
Dynamic Movement Primitives: Volumetric Obstacle Avoidance

Michele Ginesi, Daniele Meli, Andrea Calanca, Diego Dall’Alba, Nicola Sansonetto, and Paolo Fiorini

Abstract— Dynamic Movement Primitives (DMPs) are a
framework for learning a trajectory from a demonstration. The
trajectory can be learned efficiently after only one demonstra-
tion, and it is immediate to adapt it to new goal positions and
time duration. Moreover, the trajectory is also robust against
perturbations. However, obstacle avoidance for DMPs is still
an open problem. In this work, we propose an extension of
DMPs to support volumetric obstacle avoidance based on the
use of superquadric potentials. We show the advantages of this
approach when obstacles have known shape, and we extend
it to unknown objects using minimal enclosing ellipsoids. A
simulation and experiments with a real robot validate the
framework, and we make freely available our implementation.

I. INTRODUCTION

Robots are now used in complex scenarios, ranging from
industrial and manufacturing processes to aerospace and
health care. As their involvement in common human tasks
increases, adaptability and reliability at the motion planning
level is often required, and imitation of human behavior often
helps in this direction.
Standard motion planning techniques, such as splines, po-
tentials and others [1], [2], [3], [4], work well when an
objective function has to be optimized (e.g. minimize the
time of execution of the trajectory, or the energy consump-
tion). A Learning from Demonstration (LfD) approach, is
usually preferable if one needs to learn human gestures.
In LfD, a human operator shows an example trajectory or
task execution, and parameters are learned for replication
in different situations and environment. In last fifteen years,
various LfD approaches (as Gaussian Mixture Models [5],
Extreme Learning Machines [6], [7], and others [8]) have
been developed in order to replicate human gestures. These
LfD techniques may require a huge amount of demonstra-
tions to be properly trained, which can represent a bottleneck
when many different motion primitives have to be learned
(e.g., for productive and cost reasons in industry).
In this paper we focus on Dynamic Movement Primitives
(DMPs) [9], [10], [11], [12], which permit to learn a trajec-
tory from just one demonstration. DMPs encode the trajec-
tory in a system of second-order linear Ordinary Differential
Equation (ODE) where a forcing term is learned as a linear
combination of predefined time-dependent functions. They

*This research has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme, ARS (Autonomous Robotic Surgery) project, grant agreement
No. 742671.

Department of Computer Science, University of Verona,
Verona, Italy {michele.ginesi, daniele.meli,
andrea.calanca, diego.dallalba,
nicola.sansonetto, paolo.fiorini}@univr.it

are successfully used in many robotic scenarios, such as
cloth manufacturing [13], reproduction of human walk for
exoskeletons [14], and collaborative bimanual tasks [15].
One open issue in the DMP framework is obstacle avoidance.
This aspect has been successfully treated for point-like obsta-
cles (e.g. [11] and [12]), while volumetric obstacle avoidance
has been studied only using approaches that require multiple
demonstrations with different type and sizes of the obstacles
(e.g. [16], [17], [18], [19] that we will revise later).
In this work, we introduce an approach to volumetric obstacle
avoidance, which does not require any additional learning
process. We first learn the trajectory without obstacles. Then,
we model the obstacles using superquadric potential func-
tions [20], that allow to describe objects with generic shapes.
Finally, we include the information of the obstacle in the
DMP system (see Section III) which allows to successfully
avoid the obstacle during the execution of the DMP. We
remark that our approach can be applied both off-line (when
the position and the shape of the obstacles are a-priori
known) and on-line (when the obstacles are retrieved by
visual information). From a computational point of view,
if the geometry is not known, computing a superquadric
from the point cloud or modeling the obstacle as a point
cloud are computationally “equivalent”. Nevertheless, if the
geometry is known, our method is computationally faster (see
Section IV-A and Figure 2). Moreover, our method generates
more regular trajectories (see Figure 3b).
In Section II we recall the theory of DMPs and current
advances in obstacle avoidance. Then, in Section III we recall
the original formulation of superquadric potential functions,
together with some modifications necessary to our study. In
Section IV we show our results: in Section IV-A we compare
the computational cost of using volumetric obstacles and
point clouds; in Section IV-B we test the different behaviors
of the trajectories between the two approaches; and in
Section IV-C we test the effectiveness of our method using
an industrial manipulator. Our code, which is freely available
at https://github.com/mginesi/dmp_vol_obst
includes a Python 3.5 implementation of DMPs and our
proposed approach to volumetric obstacle avoidance.

