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Abstract

Rapid disease progression in epidermal growth factor receptor (EGFR) non—small-cell lung cancer treated
with tyrosine kinase inhibitorss has been associated with concomitant mutations. The status of 4 genes (PTEN,
TP53, c-MET, IGFR) was evaluated by immunohistochemistry in 51 tumor blocks, and it was correlated with
overall response rate, overall survival, and progression-free survival. We point out that immunohistochemistry
could be a valid tool to identify PTEN loss. Moreover, our results have shown worse outcomes in terms of
progression-free survival, overall survival, and objective response rate in patients with concomitant EGFR
mutation and PTEN loss. Furthermore, the coexistence of PTEN loss and IGFR overexpression identifies a
potential prognostic ‘signature’ for a subgroup of patients with particularly poor prognosis.

Background: Rapid disease progression of patients with advanced epidermal growth factor receptor (EGFR)-mutant
non—small-cell lung cancer (NSCLC) has been recently associated with tumor heterogeneity, which may be mirrored by
coexisting concomitant alterations. The aim of this analysis was to investigate the correlation between loss of function
of PTEN and the efficacy of tyrosine kinase inhibitors in this population. Materials and Methods: Archival tumor blocks
from patients with EGFR-mutant NSCLC who were administered upfront tyrosine kinase inhibitors were retrospec-
tively collected. The status of 4 genes (PTEN, TP53, c-MET, IGFR) was evaluated by immunohistochemistry, and it
was correlated with overall response rate, overall survival (OS), and progression-free survival (PFS). Results: Fifty-one
patients were included. In multivariate analysis, PTEN loss (hazard ratio [HR], 3.46; 95% confidence interval [CI],
1.56-7.66; P = .002), IGFR overexpression (HR, 2.22; 95% Cl, 1.03-4.77; P = .04), liver metastases (HR, 3.55; 95%
Cl, 1.46-8.65; P = .005), and Eastern Cooperative Oncology Group performance status (ECOG PS) > 1 (HR, 2.57;
95% ClI, 1.04-6.34; P = .04) were significantly associated with shorter PFS. Patients with PTEN loss had a median
PFS of 6 months (2-year PFS, 11.6%), whereas patients without PTEN loss had a median PFS of 18 months (2-year
PFS, 43.6%) (log-rank P < .005). In the multivariate analysis, PTEN loss (HR, 5.92; 95% ClI, 2.37-14.81; P < .005),
liver metastases (HR, 2.63; 95% CI, 1.06-6.51; P = .037), and ECOG PS > 1 (HR, 2.80; 95% ClI, 1.15-6.81; P =
.024) were significantly associated with shorter OS. Patients with PTEN loss had a median OS of 6 months (2-year
0S, 12.2%), whereas in patients without PTEN loss, OS was not reached (2-year OS, 63.9%) (log-rank P < .0005).
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Conclusions: A low-cost and reproducible immunohistochemistry assay for PTEN loss analysis represents a
potential tool for identifying tumor heterogeneity in patients with advanced EGFR-mutant NSCLC.

Clinical Lung Cancer, Vol. 22, No. 4, 351-60 © 2020 Elsevier Inc. All rights reserved.
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Introduction

Treatment of advanced non—small-cell lung cancer (NSCLC)
has historically consisted of systemic cytotoxic chemotherapy.
However, randomized clinical trials conducted in patients carrying
activating mutations of the epidermal growth factor receptor
(EGFR) gene have shown that tyrosine-kinase inhibitors (TKIs)
significantly improve prognosis and quality of life."” In such
peculiar tumors, EGFR acts as an oncogenic driver, thus forcing
cancer cells to depend (almost) exclusively on this genomic abnor-
mality (ie, the phenomenon of oncogene addiction). Once consti-
tutively activated, EGFR undergoes auto-phosphorylation of
tyrosine residues in its intracellular domain, recruits different
adaptors and signal-transducers, and activates downstream pathways
that promote cell proliferation.” This molecular background rep-
resents the ideal genomic vulnerability to be specifically targeted by
TKIs. EGFR mutations (exons 18-21) occur in approximately 10%
to 15% of lung adenocarcinoma, more frequently in nonsmokers
and female patients, although young patients with squamous his-
tology are currently recommended to be screened for such alter-
ations as well.” In addition to the common (sensitizing) mutations
(ie, deletion exon 19 and point L858R exon 21), other uncommon
alterations in exons 18 to 21 have been reported with variable
sensitivity to EGFR TKIs, including the insertion in exon 20 that is
currently considered as a resistance mutation in which TKIs are not
effective.” Oncogene-addicted disease is generally sensitive to tar-
geted treatment. The expected median progression-free survival
(PFS) with first- and second-generation agents ranges from 8.4 to
14.7 months. In the second line, patients with a T790M mutant
achieve a median PFS and overall survival (OS) of 10.1 and 26.8

