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1 Introduction

1.1 Motivation

Aging is a complex procedure that affects body organs system through changes in

the structures and functions. Brain is one of the most vital body organs that con-

tributes and interacts with other organs in daily life activities and duties. The cen-

tral nervous system consists of two main categories that is White matter (WM) and

Gray matter (GM). GM contains the cell bodies and is responsible for many body

functions, while WM is constituted of tracts that connect different GM regions to-

gether [1]. In addition to GM and WM, the brain also involve Cerebrospinal fluid

(CSF) which surrounds the brain and spinal cord [2]. The three parts can be visu-

alized using Magnetic Resonance Imaging (MRI) as it is shown in figure 1.1.

Figure 1.1: Representative MRI image segmented into the three main parts of the
brain (cerebrospinal fluid and gray/white matter). Taken from [3].

17
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Brain experiences aging, as other body organs, which results in profound alterations

within brain structure, functions and biochemical interactions including gradual vol-

umetric atrophy, moderate neuroinflammation, increased WM hyperintensity, loss

of tissues and increase in the level of amyloid beta (Aβ ) and tau proteins [4]. Brain

aging in the absence of neurodegenerative disorders is called normal cognitive aging

or non-pathological brain aging [5]. Such aging causes the degradation of cogni-

tive functions and memory. The most common cognitive deficits in older people

include difficulties with word recall, processing speed, complex tasks and episodic

memory [4]. Figure 1.2 shows MRI images of the brain at different decades and the

alterations caused by aging in healthy subjects. It can be noted how the degree of

atrophy and WM hyperintensity increase during aging. On the other hand, brain ag-

ing might be a backdrop and lead to neurodegenerative disorders such as Alzheimer

disease (AD). Brain diseases such as AD cause severe memory loss and cognitive

decline [6]. Advanced machine and deep learning models and image processing

make it possible to study and estimate the brain age in healthy or pathological in-

dividuals. Such studies help to understand how brain is aging and to what extent

the apparent age of the brain is inline with the chronological age. In the healthy

population, brain age can be exploited to understand the progression of brain in

older people and the factors driving the speed of brain aging. Moreover, estimating

brain age will also help to identify the informative features within brain regions that

drive brain aging and consequently the corresponding cognitive functions related to

these regions. This will shed light on the mechanisms ruling the onset of cognitive

decline in normally aging’s brain. Furthermore, the role of daily life style including

healthy diet, regular exercise, alcohol intake, smoking and education as well as ge-

netics factors can be investigated to reveal their role in brain aging. This will help

to identify the factors that contribute positively or negatively to brain aging, which

would help in better and healthy brain aging.

In addition to the healthy population, brain age estimation could be used to predict

a risk of an aging-related disease or monitor the progression of a neurodegenerative

disease such as AD. Estimating brain age enables to detect the rate of brain aging

at individual level and allows to identify those factors that speed up the aging rate.
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Figure 1.2: MRI images showing the degree of brain alterations, including atrophy,
across the lifespan. Taken from [7].

This would help to better understand the sharp cognitive decline and dementia under

specific brain conditions in older people. Moreover, brain age estimation could help

to understand the effects of non-brain disorders such as cardiovascular diseases on

brain aging and give better view of the communication networks between the brain

and heart or other organs.

Accordingly, studying brain aging through brain age estimation goes beyond only

understanding brain aging, it helps also to understand the effect of different factors

that accelerate or slow down this process. The overall aim of such studies is to help



CHAPTER 1. INTRODUCTION 20

clinicians to be able to predict, diagnose, treat life-threatening diseases including

brain disorders and recommend factors that could make individuals healthier.

1.2 Brain age estimation

Brain age estimation make use of machine learning and more advanced models

such as deep learning to predict an individual’s brain age. Regression models are

generally used to estimate brain age, having chronological age as the dependent

variable, as the actual brain age is unknown, while the independent variables (or

predictors) could be any feature extracted from brain images and representing a

specific characteristic of the brain tissue itself. In the following subsections, we

will explain the regression model used in our study, along with the predictor types

and model evaluation criteria.

1.2.1 Regression models

Regression models are statistical analyses to estimate a relationship between a pre-

dictor or groups of predictors and a continues outcome. The predictors are called

the independent variables while the outcome is called the dependent variable [8].

The equation of a simple linear regression which is the most common one is:

y = a+ xβ + ε (1.1)

where y is the dependent variable or the outcome or the response variable, a is the

intercept, x is the independent or the predictor variable, β is the slop and ε is the

residual error.

The regression model is either a univariate regression, when only one predictor

is used as independent variable, or a multiple regression where more independent

variables are used to estimate an outcome.

Regression analysis could be linear and non-linear. The linear regression analysis

can be drawn as a straight line between the predictors and the dependent variables

while the non-linear produce a curved line between the independent and dependent

variables [9].
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Bayesian Ridge Regression

Bayesian Ridge Regression (BRR) is a regression model that estimates an outcome

using a probabilistic model. It uses the coefficients of ridge regression to find out

a posterior estimation under the normal distribution. It estimates the coefficients

of the model as distributions instead of one single value as it is the case with the

other regression models. The model shows its ability to deal with the hierarchical

data structure [10]. In addition, the data in real life are collinear in most cases, the

model shows better performance to handle such issue comparing with other linear

models [11] [12]. It also includes regularization parameters to reduce the error and

stabilize the model [13].

The data we used are collinear and for that we used different models to improve the

performance. Among the used model, BRR showed good results compared to other

regression models. Therefore, we thought it is worth to devote a section to describe

the model and its usefulness to estimate an outcome. We have used the model in

most cases in our study due to its performance to produce less error.

1.2.2 Overview of the predictors.

The alterations within brain structure and function in both healthy and diseased

population is investigated here using MRI. MRI is a non-invasive medical imaging

technique that uses magnetic fields and radio waves to construct detailed images

rich in quantitative information related to tissue characteristics [14]. Different MRI

imaging methods such as structural MRI (sMRI), functional MRI (fMRI) and diffu-

sion MRI (dMRI) were developed to assess different tissue properties [15]. sMRI is

exploited to examine the macrostructure of the brain such as cortical thickness, sur-

face area and volume. sMRI can be employed to quantify the alterations within spe-

cific brain regions of interest or for the whole brain across different clinical groups.

It is used to explore the morphological differences in the regions of the brain that are

associated with a specific brain pathology to compare and contrast with healthy co-

horts [16]. sMRI was used extensively to examine the progression and detect many

brain disorders studies including AD [17], Huntington’s diseas [18] and Parkinson

disease (PD) [19]. dMRI is another MRI technique that constructs medical im-
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ages based on the differences of motion of molecular water within the brain white

matter tracts, named Brownian motion. Diffusion weighted imaging presents quan-

titative and qualitative information related to diffusion properties [20]. The motion

of water in brain white matter tracts is anisotropic, however axon membranes limit

this motion perpendicular to the fibers. Correspondingly, Diffusion tensor imaging

(DTI) uses this properties to provide quantitative micro-architectural measures re-

lated to WM structure and integrity [21]. Among them, fractional anisotropy (FA) is

a DTI parameter which measures the preferred direction of the water in each voxel

of MRI images. It can be used to assess axonal integrity and ranges from 0 to 1.

Mean diffusivity (MD) quantifies the overall diffusion in the each voxel within the

brain. Axial diffusivity (AxD) measures the water motion along longitudinal di-

rection while the radial diffusivity (RD) quantifies the diffusivity perpendicular to

axonal fibers [22]. Neurite orientation dispersion and density imaging (NODDI) is

a sophisticated dMRI model that allows to quantify three different tissue compart-

ments: extraneurite, intraneurite and CSF [23]. Orientation dispersion index (ODI),

isotropic volume fraction (ISOVF) and intracellular volume fraction (ICVF) are

NODDI based matrices [24]. ODI and ICVF measure the coherence and cohesion

of fibers orientation and spatial organization of the axons in white matter tracts [25].

In addition, ISOVF quantifies the isotropic component of the free-water compart-

ment [26]. fMRI is another MRI technique that uses blood flow changes to measure

brain activity and connectivity. It uses blood oxygenation level-dependent (BOLD)

contrast to map brain activities. BOLD signal magnitude is used as a hint of neu-

ronal activity that can be detected through regional cerebral blood flow, oxygenation

and volume [27]. Figure 1.3 shows the most common three MRI modalities. sMRI,

dMRI and fMRI are used widely in many applications to detect and monitor the

progression of specific pathologies and in healthy ageing population. The applica-

tion domains include early detection of AD [28], dementia [29], PD [30], ischemic

attack [31] and prediction of brain age for healthy cohorts [32]. The three MRI

modalities provide valuable quantitative measures which could be used to predict

brain age for any cohort.
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Figure 1.3: The diffusion, structural and functional MRI. The dMRI is the map of
FA. The red spots are for default mode network resting-state network.

1.2.3 Model evaluation

Each model needs to be assessed to examine its performance. The measure to eval-

uate a model depends on the type of the model, regression or classification. The

performance of the regression model is assessed using mean absolute error (MAE),

coefficient of determination (R2) and mean square error (MSE) [33]. The equation

of the three mentioned matrices to assess model performance are:

MAE =
∑ |yi− ŷi|

n
(1.2)

MSE =
1
n
(

n

∑
i=1

yi− ŷi)
2 (1.3)

where yi is the actual value, ŷi is the predicted value and n is the number of obser-

vations.

R2 = 1− SSres

SStot
(1.4)

where R2 is the coefficient of determination, SSres is the sum of squares of residuals

and SStot is the total sum of squares.

Moreover, Spearman or Pearson correlation coefficient are often used to correlate

predicted the brain age and the actual age.

Despite the measures (e.g., MAE) above are used to assess the model performance

and comparing different stat-of-the-art studies, they are strongly influenced by dis-

tributions of the outcome (actual age) which make it insufficient to use it alone when

comparing different models. The distribution of the outcome should be considered

when comparing the performance of different models.
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1.3 Brain age estimation blueprint

Brain age prediction is one of the topics that got much attention from researchers

in recent years. It is considered as a biomarker to follow the progression of brain

aging in both healthy and patients populations. Moreover, it helps to reveal the

effects of different factors in brain aging including the environment and genetics

bases. Brain age can be estimated using any regression model as the outcome is

a continuous variable. Different classical machine and deep learning models were

used to estimate brain age using image derived phenotypes (IDPs). In the model,

IDPs are used as the predictors or the independent variables where the actual age

is the dependent variable, the actual brain age is being unknown. The predictors

could be IDPs extracted from any MRI modality or could be the combination of

IDPs from different MRI modalities. In addition, different variables were used

as confounds to adjust for when brain age is predicted. The confounds could be

related to some characteristics of the subjects such as sex, height and education

level or could be related to image acquisition such as volumetric scaling from T1-

weighted head image to standard space. The performance of the model is assessed

using MAE, R2, MSE, correlation methods or other regression evaluation metrics.

After brain age is predicted, "predicted brain age delta" (brain-PAD) is calculated

which is the difference between the predicted brain age and the actual age. Positive

brain-PAD indicates that the brain age is older than the actual age while negative

brain-PAD means the estimated brain age is younger than the actual age. Several

studies showed that brain age estimation involve frequent bias related to regression

dilution. Such bias would lead to under estimation when brain age is estimated for

older subjects, over estimation for younger subjects and more accurately brain age is

estimated for subjects whose age is close to the mean age of the subjects. Different

statistical methods were proposed to correct estimated brain age [34]. For instance,

Beheshti et al [35] proposed a statistical method to correct estimated brain age as

follow: first, calculate the regression line between brain-PAD and chronological age

in the training set:

D = α ∗Ω+β (1.5)
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where D is the brain-PAD from training data, α and β represent the slope and the

intercept of the linear regression model, and Ω is the corresponding chronological

age. Then, these intercept and slope values were used to correct the predicted brain

age in the validation set set as follows:

CPBA = Predicted BrainAge− (α ∗Ω+β ) (1.6)

Thereafter, different factors will be investigated to examine their effects in brain-

PAD and whether they would contribute positively or negatively. Figure 1.4 shows

the main steps of brain age estimation and the association with different factors in-

cluding daily life style, cardiac risk factors and genetics variations which will be

explained in the coming sections. The figure shows that the journey of brain age

estimation starts with MRI acquisition followed by image processing and features

extraction. Different features can be extracted from the MRI images depending

on the MRI modalities. Thereafter, brain age can be estimated using a regression

model. The final part of the figure shows the association of brain-PAD with differ-

ent factors. This step helps to understand not only how old is the brain, but rather

the factors driving brain aging. The association includes investigating lifestyle and

environment through phenome wide association study (PhWAS), genetics using

Genome wide association studies (GWAS), brain-aging related diseases and factors

that might cause epigenetic defects such as telomeres.

1.4 The effect of daily life style on brain aging

After brain age is estimated, brain-PAD is calculated. Then, it is vital to investigate

the contribution of daily life style in brain-PAD. Different daily life exposures were

examined to reveal their effects in acceleration or slowing down brain-PAD. The in-

vestigated lifestyle and environment could be divided into groups such as smoking,

alcohol, sleeping, diet and physical activities. In addition, physical measures such

as blood pressure, hand grip strength, bone-densitometry of heel, hip circumference

and arm fat mass were also used to reveal their effects in brain aging. Furthermore,

cardiac risk factors such as diabetes, high cholesterol and hypertension were also

examined.
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Figure 1.4: The general steps of brain age prediction and the association of brain-
PAD with daily life style and genetics factors.

Smith et al,[32] performed brain-PAD association with wide range of lifestyle, en-

vironment and physical measures to explore their contribution in brain aging. Their

results show that heel bone mineral density, weight, body mass index, hip circum-

ference and arm fat mass were negatively associated with brain-PAD which indi-

cate increasing in brain-PAD causing decreasing in these measures. On the con-

trary, systolic and diastolic blood pressure, smoking, cardiac index during pulse

wave analysis, heart rate, cardiac output and pulse rate associated positively with

brain-PAD. Such association means increasing in these measures cause increasing

in brain-PAD. In addition, cardiac risk factors and cognitive function demonstrate a
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significant association with brain-PAD [36]. Diabetes, stroke, smoking and alcohol

are shown increasing brain aging. In addition, older brain aging linked to early sign

of cognitive decline and older facial appearance [37]. Figure 1.5 shows the most

daily life style factors and genetics variations (will be discussed in the next section)

considered to examine their effects on brain-PAD.

Figure 1.5: Daily life style and genetics factors affecting brain-PAD.

1.5 The effect of genetics on brain aging

Genetics variations, mostly single nucleotide polymorphisms (SNPs) were exam-

ined through genome wide association studies GWAS to detect SNPs and conse-

quently genes that have significant impacts on brain-PAD. The GNA12 gene which

is linked to migration of neurons is significantly associated with brain aging. In

addition, CREB3L4 gene that regulates adipogenesis was also associated with brain

aging [38]. Moreover, two SNPs that are linked to reduced sulcal width and reduced

white matter surface area were associated with brain-PAD [39]. In addition, several

SNPs were shown significant association with brain-PAD including a SNP located

in the MAPT gene. The mutations in the MAPT gene associated with Parkinson’s

disease and dementia [40].

1.6 Explainability models applied to brain age estimation

Deep learning (DL) models have shown successful achievements in divers area in-

cluding biomedical [41]. They help to discover patterns and structures in massive

amount of data in an automatic way. However, such success is accompanied with

serious challenges. How the model made the decision, the internal mechanisms of

the model, which feature or group of features influenced the model outcome and
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to what extent we can trust the outcome, are some of the issues affecting the inter-

pretability of the results [42]. Consequently, complex models are considered black

boxes because the rationale behind the model outputs is not always understandable.

Deep Learning explainability was emerged to uncover the mysterious around the

models mechanisms and increase the trustful uses of the models outcome. DLe is

a field that aims at building and developing new methods which help to understand

and interpret machine learning models which took tremendous attention in recent

years. For that matter, various approaches and methods were developed to explain

the model globally or locally [43].

DLe could be used and exploited in brain age estimation when complex models are

used to understand the model outcome. It would also helps to identify the most

informative predictors to model brain age. In addition, it might also reveal the rela-

tionship among the predictors and with the outcome.

Lack of raw brain MRI did not allow us to use explainability methods applied to

imaging data such as Grad-CAM [44], Grad-CAM++ [45], Saliency maps [46] and

Layer wise Relevance Propagation [47]. Accordingly, we used the explainability

methods applied to tabular data.

1.7 The causes behind brain alterations

As brain aging, there will be inevitable changes within brain tissues. Brain age es-

timation exploit these changes to estimate individual’s brain age. However, what is

the factor or group of factors that drive these changes?, is it a normal aging caus-

ing these changes?, could be an indication of a brain disorder?. Answering these

questions would help to a large extent to understand brain aging and its related con-

sequences such as the decline of cognitive functions and aging related diseases. For

that matter, different statistical and causal methods were used and different factors

were considered as the main causes of the alterations such telomeres length (TL)

and AD. The casual method were considered because simple correlation between

two variables does not imply causation [48]. In addition, there are many hidden and

observable factors (confounds), such as sex, that could affect both the exposure and

the outcome which makes the association between them is not a cause-and-effect
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relationship. The causal methods included Mendelian randomization (MR) which

is based on using instrument variables to examine the causation between and an

exposure and an outcome.

1.7.1 Mendelian randomization

Brain age estimation depends heavily on the brain IDPs and their alterations in both

healthy control and patients cohorts. Even in healthy brain aging, brain structure

and functions experience notable changes. The alterations within brain IDPs could

be related to increasing the risk of an aging related diseases such as AD [49], or

the effects of shortening TL [50] or other driving factors. The association between

brain-PAD or the alterations of brain function and structure and driving factors was

examined using classical statistical and machine learning models including linear

regression [50]. In addition, casual methods such as Mendelian randomization was

also used to examine the casual association between brain IDPs and new aging

driving factors such as TL. MR is a causal method using instrument variables to

investigate the casual association between an exposure and an outcome. The valid

instrument variables should be independent from the confounds, associated signif-

icantly with the exposure and associated with the outcome only through the expo-

sure. These are the three assumptions of MR to chose the valid instrument variables.

SNPs are the most commonly used instrument variables because they are indepen-

dent from the confounds and the association with the exposure and outcome can

be investigated through GWAS summary statistics. Figure 1.6 shows the general

diagram of MR and the three assumptions.

Figure 1.6: Mendelian randomization diagram. The dashed line indicate indirect
association while the solid line indicates direct effect.

One of the main advantages of using genetics variation such as SNPs as instrument
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variable is that they are not modifiable during lifecourse which leads to reverse cau-

sation [51]. The allele of a given SNP was randomly allocated to sperm/egg cells

during human gamete formation [52]. Accordingly, they are independent from any

confound. The term MR was coined because of its relation to Mendel’s Laws [53].

Inverse-variance weighted (IVW) is a typical standard approach to perform MR

analysis for two independent samples that relies on the validity of the three as-

sumptions related to instrument variables mentioned above. Weighted median [54],

weighted mode and MR-Egger regression [55] methods are used as complementary

analysis.

1.7.2 Leukocyte Telomere

Leukocyte telomere (LT) are cap structures of chromosomes comprised of tandem

repeats of DNA nucleotide sequences [56]. The function of telomeres is to main-

tain integrity of the chromosomes from degradation. TL are shortening over time

with each cell division [57]. Figure 1.7 shows the telomeres and the process of

shortening over each cell division. It is believed that TL shortening rate could be a

Figure 1.7: Telomeres, their DNA sequence and the shortening over each cell divi-
sion. Taken from [58].

promising biomarker for the onset of many disease, including those related to aging.

There have been many studies to examine the association of TL and wide range of
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diseases. The association of TL and AD reveals that shortening TL over time in-

creases the risk of AD [59]. Moreover, a casual association between TL and PD did

not reveal any association between TL and increasing the risk of PD [60]. Other

diseases and phenotypes were also investigates to test the causal association with

TL including blood cell trains [61], cancer and non-Neoplastic [62], systolic blood

pressure, pulse pressure, diastolic blood pressure, forced expiratory volume, hyper-

tension and forced vital capacity [63]. Interestingly, shorter TL was associated with

appeared older brain age and with brain IDPs extracted from functional MRI [64].

In our study we could not use TL association with brain age as we did not have raw

TL measures. In addition, we could not apply MR to assess the causal link between

TL and brain age delta for the following reasons. We did not have access to im-

puted genetic data, instead we had raw genetic data. The raw genetic data might

include around 500,000 SNPs after applying quality control steps. Then we could

use this number of SNPs to perform GWAS analysis. However, the number is very

small comparing to around 15 million SNPs if we used imputed genetic data. We

did performed GWAS analysis using the small number of SNPs. When we moved

to the next step to perform MR, most of the TL-SNPs were not available in brain

delta GWAS and even not appropriate SNPs proxies could be used. For that reason,

we preferred to use brain IDPs in our analysis instead of brain age delta.

Using MR to examine the causality between TL and brain IDPs would help to con-

sider TL as a vital factor in brain aging. Moreover, including IDPs from wide range

of MRI modalities would provide better possibility of detecting casual associations

between TL shortening and brain structure and function.

1.7.3 Case study: Alzheimer’s disease

Aging related diseases such as AD could cause notable changes in brain structure

and function or could increase the rate of atrophy compared to healthy controls. Ca-

sual association between 1,578 heritable brain IDPs and AD were investigated using

2-samples MR and other casual methods [65]. Their results indicate 35 IDPs that

are causally associated with AD. In addition, the same set of 1,578 brain IDPs were

used to examine the casual association using multivariate imaging wide association
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study (MV-IWAS), 2-samples MR and other casual methods [49]. Their results de-

tected many casual associations using different casual methods. Consequently, AD

among other brain disorders is worth to investigate whether the alterations in the

brain might be related to a potential neurodegenerative disease.

1.8 United Kingdom Biobank

United Kingdom Biobank (UKBB) is a large biomedical data research and resource

involving varieties of data for a half millions of UK volunteers. It has collected and

continue to collect deep phenotypic and genetics data related to participants aged

from 40 and 69 at the time of recruitment [66]. The aim of UKBB is to provide the

medical, blood and biological samples and genetics data globally for researchers

across the world to investigate, diagnose, treat and predict different life-threatening

disease. All participants provided a formal consent at the recruitment time. The

participants have answered wide range of questions related to their lifestyle, health-

related factors, socio-demographic with completing physical measures. The col-

lected samples included urine, saliva and blood which can be tested later with differ-

ent factors such as proteomic and genetics. Further measures were collected related

to eye, arterial stiffness, electrocardiograph test and a hearing test. The partici-

pants also provided a formal consent to follow up their health-related records [67].

Moreover, UKBB conducted cognitive tests through touchscreens for five minutes

at baseline. The assessment testes included visual memory, processing speed and

the time of reaction. In addition, some participants performed other tests such as

prospective memory, fluid intelligence and working memory [68]. Figure 1.8 shows

the wide range of biomedical data collected for each participants taken from [69].

The availability of different kinds of data including tabular and images motivated

and encouraged researchers from different research areas including computer sci-

ence to implement and test different algorithms and statistical models. Machine

learning is one of the computer science research fields that shows successful achieve-

ments in different domains including biomedical. Machine learning needs reason-

able amount of data to train, test and validate a model. The abundance of UKBB

data provides the required amount of data to train different machine learning mod-
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els which is the key to improve the model performance.

Brain scan using MRI was performed using the modalities, T1, T2 FLAIR, task

functional MRI, rest functional MRI, swMRI and diffusion MRI. Structural (T1, T2)

brain MRI was acquired using sagittal orientation at 1x1x1mm and 1.05x1x1mm

resolution using Siemens 32-channer head coil. The pipeline applied to T1-imaging

included brain extraction, defacing and segment brain MRI into cortical and subcor-

tical regions as well as calculating several global volumes such as grey and white

matter volume. Diffusion MRI acquired using a spin echo echo-planar sequence T2

weighted baseline volume, 50b = 2000s mm and 50b = 1000s diffusion weighted

volumes with 1000 distinct diffusion encoding directions. The steps applied to dif-

fusion MRI included eddy correction and head motion. More details on image

acquestions and processing can be found at [70].

During my PhD study, I used UKBB in different ways either directly as measures

or their publicly available results such GWAS. The data I used included brain IDPs

extracted from different MRI modalities through UKBB application number 2964.

These IDPs were used to estimate brain age in different projects. The UKBB ap-

plication that we had access did not include raw brain MRI as the application was

intended for cardiac MRI analysis. For that reason we used the available brain IDPs

in my study. For the same reason, we also compared our work with those used brain

IDPs and did not include those used raw brain MRI as the comparison is not feasible.

In addition, I used genetics data from UKBB to perform GWAS analysis between

brain-PAD and genetics variations to explore the influence of genetics bases in brain

aging. Finally, different variables representing daily life style, body measures, en-

vironment and diet were used from UKBB to perform associations. Consequently,

it is worth to mention UKBB in my thesis to give the reader an overview about the

used data.

1.9 Research contributions and thesis organization

This thesis investigates brain age estimation using brain IDPs from different MRI

modalities, mostly for healthy cohorts. In pervasive sense, we mainly focused on

brain age estimation using different machine learning models, applying explainable
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Figure 1.8: UKBB data covering wide range of measures from different part of the
body.

machine learning methods, using different approaches to cluster the brain IDPs be-

fore feeding the model, and reveal the effect of daily life style and genetics factors

in brain aging for different regions of interests within brain. In addition, we exam-

ined the factors behind the alterations within brain structure and function in both

healthy and patients populations using causal methods. The main contributions of

this thesis are summarized in the following points:

• We performed a comparative study using different machine learning models.

Many papers published their model performance using a different number
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of predictors from different MRI modalities and machine learning models,

which made it hard to compare their performance. In Chapter 2, we used 4

machine learning models and 714 brain IDPs extracted from 3 MRI modali-

ties, sMRI, dMRI and susceptibility weighted imaging (SWI). Moreover, we

identified the most significant features to model brain age. In addition, we

performed an analysis to reveal the association of 8 cardiovascular risk factors

and 5 IDPs cardiac magnetic resonance with brain-PAD. The main results of

chapter 2 is published in MICCAI workshop on computational diffusion MRI

in 2020 [71].

• In Chapter 3, we used 2 well-know machine learning explainability methods

that is SHAP [72] and LIME [73] to explain the model globally and locally

to identify the most informative predictors. In addition, we presented a new

scheme for the assessment of the robustness of explainable methods applied to

brain age estimation. We used different number of folds, cross validation and

Spearman’s rank correlation to assess the validity of the explainable methods.

In the chapter we show that the explainable methods were more robust to

present a trusted list of significant features when there were more subjects in

the training sets. The main contribution of this chapter was published in the

IEEE 34th International Symposium on Computer-Based Medical Systems

(CBMS) 2021 [74].

• In Chapter 4, we estimated brain age using brain IDPs extracted from only

dMRI. In particular, 5 fiber groups were identified based on previous findings

using a white matter tracts atlas and IDPs were extracted from each bundle.

For each group of dMRI IDPs, which represent a different tract group, we

estimated brain age, performed GWAS and conducted an association with

daily life style, cardiac risk factors and IDPs extracted from cardiac magnetic

resonance. We showed that fiber groups would experience different rate of

aging. The main results of the chapter were published on the Nature Scientific

Reports journal 2021 [75].

• In Chapter 5, we used MR as a causal method to assess the casual association
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of TL and 3,935 brain IDPs extracted from 6 MRI modalities in healthy popu-

lations. We conducted this analysis to investigate if TL is the main factor that

drives the alterations within brain tissue in healthy brain aging. Our results

revealed casual association of telomere length and 193 brain IDPs extracted

from dMRI. The main results were submitted to PLOS One journal and are

currently under review.

• In Chapter 6, we investigated the casual association of a brain neurodegener-

ative disease and brain IDPs. This is because there are many studies claiming

that the alterations of brain IDPs might be consequences of a brain disorders.

For that matter, we used MR for the second time to assess the casual associ-

ation of AD and the same set of brain IDPs (3,935). Our results showed that

indeed there is a causal association of AD and 30 brain IDPs extracted from

sMRI, dMRI and fMRI. The main contribution of the chapter is drafted to be

submitted to the Brain Communications journal.



CHAPTER 1. INTRODUCTION 37

List of publications

1. Salih, A., Galazzo, I.B., Jaggi, A., Estabragh, Z.R., Petersen, S.E., Lekadir,

K., Radeva, P. and Menegaz, G., 2021. Multi-modal Brain Age Estima-

tion: A Comparative Study Confirms the Importance of Microstructure. In

Computational Diffusion MRI (pp. 239-250). Springer, Cham. https:

doi.org//10.1007/978-3-030-73018-5_19

2. Brusini, L., Boscolo Galazzo, I., Akinci, M., Cruciani, F., Pitteri, M., Zic-

cardi, S., Bajrami, A., Castellaro, M., Salih, A., Pizzini, F.B. and Jovicich,

J., 2020, October. Microstructural modulations in the hippocampus allow to

characterizing relapsing-remitting versus primary progressive multiple scle-

rosis. In International MICCAI Brainlesion Workshop (pp. 70-79). Springer,

Cham. https:doi.org//10.1007/978-3-030-72084-1_7

3. Salih, A., Galazzo, I.B., Raisi-Estabragh, Z., Petersen, S.E., Gkontra, P.,

Lekadir, K., Menegaz, G. and Radeva, P., 2021, June. A new scheme for

the assessment of the robustness of explainable methods applied to brain

age estimation. In 2021 IEEE 34th International Symposium on Computer-

Based Medical Systems (CBMS) (pp. 492-497). IEEE. https:doi.org/

/10.1109/CBMS52027.2021.00098

4. Boscolo Galazzo, I., Brusini, L., Akinci, M., Cruciani, F., Pitteri, M., Zic-

cardi, S., Bajrami, A., Castellaro, M., Salih, A.M., Pizzini, F.B. and Jovi-

cich, J., 2021. Unraveling the MRI-Based Microstructural Signatures Be-

hind Primary Progressive and Relapsing–Remitting Multiple Sclerosis Phe-

notypes. Journal of Magnetic Resonance Imaging. https:doi.org//10.

