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ABSTRACT 

 

The analysis of Next-Generation Sequencing (NGS) data for the identification of 

DNA genetic variants presents several bioinformatics challenges. The main 

requirements of the analysis are the accuracy and the reproducibility of results, as 

their clinical interpretation may be influenced by many variables, from the sample 

processing to the adopted bioinformatics algorithms. Targeted resequencing, which 

aim is the enrichment of genomic regions to identify genetic variants possibly 

associated to clinical diseases, bases the quality of its data on the depth and 

uniformity of coverage, for the differentiation between true and false positives 

findings. Many variant callers have been developed to reach the best accuracy 

considering these metrics, but they can’t work in regions of the genome where short 

reads cannot align uniquely (uncallable regions). The misalignment of reads on the 

reference genome can arise when reads are too short to overcome repetitious regions 

of the genome, causing the software to assign a low-quality score to the read pairs 

of the same fragment. A limitation of this process is that variant callers are not able 

to call variants in these regions, unless the quality of one of the two read mates 

could increase. Moreover, current metrics are not able to define with accuracy these 

regions, lacking in providing this information to the final customer. For this reason, 

a more accurate metric is needed to clearly report the uncallable genomic regions, 

with the prospect to improve the data analysis to possibly investigate them. This 

work aimed to improve the callability (genotypability) of the target regions for a 

more accurate data analysis and to provide a high-quality variant calling.  

Different experiments have been conducted to prove the relevance of genotypability 

for the evaluation of targeted resequencing performance. Firstly, this metric showed 

that increasing the depth of sequencing to rescue variants is not necessary at 

thresholds where genotypability reaches saturation (70X). To improve this metric 

and to evaluate the accuracy and reproducibility of results on different enrichment 

technologies for WES sample processing, the genotypability was evaluated on four 

exome platforms using three different DNA fragment lengths (short: ~200, 

medium: ~350, long: ~500 bp). Results showed that mapping quality could 
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successfully increase on all platforms extending the fragment, hence increasing the 

distance between the read pairs. The genotypability of many genes, including 

several ones associated to a clinical phenotype, could strongly improve. Moreover, 

longer libraries increased uniformity of coverage for platforms that have not been 

completely optimized for short fragments, further improving their genotypability. 

Given the relevance of the quality of data derived, especially from the extension of 

the short fragments to the medium ones, a deeper investigation was performed to 

identify a potential threshold of fragment length above which the improvement in 

genotypability was significant. On the enrichment platform producing the higher 

enrichment uniformity (Twist), the fragments above 230 bp could obtain a 

meaningful improvement of genotypability (almost 1%) and a high uniformity of 

coverage of the target. Interestingly, the extension of the DNA fragment showed a 

greater influence on genotypability in respect on the solely uniformity of coverage. 

The enhancement of genotypability for a more accurate bioinformatics analysis of 

the target regions provided at limited costs (less sequencing) the investigation of 

regions of the genome previously defined as uncallable by current NGS 

methodologies. 
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INTRODUCTION 

 

Targeted resequencing 
 

Whole exome sequencing (WES) coupled with Next-generation Sequencing (NGS) 

platforms is a methodology that allows to capture and sequence the protein-coding 

regions of the genome with unprecedented efficiency [1]. Despite Whole-Genome 

Sequencing (WGS) is considered as the most comprehensive strategy for the 

analysis of the human genome, it still presents unaffordable costs for many research 

laboratories. For this reason, WES is becoming a standard, more economic 

approach for the analysis of disease-causing genetic variations [2][3][4]. Despite 

the limited regions covered by WES (about 1% of the entire genome [5]), this 

method can perform a deeper sequencing (higher coverage levels of the target 

regions) and hence produce a large quantity of data (sequenced reads) that needs to 

be analysed through specific bioinformatics pipelines [4][6][7][8]. 

The Illumina sequencing technology can produce millions of short sequence 

information (reads) in a single run. The DNA fragments produced for the 

sequencing library can be read to yield single-end reads (only one end of the 

fragment is sequenced) or paired-end reads (both ends of the fragment are 

sequenced) [9]. After reads are generated, they are aligned to a known reference 

genome sequence (i.e. human). Alignment algorithms perform better using the 

paired-end read information, since they exploit the known distance between the 

read pairs to produce a more precise mapping to the genome (Figure 1). In some 

cases, the sequenced DNA fragment could be shorter than the sum of the lengths of 

two read pairs, producing an overlap (Figure 2). This could lead to alignment issues 

and for this reason short DNA fragments are usually sequenced using the 75 paired-

end mode (only 75 bp from both ends of the fragment are sequenced). However, 

the shorter the read, the more difficult will be its alignment to the genome. 
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Reads must be therefore long enough to be aligned unambiguously to a known 

reference sequence [10] and the depth of coverage represents the number of times 

a base in the reference is covered by an aligned read from a sequencing experiment 

[11] (Figure 3).  

Figure 2. Overlapping of sequenced read pairs.  

Figure 1. Paired-End vs. Single-Read Sequencing (Illumina). 

Retrieved 10/12/2019, from 

https://emea.illumina.com/science/technology/next-generation-

sequencing/plan-experiments/paired-end-vs-single-read.html?langsel=/it/  
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Variant calling is then performed after sequence alignment. Variations at the level 

of single nucleotides in the genome can be identified using different software, 

developed considering diverse algorithms and filtering strategies, thus leading to 

different outputs [12]. Lastly, the annotation of the identified variants is necessary 

to evaluate their biological potential consequences and hence their association to a 

variety of diseases [1]. 

 

 

  

Figure 3. Graphical visualization of a BAM file.  

The picture shows in grey colour the aligned reads present in the sequence alignment file 

(BAM). Gaussian curves on the top of the picture show the coverage values of the region. 
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Metrics for the evaluation of quality for WES enrichment technologies 

 

Commercially available WES enrichment platforms for sample processing are 

designed with the aim to target selected regions of interest (ROI) through sequence 

enrichment, which is generally accomplished through probe-target hybridization. 

This methodology can directly capture large regions of interest (such as the human 

exome, ∼30Mb) from a NGS library using complementary oligonucleotides in 

solution or array, with limited costs [13]. Currently, exome enrichment methods 

offered by vendors [14] differ in terms of enrichment efficiencies, targeted regions 

(Figure 4) and DNA input requirements [15]. Their performance is generally 

evaluated according to the depth and uniformity of coverage [16], because a 

minimum site coverage of more than 10-fold [17][18][19] is generally required to 

identify germline variants [11]. However, the average depth of coverage of the ROI 

is not indicative of the coverage of each gene/exon analysed, as some of them could 

be captured differently (or not captured at all, as shown in Figure 5) by the kits’ 

probes.  

 

 

 

Figure 4. Differences in BED coordinates.  

Genomic coordinates of exon 2 of the GZMB gene reported in the BED files provided by 

different enrichment platforms suppliers. 
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Therefore, different enrichment technologies produce different coverage levels on 

the same set of genes (Figure 6). Considering these dissimilarities, the choice of the 

more appropriate platform to use for a clinical investigation of a candidate set of 

genes is generally based on the genes’ optimal overall coverage obtained across the 

different kits. 

 

 

 

Figure 6. The difference in coverage levels for a set of genes enriched through different 

enrichment platforms.  

Percentage of each gene covered at least by 20 reads for 8 different enrichment platforms. 

Figure 5. Differences in regions covered of the same gene.  

Three exons of the same gene are covered differently using diverse enrichment 

technologies. 
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The optimal coverage for the achievement of useful data is obtained when the entire 

length of the target regions reaches the desired coverage at the expense of the off-

target rate, which is referred to as the sequencing data mapping near (~250 bp) and 

outside the target region (Figure 7). Most of the off-target sequencing is probe 

panel-specific and is usually a result of indiscriminate hybridization.  On-target and 

off-target rates are both considered in combination with the uniformity of 

enrichment (FOLD 80 penalty value) to define the efficiency of the targeted 

resequencing.  

 

 

The uniformity of coverage describes the read distribution along target regions of 

the genome and it’s calculated by the FOLD 80 penalty value, which indicates “the 

fold of additional sequencing required to ensure that 80% of the target bases achieve 

the desired average coverage”. FOLD 80 penalty is calculated as the average 

coverage on target divided by the coverage at the 80th percentile, which is the 

coverage value that lies at the 80% line of an ordered set of coverage values 

representing each sequenced base of the target. Uniformity can be improved 

reducing the coverage of over-sequenced targets and increasing the coverage of the 

target with lower sequencing, so that the amount of sequencing needed to obtain 

high-confidence data will be reduced [20] (Figure 8). Therefore, small 

Figure 7. Definition of on/near/off target.  
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improvements in uniformity can have a much larger impact on increasing the 

efficiency of the targeted resequencing.  

 

 

 

 

  

Figure 8. Uniformity of coverage (Twist [20]). 
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Data analysis: current challenges 

 

Challenges of current bioinformatic pipelines for WES data analysis are diverse, 

from the read alignment to the variant calling. Read alignment could negatively 

affect the identification of variants if the reads are not correctly assigned to their 

position along the reference genome. This problem could arise if the reads map to 

multiple locations on the reference sequence, and various strategies have been 

adopted to solve it [13]: 

• Discard the reads mapping not uniquely to the genome (this can cause an 

omission of up to 30% of mappable reads) 

• The best-match approach maps the reads choosing the location with the 

fewest mismatches (in case of more than one best match, all locations or a 

random selection is provided) 

• Report all alignments until a maximum number consented 

However, the second and the third approach could lead to a misalignment of reads, 

especially in repetitious regions of the genome. Sequence aligners assign quality 

scores to read pairs according to the uniqueness of the alignment (probability the 

read is not mapped randomly), so reads mapping to duplicated regions gain a low 

quality. However, if one of the two read mates can be mapped unambiguously they 

both may gain a high quality score [8][21][22]. 

The use of the solely depth of coverage as main quality parameter for the WES 

performance presents therefore some limitations. Indeed, high coverage levels do 

not always correspond to a high quality of read alignment, as shown in Figure 9. If 

the target region is repeated along the genome, the quality of the reads aligned there 

is low. In case a variant is present in this region, the software cannot provide a high 

confidence of call.  

For this reason, depth and uniformity of coverage cannot be considered as the main 

parameters for the evaluation of WES performances. 
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Genotypability is a metric introduced in this work which reports the “callable” and 

“uncallable” regions of the target, through the use of the gVCF (Figure 10). The 

pipeline chosen for the analysis of WES data integrates the use of the gVCF file for 

the analysis of the base calling at the level of the entire genome. While current 

pipelines use the VCF to store the high-confidence variant sites present in the 

analysed individual’s genome, the gVCF contains also the invariant sites passing 

the quality filters, allowing the distinction between a variant “not called” because 

not present in the individual’s genome and a variant “not called” because the site 

coverage and the quality of the alignment in that position do not satisfy the 

requirements of base calling. 

This value can be calculated for any region of interest (target design, RefSeq genes, 

a locus) and in this work it is used to evaluate how the DNA fragment length could 

improve the sequence alignment of genomic regions which do not satisfy the 

requirements of minimum read depth and mapping quality. 

Figure 9. Region of the genome highly covered but with low mapping quality. 

Graphic visualization of a BAM file. Colour of reads indicates the mappinq quality: 

white = low quality mapping; grey = high quality mapping. 
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Through the use of gVCF it is possible to rescue homozygous reference variants for 

the data analysis, but unravelling the variants present in repetitious regions of the 

genome is still difficult using short reads. For this reason, an approach to improve 

this metric is needed.  

