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Abstract

Smart contracts are a new type of software that allows its users to perform irreversible transactions on a distributed persistent data
storage called the blockchain. The nature of such contracts and the technical details of the blockchain architecture give raise to
new kinds of faults, which require specific test behaviours to be exposed. In this paper we present SOCRATES, a generic and
extensible framework to test smart contracts running in a blockchain. The key properties of SOCRATES are: (1) it comprises
bots that interact with the blockchain according to a set of composable behaviours; (2) it can instantiate a society of bots, which
can trigger faults due to multi-user interactions that are impossible to expose with a single bot. Our experimental results show
that SOCRATES can expose known faults and detect previously unknown faults in contracts currently published in the Ethereum
blockchain. They also show that a society of bots is often more effective than a single bot in fault exposure.
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1. Introduction

A recent extension to crypto currencies (e.g., Ethereum) consists of the so-called “smart contracts”. Smart con-
tracts are programs stored in the blockchain whose execution is guaranteed by the distributed network of miners.
The computation model of smart contracts is quite peculiar and innovative. In fact, once written to the distributed
blockchain, a smart contract and all its transactions are immutable, even in case programming defects are later identi-
fied, which means that incorrect computations are frozen forever in the blockchain. Thus, thorough and deep testing
of smart contracts is crucial, in order to detect programming errors before erroneous transactions are permanently
stored in the blockchain.

A contract, by definition, mediates the interaction among multiple users, who play different roles in the contract.
For example, Figure 1 shows a common interaction scenario for a contract that handles tokens: through the contract,
the user spender authorizes an initiator to transfer a certain amount of tokens 7 on her/his behalf. The initiator transfers
the tokens from the spender account to a receiver account. More details on this scenario can be found in Section 3.

To test this scenario, one user is not enough. Three distinct actors shall interact coherently with the contract
under test, according to the intended protocol, i.e., a spender, who authorizes the initiator to move some value to the
receiver.

Email addresses: eviglianisi@fbk.eu (Emanuele Viglianisi), mariano.ceccato@univr. it (Mariano Ceccato),
paolo.tonella@usi.ch (Paolo Tonella)
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Figure 1. Example of interaction among three distinct users

Based on the observation that smart contracts are multi-role programs, we propose SOCRATES (Smart Con-
tRActs TESting), a novel and extensible testing framework, based on a federated society of interacting bots. Each
bot impersonates a distinct user (or role) in the contract. Depending on the contract, different roles might exist in the
contract code itself or might emerge from the different permissions (e.g., contract-owner, token-owner) assigned to
different users. Then, a simulator iteratively assigns an execution slot to each federated bot, with the aim of spotting
programming defects hidden in the potentially complex and articulated interactions supported by the contract when
multiple players are involved. For instance, SOCRATES may deploy three or more bots to test the smart contract in
Listing 1, including a spender bot, an initiator bot and a receiver bot. Each bot instantiates a specific behaviour or
a combination of predefined behaviours, which allow the bot to generate input values for the submitted transactions
according to a set of configurable strategies. SOCRATES includes four predefined behaviours (Random, Boundary,
Overflow, Combined) and is extensible with domain specific behaviours that can implement specific strategies of in-
teraction with the contract under test. SOCRATES supports oracle specification taking the form of contract invariants.
SOCRATES comes with one predefined generic invariant and five predefined EIP20 specific invariants that can be
enabled for the contract under test. SOCRATES can be easily extended with contract specific invariants, as demon-
strated in the experiments performed on real Ethereum contracts, where six additional contract specific invariants have
been added.

Most existing tools for smart contract testing [9, 12, 14] are focused on security issues (e.g., reentrancy vulner-
abilities) rather than the functional invariants (e.g., each successful token transfer should log a Transfer event) that
contracts are supposed to ensure. Correspondingly, they can detect only violations to security properties associated
with known vulnerabilities. No general, extensible framework exists for functional testing of smart contracts and the
most related tool, Echidna', is based on a completely different approach — namely, contract fuzzing — that is purely
random and not based on the composition of a set of (extensible) behaviors. Moreover, Echidna does not include
pre-defined invariants to classify the outcome of execution and to detect whether a defect has been exposed.

Our empirical validation shows that SOCRATES is effective in detecting defects in real smart contracts that are
actively used in the blockchain and that perform transactions associated with real monetary value. Once executed
on 1,905 real smart contracts retrieved from Etherscan, SOCRATES reported 148 true invariant violations and only
32 false alarms. We compared SOCRATES with the state of the art smart contract fuzzer Echidna and found that
SOCRATES identifies substantially more true invariant violations than those reported by Echidna.

Our work makes the following contributions to the state of the art:

o A novel framework for smart contract testing, based on a number of innovative ideas, such as:

— afederation of bots that interact autonomously with the contract under test;
— an extensible and configurable set of bot behaviours;

— an extensible and configurable set of contract invariants.
e An empirical study conducted on real contracts retrieved from the Ethereum blockchain, including:

— invariant violations identified by our tool on a dataset of real contracts;

'Echidna https:/github.com/trailofbits/echidna
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— an empirical comparison with the tool Echidna.

The paper is structured as follows. Section 2 covers some background about blockchain and smart contracts, with
a specific focus on the Ethereum platform. Section 3 presents a motivating example, used in Section 4 to explain our
technical solution, which is empirically validated in Section 5. Section 6 compares SOCRATES to related work and
Section 7 concludes the paper.

2. Background

The first cryptocurrency proposal, b-money, was born in the last years of the 20th century. However, the idea of
an alternative and distributed currency gained considerable interest in the years of the global financial crisis. In 2009,
the very first decentralized cryptocurrency named Bifcoin was released. It was developed from the ideas of a person
(or group of people) under the alias of Satoshi Nakamoto. Bitcoin was possible because of a new consensus protocol
based on a distributed data structure called blockchain.

2.1. Blockchain and consensus protocol

The blockchain is a data structure which maintains a list of transactions and a mapping between addresses and
account states. An account state includes the persistent information associated with an address, such as the amount
of cryptocurrency that the address owns. Transactions are records of payments between users. A transaction updates
the blockchain from state S/ to S2. The blockchain is implemented as a linked list (chain) of elements called blocks
replicated among all the participants of the peer-to-peer network. A block is an information package containing a
reference to the previous block (hash), a timestamp, a nonce and a list of newly validated transactions.

The consensus protocol, called Nakamoto Consensus, guarantees the immutability of the chain. To modify the
blockchain, indeed, all the nodes must agree on the sequence of blocks and on the validity of all their transactions. At
a high level, to add a new block to the chain, a node called miner creates a proposed block by choosing, among those
available, a limited sequence of new transactions. Then, each miner attempts to solve the proof-of-work puzzle. The
first miner who solves the proof-of-work broadcasts its proposed block to all the other nodes in the network. Upon
receiving the new proposed block, a node checks its integrity and validity. If the block is valid, the node adds the new
block to its local copy of the blockchain. At the end of this process, the creator of the added block (successful miner)
receives a compensation.

Compensation is one of the core parts of the process and it represents the motivation for the miners involved in the
mining process. When a new block is validated, the successful miner receives a compensation equal to the sum of the
total transaction fees included in the validated block, plus a newly created amount of cryptocurrency. A transaction
fee is an extra amount of cryptocurrency decided and paid by the transaction sender to compensate the miner. A
transaction with a high fee is more likely to be included by the miners in the next blocks and to be quickly validated.

2.2. Ethereum

Ethereum is a platform built on top of the concepts behind the Nakamoto Consensus protocol and blockchain.
Published in 2014 by Vitalik Buterin, it gained a lot of interest because of the Turing-Complete smart contracts that
it supports. The cryptocurrency associated with the Ethereum platform is called Ether. Ethereum extends some basic
concepts of the blockchain. Ethereum distinguishes between two types of accounts: externally owned accounts, and
contract accounts. Both types of account have an associated Ether balance. An externally controlled account is
controlled by the private key of a user. Such key can be used to sign and submit new transactions. A contract account
is instead controlled by its code, a set of instructions stored in the blockchain. A contract account has also an internal
storage, stored in the blockchain, to save additional persistent information. Whenever a contract receives a transaction,
the contract code is executed by all the miners in the network, which in this way performs a distributed validation of
the contract execution. Since the language used to code contracts is Turing-complete, termination cannot be decided
statically. To avoid that malicious users can block the network with endless executions, Ethereum manages resources
of the network using a Gas System. The Gas system is the fee system of Ethereum. Each instruction is associated with
a certain amount of gas, that must be paid in order for the network to execute such instruction. To invoke a contract,
together with the transaction payload (data), the user has also to provide the amount of gas necessary for the correct

3
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execution of the contract code. Moreover, the sender can set an arbitrary gasPrice per unit of gas. The expression
gas * gasPrice gives the amount of Ether spent as transaction fee, to be paid to the miner for the execution of each
instruction of the contract code.

