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Abstract

Since the early 80s, incentives have been introduced to stimulate R&D for rare dis-

eases. We develop a theoretical model to study the impact of push and pull incentives on

the intensive and extensive margin of optimal R&D investments. The model describes the

mechanisms by which the type of incentives provided may favor R&D for orphan diseases

with comparatively high prevalence. In our empirical analysis, we merge data on orphan

drug designations by the Food and Drug Administration with Orphanet data on disease

characteristics. In line with the theoretical results, we find evidence supporting the idea

that the incentives adopted may have contributed substantially to widening the gap between

more and less rare diseases classified as orphan. Our theoretical and empirical findings to-

gether suggest that, if providing some therapeutic option to patients with very rare diseases

is a priority, a revision of the current system of incentives should be considered.
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1 Introduction

Orphan diseases are those that affect a small number of individuals, with the exact definition
varying from one institutional context to another. Despite the fact that each of these diseases
usually affects very few people, currently 7,000 orphan diseases are described in the literature,
and it is estimated that 25 to 30 million US citizens and 27 to 36 million EU residents suffer
from an orphan disease (Health and Safety, 2015). However, treatment with a specific indication
is available for less than 10% of known rare diseases (Melnikova, 2012; Tambuyzer, 2010).

The literature provides evidence of a positive correlation between innovation and market
size.1 As a result, the low prevalence of orphan diseases often provides insufficient incentive
for the private sector to invest in R&D. This has led several countries to introduce special legis-
lation, starting from the approval of the Orphan Drug Act (ODA) in 1983 in the US. The typical
toolkit includes both pull incentives, such as market exclusivity, and push incentives, such as
tax credits on R&D expenditure. Overall, there seems to be a general consensus that special
regulations adopted around the world have contributed to closing the gap between orphan and
non-orphan diseases. Braun et al. (2010), Lichtenberg and Waldfogel (2009) and Yin (2008)
provide evidence of a positive impact of the ODA on R&D directed at orphan diseases. Similar
evidence is provided by Westermark et al. (2011) for the EU.

Our study aims to go beyond the analysis of the aggregate impact of regulations on innova-
tion for orphan versus non orphan diseases, and to investigate how they affect the distribution of
additional R&D efforts within the class of orphan diseases. The main question we seek to an-
swer is how the impact of incentives on R&D is affected by the prevalence of a disease. Indeed,
some orphan diseases affect almost 100,000 individuals worldwide whilst others have recorded
very few cases. We study theoretically how pull and push incentives interact with market size in
affecting the distribution of additional R&D efforts across different diseases. In doing this, we
separate the intensive and extensive margin of investment. Empirically, we use data from the
Food and Drug Administration (FDA) to investigate how the allocation of R&D within the class
of orphan diseases changed over time, as incentives were strengthened due to the adoption of
special legislation in additional geographic areas. Based on theoretical and empirical results, we

1Acemoglu and Linn (2004) find that a 1% increase in potential market size is associated with a 6% increase in
the total number of new drugs launched in the US. Similarly, Dubois et al. (2015) find that additional revenues of
$2.5 billion are required to support the invention of one new chemical entity. Sources of expansion in market size
that have been shown to have a positive impact on innovation include the extension of public insurance coverage
(Blume-Kohout and Sood, 2013; Clemens, 2013), policies designed to increase the use of existing technologies
(Finkelstein, 2004) and exogenous demand shocks (Clemens and Rogers, 2020). Symmetrically, unfavourable
market conditions have been shown to reduce R&D investment. Budish et al. (2015) show that the combination
of corporate short-termism and fixed patent duration diverts private R&D away from long-term projects. Stern
(2017) investigates the impact of delays and uncertainty in the approval process on the propensity to invest in
high risk projects. Agha et al. (2020) show that introducing a risk of exclusion from insurance coverage for some
pharmaceuticals may shift investments towards areas facing lower risk.
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draw policy implications suggesting possible directions for a revision of the incentive system
aimed at addressing clinical needs that remain as yet unmet.

The disadvantage for rare diseases in terms of innovation has been studied both theoret-
ically (Jobjörnsson et al., 2016) and empirically (Barrenho et al., 2019). Conti and Gruber
(2020) present several motivations for the introduction of specific incentives aimed at address-
ing this scarcity of therapeutic options. Plausibly, one rationale is related to inequality aversion
(McCabe et al., 2005), given the huge differences in the availability of treatments between rare
and common diseases. The problem can also fit an equality of opportunity framework, given
that disease prevalence is clearly beyond individual control (Roemer, 1998). Another possi-
ble rationale is related to a spillover effect: R&D for orphan diseases might generate scientific
insights that are useful for the treatment of other diseases (Rodwell and Aymé, 2015).2

The possibly heterogeneous impact of the incentives on different orphan diseases is ex-
tremely relevant, given the huge number of orphan diseases and the large variability in the level
of research; this variability can be ascribed to differences in therapeutic class, prevalence, num-
ber of scientific publications (Heemstra et al., 2009; Pammolli et al., 2009), and population
affected, e.g. diseases with onset in childhood (Raïs Ali and Tubeuf, 2019). In the analysis
by Yin (2008) on the effect of the ODA on the flow of clinical trials in the years immediately
following its approval, differences in impact emerge when the prevalence of rare diseases is
accounted for, with a smaller impact on most rare diseases.

Of the reasons to support R&D on orphan diseases at least two suggest that it is not only
total effort that matters, but also how the effort is distributed across diseases. First, according
to the ’fair innings’ argument (Harris, 2006), all individuals should be allowed to achieve a
minimum health status (e.g. in terms of life expectancy), meaning that gains by those who
have not yet achieved this threshold should be valued more. This view is consistent with the
objectives of European legislation3 and with robust evidence on individual preferences (e.g.
Nord et al., 1995). The second argument is based on the insurance value of innovation. Ex
ante, a new treatment can reduce the uninsurable physical risk for individuals who might get
sick, by raising utility in the bad state of the world (Philipson and Zanjani, 2014; Lakdawalla
et al., 2017). This insurance value increases with disease severity (Lakdawalla and Phelps,
2020). This also means that, in a hypothetical situation with a number of diseases that are
equally severe if untreated, the incremental value of an innovation providing a given health gain
is largest if it targets a disease with no existing therapeutic option.

The existence of a variety of incentives within orphan drug legislation also raises the ques-

2For example, the finding that the alteration of the Niemann-Pick C1 protein responsible for the rare degenera-
tive disorder called Niemann-Pick disease is also responsible for Ebola virus entry (Carette et al., 2011; Côté et al.,
2011) suggested a possible strategy to fight the virus.

3The preamble to EU Regulation 141/2000 states that ’patients suffering from rare conditions should be entitled
to the same quality of treatment as other patients’.
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tion of which of them is best suited to achieve the intended objectives. Concerning the possibly
different impact of pull and push programs, the existing literature mainly focuses on the role of
asymmetric information (see e.g., Kremer, 2002; Rietzke and Chen, 2020). Our analysis shows
that there may also be verifiable dimensions worth considering. In particular, market size is an
essentially observable variable that interacts differently with pull and push programs. Account-
ing for this may allow the two types of incentives to be balanced in line with policy goals or to
incorporate this observable variable into the design of the incentive scheme.

Our article contributes theoretically and empirically to the literature in three ways. It is
the first to characterize the heterogeneous impact of orphan regulations for diseases with dif-
ferent levels of prevalence over a long time-span (1983-2016). Second, we study the impact
of orphan regulation on both the extensive and the intensive margin, by studying: i) the prob-
ability of obtaining an investment in R&D for a certain disease, ii) the intensity of the R&D
effort. Third, we contribute to the literature investigating the different impacts of pull versus
push R&D incentives. We show theoretically that in our framework both types of incentive have
an unambiguously stronger effect on the extensive margin of investment for less rare diseases,
meaning that the impact on the probability of obtaining an investment is greater for less rare
orphan diseases. However, the mechanisms involved and hence the size of this difference are
not the same for pull and push programs. In terms of investment intensity, it is not possible to
conclude unambiguously whether more or less rare diseases benefit more from the incentives.

The empirical analysis exploits a dataset obtained by merging data on Orphan Drug Desig-
nations (ODDs), used as a proxy for R&D effort,4 with Orphanet data providing information on
disease characteristics (INSERM, 1999). We extend the theory-based distinction between the
intensive and the extensive margin of R&D to the empirical analysis by means of a zero-inflated
count data model, where the dependent variable is the yearly number of ODDs granted by the
FDA at the disease level. For the sake of consistency with the theoretical model, the excess of
zeros is modeled using the Gumbel distribution, to replace the standard Logit or Probit model.
Our empirical approach exploits the fact that different countries (or geographical regions) intro-
duced reforms at different points in time and, according to our theoretical results, diseases with
different prevalence may have benefited differently from the regulations.

We find that, within the class of orphan diseases, the increase in R&D efforts is concentrated
mainly on less rare diseases. According to our baseline specification, the difference between
the predicted number of orphan designations per year for a disease in the highest and the lowest
class of prevalence was 5.6 times larger after 2008 than in the period 1983-1992. The main
conclusion remains valid even when controlling for a number of other factors potentially af-
fecting the relative convenience of investing in less rather than more rare diseases. To the best

4Obtaining an ODD from the relevant regulatory authority is a necessary formal step to access the incentives.
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of our knowledge, no evidence of this dynamic has previously been reported. Based on our
theoretical analysis and the results of model calibration, we argue that how orphan incentives
were designed may have contributed to widening this gap. By relying almost exclusively on
pull incentives, European legislation may have exacerbated this tendency.

In terms of policy implications, our results suggest that, if reducing the number of diseases
with no therapeutic option available is a priority, then a revision of the incentive tool-kit should
be considered, with the aim of curbing the widening gap between less and more rare orphan
diseases. One way of mitigating this tendency could be to shift the balance of incentives to-
wards push tools. A more radical reform might be to consider abandoning the idea of setting
an arbitrary threshold of prevalence, below which all diseases benefit from the same type of
incentives, and to move towards prevalence-dependent incentives.

The structure of the article is as follows. Section 2 describes the various regulations that have
been adopted over time. Section 3 describes the model, which is solved in Section 4. Section
5 presents the main results of a model calibration. Sections 6 and 7 describe, respectively,
data and methodology for the empirical analysis, with results presented in Section 8. Section 9
concludes and discusses policy implications.

2 Institutional framework

Over the past 35 years, orphan drug regulations have been adopted in several countries around
the world. The US was the first country to develop specific legislation. In 1983, Congress passed
the ODA, according to which a drug is considered orphan if it treats a rare disease or condition
affecting fewer than 200,000 people in the US (about 6.25 in 10 thousand persons) or if it is not
expected to be profitable within seven years following approval by the FDA.5 The incentives for
drugs designated as orphan are (1) assistance from the Office of Orphan Product Development
during the development process; (2) tax credits (up to 50% of clinical development costs); (3)
exemption or waiver of application (filing) fees; (4) seven years of marketing exclusivity and (5)
subsidies for clinical trials from the Orphan Products Grant Program. Although multiple orphan
designations may be granted for a particular disease (Gibson and von Tigerstrom, 2015), for 7
years no marketing approval is given to a subsequent sponsor of a drug containing the same
active moiety or principal molecular features as a previously approved drug intended for the
same therapeutic indication unless this can be shown to be clinically superior.

