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Sommario

Un sistema robotico chirurgico autonomo deve interagire con un ambiente anatomico com-
plesso, che si deforma ed è caratterizzato da proprietà spesso incerte. Tale sistema potrebbe
trarre vantaggio dalla presenza di una simulazione dell’anatomia di ciascun paziente. Ad
esempio, la simulazione può fornire un ambiente sicuro e controllato in cui effettuare la
progettazione, la verifica e la validazione dell’intervento autonomo. In aggiunta, può essere
utilizzata per generare una grande mole di dati personalizzati, che possono essere sfruttati
per l’apprendimento di modelli e/o compiti. L’obiettivo di questa Tesi è di analizzare le varie
modalità con cui la simulazione può supportare un sistema autonomo e di proporre delle
soluzioni per favorire il suo utilizzo nella chirurgia robotica.

Inizialmente, si considerano tutte le fasi necessarie per la creazione di tale simulazione,
dalla scelta del modello sulla base delle informazioni disponibili in fase pre-operatoria, al suo
aggiornamento in fase intra-operatoria per compensare un’eventuale parametrizzazione im-
precisa. Si propone di sfruttare reti neurali allenate con dati sintetici sia per la generazione
di un modello specifico di ciascun paziente, sia per lo sviluppo di un metodo per l’aggior-
namento dei parametri di tale modello, partendo direttamente da dati acquisiti da sensori
intra-operativi.

In una seconda parte, si testa come la simulazione possa assistere un sistema robotico chi-
rurgico autonomo, sia durante la fase di apprendimento di un’azione chirurgica sia durante
la sua esecuzione. I risultati ottenuti confermano che la simulazione può essere usata per al-
lenare con efficienza algoritmi che richiedono molteplici interazioni con l’ambiente, compen-
sando così i rischi connessi all’acquisizione di dati su veri sistemi robotici chirurgici. Infine,
si propone un framework modulare per la chirurgia autonoma che incorpora funzioni delibe-
rative per gestire ambienti anatomici reali, caratterizzati da proprietà incerte. L’integrazione
di un ambiente di simulazione all’interno di tale framework si dimostra fondamentale per la
pianificazione ottima e l’arricchimento e il monitoraggio dell’esecuzione reale.

I contributi presentati in questa Tesi hanno il potenziale di accellerare lo sviluppo ed otti-
mizzare le prestazioni di sistemi robotici chirurgici autonomi, rendendo sempre più realistica
la loro applicazione all’interno di contesti clinici reali.
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Abstract

An Autonomous Robotic Surgical System (ARSS) has to interact with the complex anatomical
environment, which is deforming and whose properties are often uncertain. Within this con-
text, an ARSS can benefit from the availability of patient-specific simulation of the anatomy.
For example, simulation can provide a safe and controlled environment for the design, test
and validation of the autonomous capabilities. Moreover, it can be used to generate large
amounts of patient-specific data that can be exploited to learn models and/or tasks. The aim
of this Thesis is to investigate the different ways in which simulation can support an ARSS
and to propose solutions to favor its employability in robotic surgery.

We first address all the phases needed to create such a simulation, from model choice in
the pre-operative phase based on the available knowledge to its intra-operative update to
compensate for inaccurate parametrization. We propose to rely on deep neural networks
trained with synthetic data both to generate a patient-specific model and to design a strategy
to update model parametrization starting directly from intra-operative sensor data.

Afterwards, we test how simulation can assist the ARSS, both for task learning and dur-
ing task execution. We show that simulation can be used to efficiently train approaches
that require multiple interactions with the environment, compensating for the riskiness to
acquire data from real surgical robotic systems. Finally, we propose a modular framework
for autonomous surgery that includes deliberative functions to handle real anatomical en-
vironments with uncertain parameters. The integration of a personalized simulation proves
fundamental both for optimal task planning and to enhance and monitor real execution.

The contributions presented in this Thesis have the potential to introduce significant step
changes in the development and actual performance of autonomous robotic surgical systems,
making them closer to applicability to real clinical conditions.
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Chapter 1

Introduction

Nowadays, robotic systems are exploited in many practical applications across a wide range
of fields. Traditionally, they have been used to perform repetitive actions without risking to
suffer from fatigue, or jobs that are too hazardous for humans. For example, robots are used
in manufacturing and assembly lines (e.g., in automotive or electronics industries), to find
objects underwater or to explore other planets. However, robots are nowadays increasingly
present also in our daily life, if we think about all the existing types of household assistants.
Thanks to the advancements in technology and artificial intelligence, the latest generation
of robotic systems have become increasingly autonomous. They can carry out some basic
decision-making that allow them to perform tasks in autonomy, even in environments which
might be not completely known in advance.

Among others, the use of robots has revolutionized the medical field. For example, mobile
robots are streamlining supply delivery, cleaning and disinfection in hospitals; more complex
robotized systems have been developed to enable enhanced forms of therapy (e.g., stereotac-
tic radiotherapy by the CyberKnife system [1]) and rehabilitation [2].

Robots have come into play in the surgical domain as well, transforming the way surgeries
are performed. In orthopedics, robotic systems can assist surgeons on several interventions,
such as knee (Mako [3] or Rosa [4]) and spine surgery (Mazor X Stealth [5]). In the last few
decades, robots have been increasingly adopted in laparoscopic surgery, where they interact
with an environment (i.e., visceral anatomy) which is a way more dynamic and complex than
the one faced by orthopedic robots. In Robot-assisted Minimally Invasive Surgery (RMIS),
the surgeon sits at a console, few meters away from the surgical robot, and controls the
articulated surgical tools through some joysticks, while having immersive visualization of the
surgical site as provided by the laparoscopic camera. The most popular RMIS platform is the
da Vinci surgical system [6], which is largely used in urology, gynecology and general surgery
(Fig.1.1). Compared to open surgery, robotic surgery combines enhanced dexterity and stereo
vision with the smaller incisions on patient’s body typical of traditional MIS, thus enabling
surgeons to perform more precise surgeries and improve the overall procedure outcome. The
introduction of advanced instrumentation and sensing technologies have been boosting RMIS
utilization in recent years, making robotic surgery one of the most successful areas in robotics.
Research in surgical robotics has become a very active field thanks to the presence of some
initiatives like the da Vinci Research Kit (dVRK) [7, 8]. The dVRK is a research platform that
provides a network of academic laboratories worldwide with clinically dismissed da Vinci
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1.1. SIMULATION AND ROBOT AUTONOMY

systems, equipped with dedicated electronics to access robot data.

Figure 1.1: (a) The da Vinci surgical system: the surgeon teleoperates the robotic arms at the
patient side from the surgeon console; (b) From top to bottom: distribution of da Vinci surgical
systems worldwide in 2020; surgical applications and total number of interventions until 2019
using the da Vinci surgical system; number of publications citing the da Vinci surgical system and
the da Vinci Research Kit as of [7]. Adapted from [7].

In accordance with the latest trends in general service robots, one of the most popular
research areas in surgical robotics deals with automating aspects of RMIS [7, 9]. At the mo-
ment, surgical robots do not perform any actions in autonomy, mainly for technical and legal
reasons, although most of them have all the needed mechanical and computing capabilities.
Unlikely other fields where autonomous robots could be seen as a threat to workers, the po-
tential benefit of autonomy in robotic surgery is unanimously recognized. For example, an
autonomous surgical robot can execute simple repetitive parts of the intervention, limiting
human errors and the fatigue of surgeons, who shall just monitor the overall execution and
focus only on the most critical tasks.

As a final consideration, one of the reasons why autonomous robots in general are only
slowly progressing lies in the lack of a unified theoretical framework for planning and ex-
ecuting autonomous tasks, especially for risky tasks (like surgery). These tasks cannot be
generally represented by hand-crafted policies and pre-defined sets of actions, but needs to
be learned from experience by examining how humans address unpredictable situations. As
robotic automation gains widespread adoption, the need for automation architectures grows.

1.1 Simulation and robot autonomy

In general, creating autonomous systems introduces some major challenges, both in the de-
sign and in the validation phase. In this context, a significant support to the process can be
provided by computer simulation. In fact, simulation can represent a safe, fast and cheap so-
lution that allows to understand how autonomous robots should be designed and controlled

2



1. Introduction

for safe operation and improved performance [10]. In particular, we have identified two
main ways in which simulation can be of help in automating robotic tasks.

First of all, simulation provides a virtual environment where to test, validate and verify the
behavior of the autonomous system in a safe and controlled way. Simulations can be cus-
tomized to model multiple agents, environmental conditions and interactions between them.
In this way, it is possible to analyze the response of the system to different settings, allowing
to identify possible problems and predict potentially dangerous situations. Simulation can
be employed for this purpose at development stage, to optimize system behavior and design
fail safe strategies, as well as during task execution whenever decision making is involved, to
foresee the outcome of a possible action.

Secondly, simulation represents a versatile environment to generate large amounts of data
that can be used to train Machine Learning (ML) algorithms. Such algorithms are being in-
creasingly used in robotics for their capacity to learn behavior models (e.g., of the robot, of
the environment) and/or control policies directly from data, but they require a large database
for successful learning. Simulation can be used to generate a large amount of realistic syn-
thetic data, compensating for the lack of real world data.

These advantages provide a strong motivation to an extensive use of simulation in robotics.
However, there are still some barriers to overcome, as highlighted by Choi et al. in more
details [10]:

1. Lack of solutions: to date, there is a scarcity of simulation environments offering all the
potential features of interest in robotics, due to the challenges involved in their develop-
ment. Obtaining a realistic simulation for robotics requires multi-disciplinary expertise
since it involves the modelling of (i) robot dynamics, (ii) perception systems (e.g., sen-
sors), (iii) the environment, which might be unstructured, evolving and dynamic, and
(iv) the interaction and communication with the surroundings, where multiple agents
might be present. This whole process becomes even more difficult when a human is
present in the loop and his/her behavior (mechanical and/or cognitive, depending on
the application) should also be modelled. Moreover, the availability of experts from
such different fields, devoted to the development of the same platform, is not easy to
have, especially in academic research laboratories, which usually gather people of the
same field.

2. Difficulty in model choice and calibration: defining the scenario to use for a robotic
simulation involves a series of modeling choices (e.g., modelling human interaction,
multiple environmental conditions, etc.) and the selection of a large set of parameters.
This process can become daunting, especially with increasing complexity of the models
involved (e.g., when the environment contains deformable components and/or contacts
with friction). Moreover, model parametrization can be a time-consuming and tedious
process, which relies on either ad-hoc parameter identification strategies or fine tuning
from trial-and-error attempts until the desired behavior is obtained. The model selec-
tion process also requires to consider the trade-off between accuracy and computation
time, depending on the application; sometimes, choosing a complex model without the
availability of good parameters might lead to worse results that take longer than what
can be obtained with simpler models.

3. Uncertainty is not generally modelled: simulations should incorporate sources of un-

3



1.2. THE AUTONOMOUS ROBOTIC SURGERY PROJECT

certainty that characterize the real environment where the robot operates. These un-
certainties can be due to the presence of complex and dynamic behaviors that cannot
be precisely modelled (e.g., friction or impacts), the lack of knowledge of model pa-
rameters and the presence of sensor noise. However, incorporating these uncertainties
represents an open issue, due to the limited knowledge of the environments where
robots operate.

The presence of these open issues should not hinder the use of simulation in robotics, but
instead encourage research and development in this area, since the benefits of its use for the
design of the robots of the future are clear.

1.2 The Autonomous Robotic Surgery project

This Thesis lies within the Autonomous Robotic Surgery project1, which aims at developing
methodologies that will enable the execution of a surgical intervention by a robotic system
in complete autonomy. One of the main challenges an Autonomous Robotic Surgical System
(ARSS) has to face is how to properly interact with the anatomical environment, which is
composed of soft tissues that deform in response to the interaction with surgical instruments
as well as to physiological effects (such as breathing or heart beating). Moreover, tissue
behavior is very complex to model and its properties are highly variable among different pa-
tients and difficult to measure. The complexity and uncertainty of the environment make
the development of an ARSS a challenging task, since it requires to consider many different
aspects. For example, the definition of the intervention plan and its instantiation on a specific
patient already introduce some major difficulties. First of all, it is necessary to identify the se-
quence of actions needed to complete the desired surgical task in general terms. This requires
the integration of both a-priori knowledge from textbooks and the experience, actions and
reasoning of multiple surgeons, that can be only learnt from data of real interventions. Once
the surgical plan is defined, it must be adjusted to cope with the current patient, according
to his/her specific clinical situation and geometric and mechanical properties.

Even though a patient-specific intervention plan is available, the ARSS must be capable
of adapting it during execution based on current situation, since the anatomical environ-
ment might behave differently from what expected from pre-operative knowledge. To cope
with such an uncertain environment, it is key to incorporate strategies for real-time situa-
tion awareness, reasoning and control, that allow prompt reaction and online replanning in
response to unknown or unexpected situations.

Automating a process in an environment as critical as the surgical one, where errors can be
deadly, also requires the availability of an integrated framework that can be used for both the
design, test and validation of the intervention plan in the pre-operative phase, and the control
and monitoring of task execution intra-operatively, handling environmental uncertainties.

1The Autonomous Robotic Surgery project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme under grant agreement No.
742671.
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1.2.1 Simulation and autonomous robotic surgery

A great support to the autonomous execution of surgical actions by an ARSS can be provided
by the availability of a simulation of the anatomical environment. Such simulation is based on
a Patient-specific Biomechanical Model (PBM), which is created in a pre-operative phase from
geometry and physical properties of the surgical areas extracted from each patient diagnostic
images and/or initialized with values from the literature (Fig. 1.2).

First of all, simulation represents a test bench where to design and verify the surgical plan
before its actual execution on the real system. This step is essential in safety-critical scenarios
as surgery, since it allows to optimize the plan accounting for each patient’s characteristics,
and test it before execution to visualize possible problems, identify any major errors and pre-
dict potentially critical situations. Robotic actions verification is also required while the inter-
vention is taking place, especially when actions replanning is needed. In order to guarantee
that the intra-operative verification is reliable, it is essential that the simulation continuously
represents an up-to-date replica of the current surgical situation. The pre-operative PBM
should therefore be continuously updated to reflect all the changes introduced by the surgi-
cal manipulations based on real data. Fig. 1.2 highlights the role of simulation for surgical
plan verification for an ARSS.

Figure 1.2: In an ARSS, a PBM is instantiated pre-operatively with patient-specific geometry and
biomechanical properties. Such model is employed to initialize the simulation environment where
the surgical plan is verified in the pre-operative phase. In the intra-operative phase, both the PBM
and the surgical plan are adjusted depending on the current surgical situation.

The availability of an accurate simulation of the anatomical environment can support the
ARSS via the generation of realistic – and even patient-specific – data that can be used for
learning purposes. This is very important since the complexity of both the environment and
the cause-effect flow governing surgical actions make ML algorithms ideal for learning tasks,
but they are challenged by the impracticality to acquire real world data in the medical field.
In fact, such data are generally difficult to get due to the technical, ethical and privacy issues
involved in data collection process. By providing a way to generate large amounts of realistic
data, computer simulation allows to compensate for this limitation. Generated data can
also be exploited for the design of novel data-driven models or methods that might be more
informative or more efficient than traditional approaches and can assist the ARSS during task
execution.

Furthermore, simulation can provide the ARSS with critical information during task execu-
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tion. It can guide the ARSS towards the structures of interest, which might be hidden from
the partial view available intra-operatively, or warn it in case it approaches critical regions
which might be not directly recognizable on intra-operative images. It can complement infor-
mation from real sensors, for example estimating the interaction forces between instruments
and tissues when direct force measurement systems are not available, as is the case of most
current surgical robotic systems [11]. Moreover, since simulation represents the ARSS in-
ternal knowledge of the environment, a continuous monitoring of the discrepancy between
the simulated and the real scenarios allows to assess if the execution on the real setting is
coherent with what the ARSS expects based on its internal knowledge, and adopt specific
strategies to accommodate safety in case it is not.

1.3 Contributions and structure of the Thesis

In this Thesis, we address the main aspects where simulation can be of help in robotics,
especially considering the design of autonomous systems (Section 1.1). We focus on the
challenging context of surgery, characterized by a complex environment which deforms due
to the robot interaction and whose properties need to be tuned for each patient. Therefore,
the main goal of this PhD Thesis is to investigate the different ways in which a patient-specific
simulation can support an autonomous robotic surgical system. We first address all the phases
needed to create a simulation environment that can be employed to such purpose, from
the pre-operative design and selection of the most appropriate model, to its intra-operative
update. Then, we test how simulation can assist the autonomous execution, both in task
learning phase and during real surgical task execution.

In particular, the main contributions of this Thesis can be summarized as follows:

1. We tackle the problem of creating a patient-specific simulation environment where the
robot plan can be designed, tested, validated and verified. We examine advantages and
disadvantages of different approaches in light of the requirements of surgery and pro-
pose some solutions for their parametrization, thus addressing the difficulty in model
choice and calibration.

2. We develop an open source framework supporting efficient, realistic and stable simula-
tion of deformable tissues which can be used to such purpose. The framework provides
a solution where multiple interactions with the anatomy can be safely and efficiently
performed, and can be used as a starting point for further development.

3. We investigate the feasibility of using simulations to generate large amounts of data
needed to train learning-based strategies. This approach is tested for different purposes,
i.e. to generate a highly efficient deformation model, to design a novel strategy for
intra-operative update of model parametrization and to learn a surgical task.

4. We present a modular architecture that provides all the key functionalities for au-
tonomous robotic surgery. In particular, it integrates deliberative capabilities, which are
essential to deal with the uncertainty and dynamism of real anatomical environments.
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5. We contribute to advancing research in autonomous surgical robotics by making all the
developed methods open source. In this way, we take an action towards reproducibility
and verifiability of science, and encourage the use of simulation in surgical robotics.

With this Thesis, we address the main limitations that currently prevent extensive use of
simulation in surgical robotics and we emphasize the multiple benefits that simulation can
bring to the development of autonomous surgical systems. The contributions presented in this
Thesis have the potential to introduce significant step changes in the development and actual
performance of autonomous robotic surgical systems, making them closer to applicability to
real clinical conditions.

1.3.1 Structure of the Thesis

This manuscript begins with an overview of the world of surgical simulation in Chapter 2.
We identify the main challenges to face and review the existing approaches that can be used
to model the deformable anatomy. The remaining of this manuscript is divided in two parts.

Part I presents our contributions to the development and parametrization of the patient-
specific model that drives the simulation supporting the ARSS. In particular, Chapter 3 ad-
dresses the problem of pre-operative model selection and its patient-specific parametrization.
We conduct a thorough evaluation of existing physics and non-physics based methodologies
that can be used to create personalized surgical simulations, considering the main perfor-
mance criteria of interest for an ARSS, and we compare them with a newly proposed data-
driven approach. Whereas, Chapter 4 tackles the problem of intra-operative correction of the
simulated model based on real data and present a complete pipeline for its applicability to
the clinical settings. Methods presented in Part I leverage on simulations to generate large
amounts of data that are used to learn deformation models and strategies for parameters
update.

In Part II, we discuss how simulation can support autonomous surgical task execution. In
Chapter 5 we show that simulation can provide a virtual scenario where surgical tasks can be
successfully learnt with approaches that require multiple interactions with the environment,
thus compensating for the impracticality and riskiness to acquire large amounts of data from
real surgical robotic systems. Chapter 6 presents a framework for autonomous robotic surgery
that integrates all the features needed for the execution of surgical tasks within the real
deformable and uncertain anatomical environment.

Finally, we draw conclusions and reason on future research in Chapter 7.

1.4 Conclusion

This Thesis addresses the different ways in which simulation can provide support to au-
tonomous robotic surgery. First of all, the generation of a simulation that accounts for each
patient’s geometry as well as known biomechanical properties allows to have an environment
encoding all the knowledge available to the ARSS. Such environment can be used both for
safe design, test and validation of a surgical task/plan in the pre-operative phase and to gen-
erate large amounts of patient-specific data that can be used to learn models and/or control
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policies. Furthermore, simulation can support an ARSS in the intra-operative phase by pro-
viding additional information about the environment and allowing to continuously monitor
the real execution.

Throughout this Thesis, we review the main aspects where simulation can assist an ARSS
and we propose some solutions to address the main challenges and limitations that are cur-
rently preventing its extensive use in autonomous surgery. We first tackle the generation of
a patient-specific simulation which meets all the requirements of surgery. We present some
methods to address the difficulty of patient-specific model parameterization, both in the pre-
operative and intra-operative phases. Then, we test the possibility of using simulation as a
tool to generate data that can be used to learn parameters and/or tasks. Finally, we test how
simulation can support autonomous task execution on a real surgical robotic system, both in
pre-operative and intra-operative stage.

Despite its many benefits, reliance on simulation is not largely common in robotics yet.
This is even more true in robotic surgery, due to the complexity to model the deformable
anatomical environment, whose properties are highly variable between different subjects and
often uncertain. By reviewing all the aspects where simulation can significantly contribute
to the development of autonomous robotic surgical systems, addressing the main challenges
involved, and publicly sharing the developed methods, we encourage a more widespread use
of simulation in autonomous surgery.
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Chapter 2

Deformable models for surgical
simulation

2.1 Introduction

Modelling and simulation of the deformable behavior of the anatomy can support surgical
applications in several ways.

First of all, deformation models can support deformable image registration techniques. Sev-
eral medical applications, from radioteraphy to pre-operative planning, require to align im-
ages of the same patient acquired at different times, in which patient’s internal configuration
might have changed due to physiological effects, repositioning or evolution of the pathology.
All these changes cause the imaged anatomies to be in a different deformed configuration.
The image registration process can thus benefit from being informed by a biomechanical
model able to compensate for such effects [12].

In computer-assisted interventions, models of the anatomical environment are exploited
to enhance the surgical scene and provide the surgeon with critical information, eventually
improving the overall quality of surgery. A model able to account for the deformations aris-
ing from both surgical manipulations and physiological movements can be used to facilitate
intra-operative navigation. Deformation models can be employed to augment the surgeon’
view, providing guidance towards the structures of interest and/or highlighting the regions
to avoid, which might be hidden in the current view due to the limited field of view of the en-
doscopic camera or the presence of other tissues [13, 14, 15]. Another example application is
given by needle-based procedures, such as biopsy, brachyteraphy or radiofrequency ablation,
where the target might move from its pre-operative position following tissue deformations
caused by the needle-tissue interaction. Since the resolution of available intra-operative
imaging is too low to provide reliable guidance, being able to model such interaction can
ease the needle insertion process and enable successful navigation towards the area of inter-
est [16].

Deformation models can also be used in the context of surgical training, which has become
fundamental with the increasing popularity of MIS. The limited working space available dur-
ing MIS procedures compromises surgeon’s dexterity, thus making adequate training a cru-
cial factor for success [17, 18]. Virtual simulators have been increasingly adopted as training
tools, since they are safe and enable unlimited practice sessions. Training quality is correlated
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to the degree of realism and smoothness in the representation of the interactions between the
anatomical environment and the surgical tools provided by simulators [17, 19].

Modeling and simulation of the deforming anatomical environment has the potential to
bring enormous benefits to the design and validation of medical robots [10]. The role of simu-
lation becomes crucial for the development of “smart" medical robots, where simulation can
both help to design systems with improved safety and performance, and support autonomous
planning and control of robotic surgical tasks [20].

After reviewing the main challenges involved in realistic surgical simulation in Section 2.2,
this Chapter provides an overview of the main categories of deformable models for surgical
simulation, highlighting their advantages and disadvantages. We first discuss the preferred
modelling strategy for applications requiring high simulation accuracy, which relies on a
mathematical description of soft tissues behavior through the laws of continuum mechanics
(Section 2.3). However, this kind of simulations generally suffer from high computational
cost. When high solution speed is required, some simplifications are usually introduced into
the physics of the environment, in order to achieve a simulation which is at least physically
plausible. This class of methods, referred to as heuristic models, will be described in Sec-
tion 2.4. Finally, we present how machine learning techniques can be exploited to predict
tissue deformations in Section 2.5.

2.2 Challenges of surgical simulation

In all the mentioned applications, it would be desirable to rely on a deformation model which
represents real tissues behavior in an accurate way, while requiring minimal computation
time and staying numerically stable. However, these factors have conflicting computational
requirements. Reaching high accuracy levels generally implies usage of complex nonlinear
models, which in turns means higher computational cost and higher probability of numerical
instability. On the other hand, model simplifications can be introduced to minimize compu-
tation time whenever performance is the main factor of interest. Simultaneously meeting all
these requirements is very difficult, especially with increasing complexity of the simulation.
As a consequence, a variety of models have been proposed to approximate the behavior of
soft tissues, optimized in different ways to meet the specific needs of the application they
address [21].

2.2.1 Challenge of patient-specific simulations

The first main challenge of surgical simulation is the proper representation of the manipu-
lated tissues, to achieve an accurate modelling of their behavior. With the only exception of
training simulators, which can rely on anatomical models extracted from available datasets
[22] and approximated deformation properties, all the other mentioned applications require
patient-specific model parametrization to reach clinically acceptable precision.

The first step for personalized simulation is the reliance on organ geometry from actual
patient’s data (Fig. 2.1). The 3D model of the anatomy of interest is generally constructed
starting from pre-operative volumetric images such as computerized tomography (CT) or
magnetic resonance imaging (MRI). These imaging techniques provide a 3D view of the pa-
tient’s internal anatomy, where the different structures can be identified and labelled with a
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process called segmentation. Although several attempts have been made towards automat-
ing the segmentation task [23], they are extremely context-dependent, still leaving manual
segmentation as the most widely applicable and reliable approach. Afterwards, a 3D sur-
face model of the tissues is generated from the segmentation mask, commonly relying on
the marching cubes algorithm [24]. In some approaches, like ChainMail (Section 2.4.3), the
generated 3D surface already represents the input to the simulation. However, many simula-
tion approaches also require the discretization of the volume enclosed within the generated
surface into elementary entities, such as tetrahedrons or hexahedrons, in a process called 3D
meshing. Tetrahedral elements are the preferred ones for the discretization of anatomical
shapes, since they can easily represent irregular geometries with sufficient detail. The 3D
meshing process is generally automated, and relies on Delaunay triangulation [25]. The ac-
curacy of mesh-based simulations depends on the both the number and the regularity of the
generated elements, which in turns is influenced by the quality of the starting surface.

Overall, the generation of a good geometrical model is essential for reliable simulations, but
it requires extensive manual processing which is both time consuming and subject-dependent,
thus representing a first challenge in the generation of patient-specific simulations. Moreover,
it is clear that all the inaccuracies in the model generation phase will introduce uncertainties
in the physics quantities predicted by simulations [26].

Figure 2.1: General workflow for patient-specific simulation. A geometrical model of the anatomy
is obtained from segmentation of the patient’s volumetric images (CT or MRI) and subsequent 3D
surface generation. The obtained surface might be eventually meshed into a full 3D volume, as
required by some simulation approaches. Either in-vivo or ex-vivo tests are performed to identify
model parameters describing the deformable behavior of the anatomy. The geometrical model
and the model parameters initialize the simulation environment, which can be based on different
analytical models.

The generation of a reliable patient-specific simulation requires the selection of the most
suitable analytical model to describe the complex anatomical behavior. This represents an ad-
ditional challenge since tissues behavior is usually characterized by non-linear material laws,
often including heterogeneity (i.e., the presence of multiple materials with different mechan-
ical properties) and anisotropy (i.e., materials showing different mechanical properties in
different directions). Existing models can be classified in three main categories. The first
category contains models that describe anatomical behavior through the laws of continuum
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mechanics, which can be solved using ad hoc numerical techniques. The second category
consists of heuristic methods, which rely on simplified models of soft tissues geometry with
specific constraints that allow to simulate elastic properties. Finally, the third category rely on
machine learning techniques to represent tissues behavior. These three categories of models
will be investigated in the following Sections.

The choice of the model influences the set of model parameters that describe tissues behav-
ior. Model parameters, which include both material properties and boundary conditions, have
to be careful selected ideally accounting for patient-specific characteristics. To this end, tis-
sues mechanical properties can be determined through ex-vivo and/or in-vivo measurements.
Ex-vivo measurements are obviously easier to perform since there are fewer constraints on
the working space for the experimental setup, and conditions can be made more repetitive.
However, material properties have proven to vary substantially from the true in-vivo proper-
ties, making these experiments less accurate for realistic modelling [27]. In-vivo experiments
provide more realistic data, but conditions are less stable and boundary conditions for mod-
elling a lot more difficult to define. By providing information about organs internal compo-
sition, tissues biomechanical properties might be inferred from traditional medical imaging
techniques (CTs or MRIs). However, there is not an established relationship between tissue
composition and their mechanical behavior. Elastography-based imaging has the potential to
provide a direct estimate of organ stiffness, by measuring how acoustic strain waves propa-
gate into the tissues [28, 29]. Such techiques still rely on ad-hoc setups and are not easily
usable in the standard clinical environments.

2.2.2 Challenge of interactive simulations

The computation time required by the simulation is another critical issue. Applications like
intra-operative guidance and surgical simulation require high solution speeds, compatible
with the required update rates for smooth visual and (potentially) haptic feedback. The
update rate required for visual feedback, that allows the human sensory system to achieve
continuous motion of the environment, is in the range 20-60 Hz. In case haptics is also
present, stable and smooth kinestetic sensation are guaranteed by an update rate between
300 and 1 kHz [30]. Being able to meet such strict time requirements becomes more and
more challenging with increasing complexity of the simulation, for example if the organ me-
chanical behavior is described by nonlinear laws, if the interactions among multiple organs
need to be accounted for, or if challenging surgical actions must be modelled, such as cutting
and suturing, which involve topological changes. Computation of the numerical solution to
the complex non-linear equations that accurately describe the behavior of soft tissues can
be very expensive in these cases, thus not compatible with real-time performances. Applica-
tions where simulation interactivity is a fundamental requirement usually rely on modelling
assumptions to simplify the deformation models or on numerical methods that approximate
the exact solution, leaving accuracy aside for the sake of rapidity.

2.2.3 Challenge of stable simulations

An additional challenge of simulations involving deformable objects is represented by simula-
tion stability. This property is desirable in all applications, since instability means a diverging
solution, which is thus invalid and not usable. Visually, when a simulation becomes unstable,
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the modelled object “explodes", due to undesired movement of the mesh vertices caused by
the propagation of errors in the numerical methods governing the resolution of the equa-
tion system. In these cases, small perturbations in the input produce large variations in the
obtained deformations.

Guaranteeing simulation stability is particularly challenging when the equation system to
solve is stiff. In these kinds of systems, the upper bound of the time step is constrained by
stability rather than accuracy requirements. This is generally the case in surgical simulations,
where the objects to model are described by non-linear material laws, with anisotropic, het-
erogeneous and nearly-incompressible properties, which can generate ill-conditioned prob-
lems. While solving stiff systems, numerical integration schemes (i.e., those used to advance
the simulation in time) might require impractically small time steps to guarantee stability.
This happens, for example, with explicit integration schemes [21]. On the other hand, im-
plicit methods allow to use larger time steps while remaining stable, but the equation sys-
tem to solve at each time step is slightly more complex [20]. Several advanced integration
schemes have been proposed to guarantee a convergent solution, i.e. simulation stability, to
any kind of input. Schemes with this property are said to be unconditionally stable. However,
they obviously come at the expese of an increased computational cost.

2.3 Continuum mechanics methods

The deformable behavior of soft tissues can be described with the laws of continuum mechan-
ics. Each point in the undeformed reference configuration X is mapped to its corresponding
point in the deformed configuration x (Fig. 2.2) through the deformation gradient F [31]:

F “
Bx

BX
“ I`

Bu

BX
(2.1)

where u “ x´X is the displacement vector.

Figure 2.2: A body defined over the domain Ω, subject to a body force b, surface traction t and
boundary conditions on Γ, passes from its undeformed configuration X to a deformed configura-
tion x.
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If a body defined over the domain Ω is in static equilibrium under an applied body force b
(Fig. 2.2), imposing the balance of linear momentum leads to:

∇ ¨ σ ` b “ 0 in Ω (2.2)

where ∇ ¨ σ represents the divergence of the Cauchy stress σ. The Cauchy stress σ is a
measure of the internal state of stress of the solid, which is related to surface tractions t via
σn “ t, where n is the outward unit normal to the surface.