1002/jmri.27806

5. Salih, A., Boscolo Galazzo, I., Raisi-Estabragh, Z., Rauseo, E., Gkontra, P.,

Petersen, S., Lekadir, K., Altmann, A., Radeva, P. and Menegaz, G., 2021.

Brain age estimation at tract group level and its association with daily life

measures, cardiac risk factors and genetic variants. Scientific Reports, 11(1).

https://www.nature.com/articles/s41598-021-99153-8

https:doi.org//10.1007/978-3-030-73018-5_19
https:doi.org//10.1007/978-3-030-73018-5_19
https:doi.org//10.1007/978-3-030-72084-1_7
https:doi.org//10.1109/CBMS52027.2021.00098
https:doi.org//10.1109/CBMS52027.2021.00098
https:doi.org//10.1002/jmri.27806
https:doi.org//10.1002/jmri.27806
https://www.nature.com/articles/s41598-021-99153-8


CHAPTER 1. INTRODUCTION 38

6. Boscolo Galazzo, I., Cruciani, F., Brusini, L., Salih, A., Radeva, P., Storti,

S. and Menegaz, G., 2022. Explainable Artificial Intelligence for Magnetic

Resonance Imaging Aging Brainprints: Grounds and challenges. IEEE Signal

Processing Magazine, 39(2), pp.99-116. https://ieeexplore.ieee.org/

document/9721177

https://ieeexplore.ieee.org/document/9721177
https://ieeexplore.ieee.org/document/9721177


CHAPTER 1. INTRODUCTION 39

List of papers under review

1. Telomere length is causally connected to brain MRI image derived pheno-

types: A Mendelian Randomization study. First author. Submitted to PLOS

One journal. First author.

2. Investigating Explainable Artificial Intelligence for MRI-based Classification

of Dementia: A New Stability Criterion for Explainable Methods. Submitted

to ICIP2022. First author.

3. Heart age estimation. Submitted to Communication biology journal. Sharing

first authorship with a researcher from Queen Mary University of London.

4. Brain age estimation for ischemic heart disease cohort. Share first author-

ship. Submitted to Journal of the American College of Cardiology (JACC)

and currently under review.

5. Cardiovascular disease and mortality sequalae of COVID-19 in the UK Biobank.

Co-author. Submitted to European Heart Journal.



Chapter Two

40



2 Comparative study to estimate brain age

2.1 Introduction

Neuroimaging data have been extensively used to assess brain changes during aging,

under both healthy and disease conditions. Moreover, they can be exploited to pre-

dict "brain age" which is the apparent biological age of an individual and depends on

several endogenous (subject-specific) as well as exogenous (environmental) factors.

Metrics derived from various brain MRI sequences have been adopted to estimate

brain age, either using raw data or handcrafted features. Brain-PAD is calculated by

subtracting chronological age from the estimated one. While a younger-appearing

brain might be the result of a healthy life style [76], having an older-appearing

brain has been previously associated with poor future outcomes [36] and with an

increased likelihood to develop neurodegenerative illnesses such as AD [39].

Statistical models for brain age estimation have been proven to be highly accu-

rate, with prediction performance featuring high R2 values and low MAE in the

range of 4-5 years [36]. Most of the studies have investigated this aspect with fea-

tures derived from a single brain MRI technique, most commonly, conventional T1-

weighted sMRI. Morphometric measures from sMRI, such as volume and thickness

of grey matter structures, should not be overlooked as they provide information

on the individual degree of brain atrophy that encodes aging-induced degenera-

tion [77]. However, more recently, dMRI, SWI, and resting-state fMRI have been

explored for potentially providing a richer set of IDPs bringing complementary in-

formation [32] [36]. Thus, consideration of IDPs derived from multiple brain MRI

sequences would be the most promising approach allowing deeper phenotyping and

more complete capturing of the different factors shaping the aging process.

Regarding modeling approaches, the performance depends on the statistical method

utilised, as demonstrated by several authors. In a recent paper, Jonsson and col-

leagues (2019) applied deep learning as well as eight different regression methods

41
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to sMRI-based features extracted from three well-known databases that is Icelandic,

the UK Biobank, and the IXI, showing notable differences in the performance pa-

rameters across the different models [39]. Niu et al. [76] report similar variation in

model performance in their study of brain age estimation with four regression mod-

els using several neuroimaging variables (sMRI, dMRI, and resting-state fMRI) in

healthy controls and patients with anxiety disorders. In addition, the authors showed

the potential for superior prediction accuracy with a multi-modal vs single-modal

approach.

The recent availability of large imaging databases has provided new opportunities to

exploit the importance of a multi-modal approach for brain age prediction. In this

context, the UKBB represents an important resource thanks to its comprehensive

repository with genetic and phenotypic data for 500000 subjects aged between 40

and 69 (at recruitment). The UKBB imaging study includes detailed MRI, provid-

ing high quality multi-modal neuroimaging data including sMRI, dMRI, SWI and

fMRI [78]. These data are linked to detailed clinical, biological and lifestyle in-

formation. The availability of such a rich research resource has motivated many re-

searchers to focus on brain age estimation with promising results [32] [36] [40] [39].

Smith et al. [32] estimated brain age using simulated and real data by applying sim-

ple linear regression. With regard to real data, 2641 IDPs covering sMRI, fMRI and

dMRI were used for 19000 participants. The results, among others, attained MAE

= 3.6 years.

In [36], phenotypes from six different MRI modalities were chosen to estimate brain

age for 17461 subjects, running a Least Absolute Shrinkage and Selection Operator

(LASSO) regression for each modality (MAE range = 3.897 - 5.928 years, where

minimum e maximum were found for dMRI and task fMRI, respectively). When all

the IDPs were combined, age was more accurately predicted (MAE = 3.515 years).

Thirty-four IDPs were deemed informative for the prediction of the brain age after

bootstrapping, and were predominantly from sMRI and dMRI.

Ning et al. [40] aimed at assessing the correlation between brain-PAD and alcohol

intake, smoking and genetic variations. To this end, 403 morphometric measure-

ments from sMRI were chosen along with LASSO regression (MAE = 3.8 years).
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A significant association between brain-PAD and the consumption of alcohol and

smoking could be demonstrated.

Finally in [39], sMRI data for 12395 subjects were used to estimate brain age using

transfer learning and 3-D Convolutional Neural Network (CNN). In this study, two

sequence variants were identified having a strong relation with the brain-PAD. The

MAE of the model was 3.63 years.

In the literature many papers can be found aiming at estimating brain age using

data from different resources. In addition, different IDPs were used in the model to

estimate brain age. These IDPs could be extracted from only one single modality

such as sMRI, dMRI or could be derived from multi MRI modalities. Moreover, the

number of the IDPs used in the model as predictors is vary and cannot be compared

in most cases due to the big variance among them. One other notable and signifi-

cant factor observed in these works is different models were used to estimate brain

age. Simple linear regression was used in many cases while more advanced ma-

chine learning models such as deep learning were used in other cases. In addition,

different number and kinds of confounds were used to adjust for when brain age

was estimated. These factors are shown to be significantly associated with the IDPs

and the outcome, which considering different sets of confounds might affect the

outcome of the model. The great variability in the number of subjects, IDPs, MRI

modalities and statistical models precludes a straightforward comparison of all the

studies. However, existing work suggests that: i) sMRI provides relevant IDPs for

estimation of brain age; ii) dMRI-based phenotypes are similarly informative and

need to be further investigated; and iii) a multi-modal approach can improve, in

general, the estimation accuracy.

In consequence, a systematic comparison among different statistical methods is nec-

essary which has not been addressed in existing literature. Therefore, we compared

four regression methods in combination with different IDPs for brain age prediction,

aiming at providing a balanced comparison across different single-modal and multi-

modal approaches. In particular, we focused on LASSO, Simple Linear Regression

(SLR), BRR and Support Vector Regression (SVR), while the IDPs used as predic-

tor were derived from sMRI, dMRI and SWI with a clear numeric prevalence of
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dMRI. Model performance was assessed using several parameters including MAE,

R2 and adjusted R2. Moreover, the associations between individual IDPs and brain-

PAD values were calculated for the best model. Finally, the association between

brain-PAD with selected biomedical and behavioral features was extracted to assess

potential clinical/biological utility.

2.2 Data

Data were obtained from UKBB. All the analyses here performed rely on the IDPs

extracted centrally by researchers involved in the project [79]. Data were avail-

able from n = 16394 participants (age range = 40-70 years, n = 8652 females,

n = 7742 males). This comprised a set of 714 IDPs for each subject, represent-

ing the summary metrics for sMRI, SWI and dMRI. From sMRI images, mor-

phometric measures of brain volumes were reported as distinct IDPs, both nor-

malised/not normalised for overall head size, in details: total brain volume (GM

+ WM); volumes for WM, GM and CSF (separately for each compartment); vol-

ume of peripheral cortical GM. Volume measures for subcortical structures were

also calculated as further IDPs (e.g., thalamus, putamen, hippocampus), gener-

ally separated for left/right hemispheres and not normalised for head size. From

SWI data, a T2* image was used and the median T2* value estimated as a separate

IDP for each subcortical regions of interests(ROIs) identified from sMRI. Finally,

several spatially-specific IDPs were extracted from dMRI data by following two

different approaches. Indeed, nine dMRI-based indices derived from i) the DTI,

such as FA and MD, and ii) NODDI model, such as ODI and ISOVF, were calcu-

lated and averaged over specific areas/tracts. In the first approach, dMRI maps

were aligned to a population-based WM tract skeleton and all the DTI/NODDI

measures averaged over 48 regions defined using the Johns Hopkins University

tract atlas [80]. In the second, probabilistic tractography was run for each sub-

ject and all the dMRI-based measures averaged within 27 distinct WM tracts. The

final set of neuroimaging phenotypes included 25 IDPs from sMRI, 14 from SWI

and 675 from dMRI. Full details on the acquisition protocols and image process-

ing pipelines for the UKBB brain data are available at https://biobank.ctsu.

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
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ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. The present analyses were

conducted under data application number 2964. All participants provided formal

consent, details on the UKB Ethics can be found at https://www.ukbiobank.

ac.uk/the-ethics-and-governance-council.

2.3 Methods

2.3.1 Brain age estimation

Four different regression methods including LASSO [81], SLR [82], SVR [83] and

BRR [13] were used to estimate the apparent brain age, all having chronological

age as the dependent variable. All these models were implemented using Scikit-

learn [84] library version 0.22.2 in Python 3.6.9.

In order to examine the impact of different imaging modalities, each of the four

methods was run with single-modal and multi-modal brain IDPs, leading to seven

different combinations per method. All the imaging features (independent vari-

ables) were normalized to zero mean and unit variance to account for the different

measurement scales, while the actual age was demeaned only [32]. Gender and

education were considered as confound variables and regressed out of all IDPs as

in [85] [86]. Data were randomly split into training (80%, n = 13115) and testing

(20%, n = 3279) sets, respectively. The test set was used to predict brain ages on

unseen data.

Hyper-parameters for BRR, LASSO and SVR were tuned on the training data (fur-

ther split on 80% for training and 20% for validation) with GridSearchCV and the

optimal model was retained. After the parameters were optimized from training

data, the optimal model was applied to estimate brain age in the test set. The per-

formance of each model was assessed using (R2) and the MAE. Adjusted R2 was

also calculated to account for the different number of predictors in each model.

Recent literature has demonstrated a proportional bias in brain age calculation,

which might be caused by dilution bias of the prediction model [35] [87]. More-

over, this bias is also closely connected to the fact that brain age is overestimated

in younger subjects and underestimated in older ones, while is more accurately pre-

dicted for participants whose actual ages are closer to the mean age of the training

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://www.ukbiobank.ac.uk/the-ethics-and-governance-council
https://www.ukbiobank.ac.uk/the-ethics-and-governance-council
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dataset [36] [32]. All these elements lead to a significant dependence of the brain-

PAD on chronological age, which resulted to be negatively correlated. Therefore,

common practice is to apply a statistical age-bias correction procedure to overcome

these limitations [32] [35]. In this study, we adopted the procedure proposed by

Beheshti et al. [35] that relies on a linear model given by the following equation:

D = α ∗Ω+β (2.1)

where D is the brain-PAD (estimated from training data), Ω is the chronological

age of the training data, α and β represent the slope and the intercept. These two

measures are subsequently used to correct the brain age predictions in the test set as

described in equation 2.2:

CPBA = Predicted BrainAge− (α ∗Ω+β ) (2.2)

where CPBA stands for corrected predicted brain age.

After brain age was estimated and bias corrected in the test set, brain-PAD was

calculated for each subject. Pearson correlations for predicted brain age vs actual

age (CPA) and brain-PAD vs actual age (CBDA) were calculated twice for each

model, before and after bias correction.

2.3.2 Associations with IDPs and non-IDP variables

For the best model results, Pearson correlations between brain-PAD values and in-

dividual IDPs were calculated in order to identify the strongest associations, high-

lighting the features which contribute most to the modelling of the brain-PAD as

suggested in [32]. The resulting p-values were Bonferroni-corrected for multiple

comparison. Of note, the fully deconfounded versions of the IDPs were used in

this step (including gender, education and age as confounds). As several studies

demonstrated a significant association between brain and heart functionality, es-

pecially relying on brain volumetric measurements [88] [89], we also investigated

whether a correlation between brain-PAD and heart measures was present. In order

to perform this analysis, five measures from Cardiac Magnetic Resonance (CMR)
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and eight CRFs were considered. The correlation analysis was performed on a sub-

group of the test set (n = 2730), as these measures were not available for all the test

set subjects. CMR scans were performed on 1.5 T scanners using a standardised ac-

quisition protocol [90]. The following indices derived for the left ventricle were re-

tained: end-diastolic volume (LVEDV), end-systolic volume (LVESV), stroke vol-

ume (LVSV), mass (LVM), and ejection fraction (LVEF). Eight CRFs were also

tested, covering biomedical and lifestyle measures: smoking status, material de-

privation, body mass index, alcohol intake frequency, physical activity, diabetes

diagnosis, presence of hypertension and high cholesterol. Smoking status and alco-

hol intake frequency were based on self-reports. Material deprivation was reported

by UKB as the Townsend deprivation index. A continuous value for the amount of

physical activity, measured in metabolic equivalent minutes/week, was calculated.

Body mass index was derived from height and weight measures recorded at the

baseline. Diabetes, hypertension, and hypercholesterolaemia were defined by cross-

checking across self-report and blood biochemistry data. All the cardiac variables

were initially normalized to zero mean and unit variance, and the main potential

confounds (gender and age) regressed out from the data. Pearson correlation was fi-

nally computed between each of these measures and brain-PAD values derived from

the twenty-eight model combinations, and the results were Bonferroni-corrected to

account for multiple comparison problems.

2.4 Results

2.4.1 Brain age estimation

Results are summarised in Tables 2.1 and 2.2 reporting the overall performance of

the four regression methods combined with the different IDPs. Table 2.1 reports the

estimation performance for the test subjects in terms of MAE values before bias cor-

rection, as this represents the actual model performance. Results demonstrated that

using all the 714 IDPs from the three imaging modalities provided the best model

performance in terms of MAE for all regression methods. In particular, BRR gave

the best results (MAE = 3.482 years), closely followed by LASSO (MAE = 3.483

years), while SVR performed less accurately among the four tested methods. When
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considering the different feature types, the performance of the models using SWI

only was worst (MAE ≈ 6.0 years) compared to the other single-modal approaches

that is sMRI (MAE ≈ 4.5 years) and especially dMRI (MAE ≈ 3.7 years). When

considering the multi-modal models, adding dMRI phenotypes improved the accu-

racy of all methods. These results were further confirmed by the R2 and adjusted

Table 2.1: Prediction performance of the four regression methods combined with
different imaging features. Results are reported in terms of MAE values (years),
and the optimal one for each IDPs combination is highlighted in bold.

Mean Absolute Error
IDPs Number of features BRR SVM SLR LASSO
sMRI 25 4.509 4.471 4.506 4.509
SWI 14 6.026 6.0411 6.024 6.025

dMRI 675 3.733 3.758 3.761 3.738
sMRI+SWI 39 4.429 4.393 4.424 4.427

sMRI+dMRI 700 3.498 3.559 3.525 3.5
SWI+dMRI 689 3.717 3.74 3.741 3.719

All 714 3.482 3.526 3.512 3.483

Table 2.2: Prediction performance of all the tested models in terms of R2 and Ad-
justed R2 values.

BRR LASSO SLR SVR
IDPs R2 Adj_R2 R2 Adj_R2 R2 Adj_R2 R2 Adj_R2

sMRI 0.445 0.441 0.446 0.441 0.446 0.441 0.445 0.440
SWI 0.085 0.081 0.085 0.081 0.085 0.081 0.075 0.071

dMRI 0.613 0.512 0.612 0.511 0.606 0.504 0.604 0.501
sMRI+SWI 0.464 0.458 0.464 0.458 0.465 0.458 0.468 0.462

sMRI+dMRI 0.654 0.560 0.653 0.559 0.648 0.553 0.642 0.545
SWI+dMRI 0.618 0.516 0.61 0.515 0.611 0.507 0.609 0.505

All 0.658 0.562 0.657 0.562 0.652 0.555 0.650 0.553

R2 parameters (Table 2.2), for which the lowest value was reached using the SWI

IDPs (R2 = 0.075-0.085). When the IDPs from sMRI and dMRI were used jointly

in the model, the performance was improved and very close to the one reached by

using all the IDPs, and this finding held for all the four regression methods. For the

sake of completeness, CPA and CBDA were calculated before and after bias correc-

tion, leading to the results summarised in Table 2.3. When using all the 714 IDPs,

the correlation between brain-PAD and actual age decreases towards zero after ap-

plying the bias correction steps. Conversely, CPA increased after bias correction

in all four methods. Figure 2.1 shows the correlation between brain-PAD and the

actual age. The figure shows that after the correction steps were implemented, the

correlation drop down to around zero. It confirms that the predicted brain age was

affected by bias.
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Table 2.3: Correlation values between predicted brain age vs actual age (CPA) and
between brain-PAD vs actual age (CBDA), before and after bias correction.

The model Before correction After correction
CPA CBDA CPA CBDA

BRR 0.811 -0.592 0.903 -0.014
LASSO 0.810 -0.576 0.900 -0.018

SLR 0.807 -0.559 0.896 -0.026
SVR 0.806 -0.597 0.902 -0.015

Figure 2.1: The correlation between brain-PAD and actual age before and after the
correction steps were implemented.

2.4.2 Association with brain IDPs

Considering that the BRR method combined with all the IDPs reached the lowest

MAE and highest R2/adjusted R2, here we report associations between individual

IDPs and brain-PAD values estimated from this model. In particular, Table 2.4

shows the first ten significant correlations (after correction for multiple compar-

isons), revealing a strong and significant association between these IDPs and the

brain-PAD. As further note, the association between brain-PAD values and indi-

viduals IDPs were largely overlapped for the other regression methods, especially

concerning the features in the top 10 positions. The order of the most significant

features that are associated with the brain-PAD is similar in the four methods, al-

though the correlation values changed across them.

As it can be appreciated, the volumetric measurements from sMRI such as GM vol-

ume and volume of peripheral cortical GM (both normalised for head size) were

negatively correlated with the brain-PAD. Diffusion measures from DTI (such as

MD, L1, L2 and L3) and from NODDI (such as ISOVF) in fornix were positively

correlated with the brain-PAD, while FA revealed an opposite pattern.
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Table 2.4: Strongest associations between brain-PAD values estimated from the
winning model (BRR with all IDPs) and individual IDPs for test set subjects.

IDPs Correlation
Volume of grey matter (normalised for head size) -0.511

Volume of peripheral cortical grey matter (normalised for head size) -0.496
Volume of brain, grey+white matter (normalised for head size) -0.443

Mean ISOVF in fornix on FA skeleton 0.409
Mean L1 in fornix on FA skeleton 0.403

Mean MD in fornix on FA skeleton 0.402
Mean L3 in fornix on FA skeleton 0.396
Mean L2 in fornix on FA skeleton 0.389
Mean FA in fornix on FA skeleton -0.388

Mean L2 in fornix cres+stria terminalis on FA skeleton (left) 0.371

2.4.3 Association with cardiac variables

Table 2.5 reports Pearson correlations between brain-PAD derived from the win-

ning model (BRR with all IDPs) and CMR/CRFs measures (test set). For CMR, no

significant associations were found after multiple comparison correction (pFDR >

0.05), and only the correlation with the LVM was significant before correction (p =

0.021). Regarding CRFs, all parameters except exercise and alcohol were signifi-

cantly associated with the brain-PAD (pFDR < 0.05) .

Table 2.5: Correlation between CMR, CRFs and brain-PAD.

Cardiovascular Risk Factors Cardiac Magnetic Resonance
Measure Correlation p-value pFDR Measure Correlation p-value pFDR
Smoking 0.056 0.003 0.024 LVEDV 0.006 0.725 1Deprivation 0.067 0 0.003

Body Mass Index 0.053 0.005 0.040 LVESV -0.004 0.795 1Alcohol 0.038 0.046 0.369
Exercises 0.001 0.920 1 LVSV 0.015 0.420 1Diabetes 0.087 0 0

Hypertension 0.066 0 0.004 LVM 0.044 0.021 0.107
High Cholesterol 0.056 0.003 0.025 LVEF 0.024 0.209 1

2.5 Discussion

In this study, we investigated whether chronological age could be accurately pre-

dicted using brain MRI IDPs as predictor variables in various statistical models

using data in the UKB. In particular, we focused on four well-known regression

methods (SLR, SVR, LASSO and BRR) and considered measures from sMRI, SWI

and dMRI as IDPs, either alone or in combination. Regarding the regression meth-

ods, overall, BRR achieved the highest accuracy as measured by MAE, R2 and

adjusted R2 values. In particular, when dealing with a relatively small number of
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IDPs (< 50), for example in models with sMRI/SWI features only, better results

were obtained using SVR and SLR. Conversely, in cases where a greater number of

features was included, BRR reached the best performance, possibly because of its

ability to handle multicollinearity between IDPs [91] [92].

Previous studies addressing modelling brain age using UKB data report MAE val-

ues between 3.5 - 3.8 years. Of note, Peng et al. [93] achieved the lowest MAE

(2.14 years) although leveraging from deep CNN model, Simple Fully Convolu-

tional Network, using sMRI from UKB for 14503 participants. In our study, the

accuracy reached by BRR model in the different conditions was comparable (and

even better in some cases) to such benchmarks, despite the generally lower number

of subjects and MRI features.

Regarding the imaging predictors, models including all the 714 IDPs from the three

brain MRI sequences had the best performance. However, when considering mod-

els with single-modal IDPs, dMRI reached the highest accuracy in terms of MAE

values (MAE ≈ 3.7 years) compared to sMRI (MAE ≈ 4.5 years) and especially

SWI (MAE ≈ 6.02 years), and this was further confirmed by the R2/adjusted R2

values. This might indicate that age-related alteration of brain can be better de-

tected by dMRI, in agreement with literature findings [94].

The variations in the models performance when one MRI modality used to estimate

brain age needs a further statistical test to confirm that the difference is significant.

A previous study also found similar results and further confirm that dMRI pheno-

types are more informative than SWI IDPs in predicting brain age [36]. Phenotypes

from sMRI and dMRI were generally the most informative for age prediction, as

further supported by the correlation analysis between brain-PAD values and IDPs.

Indeed, the strongest associations were found for features based on these modali-

ties. In particular, our study revealed that brain-PAD was negatively correlated with

volumetric measures, while positively correlated with both ISOVF and diffusivities

in the fornix.

GM volume was the most informative phenotype, in line with previous studies [36] [32].

This might be related to the fact that brain volume changes considerably over time

and decreases during the aging process, causing atrophy [95] and macroscopic vari-
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ations. Our analysis highlighted a prominent role of dMRI IDPs. Differences in

diffusion properties across the life span have been demonstrated along specific WM

tracts [94]. Diffusivity and FA values across the fornix spanned the first 10 rank-

ing position, preceded only by atrophy measures in GM and WM. Noteworthy, the

fornix is among those tracts that mature very early [96]. The IDPs that are present in

the top 10 association ranking are, besides FA and MD, ISOVF, that is the isotropic

volume fraction as estimated by the NODDI model, and the three tensor eigenvalues

L1, L2 and L3 that represent the axial (L1) and transversal (L2, L3) diffusivities. A

reduction in the FA and an increase in diffusivity, as indicated by a positive corre-

lation of ISOVF, MD, L1, L2 and L3 with brain-PAD, could indicate impaired WM

integrity. Moreover, myelin breakdown might be measured by radial diffusivity (L2

and L3) alterations, while increasing in apparent diffusivity value might be a sign

of axonal disruptions [97]. Furthermore, AD (L1) and RD (L2 and L3) have been

observed to increase in elderly people which may be a signal of deterioration of the

WM fibers [98]. Noteworthy, ISOVF has been observed to increase in older people

in most of the major tracts, pointing to a disrupted integrity [99]. Our results are in

agreement with such findings reporting a negative association of FA and a positive

association of L1 , L2, L3 and MD in fornix with brain-PAD. Fornix tracts have

a vital role in memory tasks, specially episodic memory. Alteration in diffusion

measures during aging process might be good biomarkers for neurological diseases

that are related to memory impairments [96]. This could indicate that such IDPs

are more prone to alteration over the life span of an individual at least over specific

WM tracts, making them potential biomarkers for the aging process in health and

disease.

Regarding the associations with CMR measures, our study revealed a significant as-

sociation with LVM, however there was loss of statistical significance after multiple

comparison correction. A previous study reported association of increase in LVM

with alterations in WM microstructure in elderly people [100]. In our study, the lim-

ited age range in the UKB did not permit consideration of relationship in very old

individuals. Among the CRFs, all measures except exercise and alcohol were sig-

nificantly correlated with brain-PAD (pFDR < 0.05), inline with what described by
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Cole et al [40][101], despite using a different number of IDPs and subjects for esti-

mating brain-PAD. In conclusion, results suggest that dMRI IDPs play a prominent

role in reducing the MAE and rank high in the association study, providing evi-

dence of the potential of dMRI IDPs as biomarkers of aging in health and disease.

Future work will investigate the integration of other IDPs such as functional MRI,

graph-based measures from brain connectomes as well as the genetic information

to pursue the holistic path.
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3 Explainable deep learning

3.1 Introduction

DL has shown successful achievements in many applications including within the

medical field [102] [41]. However, decisions generated by complex DL models are

not transparent and so the rationale for model outputs is not always understandable.

Accordingly, complex models such as DL are considered as a "black box". The

ability to explain the decision making of DL tools is key to facilitating their accep-

tance. Thus, breaking down the black box is highly important.

DLe aims at uncovering the mysteries of how models make decisions and how each

feature contributes to the overall model output [103]. Shapley additive explanation

(SHAP) and Local Interpretable Model-agnostic Explanation (LIME) [73] are two

widely used DLe methods [104] [105] [106].

Brain age has been estimated using different models and data-set [32] [36]. This

leads to identify different sets of significant features that model brain age.

3.1.1 Explainability methods

SHAP

SHAP is an DLe method that explains how the model makes a decision and the

contribution of each feature both globally and locally. It helps to rank the features

in the model and that features ranked list is one of the model explanation goals.

It is a model-agnostic method that means it can be applied to any model. It is an

additive feature importance measure. It is based on game theory where each feature

is considered as a player and the output or the prediction is the payoff [72]. The aim

of SHAP is to calculate the contribution of each feature to explain the prediction of

an instance x. SHAP calculates a value for each feature based on collation game

theory. The data instance of the features acts as a players in the game. A player

can be a single feature as in the case of tabular data. In addition, a player could

55
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be a group of features as the case to use image data and groups of pixels that are

identified as the informative ones, then the prediction distribution among them. The

SHAP value tells us how the prediction is fairly distributed among the features. The

equation to calculate SHAP value for a feature is as follows:

g(z
′
) = φ0 +

M

∑
j=1

φ jz
′
j (3.1)

where g is the explanation model, z
′
, is a binary variable that represents whether

x j is present or not, M is the maximum coalition size and φ j is feature attribution

for a feature j and φ0 is the bias. This value shows to what extent the feature

is significant in the model’s decision. SHAP has three desirable properties that

are: local accuracy, missingness and consistency. Local accuracy means the sum

attributions of local feature equals the difference between the base rate and the

model output. Missingness is that the feature has no impact if it is missing in the

original data and attributed to zero. Finally, consistency is the impact of a significant

feature that should not be decreased if the model is changed [72].

LIME

LIME is a local surrogate model-agnostic interpretability method that explains and

helps to illuminate a machine learning model which results in comprehensible pre-

dictions. It explains the prediction for a single subject and therefore it is suitable for

local consideration. LIME ranks the features based on their contribution to predict

an outcome which is one of the aims of explainablity methods [73]. Furthermore,

LIME performs sample-based evaluation, not model-based one. Surrogate models

are those which are trained to approximate the model prediction. However, it does

not train a global surrogate model, instead it trains a local surrogate model to explain

the predictions for an individual. LIME generates a new data-set by permuting the

original data with their corresponding predictions. Then it calculates the similarity

between the original and the new permuted data. Thereafter, it uses the permuted

data to predict the outcome. Then, it selects m number of features that best describe

the predicted outcome. It uses a simple linear model with m features weighted by
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the similarity measures to the original data. Finally, the resulting features weight

explains the contribution of the feature locally [73]. The formula of LIME is as

follows:

ε(x) = argmingεG£( f ,g,πx)+Ω(g) (3.2)

where ε(x) is the explanation, £ - a loss function, Ω(g) - the complexity term, g

- is the explainer, f - is the model that we want to explain, G - is the complete

hypothesis space for the given explainability method and πx is a weight assigned

according to the x proximity.