Special regulations with the same objectives were subsequently introduced in several coun-
tries, such as Singapore (1991), Japan (1993), Australia (1998), South Korea (1998), the EU

5Originally, the ODA definition of orphan was any disease or condition occurring “infrequently” in the United
States without reasonable expectations of profits. The Health Promotion and Disease Prevention Amendments of
1984 specified the prevalence requirement (Herder, 2017).

5



(2000) and Taiwan (2000). We focus on those approved in the areas with the largest markets:
Japan and the EU.

In April 1993, Japan substantially revised its orphan medicinal product system, introduced
in 1985, extending the tools used to incentivize research into orphan diseases. In addition to
the existing (1) reductions in the data required for applications, and (2) the accelerated review
process, the following incentives were introduced: (3) protocol assistance; (4) tax credits (up
to 6% of clinical and non-clinical costs); (5) subsidies for clinical and nonclinical studies and
(6) ten years of market exclusivity. To be designated as orphan, a drug has to treat a rare and
serious disease or condition affecting less than 50,000 persons in Japan (about 4 in 10 thousand
persons); no appropriate alternative treatment should be available on the market or the expected
efficacy and safety must be higher than existing products. Because the incentives which are the
main focus of our analysis were introduced in Japan in 1993, we refer to this as the date when
special legislation was introduced.

In December 1999, the EU also introduced specific incentives for the development of orphan
medicinal products through Regulation (EC) No 141/2000. The incentives include (1) protocol
assistance; (2) access to a centralized procedure allowing immediate marketing authorization
in all member states; (3) reduced fees for regulatory procedures and (4) ten years of market
exclusivity. In order to benefit from the incentives, orphan drugs have to be designated as such
before receiving marketing authorization. Moreover, when the application is made, the drug
must treat a condition affecting no more than 5 in 10 thousand persons in the Community, or
a life threatening or chronically debilitating condition for which it is unlikely, without incen-
tives, that the marketing of the medicinal product in the Community would generate sufficient
returns to justify the necessary investment;6 finally, there should be no satisfactory alternative
methods authorized in the Community or, if such a method exists, the medicinal product must
be expected to bring significant benefit to those affected by the condition (article 3 of the Reg-
ulation). In addition to the incentives mentioned in the regulation, France and the Netherlands
provide tax credits (Health and Safety, 2015).

The incentives provided by the US, Japan and the EU are summarized in Table 1, with the
requirements for drugs to be considered as orphans.

Since November 2007, the European Medicines Agency (EMA) and the FDA have been
collaborating to encourage joint applications for orphan drug status both in the EU and the US.
A shared application form has been developed, in an effort to reduce the administrative burden
on the orphan drug sponsor (Braun et al., 2010; Mariz et al., 2016). This has reduced the cost of
eligibility for incentives in both geographical areas. Parallel applications in Japan and the EU
are also encouraged, although a shared application form is not yet in place (Mariz et al., 2016).

6According to Tambuyzer (2010), more than 99.5% of orphan designations in the EU are granted because of
the prevalence criteria.
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US (1983) Japan (1993) EU (2000)
Orphan disease:

< 200,000 in US < 50,000 in Japan < 5 in 10,000 in EU
(6.25/10,000) or (4/10,000) or

not profitable both not profitable & life-threatening

Main incentives:

Tax credit Yes Yes Member state
(50% clinical costs) (6% clinical and specific

non-clinical costs)

Market exclusivity Yes (7 years) Yes (10 years) Yes (10 years)

Reduced applic. fees Yes (waved) No Yes (reduced)

Protocol assist. Yes Yes Yes

Subsidies for clinical trials Yes Yes No

Table 1: Comparison of orphan drugs regulations in the US, Japan and EU.

3 The model

Let N f firms be free to decide on the size of an R&D investment, I ≥ 0, targeting disease
j, which affects nj individuals. For an orphan drug, there are two key regulatory steps in the
development process. In the first step, the firm developing the molecule applies for an ODD.
If granted, the ODD provides the firm with eligibility for incentives related to the development
of the orphan drug. If the development process is successfully completed, the firm goes on
to the second regulatory stage: marketing authorization.7 From the perspective of the firm,
both stages entail uncertainty. Let pdj (I) be the probability that the firm obtains an ODD, given

the R&D investment I . For the function pdj (I) we assume that
∂pd

j (I)
∂I

> 0,
∂2pd

j (I)
∂I2 < 0 and

limI→0
∂pd

j (I)
∂I

= +∞. Moreover, pdj (0) = 0 and limI→∞ p
d
j (I) = 1.

Conditional on obtaining an ODD, the firm carries on with the development process. With
probability pmj , assumed to be independent of I , this leads to the marketing approval of the
product. Given disease specific per patient net revenue mj , conditional on obtaining an ODD,
the expected per patient net revenue is pmj mj . To simplify the notation, we define Mj(Ωj) =
pmj mj . The parameter Ωj is a vector of disease specific characteristics that may affect the
probability pmj and/or the net revenue mj . For example, some regulators grant a price premium
to drugs targeting life threatening conditions.

7In principle, it is also possible that a drug reaches the market without having previously obtained an ODD.
However, this occurs for only 2% of US marketing authorizations in our dataset. For the sake of simplicity, we
assume that only drugs with an ODD receive marketing authorization.
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The expected profit for firm i (i = 1, 2, . . . , N f ) investing I to develop a drug for disease j
is:

EΠij = pdj (I)[Mj nj]− I + δij. (1)

The term δij is an idiosyncratic component that aims to capture any additional positive or nega-
tive component of the expected profit known only to the firm. This may be related, for example,
to the impact on R&D costs of other projects undertaken by the firm, simultaneously or previ-
ously. It is assumed that δij is known to the firm before deciding the investment strategy. From
the perspective of the researcher, δij is the realization of a random variable, with density f(∆).
According to Eq. 1, a new drug that obtains market authorization captures the entire market.
This simplifying assumption is justified by the fact that, in our data, only for a small fraction of
orphan diseases (6%) is more than one treatment authorized over the entire time span. We also
introduce the simplifying assumption that firms make their investment decisions independently.
However, in Appendix A we relax the assumption that a new drug captures the entire market
and show that the quality of the relevant results is unchanged.

The aim of our analysis is to study the impact of the different forms of incentives introduced
as part of the special legislation on: i) the probability of obtaining an investment in an orphan
disease, ii) the probability of obtaining an orphan designation. Our analysis is carried out within

the class of orphan diseases. In other words, we do not contrast rare versus non-rare diseases,
but more versus less rare diseases within the class of orphan diseases. As a result, we assume
that all diseases are eligible for incentives. Our focus is on how the impact of different types of
incentives is affected by the prevalence of an orphan disease.

Our comparison of alternative incentives focuses on the usual distinction between pull and
push programs. Pull incentives are those that aim to increase the net market revenue of invest-
ments made in orphan diseases. The best known instance is market exclusivity, to which all
products with orphan designation are entitled. We model this as a mark-up, z (z ≥ 0), on net
revenues. This way of modeling pull incentives is sufficiently flexible to account for other types
of incentives, such as a price premium to which all orphan drugs are equally entitled.

Push incentives reduce the cost of R&D investment in rare diseases. Examples of such
incentives include tax credits, reduced application fees for market authorization and protocol
assistance. We model this type of incentive as an allowance on investment costs, such that,
conditional on obtaining an ODD, the investment cost borne by the firm is I(1 − γ), with
0 ≤ γ ≤ 1.8

To take the role of these incentives into account, the expected profit function can be written

8Note that a pure form of push incentive would be conditional only on the decision to invest. The conditionality
on the achievement of an ODD that we introduce is meant to make the model as consistent as possible with the
legislation as outlined in Section 2.
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as:
EΠij = pdj (I)[Mj nj](1 + z)− (1− pdj (I) γ)I + δij. (2)

Eq. 2 shows that access to pull incentives is conditional upon obtaining an ODD and reaching
the market (recalling Mj = pmj mj), whereas obtaining an ODD is sufficient for eligibility for
push incentives.

4 Optimal investment policy

We start by characterizing optimal decisions from the perspective of a single firm and then move
on to analyze of the outcome of these decisions at the market (disease) level.

4.1 The firm’s decisions

The firm aims to maximize the expected profit in Eq. 2 with respect to I . The first order
condition can be written as:

∂pdj (I)
∂I

[Mj nj(1 + z)] + γ

(
∂pdj (I)
∂I

I + pdj (I)
)

= 1. (3)

The first order condition in Eq. 3 requires the marginal cost of investment on the right hand side
to be equated with the marginal benefit, which has two components: i) the increased probability
of reaching the market and its revenues, ii) the positive impact on the expected revenue provided
by the push incentive. The assumption that limI→0

∂pd
j (I)
∂I

= +∞ ensures the existence of a
strictly positive value of I , solving the equation. We assume the marginal benefit to be strictly
decreasing in I , meaning that Eq. 3 defines a unique optimum.9 Eq. 3 also highlights the well
known role of market size as an incentive for R&D investments: a reduction in nj reduces the
marginal benefit of investment and leads to a lower optimal level of investment. According to
Eq. 3, the optimal investment level (I∗j ) depends only on characteristics at the disease level, but
not on δij .

9Note that this condition is directly implied by the assumption of the strict concavity of pd
j (I), for sufficiently

small values of γ.
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4.1.1 Impact of pull incentives

We can use the implicit function theorem to study the impact of an increase in z on the optimal
level of investment:

dI∗j
dz

= −
∂pd

j (I)
∂I

Mjnj
∂2pd

j (I)
∂I2 [Mjnj(1 + z) + γI] + 2γ ∂p

d
j (I)
∂I

> 0. (4)

From the perspective of our analysis, it is particularly interesting to investigate how the marginal
impact on I∗j of an increase in z varies with nj . Differentiating Eq. 4 with respect to nj obtains:

∂2I∗j
∂z∂nj

=
∂pd

j (I)
∂I

Mjnj

[
∂3pd

j (I)
∂I3

∂I∗
j

∂n
[Mjnj(1 + z) + γI∗j ] + ∂2pd

j (I)
∂I2

(
Mj(1 + z) + 2γ ∂I

∗
j

∂n

)]
[
∂2pd

j (I)
∂I2 [Mjnj(1 + z) + γI∗j ] + 2γ ∂p

d
j (I)
∂I

]2 +

−
Mj

(
∂2pd

j (I)
∂I2

∂I∗
j

∂n
nj + ∂pd

j (I)
∂I

)
∂2pd

j (I)
∂I2 [Mjnj(1 + z) + γI∗j ] + 2γ ∂p

d
j (I)
∂I

. (5)

Eq. 5 cannot be unambiguously signed, meaning that the size of the impact of a pull in-
centive on I∗j may increase or decrease in nj . The ambiguity is due to two impacts that go in
opposite directions. There is a positive impact because, for a given level of I , the increase in
expected revenues due to an increase in z is proportional to the market size. However, given
z, I∗j is higher when nj is larger. As the marginal productivity of an increase in I , in terms of
the increased probability of obtaining an ODD, is decreasing, this impact goes in the opposite
direction.

