
Approximate Data Mining Techniques on Clinical Data

by

Matteo Mantovani

Submitted to the Department of Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science
Cycle XXXII/2016

at the

University of Verona

May 2020

© University of Verona 2020. All rights reserved.

Author .
Department of Computer Science

Dec, 2019

Certified by .
Prof. Carlo Combi

Full Professor
Thesis Tutor

Accepted by .
Prof. Massimo Merro

Chairman
Council of the PhD School in Computer Science

2

Approximate Data Mining Techniques on Clinical Data
by

Matteo Mantovani

Submitted to the Department of Computer Science
on Dec, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Cycle XXXII/2016

Abstract

The past two decades have witnessed an explosion in the number of medical and healthcare
datasets available to researchers and healthcare professionals. Data collection efforts are highly
required, and this prompts the development of appropriate data mining techniques and tools
that can automatically extract relevant information from data. Consequently, they provide
insights into various clinical behaviors or processes captured by the data. Since these tools
should support decision-making activities of medical experts, all the extracted information
must be represented in a human-friendly way, that is, in a concise and easy-to-understand
form. To this purpose, here we propose a new framework that collects different new mining
techniques and tools proposed. These techniques mainly focus on two aspects: the temporal
one and the predictive one. All of these techniques were then applied to clinical data and, in
particular, ICU data from MIMIC III database. It showed the flexibility of the framework,
which is able to retrieve different outcomes from the overall dataset.

The first two techniques rely on the concept of Approximate Temporal Functional Depen-
dencies (AT -FDs). AT -FDs have been proposed, with their suitable treatment of temporal
information, as a methodological tool for mining clinical data. An example of the knowledge
derivable through dependencies may be “within 15 days, patients with the same diagnosis and
the same therapy usually receive the same daily amount of drug”. However, current AT -FD

models are not analyzing the temporal evolution of the data, such as “For most patients with
the same diagnosis, the same drug is prescribed after the same symptom”. To this extent,
we propose a new kind of AT -FD called Approximate Pure Temporally Evolving
Functional Dependencies (APE-FDs).

Another limitation of such kind of dependencies is that they cannot deal with quantitative
data when some tolerance can be allowed for numerical values. In particular, this limitation
arises in clinical data warehouses, where analysis and mining have to consider one or more
measures related to quantitative data (such as lab test results and vital signs), concerning
multiple dimensional (alphanumeric) attributes (such as patient, hospital, physician, diagnosis)
and some time dimensions (such as the day since hospitalization and the calendar date).
According to this scenario, we introduce a new kind of AT -FD, named Multi-Approximate
Temporal Functional Dependency (MAT -FD), which considers dependencies between
dimensions and quantitative measures from temporal clinical data. These new dependencies

3

may provide new knowledge as “within 15 days, patients with the same diagnosis and the
same therapy receive a daily amount of drug within a fixed range”.

The other techniques are based on pattern mining, which has also been proposed as
a methodological tool for mining clinical data. However, many methods proposed so far
focus on mining of temporal rules which describe relationships between data sequences or
instantaneous events, without considering the presence of more complex temporal patterns
into the dataset. These patterns, such as trends of a particular vital sign, are often very
relevant for clinicians. Moreover, it is really interesting to discover if some sort of event, such
as a drug administration, is capable of changing these trends and how. To this extent, we
propose a new kind of temporal patterns, called Trend-Event Patterns (TE -Ps), that
focuses on events and their influence on trends that can be retrieved from some measures,
such as vital signs. With TE -Ps we can express concepts such as “The administration of
paracetamol on a patient with an increasing temperature leads to a decreasing trend in
temperature after such administration occurs”.

We also decided to analyze another interesting pattern mining technique that includes
prediction. This technique discovers a compact set of patterns that aim to describe the
condition (or class) of interest. Our framework relies on a classification model that considers
and combines various predictive pattern candidates and selects only those that are important
to improve the overall class prediction performance. We show that our classification approach
achieves a significant reduction in the number of extracted patterns, compared to the state-
of-the-art methods based on minimum predictive pattern mining approach, while preserving
the overall classification accuracy of the model.

For each technique described above, we developed a tool to retrieve its kind of rule. All
the results are obtained by pre-processing and mining clinical data and, as mentioned before,
in particular ICU data from MIMIC III database.

Thesis Advisor: Prof. Carlo Combi
Title: Full Professor

4

Contents

1 Introduction and Overview 13

1.1 Motivation . 13

1.2 Contribution and Overview . 17

2 Background and Related Work 23

2.1 Data Mining Techniques . 23

2.1.1 Functional Dependencies . 23

2.1.2 Temporal Functional Dependencies 24

2.1.3 Approximate Functional Dependencies 26

2.1.4 Approximate Temporal Functional Dependencies 27

2.1.5 Pattern Mining . 29

2.1.6 Pattern Mining for Supervised Learning 33

2.1.7 Temporal Patterns . 35

2.2 Classification Model - Support Vector Machine 38

2.3 Clinical Datasets . 40

2.3.1 MIMIC . 40

2.3.2 Psychiatric Case Register . 46

2.3.3 Pharmacovigilance . 52

3 Pure Temporally Evolving Functional Dependencies 57

3.1 Discovering Pure Temporally Evolving Functional Dependencies 57

3.1.1 Approximate Pure Temporally Evolving Functional Dependencies . . 59

3.2 Some Motivating Clinical Scenarios . 60

3.3 Algorithms for Checking APE-FDs . 66

3.3.1 Graph-based Structures for Tuple Representation 66

3.3.2 The First Algorithm . 68

3.3.3 The Second Algorithm . 77

3.4 Mining APE-FDs . 85

3.4.1 Prototype Overview . 86

3.4.2 Mining APE-FDs on Clinical Domains 91

3.4.3 Performance Analysis . 92

3.5 Conclusions . 94

5

6 Contents

4 Discovering Quantitative Temporal Functional Dependencies on Clinical
Data 97
4.1 Multi Approximate Temporal Functional Dependencies 98

4.1.1 A Motivating Example . 98
4.1.2 Definition and Model . 98

4.2 Mining MAT -FDs . 102
4.3 Mining Clinical Data . 106

4.3.1 The Dataset . 106
4.3.2 System Configuration . 108
4.3.3 Results . 108

4.4 Conclusions . 110

5 Discovering and Analyzing Trend-Event Patterns on Clinical Data 111
5.1 Trend-Event Patterns . 112
5.2 Mining TE -Ps . 116

5.2.1 Optimized Algorithm for Mining TE -Ps 118
5.2.2 Multidimensional Modeling of Trends for OLAP Analysis 119

5.3 Mining Clinical Data . 119
5.3.1 The Dataset . 119
5.3.2 System Configuration . 121
5.3.3 Results . 123

5.4 Conclusions . 126

6 Mining Compact Predictive Pattern Sets Using Classification Model 127
6.1 Method . 128

6.1.1 Definitions . 128
6.1.2 Problem . 128
6.1.3 Minimum Predictive Patterns . 129
6.1.4 Combining Predictive Patterns via Classification Model 129
6.1.5 Greedy Pattern Subset Selection Algorithm 130

6.2 Experiments . 131
6.2.1 Data . 131
6.2.2 Results . 132

6.3 Discussion . 134
6.4 Conclusion . 136

7 Conclusions 137

References 139

8 List of Publications 151

A The Computational Complexity of Checking APE-FDs 153

List of Figures

1-1 Overview of the proposed framework. 17

2-1 A graphical account for the IS A relationships between Functional depen-
dency (FD), approximate functional dependency (A-FD), temporal functional
dependency (T -FD), and approximate temporal functional dependency (AT -FD). 24

2-2 Powerset of Σ = A,B,C. 32

2-3 An example of decision tree for the concept Running. 34

2-4 Time points (a, b) and intervals (c, d). 36

2-5 In this Figure there are samples from two classes (in blue and green). SVM is
trained to discover the maximum-margin hyperplane. Samples on the margin
are called the support vectors. 39

2-6 Overview of the MIMIC-III critical care system [58]. 41

2-7 Schema of the MIMIC dataset. Each table contains its primary key. 45

2-8 Schema of the Psychiatric Case Register dataset. Each table contains its
primary key except for table Contact, that is the one used in our analysis. . 49

2-9 Schema of the pharmacovigilance dataset. Each table contains its primary key
except for table Contact, that is the one used in our analysis. 55

3-1 A graphical account of how different classes of PE-FDs are related. 59

3-2 A graph-based representation of τ rName. Nodes represent tuples and are labeled
by the corresponding tuple number. Values for attribute Dur are reported
above each node. Values of Phys and CT attributes are reported below
every node, respectively. Every edge (ti, tj) is labeled by value ∆(ui,j) =
tj[V T]− ti[V T] (i.e., the temporal distance between two tuples). The dashed
edge represents a different scenario where t2 and t4 are joined, if t3 would be
deleted, as explained below for APE-FDs. 62

3-3 A graphical account for the instances τ rPatId (a) and τ rPhys (b) related to the
instance r shown in Figure 3.3 (a). 64

3-4 A graphical account for the possible changes on the view τ rPatId considering
the possible deletions of at most one tuple. 65

3-5 An example of L-DAG. 67

3-6 An example of how the use of colors improves a guess and check procedure for
solving the problem Check-APE-FD. 70

7

8 List of Figures

3-7 Auxiliary procedures used by procedures presented in Figures 3-8, 3-9 and 3-11. 71

3-8 Auxiliary procedures used by procedure TupleWiseMin (Figure 3-9). . . . 72

3-9 The main procedure for a tuple-wise check of APE-FDs. Notice that we
use a compact notation for the recursive procedure which is initially called
TupleWiseMin(Gr, k). Here, when G+

r , G−r , and C are omitted in the proce-
dure call, they get their respective default values specified in the procedure
declaration (i.e., ∅ for each of them in this case). 73

3-10 An example of how a partial solution may be improved. 76

3-11 Auxiliary procedure for the main ones in Figure 3-13. SourceSinkShortestPath
returns the shortest path from source to sink on the DAG provided by
BuildDag. The solution is given as a set of nodes (i.e., subsets of Gr) and it
omits source and sink nodes. 78

3-12 Auxiliary procedure for the main ones in Figure 3-13. BuildDag build a
single-source-single-sink DAG which nodes are non-empty subsets of Gr. Each
subset is formed by tuples sharing the same value for V T and thus function
Time is well defined. 79

3-13 The main procedure for the edge-wise checking of a APE-FD [∆k(τ
XY Zcount
Gr

)]XY
ε→

Z. The procedure returns the minimum number of tuples to delete in r in order
to obtain an instance r′ ⊆ r such that r′ |= [∆k(τ

R
r)]XY → Z . Like procedure

TupleWiseMin of Figure 3-9 the initial call to the recursive procedure is
EdgeWiseMin(Gr, k) with C+, C−, and optimal initialized to their respective
default values. 80

3-14 The unfolding of the wL-DAG of Figure 3-5 into a weighted DAG for solving
the MAX-TP problem. The table below the graph provides the weights for
source-to-node edges and node-to-sink edges, which are both represented
by dashed lines. Continuous edges without labels have weight 0. P =
source{v1}{v2, v3}{v7, v9}{v8}{v11}sink is a source-sink shortest path with
value 4. 83

3-15 A BPMN choreography showing the interaction between a Worker and its
(possibly) many Contributors. 87

3-16 The update of the set PE(r, k, ε) = {[∆k(τ
Contact
PatId)]GAF,Phys

ε→ CT} (left)

into the set PE′(r, k, ε) = {[∆k(τ
Contact
PatId)]GAF,Phys

ε→ CT, [∆k(τ
Contact
PatId)]GAF,Phys

ε→
CT} (right). 88

3-17 A BPMN choreography showing the interaction between a Contributor and its
(possibly) many Sub-Contributors. 90

3-18 A graphical account of how the tree is splitted among Sub-Contributors. . . 91

3-19 The result of the execution of Attila on a single machine (Intel Core i3(TM)
CPU M 330 2.13GHz, 4GB) on an instance of table Contact (∼ 1.5 · 106 rows). 93

3-20 The result of Attila execution varying Sub-Contributors configurations on the
same instance of the schema Reports consisting of ∼ 1.5 ∗ 105 rows (Server: 6
Core AMD Opteron(TM) 4284 3GHz, 8GB, Remote: AMD Phenom(TM) II
X6 1055T Processor 2.8 GHz, 8GB). 94

