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Abstract. In this paper we discuss the properties of particular set-valued maps
in the space of probability measures on a finite-dimensional space that are con-
structed by mean of a suitable lift of set-valued map in the underlying space.
In particular, we are interested to establish under which conditions some good
regularity properties of the original set-valued map are inherited by the lifted
one. The main motivation for the study is represented by multi-agent systems,
i.e., finite-dimensional systems where the number of (microscopic) agents is so
large that only macroscopical description are actually available. The macroscop-
ical behaviour is thus expressed by the superposition of the behaviours of the
microscopic agents. Using the common description of the state of a multi-agent
system by mean of a time-dependent probability measure, expressing the fraction
of agents contained in a region at a given time moment, the results of this paper
yield regularity results for the macroscopical behaviour of the system.

Keywords: Set-valued map · Multi-agent systems · Statistical description.

1 Introduction

In the last decade, the mathematical analysis of complex systems attracted a renewed
interest from the applied mathematics community in view of its capability to model
many real-life phenomena with a good degree of accuracy. In particular, the field of
application of such models ranges from social dynamics (e.g., pedestrian dynamics,
social network models, opinion formation, infrastructure planning) to financial markets,
from big data analysis to life sciences (e.g. flocking).

All those systems are characterized by the presence of a large number of individuals,
called agents, usually moving in a finite-dimensional space Rd under the effect of a
global field which is possibly affected also by the current agent configuration. In its
simplest setting, each agent moves along the steepest descent direction of a functional
(which is the same for all the agents) which can also take into account interaction effects
between them. The interaction between the agents may range from the simplest, e.g.,
avoiding collision, or attraction/repulsion effects, to more complex ones, involving also
penalization of overcrowding/dispersion, or further state constraints on the density of
the agents.

Due to the huge number of agents, a description of the motion of each agent be-
comes impossible. Therefore, using the simplifying assumptions that all the agents of
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the collective are indistinguishable, only a macroscopical (statistical) description of the
system is feasible. In this sense, at each instant t of time the state of the system is de-
scribed by a time-depending positive Borel measure µt whose meaning is the following:

given a region A ⊆ Rd, the quotient
µt(A)

µt(Rd)
represents the fraction of agents that at

time t are present in the region A. If we suppose that the total amount of the agents
does not change in time, we can normalize the quotient by taking µt(Rd) ≡ 1, i.e., the
evolution of the system can be represented by a family of probability measures indexed
by the time parameter.

Under reasonable assumptions on the agents’ trajectories, the family of measures
describing the evolution of the system obeys to the continuity equation

∂tµt + div(vtµt) = 0, (1)

coupled with an initial data µ0, representing the initial state of the system. The equa-
tion must be understood in the sense of distribution. The time-depending vector field
(t, x) 7→ vt(x) represents the macroscopical vector field along which the mass flows,
and vtµt is the flux. This leads to an absolutely continuous curve in the space of proba-
bility measures, endowed with the Wasserstein distance.

The link between the trajectories of the microscopic agents and the macroscopical
evolution of the system is given by the superposition principle (see [1] and [7] in the
context of differential inclusions): namely, every solution t 7→ µt of (1) can be rep-
resented by the pushforward et]η of a probability measure η ∈ P(Rd × C0([0, T ]))
concentrated on pairs (x, γ), where γ is any integral solution of γ̇(t) = vt(γ(t)) sat-
isfying γ(0) = x, and et(x, γ) = γ(t) is the evaluation operator. Conversely, given a
Borel family of absolutely continuous curves in [0, T ], any probability measure η con-
centrated on the pairs (γ(0), γ) defines by the pushforward µt = et]η an absolutely
continuous curve t 7→ µt, which solves (1) for a vector field vt(·) representing the
weighted average of the speeds of the trajectories of the agents concurring at point x at
time t. We recall that in this case vt(·) is an average and therefore it may happens that
no agent is following the integral curves of the vector field, even if the macroscopical
effects will be a displacement along it.