5

months, respectively.®'? Nevertheless, a proportion of patients do
not respond to treatment (‘primary resistance’) and, among re-
sponders, progression inevitably occurs because of the development
of ‘acquired resistance’ mechanisms, requiring a shift to second-line
options."" Although many mechanisms are involved for acquired
resistance (and many are currently unknown), the most frequent
include the appearance of resistance mutations (ie, EGFR 17790M,
MET, PIK3CA, HER2, BRAF, RET, KRAS) or the epithelial-
" 25%),

mesenchymal ~ transition.' " (almost
progression rapidly occurs during first-line treatment (‘primary

In some cases
resistance’). ' Although the mechanisms of acquired resistance to
first- and second-generation TKIs have been more extensively
investigated, and in some cases (ie, EGFR 7790M), acquired ab-
normalities represent additional treatment opportunities (ie, EGFR
T790M for osimertinib), those factors that determine or influence
the primary resistance to TKIs are less recognized to date. Because
osimertinib has become the first-line treatment for patients with
EGFR-mutant NSCLC,"” several efforts have been made to identify
mechanisms of primary and acquired resistance to this drug. The
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most common acquired resistance mechanisms detected are MET
amplification and EGFR C797S mutation (about 15% each); other
mechanisms included human epidermal growth factor receptor 2
(HER2) amplification, PIK3CA, KRAS, NRTK, RET, and FGFR3
mutations (2%-7%).'®'” Furthermore, Bcl-2-like protein 11 (BIM)
upregulation is a pro-apoptotic molecule that belongs to the Bcl-2
family; low BIM protein level (owing to deletion polymorphism
occurring in about 20% of the Asiatic population) is associated with
resistance to first-, second-, and third-generation EGFR-TKIs.'®
After the initial consideration that driver mutations ‘mutually
exclude’ others, a series of large-scale genome analyses have shown
that other genetic alterations might commonly co-occur in EGFR-
mutated lung adenocarcinoma and that they function as co-drivers,
contributing to tumor progression and drug resistance.'” The
occurrence of additional mutations with proliferative effects (for
example, the coexistence of EGFR mutations with mutations of
onco-suppressor genes) in the tumor may mirror the tumor het-
erogeneity, whereas different subclones of cancer cells co-exist, and
they may grow or not according to the specific (drug) selective
pressure to which they are exposed. PTEN acts as a tumor sup-
pressor and metabolizes PIP;, the lipid product of PI3-Kinase,
directly opposing the activation of the oncogenic PI3K/AKT/
mTOR signaling. Loss of PTEN results in the lack of regulation of
PIP3 levels, which in turn promote the PI3K/Akt pathway, leading
to cellular proliferation and growth.”” PTEN is commonly down-
regulated in many types of solid tumors, including NSCLC, and
several studies have shown that PTEN loss is associated with poorer
prognosis in patients with lung cancer.”' PTEN loss can coexist in
EGFR-mutated NSCLC and can negatively affect the prognosis of
these patients. Given that the PI3K pathway is downstream of the
EGFR-signaling pathway, it is likely that P7EN inactivation plays
an important role in progression and/or therapeutic resistance in
patients treated with EGFR TKIs.”> The 7P53 gene provides in-
structions for making a protein called tumor protein p53 (or p53).
This protein acts as a tumor suppressor, and it is called ‘guardian of
the genome’ for its ability to regulate cell replication and prolifer-
ation.”” The tumor suppressor gene TP53 is frequently mutated in
human cancers, and this alteration has been found in nearly one-half
of all patients with lung cancer.”* Without functioning p53, cell
proliferation is not effectively regulated, and DNA damage can
accumulate in cells. When p53 mutation occurs in oncogene-
addicted disease, the course is more aggressive, and the prognosis

25-2¢ :
27 -MET acts as an oncogene that binds hepatocyte

is poorer.
growth factor. As a result, MET stimulates downstream signaling
pathways, such as the extracellular signal-regulated kinase/mitogen-
activated protein kinase and PI3K pathways. These pathways are
known to involve cell growth, migration, angiogenesis, and survival.

MET amplification or splice mutations can lead to EGFR TKI



resistance in EGFR-mutated NSCLC.>**" MET alterations are also
considered as potential predictive biomarker, druggable with sundry
compounds. In the PROFILE 1001 trial, a MET exon 14 skipping
(METex14) cohort reported an overall response rate (ORR) of
44%, and a global retrospective series demonstrated a PFS of 7
months, both with crizotinib.>> More recently, based on the
Geometry-1 mono trial, the United States Food and Drug
Administration approved capmatinib for patients with METex14
advanced NSCLC.? Insulin-like growth factor receptor 1 (IGFR-1)
is a transmembrane protein located on chromosome 15q25—q26. It
is implicated in promoting oncogenic transformation, growth, and
survival of cancer cells. IGFR-1 high expression leads to activation
of Ras, Raf and PI3K/Akt pathways. Previous studies have
demonstrated that IGFR-1 mediates resistance to anti-EGFR ther-
apy.”’ From what is discussed above, it is increasingly established
that EGFR-mutated NSCLC treated with TKIs may become TKI-
resistant by selecting pre-existing clones carrying resistance muta-
tions or possessing the ability to depend on alternative oncogenic
pathways for growth and survival, even from the beginning of the
treatment.”*

