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Abstract Forecasting future heat load in smart district heating networks is a key
problem for utility companies that need such predictions for optimizing their oper-
ational activities. From the statistical learning viewpoint, this problem is also very
interesting because it requires to integrate multiple time series about weather and
social factors into a dynamical model, and to generate models able to explain the
relationships between weather/social factors and heat load. Typical questions in
this context are: “Which variables are more informative for the prediction?” and
“Do variables have different influence in different contexts (e.g., time instant or
situations)?” We propose a methodology for generating simple and interpretable
models for heat load forecasting, then we apply this methodology to a real dataset,
and, finally, provide new insight about this application domain. The methodology
merges multi-equation multivariate linear regression and forward variable selec-
tion. We generate a (sparse) equation for each pair day-of-the-week /hour-of-the-
day (for instance, one equation concerns predictions of Monday at 0.00, another
predictions of Monday at 1.00, and so on). These equations are simple to ex-
plain because they locally approximate the prediction problem in specific times of
day/week. Variable selection is a key contribution of this work. It provides a re-
duction of the prediction error of 2.4% and a decrease of the number of parameters
of 49.8% compared to state-of-the-art models. Interestingly, different variables are
selected in different equations (i.e., times of the day/week), showing that weather
and social factors, and autoregressive variables with different delays, differently
influence heat predictions in different times of the day/week.
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1 Introduction

Smart grids have recently gained strong interest from the artificial intelligence
community because the optimization of their functioning, productivity and main-
tenance requires non-trivial intelligent tools [23,14]. A specific branch of smart
grids concerns district heating networks (DHNSs) [28], in which centralized heating
plants generate the heat, and a pipe system distributes it through exchangers to
residential and commercial buildings. The high efficiency and pollution control of
smart DHNs make these technologies strategic for future sustainable development.
Moreover, the optimization of this technology can take strong advantage from the
large amount of data available in smart cities [7,32].

In this work, we focus on specific artificial intelligence techniques for improv-
ing DHNs performance, namely, predictive models for heat load forecasting. They
allow to predict in advance the amount of (hourly) heat a power plant should
produce in the future, depending on weather conditions (e.g., temperature), so-
cial factors (e.g., the day of the week or holidays), past heat loads and possibly
other sources of information. These tools can be implemented in several ways,
using different statistical and machine learning models, such as, AutoRegressive
Integrated Moving Average (ARIMA) models [6], Hidden Markov Models (HMM)
[25], neural networks, [16] and other frameworks. We use a multi-equation linear
autoregressive model, that, despite its simplicity, achieves very good performance.
The main idea behind the proposed model is to split the prediction problem in
many small sub-problems that can be linearly approximated with good accuracy.
The main advantage of this approach is interpretability, since the mathematical
equations by which each sub-problem is modeled can be interpreted by humans.
New insight can be acquired by analyzing the parameters of these equations and
the performance of the model.

Our original contribution concerns performance and interpretability improve-
ment over a methodology presented in [3], by means of the introduction of a
variable selection layer. This yields a reduction of the prediction error of 2.4% and
a reduction of the number of parameters of 49.8% in the best model. Exploiting
this reduction we provide new insight on the heat load process by an in-depth
analysis of model parameters and performance, that reveal informative patterns
and properties about the relationships between weather/social factors and heat
load. In particular, we answer questions as, “Which variables are more informa-
tive to predict the future heat load in specific days of the week and hours of the
day?” and “In which days of the week and hours of the day the hourly heat load
is more difficult to predict?”, and again, “How does a non-accurate sensor affect
prediction performance?”. Since experiments have been performed using a real
dataset, answers provide insight about a true case study. The insight we provide is
data-driven and it can be useful for utility companies that face similar questions
to design, use or maintain their smart DHNs.

The dataset of heat load measurements has been generated by a DHN located
in Verona (Italy) and managed by an Italian utility company called AGSM®. Tt
contains hourly heat loads produced by three heating plants in 2014, 2016, 2017
and 2018. The overall prediction model is made of 168 linear regression equations,
one for each pair day-of-the-week /hour-of-the-day (e.g., an equation is specialized

L https://www.agsm.it/
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on the load prediction of Monday at 00.00, another in that of Monday at 01.00,
and so on, until Sunday at 23.00). The multi-equation model performs predictions
with different time horizons using all equations together, however we focus on
Short Term Load Forecasting (STLF) [19,17], and aim at predicting the load of the
next 48-hours. The variable selection method here proposed is an iterative forward
stepwise technique which we apply separately to single equations, obtaining a
potentially different set of variables for each equation. We analyze the performance
of the overall model and of single equations trained on two datasets of different
size, to show the impact of the training set size on the performance. Finally, we
deepen the analysis of model parameters and get insight about the importance of
different variables in different time instants.

The main contributions of this work to the state-of-the-art are summarized in
the following:

— we improve the model generation pipeline proposed in [3] by adding a variable
selection layer which produces a reduction of the prediction error of 2.4% and
a reduction of the number of model parameters of 49.8%;

— we perform an in depth analysis of prediction performance and model parame-
ters on a day-of-the-week /hour-of-the-day basis, identifying useful relationships
between load and weather/social factors, and useful patterns for operational
activities on the DHN;

— we analyze the sensitivity of model performance to the absence or inaccuracy
of some weather /social factors.

— we perform a comparative analysis showing that, despite its simplicity, the
proposed approach outperforms state-of-the-art methods in terms of both pre-
diction performance and interpretability.

The rest of the manuscript is organized as follows. Section 2 presents the state-
of-the-art on load forecasting and highlights the differences between methods in the
literature and our approach. Section 3 describes the dataset. Section 4 defines the
model generation and variable selection techniques, and the performance measures.
Results are analyzed in Section 5 and conclusions are drawn in Section 6.

2 Related works

We have identified three research topics that have relationships with our work.
From the more specific to the more general, we have: i) heat load forecasting in
DHNS, i) electric load forecasting and short term load forecasting, 4ii) time series
forecasting. In the following we provide a short but comprehensive description of
the main works of each topic, and we highlight the differences between those works
and our work.

i) Heat load forecasting in DHNs. In [12,13] seasonal ARIMA models are com-
pared to a multi-equation linear regression model based on 168-hour historical
demand pattern and weather factors (i.e., temperature and wind speed). The best
model identified in those works is a single-equation linear model using as predic-
tors, the external temperature, holidays and wind speed in the last week. In tests
performed on our dataset, multiple-equation models outperform single-equation
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models. In [10] three different machine learning models are compared on a real-
world case, based on hourly data of a DHN located in Aarhus (Denmark). The
comparison shows that support vector regression based on weather factors and
calendar events performs better than other models in 1538h forecasting horizons.
In [15,31] eXtreme Gradient Boosting (XGBoost), linear regression and Deep Neu-
ral Networks are compared for thermal load forecasting in DHN. A methodology
based on the integrated use of regularized regression and clustering for generat-
ing predictive models of future heating load in DHNs is also presented in [8]. We
finally presented a first multi-equation model for heat load forecasting in [3].