Whereas, if the body is not in static equilibrium, its behavior is described by the dynamics
laws of motion (Newton’s second law). In this case, Eq. (2.2) must be extended to include
the contribution of the inertia term, leading to:

∇ ¨ σ ` b “ ρ:u in Ω (2.3)

where ρ is the object density. An additional term representing a damping force can be present.
Equations (2.2) and (2.3) are subject to some conditions on the boundary Γ of the object:

#

u “ 0 on Γu

σn “ t on Γs
(2.4)

where Γu and Γs are defined such that Γ “ Γu Y Γs.
Regardless of being in a static or dynamic situation, computation of realistic organ defor-

mations using the continuum mechanics approach relies on the definition of the physical laws
governing the mechanical response of the tissues to the applied sollicitations. Such laws are
called constitutive laws and contribute to the definition of the internal forces. In particular,
they put in relation the tissue stress, represented by σ, to the tissue strain, described by the
Green strain tensor E, defined as:

E “
1

2
p∇u`∇uJ `∇u∇uJq (2.5)

being u the displacement (i.e., the difference between the positions in the deformed and
undeformed configurations).

Several different constitutive relations have been suggested in the literature, ranging from
a linear law to very complex mathematical expressions [27, 32]. For elastic solids, the Cauchy
stress is linearly related to the Green strain tensor by the elasticity matrix D:

σ “ D : E (2.6)

where “:" represents a contraction operation (i.e., σij “ Dijklεkl following Einstein summation
convention1). In the elastic scenario, material behavior is fully described by only 2 charac-
teristic constants: the Young’s modulus E and Poisson’s ratio ν. The simplest type of elastic
materials are linear elastic materials, which are described by a linear relationship also be-
tween strain and displacement (i.e., neglecting the second order term in Eq. (2.5)). Although
the linear elastic formulation is often preferred due to its computational convenience, it is not

1According to Einstein summation convention, when an index is repeated twice in a single term, it implies
summation of that term over the range of the repeated index, e.g. u “ ujej “ u1e1 ` u2e2 ` u3e3, where
e “ re1, e2, e3s represents a basis vector in 3D.
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capable of handling large deformations correctly, thus it is not always adequate to describe
tissues deformation [20].

A common way to describe more complex material behaviors is by means of a strain energy
density function W . A material is called hyperelastic if W exists and the relationship between
σ and E is obtained from:

S “
BW

BE
(2.7)

σ “ J´1F
BW

BE
FT (2.8)

where S is the second Piola-Kirchhoff stress, F is the deformation gradient in Eq. (2.1) and J
is the determinant of F [31].

The simplest hyperelastic formulation is the St. Venant–Kirchhoff, which represents an elas-
tic material able to handle large displacements, since it uses the full Green strain tensor of
Eq. (2.5). The strain density function describing the St. Venant-Kirchhoff material is given
by:

W pEq “
λ

2
rtrpEqs2 ` µrtrpE2

qs (2.9)

where tr indicates the trace of the tensor, λ and µ are the Lamé constants, and are uniquely
related to the Young’s modulus E and Poisson’s ratio ν via

λ “
νE

p1` νqp1´ 2νq
µ “

E

2p1` νq
(2.10)

Other popular constitutive models are the Neo-Hookean [33] and Ogden [34] model. In
these cases, W is defined using the three principal stretches λ1, λ2, λ3 (i.e., the three eigen-
values of the deformation gradient). The strain energy function for a Neo-Hookean material
is defined as:

W pλ1, λ2, λ3q “ Apλ21 ` λ
2
2 ` λ

2
3 ´ 3q (2.11)

where A is a material constant, linked to µ by A “ µ
2
.

The Ogden model has been widely used in rubber-like tissue modelling and it is described
by:

W pλ1, λ2, λ3q “
N
ÿ

i`1

µi
αi
pλ1 ` λ2 ` λ3 ´ 3q (2.12)

where N , µi and αi are material parameters, which must be fitted experimentally.
The system of equations describing the behavior of deformable objects through continuum

mechanics laws can include four main types of nonlinearities:

1. Geometric nonlinearity: nonlinearity between strain E and displacement u;

2. Material nonlinearity: nonlinearity between stress σ and strain E;

3. Force nonlinearity: nonlinearity between force b and stress σ (when applied force
depends on deformation);

4. Kinematic nonlinearity: nonlinearity between prescribed displacements (boundary con-
ditions) and displacement u;

Continuum mechanics laws cannot be solved analytically, thus requiring numerical solution
schemes [31].
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2.3.1 The finite element method

The preferred numerical scheme to solve continuum mechanics laws relies on the Finite Ele-
ment (FE) method [31].

The FE method converts the system of partial differential equations describing the dynamic
equilibrium motion equation Eq. (2.3) into a system of algebraic equations which can be
solved numerically, after discretizing the domain both in space and time. Geometric dis-
cretization of the domain Ω is achieved by creating tissue 3D meshes, which describe the soft
body as composed of elementary volumetric components (usually tetrahedral or hexahedral
elements). The continuous solution u at any point in space is obtained by interpolating the
values of the discretized displacements un at the element nodes using shape functions φn

(i.e., polynomial functions that are generally linear or quadratic) [35]:

u “
Nn
ÿ

n“1

φnun (2.13)

where Nn is the total number of nodes in the mesh. Each node n iin the mesh s associated to a
shape function φn, which must have local support and piecewise continuous. By discretizing
Eq. (2.3) with the FE method, we obtain this discrete problem on each element e:

´Keue ` f ext “ Me :ue (2.14)

where Ke is the element stiffness matrix, Me is the element mass matrix and f ext is the
external force applied to element e. The minus symbol in front of the stiffness matrix is
added to explicitly formulate the equation as difference between external and intenal forces
(making it more intuitive). If damping is present, the additional term ´Ce 9ue appears on the
left handside of Eq. (2.14), where Ce is the element damping matrix. Global mass, stiffness
and damping matrices of the system can be assembled from elementary ones, leading to a
global system of equations that can be written in the form:

fpx,vq “ Ma (2.15)

with a “ :u, v “ 9u, x “ u, and fpx,vq represents the net force applied to the object (difference
between external and internal forces f ext ´Cv ´Kx).

A time integration scheme (implicit, explicit or other variants) is then used to discretize the
problem over time, allowing to formulate the above Eq. (2.15) as a linear system. The ob-
tained set of linear equations can then be solved using either direct or iterative solvers. Direct
solvers compute the solution exactly, either calculating the actual inverse or a factorization
of the system matrix. Although these methods are often too costly, some optimized libraries
exist that allow to parallelize these operations on CPU [36]. On the other hand, iterative
solvers such as the conjugate gradient (CG) produce a sequence of approximate solutions
approaching the exact one [37]. These methods can be very fast especially if they are tuned
to stop when acceptable accuracy is reached, even if it is before convergence. However, they
can converge slowly for ill-conditioned problems.

By relying on a physics-based description of soft tissues behavior, FE-based approaches
can simulate anatomical responses to mechanical stimuli with high precision, given that a
reliable constitutive model of tissue behavior and its mechanical parameters are available.
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For this reason, the FE method represents the preferred approach to model the deformable
anatomy [38]. Solution accuracy increases with finer domain discretization (i.e., higher
number of elements), but at the cost of increased computational load. As a consequence,
FE models allow to achieve highly accurate results whenever computation efficiency is not a
major concern, e.g. deformable image registration in applications where a computation time
up to several minutes is compatible with the clinical workflow [39, 40, 41].

In order to employ FE models in applications with more stringent time constraints, various
techniques have been proposed to simplify their computational complexity. Some of them
have focused on optimizing the solving process, proposing numerical solution approaches like
matrix condensation [42] or pre-computing some quantities, as in [43]. The Total Lagrangian
Explicit Dynamics (TLED) [44] reduces the computational load by precomputation of spatial
derivatives and eliminating the need of iteratively solving a large system of equations. As
an example, simulations based on the TLED formulation have demonstrated high efficiency
in the context of image registration for neurosurgery [45]. However, the solution is only
stable under very small time steps due to the use of explicit time integration. An improved
version of TLED, which relies on direct Jacobian (DJ-TLED), has been recently proposed and
demonstrated to achieve a significant speedup with respect to standard TLED on simulation of
brain deformations [46]. Another optimized approach is the Multiplicative Jacobian Energy
Decomposition (MJED) [47], which relies on decomposition of the strain energy into simple
terms that can be precomputed.

One of the most popular modeling choice to obtain clinically acceptable accuracy levels
while guaranteeing computational efficiency is to model soft tissues relying on the corota-
tional formulation of linear elasticity. The corotational model takes advantage of the compu-
tationally efficient linear elastic formulation even to model large deformations, without in-
troducing ghost forces [48, 49]. This formulation has been extensively used to model soft tis-
sues in applications like intra-operative image guidance, e.g. in liver surgery [13, 50, 51, 52],
brain surgery [53] and needle-based procedures [54, 55, 56, 57].

Some other works have accelerated the solving process by implementing the solvers on
the Graphic Processing Unit (GPU), whose high number of cores allows to obtain significant
speedups on computationally demanding problems [58, 59, 60, 61]. For example, NiftySim
is a finite element toolkit that provides GPU-based implementation of TLED approach for
high-performance biomechanical simulation [59]. However, in addition to requiring specific
hardware, not all approaches are suitable for parallel computing on the GPU.

2.3.2 Alternatives to the standard finite element method

In addition to the optimized solution processes or formulations of the standard FE method
mentioned above, some alternative approaches have been proposed to cope with the main
limitations of FE models.

A possible strategy to lower the simulation time required by FE-based approaches is through
Model Order Reduction (MOR) techniques [62]. The basic idea behind MOR is to reduce the
number of degrees of freedom for the calculation of the solution by first creating a database
of models obtained by precomputing the tissue response to different conditions and/or loads
in an offline step; in the online phase, the solution to the current applied load is obtained
by interpolating among the saved precomputed modes. The most popular MOR approach is
Proper Orthogonal Decomposition (POD), where the solution to a high-dimensional problem
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is encoded as a linear combination of few basis vectors defining the precomputed modes that
best describes the behavior [63, 64]. The higher the number of modes considered to compute
the solution, the higher the accuracy, but the higher the computational load as well. Although
POD has been successfully used to achieve efficient simulations of non linear materials [65],
it is not always able to capture complex non linear behavior of anatomical tissues [66]. A
generalization of POD which is better suited for the simulation of hyperelastic materials is
represented by proper generalized decomposition, where the solution is expressed as the
sum of separable functions representing general solutions to the problem, thus does not rely
on knowledge of complete-model solutions [67].

Other approaches have been proposed to avoid the 3D meshing process required by the
standard FE method. In addition to being a time-consuming and tedious process, obtaining
a high quality 3D mesh is very difficult due to the complex shape of anatomical organs, but
it is essential to guarantee the accuracy of the results. Moreover, even when a high quality
mesh is available, large deformations may lead to element distortion and, in turns, failure of
the solution method.

The Boundary Element Method (BEM) is a numerical solution approach that deduces vol-
ume deformations from deformations at the surface of the object, thus allowing both to skip
the 3D mesh generation process (only surface discretization is needed) and providing fast
solution speeds [68]. However, since the internal behavior is not explicitly modelled, this
approach only works for isotropic and homogeneous objects, preventing from its use in sim-
ulations involving topology modifications (e.g., cuts). The most popular application of BEM
in surgery is for virtual simulators [68, 69].

Meshless methods represent a class of methods where the domain is discretized by a set of
particles filling the volume of interest [70]. State variables at a given point are approximated
by interpolating and weigthing variable values at neighbouring particles. However, some
meshelss approaches still rely on grids of background cells for numerical integration [71, 72],
thus not completely eliminating the finite element layer. Whereas, other approaches like
smooth particle hydrodynamics interpolate the variables of interest directly on particles using
a smoothing kernel, without the need of any background grid [73]. In general, the simplicity
of meshless methods and their capability to handle changes of topology without remeshing
are the main reasons for their employment for surgical simulation [74, 71]. However, the
use of non linear materials might lower the computational performances, making meshless
methods not always suitable for applications requiring fast update rates. Moreover, since
they all rely on explicit time integration schemes, very small time steps are required for
robust solution, which is a limitation in interactive scenarios.

2.4 Heuristic methods

Although modelling and simulation of anatomical deformations is traditionally performed
using the FE method to reach high accuracy levels, solving continuum mechanics laws is gen-
erally too computationally expensive for certain applications. Heuristic methods introduce
modelling assumptions that simplify the formulation to obtain more efficient methods, but
sacrificing accuracy.
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2.4.1 Mass spring models

Mass Spring Models (MSMs) consist of a set of masses distributed throughout a body and
linked by a network of springs, as shown in Fig. 2.3. Deformation dynamics is governed by
Newton’s second law. Therefore, the position of the mass points is obtained by balancing the
contributions of internal and external forces:

Ma`Cv `Kpx´ x0q “ fext (2.16)

where a,v,x are, respectively, the acceleration, velocity and position each mass point, and x0

is the spring rest length. M is the mass matrix that contains the values of the point masses,
while C and K are the damping and the stiffness matrices respectively, defining the damping
and stiffness coefficients that describe the springs connecting each point to the points in its
neighborhood. fext represents the external forces contribution. A time integration scheme is
then used to discretize the problem in time, allowing to formulate the equation above as a
linear system, which can eventually be solved exploiting numerical methods.

Figure 2.3: In MSMs, the object is modelled as an ensemble of lumped masses m connected via a
network of springs k [75]. Image from [20].

MSMs have been widely used for their easy implementation and their high speed. In fact,
MSMs do not need to preprocess all elements to provide an estimate of the global defor-
mations like FEM, thus being much faster and able to simulate large deformations in near
real time. One of the main issues of using this approach is that MSMs parameters are not
directly related to tissues mechanical properties. Moreover, they are influenced by the dis-
tribution of the mass points and the arrangement of the springs. As a consequence, specific
optimization methods are needed to tune model parameters for a given mesh to realisti-
cally approximate certain global mechanical behaviors [76, 77]. Enhanced versions of MSMs
have been proposed to model sophisticated behaviors, for example by introducing nonlinear
springs or using hybrid models [78]. However, only few of these approaches have been val-
idated against real data, and simulation accuracy highly depends on the appropriateness of
the employed optimizaion process. Owing to this, MSMs have been mainly used for medi-
cal training simulators, whose main requirement is computational efficiency, while accepting
visually plausible deformable behavior [79, 80, 81].Furthermore, MSMs are advantageous
to model complex tasks which involve topology modifications, such as cutting or suturing,
since they can be implemented by simply removing or adding connections between vertices
[82]. However, due to recent research advancements in computer graphics and computing
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architectures, the usage of MSMs for surgical simulation is likely to be superseded by other
deformable models that are more physically realistic, while also having competing efficiency
[20].

2.4.2 Position based dynamics

Position Based Dynamics (PBD) is a simulation approach that computes the time evolution
of a dynamic system by directly updating positions, as first described by Müller et al. in
[83]. Simulated objects are discretized as sets of particles, described by their positions pi and
velocities vi, subject to a set of positional constraints Cjpp1, ...,pnq ą 0 (symbol ą denotes
either = or ě). In the PBD approach, deformation calculation becomes a constraint-function
optimization problem. The simulation workflow starts with a prediction step in which sim-
plectic Euler integration is performed to guess new particle positions and velocities. Then,
non-linear Gauss-Seidel solver is used to find the correction ∆p to apply to the estimated
positions in an iterative fashion, so that each constraint equation (after linearization) is indi-
vidually satisfied:

Cpp`∆pq « Cppq `∇Cppq∆p ą 0 (2.17)

Since the resulting system is under-determined, the position update ∆p is constrained to
ensure the preservation of linear and angular momenta, which corresponds to forcing ∆p to
lie in the direction of the constraint gradient ∇C. The position update is further weighted by
the inverse of the mass matrix M and multiplied by a parameter k P r0, 1s which represents
the stiffness of the constraint:

∆p “ kλM´1∇CppqT (2.18)

The Lagrange multiplier λ which solves Eq. (2.17) is thus unique and given by:

λ “
Cppq

∇CppqM´1∇CppqT
(2.19)

Finally, computed ∆p are used to correct both the positions and the velocities. Different types
of properties and behaviors can be simulated with PBD by implementing specific constraints
and appropriately manipulating modelling parameters [84] (Fig. 2.4).

By directly updating particle positions, the PBD approach has the potential of achieving
a better trade-off between accuracy and computation time with respect to methods based
on continuum mechanics. In addition to improving computation performances, most of the
constraints do not require the availability of a 3D mesh, but particles are generally placed in
space to fill a surface-delimited volume. Further advantages of using particles to discretize
objects emerge when topological modifications need to be modelled, since all element-related
issues such as element inversion and distortion are avoided. Like all the heuristic models, the
main difficulty PBD has to face is the choice of the model parameters, which lack of any
connection with real mechanical properties.

Although the PBD approach has been mainly applied in computer graphic fields, the en-
hanced speed, controllability and unconditional stability of this method are its most appealing
features for its application to medical simulation as well, where interactions between mul-
tiple organs and tools have to be modelled and solved in real-time [84]. The most popular
exploitation of the PBD concept in the medical field has been in the development of train-
ing simulators for surgical procedures involving dissection, exploiting the capability of PBD

20



2. Deformable models for surgical simulation

a b

Figure 2.4: Simulation of (a) cloth and (b) fluid using the PBD method, relying on different
constraints. Images taken from [84].

methods to handle topological changes involved in such tasks maintaining real-time interac-
tive performance [85, 86]. Some other works have focused on the achievement of particular
types of deformations by coupling the PBD formulation with mass-spring models [87, 88] or
for the simulation of knot tying procedure [89]. Camara et al. employed the PBD scheme
to create a patient-specific biomechanical model of the kidney for the real-time simulation of
intra-operative US images [90]. Some recent works have demonstrated that, whenever an
ad-hoc parameter optimization strategy is designed, PBD-based models can achieve accuracy
levels that make them suitable for surgical planning, for example in the context of kidney
surgery [91], neurosurgery [92] and general laparoscopy [93].

2.4.3 Chain Mail

In the Chain Mail approach, the deformable object is discretized into a set of uniformly spaced
elements, called chain elements, that are linked to each other as the links of a chain (Fig. 2.5)
[94]. Each chain element enforces a bounding region for its neighboring chain elements.
Volume deformations are obtained by adjusting the position of the chain elements while
respecting the geometric constraints imposed by the neighbouring elements. After position
adjustment, a relaxation scheme is employed to minimize the the internal energy of the

Figure 2.5: In ChainMail, the object is composed of a series of chain elements (a); as soon as an
element moves due to an external input (b), the neighbouring elements move in turns to satisfy
geometric constraints (c).
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system, proportional to the displacement of the elements with respect to each other, until
convergence. The chain-like structure guarantees the propagation of the deformations over
the entire volume. Several works have proposed to extend the basic Chain Mail algorithm
to model additional features, such heterogeneity, volume conservation or force-displacement
relationship [20]. Similarly to PBD, due to its reliance only on position adjustments to obtain
a volumetric deformation, Chain Mail is characterized by high computational efficiency, being
able to handle deformations of large volumetric datasets [95, 96]. Advanced interactions can
be easily modelled by removing or adding elements [97]. Generation of a 3D mesh is not
required with this approach, since the volume is filled with regularly spaced chain elements,
thus simplifying the model generation pipeline. However, its main drawback lies again in
the selection of the parameters governing the geometric constraints (e.g., the margin of free
mobility between the links) to achieve a realistic behavior. Owing to these features, Chain
Mail models have been successfully employed in virtual surgery simulators, e.g. for prostate
brachytherapy [98], endoscopy [99] and knee arthroscopy [100].

2.5 Machine learning based methods

Recently, Machine Learning (ML) has started to revolutionize several fields (vision, lan-
guage processing, image recognition, genomics) due to the availability of larger and larger
databases and the acceleration provided by powerful GPUs. ML comprises all those meth-
ods able to approximate a relationship between some input data and the output without any
mathematical formulation of the problem, learning it directly from data. In general, ML ap-
proaches learn a function f that maps an input vector x to an output vector y. The function
depends on some parameters θ that are learnt from a huge amount of ground truth data
during the so called training phase, such that:

fpx, θq “ y (2.20)

Then, in the inference phase, the learnt set of parameters θ is used to predict the value
of y given a new observation x. In general, ML based methods can achieve high inferring
speed, which makes them useful for many applications where the prediction speed is a critical
parameter.

Neural Networks Among the various ML techniques, the use of Neural Networks (NN) has
gained increasing popularity. The basic unit of a NN is called neuron. In the simplest NN,
called perceptron, each neuron applies a weight and an offset to each component of its input
vector; obtained values are then summed and passed through an activation function that
adds non linearity to produce the output. Multiple neurons stacked together in a row and
receiving the same input constitute a layer. When multiple layers are placed next to each
other, they generate a multi-layer neural network, whose basic structure is shown in Fig. 2.6.

The workflow of a multi-layer neural network with L hidden layers is detailed in Alg. 1.
For each layer k, the input from the previous layer ark´1s is weighted by Wrks, a matrix whose
number of rows matches the number of neurons in k-th layer and number of columns is the
number of neurons in the layer k ´ 1. A bias term brks might also be added. φ represents the
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Figure 2.6: Basic structure of a multi-layer neural network.

activation function of the hidden layers, while ψ is the output layer activation function. The
learnable parameters of such network is composed of the set of all the Wrks and brks, which
can be very high depending on the dimension of the network. Moreover, being the input of
a vector x, this approach might be inefficient when dealing with images or higher dimension
inputs.

Algorithm 1 Mathematical formulation of a multi-layer neural network.

1: Input: Input vector x, number of layers L
2: Output: Output vector y
3: Init Current layer number k “ 0, ar0spxq “ x
4: while k ă L do Ź For all the hidden layers
5: zrkspxq “ Wrksapk´1qpxq ` brks

6: arkspxq “ φpzrkspxqq
7: k` “ 1

8: zrkspxq “ Wrksapk´1qpxq ` brks Ź Last layer
9: yrkspxq “ ψpzrkspxqq

return y

Convolutional Neural Networks Deep Learning (DL) is a subfield of ML which has shown
particular promise to model complex non linear relationships and has demonstrated strong
abilities at extracting high-level representations of complex processes. Building blocks of DL
are NNs with many multiple layers between the input and the output, creating the so called
Deep Neural Networks (DNNs). One of the most popular class of DNNs is represented by Con-
volutional Neural Networks (CNNs), which have had an outstanding success especially in the
computer vision field due to their ability to cope with high dimensional data such as images
and videos [101]. A CNN contains several types of layers: convolutional layers,subsampling
layers (e.g. pooling layers) and fully connected layers. As the name suggests, the building
block of a CNN is represented by convolutional layers. This kind of layers repeatedly apply a
filter to the input providing as output a map of activations called feature map. The feature
map summarizes the presence of detected features in the input. In CNNs, filters coefficients
are learned during training. The output of the convolutional layer is usually passed through a
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non linearity, generally using the ReLU (REctified Linear Unit) activation function. Subsam-
pling layers aim at scaling down the spatial dimension of the representation to reduce the
number of parameters and computations in the model. It usually does it by taking the mean
or the maximum on patches of the input (mean-pooling or max-pooling). Fully connected
layers generally compose the last layer of a CNN. This layer is connected to all the activations
of the previous layer and learns non linear combinations of the high-level features extracted
by the previous convolutional layers. Fully connected layers can be followed by a final acti-
vation function depending on the application. The different CNN models which have been
proposed rely on different number and arrangement of these main types of layers [101].
For example, Fig. 2.7 shows the architecture of LeNet, a CNN that has been used for digits
recognition starting from an input image [102].

Figure 2.7: LeNet, a CNN for digits recognition starting from a 32 ˆ 32 input image [102].
Convolutional, subsampling and fully connected layers typical of CNN architectures can be seen.

Some attempts that exploit learning methods to estimate the deformation of biological tis-
sues have been made. By implicitly encoding soft tissue mechanical behavior in the trained
ML models, they proved successful to predict the entire 3D organ deformation starting either
by applied surface forces [103, 104, 105] or by surface displacements [106, 107, 108]. The
greatest advantage of employing ML algorithms to simulate tissues deformation is the signifi-
cant computational gain achieved with respect to the FE method, as highlighted in the recent
survey by [109].

One of the main challenges of using a ML model to predict anatomical deformations is that
its accuracy highly depends on the quality and on the amount of data used to train it. In an
ideal scenario, such a model would be trained with an infinite amount of real patient-specific
noise-free data, which is in practice not possible since acquiring large amounts of volumetric
deformations of an organ is a challenging problem. As a consequence, most of the works
which rely on ML to predict tissue deformations have trained their models using data gen-
erated with finite element simulations [109]. This approach has many advantages. First of
all, being based on continuum mechanics theory, synthetic data generated with this strategy
are highly realistic. Moreover, they allow to avoid all the ethical and legal issues connected
with data acquisition on human subjects. Also, such data are automatically annotated and
they can be augmented directly at simulation setup phase by using different parameter set-
tings. Data generated with the FE method have been used by Lorente et al. to train several
regression models that approximate the mechanical behavior of the liver during breathing
[108]. Martinez et al. [110] have investigated the capability of tree-based methods to es-
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timate breast deformation due to compression between biopsy plates. They have trained
the proposed methods on different patient geometries but with very specific FE simulation
representative of the scenario of interest, without including any randomness in the dataset.
Neural networks have been used by Tonutti and Rechowicz to predict the displacement of
brain tumors and of rib cage surface respectively, starting from the acting forces [104, 105].
However, both these works do not predict whole volume deformation but only surface dis-
placements. Being trained with simulated data from a single geometry, the generated ML
algorithm acts as a patient-specific model. However, this implies that network re-training is
required for every new patient. Methods based on NNs have been also used to predict tissue
deformations in augmented surgery. Morooka et al. have trained a NN to predict liver defor-
mations for a given input force [103]. In their model, they have used Principal Component
Analysis (PCA) to compress the size of the deformation modes, which allows to reduce the
number of neurons of the output layer, thus the training time. Other works have estimated
liver deformations from the known displacement of a partial surface [111, 106, 107, 14].
Among these, the works of Pfeiffer et al. are able to generalize to new patients since models
have been trained on several different random geometries of the organs [106, 14].

From all these works, it has emerged that the main advantage of using neural networks to
predict anatomical deformations relies on a prediction speed in the order of few milliseconds,
which is not affected by the complexity of the model used to generate the dataset. The high
inferring speed makes this method useful for many applications such as surgical navigation
and real-time simulation.

2.6 Conclusion

Several different methods have been proposed to simulate the deformable behavior of the
soft anatomical tissues, each achieving a different trade-off between accuracy, computation
efficiency and numerical stability. Although it would be ideal to satisfy all these requirements,
such a model does not exist due to the complexity to model the anatomical environment.
Therefore, the choice of the approach to use depends on the specific requirements of the
application of interest. In this Chapter, we have provided an overview of the main deformable
models available for surgical simulation, providing some example applications.

Methods based on continuum mechanics rely on numerical methods to directly solve the
physics equations describing tissues deformations. The most popular solution process ex-
ploits the finite element method, where the global tissue behavior is obtained by assembling
the response of elementary components in which the tissue is discretized. Although methods
based on continuum mechanics can model very complex behaviors, e.g. non linear materials,
heterogeneous tissues and anisotropy, numerical solution of such complex equations via the
finite element method is computationally expensive and cannot take place in real time. As a
consequence, these methods have been generally used for applications where the real-time
performance is not a strict requirement. Even though advanced and optimized formulations
have been proposed, the improved computational performance is generally achieved by sac-
rificing the accuracy to some extent.

On the other hand, heuristic methods rely on simplified models that provide optimized
computational performance, but they cannot be easily extended to represent all the possible
mechanical behaviors of tissues. This modelling approach suffers from ambiguity in speci-
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fication of model parameters to reproduce tissues mechanical behavior, since a well-defined
relationship between model parameters and material constitutive law does not exist. This
means that an ad-hoc optimization process is always required to tune model parameters such
that an acceptable level of accuracy is achieved. However, whenever reliable parameters are
selected, these models can achieve reasonable levels of realism. Due to the simplicity of the
models and the fact that they do not generally rely on 3D meshes, this category of methods
has been mainly employed for virtual training simulators, which involve topological changes.

The last category of methods takes advantage of machine learning to predict tissue defor-
mations. In fact, a trained ML algorithm significantly reduces the time required to provide an
estimate of tissue deformed state starting directly from data, avoiding the computationally
expensive resolution of complex system of equations. In order to cope with the lack of real
tissue deformation data, the majority of works that predict tissue deformations with ML have
relied on training datasets generated with finite element simulations. ML algorithms have
proved able to learn complex deformable behaviors reaching the same level of accuracy of
the biomechanical simulations used to generate the data while obtaining considerable time
gains, passing from minutes (required for the finite element method) to milliseconds (when
using ML). Despite being used mainly for applications with strict time requirements such
as augmented reality, this approach seems particularly promising and applicable to a wide
variety of applications.
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Learning patient-specific models
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Chapter 3

Learning patient-specific pre-operative
models

3.1 Introduction

In the context of autonomous robotic surgery, the availability of a patient-specific simulation
that can account for organ deformations due to surgical manipulations is fundamental to
enable tailoring and testing of the surgical plan before its execution on the real environment.
Such simulation accounts for each patient’s characteristics by relying on a Patient-specific
Biomechanical Model (PBM) created from diagnostic images and data available before the
intervention (Fig. 3.1). In particular, a PBM is a model that includes (i) the 3D geometry
of the anatomy of interest, extracted from each patient’s diagnostic images, and (ii) the
parameters defining its mechanical behavior, either obtained from imaging techniques, from
ad-hoc optimization strategies or from values from the literature.

Figure 3.1: A PBM is characterized by both the 3D geometry of the anatomy of interest and
its biomechanical properties. The PBM is created in the pre-operative phase from available data
from diagnostic images and a-priori knowledge. The generated PBM drives the simulation of the
environment that supports the ARSS.

As emerged in Chapter 2, there are several methodologies that can be used to simulate
anatomical behavior. The aim of this Chapter is to idenfity the modeling approach which
allows to achieve the best compromise among simulation accuracy, computation time and
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stability, when simulating the interaction of a rigid tool with the deformable anatomy, the
simplest but most common interaction. In particular, we first consider the three main strate-
gies for modeling soft-rigid interaction when the personalized simulation relies on the finite
element method. Then, we consider a heuristic model, i.e. position based dynamics, and we
propose a strategy for the identification of patient-specific parameters. Finally, we develop
a machine learning based approach that exploits a convolutional neural network to predict
tissue deformations and is trained with simulated data only, and we evaluate its performance
with respect to the other aforementioned methods.

The different approaches considered in this Chapter are tested in the context of robotic
ultrasound (US) scanning of the breast, where the tool-tissue interaction is the one taking
place when the US probe comes in contact with the breast tissues. This scenario has been
selected because it combines all the aspects that make the real-time simulation very challeng-
ing, being the breast one of the most difficult structures to model due to the huge non-linear
deformations it undergoes during the scanning process. Furthermore, this application has
been chosen for its clinical relevance, since the development of autonomous robotic ultra-
sound systems for the breast represents a very active and promising field [112, 113, 114,
115, 116, 117].

Even though we consider breast US scanning for performance assessment, it is important
to highlight that the considered methodologies can be applied to describe general tool-tissue
interactions, and the obtained results are thus valid for modeling anatomical deformations
induced by the interaction with any medical tool.

3.2 Deformation modeling in breast US scanning

Ultrasound (US) imaging is extensively used in several routine procedures, mainly due to its
cost-effectiveness, non-invasiveness and real-time capabilities. Its main limitation is the low
image quality, which highly depends on proper acoustic coupling between the probe and the
tissues. The identification of the optimal transducer positioning that allows to obtain accept-
able image quality heavily relies on the radiologist’ expertise and requires the sonographer
to apply a certain level of compression to the anatomy, which can reach several centimeters
depending on the imaged tissue [118, 119, 120].

The US scanning process would benefit from the availability of a model that describes the
deformations induced on the anatomy by the US probe. Such model can provide support to
image fusion techniques commonly used for intra-operative tracking of interal regions iden-
tified on high-resolution pre-operative images (MRI/CT) but not visible on US due to the
poor image contrast. Several commercial and research platforms have implemented image
fusion techniques that align pre-operative and intra-operative data exploiting rigid or affine
registration methods [121]. However, such approaches fail when dealing with highly de-
forming anatomies, where accurate tracking has to compensate for the large deformations
arising due to compression forces applied by the US probe [118]. Moreover, a model of
probe-tissue interaction can also be exploited to correct for deformations in the 3D US re-
construction process [119, 122, 120, 123]. Eventually, the development of computer-based
ultrasound training systems that allow radiologists to practice the scanning technique have to
realistically simulate probe-induced deformations in real-time [90, 124]. Further to enhanc-
ing image registration and guidance, a deformation model can support the development, test
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and validation of robotic ultrasound systems (Fig. 3.2), which have the potential to improve
the performance of manual acquisition systems, due to the high precision, dexterity and re-
peatability that robotic manipulators can bring [125, 126, 123, 127]. Without suffering of
any human factors like tremors or lacks of concentration, robotic US systems enable a precise
handling of the transducer and can thus follow a pre-defined path.