With these perspectives, and with the aim to generate the hy-
pothesis of a prognostic effect of tumor heterogeneity mirrored by
co-occurring mutations, we analyzed the immunohistochemical
baseline expression of a series of key concomitant mutations (P7EN,
TP53, ¢-MET, and IGFR) in the tumor cells of EGFR-mutated
patients treated with TKIs.

Materials and Methods
Patients

Patients with the following characteristics were considered
eligible for the current analysis: (1) patients carrying a known
sensitizing mutation of the EGFR gene (ie, exon 19 deletion or
L858R exon 21-point mutation); (2) patients receiving upfront line
TKIs (afatinib, gefitinib, or erlotinib) referred to the Medical
Oncology of the Fondazione Policlinico Universitario Agostino
Gemelli IRCCS, Roma (Italy) from 2015 to 2017; (3) patients with
available tissue (formalin-fixed and paraffin-embedded [FFPE]) as
tumor excisional/trans-bronchial biopsy (core biopsy was performed
for 80% of patients) at the Department of Pathology and Di-
agnostics of the Fondazione Policlinico Universitario Agostino
Gemelli IRCCS, Roma (Italy); (4) clinical and pathologic annota-
tions available from clinical charts and pathology reports; and (5) at
least 12 months of follow-up (for endpoint maturity).

DNA Extraction and EGFR Mutational Analysis

All samples were processed at the Molecular Pathology Unit of
the Department of Pathology and Diagnostics of the Fondazione
Policlinico Universitario Agostino Gemelli IRCCS, Roma (Italy).
DNA was extracted from three 10-microm slides from paraffin-
embedded tissues using QIAamp DNA FFPE Tissue Kit (QIA-
GEN, Milan, Italy), following the manufacturer’s protocol. To
minimize contamination by normal cells, the tumor areas dissected
for DNA extraction contained at least 80% of tumor cells and at
least 250 to 300 neoplastic viable cells. Before EGFR mutational
analysis, extracted DNA concentration and purity were determined
by QIAxpert. EGFR mutational analysis was carried out using a
Therascreen  EGFR RGQ PCR Kit (Qiagen) in a real-time
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Rotor-Gene Q (Qiagen). DNA samples were first assessed for to-
tal amplifiable DNA using the control mix, and if this was adequate,
samples were then tested for the detection of EGFR mutations. Each
test was run with an internal control, a positive control, and a no-
template control, all included in the kit.

Immunobhistochemical Assay for TP53, PTEN, IGFR-1,
and c-MET and Staining Evaluation Score

FFPE sections (4 microns thick) were mounted on positive
charged glass slides. For antigen retrieval to detect TP53, PTEN,
IGFR-1, and ¢MET protein, deparaffinized and rehydrated sec-
tions were boiled in citric acid solution (pH 6) for 20 minutes. The
slides were cooled, and endogenous peroxidase was blocked with
peroxidase block buffer (citric acid 0.04 M, Na2HPO4x2H20 0.12
M, NaN3 0.03 M, and H202 at 1.5% v/v) for 15 minutes at room
temperature. Then, the sections were incubated for 1 to 3 hours at
room temperature with the following antibodies: p53 (clone Bp-53-
11, Ventana-Roche, Milan, Italy), for PTEN (clone sp218,
Ventana-Roche), for ¢-MET (clone C28, Santa Cruz Biotech-
nology, Milan, Italy), and for IGF1R (R&D Systems, Milan, Italy),
following the manufacturers’ protocol. The primary antibodies were
visualized using the avidin-biotin-peroxidase complex method
(UltraTek HRP Anti-polyvalent, ScyTek, Logan, UT) according to
the instruction manual. 3,3’ diaminobenzidine (DAB) was used as
the enzyme substrate to observe the specific antibody localization,
and Mayer hematoxylin was used as a nuclear counterstain. The
staining intensity of tissue slides was evaluated independently by 2
observers (M.B. and M.M.) who were blinded to the patients’
characteristics and survival. Cases with disagreement were discussed
using a multiheaded microscope until agreement was achieved. The
agreement indices (Cohen’s K) between the 2 pathologists were very
good: k = 0.88, k = 0.81, k = 0.85, and k = 0.86 for TP53,
PTEN, c¢-MET, and IGFR-1 expression, respectively. To assess
differences in staining intensity, an immunoreactivity scoring sys-
tem was applied. c-MET and IGFR-1 expression in each specimen
was scored according to the extent (percent of stained cells) and
intensity of nuclear expression staining. IHC score for C-MET was
defined as follows: 0, absence of staining or any intensity staining in
less than 50% of tumor cells; 1, weak to moderate intensity staining
in more than 50% of tumor cells; 2, moderate to strong intensity
staining in more than 50% of tumor cells; and 3, strong intensity
staining in more than 50% of tumor cells.*® An THC score of 2 or 3
was defined as positivity. IHC for IGFR-1 was considered as posi-
tive only when a distinct cell membrane staining was evident. The
analysis was performed using a semiquantitative grading system
based on 4 stages: 0, no staining; 1, staining in 1% to 10% of
considered cells; 2, staining in 11% to 25% of considered cells; and
3, staining in more than 25% of considered cells. A cutoff value of
10% positive cells was used in order to avoid inclusion of scattered