  

Figure 10. Differences between a VCF and a gVCF.  

gVCF reports not only the variant sites in the genome, but also the invariant one which can 

satisfy the requirements of minimum mapping quality and depth of coverage. 
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DNA fragment length 
 

 

 

WES library preparation protocols set the DNA fragment size to the average exon 

length, which is 170 bp in the human genome [21][22][23]. Short (< 100 bp) paired-

end reads are generated to avoid the overlap of read pairs, but this fragment length 

is often shorter than duplicated regions. Furthermore, library preparation protocols 

often start from very low quantities of material (nanograms to picograms) [24], 

limiting the amount of DNA and consequently the number of unique fragments that 

can be produced. For this reason, 2 × 75 sequencing requires double the number of 

fragments to produce the expected depth of coverage that can be achieved by 2 × 

150 sequencing. More amplification is therefore necessary, producing more PCR 

duplicates that must be removed during downstream data analysis, thus limiting the 

depth of coverage at target regions [25]. 

Considering the challenges due to the difficult alignment of short reads to 

repetitious regions of the genome, this approach aims to increase the standard DNA 

fragment size to allow longer fragments to extend beyond exonic regions to reach 

introns, which are under less selection pressure than protein coding sequences but 

Figure 11. Constraints in genome evolution.  
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still retain conserved polymorphisms [23] (Figure 11). This means that introns are 

still evolutionary conserved (as they are important in regulating gene expression), 

but with a greater variability in respect of exons. Therefore, reads that cannot 

uniquely align in repetitious exonic regions could better align on flanking intronic 

regions, that may not conserve the same repetition. In this way, the higher quality 

of mapping obtained for the read mapping outside of repetitious regions can be 

transferred to its mate, allowing the identification of variants that could be 

otherwise discarded, due to poor-mapping (Figure 12). 

 

 

 

  

Figure 12. Alignment of read pairs and extension of the DNA fragment.  

Transfer of high-quality of read alignment between read pairs through the extension 

of the DNA fragment size. 
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The PANINI project 

 

Considering the implications of targeted analysis for diagnosis and therapies, the 

European project "Physical Activity and Nutrition INfluences In ageing" (PANINI) 

aimed to develop a policy document to promote healthy ageing in Europe [26]. In 

particular, the project addressed the need to identify the genetic markers responsible 

for ageing diseases and nutritional responses, to drive personalized treatments to 

older adults. The application of a bioinformatics pipeline such as the one here 

developed could provide the more accurate analysis for this type of clinical 

employment. 
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AIM OF THE THESIS 
 

Variant calling on human DNA-seq samples presents limitations due to possible 

misalignments of short reads on the reference genome and incomplete quality 

metrics to define the accuracy of bioinformatics data. The aim of the thesis was to 

improve the accuracy of data produced by targeted resequencing workflows 

through the enhancement of the genotypability of the target regions, for a more 

precise variant calling and a more accurate investigation of the uncallable regions 

of the genome.  
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MATERIALS AND METHODS 
 

Sample processing 
 

Genotypability evaluation on a single individual 

 

The WES analysis was performed on data derived from an individual processed by 

the wet-lab using the Human Core Exome Kit + RefSeq V1 enrichment platform 

(Twist), producing a DNA fragment size based on the manufacturers’ 

recommendations. 

 

Genotypability evaluation on different enrichment technologies and DNA fragment 

lengths 

 

The WES analysis was performed on data derived from three unrelated individuals. 

Samples were processed using four different enrichment platforms: xGen Exome 

Research Panel V1 (IDT), SeqCap EZ MedExome (Roche), SureSelect Human All 

Exon V6 (Agilent), and the Human Core Exome Kit + RefSeq V1 (Twist). The wet-

lab produced three different DNA fragment lengths for each sample: short 

fragments based on the manufacturers’ recommendations (IDT = 150 bp, Roche, 

Agilent and Twist = 200 bp), medium fragments (expected length ~350 bp), and 

long fragments (expected length ~500 bp).  

 

Genotypability evaluation on a variable set of DNA fragments 

 

The WES analysis was performed on data derived from 27 individuals processed 

by the wet-lab using the Human Core Exome Kit + RefSeq V1 enrichment platform 

(Twist), which produced a variable set of DNA fragments sizes from ~200 to ~350 

bp. 
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Bioinformatics pipeline 
 

Preprocessing of raw reads and sequence alignment 

 

All individuals were sequenced on an Illumina instrument in 75 bp paired-end mode 

for the short libraries (~200 bp) and in 150 bp paired-end mode for the other DNA 

fragment lengths. All samples were analysed performing a preprocessing of raw 

reads and the alignment to the reference genome sequence. 

The preprocessing pipeline was based on a set of available tools as described below 

(Figure 13).  

 

 

 

 

Initial FASTQ files were quality controlled using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low quality 

nucleotides have been trimmed using sickle v1.33 

Figure 13. Pipeline for preprocessing of raw reads and sequence alignment.  
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(https://github.com/najoshi/sickle) and adaptors were removed using scythe v0.991 

(https://github.com/vsbuffalo/scythe).  

 

 

Reads were then aligned to the reference human genome sequence (GRCh38/hg38) 

using BWA-MEM v0.7.15 (https://arxiv.org/abs/1303.3997). BWA is a fast and 

memory-efficient read aligner widely used for WES. The SAM output file was 

converted into a sorted BAM file using SAMtools. Overlapping regions of the BAM 

file were clipped using BamUtil v1.4.14 to avoid counting multiple reads 

representing the same fragment. The BAM files were processed by local 

realignment around insertion–deletion sites, duplicate marking and recalibration 

using Genome Analysis Toolkit v4.0.2.1 [27].  

 

#FastQC 
 
fastqc sample.read1.fastq.gz sample.read2.fastq.gz -o fastqc/ 
 
#Trimming 
 
sickle pe -g -t sanger \ 
        -f <( scythe -a adapters.file -q sanger sample.read1.fastq.gz } ) \ 
        -r <( scythe -a adapters.file -q sanger sample.read2.fastq.gz } ) \ 
        -o trimmed1.fastq.gz -p trimmed2.fastq.gz -s /dev/null; 
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Downsampling for a N theoretical X-fold coverage on the target design was 

calculated subsampling the required number of fragments (calculated as: (N * 

design length) / (read length * 2)) using seqtk (https://github.com/lh3/seqtk). 

Downsampling on the mapped coverage was generated by sub-sampling the full 

dataset using sambamba v0.6.7 – https://github.com/biod/sambamba –).  

#Alignment 
 
my $RG = '"@RG' 
      . qq|\tID:$ID\tPU:lane\tLB:$NAME\tSM:$NAME\tCN:CGF-ddlab\tPL:ILLUMINA"|; 
 
bwa mem -R $RG -t 16 Homo_sapiens_assembly38.fasta trimmed*fastq.gz | 
samtools sort --threads 4 -m 5G - -o start_sorted.bam 
 
sambamba index --nthreads= 20 start_sorted.bam 
 
#Clipping 
 
bam clipOverlap --in start_sorted.bam --out start_sorted.clipped.bam 
 
#Duplicate marking 
 
java -jar gatk.jar MarkDuplicates -I start_sorted.clipped.bam -O alignment.rg.bam -M 
duplicates.txt --REMOVE_DUPLICATES true --VALIDATION_STRINGENCY SILENT --
CREATE_INDEX true 
 
#Base recalibrator 
 
java -jar gatk.jar BaseRecalibrator -I alignment.rg.bam -R 
Homo_sapiens_assembly38.fasta --use-original-qualities --knownSites dbsnp.vcf --
knownSites mills.vcf -O recal_data.table 
 
java -jar gatk.jar ApplyBQSR -R Homo_sapiens_assembly38.fasta -I alignment.rg.bam 
-bsqr recal_data.table -O alignment.rg.recalibrated.bam --static-quantized-quals 10 --
static-quantized-quals 20 --static-quantized-quals 30 --add-output-sam-program-
record --create-output-bam-md5 --use-original-qualities 
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Metrics collection 

  

Insert sizes were calculated after read alignment, measuring the distance of the two 

mates mapped on the genome using CollectInsertSize by Picard v2.17.10 

(http://broadinstitute.github.io/picard/). CollectHsMetrics by Picard was used to 

calculate fold enrichment and FOLD 80 penalty values to determine enrichment 

quality. For each sample, the near target length was defined as the “average length 

of the DNA fragments” padding the on-target region. All WES performance 

parameters were calculated both on the design of each platform and on the standard 

dataset of RefSeq genes. 

 

#Downsampling for theoretical coverage 
 
seqtk sample -s100 sample.read1.fastq.gz $number_of_fragments 
seqtk sample -s100 sample.read2.fastq.gz $number_of_fragments 
 
#Downsampling for mapped coverage 
 
my $ratio = $target_mapped_coverage / $real_mapped_coverage 
sambamba view -h -t 30 -s $ratio -f bam alignment.rg.recalibrated.bam -o 
downsampled.bam 
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Genotypability metric 

  

I then used CallableLoci in GATK v3.8 to identify callable regions of the target 

(genotypability), with minimum read depths of 3 and 10.  

 

#Insert size collection 
 
java -jar gatk.jar CollectInsertSizeMetrics -I alignment.rg.recalibrated.bam -H 
alignment.rg.recalibrated.hist.pdf -O alignment.rg.recalibrated.output -AS true --
VALIDATION_STRINGENCY SILENT 
 
#Mapping statistics 
 
samtools flagstat alignment.rg.recalibrated.bam > flagstat_recal 
 
#ON/NEAR/OFF target statistics on design and RefSeq 
 
java -jar GenomeAnalysisTK.jar CollectHsMetrics --INPUT 
alignment.rg.recalibrated.bam --OUTPUT design.HsMetrics.txt -R 
Homo_sapiens_assembly38.fasta \ 
        --BAIT_INTERVALS design.bed.interval --TARGET_INTERVALS design.bed.interval 
\ 
        --PER_TARGET_COVERAGE design.PER_TARGET_COVERAGE.txt --
PER_BASE_COVERAGE design.PER_BASE_COVERAGE.txt --
VALIDATION_STRINGENCY=SILENT \ 
        --NEAR_DISTANCE insert_length 
 
java -jar GenomeAnalysisTK.jar CollectHsMetrics --INPUT 
alignment.rg.recalibrated.bam --OUTPUT RefSeq.HsMetrics.txt -R 
Homo_sapiens_assembly38.fasta \ 
        --BAIT_INTERVALS RefSeq.bed.interval --TARGET_INTERVALS RefSeq.bed.interval 
\ 
        --PER_TARGET_COVERAGE RefSeq.PER_TARGET_COVERAGE.txt --
PER_BASE_COVERAGE RefSeq.PER_BASE_COVERAGE.txt --
VALIDATION_STRINGENCY=SILENT \ 
        --NEAR_DISTANCE insert_length 
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CallableLoci produces a BED file with the callable status covering each base and 

a summary table of callable status per count of all examined bases (Figure 14).  

 

 

The callable states of the genomic intervals are summarised in Figure 15. 

