 Experimental Results . 96
4.5.1 Deterministic Model . 97
4.5.2 HSBM Model . 97

5 Conclusions and Future Works 101

A Lie Groups Theory 103
A.1 Matrix Lie Groups . 103
A.2 Matrix Lie Algebras . 105

B Stochastic Processes 111
B.1 Brownian Motion . 111
B.2 Stochastic Differential Equations 113

4

Chapter 1

Introduction

Collision Avoidance and Dynamic Modeling are key topics for researchers deal-
ing with mobile and industrial robotics. A wide variety of algorithms, ap-
proaches and methodologies have been exploited, designed or adapted to tackle
the problems of finding safe trajectories for mobile robots and industrial manip-
ulators, and of calculating reliable dynamics models able to capture expected
and possible also unexpected behaviors of robots. The knowledge of these two
aspects and their potential is important to ensure the efficient and correct
functioning of Industry 4.0 plants such as automated warehouses, autonomous
surveillance systems and assembly lines.

Collision avoidance is a crucial aspect to improve automation and safety,
and to solve the problem of planning collision-free trajectories in systems com-
posed of multiple autonomous agents such as unmanned mobile robots and
manipulators with several degrees of freedom. Collision avoidance approaches
belong to two main classes: centralized and decentralized.

In centralized collision avoidance approaches for multi-agent systems, safe
trajectories are calculated by a global controller, able to access all the informa-
tion related to the state of the robots that constitute the multi-agent system
in order to calculate the commands guaranteeing collision-free paths. In de-
centralized collision avoidance, every autonomous agent is a decision-making
entity that constantly adjust its velocity vector on the basis of the information
it perceives from the surrounding dynamic environment, in order to perform
collision-free maneuvers. In particular, approaches assume that agents do not
communicate with each other.

In certain scenarios such as automated warehouses, the problem of calcu-
lating safe trajectories for all agents moving in a dynamic environment can
be solved by combining the aforementioned two types of approaches: the first
is useful to calculate collision-free maneuvers with respect to expected fixed
obstacles (i.e., global planner), e.g. the shelves of the warehouse, while the
second handles collision avoidance with respect to other autonomous agents or
in presence of unexpected obstacles (i.e., local planner).

The problem of calculating collision-free trajectories for manipulators is
slightly different and possibly more complex due to their structural nature:
unlike mobile robots, they cannot be approximated as mass-points, therefore

5

the trajectory planner must take into account the links’ size of the robotic
arms even for simple kinematic structures.

A rigorous and accurate model explaining the dynamics of robots, is neces-
sary to tackle tasks such as simulation, torque estimation, reduction of mechan-
ical vibrations and design of control law. From the mathematical point of view,
the starting point for the derivation of a rigorous dynamic model can be the
Newton-Euler equations, Euler-Lagrange model or other more specific theories
such as the Lie Group Theory. However, i) a rigorous mathematical model, al-
though accurate, could be very complicated and time-consuming and therefore
not suitable for on-board microcontrollers or feedback control laws with small
sample times, and ii) in real-life applications there may be effects which cannot
be mathematically modelled in advance, whose contributions must be included
into the model by exploiting parameter identification techniques a run-time.
A proper integration of first-principle model and data-driven models should be
carefully analysed.

1.1 Thesis Outline
This thesis is divided into three parts: the first is about path planning while
the other two are about dynamic modeling. Figure 1.1 shows the organigram
of the thesis.

Figure 1.1: Organigram of the thesis.

In particular

• Chapter 2 deals with the trajectory planning and the collision avoidance
problem for cooperative holonomic mobile robots and planar manipula-
tors with two revolute degrees of freedom, using the Velocity Obstacle
paradigm;

• Chapter 3 describes two different inverse dynamic models for Delta Robots
with 3 degrees of freedom, obtained through the application of the La-
grange D’Alambert principle exploiting two different ways of treating
the kinematic chains that constitute the physical structure. The models
are experimentally validated with data coming from a real Delta Robot,
made available by the company SIPRO Srl, located in Verona, Italy;

6

• Chapter 4 deals with a novel hybrid stochastic dynamic model for mo-
bile robots of cart-like type. We started from a basic hybrid two-state
deterministic version that allows lateral slippages due to losses of grip
with the ground and we developed our proposal, called Hybrid Stochas-
tic Brownian-Markov (HSBM) model, by modelling unknown friction
and inertial forces with independent Brownian motion. Transitions from
grip state to slip state are driven by a Markov chain, whose transition
probabilities depend on the lateral velocity;

• Chapter 5 draws the conclusions and possible future works.

1.1.1 Velocity Obstacle for Mobile Robots and
Manipulators

The Velocity Obstacle (VO) paradigm [43, 44], together with its improved
versions, has gained popularity during the last two decades. It is a decentral-
ized geometric method for the planning of collision-free trajectories of swarm
of unmanned mobile robots, based on the construction of cones of forbidden
velocities called Velocity Obstacles (Fig. 1.2). As a first contribution, we pro-
pose a taxonomy of the research field which aims to highlight the evolution of
the paradigm in its alternative versions [2, 111, 112, 125, 126, 127] over the
years from 1998. The aim is to provide a complete overview of the VO meth-
ods for addressing the decentralized collision avoidance problem of multi-agent
systems.

Figure 1.2: The three-dimensional Velocity Obstacle V OAB of agent A induced by the
moving obstacle B: the cone in R3 of forbidden velocities causing collisions between A and
B.

As a second contribution, we adapted the Optimal Reciprocal Collision
Avoidance (ORCA) paradigm [127] to the case of two holonomic planar mobile
robots that need to cooperate in order to deliver a long and possibly heavy
payload. In particular, we simulated an automated warehouse in which the two
constrained agents move from an initial to a final configuration while avoiding
collisions with obstacles and other agents. The planner ensuring collision-free
trajectories is made of two components: Voronoi Diagrams [94] for planning

7

trajectories using a map of environment (global planner) and ORCA paradigm
for avoiding collision with unexpected obstacles and/or other agents (local
planner).

Besides collision avoidance for unmanned ground vehicles (UGVs) or un-
manned aerial vehicles (UAVs), a third contribution of Chapter 2 consists of
adapting the Velocity Obstacle paradigm for planning collision-free maneu-
vers for manipulators, for which other methodologies are commonly used such
as Artificial Potential Fields (APFs) [70] or Dynamic Movement Primitives
(DMPs) [53]. Specifically, we study a simulated RR planar two-link manipula-
tor that has to move without colliding with a moving obstacle in its workspace.
The base joint, elbow joint and end-effector of the manipulator are modeled
as three holonomic planar agents: the base agent is fixed at the origin of the
world reference frame, the elbow agent is forced to moving along a circumfer-
ence whose center is the origin of the world frame and with radius equal to
the length of the first link and the end-effector is able to move in the space.
The end-effector has to reach a target position avoiding collisions between the
manipulator and an obstacle in the workspace.

1.1.2 Dynamic Modeling for Delta Robots

Delta Robots belong to the class of parallel robots widely used in industrial
production processes, mostly for pick-and-place operations. The most relevant
characteristics are the high speed and the extremely favorable ratio between
the maximum payload and the weight of the robot itself. A reliable dynamic
model is needed to implement torque controllers that reduce unnecessary high
accelerations and so mechanical vibrations. In Chapter 3 we explain how to
derive the inverse dynamic model for the 3-DoF Delta Robot model D3-1200
(Fig. 1.3) made available by SIPRO Srl, a company located in Verona (Italy)
active in the field of industrial robotics.

Figure 1.3: A 3-DoF Delta Robot. Courtesy
of SIPRO Srl http://www.sipro.vr.it.

The objective of the research was
to use this model for the accurate
estimation of the torques to be ap-
plied to the robot according to a
known trajectory and feed-forward
them within the control architec-
ture. Our proposed model enhances
the standard inverse dynamic model
available in literature [74, 75, 122].
The latter is obtained by a drastic ap-
proximation of the kinematic struc-
ture of the robot which, on one hand,
allows to obtain a simpler mathemat-
ical formulation but, on the other
hand, causes an underestimation of
inertia which implies underestimated
torques commanded to the D3-1200

8

http://www.sipro.vr.it

as well. We mitigate this inconve-
nience by performing an offline pa-
rameter identification, to estimate two parameters ρ⋆1 and ρ⋆2 to be included in
the standard model that allow to compensate for most of the missing inertia
and gravity. In addition, we proposed a real-time method that estimates the
weight of a payload grabbed by the robot, by comparing the estimated torques
and the real ones.

In the second part of Chapter 3 we proposed a novel inverse dynamic model
without any simplification on the kinematic structure of the robot. We express
the passive joints angles as function of the extended generalized coordinates.
This mathematical formulation of the inverse model has been compared with
the ones available in the literature by comparing accuracy and computational
complexity.

1.1.3 Stochastic Modeling of Mobile Robots

Wheeled mobile robots are used in a wide range of applications from auto-
mated warehouses to patrolling. A rigorous and accurate model describing
their dynamics is important for tackling regulation and tracking problems. In
Chapter 4 we provide a novel dynamic model for differential-drive wheeled
mobile robots (Fig. 1.4) (WMRs) taking into account displacements along the
transverse direction due to losses of adhesion with the ground.

(a) (b)

Figure 1.4: (a) Reference frames of the robot; and (b) force diagram of the robot describing
all the forces and torques acting on the WMR.

We started from a deterministic model which consists of a two-state hy-
brid system [54]: the grip state, determined by a set of ordinary differential
equations (ODEs) that does not allow lateral motion, and the slip state, gov-
erned by a set of differential equations allowing lateral motion. Afterwards, we
transformed the ODEs characterizing both states of the hybrid system into the
corresponding set of Stochastic Differential Equations (SDEs) with nonlinear
drift and diffusion terms, driven by independent Brownian motions. Transi-
tions from one state to the other happen according to a homogeneous Markov
chain, with transition probabilities depending on the state of the robot (e.g.,
linear and angular velocities). Brownian noises model the uncertainty due to
the action of external forces which, usually, are not known with precision.

9

10

Chapter 2

Velocity Obstacle for Mobile
Robots and Manipulators

2.1 Related Works

The problem of planning collision-free trajectories for autonomous robots
is a crucial aspect of the design of control architectures for multi-agent sys-
tems such as automated warehouses, surveillance systems based on unmanned
ground or aerial vehicles, automatic transportation lines or, in general, for the
safe navigation of autonomous robots. Collisions between autonomous agents
or with obstacles moving in their workspace could cause serious problems, e.g.
blocking of production lines, workers injuries, pileups, etc. In order to achieve
the best levels of production efficiency and safety for human workers, every
autonomous entity should be able to accomplish programmed tasks by follow-
ing collision-free trajectories with respect to other agents moving in the same
environment and to unexpected fixed or moving obstacles.

In the current literature, there are two main types of methods that guar-
antee collision-free trajectories for multi-robot systems in which the agents
operate in possibly crowded dynamic environments: Centralized multi-robot
navigation and Decentralized multi-robot navigation methods. In centralized
motion planning, all the agents are able to communicate with a common pro-
cessing unit, sharing information about their state (e.g. current position and
velocity) at every instant and also other types of information such as actual
goal positions. Several works covering different aspects about multi-robot sys-
tems have been proposed, like task allocation [26, 118], formation control of
robots [10, 27, 35, 119], and transportation of objects [1, 65, 83, 124]. Recently,
[108] proposed a method based on Satisfiability Modulo Convex Optimization
(SMC), a combination of satisfiability solving (SAT) and convex programming.
The global communication among every agent and the central controller guar-

This chapter is based on the following publications:
▷ N.Piccinelli, F.Vesentini, R.Muradore. Planning with Real-Time Collision Avoidance for Cooperating
Agents under Rigid Body Constraints, IEEE Design, Automation and Test in Europe Conference and Exhi-
bition (DATE) (2019), pp. 1261-1264.
▷ F.Vesentini, R.Muradore Velocity Obstacle-based Trajectory Planner for Two-Link Planar Manipulators,
European Control Conference (ECC) 2021, Rotterdam, Netherlands, pp. 687–692.
▷ F.Vesentini, R.Muradore, P.Fiorini A Survey on Velocity Obstacle Paradigm, (under review).

11

antees optimal and safe trajectories [81, 106, 121, 136].
The major advantage of this kind of approaches is that collision-free tra-

jectories are computed offline from the beginning to the end and re-planning is
done in an optimal way. Unfortunately, they suffer from several drawbacks: i)
they become computationally expensive when dealing with a large number of
agents, thus they do not scale well in crowded scenarios, ii) the global commu-
nication assumption can be unfeasible in real-world applications, since it would
require an exceptionally complex as well as expensive communication network
between the global controller and every agent, iii) the global communication
system or the central global controller may be affected by disturbances, and
finally iv) they assume the perfect knowledge of the environment, so they can-
not be applied in presence of unexpected obstacles (e.g. human workers or
other objects that may interrupt the navigation of the agents).

Decentralized Collision Avoidance methods has been extensively studied
during the last decades. The most important and successful approaches to the
problem are represented by Potential Fields, [70], Social Force, [62], Dynamic
Window, [46], Model Predictive Control, (MPC) [68] and Velocity Obstacle [44].

Collision avoidance in Potential Fields, also known as “Artificial Potential
Fields" (APFs), is based on representing the robot as a point in the config-
uration space and then constructing a potential field associated to artificial
forces. In such a way the agent is repulsive within a certain neighborhood of
every obstacle and globally attracted to its goal position. The original method
is designed for fixed obstacles and for robots with two degrees of freedom,
however Barraquand and Latombe [12] proposed adapted APFs to robots with
several degrees of freedom; and authors in [49, 100, 101] managed to extend
the approach also to moving obstacles. The Social Force method can be seen
as an adaptation of APFs approach applied to pedestrians , whose dynamics
satisfies additional constraints such as the private sphere [105].

The Dynamic Window is an approach specifically designed for synchro-
drive mobile robots, i.e., a particular type of differential-drive robots with
three degrees of freedom. It is based on the optimization of a gain function of
the forward and angular velocities of the robot, over a three-dimensional space
of velocities that satisfy constraints on both admissibility and time availability
of the current velocities of the robot. Brock and Khatib [21] generalized the
approach proposing the Global Dynamic Window, that allows the execution of
high velocity motion for non-holonomic robots in unknown and dynamic en-
vironments. Furthermore, Ogren and Leonard [86] addressed the convergence
properties of the method, in order to solve known deadlock situations.

The Model Predictive Control approach consists in solving a series of con-
strained optimal control problems over discrete time intervals. It minimizes a
convex cost function over the space of inputs of an autonomous robot. The
constraints of these minimization problems are given by the dynamic model
of the robot and possibly other limitations about its state. Remarkable works
about sufficient conditions ensuring the stability of the closed-loop control sys-
tem can be found in [82, 83].

These approaches are in general relatively simple from a theoretical point

12

of view and highly adaptable to dynamic scenarios and agents’ model. Their
major drawbacks are essentially the difficulty to handle heterogeneous agents
and, since in some cases the behaviours of the agents are regulated by a cost
function (e.g, a function used to prioritize stopping policies in place of avoid-
ance maneuvers), they may require extra and possibly offline non-trivial cal-
culations in order to tune the related parameters. Keviczky et al. [68] used
an MPC technique for formation control and collision avoidance of UAVs, see
Figure 2.1a, forced to fly at certain fixed altitude. Park et al. [90] proposed an
obstacle avoidance scheme for UGVs, see Figure 2.1b, where safe trajectories
are generated by adopting a non-linear MPC approach, in order to better ap-
proximate the dynamics of each vehicle. Similarly, Jiang et al. [67] designed
an MPC scheme based on convex quadratic programming (CQP) that pro-
vides safe trajectories for autonomous vehicles which dynamics is described
by a linear time-varying differential equation, obtained by performing a linear
approximation of a non-linear time-varying model.

(a) (b)

Figure 2.1: An octa-copter Unmanned Aerial Vehicle (UAV) (a) and a Jackal Unmanned
Ground Vehicle by Clearpath Robotics (b) https://clearpathrobotics.com/ .

Another popular decentralized method for collision avoidance in multi-
agent scenarios is represented by the Velocity Obstacle (VO) paradigm, [42, 44]
and its enhanced formulations. VO is a geometric approach for the navigation
of a single agent that has to avoid collisions with several moving agents and
obstacles, arising from the concept of “Configuration Space Obstacle" by [80]
extended to dynamic environments. The later formulations have been designed
to extend the paradigm to dynamic multi-agent environments, [125], to imple-
ment optimal velocity selection for every agent via linear optimization, [127]
to include a constraint of maximum acceleration for the agents, [126], to model
sensors uncertainty, [112] and to extend the paradigm to non-holonomic car-
like agents [2]. Generally speaking, VO-based approaches assume that agents
do not communicate, but only detect each other thanks to their on-board sens-
ing system. Furthermore, each agent is characterized by five values: current
position, current velocity, radius, initial and goal position. The first three can
be sensed by every agent, and the collision avoiding maneuvers are computed
using these measurements at every cycle of sensing-and-acting of the algorithm.

13

https://clearpathrobotics.com/

2.2 Velocity Obstacle paradigm
The Velocity Obstacle (VO) paradigm [44] is a geometric construction used to
determine which velocity vectors cause collisions between a robot and other
moving obstacles or agents. VO has been formalized in 1998 and its popularity
grew significantly over the next decades, among researchers who deal with
online decentralized collision avoidance for autonomous robots.

The dynamic environment in VO consists of an agent A and moving ob-
stacle Bi, i = 1, ...,m, assumed to be holonomic and disc-shaped. The agent
is characterized by its position xA, radius rA and velocity vA, and is able to
detect position xBi

, radius rBi
and velocity vBi

of every obstacle around it.
Velocity Obstacle represents the dynamic environment into the velocity space
that is the tangent bundle TR2 of R2. A motion in the velocity space, for
agent A, is given by the pair

(xA(t), vA(t)) ∈ TR2 ≃ R2 × R2.

For every couple (A,Bi), let

vABi
= vA − vBi

i = 1, ...,m,

be the relative velocity of A with respect to Bi.
The corresponding relative trajectory in the velocity space is defined as

trjABi
= {(x, ẋ) : x(t) = xABi

, ẋ(t) = vABi
}.

At the core of Velocity Obstacle there is this statement [43, 44]: A collision
between A and Bi occurs if and only if the relative velocity vABi

does not change
and trjABi

∩ Bi ̸= ∅. The set of all relative velocities for which the statement
is satisfied is defined as

CCABi
≜ {vABi

: trjABi
∩Bi ̸= ∅} (2.1)

and called Relative Collision Cone of A induced by Bi. Geometrically, it can
be constructed on the two-dimensional space by reducing the agent A to a
point Â and enlarging the obstacle Bi by the radius of A, obtaining B̂i.

The Relative Collision Cone is delimited by two straight lines tangent to B̂
whose intersection point is Â. The Absolute Collision Cone of A with respect
to Bi is defined as follows

CCAi
≜ {vA : vABi

∈ CCABi
} (2.2)

and it is obtained by translating the relative collision cone CCABi
by vA via

Minkowski sum
CCAi

= CCABi
⊕ vBi

.

Agent A does not collide with Bi as long as its velocity vector remains outside
CCAi

. The absolute collision cone can be thought as Velocity Obstacle V OA

for A induced by Bi, see Figure 2.2a.

14

(a) (b)

Figure 2.2: The Velocity Obstacle of A induced by B in the original paradigm (a) and the
truncated equivalent cone (b).

In case of multiple obstacles, the union of all CCAi
defines the Multiple

Velocity Obstacle for agent A

MVOA ≜
m⋃︂
i=1

CCAi
. (2.3)

Agent A must select a velocity vector vnewA such that

vnewA = argmin
v∈V \MVOA

||vprefA − v||2,

where V is the set of admissible velocities for agent A and vprefA is the preferred
velocity, i.e., the maximum velocity leading A to its goal along a straight line
(shortest path). This optimization has to be performed at every sensing-and-
acting cycle.

Figure 2.3: Three-dimensional Velocity Obstacle V OAB of A induced by B.

VO guarantees collision-free trajectories also for mobile robots able to move
in the three-dimensional space, where a motion for agent A is represented by
the pair

(xA(t), vA(t)) ∈ TR3 ≃ R3 × R3.

15

Robot A and obstacles Bi are represented as spheres of radius rA and rBi

instead of circles. The velocity cones in (2.1), (2.2) and (2.3) are now three-
dimensional cones of forbidden velocities for A, see Figure 2.3.

Modern formulations of VO are based on truncated cones, denoted with
V Oτ

Ai
where τ ∈ R>0 is called truncation factor. The agent A that selects a

velocity vector vnewA such that vnewA ̸∈ V Oτ
Ai

avoids collisions with the moving
obstacle Bi until time τ [127]. The original formulation of VO endowed with
truncated cones takes the name of Finite-Time Velocity Obstacle (FVO) [59].
In Figure 2.2b it is possible to see a representation of V Oτ

AB. The circle D,
with center c = xB−xA and radius r, is B represented in the velocity space of
A, while Dτ is the cut-off circle of radius rτ = r/τ and center c = (xB−xA)/τ .
Note that

lim
τ→∞

V Oτ
Ai

= V OAi

since FV O converges to V O for τ → ∞, because the cut-off circle Dτ

collapses to a single point.

2.3 Taxonomy of Velocity Obstacle methods

The major contributions that extended the original Velocity Obstacle paradigm
over the last 25 years are shown in Figure 2.4. Starting from the original Ve-
locity Obstacle (VO, [44]), around 2008-2009 there is the first cluster of im-
portant extensions given by Reciprocal Velocity Obstacle (RVO, [125]), Finite-
Time Velocity Obstacle (FVO, [59]) and Optimal Reciprocal Collision Avoid-
ance (ORCA, [127]). The first work [125] introduced the reciprocal collision
avoidance, i.e., the autonomous robots share responsibility in performing colli-
sion avoidance maneuvers with respect to each other, improving the algorithm
performance in multi-agent systems. The second work [59] focused on avoiding
sub-optimal collision-free maneuvers between agents by introducing the con-
cept of truncated collision cones, that allow to impose a policy among agents
and moving obstacles. The last work [127] of the group incorporates reciprocal
collision avoidance and truncated cones with linear constraints optimization
for collision-free velocity optimal selection. The Generalized Velocity Obsta-
cle (GVO,[130]) in the same year extended the original paradigm to car-like
robots, to overcome the holonomic robots assumption. The Non-Linear Veloc-
ity Obstacle (NLVO,[107]) is a direct extension of the original paradigm based
on warped collision cones designed specifically to deal with obstacles that fol-
low non-linear known trajectories. The Hybrid Reciprocal Velocity Obstacle
(HRVO, [112]) extends the RVO in order to solve the problem of reciprocal
dances, i.e., an undesired phenomenon that induces two agents to perform os-
cillatory trajectories while trying to avoid each other. The method is based on
enlarged collision cones that allow a robot to identify which is the most natu-
ral direction to take while avoiding collision with another robot. The HRVO
paradigm solved the reciprocal dances, but the obtained trajectories may be
non-smooth in crowded dynamic environments. The ORCA paradigm, on
this reguard, is able to produce smooth and non-oscillating trajectories also

16

in crowded environments, but it has the problem of deadlocks, i.e. an event
for which the linear optimization that characterized the method leads an au-
tonomous agent to select a collision-free velocity vector equal to zero, forcing
him to stop and never reach the target.

Figure 2.4: Taxonomy showing the evolution of the paradigm.

A solution to this problem, based on dummy goals, is proposed in [14]. Ac-
celeration Velocity Obstacle (AVO,[126]) includes bounds on accelerations for
mobile robots in the ORCA paradigm. This allows to cope with instantaneous
changes of velocity that are non realistic in real world applications. The year
2013 marks the arrival of two other important contributions: Optimal Recip-
rocal Collision Avoidance for Multiple Non-holonomic Robots (NH-ORCA,[2])
and Goal Velocity Obstacles for Spatial Navigation of Multiple Autonomous
Robots or Virtual Agents (Goal VO,[111]). The first algorithm directly ex-
tends ORCA to the case of differential-drive robots, the most common type of
autonomous robots operating in automatic warehouses and other industrial fa-
cilities; the second one exploits the collision cones not only to model velocities
that lead to collision, but also those that lead to a desired and possibly mov-
ing goal regions. This is justified by the fact that in several applications many

17

robots may have to share the same goal position, such as batteries recharge
spots.

In 2015, [11] generalized the problem of collision avoidance in order to
propose a unified framework where vehicles with different non-linear dynamics
can be considered at the same time, since until then only homogeneous multi-
agent systems where considered.

Finally, [71] proposed the last direct refinement to the original Velocity
Obstacle algorithm that allows the robots to prioritize stopping in place of
avoidance maneuvers. The motivation behind this contribution is that when
obstacles are very fast, the most natural action is to stop the robot and wait
until the obstacles have gone away, instead of performing hazardous collision-
free maneuvers at all costs.

2.3.1 Reciprocal Velocity Obstacle

Van Den Berg et al. [125] provided one of the first adaptation of VO to multi-
agent scenarios. In this formulation all the agents are meant to share the
responsibility to avoid collision. Agents are decision-making entities with the
same collision avoidance policy.

Consider an agent A that has to avoid collisions with another agent B
travelling in the same workspace. At the current time t, A moves with velocity
vA and computes the velocity obstacle V OAB with respect to B. Also B,
moving with velocity vB computes a velocity obstacle cone V OBA. If the agents
are on a collision course, it means that at time t we have that vA ∈ V OAB and
vB ∈ V OBA. In order to perform a correct maneuver, at time t+∆t, A must
select a new velocity vector vnewA = vA +w where w ∈ R2 is a vector such that
vA + w ̸∈ V OAB. Agent B does the same for symmetry (see Lemmas 2,3 and
7 of [125]) by selecting vnewB = vB + w ̸∈ V OBA.

(a) (b)

Figure 2.5: Velocity Obstacle V OAB (light grey cone) compared to the Relative Velocity
Obstacle RV OAB (dark grey cone). Note that the apex of RV OAB on the tip of (vA+vB)/2
vector.

Such velocity selection produces sub-optimal collision avoidance maneu-
vers, since the two agents would move further than necessary. To restore opti-
mality, we must impose that A selects vnewA = vA + w/2 provided that B does

18

the same by choosing vnewB = vB +w/2. This means sharing the responsibility
among pair of agents in computing collision avoidance maneuvers.

Formally, this means that A must select a new velocity vector whose tip is
outside of the Reciprocal Velocity Obstacle of A with respect to agent B, given
by

RV OAB = {vnewA | 2vnewA − vA ∈ V OAB} .
From a geometric point of view RV OAB is a cone equal to V OAB, but trans-
lated by (vA + vB)/2 instead of vB as shown Figure 2.5.

Let us consider a multi-agent scenario where a certain number n ∈ N of
agents A1, ..., An move in the same workspace. Suppose that every agent Ai has
a preferred velocity vprefAi

, i.e. the velocity vector leading to the goal position
xgAi

in absence of obstacles. At every cycle of the algorithm, Ai selects a new
velocity vector such that

vnewAi
= argmin

v ̸∈RV OAi

||v − vprefAi
||2,

where RV OAi
is given by

RV OAi
=

n⋃︂
j ̸=i

RV OAiAj
.

The Relative Velocity Obstacle paradigm represents the most straightforward
extension of the original Velocity Obstacle to multi-agent dynamic environ-
ments, providing on-line safe navigation trajectories for every decision making
entity.

(a) (b)

Figure 2.6: Reciprocal dance between A and B. (a) Each one chooses the closest velocity
to their preferred velocity outside the VO induced by the other, then (b) at the next sense-
and-acting step each robot has attained its new velocity leaving the other one outside of the
current velocity obstacle, that will be selected again in the following step.

However, it has the issue of reciprocal dances see Figure 2.6, i.e. an oscil-
lating behaviour occurring when two agents A and B navigate one toward the

19

other. Reciprocal dances are due to the fact that once A and B have updated
their current velocities with the new ones and moved to the new positions, xnewA

and xnewB , the old velocities might return to be collision free in the successive
cycle of the algorithm, making agents A and B adopting them once again and
so on. This fact could bring to a deadlock. In Section 2.3.6, we will see how
this problem has been solved by [112].

2.3.2 Optimal Reciprocal Collision Avoidance

Van Den Berg et al. [127] presented the Optimal Reciprocal Collision Avoid-
ance (ORCA) improving the original Velocity Obstacle (Section 2.2) and the
Reciprocal Velocity Obstacle (Section 2.3.1). The selection of collision avoid-
ance velocity for every agent vnewA is carried out by solving a linear program-
ming problem in which the constraints are the straight lines defining the half-
planes of feasible velocities.

The algorithm can be described as follows. Suppose agent A, moving with
velocity vA, has to avoid collisions with B moving with velocity vB. The
original VO to constructs the cone V Oτ

AB of all velocities for A that can cause
a collision with B within a certain time horizon τ > 0,

V Oτ
AB ≜ {v | ∃ t ∈ [0, τ], tv ∈ D(xB − xA, rA + rB)}

where xi and ri, i ∈ {A,B}, denote the positions and radii of the agents,
respectively. D is a disk centered in xB − xA of radius rA + rB as depicted in
Figure 2.2b.

If A is on a collision course with B, it means that vAB ∈ V Oτ
AB. Let w

be the vector from vAB to the closest point on the boundary, ∂V Oτ
AB, of the

Velocity Obstacle
w = (argmin

v∈∂V Oτ
AB

||v − vAB||2)− vAB,

and n be the outward normal vector at point vAB + w ∈ ∂V Oτ
AB. Then, the

set of all collision free velocities for A is defined by the half-plane pointing in
the direction n originating at the point vA + w/2,

ORCAτ
AB ≜ {v|(v − (vA + w/2) · n ≥ 0}.

The set ORCAτ
BA for B is defined in the same manner, see Figure 2.7. If A

has to avoid collisions with a certain number of other agents B1, ..., Bm, then
the set of all the permitted velocities for agent A is given by

ORCAτ
A ≜ D(0, vmax

A) ∩
m⋂︂
i=1

ORCAτ
ABi

, (2.4)

where D(0, vmax
A) is a disc centered in the origin with radius given by of the

maximum speed that an agent can reach. The new collision-free velocity for
agent A, is

vnewA = argmin
v∈ORCAτ

A

||v − vprefA ||2.

20

Figure 2.7: The ORCAτ
AB half-plane for A induced by B and its counterpart, ORCAτ

BA,
for B induced by A.

ORCAτ
A is a convex region and the straight lines that defines the half-

planes are the constraints in a linear programming problem, whose solution is
vnewA at every cycle of the algorithm.