positivity of the same intensity found in normal lung tissue.’ 6

Programmed Death-Ligand 1 (PD-L1) Assessment and
Staining

PD-L1 expression was assessed during screening at our molecular
pathology laboratory by means of the PD-L1 immunohistochemical
22C3 pharmDx assay (Dako, REF: SK006) in formalin-fixed tumor

samples obtained by core needle or excisional biopsy or from tissue
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resected at the time that metastatic disease was diagnosed. Expres-
sion was categorized according to the tumor proportion score (ie,

. . 7
the percentage of tumor cells with membranous PD-L1 staining).’

Study Design, Aim, and Endpoints

The aim of this single-center, retrospective study was to inves-
tigate the correlation between the expression abnormalities of
PTEN, TP53, IGFR, and ¢-MET (potentially mirroring tumor
heterogeneity) and the efficacy and activity of EGFR TKIs in pa-
tents affected by EGFR-mutant advanced NSCLC. The primary
endpoint was PES, defined as the time from treatment initiation and
disease progression or death from any cause; secondary endpoints
were OS, defined as time from treatment initiation and death from
any cause, and ORR, according to Response Evaluation Criteria in
Solid Tumors (RECIST) version 1.1 criteria. Tumor assessment was
performed with computed tomography scan approximately every 3
months as per routine local clinical practice. The study was
approved by the local Ethics Committee (Fondazione Policlinico
Universitario Agostino Gemelli IRCCS, Roma, Italy: Prot. n.
0010700/20, March 9th, 2020).

Statistics

Descriptive statistics for clinical and pathologic characteristics was
used. The multivariate analysis for PFS and OS was performed
using a Cox regression model. The P-values were 2-sided and
considered statistically significant when less than .05. Estimates of
survival times for PFS and OS were calculated according to the
Kaplan-Meier method and compared with log-rank test. With re-
gard to ORR, the association of clinicopathologic characteristics
with ORR was evaluated by the Fisher exact test or the 7 test, as
appropriate. Relative ORR frequencies and 95% confidence in-
tervals (Cls) according to the expression abnormalities of PTEN,
TP53, IGFR, and ¢-MET were derived. Potential expression sig-
natures combining multiple abnormalities were explored. The odds
ratio (OR) to derive the risk of ORR (with 95% Cls) according to
each one of the expression abnormalities (P7EN, TP53, IGFR, and
c-MET) was derived. Data were analyzed using licensed SPSS
(version 21.0) and MedCalc (version 9.4.2.0).

Results
Patient Characteristics

Fifty-one patients were included in the study. Patent charac-
teristics are reported in Table 1. The median age was 65 years
(range, 40-86 years). Twenty-seven (52.9%) and 23 (45.0%) pa-
tients showed loss (intended as protein low expression) of p53 and
PTEN, respectively; c-MET was overexpressed in 32 (63.0%) pa-
tents, and IGFR-1 was overexpressed in 22 (43.1%) patients.
Eastern Cooperative Oncology Group performance status (ECOG
PS) was 0 in 14 (27%) patients and > 1 in 34 (67%) patients. With
a median follow-up of 15 months (range, 1-64 months), 38
(74.8%) events of progression were recorded.

Efficacy and Activity
In the multivariate analysis for PES, the presence of liver
metastases, > 2 metastatic sites, and ECOG PS > 1 were found to

be independent predictors of shorter PFS (Table 2). Kaplan-Meier
of PES are

curves of independent predictors shown in
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Table 1 Demographics and Clinical, Pathologic, and
Molecular Characteristics of the 51 Patients

Patient Characteristics n (%)
Gender

Male 24 (47.1)

Female 27 (52.9)
Smoking status

Current 6 (11.8)

Former 18 (35.3)

Never 24 (47.1)
ECOG PS

0 14 (27.5)

1-2 33 (64.7)

Other 4(7.9)
Histology

Adenocarcinoma 47 (92.2)

Squamous 2@3

Other
Stage

I[13] 4 (7.8)

\% 47 (92.2)
No. metastatic sites

<2 24 (47.1)

>2 27 (52.9)
Liver metastases

Yes 10 (19.6)