The main difference between the cited literature and the present work is that
here we investigate the contribution of variable selection on prediction perfor-
mance and model interpretability. Moreover, in addition to standard weather vari-
ables (i.e., temperature and wind speed), we also consider the impact of relative
humidity, rainfall and some engineered variables based on temperature. Further-
more, our sensitivity analyses provide practical insight about the informativeness
of different factors on load prediction. urwork presented in [3] is also significantly
extended by the feature selection mechanism that improves both performance and
interpretability.

11) Electric load forecasting and short term load forecasting. Electric load forecast-
ing has several similarities with heat load forecasting because in both cases the
quantity predicted is energy delivered by a central producer to consumers through
a network. The consumers are also very similar in general (i.e., private and com-
mercial buildings), hence weather and social factors that influence the prediction
can be similar as well. Two key surveys on this topic are [17] and [22]. The first,
dates back to the 1980s and focuses on statistical methods, while the second is
more recent and considers also current machine learning models trained on high-
frequency data collected by metering infrastructure. The works in this context
which most resemble ours are [30,26]. In particular, we used some engineered
variables related to temperature that they used in their linear regression models.
However, in those paper dummy variables are used in a single equation approach
to deal with factors as years, seasons, calendar events and weekdays, while we use
a multiple equation approach. An hybrid technique is proposed in [20] using a least
squares support vector machine for annual power load forecasting. Two very recent
works about short term load forecast [11,29] propose approaches based on, respec-
tively, deep residual networks with convolutional structure and weighted support
vector regression combined with a modified grasshopper optimization algorithm
to optimally select parameters. All these approaches have however interpretability
limitations due to the complexity of the modeling frameworks used.

1) Multivariate time series forecasting. First works on statistical models for time
series forecasting date back to the seventies [6]. The majority of that models were
univariate, namely, they predict future values of a variable given past values of the
same variable. The availability of large amounts of data starting from the early
2000s fostered the development of multivariate models using information from
both endogenous and exogenous variables to make predictions [24]. The advent of
machine learning brought new types of model, such as, support vector machines,
Gaussian processes and neural networks [1]. Feature selection and representation
learning [2] has recently become also fundamental for dealing with multivariate
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data. Recent reviews have evaluated machine learning and deep learning methods
for time series forecasting [21], and competitions on large amount of data [24]
stimulate continuous improvement of new methods.

A complete analysis of these approaches is impossible, hence we mention only a
few of them from the main categories, and then we summarize the main differences
with the approach proposed in the paper. XGBoost [9] is a fast implementation
of gradient boosted decision trees that has recently dominated applied machine
learning competitions. Time series forecasting can be tackled using this approach
by transforming the problem to a supervised learning problem using sliding-win-
dow representation of the time series. Gaussian processes (GPs) are also a sound
method for time series forecasting [27] which considers data uncertainty and pro-
vides also confidence intervals on predictions. Shrinkage methods for linear regres-
sion, such as, ridge [18], lasso and least angle regression have been recently used
for predicting highly dimensional time series [24] achieving good performance. Fi-
nally, convolutional neural networks (CNN) and long-short term memory (LSTM)
networks have gained popularity in recent times [21], since they achieve good per-
formance on large training sets. In a previous work [4] we also tested CNNs, GPs
and shrinkage methods on our dataset, achieving lower performance than in this
paper, and also with a lower model interpretability.

3 Dataset

The dataset used for training our models contains hourly time series collected from
four sources. The first are three plants managed by AGSM that provide hourly
heat loads. The utility company provided three separated datasets for years 2014,
2016, 2017 and 2018. We merged them into a single signal representing the over-
all heat produced (hourly) by the plants and entered into a network located in
the city center of Verona (Italy). The buildings served by the network are both
residential and commercial. The second source is a temperature sensor located in
Verona city center and managed by AGSM. It provides precise values of the hourly
air temperature nearby the DHN. Since only the temperature signal was available
from this data source we acquired also weather data from a nearby meteorological
station located in the Villafranca airport, which is located about 12.5 Km out of
the city center of Verona. Historical time series from this station are publicly avail-
able in the Reliable Prognosis 5 website?. From this website we acquired hourly
time series of relative humidity, wind speed and rainfall. As a third data source
we used Holidays®, a Python module that offers functions related to calendars,
legal /religious holidays and working-days. From this library we got information
about Italian holidays.

The six signals described so far, namely, heat load [, air temperature T, rel-
ative humidity RH, wind speed W, rainfall R and holidays H (a binary variable
generated by setting working days to 0 and holidays to 1), were engineered to
obtain new variables with high predictive power in our application domain. The
final list of variables, inspired from similar applications in the literature [26], is
reported in Table 1. They are the heat load (used as a dependent variable in our

2 https://rp5.ru/
3 https://pypi.org/project/holidays/
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predictive model) and nineteen variables (used as independent variables) derived
from the six main signals described above.

Table 1 List of variables

Variable Description

l Heat load [MW] (target)
l; € [1,7], L of ¢ days ago

lp 11 at 6:00 AM (peak hour)
T Temperature [°C]

T2 Square of T

Tna(7) Moving avg of T last 7 days
T Maximum T of the day
T2 Square of Ty of the day
Tm—1 Ty of the previous day
Tfn_l TJQM of previous day

RH Relative humidity [%)]

w Wind speed [m/s]

R Rainfall(1:rain, 0:no rain)
H Holiday(1:yes, 0:no)

The DHN has two main states of functioning. One is related to the times of
the year in which the heating can be used to warm up the buildings, and the other
is related to the time of the year when the heating must be switched off. This is
regulated by law in Italy and has a strong impact on the prediction of future heat
loads, since in the second period the load is only related to the production of hot
water for sanitary use and heat dispersion in the pipeline. We make our predictions
only on time periods when the heating is switched on, namely, from 01/01/2014
to 15/05/2014, from 15/10/2014 to 31/12/2014, from 01/01/2016 to 11/05/2016,
from 11/10/2016 to 14/05/2017, and from 16/10/2017 to 21/04/2018. The total
number of observations is 18024.

Our method, described in the next section, requires three datasets, namely,
one for training model parameters (called Dp in the following), one for selecting
informative variables (Dy ) and the last for testing prediction performance (D).
Since we want to evaluate the influence of dataset size on model performance,
in our experiments we split the entire dataset in two different ways to generate
sub-datasets Dp, Dy and Dr (see Section 5.1).