This solution is able to provide the optimal and non-oscillating safe tra-
jectories. Unfortunately two agents A and B may get stuck in a deadlock
situation while navigating along a straight line, one toward the other, having
each one the purpose to reach a goal position located beyond the other on a
straight line. In [14] the problem is solved by adopting dummy goals, see Fig-
ure 2.8, leading the robots temporarily away from the aforementioned straight
line and this resolving the deadlock situation.

x

y

z

b

B
vB

b
p
goal
A

b

p
dummy
A

bp
dummy
B

b

A

vA

b
p
goal
B

(a)

x

y

z

b

b

b

b

b

b

b

b

b

bbp
goal
A

b
p
goal
B

t =
0

t =
1

t =
2

t =
3

t =
6

t =
0

t =
1

t =
2

t =
3

t =
6

(b)

Figure 2.8: Dummy goals pdummy
A and pdummy

B , for either the two agents A and B moving
one towards the other (a) and the time-lapse of the collision avoidance maneuver resolving
the deadlock (b).

21

2.3.3 Generalized Velocity Obstacle

Wilkie et al. [130] presented a generalization of the original VO paradigm to
non-holonomic car-like robots driven by some controls u belonging to a control
set U . Consider a car-like robot A that has to avoid collisions with a moving
obstacle B. The approach identifies all the controls u that cause a collision
between the robot and B in the future. Let upref be the preferred controls that
would lead the robot to its goal in absence of obstacles. The set of controls
Uc ⊂ U that will cause a collision at time t > 0 with a moving obstacle B is
defined as

Uc ≜ {u |∃ t > 0 s.t. ||xA(t, u)− xB(t)||2 < rA + rB} ,
where xA(t, u) is the position of agent A at time t given the control u and xB(t)
is the position of obstacle B at time t. The first step is to find the minimum
tmin, solving d

dt
||xA(t, u) − xB(t)||2 = 0 in order to check if the actual control

for robot A is collision free or not. If a collision is forseen, then a new control
has to be selected according to

u = argmin
u′ ̸∈V OAB

||upref − u′||2,

as the closest command to upref that does not belong to V OAB.

2.3.4 Non-Linear Velocity Obstacle

Shiller et al. [107] introduced the Non-Linear Velocity Obstacle (NLVO) as a
modification of the original VO paradigm for robot A that travels in a dynamic
environment populated by moving obstacles Bi that follow a general non-linear
known trajectory c(t), for t ∈ [0,+∞).

The paradigm is stated considering A as a single point, but it can be ex-
tended also to vehicles characterized by more complex kinematics or dynamics.
Given the current time t0 ≥ 0, the infinite-time horizon non-linear velocity ob-
stacle NLV O∞

t0
is given by

NLV O∞
t0
(t) ≜

⋃︂
t

NLV O(t), (2.5)

where NLV O(t) is the set of all velocities vA of A that would cause a collision
with B(t), where B(t) denotes the region of the plane that at time t is occupied
by B. If p ∈ B(t), a velocity that would cause a collision with p at t > t0 can
be expressed in closed form by

v =
c(t) + pr
t− t0

= HA,k(c(t) + pr), k =
1

t− t0
, (2.6)

where pr is the vector connecting c(t) to p and HA,k is the homothetic trans-
formation, centered in A and scaled by k, of the point c(t) + pr.

NLV O(t) is then given by applying (2.6) to every point of B(t)

NLV O(t) = HA,k(B(t)), k =
1

t− t0
.

22

Contrary to what happens in the original VO, where V OA(t) is a proper cone,
the NLV OA(t) appears to be a warped cone originated from A.

The NLVO paradigm can be improved by considering only collisions that
may occur within a certain finite time-horizon τ : it will not construct (2.5),
but an analogous truncated warped cone NLV Oτ

t0
(t). The optimal value for τ

is found by solving a minimization problem of the form

min

∫︂ th

t0

1 dt

subjected to

1. initial conditions x(t0) and ẋ(t0),

2. terminal condition x(th) ̸∈ NLV O∞
τ (t),

3. the vehicle dynamics ẍ = f(x, ẋ, u), u ∈ U .

A robot A characterized by some dynamics selects a new velocity vA(t0 +∆t)
belonging to NLV Oτ

t0
(t)C ∩ ACV (t), where

ACV (t) ≜ {v | v = v(t) + u∆t, u ∈ U}

is the set of all attainable Cartesian velocities and NLV Oτ
t0
(t)C is the com-

plementary set of NLV Oτ
t0
(t). The shape of ACV depends on the dynamics

itself. The major disvantage of this approach is that the planner is able to
guarantee reachability of the goal position in optimal time only in presence of
just one moving obstacle.

2.3.5 Acceleration Velocity Obstacle

Van Den Berg et al. [126] improved ORCA by considering mobile robots sub-
jected to acceleration constraints. The introduction of this type of constraints
is motivated by the necessity to model robot and other autonomous vehicle
moving at high speed (e.g., aerial vehicles like UAVs).

Consider a robot A that has to avoid collisions with another robot B within
time τ . At every sensing-and-acting cycle, the idea is to substitute the collision
velocity cone V Oτ

AB with a new one called Acceleration-Velocity Obstacle for
A induced by B within time τ , AV Oδ,τ

AB, where δ is a control parameter whose
dimension is time. The acceleration aA(t) at time t is proportional to the
difference between the new velocity vnewA and the velocity vA(t) at time t, i.e.

aA(t) =
vnewA − vA(t)

δ
.

The solution of the previous differential equation is given by

vA = vnewA − e−t/δ (vnewA − vA,0) ,

23

where vA,0 is the velocity of A at t = 0. Integrating this solution gives the
position of the agent at time t

xA = xA,0 + vnewA t+ δ
(︁
e−t/δ − 1

)︁
(vnewA − vA,0) (2.7)

where xA,0 is the position of A at time t = 0. Let xτ,δe ≜
(︁
e−t/δ − 1

)︁
, for

simplicity, and let xAB, vAB and aAB be the relative position, velocity and
acceleration of A with respect to B. A collision occurs at time t if ||xAB||2 <
rAB = rA + rB. Exploiting (2.7), such inequality can be re-written as

||xA + vnewA t+ δxτ,δe (vnewA − vA) ||2 < rAB.

It is possible to re-arrange this inequality into the following one

||vnewAB −
δxτ,δe vAB − xAB

t+ δxτ,δe

||2 <
rAB

t+ δxτ,δe

,

which defines the disc of all relative velocities vnewAB that cause a collision be-
tween A and B at time t. The AV Oδ,τ

AB can be defined as

AV Oδ,τ
AB ≜

⋃︂
0<t≤τ

D
(︃
δxτ,δe vAB − xAB

t+ δxτ,δe

,
rAB

t+ δxτ,δe

)︃
,

where D(·, ·) is a disc whose center and radius are the first and second argu-
ment, respectively. In order to avoid collisions with B, robot A must select a
new velocity vector outside of AV Oδ,τ

AB ⊕ vA, where ⊕ denotes the Minkowski
Sum. The approach is designed for holonomic disc-shaped autonomous robots,
but it can be extended also to robots that have to satisfy kinematic constraints.
However since robot A is in any case subjected to acceleration constraint, the
set of collision-free velocities for A, CAA, is constructed as follows

CAA ≜ D(vA, δamax
A) \

⋃︂
B

AV Oδ,τ
AB ⊕ vA.

Given a preferred velocity vector vprefA for robot A, the algorithm will select
a new velocity such that

vnewA = argmin
v∈CAA

||v − vprefA ||2.

2.3.6 Hybrid Reciprocal Velocity Obstacle

Snape et al. [112] formalized the so called Hybrid Reciprocal Velocity Obstacle
(HRVO) with the aim to solve the reciprocal dance problem of RVO seen in
Section 2.3.1, by forcing a collision avoidance maneuver policy among all the
agents enlarging on purpose a side of every absolute collision cone.

Consider a certain number m ∈ N of autonomous agents A1, ..., Am moving
in the same workspace. The first three steps to construct the HRV O of Ai

induced by Aj are:

24

• (i) compute V OAiAj
as in Section 2.2,

• (ii) compute the corresponding RV OAiAj
as in Section 2.3.1 and

• (iii) draw the center line CL splitting RV OAiAj
into two identical halves.

Suppose now that the tip of the current velocity vector of agent Ai, vAi
, is

on the right of CL, Figure 2.9 (a). It means that Ai will perform a collision
maneuver to the right side of the other agent Aj. HRV OAiAj

is defined as the
cone which apex is the intersection point between the left edge of V OAiAj

and
the prolungated right edge of RV OAiAj

.
The exact same construction can be done for symmetry, when the tip of vA

is assumed to be on the left of CL. Figure 2.9 summarizes the HRV O cone
construction from agent Ai perspective.

(a) (b)

Figure 2.9: HRV OAiAj
construction. The agent Ai (a) computes RV OAiBj

induced by
Aj and verifies that the tip of vA is on the right of the center-line CL, then (b) calculates
HRV OAB by intersecting the right edge of RV OAiBj

with the left edge of V OAiBj
.

Finally, supposing that in the environment there are also a certain number
h ∈ N of static obstacles O1, ..., Oh, at every cycle of the algorithm, Ai selects
a new velocity vector such that

vnewAi
= argmin

vAi
̸∈HRV OAi

||vAi
− vprefAi

||2,

where HRV OAi
is given by

HRV OAi
≜

n⋃︂
j ̸=i

HRV OAiAj
∪

h⋃︂
k=1

HRV OAiOk
.

Computing HRV OAi
instead of RV OAi

ensures that there are no reciprocal
dances between agents.

The major drawback is the increased computational burden: if RVO paradigm
requires that every agent Ai computes one collision cone for every Aj, i ̸= j,
then HRVO has to compute an additional cone for every other agent.

25

2.3.7 Non-holonomic Optimal Reciprocal Collision
Avoidance

In [2], the authors extended ORCA to non-holonomic robots of the cart-like
type. A cart-like vehicle has three degrees of freedom: two variables (x, y) for
the position and one θ for the orientation. Its kinematics is⎡⎣ẋẏ

θ̇

⎤⎦ =

⎡⎣cos θsin θ
0

⎤⎦ v +
⎡⎣00
1

⎤⎦ω, (2.8)

where v is the linear control velocity and ω is the angular control velocity. The
idea behind the approach is that a robot A with kinematics described by (2.8)
is able to track the motion of an “ideal" holonomic robot, namely a holonomic
trajectory, within a certain bounded tracking error ϵH . Referring to Figure
2.10, if the current velocity of robot A is fixed to vH = (vH cos θH , vH sin θH),
where vH is the speed of such ideal holonomic robot, then the maximum track-
ing error for the aforementioned holonomic trajectory is

ϵ2H = (vH t−R sin θH)
2 + (R(1− cos θH))

2,

= v2H t
2 − 2vH t sin θH

ω
v +

2(1− cos θH)

ω2
v2,

where R is the curvature radius of the trajectory followed by A and t = k∆t,
with k the iteration index and ∆t the time-step.

Figure 2.10: Geometric interpretation of the tracking error ϵH . vH and θH (blue) defines
the holonomic trajectory to be tracked by the robot A.

The set D(0, vmax
A) for agent A defined in Section 2.3.2 is substituted here

by another set denoted by SFHV , that stands for set of feasible holonomic ve-
locities under the kinematic constraint. Let SNHC be the set of non-holonomic
controls, the feasible holonomic velocities are defined as

SFHV = {vH : ∃(v(s), ω(s)) ∈ SNHC , ||x+ s · vH − x̂k(s)||2 ≤ ϵ,∀τ ≥ 0},

where x is the robot current position, x̂k(s) is the expected robot position
at time k∆t + s if the controls (v(s), ω(s)) are applied at time k∆t. In other

26

words, this is the set of all allowed holonomic velocities vH for which there exist
control inputs that guarantee a tracking error below a certain fixed threshold
ϵH as shown in Figure 2.10.

The optimal linear velocity input v∗ that allows the cart to track vH within
a certain maximum tracking error ϵH is given by

v∗ =
vHt sin θHω

2(1− cos θH)
=

θH sin(θH)

2(1− cos θH)
.

If the optimal linear velocity is not feasible, the optimal controls are

ω = θH/T ≤ ωmax and v = v∗ ≤ vmax,

ω = θH/T ≤ ωmax and v = vmax,

ω = ωmax and v = 0,

where T is a fixed amount of time given to the robot to achieve the correct
orientation, vmax and ωmax are the maximum linear and angular velocities,
respectively.

2.3.8 Goal Velocity Obstacle

The formulation in [111] extended the original VO to multi-agent systems in
which the agents have to reach a goal region G rather than a target point.
The reason behind this idea lies in the fact that in some applications all the
agents or subgroups may have to share the same target region. The problem
is solved by adopting the VO/RVO concepts to identify all the collision-free
velocities that lead to a prescribed region by introducing the Goal Velocity
Obstacle (GVO). Consider an agent A, moving with current velocity vA, that
has to enter in the goal region G; the Goal Velocity Obstacle for A induced by
G is

GV OAG ≜ {v | ∃ s ∈ [0, t], s(v − vA) ∈ G⊕−A},
as shown in Figure 2.11.

GV OAG is the cone of all velocities that allow the agent A to enter in its
goal region G ⊂ R2. At every cycle of sensing-and-acting, the agent A must
select a new velocity such that

vnewA = argmin
v∈GV OA|G\V Oτ

A

||v − voptA ||2,

where voptA is the optimization velocity, that is defined as follows. If the current
velocity vA is pointing to G then the agent must choose voptA = vA, otherwise
it means that vA ̸∈ GV OAG and thus the agent must choose

voptA = argmin
v∈GV OA|G

||v − vA||2.

When the number of autonomous agents in the dynamic environment is
very large, it may occur that GV OAG ⊂ V Oτ

A, that means there are no colli-
sion free velocities leading to the goal region. This problem can be solved by

27

(a) (b)

Figure 2.11: Geometric representation of the Goal Velocity Obstacle. In (a) agents A, B
and goal G (black segment). In (b) the Goal Velocity Obstacle GV OAG of A induced by
G (green cone). The white dashed region is G represented in the velocity space. vnewA is
selected in order to be simultaneously outside V OAB and inside GV OAG.

relaxing the constraints on the velocity space: by prioritizing the pure collision
avoidance velocities forgetting the goal region for a while or not computing the
collision cones with respect to the most distant agents. The approach takes
into account moving regions, multiple regions, with/without time windows.

2.3.9 Optimal Velocity Selection for Velocity Obstacle

Kim and Oh [71] proposed an optimal velocity selection method for VO, named
Optimal Velocity selection for Velocity Obstacle (OVVO). The motivation is
that in very crowded scenarios, the original VO method is not able to select
a safe velocity for each robot due to the lack of feasible candidates among
which select the new safe velocity. The authors then proposed an optimization
method based on minimizing a cost function for the desired velocity, allowing
the robot to prioritize avoidance maneuvers over stopping policy and viceversa.

Consider an autonomous robot A and a dynamic obstacle O, moving with
current velocities vA and vO, respectively. The cost function to be minimized
is the sum of two components. The first component is

f1 = kvd||vprefA − vA||2,

where kvd is a positive constant and vprefA is the robot preferred velocity. The
second component is a function of the clearance (see Figure 2.12) and the pass-
time. The clearance is the distance between a relative velocity and a relative
distance

dv =
vOA × (xA − xO)
||vOA||2

,

where vOA = vO−vA is the relative velocity. A small dv means that the obstacle
is dangerous to the robot, thus vOA is not safe. The function depending on the
clearance is defined as follows

fdv = k1d
−c1
v

28

Figure 2.12: Geometrical interpretation of the clearance dv (blue segment).

where k1 and c1 are positive constants.
The pass-time is the time needed by the robot to pass an obstacle,

tp =
(xO − xA)
(vO − vA)

.

If tp is negative, then the robot has already passed the obstacle, if tp is large,
then the obstacle is not dangerous for the robot. The function depending on
the pass-time is given by

ftp = k2t
−c2
p ,

where k2 and c2 are positive constants.
The second component f2 of the cost function is the product between fdv

and ftp
f2 = ktpd

−c1
c t−c2

p .

The overall cost is given by

J(v) ≜ f1 + f2 = kvd||vprefA − vA||2 + ktpd
−c1
c t−c2

p .

The ratio between the constants kvd and ktp is of primary importance, since
a higher ktp means that the robot will give more importance to collision-free
maneuvers while a higher kvd makes the robot keeping its actual velocity vA
close to the desired one vprefA , even in presence of nearby obstacles. In their
experimental results, authors compared the OVVO results with those coming
from FVO, [59].

Table 2.1 briefly summarizes the Velocity Obstacle extensions analyzed so
far. Algorithm denotes the acronym of the solution. Environment explains
what type of scenarios the algorithm is able to handle. Agents model stands
for the type of agents the algorithms are designed for. Parameters refer to
agent’s position, velocity, radius and orientation: deterministic means that all

29

these measurements do not contain uncertainty and are perfectly known by
each agent, probabilistic means that some parameters are modeled as random
variables. Description provides a quick overview of the method.

Table 2.1: Summary table

Algorithm Environment Agents model Parameters Description
VO Agent-Obs Holonomic Deterministic The agent computes an absolute collision

cone for every moving obstacle and selects
a new velocity out of it, as close as possible
to the preferred one.

RVO Multi-agent Holonomic Deterministic Extension of VO to multi-agent systems:
all the moving objects are decision mak-
ing entities able to compute Velocity Ob-
stacles.

ORCA Multi-agent Holonomic Deterministic Extension of RVO: to guarantee optimality,
smooth and safe trajectories, the new ve-
locity is selected by solving a constrained
linear optimization problem.

GVO Agent-Obs Car-like Deterministic Generalization of the VO to car-like robots,
in which the absolute collision cones are
represented on the space of controls that
move the agent.

NLVO Agent-Obs Non-Holonomic Deterministic Extension of the VO: the agent computes
a warped cone to avoid collisions with ob-
stacles following a known non-linear tra-
jectory.

AVO Multi-agent Holonomic Car-like Deterministic Extension of ORCA: every agent selects its
new velocity respecting a maximum accel-
eration constraint.

HRVO Multi-agent Holonomic Cart-like Probabilistic, Kalman filtered Extension of RVO, designed to solve the re-
ciprocal dances problem. Position and ve-
locity of agents are modeled as Gaussian
random variables in order to model sensors
noise.

NH-ORCA Multi-agent Cart-like Deterministic Extension of ORCA cart-like robots. Differ-
ential driven agents track holonomic veloc-
ities within a certain bounded error.

Goal VO Multi-agent Holonomic Deterministic Extension of VO: every agent computes and
additional cone, containing all the veloci-
ties that allows it to reach a possibly mov-
ing goal region.

OVVO Agent-Obs Holonomic Deterministic VO integrated with optimal collision-free
velocity selection, prioritizing clearance
over pass-time and viceversa.

2.4 Velocity Obstacle for Constrained Agents

Path planning for multi-agent system is a critical aspect in automated ware-
houses where an efficient delivery and storage are mandatory. Moreover mo-
bile robot cooperation, instead of developing bigger vehicles, can effectively
increase the system robustness, coordination and fault-tolerant capabilities
[79]. A common problem is the delivery of cumbersome loads. Mobile robot
cooperation deals with two different sub-problems: formation control and co-
operative path planning. Formation control aims to satisfy constraints on the
relative position of the agents in the fleet [87] without any high-level decision-
making architecture [79]. To account the formation control, many methods

30

are available in the literature and can be classified into: leader-follower ap-
proaches [92, 128] which require a centralised communication strategy; virtual
shapes approaches [76] which provide better performance in terms of formation
maintenance; and behaviour-based approaches [10] which are more flexible but
lacks of system stability analysis. Cooperative path planning aims to provide
optimised trajectories for the vehicles of the formation to accomplish some
given task knowing the mission starting and end points, the environmental
constraints and the required formation shape [15, 55].

In this section, a hybrid navigation system which uses the Voronoi Dia-
grams (VD) as a cooperative global planner and the Velocity Obstacle (VO)
approach as local collision avoidance mechanism, such as in [94], will be used
as a starting point. We will extend the Velocity Obstacle approach in order
to handle rigid body constraints between agents during the local navigation
and collision avoidance. Our solution is not a properly formation control: we
assume the payload to be rigidly coupled to the agents.

2.4.1 Problem Statement and Background

The problem of cooperatively transporting a long and possibly heavy payload
can be formulated as follows. Two holonomic agents are located at the end
points of the load (e.g, a long steel bar) forming a system of two particles
under a rigidity constraint.

The goal is to carry the bar from an initial pose to a goal pose without
colliding with other agents and/or environmental obstacles.

The trajectory planner for the constrained agents, described in details in
Section 2.4.2, is based on two levels: a global and a local level. The global level
is for the collision avoidance with fixed expected obstacles, e.g, the shelves of
a warehouse, and it is based on Generalized Voronoi Diagrams while the local
level is based on the ORCA algorithm described in Section 2.3.2.

Voronoi Diagrams

As defined in [9], given a finite and discrete set of points S = {s1, s2, ..., sk} of
E ⊆ R2, the Voronoi Diagram (VD) of S is a particular decomposition of E
that associates a region reg(s) to every point s ∈ S, such that all the points
into reg(s) are closer to s than any other point of the set S. Formally, for a
generic point s ∈ S the related plane region is computed as

reg(s) =
⋂︂

q∈S\{s}

{x ∈ E : ||x− s||2 ≤ ||x− q||2},

where || · ||2 is the Euclidean distance. VD are suitable for autonomous navi-
gation because moving along the edges of a Voronoi Diagram implies that the
robot is as far away as possible from the neighbouring obstacles [120]. This im-
plies that VD maximises the clearance. Generalised Voronoi Diagrams (GVDs)
is an extension that can be used for path planning. GVDs allow to compute the

31

regions for primitives like points, lines, polygons, curves or surfaces [129]. Fig-
ure 2.13 shows an example of a space partition over the warehouse planimetry
(black rectangles) used in our experimental setup.

0 5 10 15 20

X (m)

36

38

40

42

44

46
Y

 (
m

)

Figure 2.13: The grey lines shows an example of a R2 partition using Generalised Voronoi
Diagram.

Rigid Body Constraint

Let (xa, ya) be the position of agent A and (xb, yb) be the position of B in the
Euclidean space E ⊆ R2. They are bond by a rigid bar of length d which
constraints their relative positions

(xa − xb)2 + (ya − yb)2 = d2, (2.9)

for every t ≥ 0. The linked agents A and B form a system with three degrees
of freedom: to know the exact configuration1 of the system, it is sufficient
to know the position of one of the agents and the relative orientation angle
θ ∈ [0, 2π) with respect to a fixed reference frame Σx,y. The agents have to
satisfy the following equations{︄

xb = xa + d cos θ

yb = xb + d sin θ
(2.10)

which is equivalent to (2.9). We can get the relation between the velocity of
agents A and B as follows. Suppose that our constrained system AB lies in
a certain initial configuration ra = (xa, ya) and rB = (xb, yb) at time t0. The
distance between the robots is d and θ is the orientation angle of the system
accordingly to Σx,y. Suppose now that at time t0 + ∆t the system reaches a
new configuration in which r′a and r′b are the new positions of the robots and
θ′ is the new orientation angle. Since the distance between A and B is always
ℓ because of the rigidity constraint, the following equations hold

∆ra = r′a − ra
∆rb = r′b − rb
∆θ = θ′ − θ

1The position in E of A and B.

32

and then
∆rab = ∆ra −∆rb.

If ∆θ is sufficiently close to zero, the following approximation ℓ sin∆θ ≈ ℓ∆θ
holds true. Thus, ∆rab ≈ ℓ∆θ and the absolute value of the relative velocity
can be derived by passing to the limit ∆t→ 0

vab = lim
∆t→0

|∆rab|
∆t

= lim
∆t→0

ℓ
∆θ

∆t
= ℓω

where ω = dθ/dt is the angular velocity. The velocity vectors vA and vB then
satisfy the following equation

va = vb + vab = vb + ℓ× ω

or equivalently
vb = va − vab = va − ℓ× ω.

2.4.2 Trajectory Planner

As proposed in [94], we use Voronoi Diagrams as global planner as well. In
our case we have to include some improvements to carry out the planning for
linked agents. We start by planning the optimal trajectory for a single agent,
obtaining the waypoints P i for i = 1, ...,m. For every index i, the segment
connecting the waypoints P i and P i+1 is given by Li = P i+1 − P i. Then for
every P i like in [45], we define the waypoints for the constrained system as
follows

P i
A = P i, (2.11)

P i
B = Lkmin ∩ C(P i

A, ℓ), (2.12)

where i = 1, ...,m, C(P i
A, ℓ) is the circle of radius ℓ centred in P i

A, and kmin is
given by

kmin = min{k ∈ [i, ...,m) : Lk ∩ C(P i
A, ℓ) ̸= {0}}.

The index kmin identifies the index of the first segment L that has non-empty
intersection with C(P i

A, ℓ). Equation (2.12) might result to be not satisfied
when the payload is approaching its goal position, hence it might happen that,
in a certain waypoint P j

A, there is no kmin for which equation (2.12) is satisfied.
This means that the global planner is not able to set the corresponding P j

B.
In that case we have to change our strategy in order to set a proper waypoint
for agent B: if all the waypoints P i

A set after P j
A are such that

||P j
A − P i

A||2 ≤ ℓ, i = j + 1, ...,m,

i.e. entirely contained into the circle C(P j
A, ℓ), then the global planner sets

the positions P i
A and P i

B by considering again equations (2.11) and (2.12) but
switching the subscript indices A and B, so the circle will be centred in P i

B, not
in P i

A. This allows us to stay on the optimal path planned in the beginning.

33

11 12 13 14 15 16 17 18 19 20

X (m)

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Y
 (

m
)

Figure 2.14: An example of planning for constrained agents A (empty blue circle) and
B (filled blue circle) carrying a bar of 1.5m. The dotted red circles shows the position
constraints between agents for each waypoint. The path (the thick black line) has been
previously down sampled according to the path curvature.

Figure 2.14 shows an example of planning: waypoint P 52
B was P 52

A in origin,
but it failed to satisfy equation (2.12) so it is necessary to rename it as P 52

B by
swapping subscript indices and to use it as centre of C(P 52

B , ℓ), in order to set
P 52
A . Then move on to P 53

B that allows to position P 53
A and the goal is reached.

In order to make ORCA, seen in Section 2.3.2, able to manage collision
avoidance for agents rigidly linked, we modified the constraints formulation
in the linear programming section of the code for computing the half planes.
First, we “group" the two robots A and B in order to constitute a single
entity. Second, we run the “classic" ORCA algorithm to isolate the sets of all
the collision avoidance velocities ORCAτ

A and ORCA
τ

B with respect to any
other agent or moving obstacle that does not belong to the constrained pair
AB. We have

ORCA
τ

A = D(0, vmax
a) ∩

⋂︂
c̸={A,B}

ORCAτ
A|C

ORCA
τ

B = D(0, vmax
b) ∩

⋂︂
c̸={A,B}

ORCAτ
B|C

where A and B, do not collide each other by construction. Third, we update
the new collision avoidance velocities vnewa and vnewb in such a way they satisfy

vnewa ∈ ORCAτ

A ∩RB
vnewb ∈ ORCAτ

B ∩RB

where RB in the set

RB = {(vnewa , vnewb) : ||pnewa − pnewb ||2 − ℓ = 0}

with

pnewa = pa + vnewa ∆t

pnewb = pb + vnewb ∆t.

34

In other words, among the all possible collision avoidance velocities for A and
B, i.e. those belonging to ORCA

τ

A and ORCA
τ

B, robots A and B have to
choose velocities vnewA and vnewB that not only guarantee no collisions within
time τ , but that preserve the rigid link between them as well. Any other agent
C sharing the same workspace avoids collisions accordingly to the original
ORCA algorithm. Although under our assumption the physical link between
robots A and B cannot be broken, the proposed approach is very important
to avoid bad choices of vnewA and vnewB . If velocities that do not satisfy the rigid
constraint are chosen, the robots will

• slip on the ground making the odometry measurements inaccurate,

• waste energy due to additional (and unnecessary) friction, and

• apply force/torque on the joints that could eventually damage the robots.

To obtain the velocities for A and B that satisfy the mechanical constraint and
drive the robots toward their final targets, we adopt a non-linear programming
solver based on the Augmented Lagrangian Method (ALM) [3]. ALM is a class
of methods developed to solve (generally non-linear) constrained optimisation
problems. Suppose we have to solve the following problem

argmin
x∈X

f(x) (2.13)

subject to ci(x) = 0 ∀i ∈ I
where I is a certain discrete set of indices and f(·), c(·) are possibly non-linear
functions. Just like penalty methods, ALM solves (2.13) by iterating on a
sequence of unconstrained problems

min
x∈X,λi∈R

Lk(x, λi) = f(x)−
∑︂
i∈I

λici(x) +
µk

2

∑︂
i∈I

ci(x)
2

in which the Lagrangian multipliers λi, µk appear. The term µk

2

∑︁
i∈I ci(x)

2

is called “quadratic augmentation" and it makes the new objective function
Lk(x, λ) strongly convex as µk increases. After every iteration step k, the
method updates not only µk (using the value at the previous step as initial
guess), but also the Lagrangian multiplier in such a way to get µkci(xk)← λi
where xk is the solution of the unconstrained problem at the k-th step, i.e.
xk = argminLk(x, λi). The accuracy of the Lagrangian multiplier λi increases
at every step. The problem that we want to solve can be formalised as

argmin
vnew
a ,vnew

a

||vnewa − vprefa ||2 + ||vnewb − vprefb ||2 (2.14)

subject to ||pnewa − pnewb ||2 − d = 0 (2.15)
fi(v

new
a) ≤ bi, i = 1, ..., N (2.16)

fj(v
new
b) ≤ bj, j = 1, ...,M (2.17)

where pnewa and pnewb are the optimal new positions, vnewa and vnewb the optimal
new velocities of the constrained agents, vprefa and vprefb are the desired (uncon-
strained) velocities that allow the agents to reach their next waypoints, d > 0

35

is the length of the rigid link between A and B, fi(·) ≤ bi and fj(·) ≤ bj are
the affine functions defining the ORCAτ

A|C half-planes, N = |CN \ {B}| and
M = |CM \ {A}| where CN and CM are the set of the agents detected through
their sensing systems (e.g, laser scanners, cameras, LIDAR’s etc) by A and
B, respectively. The meaning of the objective function (2.14) is that we want
to find collision avoidance velocities as close as possible to the preferred ones;
equation (2.15) guarantees the rigid constraint between A and B; the meaning
of equations (2.16) and (2.17) is that the new velocities have to belong to the
half-planes generated by the current velocities of A and B, respectively.

2.4.3 Simulation Results

The proposed solutions has been tested in simulation using ROS Kinetic (Robot
Operating System), RVO2 and Alglib 3.14.0 for solving the non-linear optimi-
sation problem. The time-step used is ∆t = 50.0ms, the ALM penalty coeffi-
cient and the number of outer iteration for the whole experiments are set to 10
and 500. During simulations the agents (abstracted as circles) have the same
maximum speed vmax = 0.5m/s and bounding circle radius of 0.3 cm. We
tested out our solution in a simulated warehouse environment with corridor
2.5m wide and with a rigid body constraints of length ℓ = 1.5m.