Given I∗j (Mj, nj), the firm invests only if the expected profit at the time of investment is
non-negative, i.e.:

pdj (I∗j )[Mj nj](1 + z)− (1− pdj (I∗j ) γ)I∗j + δij ≥ 0. (6)

The study of this condition is particularly important in the case of rare diseases, given that most
of them have no ODD. It is therefore possible to define a minimum value of δij , δ̂j , such that
the firm makes an investment in R&D for disease j:

δ̂j = (1− pdj (I∗j ) γ)I∗j − pdj (I∗j )[Mj nj](1 + z). (7)

To investigate the impact of nj on the decision whether or not to invest, we study the depen-
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dency of δ̂j on nj . Observing that

δ̂j = −EΠij(I∗j ) + δij, (8)

simplifies calculations through the application of the envelope theorem, therefore:

∂δ̂j
∂nj

= −pdj (I∗j )Mj(1 + z) < 0. (9)

Hence, other things being equal, for a comparatively rare disease the value of δij must be larger
for the firm to decide to undertake any investment (Eq. 9). Thus, it is less likely to observe
R&D investment in comparatively rare diseases.

Using a similar approach, we can study the impact of an increase in z on δ̂j . This leads to

∂δ̂j
∂z

= −pdj (I∗j )Mj nj < 0, (10)

which shows the role of z in making it more likely that there is investment for disease j, by
reducing the value of δ̂j . Also in this case, we are interested in the heterogeneous impact of this
incentive tool across different classes of prevalence. By differentiating Eq. 10 with respect to
nj , we obtain:

∂2δ̂j
∂z∂nj

= −Mj

[
∂pdj (I)
∂I

∂I∗j
∂nj

nj + pdj (I∗j )
]
< 0. (11)

The negative sign of the expression means that the impact of an increase in z on the probability
of a firm undertaking an investment is larger for less rare diseases.

4.1.2 Impact of push incentives

As for the pull program, we start by describing the impact on I∗j of a marginal change in the
incentive:

dI∗j
dγ

= −
∂pd

j (I)
∂I

I + pdj (I)
∂2pd

j (I)
∂I2 [Mjnj(1 + z) + γI] + 2γ ∂p

d
j (I)
∂I

> 0. (12)

We also use the same approach to investigate the heterogeneity of the impact:

∂2I∗j
∂γ∂nj

=

(
∂pd

j (I)
∂I

I∗j + pdj (I)
) [

∂3pd
j (I)

∂I3
∂I∗

j

∂n
[Mjnj(1 + z) + γI] + ∂2pd

j (I)
∂I2

(
Mj(1 + z) + γ

∂I∗
j

∂n

)
+ 2γ ∂

2pd
j (I)

∂I2
∂I∗

j

∂n

]
[
∂2pd

j (I)
∂I2 [Mjnj(1 + z) + γI] + 2γ ∂p

d
j (I)
∂I

]2 +

−
∂2pd

j (I)
∂I2

∂I∗
j

∂n
I∗j + 2∂p

d
j (I)
∂I

∂I∗
j

∂n

∂2pd
j (I)

∂I2 [Mjnj(1 + z) + γI] + 2γ ∂p
d
j (I)
∂I

. (13)
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As for z, this term cannot be unambiguously signed, because two effects operate in opposite
directions. Other things being equal, with a larger value of nj , I∗j is larger and so is the gain
from an increase in γ. However, a higher value of I∗j also implies a lower marginal productivity
of additional investment, in terms of increased probability of obtaining an ODD. Therefore, also
the impact of an increase in γ on I∗j may increase or decrease in nj .

Concerning the impact on the minimum value of the idiosyncratic term that makes an in-
vestment in disease j profitable, we obtain:

∂δ̂j
∂γ

= −pdj (I∗) I∗j < 0 (14)

and
∂2δ̂j
∂γ∂nj

= −
∂I∗j
∂nj

(
∂pdj (I)
∂I

I∗j + pdj (I)
)
< 0. (15)

In this case too, the impact is greater for less rare diseases.
Concerning the size of the impact on δ̂j and the dependency of this impact on nj , note

that a quantitative comparison between pull and push incentives cannot be based on a direct
comparison of Eq. 10 with 14 and of Eq. 11 with 15. The reason is that the pull incentive is
a fraction of expected revenues, whereas the push incentive is a fraction of investment costs.
Concerning the role of nj , the following proposition states an important qualitative difference
between a pull and push incentive, based on the comparison between Eq. 11 and Eq. 15:

Proposition 1. For both types of incentives, the reduction in δ̂j is greater for less rare diseases.

However, while for a push incentive this is due only to an indirect effect, i.e. through the impact

on I∗j , for a pull incentive there is both a direct and an indirect effect.

The calibration set out in Section 5 is used to investigate the quantitative implications of this
result.

4.2 Market outcomes

We can now move on to study the impact of incentives at the disease level, assuming that the
N f firms make independent investment decisions, as characterized in the previous subsection.
We focus on two outcomes:

1. the probability that at least one firm makes an R&D investment targeting disease j;

2. the expected number of ODDs for disease j.

Starting with the first, investment by at least one firm occurs if

max
i
{δij} > δ̂j. (16)
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For the most common types of distributions f(∆), including the normal and the exponential,
the Gumbel distribution is the limiting distribution of maxi{δij} (Ahsanullah, 2016). We use
fG(δ̃) and FG(δ̃) to denote the probability density function and the cumulative density function
(CDF) of maxi{δij}, respectively. The indicator function IIj can be used to define whether at
least one firm invests in disease j (IIj = 1) or not (IIj = 0). We obtain

P(IIj = 1) = 1−
∫ δ̂j

−∞
fG(δ̃)dδ̃. (17)

Following the analysis in the previous subsection, the focus is on how the impact of incentives
changes with prevalence, i.e.:

∂2P(IIj = 1)
∂z∂nj

= −
∂2FG(δ̃)

∂δ̃2
∂δ̂j
∂n

∂δ̂j
∂z

+ ∂FG(δ̃)
∂δ̃

∂2δ̂j
∂z∂n

 (18)

and
∂2P(IIj = 1)

∂γ∂nj
= −

∂2FG(δ̃)
∂δ̃2

∂δ̂j
∂n

∂δ̂j
∂γ

+ ∂FG(δ̃)
∂δ̃

∂2δ̂j
∂γ∂n

 . (19)

Given the results of the previous subsection, the sign of the second term in brackets is negative
for both expressions. As the derivatives of δ̂j with respect to n, z and γ are also negative, the
following proposition holds.

Proposition 2. ∂2FG(δ̃)
∂δ̃2 ≤ 0 is a sufficient condition for both a pull and a push incentive to

increase the probability of having investment in disease j more for less rare diseases.

According to Eq. 18 and 19 the condition is not necessary, since the two terms in brackets
have opposite signs if the condition is not met. However, we argue that the condition is very
likely to be satisfied for our market, because the relevant part of FG(δ̃) is likely to be con-
cave. Investment in disease j occurs if δ̃j ≥ δ̂j . Given that most orphan diseases attract no
investments, δ̂j is likely to be comparatively high, meaning that the relevant part of the Gumbel
distribution is in the right tail, i.e. where the CDF is concave.

We can now move on to study the impact of incentives on the expected number of ODDs,
conditional on IIj = 1. Let Ñ f (δ̂j) be the number of firms that decide to invest in j, because
δij > δ̂j . For each of these firms, the investment decision has a Bernoulli outcome, with prob-
ability of obtaining an ODD equal to pdj (I∗j ). From Eq. 3, the optimal investment level, and
hence the probability of success, is the same for all firms for which it is convenient to invest in
disease j. The sum of Ñ f (δ̂j) independent random variables with Bernoulli distribution has a
Binomial(Ñ f (δ̂j), pdj (I∗j )) distribution, for which the limiting distribution is Poisson. If we take
this approximation, the number of ODDs, conditional on investment, is distributed Poisson,
with parameter λj = Ñ f (δ̂j) · pdj (I∗j ).
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P(IIj = 0) # ODD | IIj = 1
↑ z Negative; impact size increasing in nj Positive; role of nj ambiguous
↑ γ Negative; impact size increasing in nj Positive; role of nj ambiguous

Table 2: Summary of theoretical results: impact of an increase in the policy parameters.

The following proposition summarizes the results of the theoretical analysis of the impact
of incentives on the expected number of ODDs, conditional on IIj = 1, for different classes of
prevalence.

Proposition 3. Conditional on at least one firm investing in disease j, the impact of incentives

on the expected number of orphan designations may be greater or lower for less rare diseases.

This ambiguity follows from the fact that the expected number of designations is λj = Ñ f (δ̂j) pdj (I∗j ).
The impact on the probability that at least one firm invests in market j has been shown to be
greater for less rare diseases. However, this does not necessarily imply that the impact on
Ñ f (δ̂j) is also greater, as this depends on the distribution of δij . Moreover, the impact on I∗j is
also ambiguous (Eq. 5 and Eq. 13).

Table 2 summarizes our main theoretical results. Since in the empirical analysis we explic-
itly model P(IIj = 0) = 1 − P(IIj = 1), as is common in zero-inflated models, Table 2 refers
to this probability.

5 Calibration

This section presents the main results of a calibration of the theoretical model.10 The main
aim is to explore the difference in the impact of push versus pull incentives, with an emphasis
on whether the advantage for less rare diseases is larger with one type or other of incentive.
Overall, the theoretical analysis carried out so far does not lead to a clear prediction on this
point. The data used for the following empirical analysis are also not suitable to provide a
conclusive answer. In terms of policy implications, the ability to compare the two types of
incentives is important, because it may inform on whether a different mix of incentives can be
used to influence the distribution of R&D efforts between less and more rare diseases.

To operationalize the model, the probability function of obtaining an ODD is defined as
pdj (I) =

√
2 arctan(εI)

π
, where ε is a parameter and π is the mathematical constant. The model is

calibrated with the same data used in our empirical exercise, as described in detail in Section 6.
Details of the calibration and additional output are presented in Appendix B.

10The calibration is implemented using the software MATLAB R©.
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(a) Additional ODDs per class of prevalence (z = 0.2,
γ = 0.745).
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(b) Average number of additional ODDs per disease by
class of prevalence (z = 0.2, γ = 0.745).

Figure 1: Distribution of additional ODDs due to the incentives, across classes of prevalence
(C1: < 1/1, 000, 000; C2: 1-9/1,000,000; C3: 1-9/100,000; C4: 1-5/10,000).

We generate a sample of 2,553 diseases, the number for which the information on prevalence
is not missing in our dataset (see Table 3). A prevalence value is associated with each disease,
assuming a Log-Normal distribution for this parameter. Each disease is then assigned to a
class of prevalence as defined in Orphanet: “<1/1,000,000” (C1), “1-9/1,000,000” (C2), “1-
9/100,000” (C3), and “1-5/10,000” (C4). For the idiosyncratic term (δij) a Normal distribution
is assumed.

We are interested in how the additional ODDs obtained thanks to the incentives are dis-
tributed across classes of prevalence. The calibration exercise is based on three steps:

1. solution of the model with no incentive;

2. solution of the model with pull incentive (z) only;

3. iteration of the solution with push incentive (γ) only, to find the level of incentive such
that the total number of ODDs gained is the same as in point 2.