No 41 (80.4)
EGFR mutation

Exon 19 deletion 37 (72.5)

L858R exon 21 point mutation 14 (27.5)
Type of treatment

Erlotinib 2 (3.9

Gefitinib 36 (70.6)

Afatinib 13 (25.5)
PTEN IHC

Normal expression 28 (54.9)

Loss of expression 23 (45.1)
TP53 IHC

Normal expression 24 (47.1)

Loss of expression 27 (52.9)
IGFR HC

Normal expression 29 (56.9)

High expression 22 (43.1)
MET IHC

Normal expression 19 (37.3)

High expression 32 (62.7)
PD-L1 IHC

<50% 15 (29.4)

>50% 2 (3.9

Unknown 34 (66.7)

Abbreviations: ECOG PS = Eastern Cooperative Oncology Group Performance status; IHC =
immunohistochemistry; PD-L1 = programmed death-ligand 1.



Table 2 Univariate and Multivariate Analysis for Progression-free Survival
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Univariate Multivariate

Characteristics HR (95% ClI) P Value HR (95% CI) P Value
Smoking status 1.62 (0.82-3.22) .16 = =
ECOG PS 2.67 (1.17-6.08) .02 2.56 (1.04-6.33) .04
Stage 1.88 (0.45-7.9) .38 — —
No. metastatic sites 2.05 (1.02-4.11) .04 1.82 (1.00-3.33) .50
Liver metastases 2.13 (0.99-4.6) .05 3.55 (1.46-8.65) .005
Gender 1.03 (0.53-1.98) .93 - —
PD-L1 0.99 (0.95-1.01) 40 = =
TP53 1.25 (0.65-2.37) .50 - —
PTEN 2.54 (1.31-4.89) .05 3.46 (1.56-7.76) .002
MET 1.21 (0.59-2.45) .60 — —
IGFR 2.29 (1.18-4.44) .01 2.22 (1.03-4.77) 041

Abbreviations: Cl = confidence intervals; ECOG PS = Eastern Cooperative Oncology Group performance status; HR = hazard ratio; IHC = immunohistochemistry.

Figure 1A-D. The median PFS was 3 months in patients with liver
metastasis (24-month PFS, 13.3%), compared with 12 months in
patients without (24-month PFS, 31.5%; log-rank test P = .01).
The median PFS was 2 months in patients with ECOG PS > 1 (24-
month PFS, 11.1%) in comparison with 10 months in patients with
ECOG PS = 0 (24-month PFS, 25.4%; log-rank test P = .01).
Patients with > 2 metastatic sites had shorter PFS compared with
patients with < 2 metastatic sites (HR, 2.06; 95% CI, 1.03-4.12;
P = .042). The presence of PTEN low expression (‘loss’) and IGFR
overexpression were found to be independent predictors of worse
PES. The median PFS was 6 months in patients with PTEN loss
(24-month PFS, 11.6%) in comparison with 18 months in patients

Figure 1

without (24-month PFS, 43.6%; log-rank test P = .003). The
median PES was 6 months in patients with /GFR overexpression
(24-month PFS, 13.6%) in comparison with 18 months in patients
without (24-month PFS, 41.4%; log-rank test P = .01). No sig-
nificant differences for PFS were found according to PD-L1
expression (HR, 0.99; 95% CI, 0.95-1.02; P = .402). In the
multivariate analysis for OS, the presence of liver metastasis and
ECOG PS > 1 were independent predictors of shorter OS
(Table 3). Kaplan-Meier curves of independent predictors of OS are
shown in Figure 1E-G. The median OS was 5 months in patients
with liver metastasis (24-month OS, 13.3%) in comparison with 22
months in patients without (24-month OS, 44.6%; log-rank test

Progression-free Survival (A) and Overall Survival (B) according to the PTEN/IGFR Signature at Immunohistochemistry;

P-Value: Log-Rank Analysis. Survival Rates (%) at 2 years are Reported

1.0
9
8
7
6
5
4
3
2 -
A = tiissssssnanas
.11 p=0.0003 :
0 6 12 18 24
PFS (months)
m— Other 39 28 22 12
=== PTENLoss 12 6 1 1 0
IGFR High

E 1.0
9
8
7
6
5
4
3
2
A
0.0 . .
0 6 12 18 24
OS (months)
= Other 39 30 26 17 9
=ss PTENLoss 12 6 2 2 0

IGFR High

Abbreviations: 0S = overall survival; PFS = progression-free survival.
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Table 3 Univariate and Multivariate Analysis for Overall Survival

Univariate Multivariate

Characteristics HR (95% ClI) P Value HR (95% CI) P Value
Smoking status 1.02 (0.48-2.18) .96 = =
ECOG PS 3.71 (1.58-8.75) .003 2.79 (1.15-6.81) 024
Stage 2.29 (0.31-16.94) 42 — —
No. metastatic sites 1.93 (0.88-4.21) .09 - —
Liver metastases 2.47 (1.07-5.72) .03 2.63 (1.06-6.51) .037
Gender 1.14 (0.55-2.37) 73 - —
PD-L1 0.99 (0.95-1.02) 43 = =
TP53 1.50 (0.72-3.13) 27 - —
PTEN 3.92 (1.78-8.64) < .005 5.92 (2.37-14.81) <.005
MET 1.11 (0.51-2.40) .80 — —
IGFR 2.22 (1.03-4.77) .04 — —

Abbreviations: Cl = confidence intervals; ECOG PS = Eastern Cooperative Oncology Group performance status; HR = hazard ratio; IHC = immunohistochemistry.

