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Abstract—The Industry 4.0 trend speeds up the adoption of
a variety of technologies. In modern manufacturing, system
data are collected both from the field through sensors and by
exploiting complex simulations. Data analysis techniques became
crucial to build and maintain any efficient production line, while
autonomous systems and robots are the main focus of researchers
and practitioners.

This pervasive use of artificial intelligence derived technologies
pushed humans to the border of production systems. Industry
5.0 aims at bringing the attention back to humans in production
lines while magnifying their interactions with intelligent systems.
This new trend will impact the design of future manufacturing
infrastructures, increasing their complexity.

Engineers will need modeling and developing tools able to
capture this complexity. In this paper, we analyze the modeling
languages and tools being used, identifying their strengths and
weaknesses. Then, we propose some possible directions to pro-
vide engineers with the expressive power needed to tackle the
challenges posed by Industry 5.0.

Index Terms—Industry 5.0, Modeling Languages, Human-
Robot Collaboration

I. INTRODUCTION

Industrialization underwent four main evolutions in human
history, impacting on population and economic growth, and es-
tablishing important social changes. Each industrial revolution
has brought to humankind new technical innovations, made
possible by the acquisition of a a better understanding of the
natural environment and its resources: the use of steam, fossil
fuels and electrical energy has contributed to lift the burden of
moving heavy and complex physical machines from animals
and humans. The last iteration of such revolutions, dubbed
“Industry 4.0” [1], proposes to transition from mechatron-
ics systems to Cyber-Physical Systems (CPSs) incorporating
data and intelligence, that in the context of manufacturing
has been dubbed Cyber-Physical Production System (CPPS).
Such systems are capable of communicating with each other,
acquiring and transmitting real-time production data used to
optimize production processes. This main contribution leads
to increased production throughput while reducing costs and
wastes. All these innovations have been made possible through
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Figure 1: While in the vision proposed by Industry 4.0 the human
is mainly supervising and “observing” the system, Industry 5.0 aims
at putting the human back at the center of manufacturing. To pursuit
such a task, models of manufacturing systems must be adjoined with
models of human behaviors and, thus, novel modeling methodologies
must be investigated.

the adoption of key-enabling technologies such as Internet-of-
Things (IoT) and Cloud computing. Furthermore, the devel-
opment of virtual models of the manufacturing system, i.e.,
Digital Twins, enables the simulation of the entire production
and allows performing what-if analysis.

The pursuit for production optimality and efficiency pro-
posed by modern manufacturing often leads to an inevitable
conclusion: human labor is neither as efficient nor as cost-
effective as machine labor. This is particularly true in repetitive
and dull production tasks that characterize the “mass produc-
tion” trend. Consequently, the cost in terms of manpower will
be quite evident in the following years, when the Industry 4.0
principles will be fully implemented. Indeed, on a global scale,
human labor is implemented by consumers. Thus, negatively
affecting human labor may lead to decreased demand, making
the investments to reach full automation not sustainable.

In this context, pushed by human resilience, the concept of
Industry 5.0 [2] is emerging intending to find a sustainable
trade-off between automation and human labor. As depicted
in Figure 1, it proposes to put the human back at the center of
manufacturing: rather than exploiting the manpower and the



human muscles, it capitalizes on human brainpower, adding
to the production loop the creativity and the problem-solving
abilities that cannot be transferred to autonomous machines. In
this context, nonetheless, autonomous and intelligent systems
are a fundamental addition to achieving the maximum process
efficiency: collaborative robots will be able to support the
human during the production, by observing, learning and
offering help when needed.

The complexity of current autonomous production systems
has already posed new challenges for their design [3], as
it requires the ability to design systems while considering
multiple facets and viewpoints such as process optimization,
infrastructures, control paradigms and data analysis. System
design and engineering methodologies based on models, such
as Model-based System Engineering (MBSE), has proved
efficient in capturing some aspects of modern CPPSs. A
plethora of languages and methodologies have been developed
to specify and model particular viewpoints of the system, such
as software [4], hardware [5] components and network infras-
tructures [6]. Therefore, a unifying modeling methodology or
language, able to capture and include all facets of CPPSs is
still missing [7].

