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Abstract

Excess heavy metals affect plant physiology by inducing stress symptoms, however sev-

eral species have evolved the ability to hyperaccumulate metals in above-ground tissues

without phytotoxic effects. In this study we assume that at subcellular level, different

strategies were adopted by hyperaccumulator versus the non-accumulator plant species

to face the excess of heavy metals. At this purpose the comet assay was used to investi-

gate the nucleoid structure modifications occurring in response to Zn and Cd treatments

in the I16 and PL22 populations of the hyperaccumulator Arabidopsis halleri versus the

nonaccumulator species Arabidopsis thaliana. Methy-sens comet assay and RT-qPCR

were also performed to associate metal induced variations in nucleoids with possible

epigenetic modifications. The comet assay showed that Zn induced a mild but non sig-

nificant reduction in the tail moment in A. thaliana and in both I16 and PL22. Cd treat-

ment induced an increase in DNA migration in nuclei of A. thaliana, whereas no

differences in DNA migration was observed for I16, and a significant increase in nucle-

oid condensation was found in PL22 Cd treated samples. This last population showed

higher CpG DNA methylation upon Cd treatment than in control conditions, and an up-

regulation of genes involved in symmetric methylation and histone deacetylation. Our

data support the hypothesis of a possible role of epigenetic modifications in the

hyperaccumulation trait to cope with the high Cd shoot concentrations. In addition, the

differences observed between PL22 and I16 could reinforce previous suggestions of

divergent strategies for metals detoxification developing in the two metallicolous

populations.
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1 | INTRODUCTION

Excess heavy metals provoke in eukaryotic cells several stresses, such as

the induction of DNA damage (i.e., double strand breaks), activation of

reactive oxygen species, and inhibition of DNA repair mechanisms

(Morales et al., 2016; Cortés-Eslava et al., 2018; Jaskulak et al., 2019).

Recently for some heavy metals a role in inducing also epigenetic modifi-

cations, as DNA methylation, histone modifications, and modulation of

the synthesis of miRNAs has been assessed (Genchi et al., 2020).

In this context, among genotoxicity tests to evaluate cells/organ-

isms DNA damages due to heavy metals, the comet assay is a
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powerful approach (Dhawan et al., 2009). This assay is able to detect

DNA damage even at low concentrations of contaminants, and allows

the identification of DNA modifications that alter the molecule's sup-

ercoiling, since loops move toward the anode during electrophoresis

(Dhawan et al., 2009). Several modified versions of the basic alkaline

comet assay have been developed to detect specific DNA damage in

human cells (Collins et al., 2008; Azqueta et al., 2014) and/or struc-

tural organization of chromatin (Shaposhnikov et al., 2015). A recent

improvement of the alkaline comet assay, that is the methy-sens

comet assay, allows also for detecting global methylation modifica-

tions in single cells (Perotti et al., 2015) through enzymes, namelyMspI

and HpaII, that recognize all CpG sites and nonmethylated CpG sites,

respectively.

Plants are a good model to evaluate the effects of heavy metal

excess, especially considering their possible exposition to environ-

ment contaminated by these metals and the existence of plant species

able to hyperaccumulate and hypertolerate excess of heavy metals.

Nevertheless, few studies report the use of the comet assay to assess

plant DNA damage (Seth et al., 2008; Pizzaia et al., 2019; Rodriguez

et al., 2019).

Among heavy metals, zinc (Zn) and cadmium (Cd) are naturally

occurring in the environment but their presence is often increased

because of the anthropogenic activity such as agricultural practices

and industrial processes (Balafrej et al., 2020; Genchi et al., 2020).

Zinc is an essential microelement for plants, but it becomes phy-

totoxic at high concentrations causing plant growth inhibition, reduc-

tion in chlorophyll synthesis, and reduced absorption of macro

nutrients, which lead to reduced yields (Khan and Khan 2014;

Sturikova et al., 2018; Balafrej et al., 2020). Genotoxicity of Zn in

plants has also been demonstrated (Subhadra and Panda 1994).

Cadmium is considered one of the most dangerous contaminants

in soils because of its high solubility in water, non biodegradability

and high genotoxicity (Genchi et al., 2020). The potential entry of Cd

into the food chain following its accumulation in vegetable crops

grown in contaminated soils represents a serious threat to human

health (Genchi et al., 2020). Numerous experimental studies have

demonstrated the genotoxicity of Cd salts in plant species (Fojtová

and Kovařik 2000; Seoane and Dulout 2001). Furthermore, in animals

and humans, Cd has shown to induce epigenetic modifications, as

DNA methylation, histone modifications, and modulation of the syn-

thesis of miRNAs. In particular, DNA methylation levels seem to

depend on the time of exposure to Cd (Genchi et al., 2020).