2.3. EIP20 Tokens

Developed in 2015, ERC20? (aka EIP20) is a standard defining the interface that an Ethereum Smart contract has
to implement for the management of custom tokens. A custom token is a newly created currency, living within the
Ethereum ecosystem. The interface, which documents the basic functionality that an EIP20 token has to implement,
contains the following contract functions:

1. name (optional): returns the name of the token;
2. decimals (optional): returns the number of decimals the token uses;
3. symbol (optional): returns the symbol of the token;

4. totalSupply: returns the total supply of emitted tokens;

b

balanceOf: returns the amount of tokens owned by a specified address;

6. transfer: transfers an amount of tokens from a sender address to a destination address;

7. approve: approves another address to spend a specific amount of tokens from the sender balance;
8. allowance: returns the amount of tokens that spender is allowed to withdraw from owner;

9. transferFrom: transfers an amount of tokens from an origin address to a destination address.

EIP20 tokens gained a lot of popularity because they are commonly used as assets for running ICOs (Initial Coin
Offerings). Their popularity, importance, and the simple interface associated with them make EIP20 contracts the
ideal use case for our experimentation.

3. Motivating example

In this section, we present the intuition and the motivation behind our test case generation framework. We intro-
duce the society of bots and the set of invariants that can be used as testing oracles. The section revolves around the
example in Listing 1, a buggy contract with an overflow fault.

Function buggedTransferFrom in Listing 1 is an implementation of the EIP20 function transferFrom. The aim of
this function is to transfer an amount of tokens, passed in as parameter _value, from the address _from to the address
_to. In detail, the function accesses two local variables defined within the contract, namely, the maps balances (line
26) and allowed (line 27). These two maps are used in the EIP20 interface to store, respectively, the tokens held in
the balance of each user and the amount of tokens each user allowed other addresses to spend from her user balance
using function approve (lines 20 to 24). Lines 9-10 are require statements that enforce preconditions on input values.
For instance, line 9 checks that the amount of tokens approved by _from for transfer by msg.sender is greater than the
amount _value to be transferred.

Lines 12 to 14 are a sequence of operations applied to state variables to actually transfer the tokens from one
account to the other. The same amount _value is removed from the address _from and is added to the balance of the
address _to. Moreover, the amount of tokens approved by _from for transfers performed by msg.sender is decreased.

The nominal contract interaction is shown in Figure 2 as the status of the contract and its changes when user
messages are processed. Initially, spender has a balance of 1,000 tokens and the initiator is not allowed to move
them, because its allowed is set to 0. With the first message, the balance of the spender does not change, but the
initiator is granted the right to move 100 tokens from the spender’s balance. This right is reflected as a change in
the allowed variable.
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balance allowed
spender | 1,000 ——

. spender \ initiator \ 0
receiver 0

spender — approve(initiatior, 100)

balance allowed
spender | 1,000 spender | initiator | 100
receiver 0

initiator — buggedTrans ferFrom(spender, receiver, 100)

balance
spender | 900
receiver | 100

allowed
spender | initiator | 0

Figure 2. Nominal execution scenario of buggedTransferFrom.

balance allowed
spender | 1,000 ——

. spender \ initiator \ 0
receiver 0

spender — approve(initiatior, 2000)

balance
spender | 1,000 allowed
pen ’ spender | initiator | 2,000
receiver 0

initiator — buggedT rans fer From(spender, receiver, 2000)

balance
spender 256 _ 1,000
receiver 2000

allowed
spender \ initiator \ 0

Figure 3. Attack scenario of buggedTransferFrom.

With the second message, the initiator exploits this allowance and moves 100 tokens from the spender’s balance
to the receiver’s balance. Moreover, the allowed of the initiator is reset to 0.

This code contains a programming defect and the error scenario, shown in Figure 3, reveals this defect. Before
executing this scenario, the contract state is in the same initial condition as in the nominal case. The spender calls the
approve function to grant the initiator the possibility to spend 2,000 tokens from its own account, by sending the first
message.

The function approve has no check on fund availability and, therefore, the call succeeds even if the amount of
tokens to approve exceeds current spender’s balance.

At this point, the allowed variable value ensures that the initiator can spend 2,000 tokens from the spender.
In the next step, the initiator sends the second message to move 2,000 tokens from the spender’s balance using the
function buggedTransferFrom.

The function buggedTransferFrom has no check on the on actual availability of spender’s money. It only asserts
that the initiator has been granted the right to move that amount of tokens from spender. The missing check causes
the expression at line 12 to compute a negative number that underflows when represented as an unsigned integer.
This sets the spender’s balance to a huge amount of tokens: 223 — 1,000. Moreover, lines 13 and 14 are correctly

Zhttps://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
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executed, causing the initiator’s balance to be 1,000 and the approved amount of tokens in allowed to be reset to 0.

This scenario shows how a contract state that was initially consistent, with a total supply of tokens of 1,000, can be
turned into an inconsistent state, where new tokens are created ( 223°) exploiting a bug in a function that is supposed
to transfer existing tokens.

contract SampleToken {

1

2

3 function buggedTransferFrom (
4 address _from,

5 address _to,

6 uint256 _value

7

8

public
9 returns (bool)
10 {
11 require (_value <= allowed[_from] [msg.sender]);
12 require (msg.sender != _from && _from != _to);
13
14 balances[_from] —-= _value;
15 balances[_to] += _value;
16 allowed[_from] [msg.sender] -= _value;
17
18 emit Transfer (_from, _to, _value);
19 return true;
20 }
21
22 function approve (address spender, uint _value) public returns (bool) {
23 allowed[msg.sender] [spender] = _value;
24 Approval (msg.sender, spender, tokens);
25 return true;
26 }
27
28 function deposit () public payable {
29 /* not reported for brevity =/
30 }
31
32 mapping (address => uint256) balances;
33 mapping (address => mapping (address => uint256)) allowed;
34
35 1}

Listing 1. Example of smart contract function with an overflow defect.

Society of bots: The execution of a contract function is strictly state dependent. For instance, the result of the
execution of buggedTransferFrom depends on the state variables balances and allowed. Similarly to object-oriented
testing [6, 29], our goal is to test the contract functions in as many contract states as possible.

However, testing a smart contract using a single bot limits the smart contract states that we can reach and test.
Indeed, many of the smart contract states are only reachable through the cooperation and interaction of different actors.

In the example in Listing 1, to let the sender spend _value tokens from the account _from, _from has to explicitly
approve the sender calling the EIP20 function approve. So, in this example, in order to test the buggedTransferFrom
function, it is necessary to have at least two bots, to play the two different roles: the first bot pre-authorizes and the
second bot spends the tokens. In this case two bots are needed, otherwise this defect cannot be exposed.

Overflow: One of the most subtle causes of contract misbehaviour is the overflow of numeric expressions. An
expression overflow, indeed, raises no exception and it is up to the programmer to add proper constraints and revert
the contract state in case of overflow. Although it is a good practice to use a library called SafeMath * to perform safe
math operations, many contracts exist that do not use such safe library.

Function buggedTransferFrom does not check that the account _from has the amount of tokens that the_sender
wants to transfer. Moreover, if _from tries to send a huge amount of money, possibly greater than its balance, the
expression at line 12 may overflow, leading to an inconsistent/invalid contract state.