3.1.2 Validating explainability methods

There have been various approaches to evaluate DLe methods [107]. Three main

levels have been proposed to evaluate explainability given by the models that is

application-grounded [108], human-grounded [109] and functionality-grounded eval-

uation [110]. The application-grounded evaluation conducts an experiment in real-

world application and then evaluates and tests it by an end-user who is expert in

the domain. This method is expensive due to the expert involvement as well as

because it is difficult to compare results from different domains. Human-grounded

evaluation is cheaper, as it does not require experts in the domain, it assess the

method using laypersons. However, it disregards experts in its assessment. Finally,

functionality-grounded evaluation does not require human evaluation. In contrary,

it evaluates the explanations using some sort or proxies such as measuring the un-

certainty in the explanations methods and model sparsity [111].

Functionality-grounded might be the promising one as it evaluates automatically the

explainability methods by using some quantitative rather than qualitative methods

as it is the case for human and application-grounded evaluation.

Several proxies have been proposed to evaluate the explainability methods based

on the functionality-grounded strategy. Silva et al. [112] proposed three functionality-

grounded evaluation methods that is Completeness, Correctness and Compactness.

Completeness means the explainability should be possible to be implemented in

other domains when the audiences can validate and verify it. They consider com-

pleteness by using a fraction of the training set covered by the explanation. Correct-
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ness means that the explanation should be accurate and measures it by the accuracy.

Finally, the compactness is measured by the time needed to understand the expla-

nation is proportional to its length.

Montavon et al. [110] proposed other two proxies that can be implemented to

evaluate the explainability methods that are Explanation continuity and Explanation

selectivity. Explanation continuity assumes that if two data points are almost equiv-

alent, then the explanations of their predictions should be also equivalent. They

quantify the continuity by looking for strongest variation of the explanation R(x)

in the input domain. Explanation selectivity assumes that there should be a sharp

reduction in model performance when relevance features that are identified by the

explainability methods are removed from the model. This approach was proposed

for image data named pixel-flipping. They first sort the features from the most rel-

evant one to the least relevant one. Then they record the current function of f (x).

Thereafter, they remove the ith relevant feature and record again the function value.

They repeat it based on the number of the features in the model. Finally, they plot

all the recorded function values and return the area under the curve for the plot.

However, explainability might be affected negatively by the sample size used to

train and test the model [113] [114] which is not considered in the previous ap-

proaches. Small sample size might reduce the model performance and leads to

identifying relevant features incorrectly. In our approach, we propose a valida-

tion scheme based on Spearman’s rank correlation and cross-validation as proxy to

functionally evaluate the explainablity methods. Our method identifies significant

features in a DL model for brain age estimate using the UKBB [67]. Precisely,

our study aims to: i) estimate brain age using DL, ii) describe a novel application

of SHAP values to the prediction of brain age using UKBB data, iii) interpret the

model globally and identify significant features by SHAP, iv) interpret the model

locally and identify significant features by LIME and v) evaluate SHAP and LIME

methods using a new validation scheme based on cross-validation and Spearman’s

rank correlation as proposed proxy.
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3.2 Dataset

The data used from the UKBB include three brain MRI modalities, sMRI, SWI and

dMRI. 714 features for 16394 subjects (7742 male and 8652 female) were used

in our study to estimate the brain age. The features were composed of 25 sMRI

IDPs, 14 SWI IDPs and 675 dMRI IDPs. The IDPs were extracted from brain

MRI images centrally by researchers at UKBB and made them available within the

UKBB data showcase http://biobank.ctsu.ox.ac.uk/crystal/index.cgi.

These brain MRI IDPs represent different quantitative measures of brain structure

and function. The phenotypes extracted from sMRI reflect volumetric measures of

the brain regions while the IDPs extracted from dMRI represent the movements of

molecular water in the brain tissue that is represented in summary metrics using

DTI and NODDI. SWI is another MRI technique that is sensitive to local compo-

nents which results in distortions of the magnetic field. The phenotypes extracted

from SWI represent various local components in the brain tissues such as diamag-

netic calcium, blood and iron [115]. Full details of the acquisition parameters can

be found in [116]. The majority of UKBB participants was healthy at the time of

scanning. Therefore, no subject has been excluded in our study [32].

Several studies have demonstrated the association between brain aging and vascu-

lar risk factors and cardiac index [117] [118]. Accordingly, the association was

calculated between brain-PAD and conventional CMR features. The CMR included

seven metrics: LVEDV, LVESV, LVSV, LVM, right ventricular end-diastolic vol-

ume (RVEDV) , right ventricular end-systolic volume (RVESV) and right ventricu-

lar stroke volume (RVSV). Indexation to body surface area (calculated according to

Du Bois equation) was applied to volume and left ventricular mass measures. The

association was conducted for 3049 subjects that had both CMR data and brain-

PAD in the test set. P-value was corrected for the number of features using the

Bonferroni method [119].

http://biobank.ctsu.ox.ac.uk/crystal/index.cgi
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3.3 Methods

3.3.1 Feature processing

Given the problem of brain age estimation, we consider as features IDPs extracted

from three brain MRI modalities that is structural MRI, diffusion MRI and suscep-

tibility weighted imaging MRI. The features were standardized to have the same

range and mean value of zero while the actual age was demeaned and used as the

dependent variable [32]. Gender and education levels were used as confounds [40]

and regressed out the IDPs using a linear regression model.

3.3.2 Deep Learning model

DL models are artificial neural networks that consist of multiple layers so-called

hidden layers between the input and output layers. Each layer involves many nodes

which transform the data into more abstract components. In addition, it also in-

volves activation functions between the layers that define the output of a node by

a given input. Moreover, they might involve dropout layers that deactivate some

nodes in a layer or layers to regularize the model. DL has the ability to learn and

make decisions on its own. Another valuable advantage of DL is that it can han-

dle the non-linear relationships between the input data and the outcome [120]. The

general architecture of a DL model is illustrated in figure 3.1. There is no standard

Figure 3.1: General architecture of DL.

method to chose the number of hidden layers, the number of nodes in each layer,

which activation function and dropout rate to use. In that matter, hyperparameter-

tuning is used to find the optimal architecture of the model by using many parame-
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ters and those who produce the lower error in the output are considered the optimal

ones [121].

The DL model applied to brain age estimation was designed based on hyper-parameter

tuning using training data. The data was divided randomly into training (80%) and

testing sets (20%); the latter comprised unseen data and was used to test the model

performance. The architecture of our DL model involved 4 fully connected lay-

ers. Table 3.1 shows the tuned parameters with the values used to find the optimal

values for each parameter. Optimal parameters were chosen based on MAE as the

Table 3.1: The parameters used in our DL model for brain age estimate

Parameters Value
Number of neurons in layer 1 150: 750. jumping by 50

Number of neurons in layer 2, 3 and 4 50: 350. jumping by 50
Activation function relu, softmax and sigmoid

Dropout rate 0 :0.2. jumping by 0.05

valuation criterion as follows:

MAE =
1
n

n

∑
i=1

∣∣Yi− Ŷi
∣∣ (3.3)

where Y is the actual value, Ŷi is the predicted value and n is the number of observa-

tions. Table 3.2 shows the best parameters that achieved lowest MAE in the training

data-set and validated on validation data-set using Randomized SearchCV [122].

These values were used as the optimal parameters for the model and were used on

the test data. We had to apply the correction to the predicted brain age to account for

Table 3.2: The best parameters based on the MAE

Parameters Value
Number of neurons in layer 1 350

Number of neurons in layer 2, 3 and 4 50, 100 and 300 respectively
Activation function in Layer 1, 2, 3, 4 sigmoid, relu, relu and relu respectively

Dropout rate in layer 1, 2, 3, 4 0.15, 0, 0 and 0 respectively

more accurate estimates for subjects with age close to the mean age [34]. Different

methods have been proposed to correct the estimated brain age. We adopted the

method proposed by [35]. First, the brain age was predicted in the training data and

the brain-PAD was computed by subtracting chronological age from the predicted

brain age. We used the brain-PAD in the training with actual age to calculate the
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slope and intercept utilizing a simple linear regression model as in the equation:

BAD = α ∗Ω+β , where BAD is the brain-PAD (estimated from the training data),

Ω is the chronological age of the training data, α and β represent the slope and

the intercept, respectively. The two measures, α and β , were subsequently used to

correct the predicted brain age in the test set as described in:

CPBA = Predicted BrainAge− (α ∗Ω+β ),

where CPBA stands for the corrected predicted brain age in the test set. After we

estimated the brain age and corrected the bias, the brain-PAD was calculated for

each subject in the test set. The correlation between the predicted brain age, brain-

PAD and actual age was calculated. The correlation was computed twice, before

and after the correction steps to check the effectiveness of the correction.

3.3.3 Applying SHAP and LIME

We have calculated SHAP value for each feature in the training data. Because we

used cross-validation in the training data where the data was divided into 10 folds,

nine for training and one for validating, the SHAP value was calculated 10 times for

each validation fold. The value is computed by fitting the model with training data

to SHAP and then calculation of the SHAP value for the validation folds. N lists

(in our case, N = 10) of significant features are sorted by the most significant repre-

senting the N data validation folds. These ranked lists of the significant features are

based on the samples selected for each fold. Thereafter, SHAP value is obtained for

the test data as unseen data. The SHAP value for each feature in the test data was

computed by fitting the model with the whole training data, and then calculate it for

test data.

LIME was calculated locally for a subject chosen randomly in each fold from the

validation data. It was calculated by fitting the model with training data to LIME,

then it is estimated for a subject in the validating data. Thereafter, LIME was ob-

tained for a subject in the test data chosen randomly. Accordingly, N lists of signif-

icant features were considered for N subjects in the validation and test data sorted

by the most significant one (in our case N = 11).
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3.3.4 A new evaluation scheme based on Spearman’s rank correlation

Using different numbers of samples in the model might have significant effects on

the model output and can result in identifying different sets of significant features

to explain the model decision [114] [123]. Then the question is which one of these

lists of significant features should be considered to explain the model. Our hy-

pothesis is that significant features explaining the model should depend as few as

possible from the concretely selected training set. That is differently selected sub-

sets of training data should give the same explanation. For this reason, we applied

a resampling method such as cross-validation to consider different sets of samples

from the population and obtain the corresponding lists of significant features. Then,

instead of considering one list of features to explain the model, we get the list of

features most correlated to the rest lists using different number of folds. Hence, we

compute a ranked correlation between the ranked lists to check if there is a signifi-

cant correlation among the lists. If the correlation is significant, then we conclude

that the explainability method could identify the significant features for each sam-

ple correctly. On the contrary, if the correlation is not significant among the ranked

lists, then we conclude that the explainability method is not consistent and stable to

explain the model.

Spearman’s rank correlation is a non-parametric measure to assess the correlation

between two ranked lists of variables. It also assesses the monotonic relationships

between the variables. Its value ranges from -1 to 1, -1 meaning highly negative

correlation between the ranks, 1 highly positive correlation between the ranks while

0 means there is no association between the ranks. The formula to calculate the

rank correlation is as follows:

p = 1− 6∑d2
i

n(n2−1)
(3.4)

where p is the Spearman’s rank correlation (SRC), di - the difference between the

ranks of corresponding variables and n - the number of observations [124]. The

interpretation of the SRC varies from one domain to another. For example in the

medicine field, 0.2 and below is considered as weak, 0.2 to 0.5 as fair, 0.6 to 0.7 as
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moderate, 0.8 to 0.9 as strong and 1 as perfect [125].

We used the SRC [124] to evaluate the consistency and variability of SHAP and

LIME outcomes. From each LIME and SHAP, we consider N = 11 lists of signifi-

cant features, one for each fold and one for the test data. In our validation scheme,

we proposed to use the Spearman’s correlation between the lists of the folds and the

test for each SHAP and LIME as well as between the SHAP and LIME estimates.

Then, we used the SRC value and the corresponding statistical significance [125],

for validation.

3.4 Results

This section presents the results achieved by means of the proposed method for as-

sessing the robustness of explainability methods. The mean of MAE of the brain age

estimate using different numbers of folds was 3.44 with standard deviation 0.105.

The SRC coefficient between the ranked lists of significant features of the SHAP

method for each fold and the test data is summarized in Table 3.3 in the case of

10 folds. The correlation value ranged from 0.82 to 0.99 with p-value less than

0.001. The value was consistent across the folds and the test data indicating a high

level of consistency. Table 3.4 shows the Spearman’s rank correlation coefficient

Table 3.3: Spearman’s rank correlation between the ranked lists of significant fea-
tures for each fold and for the test data. F1, F2 stands for fold-1, fold-2, etc.

Fold Test F1 F2 F3 F4 F5 F6 F7 F8 F9
Test –
F1 0.83 –
F2 0.83 0.84 –
F3 0.84 0.86 0.85 –
F4 0.84 0.85 0.83 0.86 –
F5 0.83 0.86 0.83 0.85 0.87 –
F6 0.83 0.84 0.84 0.85 0.85 0.85 –
F7 0.85 0.85 0.84 0.87 0.85 0.85 0.85 –
F8 0.83 0.83 0.82 0.85 0.84 0.82 0.84 0.84 –
F9 0.84 0.85 0.82 0.85 0.85 0.84 0.86 0.85 0.84 –

F10 0.99 0.83 0.83 0.84 0.84 0.83 0.83 0.85 0.83 0.84

between the ranked lists of significant features for each fold and the test data locally

by LIME when 10 folds were used. The correlation value ranged from 0.89 to 0.76

with p-value less than 0.001. Again, the correlation values were consistent across

the folds and the test data. Analysing the p-value, one can conclude that the corre-

lation is significant. We examined the impact of using different numbers of folds
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Table 3.4: The rank correlation between the ranked lists of significant features using
LIME value for each fold and for the test data.

Fold Test F1 F2 F3 F4 F5 F6 F7 F8 F9
Test –
F1 0.76 –
F2 0.76 0.78 –
F3 0.75 0.78 0.78 –
F4 0.77 0.78 0.78 0.79 –
F5 0.77 0.78 0.77 0.77 0.81 –
F6 0.76 0.77 0.77 0.78 0.79 0.80 –
F7 0.76 0.78 0.79 0.79 0.80 0.81 0.79 –
F8 0.78 0.78 0.77 0.79 0.78 0.79 0.78 0.77 –
F9 0.77 0.77 0.76 0.78 0.79 0.78 0.80 0.79 0.78 –

F10 0.89 0.77 0.76 0.76 0.76 0.76 0.76 0.78 0.79 0.76

(3, 5, 10, 20, 40) on the correlation between the ranked lists of significant features.

Figure 3.2 shows the mean and standard deviation of the correlation values between

the ranked lists of significant features using different number of folds. We observed

that the mean value increased with the number of folds until a plateau was reached

for 20 folds, where it stabilizes. In addition, the standard deviation value was very

small from 10 folds on and much smaller when we increased the number of folds

indicating that the values of correlation clustered around the mean value. More-

over, the figure shows that the mean values in the case of 20 and 40 folds are very

close, suggesting that there may be no further benefit from using higher number

of folds beyond this level. Changing the number of folds amounts to changing the

cardinality of the training set. Figure 3.3 shows the mean and standard deviation

of the correlation values between the ranked lists of significant features for training

sets of changing cardinality. As it can be observed, the mean value of the correla-

tion among the rankings increases with the number of training samples, while the

variance decreases, as expected. Table 3.5 shows the Spearman’s rank correlation

between the ranked lists of significant features for SHAP and LIME. Despite the

fact that SHAP was calculated for all samples globally and LIME was calculated

for one single sample chosen randomly from the validation set for each fold, the

correlation is significant between both methods in all folds and the test data.

3.5 Discussion

The proposed criterion to assess feature ranking robustness rests on the assumption

that invariance with respect to folds and methods witnesses in favor of robustness. It
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Figure 3.2: Mean and standard deviation of the correlation between the ranked lists
of significant features as a function of the number of folds.

Figure 3.3: Mean and standard deviation of the correlation between the ranked lists
of significant features in respect with number of the validation samples.

also reflects some aspects of previously proposed proxies [112] [126]. Our robust-

ness criterion can be considered as a complementary test to what has been proposed



CHAPTER 3. EXPLAINABLE DEEP LEARNING 67

Table 3.5: The rank correlation between the lists of significant features between
SHAP and LIME. F represents fold number, SH stands for SHAP and LI stands for
LIME.

Fold TestSH F1SH F2SH F3SH F4SH F5SH F6SH F7SH F8SH F9SH F10SH
TestLI 0.90 0.78 0.78 0.78 0.78 0.79 0.78 0.78 0.78 0.78 0.90
F1LI 0.79 0.88 0.79 0.80 0.81 0.81 0.78 0.79 0.78 0.79 0.79
F2LI 0.8 0.81 0.91 0.81 0.81 0.79 0.79 0.80 0.79 0.79 0.80
F3LI 0.79 0.81 0.80 0.90 0.81 0.81 0.89 0.80 0.79 0.79 0.79
F4LI 0.79 0.80 0.79 0.81 0.91 0.83 0.80 0.79 0,78 0.80 0.79
F5LI 0.79 0.82 0.80 0.81 0.82 0.92 0.81 0.80 0.78 0.80 0.79
F6LI 0.80 0.80 0.79 0.82 0.81 0.82 0.90 0.80 0.80 0.81 0.80
F7LI 0.80 0.81 0.80 0.82 0.82 0.83 0.81 0.89 0.79 0.81 0.80
F8LI 0.81 0.79 0.80 0.80 0.81 0.81 0.80 0.79 0.89 0.79 0.81
F9LI 0.79 0.79 0.79 0.81 0.81 0.80 0.82 0.81 0.80 0.91 0.79

F10LI 0.89 0.78 0.78 0.79 0.79 0.80 0.77 0.79 0.79 0.78 0.87

previously [112] [126]. Still, one can see that there is a relation between different

criteria. High correlation between the ranked lists of significant features could indi-

cate greater completeness, because more samples are involved in the explainability

from the training sets. Moreover, cases of high correlation fulfil the sensitivity

criterion because the explainability method has attributed a nonzero value to the

significant features in all folds. However, in case of low correlation, the proposed

stability criterion indicates lower performance in completeness and sensitivity anal-

ysis because fewer samples were used. In addition, arbitrary and unstable features

attribution might be reflected in low correlation values.

Our method also fulfills the Compactness criterion as when the correlation is

high, this indicates that the explainability method is able to capture the main causes

(features on the top ranked lists) of the decision made by the model. Regarding

Correctness, we observed that even when we had low correlation value among the

lists of significant features, MAE did not increase and was very close to when we

had high correlation values. This is probably related to the fact that Correctness

was suggested and evaluated for binary classification whereas in this work we used

a regression model for the brain age estimation. Finally, we are aware that the pro-

posed proxy might not be applicable when there is a huge number of features, so

the generalization of the method is under investigation.

In this work, we presented a new simple validation scheme for explainability meth-

ods based on Spearman’s rank coefficients and cross-validation. We tested both

SHAP and LIME to identify the important features in the DL model (for brain age
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estimation) using different number of folds that led to different number of samples

in the training and validation sets. Then we used Spearman’s rank correlation to cal-

culate the agreement between the ranked lists of significant features for each fold.

Overall, SHAP and LIME performed better for the identification of significant fea-

tures for larger training sets. Depending on one single list of significant feature

might be inaccurate; instead, using cross-validation and ranked correlation among

the lists might provide more evidence of the robustness of the feature ranking as

assessed relying on Sperman’s rank correlation.
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4 Brain age for different fiber groups

4.1 Introduction

Aging is a complex process with substantial impact across multiple organ systems,

yet to be fully characterised. In the specific case of the brain, previous studies have

found evidence of considerable structural alterations of WM and GM structures

as well as of morphological and functional connectivity changes across different

areas [76]. These modifications are associated with distinct aspects of cognitive

functions, emotions, and neurodegenerative disorders [127]. Several studies have

demonstrated that groups of WM tracts that share the same function experience sim-

ilar alterations during the life course and in specific brain disorders. In particular,

Yang et al. [128] investigated the association of brain aging with WM integrity and

functional connectivity in a group of healthy subjects. Their findings demonstrated

that Projection, Association and Commissural fibers were substantially affected by

aging resulting in a significant reduction of their WM integrity, while Brainstem

tracts were relatively preserved. In another study, Bender et al. compared different

diffusion-based indices estimated over Association, Commissural and Projection

fibers again in a healthy population [129], demonstrating a greater microstructural

decline over time in the first fiber group compared to the Commissural and Projec-

tion ones, and a differential aging of cerebral WM. Moreover, the tracts that con-

nect frontal and parietal heteromodal cortices have been shown to be more prone

to age-related differences than those from projection fibers [130]. In this context,

the so-called "lastly maturing, first going out" phenomenon, grounding on previous

MRI evidence [129] [131] [132], is of great importance. This refers to a mirror-

ing pattern of development and aging of the human brain, where the last regions

to develop are degenerating relatively early [131]. In particular, primitive sensori-

motor structures encounter the most rapid development and greatest preservation,

while more advanced structures (e.g., prefrontal cortex) seem to have slower de-
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velopment and faster decline, leading also to differential developmental trajectories

across WM tracts [130] [132] [131]. Therefore, existing work suggests differen-

tial aging-related changes depending on the specific WM fiber groups, which might

result in diverse patterns of disease and cognitive impairment. However, the deter-

minants of these different alteration patterns have not been adequately investigated

so far.

Neuroimaging modalities can be adopted to estimate the so-called brain age which

allows monitoring the longitudinal progression of brain during lifecourse. This is

defined as the apparent biological age of the brain, when comparing individuals’

data against a population dataset spanning a range of ages [39] [32]. The differ-

ence between predicted brain age and actual (chronological) age, generally referred

to as brain-PAD, is often computed to verify whether a subject’s brain appears

younger or older than their chronological age [74]. Indeed, since humans do not

experience brain aging at the same rate and pronounced differences possibly re-

lated to genetic and environmental factors are present, brain-PAD can be exploited

as a novel biomarker to assess brain aging progression in both healthy and dis-

eased populations. Greater brain age (positive brain-PAD) has been associated with

increased risk of neurodegenerative diseases, whilst younger brain age (negative

or small brain-PAD) correlates with healthy environmental exposures and lifestyle

habits [36]. Among these factors, daily lifestyle, physical activity, electronic device

use, and sleeping habits have all shown significant effects on brain progress during

the lifecourse [40] [32], with smoking and greater alcohol intake frequency closely

linked to increased brain-PAD for instance. Similarly, genetic factors also have a

crucial role in brain aging.

In a recent study, Jonsson and colleagues [39] demonstrated the presence of two

SNPs significantly associated with brain-PAD by relying on a GWAS, which were

correlated with reduced WM surface area and reduced sulcal width[39]. Other

studies identified several SNPs associated with brain-PAD, with the most signifi-

cant ones located in MAPT [40] and TMEM106B genes [133]. These two genes

have been shown to be closely associated with frontotemporal dementia [134], and

MAPT has also been considered as a model of interaction in Parkinson’s disease
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between functional disease outcomes and genetic [135].

Furthermore, there is a growing evidence suggesting complex cross-system inter-

actions between brain and cardiovascular systems [88] [89] [136]. Indeed, CRFs

have been already associated with poorer cognitive function. Precisely, higher body

mass index (BMI) has been linked to poorer performance across multiple cognitive

indications including working memory, attention, delayed recall, and category flu-

ency [137]. In addition, other risk factors such as diabetes and hypertension have

been associated with unhealthy brain aging, abnormal neuroanatomical alterations,

and increasing risk of developing AD [117]. Finally, DeLange and colleagues [138]

demonstrated that CRFs such as stroke risk score and alcohol intake are associated

with older appearing brains. All these elements deserve further investigations to

better understand whether they might influence the brain aging processes differ-

ently.

In this context, neuroimaging data derived from MRI sequences have demonstrated

to provide accurate estimates of the apparent age of individuals’ brains, generally re-

lying on age regression models [139]. Most brain-age models only use T1-weighted

structural MRI, reflecting brain volumes. However, the possibility to use comple-

mentary modalities mapping different aspects of brain structure and function has

opened the way to the estimation of modality-specific brain aging models. In par-

ticular, dMRI, resting-state/task fMRI and SWI are currently exploited in differ-

ent studies to extract novel IDPs to be used in specific brain-age models, thanks

to the new opportunities offered by large-scale multimodal databases such as the

UKBB [86]. Statistical methods for modeling brain age using neuroimaging data

are generally highly accurate, with MAE of predictions in the range of 4-5 years for

most of the studies relying on different regression approaches such as simple linear

regression, SVR and LASSO [32] [36] [40] [139].

In addition, most of these previous studies have demonstrated better results when

including multimodal neuroimaging data rather than a single modality in the mod-

els [138] [140] [141]. In particular, findings from these multimodality studies sug-

gest that dMRI measures have higher accuracy in predicting brain age compared to

those derived from fMRI, SWI or even anatomical images in some cases [36] [76].
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The diffusion-based features are generally extracted starting from the microstruc-

tural maps estimated using different models, such as DTI and NODDI, and then

averaging the corresponding values over several WM tracts. FA along with indices

of diffusivity (MD/AxD/RD) can be estimated from the DTI model, informing on

the degree of anisotropy/diffusivity of diffusion process [142]. Conversely, more

complex indices are derived from NODDI, a compartmental model where brain

microstructure is described in terms of a set of predefined parameters that is neu-

rite ODI, representing the directional overall coherence of modeled axons, ISOVF,

showing the unhindered water volume fraction, and ICVF that represents neuronal

density [24] [143] [144]. Previous works have demonstrated the importance of

DTI and NODDI IDPs for estimating brain age in both healthy and diseased pop-

ulations [145] [146]. Moreover, microstructural patterns have been demonstrated

to follow different trajectories in brain aging within WM structures. In particular,

FA tends to decrease during aging while MD, AD and RD have the opposite pat-

tern [99] [32].

In this study, we aimed at estimating and comparing diffusion-specific brain ages in

a large cohort free from clinically diagnosed neurological disease from the UKBB

database, relying on dMRI measures of different fiber groups in order to assess the

impact of aging on WM at the tract-group level. Indeed, investigating brain aging

for tracts with shared functionality may permit a more accurate and disease-specific

risk assessment compared to brain aging for the whole brain. In addition, for each

fiber group, we evaluated the relationship between brain predicted ages and sev-

eral factors spanning across different scales, relating in particular to daily lifestyle,

health, cardiac measures and genetics to verify whether a differential association

might be present in specific WM tracts. This will also allow to identify those fac-

tors that can negatively impact brain aging, providing further insights on its complex

mechanisms.
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4.2 Data

4.2.1 Participants

Data from n = 16394 participants with complete brain and cardiac MRI assessment

were initially downloaded from the UKBB database. Of these, 1059 subjects who

reported neurological disorders that could directly affect cognitive function were

excluded in order to include only people who met criteria for being neurologically

intact at the time of scanning. These were identified using the self-reported medical

conditions at baseline extracted from detailed questionnaires that the UKBB par-

ticipants had to answer, the relevant ICD-10 code, hospital episode statistics, and

algorithmically-defined outcomes. This led to a final group of 15335 subjects (mean

age 54.79 ± 7.45, 7277 males, 8058 females). The complete list of conditions and

ICD-10 codes used as inclusion/exclusion criteria are available in Appendix, table

1.

All the methods were conducted in accordance with the relevant guidelines and

regulations and all participants provided informed consent. UKBB received ethi-

cal approval from the NHS National Research Ethics Service on 17th June 2011

(Ref 11/NW/0382) and extended on 10th May 2016 (Ref 16/NW/0274). More de-

tails can be found on the UKBB resource page https://biobank.ndph.ox.ac.

uk/showcase/catalogs.cgi. The present analyses were conducted under data

application number 2964.

4.2.2 Brain and Cardiac MRI features.

The UKBB brain imaging protocol was implemented on a 3T Siemens scanner

(Skyra, VD13A SP4, Siemens Healthcare, Erlangen, Germany) and included six

different sequences, covering structural, diffusion and functional imaging for a total

of 35 minutes scan time. In particular, a multi-shell protocol has been used for dMRI

data, with two b-values (b = 1000, 2000 s/mm2), a 2-mm isotropic resolution and a

multiband acceleration factor of 3. 50 diffusion-encoding directions were acquired

per shell, covering a total of 100 distinct directions over the two b-values. Cardiac

MRI was performed on a 1.5T Siemens scanner (MAGNETOM Aera, Syngo Plat-

form VD13A, Siemens Healthcare) according to a pre-defined protocol [147] [148].

https://biobank.ndph.ox.ac.uk/showcase/catalogs.cgi
https://biobank.ndph.ox.ac.uk/showcase/catalogs.cgi
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Left and right ventricular (LV, RV) function was assessed using standard long and

short axis acquisitions.

4.2.3 Genotype data.

UKBB genotyped genetic data for 488377 participants were obtained using two

genotyping arrays. A small subsets of the participants (49950) involved in UKBB

Lung Exome Variant Evaluation (UK BiLEVE) study were genotyped using the Ap-

plied Biosystems UK BiLEVE Axiom Array by Affymetrix. Conversely, the ma-

jority of the participants (438427) was genotyped using the closely related Applied

Biosystems UKBB Axiom Array. More details about genotyping and genotype

calling steps can be found in [66].

4.3 Methods

4.3.1 Brain microstructure feature extraction.

In the current study, we relied on the IDPs derived centrally by the researchers in-

volved in the UKBB project and made available via the data showcase ( https:

//biobank.ctsu.ox.ac.uk/crystal/index.cgi). Of these, we focused on the

675 dMRI IDPs extracted for each participant using the following pipeline. First,

both the diffusion tensor and the NODDI models were fitted to the pre-processed

data leading to nine voxelwise microstructural maps, namely FA, MD, axial diffu-

sivity (L1), radial diffusivities (L2, L3) and mode of anisotropy (MO) from DTI,

and ICVF, ISOVF, and ODI from NODDI. Two sets of measures were used as mi-

crostructural features, both obtained from the UKBB repository and extracted fol-

lowing two different approaches [86] [70]. The first used tract-based spatial statis-

tics (TBSS). Each individual dMRI map was aligned to a standard-space WM tract

skeleton and a series of ROIs was then defined as the overlap of this skeleton with 48

standard-space tract masks from the JHU ICBM-DTI-81 atlas [80]. For each skele-

tonised microstructural index, the mean value was calculated in each region, leading

to a total of 432 IDPs (that is 48 ROIs times 9 IDPs). The second relied on proba-

bilistic tractography. A total of 27 major tracts were identified using standard-space

start/stop ROI masks defined by AutoPtx toolbox (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx).