1

2

3

4

5 6 7 8 9 10 11 12
13

P
Start

P
Target

0 2 4 6 8 10 12 14 16 18 20

X (m)

-1

0

1

2

3

4

5

6

7

8

9

10

Y
 (

m
)

Figure 2.15: The Cartesian trajectory for the two coupled agents (agent A emptyblue circles,
agent B filled blue circles). The thick black line shows the reference optimal path over the
Voronoi diagram’s edges (light gray lines). The numbers inside the filled blue circles refer
to discrete time evolution.

Three different scenarios are implemented to validate the proposed ap-
proach:

1. Constrained motion: Two coupled agents A-B move along the pre-
computed path taking into account only the static obstacles defined by
the planimetry of the warehouse;

2. Constrained motion and obstacle: Two coupled agents A-B move
along the precomputed path where an obstacle is located;

36

3. Constrained motion and agent: Two coupled agents A-B move along
the precomputed path and meet a third agent C moving along a trajec-
tory which can cause a collision.

1

2

3

4

5 6 7 8 9 10 11 12
13

P
Start

P
Target

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18
19 20

21
22 23 24 25 26

27

P
Start

P
Target

0 2 4 6 8 10 12 14 16 18 20

X (m)

-1

0

1

2

3

4

5

6

7

8

9

10

Y
 (

m
)

Figure 2.16: The Cartesian trajectory for the two coupled agents (agent A empty blue
circles, agent B filled blue circles). The thick black line shows the reference optimal path
over the Voronoi diagram’s edges (light gray lines). The red rectangles is an obstacle over
the precomputed trajectory.

Constrained motion

In the first scenario the agents move in a completely known and static environ-
ment. Two agents rigidly coupled with a bar are moving along a precomputed
path as shown in Figure 2.15. The optimal path is the shortest part from Pstart

to Ptarget over the Voronoi edges which satisfies the rigid constraint. Since the
optimisation algorithm explained in Section 2.4.2 is an iterative method, the
solution may not be exact leading to a small error between the nominal posi-
tions of the robots and the actual ones. However, using a small time step ∆t
and increasing the iteration number it is possible to get feasible solutions in a
reasonable time. In our case we computed collision free trajectories for A and
B with a maximum error smaller than ∼ 4.4mm.

Constrained motion and obstacle

In the second scenario we tested our solution with an obstacle placed over
the precomputed paths for both agents A and B. We set a rectangle box of
dimension 1.0m × 0.5m and set the time horizon τ to 1.0 s. Figure 2.16 shows
between discrete time 18 and 23 the avoiding manoeuvre. The coupled robots
A-B move away from their nominal trajectories in order to avoid the obstacle.
In this case they are in charge to completely carry out the avoidance. Once the
manoeuvre is over, they get back to the nominal trajectory and continue the
navigation towards the target position Ptarget according to the optimal paths.
The maximum position error is 5.7mm. It is larger than in the previous case
because now the number of available solutions during the collision avoidance
is smaller.

37

1

2

3

4

5 6 7 8 9 10 11 12
13

P
Start

P
Target

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18
19 20

21
22 23 24 25 26

27

P
Start

P
Target

1

1

2

2

3
3

4

4

5

5

6

6

7

7

8

8
9

9

10

10

11

11

12

12

13

13
P

Start

P
Target

0 5 10 15 20

X (m)

0

2

4

6

8

10

12

Y
 (

m
)

Figure 2.17: The Cartesian trajectory for two coupled agents (agent A empty blue circles,
agent B filled blue circles), and an extra agent C which is free to move (red circle). The
thick black line shows the reference optimal path over the Voronoi diagram’s edges (light
gray lines).

Constrained motion and agent

In the last scenario we have the coupled agents A and B moving over the pre-
computed trajectory from Pstart towards Ptarget following a set of waypoints
and a third robot C is moving in a collision path. As shown in Figure 2.17
around discrete times 7-9 the trajectories of the agents cross, leading to a pos-
sible collision. As expected the agents A-B and C made successfully collision
avoidance manoeuvres. The agent C treats the coupled agents as a single en-
tity and senses the bar as an obstacle. This means that it cannot pass through
the payload (constraint) during the collision avoidance manoeuvre. As in the
previous scenarios the maximum position error is smaller than a centimetre
(with respect to the bar length ℓ = 1.5m).

2.5 Velocity Obstacle for Planar Manipulators

As pointed out in Section 2.1, Velocity Obstacle is one of the most popular
and studied decentralized trajectory planning methods for multi-agent systems
moving in dynamic environments. It has been successfully used in a multi-
tude of real and simulated scenarios for collision-free maneuvers of ground and
aerial autonomous robots. Velocity Obstacles are exclusively used for the safe
navigation of mobile robots, never for planning safe trajectories for robotic
manipulators that have to avoid obstacles in their workspace. Artificial Poten-
tial Fields (APFs) [12, 70, 72] and Dynamic Movement Primitives (DMPs) [51,
52, 53, 113] are well known approaches for this scenario. In this section, we
present a trajectory planner for planar two-link manipulators exploiting the
VO algorithm and on its alternative formulation called Finite-Time Velocity
Obstacle (FVO), both described in Section 2.2.

38

2.5.1 VO-based Planner

We consider a planar serial robot with 2 revolute joints (RR), consisting of a
base link Link 1 of length ℓ1 connecting the base J1 to the elbow-joint J2 and
a distal link of length ℓ2, Link 2, connecting J2 to the end-effector EE.

In our formulation J1, J2 and EE are considered as constrained holo-
nomic agents [95]. The planner we want to develop should be able to compute
collision-free trajectories for Link 2 with respect to a moving obstacle, which
does not block the motion of Link 1 in any instant of time.

Problem Statement

Let Pi = (xi, yi), i ∈ {O, 1, 2, 3}, be the position of obstacle O, base J1, elbow
J2 and end-effector EE, respectively. Similarly, let vi and ri denote their
velocity vectors and radii. The manipulator has to move the end-effector from
an initial configuration P 0

3 = (x03, y
0
3) (that corresponds to (θ01, θ

0
2) in the joints

space) to its goal position P g
3 , within a tolerance dϵ > 0, i.e. ||Pg − P3||2 < dϵ,

without colliding with an obstacle of radius rO placed at PO = (xO, yO) ∈ R2,
see Fig. 2.18.

Figure 2.18: RR planar robot initial configuration, according to Denavit-Hartenberg con-
vention. The base agent J1 is coloured

Planner description

The base J1 is fixed at the origin of the base frame Σ0 = {x0, y0}, J2 moves by
remaining on the circumference of radius ℓ1 centered in J1 and at distance ℓ2
from the end-effector. EE “drives" the motion of the manipulator calculating
collision cones with respect to J2 and O. EE acquires the goal position P g

3 in
order to compute its preferred velocity vector vpref3 given by

vpref3 = v
(P g

3 − P3)

||P g
3 − P3||2

=
(︂
ẋpref3 , ẏpref3

)︂
∈ R2, (2.18)

39

where v ∈ [0, vmax
3], and constructs the set of admissible velocities V as a disc

centered in EE of radius ||vpref3 ||2. The EE acquires P1 to reduce the set V
to RV , the Reduced Admissible Velocities set for EE. P1 placed on the right
side of vpref3 means that EE must not compute an avoiding maneuver on the
left side of the obstacle, because this would surely cause a collision with the
obstacle. RV is constructed by eliminating all the admissible velocities of V
whose tip is on the left of vpref3 , see Fig. 2.19. When J1 is on the left side of
vpref3 , RV must be constructed by eliminating all the velocities on the right of
vpref3 .

Figure 2.19: Configuration viewed from end-effector perspective. (a) EE defines vpref3 via
equation (2.18) and constructs the set V of admissible velocities, (b) RV is obtained from
V by eliminating all those velocities on the left of preferred velocity, since J1 is on the right
of EE.

At each sensing-and-acting cycle EE acquires P2 and PO to construct the
multiple velocity obstacle, given by

MVOEE = CCEE J2 ∪ CCEEO.

The end-effector EE updates its current position P curr
3 with P new

3 by selecting
vnew3 = (ẋpref3 , ẏpref3) ∈ R2 that satisfies the following constrained minimization
problem

vnew3 = argmin
v∈RMV OEE

||vpref3 − v||2 (2.19)

subject toP new
Link2 ∩O = ∅, (2.20)

where RMVOEE ≜ RV \MVOEE is the Reduced Multiple Velocity Obstacle.
P new
Link2 is the Link 2 configuration once vnew3 is selected, i.e.

P new
Link2 = P new

3 − P new
2 . (2.21)

The new safe position for EE is given by P new
3 = P curr

3 + vnew3 ∆t, where ∆t is
the time-step, and P new

2 belongs to the circumference of radius ℓ1 centered in
J1. Let P new

2 = (x2, y2) be the Cartesian coordinates of the new position for the
elbow-joint. P new

2 coordinates can be computed directly from P new
3 = (x3, y3)

40

Figure 2.20: The two solutions for Pnew
3 once Pnew

3 is computed, for ∆ > 0. The thick
continuous black line is the current configuration, the thin black line is the future feasible
configuration and the dashed black line is the discarded configuration.

by solving the system {︄
x2 + y2 + ax+ by + c = 0

x2 + y2 − ℓ21 = 0
(2.22)

where a = −2x3, b = −2y3 and c = x23 + y23 − ℓ22. The closed form solutions to
system (2.22) are given by

x
(1,2)
2 =

−a(ℓ21 + c)±
√
∆

(a2 + b2)
,

y
(1,2)
2 = −1

b

(︄
c+ ℓ21 +

a(a(ℓ21 + c)±
√
∆)

(a2 + b2)

)︄
,

where ∆ = a2(ℓ21+c)
2−(a2+b2)(2ℓ21c+ℓ41+c2−b2ℓ21). ∆ > 0 implies that (2.22)

has two distinct solutions (x11, y
1
1) and (x22, y

2
2), representing the two possible

manipulator configurations corresponding to a new end-effector position for
which the Jacobian is non-singular. Referring to Figure 2.20, the manipulator
moves from the current configuration (thick continuous black line) to its new
safe configuration (thin black line): the configuration given by P

new(2)
2 (gray

dashed line) is not feasible for the continuity of motion, thus is discarded.
∆ = 0 implies that (2.22) has one solution (x, y) given by

x = −−a(ℓ
2
1 + c)

a2 + b2
, y = −1

b

(︃
c+ ℓ21 −

a2(ℓ21 + c)

a2 + b2

)︃
since the manipulator is in a singularity configuration, i.e. the arm is stretched
with θ2 = 0. ∆ < 0 corresponds to unfeasible configurations.

The planner satisfies constraint (2.20) as follows:

• (a) for every v ∈ RMVOEE it computes P new
3 = P curr

3 + v∆t,

41

(a) (b)

Figure 2.21: Geometric representation in the velocity space of how the planner works. Pic-
ture (a) shows the collision between the obstacle and Link 2 (black dashed line intersecting
Ô) that occurs if EE solves only equation (2.19) and therefore selects vpref3 as new safe
velocity vector. Picture (b) shows the collision-free maneuver occurring when EE selects
vnew3 as safe velocity vector, by satisfying both equations (2.19) and (2.20).

• (b) it finds all the possible safe positions for the elbow-joint J2 by solving
system (2.22),

• (c) it calculates all the possible relative positions for Link 2 given by
equation (2.21),

• (d) it discards all those intersecting the obstacle i.e. for which equation
(2.20) is not satisfied and

• (e) finally, among the remaining, it selects the closest velocity vnew3 to
vpref3 .

Figure 2.21a shows what would happen if EE performs a collision avoidance
maneuver by solving only equation (2.19). After constructing the RV set
excluding all the velocities on the left of vpref3 (striped half-circle), EE would
keep the preferred velocity as safe velocity vector, since vpref3 ∈ RMVOEE.
This leads to a collision between the obstacle and Link 2 (dashed black line
intersecting Ô). In Figure 2.21b EE satisfied both equations (2.19) and (2.20),
selecting a velocity vector vnew3 ∈ RMVOEE that avoids collision between
Link 2 and O. Once vnew3 is found, EE updates its position via P new

3 =
P curr
3 + vnew3 ∆t. The new velocity vector vnew3 for J2 is calculated via

vnew2 =
P new
2 − P curr

2

∆t
, (2.23)

where P new
2 is obtained by solving system (2.22). Algorithm 1 shows the

pseudo-code that implements the planner based on VO method for a planar
2R robot arm.

42

Algorithm 1 : VO 2R Planner
Set manipulator-obstacle-goal initial configuration;
Set d← ||P3 − P g

3 ||2;
while d > dϵ do

acquire PO, vO and P g
3 ;

set vpref3 for EE;
create admissible velocities set V;
adjust V creating RV according to P1;
compute RMVOEE

for all v ∈ RMVOEE do
compute P new

3 ← P3 + v∆t;
compute P new

2 by solving system (2.22);
compute P new

link2 ← P new
3 − P new

2 ;
find v closest to vpref3 such that P new

Link 2 ∩O = ∅;
end for
set vnew3 ← v;
update P new

3 ← P curr
3 + vnew3 ∆t;

calculate vnew2 via equation (2.23);
update P new

2 ← P curr
2 + vnew2 ∆t;

update d← ||P new
3 − P g

3 ||2;
end while
Set vpref3 = 0. % target reached

2.5.2 Simulation Results

We compare the results obtained with a planner based on the original VO
paradigm, namely VO-planner, with those obtained by adopting a planner
based on FVO paradigm, for different values of the cut-off factor. Joint veloc-
ities q̇ = [θ̇1, θ̇2]

T are computed from Cartesian velocities of the end-effector
v = [ẋ, ẏ]T via the following equation

q̇ = J−1(q)v,

where J−1(q) is the inverse of the Jacobian matrix

J−1(q) =

⎡⎢⎢⎢⎣
cos θ12
ℓ sin θ2

sin θ12
ℓ sin θ2

−cos θ12 + cos θ1
ℓ sin θ2

−sin θ12 + sin θ1
ℓ sin θ2

⎤⎥⎥⎥⎦ ,
with θ12 ≜ θ1 + θ2. Vector v is the safe velocity provided by the trajectory
planner at every time-step k∆t, k ∈ N.

Comparison VO-FVO

The manipulator is assumed to have links of the same length ℓ1 = ℓ2 = 0.2m.
The initial configuration is (θ01, θ

0
2) = (135◦, 35◦), the goal is to move the end-

effector in the position P g
3 = (0.25, 0.27)m, avoiding collisions with a fixed

43

obstacle placed in PO = (0.025, 0.260)m with radius rO = 0.05m. (θ01, θ
0
2), P

g
3

and PO have been chosen in such a way to induce a possible collision between
Link 2 and the obstacle.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a)

0 1 2 3 4 5 6

20

40

60

80

100

120

140

160

(b)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c)

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

1.5

2

(d)

Figure 2.22: Manipulator motion time-lapses of the proposed scenario, obtained via VO
planning in figure (a) and via FVO planning with τ = 10 in figure (c). The corresponding
joints angle and joints velocity time series are shown in figures (b) and (d). The dotted lines
in both pictures (b) and (d) are obtained via FVO planning with a cut-off factor τ = 50.
Shaded colours are adopted to put in evidence the motion of the objects.

Figure 2.22a shows the time-lapse of the manipulator motion obtained using
the VO-planner. The end-effector starts avoiding the obstacle from the very
beginning, because VO planner is based on full collision cones and vpref3 belongs
to CCEEO at the initial configuration. EE starts moving to the right and
continues until is able to point at the goal position, i.e. until vpref3 finally exits
CCEEO, and then moves directly towards it. Figure 2.22c shows the time-lapse
of the same setup, obtained by adopting FVO-planner with τ = 10. EE keeps
the preferred velocity as long as possible, since vpref3 does not belong to CCEEO

until the end-effector is very close to the obstacle. Then the manipulator
performs an abrupt collision avoidance maneuver causing non-smooth position
profiles, as it can be observed in Figure 2.22b at t = 1.70 s for τ = 10 and at
t = 1.50 s for τ = 50. Figure 2.22d shows joint velocities, exhibiting similar
non-smooth profiles. The VO-planner provides the smoothest trajectories and
it is the most efficient in terms of time, leading the end-effector to the goal
position in TV O = 4.90 s against TFV O(10) = 5.50 s and TFV O(50) = 5.20 s.
It is worth highlighting that the adoption of FVO is suggested only when the

44

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(d)

Figure 2.23: Four additional simulation setups. (a) A simulation without obstacle and with
fixed target, (b) fixed obstacle and fixed target, (c) a moving obstacle and fixed target, and
(d) moving obstacle and a moving target. Shaded colours are adopted to put in evidence
the motion of the objects.

manipulator is moving in a crowded environment with multiple obstacles at
different distances.

Setups with Moving Obstacle and Target

We examine four additional simulation setups in which collision avoidance
maneuvers are performed by adopting the VO-planner and, where obstacle and
target move with constant speed. The initial configuration for the manipulator
is (θ01, θ

0
2) = (135◦, 35◦). Figure 2.23a shows a setup without obstacles and

with a fixed target for the end-effector placed in P g
3 = (0.20, 0.30)m, while

Figure 2.23b refers to the same situation but including a fixed obstacle placed
in PO = (0.000, 0.275)m. In Figure 2.23c the obstacle starts moving from
the initial position PO = (0.100, 0.275)m and moves forward with constant
velocity vector given by vO = (−0.015, 0.000) m/s. Figure 2.23d illustrates
the same situation in which the target also moves, from the initial position
P g
3 = (0.200, 0.250)m along a straight line with a constant velocity vector

given by vg3 = (−0.005, 0.015)m/s. We highlight that, unlike case (b) in which
the end-effector can proceed directly to the goal as soon as it passes the fixed
obstacle, in cases (c) and (d) the planner moves EE a bit on the right before
reaching the goal, in order to allow a safe navigation of Link 2.

45

46

Chapter 3

Dynamics Modeling for Delta
Robots

3.1 Related Works

Parallel robots are spatial mechanical structures that consist of kinematic
closed chains. They usually have two platforms: one is fixed (the base), the
other one can have arbitrary motions in its workspace (the moving platform).
Three mobile legs structures, assembled as serial robots with two rods linked by
passive spherical joints, connect the effector attached to the moving platform
to the base. Actuated revolute joints located at the base and prismatic joints
at the links allow the moving platform to translate and rotate in the three
dimensional space.

Parallel robots are particularly suitable for a wide range of industrial appli-
cations, such as pick-and-place, packaging, assembly etc., and over the decades
have aroused particular interest in the robotic community. Parallel robots
possess several advantages when compared to serial manipulators, offering a
generally higher rigidity, smaller mobile mass and low manufacturing costs.
These characteristic translate into a particularly favorable ratio between the
maximum payload and the weight of the robot itself, fast movements with high
repeatability and precise manipulations.

Research in the field of parallel robots dates back to the late ’30s, when
Pollard [99] invented and patented a mechanical structure for car painting.
A few years later, Stewart used a parallel structure, see Figure 3.1a, with a
6-DoFs moving platform invented by Mc Cough in his flight simulator [117].
Recent interesting publications about modeling and model-based control of
complex parallel manipulators with many degrees of freedom are [132, 133,
134].

The Delta Robot is a kind of parallel manipulator invented by Reymond

This chapter is based on the following publications:
▷ F.Falezza, F.Vesentini, A. Di Flumeri, L. Leopardi, G. Fiori, G. Mistrorigo, R. Muradore. Gray-Box
Model Identification and Payload Estimation for Delta Robots, IFAC-PapersOnLine (Elsevier), 53(2), pp.
8771-8776.
▷ F.Falezza, F.Vesentini, A. Di Flumeri, L. Leopardi, G. Fiori, G. Mistrorigo, R. Muradore. A Novel Inverse
Dynamic Model for 3-Dof Delta Robots, Mechatronics (Elsevier) 2022 (accepted for publication).

47

Clavel and his research team [30] in 1987. The robot was originally designed
with a mechanical parallel structure with three links, forming a closed kine-
matic chain connecting a fixed platform to the end-effector. The tool mounted
at the end-effector is capable of translating along the Cartesian X, Y and Z
axes. Several modifications to the original Delta Robot model have been pre-
sented with the intent to increase the degrees of freedom of the robot. For
example, a model with four actuated links allowed to rotate the end-effector
[97]; or the Hexa Delta robot, whose six kinematic chains arranged by pairs
allowed to reach 6-DoF giving the possibility to control the orientation of the
end-effector besides its Cartesian position [96]. It is common to refer to the
original model with the name 3-DoF Delta Robot, see Figure 3.1b.

(a) (b)

Figure 3.1: A schematic representation of the 6-DoFs moving platform by Mc Cough (a),
and a 3-DoF Delta Robot (b). The first link is highlighted in red, and the second link in
green. Courtesy: SIPRO Srl https://www.sipro.vr.it/.

The origin of such name is the presence of three serial kinematic chains
with 3 degrees of freedom, which allow the end-effector to move in the three-
dimensional workspace. Each kinematic chain consists of two rigid links con-
nected by 2-DoF revolute passive joint. The first link of each chain is actuated
by an electric motor, attached to the fixed upper base.

A reliable dynamic model able to provide real-time estimation of the input
torques is important for the design of torque control laws, payload estima-
tion tasks and fault detection algorithm. The dynamic modelling of parallel
Delta Robots is, unfortunately, a quite complex task due to their complicated
kinematic structure subjected to holonomic constraints, that closes the kine-
matic chains to the moving platform and the presence of passive joints whose
positions do not belong to the set of generalised coordinates. Contrary to
other types of robots with passive angles, e.g., the parallelogram arm [110], in
the case of Delta robots it is not possible to express the passive joint angles
as a functions of the actuated joint angles only. For these reasons, a signif-
icant simplification of each kinematic chain is common in order to derive a
model suitable for the implementation in modern controllers and, in general,

48

https://www.sipro.vr.it/

for model-based control laws. In the literature there are several simplified
dynamic models for Delta robots, obtained by exploiting different methods.

Codourey [31, 32] simplified the kinematic structure of 3-DoF Delta Robots
by neglecting the inertia of the passive links (also referred as forearms) and
concentrating one third of their mass on the moving plate and the other two
thirds on the elbow. The dynamic model is then calculated by exploiting the
Principle of Virtual Work. Furthermore, Codourey and Burdet [33] proposed
a method for deriving the dynamic model for 3-DoF Delta robot in linear
form. Based on the same assumptions, Miller [84] derived and experimentally
validated the inverse dynamics of a direct drive DELTA-580 robot1 by direct
application of the Hamilton’s Principle. Fumagalli and Masarati [48] used
a general-purpose multibody software in order to algoritmically compute the
inverse dynamics of a 3-DoF Delta Robot for real-time control applications.
Recently, also Asadi and Heydari [7] proposed an inverse dynamic model in
closed form based on the same type of assumptions.

Alternatively, Tsai [122, 123] simplified the kinematic chains of the Delta
Robot by assuming that the mass of the passive link of each kinematic chain
is evenly divided between the end-effector and the end of the actuated links.
On this assumption, Staicu [115] proposed recursive algorithm for solving the
inverse dynamics problem by combining the Principle of Virtual Work and
the the fundamental equations of the parallel robots dynamics [114]. Other
noteworthy contributions about dynamics modelling, control and payload es-
timation applications are Park et al. [91], Angel et al. [5], Castañeda et al.
[24], Falezza et al. [38] and Farsoni et al. [41]. Recently, Kuo [74] exploited
the model in the analysis of a Delta Robot with flexible links and by Kuo and
Huang [75] in model-based control applications.

A simplified inverse dynamic model has the advantage of having a mathe-
matical formulation in closed form relatively easy to handle, that can be readily
used to design closed-loop controls laws and it is suitable for the hardware of
modern microcontrollers. The major disadvantage is that simplifications on
the kinematic chains lead to a significant loss in the total inertia and potential
energy of each kinematic chain. The calculated control torques then result to
be underestimated with respect to the real ones.

In order to remedy this issue, one has essentially two ways: adopting a
parameter identification technique to estimate a few parameters that reduce
the inaccuracy or searching for a complete model without simplifications of
the kinematic structure.

Angel and Viola [4] improved the dynamic model by applying a parameter
identification technique based on a recursive least square (RLS) algorithm.
Falezza et al. [38] multiplied the inertia matrix and the compensation of gravity
term by two unknown scalars and then performed a Gray-Box parameters
identification in order to find their optimal values, i.e., those that minimize
the error between the real and estimated torques.

Bortoff [20] recently formulated a complete dynamic model for a 3-DoF
Delta Robot exploiting both the Lagrange’s and Hamilton’s methodologies,

1courtesy of Laboratory of Microengineering, Swiss Federal Institute of Technology.

49

resulting in a set of 24 first-order Differential Algebraic Equations (DAEs) of
Index 3. The excessive index makes the model almost impossible to be solved
and implemented in high-frequency control architectures. Suitability needs to
be restored after the adoption of the index reduction method. To the best of
our knowledge, there are no complete dynamic models for delta robots in the
literature.

3.2 Delta Robot D3-1200 Kinematic Structure
A 3-DoF Delta Robot is composed of a moving platform e1−e2−e3 connected
to a fixed base f1−f2−f3 through three sets of kinematic chains. Each chain
consists of two rigid links fiji and jiei, with i ∈ {1, 2, 3}, connected by a two-
degree passive revolute joint in ji. Links in the kinematic chains are actuated
by three electric motors located at points fi of the fixed frame. The base
reference frame Σb = {O; X, Y, Z} is centered in the circumcenter O of rigid
platform. Figure 3.2 shows the CAD model of the robot under study.

l 2

l1

re

rf

a 2

a1

m1

m2

m0

Figure 3.2: CAD model of the robot under study, reporting the position of the CoMs of
links and end-effector.

The center of the moving platform is the end-effector, and its position,
expressed with respect to the base frame Σb, is

x =

⎡⎣xy
z

⎤⎦ . (3.1)

The links fiji and jiei have two 2-DoF spherical joints on ji and ei. The
proximal and distal links of each kinematic chain have identical length, i.e.
l1 = ||fiji|| is the length of the actuated link of mass m1, l2 = ||jiei|| is the
length of the passive links with i ∈ {1, 2, 3}. The passive links are composed
by two parallel rods to increase mechanical rigidity. However, for deriving the
mathematical model is sufficient to consider just a single rod with total mass
m2 (equal to the sum of the masses of the two parallel rods). Let rf = ||Of i||
be the radius of the circle passing from f1 − f2 − f3, and re = ||xei|| be

50

the radius of the circle passing from e1 − e2 − e3, where || · || denotes the
Euclidean norm. Angles θi with i ∈ {1, 2, 3} represent the joint orientation
of the actuated links and their values are provided by the motor encoders.
The angles γi and ψi represent the orientation of the passive links and are not
measured.

3.2.1 Direct Kinematics

The kinematic structure has to satisfy the following holonomic constraint of
rigidity

||x− j′i||2 = l22, (3.2)

where

j ′i =

⎡⎣(r + l1 cos θi) cosαi

(r + l1 cos θi) sinαi

−l1 sin θi

⎤⎦
with r = re − rf and αi is the rotation of fi with respect to O in the {X, Y }
plane. Equation (3.2) is the intersection of three spheres with centres ji and
radii l2, a quadratic equation of the Cartesian coordinates that has two real
solutions, one belonging to the real half-space

H+ ≜ {(x, y, z) ∈ R3 : z > 0}

and the other belonging to

H− ≜ {(x, y, z) ∈ R3 : z < 0}.

According to the reference frame we adopted, the end-effector is in H−, there-
fore the solution belonging to H+ is discarded [74, 75, 122].

3.2.2 Inverse Kinematics

The inverse kinematics κ−1 : R3 → R3 computes the values of the generalized
coordinates θ1, θ2 and θ3 given the Cartesian coordinates (3.1) of the end-
effector, expressed with respect to the robot fixed frame Σb. According to
[74], the active joint angles can be obtained by solving equations (3.2) for
i ∈ {1, 2, 3}. They can be written as ℓi cos θi + pi sin θi = ni, where

ℓi = 2rl1 − 2l1x cosαi − 2l1y sinαi,

pi = 2l1z,

ni = 2rx− 2ry sinαi + x2 + y2 − z2 + l21 − l22 + r2.

There are four possible solutions, refer to [122] for further details on how to
select the right one.

51

Table 3.1: Kinematic and dynamic parameters of D3-1200 delta robot.

Parameter Value Unit
rf 0.250 m
re 0.100 m
l1 0.375 m
l2 0.900 m
a1 0.122 m
a2 0.450 m
m0 0.940 kg
m1 1.400 kg
m2 0.390 kg

Table 3.2: Electromechanical parameters of D3-1200 delta robot.

Parameter Value
Weight 64Kg
Power supply 380V three phase
Motors Kollmorgen AKM44G (3 units)
Installed power 4.5KW
Class Protection IP55
Temperature 0÷ 45◦C
Humidity 95%
Repeatability 0.1mm
Max. n◦ of cycles 150 per minute
DoF 3
Max. working range 1200mm
Max. payload 4Kg

3.2.3 Dynamic Parameters

The value of the dynamic parameters for the Delta robot under study are listed
in Table 3.1. Table 3.2 reports the electromechanical parameters of the robot.

In particular, rf is the radius of the fixed upper-base, re is the radius of the
moving platform, l1 and l2 are the lengths of active and passive link of each
kinematic chain, a1 represents the distance between the active joint rotation
axis in fi and the center of mass of the active links, a2 is the distance between
each passive revolute joint in ji and the center of mass of passive links; mi

for i ∈ {0, 1, 2} are the mass of the moving platform, the active link and the
passive link, respectively.

3.3 Gray-Box Model Identification and Payload
Estimation

The inverse dynamic model is derived from a simplification of the kinematic
structure; for this reason we refer to it as simplified dynamic model, denoted

52

withMs. The parameter identification procedure leads to derive the identified
model, MId, that improves the estimation of the torques and estimates the
payload.

3.3.1 The Simplified Dynamic Model

In order to treat the end-effector as a point mass concentrated in x, we assume
to “horizontally shrink" the entire structure of the robot by re, i.e., we consider
the geometric representation in Figure 3.3b which is equivalent to Figure 3.3a
from the dynamics point of view. The radius of the fixed base becomes r =
rf − re, the motor positions are f ′

i , the passive joint positions are j ′i and the
vertices ei of the moving platform collapse to x; angles θi, γi, ψi and αi are
preserved as well as the length of the links.