P = .03). The median OS was 3 months in patients with ECOG
PS > 1 (24-month OS, 0%) in comparison with 21 months in
patients with ECOG PS = 0 (24-month OS, 39%; log-rank P =
.001). The presence of PTEN loss was found to be an independent
predictor of shorter OS. The median OS was 6 months in patients
with PTEN loss (24-month OS, 12.2%) versus not yet reached in
patients without PTEN loss (24-month OS, 63.9%; log-rank test
P =.0002). PD-L1 expression does not significantly affect OS (HR,
0.99; 95% CI, 0.95-1.02; P = .427). As an exploratory finding, to
maximize the identification of patients with very good prognosis, a
molecular signature combining PTEN loss and IGFR overexpression

(both independent predictors of poor PES at the multivariate
analysis) was considered for the survival analysis. Figure 2 shows
PES and OS data of patients with both PTEN loss and /GFR
overexpression versus all other patients. The 12 patients harboring
the molecular signature had a significantly lower PFS (P = .0003)
and OS (2 = .0003) in comparison with the other 39, with none of
them surviving at 24 months. With regard to the activity, Figure 3
reports the observed ORR according to p53 normal (Figure 3A-1)
versus loss (Figure 3A-2), PTEN normal (Figure 3B-1) versus loss
(Figure 3B-2), MET high (Figure 3C-1) versus normal (Figure 3C-
2), and IGFR high (Figure 3D-1) versus normal (Figure 3D-2). As

Figure 2 Progression-free Survival (A-D) and Overall Survival (E-G) according to Independent Predictors at Multivariate Analyses;

P-Value: Log-Rank Analysis. Survival Rates (%) at 2 years are Reported

0 10 10
of: I 9fi
811 84 ETH
7 28] 7
8 6 3
5 5 5
4 4 - 4
3 "...; g FeEeesssee : 25.4% 3
d 5
21 e 11.6% B P 11.1% i
B =0.003 T 11 p=0.01 . A
00 P 00 oof
[ 2 8 24 6 12 18 2 6 12 18 24
PFS (months) PFS (months) PFS (months)
e PTEN Norm. 28 23 18 9 4 wemm PSSO 39 28 17 10 3 wemm No Liver Mets 41 30 21 12 5 wemm |GER Norm. 28 23 18 9 4
=i PTENLoss 23 11 5 4 2 mwmi PS12 9 3 3 0 0 wwiLiverMets 10 4 2 1 1 WEIGFRHigh 23 11 5 4 2

0 10
94 9
8 8
¢ g
6 6
5 5
4 4 s
o . 3 i..
2 2 i, 2 I 13.3%
1| p=0.0002 e 1{ p=0.001 A p=003 e
00 00| 00
6 12 18 24 [ 12 18 24 6 12 18 24
0S (months) 0S (months) 0S (months)
wmmm PTEN Norm. 28 23 21 13 6 m— PSO 39 30 23 14 5  wmmm No Liver Mets 41 32 26 17 7
mm1 PTENLoss 23 13 8 6 2 == ps12 9 3 3 2 0 mmiLiverMets 10 4 3 2 1

Abbreviations: Mets = metastasis; Norm = normal; OS = overall survival; PFS = progression-free survival; PS = Eastern Cooperative Oncology Group performance status.
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Figure 3 A, Immunohistochemistry Staining of TP53 (1: Loss; 2: Normal), PTEN (3: Loss; 4: Normal), MET (5: High; 6: Normal), and IGFR
(7: High; 8: Normal) Status. B, Overall Response Rate (RECIST 1.1 Criteria) according to TP53, PTEN, MET, and IGFR Status

(P-Value: xz Test). G, Chance to Achieve a Response, according to TP53 (Normal vs. Loss), PTEN (Normal vs. Loss), MET
(Normal vs. High), and IGFR (Normal vs. High) Status (P-Value: xz Test). An Odds Ratio Higher than 1 Indicates a Higher