The mean value of each DTI/NODDI parameter was calculated across each tract and

https://biobank.ctsu.ox.ac.uk/crystal/index.cgi
https://biobank.ctsu.ox.ac.uk/crystal/index.cgi
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weighted by the tractography output as in Alfaro et al. [70] in order to emphasize

values in regions most likely to belong to the tract of interest, resulting in a total of

243 IDPs (27 tracts times 9 IDPs). Table 2 in the appendix shows these tracts and

their fiber group.

Each ROI and tract was subsequently assigned to one out of five fiber groups (FG)

following the fiber tract-based atlas [149]. In particular, the following FG were

considered: i) Association; (cortex-cortex connections); ii) Brainstem; iii) Com-

missural (left-right hemispheric connection); iv) Limbic; and v) Projection (cortex-

brainstem, cortex–spinal cord and cortex-thalamus connections) fibers. Each FG

consisted of a different number of tracts, that is: 22 for Association, 13 for Brain-

stem, 13 for Commissural, 9 for Limbic, and 18 for Projection. An illustration of

these five fiber families is reported in figure 4.1, where the different tracts are de-

picted in different colors. Association fibers interconnect different cortical areas in

Figure 4.1: White matter tract groups

the same hemisphere [150]. These might be short association fibers that connect

adjacent gyri, or long association fibers linking more distant parts of the cerebral

cortex. Important examples of this category are the superior/inferior longitudinal

fasciculus, inferior fronto-occipital fasciculus, and uncinate fasciculus [151]. Brain-

stem fibers involve the tracts that connect cerebrum to the spinal cord and cere-

bellum[152]. These includes the corticospinal tract, the posterior column-medial

lemniscus pathway and the spinothalamic tract. Commissural fibers interconnect

corresponding cortical regions of the two hemispheres and are mainly represented

by the corpus callosum and anterior commissure [150]. Limbic fibers involve struc-

ture in both sides of thalamus [153]. Fornix is one of the main vital tract of this

system [154], alongside the Cingulum bundle that connects parietal, frontal and

temporal lobe [155]. Finally, Projection fibers connect cortical areas with deep nu-
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clei, cerebellum, brainstem, and spinal cord [156]. Corticospinal and corona radiata

tracts are the two main examples for this category [157]. By subsequently assigning

each ROI and tract to the respective FG, summary IDP values could be derived by

averaging across ROIs and tracts, respectively, in each FG. In this way, the whole

set of IDPs were assigned to each FG resulting in a total of 18 IDPs (9 from the

ROI-based and 9 from the tract-based analyses).

4.3.2 Cardiovascular feature extraction.

CMR data were analysed using an automated pipeline [158]. The extracted cardio-

vascular indices included measures of LV and RV structure and function. Specifi-

cally, the indices derived for the LVEDV, LVESV, LVSV and LVM. The RV indices

included RVSV, RVEDV, RVESV were considered. LV and RV volumes are mark-

ers of cardiac remodelling, from these stroke volume may be derived as a measure

of ventricular function. LVM is an independent risk predictor in clinical cohorts and

an indicator of heart aging in population cohorts. To correct for variation in CMR

metrics related to body size, these measures were indexed to body surface area (cal-

culated as per Du Bois formula) [159]. As an additional measure of arterial health

in a larger sample, we considered arterial stiffness index (ASI) derived from finger

plethysmography [160]. ASI was measured at the baseline UKBB visit using the

PulseTrace PCA2 (CareFusion, USA) device according to a pre-defined protocol,

UKBB Arterial Pulse-Wave Velocity (2011) that is available at https://biobank.

ndph.ox.ac.uk/showcase/showcase/docs/Pulsewave.pdf. Outliers were re-

moved from the ASI variable using a 1·5× interquartile range (IQR) rule. Fi-

nally, CRFs included hypertension, diabetes, deprivation (reported in UKBB as the

Townsend index), body surface area (BSA), BMI and exercise level.

4.3.3 Lifestyle features.

Regarding daily life measures, 38 variables were available in the UKBB database

at baseline. The lifestyle and environment measures included seven categories that

are: physical activity (7 measures), sun exposure (2 measures), electronic devise

use (2 measures), smoking (2 measures), sleeping habits (5 measures), alcohol (3

measures) and diet (17 measures). All the used variables are available in appendix,

 https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/Pulsewave.pdf
 https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/Pulsewave.pdf
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table 3.

4.3.4 Brain Age estimation.

All the analyses performed in our study were carried out using Python 3.8.5 and

Scikit-learn version 0.23.2. A tract-based healthy aging model was defined for each

of the five FGs, using the corresponding 18 dMRI IDPs as neuroimaging predictors

and the chronological age as dependent variable. To account for the different mea-

surement scales, the features were normalized to zero mean and unit variance [32].

Sex, education level, height and volumetric scaling from T1-weighted head image

to standard space were used as covariates considering that they could be statisti-

cally associated with the outcome variable, as previously reported in similar stud-

ies [32] [36] [161]. A Bayesian ridge regression model was run in combination with

a 10-fold cross-validation, where the data samples were randomly assigned into ten

equal-sized groups. For each group of left out data, the other 90% of subjects were

used to estimate the model parameters which were then applied to this additional

group for validation. The performance of each model was assessed using MAE and

Coefficient of Determination (R2).

Several studies have revealed a proportional bias in brain age estimation related to

regression model dilution, leading to a significant age-dependency between brain-

PAD and chronological age [35] [87] that needs to be statistically corrected. In this

study, we adopted the method proposed by Beheshti et al. [35] which entailed calcu-

lating the regression line between brain-PAD and chronological age in the training

set:

D = α ∗Ω+β (4.1)

where D is the brain-PAD from training data, α and β represent the slope and the

intercept of the linear regression model, and Ω is the corresponding chronological

age. Then, these intercept and slope values were used to correct the predicted brain

age in the validation set set as follows:

CPBA = Predicted BrainAge− (α ∗Ω+β ) (4.2)
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where CPBA represents the corrected predicted brain age (bias-free). After bias cor-

rection, the brain-PAD was calculated as the actual age subtracted from the brain-

predicted age. Pearson correlation was calculated between actual and predicted

brain age as well as actual age and brain-PAD, both before and after the bias cor-

rection steps. An ensemble tract-based aging model was finally defined using the

overall 90 dMRI IDPs (18 from each FG), and the same analyses detailed above

were implemented.

4.3.5 Association analysis

In order to highlight the role of the different variables to model brain age, the as-

sociation between brain-PAD values as resulting from the five FG models and a set

of imaging/non-imaging variables was assessed using linear regression model. This

included the corresponding 18 dMRI IDPs, 14 CRFs/CMR measures, and 38 daily

life measures. In addition, the same analyses were performed for the brain-PAD val-

ues derived from the ensemble model, with the only difference being represented

by the associations with the whole set of 90 IDPs for the dMRI part (rather than

18 only). In all models, brain-PAD represented the outcome measure, while the

feature of interest was the independent variable alongside all the above mentioned

covariates plus age [32, 36]. The resulting p-values were Bonferroni-corrected for

multiple comparisons at alpha= 0.05 [162], assuming that each model is indepen-

dent from the others. In details, the p-values were multiplied by the number of tests

performed in each analysis, that are 18 for the associations with the IDPs in each of

the five FG models and 90 for the Ensemble model. The association was considered

significant if the corrected p-value was less then 0.05.

Of note, Cook’s distance was used to identify potential influential observations be-

fore performing the association analyses. In particular, a subject was removed if the

Cook’s distance was greater than 3 times the mean distance of all the subjects [40].

The association between genetic variants and brain-PAD values as resulting from

each model was also conducted. The quality control steps on SNPs included Mi-

nor allele frequency (MAF) thresholding at 0.01, missing rate less than 0.02 and

Hardy-Weinberg equilibrium p-value >=1E-6. Quality control on samples ensured
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that all participants had genotyping rate > 0.98, heterozygosity rate within ±3 stan-

dard deviation, matched genetic/reported gender and were of European ancestry

(according to both genetic ethnicity based on principal component analyses and

self-reported ethnicity). Related samples were removed based on kinship coeffi-

cient > 0.1. The quality control steps resulted in 574492 autosomal SNPs and 12364

subjects for the GWAS analyses. Thereafter, linear regression was performed us-

ing PLINK [163] and adjusted for education, gender, age, volumetric scaling from

T1-weighted head image to standard space, and 40 genetic principal components

of ancestry. For each GWAS analysis, FUMA[164] was used to map the signif-

icant SNPs to genes based on positional mapping and eQTL. Using FUMA and

GTEx (https://gtexportal.org/home/), we also identified Expression quanti-

tative trait loci (eQTL) to take advantage of gene expression. Finally, we looked

at UKBB genetic data (http://big.stats.ox.ac.uk/) [78] to find association

between the significant SNPs and other phenotypes.

4.4 Results

4.4.1 Brain age estimation.

The impact of aging was separately assessed in terms of MAE and R2 values af-

ter fitting the five considered multivariate linear FG-based models plus the ensem-

ble one. The mean and standard deviation of such values across a ten-fold cross-

validation were reported in order to probe the reliability of the estimation. Results

are summarized in Table 4.1 where the columns 2 to 6 correspond to the five FGs,

that is, Association, Brainstem, Commissural, Limbic and Projection fibers, and the

last column reports the results for the FG ensemble. In the table, the Pearson corre-

lation coefficient between the actual age and the predicted age before (CAPB) and

after (CAPA) correction, the actual age and the brain-PAD before (CADB) and after

(CADA) correction are also reported in the last four rows.

As it can be observed, the performance is quite uniform across FG, with the excep-

tion of the Brainstem group especially regarding the R2 value that is the lowest. The

best MAE was obtained for the tract ensemble model followed by the Limbic FG,

which also corresponds to the highest R2. The last four rows prove that the age-bias

https://gtexportal.org/home/
http://big.stats.ox.ac.uk/
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was successfully removed.

Table 4.1: Performance of the five FG-based models plus the ensemble one to es-
timate brain age in terms of MAE and R2. The last four rows provide the CAPB,
CAPA, CADB and CADA, respectively. The best performing model is identified by
star symbol.

Matrices Association Brainstem Commissural Limbic Projection Ensemble
Mean R2 0.26 0.11 0.26 0.29 0.25 ? 0.42
STDV R2 0.02 0.01 0.01 0.02 0.03 0.015

Mean MAE 5.24 5.86 5.23 5.08 5.28 ? 4.55
STDV MAE 0.1 0.09 0.11 0.12 0.13 0.08

CAPB 0.51 0.33 0.51 0.54 0.5 0.65
CAPA 0.91 0.95 0.91 0.9 0.91 0.89
CADB -0.85 -0.94 -0.86 -0.83 -0.86 -0.75
CADA -0.001 -0.003 -0.001 -0.001 -0.001 -0.006

4.4.2 IDPs association with brain-PAD.

Linear regression results describing the relationships between the bias-adjusted brain-

PAD values for the five FG-based models and each microstructural IDPs are illus-

trated in Figure 4.2. In addition, results for the ensemble model are also reported,

including in this case the associations with 90 dMRI IDPs rather than 18 as in the

case of the previous five FG models. The coefficient values are unitless as we stan-

dardized the IDPs and brain-PAD before performing the analysis. The coefficient

value refers to how many standard deviations a dependent variable (brain-PAD)

will change per standard deviation increase in the independent variable (individual

IDPs). A highly similar association pattern is apparent across FG, though higher

variability was observed for the Limbic FG. More specifically, all the IDPs were

significantly associated with brain-PAD in Association and Commissural groups,

while few associations did not reach significance in the other three tract groups,

that is: mean L1 and mean ICVF in Brainstem, weighted mean L1 in Limbic and

weighted mean MO in Projection fibers. Considering the different imaging vari-

ables, anisotropy (FA, ICVF, OD and MO and respective weighted versions) and

diffusivity (MD, L1, L2, L3, ISOVF and weighted versions) indices led to associa-

tions of opposite direction, as expected, in almost all the cases. More precisely, FA

and weighted FA showed a significant negative association with brain-PAD in all

five groups, while MD/weighted MD presented the opposite pattern and appeared

to more strongly contribute to modelling the outcome in all cases. Similarly, in-
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creased L1, L2 and L3 plus their weighted versions were associated with increased

the brain-PAD for all groups, except L1 and weighted L1 in Brainstem and Lim-

bic FGs, respectively. Finally, the weaker associations were observed for MO and

weighted MO in all models. Consistently with what above, for NODDI-based mea-

sures, the diffusivity index ISOVF was positively associated with the brain-PAD in

all cases. A slightly different pattern was observed for OD and its weighted version

across the FG, that presents a higher variability. OD is positively associated with the

brain-PAD, as expected, in Brainstem and Limbic fibers, though not in the weighted

version, and has a different pattern in the other three groups, with a prevalence of a

negative association of the weighted version. The association between the IDPs and

the brain-PAD was also assessed FG-wise relying on the Ensemble model, revealing

that the pattern was preserved though with slightly different values. In particular,

the association was slightly reduced with respect to the values that were obtained for

FG-specific brain-PADs. Check table 4 in the appendix for more details regarding

the association.

4.4.3 CRFs and vascular measures association with brain-PAD.

Figure 4.3 reports the results of the linear regression analyses between the bias-

adjusted brain-PAD values and the CRFs/CMR measures, revealing consistent pat-

terns across the five FG models. In all conditions, several measures were signifi-

cantly associated with PAD after multiple comparison correction, in particular in-

creased brain-PAD was associated with a diagnosis of diabetes, hypertension and

increased LVM, as well as with reduced LVSV/RVSV and RVEDV/RVESV. Greater

BMI was also associated with increased brain-PAD in three out of five models (Pro-

jection, Brainstem and Limbic), with the last two fiber groups also showing a posi-

tive relationship between brain-PAD and BSA. Of note, the model based on Limbic

fibers presented the highest number of significant associations and the direction of

the relationships was consistent in all the five FC-based models. The same trend

was observed for the Ensemble model. These associations followed the same pat-

tern compared to the other five FG models. More precisely, the association results

were closer to those found for the the Brainstem and Limbic FG, especially in eight

out of 14 measures. Check table 5 in the appendix for more details regarding the
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Figure 4.2: Association of the IDPs and brain-PAD for the different models. For
each model, the numbers on the x-axis represents the order of the different IDPs
summarised in the legend, while the regression coefficient (the diamond shape rep-
resents the beta coefficient) values are reported in the y-axis along with their stan-
dard error (the small black dot inside the diamond shape). Grey color indicates
non-significant association.

association.

4.4.4 Lifestyle association with brain-PAD.

Figure 4.4 reports the results of the linear regressions between the bias-adjusted the

brain-PAD values and the daily life measures in each of the five FG-based models
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Figure 4.3: Association of the CMR measures, CRFs and brain-PAD. For each
model, the numbers on the x-axis represents the order of the different CMR and
CRFs measures summarised in the legend, while the regression coefficient (the di-
amond shape represents the beta coefficient) values are reported in the y-axis along
with their standard error. Grey color indicates non-significant association.

plus the Ensemble one. Consistent patterns were visible across the FGs. The high-

est number of significant associations was observed for the Limbic tracts, while

only four measures survived for the Brainstem group, though in agreement with the

others. In all cases, increased brain-PAD was associated with ever smoked, smok-

ing status, greater oily fish intake, and tea intake (except for Association fibers).

In addition, increased brain-PAD values from Association, Commissural and Lim-

bic fibers were associated with greater lamb/mutton intake and greater frequency
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of alcohol intake. Duration of walk for pleasure had a positive impact on brain

age, being associated with reduced brain-PAD values in both Limbic and Projection

fiber models, while increased brain-PAD was associated with water intake in Com-

misural and Projection FG models. Finally, seven additional daily life measures,

including time spent watching TV or using computer and sleep duration, presented

only selective associations in one of the models (4 for Limbic, 2 for Association

and 1 for Projection). Check table 6 in the supplementary for more details regard-

ing the association. The coefficient value for all those are significantly associated

with brain-PAD in FG is small (less than 0.3) indicating small effect.

4.4.5 Association between SNPs and brain-PAD.

Two SNPs located on chromosome 6 showed significant associations (p < 5E-08)

with brain-PAD values in the Projection FG, namely rs1045537 (p = 2.87E-08) and

rs16891334 (p = 4.268E-08). Figure 4.5 illustrates the Manhattan plot showing the

association between the SNPs in all chromosomes and brain-PAD from the Projec-

tion FG. Moreover, the Manhattan plots for the other FG and the ensemble model

were also reported (Appendix, Figures 1 to 5). The leading SNP (rs1045537) was

mapped to BTN3A cluster (BTN3A1 to BTN3A3), SCGN, SLC17A cluster (SLC17A1

to SLC17A4), HIST1H1A group of genes based on FUMA results using positional

mapping and eQTL based on GTEx database (version 8.54 and 8.30) and general

tissue types. In addition, it is significantly associated with forced vital capacity,

BMI, headache and coeliac disease in UKBB cohort.

4.5 Discussion

This study focuses on providing a holistic view on the endogenous end exogenous

factors shaping brain aging as expressed by brain microstructural features of spe-

cific WM tracts, providing hints for the multiscale and multifactorial analysis of

the system ’human being’. The challenge being to link heterogeneous informa-

tion living at different scales, this work takes a step in that direction by linking

microscopic (genes), mesoscopic (dMRI IDPs), macroscopic (cardiovascular IDPs)

and behavioral (lifestyle) measures through their respective association to the brain

age picture provided by dMRI. After investigating the potential of microstructural
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Figure 4.4: Association of daily lifestyle measures and brain-PAD. For each model,
the numbers on the x-axis represents the order of the daily lifestyle measures sum-
marised in the legend, while the regression coefficient (the diamond shape repre-
sents the beta coefficient) values are reported in the y-axis along with their standard
error. Grey color indicates non-significant association. A unique color was assigned
to each group measures(e.g physical activity).

measures derived from dMRI in estimating brain-PAD relying on five different FG,

the associations of neuroimaging, genetic and cardiovascular IDPs with brain-PAD

were assessed and, as a final step, lifestyle and behavioral measures were also con-
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Figure 4.5: Manhattan plot reporting the association results between SNPs and
brain-PAD in Projection FG. The red line indicates the GWAS threshold on p-value
(i.e.,5E-8), while the blue line indicates the suggestive threshold of p=5E-5.

sidered. The rest of this section will be dedicated to the discussion of the results as

well as of the potential consistency of the observed associations across scales while

referring to the existing literature.

The estimated brain-PAD was minimized by the Ensemble model, gathering the

whole set of 18× 5 microstructural features, leading to the minimum MAE (4.55

years) and the maximum R2 (0.42). On the other end, Brainstem FG led to worst

performance, with the highest value for the MAE (5.86 years with std =0.01) and

the minimum for R2 (0.11). The Brainstem FG, including the midbrain, pons, and

medulla, involves structures with complex WM pathways and GM nuclei that are

concentrated in a small area. Intricate Brainstem circuitries are difficult to capture

using conventional dMRI measures such as DTI, with the consequence that both the

tractography and the estimation of microstructural indices are prone to errors [165].

Among the other single FG-based models, the Limbic one provided the best MAE

(5.08 with std = 0.02) and R2 (0.29), closely followed by the others (Association-

, Commissural- and Projection-based FG models) showing a similar pattern. The

Ensemble model relying on all available IDPs provided the best results compared

to single FG-based models, suggesting that the inclusion of multiple features from

different WM FG could better depict the modulations related to brain aging and
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therefore lead to more accurate estimates.

However, this would impeed to disambiguate the impact of the aging process on the

different FGs, that is the main objective of this work. The association of PAD with

the dMRI IDPs revealed the path these measures follow in brain aging. Based on

the corrected p-value, their association with PAD wes significant in all FGs apart

from very few cases. Fractional anisotropy (FA) and ICVF were reduced in all tract

groups while L1, L2, L3, MD, ISOVF increased with advancing age. This is in

agreement with the expectation since they are consistent with neuronal loss as dis-

cussed in [ADD REFS]. The contribution of OD and MO was relatively inconsistent

among tract groups featuring an increment in some FGs and a decrement in others.

The pattern was similar for the Association, Commissural and Projection FGs, as

well as for the Ensemble model. The results for Limbic tract showed a different

pattern compared to other FGs. Overall, our results are inline with what have been

published before in terms of the direction these IDPs follow in brain aging, as re-

ported, for instance, in Smith, et.al [32]. Their results indicate that FA and ICVF

decrease with aging while L1, L2, L3, MD and ISOVF increase. In addition, they

showed that the dMRI features are among of those most relevant for the estimation

of brain age in Fornix irrespectively of the sex. Our results are consistent with these

findings since as the IDPs from the Limbic FG, which is dominant in the Fornix

tracts, were on the top of the list of relevant features to model brain age in the En-

semble model.

Another interpretation for such results could be that brain age is more accurately

estimated in these regions than other regions which result in reduced error (MAE).

In addition, the diffusion indices in the Limbic tracts, specially in the Fornix, might

be very sensitive to aging and indicate an atrophy of the tract rather than alterations

in WM microstructure [38].

Most of CRFs and CMR measures led to significant associations with brain-PAD

in different FGs. The direction of the association was shared by all tract groups.

Brain-PAD in the Limbic FG was significantly associated (5 positively and 5 neg-

atively) with most of these measures. Brainstem FG brain-PAD was significantly

associated with 4 measures negatively and 5 positively. Brain-PAD in Ensemble
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model was significantly and positively associated with 6 measures and significantly

and negatively associated with 3 measures. Positive associations was two times

compared to negative with brain-PAD in the case when all IDPs were used to model

brain age, while association and commissural seem less affected. Among these mea-

sures, diabetes, hypertension and LVM were positively associated with brain-PAD

in all tract groups while RVEDV, RVESV and RVSV were negatively associated

with brain-PAD in all tract groups. The other measures showed inconsistent associ-

ation with brain-PAD across different tract groups. Body mass index and diabetes

were positively associated with brain-PAD which indicates induced acceleration in

brain aging. Based on these results, people who suffer from diabetes might expe-

rience accelerate brain aging by about half a year, consistently with [36] reporting

an acceleration of about 2 years. The difference might be related to the features

preprocessing and normalization steps. The body mass index has been associated

with risk of developing neurodegeneration or cognitive decline. Increasing in adi-

posity in overweight and obese individuals might alter the white matter volume that

causes faster brain aging up to 10 years [166]. Cardiac index is significantly associ-

ated with brain aging even for healthy people. People who present a lower cardiac

index or least pumping blood rate appeared almost 2 years older than those having

highest cardiac index [117]. Moreover, low cardiac index might be an indication

of increase risk of brain disorders. In [167] they have concluded that low cardiac

index increase the risk of incident Dementia and AD. Our results demonstrate novel

associations between accelerated brain-PAD and vascular risk factors. However,

as we do not account for potential co-existence of multiple risk factors we cannot

conclude independent associations with individual risk factors. More detailed ex-

amination of these relationships including accounting for possible confounding and

evaluation of mediating mechanisms is warranted, although beyond the scope of the

present work.

Regarding daily lifestyle factors and activities, 11 measures had significant asso-

ciations with limbic tracts. Among them, 5 measures were negatively associated

with brain-PAD meaning that these factors might slow down and preserve from

brain aging. Brainstem tracts were significantly associated with only 4 measures,
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out of which three were positive (indicating accelerated brain aging) and one was

negative (indicating delaied brain aging). Association, Commissural and Projec-

tion FG showed close results of 7 significant associations for each one of them.

For the Ensemble model, 9 measures were significantly associated with brain-PAD,

and mostly were positively associated. Among all these measures, smoking stat-

ues and alcohol frequency intake was significant in all cases (apart from alcohol

frequency intake in Brainstem). Alcohol frequency intake was negatively associ-

ated with brain-PAD which indicates acceleration in brain aging. This has been

confirmed before in other studies. Of note, alcohol frequency intake was coded as

lower value means higher intake. In [168], alcohol intake history was negatively

associated with WM volume specially in corpus callosum. In addition, alcohol fre-

quency intake was associated with deleterious in white matter tracts cause atrophy

in ensemble and regional brain [169]. Our findings are inline with previous studies

and this was observed in most tract groups. Two variables were considered to de-

fine smoking status based on data available in UKBB these included ever smoked

(UKBB ID 20160) and smoking status (UKBB ID 20116). Smoking is associ-

ated positively with brain-PAD suggesting that smoking has a negative impact on

brain aging. It should be noted that smoking habits is being associated with differ-

ent alterations in both white and grey matter. Moreover, smoking duration linked

with reduced total volume of WM . It is also associated with reduction in FA in

the cingulate gyrus [170]. Lamb/mutton intake was also positively associated with

brain-PAD in some tract groups. Low red meat intake has been associated with

better cognitive function [171]. In addition, limited consumption of red meat might

reduce risk of AD, slow cognitive decline and reduce AD biomarker such as atro-

phy [172]. Time spent using computer and sleep duration were positively associated

with brain-PAD in Limbic fibers causing acceleration in brain aging. Finally, dura-

tion of walk for pleasure was negatively associated pointing to a healthy brain aging

as walking stimulates blood circulations and exposition to the sun light.

The association of SNPs and brain-PAD in different FGs led to the identification of

one significant locus with leading SNP rs1045537 (p < 5 × 10-8) in Projection fibers.

Significant association was observed between rs1045537 SNP and an eQTL of
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BTN3A2 in heart left ventricle, basal ganglia, Frontal Cortex and Cortex. BTN3A2

gene has been identified as a potential risk gene for schizophrenia [173] [174]. The

SNP is also significantly associated with malabsorption/coeliac disease, body mass

index and headache. HIST1H1A gene was associated with DNA methylation at

early AD stages [175]. SCGN gene was identified as one of the most common

psychostimulants in brain-wide targets [176]. SLC17A2 is one of the solute carrier

family that is membrane protein and transporter. It was associated with neurode-

generative disorders because of its important role in the recovery of neurotransmit-

ters [177].

Estimating brain age for a specific region within brain or using different modes

of structural and functional change were proposed before to detect the alterations

in brain functions and structures in both healthy and diseased populations. Kauf-

mann, et al [178] estimated brain age using features from frontal, occipital, tem-

poral, cingulate, parietal, insula, or cerebellar–subcortical regions. They found that

the brain-PAD was increased in dementia and multiple sclerosis when the model es-

timated brain age using features only from cerebellar–subcortical while the largest

effect was observed in the frontal lobe in schizophrenia. Smith, et al [38] estimated

brain age using 62 modes representing distinct patterns of structural and functional

brain alteration and selective association with genetics, cognition, lifestyle, disease

and physical measures. They suggested that modelling of distinct pattern of brain

alterations would provide more biologically meaningful biomarkers to detect brain

aging than one single homogeneous process.

To conclude, in this study we propose to detect the disparity in the alterations of

WM FGs through life-course using brain age. Results suggest that brain-PAD holds

the potential as an aging biomarker. Moreover, it shows which FGs are more prone

to aging than others which could be further investigated and exploited to estimate

an aging-driven risk factor and an alert for cognitive decline and brain disorders

related to the regions in each fiber group. In addition, we explored the association

between daily life style, CRFs and genetic variations and their effects on each FG

as well as on the Ensemble model gathering all the considered tracts. Such kind

of associations can be employed to examine the influence of environment and ge-
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netic factors to shape and control the aging process and related alterations at a FG

level, providing a more localized information than the one obtained using the whole

white matter. Overall, consistent results were obtained regarding the associations

in different FGs. Some FGs showed similar pattern for the different considered as-

sociations. One of the main contributions of the study shows which FGs are more

affected by the aging process as reflected by the considered IDPs. Furthermore, we

were able to show that the Limbic FG plays a prominent role in driving brain ag-

ing. In addition, Brainstem FG observed to age faster and lest affected by the used

measures in the analysis, precisely with daily life styles and activities This could

be explained that Brainstem might age faster as it is more involved in many body

functions. Benarroch [179] reported that Brainstem involves tracts that are critically

associated with the control of the cardiovascular function, respiration, arousal and

wake-sleep cycle. In that matter, brainstem tracts are more prone to alterations due

to direct association with body organs. These findings suggest that further research

and statistical tests are required to obtain a more comprehensive understanding and

confirmation of the role of Limbic and Brainstem tracts in brain aging and their

association with both body functions and environmental exposures.
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5 Telomere length and brain IDPs

5.1 Introduction

Telomeres are (Deoxyribonucleic acid) DNA-protein complexes which protect the

end of chromosomes from fusion and degradation. TL are shortened with time

(i.e., during each cell cycle) in most human cell types [180]. Among many phe-

notypes, TL is associated with central nervous system and brain tumors [181].

Furthermore, TL is considered as a potential biomarker of aging related diseases

such as AD [59]. GWAS have identified dozens of SNPs with a significant asso-

ciation to TL [182] [180]. These SNPs were found to play a critical role as reg-

ulators of Leukocyte TL through different mechanisms including deoxynucleoside

monophosphate biosynthesis [182] and telomere elongation helicase [183]. Further-

more, these SNPs were causally associated through TL shortening with increasing

facial skin aging [184], increased risk of AD [59] and coronary heart disease [180].

Confounds factors play a critical role in brain aging and brain IDPs studies [161]

which might lead to biased association.

While several studies [185] [50] highlighted correlations between TL and brain

IDPs, no study has established the causative link between the two. In fact, in those

studies reduced TL may act as a biological proxy for aging and thus creating a corre-

lation between natural aging and brain integrity. Accordingly, examining the causal

association between TL and brain IDPs would help to understand the role of TL in

the alterations of brain structure and function during aging. Such analysis would

include a new biomarker in brain age estimation and would shed the light on one of

the causes of the alterations within brain tissues. Therefore, we have performed MR

analysis using instrument variables to investigate the casual association between TL

and brain IDPs.
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5.2 Data

To perform MR using instrument variables, we used GWAS summary statistics from

two independent studies, one for TL and one for brain IDPs.