End-effector

Needle guide

Fiducials

Lesions

Robot arm

US probe

Figure 3.2: Robotic ultrasound system developed within the MURAB project [115].

Ultrasound scanning is commonly employed to provide real-time image guidance during
biopsy procedures, where a needle is directed towards screening-detected suspicious lesions
to evaluate their malignancy [128]. For example, US-guided biopsy represents the preferred
technique for breast cancer diagnosis. However, proper needle placement in the breast with
US is a challenging task due to its highly deformable nature, making the availability of an ac-
curate model of the deformations particularly interesting to enable tracking of biopsy targets
identified on pre-operative images. Such model is also fundamental for the design and test
of autonomous robotic US systems for the breast (Fig. 3.3), a very active and promising field
[113, 112, 114, 115, 116, 117].

Accurate modeling of the probe-tissue interaction for the breast is a complex problem, since
it combines all the aspects that make the real-time simulation very challenging, due to the
high non-linear deformations the breast undergoes during the scanning process. Biomechan-
ical models relying on the FE method have been successfully employed to describe breast
behavior for different applications [130, 61, 131, 132, 133]. Although both linear and non-
linear models have been proposed, nonlinear materials have shown superior performance in
terms of accuracy [134]. However, such models suffer from high computational cost, which
prevents their employment for applications requiring real-time performances [61]. An effi-
cient approach to model breast biomechanics is the one proposed by Han et al. in [135],
which relies on both TLED formulation and a GPU-based solver. Despite the significant simu-
lation speedup achieved, solving the FE system took around 30 s, which is still not compatible
with real-time.

An emerging approach which has the potential of being both accurate and fast, exploits
neural networks to estimate soft tissue behavior. The potentiality of applying machine learn-
ing techniques to predict breast deformations has been already shown in [110], where several
tree-based methods have been employed to estimate breast deformation due to compression
between biopsy plates. These methods have been trained on 10 different patient geometries
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Figure 3.3: Steps for planning autonomous robot US scanning of the breast, as done in the
MURAB project [115, 129]. The presence of a deformation model supports the robot planning
phase, allowing to keep track of the lesion position due to the compressional effects induced by
the US probe.

with a very specific FE simulation, where the upper plate is displaced vertically towards the
lower one.

3.3 US scanning of a breast phantom

In this Chapter, we evaluate different approaches to model the deformations induced on a
deformable tissue by a rigid tool, on the specific task of US scanning of the breast.

3.3.1 Experimental setup

We consider freehand US scanning of a realistic multi-modality breast phantom with some
internall stiff masses (Model 073; CIRS, Norfolk, VA, USA). The 3D geometry models of the
phantom surface and 10 inner lesions (diameter of 5-10 mm) are obtained by segmenting
the corresponding CT image, relying on ITK-SNAP and MeshLab [136, 137] (Fig. 3.4a). A
Freehand Ultrasound System (FUS) based on a Telemed MicrUs US device (Telemed, Vilnius,
Lithuania) equipped with a linear probe (model L12-5N40) is used to acquire US images of
the 10 segmented lesions. The dimension of the probe surface is (50x10 mm). The Micron-
Tracker Hx40 (ClaronNav, Toronto, Canada) optical tracking system is used to track US probe
in space (Fig. 3.4b). We perform all experiments with an acquisition frequency of 5 MHz and
a depth setting of 50 mm, while all the other parameters are kept to default values pro-
vided by the manufacturer. The spatial and temporal calibration methods used in the study
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a b

Figure 3.4: (a) External surface and 10 inner lesions of the CIRS breast phantom. (b) Experimen-
tal setup. The FUS system allows to map the real positions of the CIRS breast phantom and the
US probe, as well as the US image acquired in real-time, to the 3D Slicer scene (right monitor).
Information about probe spatial transformation is communicated to the simulated environment
(left monitor).

are based on the PLUS toolkit, a software and hardware framework for building research
FUS [138]. The overall probe spatial calibration error is below 1 mm (˘0.7147), and below
0.5 mm (˘0.334) for the pointer used for fiducial points localization required for the rigid
registration. Thanks to the FUS, we can know in real-time the position and orientation of
the US image plane and therefore extract three-dimensional position of any pixel belonging
to the image. Landmark-based rigid registration is performed to refer the CT-extracted 3D
model, the US probe and the US images to the same common coordinate system, exploiting
3D Slicer functionalities [139]. Thanks to this registration process, knowledge about the 3D
pose and the geometry of the US probe directly allows to identify the contact surface between
the breast and the probe. The registration process does not only enable us to extract the area
on the breast surface which is in contact with the probe, but also to know in real-time the 3D
position of any point belonging to the US image. In this way, it is possible to refer lesions po-
sition extracted from US images to the 3D space, which represent ground truth 3D positions
of the lesions.

In our experiments, we consider one lesion at a time and we reposition the US probe on the
surface of the breast such that the considered lesion is visible on the US image. In order to
validate our model, we manually extract lesions position from US image acquired at rest (i.e.,
without applying any deformation, when the probe is only slightly touching the surface) and
we consider it as a landmark to track. We then impose four deformations of increasing extent
(5 mm, 10 mm, 15 mm and 20 mm) for each lesion, and save the corresponding US images.
Ground truth lesion positions at the different deformation levels are then converted from the
US image space to the 3D FUS coordinate system leveraging the registration described before.
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3.3.2 Modelling assumptions

In order to consistently compare the different methods, we model the scenario relying on the
same assumptions and approximations:

1. We consider patient-specific models, initialized with optimized parameters that account
for the specific properties of the considered breast phantom.

2. The breast is modelled as a homogeneous object, despite the presence of stiffer internal
parts. We assume this approximation to hold in our setup since stiff masses are small
and inserted in a homogeneous material, similarly to [140, 130].

3. Input of the methods is always represented by a displacement, to ensure the widest
applicability and generalisation capability of the methods. We do not consider scenarios
where deformations are driven by forces, which would require force sensing apparatus,
difficult to incorporate within standard clinical devices [119].

4. The US probe is modelled as a rigid body, which moves at fixed velociy of 0.01m{s2.

5. As boundary conditions, all the points belonging to the lowest phantom surface are
constrained in all directions.

6. Gravity load is not explicitly considered, since the geometry model is already acquired
within the gravitational field (being extracted from a CT image).

7. The same fixed time step is used for all the simulations (h “ 0.02 s).

3.3.3 Evaluation metrics

The different modeling approaches considered, which will be presented in next Sections, are
evaluated with respect to the three main performance criteria, i.e. accuracy, time and stability.
To analyze the results, input deformations are classified into five ranges (D10, D15, D20, D25,
D30) based on the probe displacements. This is needed since applying deformations of the
same exact extent is almost impossible during freehand US. Displacement ranges indicated as
D15, D20 and D25 have a fixed length of 5 mm each and are centered at 15, 20 and 25 mm
respectively. D10 and D30 contain the extreme cases under 12.5 mm or above 27.5 mm.

For each lesion, at each deformation level, accuracy is evaluated by comparing model-
predicted lesion positions Xmodel with the real lesion coordinates in the 3D space XUS, ex-
tracted from US images and referred to the 3D space thanks to the tracking system described
in Section 3.3.1. Localization error relative to the considered models εmodel at deformation l
and tumor m is computed as:

εmodell,m “ ||Xmodelpl,mq ´XUSpl,mq||2 (3.1)

where ||.||2 is the Euclidean distance.
The performances of the presented methods are also evaluated in terms of computation

time. To do so, we keep track of the computation time tcomp needed to perform a simulation
time step h. When dealing with dynamic simulations, one usually evaluates the capability of
a method to meet the real-time requirement (i.e. tcomp ď h) and/or to guarantee interactivity,
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which translates into ensuring that simulation runs at least at 25 frames per second (i.e.
tcomp ď 0.04 s), when only visual feedback is required.

As a final metric, we assess stability of the methods by evaluating their capability to com-
plete the experiments from the beginning to the end. For this analysis, we use the word
“experiment" to refer to the process involving the application of the four increasing input
deformations. This means that we perform one experiment per tumor, for a total of 10 (i.e.,
number of lesions) experiments. For each method, at each discretization level, we evaluate
the percentage of experiment which is successfully accomplished for each tumor, before the
occurrence of any instabilities. If a method was able to complete all the 10 experiments, the
associated average percentage would be 100%.

3.4 The finite element method

The first class of methods that we consider to model the breast deformations induced by
the US probe during the scanning process relies on the Finite Element (FE) technique. As
introduced in Section 2.3.1, the FE method is a solution technique that converts the system of
partial differential equations describing the dynamic equilibrium motion equation (Eq. (2.3))
into systems of algebraic equations of the form:

Ma “ fpt,x,vq (3.2)

where a,x,v, f are the acceleration, position, velocity and force (both internal and external)
vectors respectively, and M is the mass matrix. In the solution process, such equations are
discretized both in space, relying on a 3D mesh that represents the domain of interest, and
time, using a time integration scheme. For this analysis, we perform numerical integration
using a backward Euler scheme, which offers a good trade-off between robustness, conver-
gence and stability. Velocities and positions are updated based on accelerations at the end of
each time step h:

vt`h “ vt ` ha xt`h “ xt ` hvt`h (3.3)

Ma “fpxt`h,vt`hq (3.4)

We consider the first order approximation of f (one per time step):

fpxt`h,vt`hq « fpxt,vtq `Kpxt`h ´ xtq `Cpvt`h ´ vtq (3.5)

where K is the stiffness matrix and C the damping matrix. Substituting (3.3) and (3.5) into
(3.2) provides the final linearized system:

`

M´ hB´ h2K
˘

loooooooooomoooooooooon

A

dv “ hfpxt,vtq ` h2Kvt
loooooooooomoooooooooon

b

(3.6)

where dv “ ha “ vt`h´vt. The obtained set of linear equations is solved for dv using either
direct or iterative solvers.

Starting from these equations, there are three main ways to model the interaction between
a rigid object and a deformable model: (i) imposing penalty forces [124], (ii) describing the
contact as a constraint [141] or (iii) directly displacing the surface nodes [118, 122]. In the
following, the details of each approach are provided.
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3.4.1 Penalty method

In the penalty method (Penalty), contacts are solved by applying a spring-like force fpen
proportional to the amount of penetration δ at each contact point, in the direction n normal
to the surface [142]:

fpen “ ksδn (3.7)

This force is treated as an external force and contributes to the right hand side of (3.2). The
higher the value of the proportionality coefficient ks, called contact stiffness, the better the
constraint is satisfied. However, large values of ks make the condition number of the system
matrix A worse, often causing problems in convergence and instabilities in the simulations.
The selection of ks is also problem-dependent, and heavily depends on the ratio of the mate-
rial stiffness between the contacting objects, making this method limited for our applications.
Despite these stability issues, the penalty method is the easiest to implement and can be very
fast.

3.4.2 Lagrange multipliers method

Differently from the penalty approach, methods based on Lagrange multipliers (LM) allow to
solve the contact condition exactly by treating contacts as constraints [143]. The equation
system (3.2) is extended to include constraints contribution HTλ:

Ma “ fpt,x,vq `HTλ (3.8)

which, after integration, leads to:

Adv “ b`HTλ (3.9)

In this case, the contact force is represented by the unknown vector λ of LM, which imposes
the impenetrability condition defined by Signorini’s law [144]. Defining δ as the vector of
distances between contacting objects, two states are possible for each potentially colliding
point P according to the Signorini’s formulation:

1. either the point P is a contact point, then δpP q “ 0 and λpP q ě 0

2. or the point P is not a contact point, then δpP q ě 0 and λpP q “ 0

The equation system to solve becomes more complex since, at the beginning of each time
step, both the multiplier values and the new positions are unknown. The solving process
involves three main phases:

Free motion A free configuration dvfree
i is obtained for each interacting object (in the fol-

lowing, i denotes the index of simulated body) by solving the corresponding equations (3.9)
independently, and setting λ “ 0.

Collision detection The free motion results in new configurations of bodies, making it nec-
essary to detect possible collisions. The output of this phase is represented by the constraint
matrices Hi and actual violations of the constraints δfree due to the free motion.
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Collision response After linearization of the constraint laws [144], we obtain:

δ “δfree ` h
ÿ

i

Hidvcorr
i (3.10)

With dvcorr
i being the unknown corrective motion (dv “ dvfree

`dvcorr) when solving Eq. (3.9)
with bi “ 0. By gathering (3.9) and (3.10), we get:

δ “δfree ` h

«

ÿ

i

HiA
´1
i HT

i

ff

loooooooooomoooooooooon

W

λ. (3.11)

We obtain the value of λ using a projected Gauss-Seidel algorithm[145] that iteratively
checks and projects the various constraint laws [146]. Finally, the corrective motion is com-
puted as follows:

xt`hi “ xfree
i ` hdvcorr

i with dvcorr
i “ A´1

i HT
i λ (3.12)

The LM approach is the method of choice to obtain a stable and robust handling of contacts,
but to the detriment of computational performances. Another advantage of this method
is that interaction forces are accurately estimated, which can be very helpful within robot
control loops, provided that the real mechanical properties of the organ of interest are known.

3.4.3 Prescribed displacements method

The last method considered models probe-tissue interaction as a Dirichlet boundary condition
on the organ surface (PrescrDispl). Due to the fact that the US probe is represented as a rigid
body, we can assume that when the anatomy is deformed during the scanning process, points
on the organ surface below the US probe are displaced of the same exact amount as the probe
itself. This modeling strategy is less general than the previous two approaches, since it relies
on two major assumptions: (i) probe motion is completely known a-priori, which allows us to
pre-compute contact points, and (ii) the contacting surface does not change during the scan-
ning, i.e. no relative motion exists between the contact surfaces. From a formulation point
of view, this approach is very similar to the penalty method described in 3.4.1, except that it
does not require the collision detection phase. Despite this fact limiting its general applicabil-
ity, it makes the model promising to achieve high computational performances. Furthermore,
it represents a displacement-zero traction problem and as such it has the advantage that it
does not require patient-specific mechanical properties [147].

3.4.4 FE-based breast model

In this analysis, the breast is modelled as a Neo-Hookean hyperelastic material (Eq. (2.11)),
with Young’s modulus and Poisson’s ratio set in accordance with the values provided by
Visentin et al. in [140], which are estimated on the same multimodal phantom used in this
work. The choice of hyperelastic formulation is motivated by its popularity in breast biome-
chanical modeling and the fact that linear elasticity would not have been able to cope with the
large input deformations applied. However, it is worth noticing that linear elastic or corotated
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formulations usually represent the preferred modeling choice for problems explicitly model-
ing contacts between objects, to avoid introducing additional complexity [118, 124, 60]. In
fact, the combination of highly irregular geometries, non-linear constitutive models and con-
tacts can lead to ill-conditioned problems and introduce significant numerical issues, often
causing instabilities in the simulations. Nevertheless, in this work we have to rely on hyper-
elastic constitutive laws in order to accurately describe breast behavior. To guarantee high
efficiency, we perform all FE-based simulations within SOFA framework, the state-of-the-art
engine for interactive FE-based medical applications [148]. Being SOFA open source, it is
possible to implement all three approaches, thus allowing to compare the performance of the
different modeling strategies within a common framework. Moreover, by choosing SOFA we
had the possibility to make our implementations publicly available to the community1.

In order to thoroughly evaluate the considered methods, all the simulations are repeated
considering increasing levels of spatial discretization (i.e., volume mesh resolution). Due to
the fact that mesh resolution is one of the variables most influencing the performances of
FE-based simulations, the introduction of this additional variable in the evaluation allows us
to estimate the relative impact that the choice of the method and the discretization level have
on the performances. In all cases, collision detection is performed using the default pipeline
provided by SOFA [148] on a surface mesh composed of 1,004 triangles, which proves able
to maintain a good accuracy while keeping the number of active constraints to a minimum.
The conjugate gradient algorithm [37] is used to solve the system of equations of Penalty and
PrescrDispl methods. The maximum number of allowed CG iterations is set to 25, a value
which proved able to speed up the solving process while keeping the simulation accuracy
aligned with that of the other methods. Simulations relying on LM method require the use of
a direct solver, for the computation of the matrix W. To this purpose, we exploit the state-
of-the-art solver Pardiso, whose multithreading implementation allows to achieve enhanced
performance [36].

3.5 Position Based Dynamics

Instead of predicting volume deformations based on time integration of Newton’s second
law, the position-based dynamics approach models objects as an ensemble of particles whose
positions are directly updated, as a solution of a quasi-static problem subject to geometrical
constraints, as described in Section 2.4.2. Simulation behavior and performance are not
only influenced by the relative position, dimension and number of particles in space, but
also by the constraints acting among particles. Large deformations of soft bodies are usually
achieved by defining positional constraints among rigid clusters of adjacent particles. This
kind of constraint is called region-based shape matching. For all the particles which lie within
a cluster, goal positions gi are determined after estimating the optimal transformation T that
matches initial and deformed positions (denoted by p0

i and pi, respectively) in a least-square
fashion:

gi “ T
ˆ

p0
i

1

˙

(3.13)

1https://gitlab.com/altairLab/probe-tissue-simulation
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Since clusters can overlap (i.e., particles may belong to multiple clusters) the final goal po-
sition for a particle is obtained by averaging goal positions of the corresponding regions.
Position corrections are then computed as:

∆pi “ αpgi ´ piq (3.14)

where α P r0, 1s is the stiffness used to enforce the constraint. As a consequence, realistic
elastic behavior is obtained by appropriately selecting cluster parameters. For example, the
higher the number of clusters, the more degrees of freedom the body will have, as shown
in Fig. 3.5. Efficient implementations of the PBD approach together with the region-based
shape matching constraint are currently available in several software libraries, such as the
NVIDIA FleX [149].

Figure 3.5: In region-based shape matching, the number and the size of clusters influence the
final deformed configuration of the object. (Left) The same initial configuration of particles is
associated with smaller (top) and bigger (bottom) clusters (represented by hexagonal regions).
(Right) Final configurations obtained, in each case, when one particle is moved. Smaller clusters
allow to model finer deformations. Image taken from [84].

3.5.1 PBD-based breast model

In order to employ the PBD method for the prediction of breast deformation, it is necessary
to identify the parameters able to approximate tissues behavior. To obtain a patient-specific
PBD model, we propose to identify optimal PBD parameters in the pre-operative phase with
a two-steps strategy (Fig. 3.6). In particular, we first obtain a reasonable starting guess
of deformation parameters by performing an initial calibration on a minimalistic phantom
whose mechanical and echogenic properties approximate those of the clinical scenario of
interest. This first step provides an initial guess of parameters values which is common for
all the patients. Since we expect that such parameters will not be able to accurately model
each anatomy, in the following phase we perform a subject-specific tuning of their values to
account for inter-patient variability. The main advantage of performing an initial calibration
on a minimalistic phantom is that it provides an initial acceptable guess of the parameters
that allows to start the refinement process from a point closer to the optimum and also to
restrict the search space, making the pre-operative optimization more efficient.
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Figure 3.6: The proposed pipeline to identify model parameters. An initial calibration on a box-
shaped deformable phantom allows to estimate a reasonable initial guess of parameters. Fine-
tuning on the scenario of interest allows to adjust values of the parameters in a patient-specific
way, obtaining the final PBD-based breast model.

In general, PBD simulations are controlled by a high number of parameters, but tuning all
of them is out of the scope of this research. We focus on the optimization of the parameters
defining the clusters of region-based shape matching constraint present in Nvidia FleX im-
plementation, which control objects’ deformable behavior: cluster spacing (i.e., the distance
between adjacent clusters), cluster radius (i.e., the radius of each cluster region) and cluster
stiffness (i.e., the extent to which adjacent cluster are constrained to each other). Although it
is well known that other PBD parameters can have an impact on soft body behavior, we decide
to keep their values fixed for all the simulations and to set them in accordance with previ-
ous works (Table 3.1) [91]. Moreover, following the assumptions stated in Section 3.3.2,
deformable objects are treated as homogeneous and, as a consequence, we identify global
parameters.

Table 3.1: PBD parameters kept constant for all the simulations

Parameter Value

Time step 0.02 s
Simulation substeps 3
Substep iterations 9
Relaxation type Local
Gravity 9.81 m{s2

Volume sampling 7
Particle spacing 5 mm
Shape friction coefficient 0.35
Particle friction coefficient 0.25
Damping factor 12
Collision distance 3 mm
Self-collision True
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Initial calibration

Simulation parameters of the PBD deformation model are initialized on a handcrafted box-
shaped calibration phantom (155x100x70 mm), made of ballistic gel as described in [150].
In addition to correctly approximating the consistency of the clinical scenario of interest, bal-
listic gel also has realistic echogenic properties. The realism of the setup is further enhanced
with the inclusion of three stiffer beads with a diameter of 18 mm within the phantom, placed
at three different heights (47 mm, 53 mm, 63 mm). The first box in Fig. 3.6 shows the cor-
responding simulation environment, where the virtual US probe is modelled as a rigid body
which follows in real-time its physical tracked counterpart. Probe-tissue interaction is mod-
elled as a contact problem, handled by the default collision detection and response imple-
mentation provided by the Unity engine. As boundary condition for the simulation, we fix all
the points which belong to the lowest phantom surface.

The experimental protocol followed for parameters optimization consists of five acquisi-
tions for each phantom inclusion. The initial rest condition is obtained by only slightly touch-
ing the phantom with the US probe, without inducing any deformation. Afterwards, four US
images are acquired in correspondence of the center of each bead, by applying downward
probe displacements of 5 mm, 10 mm, 15 mm and 20 mm.

Estimation of optimal model parameters for the calibration phantom is performed with the
genetic algorithm scheme. By generating a population of possible solutions at each iteration
in a stochastic way, this methodology eventually evolves towards an optimal solution. This
scheme is known for being able to offer good characteristics of exploration and exploitation
of the search space [151]. In this work, we rely on the implementation provided in MAT-
LAB (MATLAB R2018b, Mathworks, Natick, MA, USA). We minimize the prediction error,
formulated by the following bound-constrained problem:

p˚gel “ arg min
lbăpăub

N
ÿ

n“1

L
ÿ

l“1

||XPBDpp, l, nq ´XUSpl, nq|| (3.15)

where p is the vector of parameters to optimize, XPBDpp, l, nq is the position of the tracked
PBD particle, XUSpl, nq is the reference bead position, both relative to bead n at deformation
level l, and the symbol ||.|| represents the Euclidean distance. XUSpl, nq are selected on US
images as points belonging to bead contours which lie closer to the US probe; this choice is
motivated by the better visibility of interfaces on US, and allows to avoid additional inaccu-
racies induced by image segmentation necessary, for example, for centroid computation. The
tracked PBD particle (which gives XPBDpp, l, nq) is chosen as the one with minimum distance
from the point on bead contour closest to the US probe, in the rest configuration. In order to
describe the entire model as deformable, we constrain all the particles to fall within at least
one cluster by imposing cluster radius to be at least half of cluster spacing. Lower and up-
per bounds (lb, ub) for cluster spacing parameter are set to r5; 35smm, where the minimum
value is constrained by particle spacing (Table 3.1), while the maximum value corresponds
to half of the smallest gel dimension. Consequently, cluster radius is restricted to the range
r2.5; 15smm. Instead, cluster stiffness is left free to vary within the entire acceptable range
r0; 1s.

40



3. Learning patient-specific pre-operative models

Fine-tuning

The PBD model of the clinical scenario of interest shares the same fixed parameters of Ta-
ble 3.1. In order to obtain a patient-specific simulation, some experiments are conducted to
refine the values of cluster spacing, radius and stiffness parameters before applying the model
to predict lesions displacement due to US probe interaction. This process, which we refer to
as fine-tuning, consists of tracking the position of a single US-visible landmark subject to four
probe-induced deformations (15, 20, 25, 30 mm) in a similar fashion to what has been done
for the calibration phantom (Fig. 3.6). In our case, we select one of the internal lesions of the
phantom as a reference for this procedure. It is worth stressing out that the choice of a lesion
as landmark for the fine-tuning solely depends on the fact that it is clearly visible on US for
the CIRS phantom we use. Despite its unlikeliness, in case no lesions at all can be detected
on US images (one lesion is enough for this procedure), the fine-tuning process can be per-
formed by tracking any other internal structure (like ducts or cysts). Likewise the calibration
described above, optimal simulation parameters p˚breast are chosen as those minimizing the
prediction error of our model as of Eq. (3.15), where in this case we only consider n “ 1
tracked landmark. Due to the fact that the calibration procedure on the ballistic gel phantom
has given us a more precise idea of the range where optimal parameters lie, we perform the
fine-tuning exploiting the direct search strategy implemented in MATLAB, which has proven
convergence to local optimum and is more efficient than genetic algorithm, provided that it
starts from a good initialization [152]. In particular, the starting parameter vector is initial-
ized with optimal values obtained for the ballistic gel phantom (p˚gel) and the range for lower
and upper bounds for each parameters is restricted to 40% of the initial range, centered in
the starting point.

Once optimal parameters are found, the PBD model is updated and used to infer the dis-
placement of each of the other 9 segmented lesions under four deformations, after the probe
is moved such that the corresponding lesion can be seen on the US image.

Optimization results

This Section reports the results relative to the calibration of simulation parameters on the
ballistic gel phantom, and to their fine-tuning on the breast phantom. Table 3.2 reports
optimal values for cluster spacing, radius and stiffness parameters estimated through the
genetic algorithm strategy (for the calibration phantom) and the direct search method (for
the breast phantom). The Table also shows the average error and standard deviation over all
deformations on the breast phantom, when each set of parameters is used, when predicting
the position only of the lesion selected as landmark for the fine-tuning process. The fine-
tuning process has allowed to achieve a reduction of 24% in the overall mean target error.

Even though the fine-tuning process is able to further optimize the parameters, Table 3.2
shows that errors obtained with the initial set can be considered already acceptable. We
expect that once the model is applied to the true clinical context, where the high inter-
patient variability in geometries and boundary conditions is unlikely to be described by a
single phantom, the role of the fine-tuning will emerge more clearly. A simulation scene
relying on the PBD approach using the estimated parameters is made publicly available at
https://gitlab.com/altairLab/breastsimulationpbd.
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Table 3.2: Optimal values of cluster spacing, radius and stiffness parameters estimated with the
proposed optimization strategies for the calibration and breast phantoms. Last columns report the
mean error and standard deviation over all the deformations in mm, when each set of parameters
is used to predict the position of the landmark used for the fine-tuning process.

Cluster spacing Cluster radius Cluster stiffness Mean Error STD

Calibration
phantom

9.6001 9.1674 0.4524 6.64 2.00

Breast
phantom

11.1626 8.5424 0.4649 5.07 1.62

3.6 The U-Mesh framework

In this Section, we propose a novel approach where a neural network is trained to predict the
deformation of internal breast tissues starting from the surface displacements induced by the
US probe. Inspired from [107], the proposed method consists in a U-Net architecture that is
trained on a single patient geometry before surgery, and can thus be seen as a patient-specific
model. The training dataset is composed of synthetic data generated with FE simulations.
In contrast to the work of [110], FE simulations that compose the training set are generated
with several random input displacements, making our approach able to generalize to different
probe positions and compression extents. By relying on a neural network, this method has
the potential to provide an accurate prediction of breast tissue deformations due to US probe
pressure in nearly real-time.

Training data generation

The training data set consists of pairs of pus,uvq where us is the input partial surface dis-
placement (i.e., the displacement of the points belonging to the breast-probe contact area)
and uv is the volumetric displacement field. Even though the data generation process takes
place in an offline phase, in order to generate enough training data with FE simulations
within clinically acceptable times, it is important to have simulations that are both accurate
and computationally efficient. For this reason, training data are generated by modeling the
breast with a St Venant-Kirchhoff model (Eq. (2.9)), which is the simplest and most efficient
extension of a linear elastic material to the nonlinear regime. Even though choosing a simple
linear elastic model would have been even more efficient, it would not be able to appropri-
ately describe the large deformations undergone by the breast. Elastic properties are set in
accordance with the values estimated in [140] for the same breast phantom considered here.
Following the indications in Section 3.3.2, we constrain the motion of all the nodes belonging
to the lowest phantom surface.

We choose to discretize the domain into 8-node hexahedral (H8) elements not only for
their good convergence properties and lock-free behavior, but also because it is the required
structure for the input to the network. To do that, the 3D breast geometry is embedded in a
regular grid of hexahedral elements (see Fig. 3.7a). An iterative Newton-Raphson method is
used to solve the non-linear system of equations approximating the unknown displacement.

In order to train our model to estimate breast volume deformation in response to pressure
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Algorithm 2 Training data generation strategy for the U-Mesh framework.

1: Input: Number of samples N , breast surface Γ, breast surface normals ΓN , US probe
surface size S

2: Output: U-Mesh input us, U-Mesh output uv

3: Init current sample id “ 0
4: while id ă N do
5: Select a random node p P Γ;
6: Select n P ΓN at point p;
7: Select an oriented bounding box A of size S, centered in p and normal to Γ;
8: Select all the surface points P P A;
9: Select d “ n` αn with α P

“

´π
4
, π
4

‰

;
10: Select f | |f | P r0.0, 0.8sN;
11: Apply f along direction d to the P selected points;
12: Run the simulation;
13: Compute us

id, i.e. the displacement at P ;
14: Compute uv

id, i.e. the displacement of all volume points;
15: id` “ 1

return us, uv

imposed with the US probe, we generate a dataset of N samples within the SOFA framework
[148]. Each sample in the dataset is obtained from the simulation of a probe-induced defor-
mation, generated by applying a force f to a subset of points on the breast surface falling
within a region of the same size of the US probe lower surface, which represents probe-tissue
contact area. The applied force f has a different direction and magnitude for each sample.
Force direction is chosen to allow some angle deviation from the normal to the surface, thus
enabling to include samples where the probe compression is a bit tilted, as can be the case
in freehand US acquisitions. The maximal allowed force magnitude (i.e., 0.8 N) is set such
that the amount of maximal deformation reproduced in the training dataset never exceeds
too much that observed in real clinical settings. Data generation strategy is detailed in Alg. 2.

The U-Net architecture

The objective of our work is to find the relation function f between the partial surface de-
formation under the US probe and the deformation inside the breast. Let us be the surface
deformation and uv the volumetric displacement field. In order to find f a minimization is
performed on the expected error over a training set tpus

n,uv
nquNn“1 of N samples:

min
θ

1

N

N
ÿ

n“1

}fpus
n
q ´ uv

n
}
2
2 (3.16)

where θ is the set of parameters of the network f . We propose to use the same architecture as
in [107], that is a U-Net [153] adapted to our application (Fig. 3.7b). The network consists
of an encoding path that reduces the high dimensional input into a reduced space, and a
decoding path that expands it back to the original shape. The skip connections transfer
features along matching levels from the encoding path to the decoding path through crop
and copy operations.
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a b

Figure 3.7: (a) Breast surface geometry obtained the pre-operative CT scan immersed in a hexahe-
dral grid for FEM computations. (b) U-Net architecture for a padded input grid of size 32ˆ24ˆ16.

As Fig. 3.7b shows, the encoding path consists of k sequences (k “ 3 in our case) of two
padded 3ˆ3ˆ3 convolutions and a 2ˆ2ˆ2 max pooling operation. At each step, each feature
map doubles the number of channels and halves the spatial dimensions. In the lower part of
the U-Net there are two extra 3 ˆ 3 ˆ 3 convolutional layers leading to a 1024-dimensional
array. In a symmetric manner, the decoding path consists of k sequences of an up-sampling
2 ˆ 2 ˆ 2 transposed convolution followed by two padded 3 ˆ 3 ˆ 3 convolutions. At each
step of the decoding path, each feature map halves the number of channels and doubles the
spatial dimensions. There is a final 1ˆ 1ˆ 1 convolutional layer to transform the last feature
map to the desired number of channels of the output (3 channels in our case). The design
of the U-Net is based on a grid-like structure due to this up- and down-sampling process. By
directly meshing our deformable object with regular hexahedral elements, generated data
are already in the format required by the network.

In this work, we discretize the breast phantom into 2,174 hexahedral elements and we
simulate several random probe-induced displacements with the pipeline described above
(Alg. 2). Overall, we generate N “ 1, 000 samples, divided in 800 for training and 200
for testing. The maximal nodal deformation present in the generated dataset is 79.09 mm
(Fig. 3.8a). We use a Pytorch implementation of the U-Net, which is trained in a GeForce
GTX 1080 Ti using a batch size of 4 and 100,000 iterations and the Adam optimizer.