In an Industry 5.0 context, the design of cognitive and
collaborative manufacturing systems is even more complex,
since the process must deal with uncertainties of humans’
behaviors. Furthermore, collaborative robots are not only re-
quired to autonomously offer assistance, by recognizing the
type of job the human worker is executing, but must also keep
a safe working condition by not creating dangerous situations.
As such, modeling such systems requires a language and a
modeling environment able to capture the complexity of their
possible behaviors, to perform in-depth analysis and carry out
safe control strategies and AI algorithms.

This paper analyzes “what is there” about modeling tools
and languages in manufacturing: we identify the modeling
trends of traditional production systems, while we investigate
the research work being accomplished on Industry 4.0 CPPSs.
This process will clarify the main characteristics of the ap-
proaches being proposed, while determining their limitations.
Furthermore, by establishing the novel modeling requirements
being posed by Industry 5.0 and how collaborative systems
should be designed, we define “what is missing” in this field.

II. FROM INDUSTRY 4.0 TO INDUSTRY 5.0

The starting point of the Industry 4.0 evolution has been the
so-called software automation pyramid (see Figure 2). Under
this view, there is a continuous bi-directional information flow
from the actual plant to the management software (ERP). Level
by level, electrical signals become strings of bits, then abstract
data types, then data objects and finally services. A huge
variety of protocols has been created to model the exchange of
information among the different levels. Few of them, are able
to act as a unifying protocol managing all kinds of information
exchange between all levels of the automation pyramid. The
possibility of abstracting actual protocols has been the basis
of Industry 4.0 since an entire production plant can become

Figure 2: The automation pyramid: the starting point of Industry 4.0.
Role of OPC-UA as a unifying protocol focused on data.

a service-oriented software architecture. This sensibly reduces
the complexity of developing software applications managing
data from the sensor/actuator level up to the cloud infrastruc-
ture. Data managing is thus becoming the core problem of
a production line and Industry 4.0 focused its revolution on
using such data. This allows optimizing the production, make
predictions and facilitate reconfiguration, thus moving from
mass production in large batches to personalized production
in small and differentiated batches. Research and development
in this area allowed to define protocols able to implement
these requirements, among them OPC-UA [8] is one of the
most successful. However, such protocols are useful to manage
the heterogeneous information in the system once the system
is up and running, while they are not meant to express the
information of a system being designed (or redesigned). Thus,
alongside protocols, models became necessary to design and
implement systems able to fulfill the main design requirements
of Industry 4.0 manufacturing systems. In particular, six main
design requirements can be listed to implement Industry 4.0
principles:

• Interoperability: the ability of cyber-physical systems
(i.e., work assembly stations), humans and Smart Facto-
ries to connect and communicate with each other via the
Internet of Things and the Internet of Services;

• Reconfigurability: the set of operations to produce a
good (recipe) must no longer be fixed and statically
scheduled, the system must adapt to the variations of its
surrounding conditions and production requirements;

• Virtualization: a virtual copy of the Smart Factory which
is created by linking sensor data (from monitoring phys-
ical processes) with virtual plant models and simulation
models;

• Decentralization: the ability of cyber-physical systems
within Smart Factories to make decisions on their own
Real-Time Capability: the capability to collect and ana-



lyze data and provide the insights immediately;
• Service Orientation: offering of services (of cyber-

physical systems, humans and Smart Factories) via the
Internet of Services;

• Modularity: flexible adaptation of Smart Factories for
changing requirements of individual modules.

The core (a bit naı̈f) assumption of Industry 4.0 is that the
production is completely automatic, thus the role of humans
is limited to control and supervision. However, this is not fea-
sible in the majority of production lines, particularly because
flexibility, adaptation and precision of robotic activities are
still far away from human abilities. People must still play a
productive role in an Industry 5.0 production line.