5.2.1 TL GWAS.

We selected 33 SNPs from different publicly available TL GWAS studies [182,

180]. The first 20 SNPs at 17 genomic loci were from the recent GWAS by Li

et al. [182]. They conducted a large-scale GWAS in up to 78,592 European indi-

viduals, under the ENGAGE project (European Network for Genetic and Genomic

Epidemiology). Polymerase Chain Reaction (PCR) technique was established to

measure mean leukocyte TL quantitatively. The TL was presented as the ratio of

the telomere repeat number to a single-copy gene. Sex, age and cohort-specific fac-

tors including genetic principle components and center were used as covariates in

the GWAS. The selected 20 SNPs were significantly and independently associated

with leukocyte TL. However, six SNPs were substituted to their proxies as they

were palindromic [184]. For that purpose, LDlink was used to select suitable prox-

ies [186].

The remaining 13 SNPs were used previously by Kuo et al. [180] to perform an MR

analysis between TL and aging-related diseases in 261,000 older participants in the

United Kingdom Biobank (UKB). The authors selected SNPs that were significantly

(P < 5× 10−8) associated with TL from previous GWAS studies. The SNPs used

in their study included GWAS results from [183] using European population and

six GWAS comprising 9,190 European participants [187]. We added these 13 SNPs

to the previously selected 20 SNPs. Ten SNPs were removed because they were in

high linkage disequilibrium (LD) with other SNPs (R2 > 0.02). LD was calculated

using GBR (British in England and Scotland) samples from Phase 3 (version 5) of

the 1,000 Genomes Project using Ensembl 2020 [188]. The final list for our study

comprised 23 SNPs (listed in Table 5.1).
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Table 5.1: The list of the SNPs used in the MR analysis. rsID, the ID of the SNP;
Chr, Chromosome; Pos, Position of the SNP in the genome; EA, effect allele; OA,
other allele; EAF, effect allele frequency; Beta, the beta value of the SNP in GWAS;
SE, standard error; S, the source of the SNP.

rsID Chr Pos Gene EA OA EAF Beta SE P-value Source
rs2695242 1 226594038 PARP1 G T 0.83 -0.039 0.0064 9.31E-11 [182]
rs11125529 2 54475866 ACYP2 A C 0.16 0.065 0.012 4.48E-08 [183]
rs6772228 3 58376019 PXK T A 0.76 0.041 0.014 3.91E-10 [189]
rs55749605 3 101232093 SENP7 A C 0.58 -0.037 0.007 2.45E-08 [182]
rs7643115 3 169512241 TERC A G 0.243 -0.0858 0.0057 6.42E-51 [182]
rs13137667 4 71774347 MOB1B C T 0.959 0.0765 0.0137 2.37E-08 [182]
rs7675998 4 164007820 NAF1 G A 0.8 0.048 0.012 4.35E-16 [183]
rs7705526 5 1285974 TERT A C 0.328 0.082 0.0058 4.82E-45 [182]
rs34991172 6 25480328 CARMIL1 G T 0.068 -0.0608 0.0105 6.03E-09 [182]
rs805297 6 31622606 PRRC2A A C 0.313 0.0345 0.0055 3.41E-10 [182]
rs59294613 7 124554267 POT1 A C 0.293 -0.0407 0.0055 1.12E-13 [182]
rs9419958 10 105675946 STN1 (OBFC1) C T 0.862 -0.0636 0.0071 4.77E-19 [182]
rs228595 11 108105593 ATM A G 0.417 -0.0285 0.005 1.39E-08 [182]
rs76891117 14 73399837 DCAF4 G A 0.1 0.0476 0.0084 1.64E-08 [182]
rs3785074 16 69406986 TERF2 G A 0.263 0.0351 0.0056 4.5E-10 [182]
rs62053580 16 74680074 RFWD3 G A 0.169 -0.0389 0.0071 3.96E-08 [182]
rs7194734 16 82199980 MPHOSPH6 T C 0.782 -0.0369 0.006 6.72E-10 [182]
rs3027234 17 8136092 CTC1 C T 0.83 0.103 0.012 2E-08 [187]
rs8105767 19 22215441 ZNF208 G A 0.289 0.0392 0.0054 5.21E-13 [182]
rs6028466 20 38129002 DHX35 A G 0.17 0.058 0.013 2.57E-08 [187, 182]
rs71325459 20 62268341 RTEL1 T C 0.015 -0.1397 0.0227 7.04E-10 [182]
rs75691080 20 62269750 STMN3 T C 0.091 -0.0671 0.0089 5.75E-14 [182]
rs73624724 20 62436398 ZBTB46 C T 0.129 0.0507 0.0074 6.08E-12 [182]

5.2.2 GWAS for Brain IDPs.

GWAS analysis were conducted using IDPs from six modalities covering three main

categories that is: diffusion, structural and functional MRI for 40,000 participants

(11,000 replication sample) released in early 2020 [190]. 3,913 IDPs was used to

conduct GWAS analysis. In addition, 16 quality control and six summary functional

connectivity features were used which make the total number 3935 IDPs. More

details about the quality control and the used data can be found here [190].

5.3 Methods

The TL GWAS included participants from different cohorts such EPIC-CVD and

the EPIC-InterAct case-cohort study which was conducted in ten countries includ-

ing UK [182]. On the other hand, GWAS for brain IDPs was conducted on ma-

jority healthy [32] participants (at recruitment time) only from UK. There is a low

possibility of overlapping participants between the TL GWAS and the brain IDP

GWAS. We conducted MR analysis using the TwoSampleMR [191] package in R.

For each brain IDP, we first downloaded the GWAS results and extracted the beta
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value, stander error, effect allele, other allele, effect allele frequency and p-value

for each SNP selected from TL GWAS studies (Table 5.1). Then we harmonised

the data from TL GWAS and the brain IDPs GWAS using the harmonise_data()

function. Finally, we performed MR between TL and brain IDPs. The (random

effects) IVW method was adopted as a primary analysis for SNP-specific casual

estimate for brain IDPs. P-values were corrected for multiple tests using the false

discovery rate (FDR) method [192]. IDPs were considered significant at PFDR <

0.05 (corresponding to P < 0.004409). Weighted median and weighted mode ap-

proaches were also implemented as complementary MR analyses (requiring un-

corrected P < 0.05). To detect directional pleiotropy and heterogeneity of the

genetic instruments, weighted median function [54] and MR-Egger [55] regres-

sion were performed. The MR-Egger intercept test (P > 0.05), leave-one-SNP-out

analyses and the modified Cochran Q statistic methods were implemented as hor-

izontal pleiotropy test and to assess the quality of results. In addition, we used

MR–Pleiotropy Residual Sum and Outlier (MR-PRESSO) [193] to detect and cor-

rect pleiotropy which affected the overall results. Thus, for IDPs surviving our

filtering by IVW (PFDR < 0.05) and complementary analyses (P < 0.05), we re-

tained IDPs when they showed either no horizontal pleiotropy in the MR-PRESSO

global test (P > 0.05) or the IVW adjusted for SNP outliers detected by MR-

PRESSO remained significant (PFDR < 0.05). For each brain IDP association with

TL, we generated an html file report using the command mr_report() in the pack-

age. The html file contains on all the results of the methods mentioned earlier.

All the html files as the results of the current study will be available online at

(http://mrstudies.org/).

5.4 Results

Figure 5.1 shows the result of the MR causality screen between TL and brain IDPs

using the inverse variance weighted (IVW) method. Out of the 3,935 tested IDPs,

347 remained statistically significant after adjusting for multiple testing using the

FDR method (PFDR < 0.05;P< 0.004409). However, 119 IDPs were not marginally

significant (P > 0.05) in the complementary MR analyses (i.e., the weighted mode

http://mrstudies.org/
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and weighted median) leaving 228 IDPs. MR-PRESSO [193] was used to investi-

gate effects of pleiotropy in these MR results. Further 35 IDPs were excluded since

MR-PRESSO detected horizontal pleiotropy (MR-PRESSO global test P < 0.05),

which, after SNP outlier removal, was no longer significant at the FDR-corrected p-

value threshold. Thus, the final number of the significant IDPs was 193. P-values of

MR Egger-intercept of the 193 IDPs indicate no significant pleiotropy (P > 0.05).

Therefore, overall, 193 out of 3,935 IDPs showed evidence of being significantly

influenced by TL, the majority of which are diffusion metrics in different region

of interests. The majority of the significantly associated IDPs (162 of 193) cor-

responds to different indices from diffusion MRI covering a wide range of white

matter tracts (Table 5.2). Three IDPs correspond to resting-state fMRI and the re-

maining 28 were derived from T1-weighted MRI, with the majority representing

gray-white matter intensity contrasts. The direction of association was uniform for

each of the modalities: FA, ICVF and gray-white matter intensity contrast were

negatively associated with TL (i.e., longer TL causes decreases); axial (L1), radial

(L2, L3) and mean diffusivity (MD) were positively associated with TL (i.e., longer

TL causes increases in these values)

Table 5.2: The significant IDPs categorized by modality. ED: effect direction
whether it is positive (+) or negative (-).

Category Number ED Category Number ED
FA 12 - ISOVF 1 -

ICVF 27 - wg intensity-contrast 18 +
L1 18 + Thickness 5 -
L2 29 + Area 1 -
L3 42 + Volume 4 -

MD 32 + rs-fMRI 3 +
OD 1 -

Figure 5.2 illustrates for the most prevalent diffusion indices the tracts that are

causally influenced by TL according to the MR analysis. Many tracts are found to

be associated across the various diffusion indices. For instance, almost all diffusion

indices were significant in tracts like posterior thalamic radiation and anterior tha-

lamic radiation in both hemispheres. Furthermore, the grey-white matter intensity

contrast in many cortical regions were causally associated with TL (Figure 5.2.
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Figure 5.1: The causal association of TL and brain IDPs using the IVW method.
The y-axis represents the − log10(p−values) of the association. The color of each
IDP indicates the MRI modality and the triangle shape indicates whether the iden-
tified association (IVW β value) is positive (4) or negative (5). The black hori-
zontal line indicates the FDR-adjusted significance threshold (P = 0.004409). The
triangles with black border highlight the 193 IDPs that were significantly associ-
ated with TL using the IVW method as well as the complementary MR analyses.
WM: white matter; FA: fractional anisotropy; MO: diffusion tensor mode; OD: ori-
entation dispersion; ICVF: intracellular volume fraction; ISOVF: isotropic volume
fraction; tfMRI: task fMRI; rfMRI: resting-state fMRI; QC: quality control.

5.5 Discussion

In this study, we performed casual association of TL and 3,935 brain IDPs using

MR. The results indicate that TL casually affect 193 brain IDPs. Interestingly, the

majority of the significant IDPs were related to white matter but not to gray matter.

Even the measure with the highest number of significant IDPs derived from T1-

weighted MRI was the grey-white matter intensity contrast. In the context of aging

the diffusion indices can be interpreted in terms of white matter integrity. For in-

stance, high FA values suggest increased diffusion directionality and thereby higher

white matter integrity. Contrary, high MD values suggest a higher average rate of

diffusion and thus impaired WM integrity [97]. Therefore, with increasing age, FA

tends to decline while MD tends to increase in white matter tracts. In previous works

some of the IDPs were also identified as informative features to model and estimate
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Figure 5.2: Visual representation of the significant IDPs among the seven most
prevalent measures. For the six diffusion indices (top six rows) the tracts that are
significantly associated with TL are highlighted. The last row shows the cortical
regions with a significant effect of TL on gray-white matter intensity contrast. Dif-
ferent colors within a diffusion measure relate to IDPs extracted from two different
methods: tract-based spatial statistics (solid colors) and probabilistic tractography
(color gradients). The plots were generated by BrainPainter [194] and FSL [195]

brain age. For instance, ten out of the 193 IDPs were previously reported to have

a significant association with brain age delta [32] that are: weighted mean ante-

rior thalamic radiation left (L2 and L3), weighted mean posterior thalamic radiation

left (L2 and MD), weighted mean uncinate fasciculus left (MD), weighted mean
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posterior thalamic radiation right (L2 and MD), weighted mean anterior thalamic

radiation right (MD and L3) and TBSS external capsule right (ICVF). Moreover,

three other IDPs (i.e., TBSS posterior thalamic radiation right (L3), weighted mean

uncinate fasciculus left (L3) and TBSS cingulum hippocampus right (MD)) were

also previously reported to be important to estimate brain age [196]. However, de-

spite changes in these IDPs having been reported before as potential biomarkers of

brain aging, the driving factor behind these changes was missing. Our MR analysis

demonstrated that TL is one key factor that influences the observed values of these

IDPs, and by extension brain aging.

Previous studies demonstrated that FA and ICVF decline with aging while axial,

radial and MD increase [99], although regional differences have been described [197,

198]. Based on these findings and considering TL as a proxy for cellular aging, we

would expect a positive correlations between TL and FA/ICVF as well as negative

correlations between TL and axial, radial and mean diffusivity. However, the MR

results support the opposite direction, indicating decreasing FA and ICVF with in-

creasing TL as well as increasing L1, L2, L3 and MD with increasing TL. While

the expected trend with increasing age for radial and mean diffusivity is quite clear,

there are brain regions, such as the midbrain white matter, which show decreases

rather than increases in axial diffusivity [197]. Indeed, increased axial diffusiv-

ity can be interpreted as a positive marker for white matter integrity since lowered

axial diffusivity indicates axon injury; by contrast, increased radial diffusivity has

been linked to incomplete or damaged myelination [197]. Furthermore, associa-

tion between TL and diffusion indices that are reversed compared to the effects of

aging have been found in adolescent rats of the same age [199]: axial, radial and

mean diffusivity were positively correlated to measured TL. In addition, FA and

L1 followed inconsistent pattern in different white matter tracts when brain age

was estimated [196]. Regarding the gray-white intensity contrast, previous studies

demonstrated that it decreases with ageing [200, 201]. On the other hand, gray-

white intensity contrast was found to be increased in people with schizophrenia and

bipolar disorder compared to controls [202] although both conditions are linked to
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accelerated brain ageing [203, 204, 205]. In addition, increased grey-white matter

contrast was observed in Autism Spectrum Disorders [206] which is also linked to

accelerated brain ageing [207].

Thus, overall, this MR analysis demonstrated that the association between TL and

brain IDPs is not simply the effect of increased cellular aging but there appears to

be a more complex relationship underneath.

The instrumental variables used in this MR analysis involved numerous genes,

which have been reported in the literature to be associated with regulating TL as

well as being involved in brain disorders. The SNP rs2695242 is located within

the Poly (ADP-ribose)-polymerase1 (PARP1) gene. PARP1 is known to contribute

largely to regulate telomere complex assembly and activity [208]. Additionally,

PARP1 was previously reported to play an essential role in neurodegenerative dis-

eases such as AD and Parkinson’s disease [209]. In particular, it was observed that

PARP1 is activated in aging and neurodegenerative diseases leading to autophagy,

neuroinflammation and mitochondrial dysfunction and dysregulation [209]. Further

instrumental variable (rs7705526) belong to the Telomerase Reverse Transcriptase

(TERT) gene. The main function of the TERT gene is to maintain telomeres by

extending them with the telomere repeat sequence [210]. TERT was found to have

a protective role in brain aging [211]. The authors demonstrated that neurodegen-

erative symptoms and brain aging were influenced by shorter telomeres, and con-

versely, that increasing the level of TERT in the brain of mice, and by extension

the telomeres, could significantly revert signs of cognitive impairment. Lastly, the

SNP rs228595 belongs to the ataxia telangiectasia mutated (ATM) gene which con-

tributes telomere maintenance through telomere elongation and telomerase complex

assembly [212]. It was reported that in humans, ATM function decreased in neu-

rons with increasing progression of AD [213]. Thus, overall, numerous genes that

harbor the instrumental variables in our MR analysis exhibit a direct role in main-

taining telomeres, and have been, in previous studies, linked to degenerative brain

disorders. Our study extends this link to the intermediate level of brain IDPs.

To the best of our knowledge, this is the first study to perform MR between TL and a

wide range brain IDPs extracted from different MRI modalities. The results support
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the causal link between TL and the brain’s micro and macro structure as represented

by the IDPs, with a strong emphasis on white-matter related measurements. The

second finding of this study was that the direction of TL-IDP associations did not

replicate the effect direction of aging-associated changes. However, the diffusion

indices are influenced by multiple aspects of the brain’s micro and macro struc-

ture. For instance, despite showing a decrease in white matter integrity, increased

mean diffusivity was found to be associated with increased cell density and axonal

density [214]. Furthermore, current studies investigating brain age focus on link-

ing changes in brain IDPs with genetic variations and environment factors [75], but

have not considered the potentially driving role of TL. To summarize, our study

showed that TL significantly influenced 193 IDPs covering diffusion MRI metrics,

cortical grey-white contrast regions, resting state fMRI and morphometric measures

making TL a valuable feature to be considered when estimating and investigating

brain age.
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6 Alzheimer disease and brain IDPs

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and main

cause of dementia. AD is characterized by behavioral and cognitive impairment,

memory deficits, social deficits and might eventually lead to death [59]. Individ-

uals with AD undergo changes in brain structure and function, especially in terms

of atrophy which can be assessed using sMRI. These alterations include cortical

thinning, volume loss, morphological changes in grey matter. In particular, hip-

pocampal atrophy has been demonstrated to be an important biomarker of AD and

is used to monitor disease progression. In addition to changes in the brain’s GM,

AD also causes WM structural deterioration that can be captured using diffusion

MRI [215]. In particular, diffusion MRI can be used to derive different microstruc-

tural indices such as FA and MD related to the motion of water molecules within

WM tracts. FA describes the water diffusion directionality and decreased values

have been observed in uncinate fasciculus, fornix, superior longitudinal fasciculus

and cingulum in AD individuals [216]. Furthermore, increase in MD represents a

source of brain pathology and WM degeneration [217] and has been observed in

forceps minor, forceps major and projecting fibres in AD patients [218]. In terms of

functionality, resting-state fMRI (rs-fMRI) is widely used to map brain connectiv-

ity and regional interactions while resting (free-task state). Functional connectivity

can be used to assist in diagnosing brain diseases even before brain atrophy oc-

curs [219]. Rs-fMRI has shown to be a valuable tool to identify pathophysiology of

functional connectivity in AD patients [220].

Thus far, changes of brain characteristics in AD patients have been assessed using

different methods including machine learning [221] and statistical tests such as lin-

ear regression, correlation and analysis of variance (ANOVA)[222]. Moreover, the

putative causal relations between AD and brain alterations were investigated using

Mendelian Randomisation (MR) [65] [49] [223] [224]. MR is a method to inves-

105



CHAPTER 6. ALZHEIMER DISEASE AND BRAIN IDPS 106

tigate the casual association between modifiable risk factors and a disease using

instrument variables obtained from genetics. In brief, a valid instrumental variable

should be associated significantly with the exposure, independent from the con-

founds and associate with the outcome only through the exposure [225]. These are

the three core assumptions of choosing a valid instrument variable to perform MR.

Single nucleotide polymorphisms (SNPs) are plausible to meet these criteria as they

are independent from any confound and the other two assumptions can be applied

when performing MR analysis [226].

Recently carried out genome wide association studies (GWAS) detected dozens of

SNPs that are linked to AD diagnosis and disease progression. The summary statis-

tics of AD GWAS can be used and exploited to investigate the casual connection

between AD with any other exposure or outcome. In a recent study, casual asso-

ciations between brain imaging endophenotypes and AD were assessed using two-

samples MR, transcriptome wide association studies (TWAS), generalized summary

statistics based Mendelian randomization (GSMR) and the adaptive sum of powered

score (aSPU) approach [65]. In details, the authors used GWAS summary statis-

tics to estimate the casual effect between 1,578 heritable brain phenotypes from

UKBB [78] and AD IGAP [227]. Their results indicated casual association of 35

brain phenotypes and AD in aSPU method, while no significant association was

detected using the two-samples MR. Using the same summary statistics for brain

phenotypes and AD, Katherine A and colleagues [49] conducted a two-samples MR

as well as a Multivariate Imaging Wide Association Study (MV-IWAS). They de-

tected several brain phenotypes causally associated with AD in MV-IWAS method,

while there was no significant association using the two-samples MR further con-

firming previous results reported by [65]. Furthermore, MR was recently adopted

to assess the causal association between cortical structures and AD [224]. Analy-

ses were conducted using GWAS summary statistics of the thickness of the whole

cortex, surface area and 34 cortical regions with AD risk. They detected sugges-

tive causal associations between decreased surface area of the temporal pole and

decreased thickness of cuneus with higher risk of AD. However, the association did

not pass the Bonferroni-corrected p-value thereshold. More recently, the causal link
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was investigated using bi-direction two-samples MR between AD and measures of

total intracranial volume, volume of subcortical structures, global/regional cortical

thickness and cerebral WM for individuals aged eight to 81 years from five different

cohorts [223]. Authors performed GWAS of brain phenotypes using subjects from

the different cohorts as follows. For peripubertal period, GWAS was conducted

using subjects from Generation R (age range: 8.71- 11.99), the Adolescent Brain

Cognitive Development study (age range: 8.92-11.00) and IMAGEN (age range:

12.94-16.04). The Avon Longitudinal Study of Parents and Children (age range:

18-24.5) was used for early adulthood, while UKBB was used for adulthood (age

range: 48-81). Their results suggest casual association of AD with cortical and

sub-cortical brain measures in mid to late adulthood. In particular, the association

of AD was observed with age dependent decreasing in the volume of thalamus, ac-

cumbens, hippocampus, thickness of inferior temporal cortices and middle temporal

in UKBB cohort.

SNPs selection depends on the tested hypothesis to determine the exposure and the

outcome. For instance, if the hypothesis is to test the casual association of AD

(exposure) and brain phenotypes (outcome), then SNPs should be significantly as-

sociated with AD and independent from brain phenotypes. Conversely, if the tested

hypothesis is whether alterations in brain phenotypes cause AD, then the SNPs

should be significantly associated with brain phenotypes and independent from AD.

In [65] [49] and [224], authors performed SNPs selections and linkage disequilib-

rium (LD) calculation on brain IDPs GWAS as they were testing the causal influence

of brain IDPs on the risk of developing AD (e.g., whether a reduced hippocampus

will more likely result in a later AD diagnosis). This led to a different number

of SNPs to be considered as instrument variables for each investigated brain IDPs.

P-value (p < 5 × 10 –8) has become a standard threshold for GWAS to identify a sig-

nificant association between a genetic variation and a phenotype [228]. In addition,

they used a less restrictive p-value threshold (p < 5 × 10 (–6, -5)) to select the SNPs

associated with brain IDPs from GWAS results. This might include some SNPs

that are not significantly associated with brain IDPs based on GWAS standard p-

values threshold. Moreover, [223] and [224] considered IDPs from structural MRI
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with a focus on GM and brain volumes. However, there are increasing data demon-

strating correlations between AD diagnosis and changes in WM and brain function,

thus considering IDPs from other MRI modalities such as diffusion and functional

MRI can provide the opportunity to detect causal association that was not covered

in [223] and [224]. In addition the IDPs extracted from functional MRI were con-

sidered as significant features to detect early stage of AD [220]. However, so far no

MR studies in AD considered features from dMRI nor from fMRI.

Despite the previous studies performed MR analysis using different number of phe-

notypes, however two studies [65] [49] used the old GWAS of IGAP while the oth-

ers used phenotypes obtained only from structural MRI. In this study we used two-

samples MRI to assess the casual association of AD and 3,935 brain IDPs extracted

from six MRI modal modalities, namely T1 and T2-weighted structural images,

dMRI, task fMRI, rs-fMRI and susceptibility-weighted MRI. More in details, we

performed SNPs selection and LD calculation on the new AD GWAS from IGAP

rather than on brain IDPs GWAS before fitting them into MR analysis. Summery

statistics of two independent GWAS that are publicly available were used. Conse-

quently, we do not require data at individual level and therefore, a formal consent is

not required to perform such analyses.

6.1 Materials

6.1.1 Alzheimer disease GWAS

Results from a recent GWAS of clinically diagnosed AD were used to identify suit-

able instruments to model the exposure in the MR analysis [229]. The GWAS sam-

ples were collected from four consortia, Alzheimer Disease Genetics Consortium

(ADGC), Cohorts for Heart and Aging Research in Genomic Epidemiology Con-

sortium (CHARGE), The European Alzheimer’s Disease Initiative (EADI), and Ge-

netic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmen-

tal Risk for Alzheimer’s Disease Consortium (GERAD/PERADES). Different qual-

ity control steps were performed on the genetic data as described in detail in [229].
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6.1.2 Brain IDPs GWAS

In our MR analysis brain structure and function were the target. In order to ob-

tain effect size estimates for the genetic instruments, we used results from a GWAS

analysis available in the UKBB on 3,935 brain IDPs spanning a range of diffu-

sion, structural, functional MRI summary measures, quality control measures and

compact FC features [190]. More details regarding the used methods and quality

control criteria can be found in [190]. Of note, the following sets of variables were

used as confounds and regressed from brain IDPs for better GWAS interpretabil-

ity: head size, sex, age, scanner table position, head motion during functional MRI,

imaging center and scan date-related slow drifts. The GWAS summary statistics

were based on 33K subjects with UK ancestry (22k discovery and 11k replica-

tion) and 17,103,079 SNPs. Summary statistics for individual IDPs can be accessed

through (https://open.win.ox.ac.uk/ukbiobank/big40/)

6.2 Methods

First, we downloaded the GWAS results of clinical AD diagnosis [229] that are

publicly available at (https://www.ebi.ac.uk/gwas/studies/GCST007511).

GWAS threshold (P-value < 5 × 10-8) was used to select only the significant asso-

ciation of genetic variants and AD diagnosis. Thereafter, we calculated LD among

the SNPs to chose independent genetic variations. PLINK[163] was used to con-

duct LD clumping using windows size 2 MB, r2 = 0.001 and the 1,000 Genomes

Project Phase 3 European datasets as a reference. LDlink [186] was used for SNPs

that were not available in the target GWAS or were palindromic. After downloading

the GWAS results of the significant SNPs for all 3,935 brain IDPs, we performed

MR analysis using TwoSampleMR package in R [230]. The GWAS results for both

AD diagnosis and brain IDPs were first harmonized and two-samples MR analysis

was performed using inverse-variance weighted (IVW). IVW was adopted as the

primary analysis for SNP-specific casual estimate. Weighted mode and weighted

median approaches were computed as complementary analysis. IVW assumes all

the used genetic variations are valid instrument variables while weighted median

assume the majority of used genetic variations are valid instrument variables [231].

(https://open.win.ox.ac.uk/ukbiobank/big40/)
(https://www.ebi.ac.uk/gwas/studies/GCST007511)
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The weighted median allows the stronger SNPs to contribute more in the estima-

tion [230]. MR-Egger [55] regression and weighted median function [54] were

implemented to detect directional pleiotropy and heterogeneity of the genetic instru-

ments. To test the quality of the results, horizontal pleiotropy test was conducted

using the MR Egger intercept test, the modified Cochran Q statistic methods and

leave-one-SNP-out analyses. The Bonferroni method (alpha = 0.05) [162] was used

to correct p-values for multiple tests across all IDPs.

For each analysis, an HTML file was generated using the TwoSampleMR package

in R. The html site reports the results of the main and complementary analyses. Ad-

ditionally, it features plots to visualize the results such as forest plot and a plot for

leave-one-out sensitivity analysis. All html files displaying the results of the current

study will be available online at ( http://mrstudies.org/).

6.3 Results

1,514 SNPs were selected that passed GWAS standard threshold with the majority

on chromosome 19. After LD clumping, 28 independent SNPs remained. Among

these SNPs, 3 SNPs were not available at GWAS brain IDPs and other 5 were palin-

dromic. 3 SNPs were monoallelic and one did not have sufficient LD r2 (less than

0.04) with any other SNP to be used as proxy. The other 4 SNPs were substituted

by their proxies. This left 24 SNPs as the final number to conduct the two-samples

MR analysis. Table 6.1 shows the details on the 24 SNPs that were used to conduct

the MR analysis. For each brain IDP, we downloaded and extracted the GWAS re-

sults of these 24 SNPs from (https://open.win.ox.ac.uk/ukbiobank/big40/

). The following GWAS results were extracted: beta coefficient, standard error, p-

value, effect allele and other allele. A total of 3,935 MR association tests were

conducted, one for each brain IDP fixing AD as the exposure and the brain IDPs

as the outcome. Thus, significant associations indicate a causal effect of AD on the

corresponding brain IDP. AD was significantly associated at Pbonferroni < 0.05 with

46 IDPs in the main and complementary analysis. However, among these 46 IDPs,

eight reported a significant association with one of the 24 SNPs (rs11556505) and

therefore violated MR assumptions. We removed that SNP from the set of instru-

http://mrstudies.org/
(https://open.win.ox.ac.uk/ukbiobank/big40/)
(https://open.win.ox.ac.uk/ukbiobank/big40/)
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Table 6.1: The 24 SNPs used to perform MR causal association. Chr, chromosome;
Pos, position; rsID, SNP ID; EA, effect allele; OA, other allele; SE, standard error.