Chance to Achieve Response

100

MET

TP53
IGFR
PTEN

p=0.72 p=0.023 p=0.85 p=0.037
r : 1 r . 1 r . 1 r . \
57.1%
% [95% C138.8, 75.4] 2% 48.29%
37.0% (5%l 259,667 40.6% [5%C1199,643) Lkt
[95% C118.8, 55.2] [95% €123, 57.6] 31.8%
21.7% [95% C112.3, 51.3]
[95% C1 4.9, 38.6]
Loss | Normal Loss | Normal Gain | Normal Gain | Normal
TP53 PTEN MET IGFR
Odds Ratio  95% Cls OR (95% Cls) p-value
1.063 0.336 3.364 0.917
1.438 0469 4410 0.525
2.000 0.630 6.352 0.240
4.800 1.387 16.616 0.013

02 05 1 2 5 10

LOWER HIGHER
Chance of ORR  Chance of ORR

Abbreviations: Cl = confidence interval; OR = odds ratio; ORR = overall response rate.

shown in Figure 2B, a significant difference (P = .023) in terms of
ORR was found for patients without the PTEN loss (with an overall
difference in response higher than 35%) and for patients over-
expressing JGFR (with an overall difference in response higher than
16%; P = .037). At the univariate analysis for ORR, patients
without a PTEN loss had a significantly higher change of ORR than
patients with (Figure 3 [panel C]), with an OR of 4.8 (95% CI,
1.38-16.6; P = .013). None of the other analyzed genes (ie, p53,
IGFR, and MET) or clinical and pathologic characteristics (PD-L1
expression included) significantly affected the change of response to

TKIs.

Discussion

Although limited by the retrospective nature and the small
sample size, our study points out that IHC could be a valid and low-
cost tool to identify PTEN loss in EGFR-mutant patients. More-
over, we further validated that the presence of additional alterations
impairs the efficacy of targeted therapy. In fact, our results have
shown worse outcomes in terms of PFS, OS, and ORR in patients
with concomitant EGFR mutation and PTEN loss. Furthermore,
the co-existence of PTEN loss and /GFR overexpression identifies a
potential prognostic ‘signature’ for a subgroup of patients with
particularly poor prognosis. The main limitation of this study is that
the IHC evaluation is focused on the expression of only 4 proteins;
thus, it may not be fully informative about tumor complexity and

heterogeneity. Actually, the most interesting perspective of our
study proposed regards the application of IHC as a simple and
reproducible tool to identify a subgroup of patients with poorer
prognosis owing to co-alterations. Our next step will be to perform a
confirmatory next-generation sequencing (NGS) analysis, to validate
these study results and enlarge the available spectrum of candidate
resistance mechanisms.

The advent of TKIs for lung cancer care has radically changed the
quantity and quality of life of patients affected by oncogene-
addicted disease, showing a clear advantage compared with stan-
dard chemotherapy. Nevertheless, although EGFR-mutant NSCLC
has long been considered as a single entity, EGFR inhibitor activity
ranges from 56% to 84%.°° Unfortunately, acquired resistance
occurs within approximately 12 months from therapy initiation,
requiring a treatment change. Mechanisms of secondary resistance
have been clarified®”*" and include development of secondary
mutations as the main mechanism (7790M), gene amplification of
the primary oncogene, epigenetic alterations, or histologic
transformation. "

Mechanisms of primary resistance remain largely unknown.
Although most of the patients receiving TKIs achieve an objective
response, the duration of clinical benefit can vary, and approxi-
mately 20% to 30% of patients do not respond or respond only for
a short period of time because of the presence of multiple mecha-
nisms of resistance. Several studies carried out during these past
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years have led to the characterization of EGFR-mutant NSCLC as a
variety of tumors that may harbor an intrinsic heterogeneity,
potentially influencing response rate and thus prognosis. After the
initdal belief regarding the mutual exclusivity of EGFR mutation
with other driver alterations, recent reports have demonstrated that
additional mutations can coexist."”*’ Concomitant mutations can
co-occur from the beginning and might lead to primary treatment
resistance. This phenomenon validates the existence of a clinically
relevant intratumoral heterogeneity (ITH) that has been associated

. :  43,46-
with a poorer prognosis.

S In this regard, the complexity of the
lung cancer genome is particularly high, as shown by deep-
sequencing analyses with the concomitant presence of subclones
carrying different types of mutations (spatial ITH). Furthermore,
molecular studies performed on lung cancers during treatment have
shown the phenomenon of clonal evolution, supporting the
occurrence of a temporal ITH.*’

The clinical relevance of ITH is supported by the demonstration
that concurrent mutations, identified through NGS, induce primary
resistance to TKIs and shorter PFS in EGFR-mutated patients. This
evidence confirms that EGFR-mutant NSCLC is a heterogeneous
disease and that further molecular analysis might help to select patients
experiencing major benefits of anti-EGFR agents.”**'”" We have
previously contributed to further validate the prognostic impact of
ITH, in terms of additional coexisting mutations (mainly 7P53), in
EGFR-mutant NSCLC.”” In the current study, we observed a
significantly shorter PES in EGFR-mutant patients with concomitant
PTEN loss, IGFR overexpression, liver metastasis at baseline, or
ECOG PS > 1. Furthermore, PTEN loss, IGFR overexpression, liver
metastasis at baseline, and ECOG PS > 1 are significantly associated
with worse OS. Moreover, PTEN loss is the only molecular charac-
teristic associated with worse ORR.