Y

X

Z

x

f1

f2

f3

e1

e2

e3

j1

j2

j3

θ1

γ1

j1

e1

Z

ψ1

X
Y

α1

α2
α3

l1

l2

rf

re

re
j′3

j′2

j′1

re

re

(a)

α3 α2

α1

θ1

γ1

r

X

Y

Z

f ′1

f ′2

f ′3

j′1

j′2

j′3

x = e1 = e2 = e3

(b)

Figure 3.3: Geometric representation of the kinematic structure (a) and the same structure
horizontally shrinked by re. Angles αi ∈ {1, 2, 3} are the rotation angles around the Z-axis
of the reference frame.

According to [74, 75, 91, 116, 122], to deriveMs of the robot, we need the
following approximations on the kinematic chains shown in Figure 3.3b:

A1 : the active links are considered as homogeneous rods of mass m1, length
l1 and center of mass at l1/2,

A2 : the passive links are modeled as two points of mass m2/2 concentrated
in j ′i and in x.

These simplifications allow to avoid the inclusion of the passive joint angles
γi and ψi into the generalized coordinate vector q, leading to a system of
differential equations easier to handle. The dynamics is obtained by solving
the constrained Euler-Lagrange equations

d

dt

(︃
∂L
∂q̇

)︃
− ∂L
∂q

= τg + λ
∂F(q)
∂q

(3.3)

53

where

λ = [λ1 λ2 λ3]
T

are the Lagrange multipliers, τg is the generalized force vector acting on the
system, F(q) is the constraint (3.2) and

q = (x y z θ1 θ2 θ3)
T q̇ =

(︂
ẋ ẏ ż θ̇1 θ̇2 θ̇3

)︂T
, (3.4)

are the generalized coordinates and velocities [22]. The kinetic energy T of
the simplified model Ms, is given by the sum of the kinetic energies of the
end-effector T0, of the actuated links T1 and of the passive links T2. Due to the
assumptions A1 and A2, the inertia terms of the actuated and passive links
can be written as

I1 =
1

3
m1l

2
1, I2 =

1

2
m2l

2
1,

and since the end-effector e1− e2− e3 is modeled as a point of mass m0 in x,
the kinetic energy contributions [74, 75, 122] are

T0 =
1

2
m0||ẋ||2,

T1 =
1

2
I1

3∑︂
i=1

θ̇
2

i =
1

6
m1l

2
1

3∑︂
i=1

θ̇
2

i ,

T2 =
1

2

3∑︂
i=1

(︃
1

2
m2||ẋ||2 + I2θ̇

2

i

)︃
=

1

4
m2

3∑︂
i=1

(︂
||ẋ||2 + l21θ̇

2

i

)︂
.

While the potential energy contributions [74, 75, 122] are

V0 = m0gz,

V1 =
1

2
m1g l1

3∑︂
i=1

sin θi,

V2 =
1

2
m2g

3∑︂
i=1

(z + l1 sin θi),

where g is the gravity acceleration. The computation of the derivatives in

54

equation (3.3) results to

d

dt

(︃
∂L
∂ẋ

)︃
=

(︃
m0 +

3

2
m2

)︃
ẍ,

d

dt

(︃
∂L
∂ẏ

)︃
=

(︃
m0 +

3

2
m2

)︃
ÿ,

d

dt

(︃
∂L
∂ż

)︃
=

(︃
m0 +

3

2
m2

)︃
z̈,

d

dt

(︃
∂L
∂θ̇i

)︃
=

(︃
1

3
m1 +m2

)︃
l21θ̈i, i ∈ {1, 2, 3}

∂L
∂x

= 0,

∂L
∂y

= 0,

∂L
∂z

= −
(︃
m0 +

3

2
m2

)︃
g,

∂L
∂θi

= −1

2
(m1 +m2) gl1 cos θi, i ∈ {1, 2, 3}.

The derivatives with respect to the Cartesian variables, together with the
right-hand side of Equation (3.3), lead to the following system of second-order
equations

M (ẍ+ g)− 2A(q)λ = hext, (3.5)

with

M =

⎡⎣m0 +
3
2
m2 0 0

0 m0 +
3
2
m2 0

0 0 m0 +
3
2
m2

⎤⎦ ,
ẍ =

⎡⎣ẍÿ
z̈

⎤⎦ , g =

⎡⎣ 0
0
−g

⎤⎦ ,A(q) =

⎡⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦ ,
where

a1i = x+ r cosαi − l1 cos θi cosαi,

a2i = y + r sinαi − l1 cos θi sinαi, i ∈ {1, 2, 3}
a3i = z − l1 sin θi.

The vector hext ∈ R3 represents the external forces applied to the end-effector.
The derivatives with respect to the joint variables yield to

Iθ̈ +G(q)− 2K(q)λ = τ , (3.6)

where τ is the command torque vector and

I = l21

⎡⎣1
3
m1 +

1
2
m2 0 0

0 1
3
m1 +

1
2
m2 0

0 0 1
3
m1 +

1
2
m2

⎤⎦ , θ̈ =

⎡⎣θ̈1θ̈2
θ̈3

⎤⎦ ,G(q) =

⎡⎣v1v2
v3

⎤⎦ ,
55

K(q) =

⎡⎣k11 0 0
0 k22 0
0 0 k33

⎤⎦ , τ =

⎡⎣τ1τ2
τ3

⎤⎦ .
with

vi =
1

2
(m1 +m2)g l1 cos θi,

kii = (x cosαi + y sinαi + r) sin θi − z cos θi
for i ∈ {1, 2, 3}. The control torques τ are calculated by solving the sys-
tem (3.5) with respect to λ, given the external forces contribution hext, and
then substituting λ into equation (3.6)2. In the following we assume hext =
[0, 0, 0]T .

3.3.2 Gray-Box Model Identification and Friction
Estimation

Ms is an approximation of the real robot, as pointed out by assumptions A1
and A2 in Section 3.3.1. In particular, the fact that the mass of the passive
link is divided evenly between the end-effector and the end of the active link
yields to a noticeable underestimation of the inertia effect. Moreover, the
contribution of joint friction is not taken into account at all. These two issues
lead to an under-estimation of the real torque computed by the industrial
controller of the real robot.

We propose a method to compensate for the missing inertia and potential
energy, and the viscous and Coulomb frictions. In other words, by starting
from Ms, we construct the identified model MId and the identified model
with friction estimation MId+F . Figure 3.4 shows the control loop and the
identification block.

Figure 3.4: Control loop with the identification block. M∗ represents the inverse dynamic
model that one wants to identify, it can be eitherMId orMId+F .

We construct MId as follows. Two scalar parameters ρ1 and ρ2 are added
to Ms in order to take into account the missing inertia and potential energy.

2We point out that in [122], contrary to us, they assume m2 to be the mass of just one of
the two parallel rods constituting the passive links. However, the structure of the equations
of motion remains unchanged: the only difference is that m2 is divided by a factor 2.

56

Equation (3.6) is accordingly adapted to

ρ1Iθ̈ + ρ2G(q)− 2K(q)λ = τ . (3.7)

In order to fit the best values for ρ1 and ρ2, an offline approach has been
adopted. The method consists in minimizing the error ϵτ between the real
robot torques τ and the estimated torques τ̂ , over a set of trajectories Υ.

The error minimization is performed with a greedy approach over a range of
values between (ρmin

1 , ρmax
1) and (ρmin

2 , ρmax
2). In particular, the algorithm cycle

through every trajectory υ ∈ Υ, computing the torques τυ for every (ρ1, ρ2)υ ∈
(ρmin

1 , ρmax
1)× (ρmin

2 , ρmax
2), and finds the pair (ρ⋆1, ρ

⋆
2)υ which minimizes

(ρ⋆1, ρ
⋆
2)υ = argmin

(ρ1,ρ2)υ

ϵτυ = RMS(τυ − τ̂υ). (3.8)

The overall optimal values ρ⋆1 and ρ⋆2 to be included in (3.7) are given by the
average

(ρ⋆1, ρ
⋆
2) =

∑︁
υ(ρ

⋆
1, ρ

⋆
2)υ

|Υ| , (3.9)

where |Υ| is the cardinality of Υ. Substituting ρ⋆1 and ρ⋆2 of equation (3.9) into
(3.7) in place of ρ1 and ρ2 yields to the identified modelMId.

Friction plays an important role in determining the torques when the robot
operates at high speed, as in the case of Delta Robots. Coulomb and viscous
friction models, as reported in [69], account for the most of the contributions
of friction at joints. We considerMId and we include the friction contribution
into the model by writing

ρ⋆1Iθ̈ + ρ⋆2G(q)− 2Kλ+Bθ̇ + S sign(θ̇) = τ , (3.10)

where B and S are two 3× 3 diagonal matrices given by

B =

⎡⎣fυ1 0 0
0 fυ2 0
0 0 fυ3

⎤⎦ , S =

⎡⎣fc1 0 0
0 fc2 0
0 0 fc3

⎤⎦ .
Matrices B and S contain the viscous and Coulomb friction coefficients, fυi >
0 and fci > 0, respectively. The coefficients are estimated via Least Squares
method [8]. For every υ ∈ Υ, let |υ| be the number of samples in υ. Let τυ,i ∈
R|υ|×1 and τ̂υ,i ∈ R|υ|×1 be the times series of measured torques and computed
torques, for joint i, at every sample time, respectively. Let θ̇υ,i ∈ R|υ|×1 be
the vector of i-th joint angular velocity, from now on, the joint index i will be
omitted. By defining

∆τυ = τυ − τ̂υ Φυ =
[︂
θ̇υ sign(θ̇υ)

]︂
,

we have the following linear system

∆τυ = Φυ

[︃
fc
fv

]︃
.

57

The viscous and Coulomb friction coefficients are estimated by[︃
f ⋆
c

f ⋆
υ

]︃
= (ΦT

υΦυ)
−1ΦT

υ∆τυ,

and, finally, [︃
f ⋆
c

f ⋆
υ

]︃
=

∑︁
υ [fc fυ]

T
υ

|Υ|
are the averages over all the trajectories. The model MId+F is obtained by
plugging f ⋆

υ and f ⋆
c into matrices B and S, respectively, in order to be included

in equation (3.10).

3.3.3 Payload Estimation

Delta Robots are largely used in the manufacturing industry for high-speed
pick-and-place tasks. When an object is picked, the dynamic model needs to
be modified accordingly to return the correct values of torques to be provided
as feed-forward signal to the control architecture.

In industrial applications, robots may need to pick objects of unknown
sizes and weights resulting in a loss of precision in the torque computation.
The purpose of this section is to present a real-time method to identify the
payload to increase the accuracy during these specific tasks. In what follows
we assume that parameters ρ1 and ρ2 have already been identified and included
in the inertia matrix I and gravity compensation term G(q).

Equation (3.5) (with hext = [0, 0, 0]T) is modified to explicitly consider the
payload mass mp, as

M (ẍ+ g) +Mp ẍ− 2A(q)λ = 0, (3.11)

where Mp is a 3× 3 symmetric matrix given by

Mp =

⎡⎣mp 0 0
0 mp 0
0 0 mp

⎤⎦ .
Substituting λ = 1

2
A−1(q) [M (ẍ+ g) +Mp ẍ] into equation (3.6) we get

Iθ̈ +G(q)−K(q)A−1(q) [M (ẍ+ g) +Mp ẍ] = τ .

Since ∆τ = τ−τ̂ and τ̂ = Iθ̈+G(q)−K(q)A−1(q)M (ẍ+ g) are estimated
torque with no payloads, we have the following equality

−A(q)K−1(q)∆τ = Mpẍ. (3.12)

We define y(k) = −A(k)K−1(k)∆τ (k), where we set A(k) = A(q(k)) and
K(k) = K(q(k)) to simplify the notation for the sake of clarity.

The Least Square problem to be solved to estimate Mp is given by

minˆ︂Mp

∑︂
k

||yT (k)− ẍ(k)ˆ︂Mp||2,

58

where t = kTs is the current time with Ts the sample time of the controller. As
shown in [8], the recursive method to solve a least-square problem is needed
since observations are obtained sequentially at run time during the picking and
releasing of objects. Therefore, the current estimation M̂p(k) is given by the
recursive equation

M̂p(k+ 1) = M̂p(k)−Ψ(k)
(︂
yT (k)− ẍT (k)ˆ︂Mp(k)

)︂
, (3.13)

where

Ψ(k) = P(k)ẍ(k+ 1)
[︁
σ + ẍT (k+ 1)P(k)ẍ(k+ 1)

]︁−1
,

P(k) =
1

ν

[︁
I −Ψ(k− 1)ẍT (k)

]︁
P(k− 1).

The value ν ∈ [0, 1] is the forgetting factor. With a fine-tuned ν, the model
can adapt the torques accordingly with the payload very fast.

3.3.4 Experimental Results

We now show the experimental results proving the higher accuracy of the
torques estimated by MId and by MId+F than to the ones estimated by the
simplified model Ms. The torque profile of each model has been compared
to the real torque profile of a D3-1200 Delta robot manufactured by SIPRO
Srl using an industrial controller, over a set of trajectories. A Net Analyzer,
over Ether-CAT, allowed the recording of kinematic information, commanded
and executed torques. Recorded torque values are already multiplied by the
motor gear ratio and are the ground truth to verify the goodness of each model
presented in this paper.

Table 3.3: Mean error and standard deviation of each model over υF

MKH MId MId+F

µ σ µ σ µ σ
τ1 (Nm) 14.32 23.97 3.62 11.89 3.94 5.67
τ2 (Nm) 7.98 20.30 -1.09 11.55 -1.11 5.79
τ3 (Nm) 6.62 20.23 -2.10 11.91 -1.49 6.06

We proposed a free-motion trajectory without payload υF , meant to stress
the robot, e.g., large accelerations and motion close to the workspace bound-
ary. Figure 3.5a shows the torque profiles τ̂i and the real robot torques τi.
The dynamical model underestimates the real torques, due to the model sim-
plifications A1 and A2 as explained in Section 3.3.1.

The gray-box dynamic parameter identification seen in Section 3.3.2, over
a set of |Υ| = 12 trajectories, allowes to identify the optimal parameters ρ⋆1 and
ρ⋆2. The same trajectory υF is used to compare the model with the identified
parameters,MId andMs.

Figure 3.5b shows the identified model torque time series τ̂i with respect
to the torques τi. The dynamic parameters ρ⋆1 and ρ⋆2 compensate for the

59

(a) (b)

Figure 3.5: Real torques τ compared with estimated torques τ̂ computed by the modelMs

(a) and with estimated torques τ̂ computed by the modelMId (b), for each actuated joint
using the trajectory υF .

(a) (b)

Figure 3.6: Real torques τ compared with estimated torques τ̂ computed by the model
MId+F , for each actuated joint over trajectory υF (a), and with and without payload
identification, using the trajectory υP (b).

lack of inertia and potential energy in the previous model. The model follows
more accurately the robot torque profile. The absence of friction correction
is noticeable, especially when the robot is moving at low and high velocities.
In those cases, the error between the real and computed torques increases.
Figure 3.6b shows the torques of the dynamic modelMId+F with the identified
payload information τ̂i, at run-time, compared to the dynamic model without
this information, τ̃i, and the real robot torques τi. The test has been executed
over the trajectory υP . Figure 3.7b shows the reduction of the errors when
the payload mP is correctly computed. The implementation of the friction
estimation method of Section 4.2 brings to the third model MId+F . The
matrices B and S increase the overall model accuracy. The dynamic model
MId+F with the previously identified dynamic parameters and the friction
coefficients is compared with Ms over trajectory υF . Figure 3.6a shows the
dynamic model enriched with friction computation τ̂i, with respect to the real

60

(a) (b)

Figure 3.7: Mean errors with standard deviations. In (a) each label represents the errors
between the dynamical model Ms and the real robot torque profile. In (b) each label
represents the errors between the dynamical modelMId+F and the real robot torque profile
with mP = 0 and mP = m̂P .

Figure 3.8: Payload estimation over time. The mass m̂p is the estimated payload, while
mp is the correct payload attached to the end-effector. The top graph shows the estimation
using the real torque measurements whereas the bottom graph shows the estimation using
the simulated torque of the MId+F model.

robot torque τi. The estimated torques by the mathematical model MId+F

follow the real torques much better, both at high and low velocities.
The mean µ and the variance σ of the error e(k) = τ(k)− τ̂(k) have been

drastically reduced as shown in Table 3.3. Figure 3.7a displays the values
of Table 3.3. Until now, each model has been tested in free-motion with no
payload. υP is a free-motion trajectory, with a payload of 3.8 kg at the end-
effector. The trajectory contains movements from a standard pick-and-place
motion between two industrial conveyors. This trajectory is used to show the
behavior of the model MId+F in case of trajectory with/without a payload.
In case of pick-and-place tasks with heavy payloads, the performance would
decrease, since the model does not take into consideration the different weights
at the end-effector. The purpose of the payload identification is to increase the
accuracy when the lifted payload mP is greater than zero. Figure 3.8 shows
the estimated payload m̂p using the method (3.13). This model achieves good
results in terms of transient time and accuracy. Table 3.4 shows the values of

61

mP = 0 mP = m̂P

µ σ µ σ
τ1 (Nm) 13.91 13.27 0.42 7.39
τ2 (Nm) 7.27 16.52 -0.02 7.49
τ3 (Nm) 5.88 5.96 0.27 5.40

Table 3.4: Mean error and standard deviation of the MId+f torque and real τ , over the
trajectory υP , with mP = 0 and mP = m̂P .

the mean error and standard deviation of the torque error with mP = m̂p and
without payload, mP = 0.

3.3.5 Feed-forward Control

Future research will focus on the implementation of a feedforward torque con-
trol loop, see Figure 3.9, based on theMId+F model.

Figure 3.9: Control loop with feed-forward torque τFF based on the identified model M∗
and feedback torque τFB .

3.4 Novel Inverse Dynamic Model

The offline parameter identification process described in Section 3.3.2 has some
flaws: the offline minimization formalized in equation (3.8) is highly time-
consuming and, furthermore, the identified parameters ρ⋆i , i ∈ {1, 2} depend
on the set of trajectories Υ.

In this section we propose a novel inverse dynamic model, to which we
will refer with the name of Mf , that does not need to rely on any parameter
identification. The effect of friction at the active and passive joints is not
considered inMf , but it remains possible to estimate it separately. The model
is derived by discarding the assumption A2 and then by modeling the passive
links as homogeneous rods of mass m2, length l2 with center of mass positioned
at a2 = l2/2. They oscillate with respect to passive revolute joints placed in
j ′i and so their inertia is

I2 =
1

3
m2l

2
2.

Since the end-effector is only capable of translating in the operational space,
it can still be modeled as a point mass m0 placed in x as in (3.1).

62

r

l1

l2

a1

a2

x x2i

x1i

fi

ji

Figure 3.10: The position of the center of mass of the first link is placed at distance a1 with
respect to fi along the active link. The position of the center of mass of the second link is
placed at distance a2 with respect to ji along the passive link.

In what follows we will adopt the compact notation cα for cosα and sα for
sinα; furthermore, we introduce the new variables βi as the sum of the angle
of the joints connected to the active links, and the angle of the passive joints
whose rotation lies on the same plane of the active link to which it is connected

βi ≜ θi + γi.

Figure 3.10 shows the coordinates of the center of mass of each actuated
link x1i and the coordinates of the center of mass of each passive link x2i

x1i =

⎡⎣(r + a1cθi)cαi

(r + a1cθi)sαi

a1sθi

⎤⎦ x2i =

⎡⎣(r + l1cθi + a2cβicψi)cαi − a2sψisαi

(r + l1cθi + a2cβicψi)sαi + a2cψisαi

l1sθi + a2sβicψi

⎤⎦ ,
(3.14)

while the coordinates of the end-effector is x.
The corresponding velocity vectors computed by differentiating equations

(3.1) and (3.14) are

ẋ1i =

⎡⎣−a1 θ̇isθicαi

−a1 θ̇isθisαi

a1 θ̇icθi

⎤⎦ , ẋ =

⎡⎣ẋẏ
ż

⎤⎦ , (3.15)

ẋ2i =

⎡⎢⎢⎣
−
(︂
l1θ̇isθi + a2β̇isβicψi + a2cβiψ̇isψi

)︂
cαi − a2 ψ̇icψisαi

−
(︂
l1θ̇isθi + a2β̇isβicψi + a2cβiψ̇isψi

)︂
sαi − a2 ψ̇isψisαi

l1θ̇icθi + a2(β̇icβicψi − sβiψ̇isψi)

⎤⎥⎥⎦ . (3.16)

63

3.4.1 Kinetic Energy Contribution

In Mf we also consider the kinetic energy of the rotors T3. The contribution
can be re-written as

T0 =
1

2
m0||ẋ||2,

T1 =
3∑︂

i=1

(︃
1

2
m1||ẋ1i||2 +

1

2
I1θ̇

2

i

)︃
,

T2 =
3∑︂

i=1

(︃
1

2
m1||ẋ2i||2 +

1

2
I2β̇

2

i +
1

2
I2ψ̇

2

i

)︃
,

T3 =
1

2
I3k2r

3∑︂
i=1

θ̇
2

i ,

(3.17)

where kr is the motor gear ratio and I3 is the inertia of the rotor. For clarifi-
cation, the following terms are explicitly computed

||ẋ1i||2 = a21θ̇
2

i ,

||ẋ2i||2 = a21k
2
2 + a22s

2αiψ̇
2
+ k1l2sαiψ̇ic(αi − ψi) + k21 + k2l1l2θ̇icθi + l21θ̇

2

i c
2θi,

||ẋ||2 = ẋ2 + ẏ2 + ż2,

where k1 and k2 group some of the terms for simplicity,

k1 ≜ θ̇il1sθi + a2

(︂
β̇isβicψi + ψ̇icβisψi

)︂
, (3.18)

k2 ≜ β̇icβicψi − ψ̇isβisψi. (3.19)

Figure 3.11: The passive angles γi and ψi represented on the planes {O;X,Z} and {O;X,Y },
respectively. The unit vectors of the links projections are drawn in blue.

The angle ψi is between the projections of fij
′
i and jiei onto the {O;X, Y },

and γi is the angle betweem the projections of fij
′
i and jiei onto {O;X,Z}

plane, as shown in Figure 3.11. They cannot be expressed as functions of the

64

actuated joint angles θi, therefore we define them as function of the generalized
coordinates q defined in (3.4). They are expressed as

ψi ≜ arccos(hi) γi ≜ arccos(ni), (3.20)

with

hi ≜
cθi(xcαi + ysαi)− rcθi − l1c2θi

l2
,

ni ≜
xcθicαi − (rcθi + l1c

2θi)c
2αi + zsθi − l1s2θi

l2
.

Definitions (3.20) are derived by considering the projections of the links onto
the planes {O;X, Y } and {O;X,Z}, respectively. The velocities of the passive
joints in equations (3.17) are given by

ψ̇i =
−1√︁
1− h2i

ḣi, γ̇i =
−1√︁
1− n2

i

ṅi. (3.21)

The total kinetic energy contribution T is the sum of all the previous contri-
butions

T =
3∑︂

i=0

Ti. (3.22)

3.4.2 Potential Energy Contribution

The potential energies of the end-effector V0, of the active links V1 and the
passive links V2, are

V0 = m0gz, (3.23)

V1 = m1ga1

3∑︂
i=1

sθi, (3.24)

V2 = m2g

(︄
l1

3∑︂
i=1

sθi + a2

3∑︂
i=1

sβicψi

)︄
, (3.25)

The total potential energy V is

V =
2∑︂

i=0

Vi. (3.26)

The rotors do not change position with respect to the Z-axis, therefore it is
not necessary to compute their potential energy V3.

3.4.3 Delta Robot Novel Inverse Dynamics

The dynamics of a Delta Robot is obtained by solving the constrained Euler-
Lagrange equations of the Lagrangian of the system in (3.3). By expliciting
the terms we get

d

dt

(︃
∂T
∂q̇

)︃
− d

dt

(︃
∂V
∂q̇

)︃
− ∂T
∂q

+
∂V
∂q

= τg + λ
∂F(q)
∂q

. (3.27)

65

with

d

dt

(︃
∂V
∂q̇

)︃
= 0, (3.28)

since there is no dependency on q̇ in V . The time derivative of the partial
derivatives of the kinetic energy with respect to q̇ are shown in equations
(3.38).

d

dt

(︃
∂T
∂ẋ

)︃
=

1

2
m2

3∑︂
i=1

d

dt

∂||ẋ2i||2
∂ẋ

+ I2
3∑︂

i=1

(︄
β̈i

∂γ̇i
∂ẋ

+ β̇i

d

dt

∂γ̇i
∂ẋ

+ ψ̈i

∂ψ̇i

∂ẋ
+ ψ̇i

d

dt

∂ψ̇i

∂ẋ

)︄
, (3.29a)

d

dt

(︃
∂T
∂ẏ

)︃
=

1

2
m2

3∑︂
i=1

d

dt

∂||ẋ2i||2
∂ẏ

+ I2
3∑︂

i=1

(︄
β̈i

∂γ̇i
∂ẏ

+ β̇i

d

dt

∂γ̇i
∂ẏ

+ ψ̈i

∂ψ̇i

∂ẏ
+ ψ̇i

d

dt

∂ψ̇i

∂ẏ

)︄
, (3.29b)

d

dt

(︃
∂T
∂ż

)︃
=

1

2
m2

3∑︂
i=1

d

dt

∂||ẋ2i||2
∂ż

+ I2
3∑︂

i=1

(︄
β̈i

∂γ̇i
∂ż

+ β̇i

d

dt

∂γ̇i
∂ż

+ ψ̈i

∂ψ̇i

∂ż
+ ψ̇i

d

dt

∂ψ̇i

∂ż

)︄
, (3.29c)

d

dt

(︃
∂T
∂θ̇i

)︃
=

1

2
m2

d

dt

∂||ẋ2i||2
∂θ̇i

+

(︃
1

4
m1l

2
1 + I1 + I3k2r

)︃
θ̈i

+ I2
(︃
β̈i

(︃
1 +

∂γ̇i

∂θ̇i

)︃
+ β̇i

d

dt

(︃
∂γ̇i

∂θ̇i

)︃)︃
. (3.29d)

The partial derivatives of the kinetic energy with respect to q are

∂T
∂x

=
1

2
m2

3∑︂
i=1

∂||ẋ2i||2
∂x

+ I2
3∑︂

i=1

(︄
∂γ̇i
∂x

β̇i + ψ̇i

∂ψ̇i

∂x

)︄
,

∂T
∂y

=
1

2
m2

3∑︂
i=1

∂||ẋ2i||2
∂y

+ I2
3∑︂

i=1

(︄
∂γ̇i
∂y

β̇i + ψ̇i

∂ψ̇i

∂y

)︄
,

∂T
∂z

=
1

2
m2

3∑︂
i=1

∂||ẋ2i||2
∂z

+ I2
3∑︂

i=1

(︄
∂γ̇i
∂z

β̇i + ψ̇i

∂ψ̇i

∂z

)︄
,

∂T
∂θi

=
1

2
m2

∂||ẋ2i||2
∂θi

+ I2
(︃
γ̇i
∂γ̇i
∂θi

+ ψ̇i

∂ψi

∂θi

)︃
.

66

For what concern the potential energy, we have the following equations

∂V
∂x

=−m2ga2

3∑︂
i=1

(︃
∂γi
∂x

cβicψi − sβi
∂ψi

∂x
sψi

)︃
,

∂V
∂y

=−m2ga2

3∑︂
i=1

(︃
∂γi
∂y

cβicψi − sβi
∂ψi

∂y
sψi

)︃
,

∂V
∂z

=−m2ga2

3∑︂
i=1

(︃
∂γi
∂z

cβicψi − sβi
∂ψi

∂z
sψi

)︃
−m2g,

∂V
∂θi

=−
(︂m1

2
+m2

)︂
g l1cθi −m2ga2

[︃(︃
1 +

∂γi
∂θi

)︃
cβicψi − sβi

∂ψi

∂θi
sψi

]︃
.

The accelerations ψ̈i and γ̈i of the passive joints are given by

ψ̈i =
−
[︂
ḧi(1− h2i) + hiḣ

2

i

]︂
(1− h2i)3/2

γ̈i =
−
[︁
n̈i(1− n2

i) + niṅ
2
i

]︁
(1− n2

i)
3/2

,

for i ∈ {1, 2, 3}. The partial derivatives of velocities in equations (3.21) are

∂γ̇i
∂ẋ

=
−1√︁
1− n2

i

∂ṅi

∂ẋ
,

∂ψ̇i

∂ẋ
=

−1√︁
1− h2i

∂ḣi
∂ẋ

, (3.30)

and analogous expressions hold true also for derivatives with respect to ẏ, ż
and θ̇i. The total derivatives of equations (3.30) are

d

dt

∂γ̇i
∂ẋ

= −
[︃
∂ṅi

∂ẋ
niṅi +

d

dt

∂ṅi

∂ẋ
(1− n2

i)

]︃
1

(1− n2
i)

3/2
, (3.31)

d

dt

∂ψ̇i

∂ẋ
= −

[︄
∂ḣi
∂ẋ

hiḣi +
d

dt

∂ḣi
∂ẋ

(1− h2i)
]︄

1

(1− h2i)3/2
. (3.32)

Similar equations hold for the derivatives with respect to ẏ, ż and θ̇i. All these
derivatives are involved in the kinetic energy T , while in the potential energy
V we only have derivatives with respect to Cartesian and joint positions of
passive angles positions and velocities, defined by equations (3.20) and (3.21),
respectively. Thus, we have

∂γi
∂x

=
−1√︁
1− n2

i

∂ni

∂x
,

∂γ̇i
∂x

= −
[︃
∂ni

∂x
n2
i +

∂ṅi

∂x
(1− n2

i)

]︃
1

(1− n2
i)

3/2
,

∂ψi

∂x
=

−1√︁
1− h2i

∂hi
∂x

,
∂ψ̇i

∂x
= −

[︄
∂hi
∂x

h2i +
∂ḣi
∂x

(1− h2i)
]︄

1

(1− h2i)3/2
,

where, as before, the same pattern holds true for derivatives with respect to y,
z and θ̇i. The equations of motion also contain the derivatives of ||ẋ2i||2 with
respect to generalized coordinates and velocities, shown in (3.35), where the
time derivatives of k1 and k2 terms, defined by equations (3.33a) and (3.33b),
are

67

k̇1 = a2

(︂
β̈isβicψi + β̇

2

i cβicψi

)︂
+ a2

[︂
cβi(ψ̈isψi + ψ̇

2

i cψi)− 2β̇isβiψ̇isψi

]︂
+ l1(θ̈isθi + θ̇

2

i cθi), (3.33a)

k̇2 = β̈icβicψi − β̇
2

i sβicψi − 2β̇icβiψ̇isψi − sβi(ψ̈isψi + ψ̇
2

i cψi). (3.33b)

The partial derivatives are

∂k1
∂ẋ

= a2

(︄
∂γ̇i
∂ẋ

sβicψi +
∂ψ̇i

∂ẋ
cβisψi

)︄
,

∂k2
∂ẋ

=
∂γ̇i
∂ẋ

cβicψi −
∂ψ̇i

∂ẋ
sβisψi,

and the total derivatives are showed in (3.34).

d

dt

∂k1
∂ẋ

=

[︄
d

dt

∂γ̇i
∂ẋ

sβi +

(︄
∂γ̇i
∂ẋ

β̇i +
∂ψ̇i

∂ẋ
ψ̇i

)︄
cβi

]︄
a2cψi

+

[︄
d

dt

∂ψ̇i

∂ẋ
cβi −

(︃
∂γ̇i
∂ẋ

β̇i +
∂γ̇i
∂ẋ

ψ̇i

)︃
sβi

]︄
a2sψi, (3.34a)

d

dt

∂k2
∂ẋ

=

[︄
d

dt

∂γ̇i
∂ẋ

cβi −
(︄
∂γ̇i
∂ẋ

β̇i −
∂ψ̇i

∂ẋ
ψ̇i

)︄
sβi

]︄
cψi

+

[︄
d

dt

∂ψ̇i

∂ẋ
sβi +

(︄
∂γ̇i
∂ẋ

ψ̇i +
∂ψ̇i

∂ẋ
β̇i

)︄
cβi

]︄
sψi. (3.34b)

d

dt

∂||ẋ2i||2
∂ẋ

= 2

(︃
k̇1
∂k1
∂ẋ

+ k1
d

dt

∂k1
∂ẋ

)︃
+
l22
2
s2αi

(︄
ψ̈i

∂ψ̇i

∂ẋ
+ ψ̇i

d

dt

∂ψ̇i

∂ẋ

)︄

+ l2sαi

[︄
(ψ̇icψisαi − ψ̇isψicαi)

(︄
∂k1
∂ẋ

ψ̇i + k1
∂ψ̇i

∂ẋ

)︄]︄

+ l2sαi

[︄
(cψicαi + sψisαi)

(︄
d

dt

∂k1
∂ẋ

ψ̇i +
∂k1
∂ẋ

ψ̈i + k̇1
∂ψ̇i

∂ẋ
+ k1

d

dt

∂ψ̇i

∂ẋ

)︄]︄

+ a2

(︃
k̇2
∂k2
∂ẋ

+ k2
d

dt

∂k2
∂ẋ

)︃
+ l2l1

(︃
θ̈icθi

∂k2
∂ẋ
− θ̇2i sθi

∂k2
∂ẋ

+ θ̇icθi
d

dt

∂k2
∂ẋ

)︃
.