For step 2, we set z = 0.2. Given the other parameter values, the iterated solution of the model
shows that the condition defined in point 3 is satisfied with γ = 0.745.

Figure 1(a) shows the number of additional ODDs for each class of prevalence for the two
types of incentive. By construction (step 3 of the calibration), the sum of the height of the
bars for each type of incentive across the classes of prevalence is the same. More informative
from the policy perspective, however, is the number of additional ODDs per disease (Figure
1(b)), which is strictly related to the probability that a patient suffering from a certain disease
may benefit from new therapeutic options in the future. Figure 1(b) shows that there is a clear
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difference in the distribution of additional R&D effort generated by pull and push incentives.
With the push incentive, the increase in the number of ODDs per disease is higher in the two
classes with lower prevalence, against the enormous advantage for the class of less rare diseases
in the case of pull incentives. As shown in more detail in Appendix B, the calibration results
suggest that the combination of direct and indirect mechanisms favoring less rare diseases in
terms of extensive margin (Proposition 1) drives the overall impact on the number of ODDs,
resulting from the combination of the intensive and extensive margin. As a result, there is much
more advantage for less rare diseases than in the case of a push incentive, for which only an
indirect mechanism favors these diseases in terms of the extensive margin.

6 Data and measures

We begin by identifying the full list of orphan diseases, i.e., those for which a drug may obtain
an ODD. To do this, we rely on the Orphanet database (INSERM, 1999), the standard reference
for information on rare diseases. The list used in the empirical analysis was downloaded in
October 2017. After excluding some items, according to the criteria detailed in Appendix C,
our list includes 5,132 diseases. Orphanet provides information on the class of prevalence of
the disease, if already documented:11 “<1/1,000,000”, “1-9/1,000,000”, “1-9/100,000”, and
“1-5/10,000”.12 We refer to worldwide prevalence; where this information is not provided, we
consider prevalence in Europe or, failing that, in the US. Additional information at the disease
level was retrieved from Orphanet, including the therapeutic class(es), the age at onset and age
at death (the latter is available only for 28% of diseases). Ages are categorized as antenatal,
neonatal, infancy, childhood, adolescence, adulthood and elderly.

In order to gather information on the existing knowledge of each disease, PubMed13 was
searched to retrieve the number of articles published over the period 1970-2016 which contain
the name of each disease in the title, abstract or content. This information was used to construct
a measure for the stock of publications (SP ), following the perpetual inventory method:

SPjt = Pjt + (1− ρ)SPj,t−1,

where Pjt is the number of publications related to disease j at time t and ρ = 0.1 is the rate of
obsolescence of knowledge, as generally applied in the empirical literature (Keller, 2002).

11In a few cases (6.7% of diseases), a numeric value for prevalence is also provided. However, the availability
of this information is unevenly distributed across classes of prevalence. Given this limitation, the point estimate of
prevalence is not used in the empirical analysis.

12Information on prevalence refers to year 2017. We are unable to track moves from one class to the other,
which, however, are highly unlikely, given the width of the classes considered.

13See https://www.ncbi.nlm.nih.gov/pubmed/.
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The list of rare diseases is systematically updated, as approximately 250 new diseases are
described each year (Westermark et al., 2011; Wästfelt et al., 2006). Hence, the list downloaded
in October 2017 may include diseases which were unknown earlier. A lack of ODDs for a
disease as yet undiscovered cannot be interpreted as a lack of R&D targeting that disease. To
account for this, our baseline analysis includes disease j only if its stock of publications in t−5
is positive (i.e., SPj,t−5 > 0).14 The variable based on the number of publications is also used
as a control to proxy the level of scientific information available on the disease.

A key decision concerns how to measure R&D efforts at the disease level. Our proxy of
R&D efforts targeting rare diseases is the flow (number) of ODDs granted by the FDA per year
between 1983 and 2016. An ODD represents the “successful translation of rare disease research
into an orphan drug discovery and development program” (Heemstra et al., 2009). Obtaining an
ODD is necessary for the project, and eventually for the drug, to be eligible for the incentives.
Compared to the proxies for R&D used in previous contributions, such as the number of clinical
trials (see, for example, Yin, 2008), ODDs have the advantage of providing information for a
lengthy time span from a single administrative source. A potential limitation is that ODDs are
only available for orphan diseases, meaning that they are not suitable for an analysis of the
impact of the orphan legislation on orphan versus non-orphan diseases. Given that we focus on
the heterogeneous impact within the class of orphan diseases, this concern is less relevant.

We focus on ODDs granted in the US, because the ODA passed in 1983 enables the dynam-
ics in the number of designations over the selected time span to be studied. This includes 1993,
when Japan significantly strengthened its orphan provisions, and 2000, when orphan legislation
was introduced in the EU. As pharmaceuticals are a global industry, it is convenient for the
inventors to apply for orphan drug status in several countries, in order to benefit from additional
incentives. Together with the size of the US market, this means that FDA data provide a reliable
picture of global R&D activity. For each drug, the FDA provides the date of orphan designation,
marketing approval (if any), the designated indication, and the company sponsoring the request.

Every effort was made to match the indications of the FDA list of ODDs with the Orphanet
list of diseases. Further details of assignment criteria and the exclusion of some of the 3,996
ODDs granted by the FDA between 1983 to 2016 are provided in Appendix C.

All in all, our data comprise 136,036 observations (5,132 diseases over – at most – 34 years).
The distribution of diseases included in the analysis across prevalence classes is shown in Table
3. There is no information on the prevalence (or it has not yet been documented) in Orphanet
for a large number of diseases: these are considered as a separate class. Among the classes with
known prevalence, a significant majority of diseases are classified with a prevalence of under
1 in 1 million (36.89%), with only 2.98% in the class 1-5/10,000. Table 3 also shows that the

14Robustness of the results to this criteria is explored in Appendix D.
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Prevalence number of % total avg. number of
diseases ODDs per disease (yearly)

C1: <1/1,000,000 1,893 36.89 0.03
C2: 1-9/1,000,000 205 3.99 0.13
C3: 1-9/100,000 302 5.88 0.17
C4: 1-5/10,000 153 2.98 0.22
C0: Missing prev. 2,579 50.25 0.13
Total 5,132 100 –

Table 3: Distribution of the diseases among prevalence classes.

average yearly number of ODDs per disease tends to increase substantially with prevalence.15

While most diseases have no ODD, some have several ODDs and, in some cases, several ap-
proved treatments. These lucky exceptions are far more likely to occur when the market size
is comparatively large: for example, only 0.53% of diseases in C1 have over two approved
medicines, whereas the percentage is 13.07% in C4.

7 Empirical methods

Our theoretical analysis allows us to study i) the probability of no R&D for a certain disease
(IIj = 0), and ii) the expected number of ODDs conditional on IIj = 1. Empirically, the two
processes can be jointly modeled using a zero-inflated count data model. The unconditional
expected number of ODDs is the result of the combination of the zero-inflated and count part
of the model, which are jointly estimated via maximum likelihood.

The zero-inflated model indicates the determinants of the two different processes causing a
zero outcome (Lambert, 1992): choice (the decision not to invest in R&D) and nature (the lack
of innovative output, conditional on positive investment) (Winkelmann, 2008). R&D effort,
proxied by the number of ODDs targeting disease j granted in year t, yjt, is therefore modeled
as:

yjt =

0, if IIjt = 0

y∗jt, if IIjt = 1
(20)

where:

• IIjt is the binary variable introduced in Section 4. If IIjt = 0, the outcome is a “certain
zero”, also referred to as “strategic” or “structural” zero (Staub and Winkelmann, 2013).
For the sake of consistency with the analysis in Section 4, we depart from the standard

15The numbers of ODDs are calculated taking the average over the study years and over the diseases in each
prevalence class.
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assumption that the relevant probability distribution for the inflated part is either Logistic

or Normal (hence, the estimated model is either Logit or Probit) and adjust the model for
the Gumbel distribution;16

• y∗jt is a count variable, representing the number of ODDs targeting disease j granted by
FDA in year t. From the analysis in Section 4, under the assumptions of our model, its
distribution can be approximated by a Poisson, with parameter λj = Ñ f (δ̂j) · pdj (I∗j ).
However, given that λj is disease-specific, when several diseases are considered, it is
natural to refer to the Negative Binomial distribution, to account for over-dispersion.

The density for yjt is:

f(yjt) =

P(IIjt = 0) + [1− P(IIjt = 0)]fnb(0) if yjt = 0

[1− P(IIjt = 0)]fnb(y∗jt) if yjt ≥ 1,
(21)

where fnb(·) is the density function of the Negative Binomial distribution. The probability of
being in the “certain zero” case (IIjt = 0) is estimated using the Gumbel distribution:

P(IIjt = 0) = exp(− exp(−x′jtβ1)). (22)

Conditional on IIjt = 1, the expected number of ODDs is:

λjt = exp(x′jtβ2). (23)

Combining the two processes, the unconditional expected number of ODDs can be ex-
pressed as:

E(yjt|xjt) = (1− P(IIjt = 0))λjt = (1− exp(− exp(−x′jtβ1))) exp(x′jtβ2). (24)

For two reasons, our identification strategy cannot rely on the existence of a set of diseases
to be used as a control group in the conventional way: (i) our measure of R&D effort is spe-
cific to orphan diseases, (ii) incentives are applied over the whole observation period. However,
the incentives accumulated over time as new reforms were introduced, so the overall intensity
of treatment (incentive) grew after each reform. Moreover, according to our theoretical anal-
ysis, disease prevalence affects the impact of incentives. We exploit these characteristics, in a
difference-in-differences framework. Referring to equations 22 and 23, we specify:

x′jtβ = α +
∑
i

ζiCij +
∑
p

τpDpt +
∑
i

∑
p

κip(Cij ×Dpt) + θWjt, (25)

16The STATA R© code used for estimation is available from the authors upon request.
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where β refers to both β1 and β2, which are separately estimated. Note that we normally use
the same set of variables in the Gumbel and Negative Binomial part of the model. Ci denotes
the class of prevalence, from the rarest (C1) to the least rare (C4) (see Table 3). To improve the
readability of results, in estimating the model we aggregate classes C2 and C3 on the basis of
statistical testing.17 The new class is denoted as C23. Diseases where prevalence is missing are
included as a separate class (C0). The binary variables Dp indicate relevant periods of time,
related to the introduction of special legislation in the three geographical areas of interest, and
to the joint application in the US and EU, which enhanced access to the incentives: 1983-1992
(D1, incentives available in the US only); 1993-1999 (D2, incentives available in the US and
Japan); 2000-2007 (D3, incentives also available in Europe) and 2008-2016 (D4, possibility of
joint application in Europe and the US). C1 and D1 are taken as reference categories.