3.6.1 U-Mesh validation on a synthetic dataset

In order to assess if the U-Mesh has learnt to predict tissue deformations, we evaluate its
performance with respect to those of the FE model used for data generation. We compute the
Mean Norm Error (MNE) over the testing data set. Let uv

i be the ground truth displacement
for sample i generated with the training data generation pipeline described above and fpus

iq

the U-Net prediction. The MNE between uv
i and fpus

iq for sample i reads as:

MNEi
“

1

n

ÿ

n

|uv
i
´ fpus

i
q|. (3.17)
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Table 3.3: MNE as average ˘ standard deviation and MNE maximal value over the testing dataset
for a breast having 2, 174 H8 elements.

MNE [mm] MNEmax [mm]

0.052 ˘ 0.050 0.266

where n is the number of nodes of the mesh. Average MNE, standard deviation and maximal
value (MNEmax) over the testing data set are reported in Table 3.3. The maximal error is of
only 0.266 mm and corresponds to the sample shown in Fig. 3.8b. The most striking result
is the small computation time required to make the predictions: only 3.14 ˘ 0.56 ms. In
contrast, the FE method takes on average 407.7 ˘ 64 ms to produce the solution. Obviously,
the resolution of the FE mesh could be reduced to accelerate the computations but at the cost
of an accuracy loss.

a b c

Figure 3.8: (a) Sample with maximal deformation (79.09 mm). (b) Sample with maximal MNE
(0.266 mm). The green mesh is the U-Net prediction and the red mesh is the FEM solution. The
initial rest shape is shown in grey. (c) U-Net prediction on phantom data.

Obtained results show that the U-Mesh framework has learnt how to predict tissue de-
formations, achieving comparable accuracy to the FE method used to generate the training
dataset while guaranteeing very fast prediction time. Although the FE model used to train
our network does not perform in real-time, its prediction delay of less than 1 s might be con-
sidered already acceptable for our specific application. However, such good computational
performance is achieved since in this preliminary evaluation we use a very simplistic model,
that does not account for heterogeneity or complex boundary conditions happening in clini-
cal cases. Usage of a more complex FE model will certainly cause an increase of computation
load. On the contrary, an important feature of our approach is that the prediction time re-
mains close to 3ms regardless of the grid resolution and of the biomechanical model used for
the data generation process. This means that increasing the complexity of the model used to
generate the data set will not affect the prediction speed.

3.7 Analysis of the FE-based models

Before comparing the performance of the three different methodologies considered (FE, PBD
and U-Mesh), we perform a first analysis which concerns only the three FE-based approaches
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that can be used to model tool-tissue interaction as presented in Section 3.4, at different dis-
cretization levels. Fig. 3.9 reports the distribution of the errors ε produced by each method
(Penalty, LM, PrescrDispl) on all the tumors and all deformations, at increasing mesh resolu-
tions. Boxplots are obtained including only errors relative to “valid" deformations, i.e. those
which have been successfully simulated without any instabilities by all the three methods. In
this way, we prevent the occurrence of any possible bias in the distributions which could arise
if a method has been more stable than the others (and as such, it would have had more error
values). From a more detailed analysis of the results it has emerged that largest errors are
obtained at high input deformations and in correspondence of deeper lesions.

Boxplots in Fig. 3.10 show how the computation time tcomp required by each method to
simulate a time step h changes at different discretization levels. Results obtained for the
stability metric are reported in Table 3.4.
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Figure 3.9: Localization errors [mm] on all the tumors and all deformations, for the different
methods, at increasing volume mesh resolution.

3.7.1 Discussion

From an accuracy point of view, all the methods achieve similar performances. It is interest-
ing to notice that increasing volume mesh resolution leads to a slight reduction in the error
dispersion but not to a significant improvement in the overall accuracy, which is comparable
with average lesion dimensions and thus acceptable, for example, for biopsy targeting pur-
poses. This suggests that probe-tissue interactions can be accurately reproduced even with
coarse meshes, because of the smoothness of the induced deformations. The reached accu-
racy level is thus not limited by a poor spatial discretization, but might have a upper bound
due to registration and calibration errors and possibly the chosen temporal discretization.

46



3. Learning patient-specific pre-operative models
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Figure 3.10: Computation time (in log-scale) required by the different methods to simulate a time
step (h “ 0.02 s) at increasing volume mesh resolution. Horizontal lines are in correspondence of
the time step (blue) and of the constraint of 25 fps (black).

If we analyse the computational performances, the fastest FE methods are those which rely
on the simplest equation systems, i.e. PrescrDispl and Penalty. Modelling contacts through
constraints is the most time consuming approach, despite the use of an optimized solver.
Fig. 3.10 shows that using fine meshes has a strong impact on the computation time, which
increases for all the methods with the number of elements. A drop of computational perfor-
mances at high mesh resolutions is particularly important for LM method, even though the
number of active constraints remains constant in all simulations. It is interesting to notice
that, despite relying solely on CPU, the FE approaches tested in this work can meet the real-
time constraint for several different discretizations (especially PrescrDispl and Penalty). We
expect that enhanced FE implementations taking advantage of the parallel capabilities of GPU
would be able to further improve such computational performances, and we plan to assess
this in future works. Although some GPU-based FE approaches have been already proposed,
they have not been included in this study since they are either incompatible with hypere-
lastic simulations [60] or not available within the SOFA framework [130, 44]. The choice
of relying on a common open-source simulation platform has allowed us not only to com-
pare the different approaches but also to publicly share the simulation scenes. Furthermore,
by providing general implementations of the various methods, SOFA allows to simulate any
medical scenarios involving deformable structures, making it possible to exploit the tested FE
approaches to model any kind of tool-tissue interaction.

PrescrDispl is the FE approach reaching the best performances in terms of stability. In
general, simulations are more likely to become unstable at high deformations, when the
effect of non-linearities becomes significant. An interesting result which emerges from Table

47



3.7. ANALYSIS OF THE FE-BASED MODELS

Table 3.4: Mean, median and range of the stability metric for each method, at increasing volume
mesh resolution. Stability metric is computed as percentage of experiment successfully accom-
plished.

Mesh
LM Penalty PrescrDispl

elements Mean Median Range Mean Median Range Mean Median Range

623 100 100 93-100 100 100 100-100 100 100 100-100
1,363 100 100 88-100 100 100 90-100 100 100 100-100
2,539 97 100 64-100 100 100 100-100 100 100 100-100
4,126 99 100 84-100 100 100 100-100 100 100 100-100
7,369 99 100 75-100 100 100 92-100 100 100 100-100
12,861 98 100 72-100 93 100 59-100 100 100 100-100
26,220 96 100 60-100 72 71 42-100 100 100 100-100

105,004 88 92 56-100 87 100 52-100 100 100 94-100
176,506 69 70 49-88 53 48 25-100 98 100 80-100

3.4 is that using high resolution meshes leads to higher simulation instability, which may
be due to the introduction of further numerical errors preventing simulations from being
completed.

The first three rows of Table 3.7 summarize the main advantages and disadvantages of the
considered methods. The best trade-off among the performance criteria is achieved when
the interaction is modelled by prescribing the displacement of surface nodes. The simpler
mathematical description of the physical problem, without the involvement of any external
forces, allows to achieve high speed while guaranteeing high simulation stability. The lim-
itation of this method lies in the assumption that the breast-probe contact area is a-priori
known and does not vary during the procedure. This represents a major constraint when
the simulation is required to run online during the scanning itself, such as in freehand acqui-
sitions. However, this constraint is not a strong limitation in a robotic scenario, where the
robot motion is commonly planned in advance, thus enabling the a-priori estimation of the
contact surface. The most general ways to describe probe-tissue interaction with FE involve
collision handling. The penalty method can reach close to real-time performances, but its
stability highly depends on the contact stiffness value, which has to be tuned for each specific
problem. This modeling strategy is likely to represent the most appropriate choice in scenar-
ios which are less complex than the one described in this work (for example, with smaller
input deformations and/or elastic materials)[124]. Describing the problem as a constraint
(LM) is the most general and widely applicable approach. In addition to their independence
on a specific parametrization, LM-based methods are able to provide a direct measure of the
interaction forces through Lagrange multipliers values. The main limitation of this approach
is the computation time, which becomes prohibitive if fine spatial discretization is needed.
The high computation burden of LM may be due to the fact that the system matrix A is fac-
torized at each simulation step by the direct solver. Being matrix factorization one of the
most demanding steps, we performed some tests using an alternative approach where A´1 is
updated less frequently (every 5 time steps, as in [60]). However, only a slight improvement
in computational performances was achieved, at the expenses of stability. It means that the
assumption that the system matrix A does not change significantly between consecutive time
steps does not always hold for hyperelastic objects, causing divergence in the simulation if an
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3. Learning patient-specific pre-operative models

approximation of the real matrix is used.

3.8 Comparison of the different methods

In this Section, we compare the three different modeling strategies presented in Sections 3.4,
3.5 and 3.6 on the US scanning experiments described in Section 3.3.1. For the sake of
compactness, results relative to the FE approach are obtained using PrescrDispl, which has
been selected as it is the one achieving the best trade-off between the three considered metrics
of accuracy, speed and stability (see Section 3.7). In particular, we report the results obtained
with PrescrDispl using a mesh with 4, 126 elements.

Table 3.6 reports the localization errors ε for each phantom lesion m with respect to the
applied deformation l for the three methods. Fig. 3.11 shows localization errors at increas-
ing input displacement, averaged on all the tumors. Error values are compared with those
obtained with a rigid model, i.e. when the lesion is moved of the same amount as probe
displacement.

Results in terms of computation time and stability are detailed in Table 3.5.

Figure 3.11: Average localization error [mm] at increasing deformation extent for the different
methods. Vertical bars represent the standard deviation.

Table 3.5: The Table reports, for each method: (1) the time (median˘std) required to perform
a simulation time step and (2) stability, expressed as the percentage of simulation successfully
accomplished from the beginning to the end (mean (min-max)).

FE (PrescrDispl) PBD U-Mesh

Time [s] 0.007˘ 0.001 0.02˘ 0.00 0.003˘ 0.0006
Stability [%] 100p100´ 100q 100p100´ 100q 100p100´ 100q
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3.8.1 Discussion

Our results show that all the considered methods reach comparable accuracy levels at all
input displacements (Table 3.6). For all the methods, localization error gets slightly worse
at larger deformations, but always remains below 7 mm on average (Fig. 3.11). This result
significantly outperforms the error made when employing a rigid model, thus emphasizing
the need of a deformation model in this context.

Although PBD method is the one making the largest error at high input displacements, the
overall accuracy is aligned with that of the other methods (Table 3.6), proving that the pro-
posed parameter calibration strategy has allowed to obtain a reliable patient-specific model.
Performances of the PBD method in terms of computational time and stability are partic-
ularly promising. The highly optimized PBD implementation provided by NVIDIA FleX is
able to keep the simulated and computation times always equal (tcomp “ h), thus guaran-
teeing that the real-time constraint is met. Moreover, PBD intrinsic unconditional stability
guarantees PBD-based simulations to always remain stable (mean and median stability of
100%, in the range 100-100). Although improved performance in terms of time efficiency
and stability are also reached by the FE method tabulated in Table 3.5, it is worth high-
lighting again that reported results are relative to a specific FE implementation (PrescrDispl),
which has achieved best performance on our specific scenario. Such results are not valid in
a general sense, but are highly influenced by the chosen model and spatial discretization,
as detailed in Section 3.7. Overall, within the considered context, a non-physically based
method (PBD) has proved able to reach an optimal compromise among the different per-
formance criteria: it achieves an accuracy which is comparable to FE simulations, meeting
the real-time constraint and maintaining enhanced stability, which make it particularly suit-
able for employment within a robotic simulation framework. An additional advantage of
the PBD approach is that it allows to avoid the time-consuming generation of high quality
mesh, which represents the major bottleneck in FE simulations (especially in those inolving
large deformations)[20]. Since we are targeting a patient-specific context, this represents
an enormous advantage because the mesh would have to be constructed everytime, for each
patient. Furthermore, thanks to its direct manipulation of positions, the PBD approach can
easily handle collisions constraints. Probe-tissue interaction can thus be effectively treated
as a collision problem, thus allowing to deal with any input probe position without requiring
the explicit definition of the contacting surface. The main drawback of region-based shape
matching constraint governing model behavior is that its parameters need to be calibrated for
each scenario, since they do not have a direct physical meaning. Even though some advanced
constraints that overcome this limitation have been proposed, they are not yet incorporated
in Nvidia FleX framework and not even publicly available. On the other hand, all FE-based
methods benefit from the possibility of using the real elastic parameters. Another limitation
is that PBD cannot provide an estimation of the interaction forces, which may be useful in
several applications, especially within the robotic context.

The accuracy levels achieved with the U-Mesh framework are also aligned with those ob-
tained by the other approaches, and follow a similar trend at increasing input displacements.
This proves that U-Mesh has been able to learn to predict probe-tissues deformation from
simulated data and generalize to real world probe-induced deformations. The U-Mesh guar-
antees the very fast prediction time of 3 ms and is always stable, since it does not involve
any solution process which might suffer from numerical issues, differently from all the other
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simulation-based considered methods. Therefore, the U-Mesh represents an interface be-
tween precise patient-specific biomechanical FE modeling (not capable of real time) and
applications requiring both high accuracy and very high speed. Even though some of the
FE-based approaches considered in this Chapter could already achieve good performance in
terms of computation time and stability (Section 3.7), they rely on a very simple breast model
with homogeneous properties. This modeling choice does not represent a limitation in the
considered setup with a breast phantom, but a more complex model handling multiple mate-
rials and anisotropy would probably be needed to reach reasonable accuracy on real patient
data. Usage of a more complex FE model will certainly cause an increase in computational
load, making it almost impossible to achieve real-time performances with FE simulations. The
U-Mesh framework represents a promising solution in this case, since high prediction speed
is guaranteed regardless of the biomechanical model used for the data generation process.
The main limitation of the method remains the training process, which is burdersome and
has to be repeated for every new geometry or application. However, we have shown that a
limited amount of training data can be sufficient to train a U-Net such that it obtains accurate
prediction within clinically acceptable times. In its current implementation, the U-Mesh is
comparable to PrescrDispl approach, since it relies on the displacement of the breast points
below the US probe as input. As a consequence, the method cannot directly generalize to sce-
narios where the probe-tissue contact area is not a-priori known. However, as stated before,
this fact does not always represent a limitation, for example in robotic scenarios where the
trajectory is planned beforehand. In addition, this approach does not provide any information
about interaction forces. However, the network might be designed to provide such informa-
tion as an additional output. It is worth noticing that it is not straightforwart to integrate
strategies for online parameter update within the U-Mesh framework, due to its reliance on
a neural network, whose parameters are network weights and updating their values would
require re-training. This aspect, which is important for the development of realiable au-
tonomous systems (Section 1.2), might be more easily incorporated within simulation-based
approaches.

Table 3.7 summarizes the main advantages and disadvantages of the different methods
analyzed.

3.9 Conclusion

In this Chapter, we have compared three different categories of methods that can be employed
to model tissue deformations, evaluating their performance in terms of accuracy, computation
time and stability. In particular, we have considered the modeling of the interaction between
soft tissues and a rigid tool, in the context of breast US scanning.

Models based on the finite element method, the preferred modeling strategy for accurate
medical simulations, have proved capable of achieving a good trade-off between accuracy,
computation time and stability, at least when relying on a simplified model with quite coarse
meshes. However, obtained performances are highly variable depending on the chosen ap-
proach (i.e., constraints-based, prescribing displacements) and the required level of spatial
discretization, whose choice depends on the specific clinical requirements. Being physics
based, FE-based models can directly exploit real tissues mechanical parameters, obtained
from either prior knowledge or ad-hoc imaging techniques (e.g., elastography).
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Table 3.7: Summary of the main advantages and disadvantages of the different modeling meth-
ods.

Pros Cons

Penalty
3 Generic contact problem 7 Requires stiffness tuning
3 Low computation time 7 Highly unstable

LM
3 Generic contact problem 7 High computation time
3 Interaction forces retrievable

PrescrDispl
3 Low computation time 7 Requires knowledge of contact area
3 High stability
3 Independent on real mechanical properties

PBD
3 Generic contact problem 7 Requires patient-specific optimization
3 Low computation time
3 High stability

U-Mesh
3 Comparable accuracy to FE method 7 Dependence on training dataset
3 Low computation time 7 Online parameters update not possible
3 High stability

A position based dynamics model has also shown the capability to reach comparable ac-
curacy with FE simulations, after patient-specific parameter identification, while meeting the
real-time constraint and maintaining enhanced stability. More advanced constraints can be
used to enforce specific elastic behaviors relying on real mechanical parameters [154], and
will be investigated in future works. In fact, the parameter optimization process represents,
to date, the main bottleneck of this approach, preventing its wide exploitation in the medical
field.

In this Chapter, we have also proposed to use deep learning to learn a deformation model
directly from data, generated from FE simulations in our case. The presented framework,
called U-Mesh, has proved able to provide extremely fast predictions, achieving comparable
accuracy to other existing methods and without suffering from any stability issues. This
approach is particularly promising to learn patient-specific models of increasing complexity,
experiencing a degradation neither in computational performances or in stability. In future
works, we will test the capability of the U-Mesh to learn more complex models. Furthermore,
future research will focus on making the method able to learn tissue behavior independently
from the geometry, similarly to what has been proposed in [106, 14].

A limitation of the conducted analysis is that we have considered a simplified setup with
a breast phantom. In future works, we plan to design a protocol to collect real human data,
thus extend our evaluation to more realistic cases. We expect that it will be more challenging
to reach clinically acceptable accuracy with the considered approaches, probably requiring
more complex models and, in turn, it will be more difficult to achieve a satisfactory com-
promise between performance criteria. Furthermore, our acquisitions are currently limited
to compression experiments, being this kind of input the most relevant case, causing the
greatest anatomical deformations. However, we plan to extend the experimental protocol in
order to include also the sliding interactions. Moreover, we would like to improve the ro-
bustness of the experimental protocol. First of all, a robotic manipulator will be used to hold
the US probe, to guarantee the application of input deformations in a more controllable and
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repeatable way. To further reduce inaccuracies, we plan to rely on a more precise strategy
for the selection of corresponding fiducials in real and simulated environments, for example
employing an automatic routine for fiducials identification on US images, to avoid human
errors involved in the landmarks placement.

To conclude, all the presented strategies allow to successfully model soft-rigid interaction,
each achieving different compromises among accuracy, speed and stability. The choice of the
preferred approach highly depends on the requirements of the specific clinical application.

Contributions of this Chapter

The main contributions of this Chapter can be summarized as follows:

1. We assess the performances of the three main existing strategies to model soft-
rigid interaction with the finite element method in terms of accuracy, computation
time and stability, and we highlight the pros and cons of each approach for robotic
applications.

2. We propose to model the interaction between a rigid tool and deformable anatom-
ical tissues using a non physics-based method, i.e. position based dynamics; we
show that, once personalized parameters are available, such approach can be
successfully exploited to model anatomical tissues.

3. We present U-Mesh, a neural network that is trained only with synthetic data
to predict tissues deformation in a patient-specific manner; this method achieves
comparable accuracy with finite element based methods while being a hundredth
times faster.

4. We make our models available to the community by sharing our implementations
at https://gitlab.com/altairLab/probe-tissue-simulation and https://gitlab.com/
altairLab/breastsimulationpbd.
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Chapter 4

Learning intra-operative model update

4.1 Introduction

Ideally, an ARSS is provided with the sequence of actions to perform which is decided before
the intervention based on patient’s pre-operative data and a-priori clinical knowledge. Such
information is exploited to create a Patient-specific Biomechanical Model (PBM), which is
used to design a personalized surgical plan in simulation. However, the information available
pre-operatively is often not sufficient to thoroughly characterize the anatomical environment,
whose properties vary a lot among patients and are very difficult to measure and model. As a
consequence, the generated surgical plan might be sub-optimal and requires correction while
surgery is already taking place, depending on the current situation [9].

Whenever actions replanning is needed, the updated motion should be tested in simulation
before being executed, in order to guarantee system safety and reliability. As a consequence,
the simulation must continuously and closely follow the real surgical environment through-
out the operation [9, 155, 156]. Being the simulation based on the pre-operative PBM, it
is necessary to update the PBM parametrization during the intervention leveraging on avail-
able intra-operative data, to both compensate for inaccurate parametrization and allow the
simulated behavior to closely reflect the changes introduced by surgical manipulations.

Figure 4.1: ARS pipeline we focus on in this chapter.

In particular, while patient-specific geometry and tissues’ elastic properties can be extracted
from pre-operative anatomical images or using ad-hoc modalities such as elastographic tech-
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niques [157], there is usually no way to delineate the Attachment Points (APs) between neigh-
boring organs from pre-operative data. Such APs define Dirichlet boundary conditions (i.e.,
they act as constraints to the motion of specific points), thus they are key to obtain an accu-
rate simulation [147, 158, 159]. As a consequence, reliable APs can be estimated only from
data that are collected intra-operatively [158, 159, 15].

The problem of intra-operative estimation of APs has been tackled by only few works. In
[160], attachments are estimated by matching two anatomical configurations extracted from
CT scans acquired before and after patient repositioning. This approach assumes that the
entire surface is available in both configurations, preventing from its application in real clini-
cal settings, when only a partial surface view can be obtained intra-operatively. Other works
[50, 159] propose to initialize the position of attachment points based on statistical atlases.
However, statistical atlases are not always able to adapt to patient-specific conditions due to
the high inter-patient variability. Another line of research exploits Kalman Filters (KFs) to es-
timate boundary conditions in the context of liver surgery [158, 159]. The main constraints
between the liver and the surrounding tissues is represented by the hepatic ligaments, whose
location can be extracted from pre-operative data. As a consequence, these works have fo-
cused on the characterization of the ligaments elastic properties, based on the assumption
that their location is known, which does not hold in our application. Methods based on
KFs have the advantage to work with partial observations (i.e., partial visible surface) com-
ing from intra-operative sensors. However, the filters’ inference time strongly depends on
their parameters initialization, which is highly sensitive to each patient’s properties, possibly
introducing a degradation in the performances from case to case.

In this Chapter, we present a strategy to update PBM parametrization intra-operatively by
estimating APs. Further to improve simulation accuracy, precise knowledge of the location
of APs can support the autonomous execution of some standard surgical actions, like tissue
retraction and dissection. Tissue retraction consists in grasping and retracting soft tissues to
expose a hidden region of interest such that it becomes visible and accessible to the operating
surgeon. Successful retraction requires to avoid grasping close to APs, in order to prevent the
application of excessive forces on highly constrained areas, thus reducing the risk of tissue
tearing and/or rupture. It might happen that retraction alone is not sufficient to expose
the region of interest, in particular when it lies between two tissue layers that are attached
to each other. In this case, access to the desired region is obtained by tissue dissection,
which consists in the separation of the two attached layers with the surgical instrument (e.g.
monopolar scissors) in correspondence of the APs.

In the remaining of this Thesis, we address autonomous execution of the first steps of
robotic partial nephrectomy, which consists in the manipulation of pararenal adipose tissue
in order to expose the tumor to excise, thus requiring both retraction and dissection. To
accomplish the task, surgeons identify the attachment points between the adipose tissue and
the kidney via manipulation of the tissue itself. In the same manner, an autonomous agent
has to identify attached regions during task execution, since such attachments do not have a
standard location and cannot be identified from pre-operative data. However, intra-operative
identification of attachment regions involves some challenges related to the fact that such
areas are often hidden from the partial view of the scene provided by intra-operative sensors.
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4.2 Intra-operative estimation of tissue attachment points

Figure 4.2: Overview of the pipeline to update PBM boundary conditions. (a) Initial data: IOS
and PBM; (b) rigidly aligned data; (c) estimated IOD, where brighter color is associated with
highest displacement; (d) voxelized representation, where grid cells are colored based on the
signed distance field from PBM surface; (e) estimated APs in grid space; (f) PBM annotated with
estimated APs, giving the intra-operative model IOM.

In order to provide an up-to-date PBM that continuously follows the current surgical sce-
nario, we rely on a framework involving two independent processes which run concurrently.
The first process is entirely dedicated to a physics-based simulation of the surgical environ-
ment. Although such simulation can be based on any approach among those presented in
Section 2, in this Chapter we assume to rely on continuum mechanics methods capable of
real-time performances, such as [161]. Such simulation leverages on the PBM created from
pre-operative data, characterized by both the undeformed 3D geometry of the anatomy and
its known mechanical properties. The second process is devoted to the strategy for updating
PBM parametrization during the intervention, starting from intra-operative sensor data. In
this Chapter, we focus on this second task. In particular, we present a pipeline to update APs
from the 3D point cloud of the surgical scene acquired with an intra-operative camera with a
very short latency. This allows the simulation to continuously reflect the changes introduced
in the environment by surgical manipulations (Fig. 4.2).

Pre-processing The raw 3D point cloud acquired with the intra-operative camera passes
through an initial pre-processing step. First, both color and spatial segmentation are per-
formed to extract the current view of the deformed Intra-Operative Surface (IOS) from the
full anatomical point cloud. The extracted IOS is then rigidly aligned to its corresponding
portion of the PBM, based on geometric features and known spatial relations estimated at
the beginning of surgery.

Displacement estimation We calculate the Intra-Operative Displacement field (IOD) which
maps each point in the IOS to its corresponding one on the undeformed PBM. To achieve this,
we estimate a correspondence with a nearest-neighbor pairing between the point cloud and
the PBM in the functional space [162], and we refine it using the state-of-the-art ZoomOut
method [163]. This non-rigid approach is entirely intrinsic, promotes isometric solutions
(i.e., correspondences that preserve the surface distances between the points), and has ap-
proximately linear complexity. Thus, ZoomOut guarantees a trade-off between accuracy and
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timing, making it ideal for real-time precision surgical operations, where we assume the
folding and bending of the surface preserves surface geometry (i.e., boundaries and metric)
without introducing dramatic stretching.

Voxelization In order to exploit convolutional filters, input information is converted into
a grid-like volume of dimension 64 ˆ 64 ˆ 64 and side length 300 mm, following the same
voxelization process described in [106]. In particular, the PBM is encoded into the grid using
its signed distance field and the IOD through a Gaussian interpolation. By representing the
data in this way, our method learns to interpret the geometry, allowing it to directly generalize
to new geometries.

Binary Attachment Network The APs update is performed by BA-Net (Binary Attachment
Network), a DNN estimating at which points a given deformable tissue is attached to the
surrounding environment. Detailed description of BA-Net is provided in the following Section
(4.2.1).

PBM update Finally, estimated APs are mapped from grid space to the original PBM space,
giving the Intra-Operative Model (IOM). This step completes the proposed pipeline, and the
obtained IOM is used to update the intra-operative simulation running in the synchronous
process.

4.2.1 BA-Net: Binary Attachment Network

BA-Net is a CNN which outputs a binary map of estimated attachment points starting from
a pre-operative PBM and the IOD, encoded in a voxel grid. Despite relying on the same
formalism proposed in [106, 14] for its capability to generalize to different geometric shapes,
our method has a completely different goal. In fact, BA-Net does not aim at predicting a 3D
displacement field that registers two anatomical configurations, but it predicts which points
of the pre-operative 3D model act as attachment points. To cope with the lack of real world
data where the attachment points are annotated on the corresponding pre-operative volumes,
the proposed network is trained only with simulated samples.

Training data generation

The developed strategy for training data generation aims at providing samples that mimic
pre-operative and intra-operative configurations of adipose tissues, those preventing direct
access to the renal tumor during partial nephrectomy, as realistically as possible. In order
to obtain many different random adipose tissue PBMs, we generate a set of surface meshes
by applying a series of morphological operations to an icosphere of random dimension. As a
following step, the generated samples are clipped within two parallel planes to keep sample
thickness below 20 mm, and twist and bend filters are applied to pre-deform the meshes.
For this process, we make sure that the average edge length of the generated geometries is
comparable to the grid voxel size (i.e., approximately 4.7 mm), to match the mesh and grid
resolutions. After tetrahedrization of the resulting mesh, we extract a subset of the surface
whose points will act as attachments. To define such subset with a realistic (thus irregular)
profile, we associate to each point Q of the surface the value of the metric DQ which acts as
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Figure 4.3: Overview of our method. (a) Training data are generated from finite element simula-
tions. The blue mesh represents one of the randomly generated surfaces, while the orange mesh
represents the corresponding deformed configuration. A red wireframe overlay is added in cor-
respondence of the IOS, i.e., the visible portion of the deformed mesh. (b) Input to the network
is a structured grid where the PBM is encoded through its signed distance field (sdf). Only grid
cells belonging to the internal parts of the surface (sdfăvoxel size) are displayed. Cell color is
proportional to the magnitude of the associated displacement (higher displacement in red, zero
displacement in blue). (c) The UNet architecture used. (d) Output of the network is a binary map
of the attachment points. Such points will be then converted back from grid coordinates to PBM
coordinates.

the likelihood of that point being removed from the subset. After selecting a random mesh
node P as center point, we define the distance metric D associated to each point Q as:

DQ “ wd ¨ dPQ ` wn ¨ nPQ ` wp ¨ pQ (4.1)

where dPQ is the geodesic distance between P and Q, nPQ is the angular distance between
the normal of P and the normal of Q, and p is the value of perlin noise evaluated at position
Q. These three contributions are weighted by wd, wn and wp, whose values change for each
new sample within specific bounds that can be adjusted to specify the relative importance of
each term. For the extraction of attachment points, we sample wn within a range of higher
values with respect to the other two, to favor the extraction of regions belonging to the same
side of the surface. Eventually, the extracted surface includes those points with the lowest
values of D, until the desired percentage of surface points (between p5, 50q%) is extracted.

We introduce a simulation environment to obtain tissues deformed state relying on the
finite element method provided by SOFA framework [148]. Grasping action performed with
a single dVRK arm is simulated by applying a force of random magnitude to a subset of
surface nodes within a radius of p4, 10qmm, to simulate different amounts of grasped tissue.
In order to make the network independent from specific mechanical properties, we consider
varying Young’s modulus p3, 30q kPa and Poisson’s ratio p0.4, 0.45q such that they cover the
range of values describing adipose tissues [164]. St Venant-Kirchhoff material is chosen to
model tissue mechanics, since it represents the simplest generalization of elastic material to
the non-linear regime while ensuring a good trade-off between simulation time and accuracy.
The IOS is then extracted from the deformed configuration relying the same method used for
the extraction of attachment points, in a range between p10, 100q% of the entire surface, to
simulate the partial view which is acquired by vision sensors intra-operatively. For each point
of the PBM which belongs to the IOS, we compute the displacement field which brings it to its
deformed counterpart (i.e., the IOD), while we associate all the remaining points with zero
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displacement.
The computed IOS, together with the PBM, represent the input to our network. This input

is converted into the grid-like structure required by the method following the voxelization
process described in Section 4.2 above. The ground truth binary mask of attachments is
defined by assigning a value of 1 to all grid cells which contain a fixed mesh node. An
overview of the data conversion pipeline is provided in Fig. 4.3. Following this process, we
generate a dataset composed of of 5000 samples, which are split into training and validation
sets (90´ 10%).

BA-Net architecture

The output of our method is a 3D binary map defined in the same domain as the input grid,
where unitary values are assigned to each grid voxel containing attachment points (Fig. 4.2e).
Our framework relies on the UNet architecture, which has been already successfully applied
to learning deformation tasks on 3D grids [106, 14, 165, 15, 107]. These works have con-
firmed UNet capability of learning both high-level representations of the data in the bottle-
neck layers and carrying high-level information using the skip-connections.

BA-Net architecture is illustrated in Fig. 4.3c. The network first contracts the input data
into a 43 volume, to make sure that information coming from displacement fields taking place
on one side of the input surface can influence the opposite side of the surface. The encoded
information is then expanded back to original 643 space and converted into a 3D binary map
via a final 13 convolution layer. Similarly to [14], interpolation operators are employed in
the decoding path, to save computational time required by the standard up-convolutions. In
addition, dropout layers at 50% are added after each max pool and interpolation operations,
which allow to improve generalization capabilities of the network. The loss function L used
for training is a linear combination of the Dice Similarity Coefficient (DSC) [166] and the
Binary Cross Entropy (BCE):

L “
1

N

N
ÿ

1

p1´DSC `BCEq (4.2)

where N is the batch size, which is 32 in our case. DSC and BCE are defined as:

DSC “
2 ¨ pX X Y q

X ` Y
(4.3)

BCE “ ´Y ¨ logpXq ´ p1´ Y q ¨ logp1´Xq (4.4)

with X and Y representing the prediction and the ground truth respectively. The network
is trained with AdamW optimizer [167] and one cycle learning rate scheduler [168], on a
workstation with Intel Xeon CPU and NVIDIA GeForce 2080 Ti GPU.