4 Method

After describing the problem and presenting an overview of the proposed frame-
work, we introduce the methodology used to select variables and generate the
predictive model. The section continues with the definition of the performance
measures used to evaluate the model, and it ends presenting an open source Python
software dealing with the complete data analysis and model generation pipeline.
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4.1 Problem definition and system overview

The problem we address is short-term heat load forecasting in DHNs. In particular,
we aim to make 48-hour predictions of the heat load produced by a plant depending
on weather conditions, social factors and past values of the heat load. From a
statistical and machine learning viewpoint this is a time series prediction problem
with multiple exogenous and endogenous variables. The goal is to reduce as much
as possible the prediction error using the information in the variables as better as
possible. Figure 1 depicts the main elements of the DHN (i.e., the heating plant,
buildings and the pipeline), it shows weather and social factors that we consider
in our analysis and the goal of minimizing the prediction error. Our methodology
aims to generate model M in Figure 1. The model is a function taking past and
(predicted) future values of exogenous and endogenous variables to produce heat
load prediction at the next time instant. To get 48-hour predictions, the model is
run 48 times feeding back each time the current load prediction as an endogenous
variable to generate the next prediction.

District Heating Network

Weather factors d ﬂ
-
temperature ﬂ::

wind Q

speed O

Social factors
rainfall

B
DR O

workday
weekend

Weather station

L]

Residential buildings Commercial buildings

Heating load forecasting
Real Pred

>
R CIE HAWAN

Weather & social factors Model Goal: Minimization of prediction error

JL[D@%

Heating load [MWh]

Fig. 1 Problem definition: short-term heat load forecasting in DHNs.

4.2 Model generation with integrated variable selection

The procedure which generates the predictive model is graphically depicted in
Figure 2 and formally defined in Algorithm 1. The inputs are the two datasets Dp
(i.e., the dataset for training model parameters) and Dy (the dataset for variable
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selection). As a first step (lines 3 and 4 in Algorithm 1) we extract rows related to
day ¢ and hour j from both datasets Dp and Dy obtaining sub-datasets Dg’j) and
Dg/i’j), 1€{1,...,7},7 € {0,...,23}. Then we start to select the set of variables
for each equation E; ;) using the related datasets Dg’j) and DS’j) (see line 7).
The set of variables selected in each equation E(; ;) is independent of that of other

equations because it depends only on observations in datasets Dg’j ) and Dg,i’j )
(see the for cycle in line 2). This has also the positive effect to make the process
parallelizable.

Data for Data for

training parameters variable selection
[ ] | v
Erd ) (B2 » |
|| [

Data splitting in day i & hourj  Data splitting in day i & hour j

Forward variables selection

) J

D, 4—» RMSE;* on D,

Equation with . y
in Set of variables with
selected variables minimum RMSE
EII-I). -

k

RMSE, *
i)

Fig. 2 Overview of the proposed methodology for variable selection and model generation.

Given a specific day ¢ and hour j we first train, using dataset Dg’j), all possible
models with a single variable selected from the set of all variables Z = {v1,...,v4}
(line 10). The cardinality of these models is equal to the total number of variables
(d) in the first iteration. We then evaluate the performance of each model (line 11)
by computing the average Root Mean Squared Error (RMSE1p) (see details in
Section 4.4) between load predictions with horizon of 1-hour and the related true

loads in dataset Dg’j). In Algorithm 1 this is called RM SFE instead of RMSFE1p
for simplifying the notation. The best model is subsequently selected (line 13),
the related variable v* added to the set of variables for that equation (line 16)
and removed from Z (line 18). This process is then iterated (line 7). At the second
iteration we generate all models with two vari)ables7 keeping v* always in the model,
J

then we train parameters using dataset Dg , and select the best model according

to its RMSE on Dg’j). The iterations are performed until a model containing all
d variables is obtained for equation E(; ;.
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Algorithm 1: ModelGenWithVarSelection

Input: Dp: Dataset for training model parameters
Dy, : Dataset for variable selection
Output: M,s: Model with selected variables
Z(,5),t=1,...,7,5=1,...,24: Selected vars

1 Mys = ®§
2 foreachi=1,...,7, j=1,...,24 do

3 Extract Dg’j) from Dp;

4 Extract D‘(/i’j) from Dy ;

5 Z ={v1,...,v4}; // Variables to test

6 Zin =0 // Variables in eq. E(; ;)

7 foreach k =1,...,d do

8 foreach v;, € Z do

9 Zf,r;vh = Zin Uvp;

10 Train EZ’?’)L with vars Zf,{’zvh on Dg’”;
11 Compute RMSEZ’Z’; of E(; ;) on Dﬁ}’]);
12 end

. ek
13 Eé‘w,) = argkgl;n(RMSE(ijjj’;); // Best eq.
(4,5)
S o=k . BT oark.vh

14 RMSE(; jy = min(RMSE ] 5) | v € Z;

15 vF = arg min(RMSE’ZZ-’I;-’)‘); // Best variable
EF R ’
(4,5)
k — 7. k

16 Z(i,j) = kZm Uwo

17 Zin = Z('L,j)

18 Z=27Z\v*

19 end
20 Z(i,5) = arg min(RMSEI(ci’j)); // Best var.

o) N N

21 Train E(; ;) with vars Z(; ;) on Dg’]) u D‘(}’]);
22 Mys = Mys U E(; 5);
23 end

24 return Mys, Z¢; 5,1 =1,...,7,j=1,...,24

Since the training set Dg’j) and the test set Dg,i’j) are different, the RMSFE1p,

on Dg}’] ) usually reaches a minimum (line 20) when a subset of all variables is
selected, because a too large number of variables produces overfitting, and a con-
sequent increase of RM SFy;. Variable selection is performed for each equation
E(,;) achieving a final multi-equation model Mys containing all equations. The
variable selection procedure follows a forward selection strategy, it is greedy there-
fore it does not ensure to find the best solution. The optimal solution would
however need to test all possible combinations of variables for each equation,
which has a prohibitive time complexity when the number of variables grows.
Our original contribution is in the integration of forward variable selection into
the generation of the multi-equation model. Algorithm 1 provides all technical
details about this integration. The time complexity of the proposed methodology
is O(|E¢ ] - d* - |Dp| - |Dv|), where |Ei,5)| is the number of equations (see line
2 in Algorithm 1); d? refers to the iterations in the two for cycles of lines 7 and
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8) that make Zzzl k= % iterations; |Dp| considers the order of the number
of steps needed to train the parameters, which depends on the dimension of the
training set; Ky considers the number of steps needed to compute the RMSE on
the test set.

4.3 Baseline model

The baseline model to which we compare M, is that computed using the approach
proposed in [3], where all variables are used in all equations. In the following, we
will call this model M,;;. We notice that also that model is multi-equation and it
has an equation for each pair day-of-the-week/hour-of-the-day.