Although liver metastasis and ECOG PS are validated prognostic
factors,”>> a limited number of data are available for PTEN
loss.”>**7* Yu et al have performed NGS on 374 samples of EGFR-
mutated NSCLC, finding that FGFR-mutant lung cancers harbor a
spectrum of concurrent alterations affecting patient survival. In
particular, they have identified an activating mutation in 77OR able
to induce resistance to TKIs.”” Another study has shown that micro
RNA-21 (miR-21) promotes NSCLC by negatively regulating PTEN
expression. Authors have demonstrated that high miR-21 and low
PTEN expression predict poor prognosis and a worse objective
response in patients treated with TKIs.”®

Regarding IGFR-1, Al-Saad et al have investigated the prognostic
significance of MET and IGFR-1 alteration in 326 EGFR-mutant
patients. Their study has shown that IGFR-1 alteration correlates
with worse survival, demonstrating a highly significant and inde-
pendent negative prognostic impact, especially in males, maybe
because of different sex hormone effects on this protein.”’

In our study, patients were treated with first- and second-generation
TKIs (erlotinib, gefitinib, or afatinib). Putting our results into the
current treatment algorithm of £ZGFR-mutant NSCLC, further ana-
lyses are needed to understand the impact of PTEN loss (and our
combined molecular ‘signature’) as a mechanism of primary resistance
for osimertinib-treated patients, which currently represents the treat-
ment of choice for EGFR-mutant patients. In this light, few data are
available suggesting that PTEN loss could represent a potential

. . . . . 42,58 .
mechanism of resistance to osimertinib.””" Important studies are
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ongoing to further clarify mechanisms of resistance to first-line osi-
mertinib. In particular, the TEMPLE-2 trial (EudraCT 2020-001879-
33, going to start) is an efficacy study of osimertinib in treatment-naive
patients with EGFR-mutant NSCLC according to 7P53 status.
Considering the rapidly changing treatment landscape of oncogene-
addicted NSCLC, the fast identification of those patients behaving as
primary resistant to first-line targeted therapy is crucial to optimize
treatment strategies. This is rational, considering the continuous
emergence of new approaches, as the combination of chemotherapy
and TKI show significant improvement of PES and OS outcomes at

: - 59,60
the expense of increased toxicity

or the quadruple approach
combining atezolizumab, bevacizumab, and chemotherapy.m With
regard to immunotherapy, P7EN loss is a common mechanism of
resistance that may hinder treatment efficacy. Indeed, PTEN loss in-
duces an immunosuppressive tumor microenvironment through
secretion of immunosuppressive cytokines and MDSCs/Tregs che-
moattractant molecules.”” Moreover, lung cancer is extremely com-
plex, but mechanisms can be similar between oncogene- and not
oncogene-addicted NSCLC. An extensive research effort is ongoing
to overcome resistance to immunotherapy, in which PTEN loss rep-
resents a crucial player. The ultra-stratification of FGFR-mutant pa-
dents in subgroups experiencing a differential clinical benefit with
selective TKIs may improve the expected success deriving from pre-
cision medicine application in cancer care.

Clinical Practice Points

e The occurrence of additional mutations with proliferative effects
(for example, the co-existence of EGFR mutations with mutations
of onco-suppressor genes) in the tumor may mirror the tumor
heterogeneity. Loss of PTEN results in the lack of regulation of
PIP3 levels, which, in turn, promote the PI3K/Akt pathway leading
to cellular proliferation and growth. Protein p53 is an onco-
suppressor that acts as a tumor suppressor, and it is called ‘guard-
ian of the genome’ for its ability to regulate cell replication and
proliferation. ¢-MET acts as an oncogene that, when altered,
stimulates cell proliferation. IGFR-1 is a transmembrane protein
implicated in growth and survival of cancer cells.

o Although limited by the retrospective nature and the small sample
size, our study points out that IHC could be a valid and low-cost
tool to identify PTEN loss in EGFR-mutant patients as a mirror of
tumor heterogeneity. Moreover, we further validate, as the presence
of additional alterations impair the efficacy of targeted therapy. In
fact, our results have shown worse outcomes in terms of PFS, OS,
and ORR in patients with concomitant EGFR mutation and PTEN
loss. Furthermore, the co-existence of PTEN loss and /GFR over-
expression identifies a potential prognostic ‘signature’ for a sub-
group of patients with particularly poor prognosis.

e The ultra-stratification of EGFR-mutant patients in subgroups
experiencing a differential clinical benefit with selective TKIs
may improve the expected success deriving from precision
medicine application in cancer care.
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