(3.35)

68

d

dt

∂||ẋ2i||2
∂θ̇i

= 2

(︃
k̇1
∂k1

∂θ̇i
+ k1

d

dt

∂k1

∂θ̇i

)︃
+
l22
2
s2αi

(︄
ψ̈i

∂ψ̇i

∂θ̇i
+ ψ̇i

d

dt

∂ψ̇i

∂θ̇i

)︄

+ l2sαi

[︄
(ψ̇icψisαi − ψ̇isψicαi)

(︄
∂k1

∂θ̇i
ψ̇i + k1

∂ψ̇i

∂θ̇i

)︄]︄

+ l2sαi

[︄
(cψicαi + sψisαi)

(︄
d

dt

∂k1

∂θ̇i
ψ̇i +

∂k1

∂θ̇i
ψ̈i + k̇1

∂ψ̇i

∂θ̇i
+ k1

d

dt

∂ψ̇i

∂θ̇i

)︄]︄

+ a2

(︃
k̇2
∂k2

∂θ̇i
+ k2

d

dt

∂k2

∂θ̇i

)︃
+ 2l1(θ̇ic

2θi − 2θ̇
2

i cθisθi)

+ l2l1

[︃
cθi

(︃
k̇2 + θ̈i

∂k2

∂θ̇i
+ θ̇i

d

dt

∂k2

∂θ̇i

)︃
− θ̇isθi

(︃
k2 + θ̈i

∂k2

∂θ̇i

)︃]︃
.

(3.36)

∂||ẋ2i||2
∂θi

=
∂k1
∂θi

k1 + l1l2θ̇i

(︃
∂k2
∂θi

cθi − k2sθi
)︃
+
l22
2

(︄
∂k2
∂θi

k2 +
∂ψ̇i

∂θi
ψ̇is

2αi

)︄
− l21θ̇

2

i s2θi

+ l2sαi(cψicαi + sψisαi)

[︃
∂k1
∂θi

ψ̇i + k1

(︃
∂ψi

∂θi
+ ψ̇i

∂ψi

∂θi

)︃]︃
. (3.37)

where

∂k1
∂θi

= a2

[︃(︃
∂γ̇i
∂θi

cψi − β̇i

∂ψi

∂θi
sψi −

(︃
1 +

∂γi
∂θi

)︃
ψ̇isψi

)︃
sβi

]︃
+ a2

[︄(︄
∂ψ̇i

∂θi
sψi + β̇i

∂γi
∂θi

cψi +
∂ψi

∂θi
ψ̇icψi

)︄
cβi

]︄
+ l1θ̇icθi,

∂k2
∂θi

=

[︃
∂γ̇i
∂θi

cψi − β̇i

∂ψi

∂θi
sψi −

(︃
1 +

∂γi
∂θi

)︃
ψ̇isψi

]︃
cβi

+

[︄
∂ψ̇i

∂θi
sψi − β̇i

(︃
1 +

∂γi
∂θi

)︃
cψi −

∂ψi

∂θi
ψ̇icψi

]︄
sβi.

The derivatives with respect to ẏ and ż follow the same pattern. Derivatives
about joint variables θi and θ̇i are given in (3.36). The partial and total
derivatives of k1 and k2 terms, defined by equations (3.33a) and (3.33b), are

∂k1

∂θ̇i
= l1sθi + a2

[︄(︃
1 +

∂γ̇i

∂θ̇i

)︃
sβicψi + sβi

∂ψ̇i

∂θ̇i
sψi

]︄
,

∂k2

∂θ̇i
=

(︃
1 +

∂γ̇i

∂θ̇i

)︃
cβicψi − sβi

∂ψ̇i

∂θ̇i
sψi,

69

d

dt

∂k1

∂θ̇i
= a2

[︃(︃
d

dt

γ̇i

∂θ̇i
sβi + 2β̇i

(︃
1 +

∂γ̇i

∂θ̇i

)︃
cβi

)︃
cψi

]︃
+ a2

[︄
cβi

(︄
d

dt

∂ψ̇i

∂θ̇i
sψi + 2ψ̇i

∂ψ̇i

∂θ̇i
cψi

)︄]︄

+ 2l1θ̇icθi −
[︄
l2sβisψi

(︄(︄
1 +

∂ψ̇i

∂θ̇i
ψ̇i

)︄
ψ̇i + β̇i

∂ψ̇i

∂θ̇i

)︄]︄
,

d

dt

∂k2

∂θ̇i
=

[︄
d

dt

∂γ̇i

∂θ̇i
cβi −

(︄
∂γ̇i

∂θ̇i
β̇i +

∂ψ̇i

∂θ̇i
ψ̇i

)︄
sβi

]︄
cψi

−
[︄
d

dt

∂ψ̇i

∂θ̇i
sβi +

(︄
∂γ̇i

∂θ̇i
ψ̇i +

∂ψ̇i

∂θ̇i
β̇i

)︄
cβi

]︄
sψi,

Finally, we have the derivatives of ||ẋ2i||2 with respect to Cartesian and joint
positions. As usual, we only show the partial derivatives with respect to x
since those about y and z follow the same pattern. For Cartesian positions,
we have

∂||ẋ2i||2
∂x

= l2sαi

[︄(︄
k1ψ̇i

∂ψi

∂x
+
∂k1
∂x

ψ̇i + k1
∂ψ̇i

∂x

)︄
(cψicαi + sψisαi)

]︄

+
l22
2

[︄
∂ψ̇i

∂x
ψ̇is

2αi +
∂k2
∂x

(︂
k2 + l1θ̇icθi

)︂]︄
+ 2k1

∂k1
∂x

,

where

∂k1
∂x

= c2

[︃(︃
∂γ̇i
∂x

cψi − β̇i

∂ψi

∂x
sψi −

∂γi
∂x

ψ̇isψi

)︃
sβi

]︃
+ c2

[︄(︄
β̇i

∂γi
∂x

cψi +
∂ψ̇i

∂x
sψi + ψ̇i

∂ψ̇i

∂x
cψi

)︄
cβi

]︄
,

∂k2
∂x

= cβi

(︃
∂γ̇i
∂x

cψi − β̇i

∂ψi

∂x
sψi −

∂γi
∂x

ψ̇isψi

)︃
− sβi

(︄
β̇i

∂γi
∂x

cψi +
∂ψ̇i

∂x
sψi + ψ̇i

∂ψi

∂x
cψi

)︄
,

whereas, for joint positions, we end up with (3.37).

Remark 3.4.3.1. The complete inverse dynamic modelMf for the Delta robot
cannot be expressed in the usual form

B(q)q̈ +C(q, q̇)q̇ + g(q) = τ ,

where q = [θ1 θ2 θ3]
T are the joint variables, B(q) is the inertia matrix, C(q, q̇)

represents the Coriolis and centrifugal effects and g(q) the gravity term, be-
cause of the impossibility of finding a closed form for the passive joint angles
ψi, γi that depends only on the actuated joint angles θi for i ∈ {1, 2, 3}. A

70

more complex mathematical formulation, including Cartesian and joint vari-
ables, given by equations (3.39) and (3.40) is thus needed.

The constrained Lagrangian dynamics can thus be written in compact form as

2Aλ = b, (3.39)

where the matrix A and the vectors b and λ are defined as

A =

⎡⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦ , λ =

⎡⎣λ1λ2
λ3

⎤⎦ , b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d

dt

(︃
∂T
∂ẋ

)︃
− ∂T
∂x

+
∂V
∂x

d

dt

(︃
∂T
∂ẏ

)︃
− ∂T
∂y

+
∂V
∂y

d

dt

(︃
∂T
∂ż

)︃
− ∂T
∂z

+
∂V
∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with

a1i = x+ r cosαi − l1 cos θi cosαi,

a2i = y + r sinαi − l1 cos θi sinαi,

a3i = z − l1 sin θi,

for i ∈ {1, 2, 3}. The solutions of the system (3.39) is λ = 1
2
A−1 b, and the

command torques are obtained by substituting λ into the following equation

τ = n(q, q̇, q̈) + c(q, q̇) + g(q)− 2K(q)Λ, (3.40)

where

n(q, q̇, q̈) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d

dt

(︃
∂T
∂θ̇1

)︃
d

dt

(︃
∂T
∂θ̇2

)︃
d

dt

(︃
∂T
∂θ̇3

)︃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c(q, q̇) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∂T
∂θ1

−∂T
∂θ2

−∂T
∂θ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, g(q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂V
∂θ1

∂V
∂θ2

∂V
∂θ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
τ =

⎡⎣τ1τ2
τ3

⎤⎦ ,

and the K(q) matrix, that takes into account the effect of holonomic con-
straint.

3.4.4 Experimental Validation

We compare the accuracy of the precise modelMf derived in Section 3.4.3 and
the simplified modelMs recalled in Section 3.3.1, by using the data collected
as explained in the previous section. Moreover, we provide a complexity anal-
ysis to evaluate the trade-off between accuracy and computational complexity.

71

The command torques and joint positions θi are sampled at a frequency of 2
kHz. The joint velocities θ̇i and accelerations θ̈i are estimated with a Kalman
smoother and the corresponding Cartesian velocities ẋ, ẏ, ż and accelerations
ẍ, ÿ, z̈ are computed via the robot Jacobian matrix. To ensure the highest pos-
sible accuracy of the estimated torques, the mass values mi of each component
of the robot have been measured with a precision balance, while the length li
of each link and the position of their respective centers of mass ai come from
their CAD models.

The accuracy of the model is evaluated offline by comparing the real com-
mand torques obtained from the D3-1200 Delta Robot with the estimations
computed with the mathematical modelsMf andMs.

(a) Υ1

(b) Υ2 (c) Υ3

Figure 3.12: Experimental validation of the models accuracy on three trajectories. (a)
The trajectory Υ1 is a pick-and-place profile; (b) the trajectory Υ2 involves high and low
accelerations in the center of the workspace; (c) the trajectory Υ3 moves the robot to its
workspace limits.

We consider three trajectories:

• Υ1 is a pick-and-place trajectory over a belt conveyor, without payload
(Figure 3.12a);

• Υ2 consists of the end-effector motion in the middle of the workspace
with high and low accelerations (Figure 3.12b): this trajectory is meant
to evaluate the impact of the inertia and Coriolis/centrifugal terms;

• Υ3 is a trajectory that moves the robot and then stops in three target
points nearby its workspace limits (Figure 3.12c): this trajectory is meant
to test the model in “extreme" poses.

72

Υ1 aims to evaluate the models in the most frequent task of the robot:
it consists in rapid movements between two belt conveyors combined with a
vertical movement to pick the object.

Figure 3.13: Real Torques (blue line) τi compared with estimated torques τ̂fi computed
by Mf (red line) and the estimated torques τ̂si computed by Ms (dotted line), for each
actuated joint using the trajectory Υ1 showed in Figure 3.12a.

Table 3.5: The means and standard deviations of models of the error forMf andMs over
trajectory Υ1.

Υ1
Mean [Nm] Std [Nm]

τ̃ 1 τ̃ 2 τ̃ 3 τ̃ 1 τ̃ 2 τ̃ 3
Mf 0.63 -2.99 -3.77 6.42 7.79 6.61
Ms 10.17 5.74 4.85 11.66 13.23 9.51

From the torque profiles in Figure 3.13, it is possible to notice how the
simplified model Ms underestimates the control torque profiles. Moreover,
during a pick action, i.e., when the accelerations are small, the simplified model
predicts an almost constant negative offset. The precise modelMf has a much
more accurate estimation of the command torques. When the robot moves the
end-effector from one conveyor belt to the other, i.e, when the trajectory has
the highest dynamics, the torque peaks ofMf are close to the real ones.

To evaluate the precision of each model, we consider the errors τ̃ fi , τ̃
s
i

between the estimates τ̂ fi , τ̂
s
i forMf andMs and the real commands τi

τ̃ fi = τi − τ̂ fi , τ̃ si = τi − τ̂ si .

73

Figure 3.16a and Table 3.5 report the mean and the standard deviation of the
torque errors. The bar-plot allows to notice the reduction of the error of Mf

with respect to the modelMs.
The trajectory Υ2 is meant to evaluate the behavior of the model when

subjected to high and low accelerations in the middle of the robot workspace.
In particular, this trajectory is similar to pick-and-place operations which took
place between 5 to 10 centimeters apart from the center of the workspace as
shown in Figure 3.12b. The torque profiles in Figure 3.14 show the improve-
ments ofMf with respect toMs, especially during motion generated by high
torque values.

Figure 3.14: Real Torques (blue line) τi compared with estimated torques τ̂fi computed
by Mf (red line) and the estimated torques τ̂si computed by Ms (dotted line), for each
actuated joint using the trajectory Υ2 showed in Figure 3.12b.

Table 3.6: The means and standard deviations of the errors for models Mf and Ms over
trajectory Υ2.

Υ2
Mean [Nm] Std [Nm]

τ̃ 1 τ̃ 2 τ̃ 3 τ̃ 1 τ̃ 2 τ̃ 3
Mf 2.41 -1.43 -2.18 14.27 12.62 11.60
Ms 12.13 7.25 6.02 27.72 23.74 23.87

When the robot operates around the center of the workspace, the model
Ms performs better than in the previous experiment: indeed, it predicts with
higher accuracy when the accelerations are high with fast changes of directions
(i.e., between 2.5s and 3.25s), and the profiles are quite close to the real ones.
On the other hand, it underestimates the torques during the pick-and-place

74

motion (i.e., between 0.75s and 2.25s). The modelMf provides a better esti-
mation of the torques over the whole duration of the trajectory. Figure 3.16b
and Table 3.6 show the mean and the standard deviation of the estimation
errors.

Υ3 aims to evaluate accuracy when the robot motion alternates high and
slow dynamics. The trajectory consists of high accelerations toward poses on
the boundary of the workspace, followed by constant poses for a few seconds.
The trajectory allows to test the accuracy of the model outside the usual
working area.

Figure 3.15: Real Torques (blue line) τi compared with estimated torques τ̂fi computed
by Mf (red line) and the estimated torques τ̂si computed by Ms (dotted line), for each
actuated joint using the trajectory Υ3 showed in Figure 3.12c.

Table 3.7: The means and standard deviations of the errors for models Mf and Ms over
trajectory Υ3.

Υ3
Mean [Nm] Std [Nm]

τ̃ 1 τ̃ 2 τ̃ 3 τ̃ 1 τ̃ 2 τ̃ 3
Mf 1.46 -3.69 -1.76 2.17 2.95 2.52
Ms 11.01 4.93 7.36 2.36 3.37 2.68

Figure 3.15 shows that the model Ms has a significantly large error when
the robot is near the workspace limit. The torque peaks during the motion
between the target points are not correctly computed and most of the time are
underestimated. Mf is more accurate, both during static and dynamic parts.
Means and standard deviations of the errors are shown in Figure 3.16c and
listed in Table 3.7.

75

(a) (b) (c)

Figure 3.16: Mean errors with standard deviation bars of the errors for modelMf andMs

using the trajectory Υi.

The remaining errors between the command torques calculated by Mf

and the real torques applied to the D3-1200 Delta Robot are due to different
phenomena that are not taken into consideration in our model in order not
to make it even complex. The main terms not modelled are: joints flexibility,
links flexibility, friction at the joints, non-linearity of the gear-boxes, dynamic
model of the electric motors. Moreover, it is worth mentioning that in our
model we used the values for the parameters given by the CAD models. It is
possible that such values are not precise.

3.4.5 Computational Complexity

The study of the computational complexity of the two modelsMf andMs ad-
dressed in this section is evaluated in terms of time complexity in the worst case
scenario, which involves the usage of processors which do not have integrated
ALU and the usage of not optimised algorithms for the computation of the bi-
nary operations. The time complexity is computed by multiplying the number
of basic operations with the complexity of the operations. Given two n-digit
numbers, the complexity for the addition and subtraction is O(n) using the
addition with carry and subtraction with borrow algorithms. The complexity
for multiplication and division, using standard algorithms is O(n2). Trigono-
metric functions as sine and cosine are constructed by composing arithmetic
functions; in particular exploiting the Taylor series, with repeated argument
reduction and direct summation, we obtain a time complexity of O(n5/2). The
number of executed scalar operations, counted from the C++ implementation
of both models, is reported in Table 3.8. According to the table the time
complexity ofMs is

O(77n+ 85n2 + 16n5/2),

while the time complexity ofMf is

O(1176n+ 4045n2 + 27n5/2).

Thus, both models can be computed in polynomial time.
As expected the coefficients that multiply n and n2 for Mf are larger

than the coefficients for Ms. We performed an analysis on the maximum
and average execution frequency for both models in order to experimentally

76

Table 3.8: Number of operations executed in the full and simplified inverse dynamic model.

Number of operations
+ − × ÷ sin cos

Ms 50 27 79 6 7 9
Mf 669 477 2029 2016 12 15

Table 3.9: The average and maximum frequency obtained by computing the torque profile
over a large set of trajectory for the modelsMs ans Mf .

Avg frequency [kHz] Max frequency [kHz]
Ms 32.10 35.97
Mf 4.65 5.02

evaluate the impact of the coefficients for Ms and Mf on the computational
burden. The computer has a single-core CPU operating at 2.5 GHz. We
calculated the torques with both models, over a set of different trajectories, as
reported in Table 3.9. It turns out thatMf has a negative speed-up of 0.1449
on the average frequency. It still has to be considered thatMf has an average
control loop that reaches frequencies higher than 4 kHz, which is still a high
computation rate for modern controllers. Thus, despite the negative speed-up,
Mf is totally suitable to be used within controllers of Delta Robots.

Concluding, a mathematically rigorous inverse dynamic model for indus-
trial Delta Robots, obtained by adopting the Euler-Lagrange approach, has
been presented. The model has been validated through a direct comparison
with real torque profiles of an industrial Delta Robot. The proposed model
has been tested and verified over a set of trajectories which covers the most
common and stressful tasks, and proved to be more accurate than state-of-art
counterparts. The increased computational complexity has been analyzed and
confirmed to be larger than state-of-art counterparts, but it does not compro-
mise the implementation in real-time industrial controllers. The model does
not need any parameter identification, making it ready for direct use into a
robot controller, and it is adaptable to any 3-DoF Delta Robot of which the
kinematic and dynamic parameters are known.

77

78

Chapter 4

Stochastic Modeling for Mobile
Robots

4.1 Related Works

Mobile robots are autonomous vehicles that have become increasingly pop-
ular in the last decades. Wheeled mobile robots (WMRs) of cart-like type,
also known as differential-drive wheeled mobile robot, are widely used to ac-
complish a number of heterogeneous tasks such as transportation of objects
in automated warehouses [95], moving platforms for manipulators, automated
surveillance systems, autonomous house cleaning, garden care and so forth.
Figure 4.1a shows a programmable iRobot Create 2, that is often used as
base for autonomous vacuum cleaners and Figure 4.1b shows two RB-Kairos+
mobile manipulators, that have the peculiarity of being able to move later-
ally keeping unchanged their orientation thanks to a particular type of wheels
called Mecanum wheels, also known as Swedish wheels.

(a) (b)

Figure 4.1: A programmable iRobot Create 2 by https://www.irobot.com/ (a) and two
RB-Kairos+ mobile omnidirectional manipulators by Robotnik https://robotnik.eu/ (b).

This chapter is based on the following:
▷ F.Vesentini, L. Di Persio, R. Muradore. A Brownian-Markov Stochastic Model for Cart-Like Wheeled
Mobile Robots, (under review).

79

https://www.irobot.com/
https://robotnik.eu/

A reliable dynamic model is important in real-world applications to prop-
erly address motion simulation, gray-box model identification, path planning,
motion controller design and similar.

The dynamic models that are most commonly considered in literature
[22, 23, 36, 50, 89, 93, 110, 137] are derived by exploiting Lagrangian-based
methodologies or approaches based on the application of the Newton-Euler
principle on the force diagram of the robots. They assume the non-holonomic
constraint of no-lateral motion. This assumption leads to a linear and rela-
tively simple to handle dynamic model, with two control inputs: forward and
angular velocities. At the same time it has the disadvantage of not being able
to explain unexpected behaviours such as losses of lateral grip while turning
around a corner at high speed. In other words, it does not consider the ac-
tion of inertial forces on the robot whenever the angular velocity is non-zero.
Furthermore, their deterministic nature does not allow to take into account
uncertainty characterizing unknown external forces acting on the WMR and
model inaccuracy, such as inertial forces and friction.

In this chapter, we present a novel dynamic model for cart-like WMRs
able to take into account lateral motion by relaxing the aforementioned non-
holonomic constraint and the contribution of random dissipative or inertial
external forces. In particular, we start from a the deterministic model which
consists of a two-state hybrid system [54]: the grip state, determined by a set of
five ordinary differential equations (ODEs) that does not allow lateral motion
and the slip state, governed by a set of six differential equations (the additional
one is due a new variable corresponding to the lateral velocity) obtained by
relaxing the non-holonomic constraint of no-lateral motion [85]. Afterwards,
following a procedure similar to the one adopted in [138], we transform the
ODEs characterizing both system states into the corresponding set of Stochas-
tic Differential Equations (SDEs) with possibly non-linear drift and diffusion
terms.

In particular, such SDEs are characterized by

• independent Brownian motions modeling the uncertainty about dissipa-
tive external forces acting on the vehicle (e.g., the rolling friction),

• a two-state Markov chain, regulating the transition from the grip state
to thr slip state of the stochastic model and viceversa.

We prove existence and uniqueness of solutions [6, 13, 28, 29, 37, 78, 88,
98] to our novel hybrid stochastic Brownian-Markov dynamic model (HSBM)
by verifying that the sufficient conditions on drift and diffusion terms are
satisfied. Moreover, via numerical simulations we show that it is able to model
both nominal and non-conventional behaviors, e.g., lateral grip phenomenon.

4.2 Deterministic Dynamics
The deterministic dynamic model from which we start before deriving the cor-
responding stochastic model is a hybrid system with two states of differential

80

equations, which represent the states of motion “grip" and “slip", respectively.
In particular, every state is characterized by a precise set of ODEs obtained
by considering two different motion constraints and by exploiting two different
but equivalent methodologies: the Newton-Euler Laws of Motion and the Lie
Groups Theory.

4.2.1 Robot Diagram

Let consider a fixed spatial frame Σ0 = (O, x0, y0, z0), a moving body frame
Σb = (Ob, xb, yb, zb) such that the zb and z0 axes are aligned, and a wheel
frame Σw = (x, y, z), as shown in Figure 4.2. The configuration of the robot
is given by coordinates q = (x, y, θ)T , where (x, y) is the position and θ is the
orientation of the body frame in the spatial frame. Vector ρ⃗ is the position of
the robot center of mass in the spatial frame. The x-axis of the wheel frame
is the forward direction of motion, the y-axis is the rolling axis of the wheel,
while the z-axis is aligned with z0 and zb.

(a) (b)

Figure 4.2: (a) Robot spatial and body frames, and wheel frame; (b) force diagram of
the robot describing all the forces and torques acting on the WMR. The control forces
are depicted in black, the dissipative and uncontrolled forces are in red and the linear and
angular velocities in blue.

The WMR is modeled as a rectangular rigid body moving along xb and
rotating on the plane around zb. Coordinates for velocities with respect to the
body frame, i.e. the body velocities, are denoted by v = (vx, vy, ω)

T , where vx
is the forward velocity along xb, vy is the lateral velocity along yb and ω is the
angular velocity about zb.

Table 4.1 summarizes the dynamic parameters of the WMR. The total mass
of WMR is m = mr + 2mw and since the robot is of rectangular shape and
wheels are modeled as solid and thin disks, the total inertia I is given by

I = Ir + 2Iwz =
mr(4b

2 + ℓ2) + 6mwr
2

12
, (4.1)

where

Ir =
mr(4b

2 + ℓ2)

12
and Iwz =

mwr
2

4

81

Table 4.1: WMR dynamic parameters.

parameter description
ℓ length of the robot
r radius of a wheel
b length of the semi-axle

CoM robot center of mass
mr mass of the robot (no wheels)
mw mass of a wheel
m total mass of the robot,
Ir inertia about zb-axis (no wheels)
Iwz inertia of a wheel about z-axis
I inertia of the robot about zb-axis

are the robot inertia without considering wheels and the inertia of a single
wheel about z-axis, respectively. The velocity with respect to frame Σ0, q̇ =
(ẋ, ẏ, θ̇)T , is obtained from the body velocity v via the following equations

ẋ = vx cos θ − vy sin θ, (4.2a)
ẏ = vx sin θ + vy cos θ, (4.2b)

θ̇ = ω. (4.2c)

The vector x = (q, v)T = (x, y, θ, vx, vy, ω)
T represents the state of the WMR.

As depicted in Figure 4.2(b), we assume that the controls of the robot are the
linear force F ≜ F1 + F2 and the control torque τ ≜ (F1 − F2)b, where F1 and
F2 are the traction forces at the wheels.

4.2.2 External Forces

The external forces acting on the robot are shown in Figure 4.2(b) and Figure
4.3. The rolling resistance Froll is the total force opposing the control force F ,
defined by

Froll = Froll,1 + Froll,2 = sign(vx)crrmg, (4.3)

where g is the gravity acceleration and crr > 0 is the rolling resistance coeffi-
cient. The value of crr depends on the material of ground and wheels. τroll is
the total friction momentum opposing the control torque τ , given by

τroll = (Froll,1 − Froll,2)b. (4.4)

The centrifugal force Fcf acting on the WMR when it moves along non-
straight trajectories, is defined by

Fcf = mω2R = mvxω,

where R = vx/ω is the curvature of the trajectory. The centripetal force Fcp

opposing the centrifugal force, is generated by the static lateral friction force
and is given by

Fcp = µsmg, (4.5)

82

Figure 4.3: Representation of the centrifugal force Fcf , the centripetal force Fcp and lateral
friction force Flat acting on the robot.

where µs is the static friction coefficient.
The lateral friction force Flat acting on the robot during lateral slip, is the

same as equation (4.5) where µs is replaced with the kinetic friction coefficient
µk, such that µk < µs. Referring to Figure 4.3, as long as the balance between
the Fcf and Fcp holds, the robot has perfect grip with the ground and stays on
track (blue robot). If the balance is broken the robot has non-zero orthogonal
velocity vy, subjected to the action of lateral friction force Flat (white robot).

4.2.3 Equations of Motion

We describe the state variables, the dynamic parameters and the system of
ODEs governing the dynamics of a WMR. We derive the equations of motion
by adopting the Newton-Euler Approach, based on the well known Euler’s
Laws of Motion, see [60, 77, 102], extension of Newton’s Laws of Motion for
point particles to rigid bodies; and also by applying the Lie Groups Theory,
see [17, 22, 28, 29, 61].

Newton-Euler approach. Consider the free-body diagram of the robot
in Figure 4.2 (a) and representing the position vector ρ⃗ = (x, y)T of the body
frame Σb in polar coordinates

{︄
x = ρ cos θ

y = ρ sin θ
ρ ≥ 0 θ ∈ [0, 2π). (4.6)

A double differentiation of equations (4.6) with respect to time, allows to find
the expressions for the spatial velocity and acceleration of the body frame: by
letting θ̇ = ω, the components of velocity and acceleration of the robot frame

83

Σb in the spatial frame Σ0 are given by

ẋ = ρ̇ cos θ − ρω sin θ,

ẍ =
(︁
ρ̈− ρω2

)︁
cos θ − (2ρ̇ω + ρω̇) sin θ,

ẏ = ρ̇ sin θ + ρω cos θ,

ÿ =
(︁
ρ̈− ρω2

)︁
sin θ + (2ρ̇ω + ρω̇) cos θ.