4.3 Model update with BA-Net during soft tissue
manipulation

Performances of our pipeline for intra-operative PBM update relying on BA-Net have been
assessed on soft tissue manipulation experiments of (1) synthetic phantoms with varying
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geometric configurations and material properties, and (2) ex vivo human kidney. In both
scenarios, both simulation and real world experiments have been conducted.

In all our experiments, we assess the capability of the method to update the PBM by com-
paring the deformed state in the simulated environment with the available ground truth
deformed configuration. The deformed state in the simulated environment is obtained by
performing a finite element simulation where model APs are defined by BA-Net. A state-
of-the-art direct solver [36] is used together with an iterative Newton-Raphson method to
solve the non-linear system of equations in the static domain, within the open-source SOFA
framework [148]. Simulated deformed configurations are obtained by considering the dis-
placement of the surface nodes grasped by the surgical tool as driving input. This modelling
choice does not only allow to obtain a deformation profile which is independent of possible
inaccuracies in chosen material parameters [147], but also to tackle real surgical scenarios,
where there is no information about the tool-tissue interaction force (which is lacking also in
current real surgical robotic systems).

We then compute the Average Volume Error (AVE), which is the average of the Euclidean
distances between corresponding points in the simulated and the ground truth configurations.
Let xground

i be the position of the n points present in the ground truth configuration and xsim
i

be the position of the corresponding points in the configuration obtained from the simulation
using BA-Net predicted APs, then the AVE for sample i is computed as:

AV Ei
“

1

n

ÿ

n

||xsim
i
´ xground

i
||2 (4.5)

4.3.1 Experiments on synthetic phantoms

The first set of experiments aims at evaluating performances of BA-Net on soft tissue manipu-
lation of synthetic phantoms with varying geometric configurations and material properties.
Since ground truth APs are available in all these experiments, we consider two metrics to
evaluate the overall accuracy of APs prediction: the DSC coefficient and the True Positive
Rate (TPR) [166]. The DSC coefficient (Eq. (4.3)) is a measure of the overlap between the
predicted and the ground truth areas. High values of the DSC coefficient are obtained when
intersection between prediction and ground truth is maximized, and union is minimized. De-
spite being highly correlated with prediction accuracy, the DSC is strongly impacted by errors
in the delineation of the contours of the region of interest. On the other hand, the TPR (or
sensitivity) measures the proportion of ground truth attachments that are also identified by
the prediction:

TPR “
X X Y

Y
(4.6)

The TPR is not influenced by errors at the boundaries, thus might be more interesting than
DSC in some applications, where it is more important to ensure that the predicted region
includes all the true attachments even at the cost of introducing some errors in boundaries
delimitation.

Furthermore, we evaluate the simulation error when relying on BA-Net predicted attach-
ments with the AVE described above.
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Simulated data

A test dataset composed of 380 simulated samples (Test) is generated following the same
pipeline described in Section 4.2.1. The random simulations result in samples which have a
median input displacement of 38.8 mm.

In addition to assessing the simulation error obtained when relying on BA-Net using the
AVE, we report the metrics values obtained when ground truth attachments are used as APs
(we refer to this configuration as Same). Metrics for the Same configuration are introduced
since the deformed states with BA-Net predicted APs are obtained from simulations driven
by an input displacement, and are compared to ground truth deformed configurations gener-
ated by applying an input force (Section 4.2.1). Therefore, the computed AVE does not only
contain the errors made by approximating the boundary conditions with BA-Net predictions,
but also the error made by replacing the force input with a displacement input. As a conse-
quence, AVE for the Same configuration provides a baseline value that allows to isolate the
AVE contribution due to imprecise estimation of attachment points.

We also detail the metrics when naive initializations of the boundaries are used. In par-
ticular, we fix (i) no points (Zero), (ii) all the points belonging to the lowest surface (All).
Comparing the metrics on the test set with those obtained on these representative configura-
tions makes it possible to assess how BA-Net predictions impact the simulation error. We also
isolate values relative to the subset of test dataset whose samples have an associated visible
surface below 50%, a condition which is closer to real cases (TestV).

In the analysis with simulated data, we also report the values of the Maximum Volume
Error (MVE). MVE for sample i is defined as:

MVEi
“ max ||xsim

i
´ xground

i
||2 (4.7)

This metric is not computed on real data, since it is highly influenced by the presence of
errors in the computation of corresponding points.

Real world phantom data

BA-Net performances are tested on real world soft tissue manipulations performed with a sin-
gle Patient Side Manipulator (PSM) arm of the da Vinci Research Kit (dVRK) [8], as shown
in Fig. 4.4. We fabricate four deformable phantoms using commercially available addition
curing silicone rubber (Smooth-On Ecoflex materials) with different geometric shapes (cir-
cle, clover, rectangle and drop), thickness (6, 6, 5, 12 mm) and elastic properties (obtained by
using silicone rubber with different shore hardness). For each phantom, we choose 3 configu-
rations of fixed points, which are schematically summarized in Fig. 4.5. The position of fixed
points is defined by stitching the phantoms on a 3D printed calibration base (dimensions
144 ˆ 144 ˆ 4 mm), called Reconfigurable Attachment Board (RAB), with regularly spaced
holes in a 7 ˆ 7 grid (distance between adjacent holes is 18 mm). Thanks to the RAB, each
set of attachment points can be mapped to the corresponding simulated mesh to generate the
virtual ground truth. For each attachments configuration, we select 3 or 4 grasping points
distributed over the unconstrained portion of the phantom (see Fig. 4.5). Furthermore, for
each configuration we consider two starting conditions: the former where the phantom lies
flat on the RAB, the latter where a snap-fit capsule structure is added to the RAB to introduce
an initial pre-deformed state to the phantoms (Fig. 4.4), similarly to the real scenario where
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Figure 4.4: Real world experiments on phantom data. A single dVRK PSM interacts with de-
formable phantoms stitched to the calibration base in correspondence of the attachment points.
The PSM lifts the phantoms from their rest configurations. A snap-fit capsule is placed on the
experiment board to induce a pre-deformation. The RGBD camera is used to acquire the point
cloud of the deformed configurations.

fat tissues lie on the kidney. In our experiment, we lift the tissue from each grasping point to
the maximum feasible extent and we record the point cloud representing the current state of
the surface at regular steps of 10 mm, while increasing the lifting. The point cloud is acquired
by an Intel RealSense D435 RGBD camera and is automatically registered to the virtual ge-
ometry thanks the initial system calibration, which is performed following the same process
described in [169]. The displacement field IOD relative to the visible phantom surface is
retrieved by computing a dense point-to-point matching problem between the acquired point
clouds and the undeformed phantom surface, following the process described in Section 4.2.

Similarly to the evaluation conducted on simulated data, we run forward simulations using
ground truth APs as boundaries (Same configuration) also here. However, in real world
experiments, AVE obtained with the Same configuration represents the error due to modelling
inaccuracies, i.e., the difference between simulation and reality due to chosen simulation
parameters (e.g., mesh discretization, constitutive relationship).

4.3.2 Experiments on ex-vivo human kidney

Validation of the presented pipeline is carried out in realistic conditions on an ex vivo pararenal
fat tissue manipulation (Fig. 4.6a). Tissue’s PBM is initialized with the specimen 3D geometry,
generated from manual segmentation of its CT scan, and discretized with 65,538 tetrahedral
elements. Its biomechanical properties are selected to be aligned with those observed for adi-
pose tissues, as descrived above. Leveraging on the constructed PBM (Fig. 4.6b), it has been
also possible to generate a synthetic dataset based on a real anatomical model. Such dataset
allows us to evaluate method performances within a scenario which is influenced neither by
sensor noise nor by inaccuracies introduced by ZoomOut, since the IOD can be estimated by
directly matching corresponding points in the deformed and the undeformed configurations.
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Figure 4.5: Configurations of attachments considered in the real world phantom experiments.
Red areas represent the defined attachment regions; green spots correspond to grasping points.
Configurations are overlaid to the grid of RAB points, which allows to uniquely map the positions
between the real and simulated environment. Gray rectangle defines the position of the snap-fit
capsule that allows to obtain pre-deformed configurations.

Simulated pararenal tissue manipulation

A synthetic dataset of 600 samples of adipose tissue manipulation is generated following the
training data generation strategy described in Section 4.2.1, but keeping the considered PBM
fixed (Fig. 4.6b).

Real pararenal tissue manipulation

The complete intra-operative pipeline (Fig. 4.2) is employed to update the PBM during real
ex vivo pararenal tissue manipulation. An expert surgeon is asked to grasp the human tissue
with a laparoscopic tool from four pre-defined points, whose position is known in the 3D
model space thanks to CT-visible markers, and lift it to the maximum reachable extent that
prevents tissue tearing (Fig. 4.6a). After pulling the tissue from all the points, the surgeon
introduces a change in APs by dissecting some tissue adhesions, and repeats the acquisitions.
Acquired data are relative to three different initial states (i.e., two dissection stages); how-
ever, it has not been always possible to lift from all the grasping points due to excessive
tissue damage introduced by dissection. Intra-operative point clouds capturing deformed tis-
sue states are acquired through an Intel RealSense D435 RGBD camera. Collected images
allow to extract the displacement applied to the tissue by the surgeon, by tracking a STag
marker attached to the instrument (Fig. 4.6a) [170]. To evaluate the presented method,
point clouds at regular lifting steps of 10 mm are extracted and passed through the complete
pipeline described in Section 4.2. As soon as a new estimate of APs is available, we perform
a FE simulation to the obtained IOM applying the same input displacement applied by the
surgeon. We then calculate the AVE between the acquired point cloud and the deformed
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a b

Figure 4.6: (a) An example tissue manipulation. The surgeon manipulates the pararenal fat and
anterior fascia with a laparoscopic instrument, grasping from point A. Point clouds of the tissue
state are acquired with an RGBD camera capturing the scene from the same perspective of the
picture. (b) The PBM of the ex-vivo perinephric tissue. Letters and green circles are placed in
correspondence of the grasping points considered for the real world manipulation experiments.

IOM, relying on correspondences estimated by ZoomOut.
Furthermore, these experiments on realistic clinical settings have been used to evaluate the

performance of the proposed intra-operative pipeline in terms of computation time.

4.4 Experimental results on synthetic phantoms

Simulated data

Values of evaluation metrics on test dataset (Test) are detailed in Table 4.1. The MVE obtained
in simulations with predicted attachments has a median of 7.0p4.0 ´ 12.7qmm. Median MVE
for the Same configuration is 5.2p2.24 ´ 10.4qmm. In most of the samples, the maximum
volume error is found close to the grasping point, which usually corresponds to the maximum
deformation.

Table 4.1: Evaluation metrics, as median (25th-75th percentile), for the simulation test samples.

DSC TPR [%] AVE [mm]

Zero 0.00 (0.00-0.00) 0 (0-0) 27.0 (13.4-52.0)
All 0.42 (0.31-0.55) 93 (84-100) 6.7 (2.5-12.4)

Same 1.0 (1.0-1.0) 100 (100-100) 0.6 (0.2-1.7)

Test 0.82 (0.70-0.88) 86 (75-91) 1.1 (0.5-2.1)
TestV 0.76 (0.63-0.83) 83 (69-90) 1.2 (0.6-2.4)
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Figure 4.7: BA-Net predictions for three simulated cases (one per column). First row: initial PBM
(blue), deformed surface (pink) and visible IOS (red wireframe). Second row: voxelized initial
PBM (sdf ă grid voxel size) (blue), ground truth APs (red) and predicted APs (yellow). Last row:
deformed surface (pink), deformed surface when using predicted APs (orange), and deformed
surface when using ground truth APs (green). (a) Sample composed of two disjoint regions of at-
tachments, correctly predicted by the network. (b) Sample associated to a low visible IOS (36%).
In this case, BA-Net overestimates the attached region. (c) Sample characterized by a good predic-
tion accuracy but non-zero AVE. However, green and orange meshes are perfectly superimposed,
thus high AVE is due to the different simulation method and not inaccurate prediction.

Real world phantom data

Table 4.2 summarizes the results obtained for the experiments conducted on the real phan-
tom experiments, grouped following different criteria. First, we consider the results relative
to all the acquisitions associated to the same phantom (first four rows), to understand if the
performances are influenced by the different geometries and properties. Secondly, we analyze
metrics values at different levels of input displacement (2, 4, 6 cm from the rest configuration),
to evaluate the influence of the lifting height on the predictions. Results are further grouped
depending on the starting configuration (flat or pre-deformed). The AVE reported in Table 4.2
represents the error between each point in the acquired point cloud and the corresponding
one in the deformed configuration, relative to the AVE at rest (median value 4.8 mm). Error
at rest includes the contributions of registration error, inaccuracies in the computed corre-
spondences and sensor noise. Table 4.2 also details the values of AVE Same, which allows
to assess the magnitude of the error we are making even when using the optimal APs, thus
solely caused by discrepancy between simulation and reality. Visual examples of the network
predictions are provided in Fig. 4.8. Finally, we want to assess the robustness of the predic-
tions at different grasping points, for the same configuration of attachments. To this end,
we compute metric values considering the intersection of the predictions at different grasp-
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Table 4.2: Evaluation metrics on the real experiments, expressed as median (25th-75 percentile).
Last column reports the number of acquisitions which contributed to the statistics of the corre-
sponding row.

DSC TPR [%] AVE [mm] AVE Same [mm] #samples

Circle 0.28 (0.16-0.40) 68.7 (33.3-93.3) 3.2 (2.1-5.0) 3.5 (2.4-4.8) 101
Clover 0.40 (0.26-0.46) 62.8 (48.8-79.0) 3.1 (1.8-5.8) 3.0 (2.0-4.7) 79

Rectangle 0.43 (0.37-0.51) 86.7 (66.5-100.0) 3.7 (2.1-7.3) 4.2 (2.5-6.2) 85
Drop 0.54 (0.42-0.66) 75.6 (52.6-89.7) 3.4 (2.0-5.0) 3.6 (2.4-5.0) 80

Lift 2cm 0.41 (0.31-0.48) 72.6 (49.4-93.8) 3.9 (2.2-6.1) 3.8 (2.6-5.4) 85
Lift 4cm 0.44 (0.29-0.53) 70.6 (54.7-86.7) 5.0 (2.1-7.4) 4.8 (3.1-5.7) 44
Lift 6cm 0.44 (0.37-0.56) 76.3 (55.4-89.9) 3.9 (1.7-7.9) 4.5 (1.9-7.2) 15

Flat 0.41 (0.30-0.50) 82.1 (60.1-97.8) 2.8 (1.8-4.8) 3.1 (2.3-4.8) 198
Pre-deformed 0.40 (0.27-0.49) 65.1 (34.7-84.3) 4.1 (2.4-7.2) 3.8 (2.6-5.7) 147

Grasp 0.50 (0.23-0.56) 51.5 (35.4-60.0) 7.4 (4.5-9.8) – 24

ing points, for the same lifting height (in our case 4 cm), i.e. fixing only those points which
are predicted as fixed from all the grasping points (Table 4.2, last row). Fig. 4.9 provides
some visual examples of these predictions. It is worth noting that real world experiments are
associated to a visible surface below 50%, which is the most challenging condition.

4.4.1 Discussion

Simulated data

BA-Net predictions maximize both DSC and TPR, showing that the network has learnt to
generalize to new unseen geometries and configurations of fixed points (Fig. 4.7). The me-
dian AVE achieved by simulations with predicted attachments is 1.1 mm. Since this value is
obtained as an average error over the entire considered geometries, which includes both in-
ternal and surface points, it represents an overall precise matching between the ground truth
and the deformed state obtained with predicted attachments. This precise matching is fur-
ther supported by considering the large applied input displacement, with a median value of
38 mm. Although the median MVE might seem large, its value differs from the one obtained
when running forward simulations with ground truth attachments (Same configuration) by
less than 2 mm. The fact that MVE is not zero with the Same configuration indicates that
there is a baseline error introduced by applying an input displacement instead of a force
(Fig. 4.7c). Overall, simulation accuracy has significantly improved with respect to the cases
where a naive initialization is given to the boundary conditions, i.e. when fixing either zero
or all the points. Prediction accuracy is impacted by more challenging conditions, i.e. lim-
ited input information, as confirmed by metrics values when the visible surface is below 50%
(TestV), that are slightly worse than the ones on the entire dataset.
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Figure 4.8: BA-Net predictions for three real cases (one per column). Upper row: voxelized
initial PBM (sdf ă grid voxel size) (blue), ground truth APs (red) and predicted APs (yellow).
The considered grasping point is indicated in green. Lower row: acquired point cloud (red)
and deformed surface when using predicted APs (orange). (a) Sample at a lifting level of 2 cm.
The green mesh overlaid on the bottom configuration represents the deformed surface when using
ground truth attachments. (b) Sample at a lifting level of 4 cm, starting from an initially deformed
configuration. (c) Sample at a lifting level of 3 cm. In this configuration, the PSM occludes the
upper part of acquired point cloud.

Real world phantom data

Table 4.2 shows that values of the evaluation metrics are aligned for all the different exper-
imental conditions. BA-Net is able to handle different geometries and material properties,
with only slight differences. Worst results in terms of prediction accuracy are obtained for
circle and clover. The reason for this is twofold. Firstly, they are the only samples for which
we tested a configuration of attachments composed of two disjoint areas. Although samples
with more than one attachment region are present in the training dataset (Fig. 4.7a), the net-
work always predicts a single fixed region on the real data (Fig. 4.9b). The second reason for
these suboptimal values is that the attachment region is often overestimated, as emerges by
visual inspection of the results (Fig. 4.8a). However, this is not indicating bad prediction per-
formance: BA-Net learns to model not only fixation points but also constraints imposed by the
environment. In fact, the network predicts the whole area where the phantom is in contact
with the RAB as attached, which constrains phantom motion but is not taken into account by
the ground truth. This allows to achieve an overall good matching between simulation with
predicted attachments and real deformed state, which actually outperforms the simulation
result obtained when ground truth points are fixed (Fig. 4.8a). Although the best trade-off
between the metrics assessing prediction accuracy is obtained for rectangle and drop, these
shapes are associated to a higher AVE with respect to circle and clover. This is probably due
to the fact that the considered constitutive law is not able to accurately describe the behavior
of these two phantoms, fabricated with a different silicone rubber, which showed some time-
dependent behavior (Fig. 4.8b). We expect that this error could be reduced by using a more
accurate biomechanical model or injecting real samples in the dataset, but such fine tuning
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Figure 4.9: Network performance when considering the intersection of the predictions at different
grasping points, for the same configuration of attachments, in three different real cases. Upper
row: voxelized initial PBM (sdf ă grid voxel size) (blue) and ground truth APs (red). Predicted
APS are rendered according to a colormap which maps a region with yellow if all the predictions
considered it as attached. Lower row: acquired point cloud (red) and the deformed surface when
fixing points predicted as attached by all configurations (orange).

was out of the scope of this work.
Fig. 4.8c shows a failure case for BA-Net, which corresponds to the configuration associ-

ated with the leftmost grasping point. The heavy occlusion introduced by the PSM causes
dramatic geometrical noise that perturbs the matching retrieved by [163], in particular due
to ruined surface estimation. Even though BA-Net prediction is poor in this case, this is
caused by limited surface visibility and not by failure of the method itself. The inaccurate
matching could be resolved in the future by either injecting prior knowledge to the method
(e.g. trusted landmarks or temporal constraints) or by introducing the second dVRK PSM, to
limit occlusions.

BA-Net predictions are not influenced by the magnitude of the input displacement, as con-
firmed by the fact that higher input deformation introduces a limited gain in DSC and a slight
reduction in TPR variability. The increase in the AVE values is due to the fact that bigger in-
put displacements are more likely to introduce some instabilities in the simulations. We note
that there is a slight difference in the performances depending on the starting state: even if
the DSC is comparable between the two conditions, experiments starting from initially flat
configurations are associated to higher percentage of correctly identified attachments. The
difference in the AVE can be partially due to suboptimal 3D mesh when the configuration is
initially deformed. While the geometry could be directly extracted from pre-operative data in
real scenarios, for these experiments we had to warp the flat configuration based on the rest
point cloud in the deformed state, which introduced some low quality regions that can have
a negative impact on simulation accuracy.

BA-Net predictions are coherent when varying the grasping point (Fig. 4.9). However,
when single states of deformation are viewed, the region of attachment points is often over-
estimated, likely because the network is unsure whether a region which does not move is
fixed or not. Last row of Table 4.2 shows that the DSC tends to increase when using the
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intersection of the predictions from multiple views. This indicates a better matching of the
actual attachment region, even though it sometimes comes at the expenses of some missed
regions (lower TPR). A reason for this behavior is provided in Fig. 4.9b and c, which shows
that if just one of the predictions misses a region, it will be excluded from the intersection
(leading to worse AVE as well). In future works, we plan to test other strategies for combining
the predictions obtained from different grasping points, for example weighting the different
contributions based on the likelyhood of the predictions.

In general, median values for the DSC coefficient seem quite low if compared to the ones
obtained on simulated samples. However, metrics values must be interpreted with respect
to the devised application. As highlighted in Section 4.1, the network could be exploited to
support an autonomous surgical system in two ways: either by improving simulation accuracy
in case of actions replanning or by providing a guess of the attachment region to guide the
actions of the ARSS (for example during tissue retraction or dissection).

If we focus on the application of BA-Net for the improvement of simulation accuracy, we
can see that simulations performed with the boundary conditions predicted by BA-Net lead
to an AVE which is better than the one obtained when fixing ground truth points in most of
the cases. This is due to the fact that simulations fixing ground truth points do not take into
account the constraint provided by the RAB, while the network seems to learn to account
for that. Simulations with ground truth attachments can be thought of as a real surgical
scenario where we have some a priori knowledge about the attachment area, but no guess
about the constraints provided by the surrounding anatomical environment. The reduction
in AVE introduced by BA-Net tells us that the method has the potential to improve simulation
accuracy with respect to the case when some a priori knowledge about the area of interest is
available. Although obtained AVEs might seem large in absolute terms, we have to consider
that it is obtained with sub-optimal simulations, characterized by quite coarse anatomical
models and rough modelling assumptions. Using a higher resolution geometry and object-
specific constitutive law would help to reduce such error. In the current work, our main
focus was the assessment of the general prediction capabilities of the method and its ability
to update biomechanical simulations, thus we relied on models that could guarantee a good
trade-off between accuracy and computational performance.

The other possible application of BA-Net in surgery is the identification of APs to support
autonomous tissue manipulation tasks. In this case, it is preferrable that most of the attached
area is correctly identified, even at the cost of having added regions or inaccuracies in bound-
ary delimitation. In this context, having high TPR values is more important than having a
good DSC, because we want to minimize the amount of missed regions. Achieving a median
TPR above 62% for all the real world phantom experiments tells us that most of the attached
area is correctly identified. This is an interesting result if we consider that such accuracy
is achieved by providing a single partial view of the deformed state of the tissue as input
and without relying on any prior information and considering that the net is trained with
only simulated samples. Even expert surgeons would find it challenging to precisely identify
the attached area from a single manipulation, especially if the applied displacement is small.
What experts would generally do is to move towards the expected area of attachments and
perform further manipulations of the tissue, until they are confident enough about the loca-
tion of the attached points. We expect that BA-Net would benefit from a similar approach,
and future works will focus on improving the prediction by providing sequential frames as
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input.

4.5 Experimental results on ex-vivo human kidney

Simulated pararenal tissue manipulation

The median AVE (25th-75 percentile) calculated on all the 3D model points between the
deformed IOM and the corresponding reference sample is 1.4 p0.7 ´ 3.2qmm (Fig. 4.10).
Since ground truth APs are available for the simulated dataset, we assess prediction accuracy
by computing the DSC, similarly to what we did for the synthetic phantom experiments.
Median (25th-75 percentile) value for DSC is 0.51 p0.40 ´ 0.60q. Fig. 4.10b and c show that
the network is challenged by the complex geometry and fails to accurately identify APs when
they are distributed along the sharp edges of the mesh, especially when the amount of visible
surface is very small and does not capture the region undergoing the highest deformation.
However, when the visible surface captures the region with greatest deformation (Fig. 4.10b),
BA-Net is able to provide a plausible prediction, which leads to a precise matching between
the simulated and the reference configuration.

Figure 4.10: Results on the simulated pararenal tissue dataset considering input displacements
above 25 mm. Upper row: ground truth deformed configuration (green) and simulated deformed
configuration obtained when using predicted APs (yellow), with the considered visible IOS (light
blue). Pink mesh represents the deformed configuration when APs are unknown, thus undefined
(Zero configuration). Lower row: ground truth APs (green) and predicted APs (red) in grid space.
(a) Good overlap between simulated and ground truth configurations (AVE=1.6 mm), due to good
prediction accuracy (DSC=0.68). (b) Good overlap (AVE=1.7 mm) is possible even if prediction is
not the same as the ground truth one (DSC=0.09). (c) High AVE (14.6 mm) is due to an inaccurate
prediction (DSC=0.02), when visible surface does not provide enough information about tissue
state.

Real pararenal tissue manipulation

Table 4.3 reports the average AVE over 10 runs of the whole pipeline, relative to the error at
rest (average 3.62 mm, which includes contributions of segmentation and registration errors)
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Table 4.3: AVE between ground truth point clouds and their corresponding points in the virtual
environment when using predicted APs, at increasing deformation levels [mm]. Acquisitions are
grouped by grasping point (A, B, C, D) and initial tissue state (1, 2, 3). Reported errors are relative
to the error at rest and represent the average over 10 runs of the entire pipeline. Missing values
are due to failures in instrument tracking. Last column reports the AVE obtained when no APs are
defined in the virtual environment (Mean Zero).

Grasp State 10 mm 20 mm 30 mm 40 mm 50 mm Mean Std Mean Zero

A
1 - 0.94 1.06 1.28 6.81 2.52 2.48 24.93
2 - - 1.42 2.42 2.75 2.20 0.65 31.99

B
1 2.96 6.75 - - - 4.86 1.90 13.02
2 5.05 9.91 11.47 - - 8.81 2.84 27.06
3 3.27 11.71 9.12 3.92 - 7.01 3.60 31.53

C
1 - 1.65 2.49 - - 2.07 0.42 18.66
2 5.30 2.54 3.84 - - 3.89 1.42 14.23
3 2.59 4.61 6.93 10.76 - 6.22 3.04 18.79

D
1 1.07 - - - - 1.07 0.00 7.72
2 - 1.32 1.57 3.98 5.25 3.03 1.71 19.76
3 1.51 2.28 3.57 - - 2.45 0.85 7.29

Mean 3.11 4.64 4.61 4.47 4.94
Std 1.50 3.90 3.52 3.32 1.80

at increasing pulling levels. The reason why we report results over multiple runs is that
we rely on an approximate nearest neighbour for ZoomOut to minimize the computational
overhead, which might however introduce some differences between different runs. The
average time required to update the synchronous PBM simulation is 1.44 ˘ 0.14 s (with an
average of 0.039 s dedicated to pre-processing, 1.39 s to displacement estimation, and 0.013 s
to BA-Net), tested on a workstation with an AMD Ryzen7 3700X CPU and NVIDIA RTX 2070
SUPER graphics card.

4.5.1 Discussion

Simulated pararenal tissue manipulation

Results on the simulated dataset show that when predicted APs are used to characterize the
simulated environment, the simulated state differs from the corresponding reference of less
than 2 mm on median, indicating an overall good matching (Fig.4.6a). Best alignment be-
tween the two configurations is achieved when the visible surface captures the area of great-
est deformation. This fact does not introduce a limitation for the real clinical settings, where
the intra-operative sensor is looking at the area of manipulation, which usually corresponds
to the most deforming part.

Real pararenal tissue manipulation

Average AVEs obtained on real ex-vivo tissue manipulation remain below 5 mm in almost all
the cases, which is aligned with the accuracy levels required for model-guided intra-operative
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applications in the context of minimally-invasive surgery [14, 107, 15]. Furthermore, ob-
tained AVEs are significantly lower than the ones achieved when APs are unknown, thus they
cannot be defined and the simulation remains unconstrained (Zero configuration, last col-
umn in Table 4.3). In general, we notice that AVE increases with increasing deformation, in
a more significant way with respect to what observed on real world phantom experiments
(Section 4.4). This might be due to the fact that accurate simulation of real adipose tissues is
more challenging than synthetic phantoms, probably requiring more sophisticated modeling
choices (e.g., highly non-linear constitutive laws handling inhomogeneities). Moreover, the
high deformations may cause poor surface estimation from [171], which assumes that the
point cloud already represents the desired surface without noise or topological artifacts. In
such case, ZoomOut promotes a disturbed correspondence (i.e., isometric to a wrong sur-
face). To improve this step, investigating the point cloud denoising techniques seems a
promising future direction. This further motivates the worse AVE values obtained in cor-
respondence to grasping point B, whose point clouds are partially occluded by the surgical
tool. If we consider the computational performances, we notice that our pipeline can provide
a new estimate of the APs in less than 2 s, with ZoomOut taking most of the time. This update
rate allows to rely on a simulation environment which can reflect the changes in the surgical
scenario with a very short latency.

Overall, these results suggest that the presented pipeline can be used to successfully up-
date a PBM exploiting data coming directly from intra-operative sensors, while respecting
both accuracy and time constraints compatible with standard minimally-invasive surgical ap-
plications.

4.6 Conclusion

In this Chapter, we have presented a complete pipeline that allows to update a patient-
specific pre-operative model, starting from the raw data acquired during the intervention.
Our pipeline relies on BA-Net, a deep neural network that provides an estimate of tissue at-
tachment points starting from the pre-operative PBM and a single partial intra-operative view
of the deformed tissues. Obtained results on both simulation and real world experiments have
shown that the proposed strategy can improve a biomechanical simulation intra-operatively
by updating the attachment points (i.e., simulation boundary conditions), reducing the dif-
ference bewteen the real and the simulated environments to less than 5 mm in all the tested
cases. This accuracy level is aligned with the one required for model-guided intra-operative
applications in the context of minimally-invasive surgery [14, 107, 15]. Furthermore, the
presented pipeline provides a new estimate of tissue attachments within a very short delay
(i.e., less than 2 s). This allows to update the simulated model reflecting the changes in clin-
ical settings with a latency compatible with standard surgical workflows, potentially making
the method able to handle situations with dynamically changing APs, for example involving
dissection, sutures removal or topological changes.

Conducted experiments have highlighted some common limitations, which will guide fu-
ture research and development. First of all, quality of BA-Net predictions has shown to be
impacted by the complex geometry of real tissues as well as inaccurate estimation of the
displacement field introduced when dealing with real data, due to the presence of sensor
noise. Future work will focus on making the synthetic training dataset more representative
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of real world conditions, including strategies to generate more realistic pre-operative geome-
tries (e.g., with surface irregularities) and simulating point cloud noise when extracting the
IOS. We expect that this will help BA-Net to implicitly learn how to cope with the challenging
realistic conditions.

An additional direction for future research relies on the improvement of BA-Net predictions
by providing the network with a more informative input. Identifying APs from a single partial
view of the deformed tissues would challenge even expert surgeons, especially if the applied
displacement is small. Therefore, we plan to consider a sequence of intra-operative tissue
states as input to the network, potentially including multiple grasping points. This strategy
seems particularly promising to improve the robustness and coherence of the predictions,
within an environment which is intrinsically evolving in time.

Furthermore, real world experiments have shown that the quality of the final result is in-
fluenced by the different sources of errors that are introduced throughout the various stages
of the pipeline, from an imprecise initial rigid alignment, to the presence of sensor noise and
inaccurate computation of corresponding points. In future works, we plan to improve the pre-
processing stage, for instance by reconstructing the point cloud from the stereo-endoscope
view [172]. Inaccurate surface matching can be addressed by either letting the network
implicitly solve the surface correspondence problem as in [14], by providing salient points
extracted from camera view to ZoomOut, or by improving surface estimation [173]. In partic-
ular, relying on DNN to directly solve for surface correspondences seems promising to further
improve the time performances of the current implementation, where ZoomOut is responsible
of the main computational overhead.

Contributions of this Chapter

The main contributions of this Chapter are the following:

1. We introduce Binary Attachment Network (BA-Net), a deep network that esti-
mates attachment points of a deformable organ from a single partial view of the
intra-operative surface, without any a-priori knowledge of their location.

