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Abstract 
Ph.D. Course in Applied Life and Health Sciences, 31th cycle 

Doctor of Philosophy 

 

Paleogenomics and paleomicrobiology approaches applied to the 

understanding of true and apocryphal pests in different bioarchaeological 

contexts: the study of Ancient infectious diseases 

By Alda BAZAJ 

 

Plague is a bacterial disease caused by Yersinia pestis, which primarily affects wild 

rodents. It is spread from one rodent to another by fleas. To date, Plague is probably 

the infectious pathology responsible of the largest amount of deaths among all 

human history. Unfortunately, it is still persistent in some area of the world, as on 

November 4, 2014 the Ministry of Health of Madagascar reported an outbreak of 

plague (https://www.epicentro.iss.it/peste/aggiornamenti) to the World Health 

Organization. The first case was identified on August 31, a male from 

Soamahatamana village in the district of Tsiroanomandidy, who died on September 

3. As of November 16, a total of 119 cases of plague were confirmed, including 40 

deaths.  

Next-generation sequencing (NGS) and metagenomics has recently revolutionized 

genomic research, and its combination with high-throughput target enrichment 

method can be proficiently applied to the study of ancient DNA (aDNA), thus 

providing a powerful tool for understanding the evolution of pandemic infectious 

diseases like the plague.  
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Chapter 1 

 

INTRODUCTION 

 

1.1 Ancient DNA 

 

Ancient DNA (aDNA) provides direct insights onto the past that modern DNA or 

paleontological studies alone cannot provide. It has been proven to address 

questions regarding history relationships, population dynamics and diversity 

through time. Although aDNA can be a very powerful tool, it should be handled 

with care [Fulton et al., 2012]. The first studies about aDNA began in 1984, when 

the DNA of an extinct Quagga, a relative of a zebra, were recovered [Higuchi et al., 

1984]. History started changing from that moment, as technical and biological 

advances permitted to evolve Paleogenomics through time.  

The state-of-the-art genomic technologies, through the combination of high-

throughput sequencing and the most recent bioinformatics tools, has allowed the 

study of whole genome sequences of large population datasets, the identification of 

ancient pathogens and their evolution [Allentoft et al., 2015, Fu et al., 2016, Olalde 

et al., 2018]. Next-generation sequencing (NGS) has completely revolutionized 

aDNA research, when is well combined with high-throughput target enrichment 

methods. On the other side, aDNA present specific limitations that require careful 

consideration during data analysis.  
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1.1.1 aDNA specificities 

 

Ancient DNA can be defined as any genomic sequence retrieved from dead 

organisms. The DNA of each living organism is frequently damaged through time, 

but such damages are repaired by mechanisms that preserve the integrity of the 

genetic material. While after death the damage of DNA still continues, the repairing 

mechanisms can no longer maintain the DNA intact. Therefore, most of the aDNA 

sequences found nowadays are in different stages of degradation.  

 

 

 

1.1.2 aDNA degradation 

 

DNA degradation is influenced mostly by atmospheric conditions such as 

temperature or humidity, and other variables linked with the burial environment, 

namely salt concentration, soil pH or the chemical composition of the ground.  

The degradation process reduces the amount of endogenous aDNA present in the 

samples, usually accounting for less than 1% of the total sequenced reads [Fu et al., 

2013]. On the other hand, in some exceptional cases, the retrieved endogenous 

DNA was found to exceed 70% [Meyer et al., 2012, Raghavan et al., 2014, 

Rasmussen et al., 2010, Gamba et al., 2014, Keller et al., 2012, Carpenter et al., 

2013, Lazaridis et al., 2014, Olalde et al., 2014].  

Nevertheless, environmental factors are still the biggest threat to DNA integrity. 

Upon exposure to climatic and environmental agents, DNA is subjected to chemical 

reactions such as deamination, depurination or hydrolysis that damage DNA 

structure (Figure 1), ultimately leading to its degradation [Höss et al., 1996]. In 

addition, oxidation can induce DNA lesions that impair Polymerase Chain Reaction 
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(PCR) by blocking the polymerase, resulting in low amplification and potentially 

chimeric artifacts, therefore called PCR inhibiting lesions. Due to oxidation, most 

of the “surviving” DNA sequences are very short, less than 100 base pairs (bp) 

[Poinar et al., 2016], and may contain damaged nucleotides. 

 

 

 

 

 

 

 

Figure 1. Principal sites where damage affects ancient DNA. Oxidative damage 

modifies the nitrous bases and the sugar-phosphate backbone of the DNA, depurination 

causes breaks in the DNA chain, hydrolytic damage also leads to DNA chain breaks 

[Hofreiter et al., 2001]. 
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1.1.2.1 Cytosine Deamination  

 

The most characteristic degradation of DNA molecules due to post-mortem damage 

is the hydrolytic deamination of Cytosine (C) to Uracil (U) [Gilbert et al., 2007], 

which codes as Thymine (T). During DNA replication, C deamination causes the 

misincorporation of an Adenine (A) instead of the original Guanine (G), which is 

followed by C to T substitutions in the 5’ ends of the sequences [Hofreiter et al., 

2001]. The C to T replacement at the 5’ ends of the DNA fragments, results in a 

higher frequency of G to A substitutions at the 3’ ends of the complementary strands 

[Briggs et al., 2007, Rasmussen et al., 2014]. It is unclear whether any other 

miscoding lesions may be relevantly frequent in aDNA molecules or their 

distribution along the sequence.  

Cytosines deamination particularly affects aDNA reads ends, where the percentage 

of deaminated C can exceed 40% [Briggs et al., 2007]. Specific techniques have 

been implemented to minimize errors in sequencing and mapping procedures due 

to aDNA damage. Indeed, single stranded library building protocol can be an 

efficient method to analyse poor quality samples, characterized by a low rate of 

endogenous DNA and highly degraded strands [Gansauge et al., 2013]. On the other 

side, the presence of cytosine deamination can also be used to discriminate between 

reads obtained by real aDNA or modern contaminant [Rohland et al., 2009]. 
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1.1.2.2 aDNA Depurination 

 

DNA fragmentation is mainly caused by depurination, namely the disruption of an 

N-glucosyl bond between a purine and the sugar of the DNA chain, resulting in a 

chain with an abasic site. The chain is then fragmented through 𝛽 elimination, 

leaving 3′-aldehydic and 5′-phosphate ends (Figure 2) [Briggs et l., 2007]. 

Depurination, considered the most critical chemical damage to aDNA structure, 

ultimately causes the underrepresentation of purines (G and A) usually at the 5’ 

fragment ends [Briggs et al., 2007, Orlando et al., 2011 and Meyer et al., 2012].  

A recent study demonstrated that depurination occurs at both ends of the aDNA 

fragments [Meyer et al., 2012] and suggested an explanation for the observation in 

previous publications of depurination only at the 5’ ends. Such reason was 

hypothesized to reside in the pre-processing step required by most library building 

protocols, namely the blunt-ends repair, an enzymatic process that extends recessed 

and degrades overhanging 3′ ends of DNA fragments [Briggs et al., 2007]. Thus, 

only with the development of single-stranded DNA libraries, this process could be 

observed also at the 3’ ends of the aDNA fragments [Meyer et al., 2012].  

 

 

Figure 2. Depurination. A chemical reaction in which an N-glycosyl bond is broken 

resulting in an abasic site. The abasic site is later removed, fragmenting the DNA 

through 𝛽 elimination [Dabney et al., 2013]. 
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1.1.2.3 Fragment length 

 

One of first published studies describing the aDNA peculiarities showed that even 

in well-preserved specimens, only very short fragments (50-150 bp) of aDNA could 

be retrieved. The entity of aDNA degradation is inversely correlated with the 

amplification efficiency and the length of the amplification product [Pääbo et al., 

1989]. The same consideration was reported by the one of the first studies on aDNA 

involving high-throughput sequencing, describing the difficulties of both aDNA 

extraction and library preparation [Green et al., 2010].  

 

1.1.3 Contamination 

 

Research on endogenous aDNA of an extracted sample can result particularly 

challenging due to the small portion of survived copies of endogenous aDNA in an 

extract, compared with modern DNA present in the environment. The PCR 

amplifies not only those small portions of aDNA, but also DNA from different 

sources, which may contaminate the sample during different manipulation steps of 

aDNA specimen. Indeed, the sample itself can be contaminated by adhering 

microorganisms residing in the environment, as bones, ribs and teeth are extremely 

porous. The highest risk of contamination resides in the collection of specimens, 

particularly in human and microbials studies, yet another source of contamination 

is represented by sample handling procedures in the laboratory (DNA extraction 

and PCR). The air filtering system of the building may be contaminated by the 

presence of insects or other biological entities, although the major concern is 

represented by the contamination with exogenous DNA. Laboratory personnel and 

reagents may introduce exogenous human or animal DNA, as living organisms are 

constantly shedding DNA-bearing tissues in the form of skin cells, hair, saliva, and 

other secretions. Archaeological skeletal remains, for example (Figure 3), may be 
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contaminated by the DNA from organisms in the soil, microorganisms growing 

within the bones, excavators, curators, or even the DNA analysts themselves.  

 

 

 

 

 

 

 

 

 

 

The problem of contamination is worsened by the nature of PCR, since the reaction 

preferentially amplifies well-preserved DNA molecules, which are more likely to 

be modern contaminants than actual aDNA. Since PCR produces large amounts of 

highly concentrated DNA, laboratories often encounter problems with previous 

PCR products contaminating current work. Contamination is critical when 

attempting to retrieve DNA from ancient human remains, as humans are also the 

main source of exogenous DNA, making contamination more difficult to detect. 

Several published DNA sequences from very ancient remains are now widely held 

to be inauthentic [Lindahl, 1997]. Moreover, the specimens from which the aDNA 

is extracted are often unique and the analysis is time consuming, therefore 

independent replication of results is not always carried out. A number of 

precautions have been developed to reduce the chances of contamination and to 

increase the likelihood of identifying contamination. Specifically, it is very 

important to have different isolated spaces in the laboratory where: i) to cut and 

classify specimens; ii) to perform DNA extraction (the main core of the lab) and iii) 

to run PCR. 

Figure 3. Example of source and prevention of contamination of 

ancient specimens. Adapted from Drancourt and Raoult 2016. 
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1.2 Paleomicrobiology 

 

Paleomicrobiology is defined as the study of microorganisms in ancient remains 

that were naturally present in healthy organisms as well as those that were 

responsible for infectious diseases [Rivera-Perez et al., 2016]. This discipline 

includes branches of medical microbiology, history, anthropology, and 

archaeozoology, and is aimed at evaluating the evolution of ancient pathogens 

(recently including also ancient microbiota) through their identification and the 

analysis of functional data such as antimicrobial resistance [Drancourt et al., 2016 

chap. 5 Paleomicrobiology of Humans]. Molecular analysis of ancient pathogens 

can also provide useful information to reconstruct past epidemic trends and help 

refining even the most recent models of emerging infections, thus giving an 

important contribution to the development of adequate preventive measures. In 

addition, the combination of microbial and human metagenomics data has a huge 

potential to extend the paleomicrobiology field to a wider community of scientists 

and scholars [Bazaj et al., 2015]. 