 

 

#CallableLoci 
 
java -jar GenomeAnalysisTK.jar -T CallableLoci -R Homo_sapiens_assembly38.fasta -I 
alignment.rg.recalibrated.bam -summary callable_table.txt -o callable_status.bed 
 
java -jar GenomeAnalysisTK.jar -T CallableLoci -R Homo_sapiens_assembly38.fasta -I 
alignment.rg.recalibrated.bam -minDepth 10 -summary callable_table.txt -o 
callable_status_DP10.bed 

Figure 14. BED file e summary table produced by CallableLoci.  
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bedtools coverage was used to calculate the coverage of the target regions at several 

coverage levels (1X, 5X, 10X, 20X, 30X) and the genotypability of the target at 

read depths of 3 (% PASS) and 10 (% PASS RD>10). Through a specific script 

(geneCoverage.pl), the information of the depth of coverage and the number of 

bases at that depth from the design.alignment.rg.recalibrated.capture.hist.coverage.gz 

and the RefSeq.alignment.rg.recalibrated.capture.hist.coverage.gz files were calculated 

for: 

• each region of the target design/RefSeq; 

• each gene of the target design/RefSeq; 

• all the target design/RefSeq. 

 

Figure 15. Callable states of CallableLoci.  
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Then, the output files design.alignment.rg.recalibrated-callable.bed and 

RefSeq.alignment.rg.recalibrated-callable.bed were used for the calculation of the 

genotypability of the target. The number of CALLABLE bases covered for each 

region of the target design/RefSeq was extracted from the two files and transformed 

into a percentage value. 

 

#Region coverage calculations 
 
# region coverage for design 
 
bedtools coverage -hist  

-abam alignment.rg.recalibrated.bam \ 
-b design.bed | gzip > 

design.alignment.rg.recalibrated.capture.hist.coverage.gz 
 
bedtools coverage -hist  

-a callable.bed \ 
-b design.bed > design.alignment.rg.recalibrated-callable.bed 

 
bedtools coverage -hist  

-a callable_DP10.bed \ 
-b design.bed > design.alignment.rg.recalibrated-callable_DP10.bed 

 
# region coverage for RefSeq 
 
bedtools coverage -hist  

-abam alignment.rg.recalibrated.bam \ 
-b RefSeq.bed | gzip > 

RefSeq.alignment.rg.recalibrated.capture.hist.coverage.gz 
 
bedtools coverage -hist  

-a callable.bed \ 
-b RefSeq.bed > RefSeq.alignment.rg.recalibrated-callable.bed 

 
bedtools coverage -hist  

-a callable_DP10.bed \ 
-b RefSeq.bed > RefSeq.alignment.rg.recalibrated-callable_DP10.bed 
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Variant calling 

 

Variant calling was performed producing gVCF files through the GATK 

HaplotypeCaller v4.1.2.0 software. It calls germline Single Nucleotide Variations 

and indels via a local re-assembly of haplotypes.  

 

Variant recalibration was performed to assign a well-calibrated probability to each 

variant call in a call set. This enabled the generation of highly accurate call sets by 

filtering based on this single estimate for the accuracy of each call. 

#Genotypability and coverage statistics 
 
#For design 
 
geneCoverage.pl          

design.alignment.rg.recalibrated.capture.hist.coverage.gz \ 
design.alignment.rg.recalibrated-callable.bed \ 
design.alignment.rg.recalibrated-callable_DP10.bed 

 
#For RefSeq 
 
geneCoverage.pl  

RefSeq.alignment.rg.recalibrated.capture.hist.coverage.gz \ 
RefSeq.alignment.rg.recalibrated-callable.bed \ 
RefSeq.alignment.rg.recalibrated-callable_DP10.bed 

 

#Variant calling 
 
java -jar gatk.jar HaplotypeCaller -R Homo_sapiens_assembly38.fasta -I 
alignment.rg.recalibrated.bam --dbsnp dbsnp.vcf -ERC GVCF --output snps.raw.g.vcf -
-standard-min-confidence-threshold-for-calling 30.0 --force-active true 
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As a final step, a hard-filtering was performed on variant calls based on certain 

criteria. In particular, for SNPs: 

• QD (Quality by Depth) was set to < 2.0 

• MQ (RMS Mapping Quality) was set to < 40 

• FS (Fisher Strand) was set to > 60.0 

• SOR (Strand Odds Ratio) was set to > 3.0 

• MQRankSum (MappingQualityRankSumTest) was set to < -12.5 

• ReadPosRankSum was set to < -8.0 

#Variant recalibration 
 
java -jar gatk.jar GenotypeGVCFs  -R Homo_sapiens_assembly38.fasta -V 
snps.raw.g.vcf -G StandardAnnotation -O complete.raw.variants.vcf 
 
java -jar gatk.jar VariantRecalibrator -V complete.raw.variants.vcf -O 
INDEL.recalibration --tranches-file INDEL.tranches --trust-all-polymorphic \ 
       -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 \ 
        -an QD -an DP -an FS -an SOR -an MQRankSum -an ReadPosRankSum \ 
        -mode INDEL --max-gaussians 4 -R $REF \ 
        -resource:mills,known=false,training=true,truth=true,prior=12 mills.vcf \ 
        -resource:axiomPoly,known=false,training=true,truth=false,prior=10 axiom.vcf \ 
        -resource:dbsnp,known=true,training=false,truth=false,prior=2 dbsnp.vcf 
 
java -jar gatk.jar VariantRecalibrator -V complete.raw.variants.vcf -O 
SNPS.recalibration --tranches-file SNPS.tranches --trust-all-polymorphic \ 
        -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 \ 
        -an DP -an QD -an FS -an SOR -an MQ -an MQRankSum -an ReadPosRankSum -
mode SNP --max-gaussians 6 \ 
        -resource:hapmap,known=false,training=true,truth=true,prior=15 hapmap.vcf \ 
        -resource:omni,known=false,training=true,truth=true,prior=12 omni.vcf \ 
        -resource:1000G,known=false,training=true,truth=false,prior=10 phase1.vcf \ 
        -resource:dbsnp,known=true,training=false,truth=false,prior=7 dbsnp.vcf 
 
java -jar gatk.jar ApplyVQSR -O indel.recalibrated.vcf -V complete.raw.variants.vcf --
recal-file INDEL.recalibration --tranches-file INDEL.tranches \ 
        --truth-sensitivity-filter-level 99 --create-output-variant-index true -mode INDEL 
 
java -jar gatk.jar ApplyVQSR -O variants.recalibrated.vcf -V indel.recalibrated.vcf --
recal-file SNPS.recalibration --tranches-file SNPS.tranches \ 
        --truth-sensitivity-filter-level 99 --create-output-variant-index true -mode SNP 
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as specified by the GATK Best Practices. 

While, for the indels, parameters were set as following: 

• QD (Quality by Depth) was set to < 2.0 

• FS (Fisher Strand) was set to > 200.0 

• ReadPosRankSum was set to < -20.0 

as specified by the GATK Best Practices. 

 

 

 

Datasets 

 

The RefSeq database (release 82) was downloaded from the UCSC Genome Table 

Browser (http://genome.ucsc.edu/). Online Mendelian Inheritance in Man (OMIM) 

#Variant filtering 
 
java -jar gatk.jar SelectVariants --select-type-to-include SNP --output raw_snps.vcf -V 
complete.raw.variants.vcf 
 
java -jar gatk.jar SelectVariants --select-type-to-exclude SNP --output raw_indels.vcf -
V complete.raw.variants.vcf 
 
java -jar gatk.jar VariantFiltration -R Homo_sapiens_assembly38.fasta -V 
raw_snps.vcf \ 
                --filter-expression "QD < 2.0 || MQ < 40.0 || FS > 60.0 || SOR > 3.0 || 
MQRankSum < -12.5 || ReadPosRankSum < -8.0" \ 
                --filter-name "Broad_SNP_filter" -O  raw_filtered_snps.vcf 
 
java -jar gatk.jar VariantFiltration -R Homo_sapiens_assembly38.fasta -V 
raw_indels.vcf \ 
                --filter-expression "QD < 2.0 || FS > 200.0 || ReadPosRankSum < -20.0" \ 
                --filter-name "Broad_indel_Filter" -O raw_filtered_indels.vcf 
 
java -jar gatk.jar MergeVcfs -I raw_filtered_snps.vcf -I raw_filtered_indels.vcf -O 
variants.filtered.vcf 
 
java -jar gatk.jar SelectVariants -R Homo_sapiens_assembly38.fasta --variant 
variants.filtered.vcf.gz --exclude-filtered -O variants.selected.vcf 
 
 

http://genome.ucsc.edu/
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genes associated with a clinical phenotype were downloaded from the OMIM 

website (https://www.omim.org/, release 15-05-2018). 
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RESULTS 
 

The genotypability metric and the depth of coverage 

 

I initially performed an evaluation to assess the relevance of the genotypability 

metric in respect of the solely depth of coverage. Whole Exome Sequencing was 

performed on a representative sample (VRXX) processed by the wet-lab using the 

Twist Human Exome Core plus RefSeq v.1 Reagent kit. The expected mapped 

coverage for this experiment was of 200X, meaning that the entire region of interest 

could be read on average 200 times. From the initial set of sequenced reads, I 

produced downsampled BAM files (with an average X-fold coverage of 10–190) 

on the target design, to evaluate the percentage of the ROI covered by a minimum 

number of reads (1,5,10,20,30) at different coverage levels (10-200X). The same 

evaluation was performed for the genotypability (callability) of the target. 

Results showed that the percentage of the target covered by at least 10 reads, 

augmented significantly between 10-140X and then reached saturation (Table 1). 

In a similar way, the %20X value increased continuously until reaching saturation 

at 170X, whereas the %30X could not reach saturation even at 200X mapped 

coverage. Considering these results, in order to reach a substantial coverage along 

all the target regions, the sequencing depth should be greatly increased. However, 

the genotypability of the target calculated using the standard requirements of the 

GATK workflow (read depth >3) reached saturation at 70X mapped coverage 

(Figure 16). Genotypability at a minimum read depth of 10, the coverage threshold 

suggested by clinical guidelines for the variant identification in genetics 

laboratories, instead reached saturation at higher coverage levels (130X). 

These results showed that increasing the sequencing coverage above 70X could not 

lead to a better callability of the target regions, if considering the standard 

requirements of GATK. Thus, coverage levels commonly considered too low for 

variants identification instead could be potentially adequate for the bioinformatics 

data analysis. For clinical settings, further sequencing coverage could be required 

based on the laboratory’s needs.  
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Mapped 
Coverage 

%1X %5X %10X %20X %30X % PASS 
% PASS 
RD>10 

10 99.39 86.23 49.22 4.48 0.59 87.44 45.96 

20 99.86 97.46 87.66 48.19 13.78 94.23 83.53 

30 99.90 99.19 95.38 77.46 47.97 95.18 91.10 

40 99.91 99.64 97.81 88.34 70.72 95.43 93.50 

50 99.92 99.80 98.88 93.16 82.58 95.49 94.54 

60 99.92 99.85 99.38 95.65 88.67 95.51 95.03 

70 99.92 99.88 99.62 97.11 92.12 95.53 95.26 

80 99.92 99.89 99.74 98.04 94.30 95.53 95.38 

90 99.92 99.90 99.81 98.63 95.77 95.53 95.44 

100 99.92 99.90 99.84 99.03 96.78 95.54 95.48 

110 99.92 99.90 99.86 99.30 97.53 95.54 95.50 

120 99.92 99.91 99.87 99.49 98.11 95.54 95.51 

130 99.92 99.91 99.88 99.60 98.53 95.54 95.52 

140 99.92 99.91 99.89 99.69 98.85 95.54 95.52 

150 99.92 99.91 99.89 99.74 99.09 95.54 95.53 

160 99.92 99.91 99.90 99.78 99.28 95.54 95.53 

170 99.92 99.91 99.90 99.81 99.41 95.54 95.53 

180 99.92 99.91 99.90 99.83 99.52 95.54 95.53 

190 99.92 99.91 99.90 99.84 99.60 95.54 95.54 

200 99.92 99.91 99.91 99.86 99.70 95.54 95.54 

 

Table 1. Downsampled mapped coverage.  