2. We demonstrate that the method can update a PBM reaching clinically acceptable
performances, both in terms of accuracy and intra-operative time constraints, on
soft tissue manipulation of (1) synthetic phantoms with the da Vinci Research Kit
and (2) ex-vivo pararenal tissue.

3. We publicly share the full pipeline for intra-operative update of a PBM starting
from the raw sensor data as well as the collected dataset of soft tissue manipula-
tion on synthetic phantoms at https://gitlab.com/altairLab/banet.
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Chapter 5

Learning a surgical task in simulation

5.1 Introduction

Automating a surgical intervention is an extremely complex task, due to the many different
actions that are required to complete a procedure. For this reason, the research trend in au-
tonomous surgery has broken down the problem and focused on the automation of individual
tasks taking place during surgery. Following the definition of [174], tasks are sequences of
activities which aim at a specific surgical objective and is recurrent in many different proce-
dures, e.g. tissue dissection, suturing and knot tying. One of the challenges when attempting
to automate surgical actions is that they all involve the interaction with the soft anatomical
environment, thus requiring the development of control strategies that can cope with such
dynamic behavior. For example, a common task in surgery is Tissue Retraction (TR), which
requires the manipulation of soft tissues in order to expose a hidden region of interest. TR is
performed during robot assisted nephrectomy procedures, where the surgeon has to interact
with the highly deformable pararenal adipose tissue which covers the kidney in order to have
access to the underlying tumor.

Some works have attempted to automate TR with standard motion control algorithms. For
example, Nagy et al. have proposed to automate TR using soft computing methods [175].
In [176], authors have proposed a trajectory planner for TR based on coordinates extracted
directly from the intra-operative image feed. Both these works have automated TR relying on
pre-defined movement sequences without considering tissues dynamics, posing some doubts
about its possible exploitation in realistic anatomical environments. In [177, 178], authors
employ standard path planning methods to execute an optimal plan for the task generated
within a biomechanical simulation in the pre-operative phase, in this way accounting for
the deformation properties of the anatomy. However, all these approaches rely hand-crafted
control policies, which make the execution of complex non-linear trajectories and behaviors
challenging.

Most of the prior works concerning the automation of actions involving soft tissues ma-
nipulation rely on Learning from Demonstrations (LfD), where a task is learnt by imitating
expert behavior [179, 180, 181, 182]. LfD is a preferred approach since it allows to learn
proper interaction with deformable tissues without the need to explicitly model of their be-
havior. In addition, it does not require to explicitly design policies. However, the robustness
of learned tasks to changes in the initial conditions or in the environment is strongly affected
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by the amount and variety of expert demonstrations provided to the system [183]. Collecting
a dataset with a vast repertoire of trajectories from multiple experts and varying initial condi-
tions is impractical and often unfeasible in clinical settings. Moreover, with LfD the robot can
only become as good as the human’s demonstrations, but there is no additional information
for improving the learnt behavior.

Deep Reinforcement Learning (DRL) has shown promising results in the automation of
robotic tasks like object manipulation and pick-and-place tasks, without the need to design
ad-hoc control strategies [184]. In DRL, the component which makes decisions about the
action to take is called agent. A DRL agent reaches robust performance after it has explored
a huge amount of possible policy options, which requires a large number of interactions with
the environment, many of which fail with unsafe behavior [185]. Although safe learning
methods have been proposed, their exploitation in the surgical robotic field remains limited,
due to the impracticality to acquire many training trials from real surgical robotic systems
[186]. For this reason, existing works based on DRL learn surgical tasks in simulated en-
vironments, to enable the many trial and error attempts required to train agents in safe
and controlled settings [187, 188, 189, 190]. One of the main challenges when training in
simulation is that the reality gap (i.e., the discrepancy between the simulated and real en-
vironments) must be kept as low as possible to enable successful deployment of the learnt
policies in the real world, in what is called sim-to-real approach [191]. In the context of
RMIS, this means that the simulation should account for both deformable properties of the
anatomy and the interaction with the surgical tools. This is the main limitation of dVRL, a
simulation framework to train DRL agents for surgical tasks proposed by Richter et al. [192],
which is based on VREP and OpenAI Gym, and supports only rigid objects. Because of the
reality gap, simulation-learnt behaviors have been transferred to the real surgical robotic sys-
tem only for simplified geometries [188]. Only recently, Xu et al. have proposed SurRoL,
a simulation-based platform for DRL that can simulate deformable objects and is interfaced
with the dVRK [193]. SurRoL has shown promise for successful transfer of behaviors learnt
in simulation to the real world.

Recent research has proposed to combine LfD and DRL with the aim of exploiting the
strength of both approaches and overcome their respective drawbacks [194]. In particular,
demonstrations can be used to guide the exploration done during learning, reducing the
time required to find an improved control policy, which may depart from the demonstrated
behavior. A promising strategy is represented by Generative Adversarial Imitation Learning
(GAIL) [195], which has been successfully applied to endovascular manipulators but never
used in RMIS [196].

In this Chapter, we focus on the role that simulation can play to support the process of
learning surgical tasks. By providing a realistic replica of the real scenario, simulation rep-
resents an exceptional resource for two reasons. First of all, it allows to perform the large
amount of trial and error attempts required by learning-based methods in controlled set-
tings, enabling the exploitation of state-of-the-art approaches without the need to access the
real surgical systems, which is both impractical (sometimes unfeasible) and risky. Second,
it provides an environment where to test the learnt behavior before its exploitation on the
real robotic system, allowing to predict potentially unsafe or dangerous situations and pre-
vent from their execution in the real world. Our main contribution is the development of a
modular framework called UnityFlexML that provides an interface between a realistic simu-

81



5.2. UNITYFLEXML: A FRAMEWORK TO LEARN SURGICAL TASKS IN SIMULATION

lation of deformable anatomy, the surgical robotic system and learning-based methods. In
particular, in the context of this Thesis, we consider DRL and LfD techniques. We show that
the developed framework is suitable for both prototyping and testing two different learning
approaches: a standard DRL method requiring multiple interactions with the environment
and an approach that combines LfD and DRL, on the automation of a soft tissue retraction
task. Finally, we demonstrate that the learnt policies can be successfully transferred to the
real system, thanks to the high level of realism achieved by the simulation environment.

5.2 UnityFlexML: a framework to learn surgical tasks in
simulation

UnityFlexML is a modular framework that allows to exploit learning-based methods to learn
tasks in a simulated surgical environment which involve deformable objects (Fig. 5.1). The
developed platform provides an interface between the real dVRK and a simulation of the real
environment.

The framework is made publicly available at https://gitlab.com/altairLab/unityflexml.

a b

Figure 5.1: UnityFlexML framework. The simulated dVRK arms interact with deformable tissues,
modelled using PBD method. Example scene (a) at rest, (b) during tissue manipulation.

5.2.1 Robot platform

UnityFlexML tackles automation of surgical tasks executed with the Patient Side Manipulator
(PSM) arms of the dVRK. The dVRK is programmed using the Robot Operating System (ROS)
[197]. In order to have a state space (i.e., the set of all possible configurations of the robotic
agent) which is straightforward to observe in both the simulator and the real robot, the
motion of the PSM end-effector (EE) is controlled in the Cartesian space, keeping the EE
orientation constant (as in [192]). The framework can handle any possible surgical tool,
provided that the corresponding kinematic model is loaded in simulation. Therefore, the
PSM EE state is characterized by its position pt and gripper state gt P t0, 1u for open/close.
Similarly to [192], we normalize the PSM positions with respect to the workspace, defined
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by the PSM joint limits and the obstacles in the environment, to allow generalization of the
learned policies to various joint configurations.

5.2.2 Simulation environment

The simulation is implemented within Unity3D, an engine whose main advantage is the high
modularity, which allows users to easily customize the environment scene and exploit ad-
vanced features implemented in separate plugins [198]. Our framework relies on two main
Unity3D plugins: the Machine Learning Agents Toolkit (ML-Agents), for training intelligent
agents [199], and NVIDIA FleX, for soft object deformation [149]. Deformable bodies are
simulated with the Position Based Dynamics (PBD) approach relying on the optimized imple-
mentation provided by NVIDIA FleX. This library has proved to be able to accurately model
the deformable behavior of anatomical tissues with highly efficient computational perfor-
mances (see Section 3.8) and it is thus particularly suitable to perform the huge number of
trial and error attempts required for agent training with learning-based methods. Our choice
to simulate anatomical deformations based on PBD instead of relying, for example, on the
finite element method to obtain a physically accurate result (Section 2.3.1) is motivated by
the superior performance of PBD in terms of computational efficiency and numerical stability.
These two aspects are of major concern in our framework, which has to allow the simulated
agent to perform multiple interactions with the environment in the lowest time to guarantee
efficient training, thus also minimizing the risk of simulation instability.

From what concerns the simulation of the robotic part, we have implemented a closed form
inverse kinematics of the PSMs to enable the Cartesian space control of the manipulator. Data
exchange between Unity3D and ROS exploits UDP-based communication, using the method
described in [200]. At each simulation step, the robotic system is allowed to perform a
very small motion increment. As a consequence, we could assume the impact of the robot
dynamic behavior to be negligible, thus we have not accounted for it in the simulation [192].
In UnityFlexML, grasping of an object is modelled as an atomic event triggered when the
relative distance with the EE is less that 2 mm.

5.3 Background on learning-based methods

The aim of UnityFlexML is to provide an integrated simulation framework where learning-
based methods can be trained. Before presenting how the framework can be used for this
purpose, we introduce the main concepts in learning-based approaches.

5.3.1 Reinforcement learning

Reinforcement Learning (RL) denotes a learning paradigm where an agent learns behaviors
to achieve its goal while interacting with the environment (Fig. 5.2). A general RL problem
can be formulated as a Markov Decision Process (MDP) described by the tuple xS,A,R, P y,
where:

• S is the set of possible states of the environment;

• A is the set of possible actions of the agent;
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• P is the transition probability distribution, with P pst`1|st, atq being the probability of
transitioning into state st`1 when starting in state st under action at;

• R is the reward function, with rt “ Rpst, at, st`1q being the immediate reward after
transition from st to st`1 with action at.

Figure 5.2: In RL, an agent takes an action at in an environment. In turns, the environment
communicates a new state st`1 and a reward signal rt back to the agent.

At every step t of interaction with the environment, the agent receives an observation of the
state st, and then decides on an action at to take. As a consequence of the action, the agent
moves to the new state st`1 and receives a reward signal rt associated with the transition
pst, at, st`1q. The goal of the agent is to learn a behavior policy π, i.e. the rule used to
decide which actions to take, that maximizes the expected cumulative reward ErRpτqs. Rpτq
is commonly defined as:

Rpτq “
8
ÿ

t“0

γtrt (5.1)

which considers the sum of discounted rewards, where the discount factor γ P r0, 1q is intro-
duced to weight events in the distant future less than events in the immediate future. Rpτq
is sometimes defined over an episode, i.e. the sequence of states and actions over a fixed
time horizon T . Due to the high dimensionality of the state space S in many practical prob-
lems, deep learning methods have been incorporated in the standard RL setting to represent
the policy or other functions, leading to what is called Deep RL (DRL). The expected return
obtained when starting from state s and successively acting with policy π is called value func-
tion Vπpsq. The optimal value function V ˚psq is the one obtained when acting according to
the optimal policy π˚, the one that achieves the optimal values in all the states. Instead, the
action-value function Qπps, aq gives the expected return when starting from state s, taking a
first random action a P A and subsequently acting following policy π.

RL algorithms are classified in different ways depending on what they learn and how. A
first categorization deals with the availability of a model of the environment, which allows
the agent to consider a range of possible action plans and predict state transitions and re-
wards. Such model can be either given or learnt in a first stage. Several different approaches
to model-based RL have been proposed [201]. Some of them compute optimal plans with re-
spect to the model each time a state observation arrives, relying on pure planning techniques
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like model-predictive control [202]. An alternative approach learns the policy that produces
actions as similar as possible to an expert planning algorithm [203].

However, having a model of the environment is generally quite difficult, since the dynamics
of the objects involved are not always known. To tackle this issue, model-free RL methods
are popularly used [201]. While being easier to implement and tune, model-free RL is gen-
erally less sample efficient (i.e., it needs more experience to learn) than model-based RL.
Model-free approaches can either optimize the policy directly (policy optimization methods)
or learn the optimal action-value function (Q-learning methods). Policy optimization algo-
rithms rely on data collected while acting according to the most recent version of the policy
(on-policy optimization). On the other hand, Q-learning approaches indirectly optimize for
agent performance relying on data collected at any point during training, regardless of the
specific policy used when such data were obtained (off-policy optimization). This causes Q-
learning to be less stable but generally more sample efficient than policy optimization, since
it can reuse data more effectively.

Proximal policy optimization

Proximal Policy Optimization (PPO) is one of the most popular RL methods. It is a model-
free on-policy RL algorithm which continuously alternates between collecting a new batch
of observations and improving the policy [204]. In particular, PPO maximizes a surrogate
objective function that estimates how much the expected return will change after parameters
update. A common approach to train a PPO agent in DRL relies on two deep networks, one
called actor and other called critic. The actor network receives state observations from the
environment and learns what action to take under a given observed state. Whereas, the critic
network receives the reward signal following the action from the environment and learns to
evaluate if the action taken by the actor led the environment in a better or worse state. The
critic sends its feedback to the actor, which exploits such information to improve the policy.

5.3.2 Learning from demonstrations

The most challenging step in standard RL consists in the design of the reward function.
Manually shaping a good reward function to teach an agent to perform a task is immensely
difficult, especially for complex tasks [205]. An approach that allows to learn without requir-
ing a reward function is Learning from Demonstrations (LfD). LfD entails those methods that
can learn from observed behaviors of other agents (generally human experts), specifically
Imitation Learning (IL) and Inverse Reinforcement Learning (IRL).

In IL, the observed behavior is exploited to learn the optimal policy, without requiring inter-
action with the environment. For example, behavioral cloning learns to replicate the expert’s
policy from state-action pairs of expert trajectories in a supervised fashion [206]. However,
it often suffers from poor generalization since this approach learns to imitate actions without
any cue about the reasoning behind the task, so it is not able to understand if the actions are
relevant for the final goal.

Whereas, the goal of IRL is not to use the demonstrated behavior to learn the policy, but
to learn the reward function that could explain the expert behavior. The benefit of IRL over
IL is that the learnt reward function is portable to other environments, thus leading to better
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generalization capabilities. However, IRL algorithms are very expensive to run, since they
require RL in an inner loop to extract the imitation policy from the learnt cost function.

Overall, both IL and IRL usually require a large number of expert trajectories, which are
often not easy to get.

Generative adversarial imitiation learning

Generative Adversarial Imitation Learning (GAIL) represents a promising approach to learn
human decision-making strategies from a limited set of expert demonstrations using deep
neural networks [195]. In particular, GAIL combines LfD with a Generative Adversarial Net-
work (GAN) to learn both the unknown policy and reward function. GANs consist of two
networks: the generator and the discriminator [207]. The role of the generator is to generate
exploration trajectories that should become more and more similar to expert trajectories as
the training proceeds. The goal of GAIL is to train generators such that they learn to behave
in the same way as the given experts. Meanwhile, discriminators serve as the reward func-
tions for RL, which judge whether the behaviors look like the experts. Usually, the adopted
policy generator relies on PPO. There are two reasons why PPO is used for GAIL: first, it uses
smooth policy update for stable learning and second, PPO generates diversified trajectories
that act as a wide sampling range for the discriminator in GAIL.

5.4 Learning tissue retraction within UnityFlexML

The presented UnityFlexML is employed to train agents in a simulated environment to learn
a soft tissue retraction task. In particular, we aim at learning the sequence of actions that
allow to accomplish the task and consists in reaching the adipose tissue covering the kidney,
grasping it and lifting it in order to expose a tumor. In the following, after describing our
experimental setup, we detail how we adapt the two considered approaches, i.e. a standard
DRL approach and GAIL, to learn the desired task with our platform.

5.4.1 Experimental setup

Our real experimental setup consists of a synthetic kidney phantom covered with silicone fat
tissue, shown in Fig. 5.3a. We restrict the portion of fat tissue our agent interacts with to a
90ˆ90 mm square region which is rigidly anchored to the top part of the kidney. The silicone
patch representing the fat is held in place through a custom designed rigid structure, which
enables to uniquely define the position of fat and kidney between the simulated and the real
environment. The initial configuration of the fat tissue is obtained by letting this square
region fall on the kidney phantom under gravity load. In our experiments, we consider a
scenario with a single PSM arm equipped with the Large Needle Driver. All the simulation
experiments, including agents training and dVRK control, ran on a workstation equipped
with an AMD Ryzen 3700X processor and NVIDIA TitanX GPU.

UnityFlexML environment

The 3D model of the kidney phantom used to inizialize the simulation environment as well
as the position of the tumor q are extracted from segmentation of the Computerized Tomog-
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a b

Figure 5.3: (a) In our setup, a single arm of the dVRK interacts with silicone fat tissue covering
a kidney phantom. The simulated scene controlling dVRK movements within UnityFlexML can be
seen in the background. (b) The calibration board used to uniquely map all the components of
our real experimental setup to the UnityFlexML environment.

raphy (CT) of the phantom.
In an effort to minimize reality gap, we perform a preliminary optimization procedure to

find the PBD deformation parameters that describe the behavior of our synthetic adipose tis-
sue, keeping the real and the simulated behaviors as close as possible. We employ the genetic
algorithm scheme to optimize PBD parameters most impacting the deformable behavior of
the fat tissue our robot interacts with, similarly to what has been described in Section 3.5.1.
Optimization is performed on some preliminary experiments where a teleoperated PSM arm
lifts the fat tissue, which starts from a planar configuration and is rigidly fixed on one side
(Fig. 5.4). We define N “ 5 different pinch points along fat contour and L “ 3 different
levels of lifting are defined for each pinch point. The point cloud representing ground truth
positions of the fat tissue is acquired using an Intel RealSense D435 Depth camera (Intel Cor-
poration, Santa Clara, USA), whose position is defined with respect to a custom calibration
board which allows to rigidly align the simulated and the real environment (Fig. 5.3b).

a b

Figure 5.4: One of the experiments of the optimization process. The fat tissue is anchored to the
calibration board (right side in Fig.). (a) Rest condition; (b) Deformed condition. Point cloud of
the deformed tissue is acquired with the depth camera shown on the right.

Optimal values for the cluster spacing, cluster radius and cluster stiffness parameters are
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estimated by minimizing the following error ε:

ε “
1

N

N
ÿ

n“1

L
ÿ

l“1

M
ÿ

m“1

||xPBDpl, nq ´ xPCLpl, nq||2 (5.2)

where ||.||2 represents the Euclidean distance between the position of the M particles defining
the fat in simulation xPBD, at deformation level l and pinch point n, and the closest point of
the corresponding point cloud xPCL. The acquired point cloud has been decimated to bring
the number of points comparable to M . The diameter of the PBD particles is set to 3 mm (i.e.,
the width of our tissue sample), which allows to describe the dynamics of the fat tissue with a
single layer of particles. The constraints and the range of allowed values for each parameter
are set in the same way as described in Section 3.5.

Optimal values for the cluster spacing, radius and stiffness parameters generated with the
optimization process are 0.127, 0.095 and 0.361 respectively, which lead to an average error
between the simulated and the ground truth point clouds of approximately 3 mm, which is
comparable with dimensions of PBD particles. These values are employed to describe the
deformable behavior of the fat tissue in the simulation scene.

5.4.2 Learning methods

In our problem, the agent is represented by the end-effector (EE) of the da Vinci PSM, which
interacts with the surrounding anatomical environment, whose initial state is assumed to
be known from pre-operative data. Our task consists of moving the PSM arm from a pre-
defined initial position p0 to a position close to the tumor q, grasp the fat and lift it to a pre-
defined final position pT . In order to make the learnt motion primitives robust to different
initial configurations, the EE starts from a different position p0 after each episode (i.e., 2500
timesteps in our case) at training time. Whereas, pT is considered fixed through all the
training experiments. The considered state space leverages solely on kinematics information
defining the current robot state and the environment, at time t:

st “ rpt,q,pT , ||pt ´ q||2, ||pt ´ pT ||2, gts

at “ r∆ts
(5.3)

where ||.||2 is the Euclidean distance. ∆t,i “ 0.5α, α P t0,´1,`1u tells the agent if it has
to remain still, move backward or forward by 0.5 mm in the ith spatial dimension, while
gt P t0, 1u represents the gripper state (open/close).

The feasibility of using UnityFlexML to learn a surgical task is evaluated using two possible
strategies: a standard DRL approach and GAIL.

DRL setting

The first considered method is a model-free on-policy DRL algorithm based on PPO, in its im-
plementation provided by Unity3D ML-Agents. The architecture of the actor-critic networks
of the PPO agent used is shown in Fig. 5.5. For the training phase, we design a reward func-
tion which varies with the gripper state, to encourage EE motion towards the tumor if the
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tissue has not been grasped yet (i.e., gripper is still open), and tissue retraction if the tissue
has been already grasped:

rt “

#

||pt ´ q||2 ¨ k ´ 0.5, if gt “ 0

||pt ´ pT ||2 ¨ k, if gt “ 1

The scalar quantity of ´0.5 is added to restrict the reward in the range p´1.0,´0.5q before
grasping and p´0.5, 0q after grasping. The normalization constant k is introduced to allow
re-scaling of the trajectories to different working spaces and is inversely proportional to the
maximum distance the PSM can move. During training, the rewards are accumulated at each
episode. Being a pure DRL method, this approach is entirely trained in simulation. In the
following, we refer to this setting as “PPO".

GAIL setting

The second considered approach relies on the learning paradigm provided by GAIL, using a
policy generator based on PPO. The network architecture is depicted in Fig. 5.5. The loss
function used in this setting is a linear combination between DRL and GAIL losses αLDRL `
βLGAIL where α and β represent weighting factors for the two loss functions. Our initial
investigation on hyper-parameters tuning yielded best performance for α “ 0.2 and β “ 0.8.
Other values of α and β yielded slower convergence.

Training of a GAIL agent requires the collection of trajectory demonstrations. The acquired
trajectories consist of repetitive fat lifting tasks performed by an expert user with the real
dVRK, leveraging the communication pipeline provided by UnityFlexML. Although our sim-
ulation framework supports demonstration recordings using a keyboard or a joystick, the
established communication pipeline between dVRK and UnityFlexML is crucial since it helps
to acquire demonstrations directly with the real robotic system, thus without deviating from
the surgical workflow. Overall, we collect a total of 35 task demonstrations. Each recorded
demonstration consists of the set of kinematic observations that define the state space and the
corresponding action at each timestep. Since the expert is well aware of the final objective of
tumor exposure, the grasp position is near the tumor for all the demonstrations. Moreover,
the expert user is instructed to diversify the trajectories by starting each demonstration from
a different initial position above the fat surface.

5.4.3 Evaluation metrics

To assess the suitability of the framework as a tool for learning surgical tasks, we test the
performance of the considered methods to learn the tissue retraction task when training
within UnityFlexML. In particular, the high level of realism of the simulated environment
created within UnityFlexML does not only allow us to train the methods with a sim-to-real
approach but also provides a platform for testing the presented methods in realistic settings.
As a consequence, the learnt behavior is tested both in a simulated environment, provided by
UnityFlexML, and in the real one, in a sim-to-real fashion.

Performances of the presented algorithms are tested both in simulation and reality based
on two different criteria: sample efficiency and optimality of the accomplished task. Sam-
ple efficiency denotes the amount of experience an algorithm needs to learn a behavior by
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Figure 5.5: Network architecture of DRL and GAIL settings. The DRL setup relies on PPO, which
consists of actor and critic network. The actor also acts as the policy generator in the GAIL setting.
Generated trajectories and expert trajectories are passed to the discriminator. The discriminator
learns a probability function which classifies the generator trajectory as expert or non-expert.
Details of each network layers are reported inside each box in the format (hidden units, activation)
respectively.

interacting with the environment. It is estimated as the number of time steps required by
each algorithm to reach high reward values. Optimality of the learnt behavior represents
the ability of each method to make the tumor visible upon task completion, and is assessed
using a Tumour Exposure (TE) metric. We consider the image captured by an endoscope
positioned in front of the kidney, both for the simulated and the real setup, where we select
a circular region of interest around the tumor (exploiting the fact that its position is known).
We then extract the visible portion by applying a mask with HSV bounds matching tumor
color (Fig. 5.9). TE is computed as the percentage of tumor pixels which are visible within
the region of interest, normalized in the range r0, 1s.

5.5 Autonomous tissue retraction in simulation

After training within UnityFlexML, the capability of the two presented methods to successfully
accomplish the tissue retraction task is evaluated in simulation (Fig. 5.6). In the designed
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experiment, the trained agents perform the task starting from 49 different positions uniformly
sampled on a 7ˆ 7 regular grid above the portion of the fat tissue, in order to assess whether
the behavior learnt by the agents is robust to different starting positions p0 of the EE. We
evaluate TE each time the EE reaches pT .

Figure 5.6: Sequence of action frames for task completion in simulation: (a) approach, (b) grasp,
(c) retract, (d) expose. Perspective of the simulated camera is overlaid on the bottom left of each
simulator frame.

5.5.1 Results and discussion

Figure 5.7: The obtained learning curve for PPO and GAIL. Cumulative reward is normalised in
the range r´1, 0s. The shaded area spans the range of values obtained when training the agent
starting from three different initialization seeds.

Fig. 5.7 shows the learning curves obtained with the considered learning strategies. Both
GAIL and PPO learn to maximize the overall cumulative reward, but with a different pat-
tern. GAIL learning curve shows a monotonous and smooth trend, since it gradually and
continuously increases towards high-reward values, diverging from PPO around 1 million
steps. Whereas, PPO shows a modular reward trend: it requires 2.5 million steps to learn the
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Figure 5.8: Simulation experiments: TE from the camera at different starting positions p0 for (a)
PPO, (b) GAIL. The color of each subregion is related to the percentage of visible tumour area
when p0 belongs to that subregion. The fat boundary from the top view is depicted in red dashed
lines whereas the fat attachment is shown in the solid red line

approach behavior and interaction with the fat, and 1 million steps to learn the retract be-
havior. Overall, GAIL is more sample efficient than PPO since it requires fewer steps to learn
the task. This experiment shows that incorporating human demonstrations makes learning
sample efficient compared to baseline PPO, confirming that learning efficiency benefits from
the incorporation of human knowledge.

The plot in Fig. 5.8 shows the TE from the simulated camera depending on the starting
position of the PSM arm above and outside the boundary of the fat tissue. Whenever the
agent starts from the distal part of the tissue (i.e., the one farther from the fixed region),
agents trained with both PPO and GAIL learn to grasp the tissue and the tumor becomes
visible from the camera (at least partially).

However, we note that PPO achieves little or no tumor exposure when the starting EE
position is close to the fat attachment (Fig. 5.8a), even though the trained agent has correctly
learnt how to perform the task (Fig. 5.7). It seems that, when p0 is initialized close to the
fixed fat region, the agent is not able to move towards a reasonable grasping point, thus
causing the tumor not to be exposed. This is probably due to the fact that we rely on a
reward function which is suboptimal for the task. The designed reward function encourages
the agent to approach the known position of the tumor, but abruptly changes as soon as the EE
is in contact with the tissue regardless of its current grasping position. In this way, we might
end up grasping at a location which is not optimal to reach the final objective of exposing
the tumor. This suggests that manually tuning the reward function to encode complex task
objective such as tumor exposure might be challenging, especially relying on kinematic data
only. We expect that including TE-dependent term into the reward function would improve
the learnt behavior towards the goal of the task. However, our preliminary evaluation with a
reward including a TE-dependent term did not show significant improvements in the results.
This might be due to the fact that TE is always zero before grasping, thus represents a sparse
reward scenario. We plan to further investigate this in future works.

On the contrary, when human demonstrations are incorporated using GAIL, the learnt be-
havior allows to expose the tumour regardless of the starting position (Fig. 5.8b). It is worth
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noticing that the strategy adopted by the user while acquiring demonstrations is to move and
grasp towards points close to the tumor, having clear in mind that the aim is to maximize
the exposure. The main difference between the behavior learnt by PPO and GAIL lies in the
selection of the grasping point at varying starting position. In particular, when the starting
position is above the attached area, GAIL grasps closer to the tumor obtaining a higher TE,
since it learns to imitate the human operator, who moves towards the most appropriate points
to maximize the exposure.

5.6 Sim-to-real autonomous tissue retraction

The behavior learnt with the considered approaches using UnityFlexML is transferred to the
real robotic platform. Successful task execution on the real setup relies on two main factors.
First of all, it depends on the level of realism of the simulated environment where the agent is
trained, because the correct task can be learnt only if the reality gap is minimized. Secondly,
it is influenced by the accuracy of the alignment between the simulated and the real environ-
ment, since all the movements of the dVRK arm in the real system are controlled through the
simulated robot, including the grasping action.

Figure 5.9: Sequence of action frames for task completion in real world setup, with the circu-
lar mask used to compute TE metric. (a) approach (TE=0%), (b) grasp (TE=0%), (c) retract
(TE=„15%), (d) tumour exposure (TE=100%). The real camera is placed in front of the phan-
tom, in the same position as in the simulation (which does not correspond to the viewpoint of
these pictures).

5.6.1 Results and discussion

The real and simulated setup are initially aligned with respect to the same reference frame,
defined by the center of the calibration board (Fig 5.3b). The mean positioning error of the
PSM arm is 1.7 mm.

We have been able to successfully replicate the learned behaviour from the simulated to the
real environment without any appreciable inconsistency. The dVRK end-effector successfully
gets in contact with the fat tissue for all the different initial positions, and it is always able
to reach the target point. The tumor exposure percentage starting from various points above
the real fat tissue is illustrated in Fig. 5.10. Considering the results obtained in simulation,
we did not consider starting positions near the attachment when testing the behavior learnt
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Figure 5.10: Real grasp experiments: TE from the camera when starting from different initial
positions of the PSM, using (a) PPO (b) GAIL. The portion of fat tissue which is not considered
for the experiments is coloured in gray.

with PPO (represented as the unattempted gray region in Fig. 5.10a) to avoid tissue tearing
that might occur in case of grasping too close to the attached area.

If we consider the average TE over all trials from different starting points, PPO achieves an
average TE of 0.38 while GAIL obtains an average TE of 0.90. When comparing the results
obtained for GAIL and PPO, it emerges that GAIL is not only able to reach higher overall
exposure, but it is also more robust to changes in the initial PSM position. In particular,
tumor exposure is achieved also when starting from points that were unattempted for PPO
(Fig. 5.10b), thus suggesting an overall improvement in performances, due to a more optimal
learnt trajectory. This observation indicates that the initial PSM position has a great impact
on the performances in the case of PPO, whereas GAIL is able to reach optimal performance
regardless of the starting position, confirming results obtained in the simulated experiments.
Overall, our results show that performance using demonstrations is robust and outperforms
PPO both in simulation and real world.

5.7 Conclusion

In this Chapter, we have shown that simulation can support the process of learning a surgical
task. The main advantage of using simulation to this purpose is that it allows to train all those
learning approaches that require a high number of trial and error attempts within a person-
alized, safe and controlled environment. We have designed and implemented UnityFlexML,
a modular framework which supports simulation of deformable objects, can be interfaced
with learning algorithms and communicates with the real robotic system (in our case the
dVRK). The platform has proved suitable for training learning-based approaches on a real
surgical robotic application, i.e. fat tissue manipulation for the exposure of tumor during
robot assisted nephrectomy procedure. The proposed framework does not only allow to train
standard DRL approaches entirely in simulation, but it also provides an interface to acquire
task executions by expert users on the real robotic system that can be used in LfD settings.
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Thanks to a calibration procedure for optimizing the simulation parameters to reduce the re-
ality gap, behaviors learnt in simulation have been successfully transferred to the real robotic
system. A further advantage of having a simulation framework is that it can be employed as
a verification environment where to test the learnt behavior before its execution on the real
system. This has allowed us to avoid the execution of potentially unsafe configurations that
emerged from tests in simulation (i.e., starting from positions close to the attached area). All
these factors make the proposed simulation environment an essential component in develop-
ment of autonomous agents for controlling surgical tools and manipulating soft tissues.

Although we have considered a simplified anatomical setup, the modularity of the frame-
work will allow to easily increase the complexity of the simulation, for example including
multiple organs and both robotic arms, to enable learning and testing of multiple procedural
steps. We expect that this wil not introduce a drop in computational performance, due to
reliance of the framework on the optimized NVIDIA FleX plugin to render soft object defor-
mations.