Such equations can be re-arranged into a sum of unitary vectors that identify
a radial direction r⃗ and a tangential direction t⃗ with respect to Σ0 as follows[︃

ẋ
ẏ

]︃
= ρ̇ r⃗ + ρω t⃗, (4.7)[︃

ẍ
ÿ

]︃
=
(︁
ρ̈− ρω2

)︁
r⃗ + (2ρ̇ω + ρω̇) t⃗, (4.8)

where r⃗ = (cos θ, sin θ)T and t⃗ = (− sin θ, cos θ)T . From equations (4.8) we
deduce ρ̇ = vx, ρω = vy, ρ̈− ρω2 = ax and 2ρ̇ω + ρω̇ = ay, that in turn allow
to write the components of the acceleration vector, ax and ay, as follows

ax = v̇x − vyω, ay = v̇y + vxω, (4.9)

with acm = (ax, ay)
T the acceleration of the centre of mass. We now apply the

Euler’s Laws of Motion [60, 77, 102] to obtain the following equations

max = F − Froll,

m ay = Flat,

Iω̇ = τ − τroll,

from which, thanks to equations (4.9) and the kinematics (4.2a), we can derive
the equations of motion

ẋ = vx cos θ − vy sin θ, (4.10a)
ẏ = vx sin θ + vy cos θ, (4.10b)

θ̇ = ω, (4.10c)

v̇x = vyω +
1

m
(F − Froll), (4.10d)

v̇y = −vxω +
1

m
Flat, (4.10e)

ω̇ =
1

I
(τ − τroll). (4.10f)

The directions of forward velocity vx and lateral velocity vy are represented in
Figure 4.2(b) and external forces are described in Section 4.2.2.

Lie Groups approach. We now show that equations (4.10d) - (4.10f)
can be derived using the concepts reported in Section A.1. We begin the
discussion by stating that the configuration g and the velocity ξ of the robot

84

can be expressed as elements g ∈ SE(2) and ξ ∈ se(2), respectively, as follows

g =

[︃
R ρ

01×2 1

]︃
=

⎡⎣cos θ − sin θ x
sin θ cos θ y
0 0 1

⎤⎦ , (4.11a)

ξ =

[︃
Ω v

01×2 0

]︃
=

⎡⎣0 −ω vx
ω 0 vy
0 0 0

⎤⎦ , (4.11b)

where ρ = (x, y)T , R ∈ SO(2), v = (vx, vy)
T and Ω = RT Ṙ ∈ se(2) is the body

angular velocity. The Matrix Lie group SE(2) is the configuration manifold,
also know as configuration space [110] of the robot and se(2) is the correspond-
ing Matrix Lie algebra. The state of the robot (g, ξ) can be seen as an element
of SE(2)× se(2), see Appendix A.2, Chapter 5 of [22] and [64].

The Kinetic Energy of the robot is

T =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇

2
, (4.12)

and Lemma 4.30 of [22] allows to derive the kinetic energy metric

G = Ie∨1 ⊗ e∨1 +m(e∨2 ⊗ e∨2 + e∨3 ⊗ e∨3),

where ⊗ is the outer product of vectors and e∨i is the vector representation of
the elements {e1, e2, e3} of the basis for se(2), through the “vee map" .∨ defined
in (A.7), as in Example A.2.0.2.

G is a Riemannian metric on SE(2), i.e. a (0,2)-tensor whose matrix
representation [G] is given

[G] =

⎡⎣I 0 0
0 m 0
0 0 m

⎤⎦ , (4.13)

therefore the couple (SE(2),G) is a Riemannian manifold. We denote [G] ≜ I
from now on, since such matrix representation corresponds to the inertia tensor
of the robot, see Chapter 4 of [22].

The elements defined by (4.11a) and (4.11b), together with Theorem 5.45
of [22], allow us to write the dynamic equations of the robot in compact form
as

ġ = gξ, (4.14a)

ξ̇
∨
= I♯[ad∗

ξ]I♭ξ∨ +

(︃
f1
I
,
f2
m
,
f3
m

)︃T

(4.14b)

where I♯ : se(2)∗ → se(2) and I♭ : se(2) → se(2)∗ are the sharp map and the
flat map associated to the inner product induced by I, respectively, and [ad∗

ξ]
is the matrix representation of co-adjoint operator as in Definition A.2.0.7.

85

The sharp and the flat map are one the inverse of the other and in our
case, thanks to the isomorphisms with R3 we have, I♭ = I, I♯ = I−1 and
[ad∗

ξ] = [adξ]
T . The terms fi incorporate the external forces acting on the

system, namely

f1 =
1

I
(τ − τroll) , f2 =

1

m
(F − Froll) , f3 =

1

m
Flat.

Equation (4.14a) yields⎡⎣−θ̇ sin θ θ̇ cos θ ẋ

θ̇ cos θ −θ̇ sin θ ẏ
0 0 0

⎤⎦ =

⎡⎣−ω sin θ ω cos θ vx cos θ − vy sin θ
ω cos θ −ω sin θ vx sin θ + vy cos θ

0 0 0

⎤⎦ ,
where a term-by-term comparison of the coefficients of the two matrices above
allows to deduce the following equations

θ̇ = ω,

ẋ = vx cos θ − vy sin θ,
ẏ = vx sin θ + vy cos θ.

Considering equation (4.14b), we have

I♯[ad∗
ξ]I♭ξ∨ =

⎡⎣1/I 0 0
0 1/m 0
0 0 1/m

⎤⎦⎡⎣0 vy −vx
0 0 ω
0 −ω 0

⎤⎦⎡⎣I 0 0
0 m 0
0 0 m

⎤⎦⎡⎣ωvx
vy

⎤⎦
=

⎡⎣ 0
vyω
−vxω

⎤⎦ ,
and since ξ̇

∨
= (ω̇, v̇x, v̇y)

T , we end up with

ω̇ =
1

I
(τ − τroll),

v̇x = vyω +
1

m
(F − Froll),

v̇y = −vxω +
1

m
Flat.

By rearranging and summarizing the previous equations, the robot dynamics
is given by

ẋ = vx cos θ − vy sin θ, (4.15a)
ẏ = vx sin θ + vy cos θ, (4.15b)

θ̇ = ω, (4.15c)

v̇x = vyω +
1

m
(F − Froll), (4.15d)

v̇y = −vxω +
1

m
Flat, (4.15e)

ω̇ =
1

I
(τ − τroll). (4.15f)

that is identical to equations (4.10a) - (4.10f).

86

4.2.4 Hybrid System

It is a common choice, see e.g. [36, 50, 73, 93, 110, 137], to derive the dy-
namic model differential-drive mobile robots by assuming the following motion
constraint

ẏ cos θ − ẋ sin θ = 0. (4.16)

The non-holonomic bilateral constraint 4.16 implies no lateral motion of the
robot, see [85, 104], meaning that vy = 0. The motion of a system subject
to this constraint is governed only by the forward velocity vx and the angular
velocity ω. Well known mechanical systems whose equations of motion are
derived by assuming such constraint are, for example, the rolling disk [22, 110],
the falling rolling disk [18] and the Chaplygin sleigh [16, 19]. This assumption
is usually a good approximation of the real behaviour, nevertheless it does not
model lateral sliding due to unpredictable external forces acting on the system.
To allow lateral motion, we assume a different bilateral contraint given by

ẏ cos θ − ẋ sin θ = ρω (4.17)

where ρ is the absolute value of ρ⃗ in Figure 4.2 (a). The quantity ρω is the
lateral velocity vy of the body frame Σb, see Section 4.2.3 and [36]. Mechanical
systems whose equations of motion are derived by assuming a motion con-
straint like (4.17) are the rimmed wheel with transverse grooves [85] and the
planar slider [25, 56, 57].

We describe the deterministic model for a differential-drive robot as a hy-
brid system with two-state [54], which are identified as grip, state and slip
state, being denoted by Mg and Ms, respectively. The system switches from
Mg to Ms whenever the condition |Fcf | ≤ |Fcp| is violated, where Fcf is the
centrifugal force and Fcp is the centripetal force due to the friction of the wheels
the with ground. The system switches back from Ms to Mg once the lateral
velocity vy returned to zero due to the action of the lateral friction force.

The system in grip state consists of five differential equations, derived by
assuming the constraint given by (4.16). The equations of motion are

Mg :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ = vx cos θ x(0) = x0,

ẏ = vx sin θ y(0) = y0,

θ̇ = ω z(0) = z0,

v̇x = 1/m (F − Froll) vx(0) = vx,0,

ω̇ = 1/I (τ − τroll) ω(0) = ω0,

(4.18a)
(4.18b)

(4.18c)
(4.18d)
(4.18e)

where F is the control force, Froll is the rolling friction force opposing F , τ is
the control torque and τroll is the friction momentum opposing τ .

The system in slip state consists of six differential equations, derived by

87

assuming (4.17)

Ms :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = vx cos θ − vy sin θ x(tξ) = xξ,

ẏ = vx sin θ + vy cos θ y(tξ) = yξ,

θ̇ = ω z(tξ) = zξ,

v̇x = vyω + 1/m (F − Froll) vx(tξ) = vx,ξ,

v̇y = −vxω + 1/mFlat vy(tξ) = vy,ξ,

ω̇ = 1/I (τ − τroll) ω(tξ) = ωξ,

(4.19a)
(4.19b)

(4.19c)
(4.19d)
(4.19e)
(4.19f)

where tξ is the time instant when |Fcf | > |Fcp| and Flat is the lateral friction
acting on the robot. Section 4.2.2 describes in detail all the inertial and friction
forces acting on the system.

4.3 Brownian-Markov Stochastic Model for WMR
We now provide a stochastic model for WMRs by assuming to have

(a) no knowledge about the external friction forces acting on the robot, there-
fore replacing them with terms proportional to independent reflected
Brownian motions, and

(b) no knowledge about the action of the centrifugal force Fcf and lateral fric-
tion Flat, replacing the state transition conditions |Fcf | ≤ |Fcp| and |vy| >
0 with transition probabilities characterizing a homogeneous Markov
chain with two states.

The choice of a reflected Brownian motion, instead of a standard one, is
motivated by the need of modeling the dissipative external forces acting on
the system as stochastic processes starting from an initial state and whose
paths are confined between lower and upper barriers. We assume a reflected
Brownian motion also for modeling uncertainty about the critical value for vxω,
starting from an initial guess vx,0ω0. Reflection means that whenever a path
or realization of the Brownian motion hits a barrier at time t, its dynamics is
reflected, hence pushed back, with the same angle of incidence.

The uncertainty about inertial and external forces turns the two-state hy-
brid system described byMg andMs into a two-state hybrid system of SDEs,
described by Mg and Ms, respectively. In Section 4.3.1 we explain how to
mathematically derive the SDEs governing both states Mg and Ms of the
stochastic model, in Section 4.3.2 we point out the hybrid formulation, then
in Section 4.3.3 we prove both existence and uniqueness of the solutions.

4.3.1 Derivation of Stochastic Equations

Equations for the grip state (4.18a) - (4.18c) are re-arranged in matrix form
as ⎡⎣dxdy

dθ

⎤⎦ =

⎡⎣cos θ 0
sin θ 0
0 1

⎤⎦[︃dρ
dθ

]︃
, (4.20)

88

exploiting the fact that vx = dρ/dt and ω = dθ/dt, where ρ is the absolute
value of the position vector of Σb with respect to Σ0. By adopting a procedure
similar to [29, 138], we add uncertainty about position and orientation of the
robot by re-defining dρ and dθ in (4.20) as

dρ = vxdt+ σ1dW1, (4.21)
dθ = ωdt+ σ2dW2, (4.22)

whereWi = {Wi(t) | t ≥ 0} for i = 1, 2 are two independent standard Brownian
motions and σi are their diffusion coefficients. Substituting (4.21) and (4.22)
into (4.20) we have⎡⎣dxdy

dθ

⎤⎦ =

⎡⎣vx cos θvx sin θ
ω

⎤⎦ dt+
⎡⎣σ1 cos θ 0
σ1 sin θ 0

0 σ2

⎤⎦[︃dW1

dW2

]︃
, (4.23)

which is a linear SDE with drift and diffusion coefficients represented by the
vector-valued function Gg

q : R3 × R2 → R3 and the matrix-value function
Hg

q : R3 × R2 → R3×2:

Gg
q (q, v) ≜

⎡⎣vx cos θvx sin θ
ω

⎤⎦ , (4.24)

Hg
q

(︁
q, σ{1,2}

)︁
≜

⎡⎣σ1 cos θ 0
σ1 sin θ 0

0 σ2

⎤⎦ . (4.25)

Analogously, we derive the stochastic version of equations (4.18d) and
(4.18e), by writing them as follows[︃

dvx
dω

]︃
=

[︃
1/m 0
0 1/I

]︃ [︃
dp
Idω

]︃
, (4.26)

and exploiting the fact that F = dp/dt and τ = Idω/dt, where p is the linear
momentum of the robot. Then we redefine dp and Idω as

dp = Fdt− σ4d˜︂W1, (4.27)

Idω = τdt− σ6d˜︂W3, (4.28)

where ˜︂Wi =
{︂˜︂Wi(t) | t ≥ 0

}︂
for i = {4, 6} are two independent reflected Brow-

nian motions and σi are their diffusion coefficients. Substituting the definitions
(4.27) and (4.28) into the system (4.26) we get to[︃

dvx
dω

]︃
=

[︃
F/m
τ/I

]︃
dt−

[︃
σ4/m 0
0 σ6/I

]︃[︄
d˜︂W1

d˜︂W3

]︄
, (4.29)

which is a linear SDE with drift and diffusion coefficients, represented by the
vector-valued function Gg

v : R2 → R2×1 and the matrix-valued function Hg
v :

89

R2 → R2×2:

Gg
v(F, τ) ≜

[︃
F/m
τ/I

]︃
, (4.30)

Hg
v (σ{4,6}) ≜

[︃
σ4/m 0
0 σ6/I

]︃
. (4.31)

We re-write the kinematics defined by slip state equations (4.19a) - (4.19c) in
matrix form as ⎡⎣dxdy

dθ

⎤⎦ =

⎡⎣cos θ 0 − sin θ
sin θ 0 cos θ
0 1 0

⎤⎦⎡⎣ dρdθ
ρdθ

⎤⎦ , (4.32)

exploiting the fact vx = ρdθ/dt. Defining ρdθ as

ρdθ = vydt+ σ3dW3, (4.33)

where W3 is a standard Brownian motion and σ3 is a diffusion coefficient, and
substituting equations (4.21), (4.22) and (4.33) into (4.32), we get⎡⎣dxdy

dθ

⎤⎦ =

⎡⎣vx cos θ − vy sin θvx sin θ + vy cos θ
ω

⎤⎦ dt+
⎡⎣σ1 cos θ 0 −σ3 sin θ
σ1 sin θ 0 σ3 cos θ

0 σ2 0

⎤⎦⎡⎣dW1

dW2

dW3

⎤⎦ (4.34)

where drift and diffusion terms are represented by the vector-value and the
matrix-valued function Gs

q : R3×R3 → R3 and Hs
q : R3×R3 → R3×3 given by

Gs
q(q, v) ≜

⎡⎣vx cos θ − vy sin θvx sin θ + vy cos θ
ω

⎤⎦ , (4.35)

Hs
q (q, σ{1,2,3}) ≜

⎡⎣σ1 cos θ 0 −σ3 sin θ
σ1 sin θ 0 σ3 cos θ

0 σ2 0

⎤⎦ . (4.36)

We re-write the dynamics defined by slip state equations (4.19d)-(4.19f) in
matrix form as ⎡⎣dvxdvy

dω

⎤⎦ =

⎡⎣ vyω
−vxω
0

⎤⎦ dt+
⎡⎣1/m 0

0 0
0 1/I

⎤⎦[︃ dp
Idω

]︃
. (4.37)

We apply the same argument by assuming dvy = −vxωdt − σ5d˜︂W2 and by
substituting it into (4.37) together with the definitions (4.27) and (4.28), ob-
taining ⎡⎣dxdy

dθ

⎤⎦ = Gs
v (v, F, τ) dt−Hs

v

(︁
σ{4,5,6}

)︁⎡⎢⎣d˜︂W1

d˜︂W2

d˜︂W3

⎤⎥⎦ , (4.38)

90

where Gs
v : R3 × R2 → R3 and Hs

v : R3 → R3×3 are the vector and the matrix
valued function, respectively, given by

Gs
v (v, F, τ) ≜

⎡⎣vyω + F/m
−vxω
τ/I

⎤⎦ , (4.39)

Hs
v

(︁
σ{4,5,6}

)︁
≜

⎡⎣σ4/m 0 0
0 σ5/m 0
0 0 σ6/I

⎤⎦ . (4.40)

The system (4.38) is a linear SDE with drift and diffusion coefficients given by
Gs

v and Hs
v .

4.3.2 Hybrid Stochastic Brownian-Markov model

Letting dq ≜ (dx, dy, dθ)T and dv ≜ (dvx, dvy, dω)
T , we summarize the two

states of our stochastic model as follows:

Mg :

{︄
dq = Gg

q (q, v) dt+Hg
q

(︁
q, σ{1,2}

)︁
dBg

q

dv = Gg
v (F, τ) dt+Hg

v

(︁
σ{4,6}

)︁
dBg

v

Ms :

{︄
dq = Gs

q (q, v) dt+Hs
q

(︁
q, σ{1,2,3}

)︁
dBs

q

dv = Gs
v (v, F, τ) dt+Hs

v

(︁
σ{4,5,6}

)︁
dBs

v

where dBg
q , dBg

v , dBs
q and dBs

v are given by

dBg
q = [dW1, dW2]

T ,

dBg
v = [d˜︂W1, d˜︂W2]

T ,

dBs
q = [dW1, dW2, dW3]

T ,

dBs
v = [d˜︂W1, d˜︂W2, d˜︂W3]

T .

The transition fromMg toMs and viceversa is regulated by a two-state Markov
chain defined by the couple (P, π0)

P =

[︃
pgg pgs
psg pss

]︃
, π0 =

[︃
π0,1
π0,2

]︃
, (4.41)

where P is the transition matrix and π0 is the initial probability vector. The
coefficient pgg is the probability to remain inMg, whereas pgs = 1− pgg is the
transition probability fromMg toMs; pgs maps vxω to [0, 1], constructed in
such a way to tend to 0 as vxω tends to 0, and to 1 as vxω tends to a critical
value denoted with vxω. The probability to remain inMs is constructed in a
similar way, as pss = 1 − psg where psg maps the lateral velocity vy to [0, 1]
in such a way that psg tends to zero as vy ≫ vy and rapidly tends to 1 ad vy
approaches vy .

The functions that we choose as transition probabilities will be described
in Section 4.4.2. The initial probability vector is assumed to be π0 = [1, 0]T ,
meaning that the initial state of the hybrid stochastic system is alwaysMg.

Systems Mg and Ms, together with (P, π0), constitute our novel hybrid
stochastic Brownian-Markov model (HSBM).

91

4.3.3 Existence and Uniqueness of Solutions

A sufficient condition for the existence and uniqueness of solutions to SDEs is
to verify that the drift and diffusion terms are Lipschitz functions, see, e.g.,
[6, 13, 37, 78, 88, 98]. We have

Proposition 4.3.3.1. Let (Ω,F , {F}t≥0,P) be a filtered probability space. Con-
sider the stochastic model given by the following systems of SDEs

Mg =

{︄
dq = Gg

q (q, v) dt+Hg
q

(︁
q, σ{1,2}

)︁
dBg

q

dv = Gg
v (F, τ) dt+Hg

v

(︁
σ{4,6}

)︁
dBg

v

(4.42)

with initial state x0 = (q0, v0)
T where Bg

q is a vector of independent {F}t≥0-
adapted Brownian motions, Bg

v is a vector of independent reflected {F}t≥0-
adapted Brownian motions, and

Ms =

{︄
dq = Gs

q (q, v) dt+Hs
q

(︁
q, σ{1,2,3}

)︁
dBs

q

dv = Gs
v (v, F, τ) dt+Hs

v

(︁
σ{4,5,6}

)︁
dBs

v

(4.43)

with initial state xξ = (qξ, vξ)
T where Bs

q is a vector of independent {F}t≥0-
adapted Brownian motions, Bs

v is a vector of independent reflected {F}t≥0-
adapted Brownian motions. The two sets {Gg

q , G
q
v, G

s
q, G

s
v}, {Hg

q , H
q
v , H

s
q , H

s
v}

of drift and diffusion terms are Lipschitz-continuous matrix-valued functions.

We point out that we provide an explicit proof just for the system of SDEs
(4.43) being the most interesting case; the Lipschitz-continuity of drift and
diffusion coefficients in (4.42) follows the same argument.

We remark that the control force F and control torque τ are calculated by a
digital controller, see Section 4.4.1, by comparing the reference value for vx and
ω with their actual measurements. On every interval [tk, tk+1], F = F (tk) and
τ = τ(tk) are then kept constant. This means that the body velocity vector
v = (vx, vy, ω)

T can be thought as an element of V ≜ [0, vmax
x] × [0, vmax

y] ×
[0, ωmax] ⊆ R3 that is closed and bounded, hence compact. We use this fact
together with the results in [88] to show the Lipschitz-continuity of drift terms
and diffusion terms, obtaining existence and uniqueness.

Proof. Consider the system of SDEs given by (4.43).
Dynamic equation: The Lipschitz-continuity of Gs

v requires that the Eu-
clidean norms of the gradient of every component

gs,1v (vx, vy, ω) = vyω + F/m,

gs,2v (vx, vy, ω) = τ/I,

gs,3v (vx, vy, ω) = −vxω,
is bounded on V . Calculations yield to the following vectors and their corre-
sponding Euclidean norms

||∇gs,1v ||2 = || (0, ω, vy) ||2 =
√︂
ω2 + v2y ,

||∇gs,2v ||2 = || (0, 0, 0) ||2 = 0,

||∇gs,3v ||2 = || − (ω, 0, vx) ||2 =
√︁
ω2 + v2x.

92

The norms are all continuous functions on V with an absolute minimum in the
origin, hence bounded.

Terms m and I in Hs
v(σ{4,5,6}) are constant, so if σi is constant as well,

then Lipschitz-continuity is straightforward. If σi depends on some parameters
(u1, ..., un) for n ∈ N, then it is sufficient to require

||∇σi(u)||2 =

⌜⃓⃓⎷ n∑︂
k=1

∂σk
i

∂uk
≤ Ki i = {4, 5, 6},

whereKi are positive constants, for guaranteeing Lipschitz-continuity ofHs
v(σ{4,5,6}).

Kinematic equation: Consider the drift term Gs
q(q, v) which elements are

function of q and v

gs,1q (θ, vx, vy) = vx cos θ − vy sin θ,
gs,2q (θ, vx, vy) = vx sin θ + vy cos θ,

gs,3q (ω) = ω.

Their gradients are

∇gs,1q = (−vx sin θ − vy cos θ, cos θ,− sin θ, 0) ,

∇gs,2q = (vx cos θ − vy sin θ, sin θ, cos θ, 0) ,
∇gs,3q = (0, 0, 0, 1) .

and so we have

||∇gs,1q ||2 =
√︂

1 + (vx sin θ + vy cos θ)2,

≤
√︂

1 + (vx + vy)2,

where the upper bound is a strictly positive continuous function on V with
an absolute minimum in 1 achieved for vx = −vy and thus bounded. An
identical argument holds true also for ||∇gs,2q ||2. Finally, ||∇gs,3q || = 1 and the
Lipschitz-continuity of Gs

q(q, v) is guaranteed.
Consider now the diffusion matrix Hs

q

(︁
q, σ{1,2,3}

)︁
, if σi are constant, then

each entry of the matrix is a bounded periodic differentiable function of θ,
which derivative is upper bounded from the value of σi itself, thus Lipschitz-
continuity of Hs

q

(︁
q, σ{1,2,3}

)︁
is given. Otherwise if σi = σi(u) where u =

(u1, ..., un) for n ∈ N then Lipschitz-continuity of Hs
q

(︁
q, σ{1,2,3}

)︁
is guaranteed

if the following condition

||∇hs,ijq ||2 =

⌜⃓⃓⎷ n∑︂
k=1

(︄
∂hs,ijq

∂uk

)︄2

+

(︄
∂hs,ijq

∂θ

)︄2

≤ Kij, (4.44)

holds true, whereKij are positive constant and hs,ijq are the non identically zero
entries of the diffusion matrix Hs

q . In other words, if σi are not constant it is
sufficient to assume to be sufficiently regular to ensure the Lipschitz-continuity
of the diffusion terms Hs

q

(︁
q, σ{1,2,3}

)︁
and Hs

v

(︁
σ{4,5,6}

)︁
.

□

93

Remark 4.3.3.1. We point out that requiring Lipschitz continuity of drift and
diffusion coefficients was the first result about existence and uniqueness of so-
lutions to SDEs due to Itô, [66]. It is a sufficient, but not necessary condition.
In real-world applications, systems and phenomena may need to be modeled via
SDEs with non-Lipschitz coefficients. In fact, in many cases of interest the dif-
fusion coefficient is only Hölder-continuous, e.g. the Cox-Ingersoll-Ross (CIR)
model. In case of non-Lipschitz coefficients [39, 40] the analysis becomes quite
intricated. Noteworthy there exist results as the Yamada-Watanabe condition
[135] for the existence and uniqueness of solution to one-dimensional SDEs
with locally-Lipschitz drift and diffusion coefficients of the form σ(x) = |x|α
for α ∈ [1/2, 1] and its recent extension to the multidimensional case [58].

4.4 Simulation Setup
We show realizations of the stochastic model and compare them with those
obtained with the deterministic model. We do not require any particular as-
sumption on the diffusion coefficients of terms Hg,s

q,v . We only assume that the
coefficients guarantee the Lipschitz-continuity and thus existence and unique-
ness of the characterizing SDE. Section 4.4.1 describes the control scheme,
while Section 4.4.2 shows and comments the simulation results.

4.4.1 Robot Controller

The control force F and torque τ for the models are calculated by a Proportional-
Integral-Derivative (PID) controller with sample time Ts = 0.01s, combined
with the inverse dynamics of the system described by equations (4.18d) and
(4.18e). The reference velocities (vref , ωref) are computed by a Pure Pursuit
Controller [34], [131] and designed specifically to track a trajectory given by a
Bézier curve qref (t).

Let tk = kTs with k ∈ Z+
0 , the control force and torque at time tk,

F (tk), τ(tk) are computed according to[︃
F (tk)
τ(tk)

]︃
=

1

Ts

[︃
m 0
0 I

]︃ [︃
uv(tk)
uw(tk)

]︃
, (4.45)

where

uv(tk) = uv(tk−1) + Ave
k
v −Bve

k−1
v + Cve

k−2
v , (4.46)

uω(tk) = uω(tk−1) + Aωe
k
ω −Bωe

k−1
ω + Cωe

k−2
ω , (4.47)

with ekv = vref (tk)− v(tk) and ekω = ωref (tk)− ω(tk) the errors with respect to
the reference velocities at time tk; the terms Ai, Bi and Ci are given by

Ai =

(︃
Ki

P +Ki
ITs +

Ki
D

Ts

)︃
, Bi =

(︃
Ki

P + 2
Ki

D

Ts

)︃
, Ci =

Ki
D

Ts
,

where Ki
P , Ki

D and Ki
I , for i = v, w, are the gains of the discrete-time PID

regulator [47].

94

Figure 4.4: Block diagram of the controlled system. The dashed block refer to equations
(4.45), (4.46) and (4.47).

The block diagram in Figure 4.4 describes the control loop. It is worth
highlighting that the ODEs in Mg and Ms are solved by using the Forward
Euler approximation scheme, while the system of SDEs in HSBM model are
solved by adopting the Euler-Maruyama approximation scheme, see e.g [63],
with discretization time-step h = Ts/10.

4.4.2 Setup Parameters

Table 4.2 summarizes the dynamic parameters for the deterministic model of
the robot in our numerical simulations and the friction coefficients character-
izing the external forces described in Section 4.2.2.

parameter value description
ℓ 0.760m length of robot
b 0.330m semi-axle
mr 107 kg robot mass (no wheels)
mw 4 kg one wheel mass
m 115 kg robot total mass
crr 0.08 rolling friction coeff.
µs 0.70 lateral static friction coeff.
µk 0.56 lateral dynamic friction coeff.

Table 4.2: Dynamic parameters and friction coefficients.

Point P0 P1 P2 P3 P4 P5 P6 P7

x -4 0 4 8 8 4 0 -4
y 3 3 3 3 0 0 0 0

Table 4.3: The control points of the Bézier curve. The path starts in P0 and ends in P7.

The total inertia of the robot, given by equation (4.1), is therefore I =
9.105 kgm2. The robot follows the path in Figure 4.5 obtained via a planar 7
degrees Bézier curve whose control points are listed in Table 4.3. The robot
travels along the path with a constant speed of vx = 2.20m/s and the maxi-
mum angular speed is |ωmax| = 4.80 rad/s.

95

Figure 4.5: A snapshot of the robot while following the path, obtained via Bézier curve
whose control path are reported in Table 4.3. The starting and ending points are put in
evidence with a circle and a cross, respectively. The red triangle on top of the robot serves
to show the orientation of the robot.

We assume constant diffusion coefficients for the stochastic model given by

σ1 = 0.03, σ4 = 0.85,

σ2 = 0.03, σ5 = 0.85,

σ3 = 0.03, σ6 = 0.85.

The transition probability pgs in the transition matrix P in (4.41) is

pgs(vxω) ≜
1

1 + e−α1(|vxω|−γ1)
(4.48)

where α1 ∈ R>0 and γ1 = vxω , i.e., a parametric sigmoid function on the
absolute value of vxω, centered in the deterministic critical value vxω. The
parameter α1 controls the rate of growth of pgs, while γ1 translates the function
along the abscissa axis.

The choice of the parametric function (4.48) is motivated by the need of
having a transition probability that is close to zero when |vxω| ≪ vxω and also
rapidly growing to 1 as |vxω| → vxω. Similarly, for pgs we assume

psg(vy) ≜
−1

1 + e−α2(|vy |−γ2)
+ 1, (4.49)

where α2 ∈ R>0 and γ2 = vy choosen in such a way to have a function that
rapidly grows to 1 as |vy| → 0.

We model the behavior of transition probabilities (4.48) and (4.49) by as-
suming α1 = α2 = 120, vxω= 6.90 (mrad)/s2 and vy = 0.05m/s.

4.5 Experimental Results
We show and comment results obtained from the numerical implementation
of the deterministic model and the HSBM model. In particular, we discuss
the velocity profiles and the transition conditions that allow the deterministic
model to switch from Mg to Ms, and the stochastic model fromMg toMs,
and viceversa.

96

4.5.1 Deterministic Model

Figure 4.6a shows the forward velocity vx and angular velocity ω of the deter-
ministic model, obtained by ignoring the transition condition |Fcf | ≤ |Fcp|, i.e.,
by considering only constraint (4.16) along all the path tracked until T = 7s
(blue dashed lines) and those obtained by allowing lateral slip phenomenon,
i.e., allowing transitions fromMg toMs and viceversa (blue continuous lines),
compared with reference forward and angular velocities calculated by the Pure
Pursuit controller (continuous red lines).