II. DYNAMIC MOVEMENT PRIMITIVES

Dynamic Movement Primitives were firstly introduced in
[9], and then modified in [11] to solve some instability issues.
We now present a brief review on the formulation of DMPs.
For an exhaustive description of this framework refer to [11]
and [12].
DMPs are based on a system of second order ordinary

https://github.com/mginesi/dmp_vol_obst


differential equations of “spring-mass-damping” type:{
τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) (1a)
τ ẋ = v (1b)

where x ∈ Rd and v ∈ Rd are, respectively, the current
position and velocity of the system. Diagonal d×d matrices
K = diag[K1,K2, . . . ,Kd] and D = diag[D1, D2, . . . , Dd]
are, respectively, the elastic and damping terms. The param-
eter τ > 0 is a scalar quantity, which can be used to speed
up or slow down the evolution of the solution. g ∈ Rd is the
“goal” position, and x0 is the initial position.
The vector valued function f : R → Rd is a “forcing
term”, used to model a desired trajectory. f depends on the
parameter s, which is a re-parametrization of time t governed
by the so-called canonical system:

τ ṡ = −αs, α > 0. (2)

We assume that the elastic and damping constants in (1a)
satisfy Di = 2

√
Ki, so that the homogeneous version of

(1) (i.e. setting f ≡ 0) is critically damped and has a
unique attractive equilibrium (x,v) = (g,0). We remark
that the matrices K and D are chosen to be diagonal so
that each direction is independent by the others, while being
maintained aligned in time by sharing the same canonical
system (2).
DMP approach works as follows: a curve in Rd is recorded,
and each component fj(s), j = 1, 2, . . . , d of f(s) can be
computed using (1a). Then, fj(s) is written in terms of basis
functions:

fj(s) =

∑N
i=1 wiψi(s)∑N
i=1 ψi(s)

s. (3)

In (3), functions ψi(·), i = 1, 2, . . . , N are radial basis
functions:

ψi(s) = exp
(
−hi(s− ci)2

)
,

with:

ci = exp
(
−α i−1

N−1

)
,

hi = (ci+1 − ci)−2, hN = hN−1.

The weights wi in (3) are learned, using, for example,
weighted linear regression [11].
We can then reproduce the desired trajectory by numerically
integrating (1). It is important to notice that the forcing term
(3) is written in such a way that f(s) → 0 when s → 0
(i.e. t→ +∞), thus guaranteeing convergence to the desired
goal position g, while the integrated trajectory maintains a
similar shape to the learned one.
In robot trajectory learning, DMPs can be used both in joint
and Cartesian space. In the following, we will model the
end-effector of the robot as an ideal point, 1 thus we will
define the obstacle only in Cartesian space: Rd, for d = 2
(planar case) and d = 3 (spatial case). We remark that our
approach holds for any arbitrary d ∈ N+ (thus allowing to
deal with obstacles directly in joint space).

1We will take into account the volume of the end-effector by enlarging
the volume occupied by the obstacle. See Section IV-C.

A. Previous Works on Obstacle Avoidance

Obstacle avoidance for DMPs has been treated in different
ways. In [16] Stylistic DMPs are introduced, in which instead
of learning the weights wi in (3), a probability distribution
p(wi|ς) is learned, where ς is a style parameter. This
parameter can be, for example, the height of a cylindrical
obstacle.
Other approaches add an additional term, called coupling
term, ϕ(x,v) to (1a) obtaining

τ v̇ = K(g−x)−Dv−K(g−x0)s+Kf(s)+ϕ(x,v). (4)