Metrics were calculated on 10–200X downsampled sets, including mapped coverage on 

the target, percentage of the target covered by at least 1, 5, 10, 20 and 30 reads, and 

percentage of callable bases on the target for standard read depth (>3) and read depth > 

10. 
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Figure 16. Tendency of percentage of covered target and genotypability at different coverage 

levels.  

Percentage of the target covered by at least 1, 5, 10, 20 and 30 reads (blue lines) and percentage of 

callable bases on the target for standard read depth (>3) and read depth > 10 (red lines) is shown. 
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The pipeline for the performance evaluation of WES 
 

The in-house bioinformatics pipeline used for the data analysis was developed 

considering the relevance of the genotypability metric revealed by the previous 

experiment. I integrated the Genome Analysis Toolkit Best Practices Workflow (for 

Germline short variant discovery) with two available Quality Control Tools, for the 

analysis of WES performance (Figure 17). The first tool, BamUtil v1.4.14 through 

the option clipOverlap, performed the clipping of overlapping read pairs from the 

BAM file to avoid counting multiple reads representing the same fragment. The 

addition of this step to the standard pipeline (before marking the duplicates in the 

BAM file and recalibrating the base quality scores) was necessary to prevent the 

identification of false positives in the downstream analysis. Statistics on the 

overlaps were produced to monitor the number of overlapping pairs and the average 

number of reference bases overlapped. Then, I used the CallableLoci tool (GATK 

v3.8) on the analysis-ready BAM file to identify the regions of the target considered 

as “callable” (the sites for which the requirements of minimum read depth and 

minimum quality of mapping were satisfied). This tool considers the coverage at 

each locus and emits an interval BED file that partitions the genome into different 

callable states. Only PASS states were kept for the calculation of genotypability. 

The BED file was produced for two minimum read depths: 3 and 10. When the 

BED file was produced by CallableLoci, it was filtered for CALLABLE regions 

only, followed by an analysis of regions coverage. I used the option bedtools 

coverage (v2.19.1) to compute both the depth and breadth of coverage of the target 

regions (the target design and the RefSeq genes).  

I then collected all the statistics produced for the evaluation of WES performance:  

• percentage of the target (for both the design and RefSeq genes) covered by 

at least 1, 5, 10, 20, 30 reads (%1X, %5X, %10X, %20X, %30X); 

• the genotypability of the target at read depths of 3 (% PASS) and 10 (% 

PASS RD>10); 

• the average insert size; 

• the number of mapped deduplicated reads; 
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• the percentage of duplicates; 

• the percentage of on/near/off target bases sequenced; 

• the fold enrichment; 

• the fold-80 penalty value 

• the number of fragments produced by each experiment. 

 

All these values were used for the evaluation of the effects of the DNA fragment 

extension on the different enrichment platforms. 

 

 

 

  

Figure 17. Integration of quality control steps with the standard GATK pipeline.  

DC=Depth of Coverage. 
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WES performances on 3 different DNA fragment lengths 
 

I assessed the performance of short (∼200 bp), medium (∼350 bp) and long (∼500 

bp) DNA fragments on four major commercial exome enrichment platforms 

produced by IDT, Roche, Agilent and Twist. For each platform, the wet-lab 

generated the libraries from the genomic DNA of three unrelated individuals 

(NA12891, NA12982 and VR00), enriched according to the manufacturers’ 

instructions and sequenced on an Illumina HiSeq3000 instrument.  

For the initial dataset of 36 samples, statistics were calculated considering: the total 

number of sequenced fragments, the GC percentage, the theoretical coverage, the 

mapped deduplicated reads, the average insert size, the percentage of duplicates and 

the mapped coverage (Table 2).  
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ID Sequenced 
fragments 

GC% Design length Theoretical 
coverage (X) 

Mapped 
deduplicated 

fragments 

Average 
insert size 

% 
Duplicates 

Mapped 
coverage 

(X) 

NA12891_IDT-S 41,735,851 52 38,871,205 161.05 34,798,458 170.56 14.76 78.02 

NA12891_IDT-M 31,721,147 51 38,871,205 244.82 27,295,886 338.36 12.57 95.92 

NA12891_IDT-L 35,056,454 52 38,871,205 270.56 29,048,970 419.16 15.62 97.28 

NA12891_Roche-S 69,139,041 48 47,007,710 220.62 53,971,159 250.20 19.09 92.04 

NA12891_Roche-M 30,139,859 48 47,007,710 192.35 25,187,948 352.58 14.76 73.15 

NA12891_Roche-L 37,597,648 48 47,007,710 239.95 31,408,182 475.51 14.05 81.22 

NA12891_Agilent-S 69,997,150 51 60,448,148 173.70 56,394,632 267.56 16.11 85.70 

NA12891_Agilent-M 43,377,376 50 60,448,148 215.28 36,041,040 350.30 15.74 96.23 

NA12891_Agilent-L 62,476,876 49 60,448,148 310.07 50,712,887 438.63 15.70 122.77 

NA12891_Twist-S 62,145,209 52 36,715,240 253.89 53,990,842 211.43 9.24 106.91 

NA12891_Twist-M 45,101,242 49 36,715,240 368.52 37,418,907 390.49 14.57 106.47 

NA12891_Twist-L 56,814,853 49 36,715,240 464.23 48,349,215 389.09 12.24 136.39 

NA12892_IDT-S 39,279,677 52 38,871,205 151.58 33,418,710 174.23 12.97 74.92 

NA12892_IDT-M 29,737,235 51 38,871,205 229.51 25,829,978 340.75 11.40 90.66 

NA12892_IDT-L 31,442,649 52 38,871,205 242.67 26,557,527 422.28 13.69 88.66 

NA12892_Roche-S 63,475,661 48 47,007,710 202.55 51,637,279 263.49 15.33 86.49 

NA12892_Roche-M 25,113,466 48 47,007,710 160.27 21,737,831 353.95 11.70 63.42 

NA12892_Roche-L 35,647,295 48 47,007,710 227.50 29,755,564 483.46 13.90 76.69 

NA12892_Agilent-S 63,367,878 50 60,448,148 157.25 50,458,064 270.99 16.64 76.08 

NA12892_Agilent-M 38,379,719 50 60,448,148 190.48 32,736,504 357.00 13.32 87.30 

NA12892_Agilent-L 59,863,365 49 60,448,148 297.10 49,779,709 446.38 13.80 117.87 

NA12892_Twist-S 58,556,655 52 36,715,240 239.23 51,774,402 207.55 7.76 102.74 

NA12892_Twist-M 53,142,446 49 36,715,240 434.23 44,835,844 360.36 13.57 131.09 

NA12892_Twist-L 53,633,893 49 36,715,240 438.24 46,784,910 411.80 9.39 130.16 

VR00_IDT-S 43,858,514 52 38,871,205 169.25 36,430,811 170.05 14.88 81.28 

VR00_IDT-M 30,647,544 51 38,871,205 236.53 26,574,858 343.45 11.82 92.66 

VR00_IDT-L 28,719,060 51 38,871,205 221.65 24,489,849 429.35 13.02 80.87 

VR00_Roche-S 69,341,641 47 47,007,710 221.27 55,349,772 262.24 16.77 80.89 

VR00_Roche-M 25,769,903 48 47,007,710 164.46 22,210,538 361.45 11.86 64.00 

VR00_Roche-L 37,393,464 47 47,007,710 238.64 31,375,345 482.07 13.60 80.81 

VR00_Agilent-S 63,423,698 51 60,448,148 157.38 51,058,660 265.11 17.83 77.59 

VR00_Agilent-M 37,984,977 50 60,448,148 188.52 31,756,515 354.10 15.15 84.83 

VR00_Agilent-L 34,450,041 49 60,448,148 170.97 28,964,914 439.13 13.13 69.93 

VR00_Twist-S 58,092,508 52 36,715,240 237.34 51,158,376 209.79 8.01 101.11 

VR00_Twist-M 49,286,947 49 36,715,240 402.72 42,067,556 360.41 12.36 121.92 

VR00_Twist-L 53,025,771 48 36,715,240 433.27 46,216,132 400.91 9.92 128.25 

 

Table 2. WES initial dataset. 

For each replicate, platform and DNA fragment length combination, the number of 

sequenced fragments, percentage GC content, theoretical coverage, number of mapped 

fragments without duplicates, average insert size, percentage of reads marked as 

duplicates and mapped coverage on the target are shown. DNA fragment lengths: S = 

short, M = medium, L = long. 
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Figure 18. Theoretical and mapped coverage. 

For each replicate, platform and DNA fragment length, theoretical coverage and mapped 

coverage on the target are plotted. 
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Figure 19. Duplicates rate. 

For each replicate, platform and DNA fragment length, the duplicates rate is plotted. 
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The dataset showed many differences at the level of fragments produced and 

consequently in the number of mapped deduplicated reads. Theoretical coverage 

varied from 151X to 464X, and this was reflected in the mapped coverage (63-

136X) (Figure 18). The percentage of duplicates (reads sequenced from the same 

fragment) was also very variable (7-19%) (Figure 19). To avoid a biased 

comparison of statistics values, due to the difference in coverage levels and target 

regions considered, the dataset was firstly aggregated by the mean of the three 

independent experiments (VR00, NA12891, NA12892), and then subdivided in 

normalized datasets (Figure 20). These were used to evaluate WES performances 

for each combination of DNA fragment length and enrichment platform at different 

conditions. 

 

 

  

Figure 20. Different datasets used for the calculation of WES performances. 
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The 140X dataset 

 

From the initial dataset of sequenced reads representing each sample, I produced 

downsampled BAM files with a 140 theoretical X-fold coverage (the maximum 

theoretical coverage value obtained by all the platforms) on the target design (Table 

3). The theoretical coverage is a computed coverage based on randomly subsampled 

sequenced reads, whose amount is set considering both the length of the reads and 

the length of the target region. Theoretical coverage allows the evaluation of: 

• the on/near/off target rate, as the subsampled reads are randomly selected 

considering the entire genome 

• the fold enrichment and the FOLD 80 penalty, which both provide 

information about the read distribution 

• the percentage of duplicates, which are calculated and removed after 

mapping the reads on the target region  

 

The achieved average insert sizes were firstly evaluated, as these values were used 

for the calculation of the near-target rate. The short and medium fragment lengths 

obtained were as expected, whereas the long fragments were often shorter than 

anticipated (398–480 bp). Then, for each combination of enrichment platform and 

DNA fragment length, the 140X dataset allowed the estimation of the near and off 

target rate obtained. The number of bases sequenced near the target augmented with 

the increase of the DNA fragment size, whereas the off-target rate showed different 

trends between the platforms. The evaluation of the number of duplicates showed 

that it was consistently higher using the short DNA fragments for all platforms (12-

15%) except Twist, which had almost comparable values for the short and medium 

size (~5%). The variability in the number of duplicates and in the near/off-target 

rates determined a difference in the mapped coverage obtained, which could affect 

the evaluation of other important statistics values such as the genotypability and the 

enrichment uniformity. For this reason, a normalization on the mapped coverage 

was conducted. 
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Table 3. The 140X dataset.  