Chr Pos rsID Gene EA OA Beta SE P-value
1 207750568 rs679515 CR1 T C 0.1508 0.0183 1.555E-16
2 127863029 rs7583814 BIN1 T C 0.1212 0.0192 2.532E-10
2 127892810 rs6733839 NIFKP9, BIN1, APOE T C 0.1693 0.0154 4.022E-28
6 32560306 rs34665982 HLA-DRB1 T C 0.0967 0.0166 5.798E-09
6 41129252 rs75932628 TREM2, PLCG2, ABI3 T C 0.6989 0.1001 2.948E-12
6 47575332 rs9395286 CD2AP T C 0.0876 0.0157 2.232E-08
7 143109139 rs11767557 EPHA1-AS1 T C 0.1028 0.0182 1.561E-08
8 27219987 rs73223431 PTK2B T C 0.0936 0.0153 8.342E-10
8 27468503 rs867230 CLU A C 0.1333 0.0158 3.492E-17

10 11721102 rs12358692 ECHDC3, USP6NL-AS1 C T -0.085 0.0154 3.417E-08
11 121435587 rs11218343 SORL1 T C 0.2053 0.0369 2.633E-08
11 47380340 rs3740688 SPI1 T G 0.0935 0.0144 9.702E-11
11 60021948 rs1582763 MS4A4A A G -0.1232 0.0149 1.186E-16
11 85868640 rs3851179 LINC02695, RNU6-560P T C -0.1198 0.0148 5.809E-16
14 92938855 rs12590654 SLC24A4 A G -0.0906 0.0157 8.729E-09
19 1050874 rs12151021 ABCA7 A G 0.1071 0.0169 2.562E-10
19 45241638 rs2927437 CEACAM16-AS1, BCL3 A G 0.2333 0.0183 3.729E-37
19 45329438 rs78986976 BCAM, NECTIN2 A G -0.2519 0.039 1.045E-10
19 45355288 rs149661872 NECTIN2 T C 0.9872 0.0762 2.164E-38
19 45382675 rs41290120 NECTIN2 A G -0.6169 0.0411 5.197E-51
19 45396144 rs11556505 TOMM40 C T -0.9653 0.0189 0
19 45425460 rs157595 APOC1P1,APOC1 A G -0.4329 0.017 2.43E-143
19 45438554 rs7254133 APOC1P1,APOC4 T C 0.2905 0.0242 4.236E-33
19 45592238 rs10420562 GEMIN7-AS1 C T 0.2003 0.075633 2.742E-13

mental variables and repeated the two-samples MR analysis for those eight IDPs.

None of the eight IDPs were now significantly influenced by AD. Thus, the final

number of the significant causal associations of AD on brain IDPs was 38. The re-

sults of heterogeneity test indicated that four of the 38 IDPs exhibited heterogeneity

with the full set of 24 independent SNPs in the effect estimates (p-values of MR

Egger Q and IVW Q < 0.05). This violates the assumptions of valid instrument

variables in MR analysis and therefore the four IDPs were no longer considered.

Thus, 34 IDPs did not violate MR assumptions and were significantly causally in-

fluenced by AD. Moreover, the p-value of Egger_intercept of the 34 IDPs did not

suggest any directional horizontal pleiotropy with the 24 SNPs. Figure 6.1 shows

the p-values for all IDPs (Figure 1A) and the direction of the association of the 34

IDPs (Figure 1B). Table 6.2 reports the summary results of the 34 brain IDPs. Most

of the IDPs are from sMRI followed by rs-fMRI and dMRI. Of note, a key region

in this disorder (hippocampus) was significantly associated with AD in both sMRI

and dMRI measures. AD was also causally and significantly associated with many

measures extracted from fMRI.

Discussion

In this study we performed two-samples MR analyses to investigate the causal as-

sociation of AD and a wide range of brain IDPs. A set of 24 SNPs that are signifi-
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Figure 6.1: The causal association of AD and brain IDPs using the IVW method.
The y-axis represents the − log10(p−values) of the association. The color of each
IDP indicates the MRI modality and the triangle shape indicates whether the identi-
fied association is positive (4) or negative (5). The black horizontal line indicates
the Bonferroni-adjusted significance threshold (P < 0.05/3,935). A) The triangles
with black border highlight those 34 IDPs that are significantly associated with AD
using the IVW method as well as the complementary MR analyses. B) Focus on the
resulting 34 IDPs with their corresponding indices.

cantly associated with AD were included as instrument variables to then perform the

causal association with 3,935 brain IDPs from six MRI modalities. After multiple

testing correction and ensuring that assumptions of MR analysis were not violated,

we found 34 IDPs that were casually driven by AD. The significant IDPs included

15 from sMRI, ten from dMRI and nine from fMRI. The direction of the association

matches with the expectations and observations in cross-sectional and longitudinal

studies. Among the most prominent: AD causes decline in hippocampal volume and
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Table 6.2: List of 34 IDPs causally and significantly associated with AD. The re-
ported p-values are those multiple comparison correction. Lh and rh refer to left
and right hemisphere, respectively. The name of the IDPs are extracted from the
original paper that performed brain IDPs GWAS [190]).

IDP short name Beta P-value
IDP T1 FIRST left hippocampus volume -0.035 2.552E-02
aseg global volume WM-hypointensities 0.042 3.157E-02
aseg lh volume Accumbens-area -0.038 1.339E-02
HippSubfield lh volume GC-ML-DG-body -0.034 4.254E-02
HippSubfield lh volume CA4-body -0.039 4.617E-03
aparc-a2009s rh thickness G-cingul-Post-ventral -0.037 9.804E-03
aseg rh intensity Amygdala 0.047 3.033E-05
wg lh intensity-contrast fusiform -0.044 5.933E-03
wg lh intensity-contrast lingual -0.038 2.244E-02
wg lh intensity-contrast parahippocampal -0.036 1.747E-02
wg rh intensity-contrast bankssts -0.040 1.953E-02
wg rh intensity-contrast inferiortemporal -0.052 2.121E-04
wg rh intensity-contrast middletemporal -0.054 4.599E-06
wg rh intensity-contrast pericalcarine -0.042 1.023E-02
IDP T2 FLAIR BIANCA WMH volume 0.042 1.008E-02
IDP dMRI TBSS FA Cingulum hippocampus L -0.037 3.682E-02
IDP dMRI TBSS L1 Posterior limb of internal capsule L 0.035 4.047E-02
IDP dMRI TBSS L1 Superior corona radiata R 0.041 3.430E-02
IDP dMRI ProbtrackX MD fma 0.040 1.099E-02
IDP dMRI ProbtrackX L1 fma 0.035 3.686E-02
IDP dMRI ProbtrackX L1 ifo l 0.039 3.061E-03
IDP dMRI ProbtrackX L1 ptr l 0.044 3.267E-03
IDP dMRI ProbtrackX L1 str l 0.037 1.111E-02
IDP dMRI ProbtrackX L1 str r 0.039 3.908E-03
IDP dMRI ProbtrackX L2 fma 0.038 2.474E-02
rfMRI amplitudes (ICA25 node 9) -0.039 2.948E-03
rfMRI amplitudes (ICA100 node 3) -0.047 9.366E-04
rfMRI amplitudes (ICA100 node 11) -0.039 2.139E-03
rfMRI amplitudes (ICA100 node 24) -0.039 1.586E-02
rfMRI amplitudes (ICA100 node 34) -0.041 6.087E-04
rfMRI amplitudes (ICA100 node 36) -0.039 3.819E-03
rfMRI amplitudes (ICA100 node 39) -0.043 4.252E-04
rfMRI connectivity (ICA25 edge 24) 0.037 2.532E-02
rfMRI connectivity (ICA100 edge 681) 0.045 1.432E-03

its subfields [232] [233] as well as increases in WM hyperintensities [234] [235].

In addition, our findings show that both hemispheres are influenced by AD though

the left hippocampus is more influenced than the right hippocampus, in agreement

with previous studies [236]. Moreover, individuals with AD experience increases in

axial, radial and mean diffusivity measures while fractional anisotropy decreases,
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both indicating decline of white matter integrety [237]. Furthermore, the MR anal-

ysis identified an influence of AD on seven regional amplitudes obtained from rs-

fMRI. Studies comparing rs-fMRI amplitudes between healthy controls and people

with AD found decreased amplitudes in AD, which matches our results [238] [239].

Thus, our results are inline in terms of the direction of these measures observed in

individuals with AD compared to controls [240]. The MR analysis also detected

two casual associations of AD and rs-fMRI connectivities, here the direction was

positive, i.e., AD causing a stronger coupling between brain regions. Previous work

has found decreased as well as increased functional connectivity [241].

Among the 34 significantly influenced IDPs, AD was affecting four measures from

both sMRI and dMRI that are related to hippocampus. Decline in hippocampal

volume is considered one of the hallmark features of AD [242]. Moreover, alter-

ations in dMRI indices linking the hippocampus to other brain regions might be

valuable biomarkers for hippocampal dysfunction that can be exploited to monitor

the progress of AD [243]. Our results show that AD causes alterations within brain

that can be detected using different IDPs from MRI modalities rather than focusing

on one single MRI modality. Further investigations in this direction could focus

on the causal influence between brain IDPs from different MRI modalities (e.g.,

does sMRI influence dMRI or vice versa?), and consequently their effects on cog-

nitive functions. In addition, the results indicate that intensity-contrast in different

brain regions including fusiform, lingual, bankssts, inferiorparietal and middletem-

poral can be used as informative biomarkers to distinguish healthy from AD sub-

jects [244].

rs679515 SNP is located in complement C3b/C4b receptor 1 (CR1) gene which was

among the top lead SNPs associated with family history of AD in UKBB popu-

lation [245]. Another SNP (rs6733839) is located upstream of the bridging inte-

grator 1 (BIN1) gene. Individuals with 2 copies of this SNP allele (T) experience

weak performance in episodic memory, specially in elderly people with type 2 di-

abetes [246]. The triggering receptor expressed on myeloid cells 2 (TREM2) gene

on chromosome 6 includes the rs75932628 SNP which is considered as a risk fac-

tor of late-onset AD (LOAD) [247]. The rs11767557 variant significantly effects
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and regulates gene expression of the erythropoietin-producing hepatoma receptor

A1 (EPHA1) gene [248] and increase memory decline in LOAD [249]. Early-onset

AD (EOAD) was significantly associated with rs73223431 variant through modify-

ing gene expression of the protein tyrosine kinase 2 beta (PTK2B) gene [250]. The

rs11218343 SNP, belonging to sortilin related receptor 1 (SORL1) gene, showed ev-

idence of association with LOAD in many populations including Korean, Japanese

and Caucasians. It is also reported that the allele C of the SNP may play a protec-

tive role for LOAD in Han Chinese population [251]. Finally, the rs3740688 variant

located in the CUGBP elav-like family member 1 (CELF1) gene is associated with

the processes involved in neurodegeneration and brain amyloidosis [252].

While several significant results were found in our study, the previous works [65] [49]

that conducted a two-samples MR did not detect any significant associations. This

can be explained by many factors related to the methodology and the quality con-

trols steps. In particular, the main difference is related to the type of association un-

der investigation, indeed in these two works authors assessed the causal association

of inherited brain IDPs on AD while we tested the other direction, that is the causal

association of AD on brain IDPs. Moreover, we used the extended version of brain

IDPs GWAS which was conducted on 3,935 brain IDPs with around 17 millions

SNPs from 33k subjects, while these two works used the previous version of 1,578

heritable brain IDPs GWAS for around 11 millions SNPs in 8,428 subjects (discov-

ery dataset). In addition, we performed SNPs selection and LD calculation on AD

GWAS while in the two works they performed the steps on brain IDPs GWAS. We

also used the standard GWAS threshold (P-value < 5 × 10-8) to select the SNPs

that are significantly associated with AD while they used less restrictive ‘sugges-

tive’ GWAS threshold (P-value < 5 × 10-5). Finally, we also used less instrumental

SNPs to perform the two-samples MR, while a different number of SNPs for each

IDP was used in the previous studies, ranging from 35 to 112 (mean: 70) for the

first work [65] and from 43 to 132 (mean: 81) in the second one [49]. Including a

large number of SNPs in the MR analysis might involve invalid instrument variables

which consequently affect the outcome of the MR analysis. This could explain why

there was no significant associations in the previous studies.
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In our study, we used GWAS of brain IDPs from UKBB which is a large-scale

biomedical repository and research resource. The vast majority of the subjects are

free from neurological diagnoses and mental issues at the time of imaging [32].

Interestingly, despite the UKBB GWAS was for healthy aging control, the genetic

factors related to AD play a significant role in brain phenotypes even thought they

have not been diagnosed with AD.

One of the main limitation of the MR is that the instrumental variables affect the

outcome only through the exposure, as a single gene can influence the outcome

through many paths [253]. In addition, despite GWAS is widely used and many

genetic variations are linked to a trait or disease, this might violate the MR assump-

tions as more genetic variations might have significant associations with a trait in

future GWAS studies.

In conclusion, the outcome of casual association using MR approach depends heav-

ily on GWAS results, the SNPs selection criteria and LD calculation. The larger

samples included in the GWAS of the exposure and the outcomes give more reli-

able results. These factors play a critical role to identify casual association because

they might include relevant or irrelevant SNPs in the topic of interests [254]. In

addition, identifying which one of the variables is the exposure and which one is

the outcome for the same study has significant impact on the analysis outcome. In

our study we selected AD as exposure and the brain IDPs are the outcomes. When

we performed the SNPs selection, we followed the three MR assumptions to choose

the correct instrumental variables. The instrument variables must be significantly

associated with AD based on the GWAS threshold but not with the brain IDPs, oth-

erwise this would be considered pleiotropy. However, if we reversed the exposure

to the outcome, then we should select SNPs that were significantly associated with

exposure brain IDPs but not with AD. Naturally, this results in very different sets of

instrumental variables (SNPs) and leads to diverging outcome. The interpretation

of the results would also be different. In our study, we assume that AD causes the

alterations in brain structure and function while in the previous works [65] and [49]

the outcomes indicate that the inherited alterations within brain phenotypes might

cause AD. In addition, including IDPs from wide range of MRI modalities provide
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more comprehensive view about the alterations caused by AD within brain’s micro

and macro structure.



7 Conclusions and Future Work

In this thesis, we investigated brain aging using different simple and complex mod-

els through brain age estimation using IDPs extracted from brain MRI. We have also

applied simple methods and machine learning explainability models to identify the

most informative features to model brain age. We further estimated brain age for

fiber groups within brain white matter tracts. In addition, we revealed the effects of

daily life style, cardiac risk factors and morbidity in brain aging. Finally, we used

causal models to explore the role of TL in healthy aging and Alzheimer’s disease in

unhealthy aging to cause alterations within brain structures and functions.

Initially, our study showed that brain age estimation can be affected with many

factors that led to poor model performance. For example, the selected model to es-

timate brain age has significant impact on the model performance. The used IDPs in

the model to estimate brain age have invaluable impact in the model performance.

The IDPs extracted from structural MRI have shown to be among the most informa-

tive features. In addition, the IDPs extracted from diffusion MRI such as Fractional

anisotropy and Mean diffusivity in different tracts groups proved to be among the

significant features to estimate brain age. On the contrary, functional MRI IDPs

and susceptibility weighted imaging provide less informative phenotypes related to

brain aging.

Brain regions might experience different rate of aging. For that matter, we estimated

brain age for five groups of white matter tracts. The results showed that Brainstem

fibers age faster than the other fiber groups while Limbic fiber groups was the slower

in aging. However, statistical test is required to confirm whether the difference in

the model’s performance among the fiber groups is significant or not. In addition,

brain age estimation might be dominated by the IDPs extracted from Limbic fibers.

For instance, diffusion measures in Fornix (part of Limbic fiber group) are shown

to be the most informative phenotypes to model brain age. The magnitude effects

118
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of daily life style also could be different on different regions of interests. Again,

Limbic fibers was more interacted and integrated with daily life style while the re-

sult demonstrated Brainstem fibers were less affected.

Due to the observed and unobserved confounds in brain aging that affect both the

IDPs and the brain age, causal models might be the most suitable method to as-

sess causal association between any exposure and the alterations within brain struc-

tures and functions. This might spot the light on factors that causally change brain

characteristics. Our results based on the casual model revealed Telomeres length

shortening play significant role in changing brain phenotypes. We therefore suggest

considering Telomeres length when brain age is estimated as this might change the

rate of aging and consequently decreasing the cognitive functions. However, we do

understand such data might not be available in most biomedical data repositories.

Alzheimer’s disease is one of the most common brain aging-related diseases. Our

results showed that AD causally led to alterations within brain micro and macro

structures. These changes can be detected using IDPs extracted from different MRI

modalities. We do recommend assessing the causal link of AD and brain using wide

range of phenotypes from different MRI modalities without limiting to specific MRI

modality. Detecting such association would help to understand the decline of mem-

ory and cognitive function related to specific region of interests within brain.

Although we estimated brain age using different models, data, explored the effect

of different factors, future works would aim to investigate brain age at tract levels

instead of group level. This might help us to understand more deeply the effect

of brain aging on each tract group and their consequences in cognitive functions.

We would also consider Telomeres length as a new factor to estimate brain age at

individuals level.
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A Appendix

Figure 1 –Manhattan plot reporting the association results between SNPs and brain-
PAD in Association FG. The red line indicates the GWAS threshold on p-value
(i.e.,5E-8), while the blue line indicates the suggestive threshold of p=5E-5.

Figure 2 –Manhattan plot reporting the association results between SNPs and brain-
PAD in Brainstem FG. The red line indicates the GWAS threshold on p-value
(i.e.,5E-8), while the blue line indicates the suggestive threshold of p=5E-5.
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Figure 3 –Manhattan plot reporting the association results between SNPs and brain-
PAD in Commissural FG. The red line indicates the GWAS threshold on p-value
(i.e.,5E-8), while the blue line indicates the suggestive threshold of p=5E-5.

Figure 4 –Manhattan plot reporting the association results between SNPs and brain-
PAD in Limbic FG. The red line indicates the GWAS threshold on p-value (i.e.,5E-
8), while the blue line indicates the suggestive threshold of p=5E-5.
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Figure 5 –Manhattan plot reporting the association results between SNPs and brain-
PAD in Ensemble FG. The red line indicates the GWAS threshold on p-value
(i.e.,5E-8), while the blue line indicates the suggestive threshold of p=5E-5.



CHAPTER A. APPENDIX 148

Table 1 – The complete list of conditions used as exclusion criteria. ID is the Data-
Field at UKB

Non-cancer illness code, self-reported

ID Condition ID Condition

1244 infection of nervous system 1267 spinal injury

1245 brain abscess/intracranial abscess 1394 peripheral nerve injury

1246 encephalitis 1242 eye/eyelid problem

1247 meningitis 1274 eye infection

1248 spinal abscess 1275 retinal problem

1249 cranial nerve problem/palsy 1281 retinal detachment

1523 trigemminal neuralgia 1282 retinal artery/vein occlusion

1251 spinal cord disorder 1527 retinitis pigmentosa

1252 paraplegia 1528 macular degeneration

1524 spina bifida 1276 diabetic eye disease

1254 peripheral nerve disorder 1277 glaucoma

1255 peripheral neuropathy 1278 cataract

1256
acute infective polyneuritis/guillain-barre

syndrome
1279 eye trauma

1257 trapped nerve/compressed nerve 1435 optic neuritis

1468 diabetic neuropathy/ulcers 1529 dry eyes

258 chronic/degenerative neurological problem 1530 iritis

1259 motor neurone disease 1613 blepharitis / eyelid infection

1260 myasthenia gravis 1243 psychological/psychiatric problem

1261 multiple sclerosis 286 depression

1262 parkinsons disease 1531 post-natal depression

1263 dementia/alzheimers/cognitive impairment 1287 anxiety/panic attacks

1397
other demyelinating disease

(not multiple sclerosis)
1288 nervous breakdown

1264 epilepsy 1289 schizophrenia

1265 migraine 1290 deliberate self-harm/suicide attempt

1433 cerebral palsy 1291 mania/bipolar disorder/manic depression

1434 other neurological problem 408 alcohol dependency

1436 headaches (not migraine) 1409 opioid dependency

1437 myasthenia gravis 1410 other substance abuse/dependency

1525 benign / essential tremor 1469 post-traumatic stress disorder

1526 polio / poliomyelitis 1470 anorexia/bulimia/other eating disorder

1659 meningioma / benign meningeal tumour 1614 stress

1683 benign neuroma 1615 obsessive compulsive disorder (ocd)

1240 neurological injury/trauma 1616 insomnia

1266 head injury 1267 spinal injury

ICD10

G000 G00.0 Haemophilus meningitis I688
I68.8 Other cerebrovascular disorders

in diseases classified elsewhere

G001 G00.1 Pneumococcal meningitis G20 G20 Parkinson’s disease

G002 G00.2 Streptococcal meningitis G21 G21 Secondary Parkinsonism

G003 G00.3 Staphylococcal meningitis G210 G21.0 Malignant neuroleptic syndrome

G008 G00.8 Other bacterial meningitis G211
G21.1 Other drug-induced secondary

Parkinsonism

G009 G00.9 Bacterial meningitis, unspecified G212
G21.2 Secondary Parkinsonism due

to other external agents

G01
G01 Meningitis in bacterial diseases

classified elsewhere
G213 G21.3 Postencephalitic Parkinsonism

G020
G02.0 Meningitis in viral diseases

classified elsewhere
G214 G21.4 Vascular parkinsonism

G021 G02.1 Meningitis in mycoses G218 G21.8 Other secondary Parkinsonism

G030 G03.0 Nonpyogenic meningitis G219
G21.9 Secondary Parkinsonism,

unspecified

G031 G03.1 Chronic meningitis G22
G22 Parkinsonism in diseases

classified elsewhere
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G032 G03.2 Benign recurrent meningitis [Mollaret] G300
G30.0 Alzheimer’s disease with

early onset

G038 G03.8 Meningitis due to other specified causes G301
G30.1 Alzheimer’s disease with

late onset

G039 G03.9 Meningitis, unspecified G308 G30.8 Other Alzheimer’s disease

G040 G04.0 Acute disseminated encephalitis F000
F00.0 Dementia in Alzheimer’s

disease with early onset

G042
G04.2 Bacterial meningoencephalitis

and meningomyelitis, not elsewhere classified
F001

F00.1 Dementia in Alzheimer’s

disease with late onset

G048
G04.8 Other encephalitis, myelitis

and encephalomyelitis
F002

F00.2 Dementia in Alzheimer’s

disease, atypical or mixed type

G049
G04.9 Encephalitis, myelitis and

encephalomyelitis, unspecified
F009

F00.9 Dementia in Alzheimer’s

disease, unspecified

G050

G05.0 Encephalitis, myelitis and

encephalomyelitis in bacterial

diseases classified elsewhere

G310 G31.0 Circumscribed brain atrophy

G051

G05.1 Encephalitis, myelitis and

encephalomyelitis in viral diseases

classified elsewhere

G311
G31.1 Senile degeneration of brain,

not elsewhere classified

G052

G05.2 Encephalitis, myelitis and

encephalomyelitis in other infectious

and parasitic diseases classified elsewhere

G312
G31.2 Degeneration of nervous

system due to alcohol

G058

G05.8 Encephalitis, myelitis and

encephalomyelitis in other diseases

classified elsewhere

G318
G31.8 Other specified degenerative

diseases of nervous system

G06
G06 Intracranial and intraspinal

abscess and granuloma
G319

G31.9 Degenerative disease of

nervous system, unspecified

G060
G06.0 Intracranial abscess and

granuloma
G320

G32.0 Subacute combined degeneration

of spinal cord in diseases classified elsewhere

G061
G06.1 Intraspinal abscess and

granuloma
G328

G32.8 Other specified degenerative disorders

of nervous system in diseases classified

elsewhere

G062
G06.2 Extradural and subdural

abscess, unspecified
G230 G23.0 Hallervorden-Spatz disease

G07

G07 Intracranial and intraspinal

abscess and granuloma in

diseases classified elsewhere

G231
G23.1 Progressive supranuclear

ophthalmoplegia [Steele-Richardson-Olszewski]

G08
G08 Intracranial and intraspinal

phlebitis and thrombophlebitis
G232 G23.2 Striatonigral degeneration

G09
G09 Sequelae of inflammatory

diseases of central nervous system
G233

G23.3 Multiple system atrophy,

cerebellar type

G35 G35 Multiple sclerosis G238
G23.8 Other specified degenerative

diseases of basal ganglia

G360 G36.0 Neuromyelitis optica [Devic] G239
G23.9 Degenerative disease of

basal ganglia, unspecified

G368
G36.8 Other specified acute

disseminated demyelination
G240 G24.0 Drug-induced dystonia

G369
G36.9 Acute disseminated

demyelination, unspecified
G241 G24.1 Idiopathic familial dystonia

G370 G37.0 Diffuse sclerosis G242 G24.2 Idiopathic nonfamilial dystonia

G371
G37.1 Central demyelination

of corpus callosum
G248 G24.8 Other dystonia

G372 G37.2 Central pontine myelinolysis G249 G24.9 Dystonia, unspecified

G373
G37.3 Acute transverse myelitis

in demyelinating disease of central nervous system
G253 G25.3 Myoclonus

G374 G37.4 Subacute necrotising myelitis G254 G25.4 Drug-induced chorea

G378
G37.8 Other specified demyelinating

diseases of central nervous system
G255 G25.5 Other chorea

G379
G37.9 Demyelinating disease

of central nervous system, unspecified
G258

G25.8 Other specified extrapyramidal

and movement disorders

G400

G40.0 Localisation-related (focal)

(partial) idiopathic epilepsy and epileptic

syndromes with seizures of localised onset

G259
G25.9 Extrapyramidal and

movement disorder, unspecified
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G401

G40.1 Localisation-related (focal)

(partial) symptomatic epilepsy and

epileptic syndromes with simple partial seizures

F010
F01.0 Vascular dementia of

acute onset

G402

G40.2 Localisation-related (focal)

(partial) symptomatic epilepsy and

epileptic syndromes with complex partial seizures

F011 F01.1 Multi-infarct dementia

G403
G40.3 Generalised idiopathic

epilepsy and epileptic syndromes
F012 F01.2 Subcortical vascular dementia

G404
G40.4 Other generalised epilepsy

and epileptic syndromes
F013

F01.3 Mixed cortical and

subcortical vascular dementia

G405 G40.5 Special epileptic syndromes F018 F01.8 Other vascular dementia

G406
G40.6 Grand mal seizures,

unspecified (with or without petit mal)
F019 F01.9 Vascular dementia, unspecified

G407
G40.7 Petit mal, unspecified,

without grand mal seizures
F020 F02.0 Dementia in Pick’s disease

G408 G40.8 Other epilepsy F021
F02.1 Dementia in Creutzfeldt-Jakob

disease

G409 G40.9 Epilepsy, unspecified F022 F02.2 Dementia in Huntington’s disease

G410
G41.0 Grand mal status

epilepticus
F023 F02.3 Dementia in Parkinson’s disease

G411
G41.1 Petit mal status

epilepticus
F024

F02.4 Dementia in human immunodeficiency

virus [HIV] disease

G412
G41.2 Complex partial

status epilepticus
F028

F02.8 Dementia in other specified diseases

classified elsewhere

G418 G41.8 Other status epilepticus F03 F03 Unspecified dementia

G419 G41.9 Status epilepticus, unspecified F04
F04 Organic amnesic syndrome, not induced

by alcohol and other psychoactive substances

G450 G45.0 Vertebro-basilar artery syndrome G10 G10 Huntington’s disease

G451
G45.1 Carotid artery syndrome

(hemispheric)
G110 G11.0 Congenital nonprogressive ataxia

G453 G45.3 Amaurosis fugax G111 G11.1 Early-onset cerebellar ataxia

G454 G45.4 Transient global amnesia G112 G11.2 Late-onset cerebellar ataxia

G458
G45.8 Other transient cerebral

ischaemic attacks and related syndromes
G113

G11.3 Cerebellar ataxia with defective

DNA repair

G459
G45.9 Transient cerebral

ischaemic attack, unspecified
G114 G11.4 Hereditary spastic paraplegia

G700 G70.0 Myasthenia gravis G118 G11.8 Other hereditary ataxias

G702
G70.2 Congenital and

developmental myasthenia
G119 G11.9 Hereditary ataxia, unspecified

G708
G70.8 Other specified

myoneural disorders
G120

G12.0 Infantile spinal muscular atrophy,

type I [Werdnig-Hoffman]

G709 G70.9 Myoneural disorder, unspecified G121
G12.1 Other inherited spinal muscular

atrophy

G800 G80.0 Spastic cerebral palsy G122 G12.2 Motor neuron disease

G801 G80.1 Spastic diplegia G128
G12.8 Other spinal muscular atrophies

and related syndromes

G802 G80.2 Infantile hemiplegia G129 G12.9 Spinal muscular atrophy, unspecified

G803 G80.3 Dyskinetic cerebral palsy G130
G13.0 Paraneoplastic neuromyopathy

and neuropathy

G808 G80.8 Other infantile cerebral palsy G131

G13.1 Other systemic atrophy primarily

affecting central nervous system in neoplastic

disease

G809 G80.9 Infantile cerebral palsy, unspecified G138

G13.8 Systemic atrophy primarily affecting

central nervous system in other diseases

classified elsewhere

D320 D32.0 Cerebral meninges F050
F05.0 Delirium not superimposed on

dementia, so described

D321 D32.1 Spinal meninges F051
F05.1 Delirium superimposed on

dementia

D329 D32.9 Meninges, unspecified F058 F05.8 Other delirium

D330 D33.0 Brain, supratentorial F059 F05.9 Delirium, unspecified

D331 D33.1 Brain, infratentorial F060 F06.0 Organic hallucinosis
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D332 D33.2 Brain, unspecified F062
F06.2 Organic delusional

[schizophrenia-like] disorder

D333 D33.3 Cranial nerves F063
F06.3 Organic mood [affective]

disorders

D334 D33.4 Spinal cord F064 F06.4 Organic anxiety disorder

D339 D33.9 Central nervous system, unspecified F066
F06.6 Organic emotionally labile

