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Abstract. Partially Observable Monte Carlo Planning is a recently pro-
posed online planning algorithm which makes use of Monte Carlo Tree
Search to solve Partially Observable Monte Carlo Decision Processes.
This solver is very successful because of its capability to scale to large
uncertain environments, a very important property for current real-world
planning problems. In this work we propose three main contributions re-
lated to POMCP usage and interpretability. First, we introduce a new
planning problem related to mobile robot collision avoidance in paths
with uncertain segment difficulties, and we show how POMCP perfor-
mance in this context can take advantage of prior knowledge about seg-
ment difficulty relationships. This problem has direct real-world appli-
cations, such as, safety management in industrial environments where
human-robot interaction is a crucial issue. Then, we present an exper-
imental analysis about the relationships between prior knowledge pro-
vided to the algorithm and performance improvement, showing that in
our case study prior knowledge affects two main properties, namely, the
distance between the belief and the real state, and the mutual informa-
tion between segment difficulty and action taken in the segment. This
analysis aims to improve POMCP explainability, following the line of
recently proposed eXplainable Al and, in particular, eXplainable plan-
ning. Finally, we analyze results on a synthetic case study and show how
the proposed measures can improve the understanding about internal
planning mechanisms.

Keywords - Planning under uncertainty, POMCP, POMDP, eXplainable Ar-
tificial Intelligence, XAI, eXplainable planning



1 Introduction

Planning is a central problem in robotics and artificial intelligence, and it is
crucial in many real-world applications. Often the environments in which agents
act are partially unknown and models of the interaction between agent and en-
vironment should consider this uncertainty to improve planning performance.
Partially Observable Markov Decision Processes (POMDPs) are a sound and
complete framework for modeling dynamical processes in uncertain environ-
ments [23]. A key idea of this framework is to consider all possible configurations
of the (partially unknown) states of the agent in the environment, and to assign
to each of these states a probability value indicating the likelihood that the state
is the true state. All these probabilities together form a probability distribution
over states which is called belief. Then, policies are computed [30] considering
beliefs (that deal with uncertainty) instead of single states, a transition model for
the dynamics of the system and an observation model for the (probabilistic) rela-
tionships between observations and true state. Unfortunately, exact solutions for
non-trivial POMDP instances are usually computationally infeasible [28], there-
fore many approximate solvers have been recently developed to generate good
solutions in acceptable computational time and space.

One of the most recent and efficient approximation methods for POMDP
policies is Monte Carlo Tree Search (MCTS) [17,25,4], an heuristic search algo-
rithm that represents system states as nodes of a tree, and actions/observations
as edges. The search of profitable actions in this tree is performed considering
a weighted average of the reward gathered in different branches of the tree it-
self. The most influential solver for POMDPs which takes advantage of MCTS is
Partially Observable Monte Carlo Planning (POMCP) [34]. It combines a Monte
Carlo update of the agent’s belief with a MCTS-based policy. This algorithm
generates online a policy that can be used to solve large instances of planning
problems using only a black-box simulator. This strategy is advantageous in
many practical problems because precise transition and observation models (in
strict POMDP style) are not required, while prior knowledge about the specific
problem at hand can be exploited to improve the planning performance [11,12].

In this paper, we tackle a problem related to velocity control of a mobile
robot following a pre-specified path in an environment with uncertain obstacle
densities. The robot has to reach the end of the path in the shortest possi-
ble time and to avoid collisions, to preserve safety. Real-world applications of
this case study concern, for instance, safety management in Industry 4.0, where
human-robot interaction needs to be robust, reliable and long lasting, especially
when robots interact with workers in highly uncertain environments. In our case
study the path that must be traveled is divided into segments and subsegments,
and every segment is characterized by a difficulty that considers the density of
obstacles in the environment. The real difficulty of segments is unknown and
the robot has to reach the end of the path quickly, hence it should move slowly
in difficult segments to avoid collisions, and faster in simpler segments to mini-
mize the travelling time. Since it is known a-priori that some pairs of segments
can (probabilistically) have the same difficulty (e.g., because they have similar



properties), the information about segment difficulties could be collected as the
robot advances and used to improve the planning performance. In other words,
if some information about the difficulty of a segment is collected while travers-
ing (i.e., acting in and observing) it, then this information can be transferred to
subsequent segments known (a-priori) to have the same difficulty. We represent
difficulty relationships between pairs of segments by state-variable constraints
in Markov Random Fields (MRF) form [12].