The interaction coefficients κip are the main parameters of interest, both in the Gumbel
and Negative Binomial part of the model, representing the differential effect of the reforms for
diseases in class of prevalence Ci, compared to those in the lowest class of prevalence, C1.
The sign of κip in the Gumbel part of the model is related to the signs of ∂P(IIj = 0)/∂z∂nj
and ∂P(IIj = 0)/∂γ∂nj; in the count part of the model, conditional on positive investments,
it is related to the compound effect of ∂I∗j /∂z∂nj and ∂I∗j /∂γ∂nj . Based on our theoretical
analysis, we expect κip < 0 for all i and all p in the Gumbel part of the model (Proposition 2),
whereas the sign may be positive or negative in the count part of the model (Proposition 3). W
is a vector including additional control variables which, according to the analysis in Section 4,
may have an impact on R&D effort:

• a dummy variable (EarlyD) indicating whether the disease causes premature death (at
pediatric age or in adulthood; 9% in our sample). This variable might affect the per
patient net revenue, mj , as some regulators grant a price premium to drugs targeting life-
threatening conditions, and pediatric drugs are granted additional market exclusivity;

• the stock of publications (SP ), given that inputs from science can play a relevant role in
stimulating R&D efforts (Pavitt, 1984; Mansfield, 1995);

• dummy variables for 26 therapeutic classes (TC) and a dummy variable identifying ge-
netic diseases (G), as assigned to diseases by Orphanet.
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Figure 2: Trends of innovation over time.

8 Empirical Results

Figure 2 provides a descriptive illustration of the evolution of research efforts for orphan dis-
eases. Figure 2(a) compares the yearly number of ODDs (solid line; year 2000 = 100) with the
number of investigational new drug (IND) applications for orphan and non-orphan diseases in
the US (source: FDA; dashed line; year 2000 = 100).18 Although the comparison may not be
fully homogeneous, it clearly suggests that the increase in R&D effort was much higher for or-
phan diseases. The existing literature shows that the availability of incentives for orphan drugs,
accumulated over time, was a key determinant of the sharp increase in the number of ODDs
(Yin, 2008; Westermark et al., 2011; Braun et al., 2010). More closely related to our research
question, Figure 2(b) shows the evolution in the average number of new ODDs per disease for
each class of prevalence. The graph shows that the growth documented in Figure 2(a) is driven
mainly by ODDs for less rare diseases.

Our empirical strategy allows disentangling the contribution of the intensive and extensive
margin to the observed dynamic. The main results of the model estimation are shown in Table
4. Note that, for each specification, Table 4 only shows the estimated coefficients of the inter-
action terms of interest (κip in Eq. 25) for the zero-inflated (Gumbel) part (Eq. 22) and of the
“count” part of the model (Eq. 23). The full table of results (Table 7) is set out in Appendix

17In the model estimated with all available classes of prevalence from Orphanet data (i.e., C1, C2, C3, C4, and
C0) the null hypothesis of equality of the coefficients related to C2 and C3 cannot be rejected (p-value=0.8254).

18IND application is the regulatory step required in the US to commence clinical trials on humans for all drugs,
including orphan drugs. Note that this measure would not be suitable to replace ODDs in our analysis, as the data
available do not allow them to be linked to therapeutic indications.
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(1) (2) (3) (4)
noddt noddt noddt noddt+5

Gumbel count Gumbel count Gumbel count Gumbel count
P(IIj = 0) #ODD | IIj = 1 P(IIj = 0) #ODD | IIj = 1 P(IIj = 0) #ODD | IIj = 1 P(IIj = 0) #ODD | IIj = 1

C23×D2 -2.856∗∗∗ -1.423∗∗∗ -2.782∗∗∗ -1.387∗∗∗ -2.614∗∗∗ -1.403∗∗∗ -3.563∗∗∗ -1.873∗∗∗

(0.744) (0.386) (0.714) (0.426) (0.725) (0.410) (0.731) (0.369)
C23×D3 -2.811∗∗∗ -1.113∗∗∗ -2.718∗∗∗ -1.067∗∗∗ -2.574∗∗∗ -1.147∗∗∗ -3.691∗∗∗ -1.473∗∗∗

(0.712) (0.343) (0.681) (0.362) (0.652) (0.378) (0.736) (0.390)
C23×D4 -3.129∗∗∗ -1.195∗∗∗ -3.045∗∗∗ -1.161∗∗∗ -2.938∗∗∗ -1.317∗∗∗ -3.633∗∗∗ -1.363∗∗∗

(0.753) (0.354) (0.733) (0.378) (0.687) (0.402) (0.790) (0.389)

C4×D2 -2.441 -1.249∗ -2.300 -1.194∗ -2.328 -1.279∗ -4.328∗∗∗ -2.163∗∗∗

(1.606) (0.669) (1.770) (0.706) (1.860) (0.744) (1.222) (0.602)
C4×D3 -4.365∗∗∗ -1.447∗∗ -4.207∗∗ -1.374∗∗ -4.190∗∗ -1.538∗ -6.160∗∗∗ -2.140∗∗∗

(1.615) (0.673) (1.750) (0.690) (1.896) (0.791) (1.281) (0.631)
C4×D4 -4.587∗∗∗ -1.616∗∗ -4.484∗∗∗ -1.564∗∗ -4.488∗∗ -1.803∗∗ -6.243∗∗∗ -2.035∗∗∗

(1.587) (0.693) (1.725) (0.707) (1.867) (0.812) (1.547) (0.598)
C0, C23, C4 yes yes yes yes
D2, D3, D4 yes yes yes yes
TC&G yes yes yes yes
EarlyD no yes yes no
ln(SPj,t−5) no no yes no
N 136036 136036 136036 111023
C1: <1/1,000,000 (reference cat.); C23: 1/1,000,000-9/100,000; C4: 1-5/10,000; C0: missing prevalence.
D1: 1983-1992 (reference cat.); D2: 1993-1999; D3: 2000-2007; D4: 2008-2016.
TC: therapeutic class dummies; G: genetic disease dummy; EarlyD: early death dummy; SP : publication stock.
Standard errors (clustered by disease) in parentheses .
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Selected estimation results: interaction effects (κip in Eq. 25); results for the complete
specification in Appendix D, Table 7.

D. Dummy variables for disease prevalence and time period, therapeutic class and genetic dis-
eases are included in all specifications.19 As a partial maximum likelihood framework is used,
standard errors are clustered by disease in order to adjust for within-disease serial dependence
(Wooldridge, 2010, Ch. 13).

Column (1) shows the results for our baseline specification. In the Gumbel part of the model,
the coefficients associated with the interaction terms are negative and statistically significant,
with the sole exception of C4 × D2: in line with Proposition 2, the increase in incentives
provided over time brings an advantage for less rare diseases compared to the most rare in
terms of the extensive margin of R&D.

Complementary to these results, Figure 3(a) plots the predicted probability of a “certain
zero” for the classes of prevalence C1, C23 and C4 conditional on the controls of Column (1).
From the second (93-99) to the third period (00-07, when market exclusivity is additionally
provided in the EU), a larger variation in probability is detected for C4 as compared to both
C23 (difference: -33 percentage points; p-value = 0.005) and C1 (difference: -35 percentage
points; p-value = 0.003).

The coefficients of the interaction terms are also significant in the count part of the model of

19Diseases with unknown prevalence are included, but interactions involving the corresponding dummy are not
shown.
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Figure 3: Predicted values for classes of prevalence C1, C23 and C4 in each period (with 95% confi-
dence interval): (a) predicted probability that Ij = 0 (Gumbel; Eq. 22); (b) predicted number of ODDs,
conditional on Ij > 0, computed as exp(xjtβ̂2) (count; Eq. 23).

Column (1), indicating the heterogeneous impact of the reforms according to prevalence. In this
case, the sign of the difference, for which the theoretical prediction is ambiguous, is in favor of
C1. In Figure 3(b) we plot the average of the exponential values of xjtβ̂2. This corresponds to
the predicted number of ODDs per disease conditional on IIjt > 0 (see Eq. 23).20

We combine the estimated coefficients in the Gumbel and count part of the model to cal-
culate the predicted number of ODDs per year per disease (Eq. 24). Figure 4(a) shows this
predicted number for each period, while Figure 4(b) shows the differences in the predicted
number of ODDs (C23 versus C1 and C4 versus C1). Over time, there has been an increase in
the number of ODDs for all classes of prevalence. This was led by a decrease in the probability
of no positive investment for diseases belonging to C4 and by an increase in the intensity of
investments, conditional on IIjt = 1, for diseases in all classes. When comparing C1 and C4,
the magnitude of the heterogeneous impact on the probability of making an investment (Gum-
bel part) outweighs the difference in terms of research intensity (count part) which goes in the
opposite direction. Thus, over time, we observe a widening gap in the predicted number of
ODDs for a disease in the lowest versus the highest class of prevalence. The difference in the

20Note that coefficients in the table represent semi-elasticities, whereas the figure shows the exponential of the
linear combination corresponding to the predicted number of ODDs conditional on Ij > 0.
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Figure 4: (a) Predicted number of ODDs (see Eq. 24) for C1, C23 and C4; (b) difference
between C23, C4 and C1 (95% confidence interval reported in the graphs).

predicted number of ODDs is 5.6 times larger in the last period compared to the first.21

Columns (2) and (3) of Table 4 include additional control variables (respectively, EarlyD
and ln(SPj,t−5)). Column (4) takes into account the possibility that, despite an immediate
impact of the reform on R&D effort, the increase in the number of ODDs may be delayed.
Therefore, the effect of independent variables at time t on the number of ODDs in t + 5 is
considered. A five-year lag has been selected, i.e., the average time span from the beginning
of clinical trials to an ODD application.22 Importantly, results for the heterogeneous effect of
Orphan Regulations across classes of prevalence shown in Column (2)-(4) confirm the results of
the baseline specification of Column (1). Moreover, when the time lag is taken into account, the
estimated effect of the reforms is larger. This is in line with the idea that, when not accounting

21Since the Japanese law considers the lowest threshold for defining an orphan drug (about 4 in 10 thousand),
a subset of diseases in C4 does not benefit from incentives in this country. Hence, starting from period D2, the
estimated coefficients of C4 and its interactions may represent a lower bound.

22The length of the lag was estimated by combining our own calculations using FDA data with data on the
length of drug development provided by DiMasi et al. (2016). According to these calculations, the average time
lag between designation and marketing approval for drugs designated before 2005 is 68 months. The analysis does
not extend beyond 2005 to avoid data censoring. DiMasi et al. (2016) indicate a time period of 126 months from
synthesis to approval. In light of the difference between these two numbers, designations take place on average
five years after the synthesis of the compound. This result is in line with Hay et al. (2014), who find that ODDs
are most often given to a drug in phase 2, which, according to DiMasi et al. (2016), is roughly five years after
synthesis.
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for the lag, the impact of the reform is estimated in a period in which its effects are as yet partial.
If this is the case, impacts estimated not accounting for the lag may be a lower bound.

The empirical analysis does not allow us to formally distinguish between the impact of
pull versus push incentives, as both have been part of US and Japan regulations since their
introduction. However, the European legislation provides solely pull incentives, and tax-related
provisions are delegated to single countries. The results of Proposition 1, coupled with the
fact that only two European countries provide tax incentives (see Section 2), suggest that the
design of the European legislation may have contributed substantially to the widening of the
gap between less and more rare diseases, as observed in Figure 4, after 2000.