For each platform and DNA fragment length combination, the 140 theoretical X-fold 

coverage is shown for the target design dataset (mean of the three independent 

experiments). The columns show the average insert size, percentage of reads marked as 

duplicates, mapped coverage on the target, percentage of the target covered by at least 1, 

5, 10, 20 and 30 reads, percentage of callable bases on the target for standard read depth 

(>3) and read depth >10, percentage of bases on/near/off target, fold enrichment and 

FOLD 80 base penalty. DNA fragment lengths: S = short, M = medium, L = long. 

 

  

ID Average 
insert 
size 

% 
Duplicates 

Mapped 
coverage 

(X) 

%1X %5X %10X %20X %30X % 
PASS 

% 
PASS 
RD>1

0 

% ON 
TARGET 

% NEAR 
TARGET 

% OFF 
TARGET 

Fold 
enrichment 

FOLD 80 
penalty 

IDT-S 171.61 12.61 69.38 99.82 99.77 99.61 98.14 92.96 96.81 96.66 60.36 29.42 10.22 50.01 1.60 

IDT -M 340.85 7.39 57.92 99.81 99.64 98.84 92.37 79.64 97.58 96.72 48.95 40.63 10.43 40.56 1.95 

IDT -L 423.60 8.60 54.28 99.80 99.32 97.01 85.53 70.18 97.39 94.83 45.15 44.10 10.75 37.41 2.28 

Roche-S 258.64 11.81 60.10 99.86 99.36 98.33 93.53 83.01 96.17 95.02 51.86 18.13 30.01 35.50 1.89 

Roche-M 355.99 10.60 55.76 99.83 99.27 98.03 91.86 79.02 96.90 95.53 49.33 38.52 12.14 33.77 1.90 

Roche-L 480.35 8.75 50.31 99.80 99.11 97.37 87.91 71.05 96.79 94.84 42.28 36.04 21.68 28.94 2.02 

Agilent-S 267.89 14.89 70.25 99.79 99.33 98.36 94.21 85.84 95.23 94.22 61.57 21.20 17.23 32.85 2.04 

Agilent-M 353.80 10.88 66.15 99.75 99.33 98.49 94.48 85.58 96.27 95.40 57.04 26.17 16.79 30.44 1.96 

Agilent-L 441.38 11.48 58.31 99.74 99.16 97.73 90.82 78.15 96.13 94.62 50.92 36.96 12.13 27.17 2.06 

Twist-S 209.67 5.10 61.80 99.86 99.78 99.33 95.85 89.38 95.51 95.06 52.23 33.16 14.61 45.77 1.59 

Twist-M 368.28 5.26 46.41 99.82 99.71 99.21 94.96 83.24 96.57 96.06 38.92 45.65 15.43 34.11 1.47 

Twist-L 398.16 3.60 45.17 99.82 99.69 99.05 94.00 80.94 96.56 95.90 37.24 47.04 15.72 32.63 1.51 
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The 80X dataset (on design) 

 

I produced downsampled BAM files with a 80X-fold mapped coverage (the 

maximum mapped coverage value obtained by all the platforms) on the target 

design region (Table 4). The mapped coverage was calculated as the real average 

coverage obtained on the ROI, excluding the duplicates. This dataset focused only 

on the reads mapping on the design region, as everything mapping near and off the 

expected captured region was not intended to be analysed. As parameters for 

comparison I considered: coverage of the target at different thresholds (1X, 5X, 

10X, 20X, 30X), genotypability (% PASS and % PASS RD>10), the fold 

enrichment and the FOLD 80 values. I evaluated the enrichment uniformity of each 

DNA fragment/enrichment platform combination obtained using the FOLD 80 

penalty value (the fold over-coverage necessary to raise 80% of bases to the mean 

coverage level in those targets). The increase of the DNA fragments influenced the 

uniformity of enrichment: longer fragments decreased the FOLD 80 value in one 

platform (Twist), while in two others increased (IDT and Roche). The 

genotypability for each platform improved for the medium and long DNA 

fragments for both % PASS and % PASS RD>10 values. 
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ID Mapped 
coverage 

(X) 

%1X %5X %10X %20X %30X % PASS % PASS 
RD>10 

Fold 
enrichment 

FOLD 80 
penalty 

IDT-S 78.04 99.83 99.77 99.67 98.72 95.26 96.81 96.71 49.99 1.60 

IDT-M 80.00 99.82 99.72 99.45 97.01 90.60 97.62 97.32 40.49 1.93 

IDT-L 80.29 99.82 99.63 98.89 93.99 85.11 97.55 96.73 37.28 2.28 

Roche-S 80.30 99.88 99.55 98.96 96.71 91.89 96.29 95.61 35.46 1.86 

Roche-M* 66.83 99.85 99.40 98.54 94.63 86.06 96.99 96.01 33.74 1.91 

Roche-L 79.52 99.85 99.49 98.83 95.99 89.65 97.04 96.30 28.82 2.01 

Agilent-S 77.73 99.65 99.15 98.25 94.79 88.17 97.58 96.58 32.79 2.05 

Agilent-M 80.01 99.64 99.30 98.76 96.26 90.63 98.23 97.64 30.29 1.95 

Agilent-L 76.42 99.66 99.27 98.55 94.99 87.51 98.20 97.39 26.82 2.05 

Twist-S 80.00 99.86 99.81 99.65 97.94 94.22 95.52 95.36 45.67 1.58 

Twist-M 79.96 99.84 99.78 99.70 99.08 97.11 96.58 96.51 33.52 1.42 

Twist-L 80.05 99.84 99.78 99.69 98.93 96.66 96.58 96.50 32.17 1.45 

 

Table 4. The 80X mapped dataset.  

For each platform and DNA fragment length combination, the 80 mapped X-fold coverage 

is shown for the target design dataset (mean of the three independent experiments). The 

columns show the mapped coverage on the target, percentage of the target covered by at 

least 1, 5, 10, 20 and 30 reads, percentage of callable bases on the target for standard read 

depth (>3) and read depth >10, fold enrichment and FOLD 80 base penalty. DNA fragment 

lengths: S = short, M = medium, L = long. 

* The sequencing data available for this combination did not reach 80X mapped coverage. 
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The 80X dataset (on RefSeq genes) 

 

The same calculation was performed for the RefSeq genes using the downsampled 

BAM files at 80X mapped coverage on the target designs. This dataset focused only 

on the reads mapping on the genes regions (defined by the RefSeq database), since 

according to the literature the clinical interest is mostly on the protein-coding part 

of the genome. Results of the influence of DNA fragment length on the 

genotypability of each gene showed similar trends to those described above (Table 

5). The higher genotypability was obtained using the medium and the long DNA 

fragments for all platforms. 

 

ID Mapped 
coverage 

(X) 

%1X %5X %10X %20X %30X % PASS % 
PASS 

RD>10 

Fold 
enrichment 

FOLD 80 
penalty 

IDT-S 78.43 99.16 99.02 98.93 98.15 94.96 95.72 95.63 50.41 1.60 

IDT-M 79.36 99.22 99.03 98.73 96.21 89.55 96.59 96.27 40.31 1.95 

IDT-L 79.61 99.26 98.96 98.17 93.07 83.84 96.54 95.68 37.10 2.31 

Roche-S 82.94 99.80 99.48 98.99 97.31 93.82 96.21 95.67 36.62 1.74 

Roche-M* 69.35 99.77 99.36 98.69 95.77 89.05 96.98 96.23 35.01 1.81 

Roche-L 83.25 99.79 99.44 98.93 96.82 91.89 97.03 96.47 30.18 1.92 

Agilent-S 86.86 99.76 99.44 98.91 96.60 91.58 96.28 95.73 36.63 2.01 

Agilent-M 89.27 99.72 99.39 98.97 97.20 93.02 97.03 96.60 33.80 1.94 

Agilent-L 86.23 99.74 99.37 98.79 96.06 90.20 96.99 96.37 30.26 2.08 

Twist-S 79.50 99.81 99.75 99.60 97.90 94.18 96.18 96.04 45.39 1.58 

Twist-M 79.96 99.80 99.73 99.67 99.09 97.19 97.13 97.07 33.51 1.41 

Twist-L 80.08 99.81 99.73 99.65 98.94 96.74 97.14 97.06 32.18 1.44 

 

Table 5. The 80X mapped dataset (RefSeq genes). 

For each platform and DNA fragment length combination, the 80 mapped X-fold coverage 

is shown for the target design dataset (mean of the three independent experiments). The 

columns show the mapped coverage on the target, percentage of the target covered by at 

least 1, 5, 10, 20 and 30 reads, percentage of callable bases on the target for standard read 

depth (>3) and read depth >10, fold enrichment and FOLD 80 base penalty. DNA fragment 

lengths: S = short, M = medium, L = long. 

* The sequencing data available for this combination did not reach 80X mapped coverage. 

 

I then focused the analysis on the number of RefSeq genes which could reach 100% 

genotypability in all the platforms using different DNA fragment lengths (Table 6). 
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In three of the four platforms, the medium length obtained more 100% callable 

genes, as Roche obtained the highest value using the long DNA fragments. The best 

result was obtained by Twist-M (17,709 genes), while the worst value was obtained 

by Agilent-S (16,053 genes), with a difference of 1656 genes. 

 

Enrichment platform 
Average DNA fragment size 

Short (S) Medium (M) Long (L) 

IDT 16,430 16,823 16,144 

Roche 16,091 16,299 16,599 

Agilent 16,053 16,869 16,547 

Twist 16,812 17,709 17,706 

 

Table 6. Number of RefSeq genes reaching 100% genotypability. 

Number of RefSeq genes reaching 100% genotypability at 80X mapped coverage on the 

target design dataset using different platforms and DNA fragment lengths. 

 

Aggregating the results of increased genotypability for each platform, many RefSeq 

genes could reach 100% genotypability from short-to-medium and short-to-long 

fragment extension (840-1330) (Table 7 and Figure 21). Considering the genes 

which showed any increase in genotypability, the number was even higher (1837-

2429). For a minimal number of genes, a decrease in genotypability was observed 

increasing the DNA fragment length. 
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Dataset IDT Roche Agilent Twist 

RefSeq genes – up to 100% 
genotypability 

840 1007 1330 1107 

RefSeq genes – increased 
genotypability 

1837 2247 2429 1993 

OMIM genes – up to 100% 
genotypability 

156 125 270 232 

OMIM genes – increased 
genotypability 

321 288 459 370 

 

Table 7. Number of genes showing increased genotypability. 

Number of RefSeq and OMIM genes showing increased genotypability following the 

extension of the DNA fragment size from short to medium, or short to long, at 80X mapped 

coverage on each target design. 

 

The genes associated with a clinical phenotype (derived from the OMIM database) 

were investigated to analyse the improvement in genotypability through the 

extension of the DNA fragment length. 125-270 OMIM genes could reach 100% 

genotypability from short-to-medium and short-to-long fragment extension, and 

considering the genes which showed any increase in genotypability, the number 

achieved was 288-459. As seen before, for a minimal number of genes there was a 

decrease in genotypability with the increase of the DNA fragment length. 
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I then ranked by improvement in genotypability the OMIM genes and took the top 

20 considering both the improvements between the short and the medium size and 

between the short and the long size (Table 8). The difference between short and 

longer fragments showed that, at same coverage levels, the genotypability of the 

target region could increase up to 53%.  

Figure 21. RefSeq/OMIM genes reaching 100% genotypability. 

Number of RefSeq (A) and OMIM (B) genes reaching 100% genotypability at 80X mapped 

coverage on each target design using different DNA fragment lengths. 
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Table 8. Top 20 OMIM genes showing the best improvement in genotypability. 