List of Figures 9

3-21 The number of closed branches considering incremental portions of the same
instance of schema Reports (the time refers to the execution on a Intel Core
i3(TM) CPU M 330 2.13GHz, 4GB machine). 94

4-1 Graphic representation of data in table 4.2(δ = 10). 100
4-2 An example of graph build over an instance rx. 102
4-3 The pseudocode for finding the maximum cardinality of a set r′ ⊆ rx which

satisfies r′ |= [k]X
ε→
δ
M . 104

5-1 This figure shows an example of TE -P. We have two trends, one from tprestart to
tpreend that precedes event E, and a second one from tpoststart to tpostend right after E.
These are valid trends because they respect every constraint. In fact, text1 and
text2 , are external to these trends because they violate ∆y or max ∆V T 113

5-2 In this figure we show how trends are labeled, based on their weighted rate of
change. 114

5-3 Definition of distance, amplitude and time errors. 118
5-4 Dimensional Fact Model (DFM) used for our OLAP analysis. 120
5-5 Given the same trend, there are slope differences when the event is actively

influencing the trend. This figure shows the slope difference for an increasing
trend related to heart rate, where the true flag indicates the events that are
influencing the trends. 124

5-6 In this figure we show the effect of propofol on respiratory rate. We fixed
the trend pre as increasing and it’s clearly visible the effect of propofol
in stabilizing the respiratory rate. On the left, there is an excerpt of Saiku
interface that underlines the flexibility of our OLAP analysis. 125

6-1 ROC curve for our bottom-up approach. 133
6-2 ROC curve for Batal’s MPP approach. 133
6-3 Comparison between MPP and our bottom-up ROC curves to show the

differences. 134

A-1 An example of a word w‖s obtained by applying a sequence s to a word w. . 154
A-2 A graphical account of how s1

n, sw1 , s
2
n, sw2 , and s3

n filter blocks of w. 156

10 List of Figures

List of Tables

2.1 An example of a table used to show the advantage of approximation in AT -FDs. 29
2.2 An example of transactions. 30
2.3 An example of discretization of numerical values. 31
2.4 Transaction format of data in Table 2.3. 31
2.5 Details of the MIMIC-III patient population by first critical care unit on

hospital admission for patients aged 16 years and above. In this table, the
critical care units are depicted as follows: CCU is Coronary Care Unit; CSRU
is Cardiac Surgery Recovery Unit; MICU is Medical Intensive Care Unit; SICU
is Surgical Intensive Care Unit; TSICU is Trauma Surgical Intensive Care Unit. 42

2.6 ATC - Anatomical main groups of first level 54

3.1 An instance r of schema Contact that stores the phone contacts about two
psychiatric cases. Attribute # represents the tuple number and it is used only
for referencing tuples in the text (i.e., # does not belong to the schema Contact). 60

3.2 The evolution expression τ rName. 61
3.3 The instances τ rPatId (b) and τ rPhys obtained from applying views τThCyPatId and

τThCyPhys to the instance r (c) respectively. 63

4.1 A subset of one of the tables we create to mine MAT -FDs. 99
4.2 Systolic blood pressure of a single patient during a week. 100
4.3 Statistics about patients selected for our mining, and their admission(s). . . 108
4.4 Summary of MAT -FDs mining. 108
4.5 An excerpts of our results with 2 valid MAT -FDs for each mined table. The

length of the maximum sliding window found, is expressed in days. 109

5.1 Excerpt of the table we create to extract TE -Ps from heart rate. Here we can
observe different measurement of heart rate, for two different patients during
three ICU stays, interrupted by the administration of atropine or paracetamol. 122

5.2 Running parameters for TEPminer. 122
5.3 Values used to define the max hourly increase for each vital sign considered. 123
5.4 Three most frequent types of TE -Ps for each vital sign with all the events

considered together. 123

6.1 Thresholds used to discretize the considered vital signs in low, medium, high. 131

11

12 List of Tables

6.2 Comparison between the results for our method and Batal et al’s predictive
pattern mining method. 134

6.3 The mined set of minimal predictive patterns with their absolute weight,
support and precision. 135

Chapter 1

Introduction and Overview

This thesis deals with different approximate data mining techniques applied to clinical data. In
particular, we focused on the problem of extracting insightful and unknown rules from clinical
data and, for this purpose, we propose a new framework that groups different approximate
data mining techniques. All these techniques produce a set of rules that should have to be
interpreted by medical experts. Thus, it is important that all the extracted information
is represented in a human-friendly way, that is, in a concise and easy to understand form.
Moreover, we developed a tool for each technique described above in order to retrieve its
kind of rule. Finally, these techniques have been applied by pre-processing and mining ICU
data from MIMIC III database. In this introductory chapter, we will briefly introduce and
motivate the focus of this dissertation, i.e., approximate data mining techniques on clinical
data. Moreover, we will show why these techniques are relevant in real-world applications and
how the temporal or predictive aspects of these techniques could increase their importance.
Then, we will describe the original results presented in this thesis about the mining of
clinical data. Finally, we will explain how this thesis is organized, and we will summarize the
contribution of our previous publications.

1.1 Motivation

The past decade has witnessed an explosion in the number of clinical datasets available
to researchers and healthcare professionals. Unfortunately, data are often heterogeneous,
scattered, and not uniform among each other in content and format. Extracting useful
knowledge from these data is a challenging task. Since these tools should interact with
experts from the healthcare domain, it is important that they enable us to explore, explain
and summarize the data in a human-friendly way (i.e., in a form that is both concise and
easy to understand). This prompts the development of appropriate data mining techniques
and tools that can automatically extract relevant information from data and consequently
provide insight into various clinical behaviors or processes captured by the data.

For what concerns the clinical domains, it is certainly interesting to show a mining
technique that could extract useful rules from any dataset. In fact, a mining algorithm

13

14 1 - Introduction and Overview

should show its strength in this kind of environment, especially if it could automatically
recognize outliers or any other form of error (e.g., bad reported data, inconsistent data, and
so on). That is, a mining algorithm should automatically extract rules that hold on most
data (approximated rules). An example could be the discovery of a particular dependency
between the administration of a drug and a reported adverse reaction to that drug: it is
important to discover this kind of rule even if it does not hold for all the patients. An
evolution of the previous example could be found when an adverse drug reaction is mainly
reported after a certain amount of time or when it is reported after a certain number of
previous administrations. In that case, the study of the temporal aspect of the clinical data
is key. One of the most meaningful examples of the clinical domain, where the analysis of
the approximate and temporal aspect is fundamental, is given by the intensive care domain.
In this environment, the medical condition of the patients is continuously monitored, and
it is subject to several changes over time. Moreover, due to the critical conditions of many
patients, it is necessary to extract insightful information that may hold for most of them (i.e.,
use approximation). However, the combined analysis of their condition in some aggregate
form, such as the variation of a specific vital sign after the administration of a drug, could
give medical experts an additional interesting tool. This could be of particular interest if
the tool is not only providing rules that regard the current data, but if it is also predicting
some specific behavior for the future. As written before, the intensive care domain provides
many interesting data to work on. Because of the constant monitoring of the patients, many
quantitative data (such as vital signs) are measured and stored periodically, and they are
particularly insightful for analyzing trends that they may form.

One way to present knowledge to humans is to use if-then rules, that relate a condition
defining a subpopulation of instances (or patients) with observed outcomes. The strength of
this relation can be expressed using various statistics, such as support and confidence. This
human-friendly form facilitates the exploration, discovery, and possible utilization of these
patterns in healthcare. An example could be using a rule mining algorithm to identify a
subpopulation of patients that respond better than the others to a particular treatment. If
the rule clearly and concisely defines this subpopulation, it can be validated and potentially
utilized to improve patient management and outcomes.

There exist many strategies to mine ‘if-then’ rules from the data. The first technique that
we find very interesting relies on Approximate Temporal Functional Dependencies
(AT -FDs). If we consider a plain relational database, functional dependencies are not only a
concept for specifying constraints on data and for deriving normal forms [26]. As a matter
of fact, some knowledge can be argued by deriving those functional dependencies (FDs)
that hold on a given database. As an example, let us consider a simple relational table
describing the periodic medical examinations patients undergo in a hospital. That table
stores patient personal data such as name, surname, sex, and age, together with symptoms
and therapies prescribed at the time of the medical examination. Moreover, a temporal
attribute timestamps the medical examination. Typically, patients with the same symptom
receive the same therapy. Thus, we can derive a functional dependency between the patient’s
symptom and the drug prescribed at the moment of the medical examination.

1.1 - Motivation 15

We may also experience some functional dependencies which hold on “most tuples” of a
database, but not on all the tuples of that database. For example, we may extract from a
clinical database functional dependencies representing knowledge as “most patients with the
same symptoms receive therapies of the same type”. We call them approximate functional
dependencies (A-FDs) [62].

In the clinical domain, the temporal aspect should also be considered, and it allows us
to define finer constraints. For example, let us consider drugs known to cause a particular
adverse drug reaction. In this case, further drug prescriptions may follow to mitigate these
known effects. For example, suppose that drug d1 is prescribed to patient p for the treatment
of polycythemia, but it causes heartburn. Then, in the next medical examination drug, d2

would be prescribed to p in order to avoid heartburn. In such a case, prescribed drugs and
related adverse reactions determine drugs administered in the next medical examination. We
call this dependency a temporal functional dependency (T -FD) [115].

For some years, the literature has already considered topics related to approximate
functional dependencies [55, 56, 62, 69], and to temporal functional dependencies [32, 57, 110,
113, 115]. To the best of our knowledge, very few studies focused on approximate temporal
functional dependencies [29, 35, 94]. With AT -FDs, we could combine both the temporal
aspect and the approximation of functional dependencies, and that enables us to express
concepts such as “most patients with the same symptoms receive therapies of the same type,
within a sliding window of 10 days”. In [29], Combi et al. consider the problem of mining
approximate T -FDs with different kinds of temporal grouping on clinical data. In [94], Sala
extends the concept of approximate T -FD to that of approximate interval-based T -FD.

However, the problem of mining (approximate) temporal functional dependencies based
on tuple temporal evolution has not been faced yet. The concept of the temporal evolution
of tuples has been originally introduced by Vianu [110] for the characterization of Dynamic
Functional Dependencies (DFDs), that allow one to express constraints on tuple evolution in
consecutive snapshots of a temporal database.

Furthermore, one notable feature of these dependencies is that comparisons between
atemporal attributes are done by using only equality and may represent, for example, features
as “For patients undergoing a specific chemotherapy, when the same drug is being prescribed
on two consecutive days, the quantity of the drug administered on the latter day depends
solely on the drug quantity administered on the former”. However, such dependencies are not
well suited for extracting even knowledge when we have to deal with quantitative data, such
as clinical lab tests, periodic follow-up vital signs, and ICU signals. In particular, it would be
important to extract meaningful clinical information, in the form of approximate temporal
functional dependencies, where different values for clinical measurements are allowed to have
meaningless variations within some specified threshold.

Another strategy to mine ‘if-then’ rules is represented by pattern mining, which was
introduced by Agrawal [2, 4] for mining market basket data. It gained a lot of popularity in
data mining research [49], including clinical data mining [16, 66]. In fact, it is interesting to
analyze clinical measures and especially their temporal aspect for detecting temporal patterns,
i.e., time intervals in which one or more time series assume a behavior of interest. Temporal

16 1 - Introduction and Overview

patterns strongly rely on the concept of temporal abstraction [98]. Temporal-data abstraction
constitutes a central requirement that presently receives much and proper attention. The
role of this process is especially crucial in the context of time-oriented clinical monitoring,
therapy planning, and exploration of clinical databases. A TA provides a description of a (set
of) time series through sequences of temporal intervals that correspond to relevant patterns
that are detected in their time courses. Many abstraction mechanisms have been proposed in
[15, 27, 93, 98, 101]. These approaches usually deal with data related to only one patient
at a time, without the capability to query the whole database of patients. There are many
different temporal abstractions, and trends represent one of them.

From a qualitative point of view, there are many proposals in literature and some powerful
tools that extract qualitative patterns from data ([50, 64, 102]). More recently, methods for
assessing temporal relationships between such patterns have been developed ([14, 54, 60]).
Despite many differences in their overall approach, all these proposals share common traits
in their foundations, as they focus on modeling/extracting temporal precedence relationships
among patterns. This is expected, as inferring and verifying hypotheses about the cause-
effect interaction between events are a core motivation for temporal data mining. However,
these methods do not consider the presence of more complex temporal patterns into the
dataset. These complex patterns, such as trends of a certain vital sign, are very interesting
for clinicians to better understand their data. Summing up, it could be interesting to combine
these complex patterns. An example could be to discover if some sort of event, such as a
drug administration, is capable of changing these trends and how.