The works using this last approach differs one from
the others in the way they model the coupling term ϕ.
In [18] and [19] a Neural Network is used to learn the
coupling term from multiple human demonstrations. In [17]
an analytical formulation is presented which, due to the
number of free parameters, still need multiple observations
(with and without the obstacle) to learn the parameters.
Approaches that do not need any learning, due to the small
number of parameters that need to be tuned, are presented in
[11] and [12]. This permit to have a robust method to obstacle
avoidance without the need of executing more demonstration
(both with and without obstacles).
However, while the “learning” approaches in [16], [17], [18],
[19] can treat volumetric obstacles, approaches presented in
[11] and [12] only work for point obstacles.
At the best of the authors’ knowledge, our proposed approach
is the first one which is able to handle volumetric obstacle
avoidance without the need of any additional learning phase.
Since our proposed approach falls in the “purely hand-
designed” category, and due to the fact that [12] is presented
as an upgrade of [11], in Section IV we will compare our
approach to [12]. This approach, which works only in R2

and R3, is based on a ODE that models how humans may
avoid obstacles. We start by giving the definition of steering
angle (depicted in Figure 1):

θ = arccos

( 〈o− x,v − ȯ〉
‖o− x‖ ‖v − ȯ‖

)
, (5)

where o is the position of the obstacle, ȯ is its velocity, and
‖ ·‖ denotes the Euclidean norm with respect to the standard
scalar product 〈·, ·〉 in Rd. The evolution of the steering angle
θ is modeled as follows:

θ̇ = γθ exp(−β|θ|),

where γ and β are positive constants. Then, the coupling
term ϕ(x,v) is written as

ϕ(x,v) = γR(v − ȯ)θ exp(−βθ), (6)

where R is the rotation matrix of angle π
2 w.r.t. the axis

generated by (o − x) × v, where × is the cross product in
R3. Multiple obstacles are treated by simply summing the
contributions of each one of them.



x

o
v

θ

Fig. 1: Scheme of the steering angle θ as defined in (5),
where x denotes the current position, the vector v the current
velocity, and o the obstacle.

III. SUPERQUADRIC POTENTIAL FUNCTIONS

When modeling solid obstacles in the environment, the
shape of the surrounding potential field is crucial. Two
opposite objectives must be satisfied. First, the potential has
to enclose the whole object in order to avoid collision during
the motion; second, the potential shall not be oversized with
respect to the obstacle, to avoid strong reduction of the
available robot workspace. If the object to be modeled has
a smooth standard shape (e.g., a sphere or an ellipsoid), the
obstacle’s potential function can be easily derived. However,
when sharp edges are involved (e.g., in a cube), a func-
tion which properly surrounds the object while preserving
smoothness must be designed. To this purpose, superquadric
potential functions are used in this work.
Let m and n be natural numbers, and let fi(x), i = 1, 2, 3 be
real-valued functions. We can define the isopotential function

C(x) =

((
x1

f1(x)

)2n

+

(
x2
f2(x)

)2n
) 2m

2n

+

(
x3

f3(x)

)2m

−1
(7)

that vanishes on the surface of a generalized ellipsoid. By
tuning the parameters m,n and the functions fi, i = 1, 2, 3,
we can model obstacles of any shape (their boundary would
be the zero-level set of (7)).
The superquadric potential function for the obstacle is:

U(x) =
Ae−ηC(x)

C(x)
, (8)

where A and η are positive parameters to be tuned. Note that
potential function (8), see [21], is infinite on the surface of
the generalized ellipsoid, thus preventing the robot from col-
liding with the enclosed obstacle. Moreover, the exponential
factor determines a faster decrease of the potential function
when away from the object, which is useful for saving more
volume in the workspace.
Superquadric functions are currently widely used in obstacle
avoidance thanks to their capability to adapt to completely
generic shapes, see for example [22], [23], [24].
In our experiments, in Section IV, we will focus on the
particular case in which m = n and the fi’s in (7) are
constant, obtaining the isopotential function

C(x) =

(
x1 − x̂1

a

)2n

+

(
x2 − x̂2

b

)2n

+

(
x3 − x̂3

c

)2n

−1.
(9)