3https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol
6
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ID | Type Rule

I1 | General | $r € Txs : success ful(t) A over flow(t)

12 | EIP20 > acaccounts balanceO f(a) == totalS upply

I3 | EIP20 Yt € Txs : t = transferFrom A successful(ty = t.amount <= allowance t oy sender

14 | EIP20 YVt e Txs : t = transferFrom A successful(t) = allowance’ = allowance — t.amount
15 | EIP20 Vt € Txs : t € {transferFrom,transfer} A successful(t) = Transfer € events(t)

16 | EIP20 YVt e Txs : t = approve A successful(t) = Approval € events(t)

Table 1. Invariants: Txs is the set of performed transactions

4. Test Case Generation

4.1. Framework

We developed SOCRATES a highly configurable framework for test case generation, which allows testing a smart
contract by simulating the interaction of multiple, different bots that operate on it.

The framework is written in Typescript* and adopts an object oriented design that supports its configurability and
extendability. Each component of the framework is developed as a Typescript class and is compiled in a separate
Node.JS module. The framework itself is composed of a set of modules which are used to configure the main module,
Simulator.

The class diagram in Figure 4 shows the relations between the main classes under the control of the Simulator:
Account, Bot, Behaviour and Contract.

— Simulator >

Account  — Bot

Extends

Contract Behaviour

Figure 4. SOCRATES class diagram

Account: The Account class models the state of an Ethereum account. The basic account state is composed of
two fields: the account address and its balance in Ethers. It is up to the test engineer to extend this class including
extra fields to fit the contract under test. For instance, if we are testing an EIP20 contract, it could be useful to also
store the amount of tokens owned by the account as part of the account state.

Contract: The Contract class represents an Ethereum smart contract, which is the target of the test generator.
In Ethereum, a contract is a special kind of account, characterized by an executable code. The tester can extend
also the Contract class by adding contract-specific fields (e.g., fotalSupply for an EIP20 contract). Moreover, the
Contract class contains a list of the contract public functions (i.e., its Application Binary Interface, ABI) and must
implement method sendTransaction to let SOCRATES interact with the deployed contract instance in the blockchain.
The interaction of a contract with the Ethereum blockchain is handled using the library Web3.JS°.

Bots: A Bot is an object associated with one and only one account. A bot is in charge of two tasks: 1. deciding
which of the contract functions to call and which parameter values to pass in; and, 2. sending the transaction to the
contract under test from its own account. Deciding the function to call and the associated formal parameters is a
complex task. In fact, there can be different strategies, each with its pros and cons. In SOCRATES, a bot implements

“https://www.typescriptlang.org/
Shttps://github.com/ethereum/web3.js/
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its own strategy by instantiating a Behaviour. When the bot is called by the framework to decide what contract
function to call, it activates the decision process implemented in its behaviour.

Behaviours: Class Behaviour contains an abstract method named performAction, whose implementation within
subclasses of Behaviour define a strategy for choosing which function to call and which parameters to pass in, in
order to perform a new bot action. We implemented a preliminary set of four different behaviours that are described
in Section 4.2.

Simulator: Class Simulator is the core execution controller of the framework. When the simulator starts a new
simulation, it takes in input a list of accounts, an instance of the contract under test, and a society of bots. The
simulator activates also a configurable set of invariants, which must hold true during the entire simulation. The goal
of the simulation is indeed to test the contract in different states and to check whether, through the interaction among
bots, the contract reaches an invalid state in which an invariant is violated.

New Simulation Ti
- imeout
Simulator > ggfsounts

- target contracts

for each bot
Step Invariants have
Check been violated
i Stop
Invariants
Logs
Bot action : \L

Test generation

Figure 5. Workflow of the simulation process

The simulation process is described in Figure 5. It consists of a main loop where, at each step, the simulator
lets each bot perform an action and, after each action, it calls method checkInvariants to check whether any of the
invariants is violated. The simulation ends when an invariant is violated or when it is stopped (e.g., manually or after
a fixed amount of time).

We designed the simulator to be ready for use within the Ethereum ecosystem. For such a reason, the simulator
runs on top of the Truffle suite®, in turn composed of Truffle Test and Ganache. Truffle Test is a testing framework that
provides developers with tools to easily compile, deploy and test a smart contract. Among other features, the Truffle
environment includes Web3.JS and other Javascript libraries useful for unit testing and assertion definition. Ganache
is a lightweight implementation of the Ethereum blockchain designed for testing purpose. In Ganache, part of the
blockchain implementation is simulated to avoid the typical delay of blockchain distributed validation. So, upon being
sent, a new transaction is immediately validated and included in a new block.

The key requirement of the Simulator is a Web3.JS instance connected to a running Ganache blockchain. Then,
a new simulation can be instantiated: the Simulator deploys a new instance of the contract under test, the associated
invariants, the bots and their behaviours. The Web3.JS instance is used during the entire simulation to interact with
the deployed contract, when bot transactions are submitted to Ganache. Invariants are defined as Chai’ assertions,
checked after processing every submitted transaction.

Test case generation: During the entire simulation process, logs are generated to record each successful transac-
tion. A transaction record includes the involved accounts and the ABI functions invoked, with the associated parameter
values. The test case generator takes in input such simulation logs and outputs a test case reproducing the steps that
lead to the final state of the simulation. When the simulation terminates with the violation of an invariant, the final
state is invalid and correspondingly the test case is a failing one. The output test cases are Truffle test cases that do not
depend on the configuration of the simulator but only on the number of Ganache accounts used during the simulation.

Ohttps://truffleframework.com
http://www.chaijs.com/
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Invariants: To recognise an inconsistent contract state, we define generic and contract-specific invariants, acting
as the test oracles for the contract under test. An invariant is a condition which should always hold true in every
contract state. If the contract ends up in a state where one of the invariants is violated, this means that the contract
has an implementation error. We define a state where an invariant is violated as an invalid state. We have identified a
preliminary set of six invariants, applicable generically to any contract (I1) or specifically to contracts of a given type
(12, 13, 14, 15, 16). They are reported in Table 1.

e I1 is a general invariant. Its condition states that there must not exist a successful transaction whose execution
causes an overflow.

e 12 is an EIP20 specific invariant. Its condition states that the sum of the tokens owned by each account (bal-
anceOf{a)) must be equal to the total amount of token supply (totalSupply).

e I3 is an EIP20 specific invariant, expressed in terms and post conditions on the function transferFrom. For
a transferFrom to be successful, the amount of token to be transferred (¢.amount) has to be less than or
equal to the amount of tokens that the transaction sender is still allowed to spend on behalf of from (al-
lowance[from][msg.sender]).

e I4is an EIP20 specific invariant, expressed in terms of post conditions on the function transferFrom. After each
successful transferFrom, the amount of tokens the transaction sender can spend from the from address must be
decreased by the amount of token transferred (z.amount).

e I5 is an EIP20 specific invariant, expressed in terms of post conditions. Both transfer and transferFrom transac-
tions must emit, if successful, a Transfer event consistent with the actual function parameters and the interface
specification.

e 16 is an EIP20 specific invariant, expressed in terms of post conditions on the function approve. Similarly to
the invariant 15, a successful transaction approve must emit a consistent Approval event.

In the case of function buggedTransferFrom, invariants 11, 12, 13, 14, 15 are applicable. Although these invariants
are expected to have quite general validity, there might be exceptions. Indeed, there could be contracts that legitimately
violate these invariants due to their specific business rules. In these cases, contract developers should configure
SOCRATES and should manually disable those invariants that are not relevant or not compatible with the specific
contract under test.

4.2. Behaviours

In this section, we describe the preliminary set of behaviours implemented in SOCRATES. It is a best practice in
well-written contracts to check, at the start of each Solidity function, that the function’s preconditions hold true, by
using one or more require statements. If a precondition fails, a transaction failure is reported and the transaction is
aborted. Inputs that result in a transaction failure are not useful, because they do not modify the state of the contracts
in the blockchain, and they should be avoided, to improve the efficiency of the testing process. For this reason, the
behaviours described below support several configurable heuristics aimed at minimizing the possibility of transaction
failure due to precondition violation.

RandomBehaviour: The contract function to call and the associated parameter values are chosen in a random
fashion. Since a typical Solidity variable type has a huge range of possible values, using RandomBehaviour without
any constraint will generally result in many transaction failures when the contract function checks its inputs. To
reduce the number of failures, the test engineer can limit the range in which random values are chosen by manually
specifying some constraints. For instance, the transferred amount of tokens in the EIP20 function transfer could be
chosen within a limited range of values, such as [0, balance+1000], so as to decrease the probability of a transaction
failure due to an insufficient amount of tokens.