A limited number of plant species (�500) known as metal hyper-

accumulators have developed a peculiar ability of accumulate enor-

mous amounts of heavy metals or metalloids in their shoots without

showing any toxicity symptom (van der Ent et al., 2013). Thus, the

hyperaccumulator trait and the associated hypertolerance have

allowed some species to colonize hostile environments such as metal-

liferous soils (and more recently, heavy-metal polluted sites) through

metal uptake and hyperaccumulation rather than metal exclusion. In

particular, Zn hyperaccumulators are able to accumulate up to 1% of

the shoot dry biomass of Zn in their aerial parts (Broadley

et al., 2007), while plant species considered Cd hyperaccumulators

can accumulate over 0.01% Cd in shoot dry biomass (Verbruggen

et al., 2013a). The comprehension of this phenomenon will shed light

on the evolution of this trait and on the adaptation of these plants to

extreme environments, and a recent literature is indeed pointing to

this direction (Manara et al., 2020).

Interestingly, for some species as Noccaea caerulescens and Ara-

bidopsis halleri different populations are present which showed metal

tolerance and accumulation traits specific to the metal concentration

in the soil of origin (Escarrè et al., 2000; Corso et al., 2018). Indeed,

both N. caerulescens and A. halleri are considered as model species

when studying the molecular and genetic basis underlying

hyperaccumulation as well as plant metal homeostasis due to their

phylogenetic proximity to Arabidopsis thaliana in which genetic maps,

genome sequence, and commercial microarrays are available

(Verbruggen et al., 2013b; Reeves et al., 2017).

Besides this, not much is known about the DNA structure and the

epigenetic modifications occurring in hyperaccumulator species due

to heavy metals. In a recent study, alkaline comet assay was applied

to leaves of the Ni hyperaccumulator N. caerulescens grown in a

Ni-rich culture substrate, and it showed that leaf cells presented more

condensed nucleoids, associated with hyper-methylation of DNA and

up-regulation of the genes involved in DNA and histone epigenetic

alterations (Gullì et al., 2018). In this research we utilized a similar

approach to investigate for the first time possible variation in nucleoid

structure occurring in two A. halleri populations in response to the

heavy metals Cd and Zn with the aim to correlate those data with var-

iation in the expression of genes connected to epigenetic marks. In

particular, two populations with contrasting Zn and Cd accumulation

profiles (i.e., I16 and PL22; Meyer et al., 2015; Corso et al., 2018) were

chosen to assess the impact of Zn and Cd exposure on: (i) the compac-

tion and relaxation of leaf cell nucleoids; (ii) the CpG DNA methylation

percentage, and (iii) the modulation of genes linked to epigenetic

modifications. The same analyses were performed on the phylogeneti-

cally related species A. thaliana which is a nonaccumulator.

2 | MATERIALS AND METHODS

2.1 | Plant materials and growth conditions

A. halleri (L.) O'Kane & Al-Shehbaz population I16 (Val del Riso, north-

ern Italy) and population PL22 (Bukowno, south of Poland) were prop-

agated in vitro. Seeds from I16 population were harvested by the

authors (45�51034.40 N 9�52034.94E) whereas PL22 population was

kindly provided by (Corso et al., 2018). Seeds were germinated in vitro

on standard agarised MS medium (Murashige and Skoog 1962) sup-

plemented with 10 g L−1 sucrose. In these conditions, seedlings of

A. halleri are readily growing and can be multiplied by micro-

propagation of cuttings obtained on the main stem. Rooted plants

were maintained in vitro with a 16 hr light/8 hr dark photoperiod

(120 μmol m−2 s−1 photosynthetic photon flux, 75% relative humidity

(RH)) and 22�C. Developed plants (2-week old after the cutting) con-

sisted in a vegetative rosette apparatus without inflorescence stem,
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with totally developed primary and secondary roots, roughly ranging

from 3 to 4 cm in length. At this timepoint, plants were transferred

into hydroponic culture in 3 L polyethylene vessels containing 1X

Hoagland solution (Hoagland and Arnon 1950) and moved to a

growth chamber under controlled conditions (22�C; 16 hr/8 hr light/

dark; 120 μmol m−2 s−1 photosynthetic photon flux, 75% RH). The

hydroponic solution was substituted every week and kept oxygenated

by constant air bubbling. After 1 week of acclimation, six plants per

population were treated with 100 μM ZnSO4 or with 50 μM CdSO4

for 2 weeks. Control plants were grown in 1X Hoagland solution with-

out addition of Cd or extra-addition of Zn. The experiment was per-

formed in duplicate, to have two biological replication of both control

and metal treatments.