The coupling term in (4) is given by

ϕ(x,v) ≡ ϕS(x)
.
= −∇xU(x), (10)

where U(x) is defined as in (8).
In Section IV-C, we will use a generalization of (9) by

considering different exponents for each dimension, obtain-
ing

C(x) =

(
x1 − x̂1

a

)2m

+

(
x2 − x̂2

b

)2n

+

(
x3 − x̂3

c

)2p

−1.
(11)

A. Minimal Enclosing Ellipsoid

When the obstacles presents locally flat boundary, as a par-
allelepiped, it can be more convenient to reduce the available
workspace allowing for more rounded superquadric. Indeed,
a locally flat isopotential increases the risk of being caught in
a local minimum since the potential pushes along the normal
of the surface. Therefore, it is sometimes more convenient
to use classical ellipsoid (n = 1) when modeling obstacles
in the workspace.
We now show how to create an ellipsoid that encloses a
parallelepiped, while minimizing the difference of volume
between the ellipsoid and the parallelepiped. Let us consider
a cube of unitary edge length ` = 1 with its center in the
origin. The sphere containing it has radius r =

√
3
2 :

x21 + x22 + x23 =
3

4
. (12)

It could be shown that a rescaling of three sphere axis is suf-
ficient for obtaining the minimal enclosing ellipse. Suppose
the edges of the parallelepiped measure, respectively `x1

, `x2

and `x3
. We obtain, by rescaling (12)(

x1
`x1

)2

+

(
x2
`x2

)2

+

(
x3
`x3

)2

=
3

4
.

We can then define C(x) as in (9):

C(x) =

(
x1 − x̂1√

3
2 `x1

)2

+

(
x2 − x̂2√

3
2 `x2

)2

+

(
x3 − x̂3√

3
2 `x3

)2

− 1.

Remark 1: All the results presented in this Subsection can
be easily restricted to the 2D case.

IV. RESULTS

To validate our approach we perform the following tests:
in Section IV-A, we discuss the computational cost of our
approach; in Section IV-B we make a synthetic experiment;
and in Section IV-C we validate our approach on an industrial
manipulator.

A. Computational Time

In this Section we analyze the computational cost of our
approach in the worst case scenario, i.e. in the case in which
an obstacle of a generic, not-known shape, is retrieved by a
point cloud. To do so we generate a uniformly-distributed set
of points on a generic shape, and evaluate the computational
time for two different approaches. In the first approach,



101 102

num. of points

10−4

10−3

10−2

10−1
tim

e
[s

]

Fig. 2: Comparison of the computational time (in seconds) as
function of the number of points in the point cloud. The blue
circle-marked line represent the computational time needed
to extract the minimal-volume ellipsoid from the point cloud
and using it as an obstacle. The red star-marked line represent
the cost of treating each element of the point cloud as a point
obstacle. The green triangle-marked line shows the cost of
computing the potential of the ellipsoid without extracting it
from the point cloud.

we compute the minimal-volume enclosing ellipsoid using
the algorithm presented in [25], and use it as an obstacle
giving the perturbation term as defined in (10). In the second
approach, we treat each point as an obstacle and compute
the sum of each coupling term as in (6). Figure 2 shows
that there is no meaningful difference in the computational
time of the two approaches. However, we observe that our
approach is more convenient if the obstacle is static or if
it is moving with a known velocity. Indeed, in such cases
the enclosing ellipsoid can be computed once for all, and
the only computational time added by the presence of the
obstacle at each time step is the evaluation of the expression
(10). On the other hand, in the “steering angle” strategy (6),
the coupling term must be computed for all the points of the
cloud at each time step.

B. Synthetic Experiments

We tested the coupling term (10) in two dimensions.
In Figure 3 two examples are shown where it is clearly
visible the change of trajectory caused by the presence of
the obstacles. For comparison we show also the trajectory
obtained using (6) as coupling term. Since this last approach
works only for point obstacles, we created a mesh of points
on the boundary of the obstacle, and treated each point of
the mesh as a point obstacle.
Both approaches are able to avoid the obstacle. However,
the “steering angle strategy” (6) has two drawbacks. First,
in the example shown in Figure 3a, 50 points are needed in
order to properly model the ellipse (with fewer the obstacle
was not avoided). Second, formula (6) does not depends
on the distance from the obstacle, thus giving the same
“importance” to every obstacle in the scene. As shown in

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

x1

0.0

0.2

0.4

0.6

0.8

x
2

x0g

(a) One obstacle.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

x1

0.0

0.2

0.4

0.6

0.8

x
2

x0g

(b) Two obstacles.