Before the development of genomic techniques, the identification of infectious 

pathogens in ancient remains was restricted to the visual identification of bone 

injuries and its correlation with ancient written proofs [Kousoulis et al., 2012]. 

There are many pathogen casualties, though, for which it is impossible to visually 

identify the etiological cause of the reported mortality, for example Syphilis (caused 

by Treponema pallidum) can be confused with skeletal lesions [Rothschild et al., 

2005], or Brucellosis (caused by Brucella melitensis) can be misclassified as 

Tuberculosis (caused by Mycobacterium tuberculosis) [Mutolo et al., 2012, Kay et 

al., 2014]. Another paradigmatic example of this approach is that of Medieval Black 

Death, which could be attributed to a viral pandemic with an aerosol transmission 

pattern, based on the descriptions from historical records [Bossak et al., 2007]. For 

such cases, the etiological cause can only be univocally identified through genetic 

markers. 
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The first genetic studies that targeted ancient pathogens were performed with PCR 

techniques [Kolman et al., 1999, Gernaey et al., 2001, Drancourt et al., 2003, Zink 

et al., 2003 and Nguyen-Hieu et al., 2010]. Such studies required a prior 

pathological diagnosis, as PCR relies on specific primers to amplify each possible 

pathogen [Willerslev et al., 2007], however as bacteria and virus are ubiquitous, the 

specificity of these tests is usually underrated and false positive results are frequent 

[Päabo et al., 2004, Gilbert et al., 2005, Gilbert et al., 2006]. 

The publication of the draft genome of Y. pestis from British individuals of the 14th 

century [Bos et al., 2011] is a milestone as it was the first draft genome of a 

pathogen obtained from ancient human remains. Other strains of Y. pestis were then 

characterized, from the Bronze Age [Rasmussen et al., 2015, Spyrou et al., 2018] 

to the 19th century pandemics [Stenseth et al., 2008] in Europe and from China [Cui 

et al., 2013]. The next step for paleomicrobiology is the retrieval of aDNA in 

unexplored environments, the development of protein-based approaches and their 

integration to unravel genetic adaptation through time.  

The discoveries in the field have been always related with the ultimate technical 

improvements, indeed Second Generation Sequencing (SGS) provided a huge 

amount of data to analyse, whereas the advent of third generation sequencing 

methods might supply the basis for de-novo assembly of aDNA remains, the 

ultimate goal that was left unreached so far. Another alternative and promising 

approach is represented by metagenomics performed on aDNA, which could 

potentially lead to the recovery of complete extinct environments. 
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Figure 4. Overview and Timeline of Historically Notable Disease Outbreaks in Human 

History. Adapted from Andam et al., 2016. 
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1.3 The plague 

 

Plague is an infectious disease of bacterial origin still present in many parts of the 

world, including some regions of industrialized countries. It is caused by Yersinia 

pestis bacterium, which is typically hosted by the parasitic fleas of rodents, rats, 

squirrels and in some cases also pets such as cats. Normally, Y. pestis has low 

mortality rates in these species which can therefore be considered as long-term 

infectious reserves, indeed it is still present in 22 rodent reservoirs. The origin of 

the plague is very ancient, and due to its destructive force, it has been collectively 

named “the black death”, a disease that has accompanied humanity over the 

centuries and was often present in the great literary works and art (Figure 5).  

 

Three main Y. pestis epidemics have affected Europe in historical times: The First 

Pandemic started with the Plague of Justinian (541-543 AD) and continued until 

Figure 5. The Triumph of Death (P. Bruegel, 1562). Oil panel painting showing an 

allegory of the Last Judgment influenced by the medieval plague scenes. 
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~750 AD [Russell et al., 1968]. The Second Pandemic, named the Black Death, was 

probably the most famous and was responsible for killing up to 40% of the 

European population [Rasmussen et al., 2015] during the 14th century (1346-1352 

AD). The second wave of the Black Death was named the Great Plague (1665-1666 

AD), which caused the death of almost one third of the European population and 

literally infected all the countries from the Mediterranean to Scandinavia and Russia 

within five years. In Europe it remained endemic, bouncing back into cycles of 10-

12 years at least for the next three centuries until the 18th century [Zietz et al., 2004]. 

Finally, the Third Pandemic started in China in 1860s, with the outbreak of a serious 

epidemy in 1894, before spreading all over the world as series of pestilences 

between the 18th and 19th centuries [Cohn et al., 2008; Stenseth et al., 2008] until 

the end of the 20th century [Bos et al., 2011; Cui et al., 2013; Drancourt et al., 1998; 

Wagner et al., 2014].  

Y. pestis strains responsible for all three major epidemics were identified, namely 

the strains from the Justinian outbreak [Wagner et al., 2014], the 14th century Black 

Death strains [Bos et al., 2011, Schuenemann et al., 2014] and 18th century 

pandemic [Bos et al., 2016]. Based on literature records, earlier Y. pestis outbreaks 

may have occurred in Europe before the Justinian Plague, such as the Plague of 

Athens (427-430 BC) and Antonine Plague (165-180 AD). The lack of DNA 

evidence, though, does not allow either the confirmation of such events or the 

identification of the pathogen linked with the historical records [Drancourt et al., 

2002; Drancourt and Raoult 2002]. The earliest evidence of Y. pestis DNA presence 

in human remains was detected in Late Neolithic and Bronze Age individuals from 

the steppe and eastern Europe (5000-3500 BP) [Rasmussen et al., 2015]. The 

analysis of these strains revealed that most recent common ancestor of all European 

Y. pestis strains lived up to ~6000 years BC, indicating that the Black Death causal 

strain was present in Europe at least since the Bronze Age. 

Although as of 2018 [WHO 2018] it is still endemic in only 17 countries (Figure 

6), the plague has a remarkable evocative power and immediately brings back 

images of horror and devastation. 

 



 

13 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Reported Plague Cases by Country (2013-2018 WHO) 
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1.4 Yersinia pestis 

 

The genus Yersinia, member of the family Enterobacteriaceae, consists of 11 

species, 3 of them are human pathogens (Y. pestis, Y. pseudotuberculosis and Y. 

enterocolitica).  

Yersinia pestis was discovered in 1894 and named Pasteurella pestis by Alexandre 

Yersin, a French/Swiss physician and bacteriologist from the Pasteur Institute, 

during an endemic of plague in Hong Kong, and was renamed Yersinia pestis in 

1944 after his discoverer. Yersin noted that rats were affected by plague even before 

epidemics in humans and that plague was regarded by many locals as a disease of 

rats; indeed, villagers in China and India asserted that when large numbers of rats 

were found dead, plague outbreaks soon followed [Yersin and Treill 1894].  

Y. pestis is a Gram-negative, rod-shaped, non-motile, non-lactose fermenting, non-

spore forming, facultative anaerobic coccobacillus presenting cell wall, lipid 

composition and antigens typical of enterobacteria. The plague coccobacillus is a 

mandatory parasite growing at temperatures from 4°C to 40°C, optimally growing 

between 28°C and 30°C, with a remarkably stable and vigorous virulence, ability 

to multiply in the tissues of its host and cause death. Its lipopolysaccharide is 

characterized rough, there is no true capsule, however there is a carbohydrate-

protein envelope, named capsular antigen or fraction 1 (F1), which forms during 

growth above 33°C and confers antiphagocytic properties [Perry and Fetherston 

1997].  

Human plague has three clinical forms: pneumonic, bubonic and septicemic. 

Bubonic plague is the most-known form in popular lore, it constitutes about three-

fourths of plague cases. It is also the least dangerous form of plague, accounting 

today for virtually no deaths and in the past killing only half of its victims (at a time 

when contracting the other forms of plague brought almost certainly to death).  
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Typically, bubonic plague appears two-to-six days after Yersinia infection with 

symptoms like shivering, vomiting, headache, giddiness, light-susceptibility, back 

pain, limbs pain and sleeplessness with apathy or delirium in complicated cases. 

The most characteristic sign, however, is the appearance of one or more tender, 

swollen lymph nodes, or buboes, usually distributed in the groin area and armpits. 

The temperature rises rapidly above 40 °C and frequently falls slightly on the 

second or third day, with marked fatigue. Bubonic plague is not directly infectious 

from person to person; the bacillus is carried from rodent to person or from person 

to person by infected fleas (Xenopsylla cheopis). Once ingested by the flea, it 

multiplies until the insect’s digestive tract is blocked. When the flea bites another 

rodent or a human, bacilli are released into the new host and migrate through the 

lymphatic system to lymph nodes, where they produce proteins that impair the 

normal inflammatory response by preventing the intervention of infection-fighting 

macrophages. After weakening the host’s immune response system, the bacilli 

quickly colonize the lymph nodes, producing a painful swelling and, eventually, 

destroying the tissue. Finally, they cause general septicaemia or blood poisoning by 

entering the blood stream either directly, or from the lymph nodes, where they can 

be found in abundance together with spleen, bone marrow and liver.  

At odds with bubonic plague, pneumonic plague can directly be transmitted through 

human-to-human contact [Treille and Yersin 1894], as the bacillus can be passed to 

other people in droplets expelled by coughing or sneezing, therefore it is highly 

infectious. Pneumonic plague can also develop as a complication of bubonic plague 

and displays the same symptoms as severe pneumonia (fever, weakness, and 

shortness of breath) followed by pulmonary edema and eventually death in 3-4 days 

if not treated properly. Additional symptoms include insomnia, stupor, staggering 

gait, speech disorder, and loss of memory. Extensive control measures against rats 

and their fleas have eliminated plague from Europe, but it is still occurring in other 

regions of the world. 

Yersinia pestis is one of the most studied pathogenic microorganisms in 

paleomicrobiology, having the largest number of published strains recovered from 

ancient remains, as well as the most complete timeline due to its famous outbreaks 
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[Bos et al., 2011, Wagner et al., 2014]. For such reasons Y. pestis can be considered 

as the paradigmatic pathogen in the research field of infectious diseases in past 

populations. Y. pseudotuberculosis is the much less pathogenic ancestor (Figure 7) 

of Y. pestis [Achtman et al., 1999].  

 

 

 

 

 

 

 

 

Figure 7. Global Phylogeny for Y. pestis [Harbeck et al., 2013] 
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Chapter 2 

 

OBJECTIVES 

 

The main objective of this thesis was to investigate ancient specimens from three 

different bioarchaeological contexts presumably related to Yersinia pestis and to 

discriminate between true and apocryphal plagues using a paleomicrobiological 

approach, through the application of state-of-the-art techniques such as NGS and 

Metagenomics.  