When a pattern is focused on a specific target class, we refer to the pattern mining process
as to predictive pattern (rule) mining [59]. In this case, it considers different rule antecedents
(patterns) and consequents (target class).

When predictive pattern mining focuses on the extraction of a set of rules describing
important patterns for a specific target class, it is used for knowledge discovery. However, it
can also be used to define a classifier [11]. In such a case, predictive patterns can be viewed
as nonlinear features helping to improve the overall performance of a classification algorithm.
This complementary use of predictive patterns raises interesting problems. One of them could
be the possibility to reduce the set of extracted predictive rules with the help of a classification
model. In other words, the discovery of rule redundancies that can be eliminated when we
combine the rules into a classification model. As a matter of fact, the strength of association
rule mining is that it searches the space of rules completely by examining all patterns that
frequently occur in the data; however, the number of rules it finds and outputs is often very
large. This may hinder the discovery process and the interpretability of the results. Hence,
it is desirable to reduce the mined rule set as much as possible while preserving the most
important relations (rules, patterns) found in the data. Various rule interestingness statistics
and constraints based on such statistics have been proposed to address this problem [44].
However, there are not many studies on the adoption of a classification model to possibly
reduce the set of extracted predictive rules.

1.2 - Contribution and Overview 17

1.2 Contribution and Overview

The overall goal of this thesis is to study and propose a data mining framework that analyzes
clinical data and give medical experts an interesting tool to further validate their data. In
particular, we consider the following domains: the intensive care domain given by the MIMIC
dataset, the collection of adverse drug reactions given by the Pharmacovigilance domain, and
the psychiatric case register. Nevertheless, it is important to underline that the proposed
framework is general purpose and may be applied in several other contexts and domains to
help different kinds of experts. Figure 1-1 represents an overview of the proposed framework.
The idea behind this framework is to collect many different mining techniques that share
a common “core”. In other words, the core includes the basic notions of widely known
concepts, such as Approximate Temporal Functional Dependencies, Predictive Patterns, or
Temporal Patterns. For example, in [30] and [96], we proposed two different extensions in
the domain of Approximate Temporal Functional Dependency. These extensions
inherit all the principles of the known AT -FDs (i.e., the core of the framework), but they
propose new solutions to overcome some of their limitations and to obtain finer rules. This
shared core is also useful when we have to create new running prototypes to test the new
proposed extensions: in that case, it is not necessary to re-write everything from scratch, but
it is possible to reuse all the core functions. In this framework, every additional extension
proposed is a module that interacts with the core, and the whole framework could mine rules
from any given dataset. This part could lead to an interesting scenario: what and how many
different rules could we extract from the same dataset? In chapters 4, 5, and 6, we try to
answer that question, focusing on intensive care data contained in the MIMIC dataset.

Figure 1-1: Overview of the proposed framework.

18 1 - Introduction and Overview

In the following, we summarize the contributions of this thesis to obtain the framework
described above:

1. Pure Temporally Evolving Functional Dependencies

In the context of functional dependencies, the concept of temporal evolution of tuples
has been originally introduced by Vianu [110] for the characterization of Dynamic
Functional Dependencies (DFDs). In this thesis we consider the extensions of DFDs
proposed in [32], called Pure Temporally Evolving T -FDs (PE-FDs) and, in particular,
we consider the problem of extracting all Approximate PE-FDs, called APE-FDs, from
a given temporal clinical database.

Even confirmed by the feedback we had from clinical domain experts, we may say that
APE-FDs represent dependencies among clinical data in a compact and readable way.
Indeed, APE-FDs represent knowledge at the schema level. Thus, they may be used as
a starting point for deeper data analysis.

Before moving to the more experimental side of our work, we provide a “negative”,
yet interesting, result about the complexity of checking APE-FDs. Checking a single
APE-FD against a database instance is NP-Complete in the size of the instance (i.e., data
complexity), as proved in Appendix A. However, we noticed that the NP-completeness
of this problem heavily relies on instances that are fictitious and imply properties of
data that are unreasonable in many contexts, such as the clinical one. We thus came
out with a series of optimizations and heuristics that improves the performances with
respect to the more general problem of checking an APE-FD against a database instance.

As we pointed out, mining APE-FDs introduces many computational challenges that
require techniques inherited from different fields of Computer Science (e.g., model
checking and combinatorial optimization). We embedded such techniques in a frame-
work that has been implemented as a running prototype and applied to data from
pharmacovigilance and psychiatric domains.

With respect to the preliminary results presented in [33] and [95], we focus only on
APE-FDs and do not consider the related temporal association rules. We then propose
a new, stronger and more focused definition of PE-FD and of the related APE-FD, by
introducing also a bounded version of temporal evolution of data. Moreover, we provide
a detailed discussion and proof of our theoretical results, by introducing a significantly
improved and extended presentation with new and more complete examples. Finally, we
propose a couple of novel optimization techniques for solving the problem of checking
APE-FDs.

In Chapter 3, Section 3.1 formally introduces the concepts of PE-FD and APE-FD, while
Section 3.2 presents some motivating clinical scenarios using PE-FDs and APE-FDs.
Section 3.3 provides a description of the algorithm that checks a single APE-FD against
a given database plus a series of optimizations and heuristics that may be generally
implemented in order to speed-up such verification process. Section 3.4 provides a
high-level description of the main features of our prototype for mining such dependencies

1.2 - Contribution and Overview 19

and the main ideas underlying its implementation; then, it provides interesting mined
APE-FDs from the psychiatry and pharmacovigilance domains; in the last part of this
section, we analyze the performances of the implemented prototype. Section 3.5 draws
some conclusions and sketches possible directions for future research. Finally, in the
Appendix A we prove the NP-Hardness of checking an APE-FD against a given temporal
database.

The main concepts of this chapter have also been submitted in [96]

Pietro Sala, Carlo Combi, Matteo Mantovani, and Romeo Rizzi. Discovering evolving
temporal information: Theory and application to clinical databases. SN Computer
Science, 1(3):153, May 2020. doi:10.1007/s42979-020-00160-9

2. Multi Approximate Temporal Functional Dependencies

To remain in the field of functional dependencies, we faced the problem of quantitative
analysis combined to the constraint of classic functional dependencies, where the
comparison between the values is only by equality. To this end, we propose a new
kind of approximate temporal functional dependencies, called Multi Approximate
Temporal Functional Dependency (MAT -FD), that considers “small variations”
for the values of quantitative attributes, while retaining the compactness and the
simplicity of AT -FDs. To our knowledge, measurements are usually considered, even
in an aggregated view to compose trends, at a lower level of abstraction, that is, the
level of the specific attribute values such as in the context of temporal association rules
[34, 93]. As a matter of fact, there have been few proposals to embed measurements
into temporal functional dependencies [116], and nevertheless such proposals focus on
specific given trends on attribute values.

Moreover, we designed a mining algorithm for extracting MAT -FDs from a given clinical
data set. In order to extract knowledge from the data set, the algorithm generates and
tests MAT -FDs collecting the valid ones, according to some optimality criteria, both for
the temporal dimension and for the involved attributes. This means that checking if
the data set satisfies a given MAT -FDs is an operation that is intensively used during
the mining process and its complexity deeply affects the overall complexity of the whole
mining process. We propose a graph-based solution for performing such operation and
we address its complexity.

Finally, we develop a tool, called SW-MATFDminer, that implements the algorithm
above. The tool has been designed to extract MAT -FDs regardless of the application
domain (i.e., it is a general purpose tool). In particular, we provide some first results
from the use of our tool to mine data coming from intensive care units and collected
within the MIMIC III database [58].

In Chapter 4, it is introduced the concept of Multi Approximate Temporal
Functional Dependencyalong with some examples (Section 4.1). Section 4.2
describes the algorithm used for checking a single MAT -FD over a given instance, while

https://doi.org/10.1007/s42979-020-00160-9

20 1 - Introduction and Overview

Section 4.3 provides interesting mined MAT -FDs from MIMIC III ICU data. Moreover,
Section 4.4 draws some conclusions and sketches possible directions for future research.

The main concepts of this chapter have also been published in [30]

Carlo Combi, Matteo Mantovani, and Pietro Sala. Discovering quantitative temporal
functional dependencies on clinical data. In 2017 IEEE International Conference on
Healthcare Informatics, ICHI 2017, Park City, UT, USA, August 23-26, 2017, pages
248–257. IEEE Computer Society, 2017. URL: https://ieeexplore.ieee.org/xpl/
conhome/8030514/proceeding, doi:10.1109/ICHI.2017.80

3. Trend-Event Patterns

There are many systems used for managing and presenting quantitative data, and one of
the most widely used is OnLine Analytical Processing (OLAP) system [47, 52, 61, 70].
Such data in the OLAP terminology are called “measures” while qualitative data
are called “dimensions”. For what concerns the medical domain, OLAP-systems are
increasingly adopted since they allow stakeholders to manage, monitor, and analyze
information, for example, involving vital signs of the patients (e.g., blood pressures,
body temperature, and so on) [101].

Moreover, we may also consider the analysis of the temporal evolution of quantitative
data (such as clinical lab tests, periodic follow-up vital signs, ICU signals, and so on),
and try to extract useful temporal knowledge.

Considering the current literature and the need of significative synthesis information
for several medical domains, we propose a new kind of temporal pattern called Trend-
Event Patterns, namely TE -Ps. The TE -P family of temporal patterns focus on the
interaction of trends and events. For us a trend is formed by consecutive values of
a given measurement attribute that are stationary, increasing, or decreasing under
the constraint that all the values of such trend stay within a defined range. In other
words, all the values that forms a trend are allowed to have negligible variations within
some specified threshold. For instance, TE -Ps could express concepts like “patient’s
systolic blood pressure was rising before the administration of lisinopril then, after the
administration, it stabilized”.

Another contribution is the development of a tool, called TEPminer, that implements
the algorithm to extract TE -Ps. Even though TEPminer has been designed to be a
general purpose tool (i.e., it is able to mine TE -Ps regardless the application domain),
we tested it using data coming from intensive care units (ICUs) contained in MIMIC III
EHR database [58]. To speed up the mining process, TEPminer exploits multithread
functions to analyze data of each patient independently. Finally, we took advantage of
OLAP analysis to present some multidimensional analysis on TE -Ps, where patterns
are evaluated in an aggregate form based on the level of detail we want to use.

In Chapter 5, we propose a new kind of temporal pattern, namely trend-event pattern
(TE -P) (Section 5.1), then we describe the mining process for TE -Ps (Section 5.2).
Section 5.3 shows an application of such algorithm using data coming from MIMIC-III

https://ieeexplore.ieee.org/xpl/conhome/8030514/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8030514/proceeding
https://doi.org/10.1109/ICHI.2017.80

1.2 - Contribution and Overview 21

EHR database. Lastly, Section 5.4 outlines the possible future developments of this
work.

The main concepts of this chapter have also been published in [75]

Matteo Mantovani, Carlo Combi, and Matteo Zeggiotti. Discovering and analyzing
trend-event patterns on clinical data. In 2019 IEEE International Conference on
Healthcare Informatics, ICHI 2019, Xi’an, China, June 10-13, 2019, pages 1–10. IEEE,
2019. URL: https://ieeexplore.ieee.org/xpl/conhome/8895688/proceeding, doi:
10.1109/ICHI.2019.8904774

4. Predictive Patterns

The objective of this work is to study new ways of improving association rule mining
that can lead to a smaller set of rules, that are sufficient to capture the essential
underlying patterns in the data. This requires analyzing relations among the mined
rules and defining criteria for assessing the importance of individual rules w.r.t. other
rules. The key principle studied and applied in this work for filtering the rules is rule
redundancy. Our approach builds upon the minimum predictive pattern mining idea
proposed by Batal and Hauskrecht [11] to eliminate spurious and highly redundant
rules, and attempts to improve it by reducing the set of mined minimum predictive
rules using an auxiliary classification model that combines the rules into one model.
Since in general the search for the optimal set of rules is equivalent to the optimal
subset selection problem [63], we propose and experiment with a more efficient greedy
rule selection algorithm that avoids the need to explore and evaluate all possible rules
subsets.