The problem discussed in this paper is the following. We suppose to have a set-
valued map S associating to every point x ∈ Rd a set of curves in Rd representing
the allowed trajectories of the agent which at initial time t = 0 is at x. Our goal is
to study the corresponding properties of the set-valued map describing the family of
macroscopical trajectories in the space of probability measures. It turns out that this
amounts to study the properties of a new set-valued map associating to each probability
measure µ the set of probability measure concentrated on the graph of S(·) and whose
first marginal is equal to µ.

The main example is when the set S(x) describes the trajectories of a differential
inclusion with initial data x, and we want to derive regularity properties of the macro-
scopical evolutions from the properties of the set-valued map defining the differential
inclusion. The regularity properties of the solution map is crucial in the study of many
optimization problems and to generalize mean field models, like e.g. in [4–6].
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The paper is structured as follows: in Sect. 2 we give some preliminaries and basic
definitions, in Sect. 3 we prove the main results, while in Sect. 4 we explore possible
extensions and further developments.

2 Preliminaries

Let (X, dX) be a separable metric space. We denote by P(X) the set of Borel prob-
ability measures on X endowed with the weak∗ topology induced by the duality with
the Banach space C0

b (X) of the real-valued continuous bounded functions on X with
the uniform convergence norm. For any p ≥ 1, we set the space of Borel probability
measures with finite p-moment as

Pp(X) =

{
µ ∈P(X) :

∫
X

dpX(x, x̄) dµ(x) < +∞ for some x̄ ∈ X
}
.

Given complete separable metric spaces (X, dX), (Y, dY ), for any Borel map r : X →
Y and µ ∈ P(X), we define the push forward measure r]µ ∈ P(Y ) by setting
r]µ(B) = µ(r−1(B)) for any Borel set B of Y .

Definition 1 (Transport plans and Wasserstein distance). Let X be a complete sep-
arable metric space, µ1, µ2 ∈ P(X). We define the set of admissible transport plans
between µ1 and µ2 by setting Π(µ1, µ2) = {π ∈P(X ×X) : pri]π = µi, i = 1, 2},
where for i = 1, 2, we defined pri : X × X → X by pri(x1, x2) = xi. The inverse
π−1 of a transport plan π ∈ Π(µ, ν) is defind by π−1 = i]π ∈ Π(ν, µ), where
i(x, y) = (y, x) for all x, y ∈ X . The p-Wasserstein distance between µ1 and µ2 is

W p
p (µ1, µ2) = inf

π∈Π(µ1,µ2)

∫
X×X

dpX(x1, x2) dπ(x1, x2).

If µ1, µ2 ∈Pp(X) then the above infimum is actually a minimum, and we define

Πp
o (µ1, µ2) =

{
π ∈ Π(µ1, µ2) : W p

p (µ1, µ2) =

∫
X×X

dpX(x1, x2) dπ(x1, x2)

}
.

The space Pp(X) endowed with the Wp-Wasserstein distance is a complete separa-
ble metric space, moreover for all µ ∈ Pp(X) there exists a sequence {µN}N∈N ⊆
co{δx : x ∈ suppµ} such that Wp(µ

N , µ)→ 0 as N → +∞.

Remark 1. Recalling formula (5.2.12) in [1], when X is a separable Banach space we

have Wp(δ0, µ) = m1/p
p (µ) =

(∫
Rd

‖x‖pX dµ(x)

)1/p

, for all µ ∈ Pp(X), p ≥ 1. In

particular, if t 7→ µt is Wp-continuous, then t 7→ m
1/p
p (µt) is continuous.