A. thaliana Columbia_0 seeds were sterilized following standard

protocols and placed at 4�C (dark) for 3 days to synchronize germina-

tion. The seeds were plated on agarised MS medium (Murashige and

Skoog 1962) and left to germinate and grow in the growth chamber

(22�C; 16 hr/8 hr light/dark; 120 μmol m−2 s−1 photosynthetic pho-

ton flux, 75% RH). One-week-old seedlings were transferred to 3 L

polyethylene pots (6 seedlings per pot) filled with 1X Hoagland solu-

tion as described above. The nutrient solution was replaced every

week and kept oxygenated by constant air bubbling. After 1 week of

acclimation, six plants were treated with 5 μM ZnSO4 for 7 days, or

with 5 μM CdSO4 for 5 days. Also in this case, six plants were

maintained in 1X Hoagland solution (control conditions), without addi-

tion of Cd or extra-addition of Zn. The experiments were replicated,

obtaining two biological replicates for each condition tested.

The metal concentrations applied in the growth solution for both

A. halleri and A. thaliana were reported not to be toxic and allow the

induction of metal response in plants without killing them (Fasani

et al., 2017). At the end of the experiments, that is, after the above

mentioned days of treatment in the heavy metal contaminated solu-

tion, three leaves of the same size from each treated and untreated

plant, both A. halleri and A. thaliana, were sampled to perform the

alkaline comet assay (Tice et al., 2000) and the methy-sens comet

assay. Other leaves were sampled and stored at −80�C for RNA

extractions, or oven-dried at 70�C for 3 days for metal quantification.

2.2 | Chemical analyses

About 0.1 g oven-dried samples, weighed in quartz vessels and

rehydrated with 800 μl of ultrapure deionized water (0.05 μS cm−1,

Purelab® Ultra ELGA, High Wycombe, UK), were mineralized in dupli-

cate with 2 ml of ultrapure inverted aqua regia (HNO3:HCl:H2O,

3:1:1 v/v/v) by means of UltraWAVE (UltraWAVE Milestone, Sorisole,

Italy), as described in (Gullì et al., 2018).

The analytic quantification of Cd (214.439 nm, IDL =

0.001 mg L−1) and Zn (213.857 nm, IDL = 0.009 mg L−1) in the suit-

able diluted mineralized samples was carried out with a ICP-OES spec-

trometer (Vista-MPX, Varian, Agilent Technologies, Santa Clara, CA)

by employing two 7-point external calibration curves

(0.005–50 mg L−1 for Cd and 0.1–1.6 mg L−1 for Zn). The calibration

standards were derived from 1,000 mg L−1 mono-element solutions

of Cd and Zn (TraceCERT® Fluka Analytical, Sigma-Aldrich, St. Louis,

MO) in 1% (v/v) ultrapure HNO3 (67–69% m/v, Chem-Lab NV, Pico-

Pure Plus, Zedelgem, Belgium).

2.3 | Alkaline comet assay

Extraction of the plant cell nuclei, preparation of the slides and elec-

trophoresis for the alkaline comet assay (pH >13) were performed

according to Restivo et al. (2002), with minor modifications. In particu-

lar, cut leaves were sprinkled with 200 μl of 0.7% low melting agarose

(LMA) and then nuclei suspension was transferred to a slide. For scor-

ing, the slides were observed through a fluorescence microscope

(Leica DMLS, Leica Microsystems, Wetzlar, Germany) (excitation filter:

BP 515–560 nm; barrier filter: LP 580 nm), after staining with 75 μl

ethidium bromide (10 μg ml−1). The comet images were captured by

means of a monochromatic camera (Pulnix PE-2020P, Pulnix, Alzenau,

Germany) and examined via an automatic image analysis system

(Comet assay IV; Perceptive Instruments Ltd., Bury St. Edmunds, UK).

Two slides were analyzed for every tested condition, and 50 random

selected nucleoids were collected per slide. The tail moment was cho-

sen as parameter to evaluate nucleoid structure modifications since it

takes into consideration the migration of the genetic material as well

as the relative amount of DNA in the tail, and it is useful to describe

heterogeneity in a cell population. For each of the two biological repli-

cates, the assay was performed using three leaves (treated or

untreated) to prepare three independent technical replicates.

2.4 | Methy-sens comet assay

The plant cell nuclei obtained and transferred onto glass slides as

described above were subjected to an enzymatic restriction reaction,

using FastDigest MspI and HpaII enzymes (Thermo Fisher Scientific).