The problem here investigated has therefore a particular sequential struc-
ture, in which difficulties of previously traveled segments can be used to in-
fer the difficulty of subsequent segments using MRF-based state-variable con-
straints to (probabilistically) propagate information. What we show in this work
is how performance improvement is related to the prior knowledge introduced
by state-variable constraints. In particular, we introduce two measures, namely,
a distance between the real state and the belief, and the mutual information
between segment difficulty and action taken in the segment, and we experimen-
tally show that the performance improvement is related to a decrease in the
distance between real state and belief, and to an increase in the mutual informa-
tion between difficulty and action. The improved explainability of the planning
process achieved in this way is important in applications involving human-robot
interaction [8,13,9,10], in which understanding how intelligent agents select their
actions is critical. This also positively affects the trust that humans have in plans,
following recent trends related to explainable planning [20].

The contribution of this paper to the state-of-the-art is threefold:

- we present the formulation of a new planning problem (having real-world
applications in Industry 4.0) related to mobile robot collision avoidance in
paths with uncertain segment obstacle densities (i.e., difficulties), and show
how planning performance in this context can take advantage of prior knowl-
edge about obstacle density relationships;

- we introduce two measures to quantify the effect of the introduction of prior
knowledge on 7) belief precision and 4i) correlation between segment difficulty
and action;

- we analyze results on a simulated experiment by means of a newly developed
visualization tool that supports POMCP explainability.

Hence, this work introduces some novel ways to analyze POMCP functioning
when prior knowledge is available in a novel application domain related to mobile
robot navigation, and it represents a preliminary step towards more sophisticated
explainable planning approaches for POMCP.

The rest of the paper is structured as follows. Section 2 presents related
works, Section 3 formalizes the problem of interest and describes the proposed
methodology, Section 4 discusses the results of experimental tests, and Section
5 draws conclusion and directions for future works.



2 Related Work

This work has relationships with three main topics in the literature, namely, i)
planning under uncertainty and reinforcement learning, ii) the POMCP solver
and its extensions for dealing with prior knowledge, iii) explainable planning.
Planning under uncertainty dates back to the seventies [18,31] when aspects
of mathematical decision theory started to be incorporated into the predomi-
nant symbolic problem-solving techniques. The interest in this topic has been
kept very high in the years [23,3], since planning under uncertainty is a critical
task for autonomous and intelligent agents based on current data-driven tech-
nologies. The most recent developments mainly concern the use of Monte Carlo
Tree Search (MCTS) and deep Reinforcement Learning [32,33,38], respectively,
to deal with very large state spaces and to learn from data also the environ-
ment model during the planning process. Among the recently developed approx-
imate [22] and online [30,34] planning approaches, we found only few works [1,26]
in which prior knowledge about specific problems is used to improve planning
performance or to scale to large problem instances. What differentiates these ap-
proaches to our work is that, first, we use a different method to introduce prior
knowledge [12]; second, we focus on an original problem related to robot obstacle
avoidance [24,19,29,37] having strict sequential nature in the way in which the
agent explores the environment and transfers the acquired knowledge to future
exploration; third, our goal is to improve the explainability of POMCP-based
decision-making strategies.

The methodology we use to introduce prior knowledge in POMCP [12] allows
to define probabilistic relationships of equality between pairs of state-variables
by means of Markov random fields. State variables in our application domain
are segment difficulties and a relationship says that two segments have a certain
relative “compatibility” to have the same difficulty. The MRF approach then
allows to factorize the joint probability function of state-variable configurations
and this probability is used to constrain the state space. In our application do-
main the state space is the space of all possible segment difficulty configurations
and the constraints introduced by the MRF allow to (probabilistically) reduce
the chance to explore states that have small probability to be the true state. The
integration of MRF-based prior knowledge into POMCP is mainly performed in
the particle filter initialization, in the belief update phase and in the reinvigora-
tion phase, where the constraints are used to optimize the management of the
particle filter representing the agent belief.