Listing 2 shows the code fragment that implements RandomBehaviour for parameter value generation. A switch-
case statement is used to generate a value of the correct type. A random value is chosen among the possible values
in the allowed interval. For instance, line 5 returns a random integer among the values that can be represented with a
given number of bits.

9
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1 /...

2 switch (paramType) {

3 case ’'int’:

4 bits = get_bits_number (paramType)

5 return random_int (min_value (bits), max_value (bits))
6 case ’address’:

7 return random (accounts) ;

8 case ’'bool’:

9 return Math.random() >= 0.5;

10 case ’'string’:

11 return generate_random_string (min_length, max_length)
12 default:

13 throw new Error ("Unhandled Solidity Type");

14 }

15 / /

Listing 2. Code implementing the RandomBehaviour

BoundaryBehaviour: Parameter values are randomly chosen near to the boundaries of the parameter type. E.g.,
for type uint256 (256-bit unsigned int), this behaviour picks a value with uniform probability in the intervals [0, 999]U
[22%° — 1000, 2%%¢ — 1].

An implementation of the logic behind Boundary Behaviour parameter generation is shown in Listing 3. Function
getBoundaryBigNumber chooses randomly a value close to the two boundaries min and max. E.g., if choice is equal
to 2, it returns an integer value with uniform probability between min and min+delta (line 6), where delta is a pre-
defined offset value).

1 /...

2 protected getBoundaryBigNumber (min: IBigNumber, max: IBigNumber) : any {
3 choice = RandomValueGenerator.getRandomInt (0, 10);

4 if (choice == 0) return min;

5 if (choice == 1) return max;

6 if (choice == 2) return random(min, min.plus (this._delta));

7 if (choice == 3) return random(max.minus (this._delta), max);

8 return random (0, this._delta);

9 }

10 / /

Listing 3. Code implementing the BoundaryBehaviour

OverflowBehaviour: Input values are selected to pass the function preconditions, while at the same time over-
flowing an inner expression in the contract function (more details about this behaviour are provided in Section 4.3).

CombinedBehaviour: This behaviour randomly chooses between two or more predefined, atomic behaviours
(as the three ones described above). The random choice can be configured by the tester. By default it applies equal
probability to all combined behaviours. For instance, Boundary + Random and Complete (i.e., Boundary + Random +
Overflow) are examples of combined behaviours that have been evaluated empirically.

1 function batchTransfer (address[] _receivers, uint256 _value) public returns (bool) ({
2 uint cnt = _receivers.length;

3 uint256 amount = uint256(cnt) * _value;

4 require (cnt > 0 && cnt <= 20);

5 require (_value > 0 && balances[msg.sender] >= amount);

6

7

8

balances[msg.sender] = balances[msg.sender].sub (amount) ;
for (uint 1 = 0; 1 < cnt; i++) |
9 balances[_receivers([i]] = balances|[_receivers[i]].add(_value);
10 Transfer (msg.sender, _receivers[i], _value);
11 }
12 return true;
13}

Listing 4. Example of smart contract function with an overflow defect.
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4.3. Overflow Behaviour

The overflow behaviour is substantially more complex than the random and the boundary behaviour, hence requir-
ing a more detailed presentation.

Let us consider as an example the contract function batchTransfer®. This function sends the same amount _value
to all the addresses in _receivers. Variable amount at line 3 holds the total amount of tokens that the sender wants to
transfer. The multiplication at line 3, however, could result in an overflow. Even if it might be quite likely that values
generated using a Combined(Random + Boundary) may result in an overflow at line 3, it is unlikely that the execution
passes the require conditions at lines 4 and 5. Indeed, without any additional constraints, the list _receivers could
be of any arbitrary length between 0 and 223¢ — 1 and the value of variable amount after the overflow could be even
greater than the balance of the sender. For this reason, we have introduced a specialized OverflowBehaviour, which
employs the workflow described in Figure 6 to generate input values that at the same time overflow some contract
expression and respect the contract function’s preconditions. The main components of the workflow are: 1. Static
analyser; 2. SMT script generator; 3. Code normaliser; 4. Transaction executor.

Code Normalized deploy .
Source code code Blockchain <

Overflow : " Static SMT Script
script generation —> analyser Generator
outputs
y Transaction | executes .
performAction % overflow_script.py
sat unsat

formal parameters

Figure 6. Workflow of the overflow behaviour.

Static analyser: The source code is parsed to obtain its Abstract Syntax Tree (AST). The AST is visited to
collect, for each function in the contract, all the expressions which could overflow and all the constraints defined by
require conditions. An expression is considered a candidate for overflow if it contains one of the following operators:
[+, 4+ =, ++,—, — =, ——, %, %%, % =].

SMT script generator: It aims at creating a script for each Solidity function which, using an satisfiability modulo
theories (SMT) Solver, computes concrete input values that satisfy all the constraints corresponding to the function
preconditions and result in an overflow. In particular, the generator uses the result from the static analyser to define a
set of symbolic variables and to introduce a set of constraints that must be satisfied to pass the preconditions and to
produce an overflow.

The SMT solver constraints for function batchTransfer (see Listing 4) are shown in Listing 5 as (simplified) SMT
script code.

8https://www.peckshield.com/2018/04/22/batchOverflow/
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1 // Returns overflow conditions for unsigned int
2 def is_overflow(value, numberOfBits) :

3 isAnOverflow = value > (2x*numberOfBits) - 1
4 isAnUnderflow = value < 0

5 return Or (isAnOverflow, isAnUnderflow)

6

7 // inputs

8 c¢nt == input._receivers.length

9 amount == cnt x input._value

10

11 // force overflow condition on "amount"

12 is_overflow (amount, 256) == True

13

14 // requires

15 cnt > 0 AND cnt <= 20

16 _value > 0 AND

17 state.balances[sender] > amount

Listing 5. Z3 constraints for function batchTransfer, trying to overflow the expression at line 3 in Listing 4

The utility function at line 2 (is_overflow) checks that the value passed as first parameter is a case of overflow
when represented with the number of bits specified in the second parameter. This function is used later at line 12, to
impose that variable amount overflows its 256 bits.

The conditions at lines 8 and 9 are used to define symbolic variables cnt and amount, corresponding to assignments
at lines 2 and 3 of Listing 4.

Lines 15 and 16 represent the constraints imposed on input values by the require preconditions of the smart
contract.

It is important to note that the behaviour of a function in a Solidity contract may depend on the global state of the
blockchain (e.g., balances). Since handling the global state and its possible changes symbolically is not affordable
by static code analysis, we adopt the same heuristic strategy commonly used in dynamic symbolic execution and
concolic testing [8, 26]: constraints for the SMT solver include concrete, rather than symbolic, values for contract
state variables. The concrete values embedded in the constraints are the values actually observed at run time.

Our implementation of the SMT script generator automatically creates a python script which invokes Z3° as SMT
solver.

The constrains in Listing 5 are satisfiable and Z3 is actually able to compute values for parameters _receivers and
_value, such that all the require statements pass and the multiplication at line 3 overflows (see Listing 4). Because of
the overflow, variable amount is assigned a small value at line 3. This will cause the sender to spend a small amount
of tokens (line 7), lower than the sum of tokens transferred to the receivers (loop at line 8). Hence, the overflow
(violation of invariant I1) will also make the total amount of owned tokens exceed the declared total supply (violation
of invariant 12).

Code normaliser: The SMT script generator needs to access the state of the contract to read concrete values of
state variables that are embedded in the constraints. To let the generator fully inspect the contract state, the code
normaliser changes the visibility of contract variables and methods to public. The normalised code is then deployed
to the blockchain.

Transaction executor: The OverflowBehaviour starts by creating a set of SMT scripts, one for each expression
that may give raise to an overflow. Then, when performAction is invoked by our framework, it executes one of the
generated scripts. If the SMT script can compute input values that cause overflow, OverflowBehaviour invokes the
contract function using these input parameters. Otherwise, this behaviour tries another, randomly selected, SMT
script.