These two isoschizomer endonucleases recognize the same restriction

site, but HpaII can cut into the restriction site in presence of methyla-

tion. The test was performed as described by (Perotti et al., 2015),

with minor modifications. After their preparation, the slides were

dipped into PBS for 10 min at RT, placed horizontally and sprinkled

with 100 μl enzymatic solution, containing either MspI or HpaII diluted

in FastDigest Buffer (0.5 μl of Enzyme, 10 μl of FastDigest Buffer and

89.5 μl of double distilled water). A microscope coverslip was moved

onto the nuclei suspension, and the slides were incubated at 37�C for

10 min. A 100 μl FastDigest buffer was used as negative control. The

enzymatic activity was stopped by transferring the slides into the

electrophoretic chamber, filled with the electrophoretic alkaline buffer

(1 mM Na2EDTA, 300 mM NaOH, pH ≥13). After 30-min electropho-

resis (0.66 V/cm, 300 mA), the slides were neutralized, fixed, and sta-

ined as described above. After fluorescence microscope observation,

the tail moment was chosen as reference parameter. The fragmenta-

tion observed after MspI treatment represents the positive control.

This restriction enzyme digests DNA at all the CpG sites, allowing us
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to observe the total fragmentation obtainable in this reaction condi-

tion. The fragmentation induced through the digestion with HpaII

enzyme is inversely proportional to the DNA methylation status. For

each of the two biological replicates, the assay was performed using

three leaves (treated or untreated) to prepare three independent tech-

nical replicates.

2.5 | RNA isolation and RT-qPCR

The total RNA was obtained through extraction from 0.5 g leaf tissues

by means of the RNeasy Plant Mini kit (QIAGEN, Hilden, Germany);

the sample quality and purity were analyzed by means of agarose gel

electrophoresis and the A260/A280 determination at spectrophotome-

ter. All the samples showed appropriate values.

The target genes were selected within the A. halleri transcriptome

shotgun assembly (TSA) on the basis of the homology with A. thaliana

gene sequences available in GenBank; if possible, the same primer

pairs were identified for both species on conserved regions. The gene

specific primer pairs were designed through the online tool Primer3

(http://primer3.ut.ee), and purchased from BMR Genomics (Padua,

Italy). Each primer pair was tested for efficiency and specificity. The

efficiency was established with the standard curve method (data not

shown), while the specificity was verified by sequencing the frag-

ments obtained with the amplification of A. halleri and A. thaliana

cDNAs. The list of primers and their target genes are shown in

Table 1. The RNAs extracted from the leaves of A. halleri and of

A. thaliana were analyzed by means of Quantitative Reverse

Transcriptase-PCR (RT-qPCR) as previously described (Gullì

et al., 2018). The data were analyzed with the 2−ΔΔCt method, using

tubulin as housekeeping gene and the control samples (without Zn or

Cd) as calibrators (Livak and Schmittgen 2001). The RT-qPCR data are

presented as the mean values calculated from three technical repli-

cates from two separate biological experiments.

2.6 | Statistical analyses

Statistical analyses were carried out by means of SPSS 21.0.0 soft-

ware for Windows (© Copyright IBM Corporation 1989, 2012), while

Zn and Cd contents, gene expression variation, and comet assay

results were evaluated by means of Student's t test.

3 | RESULTS

3.1 | Zn and Cd content in leaf tissues

As for Zn, A. halleri PL22 and I16 populations were grown in hydroponic

solution in control (0.7 μM Zn), or Zn treatment (100 μM Zn) conditions

for 2 weeks. I16 displayed higher amounts of Zn than PL22, in high-Zn

conditions. The leaves of PL22 showed an average Zn content equal to

1,140 and 1,683 μg g−1 of tissue dry weight (DW) in control and treated

samples, respectively, while leaves of I16 accumulated an average Zn

content equal to 1,070 μg g−1 DW in control plants while the average Zn

content in treated plant reached 10,535 μg g−1 DW. A. thaliana, the non-

metal accumulator species grown in hydroponic solution in control

(0.7 μM Zn) or sub-toxic treatment (5 μM Zn) conditions for 1 week,

showed markedly lower Zn accumulation than the two A. halleri

populations, with an average Zn content equal to 84 and 115 μg g−1

DW, respectively (Table 2). No visible symptoms of toxicity were noticed

in any plants in all the conditions tested.

TABLE 1 Genes analyzed in this study and primers utilized for RT-qPCR

Gene name
Accession
number (At)

Accession
number (Ah) Function Primer sequences 50-30

Amplicon
length (bp)

DRM2 AT5G14620 GFUL01023011 DNA (cytosine-5) methyltransferase

DRM2

F-CAGATGGGCTTTTCAGACGAG

R-GAAGCTCCGAAACGATTGCT

152

HDA8 AT1G08460 GFUL01018416 Histone deacetylase 8 F-TATTGGAGAAGCACCCGGAG

R-GAAGCTCCGAAACGATTGCT

123

IBM1 AT3G07610 GFUL01019866 Histone H3mK9 demethylation activity,

RNA directed DNA methylation

F-TGCCGAACAAGATCTCAAGG

R-TGTCCCAAAGAGCTCCATCA

125

MET1 (At) AT5G49160 DNA (cytosine-5)-methyltransferase 1 F-CACAACGGTTGGAAGGGACT

R-CTGCAAACTCGTAGCTATCCG

108

MET1 (Ah) GFUL01025078 DNA (cytosine-5)-methyltransferase 1 F-AGCCTCTCTATCGACAAGCC