This approach is quite expensive and technically demanding, but it can be 

proficiently applied to investigate the structure of microbial communities not only 

within the paleomicrobiological context, but it can also be applied to different fields 

like archaeology, anthropology and forensic medicine [Bazaj et al., 2015].  

Unfortunately, no suitable aDNA laboratory where to properly perform the 

experiments was present at the University of Verona. Therefore, during the two 

years of my PhD program, I was involved in the design and realization of an aDNA 

laboratory at the Microbiology Section of the Department of Diagnostics and Public 

Health at the University of Verona.  

In collaboration with the aDNA Laboratory at the Cultural Heritage Department of 

the University of Bologna, Ravenna-Campus, we had the possibility to work with 

teeth (most of which presenting decay) samples (Figures 12 and 13) collected from 

three different burial sites of presumed plague victims in Italy. Specifically, 3 

samples related to the 1576 plague outbreak were collected from the Cemetery of 

Lazzaretto New Island (Venice); 9 samples belonged to the “ Necropoli Tardoantica 

a Forum Semproni” in Fossombrone, which exhibited a peculiar burial method 
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typical of pandemic events like the plague; finally 13 samples were collected from 

“Necropoli Romana” in Modena - NOVISAD Park.  

 

 

 

As previously stated, the broad goal of this project was to shed a light on infectious 

diseases of the past to predict the evolution of the potential pandemic events in the 

future. Such goal could only be reached upon achieving the following milestones: 

• Building a dedicate aDNA laboratory in the Microbiology section 

• Creation of a clean room to possibly isolate samples from modern DNA 

• Setup of an “operator guideline” to avoid any kind of contamination  

• Handling and proper manipulation of ancient specimens 

• Optimization of the aDNA extraction protocols 

• Setup of PCR reaction to maximize amplification of short fragments typical 

of aDNA (150-200 bp) 

• NGS sequencing and Metagenomic analysis to identify the microorganism 

responsible for the presumed plague victims of the three different burial 

sites. 
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Chapter 3 
 

METHODS 

 

3.1 Setting up an “ad hoc” Paleomicrobiology 

laboratory 

 
A critical requirement for this project was the presence of a suitable lab where to 

handle samples properly and to perform the analyses, because of the fragility of 

aDNA and of the high risk of external modern DNA contamination. Since 

paleomicrobiology specimens are non-reproducible and often of historical interest, 

it is fundamental to follow carefully each step of the analysis pipeline. The aDNA 

facility must be isolated from any location where PCR is routinely performed. After 

numbering, classifying, crashing, drilling, pulverizing (Figure 8) and sampling the 

specimens, the most important step that was the DNA extraction from the bones, 

paying the utmost attention to avoid contamination from external DNA.  

Figure 8. Drilling and pulverization of a rib specimen 
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For this reason, we introduced a negative control sample consisting of 

Hydroxyapatite (HA), which is a naturally occurring mineral form of calcium 

apatite (Ca5(PO4)3(OH)). Hydroxyapatite is the hydroxyl endmember of the 

complex apatite group, where the OH− ion can be replaced by fluoride, chloride or 

carbonate, producing fluorapatite or chlorapatite. Pure HA appears as a white 

powder constituted by hexagonal crystals, while its modified form, known as bone 

mineral, constitutes up to 50% volume and 70% weight of human bones. Moreover, 

carbonated calcium-deficient HA is the main mineral of which dental enamel and 

dentin are composed, making pure HA the best compound to use as a negative 

control. Pulverization of the specimens was performed under a laminar fumed hood 

under sterile conditions (Figure 8) and it is the step where the HA negative control 

was introduced. The sample (obtained from rib specimens) was then transferred for 

DNA extraction room to the core of the laboratory (named “clean lab”) (Figure 9) 

through a “pass-through cabinet” (Figure 10) fitted with UVC light in order to 

preserve sterility.  

 

 

 

 

 

 

 

Figure 9. aDNA Extraction lab, called "Clean Laboratory” 
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In order to assess the suitability of the newly built “ad hoc” paleomicrobiology lab, 

we replicated the experiments performed in the established aDNA Laboratory at the 

Cultural Heritage Department of the University of Bologna, Ravenna-Campus. All 

the amplifications and sequencing reactions were replicated at least twice in each 

laboratory in order to authenticate the results and carefully check the mutations 

found. All the steps of the analysis were conducted under strict guidelines for 

contamination control and detection and reproducibility of data [Cooper & Poinar, 

2000; Gilbert et al., 2005; Llamas et al., 2017].  

Finally, we were able to reproduce their analysis in our laboratory and to evaluate 

the authenticity of the results obtained in all the samples included in the project 

[Cilli et al., 2020 article in press], meaning that our laboratory fulfilled all the 

requirements for proper aDNA manipulation.  

The analysis of aDNA is time-consuming and very expensive, but it can provide a 

powerful tool for investigating evolutionary processes that cannot be approached 

using only modern data. 

 

 

 

Figure 10. Picture of the “pass-through cabinet” to preserve the 

sterility of the specimen during manipulation steps 
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3.2 Biological specimens’ collection and 

manipulation 

 

 

The study of skeletal remains recovered in a catastrophic death assemblage can 

provide information about the health status of the population in different 

archaeological contexts, which may be useful to answer some questions about the 

plague, a still present disease in several parts of the world. This study, in 

collaboration with the aDNA Laboratory at the Cultural Heritage Department of the 

University of Bologna, Ravenna-Campus, was based on teeth samples (most of 

which with no signs of damage) collected from three different burial site of 

presumed plague victims in Italy. Three samples related to the Plague of 1576 

(Table 1) were collected from the Cemetery of Lazzaretto New Island (Venice).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. New Island Lazzaretto Venezia 
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The analysis of the composition of the samples allowed to reconstruct the diet of 

16th century venetian population. Moreover, the ratio between trace elements 

indicated that the subjects belonged to different social classes, suggesting that the 

flagellum of Y. pestis didn’t make any social distinction [M. Borrini, F. Bartoli et 

al., 2010].  

Nine samples came from the “Necropoli Tardoantica a Forum Semproni” in 

Fossombrone (Figure 12), which exhibited a peculiar burial method.  

 

 

 

 

 

 

 

 

 

Indeed, no individual burial was found at this site, instead all the corpses were 

buried together in a hasty, superficial and careless manner (see Figure 13), typical 

of pandemic events like the plague. In addition, based on historical events 

contemporary to the burial, a lethal epidemic event presumably occurred. Such 

event was characterized by a fairly large incubation period (up to 12 days for 

plague) and a few days period between the clinical manifestation and the death of 

the individual [M. Luni, O. Mei and P. Gobbi 2013].  

 

 

 

Figure 12. Teeth samples collected from Fossombrone 
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Thirteen samples were collected from “Necropoli Romana” in Modena- NOVISAD 

Park (Figure 14). This burial site was found by chance in the city center of Modena 

during the construction of an underground parking area. The big cemetery was 

found to be constituted by several sepulchral nucleons of different ages, indeed the 

most ancient burial sites dated around the 2nd century BC, while the necropolis of 

the presumably plague victims dated 

back to the 17th century. The burial 

architecture was typical of the Christian 

Romans, the only population that took 

care of the sepulture of the individuals 

who died from the plague instead of 

incinerating them, the other treatment 

to which infected individuals were 

subjected. The graveyard consisted of 

69 tombs arranged in several parallel 

rows each housing several bodies, often 

laid hurriedly one on top of the other, 

both wrapped in bandages and without 

Figure 13. Detail view of burial site of plague victims  

Bodies are tossed from carts into hastily dug pits and covered with a layer of 

dirt thin enough that animals might dig up body parts [Ranson Riggs 2010]. 

Figure 14. Teeth samples collected from 

Modena 
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clothing under a pile of quicklime. Some signs of burns on the bones were also 

found suggesting sterilization practices even before burial, probably to avoid the 

diffusion of the epidemic. The remains found are often incomplete and there are no 

signs of deposition according to religious canons, despite the land being religious 

property [Labate et al., 2010].  

Bones and dental pulp represent the best material for research on microbial 

pathogens, because their aDNA content better preserved. Before the analysis, each 

sample was subjected to a decontamination procedure consisting of 45 minutes of 

UVC irradiation on each side [Haensch et al., 2010]. Each lab operator had to wear 

a full body suit and a new overall dedicated only to aDNA laboratory before 

entering, and a second sterile overall on top of the first one every time the operator 

moved to a different room.  

Handling of the samples followed the guidelines for contamination precautions 

described in the literature [Cooper & Pionar, 2000, Pääbo et al., 2004], consisting 

of changing gloves every time in between samples, sterilization of the bench with 

UVC for at least 45 minutes after sample manipulation, transfer of the samples 

using a pass-through cabinet (Figure 10) between the processing room and the DNA 

extraction room. Furthermore, all the equipment, benches, reagents, pipettes, scale, 

plasticware, masks, helmets, were incubated for 45 min under UVC light (250 nm) 

before and after usage and cleaned with bleach, which causes oxidative damage to 

DNA, producing chlorinated base products [Fulton et al., 2012].  

All three rooms constituting the aDNA lab were irradiated with UVC light from 21 

to 6 to ensure a contamination-free environment. At the end of the sample 

processing, pulverized bones were aliquoted (0.1-0.2 g) and stored at 4 °C until use. 

Unfortunately, since most of the specimens were collected by external 

archaeologists, we could not guarantee that the protocols for avoiding 

contamination were followed during the collection of the samples. 
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Table 1. Dataset of all samples received 

ID SAMPLE_ID ITEM_ID DATA NOTE NOTE2 STANDARD DATA ESTRAZIONE

Lazzaretto Isola Nuova-Venezia
LN 1 18082150 LN08 T37 21/08/2018 T: 0,047| P1C: 0,052| P2R:0,099 CAPO S. CIS 1 SETT IV SI 23/08/2018

LN 2 18082151 LN08 T38 21/08/2018 T:0,051| P1C:0,080| P2C:0,077| P3R: 0,093 SET IV N C/O ID 15 SI 23/08/2018

LN 3 18082152 LN08 T48 21/08/2018 T:0,019| P1C:0,076 |P2R:0,093 CAMPO SANTO SETIV N CIS1 SI 23/08/2018

LN_CN

Modena NOVISAD

NP 1 18070509 NP_TB_245_US 3399 24/07/2018 PTR: 71 mg M1; M2 DESTRO E SINISTRO SI 24/07/2018

NP 2 180705010 NP_TB_245_US 3400 24/07/2018 P: 36 mg M2; M3  SINISTRI SI 24/07/2018

NP 3 180705011 NP_TB_246_US 3334 24/07/2018 P: 77 mg | R: 124 mg 2 MOLARI SI 24/07/2018

NP 4 180705012 NP_TB_246_US 3335 24/07/2018 P: 72 mg C. 1172 SI 24/07/2018

NP 5 180705013 NP_TB_247 _US 3338 24/07/2018 PC: 30 mg C. 1173 campioni aDNA SI 24/07/2018