Top 20 OMIM genes showing the best improvement in genotypability following the 

extension of the DNA fragment length from short to medium and short to long (Twist 

enrichment platform). The data represent the maximum difference in genotypability at 80X 

mapped coverage on the Twist design. DNA fragment lengths: S = short, M = medium, L 

= long. 

 

  

OMIM 
% Genotypability 

% Diff. 
%10X Coverage 

S M L S M L 

RPS26 47.13 100 100 52.87 100 100 100 

RPL15 49.98 100 100 50.02 99.90 100 100 

RPL21 60.60 100 100 39.4 100 100 100 

RPSA 63.29 100 100 36.71 100 100 100 

GCSH 64.56 100 97.38 35.44 100 100 100 

HNRNPA1 66.84 100 100 33.16 100 100 100 

CISD2 53.37 85.15 100 31.78 100 100 100 

IFNL3 69.43 100 100 30.57 100 100 100 

LEFTY2 74.00 100 100 26.00 100 100 100 

BMPR1A 74.19 100 100 25.81 100 100 100 

RPS23 75.00 100 100 25.00 100 100 100 

ISCA1 75.13 100 100 24.87 100 100 100 

ALG10 75.15 100 100 24.85 100 100 100 

IFITM3 77.53 100 100 22.47 100 100 100 

PTEN 78.55 100 100 21.45 98.49 100 100 

BANF1 78.64 100 100 21.36 100 100 100 

HLA-A 79.02 100 100 20.98 99.88 100 99.82 

RPS28 80.79 100 100 19.21 100 100 100 

RP9 78.88 97.60 100 18.72 100 100 100 

CYP11B1 81.73 100 100 18.27 100 100 100 
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The multiple-downsampling dataset 

 

Finally, I evaluated the influence at different coverage levels of the DNA fragment 

size and enrichment uniformity on genotypability of the target. Therefore, I 

produced downsampled BAM files (with an average X-fold coverage of 10–80) on 

the corresponding target designs. Since coverage levels are considered fundamental 

in the evaluation of WES performances, I compared: coverage of the target at 

different thresholds (1X, 5X, 10X, 20X, 30X), genotypability (% PASS and % 

PASS RD>10), the fold enrichment and the FOLD 80 values through a variable 

mapped coverage.  

I initially focused on the single effect of enrichment uniformity on genotypability 

at 10-80X mapped coverage. I performed a comparison between the platform with 

the best enrichment uniformity (lower FOLD 80 value), Twist, and the one with the 

highest FOLD 80 value, Agilent, considering a fixed DNA fragment length 

(medium) (Table 9). Twist with its higher uniformity (1.42-1.58) could reach 

saturation of genotypability at 60X mapped coverage (96.57% for % PASS and 

96.40% for % PASS RD>10), while Agilent with higher FOLD 80 values (1.94-

2.39) could not reach the same callability (96.31% and 96.40% for % PASS and % 

PASS RD>10, respectively, at 80X mapped coverage). The percentage of the target 

covered by at least 30 reads (%30X) reflected the higher uniformity of Twist 

already at 60X in respect of Agilent.  
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Mapped 
coverage (X) 

%1X %5X %10X %20X %30X 
% 

PASS 
% PASS 
RD>10 

Fold enrichment 
FOLD 80 
penalty 

Twist-M 

80 99.84 99.78 99.70 99.08 97.11 96.58 96.51 33.52 1.42 

70 99.84 99.77 99.66 98.66 95.67 96.57 96.47 33.51 1.42 

60 99.83 99.76 99.58 97.87 93.03 96.57 96.40 33.52 1.42 

50 99.83 99.73 99.40 96.32 87.50 96.55 96.21 33.51 1.44 

40 99.82 99.68 98.94 92.62 74.75 96.53 95.77 33.51 1.46 

30 99.81 99.49 97.55 81.67 47.28 96.45 94.39 33.51 1.50 

20 99.79 98.64 91.45 47.98 11.39 96.02 88.26 33.51 1.58 

10 99.54 89.28 49.25 3.28 0.38 90.86 46.27 33.51 1.58 

Agilent-M 

80 99.78 99.45 98.86 96.41 90.93 96.31 95.72 30.41 1.94 

70 99.76 99.37 98.62 95.16 87.38 96.27 95.50 30.41 1.95 

60 99.75 99.27 98.24 93.00 81.79 96.21 95.16 30.41 1.96 

50 99.73 99.09 97.54 89.08 73.10 96.12 94.51 30.41 1.97 

40 99.69 98.78 96.10 81.57 59.87 95.96 93.13 30.41 1.98 

30 99.63 98.05 92.40 67.22 40.83 95.56 89.53 30.41 2.00 

20 99.47 95.47 80.96 41.50 17.69 94.11 78.27 30.42 2.13 

10 98.63 80.04 43.34 8.65 1.84 84.16 41.31 30.41 2.39 

 

Table 9. Downsampled mapped coverage. 

Parameters were calculated on 10–80X downsampled sets, including mapped coverage on 

the target, percentage of the target covered by at least 1, 5, 10, 20 and 30 reads, percentage 

of callable bases on the target for standard read depth (>3) and read depth >10, fold 

enrichment and FOLD 80 base penalty. 

 

Then I focused on the single effect of the DNA fragment size on genotypability at 

10-80X mapped coverage. I performed a comparison between two different DNA 

fragment lengths (short and long) on the same platform (IDT), which showed a very 

high variability in enrichment uniformity using different fragment lengths (1.60-

1.86 for S and 2.26-2.35 for L) (Table 10). Again, the %30X reflected the FOLD 

80 values based on the use of the short and the long lengths. In particular, the long 

fragments produced a higher number of over-represented regions at 10-20X 

mapped coverage in respect of the short fragments. On the contrary, at higher 

mapped coverage levels (40-80X) the %10X was lower for the long fragments, 

suggesting an uneven distribution of longer reads. With regard to genotypability, 

longer fragments achieved higher values already at 40X, but the % PASS RD>10 

did not performed as well (91.32% for IDT-L against 95.61% for IDT-S at 40X 
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mapped coverage). In this case, the lower enrichment uniformity of IDT-L 

negatively effected the genotypability of longer DNA fragments. 

 

Mapped 
coverage (X) 

%1X %5X %10X %20X %30X 
% 

PASS 
% PASS 
RD>10 

Fold 
enrichment 

FOLD 80 
penalty 

IDT-S 

80 99.88 99.84 99.73 98.77 95.48 96.84 96.72 50.05 1.60 

70 99.83 99.77 99.62 98.18 93.15 96.81 96.66 49.98 1.60 

60 99.82 99.75 99.51 96.94 88.62 96.80 96.54 49.99 1.61 

50 99.82 99.72 99.25 94.25 80.45 96.79 96.29 49.99 1.60 

40 99.81 99.64 98.57 88.18 65.63 96.74 95.61 49.99 1.62 

30 99.80 99.38 96.34 73.74 40.61 96.62 93.38 49.98 1.64 

20 99.77 98.04 86.96 41.40 11.46 95.95 84.03 49.99 1.69 

10 99.42 85.07 43.50 4.75 1.72 88.31 40.93 49.99 1.86 

IDT-L 

80 99.82 99.63 98.89 93.98 85.10 97.56 96.73 37.28 2.28 

70 99.81 99.56 98.44 91.65 80.56 97.51 96.27 37.28 2.26 

60 99.80 99.44 97.67 88.17 74.47 97.45 95.50 37.28 2.28 

50 99.79 99.20 96.28 82.84 66.15 97.31 94.08 37.28 2.34 

40 99.77 98.65 93.54 74.46 54.62 96.99 91.32 37.29 2.34 

30 99.72 97.23 87.75 60.97 38.36 96.14 85.47 37.28 2.34 

20 99.54 92.90 74.56 38.95 17.37 93.33 72.26 37.28 2.35 

10 98.21 74.64 40.47 8.48 2.36 79.91 38.37 37.29 2.35 

 

Table 10. Downsampled mapped coverage. 

Parameters were calculated on 10–80X downsampled sets, including mapped coverage on 

the target, percentage of the target covered by at least 1, 5, 10, 20 and 30 reads, percentage 

of callable bases on the target for standard read depth (>3) and read depth >10, fold 

enrichment and FOLD 80 base penalty. 

 

Finally, I evaluated the combined effect of DNA fragment extension with 

enrichment uniformity on genotypability at 10-80X mapped coverage. I compared 

different DNA fragment lengths (short and medium) on the platform which showed 

the best enrichment uniformity (1.42-1.58) with longer fragments (Twist) (Table 

11). Results showed that both the DNA fragments could reach saturation of 

genotypability already at 60X mapped coverage, but with a substantial difference 

of 1% more for the medium fragments for % PASS (96.57% for Twist-M against 

95.50% for Twist-S) and % PASS RD>10 (96.40% for Twist-M against 95.01% for 

Twist-S). Therefore, the combined effect of higher enrichment uniformity and 
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extension of DNA fragment length led to better genotypability, especially for 

clinically-relevant thresholds. 

 

Mapped 
coverage (X) 

%1X %5X %10X %20X %30X 
% 

PASS 
% PASS 
RD>10 

Fold enrichment 
FOLD 80 
penalty 

Twist-S 

80 99.86 99.81 99.65 97.94 94.22 95.52 95.36 45.67 1.58 

70 99.86 99.79 99.52 97.02 92.09 95.51 95.25 45.68 1.58 

60 99.86 99.77 99.28 95.56 88.66 95.50 95.01 45.67 1.60 

50 99.85 99.71 98.80 93.13 82.65 95.48 94.53 45.67 1.60 

40 99.84 99.56 97.74 88.39 70.86 95.41 93.50 45.67 1.62 

30 99.83 99.09 95.29 77.32 47.59 95.18 91.09 45.67 1.66 

20 99.78 97.36 87.52 47.91 13.60 94.22 83.48 45.67 1.71 

10 99.30 86.10 48.97 4.46 0.59 87.35 45.76 45.67 1.88 

Twist-M 

80 99.84 99.78 99.70 99.08 97.11 96.58 96.51 33.52 1.42 

70 99.84 99.77 99.66 98.66 95.67 96.57 96.47 33.51 1.42 

60 99.83 99.76 99.58 97.87 93.03 96.57 96.40 33.52 1.42 

50 99.83 99.73 99.40 96.32 87.50 96.55 96.21 33.51 1.44 

40 99.82 99.68 98.94 92.62 74.75 96.53 95.77 33.51 1.46 

30 99.81 99.49 97.55 81.67 47.28 96.45 94.39 33.51 1.50 

20 99.79 98.64 91.45 47.98 11.39 96.02 88.26 33.51 1.58 

10 99.54 89.28 49.25 3.28 0.38 90.86 46.27 33.51 1.58 

 

Table 11. Downsampled mapped coverage. 

Parameters were calculated on 10–80X downsampled sets, including mapped coverage on 

the target, percentage of the target covered by at least 1, 5, 10, 20 and 30 reads, percentage 

of callable bases on the target for standard read depth (>3) and read depth >10, fold 

enrichment and FOLD 80 base penalty. 
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Variant calling results 

 

To assess the effects of the improvement in genotypability through the combination 

of the DNA fragment extension and a high enrichment uniformity, the variant 

calling was performed on each of the three individuals. The variant calling could 

evaluate the difference in the number of variants identified using short and longer 

DNA fragments due to the higher number of callable bases achieved in all 

platforms.  