However, differently from the third industrial era, Industry
5.0 promotes a significant change in the adaptation philosophy:
people have not to adapt their behavior to the machines, but
machines must automatically adapt their activities to the
human ones. Thus, there is a new list of design requirements
to implement this new Industry 5.0 principle:

• Uncertainty: this is related to the unpredictability of the
human behaviors that must be represented under some
level of uncertainty. Indeed, uncertainty impacts how
interoperability and reconfigurability are implemented by
Industry 5.0 systems, as subsystems must reconfigure and
interoperate by considering that other subsystems may be
humans. Facing the non-determinism becomes crucial and
this must be taken into consideration by all languages,
models and theories;

• Cognitivity: an evolved MES is necessary to control the
production line; it cannot be based on simple determinis-
tic algorithms, but it has to implement cognitive methods
that must be continuously reinforced by the experience;
in other words, AI must become the core technology
to program this kind of architectures in order to allow
the system to co-exist with natural intelligence of human
agents;

• Safety: a higher level of safety must be reached to guar-
antee the cooperation between humans and robots, since
all operations scheduled by a robot must be checked for
safety before their execution by considering the current
and the possibly predictable human behaviors.

Indeed, these new requirements require a technological leap,
as well as an advancement of the tools necessary to support
the design of the new technologies that must be supported
by novel modeling and design languages and methods. The
next sections analyze how to fulfill these requirements with
the current modeling languages and what is missing.

III. WHAT IS THERE: MODELING INDUSTRIAL SYSTEMS

Traditional industrial systems focused on the automation of
production processes. Manufacturing systems relied on novel
technologies such as Programmable Logic Controllers (PLCs).
Nonetheless, systems still had to reckon on human inputs, that
manually parametrized the process according to production
requirements. Therefore, since 60% of all factory automation
costs were caused by engineering and commissioning [9],

research interests were centered on aiding the engineering and
the implementation of automation components (i.e., robots) in
production lines.

A. Modeling the system

One of the main products of this research is Automation
Markup Language (AutomationML): a language developed
to assist engineers and reduce costs. It is an XML-based
data format, created to provide a formal exchange model for
heterogeneous engineering tools [10]. In industrial contexts, it
is capable to describe plant components from different points
of view, from the plant topology to a machine’s kinematics.
Different standards are strongly intertwined within Automa-
tionML to compose a complete description of the system to be
characterized. In particular, the Computer Aided Engineering
Exchange (CAEX) (IEC 62424) provides features to represent
a topological view of the system, with relations between
objects.

CAEX has an object-oriented structure. It is composed of a
set of standard and user-defined libraries and object instances
in a precise structure. The first library is the RoleClasses
library, which is the abstract functionality representation of an
object, without technical details on its implementation. As an
example, a “resource” is a role for an object, and can be further
detailed to represent a piece of equipment or material. As such,
role classes define objects semantics. The SystemUnitClasses
library contains vendor-specific AutomationML objects, typi-
cally representing particular resources instances with specific
characteristics. The InterfaceClasses library serves to define
the relations between objects, both syntactically and semanti-
cally. AutomationML’s core is the InstanceHierarchy, where
objects instances are stored in a well-formed hierarchy of
elements and sub-elements. To model the system’s behaviors,
the COLLAborative Design Activity (COLLADA) interchange
standard provides primitives to specify information about
kinematics and three-dimensional shapes and, thus, on the
mechanical nature of the system. Such a standard is integrated
into AutomationML via XML external links. PLCopen is
another standard embedded within AutomationML. It allows
describing the logical behavior of the system and its com-
ponents, by specifying impulse diagrams, sequence function
charts, logic networks, state charts, Gantt and Pert charts.

B. Modeling the processes

When modeling material and information flows during pro-
duction, a well-established pencil and paper practice is Value
Stream Mapping (VSM) [11]. This modeling methodology
provides a better understanding of the product value chain and,
therefore, of the production process. VSM, however, does not
provide an executable digital model and, thus, stakeholders
cannot integrate the knowledge provided by the model in IT
systems. Therefore, a language that has been created to solve
this issue is Business Process Model and Notation (BPMN).
Its main advantage is to support the modeling of business
processes by specifying a syntax and an executable seman-
tics. Furthermore, many extensions of such a language have
been proposed to represent different aspects of processes and



Figure 3: SysML diagrams hierarchy, clarifying the diagram types that are adopted or adapted from Unified Modeling Language (UML).

various viewpoints of manufacturing. Among all, a mapping
between VSM and BPMN has been proposed in [12].