NP 6 180705014 NP_TB_248_US 3362 24/07/2018 R: 40 mg C. 1166 campioni aDNA SI 24/07/2018

NP 7 180705015 NP_TB_255_US 3403 24/07/2018 PR: 48 mg C. 1124 campione aDNA SI 24/07/2018

NP 8 180705016 NP_TB_256_US 3407 24/07/2018 R: 78 mg M1;M2 DESTRI SI 24/07/2018

NP 9 180705017 NP_TB_257_US 3410 24/07/2018 D: 242 mg DENTE bambino (?) SI 24/07/2018

NP 10 180705018 NP_TB_259_US 3418 24/07/2018 DR: 10 mg M1;M2; M3 DESTRI SI 24/07/2018

NP 11 180705019 NP_TB_278_US 3481_IND 1 24/07/2018 PR: 37 mg 2 MOLARI SI 24/07/2018

NP 12 180705020 NP_TB_278_US 3481_IND 2 24/07/2018 P: 77 mg 1 MOLARE SI 24/07/2018

NP 13 18070521 NP_TB_280_US 3484 24/07/2018 P: 46 mg 2 PREMOLARI SI 24/07/2018

NP_CN

Fossombrone
FS1A; FS1B 18070501 FS_TB 3 23/07/2018 MR:_159mg | PR: 94MG_| 1 MOLARE | 1 PREMOLARE SI 24/07/2018

FS 2 18070502 FS_TB 31 23/07/2018 R: 90 mg| 1 MOLARE SI 24/07/2018

FS 3 18070503 FS_TB 34 23/07/2018 R: 189 mg| 1 MOLARE | 1 PREMOLARE SI 24/07/2018

FS 4 18070504 FS_TB 35B 23/07/2018 R 142 mg 2 PREMOLARI SI 24/07/2018

FS 5 18070505 FS_TB 114 23/07/2018 P: 103 mg 1 MOLARE | 1 PREMOLARE SI 24/07/2018

FS 6 18070506 FS_TB121 23/07/2018 P: 127 mg 1 MOLARE | 1 PREMOLARE SI 24/07/2018

FS 7 18070507 FS_TB 204_A 23/07/2018 P: 77 mg 1 MOLARE | 1 PREMOLARE SI 24/07/2018

FS 8 18070508 FS_TB 204_B 23/07/2018 P: 116 mg 2 PREMOLARI SI 24/07/2018

FS 9 18070509 FS_TB 212 23/07/2018 P: 59 mg 1 MOLARE | 1 PREMOLARE SI 24/07/2018

FS_CN
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3.3 DNA extraction 

 

 

The most limiting factor in aDNA retrieval and analysis is the percentage of 

endogenous DNA found. 

The content of endogenous aDNA is less than the 1% of the total sequenced reads, 

even though the rate of endogenous aDNA of different samples from the same 

individual can differ by orders of magnitude [Green et al. 2010]. In addition, the 

pathogens to be identified may require different extraction protocols depending on 

their life cycle and the specific tissue they target. For instance, aDNA extraction of 

Y. pestis or Mycobacterium leprae is often achieved from bone tissue, teeth 

[Schuenemann et al., 2013, Bos et al., 2011] or dental cementum, which exhibits a 

rate of endogenous DNA similar to that of the petrous bone [Hansen et al., 2017].  

The petrous bone is the densest bone in the human skeleton, exhibiting the highest 

rate of aDNA [Gamba et al., 2014, Pinhasi et al., 2015], although in the study of 

pathogens from ancient remains its targeting is usually not an option [Margaryan et 

al., 2018]. On the other hand, the presence of Mycobacterium tuberculosis is usually 

assessed by extracting the DNA from ribs due to the pulmonary tuberculosis 

[Bowman et al., 2012]. Pathogens that do not infect bones, such as Vibrio cholera, 

can be particularly challenging to identify, as the DNA can be extracted only from 

soft tissues, which is restricted to rare mummified or dissected specimens [Devault 

et al., 2014].  

DNA extraction protocols are typically divided in two main steps: the first is the 

solubilization of DNA-bearing tissues and the consequential release of the DNA 

molecules, the second consists in the purification of such DNA [Heintzman et al., 

2015]. The release of the genetic material is achieved through compounds like 

proteinase K which hydrolyses collagen and Ethylenediaminetetraacetic acid 

(EDTA) which demineralizes hydroxyapatite [Rohland & Hofreiter, 2007] by 

chelating Ca2+ ions. DNA is then purified and separated from other organic and 

inorganic molecules by silica-based methods [Rohland & Hofreiter 2007, Dabney 
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et al., 2013, Allentoft et al., 2015], or alternatively by the less commonly used 

phenol-chloroform methods [Barnett et al., 2012].  

Silica-based methods can be divided between in-solution based and column-based. 

In the in-solution based method the calcified tissue is digested, the DNA is 

electrostatically captured by a silica pellet [Rohland & Hofreiter 2007] which is 

finally washed to allow the release and recovery of the DNA. This method was 

recently improved by replacing the in-solution silica with silica columns [Dabney 

et al., 2013], which increased the recovery of extra-short endogenous aDNA 

fragments (<80 bp) [Gamba et al., 2016] representing the larger fraction of aDNA 

reads [Orlando et al., 2015]. Aliquots of 0.1-0.2 g were tested with a modified 

version of 3 aDNA extraction protocols [Rohland & Hofreiter 2007, Dabney et al., 

2013, Allentoft et al., 2015]. The adapted protocol (described in detail in the 

supplementary data) was based on the “The MinElute PCR Purification Kit” 

commercial kit (Qiagen), which provides spin columns, buffers, and collection 

tubes for silica-membrane-based purification of PCR products (70 - 4000 bp in 

size), yielding large amounts of highly concentrated DNA in very small volumes 

(10-50 μl). DNA extraction was entirely performed under laminar hood (Figure 15) 

previously irradiated with UVC light for at least 30 min.  

 

 

 

 

 

 

 

 

 

Figure 15. Extraction of aDNA from a rib 

specimen 
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Quantification of 1 µL extracted aDNA sample was performed on a NanoDrop™ 

2000 UV-Vis spectrophotometer (Thermo Scientific) according to the manufacturer 

instructions. The instrument is specifically intended for small volumes and 

measures the absorbance at different wavelengths to evaluate sample concentration 

(via Lambert-Beer’s law) and to estimate the degree of contamination.  

Indeed, the absorbance ratio at 260 and 280 nm (A260/A280) determines the presence 

of proteins in the sample; the optimal value for the study of mDNA is between 2.1 

and 1.8 but in the case of aDNA such ratio ranges between 1.4 and 1.8, higher values 

determine the presence of protein contaminants. On the other hand, the absorbance 

ratio at 260 and 230 nm (A260/A230) indicates the presence of carbohydrates and 

phenols, values below 1.8 indicate the presence of contamination.  

As the quantification method is absorbance-based, no distinction can be made 

between modern, human and microbial aDNA, moreover, the high level of 

fragmentation of aDNA makes its precise quantification particularly complex. 

Nevertheless, previous studies established this analysis of the fragments as the 

reference method for aDNA quantification [Brzobohatá et al., 2017].  
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3.4 Polymerase Chain Reaction (PCR): using 

“specific primers” to detect the presence of 

Y. pestis 

 

 

A turning point for forensic science and DNA typing laboratories is represented by 

the Polymerase Chain Reaction (PCR), a technique described for the first time in 

1985 by Kary Mullis, for which he was awarded with Nobel Prize in 1993. PCR 

has revolutionized molecular biology, as it allowed to generate hundreds of millions 

of copies of a specific sequence of DNA in only few hours. Specifically, due to the 

low number of surviving aDNA molecules, no aDNA analysis would be possible 

without PCR and therefore it would be impossible to reconstruct and have a clear 

view of the pandemic events in the past.  

PCR is an enzymatic process in which a specific region of DNA is replicated over 

and over again to reproduce many copies of a particular sequence [Bulter J. M. 

2012]. The amplification is done with two synthetic oligodeoxynucleotide primers, 

each about 25 bases long, a thermostable DNA polymerase, and the four 

deoxyribonucleotide triphosphates. PCR is an ideal tool to amplify a small number 

of intact aDNA sequences present in a vast excess of damaged molecules [Pääbo et 

al., 1989]. During enzymatic amplification, most damaged molecules will either not 

be replicated at all, e.g. due to interior intramolecular cross-links, or will be at a 

replicative disadvantage with respect to intact molecules, because lesions such as 

baseless sites, slow down the DNA polymerase. Moreover, the strong inverse 

correlation between amplification efficiency and the size of the amplification 

product observed for aDNA, but not for modern DNA, can be employed as another 

criteria for discriminating authentic aDNA from contaminating exogenous DNA. 

Another critical issue to assess is the specificity of the primers used to amplify the 

sequence of interest, as some doubts about the specificity of pla gene for Y. pestis 

were raised [Janse et al., 2013].  
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Here, three PCR analyses using SimpliAmp™ Thermal Cycler, were performed: 

the first, based on a paper by Hänsch and colleagues [Hänsch et al., 2015], to detect 

the plasminogen activator/coagulase (pla) gene, located on the pPCP1 plasmid, that 

was assumed to be specific for detecting Y. pestis, but was present also in 

Citrobacter koseri and Escherichia coli. The second pair of presumably specific 

primer used for detection of Y. pestis [Raoult et al., 2000], were used to perform a 

“suicide PCR”, that is a PCR where the couple of primers is used only for the first 

cycle. In this PCR reaction there was not a positive control, so the amplicons 

obtained were sequenced to confirm the presence of Y. pestis. The third PCR 

reaction was performed using specific primers designed at the aDNA Laboratory of 

Ravenna (Table 2). As previously stated, the samples were independently analysed 

by two aDNA labs, using reagents manufactured by the same company, in detail: 

AmpliTaq Gold™ DNA Polymerase with Buffer II and MgCl2 (Thermofisher) 

consisting in: 5 U/µl Ampli Taq™ Gold Hot Start; 10x Gold Buffer; 25 mM MgCl2; 

10 mM dNTP; 50 mg/ml Bovine Serum Albumin (BSA) as an enhancer; for each 

set of primer: 10 µM Primer Fw 10 µM Primer Rv and DNAse/RNAse free H2O, 

with the following cycling conditions:  

Pla_1 Fw and Pla_1 Rv [Hänsch et al., 2015] 

Activation: 15 min at 95 °C 

Amplification (50 cycles):  

• Denaturation: 30 s at 94 °C 

• Annealing: 30 s at 60 °C 

• Elongation: 1 min at 72 °C  

Final extension: 10 min at 72 °C  

Cooling and storage: 8 °C until analysis 

 

YP12D and YP11R [Didier and Raoult, 2000] 

Activation: 5 min at 95 °C 

Amplification (50 cycles):  

• Denaturation: 45 s at 95 °C 

• Annealing: 45 s at 55 °C 

• Elongation: 1 min at 72 °C  
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Final extension: 10 min at 72 °C  

Cooling and storage: 8 °C until analysis 

 

pst_Fw and pst_Rv [Ravenna Campus] 

Activation: 5 min at 95 °C 

Amplification (50 cycles):  

• Denaturation: 45 s at 95 °C 

• Annealing: 45 s at 60 °C 

• Elongation: 1 min at 72 °C  

Final extension: 10 min at 72 °C  

Cooling and storage: 8 °C until analysis 

 

 

 

 

Name Seq 5’→3’ 

Annealing 
temperatu

re (°C) 

Amplico
n size 
(bp) Ref. 