A successful transaction (i.e., one not rejected by the contract), in which one of the contract’s expressions over-
flows, represents a violation of invariant /7. Hence, a fault in the contract is found and SOCRATES emits a test case
that documents and reproduces the exposed defect.

“https://github.com/Z3Prover/z3
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5. Experimental Validation
We assessed our framework SOCRATES by investigating the following research questions:

e RQ; How effective is SOCRATES in detecting invariant violations?
o RQ; How does a society of bots compare to a single bot in detecting invariant violations?

o RQ; What is the effectiveness of each atomic and combined bot behaviour, in terms of number of invariant
violations that bots can detect?

o RQ4 How does SOCRATES compare with Echidna, in terms of number of invariant violations?

o RQs How effective is SOCRATES in detecting contract-specific invariants?

The first research question RQ; is intended to investigate if SOCRATES is indeed capable of detecting real
invariant violations in smart contracts, generating a reproducible test case for each violation.

The second research question RQ, checks whether a society of bots is more appropriate to test smart contracts than
a single bot alone. This research question is meant to validate our initial assumption, which motivated the definition
of a multi-bot framework.

The third research questions RQj3 is meant to analyse the role of the different atomic and combined bot behaviours
in detecting invariant violations.

The fourth research question RQ, compares SOCRATES with the state of the art tool Echidna, on the respective
ability of detecting invariant violations and generating test cases.

Finally, the last research question RQs assesses the validity of our approach beyond generic and EIP20 invariants,
by considering contract-specific assertions.

5.1. Subjects

The empirical validation considers tokens based on the EIP20 interface because (at the time of our experimen-
tation) this was one of the most prominent interfaces for tokens managed by Ethereum smart contracts. We applied
SOCRATES to two groups of real smart contracts: (1) recent contracts based on the EIP20 interface; (2) top contracts,
i.e., contracts with highest market capitalization.

The first set of smart contracts considered in our empirical validation was selected from those actually active
in the blockchain. To sample them, we relied on Etherscan'®, a web portal to inspect the content of the Ethereum
blockchain. At a specific page'!, this site lists the 10,000 most recent valid transactions for smart contracts that define
tokens according to the EIP20 interface. For each transaction, it also reports the contract and sender address. We
considered the EIP20 interface in particular, because it is an emerging standard being increasingly adopted by smart
contracts whenever a custom currency is needed. This query was performed for contracts traded on October 23rd,
2018. The collected 10,000 recent Ethereum transactions are associated with 1,625 unique smart contracts.

The second set of smart contracts comprises all the smart contracts listed in the TOP smart contracts list, as
reported by Etherscan. The list contains 887 smart contracts ranked by the token market capitalization value provided
by the website CoinMarketCap'?.

The blockchain only stores the compiled byte-code and the interface of such smart contracts. However, it is a
relatively common practice for contract owners to also publish the source code, in order to make their smart contracts
more transparent and trustful. So, we restricted our selection to smart contracts for which we could fetch the source
code. This gave us a sample of 1,059 recently used smart contracts that implement the interface EIP20 and 846 TOP
contracts; all of them published the source code to make it accessible to users.

10https://etherscan.io/
https://etherscan.io/tokentxns
2https://coinmarketcap.com/
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5.2. Competitor Tools

We considered eight alternative tools (namely, Manticore, Echidna, Oyente, Mythril, Madmax, Zeus, Securify,
Maian) described in the literature, which automatically analyze and generate test cases for Ethereum smart contracts.
In general, most of these tools are preliminary research prototypes, not enough mature/stable to be used in a large
experiment like the one conducted in this paper.

Manticore'? is a symbolic execution tool, which can generate input values that trigger errors on binary executables
and on Solidity smart contracts. However, its support to smart contracts is quite partial and limited. Despite it
explicitly declares to offer a monitor to detect overflow errors, we were able to run such monitor only on simple
contracts. As a result of our preliminary assessment of Manticore, we submitted a number of issues to the Github
project hosting the tool and found issues confirming our problems. Among them, issue #1375'%, #1374, #1362'6,
#132217,

1 function transfer (address _to, uint256 _value) public returns (bool success) {
2 require (_to != 0x0 && _value > 0);

3

4 /+ START INSTRUMENTATION x/

5 transfer_from = msg.sender;

6 transfer_to = _to;

7 pre_balance_1 = balanceOf [msg.sender];

8 pre_balance_2 = balanceOf[_to];

9 declared_trasferred_amount = _value;

10 /* END INSTRUMENTATION =/

11

12 if (admins[msg.sender] == true && admins[_to] == true) ({
13 balanceOf[_to] = balanceOf[_to].add(_value);
14 totalSupply = totalSupply.add(_value);

15 emit Transfer (msg.sender, _to, _value);

16

17 /* START INSTRUMENTATION x/

18 event_from = msg.sender;

19 event_to = _to;
20 event_amount = _value;
21 post_balance_1 = balanceOf [msg.sender];
22 post_balance_2 = balanceOf[_to];
23 /* END INSTRUMENTATION x*/
24
25 return true;
26 }
27
28 }

Listing 6. Example of instrumentation needed by Echidna

Echidna'8 is a fuzzing tool that generates random input values for smart contracts that run on the Ethereum virtual
machine. It can be configured to monitor the contract under test for invariant violation. Whenever fuzzing succeeds
in violating an invariant, the sequence of calls with the error inducting input values represents a valuable test case.

Echidna uses a fuzzing algorithm to select the functions to call and to generate their input parameters in a random
fashion. The same algorithm is responsible for every action and, unlike SOCRATES, can not be extended with
different behaviours based on a user defined business logic.

Echidna makes the assumption that invariants are implemented directly in Solidity, as part of the contract source
code. Because of this design choice, it is impossible to test a smart contract against our invariants without any code
editing. In order to compare Echidna with SOCRATES, we need a way to let Echidna support all the invariants in
Table 1. To this aim, we manually edited the code of the contracts and instrumented it, promoting selected local

13Manticore https://github.com/trailofbits/manticore
14https://github.com/trailofbits/manticore/issues/1375
IShttps://github.com/trailofbits/manticore/issues/1374
1ohttps://github.com/trailofbits/manticore/issues/1362
https://github.com/trailofbits/manticore/issues/1322
18Echidna https:/github.com/trailofbits/echidna
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variables to contract variables, in order to make such local variables visible to Echidna and usable within Echidna
invariants.

For example, the code snippet in Listing 7 shows an implementation of the invariant IS5, based on the code instru-
mentation shown in Listing 6. Invariant I5 checks that that every transfer emits a consistent Transfer event. To do that,
we need to save the balances of the addresses before and after the transactions into auxiliary variables (respectively,
lines 7-8 and lines 21-22 in Listing 6).

1 // INVARIANT

2 function echidna_invariant_I5() public returns (bool) {

3 if (event_amount != 0) {

4 bool consistent_from = event_from == transfer_from;

5 bool consistent_to = event_to == transfer_to;

6 bool consistent_amount = event_amount == declared_trasferred_amount;

7 bool consistent_post_balance_to = post_balance_2 == (pre_balance_2 + event_amount) ;

8 bool consistent_post_balance_from = post_balance_1l == (pre_balance_l - event_amount);

9 return consistent_from && consistent_to && consistent_amount &&
consistent_post_balance_to && consistent_post_balance_from;

10 }

11 return true;

12 }

Listing 7. Example of Echidna invariant implementation

Other potential alternative tools have been evaluated, but discarded because they are not compatible with our
experimental setting that requires the ability to handle real-world smart contracts and to define business logic specific
invariants:

Opyente [14] is based upon symbolic execution techniques and targets Mishandled exceptions, Transaction-ordering
dependence, Timestamp dependence and Reentrancy vulnerabilities. The tool generates symbolic constraints from the
bytecode in input and outputs the problematic paths containing one of the targets vulnerabilities to the user. How-
ever, Oyente does not provide any test case to replicate the vulnerability and this makes a comparison with our tool
impossible.

Mythril 19 is based on a symbolic virtual machine that runs Ethereum smart contracts. However, it does not emit
concrete test cases to trigger the vulnerabilities, but it only reports the list of discovered vulnerabilities.

Madmax [9] is a static analysis tool for smart contracts. As such, it does not generate test cases.

