A Software Architecture to Control
Service-Oriented Manufacturing Systems

Sebastiano Gaiardelli, Stefano Spellini, Marco Panato, Michele Lora, Franco Fummi
Dept. of Computer Science — University of Verona
name.surname@univr.it

Abstract—This paper presents a software architecture ex-
tending the classical automation pyramid to control and re-
configure flexible, service-oriented manufacturing systems. At
the Planning level, the architecture requires a Manufacturing
Execution System (MES) consistent with the International Society
of Automation (ISA) standard. Then, the Supervisory level is
automated by introducing a novel component, called Automation
Manager. The new component interacts upward with the MES,
and downward with a set of servers providing access to the
manufacturing machines. The communication with machines
relies on the OPC Unified Architecture (OPC UA) standard
protocol, which allows exposing production tasks as ‘‘services”.

The proposed software architecture has been prototyped to
control a real production line, originally controlled by a com-
mercial MES, unable to fully exploit the flexibility provided by
the case study manufacturing system. Meanwhile, the proposed
architecture is fully exploiting the production line’s flexibility.

Index Terms—Software architecture, Agile manufacturing,
Manufacturing automation

I. INTRODUCTION

Traditional production paradigms are no longer consistent
with modern market requirements, and manufacturing tech-
nologies must evolve to cope with the increasing unpredictabil-
ity of modern society conditions. “Industry 4.0” [1] is meant
to assist this transformation, proposing a set of production
systems development guidelines to a wide range of engineering
disciplines. Among the promises of the Industry 4.0 trend,
the concept of reconfigurability stands out as a key factor to
quickly adapt the production to sudden market changes [2].

The reconfiguration of a production line is a multi-layered
problem, bridging business aspects to automation control.
Traditional monolithic information systems, currently used by
most companies (i.e., MESs) do not provide the necessary flex-
ibility and agility to support efficient system reconfiguration.
Service Oriented Manufacturing (SOM) is an emerging context
in industrial automation [3], where systems distribute the
responsibility of carrying out functionalities across the avail-
able manufacturing components. Nonetheless, the adoption of
SOM-based technologies in a production environment is far
from being an easy task, especially considering the reluctance
of stakeholders to embrace new (and potentially production-
breaking) technologies [4]. Specifically to the business level,
getting rid of a monolithic MES in favour of a distributed
architecture may not be a viable option.

This paper proposes a variation to the classic automation
pyramid. It modifies the traditional software architecture by
automating the supervisory layer, which becomes Automated

This work is partially supported by the European Commission through the
project DeFacto (grant n. H2020-MSCA-IF-2019-894237), and by the Veneto
Regional project VIR2ZEM (grant. POR FESR Azione 1.1.4).

Resource

Management
ERP
Schedulin
Management e
Planning
MES ‘ t

Read/Update (RPC)
:utcm'ated Automation _ Automation
ey Manager Manager
Service Calls (OPC UA) l ‘
£o g
ne) | it Work Order

Automatic
&
Field OPCUA Al
SENSORS/ACTUATORS S

Execution
Figure 1: The classic Automation Pyramid (on the left, in blue), and
the localization of the Automation Manager (in red) proposed in this
paper, and modifying the software architecture.

Data
Analysis

Supervisory. The modified layer, as depicted in Figure 1,
encloses the Automation Manager, which is composed of mul-
tiple software modules carrying out a specific functionality. In
particular, it provides Seamless integration with existing soft-
ware architecture, Automated reconfiguration of the production
system, Easy integration of new technologies, Autonomous ex-
ecution of production orders, Resource management Advanced
scheduling, and support for Data analysis.

The approach’s flexibility is guaranteed by its compatibil-
ity with standard communication protocols (i.e., OPC UA),
to interact with services at Programmable Logic Controller
(PLC) level. The adoption of the ISA-95 standard ensures
terminology and data compatibility with commercial MESs,
thus easing the adaptation of existing manufacturing systems.