R-CCACAAAATAGATGGCCGGG

181

KYP AT5G13960 GFUL01012674 Histone-lysine N-methyltransferase, (H3

lysine-9 specific)

F-CTCTGCAAAGAAGGGTTGGG

R-ACCTTGCATTGTCTGTTGGC

160

VIM1 AT1G57820 GFUL01031384 Methylcytosine-binding protein F-CTCAGTGGCAACAAAAGGAC

R-TTGTAGACCTGACAACTCG

102

TUB NM_100360 GFUL010929527 Tubulin alpha-4 chain F-TAAAGACGTGAACGCAGCTGTT

R-TGAATCCAGTAGGACACCAGT

80

Note: The following information is given for each primer pair: target gene name, accession number of Arabidopsis thaliana (At) or Arabidopsis halleri (Ah),

protein function, primer sequence, and amplicon length (bp).
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Regarding Cd, PL22 and I16 were grown in hydroponic solution

in control (absence of Cd) or treatment (50 μM Cd) conditions for

2 weeks. PL22 displayed higher Cd accumulation in shoots than I16,

showing an average Cd content of 2,149 μg g−1 and 1,604 μg g−1

DW, respectively (Table 1). A. thaliana grown in hydroponic solution

in control (absence of Cd) or treatment (5 μM Cd) conditions for

5 days showed markedly lower Cd accumulation than the

hyperaccumulator A. halleri, with an average Cd content of 332 μg g−1

DW in the leaves (Table 2). While no visible symptoms of chlorosis or

toxicity were observed in PL22 and I16 plants, A. thaliana treated with

Cd showed initial symptoms of chlorosis in the leaves after 5 days'

treatment.

3.2 | Zn effects on nucleoids

The alterations in the structure of the DNA molecule of leaf cell nuclei

of A. thaliana and A. halleri (I16 and PL22) plants grown in a Zn-rich

environment were analyzed by means of the alkaline comet assay

(Figure 1). The integrity/relaxation of the DNA from free nucleoids

was analyzed using the tail moment parameter, which takes into con-

sideration both the length of the electrophoretic migration and the

percentage of DNA migrated into the comet's tail. Zn treatment

induces a mild reduction in the tail moment in all the species tested:

A. thaliana (Figure 1a–c), I16 (Figure 1d–f), and PL22 populations

(Figure 1g–i). In particular, the DNA nucleoids derived from plants

grown in the presence of 100 μM ZnSO4 appear a little more con-

densed than the ones derived from plants grown with less ZnSO4

(0.7 μM ZnSO4). In general, Zn induces no significant variation in DNA

structure, in both the nontolerant and the hyperaccumulator species.

3.3 | Cd effects on nucleoids

A. thaliana and A. halleri (I16 and PL22) plants, untreated controls, and

5 μM- and 50 μM- CdSO4 treated respectively, were also subjected to

leaf nuclei extraction, and the integrity of the DNA molecules was

analyzed by means of the alkaline comet assay. The data reported in

Figure 2 show the contrasting behavior of the nontolerant and the

hyperaccumulator species following the Cd treatment. An increase in

DNA migration was observed in A. thaliana after Cd treatment, in

comparison with the untreated control (Figure 2a–c). Cd-treated

A. halleri populations showed major condensation of the DNA mole-

cules (Figure 2d–i). This datum appears to be significant for PL22 only

(p <.01) (Figure 2i).

3.4 | Zn and Cd effects on GpG DNA methylation

The methy-sens comet assay was performed on I16 and PL22 treated

with Zn and Cd to investigate the possible role of CpG methylation on

nucleus condensation.

TABLE 2 Zn and Cd content in leaves in Arabidopsis halleri and Arabidopsis thaliana

Species

Growth

condition Sample

Zn μg g−1 DW

(mean ± SD)

Growth

condition Sample Cd μg g−1 DW (mean ± SD)

A. thaliana 0.7 μM Zn At 84 ± 1 −Cd At n.d.

5 μM Zn At +Zn 115 ± 1** 5 μM Cd At +Cd 332 ± 2

A. halleri I16 0.7 μM Zn Ah I16 1,070 ± 23 −Cd Ah I16 n.d.

100 μM Zn Ah I16 +Zn 10,535 ± 66*** 50 μM Cd Ah I16 +Cd (2) 1,604 ± 8

A. halleri PL22 0.7 μM Zn Ah PL22 1,140 ± 17 −Cd Ah PL22 n.d.

100 μM Zn Ah PL22 +Zn 1,683 ± 13** 50 μM Cd Ah PL22 +Cd (2) 2,149 ± 11

Note: Asterisks correspond to statistically different values (Student's t test, **p ≤.01; ***p ≤.001).