Note
s 

pla_1 
Fw  

GACTGGGTTCGGGCACA
TG 60 

 
 

70 (33) 

Hänsch et al., 

2015 
qPCR 
(pla) 

pla_1 
Rv  CGGATGTCTTCTCACGGA  60 

 
 

70 (33) 

Hänsch et al., 

2015 
qPCR 
(pla) 

YP12D 
CAGCAGGATATCAGGAAA
CA  55 

148 
(106) 

Raoult et al., 
2000 

pla 
gene 

YP11R 
GCAAGTCCAATATATGGC
ATAG  55 

148 
(106) 

Raoult et al., 
2000 

pla 
gene 

pst_Fw 
CTGTGGGAGCAGTTCTG
GAT 60 

73 (33) 
Ravenna 
Campus  

pst_Rv 
TTGAGAACCCGTACAGCA
CT 60 

73 (33) 
Ravenna 
Campus  

Table 2. Primers used for PCR analyses 

 

 

The amplicons were separated on a 1.5% agarose gel to evaluate the presence of 

real aDNA, providing optimal resolution for small DNA fragments (0.2 – 1 kbp).  
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Gel electrophoresis is a method for separation and analysis of biological 

macromolecules (DNA, RNA and proteins), based on their size and charge. DNA 

is a negatively charged molecule due to the presence of phosphate groups, therefore, 

when immersed in an electric field, it will move towards the anode. The mobility 

of the substance on a gel depends on its charge and mass, implying that a larger 

strand of DNA (potentially mDNA, or contaminant) will travel a shorter distance 

compared to a smaller fragment, which is what usually aDNA consists of. For a 

correct identification of the amplicons we used Gene Ruler 50 bp DNA Ladder 

(Thermofisher) which ensures high mass and size resolution for double-stranded 

DNA in the 50 to 1000 bp range. Each amplicon was visually quantified according 

to the DNA standard, finally the 70, 73 and 148 bp fragments were sent for 

sequencing using traditional Sanger method [Sanger et al., 1975].  

The obtained sequences were used as query strings for BLAST (Basic Local 

Alignment Statistical Tool), a program that compares nucleotide or protein 

sequences to sequence databases to find regions of local similarity between 

sequences and calculates the statistical significance of each match. BLAST matches 

can be used to infer functional and evolutionary relationships between sequences 

as well as to help identifying members of gene families. 

 

 

 

 

 

 

 

 

 

 

 

 



 

34 
 

3.5 Next Generation Sequencing (NGS)  

 
 

 

Next-generation DNA sequencing (NGS) involves rapid, high-throughput 

collection of short DNA sequences ranging from 25 to 250 bp. Recently, pathogen 

bacteria genome sequencing has been used as an epidemiological tool to trace 

contemporary outbreaks, like the cholera outbreak in Haiti in 2010 [Eppinger et al., 

2014] and the Ebola epidemy in west Africa in 2014 [Carroll et al., 2015, Gire et 

al., 2014]. The majority of pathogen genome sequencing efforts have been focused 

on contemporary DNA, due to the easier handling and conservation and the higher 

availability of specimens with respect to aDNA. Indeed, the application of NGS to 

aDNA remains a big challenge due to the high degree of degradation caused by 

endonucleases and environmental factors that may result in modified bases or strand 

breaks [Briggs A. W, Heyn P. 2012]. Thus, obtaining high sequencing depth and 

accuracy from such samples is often difficult, as the combination of the presence of 

uracil (caused by cytosine deamination) and the low copy of number of aDNA can 

potentially lead to miscoding errors.  

Despite all these drawbacks, NGS represented a promising technique for 

unravelling aDNA due to the similarity between the length of the fragments 

required for NGS and that available from aDNA samples, usually too short for 

traditional sequencing techniques. Indeed, recent studies showed successful 

applications of NGS to aDNA belonging to the Neanderthal mitochondrial genome 

[Green et al., 2008] and the extinct woolly mammoth [Miller et al., 2008, Poinar et 

al., 2006].  
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It is still unclear whether NGS techniques may be applied to traditional forensic 

DNA as proficiently as to aDNA analysis [Blow et al., 2008]. Currently, NGS 

techniques cannot accurately identify repetitive sequences and thus, unless future 

improvements are made, they cannot reliably deal with the short tandem repeat 

regions (STR) which forensic DNA analysis is based on [Hert et al., 2008]. 

Moreover, the amount of data produced by NGS approaches, consisting of millions 

of short reads, makes bioinformatics support crucial for forensic DNA laboratories, 

which might also require to switch the analysis of genetic markers from STRs to 

single nucleotide polymorphisms (SNPs) to fully exploit the potentiality of NGS. 
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3.6 Metagenomics 

 

 

Metagenomics is a branch of genomics that simultaneously studies a complex 

community of microorganisms present in a sample, avoiding the growth on 

selective media. Indeed, growth on culture media it allows to identify only 1-3% of 

the microorganisms actually present in natural samples, losing 97-99% of the 

information [Gordon, 2012; Hugenholtz et al., 1998], because of their particular 

growth conditions, such as specific nutrients and anaerobic conditions.  

The drawbacks of the classical microbiology techniques to identify microorganisms 

can be overcome by metagenomics approaches, consisting of extracting genomic 

DNA from the samples. Followed by sequencing of the 16S rRNA. In such way it 

is possible not only to identify simultaneously every single microorganism 

belonging to the community, but also to analyze their interaction with each other, 

with the environment (microbial ecology) or with the hosting organism.  

As microbial communities are involved in a variety of complex biological 

processes, metagenomics can be fruitfully applied to numerous fields in order to 

unravel their specific function within each context. 

A great contribution was provided by Carl Woese, who in 1967 separated the  

Archea and the Bacteria dominia, using molecular phylogeny techniques applied to 

ribosomal RNA 16S [Woese et al., 1990, 1978 and 1977]. The molecular analysis 

of the gene sequence that encodes the minor ribosomal subunit (16S) is still today 

considered the most relevant sequence for the classification of Bacteria and Archea. 
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3.7 16S rRNA Metagenomics and aDNA 

 

 

16S rRNA stands for 16S Ribosomal 

Ribonucleic Acid (rRNA) (Figure 16), 

where S (Svedberg) is a unit of 

measurement for the sedimentation rate.  

The 16S rRNA encodes the small subunit 

of prokaryotic ribosomal RNA and 

contains nine hypervariable regions (V1-

V9) separated by ten highly conserved 

regions (Figure 17).  

The hypervariable regions characterize the diversity between species and allow 

bacterial taxonomy studies. Several studies showed that each of the 9 hypervariable 

regions provide specific information for bacterial classification [Petrosino et al., 

2009].  

 

 

Figure 17. Full length of 16S rRNA gene. Adapted from 

https://help.ezbiocloud.net/wp/wp-content/uploads/2017/05/16s_var_pcr.png  

Figure 16. 16S rRNA subunit of prokaryotic 

ribosome 
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The 16S rRNA gene is the most used gene in microbial metataxonomic analysis 

because it is conserved across members of the paraphyletic prokaryotic domains 

Bacteria and Archaea [Ziesemer et al., 2015], therefore allowing the design of 

“universal” primers for microbial PCR amplification, yet also sufficiently variable 

to allow the classification at an approximate species level [Roh et al., 2010]. The 

full-length 16S gene is usually amplified using 27F and 1492R primers, although 

multiple primers on both strands are required for accurate DNA sequencing.  

 Archaea-specific primer sequences typically lack in specificity. The V3 region 

(primers F333 5’- TCCTACGGGAGGCAGCAG-3’ and U592R 5’-

ACCGCGGCKGCTGGC-3’), was used for first time for the preparation of 16S 

libraries from thermophile communities [Baker et al., 2004]. Such libraries 

suggested that the V3 region was an excellent candidate for aDNA amplification 

for two main reasons: i) it is the shortest 16S rRNA region (~100 bp shorter than 

V4 region), ii) it exhibits high sequence heterogeneity, resulting in a good 

taxonomic variability [Ziesemer et al., 2015].  

Region V4 (universal primers 515F 5’-GTGYCAGCMGCCGCGGTAA-3’ and 

806R28 5’-GGACTACNVGGGTWTCTAAT-3’) was considered not a suitable 

choice for aDNA studies, as the highly fragmented aDNA molecules, rarely 

exceeding 200 bp in length, were shorter than the entire V4 sequence (~292 bp 

including primers).  

To guarantee the exclusive analysis of aDNA in our samples we focused also on 

the V5 region. Indeed, the V5 hypervariable region (primers F784 5’-

AGGATTAGATACCCTGGTA-3’ and R934 5’- 

TGTGCGGGCCCCCGTCAATT-3’) performs well on a number of metrics: it has 

very good predicted taxonomic coverage and is relatively short (144–148 bp) with 

little amplicon length variation. The sequence encompassing V3 and V5 regions 

(primers F333 and R934) was used for the construction of the libraries of bacterial 

16S rRNA gene [Weil et al., 2017].  

In addition, since the V3-V5 amplicon would be much longer than the expected 

sequences for aDNA, the two regions were amplified individually, as the combined 

analysis of such regions was found to be a suitable discriminant for microbial 
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research. We analysed eight different samples from the three burial sites 

presumably associated with the presence of Y. pestis (see figures in supplementary 

information), and two additional samples, from a different bio-archaeological 

context (Forlì) in which bisome burials were found, were considered as negative 

control because they cannot be attributed to pestilential periods (see Material and 

Methods). PCR reactions were performed with the same reagents as previously 

described for conventional PCR, with the following thermal cycling profiles: 

Amplification for V3 region of 16S gene with F333/U529R primer [Baker 

et al., 2004] 

 

Activation: 10 min at 95 °C 

Amplification (25-35 cycles):  

• Denaturation: 45 s at 94 °C 

• Annealing: 1 min at 56 °C 

• Elongation: 1 min at 72 °C  

Final extension: 10 min at 72 °C  

Cooling and storage: 4 °C until analysis 

 

 

Amplification for V5 region of 16S gene with F784/R934 primer  

 

Activation: 10 min at 94 °C 

Amplification (35cycles):  

• Denaturation: 45 s at 94 °C 

• Annealing: 1 min at 55 °C 

• Elongation: 1 min at 72 °C  

Final extension: 10 min at 72 °C  

Cooling and storage: 4 °C until analysis 
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3.8 Preparation of NGS Libraries from aDNA 

 

 

Library preparation consists of all the chemical reactions and procedures that 

modify DNA fragments to meet the experimental requirements for NGS 

sequencing. In detail, the DNA fragments to be sequenced are end-repaired and 

ligated with universal sequencing-adaptors.  