To demonstrate the applicability and the efficiency of the
proposed architecture, we integrated the Automation Manager
into a real production line equipped with machines providing
SOM features. Despite a little overhead, the advantages in
configuration simplicity and software flexibility, provided by
the proposed architecture, are relevant.

II. PRELIMINARIES

The architectural model, followed by smart manufacturing
and also referred to as the Automation Pyramid, is shown on
the left of Figure 1. It consists of five layers with different
structures, requirements, and temporal constraints:

o Field level: sensors, actuators, and applications that phys-
ically act on the production floor.

e Control level: PLCs gathering information from the sen-
sors to control the actuators.

o Supervisory level: high-level supervision with Supervi-
sory Control and Data Acquisition (SCADA) and Human-

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: https://https://www.doi.org/10.23919/DATE54114.2022.9774522

Machine Interaction (HMI) controlling multiple machines
and collecting data from them.
o Planning level: a MES monitoring the manufacturing pro-
cesses transforming raw materials into finished products.
o Management level: connects the production infrastructure
with the Enterprise Resource Planning (ERP) system.

To integrate new technologies within manufacturing systems
it is necessary to define a standard terminology and a unique
data representation used throughout all the automation levels.
ISA-95, also known as the IEC 62264 standard [5], aims
at guiding the development and integration of manufacturing
software. It defines functionalities, responsibilities, standard
terminology, and data exchange between the enterprise and
process control levels. This allows simplifying the integration
of software within a manufacturing industry.

A. Communication Protocols

The OPC UA protocol plays a very dominant role in indus-
trial applications: it became a de facto standard for Machine to
Machine (M2M) communication in industrial automation. It is
a platform-independent service oriented protocol standardized
in IEC 62541 [6]. The communication is based on a clien-
t/server structure, where the server exposes the information
model. Due to its versatility, OPC UA allows to model data
transport compliant with the ISA-95 standard [7].

Distributed applications realizing manufacturing services
need scalable, fault-tolerant and low-latency communication
channels to interact with each other. To implement such
requirements, Apache Kafka has been proposed. It is a dis-
tributed publish-subscribe messaging system developed to pro-
cess real-time data with low latency [8]. Messages are stored as
records including any kind of information, and they are stored
until a specified retention period has passed. Kafka records
are organized into topics, where producer applications publish
new messages and consumers read the subscribed data.

While Kafka is best suited for low-latency and high through-
put applications, RabbitMQ performs best when security and
request-response messages are primary concerns [9]. It is
a message broker supporting different messaging protocol,
where producers publish messages into a queue. It also sup-
ports delivery acknowledgment and the possibility to assign
permission such as rights to read and write to different users.

III. SERVICES AND DATA COLLECTION ARCHITECTURE

We propose a modular SOM-enabled architecture, located
in a Kubernetes cluster connecting the automation level to
classical MES solutions. An overview of the proposed ar-
chitecture’s structure is provided in Figure 2. It consists of
different applications, communicating with each other through
Kafka and RabbitMQ. The Automation Manager manages the
communication with the MES while extending its functionali-
ties to add reconfiguration of the production line, autonomous
execution of production orders and advanced scheduling. This
section describes the architecture components; Section IV will
deep dive into the Automation Manager.

A. OPC UA Servers

Each machine in the system is equipped with an OPC
UA server module. The piece of equipment and its server
module are strongly intertwined. The data model (in particular

Automation }

Automated
Superviso

\

1
1
: Manager :
1 cmds data :
1
1 . Apache :
: [RabbitMQ] [Kafka] |
1 cmds data cmds data :
: pd I
X OPCUA OPCUA I
! Client Client |
: cmds } data cmds b data 1
e e

[OPC UA] [OPC UA]
Server Server

1

1

1

1

1 & Cpgqa)
#4 7 O
i Py s
(omr) | ~
.

Figure 2: Automation of the Supervisory level by introducing the pro-
posed service-oriented architecture. Arrows show the commands and
data flow through the automation pyramid and our novel architecture.

the machine status and sensors data) exposed by the server
depends on the functions developed to externally control the
machine. To create the OPC UA server module, the machine’s
functions are wrapped and exposed as OPC UA methods. Then,
the OPC UA data model is enriched with state variables that
a client can read to know the status of the running operations.