Abbreviation: n.d., not detectable.

F IGURE 1 Alkaline comet assay on A. thaliana and A. halleri leaf
nuclei (I16, PL22). (a,d,g). Comet images of nucleoids extracted from
leaves of untreated A. thaliana and A. halleri (I16, PL22; (b,e,h) comet
images of nucleoids extracted from leaves of 5 μM Zn-treated A.
thaliana and 100 μM Zn A. halleri (I16, PL22); (c,f,i) average mean
variation (±SE) of Tail Moment (TM) (50 nuclei/duplicate slide). CTR,
plant grown in standard hydroponic solution; +Zn, plant grown in the
presence of 5 μM for A. thaliana, or 100 μM ZnSO4 for I16 and PL22;
Ah, Arabidopsis halleri; At, Arabidopsis thaliana. Images were captured
at 200×
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As far as Zn treated samples is concerned, a different behavior

was observed after methy-sens comet assay, in the two A. halleri

populations. I16, showed an increase of methylation percentage while

PL22 showed an opposite trend due to Zn treatment (Figure S1).

As far as Cd is concerned a decrease in the methylation percent-

age was observed in I16 (Figure 3a). On the contrary, an important

increase in methylation was detected in PL22 (Figure 3b–d). This data

may be related to the significant condensation of the DNA molecule

observed with the comet assay (Figure 2i).

DNA modifications induced by ZnSO4 and CdSO4 treatment,

could include epigenetic modifications, as variations in the amount of

methylated DNA.

3.5 | Gene expression analysis

The expression of genes involved in epigenetic modifications was

evaluated in all samples of A. halleri and A. thaliana grown in control

condition and in the presence of Zn or Cd. In particular, the target

genes involved in chromatin modification were: MET1, involved in

CpG DNA methylation (Chan et al., 2005); DRM2, involved in

RNA-dependent DNA methylation (Chan et al., 2005); and VIM1, a

methyl-cytosine-binding protein (Furner and Matzke 2011). We also

selected a group of genes involved in histone modifications, namely:

KYP, a histone H3 lysine 9 methyltransferase; IBM1, a histone H3

lysine 9 demethylases; and HDA8, a histone deacetylase (Pandey

et al., 2002) (Table 1).

In plants treated with Zn, the selected genes showed moderate

variations in response to the metal treatment (Figure 4a). However,

most of the genes showed a different behavior in A. halleri I16 respect

to PL22. MET1 and IBM1 were down-regulated in both I16 and A.

thaliana differently from PL22 in which they showed no variation in

response to Zn (p <.05). DRM2 was down-regulated in A. halleri I16

and up-regulated in PL22 and A. thaliana (p <.01). VIM1 was down-

regulated in A. thaliana differently from I16 (p <.05). HDA8 was down-

regulated in both I16 and A. thaliana, while in PL22 it was

F IGURE 2 Alkaline comet assay on A. thaliana and A. halleri leaf
nuclei (I16, PL22). (a,d,g). Comet images of nucleoids extracted from
leaves of untreated A. thaliana and A. halleri (I16, PL22); (b,d,f) comet
images of nucleoids extracted from leaves of 5 μM Cd-treated

A. thaliana and 50 μM Cd-treated A. halleri (I16, PL22); (c,f,i) average
mean variation (±SE) of Tail Moment (TM) (50 nuclei/duplicate slide).
Significantly different values are marked with asterisks, (**p <.01).
CTR, plant grown in standard hydroponic solution; +Cd = plant grown
in the presence of 5 μM for A. thaliana or 50 μM CdSO4 for I16 and
PL22; Ah, Arabidopsis halleri; At, Arabidopsis thaliana. Images were
captured at 200×

F IGURE 3 Methy-sens comet
assay on nucleoids from leaves of A.
halleri I16 (a) or PL22 (b) untreated or
treated for 2 weeks with 50 μM
CdSO4. (a,b) Percentage of
methylation after CdSO4 treatment
assessed through enzymatic
digestions (100 − (TI%[HpaII]/TI%
[MspI] * 100)); A. halleri PL22 treated
with 50 μM CdSO4: examples of the
undigested (c), digested with HpaII
(d), or MspI (e) nucleoids. CTR, plant
grown in standard hydroponic
solution; +Cd, plant grown in the
presence of 50 μM CdSO4;
Ah, Arabidopsis halleri. Images were
captured at 400×
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up-regulated (p <.01). The only exception is KYP that was down-

regulated in both A. halleri populations, and up-regulated in A. thaliana

(p >.001) (Figure 4a).