Adaptor-ligated libraries are convenient for aDNA studies because they can help 

overcoming the main inconvenience of NGS which is the short reads length. 

Moreover, adaptor primers outside the aDNA sequence allow the recovery of 

information from molecules too short for traditional PCR. Finally, universal 

adaptors provide higher amplification of the entire library before any downstream 

experiments. Even though NGS presents advantages for aDNA studies, post-

mortem aDNA damage, consisting of strand-breaks and base modification (see 

aDNA degradation), still represent a challenge to face.  

There are no standard protocols for the preparation and NGS sequencing of aDNA 

libraries, they are usually tailored on the specific requirements of each project, but 

they follow the same pipeline. The first step usually consists of DNA fragmentation, 

but it can be considered unnecessary for aDNA due to its intrinsic fragmentation. 

Then, the ends of aDNA fragments have to be repaired and ligated with short 

sequences (adapters) which will be eventually recognized by NGS platforms 

(Figure 18). The reparation reaction basically consists in the degradation of the 

overhanging 3’ ends and the filling of 5’ overhanging ends. Unfortunately, fragment 

ends are frequently affected by one of the most common miscoding lesions in 

aDNA molecules, namely cytosine deamination to uracil (resulting in C to T 

transition). The elimination of deamination products on one hand reduces the 

number of mismatches and the genotyping errors, but on the other hand prevents 

the recognition of specific patterns used to validate the presence of aDNA.  

The following step is common for both treated and non-treated reads and 

represented by the adapter ligation. This process can be accomplished either using 
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two different adapters (blunt-end ligation) to the read ends, or a single Y-shaped 

adapter with a T-overhang to both ends of DNA. However, the Y-shaped adapter 

requires an additional pre-processing step consisting of the addition of A-overhangs 

through the so-called A-tailed ligation [Willmann et al., 2018], and may lead to the 

misincorporation of T in the read ends [Seguin-Orlando 2013]. It is also 

recommended to include a negative (blank) library control during library 

preparation to assess the quality of the library. 

Figure 18. Library preparation method for double strand libraries. The DNA is 

fragmented and the reads ends are repaired by adding A bases, then the adapters are 

ligated to the repaired ends. Finally reads are amplified with PCR technique (Ilumina). 
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Finally, the DNA sequences obtained are amplified through a limited number of 

PCR cycles, in order to preserve the variability of the library, moreover, the choice 

of an adequate PCR polymerase is also crucial to avoid GC and read length biases 

[Dabney and Meyer 2012]. To differentiate several libraries sequenced in the same 

run, barcodes are attached to the adapters during the amplification process [Craig 

et al., 2008, Knapp et al., 2012]. 

The amplicon obtained from the two PCR reactions were sent to the Paleogenetic 

laboratory at University of Firenze for the library preparation and DNA sequencing 

[Modi et al., 2017].  
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3.9 Microbial taxonomic profiling  

 

Bioinformatic analyses and microbial taxonomic profiling were conducted using 

MALT (MEGAN [Huson et al., 2007] ALignment Tool) software, by aligning the 

sequences obtained from teeth samples against SILVA database (https://www.arb-

silva.de/). 

 

3.10  Phylogenetic trees 

 

Phylogenetic trees are one of the most common representations of the biological 

diversity, displaying the relations of biological samples or species using branches, 

nodes and taxa. The branching pattern of a tree is define its topology, while the 

group of the descendants of a node defines a clade. Clades composed by all the 

descendants of a common ancestor are called monophyletic, otherwise they are 

named paraphyletic.  

Phylogenetic trees can be built based on genetic or morphological diversity. One of 

the most used criteria to build a genetic phylogenetic tree is called Maximum 

Likelihood (ML), which is a statistical method for estimating unknown parameters 

in a probability model. In terms of phylogeny, the likelihood represents the 

probability of an observed sequence on a particular tree assuming a specific 

evolutionary model (see figure 19). If the ancestor of all the taxa present in the 

phylogeny is unknown, the phylogenetic tree is considered unrooted, otherwise it 

is called rooted and the branches length can be interpreted as time estimates. 

Moreover, if an outgroup is added, it is possible to identify the ancestral node of the 

phylogeny and root it. 

 

 

https://www.arb-silva.de/
https://www.arb-silva.de/
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Figure 19. Phylogenetic Tree. Adapted from Hackel 1866 
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Chapter 4  

 

RESULTS  
 

 

4.1 aDNA extraction and purity  

 

Three different bioarchaeological context from Italy (Venice, Fossombrone, 

Modena) were taken under analyses for research of Y. pestis, the bacterium causing 

the plague. The specimens were treated with extreme caution, as detailed in the 

methods section, to prevent any cross-contamination with modern DNA. Extraction 

and purification of aDNA was performed with MinElute PCR purification Kit 

(Qiagen GmbH, Hilden, Germany), for each extraction reaction, a negative control 

based on hydroxyapatite powder was introduced to detect possible DNA 

contamination from exogenous sources during both pulverization and extraction 

procedures.  

Quantification results showed an overestimation of the amount of DNA present in 

all samples, with a measured concentration range from 12.7 to 43.4 ng/µL, with an 

average A260/A230 ratio ranging from 0.79 to 3.03 and an average A260/A280 ratio 

range between 1.38 and 1.55. Overall, our results suggest that the samples do not 

exhibit a high degree of purity, most probably due to the internal degradation of 

aDNA and the exposition to environmental factors. Nevertheless, such values can 

still be considered satisfactory, as they are comparable with previously reported 

data on aDNA samples [Brzobohatá et al., 2017].  
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4.2 PCR and Sanger Sequencing  

 

All the aDNA samples were subjected to conventional PCR reactions using three 

sets of supposedly “specific primers” to assess primer specificity (Figure Sx). The 

first set was used detect the plasminogen activator/coagulase (pla) gene (pla_1_FW 

5’-GACTGGGTTCGGGCACATG-3’, pla_1_RV 5’- 

CGGATGTCTTCTCACGGA-3’) located on the pPCP1 plasmid, that was assumed 

to be specific for detecting Y. pestis [Hänsch et al., 2015], but was found in 

Citrobacter koseri and Escherichia coli. The second set of primers was employed 

for a “suicide PCR” (YP12D 5’-CAGCAGGATATCAGGAAACA-3’, YP11R 5’-

GCAAGTCCAATATATGGCATAG-3’), where the primers were used only for the 

first cycle [Raoult et al., 2000]. 

The third couple of primers (pst_FW 5’-CTGTGGGAGCAGTTCTGGAT, pst_RV 

5’- TTGAGAACCCGTACAGCACT-3’) was specifically designed at the aDNA 

Laboratory of Ravenna for this research. The amplification products were purified 

with the MinElute PCR purification Kit (Qiagen GmbH, Hilden, Germany), and 

sent for Sanger sequencing on both strands.  

The obtained sequences were used as query strings for BLAST (Basic Local 

Alignment Statistical Tool) against all non-redundant nucleotide sequences.  

Unfortunately, due to shortness of the query sequences, ascribable to the high 

degree of fragmentation of aDNA, the detection of Y. pestis with traditional PCR 

amplification was not successful. Indeed, most of the sequenced samples consisted 

only of short fragments, not informative enough to retrieve reliable information 

from the databases available online. Indeed, the most frequently identified species 

from BLAST analysis were environmental bacteria such as Streptomyces 

bingchenggensis (strain BCW-1) and Rhodococcus hoagii (strain 103S, also called 

Rhodococcus equi).  
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S. bingchenggensis (strain BCW-1) belongs to the Streptomyces genus, consisting 

of soil and water Gram positive filamentous bacteria, well known for their ability 

to produce complex secondary metabolites including many antibiotics. It was 

isolated in Harbin, China (China General Microbiology Culture Collection Center 

CGMCC1734) and has one of the largest sequenced bacterial genomes at almost 12 

Mb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Streptomyces bingchenggensis (strain BCW-1) taxonomy adapted from 

https://www.uniprot.org/taxonomy/749414 
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R. hoagii (strain 103S, or R. equi) belongs to the Rhodococci genus, consisting of 

aerobic, Gram positive actinomycetes characterized by a high G/C content and by 

an environmental-dependent morphological differentiation (e.g., cocci or 

filaments). Moreover, Rhodococci display long-term survival in soil, an exceptional 

tolerance for high levels of heavy metals and a metabolic propensity towards 

hydrophobic pollutants even in the presence of more readily assimilable carbon 

sources, which make Rhodococci particularly suitable for bioremediation 

applications [Kämpfer et al., 2014]. R. equi is an important pathogen causing 

pneumonia in foals, wild boars, domestic pigs and immunocompromised humans 

such as HIV-AIDS patients or transplant recipients, whose infections symptoms 

resemble clinical and pathological signs of pulmonary tuberculosis. 

 

 

 

 

 

 

 

 

Figure 21. Rhodococcus hoagii (strain 103S) taxonomy adapted from 

https://www.uniprot.org/taxonomy/685727  

https://www.uniprot.org/taxonomy/685727
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4.3 Metagenomics  

 

As conventional PCR allowed the identification of only environmental bacteria, a 

large number of questions still remained unanswered, such as which 

bacteria/pathogens were present during particular historical periods and if the 

diversity of commensal microorganisms was affected by modern diet, lifestyle and 

especially environmental and climatic changes over time. We therefore analyzed 

taxonomic profiles generated by amplicon sequencing in temporally and 

geographically diverse archaeological teeth specimens.  

We analyzed aDNA samples from 8 different subjects belonging to 3 burial sites: 2 

from Modena (NP), 3 from Venice (LN), 3 from Fossombrone (FS). Two samples 

collected in a burial site in Forlì (FODI) not dated back to a plague outbreak were 

added to the analysis and considered as the “negative control” for Y. pestis and the 

“positive control” for environmental/soil bacteria. The authenticity of aDNA was 

confirmed by the presence of typical molecular signatures of post-mortem DNA 

damage, such as fragmentation patterns consistent with depurination and mis-

incorporation patterns compatible with cytosine deamination within overhangs.  