[asthenic] disorder

G122 G12.2 Motor neuron disease F067 F06.7 Mild cognitive disorder

S06 S06 Intracranial injury F068

F06.8 Other specified mental disorders

due to brain damage and dysfunction

and to physical disease

I600
I60.0 Subarachnoid haemorrhage

from carotid siphon and bifurcation
F069

F06.9 Unspecified mental disorder due to

brain damage and dysfunction and to

physical disease

I601
I60.1 Subarachnoid haemorrhage

from middle cerebral artery
F070 F07.0 Organic personality disorder

I602
I60.2 Subarachnoid haemorrhage

from anterior communicating artery
F071 F07.1 Postencephalitic syndrome

I603
I60.3 Subarachnoid haemorrhage

from posterior communicating artery
F072 F07.2 Postconcussional syndrome

I604
I60.4 Subarachnoid haemorrhage

from basilar artery
F078

F07.8 Other organic personality and

behavioural disorders due to brain disease,

damage and dysfunction

I605
I60.5 Subarachnoid haemorrhage

from vertebral artery
F079

F07.9 Unspecified organic personality

and behavioural disorder due to brain

disease, damage and dysfunction

I606
I60.6 Subarachnoid haemorrhage

from other intracranial arteries
F09

F09 Unspecified organic or symptomatic

mental disorder

I607
I60.7 Subarachnoid haemorrhage

from intracranial artery, unspecified
Block F70-F79 F70-F79 Mental retardation

I608 I60.8 Other subarachnoid haemorrhage F20 F20 Schizophrenia

I609
I60.9 Subarachnoid haemorrhage,

unspecified
F21 F21 Schizotypal disorder

I610
I61.0 Intracerebral haemorrhage

in hemisphere, subcortical
F42 F42 Obsessive-compulsive disorder

I611
I61.1 Intracerebral haemorrhage

in hemisphere, cortical
F30 F30 Manic episode

I612
I61.2 Intracerebral haemorrhage

in hemisphere, unspecified
F31 F31 Bipolar affective disorder

I613
I61.3 Intracerebral haemorrhage

in brain stem
F323

F32.3 Severe depressive episode

with psychotic symptoms

I614
I61.4 Intracerebral haemorrhage

in cerebellum
F333

F33.3 Recurrent depressive disorder,

current episode severe with psychotic

symptoms

I615
I61.5 Intracerebral haemorrhage,

intraventricular
F50 F50 Eating disorders

I616
I61.6 Intracerebral haemorrhage,

multiple localised
Block Q00-Q07

Q00-Q07 Congenital malformations

of the nervous system

I618 I61.8 Other intracerebral haemorrhage G91 G91 Hydrocephalus

I619
I61.9 Intracerebral haemorrhage,

unspecified
G92 G92 Toxic encephalopathy

I620
I62.0 Subdural haemorrhage

(acute) (nontraumatic)
G931

G93.1 Anoxic brain damage, not

elsewhere classified

I621
I62.1 Nontraumatic extradural

haemorrhage
G932 G93.2 Benign intracranial hypertension

I629
I62.9 Intracranial haemorrhage

(nontraumatic), unspecified
G934 G93.4 Encephalopathy, unspecified

I630
I63.0 Cerebral infarction due to

thrombosis of precerebral arteries
G935 G93.5 Compression of brain

I631
I63.1 Cerebral infarction due to

embolism of precerebral arteries
G936 G93.6 Cerebral oedema
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I632

I63.2 Cerebral infarction due to

unspecified occlusion or stenosis

of precerebral arteries

G94
G94 Other disorders of brain in

diseases classified elsewhere

I633
I63.3 Cerebral infarction due to

thrombosis of cerebral arteries
G95 G95 Other diseases of spinal cord

I634
I63.4 Cerebral infarction due to

embolism of cerebral arteries
C710

C71.0 Cerebrum, except lobes

and ventricles

I635

I63.5 Cerebral infarction due to

unspecified occlusion or stenosis

of cerebral arteries

C711 C71.1 Frontal lobe

I636
I63.6 Cerebral infarction due to

cerebral venous thrombosis, nonpyogenic
C712 C71.2 Temporal lobe

I638 I63.8 Other cerebral infarction C713 C71.3 Parietal lobe

I639 I63.9 Cerebral infarction, unspecified C714 C71.4 Occipital lobe

I64
I64 Stroke, not specified as

haemorrhage or infarction
C715 C71.5 Cerebral ventricle

I672 I67.2 Cerebral atherosclerosis C716 C71.6 Cerebellum

I673
I67.3 Progressive vascular

leukoencephalopathy
C717 C71.7 Brain stem

I674 I67.4 Hypertensive encephalopathy C718 C71.8 Overlapping lesion of brain

I675 I67.5 Moyamoya disease C719 C71.9 Brain, unspecified

I680 I68.0 Cerebral amyloid angiopathy C720 C72.0 Spinal cord

G410 G41.0 Grand mal status epilepticus I611
I61.1 Intracerebral haemorrhage

in hemisphere, cortical

G411 G41.1 Petit mal status epilepticus I612
I61.2 Intracerebral haemorrhage

in hemisphere, unspecified

G412
G41.2 Complex partial status

epilepticus
I613

I61.3 Intracerebral haemorrhage

in brain stem

G418 G41.8 Other status epilepticus I614
I61.4 Intracerebral haemorrhage

in cerebellum

G419
G41.9 Status epilepticus,

unspecified
I615

I61.5 Intracerebral haemorrhage,

intraventricular

G450 G45.0 Vertebro-basilar artery syndrome I616
I61.6 Intracerebral haemorrhage,

multiple localised

G451
G45.1 Carotid artery syndrome

(hemispheric)
I618 I61.8 Other intracerebral haemorrhage

G453 G45.3 Amaurosis fugax I619
I61.9 Intracerebral haemorrhage,

unspecified

G454 G45.4 Transient global amnesia I620
I62.0 Subdural haemorrhage

(acute) (nontraumatic)

G458

G45.8 Other transient cerebral

ischaemic attacks and related

syndromes

I621
I62.1 Nontraumatic extradural

haemorrhage

G459
G45.9 Transient cerebral

ischaemic attack, unspecified
I629

I62.9 Intracranial haemorrhage

(nontraumatic), unspecified

G700 G70.0 Myasthenia gravis I630
I63.0 Cerebral infarction due to

thrombosis of precerebral arteries

G702
G70.2 Congenital and developmental

myasthenia
I631

I63.1 Cerebral infarction due to

embolism of precerebral arteries

G708
G70.8 Other specified myoneural

disorders
I632

I63.2 Cerebral infarction due to

unspecified occlusion or stenosis of

precerebral arteries

G709 G70.9 Myoneural disorder, unspecified I633
I63.3 Cerebral infarction due to

thrombosis of cerebral arteries

G800 G80.0 Spastic cerebral palsy I634
I63.4 Cerebral infarction due to

embolism of cerebral arteries

G801 G80.1 Spastic diplegia I635

I63.5 Cerebral infarction due to

unspecified occlusion or stenosis

of cerebral arteries

G802 G80.2 Infantile hemiplegia I636

I63.6 Cerebral infarction due to

cerebral venous thrombosis,

nonpyogenic
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G803 G80.3 Dyskinetic cerebral palsy I638 I63.8 Other cerebral infarction

G808 G80.8 Other infantile cerebral palsy I639
I63.9 Cerebral infarction,

unspecified

G809
G80.9 Infantile cerebral palsy,

unspecified
I64

I64 Stroke, not specified as

haemorrhage or infarction

D320 D32.0 Cerebral meninges I672 I67.2 Cerebral atherosclerosis

D321 D32.1 Spinal meninges I673
I67.3 Progressive vascular

leukoencephalopathy

D329 D32.9 Meninges, unspecified I674 I67.4 Hypertensive encephalopathy

D330 D33.0 Brain, supratentorial I675 I67.5 Moyamoya disease

D331 D33.1 Brain, infratentorial I680 I68.0 Cerebral amyloid angiopathy

D332 D33.2 Brain, unspecified I605
I60.5 Subarachnoid haemorrhage

from vertebral artery

D333 D33.3 Cranial nerves I606
I60.6 Subarachnoid haemorrhage

from other intracranial arteries

D334 D33.4 Spinal cord I607
I60.7 Subarachnoid haemorrhage

from intracranial artery, unspecified

D339
D33.9 Central nervous system,

unspecified
I608 I60.8 Other subarachnoid haemorrhage

G122 G12.2 Motor neuron disease I609
I60.9 Subarachnoid haemorrhage,

unspecified

S06 S06 Intracranial injury I610
I61.0 Intracerebral haemorrhage in

hemisphere, subcortical

I600
I60.0 Subarachnoid haemorrhage

from carotid siphon and bifurcation
I603

I60.3 Subarachnoid haemorrhage from

posterior communicating artery

I601
I60.1 Subarachnoid haemorrhage

from middle cerebral artery
I604

I60.4 Subarachnoid haemorrhage

from basilar artery

I602
I60.2 Subarachnoid haemorrhage

from anterior communicating artery

Algorithmically-defined outcomes

42006 Date of stroke 42018 Date of all cause dementia report

42008
Date of ischaemic stroke (should

be covered by 42006)
42022 Date of vascular dementia report

42010
Date of intracerebral haemorrhage

(should be covered by 42006)
42024 Date of frontotemporal dementia report

42012
Date of subarachnoid haemorrhage

(should be covered by 42006)
42021 Date of alzheimer’s disease report

42030 Date of all cause parkinsonism report
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Table 2 – The 27 major tracts using probabilistic tractography approach and their
fiber group

IDPs Fiber group

tract acoustic radiation (left) Projection

tract acoustic radiation (right) Projection

anterior thalamic radiation (left) Projection

anterior thalamic radiation (right) Projection

tract cingulate gyrus part of cingulum (left) Limbic

tract cingulate gyrus part of cingulum (right) Limbic

tract parahippocampal part of cingulum (left) Limbic

tract parahippocampal part of cingulum (right) Limbic

tract corticospinal tract (left) Projection

tract corticospinal tract (right) Projection

tract forceps major Commissural

tract forceps minor Commissural

tract inferior fronto-occipital fasciculus (left) Association

tract inferior fronto-occipital fasciculus (right) Association

tract inferior longitudinal fasciculus (left) Association

tract inferior longitudinal fasciculus (right) Association

tract middle cerebellar peduncle Brainstem

tract medial lemniscus (left) Brainstem

tract medial lemniscus (right) Brainstem

tract posterior thalamic radiation (left) Projection

tract posterior thalamic radiation (right) Projection

tract superior longitudinal fasciculus (left) Association

tract superior longitudinal fasciculus (right) Association

tract superior thalamic radiation (left) Projection

tract superior thalamic radiation (right) Projection

tract uncinate fasciculus (left) Association

tract uncinate fasciculus (right) Association
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Table 3 – The daily life measures that are used to perform association with brain
predicted age delta.

The measure Category

Duration of heavy DIY Physical activity

Duration of light DIY Physical activity

Duration of walk Physical activity

duration of walk for pleasuer Physical activity

Time spent driving Physical activity

Time spent using computer Physical activity

Time spent watching TV Physical activity

Length of mobile phone use Electronic device

Plays computer games Electronic device

Sleep duration Sleeping habits

Getting up in morning Sleeping habits

Nap during day Sleeping habits

Sleeplessness / insomnia Sleeping habits

Snoring Sleeping habits

Ever smoked Smoking

Smoking status Smoking

Alcohol drinker status Alcohol

Alcohol frequency intake Alcohol

Former alcohol drinker Alcohol

Time spend outdoors in summer Sun exposure

Time spent outdoors in winter Sun exposure

Cooked vegetable intake Diet

Salad / raw vegetable intake Diet

Fresh fruit intake Diet

Dried fruit intake Diet

Oily fish intake Diet

Non-oily fish intake Diet

Processed meat intake Diet

Poultry intake Diet
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Beef intake Diet

Lamb/mutton intake Diet

Pork intake Diet

Never eat eggs, dairy, wheat, sugar Diet

Cheese intake Diet

Bread intake Diet

Tea intake Diet

Coffee intake Diet

Water intake Diet



CHAPTER A. APPENDIX 157

Table 4 – The association of brain predicted age delta and brain phenotypes for each
model sorted by p-value. IDPs refer to image-derived phenotype. For ensemble
model extra letter is added to the name of the IDP to show from which fiber (model)
group it is.

Association model

IDP Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Mean_fa -1.6811 0.0241 -69.6434 -1.7284 -1.6338 0.0000

Weighted_mean_fa -1.4280 0.0251 -56.8855 -1.4772 -1.3788 0.0000

Mean_md_A 2.5560 0.0210 121.4856 2.5148 2.5972 0.0000

Weighted_mean_md 2.2347 0.0222 100.4946 2.1911 2.2783 0.0000

Mean_l1_A 2.2083 0.0235 93.9742 2.1623 2.2544 0.0000

Weighted_mean_l1 2.0557 0.0237 86.6103 2.0091 2.1022 0.0000

Mean_l2_A 2.3050 0.0219 105.3755 2.2621 2.3479 0.0000

Weighted_mean_l2 2.2003 0.0222 99.0235 2.1568 2.2439 0.0000

Mean_l3_A 2.4587 0.0213 115.2263 2.4169 2.5005 0.0000

Weighted_mean_l3 2.1265 0.0226 94.2058 2.0822 2.1707 0.0000

Mean_icvf_A -2.0701 0.0231 -89.7290 -2.1154 -2.0249 0.0000

Weighted_mean_icvf -1.3834 0.0249 -55.6356 -1.4321 -1.3347 0.0000

Mean_isovf_A 1.6983 0.0243 69.9553 1.6507 1.7459 0.0000

Weighted_mean_isovf 1.7763 0.0240 73.9643 1.7292 1.8234 0.0000

Weighted_mean_mo -0.6364 0.0275 -23.1851 -0.6902 -0.5826 0.0000

Mean_mo -0.6047 0.0264 -22.8948 -0.6565 -0.5530 0.0000

Mean_od -0.1277 0.0272 -4.6940 -0.1810 -0.0744 0.0000

Weighted_mean_od -0.1065 0.0281 -3.7887 -0.1616 -0.0514 0.0027

Brainstem model

IDP Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Mean_fa -1.4347 0.0166 -86.3267 -1.4673 -1.4021 0.0000

Mean_mo -1.1532 0.0174 -66.1220 -1.1874 -1.1191 0.0000

Mean_md 0.7561 0.0185 40.7778 0.7197 0.7924 0.0000

Weighted_mean_md 1.0745 0.0174 61.6719 1.0404 1.1087 0.0000

Weighted_mean_l1 1.1649 0.0174 66.8147 1.1307 1.1991 0.0000

Mean_l2 1.1952 0.0172 69.3096 1.1614 1.2290 0.0000

Weighted_mean_l2 0.8853 0.0182 48.6925 0.8497 0.9210 0.0000

Mean_l3 1.1125 0.0179 61.9856 1.0774 1.1477 0.0000

Weighted_mean_l3 0.8957 0.0181 49.3855 0.8601 0.9312 0.0000

Mean_od 1.2175 0.0170 71.5308 1.1842 1.2509 0.0000

Mean_isovf 0.9430 0.0178 52.9441 0.9081 0.9780 0.0000

Weighted_mean_isovf 0.9040 0.0181 49.9920 0.8686 0.9395 0.0000

Weighted_mean_fa -0.2521 0.0203 -12.4515 -0.2918 -0.2125 0.0000

Weighted_mean_od -0.2266 0.0200 -11.3071 -0.2659 -0.1873 0.0000

Weighted_mean_mo 0.2013 0.0198 10.1734 0.1625 0.2400 0.0000

Weighted_mean_icvf -0.1262 0.0200 -6.3158 -0.1654 -0.0870 0.0000

Mean_l1 -0.0022 0.0193 -0.1122 -0.0400 0.0356 1.0000

Mean_icvf 0.0202 0.0203 0.9961 -0.0196 0.0600 1.0000

Commissural model

IDP Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Mean_fa -1.7403 0.0243 -71.7110 -1.7879 -1.6927 0.0000

Weighted_mean_fa -1.1361 0.0255 -44.5788 -1.1861 -1.0862 0.0000

Mean_md 2.2439 0.0225 99.8921 2.1998 2.2879 0.0000

Weighted_mean_md 2.1749 0.0227 95.9544 2.1305 2.2194 0.0000

Mean_l1 2.0197 0.0234 86.4106 1.9739 2.0655 0.0000

Weighted_mean_l1 2.1660 0.0236 91.8566 2.1198 2.2122 0.0000

Mean_l2 1.8096 0.0239 75.8039 1.7628 1.8564 0.0000

Weighted_mean_l2 1.9965 0.0231 86.5350 1.9513 2.0417 0.0000

Mean_l3 2.3152 0.0223 103.8275 2.2715 2.3589 0.0000

Weighted_mean_l3 1.9872 0.0232 85.7796 1.9418 2.0326 0.0000

Mean_icvf -1.4558 0.0256 -56.8630 -1.5059 -1.4056 0.0000

Weighted_mean_icvf -1.5483 0.0247 -62.7045 -1.5967 -1.4999 0.0000

Weighted_mean_od -1.7011 0.0279 -61.0182 -1.7558 -1.6465 0.0000
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Mean_isovf 1.8364 0.0236 77.6768 1.7901 1.8828 0.0000

Weighted_mean_isovf 1.4334 0.0248 57.8090 1.3848 1.4821 0.0000

Mean_od -0.3689 0.0265 -13.9254 -0.4208 -0.3170 0.0000

Weighted_mean_mo 0.1489 0.0284 5.2402 0.0932 0.2045 0.0000

Mean_mo 0.0985 0.0267 3.6871 0.0461 0.1508 0.0041

Limbic model

IDP Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Mean_fa -2.8571 0.0206 -138.8892 -2.8974 -2.8168 0.0000

Mean_mo -1.9210 0.0248 -77.5291 -1.9695 -1.8724 0.0000

Weighted_mean_mo -1.4861 0.0260 -57.2268 -1.5371 -1.4352 0.0000

Mean_md 3.1136 0.0201 154.7092 3.0742 3.1531 0.0000

Mean_l1 1.9548 0.0264 74.1213 1.9031 2.0065 0.0000

Mean_l2 3.2599 0.0185 176.2969 3.2237 3.2962 0.0000

Weighted_mean_l2 1.4627 0.0259 56.4058 1.4119 1.5136 0.0000

Mean_l3 3.0363 0.0202 150.2191 2.9967 3.0759 0.0000

Mean_icvf -1.4071 0.0261 -53.9439 -1.4582 -1.3560 0.0000

Weighted_mean_icvf -1.3828 0.0262 -52.8570 -1.4341 -1.3315 0.0000

Mean_od 1.6430 0.0257 63.9326 1.5926 1.6934 0.0000

Mean_isovf 3.1784 0.0205 155.2579 3.1383 3.2185 0.0000

Weighted_mean_fa -0.9910 0.0270 -36.6575 -1.0440 -0.9380 0.0000

Weighted_mean_l3 0.9606 0.0269 35.6850 0.9079 1.0134 0.0000

Weighted_mean_md 0.9042 0.0268 33.6989 0.8516 0.9568 0.0000

Weighted_mean_od 0.5310 0.0275 19.2921 0.4771 0.5850 0.0000

Weighted_mean_isovf -0.3176 0.0274 -11.5771 -0.3714 -0.2638 0.0000

Weighted_mean_l1 -0.0790 0.0275 -2.8686 -0.1330 -0.0250 0.0743

Projection model

IDP Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Mean_fa -1.6217 0.0241 -67.4044 -1.6689 -1.5746 0.0000

Mean_md 1.9715 0.0227 86.9868 1.9271 2.0159 0.0000

Weighted_mean_md 1.8609 0.0231 80.7287 1.8157 1.9061 0.0000

Mean_l1 1.4220 0.0251 56.6829 1.3728 1.4712 0.0000

Weighted_mean_l1 1.7320 0.0242 71.6298 1.6846 1.7794 0.0000

Mean_l2 1.5094 0.0241 62.5543 1.4621 1.5567 0.0000

Weighted_mean_l2 1.6865 0.0236 71.3470 1.6402 1.7328 0.0000

Mean_l3 2.2189 0.0215 103.1246 2.1767 2.2611 0.0000

Weighted_mean_l3 1.7458 0.0235 74.3703 1.6998 1.7919 0.0000

Mean_icvf -1.5062 0.0241 -62.4418 -1.5535 -1.4589 0.0000

Weighted_mean_icvf -1.4683 0.0242 -60.5818 -1.5158 -1.4208 0.0000

Weighted_mean_od -1.2296 0.0271 -45.3222 -1.2828 -1.1764 0.0000

Mean_isovf 1.2492 0.0247 50.5267 1.2007 1.2976 0.0000

Weighted_mean_isovf 1.0264 0.0252 40.7574 0.9771 1.0758 0.0000

Weighted_mean_fa -0.9067 0.0263 -34.4539 -0.9582 -0.8551 0.0000

Mean_od 0.3060 0.0269 11.3718 0.2532 0.3587 0.0000

Mean_mo 0.2305 0.0266 8.6606 0.1784 0.2827 0.0000

Weighted_mean_mo 0.0381 0.0263 1.4464 -0.0135 0.0897 1.0000

Ensemble model

IDP Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Mean_fa_A -1.2818 0.0289 -44.3711 -1.3384 -1.2251 0.0000

Mean_md_A 1.9464 0.0286 67.9942 1.8903 2.0026 0.0000

Weighted_mean_md_A 1.7028 0.0286 59.5416 1.6467 1.7588 0.0000

Mean_l1_A 1.6788 0.0297 56.4430 1.6205 1.7371 0.0000

Weighted_mean_l1_A 1.5664 0.0295 53.1076 1.5086 1.6242 0.0000

Mean_l2_A 1.7565 0.0285 61.6554 1.7007 1.8123 0.0000

Weighted_mean_l2_A 1.6783 0.0285 58.9661 1.6225 1.7341 0.0000

Mean_l3_A 1.8742 0.0285 65.6935 1.8183 1.9301 0.0000

Weighted_mean_l3_A 1.6186 0.0286 56.6340 1.5625 1.6746 0.0000

Mean_icvf_A -1.5740 0.0289 -54.4710 -1.6307 -1.5174 0.0000

Mean_isovf_A 1.2948 0.0291 44.5382 1.2378 1.3518 0.0000

Weighted_mean_isovf_A 1.3551 0.0290 46.7276 1.2982 1.4119 0.0000

Mean_fa_C -1.3263 0.0292 -45.4895 -1.3835 -1.2692 0.0000

Mean_md_C 1.7095 0.0288 59.2903 1.6529 1.7660 0.0000
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Weighted_mean_md_C 1.6591 0.0288 57.6128 1.6026 1.7155 0.0000

Mean_l1_C 1.5370 0.0290 52.9527 1.4801 1.5939 0.0000

Weighted_mean_l1_C 1.6516 0.0297 55.6885 1.5935 1.7097 0.0000

Mean_l2_C 1.3800 0.0289 47.7020 1.3233 1.4367 0.0000

Weighted_mean_l2_C 1.5225 0.0286 53.1414 1.4663 1.5786 0.0000

Mean_l3_C 1.7640 0.0289 61.0120 1.7073 1.8207 0.0000

Weighted_mean_l3_C 1.5170 0.0287 52.8381 1.4607 1.5732 0.0000

Weighted_mean_icvf_C -1.1763 0.0291 -40.3585 -1.2334 -1.1192 0.0000

Weighted_mean_od_C -1.2944 0.0328 -39.4650 -1.3587 -1.2301 0.0000

Mean_isovf_C 1.4022 0.0288 48.7488 1.3458 1.4585 0.0000

Mean_fa_L -2.2932 0.0274 -83.5811 -2.3470 -2.2394 0.0000

Mean_mo_L -1.5405 0.0287 -53.6261 -1.5968 -1.4842 0.0000

Weighted_mean_mo_L -1.1897 0.0291 -40.8975 -1.2467 -1.1327 0.0000

Mean_md_L 2.4990 0.0280 89.3511 2.4442 2.5538 0.0000

Mean_l1_L 1.5689 0.0304 51.6461 1.5094 1.6285 0.0000

Mean_l2_L 2.6146 0.0272 96.0507 2.5613 2.6680 0.0000

Weighted_mean_l2_L 1.1752 0.0290 40.5222 1.1183 1.2320 0.0000

Mean_l3_L 2.4386 0.0278 87.8721 2.3842 2.4930 0.0000

Mean_icvf_L -1.1292 0.0291 -38.8429 -1.1861 -1.0722 0.0000

Mean_od_L 1.3201 0.0291 45.3979 1.2631 1.3771 0.0000

Mean_isovf_L 2.5501 0.0285 89.4927 2.4943 2.6060 0.0000

Mean_fa_P -1.2209 0.0291 -41.8994 -1.2780 -1.1638 0.0000

Mean_md_P 1.4803 0.0287 51.5540 1.4241 1.5366 0.0000

Weighted_mean_md_P 1.3981 0.0288 48.6037 1.3417 1.4544 0.0000

Weighted_mean_l1_P 1.3011 0.0296 44.0211 1.2432 1.3591 0.0000

Mean_l2_P 1.1345 0.0289 39.1977 1.0777 1.1912 0.0000

Weighted_mean_l2_P 1.2659 0.0289 43.8333 1.2093 1.3225 0.0000

Mean_l3_P 1.6670 0.0284 58.6613 1.6113 1.7227 0.0000

Weighted_mean_l3_P 1.3129 0.0289 45.4847 1.2563 1.3695 0.0000

Mean_icvf_P -1.1301 0.0289 -39.0612 -1.1868 -1.0734 0.0000

Weighted_mean_icvf_L -1.1075 0.0291 -38.0359 -1.1646 -1.0504 0.0000

Weighted_mean_icvf_P -1.1016 0.0290 -38.0347 -1.1584 -1.0448 0.0000

Weighted_mean_isovf_C 1.0949 0.0290 37.7663 1.0381 1.1517 0.0000

Weighted_mean_fa_A -1.0896 0.0293 -37.1658 -1.1470 -1.0321 0.0000

Mean_icvf_C -1.1072 0.0299 -37.0364 -1.1658 -1.0486 0.0000

Weighted_mean_icvf_A -1.0535 0.0290 -36.3515 -1.1103 -0.9967 0.0000

Mean_l1_P 1.0662 0.0298 35.8223 1.0078 1.1245 0.0000

Mean_isovf_P 0.9374 0.0290 32.3109 0.8806 0.9943 0.0000

Mean_fa_B -0.8977 0.0300 -29.9704 -0.9564 -0.8390 0.0000

Weighted_mean_fa_C -0.8676 0.0292 -29.7423 -0.9248 -0.8104 0.0000

Weighted_mean_od_P -0.9177 0.0316 -29.0546 -0.9796 -0.8557 0.0000

Weighted_mean_fa_L -0.7961 0.0295 -26.9894 -0.8539 -0.7383 0.0000

Weighted_mean_isovf_P 0.7737 0.0291 26.5777 0.7166 0.8307 0.0000

Weighted_mean_l3_L 0.7733 0.0293 26.3562 0.7158 0.8309 0.0000

Mean_od_B 0.7595 0.0293 25.9523 0.7021 0.8169 0.0000

Mean_l2_B 0.7490 0.0294 25.4366 0.6913 0.8067 0.0000

Weighted_mean_md_L 0.7280 0.0292 24.9409 0.6708 0.7853 0.0000

Weighted_mean_l1_B 0.7285 0.0296 24.6498 0.6706 0.7865 0.0000

Mean_mo_B -0.7206 0.0295 -24.4204 -0.7784 -0.6627 0.0000

Mean_l3_B 0.6962 0.0300 23.1990 0.6374 0.7550 0.0000

Weighted_mean_md_B 0.6721 0.0291 23.0902 0.6150 0.7291 0.0000

Weighted_mean_fa_P -0.6838 0.0302 -22.6624 -0.7429 -0.6246 0.0000

Mean_isovf_B 0.5900 0.0291 20.2903 0.5330 0.6470 0.0000

Weighted_mean_isovf_B 0.5643 0.0293 19.2506 0.5068 0.6217 0.0000

Weighted_mean_l3_B 0.5609 0.0294 19.1073 0.5033 0.6184 0.0000

Weighted_mean_l2_B 0.5532 0.0294 18.8289 0.4956 0.6108 0.0000

Mean_md_B 0.4740 0.0294 16.0981 0.4163 0.5317 0.0000

Weighted_mean_mo_A -0.4849 0.0307 -15.7983 -0.5451 -0.4247 0.0000

Mean_mo_A -0.4605 0.0295 -15.5943 -0.5184 -0.4026 0.0000

Weighted_mean_od_L 0.4253 0.0296 14.3537 0.3672 0.4834 0.0000

Mean_od_C -0.2774 0.0294 -9.4234 -0.3351 -0.2197 0.0000
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Weighted_mean_isovf_L -0.2496 0.0294 -8.4788 -0.3073 -0.1919 0.0000

Mean_od_P 0.2327 0.0303 7.6849 0.1734 0.2921 0.0000

Mean_mo_P 0.1702 0.0299 5.6875 0.1116 0.2289 0.0000

Weighted_mean_fa_B -0.1599 0.0309 -5.1697 -0.2205 -0.0993 0.0000

Weighted_mean_od_B -0.1387 0.0306 -4.5341 -0.1987 -0.0788 0.0005

Weighted_mean_mo_B 0.1224 0.0302 4.0569 0.0633 0.1816 0.0045

Weighted_mean_mo_C 0.1128 0.0315 3.5822 0.0511 0.1745 0.0308

Mean_od_A -0.0932 0.0302 -3.0898 -0.1523 -0.0341 0.1806

Weighted_mean_icvf_B -0.0788 0.0304 -2.5892 -0.1384 -0.0191 0.8666

Weighted_mean_od_A -0.0785 0.0312 -2.5196 -0.1395 -0.0174 1.0000

Mean_l1_B -0.0002 0.0293 -0.0065 -0.0577 0.0573 1.0000

Mean_icvf_B 0.0106 0.0309 0.3448 -0.0499 0.0711 1.0000

Mean_mo_C 0.0705 0.0296 2.3817 0.0125 0.1285 1.0000

Weighted_mean_l1_L -0.0618 0.0295 -2.0965 -0.1196 -0.0040 1.0000

Weighted_mean_mo_P 0.0280 0.0296 0.9474 -0.0299 0.0859 1.0000
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Table 5 – The association of cardiac risk factors and vascular measures association
with brain predicted age delta sorted by p-value for each model.