In plants treated with Cd, all the tested genes were up-regulated

in PL22. In particular, the expression of MET1 (FC 2.22), VIM1

(FC 3.85), IBM1 (FC 3.89), and HDA8 (FC 2.31) was significantly differ-

ent from I16 and A. thaliana (p <.01) (Figure 4b). The variation in the

expression of DRM2 and KYP (FC 1.5) is lower than that observed for

the other genes, but significantly different in PL22 compared to I16

and A. thaliana (p <.05).

4 | DISCUSSION

In recent decades there has been increasing evidence of the important

role of epigenetic modifications in the adaptation of plants to environ-

mental stressful conditions (Kinoshita and Seki 2014; Lamke and

Baurle 2017). Moreover, little information has been reported to show

how Zn- and Cd-induced DNA and protein methylation regulate Zn

and Cd accumulation and tolerance in plants: Fan et al. (2020) showed

that DNA demethylation enhances plant tolerance to Cd toxicity in

A. thaliana, while Serre et al. (2020) pointed out differences in the Lys

methylation of nonhistone proteins in two Cd-sensitive species,

A. thaliana and A. lyrata, and in three populations of A. halleri AU, I16

and PL22 with contrasting Cd accumulation and tolerance.

We adopted the comet assay in a previous work to compare the

toxicity effects of Ni on leaf cell nuclei in the Ni hyperaccumulator

N. caerulescens and the nontolerant A. thaliana. We observed that

upon Ni treatment the hyperaccumulator species showed a more

compact nuclear structure, in comparison with the nontolerant spe-

cies, which suggested the existence of a defense mechanism

preventing Ni-induced DNA damage in the hyperaccumulator species

(Gullì et al., 2018).

In this work we applied a similar procedure to compare I16 and

PL22 metallicolous populations of A. halleri belonging to distant

genetic units in Europe. The methy-sens comet assay was performed

for the first time on plant tissues too, in order to correlate differences

in nucleoid structure with possible variations in DNA methylation in

I16 and PL22 subjected to metal stress. The data obtained were

supported by the expression analyses performed on some genes

involved in DNA and histone modifications.

Data regarding the higher Zn accumulation in leaf tissues of I16

compared to PL22 (Table 2) were in accordance with previous works

which highlighted the contrasting Zn accumulation of the two

populations (Corso et al., 2018; Schvartzman et al., 2018). Differ-

ences between I16 and PL22 were also found in gene expression

following Zn treatment, suggesting that these populations devel-

oped distinct mechanisms to adapt themselves to high Zn in soils

(Meyer et al., 2010; Schvartzman et al., 2018). In our work we

showed that Zn treatment induced a mild condensation of nucleoids

(a) (b)

F IGURE 4 Expression analysis of genes involved in DNA and histone alterations in A. thaliana, A. halleri I16 and PL22 populations. Each
gene's relative expression (Fold Change) was measured in: (a) leaves of A. thaliana treated with 5 μM Zn for 7 days, and in leaves of A. halleri
populations I16 and PL22 treated with 100 μM Zn for 2 weeks; (b) leaves of A. thaliana treated with 5 μM Cd for 5 days, and in leaves of A. halleri
populations I16 and PL22 treated with 50 μM Cd for 2 weeks. Average mean values (±SD) were derived from two biological replicates. All values
are normalized on the corresponding values from control samples taken from A. thaliana and A. halleri I16 and PL22 plants grown without metals.
Asterisks correspond to statistically different values (Student's t test, *p ≤.05, **p ≤.01, ***p ≤.001). Ah, Arabidopsis halleri; At, Arabidopsis thaliana
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and variations in the amount of methylated DNA in both I16 and

PL22. Even though no significant difference in the expression of epi-

genetic marks was observed in all the plants exposed to Zn treat-

ment, in I16 it was observed, through the methy-sens comet assay,

an increase in CpG methylation between nuclei from treated and

nontreated plants, concomitantly PL22 nuclei showed a decrease in

methylation after Zn treatment. This observation reinforces the

results previously reported (Schvartzman et al., 2018) that the PL22

shows greater sensitivity to modifications in the external Zn concen-

tration respect to I16. Schvartzman et al. (2018) reported that at

high Zn concentration PL22 displays iron deficiency in root and

shoots with an upregulation of various transcription factors linked to

Fe deficiency response and in oxidative cell damage protection,

compared to I16 population.