Definition 2 (Set-valued maps). Let X,Y be sets. A set-valued map F from X to Y
is a map associating to each x ∈ X a (possible empty) subset F (x) of Y . We will
write F : X ⇒ Y to denote a set-valued map from X to Y . The graph of a set-
valued map F is graphF := {(x, y) ∈ X × Y : y ∈ F (x)} ⊆ X × Y, while the
domain of F is domF := {x ∈ X : F (x) 6= ∅} ⊆ X . Given A ⊆ X , we set
graph(F|A) := graphF ∩ (A×Y ) = {(x, y) ∈ A×Y : y ∈ F (x)}. A selection of F
is a map f : domF → Y such that f(x) ∈ F (x) for all x ∈ domF .
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The following Lemma is a direct consequence of [8, Theorem 7.1].

Lemma 1 (Borel selection of the metric projection). LetX,Y be complete separable
metric spaces. Assume that S : X ⇒ Y is a continuous set-valued map with compact
nonempty images. Then there exists a Borel map g : X × Y → Y such that g(x, y) ∈
S(x) and dY (y, g(x, y)) = dS(x)(y) for all (x, y) ∈ X × Y , i.e., for every x ∈ X and
y ∈ Y we have that g(x, y) is a metric projection of y on S(x).

3 Results

In this section, we will introduce the notion of random lift of set-valued maps and its
main properties.

Definition 3 (Random lift of set-valued maps). Let X,Y be complete separable met-
ric spaces, S : X ⇒ Y be a set valued map. Define the set-valued map P(S) :
P(X) ⇒ P(X × Y ) as follows

P(S)(µ) :=
{
η ∈P(X × Y ) : graphS ⊇ suppη, and pr(1)]η = µ

}
,

where µ ∈ P(X) and pr(1)(x, y) = x for all (x, y) ∈ X × Y . The set-valued map
P(S)(·) will be called the random lift of S(·).

Remark 2. Directly from the definition, we have that

1. P(S) has convex images (even if S has not convex images): indeed for all ηi ∈
P(S)(µ), i = 1, 2, and λ ∈ [0, 1], set ηλ = λη1 + (1 − λ)η2, and notice that
suppηλ ⊆ suppη1 ∪ suppη2 ⊆ graphS, and for all Borel set A ⊆ X

ηλ
(
(pr(1))−1(A)

)
=λη1

(
(pr(1))−1(A)

)
+ (1− λ)η2

(
(pr(1))−1(A)

)
=λµ(A) + (1− λ)µ(A) = µ(A),

and so pr(1)]ηλ = µ.
2. Given a Borel set A ⊆ X , µ ∈P(X), η ∈P(S)(µ), we have

η
(

(X × Y )\
(
graph (S|A)

)
= η

[(
(X × Y ) \ graphS

)
∪
(

(X × Y ) \ (A× Y )
)]

=η
(

(X × Y ) \ (A× Y )
))

= η
(

(X \A)× Y
)

= µ(X \A),

recalling that suppη ⊆ graphS and that pr(1)]η = µ.

Lemma 2 (Closure of the graph of the lift). S has closed graph if and only if P(S)
has closed graph.

Proof. Suppose that S has closed graph. Indeed, let {(µn,ηn)}n∈N ⊆ graph P(S)
be a sequence converging to (µ,η) ∈ P(X) ×P(X × Y ). Since pr(1) is continu-
ous, we have that {pr(1)]ηn}n∈N narrowly converges to pr(1)]η, and therefore, since
pr(1)]ηn = µn, by passing to the limit we get pr(1)]η = µ.
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On the other hand, let (x, y) ∈ suppη. Then by [1, Proposition 5.1.8], there is a
sequence {(xn, yn)}n∈N such that (xn, yn) ∈ suppηn and (xn, yn) → (x, y) in Y .
By assumption, (xn, yn) ∈ graphS, and, since graphS is closed, we have (x, y) ∈
graphS. Thus suppη ⊆ graphS. We conclude that η ∈P(S)(µ). Suppose now that
P(S) has closed graph. Let {(xn, yn)}n∈N be a sequence in graph(S) converging to
(x, y). In particular, we have that {(δxn

, δxn
⊗δyn)}n∈N is a sequence in graph(P(S))

converging to (δx, δx ⊗ δy), which therefore belongs to graph(P(S)) by assumption.
Thus (x, y) ∈ graph(S).