Explainable planning (XAIP) [20,7] is a branch of the recently introduced
research topic called eXplainable Artificial Intelligence (XAI) [21], which aims
at creating artificial intelligence systems whose models and decisions can be un-
derstood and appropriately trusted by end users. Three main challenges of XAl
are the development of methods for learning more explainable models, the desig-
nation of effective explanation interfaces [14|, and the understanding of psycho-
logic requirements for effective explanations [21]. XAIP has a strong impact on
safety-critical applications, wherein people accountable to authorize the execu-
tion of a plan need complete understanding of the plan itself. First approaches of



XATP [35] focus on human-aware planning and model reconciliation [16,40,36,39],
and on data visualization [15]. One recent trend proposed in [20] is to answer
questions that improve human understanding of planner decision, such as, “why
does the planner chose action A rather than B?”, which are referred to as con-
trastive questions. Providing alternative choices and what-if analyses has indeed
psychological basis [6] and it seems to support the interpretability of decision
models that otherwise would not be understandable by developers and users.
In this context users are required to provide alternative actions, if they do not
trust the proposed plan, and replanning is used to show that the alternative
is effectively better or worse than the original plan. Among the technical chal-
lenges of XAIP, one concerns the ability to more naturally specify and utilize
constraints on the planning process [35]. Ideally, constraints over models should
be described using a rich language designed for specifying constraints on the
form of a desired plan. Some recent works [5,27] focus specifically on this topic.
The contribution of our work to explainable planning is related to the introduc-
tion of two measures and related data visualization tools that support to explain
the influence of prior knowledge, defined by Markov Random Field constraints,
on POMCP performance. To the best of our knowledge no other work in the
literature provides this kind of results.

3 Material and Methods

In this section we provide definitions of POMDPs and POMCP, and we for-
malize the problem of interest. Then we introduce the three extensions of the
POMCEP planner employed in our experiments, that make use of different levels
of prior knowledge, and define the two measures used to explain the effect of
prior knowledge on the POMCP policy.

3.1 Partially Observable Markov Decision Processes

A Partially Observable Markov Decision Process (POMDP) [23] is defined as a
tuple (S, A4,0,T,Z, R, ), where S is a finite set of partially observable states, A
is a finite set of actions, Z is a finite set of observations, T: S x A — II(S) is the
state-transition model, O: S x A — I1(Z) is the observation model, R: Sx A — R
is the reward function and v € [0,1) is a discount factor. The goal of an agent
operating a POMDP, is to maximize its expected total discounted reward (also
called discounted return) E[>,°,~v'R(s¢,a;)], by choosing the best action a;
in each state s; at time ¢; v is used to reduce the weight of distant rewards
and ensure the (infinite) sum’s convergence. As mentioned above, the partial
observability of the state is dealt with by considering at each time-step a prob-
ability distribution over states, called belief. The belief space is here represented
by symbol B. We also notice that the term belief is sometimes exchanged with
term history in the following, since an history h is a sequence of actions and
observations that bring the agent from an initial belief by to a certain belief b.
POMDP solvers are algorithms that compute, in an exact or approximate way,



a policy for POMDPs, namely a function 7m: B — A that provides an optimal
action for each believe.