For each sample, I used the HaplotypeCaller software (v4.1.2.0) to identify the 

genetic variants in respect of the human genome reference sequence. Variants were 

filtered using the target design regions of Twist, which showed the best results in 

terms of genotypability of the target after the extension of the DNA fragments, and 

results were aggregated by the mean values obtained from the individuals (Table 

12). Results showed an increase of >1% in both the short-to-medium and short-to-

long fragment extensions. The same >1% increase with longer DNA fragments was 

observed for the number of variants identified in the RefSeq and OMIM genes 

included in the target design. These results reflected the same trend seen for the 

genotypability (1% increase) in genotypability achieved by increasing the length of 

the DNA fragments. 

 

DNA fragment size #variants in 
design 

#variants in RefSeq 
genes 

#variants in OMIM 
Genes 

S 23,140 20,279 5,008 

M 23,461 20,509 5,057 

L 23,521 20,576 5,074 

 

Table 12. Variants in the Twist target design (HaplotypeCaller). 

Total number of variants identified in the Twist target design, and in the corresponding 

RefSeq and OMIM genes, for each DNA fragment size (S = short, M = medium, L = long). 
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WES performances on 9 different DNA fragment lengths 
 

The evaluation of the WES performance for 3 different DNA fragment lengths 

(∼200, ∼350 and ∼500 bp) showed relevant differences in terms of genotypability 

of the ROI. The highest change in genotypability was identified between the short 

and the medium fragments, whose difference in terms of length was not trivial (150 

bp). To identify the presence of a threshold above which the genotypability of the 

ROI could significantly improve, I isolated 27 individuals from almost 1,000 

exomes processed with the Twist platform in over a year. These samples could 

represent nine different DNA fragment lengths (200, 230, 260, 270, 280, 290, 340, 

360 and 400 bp) in replicates of three. The developed bioinformatics pipeline was 

then used to analyse this new set of samples. 

For the initial dataset of 27 samples, statistics were calculated considering: the total 

number of sequenced fragments, the GC percentage, the theoretical coverage, the 

mapped deduplicated reads, the average insert size, the percentage of duplicates and 

the mapped coverage (Table 13).  

The dataset showed many differences at the level of fragments produced and in the 

number of mapped deduplicated reads, as previously seen. Theoretical coverage 

varied from 198X to 464X, whereas the mapped coverage varied from 80 to 136X 

(Figure 22). The percentage of duplicates was also very variable (7-20%) (Figure 

23). To compute an unbiased comparison of WES performances, the dataset was 

aggregated by the mean values obtained for each group of individuals, and then 

subdivided in normalized datasets using the theoretical coverage (200X) and the 

mapped coverage (80X) on the target design, as performed previously.  
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ID Sequenced 
fragments 

GC% Design length Theoretical 
coverage (X) 

Mapped 
deduplicated 

fragments 

Average 
insert size 

% 
Duplicates 

Mapped 
coverage 

(X) 

VR00_200 58,092,508 52 36,715,240 237.34 51,158,376 209.79 8.01 101.11 

NA12891_200 62,145,209 52 36,715,240 253.89 53,990,842 211.43 9.24 106.91 

NA12892_200 58,556,655 52 36,715,240 239.23 51,774,402 207.55 7.76 102.74 

VR00_230 48,873,712 51 36,715,240 199.67 42,612,354 222.17 9.03 82.13 

NA12891_230 48,612,772 52 36,715,240 198.61 41,948,721 236.17 9.57 80.02 

NA12892_230 53,294,072 52 36,715,240 217.73 45,120,197 244.94 11.22 85.21 

3234V_260 38,894,499 49 36,715,240 317.81 35,348,300 261.83 8.42 93.92 

2852T_260 35,460,051 49 36,715,240 289.74 32,054,884 261.88 8.91 85.38 

3258V_260 55,593,344 49 36,715,240 454.25 50,254,880 263.55 8.98 132.45 

376V_270 51,391,218 49 36,715,240 419.92 46,352,045 269.72 9.09 122.61 

3260V_270 38,768,558 49 36,715,240 316.78 35,472,484 270.95 7.72 95.64 

3233V_270 37,135,966 49 36,715,240 303.44 33,726,602 272.39 8.38 90.85 

603V_280 39,062,497 49 36,715,240 319.18 35,586,582 282.06 8.08 94.62 

19N0175_280 44,493,206 48 36,715,240 363.55 40,179,822 282.23 8.91 107.87 

3269V_280 42,372,135 48 36,715,240 346.22 38,497,147 281.65 8.39 103.36 

377V_290 45,368,031 48 36,715,240 370.70 41,185,643 288.65 8.49 110.41 

19N0104_290 37,116,772 49 36,715,240 303.28 33,657,874 291.56 8.39 89.46 

3778V_290 35,789,884 48 36,715,240 292.44 32,646,350 292.83 7.86 86.80 

VR00_340 52,398,002 48 36,715,240 428.14 41,262,820 323.46 20.01 108.73 

NA12891_340 48,348,995 48 36,715,240 395.06 38,860,722 338.35 18.23 102.00 

NA12892_340 51,378,070 48 36,715,240 419.81 41,175,544 339.21 18.42 107.62 

VR00_360 49,286,947 49 36,715,240 402.72 42,067,556 360.41 12.36 121.92 

NA12891_360 45,101,242 49 36,715,240 368.52 37,418,907 390.49 14.57 106.47 

NA12892_360 53,142,446 49 36,715,240 434.23 44,835,844 360.36 13.57 131.09 

VR00_400 53,025,771 48 36,715,240 433.27 46,216,132 400.91 9.92 128.25 

NA12891_400 56,814,853 49 36,715,240 464.23 48,349,215 389.09 12.24 136.39 

NA12892_400 53,633,893 49 36,715,240 438.24 46,784,910 411.80 9.39 130.16 

 

 

Table 13. WES initial dataset. 

For each replicate and DNA fragment length combination, the number of sequenced 

fragments, percentage GC content, theoretical coverage, number of mapped fragments 

without duplicates, average insert size, percentage of reads marked as duplicates and 

mapped coverage on the target are shown.  
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Figure 22. Theoretical and mapped coverage. 

For each replicate and DNA fragment length, theoretical coverage and mapped coverage on the 

target are plotted. 
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Figure 23. Duplicates rate. 

For each replicate and DNA fragment length, the duplicates rate is plotted. 
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The 200X dataset 

 

From the initial dataset of sequenced reads representing each sample, I produced 

downsampled BAM files with a 200 theoretical X-fold coverage (the maximum 

mapped coverage value obtained by all the samples) on the target design (Table 14). 

As parameters for comparison I considered: the on/near/off target rate, the fold 

enrichment, the FOLD 80 values and the percentage of duplicates.  

 

 

Table 14. The 200X dataset.  

For each DNA fragment length, the 200 theoretical X-fold coverage is shown for the target 

design dataset (mean of the three independent experiments). The columns show the average 

insert size, mapped coverage on the target, percentage of the target covered by at least 1, 

5, 10, 20 and 30 reads, percentage of callable bases on the target for standard read depth 

(>3) and read depth >10, percentage of bases on/near/off target, fold enrichment and 

FOLD 80 base penalty. 

 

I evaluated the number of sequenced bases near and off the target and the frequency 

of duplicates obtained. The extension of the DNA fragment length from 200 to 400 

bp generally decreased the on-target rate, except for the 360 and the 400 bp length. 

As expected, the near-target increased from the short to longer libraries, while the 

off-target rate showed lower values only for very short (200-230 bp) or longer 

fragments (360-400 bp), reflecting a higher cross-hybridization to regions outside 

of the target for fragments between 260 and 340 bp. The highest frequency of 

duplicates was generated by the 230 and 340 bp length (9–10%), followed by 200 

and 360 bp (6-7%). On the contrary, fragment lengths between 260 and 290 bp, 

DNA 
fragment 

length 

Average 
insert size 

% 
Duplicates 

Mapped 
coverage 

(X) 

%1X %5X %10X %20X %30X % 
PASS 

% PASS 
RD>10 

% ON 
TARGET 

% NEAR 
TARGET 

% OFF 
TARGET 

Fold 
enrichment 

FOLD 80 
penalty 

200 206.28 6.29 87.30 99.86 99.82 99.70 98.36 95.22 95.50 95.39 52.36 32.96 14.68 45.89 1.58 

230 231.64 9.24 80.90 99.86 99.82 99.71 98.40 95.17 95.53 95.43 49.78 35.58 14.63 43.63 1.53 

260 262.34 5.31 61.15 99.80 99.72 99.64 99.32 97.15 96.38 96.33 40.20 36.52 23.28 35.23 1.36 

270 270.91 5.08 61.86 99.78 99.71 99.64 99.34 97.33 96.41 96.36 39.73 37.21 23.06 34.82 1.36 

280 281.83 5.11 61.81 99.78 99.69 99.61 99.25 97.03 96.42 96.35 38.70 37.43 23.87 33.92 1.38 

290 290.87 5.32 61.37 99.79 99.69 99.61 99.24 96.87 96.43 96.35 37.89 38.05 24.06 33.21 1.38 

340 334.18 10.16 57.26 99.83 99.74 99.63 98.96 94.90 96.54 96.44 36.35 40.44 23.20 31.86 1.38 

360 366.62 7.18 64.74 99.83 99.76 99.60 98.16 94.11 96.58 96.43 38.80 45.65 15.56 34.00 1.44 

400 396.33 4.94 63.50 99.83 99.75 99.56 97.78 93.14 96.59 96.39 37.16 47.03 15.81 32.57 1.48 
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followed by the longest fragment size (400 bp) seemed to optimize the frequency 

of duplicates for this platform. As previously observed, the differences in off-target 

and duplicates rates resulted in a variability in the mapped coverage values. 
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The 80X dataset (on design and RefSeq genes) 

 

The same calculation was performed for the design target regions and the RefSeq 

genes, using the downsampled BAM files at 80X mapped coverage on the target 

designs (Table 15 and 16). As parameters for comparison I considered: coverage at 

different thresholds (1X, 5X, 10X, 20X, 30X), genotypability (% PASS and % 

PASS RD>10), the fold enrichment and the FOLD 80 values. Results confirmed 

the trend previously seen. Genotypability increased when optimizing uniformity of 

enrichment and increasing DNA fragment length, especially between the 260 and 

the 340 bp DNA fragment length. For the design target region, % PASS jumped 

from 95.52% to 96.38% using the 230 bp and 260 bp lengths, respectively. FOLD 

80 decreased from 1.58 to 1.34, concomitantly. Enrichment uniformity started to 

decrease from the 360 bp length (1.42-1.45), which already obtained saturation in 

terms of genotypability. 

 

 

DNA fragment 
length 

Mapped 
coverage (X) 

%1X %5X %10X %20X %30X % PASS % PASS 
RD>10 

Fold 
enrichment 

FOLD 80 
penalty 

200 80.72 99.86 99.82 99.71 98.42 95.21 95.55 95.45 43.50 1.53 

230 80.00 99.86 99.81 99.65 97.94 94.22 95.52 95.36 45.67 1.58 

260 79.99 99.81 99.73 99.68 99.54 99.13 96.38 96.34 35.13 1.34 

270 79.97 99.79 99.72 99.67 99.54 99.13 96.40 96.37 34.72 1.34 

280 80.00 99.79 99.71 99.65 99.48 99.01 96.43 96.38 33.79 1.36 

290 80.02 99.80 99.71 99.65 99.49 99.01 96.43 96.38 33.10 1.36 

340 79.99 99.84 99.78 99.71 99.50 98.88 96.53 96.47 31.59 1.37 

360 79.96 99.84 99.78 99.70 99.08 97.11 96.58 96.51 33.52 1.42 

400 80.05 99.84 99.78 99.69 98.93 96.66 96.58 96.50 32.17 1.45 

 

 

Table 15. The 80X mapped dataset.  