4.4 Performance measure

The quality of the predictions made by model M, is evaluated by four measures,
namely, the average Root Mean Squared Error and the average Mean Absolute
Percentage Error on a 48-hour horizon (RMSFE4s;, and M APFE,sp,) and on a 1-
hour horizon (RMSE1, and MAPE4;). We compute all these measures on the
test set Dp. Given an horizon of r hours, we first compute all r-hour predictions
in Dr using a sliding window that moves from the beginning to the end of the
dataset. For each position of the sliding window we compute the RMSE and MAPE
according to the following formulas [18]:

I, .
RMSE = | = (it — yr)? (1)
"=
1 u Yyt — ﬂt
MAPE = — == 2
. ; m (2)
where 91, ..., gr are predictions and y1, . .., y, related ground truth values. Notice

that in Algorithm 1 the performance is computed using the RM SFE1, on dataset
Dy . The unity of measure of both RMSE and MAPE in this paper is MWh since
they measure the heat load error.

In the next section we also evaluate the variable selection capability of Algo-
rithm 1. This is measured as the number of parameters of M, called # parameters
in the following. Finally, we measure the time performance of the training phase
and model selection phase (i.e., Algorithm 1).

4.5 XM_HeatForecast

In this section we describe XM_HeatForecast® [5], a software that allows DHN
operators to use the methodology presented in this work in real-world applica-
tions. XM _HeatForecast generates and updates predictive models, and uses them
in real-time for heat load forecasting. The tool consists of four modules, namely,
i) graphical user interface; ii) model generation and prediction; iii) analysis of
performance; iv) variables selection. A description is reported in the following.

4 The Python code of XM _HeatForecast is available at https://github.com/XModeling/XM
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1) Graphical user interface (GUI). Tt supports operators in the monitoring of the
entire process. When the software is launched the user can select different settings,
namely, a forecasting horizon (24 or 48 hours), a mode (normal or variables se-
lection), a prediction rate (daily or hourly prediction) and the size of the training
dataset. The GUI is divided into four main sections: a) the heat load visualization
panel, shows the last 24-hour or 48-hour predictions in real-time (top-left in Figure
3.a). It allows the visualization of weather factors such as 7', RH, R and W with
related predictions; b) an area to monitor the performance of models in terms of
RMSE calculated on 24h-prediction or 48h-prediction and coefficient of determi-
nation R? (top-right); ¢) an area displaying model parameters to analyze values
for each day-of-the-week/hour-of-the-day, and the contribution of each variables
prediction (bottom-left); d) an area which visualizes the time series in the training
set used in the last update of the model (bottom-right).

a) Graphical user interface
Current. tiras 2018-01-14 00300100 sre| 7

Select. varisble: None —| Update

Heating load prediction for the next 48H Model evaluation (RMSE and R"2)
AMSE = 1,60 1

R N | | :
‘i://de ]k M\f

Day(e): ALl — [Houre): AL — [Varte): Al —| Update Vor 13t —[Var 2: 11 —| Update

Model parameters Training set analysis

° = e [
Uiesssgeest %-%-ﬁ 4 \ 8
E . ‘ W

° o S

b) Overview
Weather forecast 20 .G_L.{’
[p' B ProDcaet;asor ey «WT’:“‘:«‘- b i ‘ T
e |

4a

\_;m_, [|Eﬁ.4:;§5—[|a.

Performance Forecast
5.b | 5.c|

Fig. 3 XM_HeatForecast overview [5]: a) Main elements of the graphical user interface; b)
Folder and module organization.

it) Model generation and forecasting. An overview of the internal organization of
the software is showed in Figure 3.b. The software trains predictive models given a
dataset contained in the input folders as csv file (green and purple arrows in Figure
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3.b). Model parameters are re-trained and saved automatically every 24 hours.
Predictions of the next 24 or 48 hours are computed every hour by reading hourly
weather forecast and historical data (green and blue arrows). The performance of
the model is calculated and visualized in the GUI (orange and red arrows).

111) Analysis of performance. The performance measures are calculated in two
stages, namely, every 24 hours the software computes the RMSE and the R? of
the re-trained model, and every hour it computes the RMSE of the last 24-hour
or 48-hour prediction.

i) Variables selection. It is an independent module introduced in the last version
of the software which integrates the methodology presented in this work. The
module must be executed before the forecasting phase. It generates a model using
algorithm 1. The selected variables can be then used in the forecasting phase.

5 Results

In this section the result of our experimental tests are presented. We first describe
the experimental setting and then compare the performance of models using all
variables with that of models using only a selection of variables. Subsequently, we
analyze model parameters, that provide valuable information about the impor-
tance of different variables in different days-of-the-week and hours-of-the-day.

5.1 Experimental setting

We compute two types of model. One, called M,;;, using all variables of Table
1, and another one, called M,s, using a subset of those variables, selected by
the methodology presented in Section 4.2. Both types of model are trained on
two datasets of different size. Dataset D1 uses data from years 2016 and 2017 for
training the model and data from 2018 for testing it. Dataset D2 uses instead data
from years 2014, 2016 and 2017 for training, and data from 2018 for testing. In
Mys the training set is split into two parts, namely, Dp is used for training the
parameters and Dy for selecting the variables, as described in Sections 3 and 4.2.
In particular, in Dy we first use 2016 (i.e., 5184 samples) to train parameters and
2017 (i.e., 5112 samples) to select variables, and then we re-train the parameters
of selected variables only with data of both 2016 and 2017 (this is why 2017 is in
brackets in column Dp of dataset D1, in Table 2). In D2 the same procedure is
performed initially using 2016 and 2017 (i.e., 10296 samples) for training param-
eters and 2014 (i.e., 5064 samples) for selecting variables. Afterwards, the model
with selected variables is retrained using all data from 2014, 2016 and 2017 (in this
case year 2014 is in brackets in column Dp, because data from that year are used
to train parameters only in the last stage of the procedure). Performance are com-
puted as RMSE and MAPE on the test set for predictions of 1 hour (i.e., RMSE1,
and MAPF;,) and 48 hours (i.e., RMSE4g, and M APFE4sp,). Comparison are
performed in the next subsection. Model parameters are instead analyzed in Sub-
section 5.5. The code used for the experiments is written in Python version 3.6.9.
Data cleaning and pre-processing uses pandas version 1.1.4. Models are generated
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using statsmodels® version 012.1. Tests are run on a laptop with processor Intel
Core i7 - 6500 CPU 2.50 GHz x 4, RAM 12 GB and operating system Ubuntu
18.04.5 LTS.