Lemma 3 (Narrow compactness). Suppose that for every compact K ⊆ X the set
graph

(
S|K

)
:= graphS ∩ (K×Y ) is compact in X ×Y . Then, endowed P(X) and

P(X × Y ) with the narrow topology, we have that for every relative compact K ⊆
P(X), the set P(S)(K ) :=

⋃
µ∈K P(S)(µ) is relatively compact. Furthermore, if

S has closed graph, then P(S) has compact images.

Proof. The first part of the statement is a direct consequence of our assumption, Theo-
rem 5.1.3 in [1] and Remark 2. To prove the second part, we take K = {µ} obtaining
that P(S)(µ) is relatively compact. Since S has closed graph, by Lemma 2 we have
that P(S) has closed graph, in particular it has closed images. Therefore P(S)(µ) is
compact.

Lemma 4 (Uniform integrability). Suppose that S has at most linear growth, i.e.,
there exists C,D > 0 and (x̄, ȳ) ∈ X × Y such that dY (y, ȳ) ≤ CdX(x, x̄) + D
for all (x, y) ∈ graphS. Then if K ⊆ P(X × Y ) is a set with uniformly integrable
2-moments, we have that P(S)(K ) has uniformly integrable 2-moments.

Proof. By the linear growth, we have in particular that for every bounded K ⊆ X the
set graph

(
S|K

)
:= graphS ∩ (K × Y ) is bounded in X × Y : indeed, let R > 0 such

that K ⊆ B(x̄, R). Then by the linear growth we have

d2
X×Y ((x, y), (x̄, ȳ)) = d2

X(x, x̄) + d2
Y (y, ȳ) ≤ R2 + (CR+D)2,

for all (x, y) ∈ graphS∩(K×Y ). Thus graph (S|K) ⊆ B((x̄, ȳ),
√
R2 + (CR+D)2).

Fix ε > 0. Since K has uniformly integrable 2-moments, we have that there exists

rε > 1 such that for all µ ∈ K it holds
∫
X\B(x̄,rε)

d2
X(x, x̄) dµ(x) ≤ ε. In particular,

for all µ ∈ K it holds
∫
X\B(x̄,rε)

[
d2
X(x, x̄) + (CdX(x, x̄) +D)2

]
dµ(x) ≤ (1+C+

D)ε, since on X \B(x̄, rε) we have dX(x, x̄) ≥ 1 by the choice of rε.

By assumption, the set graph
(
S|B(x̄,rε)

)
is bounded, and so there exists kε > 0

such that BX×Y ((x̄, ȳ), k) ⊇ graph
(
S|B(x̄,rε)

)
for all k ≥ kε. Recalling that all

η ∈P(S)(K ) are supported on graphS, we have∫
(X×Y )\BX×Y ((x̄,ȳ),k)

d2
X×Y ((x, y), (x̄, ȳ)) dη(x, y) =

=

∫
graph S\graph (S|B(x̄,rε))

d2
X(x, x̄) + d2

Y (y, ȳ) dη(x, y)
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≤
∫

[X\B(x̄,rε)]×Y

[
d2
X(x, x̄) + (CdX(x, x̄) +D)2] dη(x, y)

=

∫
X\B(x̄,rε)

[
d2
X(x, x̄) + (CdX(x, x̄) +D)2] dµ(x) ≤ (1 + C +D)ε.

Therefore P(S)(K ) has uniformly integrable 2-moments.

Corollary 1. Suppose that for every compactK ⊆ X the set graph
(
S|K

)
:= graphS∩

(K × Y ) is compact in X × Y and that S has at most linear growth, i.e., there ex-
ists C,D > 0 and (x̄, ȳ) ∈ X × Y such that dY (y, ȳ) ≤ CdX(x, x̄) + D for all
(x, y) ∈ graphS. Then the following holds true.