Other tools such as Zeus, Securify, Maian use symbolic execution to target a limited set of contract vulnerabilities.
The survey by Praitheeshan et al. [24] reports an extended description and comparison of these tools.

In the end, we have decided to evaluate SOCRATES against Echidna, the most mature competitor tool.

5.3. Experimental Settings

We ran SOCRATES on top of Ganache using its default configuration with 10 active accounts with unlimited ether
balance. Ganache simulates a completely fresh and empty blockchain environment, with no transaction. Starting from
an empty blockchain helps in delivering testing results that are easily interpretable, because tests make no assumption
on initial data and produce consistent results across re-execution. Hence, contracts that make assumptions on certain
initial data or transactions to be available in the blockchain are currently not compatible with our experimental settings.

Since our test case generation framework includes non-deterministic components, each experiment comprises
10 restarts of the simulator and of the blockchain status. Each simulator has been configured with a maximum of
1,000 simulation steps and a timeout of 5 minutes. This timeout might look too short when compared to the amount
of time needed by other tools [12] to fuzz contracts. The difference is that other approaches deploy contracts in a
fully functional blockchain, which runs a heavyweight consensus algorithm on each transaction. Instead, we deploy
contracts in the testing environment of Ganache, which avoids the overhead due to the consensus network, irrelevant
for contract testing.

Different experiments have been run with a different number of bots and with different behaviours. Table 2 sum-
marizes the configurations of SOCRATES that we used to set-up the experiments for the different research questions.

1%https://github.com/ConsenSys/mythril
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To speedup the experiment on the large number of subject contracts, it has been split into multiple jobs, each job
running on a distinct core of an Intel(R) Xeon(R) CPU E5420 @ 2.50GHz processor, and each job being assigned
4GB of RAM.

The complete replication package is available online [19], including the contracts used as subjects for our experi-
ments, results, SOCRATES and instructions on how to run it.

Table 2. Experiment configurations

Experiment | Number of Bots | Behaviours

RQ, 10 Random+Boundary+Overflow

RQ, 1 Random+Boundary+Overflow

RQ; 10 Random+Boundary+Overflow, Random+Boundary, Random, Boundary,
Overflow

RQq4 10 Random+Boundary+Overflow

RQs 10 Random+Boundary+Overflow

5.4. RQq Invariant Violation Detection

SOCRATES was configured with a distinct bot for each account. By default, each bot is configured to contain
the full combination of all available behaviours, which in the current version of the implementation means it includes
RandomBehaviour, BoundaryBehaviour and OverflowBehaviour. The bot switches randomly among them.

I1 12 I3 14 I5 16 TOTAL
Dataset | FP TP | FP TP | FP TP | FP TP | FP TP | FP TP | FP TP
Recent | O 10 | 2 61 | 2 1 3 1 1 2 1 20| 9 95
Top 1 7 2 33| 3 1 6 0 0 1 1 11 |13 353
TOTAL | 1 17 | 4 94| 5 2 9 1 1 3 2 31|32 148

Table 3. Assertion violations detected by SOCRATES

Violations detected by SOCRATES have been manually reviewed, to classify them as actual programming errors
(TP, true positives) or false alarms (FP, false positives). This classification has been performed manually by the first
author of the paper, by comparing the behaviour implemented in the contract with the expected behaviour described
in the official documentation of the EIP20 interface®".

Empirical results are reported in Table 3, showing how many true positives (TP) and false positives (FP) have been
reported by the tool for each invariant, in the first line for the recent smart contracts and in the second line for the top
smart contracts. Results report a total of 95 vulnerable recent smart contracts and 53 vulnerable top smart contracts.

Invariant I1 (overflow) is violated in 10 contracts in the first data set and in 8 contracts in the second data set, with
only one false positive, in the latter data set. Invariant I2 (inconsistent total supply) is the most frequently violated.
SOCRATES detected respectively 61 and 33 true positives on the two datasets, with only 2 false positives per data
set. Invariant I3 (wrong allowance check) is detected correctly in 2 cases (one per data set), but SOCRATES reported
5 false positives. Invariant 14 (wrong allowance update) is violated in both data sets, with just 1 true positive. Invariant
IS (Transfer event) is violated 4 times with only 1 false positive. Finally, invariant I6 (Approval event) is violated
33 times, with only 2 false positives (one for each data set.)

Contracts with programming errors often have a significant capitalization. Considering only those with a true
positive violation detected by SOCRATES, the average capitalization®' of defective smart contracts in the first and in
the second data set was, respectively, $14M and $71M.

It is worth noting that the most frequently violated invariant is I2. Although in general an invariant violation can be
associated with a programming mistake, a violation of invariant I2 may also be regarded as a design choice that makes

2Ohttps://eips.ethereum.org/EIPS/eip-20
2l Capitalization reported by Etherscan on March 2019.
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the contract not fully compliant with the EIP20 interface. Indeed, since part of the EIP20 interface is documented
in natural language, there are ambiguities that can lead to different interpretations. For example, we interpret the
meaning of variable fotalSupply as the total amount of tokens that are transferable among accounts. According to this
interpretation, SOCRATES classifies as violations those cases where not all tokens in totalSupply are distributed, or
when there are frozen (not transferable) tokens that are still counted in the variable fotalSupply. Discrepancies might
be due to different design choices or interpretations of the EIP20 interface.

The high false positive rate for invariants I3 and 14 is due to contracts that specialize the EIP20 interface in a
way that is not documented in the interface itself. For instance, contracts that impose a fee on transactions or that
grant some operations only when they come from addresses in a white-list. In these cases, the generic invariant does
not apply and the contract tester should use a custom invariant. This custom contract behavior should be known to a
developer, who, consequently, could define and use an appropriate, contract-specific invariant.

Based on these results, we can answer the first research question as follows:

SOCRATES was able to identify 148 true invariant violations in 1,905 real smart contracts, that have
been recently traded in the Ethereum Blockchain or are listed as top token contracts.

5.5. RQ; Society of Bots Vs Single Bot

11 12 13 14 15 16 SUM
Bots | FP TP Uni | FP TP Uni | FP TP Uni | FP TP Uni | FP TP Uni | FP TP Uni | FP TP Uni
10 0 10 1 2 6l 6 2 1 1 3 1 1 1 2 1 1 20 0 9 95 10
1 0 10 1 1 59 3 0 0 0 1 0 0 1 1 0 0 20 O 3 9 4

Table 4. Comparison of assertion violations detected by SOCRATES, either with 10 bots or with 1 bot.

addresses, uint256 _value) onlyOwner canDistr public {

i++) {

function distribute (address]|]

for (uint i = 0; i < addresses.length;
balances[owner] -= _value;

balances[addresses[i]] += _value;

emit Transfer (owner, addresses|[i], _value);

N O A W=

Listing 8. Example of uniquely identified violation by 10 bots configuration.

We then replicated the same experiment executed for RQ, but instead of deploying a society of bots, we deployed
a single bot to test each smart contract. This single bot was still equipped with the default behaviour, which combines
all available behaviours (RandomBehaviour, BoundaryBehaviour and OverflowBehaviour). To limit the time needed
to run all the many experiments, we limited the investigation to the first data set, i.e. to the recently traded contracts.

Experimental results are shown in Table 4. For each invariant we contrast the results of the full framework with 10
bots (first line) with the variant with only a single bot (second line). For each invariant, the table reports false positives
(FP), true positives (TP) and the violations reported by one configuration and not by the other one (column Uni).

For invariant 11 the two configurations are similar, 10 true positives each and 1 uniquely identified violation.
Instead, for 12, I3 and 14, the full configuration is clearly preferable, because it reports more true positives and more
uniquely identified violations than the limited configuration with only 1 bot, although at the cost of a few more false
positives. For IS5 the configuration with 10 bots scores a higher number of true positives (2 vs 1) with the same
number of false positive (i.e., 1). For invariant 16, 20 true violations are detected by both configurations, with the full
configuration reporting a false positive (vs no false positive with the single bot).

In total, the configuration with 10 bots reported 95 true positives and 9 false positives, while the configuration
with one bot reported 90 true positives and 3 false positives. Moreover, the first configuration detected 10 violations
that the second configuration could not detect. On the other hand, the second configuration detected only 4 violations
that the first one could not detect.