B. Data Collection Infrastructure

An Industrial Internet of Things Data Collection Infrastruc-
ture monitors the connected equipment and stores the gathered
data. It features a multi-node Apache Kafka instance handling
data streams. Meanwhile, a multi-node RabbitMQ instance is
in charge of handling remote procedure calls through queues.

The Data Collection Infrastructure communicates with the
equipment through multiple OPC UA Client nodes: an instance
(and configuration) is active for each OPC UA server. This
node creates a persistent connection with the machine and
creates an OPC UA subscription, specifying the OPC UA
variables to monitor. Each time a variable changes, the client is
notified with the new value, which is written to the configured
Kafka topic. The OPC UA client nodes are also connected to
the RabbitMQ instance and listen for Remote Procedure Call
(RPC) requests from the configured queues. Allowed requests
for this client are: the read of variable, the write on a variable,
or the invoke executes an OPC UA method.

Figure 2 shows the data and command flows into the
proposed architecture. Each machine has its own Kafka topic
and RabbitMQ RPC queue, managed by the corresponding
OPC UA client instance.

IV. AUTOMATION MANAGER

To handle the communication with the MES and the ma-
chines transparently, the Automation Manager is organized
in three different layers and many sub-components, depicted
in Figure 3. The top layer contains the software Driver
interfacing the Automation Manager with the upper layers
of the automation pyramid; the bottom layer is the software
Driver connecting the manager with the lower layers of the

Driver

MES Connector J

Hybrid Resource 4 N
Scheduling Manager
Data Analysis Events
Logger
Expansion .
Actions
.
Driver
Lﬁj Equipment Connector]

Figure 3: The internal structure of the Automation Manager.

pyramid; the middle layer contains the manager Core, a set
of Applications, and a Logger. The Automation Manager
is compliant with ISA-95 standard. Thus, it is compatible
with any existing software infrastructure based on the same
standard. It takes in input information coming from both the
MES, which contains the production line structure and recipes,
and from a set of configuration files describing the machine
capabilities and recipe implementations. These characteristics
are meant to ease as much as possible its integration within
already existing manufacturing plants.

A. Drivers

The Driver levels contain the components enabling the
communication with other pieces of software. The Equipment
Connector exposes for the other levels basic functionalities
of OPC UA, such as variable read/write, methods call, and
subscriptions for data changes. It also communicates with
the OPC UA clients connected to the machines within the
cluster. The MES Connector is implemented as an RPC client
calling functions defined by an RPC server connected directly
with the MES. As an advantage of using RPC interfaces, the
integration with any other MES only requires to implement
the corresponding RPC server. This driver allows navigating
through the MES configuration and notifying the actions
executed by the architecture, such as execution of operations
and reconfiguration. The last driver is the Logger. It publishes
log messages on two different Kafka topics: one consists of
messages useful for debugging purposes; the other includes
messages logging actions executed by the architecture, such
as the execution of recipes or machine services. This allows
notifying the entire architecture of the status of each level.

B. Core

The second level contains the Core components, defining
and implementing industrial processes. The MES represents
production recipes as a sequence of dependant tasks, each
associated specifically to a class of working cells (i.e., a
work center). On one hand, this allows to model production
processes at a higher level of abstraction, hiding unnecessary
implementation details. On the other hand, this is not enough
to execute tasks without human intervention. Therefore, the

recipe representation in the Core of the Automation Manager
is extended with a lower-level model that describes the imple-
mentation of tasks on the working cells. This representation
consists of an ordered sequence of actions with input and
output parameters, formalized as a directed cyclic graph: the
actions are nodes of the graph, connected by directed edges to
represent dependencies. An action can be a service exposed by
the Equipment Connector or a logical construct (i.e., creation
of variables, the sum of variables, if, cycle, efc.) proposed
by the Core. This extension allows executing tasks with a
simple visit of the graph nodes. Then, the actual execution
of tasks is managed by the Resource Manager. It retrieves the
manufacturing structure from the MES and, for each working
cell, it connects to the correct machine’s client. This ensures
that when an operation is executed on a working cell, it
has access solely to those clients. It also guarantees that a
maximum of one operation is executed on a working cell at
the same time.