For each DNA fragment length, the 80 mapped X-fold coverage is shown for the target 

design dataset (mean of the three independent experiments). The columns show the mapped 

coverage on the target, percentage of the target covered by at least 1, 5, 10, 20 and 30 

reads, percentage of callable bases on the target for standard read depth (>3) and read 

depth >10, fold enrichment and FOLD 80 base penalty.  
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Similar results were obtained for the RefSeq genes. Genotypability increased at 

lower FOLD 80 values, with a leap between the 230 bp and the 260 bp length (% 

PASS jumped from 95.81% to 96.58%, respectively). Above the 230 bp length, the 

FOLD 80 decreased (1.58-1.34), together with an increase of the genotypability. 

Enrichment uniformity started to decrease from the 360 bp length (1.42-1.44), 

which again obtained saturation in terms of genotypability. 

 

 

DNA fragment 
length 

Mapped 
coverage (X) 

%1X %5X %10X %20X %30X % PASS % PASS 
RD>10 

Fold 
enrichment 

FOLD 80 
penalty 

200 80.18 99.71 99.63 99.53 98.23 95.02 95.84 95.74 43.21 1.52 

230 79.45 99.71 99.62 99.46 97.74 94.00 95.81 95.65 45.36 1.58 

260 79.59 99.69 99.54 99.49 99.37 98.99 96.58 96.54 34.95 1.34 

270 79.55 99.68 99.54 99.49 99.37 98.99 96.60 96.56 34.54 1.34 

280 79.99 99.69 99.53 99.47 99.32 98.92 96.63 96.57 33.78 1.35 

290 79.84 99.70 99.54 99.47 99.33 98.89 96.64 96.58 33.02 1.37 

340 79.71 99.75 99.60 99.54 99.36 98.79 96.75 96.68 31.48 1.37 

360 79.83 99.72 99.61 99.53 98.94 97.02 96.81 96.73 33.46 1.42 

400 79.94 99.73 99.61 99.52 98.79 96.56 96.82 96.72 32.13 1.44 

 

 

Table 16. The 80X mapped dataset.  

For each DNA fragment length, the 80 mapped X-fold coverage is shown for the RefSeq 

genes dataset (mean of the three independent experiments). The columns show the mapped 

coverage on the target, percentage of the target covered by at least 1, 5, 10, 20 and 30 

reads, percentage of callable bases on the target for standard read depth (>3) and read 

depth >10, fold enrichment and FOLD 80 base penalty.  

 

The trend obtained for the FOLD 80 and the genotypability values (% PASS and % 

PASS RD>10) was plotted against the respective DNA fragment lengths (Figure 

20). The enrichment uniformity showed a decrease (increase in the curve) above 

the 260 bp length, indicating that longer DNA fragments did not optimize the 

coverage uniformity, for both the design and RefSeq genes regions (Figure 24 A-

B). However, longer DNA fragments increased the genotypability for both % PASS 

and % PASS RD>10 values, as uniformity of coverage was sufficient to allow good 

performances in base calling (Figure 24 C-D). In particular, a remarkable leap 

(more than 1%) of genotypability was evident between the 230 bp and the 260 bp 
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DNA fragment length. From the 260 bp length, results showed a less evident 

increase in genotypability, indicating that satisfactory base calling could be 

obtained already at this threshold. The decrease in enrichment uniformity 

observable from the 360 bp length (which was related to an increase in the 

genotypability of a few percentage points), pointed out that base calling was not 

strictly influenced by the FOLD 80 value, but more by the DNA fragment length. 

 

 

 

 

 

Figure 24. Tendency of FOLD 80 penalty and genotypability at different insert sizes.  

The figure shows the FOLD 80 base penalty and genotypability values at different insert 

sizes considering the target design (A-C) and the RefSeq genes (B-D) regions. 
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DISCUSSION 

 

The current challenges for the bioinformatics data analysis of NGS data are several, 

from the correct alignment of the sequenced reads on the reference genome to the 

accurate variant calling. Software benchmarking could help in the decision of 

finding the most accurate pipeline to use [28][29][30], but some limitations are still 

present. Alignment of reads in repetitious regions of the genome yet leads to 

segments of the genome not investigable [8] and variant calling provides an 

incomplete genetic information (VCF files), as invariant sites cannot be further 

analysed. Moreover, data derived from samples processed using different 

enrichment technologies are analysed considering only the depth and uniformity of 

coverage [16], whereas regions highly-covered cannot always ensure a high 

confidence of the alignment. This work aimed to improve the bioinformatics 

analysis of targeted resequencing and subsequently ameliorate the current 

limitations of the analysis. 

Considering that the solely depth of coverage could be misleading for the data 

analysis, a new metric was included, namely the genotypability. This value, which 

reflects both the depth of coverage and the quality of the alignment at a specific 

genomic site, was calculated integrating the CallableLoci tool in the The Genome 

Analysis Toolkit Best Practices Workflow. In this way, callable regions of any ROI 

(i.e. the design or the coding regions of the genome) could be provided, so that the 

consequent variant calling could produce adequate files for a potential clinical 

setting (gVCF files). Several standard parameters generally used for the assessment 

of WES performance were also integrated within the pipeline, however 

genotypability could show a substantial difference from other metrics, especially 

from the depth of coverage. From a single initial experiment sequenced at very high 

coverage levels (200X), results showed that whereas optimal coverage levels on the 

entire target could be obtained only a high mapped coverage, genotypability 

increased to reach saturation at coverage levels usually considered low for WES 

[31]. For this reason, contrary to what is expected, deeper sequencing would be 

useless as the callability would not improve at higher coverage levels. 
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While the lack of sequencing in some regions could be ameliorated increasing the 

depth of coverage, the genotypability clearly showed a different trend. For this 

reason, there was a need to improve the alignment of reads at low quality, as the 

base calling is directly influenced by that. The approach was then to extend the 

DNA fragment length so that one of the read pairs could align outside of the exonic 

regions to reach the introns, known to be under greater evolutionary constraints 

[32]. Therefore, the bioinformatics pipeline developed was applied on three 

biological replicates sequenced using different enrichment technologies (as they 

provide a variability with regards to the target region) and extending the DNA 

fragment to a medium (∼350 bp) and a long (∼500 bp) size.  

Overall, independently from the ROI (enrichment platform), the extension of the 

DNA fragment size could always provide a better genotypability of the target. Thus, 

an improvement of the read alignment could effectively be obtained. Indeed, many 

genes derived from the RefSeq gene dataset at 80X mapped coverage improved 

their mappability, including genes of known clinical interests. This result was 

relevant in light of the challenges posed by the American College of Medical 

Genetics and Genomics (ACMG), that already stressed the importance of detecting 

disease-causing variants in repetitious regions of the genome [2]. Among the genes 

that improved their genotypability, RPS26 and RPL15 (associated with the bone 

marrow disorder Diamond-Blackfan anemia according to the OMIM database) 

obtained 100% base calling extending the DNA fragment from short to medium 

(starting from a callability of 47.13% for RPS26 and 49.98% for RPL15). RPSA, 

which is associated with the immunodeficiency disease isolated congenital 

asplenia, also reached 100% from 63.29% extending the DNA fragments, and 

similarly the tumor suppressor gene PTEN could also obtain 100% (starting from 

78.55% using short fragments). This means that these genes of medical relevance 

contained regions of low mapping quality that could potentially harbour pathogenic 

variants otherwise neglected.  

This result was confirmed with the variant calling performed on the replicates, 

which on average provided an increase in the number of variants of ∼1%, the same 

increase showed for the genotypability metric. This proved again an effective 
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improvement of the read alignment in regions previously considered uncallable, but 

also the presence of a consistent number of variants present in repetitious genomic 

regions.  

With regards to uniformity of coverage, the extension of the DNA fragments could 

not clearly determine an improvement, as previously stated [6]. Indeed, for some 

enrichment platforms, longer fragments could improve the coverage uniformity, 

while for others there was no improvement. More generally, with a low uniformity 

of coverage, genotypability was more dependent on the mapped coverage (higher 

coverage = higher genotypability), but with higher uniformity values, the 

genotypability reached saturation at lower coverage levels (60X). This result 

confirmed once more that with a more uniform coverage of the target, deep 

sequencing is not necessary, as genotypability could not further improve. The fold 

enrichment value, which provides the “efficiency of enrichment” through the 

evaluation of the on-target in respect of the near and off-target rates, did not strongly 

correlate with the genotypability of the target as well. Indeed, low fold enrichment 

values did not correspond to a reduction of callability.  

The number of duplicates obtained for each enrichment platform and DNA 

fragment size combination confirmed as well the importance of the extension of the 

DNA fragment length for the reduction of the sequencing depth, related to the 

reduction of the number of fragments that need to be produced. Indeed, as the use 

of 2 x 75 bp reads requires double the amount of sequencing of the 2 x 150 bp reads, 

the problem of duplicates could be greatly reduced.  

Overall, the most relevant change in genotypability was observed between the short 

(∼200) and the medium (∼350) fragments. This indicated that short fragments 

could successfully improve the read alignment when extended, but the minimum 

extension required to generally overcome repetitious regions was still not known. 

For this reason, nine more different DNA fragment lengths were investigated 

between the short and the medium one. The increase in genotypability between the 

different lengths was continuous, but an evident leap was present between the 230 

and the 260 bp length. The same leap was evident in the uniformity of coverage 

(from 1.58 to 1.34), showing once again that higher enrichment uniformity lead to 
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better genotypability. However, while uniformity slightly started to decrease using 

DNA fragments above 260 bp, the genotypability could still improve. This 

indicated that uniformity of coverage had an influence on genotypability of the 

region, but the major influencing factor was the extension of the DNA fragment 

length. The 1% increase in genotypability was obtained immediately above the 230 

bp, pointing out that this threshold should be used as a minimum requirement for 

the library preparation of samples analysed with the specified enrichment platform. 

Genotypability could still slightly improve, leaving to the single laboratory the 

choice of the more appropriate DNA length to use. Interestingly, the number of 

bases sequenced on-target decreased when increasing the fragment size between 

260 to 340 bp, but genotypability was not affected by that. This proved that fold 

enrichment and uniformity of coverage are still incomplete metrics for the 

evaluation of WES performances. 

Exome sequencing costs could also be reduced through the extension of the DNA 

fragment length. While short DNA fragments generally allows to limit the costs of 

the analysis, longer fragments could improve the quality of the read alignment, 

producing a higher uniformity of coverage and hence reducing the amount of 

sequencing needed to sufficiently cover the entire target region. In this way, the 

overall costs could be reduced and DNA fragment extension revealed to be less 

costly than the increase of the sequencing depth. 

In this thesis work, the performance of WES was evaluated through a metric that 

considered not only the depth and uniformity of coverage of the region 

investigated, but also the quality of the read alignment. Genotypability confirmed 

to be a more informative parameter in the evaluation of WES, and this could be 

improved extending the DNA fragment length. Although the combination of DNA 

fragment size and enrichment platform showed an influence on the base calling, 

this one improved in all cases, even despite slightly worsening of performance of 

the uniformity of coverage. The use of this approach in a clinical setting could 

provide to clinicians the best options from the sample processing to the variant 

calling, even for repetitious genomic regions. The identification of more variants 

in regions difficult to align could provide new insights into human diseases and 

their associations to variants with a biological consequence. 
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