We have tested our method on data from MIMIC-III [58] EHR database. More
specifically, our goal is to discover patterns that are associated with sepsis and its
treatments. We compare our method to the original one [11] and show that the number
of rules found by our method is significantly smaller than the original set. Moreover,
we show that the performance of the classification model that is based upon our rule
set is close or better than classification models built by Batal’s rule sets.

In Chapter 6, we show the problem to identify a small set of predictive patterns. To
this end, we recall the concept of Minimum Predictive Patterns proposed by Batal and
Hauskrecht [11] in Section 6.1.3. In Section 6.1.4 it is shown how to combine predictive
patterns using a classification model and in Section 6.1.5 it is illustrated our proposal.
Section 6.2 focuses on the experimental part of such approach, showing some interesting
results that have been further discuted in Section 6.3. The last Section (6.4) draws
some conclusions about such proposal.

The main concepts of this chapter have also been published in [74]

Matteo Mantovani, Carlo Combi, and Milos Hauskrecht. Mining compact predictive
pattern sets using classification model. In David Riaño, Szymon Wilk, and Annette
ten Teije, editors, Artificial Intelligence in Medicine - 17th Conference on Artificial
Intelligence in Medicine, AIME 2019, Poznan, Poland, June 26-29, 2019, Proceedings,

https://ieeexplore.ieee.org/xpl/conhome/8895688/proceeding
https://doi.org/10.1109/ICHI.2019.8904774
https://doi.org/10.1109/ICHI.2019.8904774

22 1 - Introduction and Overview

volume 11526 of Lecture Notes in Computer Science, pages 386–396. Springer, 2019.
doi:10.1007/978-3-030-21642-9\ 49

https://doi.org/10.1007/978-3-030-21642-9_49

Chapter 2

Background and Related Work

At the beginning of this chapter, we describe some data mining techniques. In particular, the
first section recalls basic notions about Functional Dependency (FDs) and its temporal
extension, called Temporal Functional Dependency. Then we introduce the concept
of approximation applied to FDs and T -FDs: Approximate Functional Dependency
and Approximate Temporal Functional Dependency, respectively. Moreover, we
illustrate the basic concepts of pattern mining that will be used both for our Trend-Event
Patterns and Predictive Patterns presented in the following chapters. An extension of pattern
mining is given by frequent pattern mining and its Apriori approach. This will lead to the
concept of Predictive Pattern Mining. Finally, we describe the Support Vector Machine
(SVM), a classification model we used for predicting patterns.

2.1 Data Mining Techniques

This section briefly recalls the definition of functional dependency (FD), and then introduces
some extensions of it: temporal functional dependency (T -FD) and approximate functional
dependency (A-FD). Such concepts will lead to the definition of approximate temporal
functional dependency (AT -FD). For a better understanding of how FD, T -FD, A-FD, and
AT -FD are related consider Figure 2-1, which graphically depicts the IS A relationships
among such dependencies.

2.1.1 Functional Dependencies

The concept of functional dependency (FD) comes from the database theory and is defined
as follows [26]:

Definition 1 (Functional Dependency). Let r be a relationship over the relational schema R:
let X, Y ⊆ R be attributes of R. We assert that r fulfills the functional dependency X → Y
(written as r � X → Y) if the following condition holds:

∀t, t′ ∈ r(t[X] = t′[X]⇒ t[Y] = t′[Y])

23

24 2 - Background and Related Work

FD

AFD

TFD

ATFD

Figure 2-1: A graphical account for the IS A relationships between Functional dependency
(FD), approximate functional dependency (A-FD), temporal functional dependency (T -FD),
and approximate temporal functional dependency (AT -FD).

Informally, for all the couples of tuples t and t′ showing the same value(s) on X, the
corresponding value(s) on Y for those tuples are identical.
With FDs, we can express concepts such as “for each patient with a given symptom the
received treatment does not change”:

Patient, Symptom⇒ Treatment.

2.1.2 Temporal Functional Dependencies

Moving closer to the main kind of temporal features we shall consider here, several kinds of
temporal functional dependencies (T -FDs) have been proposed in the literature, usually as
temporal extensions of the widely known (atemporal) functional dependencies [117]. As an
example, we may consider that patients affected by a common pathology p1 may assume a
common therapy t1 during some month M1, while in another month M2 the same patients
affected by the same pathology p1 follow another therapy t2.

Recently, Combi et al. proposed a framework for T -FDs that subsumes and extends the
considered previous proposals [32]. The proposed framework is based on a simple temporal
relational data model. This model relies on the notion of temporal relation, i.e. a relation
extended with a timestamping temporal attribute called valid time and denoted by V T . In
the temporal relation the valid time represents the temporal dimension, i.e. the time when
the fact is true in the modeled world [31].

According to this framework, T -FDs could be expressed using the following syntax:
[E-Exp(R), t-Group]X → Y , where E-Exp(R) is a relational expression on a relational
schema R, called evolution expression. This evolution expression is based on two temporal
views that allow to join tuples that satisfy a specific temporal condition, in order to represent
relevant cases of (temporal) evolution. These views are:

� t-Group that is a mapping N→ 2N, called temporal grouping.

� X → Y that is a functional dependency on the (atemporal) attributes of E-Exp(R).

As for the semantics, similarly to the case of standard FDs, a T -FD is a statement
about admissible temporal relations on a temporal relation schema R with attributes

2.1 - Data Mining Techniques 25

U ∪ {V T}. A temporal relation r on the temporal relation schema R satisfies a T -FD

[E-Exp(R), t-Group]X → Y if it is not possible that the relation obtained from r by applying
the expression E-Exp(R) features two tuples t, t′ such that (i) t[X] = t′[X], (ii) t[V T] and
t′[V T] belong to the same temporal group, according to the mapping t-Group, and (iii)
t[Y] 6= t′[Y]. In other words, FD X → Y must be satisfied by each relation obtained from the
evolution relation by selecting those tuples whose valid times belong to the same temporal
group.

Temporal grouping enable us to group tuples together over a set of temporal granules,
based the VT temporal dimension. Four different classes of T -FD have been identified in [32]:

� Pure temporally grouping T -FD: E-Exp(R) returns the original temporal relation r.
These rules force FD X → Y , where X, Y ⊆ U , to hold over all the maximal sets which
include all the tuples whose VT belongs to the same temporal grouping;

� Pure temporally evolving T -FD: E-Exp(R) specifies how to derive, through the previously
introduced temporal views, the tuples modeling the evolution of objects. No temporal
grouping exists, i.e., all the tuples of r are considered together in one set;

� Temporally mixed T -FD: the expression E-Exp(R) collects all the tuples modeling the
evolution of the object. The temporal grouping is applied to the set of tuples generated
by E-Exp(R);

� Temporally hybrid T -FDs: the evolution expression E-Exp(R) selects those tuples of
the given temporal relation that contribute to model the evolution of real-world objects
(i.e., it removes isolated tuples); then, temporal grouping is applied to the resulting set
of tuples.

For example, T -FDs with Pure Temporally Grouping are the ones where t-Group consists of
granularity (Gran) or sliding window (SW) grouping as follows:

� Grouping on granules (granularity grouping, or Gran grouping). A temporal granularity
is a partition of a temporal domain in indivisible non-overlapping groups, i.e., granules,
of time points: minutes, hours, days, months, years as well as working days are
granularities [28].

Definition 2 (Grouping by Gran(i)). Two tuples t1, t2 ∈ r belong to the same tem-
poral group Gran(i) iff t1[V T], t2[V T] ∈ Gran(i) where Gran(i) is the ith granule of
granularity Gran.

� Grouping on sliding windows (SW). A sliding window1 SW (i, k) includes all the time
points in interval [i . . . i+ k − 1]. Thus, once we fix the length of the SW over relation
r (i.e. k in the example), every SW over r will feature that length, and will - at
most - include k elements (if relation r has tuples for all the time points of interval
[i . . . i+ k − 1]).

1Actually a sliding window comes with three parameters: granularity, beginning timestamp, and size as
the number of time points inside the window.

26 2 - Background and Related Work

Definition 3 (Grouping by SW(i,k)). Two tuples t1, t2 ∈ r belong to the same sliding
window SW(i, k) iff t1[V T], t2[V T] ∈ [i . . . i+ k − 1].

With T -FDs, we can express concepts such as “for each patient with a given symptom the
received treatment does not change, considering a time windows of 10 days”:

[10 days] Patient, Symptom⇒ Treatment.

2.1.3 Approximate Functional Dependencies

When considering functional dependencies as a way of finding properties of data instead
of a way of specifying constraints on data, FDs may be extended through the concept of
approximate functional dependency (A-FD). In fact, given a relation r, instead of specifying
some FD as integrity constraints, we might be interested in verifying whether a given FD
holds on most tuples of r. Thus, we may allow some tuples, for which that FD does not hold.
Therefore, we can define measurements which relate to the error we make in considering an
FD to hold on r. Three different measurements have been defined in [62]. The first one is
known as G1 and considers the number of violating couples of tuples. Formally:

G1(X → Y, r) = |{(t, t′) : t, t′ ∈ r ∧ t[X] = t′[X] ∧ t[Y] 6= t′[Y]}|

The related scaled measurement g1 is defined as follows:

g1(X → Y, r) = G1(X → Y, r)/|r|2

where |r| is the cardinality of the relation r, i.e. the number of tuples belonging to the
relation r.

The second one is known as G2 and considers the number of tuples which violate the
functional dependency. Formally:

G2(X → Y, r) = |{t : t ∈ r ∧ ∃t′(t′ ∈ r ∧ t[X] = t′[X] ∧ t[Y] 6= t′[Y])}|

The related scaled measurement g2 is defined as follows:

g2(X → Y, r) = G2(X → Y, r)/|r|

The third one is known as G3 and considers the minimum number of tuples in r to be
deleted for the FD to hold. Formally:

G3(X → Y, r) = |r| −max{|s| | s ⊆ r ∧ s � X → Y }

The related scaled measurement g3 is defined as follows:

g3(X → Y, r) = G3(X → Y, r)/|r|

The definition of A-FDs is based on these measurements.

2.1 - Data Mining Techniques 27

Definition 4 (Approximate Functional Dependency). Let r be a relation over the relational
schema R: let X, Y ⊆ R be attributes of R. Relation r fulfills an Approximate Functional
Dependency X

ε→ Y (written as r � X
ε→ Y) if G(X → Y, r)/|r| ≤ ε, where ε is the

maximum acceptable error defined by the user, and G is one of the previously introduced
measurements.

Among the several A-FDs that can be identified over a relation r, the minimal A-FD is of
particular interest, as many other A-FDs can then be derived from the minimal one. We thus
define the minimal A-FD as follows:

Definition 5 (Minimal A-FD). Given an A-FD over r, we define X
ε→ Y to be minimal for r

if r � X
ε→ Y and ∀X ′ ⊂ X we have that r 2 X ′ ε→ Y .

With A-FDs, we can express concepts such as “for each patient with a given symptom the
received treatment does not usually change”:

Patient, Symptom
ε→ Treatment.

In the following, we focus only on error measurement G3 for all the A-FDs.

2.1.4 Approximate Temporal Functional Dependencies

The concept of AT -FD is introduced in [29], and it relies on two different kind of temporal
grouping, both belonging to the class Pure Temporally Grouping explained in subsection
2.1.2.

We define the AT -FD with granularity grouping as:

Definition 6 (AT -FD with Gran grouping). Let r be a relation over the relational schema
R with attributes U ∪ {V T}: let X, Y ⊆ U be attributes of R. Let Gran be the reference
granularity. Relation r fulfills an approximate temporal functional dependency (written as
r � [r,Gran]X

ε→ Y) iff g3([r,Gran]X → Y, r) ≤ ε.

That is, the percentage of tuples in the entire relation r to be deleted for a AT -FD to hold
on all the tuples of r is less than ε; tuples of r are then grouped according to the granule of
Gran their VT value belongs to, to evaluate the considered AT -FD. We recall that the count
of tuples in r to be deleted refers to the entire relation r, and not to the group - and one
tuple may belong to one group only, if we use a Gran grouping.
As for plain A-FD, we can introduce the concept of minimality also for AT -FD.

Definition 7 (Minimal AT -FD with Gran grouping). An AT -FD [r,Gran]X
ε→ Y is said to

be minimal for r iff r � [r,Gran]X
ε→ Y and ∀X ′ ⊂ X we have that r 2 [r,Gran]X ′

ε→ Y .