To regulate the knowledge integrated into manufacturing
information systems, different standards have been created.
The most relevant business standard is International Society
of Automation (ISA)-95, also known as IEC 62264. Its main
contribution is to define the terminology for business to
manufacturing integration, allowing the unification of all the
software information knowledge within the manufacturing in-
dustry. ISA-95 is still under development, and mainly consists
of 5 parts:

• Part1: Models and terminology
• Part2: Object model attributes
• Part3: Activity models and attributes of manufacturing

operation management
• Part4: Object models and attributes of manufacturing

operations management
• Part5: Business to Manufacturing transactions
Part 1 defines the hierarchy of terminologies to define

interfaces between manufacture and business processes. Part
2 defines the objects and attributes that can be used in
the information exchange between manufacture and business
processes. Part 3 defines the main manufacturing functions and
activities, such as production, maintenance, warehousing and
quality control. It also introduces the concept of Manufacturing
Execution System (MES). This piece of software is in charge
of allowing bidirectional communication between business
software, such as Enterprise Resource Planning (ERP), and
manufacturing software, such as PLCs and SCADA. The ISA-
95 standard defines also the activities that a typical MES must
carry out [13]:

• Production definition management: manages all infor-
mation about the product required for manufacturing;

• Production resource management: manages the infor-
mation about resources required by production opera-
tions;

• Detailed production scheduling: includes local planning
and scheduling of production and resources;

• Production dispatching: manages the flow of production
by dispatching production to equipment and personnel;

• Production execution: directs the performance of work,
as specified by the contents of the dispatch list elements;

• Production data collection: collects and manages pro-
cess and equipment information;

• Production tracking: prepares the production response
for the ERP;

• Production performance analysis: provides feedback
about production.

These activities create a complete vision of what is hap-
pening within the manufacturing industries. A MES that is
compliant with the standard can efficiently communicate with
other compliant software. Furthermore, by uniquely defining
terms and objects, the standard cuts down the necessary effort
to model the manufacturing system. The construction of an
exhaustive model of the system, from business to control
automation viewpoints, conceives a complete vision of the pro-
duction line, enabling model analysis and design optimization.
Therefore, ISA-95 has been integrated in AutomationML [14],
by defining particular AutomationML libraries and classes to
represent the concepts proposed by the standard. In particu-
lar, interesting facets integrated into AutomationML formally
detail types of information, such as the Product definition
model, which describes processes and requirements to make a
product, or the Resource definition model, which characterizes
available resources such as pieces of equipment, materials and
also personnel.

IV. WHAT IS THERE: MODELING ADVANCED
MANUFACTURING

A major effect of the Industry 4.0 trend is the transformation
of manufacturing systems into CPPSs. Thus, modeling of
advanced manufacturing systems borrows most of the require-
ments identified when modeling CPS. Models must be able



to capture widely heterogeneous components [15], dynamics
and behaviors [16] as well as a large variety of different
viewpoints [17]. Modeling tools and languages must be able
to both represent the system’s architecture and behaviors, and
also depict the decision process carrying out the reconfig-
uration processes. Production data analysis is another key
ingredient for the production processes optimization proposed
by smart manufacturing principles. As such, modeling en-
gineering technologies and languages must be paired with
knowledge-representation languages to reach the necessary
expressive power for advanced manufacturing systems.