C. Applications

The scheduling of production processes on different ma-
chines in a dynamic environment is still an open problem. In
the literature, this problem is known as Dynamic Flexible Job-
shop Scheduling (DFJSS). Although there are many solutions
to the static counterparts of this problem, known as Jobshop
scheduling (JSS) and Flexible JSS (FIJSS), when we introduce
the dynamic component that characterizes real systems the
solutions for these problems are not applicable. The reason is
that every time an unexpected event occurs (i.e., the arrival of
new orders, machine breakdowns and delays), the schedule is
no longer optimal or even not feasible anymore. Therefore, a
promising direction is to introduce static-reactive scheduling,
characterized by a first phase that produces a static schedule of
the jobs, dynamically updated on the arrival of events [10]. In
the first implementation of the proposed architecture, we opted
for this hybrid approach to implement scheduling. It consists
of a static phase exploiting constraint programming to produce
an optimal solution while minimizing energy consumption and
delays. Then, a dynamic component continuously recalculates
the scheduling to react whenever an unexpected event occurs,
such as new job arrivals and machine breakdowns.

Furthermore, to achieve more precise scheduling, we devel-
oped a data analysis application receiving timing data about
executed production processes. The gathered data is used to
update the completion time estimation of production processes.
To support the integration of applications based on different
technologies, an expansion interface exposes the functions of
the SOM-enabled architecture’s core.

V. EXPERIMENTAL RESULTS

We evaluate the proposed architecture in the Industrial
Computer Engineering (ICE) Laboratory: a research facility
of the University of Verona', equipped with a complete man-
ufacturing line [11]. The line is governed by a state-of-the-art
system implementing the automation pyramid, centered around
a commercial, monolithic MES offering some advanced fea-
tures. The machines expose services through OPC UA servers,
and the MES is orchestrating the execution of the different pro-
cesses. Production orders are manually executed by operators,

The ICE Laboratory: https://www.icelab.di.univr.it/

Table I: Comparison of functionalities available when using the tradi-
tional software stack against the proposed SOM-enabled architecture.

Table III: Execution time when using the state-of-the-art versus the
proposed architecture to govern three different production recipes.

Lo Traditional | Automated . Service | OPC UA SOM SOM
Functionalities ‘ Pyramid ‘ SOM Recipe | Tasks | “Capls | Time (s) ‘ Time (s) H Overhead
Data collection v v 1 4 54 70.34 70.85 0.72%
Product and Process monitoring v v 3 44 66.73 67.04 0.46%
Inventory tracking v v 3 I 132 158.83 159.63 0.50%
Advanced production planning v v
Resource management v v
Automatic reconfiguration v
Autonomous process execution v The additional overhead introduces a communication delay
Integration of new software modules v ranging between 40% and 70%. However, this communication
Eun’nme adaptive scheduling 4 delay is in the context of complex physical processes. For

educed configuration time v A)
Reduced deployment time 7 this reason, we also evaluated the behavior of the proposed

Table II: Comparison between the communication delay derived from
a direct connection with OPC UA and with the proposed architecture.

T t . Subseripti
“;‘l';;"e‘" Read (s) ‘ Write (s) ‘ Methods (s) I‘}pffgg’ (‘s")“
OPC-UA 0.008 0.009 0.010 0.150
SOM 0.013 0.013 0.014 0.255
Overhead | 6250% | 4445% | 4000% | 70.00%

and features such as reconfiguration or advanced scheduling
are not available. We implemented and deployed the proposed
architecture on the ICE laboratory production line. We first
defined and implemented the Kubernetes cloud architecture.
Then, we configured and deployed the Automation Manager.
In our tests we use three different complete production recipes.
First, we evaluate the proposed architecture qualitatively, by
analyzing the newly available features. Then, we evaluate it
quantitatively by measuring the introduced overhead.