3.5 4 4.5 5 5.5 6 6.5 7

1.5

2

2.5

3.5 4 4.5 5 5.5 6 6.5 7

-4

-2

0

2

(a)

3 3.5 4 4.5 5 5.5 6 6.5 7

0

0.5

1

3 3.5 4 4.5 5 5.5 6 6.5 7

0

500

1000

(b)

Figure 4.6: (a): Forward and angular velocity time-series of the deterministic model on the
time window 3.5s ≤ t ≤ 7s, in case of perfect grip and in case of grip loss, compared with
the reference ones; (b): Lateral velocity, on the time window 3s ≤ t ≤ 7s, and centrifugal
force profiles in case the perfect grip and in the case of grip loss, the latter compared with
the maximum sustainable centripetal force.

Till t1 = 4.54s the robot has perfect grip thus the reference velocities are
perfectly tracked by the PID controller, subsequently the system switches from
Mg toMs and loss of grip phenomenon deviates vx and ω from their reference
values until t2 = 5.43s. At t = t2, the system switches back toMg, gripping is
restored and vx and ω converges again to the corresponding reference values.

Figure 4.6b shows the lateral velocity vy and centrifugal force Fcf in the
case of perfect grip (blue dashed line). Centrifugal force is compared with the
maximum sustainable centripetal force Fcp (red dashed line). Ignoring condi-
tion |Fcf | ≤ |Fcp| implies that motion equations are given by Mg, therefore
the value of Fcf can overcome the maximum sustainable centripetal force, de-
termined by µs in Table 4.2 and equal to Fcp = 789.71N . If slip phenomenon
is allowed, the condition |Fcf | ≤ |Fcp| is taken into account and when it is vi-
olated, at t1 = 4.54s, the model passes fromMg toMs and it remains there,
where Fcf has no role, until t2 = 5.43s when |vy| decayed to zero due to the
action of the lateral friction force Flat, determined by µk in Table 4.2.

4.5.2 HSBM Model

Figure 4.7a reports five forward velocity vx time-series and angular velocity
ω time-series as realizations of the Brownian-Markov model (blue irregular

97

lines), compared with the reference values calculated by the Pure Pursuit con-
troller (red continuous line) and the velocities obtained as solutions of the
deterministic model.

3.5 4 4.5 5 5.5 6 6.5 7

1.5

2

2.5

3.5 4 4.5 5 5.5 6 6.5 7

-4

-2

0

2

(a)

3 3.5 4 4.5 5 5.5 6 6.5 7

0

0.5

1

3 3.5 4 4.5 5 5.5 6 6.5 7

0

5

10

(b)

Figure 4.7: (a): Forward and angular velocity profiles of 5 realizations of the Brownian-
Markov model and 1 of the deterministic model, on the time window 3.5s ≤ t ≤ 7s, compared
with reference velocities; (b): Lateral velocity of 5 realizations of the Brownian-Markov
model and 5 realizations of |vxω| and the critical values γ1 and γ2.

Figure 4.7b shows five realizations of the lateral velocity vy (blue irregu-
lar lines) and the deterministic vy (black continuous line); and five realiza-
tions of |vxω| (blue irregular lines) and the corresponding critical value (red
dashed line). In Figure 4.7a every realization of the HSBM model has its own
transition times fromMg toMs and viceversa, all contained in the intervals
I1 = [tmin

1 , tmax
1] and I2 = [tmin

2 , tmax
2], respectively (black vertical dashed lines).

As it is possible to notice in Figure 4.7b, for t1 ∈ I1, in every realization
the absolute value |vxω| is very close to the critical value γ1. The Brownian-
Markov model then switches state from Mg to Ms and remains in slipping
mode until time t2 ∈ I2, at which the lateral velocity is very close to γ2.

In Figure 4.7b it is possible to observe two realizations above and three
below the deterministic one. The under/over approximations are determined
by the fact that transitions fromMg toMs and viceversa occurs at different
times within the transition intervals. In particular, the state transition times
within I1 and I2 in our simulations, reported in ascending order, are

t1(min) = 4.53s t2(min) = 5.38s
t1(2) = 4.58s t2(2) = 5.40s
t1(3) = 4.59s t2(3) = 5.41s
t1(4) = 4.61s t2(4) = 5.42s

t1(max) = 4.63s t2(max) = 5.44s

Finally, for t > tmax
2 , all realizations of vy of the Brownian-Markov model have

switched back fromMs toMg, thus vy = 0 for every t ∈ (tmax
2 , T] and vx and

ω return to converge to the corresponding reference values.
Figure 4.8a (a) shows a example of transition probabilities pgs (red contin-

uous line) and psg (blue continuous line) of the Markov chain (P, π0) regulating

98

3 3.5 4 4.5 5 5.5 6 6.5 7

0

0.5

1

3 3.5 4 4.5 5 5.5 6 6.5 7

0

1

(a)

4.44 4.46 4.48 4.5 4.52 4.54 4.56 4.58 4.6 4.62 4.64

0

50

100

5.3 5.35 5.4 5.45 5.5

0

50

100

(b)

Figure 4.8: (a): An example of the transition probabilities pgs in (4.48) and psg in (4.49)
and the corresponding state transition diagram, on the time window 3s ≤ t ≤ 7s; (b):
Histograms of the N observations for t1 and t2.

the transitions betweenMg andMs, for 3s ≤ t ≤ 7s. The initial state isMg

and for t < tmin
1 , pgs is close to zero. For t ∈ I1, pgs grows rapidly to 1 since

|vxω| is close to γ1 and a transition fromMg toMs is likely to occur. The
transition probability that now matters is psg and, for t ∈ I2, it rapidly grows
to 1 as the lateral velocity tends to γ2. A transition back toMg happens and
pgs returns to zero. Figure 4.8a (b) shows the related state transition diagram
together with the transition times t1 and t2.

The transition times are random variables since changes of system state
depend on the transition probabilities (4.48) and (4.49) of the Markov chain
(P, π0), that in turn depends on the velocities affected by Brownian noise. We
denote them with t1 and t2, respectively. The mean values µ(ti) and the
standard deviations σ(ti), i = {1, 2}, over N = 103 samples of transition times
are given by

µ(t1) = 4.54s σ(t1) = 0.03s,

µ(t2) = 5.40s σ(t2) = 0.04s.

Note that µ(t1) and µ(t2) are close to the corresponding values for which the
conditions |Fcf | ≤ |Fcp| and |vy| > 0 are violated in the deterministic model,
t1 = 4.54s and t2 = 5.43s.

Figure 4.8b reports the histogram of the N observations of transition times
(blue bars) obtained by simulating the HSBM model, together with two ver-
tical lines representing their mean values µ(t1) and µ(t2) (red dashed), the
corresponding values in the deterministic model t1 and t2 (black dashed) and
the fitting curve (red continuous line).

It is possible to notice that the observations of the transition times follow
a unimodal trend, that can be approximate by Gaussian distributions with
parameters µ(t1), σ(t1) and µ(t2), σ(t2), respectively.

99

100

Chapter 5

Conclusions and Future Works

The generation of safe trajectories for both mobile robots and industrial ma-
nipulators is essential to improve production efficiency, a higher level of au-
tomation and reduction of the likelihood of undesirable and unpleasant events
such as work accidents.

We started this thesis with an analysis of the state of the art on trajectory
planning using the Velocity Obstacle. We constructed the taxonomy with the
aim of proposing a broad and clear overview.

Next, we proposed a safe trajectory planner designed for pairs of holo-
nomic robots that have to cooperate to transport a long and heavy payload in
an automated warehouse, where other autonomous mobile agents are present.
The planner is divided into two levels, global and local. The first, based on
Voronoi diagrams, generates collision-free trajectories with respect to expected
and fixed obstacles such as the shelves of the warehouse. The second, based
on Velocity Obstacles, is designed to ensure the safety of the two constrained
agents by calculating collision-free trajectories with respect to unforeseen ob-
stacles or other mobile robots, taking into account the rigidity constraints that
binds the pair of agents.

Then, since Velocity Obstacle has always been used only for the navigation
of ground and aerial mobile robots, we focused on adapting the method to
manipulators. We started with the planar case by simulating a two-link ma-
nipulator with two revolute degrees of freedom. The planner is based on the
construction of the so-called Reduced Multiple Velocity Obstacle (RMVO), the
set of all safe velocities for the end-effector and for the distal link of the manip-
ulator. As future work, we aim to adapt the Velocity Obstacle to manipulators
operating in the three-dimensional space by extending the proposed planner
to the case of anthropomorphic manipulators with 3+ degrees of freedom.

The possibility to rely on reliable dynamic models is of equally importance
in applications such as designing motion control loops, filters and computer
simulation of robots. We designed a model-based feedforward control loop
and a payload estimation routine for a D3-1200 Delta Robot made available
by the company SIPRO Srl. We started from the standard dynamic model of
the literature, that is derived by considering a significant simplification of the
robot kinematics chains, and we enhanced it with a gray-box model parameter

101

identification technique in order to recover the inertia and gravity compensa-
tion effects lost due to the simplifications. Although the model with identified
parameters provided better results in terms of estimated control torques, the
parameter identification is a highly time-consuming procedure and furthermore
parameters depend on the considered trajectory. For these reasons, using the
Euler-Lagrange equations, we derived a novel mathematical model without
any kind of simplification on the kinematic chains. The resulting model has
proven to be more accurate than the previous one but paying the price of
a considerably higher computational complexity. As future work, we aim to
collect and analyze data from the implementation of the aforementioned feed-
foward motion control loop applied to the D3-1200 Delta Robot and optimize
the algorithm for high-perfomance computational tasks.

Finally, we developed a novel dynamic model for mobile robots. In par-
ticular, we presented a novel two-state hybrid stochastic dynamic model for
differential-drive wheeled mobile robots, in which the action of dissipative
forces is governed by independent reflected Brownian motions and the tran-
sition between two states, as consequence of the action of inertial external
forces, is governed by a Markov chain. The hybrid stochastic model is im-
portant because, unlike the models known in the literature, it is able to take
into account the action of inertial forces that can determine undesired lateral
motion caused by losses of grip. We proved the existence and uniqueness of
the solutions of the SDEs and provided numerical simulations to show the ef-
fectiveness of our model. As future work, we aim to experimentally validate
the hybrid stochastic dynamic model on a real differential-drive robot.

102

Appendix A

Lie Groups Theory

A.1 Matrix Lie Groups
A Lie Group consists in a pair (G, ⋆) where G has the structure of a differen-
tiable manifold and ⋆ is a binary operation that enjoys certain group axioms.
In what follows, we will refer to the plane with R2 and to the 3D space with
R3. Matrix Lie Groups are a particular class of Lie Groups [22, 61, 64] that
naturally arises in robotics and generally in rigid body mechanics [22]. In
particular, it is useful to describe the position, orientation and velocity of a
rigid body on the plane and in the space, exploiting the tools of analytical
mechanics.

Definition A.1.0.1. (Group) A set G endowed with a binary operation ⋆ :
G×G→ G, (a, b) ↦→ a ⋆ b is a group if satisfies the following three properties:

1. a ⋆ (b ⋆ c) for all a, b, c ∈ G;

2. there exists e ∈ G such that a ⋆ e = e ⋆ a = a for all a ∈ G;

3. there exists a−1 ∈ G such that a ⋆ a−1 = e for all a ∈ G.

In other words, (G, ⋆) is a group if ⋆ is associative and there exist both
the identity element e and inverse element a−1 for all a in G. If the ⋆ is also
commutative, i.e., a ⋆ b = b ⋆ a, then (G, ⋆) is called Abelian group. Intuitively,
H ⊂ G is a subgroup of G if (H, ⋆) is a group with respect to the binary
operation ⋆ defined on G.

Definition A.1.0.2. (Lie Group) A Lie group (G, ·) is a group in which G
has the structure of a differentiable manifold and the operations G × G → G
such that (a, b) ↦→ a · b and G→ G such that a ↦→ a−1 are both differentiable.

Before giving an explicit definition of what a Matrix Lie Group is, we need
to introduce some other definitions and concepts.

Definition A.1.0.3. (Homogeneous Coordinates) Consider a point x ∈
R3. The homogeneous coordinates associated to x are defined as x̄ ≜ (x, 1) ∈
R4.

103

Consider a spatial reference frame Σs = {Os; s1, s2, s3} and a rigid body B
in R3 on which we attach a so called body frame, Σb = {Ob; b1, b2, b3}. Let xs
denote the pose of B in Σs and xb the position of a particle of B with respect
to the body frame Σb. Then

xs = p+Rxb (A.1)

where R is the rotation matrix expressing the orientation of B and p is the
position vector of its center of mass (CoM) expressed with respect to Σs. As
in Definition A.1.0.3, we define x̄s ≜ (xs, 1) ∈ R4 and x̄b ≜ (xb, 1) ∈ R4, thus
equation (A.1) can be rewritten as

x̄s =

[︃
R p

01×3 1

]︃
x̄b, x̄b =

[︃
RT −RTp
01×3 1

]︃
x̄s. (A.2)

The rotation matrix R belongs to the Special Orthogonal group SO(n) 1. Let
GL(n;R) (resp. GL(n;C)) be the General Linear group, i.e., the group of all
invertible matrices of order n with real entries (resp. complex entries). It is
a subset of M(n;R) (resp. M(n;C)), the set of all n × n matrices with real
(resp. complex) entries. SO(n) is defined as follows.

Definition A.1.0.4. (Special Orthogonal Group) The Special Orthogonal
group SO(n) is defined as

SO(n) ≜ {R ∈ O(n) : det(R) = 1},

where O(n) is the group of orthogonal matrices of dimension n ∈ N, i.e., all
the matrices R ∈ GL(n,R) such that RTR = RRT = Id.

In particular, SO(2) is the group of rotations on the plane and SO(3) is
the group of rotations in space. The displacement of a rigid body is described
by the position of its CoM and by its orientation on the plane or in the space,
therefore we need to introduce the following definition.

Definition A.1.0.5. (Special Euclidean Group) The Special Euclidean
group SE(n) is the group whose elements are expressed in the following matrix
form

g =

[︃
R p

01×n 1

]︃
, (A.3)

where R ∈ SO(n) and p ∈ Rn.

In particular, SE(2) and SE(3) are the groups of rigid body displacements
in R2 and in R3, respectively. Consider the usual matrix multiplication oper-
ation, denoted with “ · ”. We can now give a precise definition of Matrix Lie
Group.

Definition A.1.0.6. (Matrix Lie Groups) The groups O(n), SO(n) and
SE(n) equipped with the matrix multiplication operation are Matrix Lie groups.

1we have omitted to specify the binary operation included in the definition of group, for
the sake of simplicity.

104

Alternatively, we can assert that a Matrix Lie Group is any closed subgroup
of GL(n,R) or GL(n,C) endowed with the matrix multiplication [64].

We remark that O(n), SO(n) and SE(n) are the only Matrix Lie groups
of interest in this thesis, there exist many other Matrix Lie Groups that we
are not going to treat, see [61, 103]. We conclude this subsection with some
examples.

Example A.1.0.1. Consider a fixed frame of reference Σs = {O; s1, s2, s3}
in R3 and the group of three-dimensional rotations SO(3) equipped with the
usual matrix multiplication. A basis B = {e1, e2, e3} for SO(3) is given by the
following matrices

e1 =

⎡⎣1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1

⎤⎦ e2 =

⎡⎣ cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2

⎤⎦ ,
e3 =

⎡⎣cos θ3 − sin θ3 0
sin θ3 cos θ3 0
0 0 1

⎤⎦ ,
i.e., the elementary rotations matrices along the s1, s2 and s3 axis.

Example A.1.0.2. Consider a fixed spatial frame of reference Σs = {O; s1, s2}
in R2 and a rigid body B, whose CoM position in Σs is expressed by the vector
p = (x1, x2)

T and whose orientation is given by the angle θ with respect to Σs.
Then, the displacement g ∈ SE(2) in (A.3) of B is given by

g =

[︃
R p

01×2 1

]︃
=

⎡⎣cos θ − sin θ x1
sin θ cos θ x2
0 0 1

⎤⎦ . (A.4)

A.2 Matrix Lie Algebras
In the previous subsection we introduced the concepts of Matrix Lie Group and
displacement, that are fundamental to describe the position and the orientation
of a rigid body. In order to have all the necessary, we must also introduce the
concept of Matrix Lie Algebra, that arises when dealing with the velocity of a
rigid body.

Definition A.2.0.1. (Matrix commutator) Let A,B ∈ M with M =
M(n,R) or M(n,C). The matrix commutator is the M ×M → M opera-
tion such that

[A,B] ≜ AB −BA. (A.5)

Proposition A.2.0.1. Consider three matrices A,B,C ∈M(n;R). The ma-
trix commutator operator (A.5) enjoys the following properties:

• [A,B] = −[B,A] (skew-symmetry), and

• [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (Jacobi’s Identity).

105

Proof. See [64].

Definition A.2.0.2. (Skew-symmetric matrices) The set of skew-symmetric
matrices so(n) with real entries is defined as

so(n) ≜ {S ∈M(n,R) : ST = −S}.

Consider now a rigid body B whose orientation is given by the matrix
R ∈ SO(n), n = {2, 3}. It is possible to define the

• body angular velocity Ω̂ = RT Ṙ, and the

• spatial angular velocity ω̂ = ṘRT ,

where Ṙ is the derivative with respect to time of R. Ω̂ is the velocity of B in
Σs, while ω̂ is the relative velocity of Σs with respect to Σb. The body and
spatial angular velocities are represented by skew-symmetric matrices, i.e.

Ω̂ =

⎡⎣ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎤⎦ , ω̂ =

⎡⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤⎦ , (A.6)

where Ω̂, ω̂ ∈ so(3). They also admit a vector representation, obtained via the
isomorphism between vector spaces given by ∨ : so(3) → R3, whose inverse is
the map ∧ : R3 → so(3) [22]:

Ω̂
∨
= (Ω1, Ω2, Ω3) ≜ Ω, ω̂∨ = (ω1, ω2, ω3) ≜ ω. (A.7)

Example A.2.0.1. Consider the group element represented by the following
matrix

R =

⎡⎣1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤⎦ ∈ SO(3),
where θ ∈ [0, 2π]. Let denote θ̇ = ω. We have

Ω̂ = RT Ṙ =

⎡⎣0 0 0
0 0 −ω
0 ω 0

⎤⎦ ∈ se(3),

thus the corresponding vector representation is Ω = (ω, 0, 0) ∈ R3. In partic-
ular, in this case we have Ω̂ = ω̂.

We can now define the space of Twists, with a construction similar to
the one that allowed to construct SE(n), whose elements admit the following
matrix representation

ξ ≜

[︃
ω̂ v

01×n 0

]︃
, (A.8)

where ω̂ ∈ so(n) and v ∈ Rn, for n = {2, 3}.

106

Definition A.2.0.3. (Twists) The space of twists se(n) is defined by

se(n) ≜ {ξ : ξ as defined in (A.8)}.

Example A.2.0.2. The space se(2) is the space of elements whose matrix
representation is given by

ξ =

⎡⎣0 −ω vx
ω 0 vy
0 0 0

⎤⎦ = ωe1 + vxe2 + vye3,

where the elements

e1 =

⎡⎣0 −1 0
1 0 0
0 0 0

⎤⎦ , e2 =

⎡⎣0 0 1
0 0 0
0 0 0

⎤⎦ , e3 =

⎡⎣0 0 0
0 0 1
0 0 0

⎤⎦ ,
are a basis for se(2).

Consider a mechanical system in R3. The concept of twist arises from the
fact that the system of ODEs describing the motion of such system, given by{︄

ġ(t) = g(t)A(t)

g(0) = g0
t ∈ R, g, A ∈ R4×4,

has solution2 g(t) ∈ SE(3) if and only if A(t) ∈ se(3). It is possible to define
the spatial and the body angular velocities in (A.6) in terms of g as follows

ξs(t) = ġ(t)g−1(t),

ξb(t) = g−1(t)ġ(t).

The isomorphism ∨ : se(3)→ R3⊕R3 and its inverse ∧ allow to represent ξ in
vector form. For example, we have[︃

ω̂ v
01×3 0

]︃∨
= (ω, v) ∈ R3 ⊕ R3,

with ω = (ω1, ω2, ω3). At this point we can give the definition of Lie Algebra
[22, 64].

Definition A.2.0.4. (Lie Algebra) A (real) Lie Algebra is a (real) vector
space V endowed with a bilinear operation [·, ·] : V ×V → V , called Lie Brack-
ets. Consider v1, v2, v3 ∈ V , the Lie Brackets satisfy the following properties

1. [v1, v2] = −[v2, v1] (skew-symmetry), and

2. [v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]] (Jacobi’s Identity)

A non-empty subset U of V is a Lie Subalgebra of V if it is a Lie Algebra
with respect to the bracket operation defined on V .

2The solution is a curve in SE(3), i.e., a map g : R→ SE(3) such that t ↦→ g(t) ∈ SE(3).

107

Example A.2.0.3. The following are vector spaces Lie Algebras:

• V = R3 equipped with the usual cross product “× ” operation;

• the space {f : V → V : f is linear} equipped with the operation [f, g] =
f ◦ g − g ◦ f , where ◦ denotes the composition of functions;

• the space Γ(M) of all smooth vector fields on the smooth manifold
M, equipped with the Jacobi-Lie brackets operation [X, Y] = LXY for
X, Y ∈ Γ(M), where LXY is the Lie derivative of Y with respect to X.

Definition A.2.0.5. (Matrix Lie Algebras) The spaces so(n) and se(n)
endowed with the matrix commutator operation (A.5) are Matrix Lie Algebras.

As we did in the previous section, we remark those appearing in the pre-
vious definition are the only Lie Algebras of interest. There exist many more
Matrix Lie Algebras that we are not going to deal with, see [22, 64].

Proposition A.2.0.2. For any Matrix Lie Group G, the tangent space at the
identity TIG is a Matrix Lie Algebra g, called the Lie Algebra of G. On the
other hand, any Matrix Lie Algebra is the Lie Algebra of some Matrix Lie
Group.

Proof. Omitted. Proposition 5.8 of [64].

Proposition A.2.0.3. A Matrix Lie Algebra is a vector subspace ofM(n,R)
endowed with the usual operations of scalar multiplication and matrix addition
that is also closed with respect to the matrix commutator operation (A.5). Let G
be a group, it is indeed possible to prove that [A,B] ∈ TIG for any A,B ∈ TIG.

Proof. Omitted. Propositions 5.6 and 5.7 of [64].

We identify the Lie Algebra g, of a Lie Group G, with the tangent space at
the identity element e ∈ G endowed with the Lie Brackets operation [u, v] =
[uL, vL](e)

3. It is possible to prove that TeG ≃ TgG for any element g ∈ G,
i.e., there exists an isomorphism between the tangent space at the identity and
any other tangent space. This fact is at the basis of the Proposition A.2.0.2.
Furthermore, it is possible to demonstrate that such isomorphism between
vector spaces induces a vector bundle isomorphism from the tangent bundle4

TG to G×TeG, allowing us to write TG ≃ G×g. For further details, we refer
to Chapter 5 of [22] and [64].

Example A.2.0.4. The space se(3) of all the matrices of the form[︃
A v

01×3 0

]︃
where A is skew-symmetric and v ∈ R3 is the Lie Algebra of the group of rigid
body displacements SE(3).

3uL and vL are left-invariant vector fields whose values at e are u and v, respectively.
4TG is the disjoint union of all the tangent spaces TgM , for g ∈ G.

108

Note that to a Lie group corresponds only one Lie Algebra, but a single
Lie Algebra can correspond to more than one Lie group.

Example A.2.0.5. Consider the Matrix Lie Group (O(n), ·). The tangent
space to O(n) at the identity, TIO(n), is the vector space of skew-symmetric
matrices so(n). Consider any pair A,B ∈ so(n), we have

[A,B]T + [A,B] = (AB −BA)T + (AB −BA)
= BTAT − ATBT + AB −BA = 0n×n,

since AT = −A and BT = −B, where 0n×n is the null matrix of order n. This
proves that so(n) is closed under the matrix commutator operation, therefore
(so(n), [·, ·]) is the Lie Algebra of (O(n), ·), but it is also possible to prove
that so(n) is also the Lie Algebra of the Special Orthogonal group SO(n), see
Example 5.12 of [64].

We conclude the section with the definitions of adjoint operator and co-
adjoint operator, the last concept about Lie Groups theory that we need to
introduce. Let V ∗ denote the dual space of V , i.e., the space of all linear maps
from V to R.

Definition A.2.0.6. (Adjoint Operator) Let (V, [·, ·]) be a Lie Algebra and
v ∈ V . Define adv : V → V such that

advu = [v, u] for any u ∈ V.

The linear map advu is called adjoint operator corresponding to v ∈ V .

Definition A.2.0.7. (Co-adjoint Operator) The co-adjoint operator ad∗
v

associated to adv is the linear map ad∗
v : V ∗ → V ∗ such that, for every v ∈ V

the following inequality holds true

⟨ad∗
vα,w⟩ = ⟨α, advw⟩,

for any w ∈ V and α ∈ V ∗.

Let v ∈ V , both operators admit a matrix representation, denoted with
[adv] and [ad∗

v], respectively.

109

110

Appendix B

Stochastic Processes

B.1 Brownian Motion

A stochastic process in continuous time [37, 88, 109] can be viewed as a se-
quence of random variables {Xt}t≥0 indexed with a real parameter t ∈ R≥0,
representing the time. A stochastic process takes value in a state space usually
denoted with Ω. The space state is equipped with a sigma-algebra Ψ.

Definition B.1.0.1. (Sigma-algebra) A sigma-algebra Ψ is a collection of
subsets of Ω that satisfies the following properties

1. Ω itself belongs to Ψ,

2. if a set A ∈ Ω belongs to Ψ, also its complementary set Ac belongs to Ψ,

3. if {An}n∈N is a family of sets in Ψ, then⋃︂
n∈N

Ai ∈ Ψ. (B.1)

Property (B.1) is also known as stability for countable unions of sets, that in
turn implies stability for countable intersections, thanks to the properties of
set operations. Indeed, we have

⋂︂
n∈N

Ai =

(︄⋃︂
n∈N

Ac
i

)︄c

∈ Ψ.

The space Ω endowed with a sigma-algebra Ψ is a measurable state space and
the elements within Ψ are measurable sets. Consider the state X = Xt of a
stochastic process. All the information available until time t is represented by
its Filtration {F}t≥0.

Definition B.1.0.2. (Filtration) The filtration {F}t≥0 of a stochastic pro-
cess Xt is an increasing sequence of sigma-algebras defined on Ω such that

1. for every s < t, Fs ⊂ Ft and

111

2. Ft =
⋂︁

u<tFu.

Definition B.1.0.3. (Martingale) A stochastic process Xt is a martingale
when it satisfies the following properties

1. Xt is Ft-measurable,

2. E[Xt] < +∞ for every t ∈ R≥0,

3. E[Xt|Fs] = Xs.

If E[Xt|Fs] ≥ Xs then the stochastic process is a submartingale, while if
E[Xt|Fs] ≤ Xs then it is a supermartingale. Ft-measurability means that the
counterimage of Borel sets through X belongs to the sigma-algebra Ψ. The
Borel sets are the elements of the so called “Borel sigma-algebra" B, that is the
smallest sigma-algebra that one can put on a topological space compatible with
the topology itself, in the sense that B contains all the sets of the topology.
The 4-uple (Ω,Ψ, {F}t≥0,P) is called filtered probability space, where P is the
probability measure1 on Ω.

Definition B.1.0.4. (Brownian motion) The Brownian motion Bt, also
known as Wiener process and denoted with Wt, is a continuous-time Gaussian
stochastic process: Bt ∼ N(0, t) for every t ∈ R≥0.

In other words, a Brownian motion is a sequence of independent Gaussian
variables with mean equal to 0 and variance equal to t.

Proposition B.1.0.1. The Brownian motion satisfies the following properties

1. B0 = 0, i.e. the process always starts from zero,

2. it has independent increments: Bs ⊥ Bt for s < t,

3. Bt−s ∼ N(0, t− s) for s < t,

4. the covariance function is defined by a(s, t) = min(s, t) for s, t ∈ R≥0,

5. it is a Markov process,

6. it is a Martingale,

7. the trajectories have unbounded variations,

8. [Bt] = t: the quadratic variation is equal to t.

Proof. See [88].
1A map from Ω to [0, 1] that associated a probability to every element of the state space.

112

B.2 Stochastic Differential Equations
A Stochastic Differential Equation (SDE) is a differential equation containing
one or more terms that are stochastic processes. Various phenomena whose
evolution is not deterministic, such as stock prices and the evolution of interest
rates, are modeled using stochastic differential equations. We will focus our
attention on linear SDEs with Brownian noise, however other types of random
behaviour are possible, such as jump processes [13].

Definition B.2.0.1. (Linear SDE) Let (Ω,Ψ, {F}t≥0,P) be a filtered prob-
ability space. Let t ∈ R≥0 and x ∈ R be two variables, where in particular t
represents time. A (one-dimensional) linear SDE in differential form is ex-
pressed as follows{︄

dXt = a(t,Xt)dt+ b(t,Xt)dBt

X0 = x0
t ∈ R≥0, (B.2)

where a : R≥0 × R → R and b : R≥0 × R → R are non-random well de-
fined real-valued functions called “drift" and “diffusion" coefficients and Bt is
a (standard) Ft-adapted Brownian motion. Equation (B.2) can be expressed
in integral form as follows

Xt = X0 +

∫︂ t

0

a(s,Xs)ds+

∫︂ t

0

b(s,Xs)dBs t ∈ R≥0. (B.3)

The solution of an SDE is also a stochastic process. A stochastic process Xt

solves (B.2), or equivalently (B.3), if the processes

Xt and ξt ≜ X0 +

∫︂ t

0

a(s,Xs)ds+

∫︂ t

0

b(s,Xs)dBs

are indistinguishable, i.e., defined over the same filtered probability space and
such that

P [Xt = ξt] = 1 for every t ∈ R≥0.

There exists a vast amount of literature about existence and uniqueness of
solutions to stochastic differential equations, e.g., [6, 37, 78, 88, 98], whose first
result is due to Itô [66]. Usually one requires at least the Lipschitz-continuity of
drift and diffusion coefficients, but it is a sufficient but not necessary condition:
it is possible to prove existence and uniqueness of solutions also in case of
weaker assumptions on the coefficients.

We remark that the existence of a closed-form solution is not always guar-
anteed; in this case in order to calculate one it is appropriate to rely on approx-
imation schemes, e.g., Euler-Maruyama method [63], or quadrature formulas.

Lemma B.2.0.1. (Itô-Doeblin formula) Let (Ω,Ψ, {F}t≥0,P) be a filtered
probability space. Let t ∈ R≥0 and x ∈ R be two variables, where in particular
t represents time. Consider a non-random function F (t, x) ∈ C1,2(R≥0 × R)
and a SDE of the form (B.3).