For software and systems model engineering, one of the
most used languages is SysML. As depicted in Figure 3, it
provides a set of diagrams over UML, to represent systems
and systems-of-systems in addition to plain software. As such,
it is natively capable of representing manufacturing systems
and expressive enough to enable performing analysis over
models. Other than native SysML, specializations have been
proposed [18] to aid the development of automation software
(i.e., PLC software) for smart manufacturing systems. Further-
more, models can be used to automatically generate control
software to directly integrate into machines. SysML has also
been used to ease the development and the integration of a
MES in a production line [19]. AutomationML is also a widely
used language for engineering. As an example, AutomationML
models can be used for the data exchange between CPPSs en-
gineering viewpoints. Such a language provides the necessary
information for a tool to analyze AutomationML models for
data analytics on engineering activities [20]. This tool would
be particularly useful for engineers because it allows them to
browse the interlinked models and to query ongoing project
activities. To support the modeling of manufacturing activities
on a non-technological level, process modeling languages
combine graphical clarity with a well-known specification
meta-model. Other than BPMN, semi-formal process modeling
language has been proposed [21], able to capture the business
aspects of Industry 4.0-compliant systems, such as IoT com-
ponents. Such methodologies can be used for model validation
and simulation, as well as to generate code for software
Application Programming Interfaces (APIs). The combination
of automated control and business aspects is also an important
step to achieve a complete view of production activities.
Models combining such viewpoints integrate a wider set of
information and, thus, can be more finely verified and simu-
lated. The design by contract is a relevant approach for the
construction of CPSs [22], [23]. Such a principle has been re-
cently proposed also for the design of CPPSs [24]. To construct
contract-based specifications, it is necessary to collect system’s
information by manipulating state-of-the-practice languages
(i.e., AutomationML and ISA-95) and, thus, models of the
production plant. Assume-Guarantee (A/G) contracts can be
then checked for consistency, composed and synthesized to
construct correct control software that represents the behavior
of the specified manufacturing component.

Representing and formalizing the knowledge of entities and
services involved in manufacturing is also an open challenge.

In this regard, the most widely used tool is ontology, which
is defined as a formal and explicit specification of a shared
conceptualization [25]. Semantic models and ontologies have
been used to specify concepts, resources and entities involved
in manufacturing, especially production information systems
(i.e., MES) [26]. The models serve as logical definitions
that can be exploited to infer concept relations between
entities, such as between enterprise, automation and logistics
domains [27]. For those reasons, different standards and lan-
guages have been proposed to carry out information modeling
through ontologies. Different languages exist to carry out such
a task. The most representative ones are the Web Ontology
Language (OWL) and the Semantic Web Rule Language
(SWRL). Those languages have been used to define semantic
annotations of service-oriented architecture, created to control
manufacturing systems based on the type of service it is re-
quired to provide [28] [29]. The integration of ontologies and,
thus, semantic reasoning within SysML has been proposed in
the past [30]. Nonetheless, an ontology can be considered as a
meta-metamodel, which is often specified by creating custom
SysML profiles. Consequently, the knowledge defined in the
ontology is transferred to the model, and their interoperation
is guaranteed.

A systematic review [7] of modeling languages for Industry
4.0 systems highlighted that the effort of involved research
groups is rather sparse: AutomationML and the System Mod-
eling Language (SysML) are popular languages in the field,
but they are rarely coupled together and, thus, a complete mod-
eling methodology is still missing. In particular, the analyzed
trends show that interoperation between languages and models
is still an open issue. In fact, the substantial ability to carry
out the design of a complex manufacturing system reusing
models of components or system viewpoints is still pursued.
In this regard, SysML seems to be the appropriate language,
expressive enough to serve as a collector of information and
modeling viewpoints. On this matter, a design flow that goes in
this direction has been recently proposed [31]. It contemplates
the reuse of already existing manufacturing lines’ models
while designing novel advanced production systems. As de-
picted in Figure 4, it is embedded in Platform-Based Design
(PBD) approach, where bottom-up reused models are paired
with top-down specified requirements and functionalities. The
methodology is actually limited to reusing AutomationML
models, incorporating information about plant topology and
components hierarchy. Nonetheless, SysML is proposed as
the central container of the system’s models and information,
which can be then exploited to produce software or carry out
model analysis and design exploration iterations.

V. MODELING INDUSTRY 5.0: WHAT IS MISSING AND
POSSIBLE DIRECTIONS

Industry 5.0 is still in its infancy. To the best of our knowl-
edge, no research effort exists today in proposing modeling
tools or methodologies for this trend. In particular, modeling
CPSs with humans in the loop is still an open task [32], [33].