3.2 POMCP

Partially Observable Monte Carlo Planning (POMCP) [34] is an online Monte-
Carlo based algorithm for solving POMDPs. It uses Monte-Carlo Tree Search
(MCTS) for selecting optimal actions at each time-step. The main elements of
POMCP are a particle filter, which represents the belief state, and the Upper
Confidence Bound for Trees (UCT) [25] search strategy, that allows to select ac-
tions from the Monte Carlo tree. The particle filter contains, at each time-step, a
sampling of the agent’s belief at that step (the belief evolves over time). In partic-
ular, it contains k particles, each representing a specific state. At the beginning
the particle filter is usually initialized following a uniform random distribution
over states, if no prior knowledge is available about the initial state. Then, at
each time-step the Monte Carlo tree is generated performing nSim simulations
from the current belief. In other words, for nSim times a particle is randomly
chosen from the particle filter and the related state is used as initial state to
perform a simulation. Each simulation is a sequence of action-observation pairs
that collect a final return, where each action and observation brings to a new
node in the tree. Rewards are then propagated upwards in the tree obtaining,
for each action of the root node, an expected (approximated) value of the cu-
mulative reward that this action can bring. The UCT strategy selects actions
considering both their expected cumulative reward and the necessity to explore
new actions from time to time. The belief is finally updated, after performing
the selected action a and getting a related observation o from the environment,
by considering only the particles (i.e., states) in the node (called hao) reached
from current node h following edges a and o. New particles can be generated
through a particle reinvigoration procedure based on local transformation of
available states, if the particle filter gets empty. A big advantage of POMCP is
that it does not require a complete matrix-based definition of transition model,
observation model and reward, but it only needs a black-box simulator of the
environment.

3.3 Problem formalization

Here we formally define the problem we want to solve in this paper using different
extensions of POMCP that consider different levels of prior knowledge. Let us
assume to have a pre-defined path to be traversed by a mobile robot in an
industrial environment. The path, of which one possible instance is displayed in
Figure 1, is made of segments s; which are then split in subsegments s;;. Each
segment (and related subsegments) is characterized by a difficulty f;, related to
the average density of obstacles in it. The robot has to reach the end of the
path in the shortest possible time, tuning its speed v in each subsegment to
avoid obstacles, since the probability of collision depends on speed and segment
difficulty, and each collision yields a time penalty. The robot cannot directly



observe segment difficulties (which are hidden state variables) but only infer
their values from (observable) variables o; that provide information about the
occupancy of each subsegment, based on the readings of a laser located on top
of the agent.
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Fig. 1. Path travelled by the agent. Nodes are subsegment

This problem can be formalized as a POMDP. The state contains 4) the (hid-
den) true configuration of segment difficulties (f1,. .., f,) where f; € {L, M, H},
L is low difficulty, M medium difficulty and H high difficulty, i) the position
p = (i, 4) of the robot in the path, where 7 is the index of the segment and j the
index of the subsegment (saying that the agent is in position (7, j) we mean that it
is at the beginning of subsegment s; ;), iii) the time ¢ elapsed from the beginning
of the path. Actions correspond to the speed the robot maintains in a subseg-
ment, which may have three possible values, namely low (L), medium (M) or
high (H). Observations are related to subsegment occupancy, where o = 0 means
that the laser does not detect any obstacle in the current subsegment, and o = 1
means that it detects some obstacles (notice that observations are affected by
uncertainty). The observation model hence corresponds to the occupancy model
p(o | f) which (probabilistically) relates segment difficulty to subsegment occu-
pancy. The parameters of Table 1.a concern the occupancy model used in our
experiments.

The state transition model deals with the update of robot position and cur-
rent time at each step. Position update is performed in a deterministic way since
at each step the robot is assumed to reach the beginning of the next subsegment
in the path. The current time is instead updated depending on both the action
performed by the agent and the possibility to make collisions. The relationship
between action and time elapsed to traverse a subsegment is displayed in Table
1.b, namely the agent spends 1 time unit if the action is H (low speed), 2 time
units if the action is M, and 3 time units if the action is L. The time penalty due
to collision is instead governed by the probabilistic collision model p(c | f,a) of
Table 1.c, where ¢ = 0 means no collision and ¢ = 1 means collision. Notice,
that the probability of not making a collision is one minus the probability to



Table 1. Main elements of our POMDP model for the collision avoidance problem.
(a) Occupancy model p(o | f): probability of subsegment occupancy given segment
difficulty. (b) Action-time model: number of time units to traverse a subsegment given
the action performed by the agent. (c¢) Collision model p(c | f, a): collision probability
given segment difficulty and action.

f o pe=11fa)
LL 0.0
LM 0.0
f plo=1]Ff) a dt L H 0.0
L 0.0 L 3 M L 0.0
M 0.5 M 2 MM 0.5
H 1.0 H 1 M H 0.9
(a) (b) HL 0.0
HM 1.0
HH 1.0

(c)

make the collision, since the collision value is binary. The reward function here
used is R = —(t1 + t2), where t; is the time depending on agent’s action and to
is the penalty due to collisions. We use to = 10 in our experiments. Finally the
discount factor is v = 0.95.