Fig. 3: Examples of obstacle avoidance in two dimensions,
with one (Figure 3a) and two (Figure 3b) obstacles. The
parameters for the DMP are x0 = [0, 0], g = [−1, 0], K =
1050, D = 2

√
K, τ = 1, and α = 3; while the parameter

for the potential are A = 50, and η = 1. The dashed blue
line represents the learned trajectory, the dotted red ellipses
represent the boundary of the superquadric. The solid green
line represents the adaptation of the trajectory to the presence
of the obstacles using the perturbation term in (10), while
the dashdotted orange line represents the trajectory obtained
using the perturbation term in (6).

Figure 3b, this leads to unexpected behaviors (the oscillations
in the first part of the trajectory).
We emphasize that, as proved in [12], the “steering angle
approach” does not have undesired (i.e. different from the
goal g) local minima, while with superquadric potentials we
do not have the same property. However, if a local minimum
is reached, a perturbation term which drives the trajectory out
of it can be easily added in the DMP formulation.

C. Experiments on Real Setup

In order to test the Cartesian DMP path planner with
volumetric obstacles with a real robot, the setup shown in
Figure 4 is used. It consists of a round base (approximately



Fig. 4: Experimental setup with the Panda robot and the peg
base (left), and its V-REP simulation (right).

of radius of 25cm) with two pegs (approximately of radius
of 1cm and height 12cm) and a 7-DOF Panda industrial
manipulator by Franka Emika. The robot, controlled using
a ROS architecture and MoveIT interface, must move above
the whole base at a fixed height, while avoiding the pegs
on its way. Since we are mainly interested in the obstacle
avoidance problem, no manual trajectory is learned; the
forcing term for DMPs in (1a) is set to zero, so that the
dynamic system naturally evolves towards the goal in a
linear way, according to the elastic and damping terms. This
choice does not limit the generality of the proposed approach,
since the perturbation term guarantees the obstacle avoidance
independent on the weights of the forcing term. Due to the
big size of the hand of the manipulator (approx. 18cm long
and 5cm wide) with respect to the pegs, avoiding obstacles
while passing very close to them is a challenge which can
be solved in two ways.
At first, for simplicity, the orientation is kept constant along
the whole trajectory, neglecting the problem of adjusting the
end effector’s orientation to avoid collisions. The cylindric
shape of the peg is modeled using the superquadric for-
mulation in (11), but it must be modified in such a way
that the base is as large as the hand of the robot to avoid
collisions because the DMP approach models the moving
part as a point mass. To do so, we cover the obstacle with
an ellipsoid superquadric which has as radii the semi-axes of
the end-effector. As it can be seen in Figure 5a, this solution
ensures the obstacle avoidance but it strongly reduces the
available workspace for the robot, which is undesired when
many objects are in the scene and cancels the advantage in
using superquadric potential functions.

For this reason, in the second test the orientation adap-
tation of the end effector in order to avoid obstacles is
introduced. This allows to restrict the size of the superquadric
potentials, since the obstacle can be enlarged only by the
smaller semi-axis of the end-effector (for safety reasons)
and the orientation will then adapt to avoid the collision.
Orientation adaptation is managed via Trac-IK [26], a mod-
ern efficient inverse kinematics plugin for generic indus-
trial and humanoid manipulators. Given the target position
computed by the DMP planner, multiple corresponding joint

DMPs Obstacle
Parameter Value Parameter Value
K 3050 A 50
D = 2

√
K ≈ 110.45 η 1

τ 1 n = m 1
α 3 p 2

a 2 cm (test 1), 3 cm (test 2)
b 9 cm (test 1), 2 cm (test 2)
c ≈ 7 cm

TABLE I: DMPs (left) and obstacle (right) parameters.