5.2 Global model performance

Model performance and dimensions are shown in Table 2. The first two lines con-
cern, respectively, model M, s and model M,;; on dataset D1, while the second two
lines concern, respectively, model M,s and M,;; on dataset D2. On dataset Di
model M, reaches a reduction of RMSE1j of 0.9% and a reduction of M APE;,
of 2.4%. Errors RMSEs;, and MAPE,g, are instead reduced, respectively, of
0.8% and 1.3% with respect to My;;. Furthermore, this improvement has been
reached with a strong simplification of the model, namely, the number of pa-
rameters is reduced of 51.8%, from 3360 to 1620. Model performance is further
improved on dataset D2 because it contains more observations for training the
parameters. Model M,s achieves in this case the best RMSFE, of 0.992 MWh,
with a reduction of 0.5% (MAPE 1, = 7.100 MWh (-5.7%)). The RM SE4g, has
been even further improved to 1.295, with a 2.4% reduction (M AP FEyg;, = 7.397
MWh (-4.7%)) compared to M. The number of parameters of the best model is
in this case 1688, about 49.8% less than M,;;. The time needed to train models
with variable selection (i.e., 1h 58m for D1 and 2h 15m for D2) is about two times
that required to train the model without variable selection (i.e., 53m for D; and
1h 02m for D3). The difference is related to the length of dataset Dy, since the
performance of each variable combination is evaluated on that dataset.

Table 2 Model performance. Data is the name of the dataset; Model is the name of the model;
Dp, Dy and D7 are the years in the dataset used for parameter learning, variable selection
and testing, respectively; RMSE,, and M APE,) are the performance measures; #par is the
number of parameters in the model.

Data Model Dp DV DT RMSElh RMSE48h MAPElh MAPE48h #par
[MWh] [MWh] [MWh] [MWh]

Dy Mgy 16/17 - 18  1.055 1.420 7.818 8.136 3360
Mys  16/(17) 17 18  1.046 1.409 7.630 8.034 1620
(-0.9%) (-0.8%) (-2.4%) (-1.3%) (-51.8%)

Dy Mg,y 14/16/17 - 18  0.997 1.327 7.533 7.765 3360
Mys (14)/16/17 14 18  0.992 1.295 7.100 7.397 1688

(-0,5%) (-2.4%) (-5.7%) (-4.7%) (-49.8%)

We further analyze the global performance of models M,;; and M, s by comput-
ing the (discretized) distribution of their percent prediction errors in predictions
with 1-hour (Figure 4.a) and 48-hour (Figures 4.b) horizon. Orange bars are re-
lated to model M,;; and blue bars concern model M, ;. For each hourly prediction
(performed in a 1-hour or 48-hour horizon) we compute the percent error with
respect to the true load value. These percent values are stored and then grouped
into the buckets (i.e., percent intervals) listed in the x-axis of Figures 4.a and 4.b.

5 https://www.statsmodels.org/stable/index.html
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Table 3 Time performance. Time for variable selection is the time required by Algorithm 1.
Time for parameter training is the time needed to train model parameters when variables are
known. Time for prediction is the time required to make all 48-hour predictions in the test set
(see test set definitions in Table 2).

Data Model Time for Time for Time for Total time
variable selection parameter training prediction

Dy Man - 3m, 27s 49m, 33s 53m
Mys 1h, 5m 2m, 45s 50m, 15s 1h, 58m
D> My - 5m 57m 1h, 2m
Mys 1h, 16m 4m 55m 2h, 15m
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Fig. 4 Distribution of the percent RMSE prediction error [MWh].

Good predictions are in central buckets, which correspond to intervals [—5%, 0%)
and [0%, 5%), while bad predictions are in the two sides, corresponding to inter-
vals (—oo, —30%] and [30%, +00). Both histograms in Figures 4.a and 4.b show
a larger or equal amount of blue mass with respect to orange mass in the three
central intervals (i.e., [-10%,-5%], [-5%,0%)], [0%,+5%]). In the rest of the bars
there seems to be no specific pattern among the two predictors.

Time performance is shown in Table 3. The total time is split in Time for
variable selection, Time for parameter training and Time for prediction on dataset
D; and Ds. The total time for generating the model (column total time) with
variable selection is about one hour more than that for generating the full model.
This difference is mainly due to the variable selection phase (column time for
variable selection) that takes more than one hour to be completed. We remind
that in both datasets D1 and D> variables have been selected using data from a
single year (i.e., 2017 in Dy and 2014 in D3). The parameter training phase takes
around three minutes in dataset Dp, where data from two years are used, and
around four minutes and a half in dataset D2, where data from three years are
used. The time required to preform all 2449 48-hour predictions in the test set (a
48-hour prediction is performed every hour) is around fifty minutes, namely every
48-hour prediction takes about 1.23 seconds.

5.3 Hourly model performance

We split errors RMSFE 1, and RMSFE g, into 168 parts, one for each equation
E(; jy which refers to a specific day-of-the-week (i.e., i) and hour-of-the-day (i.e.,
7). The interest in this analysis is related to the possibility to identify temporal
patterns in prediction errors. Figure 5 contains results of a quantitative analysis
of these patterns. In particular, the heatmaps in Figures 5.a and 5.b show, respec-
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tively, the breakdown in day-of-the-week/hour-of-the-day of error RM SFE1, and
RM SFE,gp. Rows are hours of the day (from 0 to 23), columns are days of the week
(from Monday to Sunday), and each cell contains the average RMSE for a day-
of-the-week /hour-of-the-day. Predictions with horizon of 1 hour show larger error
variability than predictions with horizon of 48 hours, as expected, because the
error in the second case is averaged over 48 hourly predictions. The visual analysis
of heatmaps in Figures 5.a and 5.b is enriched by the visualization of line charts in
Figures 5.c and 5.d. They display, respectively, hourly RMSFE 1, and RMSE sy
concatenated on a column basis (i.e., day-by-day). Moreover, they show also the
hourly RMSE1, and RMSE,sp, of model Mg (see the orange line). Then, Fig-
ures 5.e and 5.f keep only the hour of the day in the x-axis and use different lines
an colors for different days of the week, favouring a better comparison between
errors of different days of the week at the same hour.
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Fig. 5 Peformance of models Mys and M,;; calculated on test set Dr in the experiment
on dataset D1: a) RMSEqy, of each equation E(; ;) (i.e., day-of-the-week/hour-of-the-day) on
1h-predictions (measured in MWh); b) RMSFE,g;, of each equation E; ;) (i.e., day-of-the-
week /hour-of-the-day) on 48h-predictions (measured in MWh); ¢) Comparison of RMSE;p,
distributions over the weekday of models Mys and My;; on 1h-prediction (measured in MWh);
d) Comparison of RM SE,g;, distributions over the weekday of models Mys and Mg;; on 48h-
prediction (measured in MWh); ) RM SE1j over the hour-of-the-day for each day-of-the-week
(equation E;); f) RMSE s, over the hour-of-the-day for each day-of-the-week (equation E;).