3.4 Planning strategies

Three planning strategies are used in our tests. The original implementation
of POMCP [34], named STD in the following, is used as a baseline. An ex-
tended version of POMCP allowing the definition of state-variable constraints
by Markov Random Fields [12], is named MRF in the following, and is used to
introduce prior knowledge about segment difficulty relationships. For instance,
in an instance of our problem we could know that the probability that segment sg
and segment s; have same difficulty is 0.9. Planner MRF can use this information
to improve the policy it generates and, consequently, the planning performance.
The focus of this paper is, in particular, to identify the effects of prior knowledge
on POMCP strategy and we perform this analysis considering the two measures
introduced in Subsection 3.6. Finally, we consider an oracle planner, named ORC
in the following, in which perfect knowledge of segment difficulties is used. This
planner performs the POMCP strategy using only the particle corresponding to
the true state (i.e., configuration of segment difficulties).

3.5 Experimental setup

We perform experiments to compare the three planning strategies described
above. In planner MRF we introduce prior knowledge about the difficulty rela-
tionship of two segments actually having the same difficulty. In particular, we



set to 0.9 the probability of these two segments to have same difficulty (meaning
that we say to the planner that these two segments have probability 0.9 to have
same difficulty). This high probability value allows the planner to consider also
states not satisfying this constraint, but only with a small chance. Tests with
inaccurate prior knowledge are reported in [12]. In each run the agent starts
from node 0 in the path of Figure 1 and has to reach the same node collecting
the highest possible return. We perform 20 runs for each test in order to com-
pute average returns and related standard errors. Different runs have different
configurations of segment difficulties, for instance, one run could have a con-
figuration (L, H, M, H) and another (M, H, L, L). Each test is performed using
a fixed number of simulations n.Sim. We analyze results achieved using n.Sim
between 28 and 2'® with exponential step 2%,8 < z < 15. As expected, runs
performed using more simulations tend to reach better performance (we remind
that nSim simulations are performed each time the agent performs an action in
the path, namely, for each subsegment).

3.6 Measures for policy explanation

To quantify the influence of prior knowledge on policy performance we intro-
duce two measures about specific properties of the policy that support its ex-
plainability, namely, the belief-state distance and the mutual information between
difficulty and action.

Belief-state distance. We define the belief-state distance as the weighted
averaged Manhattan distance between the configuration of segment difficulties in
the true hidden state and the configurations of segment difficulties in the belief
states. Mathematically, if we define the configuration of segment difficulties in
the true state as fg = (f1,..., fn), where f; € {L, M, H} and n is the number of
segments, and we define the k configurations of segment difficulties in the belief
as fp = (fl,..., fL), i € {1,...,k}, f} € {L,M,H} where the probability of
each difficulty configuration f% in the belief is p%, then the belief-state distance

1S
k n
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Since the belief is updated at each time-step, this measure can be computed
at each time-step too. This measure allows to quantify the discrepancy between
what the agent believes about the real state of the environment and the real state
of the environment, hence addiction of prior knowledge about segment difficulty
relationships is expected to decrease this distance.

Mutual information (MI) between segment difficulty and action. In
the specific instance of the collision avoidance problem defined in Subsection 3.3
it is expected that the agent takes particular actions if it has good knowledge
about the true configuration of segment difficulties. In fact, analyzing the col-
lision model in Table 1.c we observe that high speed (i.e., a = H) should be
selected in segments with low difficulty (i.e., f = L) because the collision prob-
ability is always 0.0 in that segment, hence high speed should be preferred to



reach earlier the end of the path. On the other hand, in segments with high
difficulty (i.e., f = H) the collision probability is 0.0 if low speed (i.e., a = L)
is kept and it is 1.0 if medium or high speed (i.e., a = M or a = L) is kept,
hence low speed should be preferred. In case of medium difficulty the collision
probability instead increases from 0.0 to 0.5 and to 0.9 when the speed increases
from L to M and to H, thus the choice of the best action depends on collision
penalty.