configurations are possible, due to the redundancy of the
robot. Given the models of the obstacle and the robot as sets
of voxels, Track-IK first performs random search to only
consider joint values which avoid the intersection between
them. The random increment of the joint values is limited by
a step parameter which depends on the size of the obstacles.
Here, it is chosen as half of the peg’s radius, since the peg
is the smallest object in the scene. Finally, Trac-IK selects
the optimal configuration which maximizes manipulability,
measured as

√
det(J · JT), being J the Jacobian matrix. This

is an arbitrary optimization objective, others are possible
(e.g., minimal joint displacement). In order to limit the search
space of the algorithm, a bound of 45◦ on each joint is
imposed, except for the hand joint, which is crucial for
obstacle avoidance (90◦ bound).
Figure 5 shows the results of these experiments. Figure 5a-
5b show the experiment maintaining a fixed orientation
of the end-effector. In particular, Figure 5a shows the top
view highlighting how the original trajectory would make
the end-effector collide with the obstacles, while with the
perturbed one the obstacles are avoided. Figure 5c shows the
experiment with the orientation adaptation. It can be seen
that the DMP path passes very close to the obstacles, but
the end-effector is still able to avoid them successfully (see
attached video for clarity).
The parameters of the DMPs and the superquadric potentials
for both tests are shown in Table I, with c = h

2 (2)
1
2p , where

h is the peg’s height, from literature.
As a final test, in the attached video we also show how
the presented approach can be implemented online when
unknown obstacles with generic shapes are found in the
scene, using least-squares fitting to compute the minimal
enclosing ellipsoid from the camera point cloud.

V. CONCLUSIONS

In this work, we investigated volumetric obstacle avoid-
ance for the DMP framework. To handle volumetric obstacle
avoidance, we have modified the standard formulation of
superquadric potential functions for efficient modeling of
generic 3D shapes, and we have introduced it into the
framework of DMPs. We have shown the advantages of our
method both in simulation and with a real robot when known
obstacles are in the scene.
In the future, we aim to extend our approach of obstacle
avoidance to quaternion space DMPs, so as to automatically
account for the orientation adaptation when passing near ob-
jects in the scene at the path planning level, without invoking



(a) No orientation adaptation: top view. (b) No orientation adaptation. (c) Orientation adaptation.

Fig. 5: Experimental results on real robot. In all three pictures the pegs are colored in black and the green full line shows
the adaptation of the trajectory to the presence of the obstacles. In the first plot we show also the enlarged potential in
dashed red and the free (no obstacles) trajectory in dashed blue, together with the gray shade showing the area occupied by
the end-effector during the movement.

time-consuming IK optimization algorithms. Moreover we
will test it with more, and possibly moving, obstacles in
order to reproduce a more realistic scenario for collaborative
or medical tasks.

REFERENCES

[1] C. Lin, P. Chang, and J. Luh, “Formulation and optimization of cubic
polynomial joint trajectories for industrial robots,” IEEE Transactions
on automatic control, vol. 28, no. 12, pp. 1066–1074, 1983.

[2] E. Rimon and D. E. Koditschek, “Exact robot navigation using
artificial potential functions,” IEEE Transactions on Robotics and
Automation, vol. 8, no. 5, pp. 501–518, Oct 1992.

[3] E. Magid, D. Keren, E. Rivlin, and I. Yavneh, “Spline-based robot
navigation,” in Intelligent Robots and Systems, 2006 IEEE/RSJ Inter-
national Conference on. IEEE, 2006, pp. 2296–2301.

[4] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradi-
ent optimization techniques for efficient motion planning,” in Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on.
IEEE, 2009, pp. 489–494.

[5] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions
on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[6] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–
501, 2006.

[7] J. Duan, Y. Ou, J. Hu, Z. Wang, S. Jin, and C. Xu, “Fast and stable
learning of dynamical systems based on extreme learning machine,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, no. 99,
pp. 1–11, 2017.

[8] S. Albrecht, K. Ramirez-Amaro, F. Ruiz-Ugalde, D. Weikersdorfer,
M. Leibold, M. Ulbrich, and M. Beetz, “Imitating human reaching mo-
tions using physically inspired optimization principles,” in 2011 11th
IEEE-RAS International Conference on Humanoid Robots. IEEE,
2011, pp. 602–607.