As stated in Sec. II, one of the main requirements of
Industry 5.0 is reconfigurability: it involves guaranteeing a
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Figure 4: Conceptual view of the design flow for CPPSs proposed in
[31], where the model reuse methodology is represented by the cyan
triangle.

certain resiliency and adaptation degree of the CPPS to real-
time changes in the environment. In this regard, to carry out
the best reconfiguration strategy, it would be fundamental to
have models spanning over business, processes and control
viewpoints: integrating the widest possible set of information
increases the quality of the control strategy carried out by
the reconfiguration procedure. By also considering humans in
the manufacturing loop, a degree of complexity is added on
top, since it involves modeling nondeterministic behaviors. Of
course, models are not enough in this case to represent all the
possible behaviors. It is necessary to employ cognitive meth-
ods, which require experimenting with AI techniques to carry
out control strategies based on observations. Nonetheless,
models can aid the “learning” procedures of AI algorithms,
by providing a basic set of information that can be helpful
to interpret the current system status. This is particularly
true also for safety considerations: the cooperation between
humans and robots can be dangerous for human operators.
Therefore, possible critical situations must be predicted and
avoided. Different techniques can be exploited, most of them
based on pattern recognition and AI-based prediction using
different types of learning techniques. In all these scenarios,
models can aid the process of carrying out the best possible
strategy. These techniques introduce in the system different
levels of uncertainties, making systems non-deterministic.
While multiple mathematical frameworks allow reasoning on
non-deterministic systems, no system modeling language at
the state of the art provides the designer the tools necessary
to specify such systems efficiently.

To support the engineering of Industry 5.0 systems, engi-
neers must be put in the condition to comfortably specify non-
deterministic behaviors intrinsic to humans’ behaviors, and
those introduced when using AI techniques. As such, future
system modeling language must allow specifying uncertainties
and their semantics must be built on top of probabilistic
and stochastic mathematical formalisms. Furthermore, to be

effective for system design, they must allow designers to select
the appropriate degree of abstraction and is capable of scaling
on the level of details.

Reusing models is also a winning strategy in the context
of modeling complex manufacturing systems: as stated in
Sec. IV, it allows to cut down the modeling effort in a multi-
faceted scenario. SysML is a suitable language because it is
expressive and it is extensible with profiles and stereotypes.
Furthermore, it is XMI-based and, thus, it can be manipulated
and translated to other languages (i.e., formal languages,
programming languages, etc.).

Figure 5 depicts the set of Industry 5.0 characterizing fea-
tures introduced in Sec. II, i.e., reconfigurability, uncertainty,
cognitivity, and safety. The figure relates each feature with the
mathematical formalisms required to represent them.

a) Uncertainty: strongly impacts on the interoperability
and the riconfigurality of the system. The system must be
able to interoperate with non-epistemic agents (i.e., human
beings), that may potentially act irrationally or through ap-
parently unexplicable paths. Thus, machines may interpret
and predict the behavior of these agents only through models
contemplating probabilistic, as well as statistical behaviors. At
the same time, uncertainties in the environment surrounding
the machines may lead to the necessity of system adaptation,
i.e., reconfiguration. This implicates carrying out optimization
procedures to maximize the effectiveness of the adaptation.
Furthermore, system reconfiguration may still need to con-
sider future possible uncertainties that may be caused by the
intervention of human agents, as well as by external causes.
As such, stochastic models used to represent the uncertainty
of the system may act as triggers for the models specifying
the system reconfiguration.

Thus, modeling uncertainty in the context of Industry 5.0
requires the ability of capturing stochastic systems formalisms,
which typically involve representations based on probabilistic
and statistical methods, as well as optimization specifications.
Formal techniques able to capture, within the same frame-
work both optimization and statistical models are gaining
maturity [34]–[36]. However, a language capable of modeling
these aspects within the same framework, while providing
an intuitive syntax and semantics to designers has yet to be
proposed.

b) Cognitivity: is not only associated with stochasticity
but also to system’s dynamics. In fact, the cognition process
must implement techniques dedicated to recognizing patterns
of the dynamical behavior of a certain component or set of
components. On the other hand, recognizing the role of the
human actor in Human-Robot Collaboration (HRC) is also
a key component of Industry 5.0 systems. Such a process
involves determining a set of tasks that the human is capable
of carrying out in the manufacturing process. It is also nec-
essary to estimate his/her performances, to evaluate whether
the robot’s cooperation would be beneficial to the overall
production. In HRC tasks, the decision-making procedures of
robots must deal with the mental state of the human as well
as the sense of trust he/she has in the robotic collaborator.
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Such collaboration facets must exploit inference models and
reinforcement learning, to correctly perceive the human’s sta-
tus and intentions, dealing also with uncertainty. Furthermore,
it is also necessary to strengthen communication models, to
provide convincing decisions explanations to human operators.