We define the AT -FD with sliding window (SW) grouping as follows:

Definition 8 (AT -FD with SW grouping). Let r be a relation over the relational schema
R with attributes U ∪ {V T}: let X, Y ⊆ U be attributes of R. Let {i . . . i + k − 1} be a
sliding window (SW) of length k. The relation r fulfills an approximate temporal functional
dependency (written as r � [r, {i . . . i+k−1}]X ε→ Y) iff g4([r, {i . . . i+k−1}]X → Y, r) ≤ ε.

28 2 - Background and Related Work

We consider as many SW s as possible, every SW sizing k elements: thus, the first
considered sliding window is i . . . i+k−1, the second considered sliding window is i+1 . . . i+k,
the third considered sliding window is i + 2 . . . i + k + 1, and so on. Every SW sets up a
group (or chain) over which the AT -FD is checked. The AT -FD must hold, with an acceptable
amount of error smaller than ε, over the entire database: if we delete (as for the measurement
g3) a tuple inside a SW, that tuple will remain deleted in all the SW s (either preceding or
following the current SW) which include that tuple.

Analogously to Definition 7, we can introduce the concept of minimality also for AT -FD with
SW grouping.

Definition 9 (Minimal AT -FD with SW grouping). Given an AT -FD over [r, {i . . . i+k−1}],
we define X

ε→ Y to be minimal for r iff r � [r, {i . . . i + k − 1}]X ε→ Y and ∀ X ′ ⊂ X we
have that r 2 [r, {i . . . i+ k − 1}]X ′ ε→ Y .

With AT -FDs, we can express concepts such as “for each patient with a given symptom the
received treatment does not usually change, considering a time windows of 10 days”:

[10 days] Patient, Symptom
ε→ Treatment.

An example could be given by Table 2.1, where the attribute VT refers to the valid time of
the tuple at the day granularity; whereas Duration refers to the duration of the treatment.
If we fix the length of the SW to 5, i.e. every sliding window includes a group (or chain) of
five days, the first SW will formally include time points {2009-04-11, 2009-04-12, 2009-04-
13, 2009-04-14, 2009-04-15}: since relation r in Table 2.1 has tuples for VT=2009-04-11 or
VT=2009-04-14 or VT=2009-04-15, the first SW includes 3 tuples having VT values 2009-04-11,
2009-04-14, 2009-04-15, respectively. Thus, the following 6 SW s consider all the possible VT

value groups {2009-04-11, 2009-04-14, 2009-04-15}, {2009-04-14, 2009-04-15}, {2009-04-15},
{2009-04-26, 2009-04-27, 2009-04-28}, {2009-04-27, 2009-04-28}, and {2009-04-28}.

AT -FD [Contact, {i . . . i + 4}] Patient 0.4→ Duration holds. Indeed, tuples for which the
dependency does not hold, i.e. Tuple# 3 and Tuple# 6 in the specific example, are those
which need to be deleted according to the measurement g3 of Definition 8. More precisely,
because the value of attribute Duration for Tuple# 3 is not 20, and the value for Tuple# 6
is not 40, these tuples should be deleted. Deleting these two tuples, we obtain a plain T -FD,
holding on all the four remaining SW s. The tuples we deleted are less then the 40% of the
entire Table 2.1, thus proving that the AT -FD holds even with a threshold ε of 2/6 (i.e. 1/3),
which is smaller than 0.4.

If we again consider Table 2.1 and group tuples according to the same six SW s as we did

before, we can now check the AT -FD [Contact, {i . . . i+ 4}] Patient 0.1→ Treatment, accepting
an error of 10%. The T -FD fails on one tuple (Tuple# 5, i.e. 1/6 of the entire relation), which
needs to be deleted according to measurement g3 of Definition 8: thus, the AT -FD does not
hold with a ε of 0.1.

2.1 - Data Mining Techniques 29

Tuple# VT Patient Duration Treatment

1 2009-04-11 Jackie 20 Atenolol

2 2009-04-14 Jackie 20 Atenolol

3 2009-04-15 Jackie 15 Atenolol

4 2009-04-26 Jackie 40 Lisinopril

5 2009-04-27 Jackie 40 Paracetamol

6 2009-04-28 Jackie 30 Lisinopril

Table 2.1: An example of a table used to show the advantage of approximation in AT -FDs.

2.1.5 Pattern Mining

This subsection recalls the concepts of pattern, and its extension, namely temporal pattern.
An important goal of knowledge discovery is the search for patterns in the data that can help
to explain its underlying structure. To be practically useful, the discovered patterns should
represent a novelty and in an easy to understand form. Intuitively, a pattern is a behavior or
property that we may want to distinguish in the data, or it is used to represent a property in
the domain of interest.

Frequent Pattern Mining

Frequent patterns are simply patterns that appear frequently in a dataset. Frequent pattern
mining was first introduced by Agrawal [2] for mining market basket data that are in
transactional form. The goal was to analyze customer buying habits by finding associations
between items that customers frequently buy together. For example, if customers buy bread,
it is also likely they buy milk on the same trip to the supermarket. In this example, bread
and milk are called items, and the customer’s trip to the supermarket is called a transaction.
All the transactions are stored in a database.

Frequent patterns can take a variety of forms such as:

1. Itemset patterns: Represent set of items [2, 11, 25, 71, 120].

2. Time interval patterns: Represent temporal relations among states with time durations
[10, 12, 53, 78, 85, 118].

3. Sequential patterns: Represent temporal order among items [86, 124, 105, 111].

4. Graph patterns: Represent structured and semi-structured data such as chemical
compounds [65, 109, 121].

Frequent pattern mining plays an essential role for discovering interesting regularities that
hold in data. Furthermore, frequent pattern mining has been widely used to support other
data mining tasks, such as clustering [1, 13] and classification [11, 12, 25, 39, 112].

In the following, a formal definitions of the common concepts of this section:

30 2 - Background and Related Work

Definition 10 (Items). Let Σ = {i1, i2, . . . , in} denote a set of n attributes, called items. Σ
is also called the alphabet.

Definition 11 (Database). Let D = {t1, t2, . . . , tn} be a set of n transactions, called database.
Each transaction t ∈ D is unique (i.e., has a unique transaction ID), and contains a subset of
items in Σ.

Definition 12 (Itemset pattern). An itemset pattern is a conjunction of items: P =
iq1∧, . . . ,∧iqk where iqj ∈ Σ. If a pattern contains k items, we call it a k-pattern (an item is
a 1-pattern).

Assume an item I = (fea, val), where fea is a feature and val is a value. Given a data
instance x, we say that I ∈ x if fea(x) = val and that P ∈ x if ∀Ij ∈ P : Ij ∈ x. Given a
dataset D = {xi}ni=1, the instances that contain pattern P define a group DP = {xj |P ∈ xj}.

Definition 13 (Subpattern). We say that pattern P is a subpattern of pattern P’ (P’ is a
superpattern of P), denoted as P ⊂ P’, if every item in P is contained in P’. Note that the
empty pattern Φ defines the entire population.

If P is a subpattern of P ′ (P ⊂ P ′), then DP is a supergroup of D′P (DP ⊇ D′P).

Definition 14 (Support). The support of pattern P in database D, denoted as sup(P,D), is
the number of transactions t in D that contains P .

supp(P) =
{t ∈ D;P ⊆ t}

|D|
=
|DP |
|D|

Definition 15 (Frequent Pattern). Given a user specified minimum support threshold σ, we
say that P is frequent pattern if sup(P,D) ≥ σ.

For example, consider the transaction data in Table 2.2, where the alphabet of items is
Σ = A,B,C,D,E and there are 5 transactions (each one of them represents a customer visit
to the supermarket). We can see that pattern P = A ∧ C appears in transactions T1, T2

and T4, hence the support of P is 3. If we set the minimum support sigma = 2, then the
frequent patterns are: A, C, D, E, A ∧ C, A ∧ D.

Transaction List of items

T1 A, C, D

T2 A, B, C

T3 A, D, E

T4 A, C

T5 E

Table 2.2: An example of transactions.

2.1 - Data Mining Techniques 31

Age Sex Heart rate

Young (< 18) Male High (> 100 bpm)

Middle age (18-60) Male Medium (60-100 bpm)

Middle age (18-60) Female Medium (60-100 bpm)

Senior (> 60) Female Low (< 60bpm)

Table 2.3: An example of discretization of numerical values.

Transaction List of items

T1 Age=Young (< 18), Sex=Male, Heart rate=High (> 100 bpm)

T2 Age=Middle age (18-60), Sex=Male, Heart rate=Medium (60-100 bpm)

T3 Age=Middle age (18-60), Sex=Female, Heart rate=Medium (60-100 bpm)

T4 Age=Senior (> 60), Sex=Female, Heart rate=Low (< 60bpm)

Table 2.4: Transaction format of data in Table 2.3.

The original idea proposed by Agrawal [2] focused on mining transaction data. However,
the same concepts can be applied to relational attribute-value data, where each instance
is described by a fixed number of attributes. Attribute-value data can be converted into
an equivalent transaction data if they are discrete (i.e., data that contain only categorical
attributes), and this is a recommended procedure [122]. In this case, it is possible to map
each attribute-value pair to a distinct item.

An example is given in Table 2.3, where the attribute Heart rate has been converted into
three discrete values: Low, Medium and High. Same procedure was applied to attribute Age,
with other tree discrete values: Young, Middle ageand Senior. In Table 2.4 shows the data
in Table 2.3 in transaction format. Let us note that the conversion of attribute-value data
into transaction data ensures that all transactions have the same number of items (unless
the original data contain missing values). After this transformation, we can apply pattern
mining algorithms on the equivalent transaction data.

Pattern Mining Algorithms

One of the most important challenges in pattern mining is to reduce the search space, that
can easily become very large. The search space of all possible itemset patterns for transaction
data is exponential in the number of items. It means that if Σ is the alphabet of items,
there are 2|Σ| possible itemsets (the powerset of Σ). This search space can be represented
by a lattice structure with the empty set at the top and the set containing all items at the
bottom, as shown in Figure 2-2. For attribute-value data, the search space is exponential in
the number of attributes. Given d attributes with V possible values for each one of them,
there are (V + 1)d valid itemsets. For more complex patterns, such as sequential patterns,

32 2 - Background and Related Work

time interval patterns or graph patterns, the search space is even larger than the search
space for itemsets. Clearly, the naive approach to generate and count all possible patterns is
infeasible. Frequent pattern mining algorithms make use of the minimum support threshold
to restrict the search space to a hopefully reasonable subspace that can be explored more
efficiently.

Apriori

As noted in [4], frequent patterns have an interesting downward closure property: a pattern
can be frequent only if all of its subpatterns are frequent. This property is called the Apriori
property and it belongs to a category of properties called anti-monotone. This means that
if a pattern fails to pass a test, all of its superpatterns will fail the same test as well. The
Apriori algorithm makes use of an iterative level-wise search and applies the Apriori property
to prune the space. It first finds all frequent items (1-patterns) by scanning the database and
keeping only the items that satisfy the minimum support. Then, it performs the following
two phases to obtain the frequent k-patterns using the frequent (k-1)-patterns:

1. Generation of candidates: it uses the frequent (k-1)-patterns to generate candidate
k -patterns. Remove any candidate that contains an infrequent (k-1)-subpattern because
it is guaranteed not to be frequent according to the Apriori property.

2. Minimum Support : it counts the generated candidates and remove the ones that do
not satisfy the minimum support.

This process repeats until no more frequent patterns can be found.
In the following, we illustrate the generation of candidates procedure with an example.

Assume the algorithm found the following frequent 2-patterns: F2 = {A ∧ B,A ∧ C,B ∧
C,B ∧D}. One way to generate candidate k-patterns for itemset mining is by joining two
(k-1)-patterns if they share the same k-2 prefix. Following this strategy, we join A ∧B with
A ∧ C to generate candidate A ∧ B ∧ C. Similarly, we join B ∧ C with B ∧D to generate
candidate B ∧ C ∧D. However, it is guaranteed that B ∧ C ∧D is not frequent because it

φ

A B C

A ∧ B A ∧ C B ∧ C

A ∧ B ∧ C

Figure 2-2: Powerset of Σ = A,B,C.

2.1 - Data Mining Techniques 33

contains an infrequent 2-subpattern: C ∧D /∈ F2. Therefore, A∧B ∧C is the only candidate
that survives the pruning.