Considering the exploited learning algorithms, future work will focus on the incorporation
of visual cues, for example learning the task starting from the endoscopic images directly.
Doing this, we will implicitly account for the current deformed tissue configuration. Sim-to-
real transfer is likely to be more challenging in this case, since it will be essential to cope
with the unavoidable difference between simulated and real endoscopic images. A possible
strategy to cope with this issue will be to rely on methods for image-to-image translation like
[208, 209], which will allow to transfer the style of real images to simulated ones.

Contributions of this Chapter

The main contributions of this Chapter are the following:

1. We introduce UnityFlexML, an open-source modular framework that provides an
interface among a realistic simulation environment supporting deformable ob-
jects, the surgical robotic system and learning-based methods. UnityFlexML is
available at https://gitlab.com/altairLab/unityflexml.

2. We show that the proposed framework has the required features to allow learning
a surgical task (i.e., tissue retraction) both using a standard DRL method and a
strategy combining DRL with LfD.

3. We demonstrate that the learnt policy translates directly to the surgical robotic
system thanks to the da Vinci Research Kit (dVRK), without further training.
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Publications linked to this Chapter

The content of this Chapter has been presented in the following publications:

1. Tagliabue E, Pore A, Dall’Alba D, Magnabosco E, Piccinelli M, Fiorini P: Soft Tis-
sue Simulation Environment to Learn Manipulation Tasks in Autonomous Robotic
Surgery, IEEE/RSJ International Conference on Intelligent Robots and Systems
(2020); 2020 Oct 25-29; Las Vegas (USA);

2. Pore A, Tagliabue E, Piccinelli M, Dall’Alba D, Casals A, Fiorini P: Learning from
Demonstrations for Autonomous Soft-tissue Retraction, 2021 International Sympo-
sium on Medical Robotics (2021); 2021 Nov 17-19; Atlanta (USA).

96



Chapter 6

A deliberative framework for
autonomous robotic surgery

6.1 Introduction

One of the limiting factors for extensive development of autonomous robotic systems is the
lack of an established theoretical framework that provides the required features to handle the
different aspects and situations that an autonomous system has to face. This is due to the fact
that identifying and implementing the required properties for autonomy is extremely chal-
lenging, especially when dealing with safety-critical scenarios as surgery, where errors can be
deadly. In addition to being a high-risk scenario, surgery is characterized by a particularly
complex environment consisting of deformable tissues, whose mechanical properties are only
partially known in the pre-operative phase and challenging to measure and model [9]. The
diversity and uncertainty of the environments that an ARSS has to face makes it impossible
to foresee all possible courses of actions at design stage. For this reason, existing attempts
to autonomous execution of surgical tasks have been demonstrated only on structured and
controlled environments [7], making them still quite far from the applicability to real clinical
scenarios.

To make a step forward towards autonomy in real surgical environments, in this Chapter
we present a framework for autonomous robotic surgery that integrates the main properties
that an ARSS should have. To cope with real anatomical environments, we have identified
the following specific skills that an ARSS shall integrate:

• it should have deliberative capabilities [210], i.e. the capability of monitoring the envi-
ronment through sensors while acting, in order to reason and plan a new strategy when
the expected behavior does not match reality. Moreover, it must be able to adapt its
prior model by learning from observations, to cope with the uncertainty of the environ-
ment and minimize critical events;

• it should be informed from pre-operative anatomical data and expert knowledge about
task description and operative constraints, in order to devise a patient-specific strategy
for the intervention;

• it should provide interpretable plans, which can be easily understood by a supervising
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surgeon, to guarantee more reliability of the ARSS [211, 9, 212], as required from level
2 of autonomy [213].

In the design of a framework for autonomous surgery, the presence of a patient-specific
simulation is of paramount importance for two reasons. First of all, a simulated environment
initialized with a Patient-specific Biomechanical Model (PBM) allows to generate a plan of
the intervention in the pre-operative phase, accounting for the specific needs of each subject
and his/her clinical situation. Secondly, a simulation environment running in parallel to
the actual execution in the intra-operative phase allows to both detect possible unexpected
behavior via comparison with real sensor data, and provide additional critical information
to the system, which cannot be obtained from the available sensors (e.g., an estimate of the
interaction forces). Therefore, integration of a physics-based simulation into a framework for
autonomous surgery seems a fundamental choice to enhance the functionalities of the ARSS.

In this Chapter, we introduce a DEliberative Framework for Robot-Assisted Surgery (DE-
FRAS) that integrates all the identified skills necessary to cope with uncertain anatomical
environments. The framework has a modular structure, thus offering the opportunity to
implement each deliberative function individually, specializing each module at algorithmic
level depending on the desired task. After introducing DEFRAS modules and functionalities
in general terms, we provide a more technical description of the specific functionalities im-
plemented by each module to accomplish the Tissue Retraction (TR) task, the one considered
for experimental validation of the framework. Finally, we demonstrate that DEFRAS is able
to cope with deformable environments with uncertain parameters, accomplishing TR both in
simulated and real experiments with the da Vinci Research Kit (dVRK).

6.2 Dealing with uncertainty in autonomous robotic
surgery

Before providing the details of the proposed framework, in this Section we review recent
frameworks for surgical robotic autonomy under uncertainty clarifying our contribution, and
we motivate the use of deliberation and logic.

Uncertainty poses challenges to ARSSs relying only on prior models and/or task description
[214], and can be related to multiple aspects of a surgical procedure. Localization uncertainty
includes imprecise localization of the structures of interest or the instruments, due to limita-
tions of available sensors, kinematic models or situation awareness algorithms, and can be
addressed with improved mechanics [215] or sensors [216]. Environmental uncertainty en-
compasses the partial knowledge of the anatomical behavior and its unpredictability, which
can be tackled with strategies for online model update [156, 217, 218]. Procedural uncer-
tainty involves understanding of the current and next state in the surgical workflow, which
can be improved through filtering of the predictions of the next action [219]. These ap-
proaches aim at reducing uncertainty, rather than integrating it in the planning process, so
criticisms in real executions might still arise. Some works have tried to deal with uncertainty
directly at tool motion planning level, exploiting model predictive control [219, 220]. How-
ever, also task-level uncertainty (e.g., wrong plans rising from poor awareness) shall be taken
into account. To this aim, full motion parameters can be learnt, either with hidden Markov
models [221] or with supervised refinement of finite state machines [181]. However, esti-
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mation of task-level parameters with offline learning methods fails to generalize to possible
unexperienced situations.

While existing works have attempted either to reduce uncertainty at sensing level or to
deal with it at motion/task level, in this Chapter we address both aspects by introducing de-
liberative functions of autonomous agents, as described in [210]. In particular, we integrate
specific modules for uncertainty monitoring and pre-operative model refinement through on-
line learning within a framework for robot-assisted surgery that guarantees interpretability
at task level with logic programming and supports online re-planning. Several paradigms
for deliberation have been proposed in the field of artificial intelligence, focusing on different
aspects of autonomy, e.g. planning (Belief-Desire-Intention model [222], and its implementa-
tions [223, 224]) and learning [225]. However, in order to guarantee adaptability to diverse
complex tasks, we here focus on the integration and parallel development of different skills
for autonomy, which can be improved individually depending on the task of interest. For
this reason, our framework builds on the modular architecture and definitions of deliberative
functions described in [210], which reports a large number of robotic applications.

In addition to deliberation, an ARSS must provide an interpretable behavior for a hu-
man supervisor [211, 212]. Interpretability for autonomous robots can be guaranteed by
logic-based reasoning systems [226]. They encode prior concepts and specifications about
a robotic domain in a knowledge base, using logic formalism which is easily readable by
humans. A logic-based task planner does not encode pre-defined workflows (as finite state
machines do); instead, it performs human-like logic inference from knowledge and data
from sensors, in order to generate an appropriate workflow for the current situation. Hence,
the logic-based approach formally guarantees that specifications encoded in prior knowledge
(which may be, e.g., safety constraints in surgery) are satisfied during the execution. In the
surgical context, logic formalization has been often implemented with ontologies [227, 228],
which are computationally inefficient when knowledge update is needed, as required when
operating in unstructured environments [229]. We propose to use non-monotonic logic pro-
gramming [230], which provides an efficient and interpretable way to describe tasks, permits
online revision of incomplete or dynamic information and allows to define safety constraints
for planning the execution [231]. All these features are essential in safety-critical scenarios
as surgery [232]. Non-monotonic logic programming has been applied in surgery only to
automate a standard surgical training task in rigid domain [231].

6.3 DEFRAS: DEliberative Framework for Robot Assisted
Surgery

In this Section, we present the modules of our DEliberative Framework for Robot Assisted
Surgery (DEFRAS). The framework has been made publicly available at https://gitlab.com/
altairLab/tissue_retraction.git (Fig. 6.1).

Task planning A task planning module computes the task plan, i.e. the sequence of actions
to solve the task. Actions are elementary operations which correspond to a single motion tra-
jectory or joint-level command, according to the granularity definitions described in [174].
The plan is computed based on available expert procedural knowledge, conveniently ex-
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Figure 6.1: The architecture of DEFRAS. Deliberative modules are in blue boxes. Green dotted
lines represent information exchanged only in the pre-operative phase. Red dashed lines trigger
actions only when monitoring threshold/s is exceeded.

pressed in the declarative logic programming formalism of Answer Set Programming (ASP)
[233], a non-monotonic logic paradigm which is more computationally efficient and expres-
sive if compared to its main competitor Prolog [234].

An ASP program represents the domain of the task with a description D and a history H.
D comprises the alphabet of the task A, defining relevant attributes of the domain, and ax-
ioms. Attributes may be statics, i.e., domain attributes whose values do not change over time;
fluents, i.e., domain attributes whose values can be changed; and actions. Attributes may be
terms; atoms, i.e. predicates of terms (e.g. Atom(T1, ..., Tn) is an atom with terms T1,...,n
as arguments); and their logical negations. Values of terms are constants (either integers or
strings). A term whose value is assigned is ground, and an atom is ground if its terms are
ground. Axioms are logical relations between attributes. Causal rules Ah :- Ab1, ..., Abn
define pre-conditions Ab1,...,bn (body of the rule) for grounding the head Ah. Logical implica-
tions are implemented to define pre-conditions and effects of actions, and constraints (e.g.,
infeasibility of some actions).

Given the ASP program, an ASP solver returns both the plan and the set of anatomical
features which generated it, thus ensuring task-level interpretability of the ARSS.

Sensing Throughout task execution, the sensing module analyses the state of the robot
and the environment, to provide high-level environmental features for task planning. It also
communicates target position for each action to the acting module, for motion planning.
Moreover, it recognizes whether critical conditions occur, in which cases it triggers task re-
planning or motion interruption to prevent risks.
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Acting The acting module controls the execution of each action in the plan at low level.
Different motion planning algorithms can be used, depending on the application. The appro-
priate motion law for each action can be selected from a pre-defined set, as obtained with
analytical approaches such as roadmaps, potential fields or cell decomposition [235]. These
methods work well when complete representation of the environment is available, as can be
extracted, for example, from pre-operative data. However, complex surgical tasks, like tis-
sue suturing or cutting, require enhanced dexterity and bi-manual coordination which might
be impossible to encode within hand-crafted control policies. In this cases, trajectories may
be generated by imitating expert human demonstrations [181, 182, 231]. Alternative ap-
proaches to motion planning can also be integrated, such as those relying on reinforcement
learning, which has shown promise to solve challenging robotic planning tasks by trial-and-
error, especially when combined with deep neural networks [184], or emerging approaches
based on neural planning, e.g. [236].

Monitoring The monitoring module continuously estimates if the system internal model of
the environment, given by a patient-specific simulation initialized with pre-operative infor-
mation and running in parallel, is coherently representing the actual scenario. To this aim,
a metric assessing the level of discrepancy between the real and the simulated environments
is computed starting from sensing information. This metric represents the current level of
uncertainty that the system has about the environment. Depending on this metric, different
warning states are raised, associated with specific strategies at task-motion level which aim
at increasing the reliability of the autonomous operation and accommodate safety.

Learning If the system is in a warning state, the learning module is in charge of updating
the ARSS internal model of the environment starting from real observations. Being the sys-
tem model represented by the simulated PBM, the learning module implements strategies to
update PBM parameters from real data, to compensate for environmental uncertainty caused
by imprecise parametrization.

Simulated environment A PBM of the anatomical environment is created starting from
patient-specific geometry and mechanical properties extracted from pre-operative data. Such
model initializes a simulated environment which is exploited to design a patient-specific task
plan accounting for all the information available in the pre-operative phase. Furthermore,
the simulation is run in parallel to the real execution in the intra-operative phase and it is
continuously updated based on the current robot configuration received from the acting mod-
ule. At each time step, the simulation represents what the system expects from its interaction
with the environment based on the available knowledge, hence it allows to monitor the real
world execution (Fig. 6.1). Moreover, the online simulation can provide complementary in-
formation to real sensor data.

Human supervisor The context and the plan are continuously monitored by a human su-
pervisor, who can easily interpret the output of the autonomous system thanks to reliance on
logic formalism. The presence of the human supervisor is required to guarantee the reliabil-
ity of the ARSS, following the latest European regulations for high-risk autonomous systems
[212].
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6.4 Implementation of tissue retraction in DEFRAS

In this Section, we describe the Tissue Retraction (TR) task, which has been selected as rep-
resentative task to validate DEFRAS, and we detail its implementation within our framework.
The TR task allows to assess the ability of the framework to deal with uncertainty, since it in-
volves interaction with the soft anatomical tissues, whose mechanical properties are generally
only approximately known before the intervention. While an initial PBM can be generated
from each patient pre-operative images and data, it may not accurately describe the actual
behavior of the tissue, thus requiring intra-operative update.

Previous works for autonomous TR have proposed either to generate the plan by optimizing
some metrics [177, 178, 176, 237, 238] or to learn the task from human demonstrations
[189, 190]. However, none of them integrates methods to reason on the current environment
and deal with unexpected situations which might occur in real surgery.

6.4.1 Tissue retraction task

Tissue retraction is a very common surgical task which consists in grasping and retracting
soft tissues (e.g., adipose tissue) to expose a hidden Region Of Interest (ROI) (e.g., a tumor)
to an intra-operative camera. The tissue is usually attached to surrounding anatomies in
correspondence of Attachment Points (APs). In general, ROI exposure during TR is obtained
primarily by pulling up the tissue after grasping. However, this action is not always successful
due to kinematic limitations imposed by the anatomical environment and the insertion points
of the instruments in the body, which define fixed pivots for the robotic arms. Furthermore,
pulling may induce high forces which can damage the tissue. In these cases, alternative
actions can be performed, such as moving the tissue in a parallel plane to the tissue surface,
either folding it away from the intra-operative camera or possibly towards the ROI.

We create a PBM leveraging on tissue geometric and mechanical properties as well as
locations of the ROI and APs obtained from pre-operative data (Fig. 6.1). Such model is used
to initialize a simulation which is exploited to find a patient-specific task plan in the pre-
operative phase (see Section 6.4.2 for details). For computational convenience, we subdivide
the tissue in small regions, and consider only centers of these regions as possible grasping
points. The pre-operative plan is then executed in the real environment with one of the
Patient-Side Manipulators (PSMs) of the dVRK.

During execution, the biomechanical simulation is run in parallel, and the state of the real
environment is continuously monitored with intra-operative sensors (Fig. 6.1). When mis-
match is identified, the pre-operative plan may become sub-optimal or even infeasible, hence
specific strategies to improve the plan shall be implemented and some simulation parameters
may be updated. In particular, here we focus on the update of APs. Although the position
of APs can be initialized based on anatomical knowledge or statistical information [50, 159],
precise definition of APs in surgery can only be obtained interacting with the tissue, as we
demonstrated in Chapter 4. The reason why we focus on APs is twofold. First of all, they
constitute model boundary conditions, thus represent an important parameter influencing
simulation accuracy. Second, knowledge of APs location is very important in TR to prevent
the pulling of highly constrained areas, minimizing the risk of tissue damage.

In addition, the simulation also continuously provides an estimate of the applied force on
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the tissue, compensating for the lack of force feedback in surgical robotic systems.

6.4.2 Task planning

The task planning module computes the best sequence of actions to solve the task, and it
encodes task knowledge in the formalism of ASP [239]. Definitions of actions and relevant
environmental features are encoded following the generic explanation of Section 6.4.1. Stat-
ics are block (from now on B), representing a generic region on the tissue with centroid BC;
and arm (from now on A), representing the robotic arm (either psm1 or psm2).

Possible actions (for each tool) in the considered task are reaching a grasping point, opening
gripper, grasping, pulling, releasing the tissue and folding the tissue, either moving planarly
towards the ROI or moving away from the intra-operative camera. Actions are expressed as
predicates in plain English as action(tool, object, property).

Fluents are relevant environmental conditions for the task. They include locations of APs
and ROI with respect to grasping points; critical conditions on the force exerted on the tissue;
kinematic states of the robot, e.g. whether it is holding tissue or the gripper is open, or
condition of maximum height reached above the tissue; reachability1 conditions to define
which points can be grasped by which robotic arm; distance between blocks. All fluents are
defined as external atoms, so they can be grounded from the sensing module. Table 6.1
reports actions and fluents used in the TR task, expressed as atoms with the ASP formalism.

Table 6.1: List of actions and fluents implemented for the TR task with the ASP formalism. BC is
a generic grasping point, A is the robotic arm, t is a discrete time step for temporal reasoning.

Actions a Description

reach(A, BC, t) A reaches grasping point BC
grasp(A, BC, t) A grasps the tissue in BC

release(A, t) A opens the gripper
pull(A, BC, t) A pulls BC

move_ROI(A, BC, t) A moves towards the ROI while holding BC
move_away(A, BC, t) A moves away from the camera while holding BC

Fluents F Description

fixed(B, t) BC is above APs
above_ROI(B, t) BC is above ROI

at(A, B, t) A is above BC on tissue
max_force(t) critical force is overcome

in_hand(A, B, t) A holds the tissue in BC
closed_gripper(A, t) gripper of A is closed

max_height(A, t) A has reached the maximum allowed height
visible_ROI(t) ROI is visible

reachable(A, B, t) BC is reachable by A
distance(B1, B2, X, t) X is the distance between B1-B2

Axioms express logical relations between atoms. For the TR task, we consider axioms
representing causal laws, executability constraints, choice rules and optimization statements.

1With reference to Fig. 6.2a, a point on the tissue is reachable by a PSM if it lies on the same side as the PSM
with respect to the x´ z plane in the common reference system.
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Causal laws define effects of actions on fluents (e.g., A’s gripper is closed after grasping,
closed_gripper(A, t) :- grasp(A, BC, t-1)).

Executability constraints specify the set of actions and fluents that cannot hold concurrently
(e.g., it is not possible to pull the tissue if the force applied to the tissue exceeds constraints,
:- pull(A, BC, t), max_height(A, t)).

Choice rules specify the environmental pre-conditions which must be satisfied to execute
actions. For our task, at most one single action can be executed at each time step. Then,
we define a choice rule gathering pre-conditions for actions as 0 {action(t) : pre-cond(t)}
1, which constrains the cardinality of the set of possible actions returned at each time step
between 0 and 1.

Optimization statements define preference in the set of possible actions, in particular for
grasping point selection in case the pre-operative plan is not successful and re-planning is
needed. In this case, the best grasping point BC is chosen as the one which has minimal
distance from ROI (to ease its exposure) and maximal distance from APs (to reduce tissue
damage). Logic-level optimization allows to easily define a commonsense criterion for eval-
uating candidate grasping points. However, in order to ensure computational tractability of
ASP solving, the set of candidate grasping points must be finite. Hence, the tissue surface is
discretized as an N ˆN grid, centered above the tissue to grasp. Possible grasping points BC
are defined at the centers of the grid cells.

We finally define the goal of the TR task as the constraint that the ROI must be eventually
visible within a predefined percentage (:- visible_ROI(t)).

Pre-operative plan In the pre-operative phase, all the candidate grasping points are tried
in simulated environment to find the optimal patient-specific plan. Considering the goals of
our task, we select the plan that maximizes ROI exposure while minimizing tissue exerted
force and interaction with it, in order to maximize the economy of motion and reduce the
possibility of critical events. To achieve this, DEFRAS is launched after deactivating the moni-
toring and learning modules. We record plans originated picking all possible grasping points,
and we select only plans reaching a minimum visibility of 80%. Among these, we select the
3 plans minimizing the tissue solicitation, i.e. the ones with lowest Fmax, where Fmax is the
maximum recorded tissue force over the entire execution. Finally, we choose the optimal
plan as the one with the lowest number of actions, thus minimizing interaction with tissue
and obtaining the maximum economy of motion.

In case re-planning is needed in the intra-operative phase, a new grasping point is then
selected according to the ASP optimization criteria described above.

6.4.3 Sensing

The sensing module continuously receives the state of the robot and the environment. The
state of the robot SR consists of the position of tools p1,2 and opening angles of grippers
j1,2. The state of the environment SE includes the point cloud of tissue surface PCt from the
real environment; visual information about the ROI from the intra-operative camera I; the
position of the ROI pROI; the set of known APs PCAP ; and the set Σ of mechanical forces at
each tissue point from the simulated environment. All the kinematic quantities are referred
to the same reference frame after camera-robot calibration. The main tasks of the sensing
modules are summarized in Alg. 3.
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Algorithm 3 Sensing module
1: Input: SE, SR, current action a
2: Output: Set of context fluents F , target position g, motion rate r, replanning request

replan, motion rate r
3: while not task_ended do
4: F = compute_fluents(SE, SR)
5: replan, r = check_failure(F )
6: g = compute_target(a)

Throughout task execution, the sensing module computes the environmental features de-
scribed at the logic planning level as detailed in Alg. 42 and recognizes whether critical condi-
tions occur (e.g., maximum height of PSMs or critical tissue force are reached). In these cases,
the motion of PSMs is interrupted, and the current environmental situation is communicated
to the planning module to adapt the flow of execution accordingly. In particular, the function
check_failure verifies if the maximum arm height has been reached, or the maximum tissue
force has exceeded a pre-defined threshold ε. In the former case, motion is interrupted and
re-planning is triggered. In the latter case, DEFRAS first tries to reduce tissue solicitation by
decreasing motion velocity [240]. If this does not bring the applied force below ε, motion is
interrupted and re-planning is triggered.

Another important function of the sensing module is to compute target positions g for
actions of PSMs, with the function compute_target in Alg. 3. The target is needed only for
reaching the tissue, moving away from camera and moving towards ROI.

6.4.4 Acting

The acting module selects the appropriate motion law for each action from a pre-defined
set, similarly to [231]. Some actions (reaching tissue, moving away from camera and moving
towards ROI) are executed after also the target position g is received from the sensing module.
Gripper actions are simple joint commands, while pulling is a motion of 10 mm along z axis.
We consider only linear trajectories, keeping a fixed orientation at the end-effector for the
sake of simplicity, as in [192]. This does not represent a limitation for our initial evaluation on
a controlled setup. However, more sophisticated motion laws can be employed (Section 6.3).
The acting module executes trajectories at the rate r specified by the sensing (Section 6.4.3)
and monitoring modules (Section 6.4.5).

6.4.5 Monitoring

The monitoring module continuously receives PCt and the point cloud of the simulated tissue
PCs from the sensing module, and computes a discrepancy metric µ, chosen as the median
Euclidean distance of closest points between PCt and PCs. The distance is normalized with
respect to its rest value (i.e., before grasping occurs) to compensate for offsets induced by reg-
istration error and sensor noise. Inspired from recent works as [241], the monitoring module
considers 3 thresholds δ1, δ2, δ3 (empirically set to 2, 4 and 6 mm) to classify the warning state

2Time t is omitted in Alg. 4 because it is assigned at ASP level.
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of the system (Alg. 5). In particular, when µ ą δ1 (Line 10) the motion velocity is reduced for
caution, to minimize the risk of applying excessive forces [240] and to allow prompt captur-
ing of eventual higher levels of discrepancy. If δ2 is exceeded (Line 12), motion is interrupted
and re-planning is asked at task planning level, meaning that probably the environmental
conditions have significantly changed. In both these warning states, the learning module
is triggered to update environmental knowledge exploiting data from sensors. Overcoming
δ3 (Line 14) results in interruption of DEFRAS and human intervention is required because
either the current situation is too anomalous or the environmental model is inadequate.

Algorithm 4 compute_fluents

1: Input: SE “ tPCt, PCAP , pROI , I,Σu, SR “ tj1,2, p1,2u
2: Output: Set of context fluents F
3: Init: F “ H, SB = discretize(PCt) Ź SB is the set of regions B on the tissue
4: for B P SB do
5: j “ argmini“t1,2u||yi ´ yBC

||1 Ź Reachability with respect to x´ z plane
6: F .append(reachable(Aj, B))
7: if Dp P PCAP : p P B then Ź B is a fixed block
8: F .append(fixed(B))
9: if pROI P B then Ź ROI under block B

10: F .append(above_ROI(B))
11: for B2 P SB do Ź Distance between centroids of blocks
12: F .append(distance(B, B2, X))
13: if compute_visibility(I) ą 80% then Ź ROI visibility
14: F .append(visible_ROI)
15: for i P t1, 2u do
16: if ji ă20˝ then Ź Gripper state
17: F .append(closed_gripper(Ai))
18: for B P SB do
19: if pi P B then Ź Arm location
20: F .append(at(Ai, B))
21: if ji ă20˝ then Ź Tissue grasped
22: F .append(in_hand(Ai, B))
23: if pir2s ą50 mm then Ź Max height reached
24: F .append(max_height(Ai))
25: if maxΣ ą ε then Ź Max force reached
26: F .append(max_force(Ai))

return F

6.4.6 Learning

As motivated in Section 6.4.1, in this work we focus on the intra-operative update of APs
whenever required by the monitoring module. Update relies on BA-Net, the deep neural
network which predicts APs starting from the tissue pre-operative geometry and the current
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Algorithm 5 Monitoring module
1: Input: PCt, PCs, motion rate r, grasped_tissue
2: Output: Warning state s, motion rate r, trigger learning learn
3: Init: drest “ rs
4: while not task_ended do
5: while not grasped_tissue do
6: drest.append(||PCt ´ PCs||2)
7: drest “meanpdrestq
8: d “ ||PCt ´ PCs||2
9: µ “ d´ drest

10: if δ1 ă µ ď δ2 then
11: return s “ 1; r “ r

2
; learn=True

12: else if δ2 ă µ ď δ3 then
13: return s “ 2; r “ 0; learn=True
14: else if µ ą δ3 then
15: return s “ 3; r “ 0; learn=False
16: else
17: return s “ 0; r “ r; learn=False

observed PCt, presented in Chapter 4. This method has proved suitable for intra-operative
model refinement, requiring a very low inference time and even improving biomechanical
model accuracy. To improve the robustness to sensor noise, we consider the intersection
among the latest 30 predictions provided by BA-Net as new estimate of APs. The new estimate
of APs is used on the one hand by the task planning module to update its knowledge of the
regions to avoid, in case of grasp re-planning. On the other hand, it is exploited to refine
the PBM which drives the simulated environment, thus improving its overall reliability (in
particular of the force estimate).

6.4.7 Simulated environment

To obtain a physically accurate result, we model the deformable behavior of anatomical tis-
sues exploiting continuum mechanics laws, solved with the finite element (FE) method (see
Section 2.3.1). The choice of a physics-based method allows to continuously estimate forces
exerted on the tissue, compensating for the lack of force feedback in surgical robotic systems.
Monitoring of the applied forces is crucial in our task to avoid unnecessary tissue damage.
The deformable tissue is modelled as a linear elastic material with Young’s modulus 3 kPa
and Poisson ratio 0.45, a common modelling choice for adipose tissues [164], which are of-
ten responsible of hiding structures of interest during real surgery [242]. In order to handle
large deformations while guaranteeing the computational efficiency required to run the sim-
ulation in parallel to the real execution, we rely on the corotational formulation of linear
elasticity [48] provided by the SOFA framework [148]. In the considered simulation envi-
ronment, grasping is implemented by constraining the tissue points closest to the simulated
PSM (distance below a small threshold, 5 mm in our task) to follow PSM motion, similarly
to [177]. Grasping is activated or released based on commands received from the acting
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module. Current implementation does not consider the possibility of slippage or breaking
contacts between the tool and the tissue, that might happen during real retraction.

6.5 Autonomous tissue retraction with DEFRAS

Experiments are conducted both in simulated and real environments to assess the capability
of DEFRAS to successfully accomplish the TR task, coping with inaccurate parametrization of
the available model of the environment from pre-operative information.

a b

Figure 6.2: Experimental setup for autonomous tissue retraction with DEFRAS. The simulated
and real scene are calibrated with respect to a common reference frame at the tissue center. (a)
Simulated setup. The magenta sphere represents the ROI, while blue dots are the attachment
points. Gray lines delineate the discretization for selection of grasping points. (b) Real setup. The
attachment board allows to define tissue attachment points. A Realsense RGBD sensor captures
the point cloud of the tissue throughout the task.

6.5.1 Experimental setup

We consider the problem of retracting a thin layer of soft tissue (120ˆ120ˆ5 mm) to expose a
ROI to the endoscopic camera, which is placed at the main surgical viewpoint (Fig. 6.2). The
task is executed on the dVRK, whose PSMs are equipped with ProGrasp R© surgical grasping
tools (Fig. 6.2b). The ROI is considered exposed if at least 80% of its surface is visible from
the endoscope. For monitoring purposes, we continuously capture the tissue point cloud PCt
with an additional Intel R© Realsense D435 RGBD sensor, placed opposite to the endoscope
to maximize tissue visibility during manipulation, as done for the experiments presented in
Sections 4.4 and 4.5. The RGBD sensor, endoscopic camera and the PSMs are calibrated with
respect to a common reference frame placed at the center of the tissue (Fig. 6.2), using the
methodology described in [169]. The simulated environment is aligned to the same reference
frame and a simulated RGBD sensor, placed in the same position as the real one, provides the
point cloud of the simulated tissue PCs.
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6. A deliberative framework for autonomous robotic surgery

FRAS: Framework for Robot-Assisted Surgery

At this point, it is worth introducing a base version of the framework, called FRAS, where:

• grasping point is always chosen following the heuristic used by DEFRAS in case of intra-
operative re-planning, as described in Section 6.4.2. This means that FRAS does not rely
on any pre-operative plan;

• neither the monitoring or the learning modules are activated.

FRAS is used to assess the values of some metrics that are independent from the monitoring
and learning modules. For example, FRAS is used to identify a reasonable value for the
force threshold ε (see Section 6.4.3). We consider 17 pre-operative configurations of tissue,
each one with different locations for APs and ROI. For each pre-operative configuration we
launch FRAS only in simulation, ignoring also force measurements. We compute plans for all
possible grasping points under these conditions, and we record the estimated forces from the
simulation. We obtain a median force Fm “ 0.15 N among all 425 executions. Fm is chosen
to represent the typical force on the tissue in the considered setup, hence we set ε “ 2Fm “
0.3 N.

Furthermore, FRAS is used as a comparison to assess the role of monitoring and learning
modules, as well as the utility of the pre-operative plan.

6.5.2 Validation of DEFRAS in simulation

The capability of DEFRAS to cope with uncertain environmental parameters has been initially
assessed in simulation. Experiments in simulation allow to evaluate the performance of the
framework excluding possible inaccuracies arising from the presence of real sensor noise. We
design 8 pre-operative scenarios, each characterized by a different configuration of APs (red
outlines in Fig. 6.3) extracted as random surface patches following the same approach pre-
sented in Section 4.2.1. For each pre-operative scenario, we generate optimal plans following
the strategy described in Section 6.4.2.

Figure 6.3: Configurations of APs used for the experiments in simulation. The red outline delimits
the pre-operative configuration used to generate the plan; considered actual simulations are in
blue (a) and green (‘); magenta sphere represents the ROI.
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Figure 6.4: Simulation scenes relative to the configurations of APs for case 0 in Fig. 6.3. (a) The
pre-operative configuration; (b) The ‘ actual configuration; (c) The a configuration.