1. For every relatively compact K ⊆ P2(X), the set P(S)(K ) is relatively com-
pact in P2(X×Y ). In particular, the restriction P(S)|P2(X) of P(S) to P2(X)
takes values in P2(X × Y ).

2. If furthermore S has closed graph, then P(S)|P2(X) has closed graph in P2(X×
Y ), and so compact images in P2(X × Y ).

Proof. We prove (1). By Proposition 7.1.5 in [1], K has uniformly integrable 2-moments
and it is tight. According to Lemma 3 and Lemma 4, we have that P(S)(K ) has
uniformly integrable 2-moments and it is tight. Again by Proposition 7.1.5 in [1], we
conclude that P(S)(K ) is relatively compact in P2(X × Y ).

To prove (2), notice that W2-convergence implies narrow convergence. Thus every
W2-converging sequence {(µn,ηn)}n∈N ⊆ graph P(S) ∩P2(X × Y ) is narrowly
converging to the same limit, say (µ,η). Since P(S) has closed graph in P(X × Y ),
we have that the limit (µ,η) belongs to graph P(S), and since µ ∈ P2(X), by item
(1) we have that (µ,η) ∈ graph P(S)|P2(X×Y ).

Theorem 1 (Lipschitz continuity). Suppose that S is Lipschitz continuous with com-
pact images and for every compactK ⊆ X the set graph

(
S|K

)
:= graphS∩(K×Y )

is compact in X × Y . Then

1. P(S)(P2(X)) ⊆P2(X × Y );
2. for any K relatively compact in P2(X) we have that P(S)(K ) is relatively

compact in P2(X × Y ). In particular, the restriction of P(S) to P2(X) has
compact images in P2(X × Y );

3. P(S)|P2(X) : P2(X) ⇒ P2(X × Y ) is Lipschitz continuous with Lip P(S) ≤√
1 + (LipS)2.

Proof. According to the previous results, to prove (1-2) it is sufficient to show that S
has at most linear growth. Fix x̄ ∈ X and ȳ ∈ S(x̄). Let y ∈ S(x), and y′ ∈ S(x̄) be
such that dS(x̄)(y) = dY (y, y′). The existence of such y′ follows from the compactness
of S(x̄). By Lipschitz continuity, we have

dY (y, ȳ) ≤dY (y, y′) + dY (y′, ȳ) = dS(x̄)(y) + sup
y1,y2∈S(x̄)

dY (y1, y2)

≤LipS · dX(x, x̄) + sup
y1,y2∈S(x̄)

dY (y1, y2).



Random lifting of set-valued maps 7

The compactness of S(x̄) yields the boundedness of D := supy1,y2∈S(x̄) dY (y1, y2),
the linear growth follows by taking C = LipS.

We prove now (3). According to Lemma 1, there exists a Borel map g : X×Y → Y
such that dY (y, g(x, y)) = dS(x)(y) and g(x, y) ∈ S(x). Let µ(1), µ(2) ∈ P2(X),
π ∈ Π2

o (µ(1), µ(2)). Take η(1) ∈ P(S)(µ(1)) and disintegrate it w.r.t. pr(1), i.e.,
η(1) = µ(1) ⊗ ηx, where {ηx}x∈X is family of Borel probability measures on Y ,
uniquely defined for µ(1)-a.e. x ∈ X . Define the Borel map T : X × Y × X →
(X × Y ) × (X × Y ) by T (x1, x2, y1) = ((x1, y1), (x2, g(x2, y1))), and the measure
θ ∈P(X ×X × Y ) by∫
X×X×Y

ϕ(x1, x2, y1) dθ(x1, x2, y1) =

∫
X×X

∫
Y

ϕ(x1, x2, y1) dηx1(y1) dπ(x1, x2).

The measure T]θ belongs to P((X × Y )× (X × Y )). Defined pr
(i)
X×Y : (X × Y )×

(X × Y ) → X × Y as pr
(i)
X×Y ((x1, y2), (x2, y2)) = (xi, yi) for i = 1, 2, we obtain

pr
(1)
X×Y ](T]θ) = η(1).