A. Qualitative Analysis

Table I summarizes the functionalities implemented by the
traditional architecture compared to those provided by the
presented solution. Among the new features introduced, the
Automation Manager reduces the effort necessary to configure
and reconfigure the entire software architecture, from the low-
level task implementation to the high-level recipe represen-
tation and machine structure. This allows creating a flexible
implementation of productive processes, based on actions (i.e.,
services) exposed by the machines and recipes specified within
our novel architecture as a sequence of these actions. It also
introduces the possibility to adapt the realization of production
processes at run-time, to minimize the total execution time
or to pursue a specific production objective. Furthermore, the
hybrid scheduler continuously adapts the production plan as
a response to unforeseen events and manages the execution
of processes on the entire plant. Therefore, it reconfigures the
system by automatically changing the sequence of manufac-
turing operations during a certain time frame.

B. Overhead Analysis

Additional features come at a price in terms of computa-
tional overhead: Table II reports the overhead necessary to
call OPC UA functions comparing a direct connection with the
machines and through the proposed architecture. We compared
the delay of different services, such as read/write of variables,
method calls, and subscription to variables. For each operation,
the last line reports the additional overhead (in percentage)
required when using the proposed architecture.

architecture when coordinating different manufacturing pro-
cesses. Table III reports the total execution time for three
production recipes of different sizes, comparing the state-of-
the-art architecture with our proposed solution. The total exe-
cution times do not consider the transportation time required
to move materials on the conveyor belts, as it is influenced
by many factors independent on the control architecture. The
fourth and fifth columns of the table report the execution times
obtained with the two different configurations. The last column
reports the overhead introduced by the proposed architecture.
The delay introduced is minimal and consequently negligible
from the total execution time. Finally, comparing Tables II
and III, it is worth noticing that while the additional overhead
is significant when considering single operations, it becomes
negligible in the context of a complete manufacturing process.

VI. CONCLUSIONS

We presented a variation of the traditional automation
pyramid software stack to control SOM systems. The re-
sults of the application of the proposed architecture to a
real production plant showed that the overhead introduced is
negligible. Nonetheless, the added functionality over state-of-
the-art architecture proved to increase production flexibility.

REFERENCES

[1] R. Drath and A. Horch, “Industrie 4.0: Hit or hype? [industry forum],”
IEEE Industrial Electronics Magazine, vol. 8, no. 2, pp. 56-58, 2014.

[2] Y. Koren et al., “Reconfigurable Manufacturing Systems,” CIRP Annals,
vol. 48, no. 2, pp. 527-540, 1999.

[3] T. Lojka, M. Bundzel, and I. Zolotovd, “Service-oriented architecture
and cloud manufacturing,” Acta polytechnica hungarica, vol. 13, no. 6,
pp. 2544, 2016.

[4] K. Tiwari and M. S. Khan, “Sustainability accounting and reporting in
the industry 4.0,” Journal of Cleaner Production, vol. 258, 2020.

[5] International Society of Automation, “ISA-95 Standard,” 2000. [Online].
Available: https://www.isa.org/

[6] “OPC Unified Architecture specification — Part 1: Overview and con-
cepts release 1.04 OPC Foundation,” 2017.

[7] M. V. Garcia et al., “From ISA 88/95 meta-models to an OPC UA-based
development tool for CPPS under IEC 61499,” in Proc. of IEEE WFCS,
2018, pp. 1-9.

[8] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011.

[9] P. Dobbelaere and K. S. Esmaili, “Kafka versus RabbitMQ: A Compar-
ative Study of Two Industry Reference Publish/Subscribe Implementa-
tions: Industry Paper,” in Proc. of ACM DEBS, 2017, p. 227-238.

[10] O. Cardin et al., “Coupling predictive scheduling and reactive control
in manufacturing hybrid control architectures: state of the art and future
challenges,” Journal of Intelligent Manufacturing, vol. 28, no. 7, 2017.

[11] S. Spellini et al., “Virtual Prototyping a Production Line using Assume-
Guarantee Contracts,” IEEE Trans. Ind. Informat., vol. 17, no. 9, 2020.