Each pre-operative plan is executed by DEFRAS on two validation scenarios: the former
with fewer APs (in our case, between 20-60%, indicated with symbol a) and the latter with
more APs (in our case, between 140-160%, indicated with ‘) with respect to the correspond-
ing pre-operative configuration. These experiments emulate the realistic situation where
initial knowledge of APs is not precise, thus the pre-operative plan might need adjustment
due to mismatch between the current and the simulated environments. Fig. 6.4 provides a
close-up on the configurations of APs considered for case 0 in Fig. 6.3. To run these experi-
ments, we rely on two parallel simulations: the former (pre-operative simulation) represents
the simulated environment in the scheme of Fig. 6.1, estimating the tissue forces and initial-
ized with pre-operative APs (red outlines in Fig. 6.3); the latter (actual simulation) represents
the validation scenario with either fewer or more APs than the pre-operative simulation, with
simulated dVRK and cameras (blue and green areas in Fig. 6.3). Visibility in the actual
simulation is computed by counting the number of visible ROI points from the simulated en-
doscope, assessed via ray-casting technique. The monitoring module continuously compares
the tissue point clouds from the two simulations, triggering specific interventions according
to Alg. 5. To assess the performance of the monitoring module, we compute the success rate
of APs update with BA-Net as ratio between the number of times the update results in µ ď δ1
in Alg. 5 (no warning from monitoring) and the number of times BA-Net is triggered because
µ ą δ1 (warning state).

Furthermore, we compare the performance of DEFRAS with respect to FRAS, in order to
show the advantages of the pre-operative plan and of the monitoring and learning modules in
a deliberative architecture for autonomous robotic surgery. Therefore, we let FRAS perform
autonomous TR on the actual simulations.

Re-planning efficiency In addition to validating DEFRAS capability to handle uncertain
environmental conditions, we evaluate the computational performance of task reasoner as
the re-planning time, defined as the time required to compute a new plan given a context
interpretation from the sensing module. In particular, we assess how the re-planning time
is impacted by the resolution of the grid that defines candidate grasping points (see Sec-
tion 6.4.2), while also varying the percentage of APs. In fact, both the number of possible
grasping points and the percentage f% of APs influence the size of the search space.

To this purpose, we run 100 simulations initialized with different random environmental
states (i.e., pROI and PCAP ) and we execute the task with FRAS, i.e. relying on the described

110



6. A deliberative framework for autonomous robotic surgery

strategy for grasping point selection in case of re-planning and without the monitoring and
learning modules. In this evaluation, we consider different resolutions of the grid defining
candidate grasping points N P t5, ..., 10u. For each value of N , we run 25 simulations for
each value f% P t10%, 30%, 50%, 70%u. This results in 600 total simulations, each initialized
with a different random pROI and PCAP (according to the value of f%).

6.5.3 Validation of DEFRAS on the dVRK

The performance of DEFRAS is evaluated on autonomous TR of silicone tissue with the real
dVRK (Fig. 6.2b). Following the same approach of Section 4.3.1, APs in the real environment
are defined by stitching the tissue on an attachment board with regularly spaced holes ev-
ery 10 mm. The point cloud of the tissue in real environment is acquired after color-based
segmentation and decimation of the raw point cloud from Realsense with the same pre-
processing pipeline presented in Section 4.2, and compared with the point cloud from the
simulated environment for monitoring. Visibility in the real environment is computed de-
tecting the ROI (with known size and position) from the endoscopic camera images with
color-based segmentation and considering the percentage of visible pixels.

We consider three real world scenarios (A, B and C), obtained by stitching the tissue to
the attachment board with 3 different configurations of APs (light blue in Fig. 6.5). For
each scenario, we consider 3 pre-operative models, each characterized by a different pre-
operative knowledge of APs: (1) fewer APs (between 20-60%, indicated with a), (2) more
APs (between 140-160%, indicated with ‘), and (3) same APs (indicated with “l) than/as the
real scenario (Fig. 6.5). For each of them, we generate the pre-operative plan in simulation,
and test DEFRAS on the corresponding real configuration with the dVRK.

Figure 6.5: Configurations of APs used for the real world experiments. The light blue region
in each subimage represents the configuration of APs in the real setup (“l). Blue and green
regions indicate pre-operative configurations with fewer APs (a) and more APs (‘) than the real
configuration. Magenta sphere represents the ROI.

Moreover, we analyze the performance of our framework with respect to two state-of-the-
art implementations of autonomous TR on real setups. In particular, we compare both to the
results obtained with the learning-based approaches presented in previous Section 5.6.1 and
to the work by Attanasio et al. [176], which relies on image-guided control to reveal a ROI
behind tissue flap. Both the considered approaches evaluate task success as percentage of
ROI exposure upon task completion.
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6.6 Experimental results of autonomous TR in simulation

Table 6.2 reports the details of the optimal plans generated for each pre-operative config-
uration in the experiments in simulation (red outlines in Fig. 6.3). Each of these plans is
executed with DEFRAS on a scenario with fewer and more APs than those of the correspond-
ing pre-operative configuration. Details of such executions are presented in the upper part
of Table 6.3. The lower part of Table 6.3 reports the results obtained when executing the TR
task on the same scenarios using FRAS.

Re-planning times at varying grid resolutions and percentage of grasping points are re-
ported in Table 6.4.

Table 6.2: Pre-operative plans for the 8 scenarios in our simulation experiments. Table reports
the final reached visibility, the number of actions, the number of times F ą ε and Fmax. Last two
columns report median and interquartile (IQR) range per row.

0 1 2 3 4 5 6 7 Median IQR

Visibility [%] 100 100 100 95 80 100 93 100 100 94-100

Actions 4 6 6 5 5 5 5 5 5 5-5

F ą ε 0 0 1 0 1 1 1 1 1 0-1

Fmax [N] 0.3 0.3 0.4 0.3 0.4 0.3 0.6 0.5 0.4 0.3-0.4

112



6. A deliberative framework for autonomous robotic surgery
Ta

bl
e

6.
3:

Si
m

ul
at

io
n

ex
pe

ri
m

en
ts

.
a

in
di

ca
te

s
th

e
sc

en
ar

io
w

it
h

fe
w

er
A

Ps
,

w
hi

le
‘

th
e

on
e

w
it

h
m

or
e

A
Ps

th
an

th
os

e
of

th
e

pr
e-

op
er

at
iv

e
co

nfi
gu

ra
ti

on
.

Th
e

up
pe

r
Ta

bl
e

re
po

rt
s

re
su

lt
s

ob
ta

in
ed

w
it

h
D

EF
R

A
S,

w
hi

le
th

e
lo

w
er

Ta
bl

e
re

po
rt

s
re

su
lt

s
ob

ta
in

ed
w

it
h

FR
A

S.
“B

A
-N

et
"

ro
w

re
po

rt
s

th
e

su
cc

es
s

ra
te

of
A

Ps
up

da
te

w
it

h
B

A
-N

et
.

D
EF

R
A

S

0
1

2
3

4
5

6
7

a
‘

a
‘

a
‘

a
‘

a
‘

a
‘

a
‘

a
‘

M
ed

ia
n

IQ
R

Vi
si

bi
lit

y
[%

]
10

0
10

0
10

0
10

0
10

0
0

9
95

10
0

10
0

0
10

0
10

0
10

0
10

0
10

0
10

0
98

-1
00

A
ct

io
ns

4
11

6
6

6
30

38
12

5
26

29
25

5
30

5
5

8
5-

26

F
ą
ε

0
26

11
3

1
44

24
0

27
0

46
99

83
8

61
1

3
18

2-
49

F
m
a
x

[N
]

0.
2

1.
3

0.
4

0.
4

0.
4

1.
4

0.
9

1.
8

0.
3

1.
7

3.
3

3.
3

0.
4

1.
2

0.
3

0.
4

0.
6

0.
4-

1.
5

B
A

-N
et

1/
1

1/
1

-
0/

1
2/

2
1/

1
6/

6
-

1/
1

2/
2

11
/1

2
-

1/
1

4/
4

2/
2

-
-

-

FR
A

S

Vi
si

bi
lit

y
[%

]
10

0
90

10
0

0
0

0
90

0
10

0
10

0
10

0
0

97
93

93
93

93
0-

10
0

A
ct

io
ns

5
6

15
23

22
22

7
22

17
19

7
22

16
16

9
15

16
8-

22

F
ą
ε

0
0

29
33

32
28

11
40

21
29

0
28

27
18

20
12

24
11

-2
9

F
m
a
x

[N
]

0.
3

0.
3

1.
0

1.
0

1.
1

1.
0

0.
4

1.
2

0.
9

0.
9

0.
3

1.
1

0.
9

0.
9

1.
2

0.
9

0.
9

0.
8-

1.
0

113



6.6. EXPERIMENTAL RESULTS OF AUTONOMOUS TR IN SIMULATION

Table 6.4: Re-planning time (average ˘ standard deviation) with different tissue grid size N and
percentage of APs f%.

N
Re-planning time [s]

f% “ 10% f% “ 30% f% “ 50% f% “ 70%

5 0.25˘ 0.02 0.24˘ 0.02 0.23˘ 0.01 0.24˘ 0.01

6 0.68˘ 0.02 0.65˘ 0.02 0.63˘ 0.01 0.62˘ 0.01

7 1.50˘ 0.02 1.48˘ 0.03 1.41˘ 0.02 1.42˘ 0.01

8 3.06˘ 0.04 2.97˘ 0.06 2.90˘ 0.04 2.88˘ 0.02

9 5.88˘ 0.08 5.70˘ 0.15 5.51˘ 0.03 5.51˘ 0.05

10 10.75˘ 0.20 10.21˘ 0.28 9.92˘ 0.09 9.87˘ 0.08

6.6.1 Discussion

The pre-operative plans generated for each configuration using our criterion (final paragraph
of Section 6.4.2) successfully expose the ROI with a maximum of 6 actions, with the force
exceeding the safety threshold ε at most once (Table 6.2).

Reliance on such plans leads to successful completion of the TR task (i.e., the ROI is ex-
posed) in 13 out of 16 cases (Table 6.3), which means DEFRAS can accomplish the task even
when the pre-operative information (i.e., knowledge of APs) is imprecise. Moreover, the re-
sults show that, even when starting from pre-operative plans which minimize the tissue force,
the force threshold can be exceeded during task execution, hence force feedback is needed to
prevent potentially dangerous tissue solicitation.

Furthermore, the tissue force reaches higher values (ą 1 N) mostly in scenarios with more
APs than the pre-operative configuration (‘ in Table). This is motivated by the fact that
optimal plans might select a grasping point close to APs that are unknown pre-operatively.
In this case, monitoring detects a difference between the pre-operative simulation and the
actual simulation, and triggers APs update in the learning module. This leads to prediction of
APs very close to the current grasping point, thus the estimated force increases. The results of
our framework also show that when pre-operative APs overestimate actual APs (a in Table),
the task is accomplished with fewer actions (except for fails) with respect to the case when
APs are underestimated (‘ in Table). Therefore, it seems that overestimating APs in the pre-
operative phase leads to more optimized task executions, reducing both interaction with the
tissue and potentially unsafe tissue solicitation.

If we compare the results obtained when executing the TR task using DEFRAS with those
obtained using FRAS (lower part of Table 6.3), it emerges that the presence of the pre-
operative plan in DEFRAS is fundamental to optimize executions in terms of tissue solicitation
(fewer actions, lower number of times the force threshold is exceeded and lower maximum
force, considering median values). Comparison between the two frameworks also evidences
the advantages of monitoring and learning modules, introduced by our deliberative frame-
work. Whenever the mismatch between the pre-operative simulation and the actual simu-
lation causes the monitoring module to trigger update of APs, BA-Net is able to provide an
updated estimate of APs that brings the monitoring metric below threshold, except cases 1‘
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(task success, ROI is exposed) and 5a (the task fails). Overall, the integration of the proposed
deliberative modules results in higher median visibility (100% vs. 93%) and lower number
of failed tasks (3 fails vs. 5) with respect to FRAS. We notice that FRAS is able to solve the
task when DEFRAS fails in configurations 3a and 5a. However, in both cases the monitoring
module triggers APs update and the force threshold is overcome more times than all other
configurations. This suggests that the pre-operative knowledge of APs is particularly far from
reality in these cases. As a consequence, the estimate of the force from the pre-operative sim-
ulation provided by the FRAS cannot be considered reliable (being the simulation different
from reality), potentially leading to unsafe executions by FRAS.

Re-planning efficiency Analyzing the computational performace of our framework in case
of re-planning, our results show that the task reasoner is able to compute a new grasping
point and a plan within 1.5 s when using a 7 ˆ 7 grid discretization for grasping point def-
inition, demonstrating high efficiency. This guarantees efficient adaptation to the quickly
changing anatomical environment, introducing only a minor delay which is compatible with
intra-operative times. From Table 6.4 it emerges that the most influencing parameter is N ,
while f% does not significantly affect the average planning time. Reliance on the lowest
resolution grid (5 ˆ 5) for the definition of candidate grasping points for all the validation
experiments presented in this Chapter allows us to maximize computational efficiency, both
in pre-operative plan generation phase and intra-operative re-planning. Using a higher reso-
lution grid would imply more time to generate the optimal task plan due to a larger search
space. Although this would not represent a major limitation in the pre-operative phase, where
there are no strict time constraints for plan definition, in case intra-operative re-planning is
needed, it is important to rely on an efficient heuristic for the selection of the new grasping
point, which ensures that plan generation does not introduce major delays in the execution.

Definition of the set of candidate grasping points as uniformly spaced above the tissue
of interest represents a naive strategy which has been selected for our initial evaluation.
Despite its simplicity, the same strategy does not only apply to the considered setup, but
can be employed for more complex setups characterized by irregular geometries. It is worth
highlighting that different grasping point selection strategies can be implemented and easily
integrated within DEFRAS, e.g. based on path planning as in [178].

6.7 Experimental results of autonomous TR on the dVRK

Relevant variables describing the executions of the TR task on the experiments on the real
setup are reported in Table 6.5.

6.7.1 Discussion

Obtained results on the real world experiments confirm that whenever pre-operative APs un-
derestimate real APs, the monitoring and learning modules are triggered more frequently.
The update of APs leads to successful task completion in all cases. Moreover, when the simu-
lated and real APs match (cases labelled with “l), the number of actions is usually minimum
(except for configuration B, with 8 actions for “l and 7 for ‘). This suggests that overall the
optimal pre-operative plan leads to better performances when APs are perfectly known.
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Table 6.5: Real world experiments using DEFRAS. For each real world configuration (A, B, C),
we report details of TR executions of 3 different pre-operative plans, obtained when: (a) un-
derestimating real APs, (‘) overestimating real APs, (“l) having perfect knowledge of the real
APs.

A B C
a ‘ “l a ‘ “l a ‘ “l Median IQR

Visibility [%] 99 95 100 100 100 71 99 83 96 99 95-100

Actions 13 15 9 24 7 8 14 7 7 9 7-14

F ą ε 11 20 8 0 8 20 8 8 6 8 8-11

Fmax [N] 1.2 1.1 0.5 0.2 0.5 1.1 1.1 0.7 0.5 0.7 0.5-1.1

BA-Net 1/1 1/1 1/1 13/14 - - 1/1 - - - -

When qualitatively analyzing executions for configuration A, it emerges that both for a
and ‘ re-planning is required: in the first case due to high force after grasping too close to
real APs, detected by the monitoring module; in the second case because of invisible ROI
after optimal plan execution. Re-planning proves able to successfully expose the ROI in both
cases. It is also interesting to consider TR execution when using the plan generated on the
configuration with perfect knowledge of real APs (“l). In this case, the monitoring module
detects a mismatch between the real and the simulated scenarios, probably due to noise and
uncertainty introduced by real cameras and the calibration procedure. DEFRAS proves able
to cope with such situation and successfully complete the task.

The average visibility achieved by DEFRAS is 94%, which is aligned with the 90% visibility
obtained when using GAIL (Section 5.6.1), and it improves the one reported in [176] (i.e.,
83%). It is worth remarking that our framework is able to model uncertainties and handle
re-planning, but these functions are absent in the approaches considered for comparison.

6.8 Conclusions

In this Chapter, we have presented a modular architecture which provides the fundamental
building blocks and requisites for autonomy in robotic surgery. Our framework, called DE-
FRAS, introduces deliberative functionalities in order to deal with the uncertainty of anatom-
ical environments. In particular, it is capable of monitoring the real execution and learning
from real observations. The modular structure of the framework offers the opportunity to
specialize each deliberative function individually, depending on the desired task. Moreover,
a logic-based task planner guarantees interpretability of the surgical plan, thus allowing for
human supervision, which is needed for reliable execution. A groundbreaking aspect of DE-
FRAS is the presence of a biomechanical simulation, which plays a crucial role in both the
pre-operative and the intra-operative phase. Before the intervention, the simulation is ex-
ploited to design the task plan accounting for each patient’s characteristics. Whereas, during
task execution, it allows both to monitor the actual surgical environment and detect the
presence of unexpected situations, and to provide additional information about the surgical
scene.
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Experiments on a representative surgical task, i.e. soft tissue retraction, have shown that
our framework has the needed features to handle deformable environments with uncertain
parameters, successully accomplishing the task. In particular, DEFRAS has proved able to
learn and refine available but imprecise pre-operative knowledge about the location of at-
tachment points, relying on constant monitoring of sensors and simulation data. In this way,
any pre-operative plan can be adapted, and tissue force information from the simulation
remains reliable for safe task completion. Compared with a framework without the deliber-
ative functions of monitoring and learning, results show that the percentage of task success
increases, especially when pre-operative knowledge of attachment points overestimates real
ones. Moreover, reliance on a pre-operative patient-specific plan brings benefits in terms of
minimal manipulation of the tissue, hence reduced risk of tissue damage.

Although the implementation of each module described in this Chapter is specific to ac-
complish the tissue retraction task, the general DEFRAS architecture is designed to provide
the needed functionalities for autonomous execution of any surgical task. The modularity
of DEFRAS will allow us to improve individual deliberative capabilities in order to deal with
more realistic and challenging surgical scenarios in future works. Motion adaptation as in
[231] and learning from demonstrations as in [243] can be easily implemented to replicate
expert surgeons’ dexterity. Furthermore, we plan to improve task knowledge description both
pre-operatively from the analysis of surgical annotations [244] and intra-operatively by ob-
serving the surgeon in most critical situations, exploiting logic learning as in [245, 246].
Finally, we will investigate the possibility to introduce additional sensors on the instruments
in order to enhance the sensing capabilities of the framework [247] and cope with specific
problems of real surgical settings, e.g. point cloud occlusion. This will also allow to refine
other patient-specific parameters and identify more robust task-specific thresholds.

Overall, this framework represents one of the first attempts to a complete deliberative
architecture that integrates all the functionalities required to deal with the dynamic and
uncertain surgical environments. Therefore, it contributes to make a step forward towards
autonomy in surgical robotics.
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Contributions of this Chapter

The main contributions of this Chapter are the following:

1. We present DEFRAS, a DEliberative Framework for Robot-Assisted Surgery that
integrates all skills necessary to cope with uncertain anatomical environments,
while guaranteeing successful task execution and respect of safety constraints.
The framework is made pubicly available at https://gitlab.com/altairLab/tissue_
retraction.git.

2. We show that a framework for autonomous surgery requires the integration of
a biomechanical simulation for different reasons, from the design a personalized
intervention plan in a pre-operative phase, to the continuous monitoring of the
actual surgical environment and to deal with specific problems of real surgery,
e.g. lack of force feedback, in the intra-operative phase.

3. We demonstrate that DEFRAS is able to cope with deformable environments with
uncertain parameters, accomplishing a representative surgical task, i.e. tissue
retraction, both in simulated and real experiments with the da Vinci Research Kit.

Publications linked to this Chapter

The content of this Chapter has been presented in the following publications:

1. Meli D, Tagliabue E, Dall’Alba D, Fiorini P: Autonomous tissue retraction with a
biomechanically informed logic based framework, 2021 International Symposium
on Medical Robotics (2021); 2021 Nov 17-19; Atlanta (USA);

2. Tagliabue E, Meli D, Dall’Alba D, Fiorini P: Deliberation in autonomous robotic
surgery: a framework for handling anatomical uncertainty, IEEE International
Conference on Robotics and Automation (2022); 2022 May 23-27; Philadelphia
(USA);.
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Chapter 7

Conclusion

The aim of this thesis has been to propose the different ways in which simulation can support
to an autonomous surgical robotic system and enhance its performance.

We have shown that physics-based simulations (i.e., those describing anatomical behavior
based on the laws of continuum mechanics) can be used to generate large amounts of data
that can be employed to train machine learning methods. Reliance on synthetic data allows to
compensate for the impracticality to acquire such a dataset in the medical field. In this Thesis,
we have provided two examples of successful exploitation of dataset generated from simula-
tions. First of all, they have been used to train a convolutional neural network which acts as
a patient-specific model that predicts anatomical deformations given an input displacement,
called U-Mesh. The performance of the U-Mesh has been evaluated on the prediction of the
large non-linear deformations of breast tissues during ultrasound scanning. In this challeng-
ing context, the U-Mesh has proved able not only to reach accuracy levels aligned with those
of the method used to generate the dataset, but also to provide extremely fast predictions
without suffering from numerical stability, thus overcoming the main limitations of other ex-
isting simulation approaches. As a second example, we have proposed a method that updates
the parametrization of a simulated model intra-operatively and is trained with synthetic data
only. The developed strategy, called BA-Net, provides an up-to-date estimate of the location
of tissues attachment points, whose position cannot be precisely known from pre-operative
data and thus requires intra-operative identification. By relying on a deep network, BA-Net
is able to update a biomechanical model in less than 2 s (considering the whole pipeline from
sensor data acquisition to model update), reaching clinically acceptable performances both
in terms of simulation accuracy and intra-operative time constraints, during manipulation of
both synthetic and ex-vivo adipose tissue.

Simulation can assist the design, test and validation of an ARSS. To this end, we have
shown that surgical tasks can be learnt in simulation leveraging on strategies that require
multiple interactions with the environment (e.g., deep reinforcement learning). In this case,
relying on a simulation environment is extremely helpful to avoid the limitations connected
with data acquisition on real surgical robotic systems. We have demonstrated that, after
testing in simulation, learnt tasks can be successfully transferred to the real system relying
on UnityFlexML, our developed open-source framework that interfaces a stable and efficient
simulation environment with the real da Vinci Research Kit. Finally, we have presented DE-
FRAS, a framework for autonomous surgery which includes deliberative functions in order to
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cope with the dynamic and uncertain anatomical environment. DEFRAS integrates a biome-
chanical simulation, whose presence has proved essential to support the autonomous system
both in the pre-operative phase for surgical task planning, and in the intra-operative phase
for monitoring and enhancement of the real execution. Among its different functionalities,
DEFRAS incorporates BA-Net to enable online update of the simulated model starting from
real observations, leading to successful task execution even in case of inaccurate initial model
parametrization.

By addressing the different benefits that simulation can bring to an ARSS, proposing possi-
ble solutions to tackle the main issues of existing approaches and publicly sharing the devel-
oped methods, we encourage a more widespread use of simulation in autonomous surgery.

7.1 Future research directions

Throughout this Thesis, we have demonstrated that simulation can support an ARSS both
enhancing task execution and in the development of methodologies to address some specific
challenges of surgery (e.g., intra-operative model update or task learning). In particular, in
the last Chapter (Chapter 6) we have shown how a simulated environment and the developed
methodology for intra-operative update of attachment points (BA-Net) can be successfully in-
tegrated within a framework for autonomous surgery (DEFRAS). Their role has proved fun-
damental for the autonomous execution of tissue retraction on a deformable phantom (i.e.,
a single task on a controlled setup), which has been selected for our preliminary evaluation.
The goal of future works will be to consider a more realistic clinical scenario, starting from
an anatomical phantom and then moving to ex-vivo settings. In terms of task, we will tackle
the autonomous execution of other parts of a surgical procedure (e.g., partial nephrectomy),
with the aim of automating the entire intervention. This will imply to address other surgi-
cal tasks like dissection, cutting and suturing. In turns, it will require the implementation
of advanced strategies to cope with the specific challenges arising due to the new actions
involved, in terms of modeling, control and simulation. We expect that simulation will play
a crucial role to properly deal with such a challenging context, supporting the development,
validation and task execution phases. To tackle such a complex scenario, we will leverage on
the promising results achieved in this work and address their limitations. In particular, the
main direction for future research will be the improvement of the methodologies developed
in this Thesis, strengthening their robustness and generalization capabilities, with the final
goal of supporting the autonomous execution of increasingly complex surgical tasks and their
integration within an extended version of DEFRAS.

First of all, moving to a more realistic setup and task will introduce some challenges in the
design of a simulated environment with the required features, i.e. able to achieve high ac-
curacy, while guaranteeing computational performance compatible with the execution work-
flow. For the validation scenario considered in this Thesis (i.e., tissue retraction of a silicone
phantom), such performance requirements could be met with the FE method running on
CPU, relying on the corotational formulation [48]. However, we expect that more optimized
solution methods and/or formulations will be needed as soon as more complex interactions
are involved, e.g. contacts with surrounding organs and topological modifications arising in
case of cutting and suturing, which would increase the computational burden of the simula-
tion. However, it is worth highlighting that the role of the simulated environment in DEFRAS
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is to complement real sensor data while monitoring the execution. Although it is desirable
to have a simulation running in real-time for such purpose, it will still be acceptable if the
simulation can provide feedback at a lower rate with respect to the main execution loop.
The FE method remains the preferable approach for the simulated environment due to its
reliance on real tissue mechanical properties, which facilitates model parametrization both
in the pre-operative and in the intra-operative phase. As a consequence, we will investigate
the integration of optimized FE implementations that take advantage of the processing power
of GPUs to improve computational performance, such as the one proposed in [60].

However, it is possible that the speedup obtained even with optimized FE implementa-
tions will not be sufficient to achieve acceptable performance. Therefore, another promising
research direction is to rely on a simulated environment driven by a neural network, like-
wise the U-Mesh presented in Chapter 3, which has obtained excellent computational per-
formance, together with high accuracy and stability. However, the current method presents
some limitations that need to be addressed. At present, the U-Mesh represents a patient-
specific model that can handle a single anatomy. Generalization to a new geometry is already
possible, but requires re-training of the network with a new geometry-specific dataset. There-
fore, as an initial step we will make the network able to deal with any input geometry, e.g.,
encoding shape information in the input, following the same approach already proposed in
Chapter 4. Two major aspects need to be addressed to assess the feasibility of exploiting a
neural network as simulation method within DEFRAS. First, we will investigate the possibil-
ity of accounting for imprecise modelling assumptions in the training data generation phase.
In fact, we have demonstrated that pre-operative data and knowledge are not sufficient to
create an accurate patient-specific model, thus requiring the design of strategies for intra-
operative model update. Differently from FE-based simulations, updating parameters will
not be straightforward when the simulation relies on a neural network. A possible option
would be to find a strategy to condition the network output based on observed data or new
parameters. For example, model parameters might be given as input to the method, as in
[106] where boundary conditions are provided as input features. An alternative would be
to include samples with variable parametrization within the training dataset (e.g. constitu-
tive models, mechanical properties and boundary conditions) such that the network would
implicitly learn to compensate for inaccurate parameters. The second aspect that requires
investigation is the possibility to model complex interactions and topological modifications.
At the moment, the U-Mesh requires a fixed and regular grid as input. Topological modifi-
cations might be addressed either by encoding ad-hoc features in the input grid (e.g. infor-
mation about connectivity between neighbouring voxels) or by considering different kinds of
network architectures (e.g. Long Short-Term Memory networks [248] or GANs [207]).

Targeting a more complex environment and task will inevitably introduce challenges in
finding the proper parametrization of the models, which makes the presence of strategies for
intra-operative model update even more important. Therefore, it will be essential to improve
the robustness of the proposed pipeline for model update, in its entirety. As a first point, we
will focus on improving the pre-processing step, which at the moment relies on geometric
and color-based segmentation and decimation of the tissue point cloud. This simple pre-
processing pipeline is highly influenced by lighting conditions, the presence of occlusions and
moving tissues, even in controlled scenarios as the ones considered in this work. In future
works, we will try to reduce the effects of noise at the source, e.g. relying on edge maps
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[249, 250]. Moreover, we plan to integrate methods for robust tracking of tissue displacement
based on automatic feature points extraction [251, 252], and improve robustness of the scene
segmentation exploiting for example semantic information [253]. It is worth stressing out
that improvements in the perception pipeline of the environment will not only impact the
accuracy of the model update strategy, but it will be fundamental to enhance the sensing
capabilities of DEFRAS. For example, the robustness of the discrepancy metric computed by
the monitoring module will be impacted by the availability of more accurate data from real
sensors.

The developed strategy for intra-operative update of APs (i.e., BA-Net) has also room for
improvements. In particular, the accuracy of the method is not only impacted by the quality
of the input point cloud, which can be addressed with an improved pre-processing (as de-
scribed in the previous paragraph), but also by the quality of the displacement estimation,
which depends on the computation of corresponding points between the organ geometry and
the acquired point cloud. This is an important aspect that we plan to tackle in the future by
letting the network implicitly solve for surface correspondences as in [14], thus directly pro-
viding the point cloud as input. A possible alternative to skip the surface matching problem
would be to rely on other network architectures, like PointNet [254], that take as input the
point clouds directly. This approach has already shown promise to solve several tasks in the
computer vision field, as surveyed in [255]. Furthermore, we plan to improve the robustness
of the current method by investigating possible ways to enforce temporal consistency of the
predictions, thus accounting for the temporal evolution of surgery. To this purpose, we will
develop a novel DNN model that considers multiple sequential measurements (i.e. tissue
surface 3D reconstructions) from the intra-operative sensors. We will consider an improved
version of the currently employed U-Net, equipped with Long Short-Term Memory and At-
tention Gate Cells, which have demonstrated promising capabilities to extract the correlation
between consecutive measurements [256], which might lead to a boost in prediction accu-
racy. As an additional improvement, we will enhance the adhesion modeling by replacing
the current binary constraints used to model APs with a more complex model, for instance
by modelling the attachments with groups of springs with variable stiffness, depending on
the extent of the constraint. This more realistic model will be exploited both to generate the
synthetic training dataset and to test the method.

Addressing a more clinically realistic scenario will require us to improve our current exper-
imental setup. First of all, we will test autonomous execution on phantoms generated from
real anatomical atlases [257], and then move to ex-vivo (both animal and human) experi-
ments. Afterwards, we will investigate how to make our setup compatible with the limited
workspace available in RMIS settings. The main factor that will prevent direct transfer of our
current setup to real clinical settings is the presence of an external RGBD sensor (in addition
to the endoscopic camera), which is used to obtain depth information and maximize tissue
visibility for monitoring purposes. To tackle this issue, we plan to integrate an advanced
stereo-endoscope sensor with robust depth sensing capabilities provided by state-of-the-art
Micro Electro-Mechanical Systems directly on the dVRK endoscopic arm, using an actuated
endoscope similarly to [258]. This setup would have a minimum sensing distance of few
centimeters, making the system suitable for an RMIS scenario.

In future works, we will also investigate how to enhance the awareness of the framework,
hence we will consider the introduction of advanced sensing technologies on the instruments.
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We plan to integrate Electrical Bioimpedance (EBI) sensors on the dVRK arms to make the sys-
tem able to identify the different tissues during interaction with them [259]. This technology
can also be helpful to verify if grasping has been successful, compensating for possible inac-
curacies in the registration process. In addition, we will investigate the possibility to equip
the dVRK arms with strain gauges to obtain an estimate of the interaction force starting from
instrument deflection, e.g. exploiting the method proposed in [260]. Information on the ex-
erted forces from real sensors opens promising research directions towards the development
of new strategies devoted to the refinement of patient-specific mechanical parameters [261].

Finally, autonomous execution of more complex surgical tasks will require to extend the
individual deliberative capabilities of DEFRAS to deal with such challenging scenarios. We
will start with improving task knowledge description both pre-operatively from the analysis
of surgical annotations [244] and intra-operatively by observing the surgeon’s reactions to
critical situations [245, 246]. Moreover, performing complex tasks would require enhanced
dexterity that can be achieved implementing either motion adaptation strategies as [231] or
learning from demonstrations as [243]. Learning from demonstrations approaches can be
implemented leveraging on UnityFlexML, the framework presented in Chapter 5, where we
have shown that they can even be coupled with deep reinforcement learning. The simulation
environment provided by UnityFlexML, which relies on the position based dynamics method,
is particularly promising to achieve efficient simulations involving multiple organs and topol-
ogy modifications, with a sufficient level of realism. However, since the design of handcrafted
reward functions for complex tasks would be not straightforward, in future works we will test
image-based learning strategies and integrate image-to-image translation as [262, 208, 263]
for style transfer from simulated to real images.

With this Thesis, we have shown that the availability of a patient-specific anatomical sim-
ulation can contribute to the development of an ARSS in many different ways. As a con-
sequence, simulation needs to be integrated as a key component in next generation surgical
robotic systems, which will have increasingly autonomous capabilities. Despite the promising
results already obtained, the methods proposed in this Thesis offer margin for improvement,
especially to make them closer to applicability to real clinical conditions, thus opening space
for new exciting research directions.
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