There are clearly some challenges in the identification of a causal impact of orphan drug
regulations adopted over time in our empirical analysis. One concern is that, due to the lenghty
time span considered, other events, in addition to those for which we can control, may have
impacted on the development of new orphan drugs. One example is the Human Genome Project
completed in 2003: this may have increased R&D for genetic diseases, a large share of orphan
diseases. However, in our data, 90% of diseases in C1 have a genetic origin against 67% in
C23 and 41% in C4. If the Project increased R&D for genetic diseases, our estimate of the
greater impact of the European legislation for C4 versus C1 would be biased downward. What
may limit the validity of our conclusions is the presence of events other than orphan legislation,
which had a stronger impact on diseases with a comparatively high level of prevalence. We
are not aware of any relevant event with these characteristics during the period of analysis, and
Appendix D (Table 9) shows that our results are robust to changes in the specification aiming
to control for the impact of such events.

Additional robustness checks related to sample selection and the way in which we count
the number of ODDs, are set out in Appendix D. The main results presented in this Section are
confirmed.

9 Concluding remarks

There is ample evidence that the incentives provided through orphan regulations have increased
investments in projects targeting rare diseases, with a potential reduction in inequality between
orphan and common diseases. In this article, we study the impact of these incentives on the
distribution of R&D efforts within the class of orphan diseases, with a focus on heterogeneity
in relation to prevalence.

In a theoretical framework, we show that, under plausible assumptions, both pull and push

programs increase the probability of investment more for a less rare disease. For push incen-
tives the impact is only indirect, whereas it is both direct and indirect for pull incentives. In
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terms of the optimal level of R&D investment, it is not possible to conclude unambiguously
whether the impact of the incentives increases or decreases with the prevalence of the disease.
A calibration exercise suggests that with pull incentives the combination of the extensive and
intensive margin of investment leads to a large advantage for less over more rare diseases. Em-
pirically, orphan designations, a condition for eligibility for incentives, are used as a proxy for
R&D effort to investigate the impact of the introduction of incentives in different geographical
areas over time. We utilize a Gumbel zero-inflated negative binomial model which, in line with
the theoretical analysis, allows us to study the intensive and extensive margin of R&D effort
separately. We find that the number of new designations per year has increased over time for
all orphan diseases, but the concentration toward less rare diseases has also increased: the dif-
ference between the predicted number of new orphan designations per year for a disease in the
highest and the lowest class of prevalence is 5.6 times larger in the last than in the first period of
analysis. This result is driven by the extensive margin of R&D. Overall, our analysis suggests
that the introduction of the European legislation, mainly providing pull incentives, contributed
substantially to this outcome. Although it may be argued that the causal interpretation of our re-
sults can be challenged by the presence of events, other than the orphan legislation, which had a
heterogeneous impact according to prevalence, our findings are supported by several robustness
checks.

In line with our findings, a recent assessment of European orphan legislation concludes that
‘the tools provided . . . have not done enough to direct the development in areas of greatest ’un-

met clinical need’ (European Commission, 2020, p. 34). By showing that R&D efforts have
been concentrated on less rare diseases, that the gap has been widening over time and that the
type of incentives adopted may be important, our analysis has clear policy implications. If pro-
viding as many patients as possible with some therapeutic option is an objective, an increase
in the relative weight of push incentives should be considered. The adoption of some of these
incentives, such as tax credits, may be more challenging at the European level than in other
regulatory frameworks, due to the fact that individual EU member states are still responsible for
fiscal policies. An alternative approach might consider the introduction of provisions tailored to
disease prevalence. For example, Jobjörnsson et al. (2016) explore the impact of changing the
level of statistical significance required by regulatory authorities to grant marketing approval
according to disease prevalence. Finally, the distribution of R&D efforts across diseases is
important not only in terms of equity, but also in terms of efficiency, because the insurance
value of innovation is a larger fraction of the overall value of innovation for very rare diseases
(Lakdawalla et al., 2017). However, it is also worth mentioning that alternative efficiency con-
siderations may lead to a more favorable evaluation of a concentration of R&D efforts on less
rare diseases. This may occur, for instance, in the presence of significant economies of scale.
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One challenge for future research is to explore the relationship between equity and efficiency in
the provision of R&D incentives for orphan diseases.

Although the focus of the present article is the market of pharmaceuticals for rare diseases,
we believe that some insights have more general implications. For example, the separation
between the analysis of the extensive and intensive margin of R&D investment may be relevant
for a wide range of research questions related to biomedical innovation, given that the industry
constantly faces the dilemma of which therapeutic areas to invest in. Our analysis also shows
that the relative impact of push versus pull programs changes according to the prevalence of the
disease. In markets other than pharmaceuticals there may be other dimensions of heterogeneity
worth considering in assessing how the distribution of benefits is affected by the specific type
of incentive adopted.
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A The impact of incentives in a competitive model

Following Yin (2008), the market of an orphan disease j is modeled as a unit circle, with patients
uniformly distributed along its length (Salop, 1979). Let Fj be the number of identical firms
active in the market of disease j, supplying different drugs that are not vertically differentiated.
Each firm supplies one drug, so that the number of firms active in the market equals the number
of products. Quality is also assumed to be homogeneous, meaning that patient choices depend
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only on their location in relation to suppliers. Each patient buys from the closest supplier, so
that each firm serves nj/Fj patients. For the sake of simplicity, we assume I to be exogenous23

and pdj = 1. The profit function can be written as:

EΠj = Mj(1 + z)nj
Fj
− (1− γ)I. (26)

Below, we study the impact of pull and push incentives on the equilibrium number of firms F̄j ,
and in particular how this impact changes with nj .

A.1 Pull incentive

Assuming that firms are free to enter the market, the usual zero profit condition applies:24

EΠj = Mj(1 + z)nj
F̄j
− (1− γ)I = 0. (27)

By applying the implicit function theorem, we find:

∂F̄j
∂z

= F̄j
1 + z

> 0. (28)

As expected, pull incentives increase the equilibrium number of firms. Regarding the most
interesting question from our perspective, i.e. how this impact changes with nj , we find that:

∂2F̄j
∂z∂n

=
( 1

1 + z

)
∂F̄j
∂nj

. (29)

Once more applying the implicit function theorem to Eq. 27, we obtain:

∂F̄j
∂nj

= F̄j
nj
, (30)

which can be replaced in Eq. 29 to obtain:

∂2F̄j
∂z∂n

= F̄j
nj(1 + z) > 0. (31)

Hence, in a model with several firms, an increase in the level of pull incentives has a greater
impact on the number of firms / products for less rare diseases.

23This is equivalent to introducing the hypothesis that investment enhances drug quality, for which a minimum
threshold is set, assumed to be binding for orphan diseases (see Yin, 2008).

24To be precise, F̄j should be defined as the largest integer such that the expected profit is non negative. Given
the aim of the analysis, and without loss of generality, we treat F̄j as a continuous variable.
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A.2 Push incentives

Referring to Eq. 27, the same methods are applied as for the pull incentive to determine:

∂F̄j
∂γ

=
I F̄ 2

j

Mj nj(1 + z) > 0. (32)

In this case too, the impact on the equilibrium number of firms / products of the incentive is pos-
itive. Concerning the heterogeneous effect across diseases with different levels of prevalence,
we find that:

∂2F̄j
∂γ∂n

=
2njIF̄j ∂F̄j

∂n
− IF̄ 2

j

Mjn2
j(1 + z) . (33)

Replacing ∂F̄j

∂n
from Eq. 30 gives:

∂2F̄j
∂γ∂n

=
F̄ 2
j I

Mjn2
j(1 + z) > 0. (34)

According to Eq. 34, with a push incentive too, the impact on the equilibrium number of firms
/ products is greater for less rare diseases.

B Calibration details

The calibration process is divided into two main parts. The first is the creation of a sample
of diseases with different values of prevalence. Although prevalence is expressed in relative
terms, what matters to a firm when shaping its optimal investment policy is the absolute size of
the market. The thresholds separating classes of prevalence are transformed by assuming a total
population size of 965.1 million, the sum of the populations (reference year: 2017) in the three
main geographical areas where orphan legislation was introduced. These values (see Column
3 in Table 5) and the corresponding percentiles (Column 4) are used as a benchmark for the
calibration of the distribution of prevalence among diseases in our simulated sample. Next, an
iterative process is used to identify the combination of mean and standard deviation of the Log-
Normal distribution that minimizes the sum of the distance, in percentage terms, between the
value of prevalence corresponding to the switching percentiles (i.e. 74.17, 82.19 and 94.01; see
Column (4) of Table 5) in the original distribution (Column 3) and its calibrated counterpart.
Finally, given that the generated sample of diseases includes some whose prevalence exceeds
the highest threshold (482,550), these are dropped (1.92% of the originally generated sample).
The match between the calibrated sample of diseases in Column (5) and the original sample
looks sufficiently close.
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Threshold Prevalence: threshold percentile # ODD: cumulative distribution
Class Relative Absolute Original Calibrated Original Calibrated

(1) (2) (3) (4) (5) (6) (7)
C1 1/1,000,000 965.1 74.17 72.42 15.72 15.96
C2 9/1,000,000 8,685.9 82.19 87.17 45.49 42.38
C3 9/100,000 86,859 94.01 95.15 60.54 62.89
C4 5/10,000 482,550 100.00 100.00 100.00 100.00

Table 5: Summary of information used to calibrate the model.

Parameter Description Value
mean prevalence mean of the Log-Normal distribution 4.41
s.d. prevalence s.d. of the Log-Normal distribution 4.2
Mj expected net revenue per patient 300
ε parameter of pdj (I) function 1.4e-05
E[∆] mean of the idiosyncratic term -80e+06
s.d.[∆] s.d. of the idiosyncratic term 49e+06
# diseases number of diseases 2553
# firms number of firms 20

Table 6: Calibrated parameter values.

The second part of the calibration relies on FDA data on granted ODDs, which we match to
diseases, following the methods described in Section 6. Ideally, we would like to be able to iden-
tify a set of parameter values that allows to obtain a reliable distribution of ODDs across classes
of prevalence in a situation without incentives. The fact that we have no data for the period
before the introduction of incentives rules this out. To overcome this problem, the benchmark
chosen was the distribution of ODDs across classes of prevalence cumulated over the 10 years
after 1983, i.e., the period when only the US had orphan legislation. We are implicitly assum-
ing that the impact of the incentives was still limited in this period compared to subsequent
years. Column (6) of Table 5 reports the cumulative distribution of ODD for the four classes of
prevalence. The remaining parameters in the model are set in order to obtain, for the simulation
of the model with no incentives (step 1), a distribution of ODD across classes of prevalence
which is reasonably similar to this benchmark. Table 6 shows the parameter values used in our
calibration. Column (7) of Table 5 shows the calibrated cumulative distribution of ODDs for
the situation without incentives.

As stated in Section 5, the model is solved: (1) without incentives, (2) with only a pull

incentive (z = 0.2, γ = 0), (3) iterating the solution to find the value of a push incentive leading
to the same number of ODDs as in the second step, with z = 0; this condition is satisfied with
γ = 0.745.
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(a) Change in optimal investment level per disease by class
of prevalence (z = 0.2, γ = 0.745).
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(b) Change in the number of firms that invest per disease
by class of prevalence(z = 0.2, γ = 0.745).

Figure 5: Change in optimal investment level and number of investors due to the incentives.