The analysis of Figures 5.a, 5.c and 5.e, shows that the hourly RM SE1, has
a main peak at 5.00, which corresponds to the peak-hour also for the heat load.
The larger error of model M, is on Monday at 5.00, with a value of 2.838 MWh.
Afterwards, there are Tuesday, Thursday and Saturday, that have an error of about
2.000 MWh at the same hour; then there is Sunday, with an error of 1.785 MWh
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and, finally, Wednesday and Friday with peak errors of about 1.500 MWh. The
hourly error is on average high (i.e., between 1.500 MWh and 2.900 MWh) in
the early morning from 4.00 to 7.00, then it has medium values (between 0.800
MWh and 1.500 MWh) from 8.00 to 16.00, and low values (between 0.4 MWh and
1.000 MWh) in the evening/night from 17.00 to 3.00. We also observe a pattern
related to the days of the week, with highest values (on average) on Monday, then
a decrease on Tuesday and another decrease on Wednesday. Strangely, Thursday
sees an increase of the error which is followed by another decrease on Friday. This
makes Tuesday, Wednesday and Friday similar in terms of average daily error,
while Monday and Thursday have higher values. The behaviour of Monday is
motivated by the discontinuity with respect to the weekend, which makes the
network producing more heat. Sunday has an increment of both peak and average
hourly errors with respect to Friday, because of discontinuity of people behaviour
in that day of the week. Also Sunday has a different error profile, but in this case
the error increases mainly in the afternoon and evening with respect to all the other
days. A final consideration is related to error differences between models M, s and
M. The model with selected variables (blue line) has better performance in
all peaks except that of Monday, where errors are very similar. The two models
have similar error profiles, with slightly smaller errors for M,s in general, with a
few exceptions, for instance on Thursday at 20.00 and 21.00, and on Sunday late
morning and afternoon.

Figures 5.b, 5.d and 5.f focus on 48-hour predictions, which is a standard hori-
zon for operational planning in utility companies. Error values are much smoother
than in 1-hour predictions because they are averaged over two days. What emerges
is an oscillatory error profile with weekly period, two maxima (one global and one
local) and two minima (one global and one local). The global maximum is on
Sunday, with highest value on Monday at midnight (i.e., 1.458 MWh), and the
local maximum is on Wednesday with highest value at 17.00 (i.e., 1.359 MWh).
In these instants 48-hour predictions have their highest average error. The global
minimum is instead in the night between Thursday and Friday, with lower value
of 1.137 MWh on Friday at 6.00. The local minimum is instead on Tuesday at 7.00
with a value of 1.172 MWh. Models M,s and M,;; perform similarly from Wednes-
day to Saturday, while M, clearly outperforms M,;; in 48-hour predictions taken
from Sunday to Tuesday.

5.4 Comparison with methods in the literature

In this section we compare our best model M,s, generated using Algorithm 1,
with some state-of-the-art methodologies, namely, CNN, LSTM and Least Shrink-
age and Selection Operator (Lasso). For each of those methods we describe ar-
chitecture, learning parameters and performance. All models have been tested on
dataset D2, and corresponding training and test sets described in Table 2. Table 4
summarizes the performance of all methods and allows to perform a comparative
analysis.

CNN. We trained a CNN with architecture as in [4]. The input is a matrix
having a column for each variable and a row for each time instant (168 rows in
total). The first layer is composed of five neurons with ReLu activation function
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and convolution of the input performed by a kernel having the same dimension of
the input. The five features maps obtained are then passed to a dense layer, which
computes their linear combination. The model is implemented using Keras® and
trained on dataset Ds. Weights are initialized by Xawier normal initializer and
learned by gradient descent with Adam and performing 20 epochs using batch size
equals to 32. Early stopping procedure is used to avoid overfitting.

LSTM. We generated 15 different LSTM models by varying architecture and
hyperparameters. In particular, we tested i) number of layers from 1 to 5, ii)
number of neurons per layer from 24 to 168, iii) regularization factors between
layers using dropout with rates between 0.5 and 0.8 . Then we selected the model
having the best performance on the test set. The input of the model is a matrix
having one column for each variable and one row for each time instant (168 rows
in total). The first layer is composed of 168 recurrent units that use hyperbolic
tangent (i.e., tanh) as activation function and sigmoid as recurrent activation step
function. The output of the recurrent layer is linearly combined in a final dense
layer. The model is trained and tested on dataset Ds, with Keras, for 20 epochs
using batch size of 32 and early stopping procedure for best set of weights selection.

Starting from this (best) model we also tested some local changes to confirm its
goodness. Specifically, we first tested a number of training epochs between 20 and
60. The training task is equipped with an early stopping procedure that speeds
up the process and avoids overfitting. The training stage is stopped when the loss
function converges and the performance on the validation set stops improving. We
observe that in tests with 60 epochs the early stopping procedure converged after
45 epochs. Moreover, we performed new tests concerning: i) the addition of a dense
layer with 48 neurons after the first LSTM layer having 168 recurrent units, ii)
the addition of two dense layers with 48 and 24 neurons, respectively, after the
first LSTM layer having 168 recurrent units, iii) regularization factors between
layers using dropout with rates equals to 0.5, iv) the usage of GRU units instead
of LSTM units. In all tests (i.e., combinations of network architecture and number
of epochs) the performance did not improve with respect to the best model (see
the performance of the best model in Table 4).

Since LSTM usually have good performance on time series prediction, we clar-
ify that the motivation of their low performance compared to the multi-equation
regression model lies in the structure of the regression model. In particular, by
splitting the regression model into 168 equations (i.e., one equation for each day-
of-the-week /hour-of-the-day) we introduce important prior knowledge about the
problem into the model. In fact, the behaviour of the heating load in specific
day-of-the-week /hour-of-the-day is simple and linear with respect to some factors
(mainly the temperature). This is because day-of-the-week and hour-of-the-day
contain information about the (important) social component of the prediction
problem. The LSTM model, on the other hand, is unique, namely, it does not use
one network for each day-of-the-week/hour-of-the-day, hence it should be able to
infer the social component from data. The low performance of the LSTM model
shows that inferring this information from data is very difficult, hence providing
it a priory gives a strong advantage. One could ask why we did not computed a
multiple LSTM model using a network for each day-of-the-week/hour-of-the-day.
The answer is that neural networks need large amounts of data, and splitting the

6 https://keras.io/
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dataset by day-of-the-week/hour-of-the-day generates 168 small datasets contain-
ing on average 62 samples each, in our case, which is not enough for training a
neural network. The simplicity of the regression model allows in this case to learn
an accurate model with little data, achieving better performance than neural net-
works and also a very good interpretability.