The relative phylum abundance analysis of both V3 and V5 regions highlighted a 

considerable presence of Proteobacteria (Figures 22 and 23), a major phylum of 

Gram-negative bacteria including a wide variety of pathogenic genera, such as 

Escherichia, Salmonella, Vibrio, Helicobacter, Legionellales, Yersinia and many 

others. Due to its large variety of genera, the Proteobacteria phylum was named 

after Proteus, a Greek god of the sea capable of assuming many different shapes, 

while its classification, informally called the "purple bacteria and their relatives", 

was established in 1987 [Woese, 1987]. Most of the other identified phyla, such as 

Acidobacteria, Actinobacteria, Chloroflexi and others, include soil bacteria 

commonly found in buried specimens. 
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Figure 22. Relative phylum abundance according to V3 region 
Figure 23. Relative phylum abundance according to V5 region  
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4.3.1  Paleomicrobiome analysis on V3 region  

 

 

In 16S metagenomics approaches, OTU (Operational Taxonomic Unit) are cluster 

of similar sequence variants of the 16S rDNA marker gene sequence. Each of these 

cluster represents a taxonomic unit of a bacteria species or genus, depending on the 

sequence similarity threshold. Typically, OTU clusters are defined by a 97% 

identity threshold of the 16S gene sequences to distinguish bacteria at the genus 

level. Here, after deep sequencing of 16S rRNA gene V3 we described for each 

specimen we the microbiome profile in terms of the different OTUs identified at 

the Phylum, Class, Family and Genus taxonomic levels.  

The analysis of relative abundances (Figures 22 and 23) revealed that, at phylum 

level, the most representative OTUs belong to the Actinobacteria (17.3 %), 

Proteobacteria (16.5 %) and Chloroflexi (13.1 %), followed by Acidobacteriota (9.7 

%), Bacteroidota (5.8 %), Firmicutes (5 %), Gemmatimonadota (4 %) and 

Patescibacteria (3.1 %). Cyanobacteria, Dadabacteria, Deinococcota, 

Dependentiae, Desulfobacterota, Elusimicrobiota, Entotheonellaeota, 

Euryarchaeota, Fibrobacterota, Verrucomicrobiota, Nitrospira, Dependentiae, 

Elusimicrobiota, Spirochaetota and other non-classifiable were found in very lower 

frequency (0.1%-2.7%).  

A closer inspection of the prevalence at class level (Figure 24) highlighted that the 

most abundant classes were Actinobacteria, Alphaproteobacteria, Bacilli, 

Acidobacteriae, together with Clostridia and Gammaproteobacteria, particularly 

interesting as they include several potential pathogens. 
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Indeed, Clostridia is a class of ubiquitous strictly anaerobic to aerotolerant spore-

forming bacilli, usually found in soil as well as in normal intestinal flora of humans 

and animals. This class includes both Gram-positive and Gram-negative species, 

although the majority of isolates are Gram-positive. Clostridial wound infections 

are typically polymicrobic, where the clostridial species, including C. perfringens, 

C. novyi, C. septicum, and others [Wells and Wilkins 1996], represent the primary 

pathogens. 

Gammaproteobacteria is the class of Vibrionales, inhabitants of fresh or saltwater, 

which include several pathogenic species such as Vibrio cholerae, the agent 

responsible for cholera. Moreover, most bioluminescent bacteria belong to this 

family, typically found as symbionts of deep-sea animals [Devault et al., 2014]. 

Gammaproteobacteria also the class of Legionellales, consisting of the Legionella 

and Coxiella families, both of which include notable pathogens. Indeed, 

legionellosis (acute pneumonia), is usually caused by Legionella pneumophila, 

although potentially any Legionella species may be responsible for such disease. 

Less often, legionellosis presents as a non-pneumonic, epidemic, influenza-like 

Figure 24. Relative class abundance according to V3 region  
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illness called Pontiac fever, while extrapulmonary Legionella infections (e.g., 

pericarditis and endocarditis) are rare. Legionella was first recovered from the 

blood of a soldier more than 50 years ago, but its importance as a human pathogen 

was not recognized until 1976, when a mysterious epidemic of pneumonia struck 

members of the Pennsylvania American Legion [Winn WC Jr. 1996]. 

Finally, Gammaproteobacteria includes also the class of Yersina pestis (formerly 

Pasteurella pestis), the cocco-bacillus responsible for plague outbreaks, which was 

isolated and described by Yersin in 1894 [Yersin and Treille. 1894, Collins. 1996]. 

These results encouraged us to proceed with a deeper examination in order to 

classify also family and genus. 
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Figure 25. Phylogenetic tree based on V3 region of Forlì (FODI) cemetery at phylum, family and genus levels 
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Figure 26. Phylogenetic tree based on V3 region of Fossombrone (FS) burial site at phylum, family and genus levels 
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Figure 27. Phylogenetic tree based on V3 region of Modena cemetery (NP) at phylum, family and genus levels 
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Figure 28. Phylogenetic tree based on V3 region of New Lazarette in Venice (LN) at phylum, family and genus levels 
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We reconstituted the phylogenetic tree for each burial site independently, focusing 

on potential pathogenic bacteria that could represent the cause or co-cause of death. 

As previously described, the cemetery in Forlì (FODI, Figure 25) was considered 

as a negative control for Y. pestis identification but a positive control for aDNA 

analyses and soil bacteria investigation. Results showed that the most abundant 

phyla present in FODI samples were Proteobacteriota (31.3%), Actinobacteriota 

(18.8%), Acidobacteriota (14.1%), Nitrospirota (7.8%), Gemmatimonadota 

(7.8%), Chloroflexi (6.3%) and Methylomirabilota (6.3%), all normally found in 

soil and water. Unfortunately, due to the degradation and fragmentation of aDNA, 

most of the samples family and genus could not be identified (Figure 25). 

Nonetheless, the most prevalent family of the Nitrospiriota phylum was that of the 

Nitrospiraceae (13.5%), whereas the most frequent families belonging to 

Proteobacteria phylum were Gemmatimonadaceae (13.5%) and 

Nitrosomonadaceae (10.8%), while other families like Hyphomicrobiaceae, 

Xanthobacteriaceae, Steroidobacteriaceae, Dongiaceae displayed a very low 

frequency. Finally, also at the genus level, the most prevalent genera identified were 

Nitrospira, Dongia, Steroidobacter and Hyphomicrobium, all microorganisms 

normally present in soil and water. 

The results for the samples belonging to Fossombrone (FS) burial site (Figure 26) 

show more homogenic phyla, with the most prevalent being Actinobacteriota 

(40.9%), Proteobacteria (34.1%), and Firmicutes (9.1%), followed by 

Acidobacteriota, Gemmatimonadota, Chloroflexi and Bacteroidota, all showing a 

much lower frequency (3.4% to 4.5%). 

Among the Actinobacteriota the Nocardiodaceae, Micrococcaceae, 

Pseudonocardaceae families were identified, and in particular the Kribbella [Urzì 

et al., 2008] and Blastococcus [Hezbri et al., 2016] genera, whose first discovery 

was related to catacombs. Interestingly, the Bacillaceae and Clostridiaceae 

families, belonging to the phylum of Firmicutes were also identified.  

The Proteobacteria phylum included families of nitrogen-fixing (diazotrophic) 

bacteria such as Oxalobacteraceae, Rhizobiaceae, Sphingomonadaceae, 

Nitrosomonadaceae, present in various habitats like water, soil, and plant-
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associated environments. Some species/strains belonging to the Oxalobacteraceae 

family are mild plant pathogens or are claimed to be opportunistic human pathogens 

[Baldani et al., 2014].  

One of the most interesting genera found in all samples from Fossombrone was 

Brucella, whose infection results in Brucellosis (also known as undulant fever, 

Malta fever, or Mediterranean fever [Di Pierdomenico et al., 2011]), a highly 

contagious zoonosis caused by ingestion of unpasteurized milk or undercooked 

meat from infected animals, or by close contact with their secretions.  

Another potential pathogen identified was the Clostridium_sensu_stricto_18 genus, 

which was also recently found in the microbiome of HIV-positive patient [Ahmed 

et al., 2020]. Unfortunately, no deeper investigation could be performed about the 

species of such potential pathogens due to aDNA degradation. We can though 

hypothesize that Fossombrone subjects died because of Brucella infection, rather 

than from a Y. pestis infection, as it was not identified, moreover we can also 

exclude an infection caused by Clostridium, because it was found in only 2 out of 

the 3 samples analysed. 

As far as Modena (NP) samples are concerned (see figure 27), the Proteobacteria, 

Chloroflexi, Firmicutes and Actinobacteria were the four most abundant phyla, 

accounting for 32.8 %, 14.8 %, 13.1 % and 11.5% respectively. Again, a deeper 

investigation at family and genus level of Proteobacteria, Chloroflexi and 

Actinobacteria confirmed the presence of several groups normally found in soil and 

water, such as Nocardioides, Nitrospira, Dongia, Flavihumbacterium.  

Although both samples belonging to Modena burial site displayed the presence of 

Clostridium_sensu_stricto_15 of the Clostridiaceae family, no conclusions could 

be drawn regarding potential diseases attributed to this genus as the fundamental 

information about the specie was missing. Modena samples also presented 

Fretibacterium genus, isolated from subgingival plaque, suggesting that the 

samples were overall handled properly.  

Finally, the most relevant phyla found in samples belonging to the New Lazarette 

(LN) of New Island in Venice (Figure 28) were Proteobacteria (44.3%) and 
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Actinobacteriota (28.3%), while all other phyla showed very low frequency. 

Concerning family classification, Burkholderiaceae and Clostridiaceae were the 

most interesting families, detected in 3 and 2 samples, respectively, while at genus 

level the presence of the Nonomurieae suggested that the samples underwent 

several climatic and atmospheric variations, as a generic abundance of such genus 

was found to be dependent on geographical changes [Sungthong and Nakaew 

2015]. Similarly, to Fossombrone, also the catacombs-associated genus Kribbella 

was detected in 2 out of 3 samples. Unfortunately, none of the identified genera 

could be associated with any possible cause of death.  
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4.3.2  Paleomicrobiome analysis on V5 region  
 

 

The same analysis presented for V3 region was performed on the other informative 

region of the 16S-rRNA sequence, that is the V5 region. The analysis of relative 

abundances revealed that the most abundant phyla were Proteobacteria (27 %), 

Actinobacteria (13.7 %), Acidobacteriota (7.2 %), Bacteroidota (6.7%), 

Plancomycetota (6.6%) and Firmicutes (6.3%), while all other phyla, such as 

Verrucomicrobiota displayed an abundance lower than 5%.  

The prevalence analysis at class level (Figure 29) highlighted the presence of 

several Gram-positive and Gram-negative bacteria particularly relevant from a 

clinical microbiology standpoint. Indeed, the largest fraction of classes was related 

to Gram-negative bacteria, represented by Gammaproteobacteria and 

Alphaproteobacteria, while the Gram-positive bacteria were represented by 

Clostridia and Bacilli classes. It is worth mentioning, though, that the Bacilli class 

includes not only Gram-positive families like Staphylococcaceae,  

Streptococcaceae and Listeria, but also for example Escherichia coli, which is a 

Gram-negative bacteria.