The most significant output, i.e. the distribution of the additional number of ODDs across
classes of prevalence for the two types of incentive, is shown in the main text (Figure 1). Figure
5 shows how the two decisions considered in our theoretical analysis, i.e. investment intensity
and whether or not to invest, contribute to this result. Given our parameter values, Figure 5(a)
shows that the impact of both types of incentives on the optimal investment level, which was
theoretically ambiguous, increases with the level of prevalence. For all classes of prevalence,
the increase is larger for push incentives, due to the lower expected value of the marginal cost
of the investment involved. On the other hand, the distribution of additional firms that decide
to invest is greatly in favor of less rare diseases when the incentive is pull (Figure 5(b)). This
is in line with the theoretical result that only for a pull incentive is a direct mechanism at work
(Proposition 1). Therefore, the difference in terms of the probability of having positive invest-
ment (Figure 5(b)) seems to be driving the clear advantage for the class of less rare diseases in
terms of additional ODDs, as shown in Figure 1.

C Additional information on the sample of diseases

Starting from the initial sample of 9,530 records available from the Orphanet database, we
excluded 2,208 which do not refer to a specific disease, but to aggregations called “group of
phenomes” (e.g., “rare pulmonary diseases”). Diseases emerging in the antenatal period or
causing death before birth (323 diseases) were excluded. 568 records referring to surgical pro-
cedures were also dropped, and 192 items with obsolete nomenclature were updated and moved
accordingly.
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Concerning the FDA database of ODDs, this includes 3,996 designations granted between
1983 to 2016. Of these, 408 records referring to products for surgery, prevention, transplant,
diagnostics and imaging procedures were excluded, and 199 records were dropped because
information on the treated disease cannot be retrieved from Orphanet.

Where the FDA designated indication refers to a “group of phenomes”, we rely on the
hierarchical classification of orphan diseases provided by Orphanet to link the ODD with all
relevant diseases, and we assign one ODD to each disease in the “group”.25

D Detailed results and robustness checks

Table 7 shows the full set of estimated coefficients for the regression of Table 4. The results for
the interactions of interest are commented on in the main text. The coefficients of time period
dummies (D2, D3, D4) show that, for diseases in C1, both the probability of a “certain zero”
and the expected number of ODDs (conditional on positive investment) increase with respect to
first time period (1983-92).

In the Gumbel part of the model, the value of the coefficients for the prevalence dummies
(C23, C4, C0) measures the difference in P(IIjt = 0) between each class of prevalence and the
reference category C1 in the period 1983-92. In the first time period (1983-92), in all models
but the fourth, C4 is not statistically different from C1 in terms of probability of a “certain
zero”, whereas C23 is. In subsequent periods, both C23 (in all periods) and C4 (after year
2000) differ from C1, as highlighted by a test on the null hypothesis Ci + Ci × Dt = 0,26

indicating that the probability of a “certain zero” is lower for diseases in classes other than C1.
In the count part of the model, coefficients for Ci are positive and statistically significant:

conditional on IIjt = 1, less rare diseases experience larger investments (higher number of
ODDs) in the first time period. However, the gap among classes of prevalence shrinks over time
in percentage terms (see the negative sign of the interaction terms).

Column (2) of Table 7 takes into account the characteristics of the disease in terms of life
expectancy, and includes a dummy variable that identifies diseases causing premature death
(EarlyD). This variable is not significant either in the Gumbel or in the count part of the
model, but its joint effect in the two equations is statistically different from zero (p-value=0.038

25For example, some drugs were designated for the treatment of hypereosinophilic syndrome, which is classified
as a “group of phenomes” in Orphanet and comprises different diseases on the Orphanet list (i.e., idiopathic hyper-
eosinophilic syndrome, primary hypereosinophilic syndrome, and secondary hypereosinophilic syndrome). The
ODD assigned to this syndrome is therefore assigned to the three diseases comprising this “group”. We believe
that this way of counting ODDs is more appropriate than fractional counting that would assign 1/3 ODD to each
disease, as we are interested in the availability of therapeutic options at the disease level.

26An exception being Model (4) in which the sums C4 +C4×Dt are statistically different from zero at the 5%
level for all time periods.
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(1) (2) (3) (4)
noddt noddt noddt noddt+5

Gumbel count Gumbel count Gumbel count Gumbel count
P(IIj = 0) #ODD | IIj = 1 P(IIj = 0) #ODD | IIj = 1 P(IIj = 0) #ODD | IIj = 1 P(IIj = 0) #ODD | IIj = 1

C23 1.646∗∗∗ 1.524∗∗∗ 1.599∗∗∗ 1.488∗∗∗ 1.535∗∗ 1.463∗∗∗ 2.010∗∗∗ 1.743∗∗∗

(0.618) (0.343) (0.605) (0.349) (0.634) (0.382) (0.758) (0.366)
C4 1.344 1.797∗∗∗ 1.210 1.757∗∗∗ 1.310 1.744∗∗ 2.466∗∗ 2.290∗∗∗

(1.650) (0.647) (1.782) (0.658) (1.935) (0.774) (1.119) (0.561)
C0 2.498∗∗∗ 1.427∗∗∗ 2.439∗∗∗ 1.445∗∗∗ 2.387∗∗∗ 1.576∗∗∗ 2.386∗∗∗ 1.221∗∗∗

(0.480) (0.421) (0.544) (0.438) (0.557) (0.389) (0.485) (0.287)

D2 3.172∗∗∗ 2.053∗∗∗ 3.124∗∗∗ 2.033∗∗∗ 3.019∗∗∗ 2.047∗∗∗ 3.463∗∗∗ 2.387∗∗∗

(0.617) (0.426) (0.677) (0.470) (0.688) (0.405) (0.557) (0.309)
D3 2.701∗∗∗ 2.139∗∗∗ 2.622∗∗∗ 2.101∗∗∗ 2.523∗∗∗ 2.123∗∗∗ 3.484∗∗∗ 2.679∗∗∗

(0.663) (0.308) (0.672) (0.337) (0.631) (0.352) (0.520) (0.285)
D4 2.483∗∗∗ 3.113∗∗∗ 2.421∗∗∗ 3.086∗∗∗ 2.342∗∗∗ 3.120∗∗∗ 2.610∗∗∗ 3.140∗∗∗

(0.617) (0.296) (0.627) (0.320) (0.606) (0.344) (0.496) (0.259)

C23×D2 -2.856∗∗∗ -1.423∗∗∗ -2.782∗∗∗ -1.387∗∗∗ -2.614∗∗∗ -1.403∗∗∗ -3.563∗∗∗ -1.873∗∗∗

(0.744) (0.386) (0.714) (0.426) (0.725) (0.410) (0.731) (0.369)
C23×D3 -2.811∗∗∗ -1.113∗∗∗ -2.718∗∗∗ -1.067∗∗∗ -2.574∗∗∗ -1.147∗∗∗ -3.691∗∗∗ -1.473∗∗∗

(0.712) (0.343) (0.681) (0.362) (0.652) (0.378) (0.736) (0.390)
C23×D4 -3.129∗∗∗ -1.195∗∗∗ -3.045∗∗∗ -1.161∗∗∗ -2.938∗∗∗ -1.317∗∗∗ -3.633∗∗∗ -1.363∗∗∗

(0.753) (0.354) (0.733) (0.378) (0.687) (0.402) (0.790) (0.389)
C4×D2 -2.441 -1.249∗ -2.300 -1.194∗ -2.328 -1.279∗ -4.328∗∗∗ -2.163∗∗∗

(1.606) (0.669) (1.770) (0.706) (1.860) (0.744) (1.222) (0.602)
C4×D3 -4.365∗∗∗ -1.447∗∗ -4.207∗∗ -1.374∗∗ -4.190∗∗ -1.538∗ -6.160∗∗∗ -2.140∗∗∗

(1.615) (0.673) (1.750) (0.690) (1.896) (0.791) (1.281) (0.631)
C4×D4 -4.587∗∗∗ -1.616∗∗ -4.484∗∗∗ -1.564∗∗ -4.488∗∗ -1.803∗∗ -6.243∗∗∗ -2.035∗∗∗

(1.587) (0.693) (1.725) (0.707) (1.867) (0.812) (1.547) (0.598)
C0×D2 -3.663∗∗∗ -1.874∗∗∗ -3.619∗∗∗ -1.859∗∗∗ -3.522∗∗∗ -1.917∗∗∗ -3.350∗∗∗ -1.604∗∗∗

(0.636) (0.553) (0.739) (0.604) (0.696) (0.464) (0.578) (0.331)
C0×D3 -3.047∗∗∗ -1.312∗∗∗ -2.989∗∗∗ -1.287∗∗∗ -2.886∗∗∗ -1.381∗∗∗ -2.968∗∗∗ -1.246∗∗∗

(0.513) (0.377) (0.534) (0.397) (0.558) (0.367) (0.549) (0.313)
C0×D4 -2.486∗∗∗ -1.396∗∗∗ -2.442∗∗∗ -1.382∗∗∗ -2.386∗∗∗ -1.520∗∗∗ -2.055∗∗∗ -1.085∗∗∗

(0.488) (0.376) (0.535) (0.392) (0.558) (0.367) (0.517) (0.289)

EarlyD -0.285 0.203 -0.207 0.218
(0.370) (0.154) (0.357) (0.150)

ln(SPj,t−5) -0.033 0.078∗∗∗

(0.026) (0.018)
Constant -1.360∗ -4.730∗∗∗ -1.295∗ -4.744∗∗∗ -0.996∗ -4.959∗∗∗ -1.680∗∗∗ -4.571∗∗∗

(0.708) (0.299) (0.678) (0.301) (0.605) (0.330) (0.527) (0.274)
ln(α) 0.894∗∗∗ 0.894∗∗∗ 0.795∗∗∗ 0.842∗∗∗

(0.201) (0.196) (0.161) (0.159)
N 136036 136036 136036 111023
AIC 55999.94 55951.90 55692.84 50335.00
BIC 56854.34 56825.94 56586.52 51171.73
Standard errors (clustered by disease) in parentheses.
Therapeutic class and genetic dummy variables included in all specifications.
Column (1) also includes interactions between TC&G dummies and time period dummies in the count part of the model.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: Full estimation results (Table 4).
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in Model (3) and 0.046 in Model (4)).
Column (3) includes the stock of publications at time t − 5 (in log) to proxy the level of

scientific knowledge related to disease j: inputs from science play a relevant role in stimulating
R&D efforts. Indeed, results highlight that a larger stock of publications increases the number
of ODDs in the count part (it also reduces the probability of a “certain zero”, although not
significantly).

The results for the model of Column (4) are commented in the main text.
The following two subsections present two sets of robustness checks. First, different ways

of measuring the dependent variable (Table 8) are considered. The sample is then modified and
additional control variables are introduced (Table 9).

D.1 Counting the number of ODDs

Column (1) of Table 8 excludes the designations received after the drug obtained marketing
approval for other indications from the count of ODDs.27 In this case, the innovation can be
considered less substantial. When excluding these designations from the count, results are
qualitatively similar to those shown in Table 4.

Column (2) includes only ODDs assigned to private companies (96% of the ODDs in our
sample), excluding ODDs assigned to universities, hospitals and medical centers, non-profit
organizations and patient associations. Our main results are again unaffected.