Since the Apriori algorithm was proposed, there have been extensive research on improving
its efficiency when applied on very large data. These techniques include partitioning [97],
sampling [108], and distributed mining [3]. Besides, Apriori has been extended to mine more
complex patterns such as sequential patterns [72, 105], graph patterns [65, 109], and time
interval patterns [10, 53, 79].

2.1.6 Pattern Mining for Supervised Learning

After the introduction of the main frequent pattern mining algorithms, here we focus on
methods that apply pattern mining in the supervised setting, where we have labeled training
data of the form D = {xi, yi}ni=1 (yi is the class label associated with instance xi) and we
want to mine patterns that can predict the class labels for future instances. In the supervised
setting, we are only interested in rules that have the class label in their consequent. Hence, a
rule is defined as P → y, where P (the antecedent) is a pattern and y is a class label. An
example of a rule is Heart Rate = High ∧ Temperature = High → Running = No.

Concept Learning

One of the most classical method for supervised pattern mining is concept learning. Here
the learner is presented with training data of the form D = {xi, c(xi)}ni=1, where c(xi) is the
concept associated with instance xi. Instances with c(xi) = 1 are called positive examples
(members of the target concept), while the ones with c(xi) = 1 are called negative examples
(nonmembers of the target concept). Let a hypothesis h denote a Boolean-valued function
defined over the input space, and let H denote the space of all possible hypotheses the learner
may consider: the goal is to find h ∈ H such that ∀x, h(x) = c(x). In concept learning, the
hypothesis space H is determined by the human designer choice of hypothesis representation.
Most commonly, H is restricted to include only conjunction of attribute values. For example,
assume the data contain three attributes: heart rate, blood pressure, and temperature.
Hypothesis h =< heartrate =?, bloodpressure = high, temperature = hot > means that the
target concept is true when the value of blood pressure is high and the value of temperature is
hot, regardless of the value of heart rate. Note that if we use conjunctive hypothesis space,
the definition of a hypothesis becomes equivalent to the definition of an itemset pattern. For
example, hypothesis h is exactly the same as pattern bloodpressure = high ∧ temp = hot.
Hence, the search space for learning conjunctive description hypotheses is the same as the
search space of itemset mining for relational attribute-value data. A useful structure that is
used for concept learning is the general-to-specific partial ordering of hypotheses. For example,
hypothesis h1 =< heartrate =?, bloodpressure = high, temperature =? > is more general
than h2 =< heartrate =?, bloodpressure = high, temperature = hot >, and this is exactly
how subpatterns are defined, where pattern h1 is a subpattern of h2. The general-to-specific
partial ordering is used to organize the search through the hypothesis space. It is important
to note that concept learning methods rely on two strong assumptions:

34 2 - Background and Related Work

1. The hypothesis space H contains the true target concept:

∃ h ∈ H : h(x) = c(x)∀ x ∈ X

2. The training data contain no errors (noise free).

For instance, if the hypothesis space supports only conjunctive description and the true
target concept is a disjunction of attribute values, then concept learning will fail to learn the
concept.

Decision Trees

Another classical method for building classification models is represented by decision tree
induction. Each internal node in the tree denotes a test on an attribute, each branch represents
an outcome of the test, and each leaf node holds a class label. Many algorithms exist to learn
a decision tree, such as ID3 [90], CART [19] and C4.5 [91]. All of these algorithms build the
decision tree from the root downward in a greedy fashion. One obvious way to obtain a set of
classification rules is to first learn a decision tree, then translate the tree into an equivalent
set of rules: one rule is created for each path from the root to a leaf node. That is, each
internal node along a given path is added to the rule antecedent (with conjunction) and the
leaf node becomes the rule consequent.

An example of decision tree could be found in Figure 2-3, where we want to predicts the
concept Running. The corresponding rules are:

� R1: Heart Rate = Regular ∧ Temperature = Regular → Running = Yes

� R2: Heart Rate = Low → Running = No

� R3: Heart Rate = High → Running = No

� R4: Heart Rate = Regular ∧ Temperature = Low → Running = No

� R5: Heart Rate = Regular ∧ Temperature = High → Running = No

Heart Rate

TemperatureNo No

Regular
High Low

Regular

No

Low

No

High

Yes

Figure 2-3: An example of decision tree for the concept Running.

2.1 - Data Mining Techniques 35

Because every decision tree induces a partition of the input space, rules that are extracted
directly from the tree are mutually exclusive and exhaustive. Mutually exclusive means that
the rules do not overlap (an instance can be covered by only one rule), while exhaustive
means that the rules cover the entire input space (every instance is cover by a rule). There
are several drawbacks for using rules from a decision tree. First, the extracted rules have a
very restrictive form. For example, the attribute of the root note has to appear in every rule.
Second, the rules are often difficult to interpret, especially when the original decision tree is
large (the rules are often more difficult to interpret than the original tree). Finally, since the
decision tree is built greedily, the resulting rules may miss important patterns in the data.

Summing up, concept learning methods search an incomplete hypothesis space because
they totally fail when the hypothesis space is complete (the learned concept would exactly
replicate the training data). On the other hand, decision tree induction searches the complete
hypothesis space (i.e., a space capable of expressing any discrete-valued function). However,
the space is searched incompletely using greedy heuristics. In comparison, frequent pattern
mining uses a complete hypothesis space and performs a more complete search than decision
tree and sequential covering. The reason is that frequent pattern mining examines all patterns
that occur frequently in the data instead of relying on greedy choices to explore the patterns.

2.1.7 Temporal Patterns

As we mentioned before, in the clinical domain there are a lot of different data that are
collected. Some of them also contain temporal information. Let us think, for example, at
patients in an intensive care unit: each vital sign is stored with an indication of when the
vital sign was measured and/or recorded. Temporal data could include time points (e.g.,
heart rate at 60bpm, at 11:55 a.m., on January 7th, 1987) or temporal intervals. These
temporal intervals may be either a part of the original raw input data (e.g., prescription of
a drug for seven days), or are abstractions derived from them (e.g., two weeks of fever). A
problem could arise when we want to manage time points and intervals from the same input
dataset, and in Figure 2-4 we try to illustrate that. In fact, time points and intervals can be
intermixed, or the time point series might be sampled or recorded at different frequencies.
The sampling process could be set at a fixed time length, as shown in Figure 2-4 for time series
(a), which is often the case for automated sampling; or at random periods, as often occurs
in manual measurements, as illustrated by time series (b). Moreover, some time-stamped
data points might be missing, or their measurements might include an error. Raw data (and
certainly abstractions derived from the data) might also be represented by time intervals,
such as drug-prescription periods, as shown in series (c), in which the duration of the events
is constant, and in series (d), in which the temporal duration is varying. Designing algorithms
capable of extracting insightful rules from such data, characterized in various forms, is a
challenging topic in temporal data mining research.

36 2 - Background and Related Work

Value

Time

(a)

(c)

(b)

(d)

Figure 2-4: Time points (a, b) and intervals (c, d).

Temporal Abstractions

To this extent, it is necessary to introduce the concept of Temporal Abstraction (TA) [98].
The role of this process is especially crucial in the context of time-oriented clinical monitoring,
therapy planning, and exploration of clinical databases. A TA provides a description of
a (set of) time series through sequences of temporal intervals that correspond to relevant
patterns that are detected in their time courses. TAs propose a natural way to define and to
describe a representation of temporal data, thus helping to define patterns and to specify
temporal relationships between them. The first conceptual model was proposed by Shahar
in 1997 [98], with a method called Knowledge-Based Temporal-Abstraction (KBTA). Shahar
defined a knowledge-based framework, including a formal temporal ontology [98] and a set
of computational mechanisms using that ontology [22, 23, 99, 100, 102] specific to the task
of creating abstract, interval-based concepts from time-stamped clinical data. The KBTA
framework emphasizes the explicit representation of the knowledge required for abstraction
of time-oriented clinical data, and facilitates its acquisition, maintenance, reuse, and sharing.

The KBTA theory defines a set of entities, and the most relevant ones for this dissertation
are:

� The basic time primitives are timestamps, that can be mapped by a time-standardization

2.1 - Data Mining Techniques 37

function into a set of predefined temporal granularity units.

� A time interval I, that is an ordered pair of time stamps representing the interval’s end
points: [I.start; I.end].

� An event proposition, that represents the occurrence of an external intentional action
or process, such as the administration of a drug.

� Abstraction Functions, that transform one or more parameters into an abstract parame-
ter. The “output” abstract parameters can have one of several abstraction types. There
are at least three basic abstraction types: state, gradient, and rate.

Since then, many abstraction mechanisms have been proposed in [27, 80, 101]. However,
these approaches usually deal with data related to only one patient at a time, without the
capability to query the whole database of patients. TAs are also used in [15, 93] to present an
approach to pre-process and interpret clinical time series. Their idea is to filter the original
time series using temporal abstractions and then to interpret the new and derived time series
by both statistical and artificial intelligence methods.

Temporal Trends

One interesting kind of temporal abstraction is represented by trends.
Considering the contributions from the literature on time series and temporal trends,

Haimowitz et al. [48] present a temporal pattern-matching system, namely TrenDx. TrenDx
focuses on using efficient general methods to represent and detect predefined temporal
patterns in raw time-stamped data. Trend templates describe typical clinical temporal
patterns, such as normal growth development, or specific types of patterns known to be
associated with functional states or disease states, by representing these patterns as temporal
and measurement constraints. The TrenDx system has been developed mainly within the
domain of pediatric growth monitoring, although examples from other domains have been
presented to demonstrate its more general potential.

Wijsen [114] introduces the concept of trend dependencies, which allow one to express
significant temporal trends, e.g., “salaries of employees should never decrease across months”.
The temporal dimension is captured by trend dependencies through the concept of time
accessibility relation, which can also express time granularities in a simple and elegant way.
Trend dependencies can compare attribute values by some comparison operators.

OLAP Analysis of Temporal Patterns

Finally, let us recall that trends and patterns with trends could be analyzed in some aggregate
form, through an On-Line Analytical Processing (OLAP) analysis, as shown in [123]. In fact,
they can be stored in a multidimensional array structure, called data cube, to be analyzed in
an aggregated way. This data cube is composed of many dimensions, where each dimension
represents all the possible qualitative values described by one or more attributes. The data

38 2 - Background and Related Work

cube also contains quantitative values, and we refer to them as measures. When a dimension
is described by more than an attribute, it means that they have a hierarchical relationship.
An example of a hierarchy is with the time dimension, where attributes such as week, day,
hour, minute, second are related. The data cube has a multidimensional structure that
provides flexibility to analyze data from different perspectives. Consequently, it is possible
to query the data cube using OLAP operations, such as drill-down, to navigate from more
general data to details; roll-up, to navigate from more specific to more general data; and slice
and dice, to define a sub-cube by filtering for one or more dimensions.

2.2 Classification Model - Support Vector Machine

Classifying data is a common task in machine learning. For example, given two classes and
a set of data points (where each one of them belongs to one of two classes), the goal is to
decide in which class a new data point will be. In the case of support vector machines, a data
point is viewed as a p-dimensional vector (a list of p numbers), and we want to know whether
we can separate such points with a (p-1)-dimensional hyperplane. The concept of Support
Vector Machine (SVM) was introduced by Cortes and Vapnik in [36]. SVM is a supervised
learning model with associated learning algorithms that analyze data used for classification
and regression analysis. SVM is used when there is a set of training examples, each marked as
belonging to one or the other of two categories: here SVM training algorithm builds a model
that assigns new examples to one category or the other, making it a non-probabilistic binary
linear classifier. An SVM model could represent samples as points in space, mapped in a way
where samples of the two different categories are divided by a clear gap that is as wide as
possible. When new samples are added, SVM maps them into that same space and predicts
at what category they belong (i.e., the given category of a new sample is seen by the side
of the gap on which they are positioned). There are many hyperplanes that might classify
the data. A reasonable choice is to pick the one that represents the largest margin between
the two classes. In doing so, the distance from it to the nearest data point on each side is
maximized. If such a hyperplane exists, it is known as the maximum-margin hyperplane, and
the linear classifier it defines is known as a maximum-margin classifier.