Overall, the configuration with 10 bots outperformed the configuration with 1 bot. However, it should be noticed
that having more bots limits the number of transactions sent by each address, in favour of the number of transactions
sent by the society as a whole. Hence, the number of transactions sent by specifically relevant addresses, e.g., for
many invariant violations, the contract owner, is less than the transactions that a single bot can send, assuming the
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single bot impersonates the relevant address. All the uniquely identified violations detected by the configuration with
only / bot are, indeed, invariant violations caused by function calls that only the contract owner can execute. on the
contrary, the violations detected by the 10 bot configuration contain several cases in which multiple bots are needed.
An example is the vulnerability in Listing 8. Function distribute is used by the contract owner to transfer _value
tokens from its balance to each of the addresses in the addresses list. A single bot configuration makes the caller bot
act in isolation, calling function distribute with an array containing n repetitions of its own address. Since the from
address and the destination address are the same, the expression in line 3 will not result in any underflow. On the
contrary, in the 10 bots configuration the caller bot is aware of the blockchain context and correspondingly it calls
function distribute with an array of different bot addresses. Since there are no checks on the total amount of tokens
to be transferred, a long list of addresses may cause the expression in line 3 to underflow, resulting in the unwanted
creation of new tokens.
Based on these results, we can formulate the following answer to the second research question:

The bot society is more effective than a single bot in detecting smart contract invariant violations. In fact,
the society could detect more violations and more true positives. Moreover, it could detect 10 invariant
violations that a single bot could not detect.

5.6. RQs Effect of Bot Behaviours

In the third experiment the full bot society is deployed on the first data set, similarly to the other experiments, but
with different behaviours. The experiment is replicated to compare these behaviours configurations:

e Complete: All the three behaviours: RandomBehaviour, BoundaryBehaviour and OverflowBehaviour,

e Boundary+Random: the composition of the two behaviours that randomly perform uniform/biased sampling
of the input domain, RandomBehaviour and BoundaryBehaviour;

e Overflow: OverflowBehaviour alone;
e Boundary: BoundaryBehaviour alone;
e Random: RandomBehaviour alone.

Since these configurations include non-deterministic behaviours, each of them was run 10 times.

The experimental results are shown in Table 5. For each set of behaviours (first column), the table reports how
many invariant violations were detected in the 10 runs. The number of violations reported in the table is the sum
of the violations observed across the 10 runs. However, in case the same violation is observed multiple times it is
counted only once. Violations are reported in distinct columns for the different invariants. Invariant violations have
been manually validated and classified into true positive violations (TP) and false positives (FP). Moreover, the table
also reports how many true positive invariant violations have been detected uniquely by a configuration and by none
of the other configurations (Uni).

11 12 13 14 15 16 TOTAL
FP TP Uni |FP TP Uni [FP TP Uni |FP TP Uni |FP TP Uni|FP TP Uni | FP TP Uni
Complete 0 10 1|2 61 32 1 0|3 1 01 2 01 20 29 95 6
Bound+Rand.| 0 O O |2 63 2 |3 2 O |11 2 O |1 2 O 1 20 1 |18 8 3
Overflow o 9 0|0 4 2|10 0 0|0 O OO0 O OO0 O 0|0 53 2
Boundary O 0 0|2 64 2|3 2 0|13 2 0 1 2 0 1 20 0|20 90 2
Random o 0 0|0 61 2|0 0 0/]2 0 0[]0 1 O 1 20 0|3 82 2

Table 5. Assertion violations detected by different behaviour configurations

The Complete behaviour could detect the largest number of violations (i.e., 10) of invariant I1. The Overflow
behaviour could detect less (i.e., 9) violations, while the other behaviours could detect no violation of I1.
Considering invariant 12, the Boundary behaviour detected the largest number of violations. However, the Com-
plete behaviour scored the largest number of uniquely identified violations.
On invariants I3 and 14, Boundary and Boundary+Random behaviours reported the highest number of true posi-
tives, while the Complete behaviour scored second. Considering invariants I5 and 16, all but the Overflow behaviour
18
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reported a very similar amount of true positives, but the Complete behaviour had the highest number of uniquely
identified violations.

In total, as shown in Table 5, rightmost columns, the Complete behaviour could detect the largest number of true
positives with 95 violations, followed by Boundary that detected 90 real violations and Random + Boundary with 89
violations.

From these results, we can state that the Overflow behaviour is effective only in detecting a small quantity of
violations, compared to all the other behaviours. The implementation of the Overflow behaviour, indeed, makes a
bot perform an action only if it is able to pass all the initial require statements and to make a subsequent arithmetic
expression overflow. For this reason, the Overflow behaviour is very accurate, having no false positive. However,
executing many valid transactions, without causing overflow, is needed to evolve the contract state and explore new
states, which eventually lead to an invariant violation. For this reason, random behaviours (overall) report a higher
number of true positives than the Overflow behaviour.

We can thus answer our third research question as follows:

The combination of all bot behaviours is more effective than atomic behaviours alone. The full combina-
tion could detect 95 invariant violations. The composition of Random + Boundary is also quite effective.
Indeed, it could find 11 violations that none of the other behaviours could detect.

5.7. RQ4 Comparison with Other Tools

In the fourth experiment, we use Echidna to test smart contracts and violate invariants. To that aim, we had
to manually instrument the contract code and we had to manually specify our invariants in the format expected by
Echidna. Since instrumentation was manual and very time consuming, we applied it on a small subset of contracts.
In particular, we randomly sampled 10 contracts among those for which SOCRATES detected violations. We took 3
contracts with I1 violations, 3 contracts with I2 violations. Then, we took 1 contract among those with violations of 13,
14, 15 and 16. We, then, ran Echidna on each instrumented contract for the same amount of time given to SOCRATES
in RQy, so as to make a fair comparison between the two tools.

ExpressCoin | 11 Violated
AEToken I1 Violated

DNCEQuity | I1 Violated

DELTAToken | 12 Violated
Yumerium 12 | Not violated

Tube 12 | Not violated

JAAGCoin I3 | Not violated

MKC I4 | Not violated
CoinfairCoin | I5 Violated
Bible 16 Violated

Table 6. Assertion violated by test cases generated by Echidna.

Experimental results are reported in Table 6. Echidna could generate test cases that violate 6 out of 10 invariants
detected by SOCRATES. While all the three violations of I1 were detected also by Echidna, 12 could be violated only
in one case. No violation of I3 and I4 was reported by Echidna, while the two violations of I5 and 16 could be detected
also by Echidna.

It should be noticed that whenever fuzzing caused arithmetic overflow (violations of invariant I1), Echidna alone
would not have reported any problem without our instrumentation, because Echidna does not include any mechanism
to assert the occurrence of overflow. It was only thanks to our manual instrumentation of the contract code, which is
not part of Echidna, that overflow became detectable by Echidna.

Echidna could not generate test cases that violate invariants I3 and 14 because, using a single sender address, it
was not able to test function transferFrom, which uses the concept of token allowance between at least two addresses.

We can thus answer the last research question as follows:
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SOCRATES outperformed the state-of-the-art tool Echidna, for automated testing of Ethereum smart

contracts. Moreover, Echidna required substantial manual intervention to support the invariants of
SOCRATES.

5.8. RQs Contract Specific Invariants

So far, we considered only generic invariants, most of which descending from the specification of the EIP20
token interface. However, smart contracts might implement additional features, beyond those required by a general
interface. For instance, some contracts support the possibility to increase the total number of available tokens (total
supply), by minting of new tokens. Other contracts support limited minting, by setting a hard limit of total supply that
can not be exceeded. These additional features come with additional constraints, that can be expressed as invariants
that should be always satisfied by the execution of a correct implementation.

In this last experiment, we extended the list of invariants by defining 6 new contract-specific invariants, targeting
6 properties that are expected to hold and were observed in some of the contracts that we manually inspected when
classifying the violations reported by SOCRATES as true/false positive.

ID Rule

CSI1 | Yt e Txs : successful(t) A owner — owner’ = owner == t.msg.sender

CSI2 | Yt e Txs: successful(ty = totalSupply’ >= totalSupply

CSI3 | Y scaccounts balanceO f(a) <= tokenLimit

CSI4 | Yt € Txs : t = enableTokenTransfer A successful(t) = t.msg.sender == walletAddress
CSI5 | totalAllocated <= (ADVIS ORS + FOUNDERS + HOLDERS + RES ERVE)

CSI6 | Vte Txs:t = getToken A successful(ty = owner == t.msg.sender

Table 7. Contract specific invariants.