D.2 Sample issues and control variables

In the count part of the model presented in Column (1) of Table 9, additional controls are added
in the form of interactions between therapeutic class and genetic dummies (TC&G) and period
dummies.28 These interaction terms aim to capture the effect of technological reforms at the
therapeutic class level. Technological breakthroughs fostering the level of innovative effort in a
specific therapeutic class might bias our results if correlated with the level of prevalence.

Column (2) includes a proxy for the per patient net revenue at the industry level (mg).29 In
particular, it includes the ratio between the producer price index of manufacturing pharmaceu-
ticals and medicines, and the price index for private fixed investments in intellectual property

27The relevant information was retrieved from the list of orphan-designated products with at least one marketing
approval for a common disease provided by the FDA and the Drugs@FDA database.

28The interaction terms are included only in the count part of the model as this specification has a lower Bayesian
Information Criterion (BIC) compared to models where the interaction terms are also (or solely) included in the
Gumbel part of the model.

29On the basis of the theoretical model, disease-specific per patient net revenues (mj) should affect incentives
to undertake R&D investments. Unfortunately, we are not aware of reliable proxies for net revenues, as well as
price indices or dynamics in R&D costs, at the disease level.
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(1) (2)
excl.appr. firm only

Gumbel count Gumbel count
P(II

j = 0) #ODD | II
j = 1 P(II

j = 0) #ODD | II
j = 1

C23 1.514∗∗ 1.488∗∗∗ 1.785∗∗∗ 1.415∗∗∗

(0.591) (0.364) (0.653) (0.340)
C4 1.610 1.672∗∗ 1.061 1.657∗∗∗

(1.866) (0.769) (1.731) (0.527)
C0 2.680∗∗∗ 1.551∗∗∗ 2.611∗∗∗ 1.344∗∗∗

(0.503) (0.377) (0.465) (0.295)
D2 3.239∗∗∗ 2.151∗∗∗ 3.662∗∗∗ 1.986∗∗∗

(0.619) (0.360) (0.600) (0.303)
D3 2.722∗∗∗ 2.168∗∗∗ 2.977∗∗∗ 2.173∗∗∗

(0.549) (0.325) (0.473) (0.271)
D4 2.404∗∗∗ 3.090∗∗∗ 2.740∗∗∗ 3.143∗∗∗

(0.540) (0.318) (0.425) (0.269)
C23×D2 -2.726∗∗∗ -1.451∗∗∗ -3.329∗∗∗ -1.385∗∗∗

(0.692) (0.381) (0.837) (0.365)
C23×D3 -2.653∗∗∗ -1.107∗∗∗ -3.064∗∗∗ -1.022∗∗∗

(0.584) (0.356) (0.828) (0.342)
C23×D4 -2.981∗∗∗ -1.168∗∗∗ -3.328∗∗∗ -1.083∗∗∗

(0.589) (0.374) (0.589) (0.346)
C4×D2 -2.571 -1.146 -2.512 -1.102∗∗

(1.817) (0.736) (1.714) (0.523)
C4×D3 -4.687∗∗∗ -1.420∗ -4.498∗∗ -1.310∗∗

(1.815) (0.780) (1.899) (0.514)
C4×D4 -4.982∗∗∗ -1.524∗ -4.782∗∗ -1.465∗∗∗

(1.819) (0.803) (1.915) (0.535)
C0×D2 -3.854∗∗∗ -2.037∗∗∗ -4.093∗∗∗ -1.776∗∗∗

(0.609) (0.416) (0.593) (0.338)
C0×D3 -3.238∗∗∗ -1.444∗∗∗ -3.184∗∗∗ -1.257∗∗∗

(0.499) (0.354) (0.493) (0.302)
C0×D4 -2.604∗∗∗ -1.486∗∗∗ -2.546∗∗∗ -1.330∗∗∗

(0.502) (0.346) (0.445) (0.295)
Constant -1.270∗∗ -4.780∗∗∗ -1.429∗∗ -4.673∗∗∗

(0.543) (0.321) (0.686) (0.358)
ln(α) 0.921∗∗∗ 1.029∗∗∗

(0.157) (0.150)
N 136036 136036
AIC 54359.26 54254.62
BIC 55213.66 55109.02
Standard errors (clustered by disease) in parentheses.
Therapeutic class and genetic dummy variables included in all specifications.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8: Results – Robustness checks on how the number of ODDs is measured.

39



(1) (2) (3) (4)
TCj ×Dpj mgt all obs. SP83−5 > 0

Gumbel count Gumbel count Gumbel count Gumbel count
P(IIj = 0) #ODD | IIj = 1 P(IIj = 0) #ODD | IIj = 1 P(IIj = 0) #ODD | IIj = 1 P(IIj = 0) #ODD | IIj = 1

C23 0.474 1.471∗∗∗ 1.309∗∗ 1.417∗∗∗ 2.149∗∗∗ 1.265∗∗∗ 1.857∗∗ 1.844∗∗∗

(0.565) (0.475) (0.554) (0.341) (0.429) (0.248) (0.772) (0.560)
C4 0.600 1.692∗∗∗ 1.025 1.712∗∗∗ 0.923 1.344∗∗∗ 1.643 2.036∗

(0.781) (0.611) (1.426) (0.571) (1.597) (0.475) (2.186) (1.078)
C0 0.487 0.668 -0.266 0.730∗ 2.720∗∗∗ 1.137∗∗∗ 3.039∗∗∗ 1.938∗∗

(0.498) (0.431) (0.711) (0.417) (0.347) (0.239) (0.855) (0.810)
D2 0.753 0.508 3.356∗∗∗ 1.671∗∗∗ 3.840∗∗∗ 1.930∗∗∗ 2.492∗∗∗ 1.931∗∗∗

(0.561) (0.437) (0.614) (0.432) (0.348) (0.240) (0.912) (0.644)
D3 0.550 0.689 3.204∗∗∗ 1.511∗∗∗ 3.663∗∗∗ 2.197∗∗∗ 2.981∗∗∗ 2.554∗∗∗

(0.602) (0.463) (0.627) (0.338) (0.308) (0.228) (0.827) (0.703)
D4 0.395 1.484∗∗∗ 3.913∗∗∗ 1.921∗∗∗ 3.073∗∗∗ 2.974∗∗∗ 2.614∗∗∗ 3.330∗∗∗

(0.548) (0.451) (0.612) (0.372) (0.323) (0.227) (0.910) (0.733)
C23×D2 -1.528∗∗ -1.213∗∗∗ -2.498∗∗∗ -1.323∗∗∗ -3.324∗∗∗ -1.155∗∗∗ -2.371∗∗∗ -1.358∗∗

(0.681) (0.436) (0.693) (0.378) (0.456) (0.268) (0.890) (0.605)
C23×D3 -1.609∗∗ -1.117∗∗ -2.448∗∗∗ -1.007∗∗∗ -3.628∗∗∗ -1.053∗∗∗ -2.997∗∗∗ -1.471∗∗

(0.639) (0.466) (0.629) (0.336) (0.447) (0.270) (0.708) (0.648)
C23×D4 -1.997∗∗∗ -1.148∗∗ -2.861∗∗∗ -1.096∗∗∗ -3.480∗∗∗ -0.899∗∗∗ -3.207∗∗∗ -1.385∗

(0.668) (0.474) (0.662) (0.348) (0.457) (0.306) (0.750) (0.746)
C4×D2 -1.159 -0.741 -2.112 -1.173∗ -2.554∗ -1.005∗∗ -1.697 -1.061

(0.831) (0.568) (1.441) (0.604) (1.476) (0.473) (1.893) (0.876)
C4×D3 -3.688∗∗∗ -1.387∗∗ -3.964∗∗∗ -1.366∗∗ -3.633∗∗∗ -1.235∗∗∗ -3.860∗∗∗ -1.707∗∗

(0.912) (0.601) (1.426) (0.587) (1.373) (0.452) (1.311) (0.838)
C4×D4 -3.887∗∗∗ -1.460∗∗ -4.327∗∗∗ -1.521∗∗ -2.551∗ -0.981∗ -3.539∗∗ -1.719∗∗

(0.827) (0.606) (1.362) (0.607) (1.512) (0.502) (1.580) (0.766)
C0×D2 -1.430∗∗ -0.958∗∗ -3.803∗∗∗ -1.887∗∗∗ -3.904∗∗∗ -1.541∗∗∗ -3.176∗∗∗ -1.941∗∗

(0.555) (0.423) (0.622) (0.518) (0.400) (0.284) (0.947) (0.757)
C0×D3 -1.028∗ -0.653 -3.508∗∗∗ -1.381∗∗∗ -3.580∗∗∗ -1.198∗∗∗ -3.460∗∗∗ -1.762∗∗

(0.583) (0.428) (0.543) (0.376) (0.367) (0.272) (0.811) (0.761)
C0×D4 -0.504 -0.613 -3.919∗∗∗ -1.660∗∗∗ -2.759∗∗∗ -1.081∗∗∗ -2.822∗∗∗ -1.649∗∗

(0.521) (0.420) (0.576) (0.421) (0.389) (0.269) (0.986) (0.828)
mg -2.010∗∗∗ 1.246∗∗∗

(0.392) (0.252)
mg × C0 2.073∗∗∗ 0.490∗∗

(0.419) (0.223)
Constant 0.710 -3.366∗∗∗ 1.286 -6.034∗∗∗ -1.026∗∗∗ -4.012∗∗∗ -0.752 -4.558∗∗∗

(0.638) (0.487) (0.927) (0.476) (0.397) (0.205) (0.667) (0.441)
ln(α) 0.777∗∗∗ 0.816∗∗∗ 0.774∗∗∗ 0.613

(0.173) (0.205) (0.168) (0.557)
N 136036 133348 212092 91392
AIC 55479.21 55469.14 71872.74 37299.61
BIC 57129.08 56361.00 72765.78 38119.41
Robust (clustered by disease) standard errors in parentheses.
Therapeutic class and genetic dummy variables included in all specifications.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: Results – Robustness checks: sample issues and additional control variables.
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products for firms operating in pharmaceutical and medicine manufacturing (as a proxy for
R&D expenditure).30 The ratio between the two indices grew substantially over the observation
period. Also included is an interaction term between C0 (missing prevalence) and the ratio in
the Gumbel and count part of the model.31

Column (3) includes the full set of diseases in all time periods, without the selection based
on the stock of publications.

Finally, the estimation in Column (4) is based on the balanced panel of diseases known at
the beginning of the observation period (i.e., with a positive value of SPt−5 in year 1983). By
using a balanced set of observations in Column (3) and (4), we aim to investigate whether our
results are driven by sample composition.

All in all, the robustness checks carried out in this section confirm the main results in Table
4 (and Table 7).

30Both indices were downloaded from Federal Reserve Economic Data. See: https://fred.stlouisfed.org. Data
for the producer price index in 1983 are not available, so one observation for each disease was lost.

31Interaction terms between the classes with known prevalence and mg are not statistically different from zero
either in the Gumbel or count part of the model. Note that, according to the theory, an increase in mj works as an
increase in z, meaning that the size of the impact depends on nj .
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