Modeling cognitive-aware systems, thus, requires method-
ologies and languages able to capture multiple facets of human
behaviors and emotional processes. Mathematical models have
been proposed to guide the decision process and control
synthesis of HRC, exploiting non-learning techniques such
as optimization based on Markov Chains [37] and learning
techniques such as Reinforcement Learning [38]. Nonetheless,
an inclusive framework for the modeling and specification of
cognitive-aware systems has yet to be proposed, limiting the
applicability of such techniques to domain experts.

c) Safety: is a feature associated with both stochastic
and dynamical systems. In Human-Robot interactions and
collaborations, safety can be related to avoiding both physical
and psychological harm. Different categories of methodolo-
gies have been developed to provide safety in HRC envi-
ronments [39]. Safety through control proposes methods to
prevent unwanted contacts between the human and the robot
by detecting at run-time unwanted system’s states and reacting
to recover from a dangerous situation. Safety through motion
planning category proposes more proactive approaches sug-
gesting human-aware motion planning techniques exploiting
dynamical models. Such models exploit differential equations
and, thus, a strong mathematical foundation to define the
kinematics of the robotic systems. In methodologies related
to Safety through prediction, the motion planner is adjoined
with predicted human behaviors and movements, to proac-
tively propose movements instead of continuously replanning.
Safety through psychological considerations is more focused
on extra-functional motion properties, i.e., acceleration, ve-
locity, distance from the human, etc, since they are the most

influential parameters on human’s well-being.
In general, safety requires setting the boundaries of un-

wanted behaviors. At the state of the art, the specification
of such requirement still relies mostly on complex math-
ematical notations, based on complex logic, automata, and
equations [40]. The use of formal mathematical frameworks
is imposed by the critical importance of the concepts being
expressed. However, this makes the life of engineers harder.
Some attempts of proposing domain specification languages
able to simplify the specification task, while still guaranteeing
strong formal support, have been already presented [23],
[41]. However, no general designer-friendly language has been
proposed so far, able to intuitively and effectively capture
different types of safety requirements, while providing the
formalisation required to tackle safety issues.

A. SysML support to Industry 5.0 models

While many features of Industry 4.0 may be represented
by using SysML and other state-of-the-art modeling and
description languages, this is not the case of industry 5.0.
Neither SysML nor other modeling languages at the state-of-
the-art provide the necessary language constructs to specify
every type of Industry 5.0 system. Focusing on SysML, among
the different diagrams, it implements the parametric diagram
type, that can capture, to a certain degree, the dynamics of
a system. However, such a type of diagram is not able to
represent, for example, probability distributions or stochastic
equations for numerical approximations. As such, the language
has to be extended to design such systems. To optimize a
system according to the system’s requirements is a process
involving, as an example, linear programming techniques and
an optimization model. Such a model should be designed with
the support of SysML diagrams, such as the requirements
diagram. However, in requirements diagrams, requirements are
specified only in natural language. Therefore, a methodology



to extend the expressiveness of SysML able to include formal
specifications is still missing.

Thus, a research effort is necessary to extend the existing
modeling and specification languages, and to define new
ones as well, able to effectively support engineers. This
effort should move toward easier ways of specifying models
which are supported by stochastic, dynamical and optimization
mathematical frameworks underneath, to allow the designer
to better tackle reconfigurability, uncertainty, cognitivity and
safety requirements of Industry 5.0 systems.

VI. CONCLUSION

The complexity of Industry 5.0 systems poses new chal-
lenges in their design. A unifying modeling methodology,
able to thoroughly capture all the aspects and viewpoints does
not exist. Therefore, this paper analyzed research trends and
state-of-the-art methodologies to model Industry 4.0 systems.
Methodologies based on SysML prove that such a language
has the appropriate degree of expressiveness to model complex
CPPSs. Finally, this paper proposes future directions to model
Industry 5.0 systems.
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