Lasso. We generated a linear regression model using Lasso for variable selec-
tion. We used the lassoCV function from sklearn library”. The length of regular-
ization path e was set to 5¢ > and the number of as along the regularization path
to 100. The best model was selected by 10-fold cross-validation.

Performance comparison. The performance of different methods is shown
in Table 4. We show average RMSE and average MAPE on 1 hour and 48 hour
horizons, number of parameters and training time for model M,s trained and
tested on dataset D2. The model M, generated by the approach proposed in this
work achieves the best performance in terms of prediction quality. The method-
ology that selects the smaller number of variables is Lasso (13 variables) and the
best training time is achieved using the CNN (41 minutes). The RM SE1}, reached
by Mys is 0.992 MWh, about 15% less than the performance of the second model
in the ranking, which is the CNN with 1.143 MWh. Similarly, the RM SFE g} is
1.295 MWh for M,s and 1.455 MWh for the CNN, with an increase of 12.4%. The
number of parameters of model M, s, namely 1688, is the second smallest. Only the
lasso regression model has less parameters, namely 13, because it is a single equa-
tion model. Its prediction error is however almost double (e.g., RM S FEs, = 2.553
MWh). This shows that the multi-equation structure of our model is fundamental
for reducing the prediction error. Neural network based models have much more
parameters than our model. In particular, the CNN model has 18491 parameters
(more than 10 times the parameters of M,s) and the LSTM has 126505 parame-
ters (almost 100 times the parameters of M,s). The fact that the 1688 parameters
of our model are also split in 168 equations, with an average of 10 parameters per
equation, highlights also the sparseness and the consequent good interpretability
of our model comparing to neural network based models. The training time of
our method is the highest (i.e., 1 hour and 20 minutes) but we remind that, as
displayed in Table 2, the majority of this time is used only the first time to per-
form variable selection (which needs 1 hour and 16 minutes, see Table 2); instead
only 4 minutes are needed to compute the parameters if the set of variables have
already been defined. Considering this, the training time is comparable to that of
the other methodologies, and in any case acceptable for applications in which the
model is re-trained only seldom (e.g., once a day).

Table 4 Comparison of global performance with the state-of-the-art

Model RMSE;;, RMSE 8y, MAPE , MAPE g, # par Time for Time for

[MWh] [MWh] [MWh] [MWh] training prediction
Mys 0.992 1.295 7.100 7.397 1688  1h, 20m 55m
CNN 1.143 1.455 9.700 10.074 18491 20m 21m
Lasso 2.553 2.498 17.492 16.401 13 5m 40m
LSTM  4.953 5.944 33.000 33.163 126505 39m 42m

7 https://scikit-learn.org/stable/
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In Figure 6 we show the hourly performance of models in terms of RMSFE1,.
The hourly error profile of our model M, is represented by a blue line. It has values
lower than the other methods in almost all the time instants (i.e., x-axis). Only
the CNN model has a similar profile but with slightly larger values on average.

Mvs ——CNN Lasso ——LSTM

RMSE,,
(2]

Mon Tue Wed Thu Fri Sat Sun
Day-of-the-week / Hour-of-the-day

Fig. 6 RMSE;, of the four models M,s, CNN, Lasso and LSTM for each day-of-the-
week /hour-of-the-day.

5.5 Analysis of model parameters

In this section we analyze and compare the parameters of models M,s and My;.
This analysis provides valuable knowledge about the role of different variables
in the prediction. Some questions that we answer here are, for instance, “Which
variables are most informative for predicting future heat loads?” and “Are these
variables selected in all equations or only in some of them?”, and also “Which
variables are more informative for the prediction made at 6.00?7 And for those made
on Sunday?” or “Does relative humidity influence the heat load? How much?”.
We can extract such information from model parameters. The section is split in
six main parts, focusing on: i) variables selected in each equation; i) variables
selected in each day of the week; ii3) variables selected in each hour of the day;
iv) number of variables in each equation; v) sensitivity of model performance to
historical, meteorological and social factors; vi) sensitivity of model performance
to non-accurate sensor signals.

Variables selected in each equation. The heatmaps in Figure 7.a and Figure 7.b
show, respectively, the variables selected in each equation of model M, s and My;.
Rows represent the 19 available variables and columns the 168 equation E(; ;.
Cell colors are red for negative parameters (i.e., the variable has been selected by
the equation and the coefficient is negative), green for positive parameters, blue
for non-selected variables and grey for selected variables with null coefficient (this
case occurs only for variable H in Figure 7.b, since it is a binary value). Rows
are sorted by selection rate, namely, on top there are variables selected by several
equations and in the bottom variables selected by few equations. The horizontal
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Fig. 7 Variables selected by model My in the experiment on dataset D1: a) Variables selected
in each equation E(; ;); b) Percentage of times each variable has been used in each day; c)
Percentage of times each variables has been used in each hour

bar chart on the right of Figure 7.a shows the selection rate and the percentage of
negative and positive parameters, while the same chart in Figure 7.b shows only
the percentage of negative and positive parameters since all variables are always
selected in My;.

The first information that we get from Figure 7.a is that the most selected
variable is the load of the previous day li, selected in 141 equations out of 168
(i.e., in 83.93% of the equations). This variable has a positive parameter in all
equations, since the past load is used as a reference for the prediction, namely,
if that value is high then probably also the predicted value is high, while if the
load at the previous day is low then it is probable that also the predicted load
is low, under the same weather conditions. The second most selected variable is
temperature T, selected by 120 equations out of 168 (i.e., in 71% of the equations)
and always with negative parameters. This is also expected, since the heat load
is known to inversely depend on the temperature. Namely, when the temperature
decreases, the heat load required by the the building is higher. The third most
selected variable is holiday H, with 61.31% of equations, and the fourth is relative
humidity, with 58.33% of equations. These two variables have positive parameters
in the majority of cases but in some equations (i.e., weekday/hour) have also
negative parameters. Finally, the two least selected variables are rainfall R and
the load of two days before la, both present in 32.14% of equations.

Other interesting information can be extracted from Figures 7.a. For instance,
the wind speed W is selected in 39.88% of equations with positive parameters in
the majority of cases. Moreover, the second most selected variable related to the
temperature is the maximum temperature of the day Th, (54.17% of equations),
which is known by experts to be a good proxy for thermal radiation, that nega-
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tively influences heat load because buildings radiated by the sun are warmed up
more than not irradiated buildings, at the same temperature. The second most
selected variable related to past heat load is the load of four days before l4 (44.64%
of equations) and the next one is the load of the previous week 7 (42.86% of equa-
tions). The second was expected to be more frequently selected because the weekly
behaviour is strongly affected by social factors (e.g., people tend to have similar
behaviours in the same days of the week). Finally, the comparison between Figure
7.a and 7.b shows that model M,s has a more simplified structure since almost
the half of parameters are not used (see blue areas in the heatmap). Furthermore,
the removal of unnecessary parameters also highlights the ratios between positive
and negative parameters.