113

The (one-dimensional) Itô-Doeblin formula in integral form is given by

F (t,Xt) = F0+

∫︂ t

0

[︃
∂F (s,Xs)

∂s
+

1

2

∂2F (s,Xs)

∂X2
s

b2(s,Xs)

]︃
ds+

∫︂ t

0

∂F (s,Xs)

∂Xs

dXs

where F0 = F (0, X0). It can be also expressed in differential form as follows

dF (t,Xt) =

[︃
∂F (t,Xt)

∂t
+

1

2

∂2F (t,Xt)

∂X2
t

b2(t,Xt)

]︃
dt+

∂F (t,Xt)

∂Xt

dXt.

Proof. See [88].

The Itô-Doeblin formula, also known as Itô’s Lemma, provides the basic
rules by which the differential of the composition of functions, that depends
both on deterministic and stochastic variables, should be calculated. In other
words, the Itô-Doeblin formula is the stochastic equivalent of the chain rule in
traditional calculus. It is usually referred as Itô formula for simplicity although
it has been proved that the first man that has ever derived this formula was a
French-German mathematician named Wolfgang Doeblin (1915-1940).

We conclude by pointing out that both Definition B.2.0.1 and Lemma
B.2.0.1 hold true also in the multi-dimensional case, where drift and diffu-
sion coefficients are vector-valued and matrix-valued functions, respectively,
and Bt is an n-dimensional Brownian motion.

114

Bibliography

[1] J. Alonso-Mora, S. Baker, and D. Rus. “Multi-robot Formation Con-
trol and Object Transport in Dynamic Environments via Constrained
Optimization”. In: The International Journal of Robotics Research 36.9
(2017), pp. 1000–1021.

[2] J. Alonso-Mora et al. “Optimal Reciprocal Collision Avoidance for mul-
tiple Non-holonomic Robots”. In: Distributed autonomous robotic sys-
tems. Springer, 2013, pp. 203–216.

[3] R. Andreani et al. “On augmented Lagrangian methods with General
Lower-level Constraints”. In: SIAM Journal on Optimization 18.4 (2008),
pp. 1286–1309.

[4] L. Angel and J. Viola. “Parametric Identification of a Delta Type Par-
allel Robot”. In: 2016 IEEE Colombian Conference on Robotics and
Automation (CCRA). IEEE. 2016, pp. 1–6.

[5] L. Angel et al. “RoboTenis System part II: Dynamics and Control ”.
In: Proceedings of the 44th IEEE Conference on Decision and Control.
IEEE. 2005, pp. 2030–2034.

[6] D. Applebaum. Lévy Processes and Stochastic Calculus. Cambridge uni-
versity press, 2009.

[7] F. Asadi and A. Heydari. “Analytical Dynamic Modeling of Delta Robot
with Experimental Verification”. In: Proceedings of the Institution of
Mechanical Engineers, Part K: Journal of Multi-body Dynamics 234.3
(2020), pp. 623–630.

[8] K. J. Åström and B. Wittenmark. Computer-controlled Systems: Theory
and Design. Courier Corporation, 2013.

[9] F. Aurenhammer. “Voronoi Diagrams: A Survey of a Fundamental Ge-
ometric Data Structure”. In: ACM Computing Surveys (CSUR) 23.3
(1991), pp. 345–405.

[10] T. Balch and R. C. Arkin. “Behavior-Based Formation Control for Mul-
tirobot Teams”. In: IEEE transactions on robotics and automation 14.6
(1998), pp. 926–939.

[11] D. Bareiss and J. Van den Berg. “Generalized Reciprocal Collision Avoid-
ance”. In: The International Journal of Robotics Research 34.12 (2015),
pp. 1501–1514.

115

[12] J. Barraquand and J.C. Latombe. “Robot Motion Planning: A Dis-
tributed Representation Approach”. In: The International Journal of
Robotics Research 10.6 (1991), pp. 628–649.

[13] R.F. Bass. “Stochastic differential equations with jumps”. In: Probability
Surveys 1 (2004), pp. 1–19.

[14] T. Battisti and R. Muradore. “A Velocity Obstacles approach for Au-
tonomous Landing and Teleoperated Robots”. In: Autonomous Robots
44.2 (2020), pp. 217–232.

[15] J. S. Bellingham et al. “Cooperative Path-Planning for multiple UAVs
in Dynamic and Uncertain Environments”. In: Proceedings of the 41st
IEEE Conference on Decision and Control, 2002. Vol. 3. IEEE. 2002,
pp. 2816–2822.

[16] I.A. Bizyaev, A.V. Borisov, and S.P. Kuznetsov. “The Chaplygin Sleigh
with Friction Moving due to Periodic Oscillations of an Internal Mass”.
In: Nonlinear Dynamics 95.1 (2019), pp. 699–714.

[17] A. Bloch. Nonholonomic Mechanics and Control. Springer Science &
Business Media, 2003.

[18] A.M. Bloch. “Nonholonomic Mechanics”. In: Nonholonomic Mechanics
and Control. Springer, 2003, pp. 207–276.

[19] A.V. Borisov and I.S. Mamayev. “The Dynamics of a Chaplygin Sleigh”.
In: Journal of Applied Mathematics and Mechanics 73.2 (2009), pp. 156–
161.

[20] S Bortoff. “Object-Oriented Modeling and Control of Delta Robots”.
In: 2018 IEEE Conference on Control Technology and Applications
(CCTA). IEEE. 2018, pp. 251–258.

[21] O. Brock and O. Khatib. “High-speed navigation using the global dy-
namic window approach.” In: 1 (1999), pp. 341–346.

[22] F. Bullo and A. Lewis. Geometric Control of Mechanical Systems: Mod-
eling, Analysis, and Design for Simple Mechanical Control Systems.
Vol. 49. Springer, 2019.

[23] G. Campion, G. Bastin, and B. D’Andréa-Novel. “Structural Properties
and Classification on Kinematic and Dynamic Models of Wheeled Mo-
bile Robots”. In: Russian Journal of Nonlinear Dynamics 7.4 (2011),
pp. 733–769.

[24] L. A. Castañeda, A. Luviano-Juárez, and I. Chairez. “Robust Trajectory
Tracking of a Delta Robot through Adaptive Active Disturbance Rejec-
tion Control ”. In: IEEE Transactions on Control Systems Technology
23.4 (2014), pp. 1387–1398.

[25] A. Cavallo et al. “Modeling and Slipping Control of a Planar Slider ”.
In: Automatica 115 (2020), p. 108875.

116

[26] J. Chen and D. Sun. “Resource Constrained Multirobot Task Allocation
based on Leader-Follower Coalition Methodology”. In: The International
Journal of Robotics Research 30.12 (2011), pp. 1423–1434.

[27] J. Chen et al. “Leader-Follower Formation Control of Multiple Non-
holonomic Mobile Robots incorporating a Receding-horizon Scheme”. In:
The International Journal of Robotics Research 29.6 (2010), pp. 727–
747.

[28] GS. Chirikjian. Stochastic Models, Information Theory and Lie Groups
(Vol.1). Springer Science & Business Media, 2009.

[29] GS. Chirikjian. Stochastic Models, Information Theory and Lie Groups
(Vol.2). Springer Science & Business Media, 2009.

[30] Reymond Clavel. Dispositif pour le dÉplacement et le Positionnement
d’un Élément dans l’Espace. 1987.

[31] A. Codourey. “Dynamic modelling and mass matrix evaluation of the
DELTA parallel robot for axes decoupling control ”. In: Proceedings of
IEEE/RSJ international conference on intelligent robots and systems.
IROS’96. Vol. 3. IEEE. 1996, pp. 1211–1218.

[32] A. Codourey. “Dynamic Modeling of Parallel Robots for Computed-
torque Control Implementation”. In: The International Journal of Robotics
Research 17.12 (1998), pp. 1325–1336.

[33] A. Codourey and E. Burdet. “A body-oriented method for finding a lin-
ear form of the dynamic equation of fully parallel robots”. In: Proceedings
of international conference on robotics and automation. Vol. 2. IEEE.
1997, pp. 1612–1618.

[34] R.C. Coulter. Implementation of the Pure Pursuit Path Tracking Algo-
rithm. Tech. rep. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST,
1992.

[35] C. De La Cruz and R. Carelli. “Dynamic Model based Formation Con-
trol and Obstacle Avoidance of Multi-robot Systems”. In: Robotica 26.3
(2008), pp. 345–356.

[36] R. Dhaouadi and A. Hatab. “Dynamic Modelling of Differential-Drive
Mobile Robots using Lagrange and Newton-Euler Methodologies: A Uni-
fied Framework ”. In: Advances in Robotics & Automation 2.2 (2013),
pp. 1–7.

[37] L.C. Evans. An Introduction to Stochastic Differential Equations. Vol. 82.
American Mathematical Soc., 2012.

[38] F. Falezza et al. “Gray-Box Model Identification and Payload Estimation
for Delta Robots”. In: 2020 IFAC World Congress-PapersOnLine 53.2
(2020), pp. 8771–8776.

[39] S. Fang and T. Zhang. “Stochastic Differential Equations with non-
Lipschitz Coefficients: I. Pathwise Uniqueness and Large Deviations”.
In: arXiv preprint math/0311032 (2003).

117

[40] S. Fang and T. Zhang. “Stochastic Differential Equations with non-
Lipschitz Coefficients: II. Dependence with Respect to Initial Values”.
In: arXiv preprint math/0311034 (2003).

[41] S. Farsoni et al. “Real-time Identification of Robot Payload using a
Multirate Quaternion-Based Kalman Filter and Recursive Total Least-
Squares”. In: 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2018, pp. 2103–2109.

[42] P. Fiorini and Z. Shiller. “Motion Planning in Dynamic Environments
using the Relative Velocity Paradigm”. In: [1993] Proceedings IEEE
International Conference on Robotics and Automation. IEEE. 1993,
pp. 560–565.

[43] P. Fiorini and Z. Shiller. “Robot Motion Planning in Dynamic Environ-
ments”. In: Robotics Research (1996), pp. 237–248.

[44] P. Fiorini and Z. Shiller. “Motion Planning in Dynamic Environments
using Velocity Obstacles”. In: The International Journal of Robotics
Research 17.7 (1998), pp. 760–772.

[45] M. Foskey et al. “A Voronoi-based Hybrid Motion Planner ”. In: Proceed-
ings 2001 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Expanding the Societal Role of Robotics in the the Next
Millennium (Cat. No. 01CH37180). Vol. 1. IEEE. 2001, pp. 55–60.

[46] D. Fox, W. Burgard, and S. Thrun. “The Dynamic Window Approach
to Collision Avoidance”. In: IEEE Robotics & Automation Magazine
4.1 (1997), pp. 23–33.

[47] G.F. Franklin, J.D. Powell, and M.L. Workman. Digital Control of Dy-
namic Systems. Vol. 3. Addison-wesley Reading, MA, 1998.

[48] A. Fumagalli and P. Masarati. “Real-time Inverse Dynamics Control of
Parallel Manipulators using General-Purpose Multibody Software”. In:
Multibody System Dynamics 22.1 (2009), pp. 47–68.

[49] S. Sam Ge and Y. J. Cui. “Dynamic Motion Planning for Mobile Robots
using Potential Field method ”. In: Autonomous robots 13.3 (2002), pp. 207–
222.

[50] A. Gholipour and M.J. Yazdanpanah. “Dynamic Tracking Control of
Nonholonomic Mobile Robot with Model Reference Adaptation for Un-
certain Parameters”. In: 2003 European Control Conference (ECC).
IEEE. 2003, pp. 3118–3122.

[51] M. Ginesi, N. Sansonetto, and P. Fiorini. “Overcoming some Drawbacks
of Dynamic Movement Primitives”. In: Robotics and Autonomous Sys-
tems 144 (2021), p. 103844.

[52] M. Ginesi et al. “Dynamic Movement Primitives: Volumetric Obsta-
cle Avoidance”. In: 2019 19th International Conference on Advanced
Robotics (ICAR). IEEE. 2019, pp. 234–239.

118

[53] M. Ginesi et al. “Dynamic Movement Primitives: Volumetric Obstacle
Avoidance using Dynamic Potential Functions”. In: Journal of Intelli-
gent & Robotic Systems 101.4 (2021), pp. 1–20.

[54] R. Goebel, R. Sanfelice, and A. Teel. Hybrid Dynamical Systems. Prince-
ton University Press, 2012.

[55] J. V. Gómez et al. “Planning Robot formations with Fast Marching
Square including Uncertainty Conditions”. In: Robotics and Autonomous
Systems 61.2 (2013), pp. 137–152.

[56] S. Goyal, A. Ruina, and J. Papadopoulos. “Planar Sliding with Dry
Friction, Part 1: Limit Surface and Moment Function”. In: Wear 143.2
(1991), pp. 307–330.

[57] S. Goyal, A. Ruina, and J. Papadopoulos. “Planar Sliding with Dry
Friction, Part 2. Dynamics of motion”. In: Wear 143.2 (1991), pp. 331–
352.

[58] P. Graczyk and J. Małecki. “Multidimensional Yamada-Watanabe The-
orem and its Applications to Particle Systems”. In: Journal of Mathe-
matical Physics 54.2 (2013), p. 021503.

[59] S. Guy et al. “Clearpath: Highly Parallel Collision Avoidance for Multi-
Agent Simulation”. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (2009), pp. 177–187.

[60] H. Hahn. Dynamics of Planar and Spatial Rigid-Body Systems. Springer
Verlag GmbH, 2002.

[61] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary
Introduction. Vol. 10. Springer, 2003.

[62] D. Helbing and P. Molnar. “Social Force Model for Pedestrian Dynam-
ics”. In: Physical review E 51.5 (1995), p. 4282.

[63] D.J. Higham. “An Algorithmic Introduction to Numerical Simulation
of Stochastic Differential Equations”. In: SIAM review 43.3 (2001),
pp. 525–546.

[64] T. Holm D. Schmah and C. Stoica. Geometric Mechanics and Sym-
metry: from Finite to Infinite Dimensions. Vol. 12. Oxford University
Press, 2009.

[65] S. Hu and D. Sun. “Automatic Transportation of Biological Cells with
a Robot-Tweezer Manipulation System”. In: The International Journal
of Robotics Research 30.14 (2011), pp. 1681–1694.

[66] K. Itô. “On a Stochastic Integral Equation”. In: Proceedings of the Japan
Academy 22.1-4 (1946), pp. 32–35.

[67] H. Jiang et al. “Obstacle Avoidance of Autonomous Vehicles with CQP-
based Model Predictive Control ”. In: 2016 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC). IEEE. 2016, pp. 001668–
001673.

119

[68] T. Keviczky, F. Borrelli, and G. J. Balas. “A Study on Decentralized
Receding Horizon Control for Decoupled Systems”. In: Proceedings of
the 2004 American Control Conference. Vol. 6. IEEE. 2004, pp. 4921–
4926.

[69] Z.A. Khan, V. Chacko, and H. Nazir. “A Review of Friction Models in
Interacting Joints for Durability Design”. In: Friction 5.1 (2017), pp. 1–
22.

[70] O. Khatib. “Real-time Obstacle Avoidance for Manipulators and Mobile
Robots”. In: Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[71] M. Kim and J. Oh. “Study on Optimal Velocity selection using Ve-
locity Obstacle (OVVO) in Dynamic and Crowded Environment”. In:
Autonomous Robots 40.8 (2016), pp. 1459–1470.

[72] D.E. Koditschek. “Robot Planning and Control via Potential Functions”.
In: The robotics review (1989), p. 349.

[73] S. Konduri, E.O.C. Torres, and P.R. Pagilla. “Dynamics and Control of
a Differential Drive Robot with Wheel Slip: Application to Coordination
of Multiple Robots”. In: Journal of Dynamic Systems, Measurement, and
Control 139.1 (2017).

[74] Y. Kuo. “Mathematical Modeling and Analysis of the Delta Robot with
Flexible Links”. In: Computers & Mathematics with Applications 71.10
(2016), pp. 1973–1989.

[75] Y. Kuo and P. Huang. “Experimental and Simulation Studies of Motion
Control of a Delta Robot using a Model-Based Approach”. In: Interna-
tional Journal of Advanced Robotic Systems 14.6 (2017), pp. 1–14.

[76] M. A. Lewis and K.H. Tan. “High precision Formation Control of Mobile
Robots using Virtual Structures”. In: Autonomous robots 4.4 (1997),
pp. 387–403.

[77] D.J.N. Limebeer and M. Massaro. Dynamics and Optimal Control of
Road Vehicles. Oxford University Press, 2018.

[78] P.L. Lions and A.S. Sznitman. “Stochastic Differential Equations with
Reflecting Boundary Conditions”. In: Communications on Pure and Ap-
plied Mathematics 37.4 (1984), pp. 511–537.

[79] Y. Liu and R. Bucknall. “A Survey of Formation Control and Motion
Planning of Multiple Unmanned Vehicles”. In: Robotica 36.7 (2018),
pp. 1019–1047.

[80] T. Lozano-Perez. “Spatial Planning: A Configuration Space Approach”.
In: Autonomous robot vehicles. Springer, 1990, pp. 259–271.

[81] R. Luna and K. E. Bekris. “Efficient and Complete Centralized Multi-
robot Path Planning”. In: 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2011, pp. 3268–3275.

[82] D. Q. Mayne. “Control of Constrained Dynamic Systems”. In: European
Journal of Control 7.2-3 (2001), pp. 87–99.

120

[83] N. Michael, J. Fink, and V. Kumar. “Cooperative Manipulation and
Transportation with Aerial Robots”. In: Autonomous Robots 30.1 (2011),
pp. 73–86.

[84] K. Miller. “Experimental Verification of Modeling of DELTA Robot Dy-
namics by Direct Application of Hamilton’s Principle”. In: Proceedings
of 1995 IEEE international conference on robotics and automation.
Vol. 1. IEEE. 1995, pp. 532–537.

[85] J.I. Neimark and N. A. Fufaev. Dynamics of Nonholonomic Systems.
Vol. 33. American Mathematical Soc., 2004.

[86] P. Ogren and N.E. Leonard. “A Convergent Dynamic Window approach
to Obstacle Avoidance.” In: IEEE Transactions on Robotics 21.2 (2005),
pp. 188–195.

[87] K.K. Oh, M.C. Park, and H.S. Ahn. “A Survey of Multi-Agent Forma-
tion Control: Position, Displacement and Distance-based approaches”.
In: Number: Gist DCASL TR 2 (2012).

[88] B. Oksendal. Stochastic Differential Equations: An Introduction with
Applications. Springer Science & Business Media, 2013.

[89] G. Oriolo, A. De Luca, and M. Vendittelli. “WMR Control via Dynamic
Feedback Linearization: Design, Implementation, and Experimental Val-
idation”. In: IEEE Transactions on control systems technology 10.6
(2002), pp. 835–852.

[90] J.M. Park et al. “Obstacle Avoidance of Autonomous Vehicles based
on Model Predictive Control ”. In: Proceedings of the Institution of Me-
chanical Engineers, Part D: Journal of Automobile Engineering 223.12
(2009), pp. 1499–1516.

[91] S.B. Park et al. “Dynamics Modeling of a Delta-type Parallel Robot”.
In: IEEE ISR 2013. IEEE. 2013, pp. 1–5.

[92] Z. Peng et al. “Leader-Follower Formation Control of Non-holonomic
Mobile Robots based on a Bioinspired Neurodynamic based approach”.
In: Robotics and autonomous systems 61.9 (2013), pp. 988–996.

[93] P. Petrov. “Modeling and Adaptive Path Control of a Differential Drive
Mobile Robot”. In: Proceedings of the 12th WSEAS international con-
ference on Automatic control, modelling & simulation. Vol. 6. World
Scientific, Engineering Academy, and Society (WSEAS). 2010, pp. 403–
408.

[94] N. Piccinelli and R. Muradore. “Hybrid Motion Planner Integrating
Global Voronoi Diagrams and Local Velocity Obstacle Method ”. In: 2018
European Control Conference (ECC). IEEE. 2018, pp. 26–31.

[95] N. Piccinelli, F. Vesentini, and R. Muradore. “Planning with Real-Time
Collision Avoidance for Cooperating Agents under Rigid Body Con-
straints”. In: 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE. 2019, pp. 1261–1264.

121

[96] F. Pierrot, P. Dauchez, and A. Fournier. “HEXA: A Fast Six-DoF
Fully-Parallel Robot”. In: Fifth International Conference on Advanced
Robotics’ Robots in Unstructured Environments. IEEE. 1991, pp. 1158–
1163.

[97] F. Pierrot et al. “Optimal Design of a 4-DOF Parallel Manipulator:
From Academia to Industry”. In: IEEE Transactions on Robotics 25.2
(2009), pp. 213–224.

[98] A. Pilipenko. An Introduction to Stochastic Differential Equations with
Reflection. Vol. 1. Universitätsverlag Potsdam, 2014.

[99] W.L.V. Pollard. “Position-Controlling Apparatus”. In: United States
Patent Office (1938), pp. 1–5.

[100] A. Poty, P. Melchior, and A. Oustaloup. “Dynamic Path Planning by
Fractional Potential ”. In: Second IEEE International Conference on
Computational Cybernetics, 2004. ICCC 2004. IEEE. 2004, pp. 365–
371.

[101] C. Qixin, H. Yanwen, and Z. Jingliang. “An Evolutionary Artificial Po-
tential Field algorithm for Dynamic Path Planning of Mobile Robot”.
In: 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2006, pp. 3331–3336.

[102] A. Rao. Dynamics of Particles and Rigid Bodies: A Systematic Ap-
proach. Cambridge University Press, 2006.

[103] W. Rossmann. Lie Groups: An Introduction through Linear Groups.
Vol. 5. Oxford University Press on Demand, 2006.

[104] V.V. Rumyantsev. “Variational principles for systems with unilateral
constraints”. In: Journal of applied mathematics and mechanics 70.6
(2006), pp. 808–818.

[105] A. E. Scheflen and N. Ashcraft. “Human Territories: How we behave in
Space-Time.” In: (1976).

[106] G. Sharon et al. “Conflict-based Search for Optimal Multi-agent Pathfind-
ing”. In: Artificial Intelligence 219 (2015), pp. 40–66.

[107] Z. Shiller, O. Gal, and T. Fraichard. “The Nonlinear Velocity Obstacle
revisited: The Optimal Time Horizon”. In: Guaranteeing safe navigation
in dynamic environments workshop. 2010.

[108] Y. Shoukry et al. “SMC: Satisfiability Modulo Convex Optimization”.
In: Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control. 2017, pp. 19–28.

[109] S. E. Shreve. Stochastic Calculus for Finance II: Continuous-time Mod-
els. Vol. 11. Springer Science & Business Media, 2004.

[110] B. Siciliano et al. “Robotics: Modelling, Planning and Control ”. In: Ad-
vanced Textbooks in Control and Signal Processing Springer (2009).

122

[111] J. Snape and D. Manocha. “Goal Velocity Obstacles for Spatial Nav-
igation of Multiple Autonomous Robots or Virtual Agents”. In: Au-
tonomous Robots and Multi robot Systems, St. Paul, Minn (2013), pp. 1–
17.

[112] J. Snape et al. “The Hybrid Reciprocal Velocity Obstacle”. In: IEEE
Transactions on Robotics 27.4 (2011), pp. 696–706.

[113] A. Sozzi et al. “Dynamic Motion Planning for Autonomous Assistive
Surgical Robots”. In: Electronics 8.9 (2019), p. 957.

[114] S. Staicu. “Relations matricielles de récurrence en dynamique des mé-
canismes”. In: Revue Roumaine des Sciences Techniques-Série de Mé-
canique Appliquée 50.1-3 (2005), pp. 15–28.

[115] S. Staicu. “Recursive Modelling in Dynamics of Delta Parallel Robot”.
In: Robotica 27.2 (2009), pp. 199–207.

[116] R.E. Stamper. A Three Degree of Freedom Parallel Manipulator with
only Translational Degrees of Freedom. University of Maryland, College
Park, 1997.

[117] Doug Stewart. “A Platform with Six Degrees of Freedom”. In: Proceed-
ings of the institution of mechanical engineers 180.1 (1965), pp. 371–
386.

[118] P. Stone and M. Veloso. “Task Decomposition, Dynamic Role Assign-
ment, and low-bandwidth Communication for Real-Time Strategic Team-
work ”. In: Artificial Intelligence 110.2 (1999), pp. 241–273.

[119] D. Sun et al. “A Synchronization approach to Trajectory Tracking of
Multiple Mobile Robots while maintaining Time-varying Formations”.
In: IEEE Transactions on Robotics 25.5 (2009), pp. 1074–1086.

[120] O. Takahashi and R. J. Schilling. “Motion Planning in a Plane using
Generalized Voronoi diagrams”. In: IEEE Transactions on robotics and
automation 5.2 (1989), pp. 143–150.

[121] S. Tang, J. Thomas, and V. Kumar. “Hold or Take Optimal Plan (Hoop):
A Quadratic Programming approach to Multi-robot Trajectory Genera-
tion”. In: The International Journal of Robotics Research 37.9 (2018),
pp. 1062–1084.

[122] L. Tsai. Robot Analysis: the Mechanics of Serial and Parallel Manipu-
lators. John Wiley & Sons, 1999.

[123] L.W. Tsai and R. Stamper. “A Parallel Manipulator with only Transla-
tional Degrees of Freedom”. In: International Design Engineering Tech-
nical Conferences and Computers and Information in Engineering Con-
ference. Vol. 97584. American Society of Mechanical Engineers. 1996,
pp. 1–18.

[124] M. Turpin, N. Michael, and V. Kumar. “Capt: Concurrent Assignment
and Planning of Trajectories for Multiple Robots”. In: The International
Journal of Robotics Research 33.1 (2014), pp. 98–112.

123

[125] J. Van den Berg, M. Lin, and D. Manocha. “Reciprocal Velocity Ob-
stacles for Real-Time Multi-Agent Navigation”. In: 2008 IEEE Interna-
tional Conference on Robotics and Automation. IEEE. 2008, pp. 1928–
1935.

[126] J. Van Den Berg et al. “Reciprocal Collision Avoidance with Acceleration-
Velocity Obstacles”. In: 2011 IEEE International Conference on Robotics
and Automation. IEEE. 2011, pp. 3475–3482.

[127] J. Van Den Berg et al. “Reciprocal n-body Collision Avoidance”. In:
Robotics research. Springer, 2011, pp. 3–19.

[128] P.K.C. Wang. “Navigation Strategies for multiple Autonomous Mobile
Robots moving in formation”. In: Journal of Robotic Systems 8.2 (1991),
pp. 177–195.

[129] D. Watson. “Spatial Tessellations: Concepts and Applications of Voronoi
Diagrams.” In: Computers and Geosciences 19.8 (1993), pp. 1209–1210.

[130] D. Wilkie, J. Van Den Berg, and D. Manocha. “Generalized Velocity
Obstacles”. In: 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2009, pp. 5573–5578.

[131] J. Wit, C.D. Crane III, and D. Armstrong. “Autonomous Ground Vehi-
cle Path Tracking”. In: Journal of Robotic Systems 21.8 (2004), pp. 439–
449.

[132] J. Wu et al. “Dynamics and Control of a Planar 3-DOF Parallel Manip-
ulator with Actuation Redundancy”. In: Mechanism and Machine The-
ory 44.4 (2009), pp. 835–849.

[133] J. Wu et al. “Mechatronics Modeling and Vibration Analysis of a 2-DOF
Parallel Manipulator in a 5-DOF Hybrid Machine Tool ”. In: Mechanism
and Machine Theory 121 (2018), pp. 430–445.

[134] J. Wu et al. “An Iterative Learning Method for realizing Accurate Dy-
namic Feedforward Control of an Industrial Hybrid Robot”. In: Science
China Technological Sciences (2021), pp. 1–12.

[135] T. Yamada and S. Watanabe. “On the Uniqueness of Solutions of Stochas-
tic Differential Equations”. In: Journal of Mathematics of Kyoto Uni-
versity 11.1 (1971), pp. 155–167.

[136] J. Yu and S. M. LaValle. “Optimal Multirobot Path Planning on Graphs:
Complete Algorithms and Effective Heuristics”. In: IEEE Transactions
on Robotics 32.5 (2016), pp. 1163–1177.

[137] X. Yun and Y. Yamamoto. “Stability Analysis of the Internal Dynam-
ics of a Wheeled Mobile Robot”. In: Journal of Robotic Systems 14.10
(1997), pp. 697–709.

[138] Y. Zhou and G. S. Chirikjian. “Probabilistic Models of Dead-Reckoning
error in Nonholonomic Mobile Robots”. In: 2003 IEEE International
Conference on Robotics and Automation (Cat. No. 03CH37422). Vol. 2.
IEEE. 2003, pp. 1594–1599.

124

	Introduction
	Thesis Outline
	Velocity Obstacle for Mobile Robots and Manipulators
	Dynamic Modeling for Delta Robots
	Stochastic Modeling of Mobile Robots

	Velocity Obstacle for Mobile Robots and Manipulators
	Related Works
	Velocity Obstacle paradigm
	Taxonomy of Velocity Obstacle methods
	Reciprocal Velocity Obstacle
	Optimal Reciprocal Collision Avoidance
	Generalized Velocity Obstacle
	Non-Linear Velocity Obstacle
	Acceleration Velocity Obstacle
	Hybrid Reciprocal Velocity Obstacle
	Non-holonomic Optimal Reciprocal Collision Avoidance
	Goal Velocity Obstacle
	Optimal Velocity Selection for Velocity Obstacle

	Velocity Obstacle for Constrained Agents
	Problem Statement and Background
	Trajectory Planner
	Simulation Results

	Velocity Obstacle for Planar Manipulators
	VO-based Planner
	Simulation Results

	Dynamics Modeling for Delta Robots
	Related Works
	Delta Robot D3-1200 Kinematic Structure
	Direct Kinematics
	Inverse Kinematics
	Dynamic Parameters

	Gray-Box Model Identification and Payload Estimation
	The Simplified Dynamic Model
	Gray-Box Model Identification and Friction Estimation
	Payload Estimation
	Experimental Results
	Feed-forward Control

	Novel Inverse Dynamic Model
	Kinetic Energy Contribution
	Potential Energy Contribution
	Delta Robot Novel Inverse Dynamics
	Experimental Validation
	Computational Complexity

	Stochastic Modeling for Mobile Robots
	Related Works
	Deterministic Dynamics
	Robot Diagram
	External Forces
	Equations of Motion
	Hybrid System

	Brownian-Markov Stochastic Model for WMR
	Derivation of Stochastic Equations
	Hybrid Stochastic Brownian-Markov model
	Existence and Uniqueness of Solutions

	Simulation Setup
	Robot Controller
	Setup Parameters

	Experimental Results
	Deterministic Model
	HSBM Model

	Conclusions and Future Works
	Lie Groups Theory
	Matrix Lie Groups
	Matrix Lie Algebras

	Stochastic Processes
	Brownian Motion
	Stochastic Differential Equations