Table 7 lists the six new contract-specific invariants the we could identify. They are:

CSI1 states that only the owner address can submit a transaction that changes the current owner address;

CSI2 states that, after every transaction, the value of variable fotalSupply may increase or remain the same, but
never decrease;

CSI3 states that the sum of the tokens owned by each account (balanceOf{a)) must be less than or equal to the
value of variable tokenLimit;

according to CSI4, an enableTokenTransfer is successful only if the transaction’s sender address is equal to the
walletAddress;

CSI5 states that the sum of the total allocated tokens must never exceed the sum of variables ADVISORS,
FOUNDERS, HOLDERS, RESERVE;

according to CSI6, only the owner address can execute function getToken successfully.

These invariants are not supposed to hold for all contracts. Depending on the contracts’ business logic, the
developer, who knows the functional requirements of the contract under test, is supposed to decide which of these
contract-specific invariants to enable (if any) or to define new invariants that matter.

SOCRATES could detect violations of all these 6 contract-specific invariants in the analyzed contracts. Thus, we
can answer the last research question as follows:

SOCRATES is effective in detecting violations of contract-specific invariants. In fact, it could generate
test cases that expose violations of all the 6 contract-specific invariants that we defined for our subject
contracts.
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5.9. Threats to validity

Internal validity: The current implementation of SOCRATES comes with some limitations. While random
and boundary behaviours support all the features of the Solidity language, the overflow behaviour is able to extract
constraints for a subset of the language. In particular, the static analysis it uses is intra-procedural. Moreover, the
static analyser handles only if statements that can be translated to require statements, such as those that control a
fail or exit statement. Loops possibly followed by fail or exit statements are not supported (this limitation is due to
the use of symbolic execution to derive overflow constraints). Despite these limitations of the static analyser, the
overflow behaviour remains largely applicable to contracts, since symbolic modeling of the execution is needed only
for the preconditions and for the expression that is candidate for overflow. Preconditions are usually not preceded by
complex control flow (loops in particular) and many expression candidates can usually be found that are not preceded
by unhandled instructions. The effectiveness of the overflow behaviour observed in the empirical validation shows
that it could be actually applied in several interesting cases.

Contract normalisation (first step in Figure 6) also does not support all language features. For instance, function
visibility change is based on regular expressions that may fail in certain contracts.

In Ethereum, the smart contract constructor is a special function used to instantiate the contract in the blockchain.
Normally, constructors have no formal parameter. However, sometimes, constructors require parameters to configure
a contract on-the-fly at instantiation-time. Automatic generation of constructor parameter values is at the moment not
supported by SOCRATES.

Construct validity: The EIP20 interface was subject to evolution and finalized in late 2017. Some of the contracts
considered in our experiments could have been developed following old versions of this interface and invariant viola-
tions might not be due to implementation defects but just to mismatches with the most recent version of the interface.
To limit this problem, we considered only smart contracts with recent transactions in the blockchain.

External validity: Although we sampled more than a thousand contracts for our experimental validation of
SOCRATES, we cannot assume that our results hold for any other arbitrary contract, especially when contract specific
invariants are involved. Further experiments on additional case studies are needed to corroborate our findings.

6. Related Work

State of the art techniques in automated test case generation do not address the specific challenges of smart
contracts.

Automated test generators consider the system under test as decomposed into units to be tested in isolation [7,
15, 22] or as a whole system accessible for testing purposes through its interface [10, 17]. However, faults that affect
the business logic of a contract cannot be exposed at the unit (Solidity function) level, which rules out most adequacy
criteria based on coverage of structural elements of individual code units (e.g., statement/branch coverage). At the
same time, testing through the interface requires the interacting test entity to simulate the behaviour of a contract user,
which goes beyond coverage of the public interface functions defined in Solidity. Moreover, a single simulated user
might be insufficient for faults that can be exposed only when multiple contract users interact with each other.

Search based test case generation can accommodate various kinds of fitness functions that drive the test gener-
ation process. Traditionally, structural coverage has been regarded as the key objective of test generation [7, 15, 22],
but there are recent works that consider alternative testing objectives / fitness functions (e.g., energy consumption [3],
performance [13, 31], quality of service [2]). However, no existing work considered a fitness function that can pro-
vide guidance to a society of bots interacting with a smart contract. Such an application of search based testing can be
achieved in our framework, by defining a proper search based behaviour for bots. The development of such behaviour
and of the associated fitness function is part of our planned future work.

Multi agent systems can be designed to exhibit collective behavior, so as to provide the desired services to the
user [11]. Cooperative agents can be engineered to solve a dynamic, distributed problem [23], or to work in parallel
on different sub tasks [21]. Our design of a bot society that can effectively test a smart contract was largely inspired
by these works, with the ultimate goal of ensuring that the bot interactions converge toward the exposure of as many
contract defects as possible. In addition to that, the techniques for agent testing have also influenced our choices.

In agent testing [5, 18, 20], a model of the world where agents operate is instantiated and evolved in order to
identify limit conditions and configurations that expose functional or non-functional deviations from the expected
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behavior. While we also instantiate the world where contracts operate (i.e., the blockchain), our focus is more on
the use of a society of autonomous bots to test a smart contract, rather than on the agent society as the target of
testing activities. A common idea between the previous work on agent testing and our framework is that goals (and
correspondingly, behaviours) should drive the testing strategy [5].

Another related area is that of self-adaptive systems. The full behaviour of self-adaptive systems emerges only at
runtime, when specific execution contexts are instantiated. Hence, in addition to standard pre-release verification and
validation, quality assurance for self adaptive systems is moved to the runtime and relies on monitoring [28, 27]. Sur-
veys on runtime monitoring for self-adaptive systems were conducted by Rabiser et al. [25] and Vierhauser et al. [30].
A recent attempt to relate dependability constraints to a dynamically changing execution context was implemented in
the GODA framework [16]. In this framework, during runtime monitoring, depending on the specific execution con-
text, proper behavioural constraints are checked. Another similar approach for context-dependent adaptation of the
monitoring rules is MORPED [4]. These works differ substantially from our approach since their goal is to recognize
at runtime the testing execution contexts that have the dynamically changing features required to expose faults in a
self-adaptive system, while our goal is to test a smart contract and its evolving state in a (simulated) environment.
However, similarly to our society of testing bots, their monitors may also exhibit autonomous and possibly adaptive
behaviours.

Existing works in security testing of smart contracts [9, 12, 14] are focused on closed catalogs of known se-
curity vulnerabilities [1], such as transaction order dependency, timestamp dependency, mishandled exceptions and
reentrancy [14]; gasless send, exception disorder, reentrancy, timestamp dependency, block number dependency, dan-
gerous delegate call and freezing Ether [12]; or out of gas vulnerabilities [9]. To the best of our knowledge, no
general, extensible framework has ever been proposed to support the detection of arbitrary invariant violations — not
restricted to specific security vulnerabilities — in the wild, with no assumption on the availability of a database of
known vulnerabilities, and taking advantage of a society of autonomous bots.

7. Conclusion

Once deployed in the blockchain, smart contracts are immutable and so are the programming mistakes in their
implementation. Hence, thorough testing of smart contracts is crucial to spot implementation defects before deploy-
ment.

SOCRATES is a testing framework for smart contracts based on a federated society of bots, designed to simulate
the complex interactions of multiple users, often involved with different roles in a contract. Experimental validation
shows that our approach is effective in detecting implementation errors that violate contract invariants, even in smart
contracts actually used in production, associated with real monetary value. Results also show the importance of
instantiating a society rather than single bots and the key role of combined behaviours, as opposed to simple, atomic
bot behaviours.

In our future work, we plan to extend our framework by (i) covering more invariants not yet supported by
SOCRATES and (ii) integrating more behaviours to improve the testing effectiveness of SOCRATES.

SOCRATES has been released as open source [19], together with the replication package that includes the con-
tracts used as subjects for our experiments, results and instructions.
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