Define η(2) := pr
(2)
X×Y ](T]θ). Notice that pr(1)]η(2) = pr(2)]π = µ(2) by con-

struction. We prove that suppη(2) ⊆ graphS. Indeed, let A be an open set disjoint
from graphS. Then

η(2)(A) =

∫
X×Y

χA(x, y) dη(2)(x, y) =

∫∫
(X×Y )2

χA(x2, g(x2, y1)) dθ(x1, x2, y1) = 0,

since (x2, g(x2, y1)) ∈ graphS for all y1 ∈ Y . We obtain that η(2) ∈ P(S)(µ(2))
and T]θ ∈ Π(η(1),η(2)). Thus

W 2
2(η(1),η(2)) ≤

∫∫∫
X×X×Y

[
d2
X(x1, x2) + d2

Y (y1, g(x2, y1))
]
dηx1(y1) dπ(x1, x2)

=W 2
2 (µ(1), µ(2)) +

∫∫∫
X×X×Y

d2
S(x2)(y1) dηx1(y1) dπ(x1, x2)

≤W 2
2 (µ(1), µ(2)) +

∫∫
X×X

(LipS)2 · d2
X(x1, x2) dπ(x1, x2) =

[
1 + (LipS)2] ·W 2

2 (µ(1), µ(2)),

the Lipschitz continuity estimate follows.

4 Applications and extensions

The main application of the above result is the following one.

Definition 4 (Solution set-valued map). Let X be a finite-dimensional real space,
F : [a, b] × X ⇒ X be a Lipschitz set-valued map with compact convex nonempty
values, I = [a, b] ⊆ R be a compact interval, θ = {θt}t∈I ∈ C0(I; P2(X)), and
µ ∈ P2(X). We define the set-valued maps SFI : X ⇒ C0(I;X), ΞFI : P2(µ) ⇒
P2(X × C0(I;X)) and ΥFI : P2(µ) ⇒ C0(I; P2(X)) by

SFI (x) :={ζ(·) ∈ C0(I;X) : ζ̇(t) ∈ F (t, ζ(t)) for a.e. t ∈ I, ζ(a) = x},



8 R. Capuani et al.

ΞFI (µ) :={η ∈P(X × C0(I;X)) : suppη ⊆ graphSFI , ea]η = µ},
ΥFI (µ) :={eI]η : η ∈ ΞFI (µ)}.

Proposition 1. LetX be a finite-dimensional space, I = [a, b] a compact interval of R,
F : I ×P2(X)×X ⇒ X be a Lipschitz set-valued map with nonempty compact and
convex values. Given a Lipschitz continuous curve θ = {θt}t∈I ⊆ P2(X), we have
that the set-valued map ΞFI : P2(X) ⇒ P2(X ×C0(I;X)) (defined as in Definition
4) enjoys the following properties:

1. ΞFI has nonempty compact convex images;
2. LipΞFI ≤

√
1 + e2(b−a)LipF ·(1+b−a);

3. for every relatively compact K ⊆ P2(X) we have that ΞFI (K ) is relatively
compact in P2(X × Y ).

Proof. Standard result in differential inclusion theory (see e.g. from Theorem 1 and
Corollary 1 in Section 2, Chapter 2 of [2], and Filippov’s Theorem, see e.g. Theorem
10.4.1 in [3]) yields all the properties needed on SFI (·) to have that its random lift ΞFI
enjoys the requested properties.

The notion introduced in the previous section allows to transfer informations from a
Lipschitz set-valued map between complete metric separable spaces to its natural lift in
the space of probability measures. It is possible, in this setting, also to add a Lipschitz
dependence of F on the current state of the system. In this case the existence of trajec-
tories in the space of probability measures follows from a straightforward application
of Banach contraction principle to the set-valued map ΥFI .
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