To check if the POMCP policy effectively generates actions related to segment
difficulties we compute the mutual information between all actions taken in
each run and corresponding segment difficulties. In other words, given a run we
consider the sequence of actions A = (a; ;), where ¢ is the index of a segment
and j is the index of a subsegment, and the sequence of related subsegment
difficulties F = (f; ;). The mutual information [2] between the two sequences,
treated as random variables, is

HAF) =Y Y s (e Hlog(PATAE)Y, @)

S pa(a)pr(f)

where p(4,r)(a, f) is the joint probability mass function of A and F, and p4 and
pr are the marginal probability mass functions of A and F, respectively. Average
MI values are computed on sets of runs. We notice that selecting actions with
high difficulty-action MI is not trivial since the true configuration of segment
difficulties is hidden. In the next section we experimentally analyze the trend of
this measure depending on the prior knowledge provided in different planners.

4 Results

In this section we present the results of the experiments described in Subsection
3.5. The first observation we make is that the introduction of complete (ORC)
and partial (MRF) prior knowledge about segment difficulty relationships yields
performance improvement, in terms of discounted return. This effect is clear
in Figure 2.a where the blue line (ORC performance) stands above the green
line (MRF performance) which, in turns, stands above the red line (STD per-
formance). Notice that the overtaking of MRF on STD for nSim = 10 is due
only to an anomalous higher average difficulty value of the MRF runs w.r.t. the
STD runs. In the following we analyze the reasons of this performance improve-
ment, which is fundamental in real-world applications involving human-robot
interaction because explainability supports safety preservation.

In Figure 2.b-e we decompose the effect on planning performance into its
causes, and provide insight on the mechanisms that produce it. We first observe
that the introduction of prior knowledge has a positive effect on both the average
number of collisions (see Figure 2.b where the blue line stands below the green
line, which stands below the red line) and the average action (see Figure 2.c
where the blue line stands above the green line, which stands above the red line,
at least for nSim > 2%). This behavior is not obvious, since these two quantities
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Fig. 2. Performance of the three planners ORC, MRF and STD, and explanation of
the reasons of different performance.

have opposite effects. Namely, higher actions, i.e. higher speeds, usually cause
higher number of collisions. If this is not the case, it means that planners using
prior knowledge are able to select actions according to a (smart) strategy which
improves average speed without increasing the collision rate.

Some explanation about the strategies implemented by planners ORC and

MREF to reach this aim is displayed in Figures 2.d and 2.e. Figure 2.e shows that
the mutual information between segment difficulties and related actions is much



higher in the ORC planner than in the STD planner, and the MRF planner has
intermediate MI values (see the blue line above the green line, and the green line
above the red line in the chart). High MI between difficulty and action means
that the planner is able to adapt the action to the (hidden) difficulty, which
implies that the planner has some knowledge about true segment difficulties.
The charts show that the (complete or partial) prior knowledge about segment
difficulty relationships (see the distance between final belief and real state in
Figure 2.d) is correctly transferred to the policy, hence that knowledge about
segment difficulties is actually used to better select actions.

Moving to deeper details, we discover (see Figure 2.f) that in the 20 runs
performed with maximum number of simulations (i.e., n.Sim = 21%) the ORC
planner (on the right) selects 86 times (i.e., 79% of times) action H in subseg-
ments with low difficulty (see the top-right cell in the heatmap), while it selects
action M only 19 times (i.e., 17% of times) and action L only 4 times (i.e., 3.6%
of times) (see other cells in the first row of the heatmap). As mentioned earlier,
this strategy is correct since the collision probability is always 0.0 in segments
with low difficulty, therefore high speed should be preferred in such segments.
The STD planner, on the left of Figure 2.f, is unable to select the best action
in segments with low difficulty. It selects 28 times (i.e., 45% of times) action L,
12 times (i.e., 20% of times) action M and 22 times (i.e., 35% of times) action
H (see the first row of the heatmap in the left-hand side of Figure 2.f). Planner
MRF performs better than STD but worse than ORC (see the first row of the
heatmap in the center of Figure 2.f), selecting 61 times (i.e., 46% of times) ac-
tion H, 18 times (i.e., 14% of times) action M and 53 times (i.e., 40% of times)
action L. We stress that the differences between these strategies depend on the
knowledge the planner has about the real difficulty of segments. In other words,
planner STD sometimes does not provide best actions because its belief is not
precise enough and actions are consequently affected by this uncertainty.