Whereas the original problem may be stated in a finite-dimensional space, it often
happens that the sets to discriminate are not linearly separable in that space. To keep the
computational load reasonable, the mappings used by SVM schemes are designed to ensure
that dot products of pairs of input data vectors may be computed easily in terms of the
variables in the original space, by defining them in terms of a kernel function k(x, y) selected
to suit the problem. The hyperplanes in the higher-dimensional space are defined as the
set of points whose dot product with a vector in that space is constant, where such a set of
vectors is an orthogonal (and thus minimal) set of vectors that defines a hyperplane. The
vectors defining the hyperplanes can be chosen to be linear combinations with parameters αi
of images of feature vectors xi that occur in the dataset. With this choice of a hyperplane,
the points x in the feature space that are mapped into the hyperplane are defined by the
relation

∑
i αik(xi, x) = constant. Note that if k(x, y) becomes small as y grows further

2.2 - Classification Model - Support Vector Machine 39

away from x, each term in the sum measures the degree of closeness of the test point x to
the corresponding database point xi. In this way, the sum of kernels above can be used to
measure the relative nearness of each test point to the data points originating in one or the
other of the sets to be discriminated. Note the fact that the set of points x mapped into any
hyperplane can be quite convoluted as a result, allowing much more complex discrimination
between sets that are not convex at all in the original space.

Figure 2-5: In this Figure there are samples from two classes (in blue and green). SVM is
trained to discover the maximum-margin hyperplane. Samples on the margin are called the
support vectors.

Let us consider a training dataset of n points of the form (~x1, y1), . . . , (~xn, yn), where the
yi are either 1 or -1, each indicating the class to which the point ~xi belongs. Each ~xi is a
p-dimensional real vector. We want to find the ”maximum-margin hyperplane” that divides
the group of points ~xi for which yi = 1 from the group of points for which yi = −1, which is
defined so that the distance between the hyperplane and the nearest point ~xi from either
group is maximized.

Any hyperplane can be written as the set of points ~x satisfying
~w · ~x − b = 0, where ~w is the normal vector to the hyperplane. The parameter b

‖~w‖
determines the offset of the hyperplane from the origin along the normal vector ~w. Figure
2-5 shows an example of the maximum-margin hyperplane.

40 2 - Background and Related Work

2.3 Clinical Datasets

In recent years there has been a collective movement for adopting digital health record
systems in hospitals. In the US, for example, the number of non-federal acute care hospitals
with basic digital systems increased from 9.4 to 75.5% over the 7 year period between 2008
and 2014 [24]. In the following, we present all the clinical datasets that have been used to
infer knowledge through techniques described in the following chapters.

2.3.1 MIMIC

MIMIC (‘Medical Information Mart for Intensive Care’) is a huge database comprising
information relating to patients admitted to intensive care units (ICUs) of the the Beth Israel
Deaconess Medical Center in Boston, Massachusetts [58, 88]. MIMIC includes many data
related to patients, such as: vital signs, medications, laboratory measurements, procedure and
diagnostic codes, length of stay, survival data, and more. The database supports applications
including academic and industrial research, quality improvement initiatives, and higher
education coursework.

The MIMIC critical care database is unique and notable for the following reasons:

� it is one of the few freely accessible critical care database of its kind;

� the dataset spans more than a decade, with detailed information about individual
patient care;

� analysis is unrestricted once a data use agreement is accepted, enabling clinical research
and education around the world.

MIMIC is now at its third major release (called MIMIC-III), it includes data collected
between 2001 and 2012, and it is hosted in the PhysioNet system [45]. Data in mimic come
from two different data management software used by the Beth Israel Deaconess Medical
Center: the original Philips CareVue system, which archived data from 2001 to 2008, was
replaced with the new Metavision data management system for the remaining years. In
figure 2-6 there is an overview of the underlying structure of MIMIC that is fundamental for
the whole data-collection process, while in table 2.5 there are some statistics about MIMIC
patient population, as reported in [58]. Figure 2-7 shows the UML schema of MIMIC, and
the attributes in each table represent the primary key. Some of the tables have Row ID as
primary key: this is because, without that attribute, some of the tuples would have been
duplicated. For example, in table Prescriptions this behavior is expected because each
tuple represents an administration of a certain drug, whereas in other tables that behavior
could indicate some errors in the data-collection process. Tables without Row ID as primary
key have one or more attributes that, combined together, return univocally a tuple. In this
schema, it is clearly visible that 5 tables are widely interconnected to all the other tables.
These tables are:

2.3 - Clinical Datasets 41

Figure 2-6: Overview of the MIMIC-III critical care system [58].

� Patients - It contains data regarding each patient in the MIMIC dataset, such
as: gender, date of birth, and date of death. Let us recall that, because of the de-
identification process, these dates do not correspond to the real ones but they preserve
their temporal difference.

� Admissions - It gives information regarding a patient’s admission to the hospital.
Each unique hospital visit for a patient corresponds to an unique Hadm ID, hence the
Admissions table can be considered as a definition table for Hadm ID. Information
available includes data such as temporal data for admission and discharge, demographic
information, and the source of the admission.

� ICUstays - It defines a single ICU stay. ICUstay ID is its generated identifier that
is not based on any raw data identifier. The hospital and ICU databases are not
intrinsically linked and so do not have any concept of an ICU encounter identifier. Table
ICUstays also contains the first and last ICU type in which the patient was cared
for: as an ICUstay ID groups all ICU admissions within 24 hours of each other, it is

42 2 - Background and Related Work

Critical care unit CCU CSRU MICU SICU TSICU Total

Distinct patients,

no. (% of total admissions)
5,674 (14.7%) 8,091 (20.9%) 13,649 (35.4%) 6,372 (16.5%) 4,811 (12.5%) 38,597 (100%)

Hospital admissions,

no. (% of total admissions)
7,258 (14.6%) 9,156 (18.4%) 19,770 (39.7%) 8,110 (16.3%) 5,491 (11.0%) 49,785 (100%)

Distinct ICU stays,

no. (% of total admissions)
7,726 (14.5%) 9,854 (18.4%) 21,087 (39.5%) 8,891 (16.6%) 5,865 (11.0%) 53,423 (100%)

Age, years,

median (Q1-Q3)
70.1 (58.4–80.5) 67.6 (57.6–76.7) 64.9 (51.7–78.2) 63.6 (51.4–76.5) 59.9 (42.9–75.7) 65.8 (52.8–77.8)

Gender, male,

% of unit stays
4,203 (57.9%) 6,000 (65.5%) 10,193 (51.6%) 4,251 (52.4%) 3,336 (60.7%) 27,983 (55.9%)

ICU length of stay,

median days (Q1-Q3)
2.2 (1.2–4.1) 2.2 (1.2–4.0) 2.1 (1.2–4.1) 2.3 (1.3–4.9) 2.1 (1.2–4.6) 2.1 (1.2–4.6)

Hospital length of stay,

median days (Q1-Q3)
5.8 (3.1–10.0) 7.4 (5.2–11.4) 6.4 (3.7–11.7) 7.9 (4.4–14.2) 7.4 (4.1–13.6) 6.9 (4.1–11.9)

ICU mortality,

percent of unit stays
685 (8.9%) 353 (3.6%) 2,222 (10.5%) 813 (9.1%) 492 (8.4%) 4,565 (8.5%)

Hospital mortality,

percent of unit stays
817 (11.3%) 424 (4.6%) 2,859 (14.5%) 1,020 (12.6%) 628 (11.4%) 5,748 (11.5%)

Table 2.5: Details of the MIMIC-III patient population by first critical care unit on hospital
admission for patients aged 16 years and above. In this table, the critical care units are
depicted as follows: CCU is Coronary Care Unit; CSRU is Cardiac Surgery Recovery Unit;
MICU is Medical Intensive Care Unit; SICU is Surgical Intensive Care Unit; TSICU is
Trauma Surgical Intensive Care Unit.

possible for a patient to be transferred from one type of ICU to another and have the
same ICUstay ID. Moreover it includes the first and last ICU unit in which the patient
stayed: note the grouping of physical locations in the hospital database is referred to
as ward (Though in practice ICUs are not referred to as wards, the hospital database
technically tracks ICUs as “wards with an ICU cost center”).

� D Items - It is the definition table for all the items in the ICU databases (both
Metavision and CareVue). The main consequence of having D Items sourced from
these two different databases is that there are duplicate ItemID for each concept. For
example, heart rate is captured both as an ItemID of 211 (CareVue) and as an itemid
of 220 045 (Metavision). As a result, it is necessary to search for multiple ItemID
to capture a single concept across the entire database. Another source of duplicate
ItemID is due to the free text nature of data entry in CareVue - as a result there are
additional ItemID which correspond to misspellings or synonymous descriptions of a
single concept. It is important to search for all possible abbreviations and descriptions
of a concept to capture all associated ItemID during the Extract/Transform/Load
(ETL) process.

� Caregivers - It provides information regarding the type of caregiver. For example, it

2.3 - Clinical Datasets 43

would define if a care giver is a research nurse (RN), medical doctor (MD), and so on.
This table is also sourced from both CareVue and Metavision, thus imprecisions in the
storage process could arise during the usage of these data.

The remaining tables in MIMIC are grouped in 4 categories. Tables that define and track
patient stays:

� Callout: Information regarding when a patient was cleared for ICU discharge and
when the patient was actually discharged

� Services: The clinical service under which a patient is registered

� Transfers: Patient movement from bed to bed within the hospital, including ICU
admission and discharge

Tables that contain data collected in the critical care unit:

� ChartEvents: All charted observations for patients

� DatetimeEvents: All recorded observations which are dates, for example time of
dialysis or insertion of lines.

� InputEvents Cv: Intake for patients monitored using the Philips CareVue system
while in the ICU

� InputEvents Mv: Intake for patients monitored using the iMDSoft Metavision system
while in the ICU

� NoteEvents: Deidentified notes, including nursing and physician notes, ECG reports,
imaging reports, and discharge summaries.

� OutputEvents: Output information for patients while in the ICU

� ProcedureEvent Mv: Patient procedures for the subset of patients who were
monitored in the ICU using the iMDSoft MetaVision system.

Tables that contain data collected in the hospital record system:

� CPTEvents: Procedures recorded as Current Procedural Terminology (CPT) codes

� Diagnoses ICD: Hospital assigned diagnoses, coded using the International Statistical
Classification of Diseases and Related Health Problems (ICD) system

� DRGCodes: Diagnosis Related Groups (DRG), which are used by the hospital for
billing purposes.

� LabEvents: Laboratory measurements for patients both within the hospital and in
out patient clinics

44 2 - Background and Related Work

� MicrobiologyEvents: Microbiology measurements and sensitivities from the hospital
database

� Prescriptions: Medications ordered, and not necessarily administered, for a given
patient

� Procedures ICD: Patient procedures, coded using the International Statistical Clas-
sification of Diseases and Related Health Problems (ICD) system

Tables that are dictionaries:

� D CPT: High-level dictionary of Current Procedural Terminology (CPT) codes

� D ICD Diagnoses: Dictionary of International Statistical Classification of Diseases
and Related Health Problems (ICD) codes relating to diagnoses

� D ICD Procedures: Dictionary of International Statistical Classification of Diseases
and Related Health Problems (ICD) codes relating to procedures

� D LabItems: Dictionary of ITEMIDs in the laboratory database that relate to
laboratory tests

As for the anonymization process, all dates in the database have been shifted to protect
patient confidentiality. Dates will be internally consistent for the same patient, but randomly
distributed in the future. Dates of birth which occur in the present time are not true dates
of birth. Furthermore, dates of birth which occur before the year 1900 occur if the patient is
older than 89. In these cases, the patient’s age at their first admission has been fixed to 300.

2.3 - Clinical Datasets 45

Figure 2-7: Schema of the MIMIC dataset. Each table contains its primary key.

46 2 - Background and Related Work

2.3.2 Psychiatric Case Register

Another interesting dataset that we used in our proposed data mining techniques is represented
by the temporal clinical data recorded in the Verona Psychiatric Case Register (PCR). Verona
is a city in North-East of Italy with about 260 000 inhabitants. The Verona Health District
comprises the Verona municipality and other 35 municipalities around the city, for about
460 000 inhabitants. The District is also partitioned in four catchment areas, each one
composed by some municipalities. Moreover, biggest municipalities (including Verona itself)
are divided in subzones, corresponding to quarters. Each catchment area is served by a
Community-based Psychiatric Service (CPS). CPSs aim at providing responses to psychiatric
patients’ practical as well as psychological and social needs, while trying to alleviate and
control their symptoms. Special emphasis is given to integrating different interventions, such
as medication, family support, and social work. For this reason permanent staff includes
psychiatrists, clinical psychologists, social workers, health visitors, community nurses, ward
nurses and counselors. Moreover, CPS structures include

� a psychiatric ward;

� an outpatient department providing psychiatric consultations and individual and family
therapy;

� a consultation liaison office that maintains psychiatric integration with other hospital-
based medical activities and ensures continuing contact with psychiatric patients when
they are hospitalized for medical reasons;

� a 24-hour accident and emergency room;

� a night and week-end emergency room;

� a 24-hour staffed hostel, a group home, and two apartments, offering different levels of
supervision.