Variables selected in each day of the week. We compute the variable selection rate
for each day of the week to get information about the percentage of equations
each variable has been selected in different days of the week. The result is shown
in Figure 7.c. We initially observe that variables selected in equations related to
Thursday are somehow different from those related to other days. Mainly, only 25%
equations use /1 and this variable seems to be substituted by 7T},,4(7), the moving
average of the temperature in the past week, which is selected several times (in
95.83% equations related to Thursday. Strangely enough, all variables related to
past loads (e.g., l4, I7) are selected a smaller number of times than in other days,
with the only exception of the load at the previous peak l,, which has been selected
in the 54.17% of the equations (the second higher percentage for that variable).
Then, the day with the larger number of variables is Monday, with 62.06% of
equations selected per variable, on average. The day with the smaller number of
variables is instead Thursday, with 37.06% of equations selected per variable, on
average. This shows that the structure of the predictions made on Monday is the
most complex, possibly because of the discontinuity with the weekend. Monday is
also the day in which variables I3 and l4 are most selected (in 66.67% and 75.0%
of equations, respectively). This is because the load of the previous two days refers
to the weekend, in which people use the heating differently than in working days.
Also variable [7, which refers to the load of 7 days before, is used quite a lot on
Monday (54.17% of equations) and also on Friday, Saturdays and Sunday, namely,
in days in which the load has a discontinuity with respect to previous days, hence
information is gathered from the previous week.

Variables selected in each hour of the day. Figure 7.d shows an equivalent heatmap
where columns are the hours of the day (instead of the days of the week). This
chart shows, for instance, that the most selected variables for making predictions
in the peak hour (corresponding to models 5.00) are 1 (selected in 100% equa-
tions), T' (100% equations), H (85.71% equations) and RH (100% equations). The
temperature is also always selected by models of 11.00 and 18.00, while the max-
imum temperature T, is often selected between 13.00 and 17.00, which are the
warmest hours of the day. RH has the highest selection rate in the first part of
the night (from 20.00 to 23.00) in addition to the peak hour. This is because the
relative humidity is higher in that part of the day, hence its value can influence
the prediction. Also for rainfall R we observe that the highest selection rates cor-
respond to 10:00 and 16:00 that coincide with hours of the day in which maximum
amount of precipitations have been observed in the training set.



22 Alberto Castellini et al.

Distribution of the number of variables per equation E
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Fig. 8 Distribution of the number of variables in each equation E(i’j) of model M5

Number of variables in each equation. Another analysis we performed, concerns
the distribution of the number of variables per equation. This number can be from
0 to 19 since the total number of available variables is 19. Figure 8 shows a bar
chart in which the x-axis represents the number of variables in an equation E; j
and the y-axis the number of equations having that number of variables. The
mode is 7, with 29 equations having this number of variables. The maximum is
17 with 3 equations (i.e., E(2 20y, E(5,23) and Eg 11y) having 17 variables, and the
minimum is 3, with 3 equations (i.e., E(3 9y, F(4,13) and E(5 7)) having 3 variables.
For instance, equation E(3 gy has the following form E3 ¢y = —0.970+0.937 - [1 +
0.021- RH —0.150 - R. The average number of variables is 9, which corresponds to
the 47.37% of 19, hence the reduction introduced by the variable selection method
is considerable.

Sensitivity of model performance to historical, meteorological and social factors.
We evaluated the performance of model M,s trained on dataset Dy when some
variables are removed from the set of available variables. In particular, we removed
one by one the following factors (and all related variables): past loads l;,i =
1,...,7, temperature T, wind W, relative humidity RH, rainfall R and holidays
H. Table 5 shows the change of performance achieved for each removed factor.
Notice that when temperature is removed, also all variables related to temperature
(e.g., T?, Ty,) are removed. The factor that most influences the RMSE,g;, is
the past load (+39%), then comes the temperature (+32%). The next factors,
having a much smaller impact are the wind (+0.5%), the relative humidity (40.3%)
and holidays (40.1%). The removal of the rainfall yields an error reduction (-
0.7%). This can happen because the proposed variable selection method computes
the set of variables using a greedy strategy (for complexity reasons), hence the
solution that it computes is not guarantee to be the best solution. Computing the
best solution would require to test all possible combinations of variables which is
impractical for large number of variables.

Sensitivity of model performance to non-accurate sensor signals. As a final analysis
we perform an experiment to evaluate the importance of using “trusted” sensors to
collect data. As described in Section 3 model M,s is trained using a temperature
signal collected by a sensor certified by AGSM and located in the area of the
buildings served by the network. Here, we compare model M, trained with dataset
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Table 5 Sensibility of RMSE,g; to the removal of historical factors (i.e., past loads 1),
meteorological factors (i.e., temperature T, wind W, relative humidity RH, rainfall R) and
social factors (i.e., holidays H). First row: RMSE,gp. Second row: percentual increment of
RMSEg;,. Symbol My represents model obtained using variable selection on dataset Do
and removing factor x.

—1 —T —-W —RH —H —R
Mys Mys Mys Mys Mys Mys Mys

1.295  1.802 1.711 1.301 1.299 1.296 1.286
+39%  +32% +0.5% 4+0.3% +0.1% -0.7%

D> with a model M), trained with the same dataset having the temperature
signal gathered in a nearby area. In particular, the new temperature signal has
been collected by a weather station placed in the Villafranca airport, about 12.5km
away from the city center of Verona. Data has been collected from the same website
from which also RH, W and other variables were collected because we did not
have any certified sensor for those variables. Results show that the change of
information source generates a performance decrease in both 1-hour predictions
and 48-hours prediction. Namely, M, , has RMSFE1;, = 1.048 MWh (+5.6%) and
RMSFE 485, = 1.385 MWh (46.9%). This result highlights the importance of quality
signals for weather and social factors. Moreover, it suggests that the introduction
of more accurate signals for relative humidity, wind and rainfall could increase the
performance of the proposed models.

6 Conclusions

The methodology here presented generates multi-equation predictive models hav-
ing good performance in heat load prediction from weather and social factors in
DHNSs. An important property of the proposed model is also interpretability, be-
cause it splits the prediction problem in sub-problems related to different times
of the week that are representable by simple multivariate autoregressive linear
models. We performed an in-depth analysis of this model providing valuable in-
sight about the process investigated. Future work will focus on two main lines,
the automatization of feature engineering through representation learning tech-
niques and the integration of the predictive model into a planner for optimizing
the operational decisions taken by the utility company.
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