Figure 29. Relative phylum abundance according to V5 region  
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Figure 30. Phylogenetic tree based on V5 region of Forlì (FODI) cemetery at phylum, family and genus levels 
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Figure 31. Phylogenetic tree based on V5 region of Fossombrone (FS) burial site at phylum, family and genus levels 
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Figure 32. Phylogenetic tree based on V5 region of Modena cemetery (NP) at phylum, family and genus levels 
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Figure 33. Phylogenetic tree based on V5 region of New Lazarette in Venice (LN) at phylum, family and genus levels 



 

66 
 

The phylogenetic tree concerning Forlì burial site (Figure 30), our “negative 

control” for infectious diseases research, showed that the most prevalent phyla 

Proteobacteria (33.3%), Actinobacteria (19 %) and Gemmatimonadota (12.7%), 

while Firmicutes, Acidobacteriota and others were detected in a much lower 

frequency. At a deeper level, the only potential pathogenic families found were 

Burkholderiaceae, Nocardiaceae and Clostridiaceae, but none of the identified 

genera could be associated with infectious diseases. 

The most prevalent phyla from Fossombrone (Figure 31) were Actinobacteria 

(39.8%), followed by Proteobacteria (36.9%) and Firmicutes (6.8%), all other 

phyla displayed a frequency lower than 5%. Again, the potentially pathogenic 

families found were Bacillaceae, Burkholdeiaceae, Clostridiaceae, 

Nocardiodaceae, while at genus level we detected again several genera typically 

found in catacombs such as Kribella and Blastococcus. Interestingly, Bacillus was 

the most prevalent genus, including both free-living (nonparasitic) species and two 

parasitic pathogenic species, namely B. anthracis, responsible for anthrax, and B. 

cereus, associated with food poisoning. 

Modena burial site presented a highly conserved phylogenetic tree in terms of 

grade/branches of phyla (Figure 32), with the most frequent being Proteobacteria 

(42.9%), Actinobacteria (27 %) and Firmicutes (15.9 %). At family level, several 

branches of Bacillaceae were detected, followed by Burkholderiaceae, 

Nocardiodaceae and Clostridiaceae, while at genus level, the most frequently 

found was the Bacillus genus, similarly to what was observed in Fossombrone 

samples. 

In line with all other burial sites, Proteobacteria (37%), Actinobacteria (33%) and 

Bacteroidota (6.5%) were the most prevalent phyla found in the lazarette of New 

Island in Venice (Figure 33). The investigation at family level highlighted the 

presence of only the Clostridiaceae family, but no more precise information about 

genus could be retrieved from aDNA samples, implying that no potential cause of 

an infectious disease could be identified. 
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Chapter 5  

 

CONCLUSIONS AND FUTURE 

PERSPECTIVES 

 

 

Ancient DNA research is a complicate and expensive discipline to approach, but 

the continue development of sophisticated analytical techniques such as NGS, 

Metagenomics and WGS allowed to achieve a considerable success in studying 

ancient pathogens. Although aDNA analysis was established as the gold standard 

for unravelling the evolution of bacteria, such approach has to deal with critical 

problems like the retrieval, detection and characterization of aDNA molecules. 

Moreover, the overwhelmingly higher presence of modern DNA and PCR products 

in all the steps of the specimen handling can lead to potential contaminations. 

However, when all possible precautions are taken, the constitution of an aDNA 

repository can also provide important additional information on post-mortem DNA 

base modification, particularly on the interpretation and update of ancient genomes 

datasets [Der Sarkissian C et al., 2015]. 

Metagenomic analysis is facing a wide range of challenges, in particular the 

comparison of huge amounts of sequencing data against a steadily increasing 

number of reference sequences. While the overall composition can be characterized 

even without precise alignments, more sophisticated analyses require the 

assessment of complete alignments of the metagenomic sequencing reads against a 

comprehensive reference database. 

Indeed, 16S rRNA amplicon sequencing has been the primary tool for 

characterizing ancient microbiome samples since 1998, yet no study has 

systematically investigated the effect of aDNA fragmentation on the fidelity of 

amplicon-based ancient microbiome reconstructions. Such issue results in an 
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unclear interpretation of the differences observed between modern and ancient 

microbial communities. Overamplification of archaeal taxa and altered microbial 

diversity estimates are predictable artifacts observed in poorly preserved (highly 

fragmented) but relatively uncontaminated aDNA samples. 

We demonstrated that although amplicon-based 16S rRNA gene sequencing may 

be a useful high-throughput screening tool for qualitative characterization of the 

preservation and contamination of ancient microbiome samples, it cannot be used 

to reliably reconstruct qualitative information about microbial diversity. In addition, 

always due to the high fragmentation of DNA, no quantification of the taxonomic 

frequency in ancient microbial communities cannot be obtained, resulting in the 

impossibility to identify the precise species of microorganisms that could have been 

the cause of death. 

The most abundant taxon in all burial sites resulting from the investigation of both 

V3 and V5 regions of the 16S rRNA was Proteobacteria, more specifically the class 

of Gammaproteobacteria, which includes several clinically relevant microbial 

genera such as Legionella, Vibrio and Yersinia.  

For the samples belonging to Fossombrone, a possible cause of death was found in 

Brucellosis [Kay GL et al., 2014; Mutolo MJ et al., 2012], as Brucella was detected 

in this burial site, moreover also aDNA related to Bacillus genus was found in both 

V3 and V5 analysis, suggesting that probably this cemetery was erroneously 

associated with the plague. 

Unfortunately, no traces of Y. pestis DNA were found in the teeth samples either in 

V3 or in V5 region. We also showed that the putatively specific primers were not 

as specific as expected, since the atmospheric and soil condition may have 

contributed to the accumulation of mutations in the targeted regions, leading to their 

a-specificity. Besides, the evolutionary and epidemic history of this bacterium 

could not be easily addressed due to the degradation of endogenous DNA of Y. 

pestis, which may have been present at that time but lost over time. 

As reported in Y. pestis related literature, a single small genetic mutation 

fundamentally influenced the evolution of the deadly pathogen, and thus the course 
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of human history, and such single variant may have not survived the passing of 

time. 

On the other hand, the metagenomic analysis revealed to be successful in 

identifying the variability of bacteria found in “a closed box” as the tooth is defined. 

Finally, teeth samples were found to be much more informative than any other bone 

belonging to the same individual, in terms of microbiome analysis.  
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Supplementary Information  

 

Ancient DNA extraction (Rohland & Hofreiter, 2007; Dabney et al., 2013; 

Allentoft et al., 2015) 

MATERIAL 

 

Gloves  

Micropipettes  

Tips  

Serological pipettes  

Germicidal wipes  

NaClO  

NaCl solution 5M in H2O  

H2O2  

Falcon 15/50 ml  

Eppendorf 1.5 / 2 ml  

Heater 

Stove  

Centrifuge 14,000 rpm  

MiniElute PCR® purification kit (Qiagen) Buffer TE and BP  

Ethanol at 80%  

HPLC water  

QG buffer Qiagen  

TE Buffer (Tris-EDTA pH 8.0)  

EDTA (Ethylenediaminetetraacetic acid 0.5 M)
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PROTOCOL 

DAY 1 

Sterilize reagents and UV materials for at least 60 minutes 

1. Calculate the number of samples to be extracted plus a negative 

control 

 

2. In a 15 ml falcon, add at maximum 100 mg of bone or tooth 

powder and 480µl of the extraction Buffer as it is shown in Table 

below 

 

3. Ensure that the tubes are closed with Parafilm 

 

4. Incubate overnight at 37 ° C in continuous agitation 

 

 

Preparation of the extraction Buffer 

 

 

 

 

 

 

 

EDTA 0.5 M (chelating agent for Ca ions) 
Proteinase K (enzyme that digests proteins) 

 

 

Reagents Stock Conc. Final Conc. Q.ty for 1 

sample (µl) 

EDTA pH8 0,5 M 0,45 M 432 

Proteinase K 20 mg/ml 0.25mg/ml 6 

H2O   42 

Final Volume      480 
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DAY 2 

Sterilize all reagents and materials under UVC rays for at least 60 minutes 

 

1. Check the personal rates of Buffer PE and PB, if they are sufficient for 

extraction; 

 

2. Remove the samples from the stove and centrifuge at 10,000 rpm for 3 

min; 

 

3. Transfer the supernatant to a new Eppendorf tube 

 

4. Add 960 µl of Buffer PB and mix for 10 s with a vortex and a short spin of 

centrifuge; 

 

5. Transfer 750 µl of liquid into the MinElute® Qiagen Vials and centrifuge 

at 14,000 rpm for 2 min. (in this way the liquid passes through the 

membrane in the lower part, while instead the DNA will be linked to the 

siliceous membrane), then throw the eluate, dab the tube and put it back 

under the column.  

 

6. Repeat the operation until the solution is exhausted in each Eppendorf; 

 

7. Add 750 µl of Buffer PE (washing buffer for DNA cleaning), then 

centrifuge at 6,000 rpm for 2 min, the liquid passes through the membrane 

in the tube, then throw the eluate and put the tube back under the column; 

Repeat the operation; 

 

8. Centrifuge at 14,000 rpm for one minute, to dry the filter, and then throw 

tube; 

 

9. Place the silica column in a new 1.5 ml Eppendorf, cut the caps and elute 

with 20 µl of Buffer TE or water and then incubate the whole at 37 ° C or 

room Temperature for 5 minutes; 

 

10. Finally centrifuge at 14,000 rpm for 1 min; 

 

11. elute with another 20 µl of Buffer TE or water and then incubate the whole 

at 37 ° C or room T for 5 minutes; 

 

12. Centrifuge at 14,000 rpm for 1 min. Now throw the silica column and keep 

the Eppendorf with the eluate in the freezer at - 20 ° C for further use. 
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N.B. It is also advisable to make aliquots of the sample in 0.5 ml Eppendorf to 

avoid contamination and frequent thawing / freezing. 

 

 

After the procedure: 

• Clean any instrument / material used with sodium hypochlorite  

• Rinse / clean with H2Od and possibly germicidal wipes 

• Turn on UVC in working spaces and under the hoods 
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Electrophoresis results of traditional PCR: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Traditional PCR performed for Modena burial site. 

On the left primers from Ravenna campus. On the right “Single suicide PCR” primer [Raoult et al., 2000]. 

Figure 2. Traditional PCR performed for Modena burial site.  

On the left “Single suicide PCR” primer[Raoult et al., 2000] On the right the “specific” pla gene primer 
[Hänsch et al., 2015]. 
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Figure 4. Electrophoresis of traditional PCR for Venezia on the left and Fossombrone on the right burial 
sites. 

 On the left with Primer from Ravenna campus, and on the right with “specific” pla gene primer [Hänsch et 
al., 2015]. 

Figure 3. Electrophoresis of traditional PCR for Fossombrone burial site.  

On the left primers from Ravenna campus. On the right “Single suicide PCR” primer [Raoult et al., 2000]. 
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Figure 5. 16s rRNA V3-V5 PCR amplification of specimens from Venezia Burial site. 