[9] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation
with nonlinear dynamical systems in humanoid robots,” in Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE International
Conference on, vol. 2. IEEE, 2002, pp. 1398–1403.

[10] S. Schaal, “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics,” in Adaptive motion of
animals and machines. Springer, 2006, pp. 261–280.

[11] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement repro-
duction and obstacle avoidance with dynamic movement primitives
and potential fields,” in Humanoid Robots, 2008. Humanoids 2008.
8th IEEE-RAS International Conference on. IEEE, 2008, pp. 91–98.

[12] H. Hoffmann, P. Pastor, D. H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: Automatic
real-time goal adaptation and obstacle avoidance,” in 2009 IEEE

International Conference on Robotics and Automation, May 2009, pp.
2587–2592.

[13] R. P. Joshi, N. Koganti, and T. Shibata, “Robotic cloth manipulation
for clothing assistance task using dynamic movement primitives,” in
Proceedings of the Advances in Robotics. ACM, 2017, p. 14.

[14] R. Huang, H. Cheng, H. Guo, Q. Chen, and X. Lin, “Hierarchical in-
teractive learning for a human-powered augmentation lower exoskele-
ton,” in Robotics and Automation (ICRA), 2016 IEEE International
Conference on. IEEE, 2016, pp. 257–263.

[15] A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude, “Coupling movement
primitives: Interaction with the environment and bimanual tasks,”
IEEE Transactions on Robotics, vol. 30, no. 4, pp. 816–830, Aug
2014.

[16] T. Matsubara, S.-H. Hyon, and J. Morimoto, “Learning stylistic
dynamic movement primitives from multiple demonstrations,” in In-
telligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on. Citeseer, 2010, pp. 1277–1283.

[17] A. Rai, F. Meier, A. Ijspeert, and S. Schaal, “Learning coupling terms
for obstacle avoidance,” in 2014 IEEE-RAS International Conference
on Humanoid Robots. IEEE, 2014, pp. 512–518.

[18] A. Rai, G. Sutanto, S. Schaal, and F. Meier, “Learning feedback
terms for reactive planning and control,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
2184–2191.

[19] G. Sutanto, Z. Su, S. Schaal, and F. Meier, “Learning sensor feedback
models from demonstrations via phase-modulated neural networks,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 1142–1149.

[20] R. Volpe, “Real and artificial forces in the control of manipulators:
theory and experiments,” Ph.D. dissertation, PhD thesis, Carnegie
Mellon University, Department of Physics, 1990.

[21] H. Yukawa, “On the interaction of elementary particles. i,” Proceedings
of the Physico-Mathematical Society of Japan. 3rd Series, vol. 17, pp.
48–57, 1935.

[22] V. Perdereau, C. Passi, and M. Drouin, “Real-time control of redundant
robotic manipulators for mobile obstacle avoidance,” Robotics and
Autonomous Systems, vol. 41, no. 1, pp. 41–59, 2002.

[23] A. Badawy and C. McInnes, “Separation distance for robot motion
control using superquadric obstacle potentials,” in International Con-
trol Conference, Glasgow, Scotland, paper, no. 25, 2006.

[24] H. Wen, T. Chen, D. Jin, and H. Hu, “Passivity-based control with
collision avoidance for a hub-beam spacecraft,” Advances in Space
Research, vol. 59, no. 1, pp. 425–433, 2017.

[25] N. Moshtagh et al., “Minimum volume enclosing ellipsoid,” Convex
optimization, vol. 111, p. 112, 2005.

[26] P. Beeson and B. Ames, “Trac-ik: An open-source library for improved
solving of generic inverse kinematics,” in 2015 IEEE-RAS 15th Inter-
national Conference on Humanoid Robots (Humanoids). IEEE, 2015,
pp. 928–935.


	INTRODUCTION
	DYNAMIC MOVEMENT PRIMITIVES
	Previous Works on Obstacle Avoidance

	SUPERQUADRIC POTENTIAL FUNCTIONS
	Minimal Enclosing Ellipsoid

	RESULTS
	Computational Time
	Synthetic Experiments
	Experiments on Real Setup

	CONCLUSIONS
	References