Analyzing planner behaviors in segments with high or medium difficulty, we
observe that ORC selects almost 99% of times action L (see the second and third
rows of the heatmap in the right hand side of Figure 2.f). STD instead selects
action L respectively 78% (i.e., value 110) and 92% (i.e., value 110) of times in
the same segments (see the second and third rows of the heatmap in the left
hand side of Figure 2.f), and MRF selects action L respectively 80% (i.e., value
72) and 98% (i.e., value 97) of times in the same segments (see the last row of
the heatmap in the center of Figure 2.f). Again, the ORC strategy is the best
considering the collision model in Table 1), then comes MRF and finally STD.
All the planners should learn the same strategy but the prior knowledge added
to ORC and MRF let them learn it better.

To show how prior knowledge influences the belief evolution, we display in
Figure 3.b and d the belief evolution for a run with hidden state (H, M, L, M)
performed by the STD planner (on the left) and the MRF planner (on the
right). The ORC planner is not displayed because it has fixed belief. Belief
states are encoded by decimal numbers from 0 to 80, whose ternary encoding
provides the difficulty configuration (e.g., decimal 64 corresponds to ternary



2101, namely difficulty configuration (H, M, L, M)). On top (see Figures 3.a and
3.c) the evolution of difficulty, action, occupancy and belief-state distance over
time (the time-step is in the x-axis). Red vertical lines delimit path segments
and orange lines delimit subsegments. In the bottom (see Figures 3.b and 3.d)
the evolution of the belief over time (from top to bottom). Green horizontal lines
delimit path segments (labels SEG1, ..., SEG4 in the central part of the figure).
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Fig. 3. Comparison of belief evolution in STD and a MRF runs with hidden state
(H,M,L,M) and nSim = 2'5.

The prior knowledge used by the MRF planner constraints the second and the
fourth segment to have the same difficulty with probability 0.9. The effect of this
constraint on the belief evolution is evident in Figure 3.d. Namely, states with
different difficulties in segments 2 and 4 are considered with smaller probability
than states with same difficulty in those segments (see the sparse distribution of
states in Figure 3.d). Then, interestingly enough, the belief about the difficulty
of segment 4 is updated while the agent traverses segment 2, since these two
segments are connected by a (probabilistic) constraint. In other words, when the
agent discovers that segment 2 has medium difficulty, it updates also its belief
about segment 4, accordingly. In this way, the information acquired by the agent
in the current segment is forwarded to future segments and, when the agent will
traverse those segments in the future, it will use this information to choose more
efficient actions. This concept is clearly displayed in our experimental test of
Figure 3.b and d where the belief of the MRF planner (on the right) at the
end of segment 3 is almost completely peaked on the right state, while that of



the STD planner (on the left) needs some steps in segment 4 to understand its
difficulty. In this specific case the observation model is very informative and the
agent needs only one step (i.e., step 13) to understand the true difficulty of the
segment, but in real environments several steps could be required to gather the
same information, yielding a further decrease of performance.

As a final remark we notice that the presented experiments are performed
on a small path only to limit the belief space dimension and to allow the visual-
ization of belief evolution in Figure 3. However, the approach can easily scale to
to longer paths and in those cases even larger differences between the behavior
(in terms of discounted return, # collisions, actions, belief-state distance and
difficulty-action MI) of the three planners can be observed.

5 Conclusion and ongoing work

In this work we analyze the mechanisms by which prior knowledge is used by
POMCP to improve planning performance in a collision avoidance problem. Al-
though this is a first step towards full POMCP explainability, the approach has
potential for several developments. Among them we are working on i) the expla-
nation of the Monte Carlo tree representing the policy, ) the application to real
robotic platforms, i) the testing on longer paths and real-world environments.
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