Data regarding Cd content in the leaves of the two A. halleri

populations are in accordance with previous studies showing different

behaviors of PL22 and I16: both populations are hypertolerant to Cd

but only PL22 hyperaccumulate Cd both in situ and when grown in

hydroponic condition (Meyer et al., 2015; Corso et al., 2018). Nucle-

oids of PL22 plants were significantly more condensed upon Cd treat-

ment while nucleoids of I16 were similar in both Cd-treated and

nontreated samples (Figure 2). An opposite behavior was observed in

the nonmetal tolerant A. thaliana, in which serious damage to nuclei

occurred when Cd penetrated the leaves and reached the limit of tox-

icity for a nonaccumulator species (Wang et al., 2016; Cui

et al., 2017). Interestingly, also in this case, the nucleoids of the two

metallicolous populations showed contrasting DNA methylation pro-

portion following Cd treatment: PL22 showed higher global CpG DNA

methylation upon Cd treatment than in control conditions, while I16

showed the opposite trend, as assessed by the methy-sens comet

(Figure 3). These data are in accordance with the expression analyses

performed on genes linked to DNA methylation and histone alteration

processes in the two populations (Figure 4). MET1, which is a DNA

methyltransferase which catalyzes methylation at CpG dinucleotides

and is responsible for maintaining a pattern of symmetric methylation

during DNA replication (Kankel et al., 2003), showed a two-fold

increase upon Cd treatment in PL22. No variation instead was found

in either I16 or A. thaliana. This datum is reinforced by the four-fold

increase of VIM expression, encoding the methyl cytosine binding pro-

tein, a prerequisite for CpG DNA methylation in the centromeric

regions of PL22 Cd-treated plants (Woo et al., 2008). Besides CpG

methylation, the nucleoid condensation which occurred in PL22 only

upon Cd treatment could also be ascribed to variations in the expres-

sion of genes coding for enzymes linked to histone modifications.

Indeed, a two-fold increase in HDA8 gene transcript was observed in

PL22 Cd-treated plants. This gene encodes for a histone deacetylase

related to the deacetylation of lysine residues on the N-terminal part

of the core histones (H2A, H2B, H3, and H4), acting in concert with

MET1 in inducing chromatin condensation and remodeling (Pandey

et al., 2002).

DRM2 and KYP were also up-regulated in PL22 exposed to Cd,

although not at significant levels. DRM2 is linked to DNA methylation

processes in the nonsymmetric CHH context, which is targeted by

small RNAs (Cao and Jacobsen 2002). KYP catalyzes methylation of

H3K9me2 and induces chromomethylase 3 (CMT3) to perform meth-

ylation of CHG trinucleotides in transposons (Saze et al., 2008; Inagaki

et al., 2010). Besides the limited induction of these genes in response

to Cd treatment in PL22, which could denote few movements in

transposon and smRNA, nonsymmetric methylation might also occur

in transcribed genes upon abiotic stress in plants (Furner and

Matzke 2011). Indeed, we found a four-fold increase in the expression

level of gene coding for histone demethylase IBM1 in PL22 Cd-treated

samples. This enzyme has a dual function: on the one hand it is

involved in removing the H3K9me2 modifications enacted by CMT3-

KYP, thereby protecting the transcribed genes from silencing; on the

other hand, it has a role in transposon silencing (Saze et al., 2008; Fan

et al., 2012). Considering the data from the methy-sens comet assay

and the expression analysis on genes linked to CpG DNA methylation

and histone alterations, we can suppose that PL22 responds to high

Cd concentration in shoot tissues by condensing the structure of its

nuclear DNA. In a recent work it was demonstrated that the total

ascorbic acid content, and the ratio of reduced and oxidized glutathi-

one, both of which indicate the cellular redox state and antioxidant

capacity, were significantly higher in shoots in PL22 than in I16,

thereby indicating an important role as antioxidant defense for PL22

in the adaptation to metallicolous sites (Corso et al., 2018). Besides

the high antioxidant capacity in PL22, we observed an enhanced

nucleoid condensation in PL22 after Cd treatment, which could limit

the possible negative action of reactive oxygen species and Cd itself

on DNA, and allow better adaptation of this population to

Cd-contaminated soils.

In conclusion, the analysis of genetic and epigenetic alterations

could be a good approach to assess the toxicity of environmental pol-

lutants to plants and animal organisms. We have demonstrated the

applicability of the comet assay and the methy-sens comet assay in this

field, in particular to evaluate differences between metal-tolerant and

hyperaccumulator and nontolerant species. Our data suggest a possible

defense role of epigenetic modifications in tolerant and hyperaccumulator

species under stress conditions, such as heavy metal accumulation.

Finally, the differences between PL22 and I16 observed in nuclear

structure and in the expression of genes coding for DNA methylation

and histone modifications, after metals' treatment, could reinforce

previous suggestions of divergent strategies for metals detoxification

developing in PL22 and I16 metallicolous populations.
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