Association model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Hypertens 0.3359 0.0287 11.7021 0.2796 0.3921 0.0000

Diabetes 0.2306 0.0280 8.2244 0.1756 0.2856 0.0000

cmr_LVM_i 0.2578 0.0353 7.2965 0.1885 0.3270 0.0000

cmr_RVEDV_i -0.1716 0.0325 -5.2829 -0.2352 -0.1079 0.0000

cmr_RVSV_i -0.1294 0.0295 -4.3891 -0.1872 -0.0716 0.0002

cmr_RVESV_i -0.1380 0.0332 -4.1632 -0.2030 -0.0730 0.0004

cmr_LVSV_i -0.0856 0.0292 -2.9354 -0.1427 -0.0284 0.0467

Deprivation 0.0774 0.0282 2.7386 0.0220 0.1327 0.0865

BMI 0.0059 0.0284 0.2059 -0.0499 0.0616 1.0000

BSA 0.0210 0.0467 0.4499 -0.0706 0.1127 1.0000

IPAQ -0.0016 0.0281 -0.0565 -0.0566 0.0534 1.0000

ASI0 0.0002 0.0285 0.0081 -0.0557 0.0562 1.0000

cmr_LVEDV_i -0.0556 0.0308 -1.8024 -0.1160 0.0049 1.0000

cmr_LVESV_i 0.0033 0.0308 0.1056 -0.0571 0.0636 1.0000

Brainstem model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

BSA 0.3450 0.0338 10.2229 0.2789 0.4112 0.0000

BMI 0.2050 0.0206 9.9739 0.1647 0.2453 0.0000

Hypertens 0.1894 0.0209 9.0743 0.1485 0.2303 0.0000

Diabetes 0.1650 0.0203 8.1145 0.1252 0.2049 0.0000

cmr_RVEDV_i -0.1215 0.0236 -5.1586 -0.1677 -0.0753 0.0000

cmr_LVM_i 0.1249 0.0257 4.8686 0.0746 0.1752 0.0000

cmr_RVESV_i -0.1013 0.0241 -4.2060 -0.1485 -0.0541 0.0004

cmr_RVSV_i -0.0890 0.0214 -4.1617 -0.1309 -0.0471 0.0004

cmr_LVSV_i -0.0777 0.0211 -3.6762 -0.1191 -0.0363 0.0033

IPAQ -0.0519 0.0203 -2.5523 -0.0918 -0.0120 0.1500

Deprivation 0.0502 0.0205 2.4487 0.0100 0.0903 0.2009

ASI0 0.0114 0.0207 0.5515 -0.0292 0.0520 1.0000

cmr_LVEDV_i -0.0376 0.0224 -1.6817 -0.0815 0.0062 1.0000

cmr_LVESV_i 0.0240 0.0224 1.0718 -0.0199 0.0678 1.0000

Commissural model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Hypertens 0.2487 0.0286 8.6859 0.1926 0.3048 0.0000

cmr_LVM_i 0.2727 0.0351 7.7607 0.2039 0.3416 0.0000

Diabetes 0.1971 0.0279 7.0617 0.1424 0.2518 0.0000

cmr_RVEDV_i -0.1615 0.0323 -4.9948 -0.2248 -0.0981 0.0000

cmr_RVSV_i -0.1194 0.0293 -4.0695 -0.1769 -0.0619 0.0007

cmr_RVESV_i -0.1326 0.0330 -4.0214 -0.1973 -0.0680 0.0008

cmr_LVSV_i -0.0967 0.0290 -3.3331 -0.1536 -0.0398 0.0121

BMI 0.0553 0.0283 1.9554 -0.0001 0.1107 0.7079

Deprivation 0.0541 0.0281 1.9246 -0.0010 0.1091 0.7602

BSA 0.0649 0.0466 1.3946 -0.0263 0.1562 1.0000

IPAQ -0.0095 0.0279 -0.3404 -0.0642 0.0452 1.0000

ASI0 -0.0062 0.0284 -0.2186 -0.0618 0.0494 1.0000

cmr_LVEDV_i -0.0469 0.0307 -1.5279 -0.1071 0.0133 1.0000

cmr_LVESV_i 0.0293 0.0306 0.9545 -0.0308 0.0893 1.0000

Limbic model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Diabetes 0.3585 0.0288 12.4471 0.3020 0.4149 0.0000

Hypertens 0.2934 0.0296 9.9051 0.2353 0.3514 0.0000

BMI 0.2599 0.0292 8.8982 0.2026 0.3171 0.0000

cmr_RVEDV_i -0.2732 0.0334 -8.1715 -0.3388 -0.2077 0.0000

BSA 0.3831 0.0482 7.9449 0.2886 0.4776 0.0000

cmr_RVESV_i -0.2587 0.0341 -7.5807 -0.3256 -0.1918 0.0000

cmr_RVSV_i -0.1731 0.0304 -5.6969 -0.2327 -0.1135 0.0000

cmr_LVEDV_i -0.1374 0.0318 -4.3263 -0.1996 -0.0751 0.0002
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cmr_LVSV_i -0.1222 0.0301 -4.0658 -0.1811 -0.0633 0.0007

cmr_LVM_i 0.1354 0.0365 3.7142 0.0639 0.2068 0.0029

cmr_LVESV_i -0.0885 0.0317 -2.7907 -0.1506 -0.0263 0.0737

Deprivation 0.0577 0.0291 1.9807 0.0006 0.1147 0.6670

IPAQ 0.0098 0.0289 0.3376 -0.0469 0.0664 1.0000

ASI0 -0.0066 0.0294 -0.2242 -0.0643 0.0511 1.0000

Projection model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Hypertens 0.3274 0.0283 11.5799 0.2720 0.3828 0.0000

Diabetes 0.2146 0.0276 7.7736 0.1605 0.2687 0.0000

cmr_LVM_i 0.2652 0.0348 7.6176 0.1969 0.3334 0.0000

cmr_RVEDV_i -0.1776 0.0320 -5.5550 -0.2403 -0.1149 0.0000

cmr_RVESV_i -0.1491 0.0327 -4.5599 -0.2132 -0.0850 0.0001

cmr_RVSV_i -0.1291 0.0290 -4.4494 -0.1860 -0.0722 0.0001

cmr_LVSV_i -0.1040 0.0287 -3.6232 -0.1603 -0.0478 0.0041

Deprivation 0.0975 0.0278 3.5064 0.0430 0.1520 0.0064

BMI 0.0901 0.0280 3.2180 0.0352 0.1450 0.0181

BSA 0.1013 0.0463 2.1887 0.0106 0.1920 0.4009

IPAQ -0.0128 0.0276 -0.4624 -0.0669 0.0414 1.0000

ASI0 -0.0149 0.0281 -0.5295 -0.0699 0.0402 1.0000

cmr_LVEDV_i -0.0397 0.0304 -1.3045 -0.0992 0.0199 1.0000

cmr_LVESV_i 0.0491 0.0303 1.6174 -0.0104 0.1086 1.0000

Ensemble model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Hypertens 0.3074 0.0318 9.6783 0.2451 0.3697 0.0000

Diabetes 0.2765 0.0309 8.9359 0.2159 0.3372 0.0000

BSA 0.3945 0.0516 7.6500 0.2934 0.4956 0.0000

BMI 0.2343 0.0313 7.4784 0.1729 0.2958 0.0000

cmr_LVM_i 0.2752 0.0391 7.0461 0.1986 0.3517 0.0000

cmr_RVEDV_i -0.2052 0.0359 -5.7218 -0.2755 -0.1349 0.0000

cmr_RVESV_i -0.1900 0.0366 -5.1909 -0.2617 -0.1182 0.0000

cmr_RVSV_i -0.1337 0.0326 -4.1047 -0.1975 -0.0698 0.0006

Deprivation 0.0963 0.0312 3.0859 0.0351 0.1575 0.0285

cmr_LVSV_i -0.0918 0.0322 -2.8523 -0.1549 -0.0287 0.0609

cmr_LVEDV_i -0.0653 0.0340 -1.9165 -0.1320 0.0015 0.7744

IPAQ 0.0012 0.0310 0.0389 -0.0595 0.0619 1.0000

ASI0 -0.0093 0.0315 -0.2962 -0.0711 0.0524 1.0000

cmr_LVESV_i -0.0054 0.0340 -0.1600 -0.0721 0.0612 1.0000
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Table 6 – The association of brain predicted age delta and daily life measures for
each model.

Association model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Smoking status 0.2056 0.0228 9.0046 0.1608 0.2503 0.0000

Ever smoked 0.1522 0.0229 6.6426 0.1073 0.1971 0.0000

Alcohol frequency intake -0.1296 0.0232 -5.5763 -0.1752 -0.0840 0.0000

Lamb/mutton intake 0.1017 0.0230 4.4133 0.0565 0.1469 0.0004

Time spent watching TV -0.0955 0.0231 -4.1300 -0.1408 -0.0502 0.0014

Oily fish intake 0.0921 0.0232 3.9781 0.0467 0.1375 0.0027

Pork intake 0.0880 0.0230 3.8339 0.0430 0.1330 0.0048

Tea intake -0.0714 0.0228 -3.1331 -0.1161 -0.0267 0.0659

Sleep duration 0.0712 0.0229 3.1097 0.0263 0.1160 0.0713

Getting up in morning -0.0703 0.0234 -2.9975 -0.1162 -0.0243 0.1036

Nap during day 0.0626 0.0231 2.7109 0.0173 0.1079 0.2553

Water intake 0.0579 0.0230 2.5125 0.0127 0.1030 0.4560

Beef intake 0.0554 0.0229 2.4228 0.0106 0.1003 0.5857

Former alcohol drinker 0.0522 0.0228 2.2869 0.0075 0.0968 0.8441

Duration of heavy DIY 0.0334 0.0230 1.4523 -0.0117 0.0784 1.0000

Duration of light DIY -0.0123 0.0229 -0.5371 -0.0573 0.0326 1.0000

Duration of walk -0.0268 0.0228 -1.1738 -0.0715 0.0179 1.0000

duration of walk for pleasure -0.0256 0.0229 -1.1190 -0.0705 0.0193 1.0000

Time spent driving 0.0101 0.0232 0.4355 -0.0354 0.0556 1.0000

Time spent using computer 0.0370 0.0230 1.6076 -0.0081 0.0820 1.0000

Length of mobile phone use -0.0237 0.0233 -1.0194 -0.0693 0.0219 1.0000

Plays computer games -0.0089 0.0228 -0.3888 -0.0537 0.0359 1.0000

Sleeplessness / insomnia -0.0231 0.0231 -1.0021 -0.0684 0.0221 1.0000

Snoring -0.0154 0.0228 -0.6735 -0.0601 0.0294 1.0000

Alcohol drinker status -0.0147 0.0228 -0.6418 -0.0594 0.0301 1.0000

Time spend outdoors in summer -0.0478 0.0233 -2.0539 -0.0934 -0.0022 1.0000

Time spent outdoors in winter -0.0283 0.0231 -1.2207 -0.0736 0.0171 1.0000

Cooked vegetable intake -0.0086 0.0229 -0.3755 -0.0534 0.0362 1.0000

Salad / raw vegetable intake -0.0180 0.0229 -0.7868 -0.0629 0.0269 1.0000

Fresh fruit intake 0.0299 0.0230 1.3005 -0.0151 0.0749 1.0000

Dried fruit intake 0.0179 0.0229 0.7842 -0.0269 0.0627 1.0000

Non-oily fish intake -0.0078 0.0229 -0.3423 -0.0526 0.0370 1.0000

Processed meat intake 0.0310 0.0238 1.3051 -0.0156 0.0776 1.0000

Poultry intake -0.0275 0.0228 -1.2052 -0.0723 0.0172 1.0000

Never eat eggs, dairy, wheat, sugar -0.0045 0.0229 -0.1989 -0.0494 0.0403 1.0000

Cheese intake 0.0254 0.0229 1.1068 -0.0196 0.0703 1.0000

Bread intake 0.0015 0.0240 0.0615 -0.0455 0.0485 1.0000

Coffee intake 0.0181 0.0229 0.7926 -0.0267 0.0629 1.0000

Brainstem model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Smoking status 0.1249 0.0163 7.6708 0.0930 0.1568 0.0000

Ever smoked 0.0969 0.0163 5.9387 0.0650 0.1289 0.0000

Tea intake -0.0567 0.0162 -3.4875 -0.0885 -0.0248 0.0186

Oily fish intake 0.0560 0.0165 3.3958 0.0237 0.0884 0.0261

Lamb/mutton intake 0.0525 0.0164 3.2002 0.0203 0.0846 0.0523

Water intake 0.0519 0.0164 3.1629 0.0197 0.0841 0.0595

Nap during day 0.0504 0.0165 3.0616 0.0181 0.0827 0.0838

Never eat eggs, dairy, wheat, sugar -0.0465 0.0163 -2.8554 -0.0785 -0.0146 0.1635

Coffee intake 0.0430 0.0163 2.6394 0.0111 0.0749 0.3159

Pork intake 0.0430 0.0164 2.6257 0.0109 0.0750 0.3289

Plays computer games 0.0414 0.0163 2.5444 0.0095 0.0733 0.4163

Beef intake 0.0386 0.0163 2.3689 0.0067 0.0705 0.6784

Duration of heavy DIY 0.0132 0.0164 0.8051 -0.0189 0.0453 1.0000

Duration of light DIY 0.0115 0.0163 0.7057 -0.0205 0.0436 1.0000

Duration of walk -0.0346 0.0163 -2.1289 -0.0665 -0.0027 1.0000

duration of walk for pleasure -0.0148 0.0163 -0.9089 -0.0468 0.0172 1.0000
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Time spent driving 0.0027 0.0165 0.1659 -0.0297 0.0351 1.0000

Time spent using computer 0.0269 0.0164 1.6426 -0.0052 0.0590 1.0000

Time spent watching TV 0.0071 0.0165 0.4292 -0.0252 0.0394 1.0000

Length of mobile phone use 0.0034 0.0166 0.2047 -0.0291 0.0358 1.0000

Sleep duration 0.0049 0.0163 0.2992 -0.0271 0.0368 1.0000

Getting up in morning -0.0276 0.0167 -1.6510 -0.0604 0.0052 1.0000

Sleeplessness / insomnia 0.0144 0.0165 0.8754 -0.0178 0.0466 1.0000

Snoring -0.0228 0.0163 -1.3997 -0.0546 0.0091 1.0000

Alcohol drinker status -0.0035 0.0163 -0.2155 -0.0354 0.0284 1.0000

Former alcohol drinker 0.0176 0.0163 1.0854 -0.0142 0.0495 1.0000

Time spend outdoors in summer -0.0347 0.0166 -2.0909 -0.0672 -0.0022 1.0000

Time spent outdoors in winter -0.0107 0.0165 -0.6490 -0.0430 0.0216 1.0000

Cooked vegetable intake 0.0324 0.0163 1.9890 0.0005 0.0643 1.0000

Salad / raw vegetable intake 0.0091 0.0163 0.5598 -0.0228 0.0411 1.0000

Fresh fruit intake 0.0117 0.0164 0.7121 -0.0204 0.0437 1.0000

Dried fruit intake -0.0178 0.0163 -1.0946 -0.0498 0.0141 1.0000

Non-oily fish intake 0.0217 0.0163 1.3292 -0.0103 0.0536 1.0000

Processed meat intake 0.0212 0.0169 1.2532 -0.0120 0.0544 1.0000

Poultry intake 0.0033 0.0163 0.2049 -0.0286 0.0352 1.0000

Cheese intake 0.0159 0.0163 0.9765 -0.0161 0.0480 1.0000

Bread intake -0.0102 0.0171 -0.5964 -0.0437 0.0233 1.0000

Alcohol frequency intake -0.0177 0.0166 -1.0666 -0.0501 0.0148 1.0000

Commissural model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Smoking status 0.1971 0.0238 8.2854 0.1505 0.2438 0.0000

Alcohol frequency intake -0.1743 0.0242 -7.2064 -0.2217 -0.1269 0.0000

Ever smoked 0.1505 0.0239 6.3088 0.1038 0.1973 0.0000

Oily fish intake 0.1359 0.0241 5.6346 0.0886 0.1831 0.0000

Lamb/mutton intake 0.0895 0.0240 3.7308 0.0425 0.1365 0.0073

Water intake 0.0890 0.0240 3.7075 0.0419 0.1360 0.0080

Tea intake -0.0766 0.0237 -3.2248 -0.1231 -0.0300 0.0480

Nap during day 0.0766 0.0241 3.1801 0.0294 0.1238 0.0561

Time spent watching TV -0.0674 0.0241 -2.7989 -0.1147 -0.0202 0.1951

Pork intake 0.0641 0.0239 2.6794 0.0172 0.1110 0.2806

Time spent using computer 0.0629 0.0240 2.6272 0.0160 0.1099 0.3275

Duration of heavy DIY 0.0610 0.0239 2.5497 0.0141 0.1079 0.4100

Getting up in morning -0.0613 0.0244 -2.5122 -0.1092 -0.0135 0.4563

Sleep duration 0.0561 0.0238 2.3525 0.0094 0.1028 0.7091

Plays computer games -0.0542 0.0238 -2.2772 -0.1008 -0.0075 0.8659

Duration of light DIY 0.0332 0.0239 1.3916 -0.0136 0.0801 1.0000

Duration of walk -0.0120 0.0238 -0.5052 -0.0586 0.0346 1.0000

duration of walk for pleasure -0.0086 0.0239 -0.3611 -0.0554 0.0382 1.0000

Time spent driving 0.0176 0.0242 0.7283 -0.0298 0.0650 1.0000

Length of mobile phone use -0.0167 0.0242 -0.6877 -0.0642 0.0308 1.0000

Sleeplessness / insomnia 0.0097 0.0241 0.4039 -0.0374 0.0569 1.0000

Snoring -0.0264 0.0238 -1.1091 -0.0729 0.0202 1.0000

Alcohol drinker status 0.0089 0.0238 0.3751 -0.0377 0.0556 1.0000

Former alcohol drinker 0.0319 0.0238 1.3416 -0.0147 0.0785 1.0000

Time spend outdoors in summer -0.0299 0.0242 -1.2333 -0.0773 0.0176 1.0000

Time spent outdoors in winter 0.0086 0.0241 0.3570 -0.0386 0.0559 1.0000

Cooked vegetable intake 0.0196 0.0238 0.8218 -0.0271 0.0663 1.0000

Salad / raw vegetable intake -0.0390 0.0238 -1.6380 -0.0857 0.0077 1.0000

Fresh fruit intake -0.0171 0.0239 -0.7156 -0.0640 0.0298 1.0000

Dried fruit intake -0.0200 0.0238 -0.8416 -0.0667 0.0266 1.0000

Non-oily fish intake 0.0396 0.0238 1.6647 -0.0070 0.0863 1.0000

Processed meat intake -0.0405 0.0248 -1.6356 -0.0891 0.0080 1.0000

Poultry intake -0.0336 0.0238 -1.4126 -0.0802 0.0130 1.0000

Beef intake 0.0256 0.0238 1.0756 -0.0211 0.0723 1.0000

Never eat eggs, dairy, wheat, sugar -0.0447 0.0238 -1.8738 -0.0914 0.0021 1.0000

Cheese intake -0.0212 0.0239 -0.8879 -0.0680 0.0256 1.0000

Bread intake -0.0334 0.0250 -1.3353 -0.0824 0.0156 1.0000
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Coffee intake 0.0284 0.0238 1.1915 -0.0183 0.0750 1.0000

Limbic model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Smoking status 0.2558 0.0241 10.5944 0.2084 0.3031 0.0000

Ever smoked 0.1840 0.0242 7.5945 0.1365 0.2315 0.0000

Alcohol frequency intake -0.1459 0.0246 -5.9318 -0.1941 -0.0977 0.0000

Time spent using computer 0.1145 0.0243 4.7080 0.0668 0.1621 0.0001

duration of walk for pleasure -0.1092 0.0242 -4.5051 -0.1567 -0.0617 0.0003

Lamb/mutton intake 0.1058 0.0244 4.3416 0.0580 0.1535 0.0005

Oily fish intake 0.0939 0.0245 3.8307 0.0459 0.1420 0.0049

Snoring -0.0864 0.0241 -3.5788 -0.1337 -0.0391 0.0132

Tea intake -0.0844 0.0241 -3.4970 -0.1317 -0.0371 0.0179

Sleep duration 0.0838 0.0242 3.4583 0.0363 0.1313 0.0207

Never eat eggs, dairy, wheat, sugar -0.0835 0.0242 -3.4485 -0.1309 -0.0360 0.0215

Former alcohol drinker 0.0766 0.0241 3.1756 0.0293 0.1239 0.0569

Nap during day 0.0774 0.0245 3.1625 0.0294 0.1253 0.0596

Pork intake 0.0766 0.0243 3.1535 0.0290 0.1242 0.0614

Water intake 0.0694 0.0244 2.8494 0.0217 0.1172 0.1667

Time spent driving 0.0677 0.0246 2.7542 0.0195 0.1158 0.2239

Beef intake 0.0594 0.0242 2.4518 0.0119 0.1068 0.5405

Getting up in morning -0.0573 0.0248 -2.3110 -0.1060 -0.0087 0.7923

Duration of heavy DIY 0.0361 0.0243 1.4866 -0.0115 0.0838 1.0000

Duration of light DIY 0.0157 0.0243 0.6452 -0.0319 0.0633 1.0000

Duration of walk -0.0238 0.0241 -0.9867 -0.0711 0.0235 1.0000

Time spent watching TV 0.0039 0.0245 0.1583 -0.0441 0.0519 1.0000

Length of mobile phone use -0.0077 0.0246 -0.3138 -0.0559 0.0405 1.0000

Plays computer games 0.0021 0.0242 0.0849 -0.0453 0.0495 1.0000

Sleeplessness / insomnia -0.0211 0.0245 -0.8633 -0.0691 0.0268 1.0000

Alcohol drinker status 0.0143 0.0242 0.5916 -0.0331 0.0617 1.0000

Time spend outdoors in summer -0.0001 0.0246 -0.0045 -0.0484 0.0482 1.0000

Time spent outdoors in winter -0.0240 0.0245 -0.9797 -0.0721 0.0240 1.0000

Cooked vegetable intake 0.0093 0.0242 0.3833 -0.0382 0.0567 1.0000

Salad / raw vegetable intake -0.0092 0.0242 -0.3817 -0.0567 0.0382 1.0000

Fresh fruit intake -0.0073 0.0243 -0.2987 -0.0549 0.0404 1.0000

Dried fruit intake -0.0233 0.0242 -0.9622 -0.0707 0.0242 1.0000

Non-oily fish intake -0.0254 0.0242 -1.0501 -0.0728 0.0220 1.0000

Processed meat intake 0.0066 0.0251 0.2612 -0.0427 0.0559 1.0000

Poultry intake 0.0251 0.0242 1.0378 -0.0223 0.0725 1.0000

Cheese intake -0.0314 0.0243 -1.2955 -0.0790 0.0161 1.0000

Bread intake -0.0404 0.0254 -1.5899 -0.0901 0.0094 1.0000

Coffee intake 0.0304 0.0242 1.2568 -0.0170 0.0778 1.0000

Projection model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Smoking status 0.1926 0.0231 8.3357 0.1473 0.2379 0.0000

Ever smoked 0.1170 0.0232 5.0469 0.0716 0.1625 0.0000

Oily fish intake 0.1108 0.0234 4.7290 0.0649 0.1567 0.0001

Tea intake -0.1009 0.0231 -4.3777 -0.1461 -0.0557 0.0005

duration of walk for pleasure -0.0789 0.0232 -3.4039 -0.1243 -0.0335 0.0253

Water intake 0.0770 0.0233 3.3045 0.0313 0.1227 0.0362

Nap during day 0.0766 0.0234 3.2730 0.0307 0.1224 0.0405

Never eat eggs, dairy, wheat, sugar -0.0738 0.0231 -3.1919 -0.1192 -0.0285 0.0538

Time spent using computer 0.0567 0.0233 2.4391 0.0111 0.1023 0.5600

Snoring -0.0538 0.0231 -2.3324 -0.0990 -0.0086 0.7483

Former alcohol drinker 0.0532 0.0231 2.3066 0.0080 0.0984 0.8014

Duration of heavy DIY 0.0503 0.0232 2.1665 0.0048 0.0958 1.0000

Duration of light DIY -0.0177 0.0232 -0.7621 -0.0632 0.0278 1.0000

Duration of walk 0.0140 0.0231 0.6055 -0.0313 0.0592 1.0000

Time spent driving 0.0454 0.0235 1.9330 -0.0006 0.0914 1.0000

Time spent watching TV -0.0120 0.0234 -0.5146 -0.0579 0.0338 1.0000

Length of mobile phone use 0.0078 0.0235 0.3304 -0.0383 0.0539 1.0000

Plays computer games 0.0020 0.0231 0.0857 -0.0433 0.0473 1.0000
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Sleep duration 0.0018 0.0232 0.0790 -0.0436 0.0472 1.0000

Getting up in morning -0.0520 0.0237 -2.1937 -0.0985 -0.0055 1.0000

Sleeplessness / insomnia -0.0157 0.0234 -0.6743 -0.0615 0.0300 1.0000

Alcohol drinker status -0.0221 0.0231 -0.9573 -0.0674 0.0232 1.0000

Time spend outdoors in summer -0.0184 0.0235 -0.7829 -0.0646 0.0277 1.0000

Time spent outdoors in winter -0.0155 0.0234 -0.6631 -0.0614 0.0304 1.0000

Cooked vegetable intake 0.0244 0.0231 1.0524 -0.0210 0.0697 1.0000

Salad / raw vegetable intake -0.0022 0.0232 -0.0943 -0.0476 0.0432 1.0000

Fresh fruit intake 0.0001 0.0232 0.0047 -0.0454 0.0457 1.0000

Dried fruit intake 0.0071 0.0231 0.3061 -0.0382 0.0524 1.0000

Non-oily fish intake 0.0111 0.0231 0.4821 -0.0342 0.0565 1.0000

Processed meat intake -0.0254 0.0240 -1.0564 -0.0725 0.0217 1.0000

Poultry intake -0.0111 0.0231 -0.4793 -0.0563 0.0342 1.0000

Beef intake 0.0077 0.0231 0.3334 -0.0377 0.0531 1.0000

Lamb/mutton intake 0.0153 0.0233 0.6573 -0.0304 0.0610 1.0000

Pork intake 0.0099 0.0232 0.4255 -0.0357 0.0554 1.0000

Cheese intake -0.0340 0.0232 -1.4679 -0.0795 0.0114 1.0000

Bread intake -0.0174 0.0243 -0.7171 -0.0650 0.0302 1.0000

Coffee intake 0.0447 0.0231 1.9323 -0.0006 0.0900 1.0000

Alcohol frequency intake -0.0490 0.0235 -2.0806 -0.0951 -0.0028 1.0000

Ensemble model

The measure Coefficient std err T value coefficient interval_S coefficient interval_E corrected_pvalue

Smoking status 0.2488 0.0263 9.4661 0.1973 0.3004 0.0000

Alcohol frequency intake -0.1880 0.0267 -7.0297 -0.2404 -0.1356 0.0000

Ever smoked 0.1769 0.0264 6.7097 0.1252 0.2286 0.0000

Water intake 0.1087 0.0265 4.1009 0.0567 0.1606 0.0016

Tea intake -0.1042 0.0263 -3.9670 -0.1556 -0.0527 0.0028

Time spent using computer 0.1047 0.0265 3.9559 0.0528 0.1566 0.0029

Lamb/mutton intake 0.0929 0.0265 3.5040 0.0409 0.1449 0.0175

Oily fish intake 0.0906 0.0267 3.3968 0.0383 0.1428 0.0260

Nap during day 0.0890 0.0266 3.3439 0.0368 0.1412 0.0315

duration of walk for pleasure -0.0812 0.0264 -3.0786 -0.1329 -0.0295 0.0792

Coffee intake 0.0782 0.0263 2.9724 0.0266 0.1298 0.1125

Snoring -0.0764 0.0263 -2.9077 -0.1279 -0.0249 0.1386

Never eat eggs, dairy, wheat, sugar -0.0706 0.0263 -2.6832 -0.1222 -0.0190 0.2774

Former alcohol drinker 0.0654 0.0263 2.4915 0.0140 0.1169 0.4838

Sleeplessness / insomnia -0.0645 0.0266 -2.4263 -0.1166 -0.0124 0.5801

Sleep duration 0.0634 0.0264 2.4038 0.0117 0.1151 0.6170

Duration of heavy DIY 0.0368 0.0265 1.3904 -0.0151 0.0886 1.0000

Duration of light DIY 0.0506 0.0264 1.9172 -0.0011 0.1024 1.0000

Duration of walk -0.0059 0.0263 -0.2247 -0.0574 0.0456 1.0000

Time spent driving 0.0267 0.0267 1.0003 -0.0256 0.0791 1.0000

Time spent watching TV -0.0190 0.0266 -0.7134 -0.0712 0.0332 1.0000

Length of mobile phone use -0.0154 0.0268 -0.5767 -0.0680 0.0371 1.0000

Plays computer games 0.0136 0.0263 0.5187 -0.0379 0.0652 1.0000

Getting up in morning -0.0248 0.0270 -0.9201 -0.0778 0.0281 1.0000

Alcohol drinker status 0.0171 0.0263 0.6504 -0.0344 0.0687 1.0000

Time spend outdoors in summer -0.0240 0.0268 -0.8954 -0.0766 0.0286 1.0000

Time spent outdoors in winter 0.0150 0.0267 0.5615 -0.0373 0.0673 1.0000

Cooked vegetable intake 0.0163 0.0263 0.6175 -0.0354 0.0679 1.0000

Salad / raw vegetable intake -0.0126 0.0264 -0.4782 -0.0643 0.0391 1.0000

Fresh fruit intake 0.0047 0.0264 0.1785 -0.0471 0.0565 1.0000

Dried fruit intake -0.0454 0.0263 -1.7237 -0.0970 0.0062 1.0000

Non-oily fish intake 0.0111 0.0263 0.4205 -0.0405 0.0627 1.0000

Processed meat intake 0.0017 0.0274 0.0626 -0.0519 0.0553 1.0000

Poultry intake -0.0204 0.0263 -0.7777 -0.0720 0.0311 1.0000

Beef intake 0.0527 0.0263 2.0015 0.0011 0.1043 1.0000

Pork intake 0.0570 0.0264 2.1551 0.0052 0.1088 1.0000

Cheese intake 0.0149 0.0264 0.5647 -0.0368 0.0666 1.0000

Bread intake -0.0368 0.0276 -1.3340 -0.0910 0.0173 1.0000
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