CPS provides also home visits. These ones can be both in response to emergency calls
and, for chronic patients, planned in advance for offering regular, long-term support. Each
patient must refer to the CPS leading the area where he lives.

CPS is well integrated, and allows easy and informal access to patients. It is a public
service run by the National Health Service. Thus, payment is not required, except for a fee
for out-patient visits.

The Verona Psychiatric Case Register (PCR) is an information system collecting informa-
tion about patients’ accesses to CPS since 1979 [7]. At the first contact with the psychiatric
service, socio-demographic information, past psychiatric and medical history, and clinical
data are routinely collected for patients aged 14 years and over. These data may be updated
at successive contacts when required. Each patients’ contact with CPS structures is recorded
in PCR. Recorded contacts with psychiatrists, psychologists, social workers and psychiatric
nurses include:

2.3 - Clinical Datasets 47

� attendances at the out-patient clinic;

� domiciliary visits;

� telephone calls;

� day cares provided at the day hospital units;

� all admissions to the acute psychiatric ward and private clinics.

On the other hand, psychiatrists and psychologists in private practice and general practi-
tioners do not report to the PCR.

To each patient a diagnosis is assigned according to ICD-10 categories and then coded into
12 standard diagnostic groups. The International Statistical Classification of Diseases and
Related Health Problems 10th Revision (ICD-10) is a coding of diseases and signs, symptoms,
abnormal findings, complaints, social circumstances and external causes of injury or diseases,
as classified by the World Health Organization (WHO) in 1990 [84]. The diagnosis may be
updated at successive contacts if necessary. For all patients who have been registered in the
PCR, death and migrations (across or outside the four catchment areas) are recorded by
means of annual checks with demographic records of the municipalities of the catchment
areas. Data on about 28,700 patients and more than 1,500,000 psychiatric contacts have
been recorded in PCR up to now.

Besides patients’ personal data (e.g., birth information, health insurance card number, sex,
nationality, contacts), patients’ medical record, and contact information (including duration,
involved operators, motivation, contact kind and conclusions), PCR information system
records also education, employment, professional, cohabitants, and marital status of patients.

PCR is used for administrative, clinical, and research purposes. Administrative uses
include the analysis of incidence and prevalence rates, number of patients seen, and number
of visits made over different time periods for reporting them to local, regional and national
level health administrations. Moreover, PCR is used as a basis for calculating direct costs
for different groups of patients [6] and for monitoring the effects of changes in resources,
organization, and needs.

Clinical purposes include the monitoring of patients who have been in contact with the
service for organizing contacts at regular intervals and the provision to clinicians of reports
about admissions and contacts for individual patients in a given time period.

Besides their clinical work, psychiatrists and psychologists, along with other staff members,
take an active role in research and teaching. Research activities include studying and analysis
of the Verona Psychiatric Case Register (PCR). In research activities, PCR is used for:

� epidemiological studies about the utilization of services: for example in [5] Amaddeo et
al. investigate the relationship between the lunar cycle and the frequency of patients’
contact with CPS;

� studies about the correlation between geographical factors (e.g., position and distance
of services) and service utilization [125];

48 2 - Background and Related Work

� discovering services-related, area-based, and socio-demographic factors influencing
accesses to health services [87, 106, 107];

� studies on mortality among psychiatric patients [46];

� comparisons with other case-register areas [92].

Some of these research studies are based on temporal analysis of the PCR data. Temporal
information are contained in several parts of PCR. For example, patients’ contacts are
temporally qualified with the date in which they occurred, while all personal information
about patients (e.g., marital status, employment, and diagnosis) have an associated valid time
period. These temporal data can be used for conducting time-trend or time-series studies: for
example, epidemiologists may be interested in knowing the number of contacts in different
time periods with respect to different factors (e.g., patients’ age, diagnosis, and year of birth).

The Psychiatric Case Register follows the schema shown in Figure 2-8. PCR is composed
of 7 different tables, that are:

� Patient - Contains all the patients that had at least a contact with the CPS. It
contains the main anagraphic data used in the medical records.

� Social - Demographic - Collects all the social - demographic data of a patient and,
in particular, all the non-clinical data related to a patient.

� Medical Records - This is the complementary table of Social - Demographic,
because it contains all the clinical data of a patient.

� Discharge Letter - A patient could be admitted to hospital for period of time that
is not initially known. However, when the patient is discharged, the physician writes a
discharge letter for the general practitioner. This table contains the letter.

� Prescription - Contains all the drug prescribed by a clinician to a patient.

� Drug - Includes all the data of the drugs prescribed to a patient.

� Physician - Collects data related to physicians. It could be a psychiatrist, a psycholo-
gist, or a resident. Usually a patient is assigned to one of them for the whole treatment
period.

� Contact - Contains all the data related to therapy sessions with a patient.

From all the tables above, table Contact is the one that has been used intensively in
Chapter 3. Because of that, it is worth mentioning the meaning of all of its attributes:

� Contact Num - Records each contact that a physician has with a patient. A contact
could be a visit to a patient, a therapy session or a phone call. If the patient is admitted,
there could be more daily contacts.

2.3 - Clinical Datasets 49

Figure 2-8: Schema of the Psychiatric Case Register dataset. Each table contains its primary
key except for table Contact, that is the one used in our analysis.

� Contact Date - The date of a contact.

� Social Assistant Num - The number of social assistants attending a contact.

� Nurse Num - The number of nurses attending a contact.

� Physician Assistant Num - The number of physician assistants attending a contact.

� Psychiatrist Num - The number of psychiatrists attending a contact.

� Psychiatry Resident Num - The number of psychiatry residents attending a contact.

� Psychologist Num - The number of psychologists attending a contact.

� Psychology Resident Num - The number of psychology residents attending a
contact.

� Other Physician Num - The number of other physicians attending a contact.

� GAF Score - The Global Assessment of Functioning scale indicates a subjective
evaluation of the patient’s condition. Scores range from 100, for a patient in perfect
condition, to 1. GAF score will be explained with more details below.

50 2 - Background and Related Work

� Planned Contact - Boolean value to indicate whether the contact was planned or
urgent.

� Relation - A brief textual relation to indicate patients condition and their therapy.

� Mode - Indicates whether the treatment is voluntary or mandatory.

� Duration - The duration of the contact.

� Requester - Indicates who requests the contact: it could be the patient, family, police,
general practitioner, or others.

� Location - Where the contact have place.

� Discharge Date - The date when the patient is discharged.

As mentioned above, GAF score is a method to assess patient’s condition and it is given by
the physician assigned to the patient. GAF score uses a numeric scale from 1 to 100, and the
meaning of the score is summarized here:

� 1 to 10 - Persistent inability to maintain minimal personal hygiene, or persistent
danger of severely hurting self or others (e.g., recurrent violence) or serious suicidal act
with clear expectation of death.

� 11 to 20 - Some danger of hurting self or others (e.g., suicide attempts without
clear expectation of death; frequently violent; manic excitement) or occasionally fails
to maintain minimal personal hygiene (e.g., smears feces) or gross impairment in
communication (e.g., largely incoherent or mute).

� 21 to 30 - Behavior is considerably influenced by serious impairment or delusions or
hallucinations, in judgment or communication (e.g., sometimes incoherent, suicidal
preoccupation, acts grossly inappropriately) or inability to function in almost all areas
(e.g., stays in bed all day, no job, home, or friends)

� 31 to 40 - Some impairment in reality testing or communication (e.g., speech is at
times obscure, illogical or irrelevant) or major impairment in several areas, such as
work or school, family relations, thinking, judgment or mood (e.g., depressed adult
neglects family, avoids friends, and is unable to work; child frequently beats up younger
children, is failing at school, and is defiant at home).

� 41 to 50 - Serious symptoms (e.g., suicidal ideation, severe obsessional rituals, frequent
shoplifting) or any serious impairment in social, occupational, or school functioning
(e.g., no friends, unable to keep a job, cannot work).

� 51 to 60 - Moderate symptoms (e.g., occasional panic attacks, flat affect and circumlo-
cutory speech) or moderate difficulty in occupational, social, or school functioning (e.g.,
conflicts with peers or co-workers, few friends).

2.3 - Clinical Datasets 51

� 61 to 70 - Some mild symptoms (e.g., depressed mood and mild insomnia) or some
difficulty in occupational, social, or school functioning (e.g., theft within the household,
or occasional truancy), but generally functioning pretty well, has some meaningful
interpersonal relationships.

� 71 to 80 - If symptoms are present, they are transient and expectable reactions to
psychosocial stressors (e.g., difficulty concentrating after family argument); no more
than slight impairment in occupational, social, or school functioning (e.g., temporarily
falling behind in schoolwork).

� 81 to 90 - Good functioning in all areas, absent or minimal symptoms (e.g., mild
anxiety before an exam), interested and involved in a wide range of activities, generally
satisfied with life, socially effective, no more than everyday problems or concerns.

� 91 to 100 - No symptoms. Superior functioning in a wide range of activities, life’s
problems never seem to get out of hand, is sought out by others because of his or her
many positive qualities.

If the score is 0, it means that there are not enough information to assign a score.

52 2 - Background and Related Work

2.3.3 Pharmacovigilance

Pharmacovigilance is the science related to the collection, detection, assessment, monitoring,
and prevention of suspected adverse reactions induced by drug administrations [119]. Pre-
marketing trials may not detect all adverse reactions induced by the investigated drug due to
limitations, such as short duration of the study, and highly selected test population. Adverse
Drug Reactions (ADRs) may, indeed, go undetected, and become evident when the drug
reaches the market [104]. Therefore, continuous monitoring of the drugs and their effects is
needed, even after putting them on sale. The front line of pharmacovigilance consists of signal
detection, which aims to identify potential adverse drug reactions that may be unknown.
This practice is invaluable, provides early warnings, and requires limited economic and
organizational resources [77]. Moreover, there is an advantage in covering every drug on the
market and including all categories of patients. There is considerable variation in the use of the
term signal [51, 83]. The World Health Organization (WHO) definition, and the most widely
cited definition, is “reported information on a possible causal relationship between an adverse
event and drug, the relationship being unknown or incompletely documented previously” [41].
When a new adverse event is detected, domain experts must review individual case reports
submitted through a spontaneous reporting system for evaluating the signal.

If an investigated signal determines a causal effect between a drug and an adverse reaction,
some action must be taken according to the severity of adverse event cases. Sometimes,
however, the investigation may assess that the relationships are most likely non-casual.
Depending on the nature of the event, a formal study (e.g., epidemiological analysis or large
simple clinical trial) may be triggered by the detection of a credible signal.

Thus, possible relationships between one or more adverse reactions, and one or more drugs
are investigated. Analysts focus on unknown or completely undocumented relationships.
Reports are submitted by physicians, chemists, or citizens. A cause-effect link among ADRs
and drugs is suggested. Links can be classified as “suspected” or “concomitant”. Each
report includes patient information (such as age, nationality, gender, weight, and outcome
of reactions), drug(s) involved in the suspected reaction(s) (identified by their Anatomical
Therapeutic Chemical - ATC - classification, brand name, dosage), and the description of
the occurred adverse reaction(s), the entry date, the period of the adverse reaction, the
periods of drug administrations. These temporal data are used to investigate any cause-effect
relationship among drugs and reaction(s) in different time periods, or according to the
exposure time frame.

Pharmacovigilance is unique among surveillance systems in the range and complexity
of medical phenomena under surveillance. Spontaneous reporting systems exist in every
country or geographic region, such as the European Union. These systems were created
according to different regulations, but they are all founded on a shared base ground. Except
for pharmaceutical companies that are legally bound to report suspected ADRs to health
authorities, it is usually a voluntary activity by the source reporter (such as health care
practitioner, and patient). This is the basis for the term spontaneous reporting. The data
elements in individual reports are also subject to considerable qualitative and quantitative
deficits in the form of missing or incorrect information and duplicate reporting [81].

2.3 - Clinical Datasets 53

In pharmacovigilance, it is important to use common classification systems. To this
extent, Anatomical Therapeutic Chemical (ATC) classification system was developed as a
drug classification system. ATC is composed by terms that divide active ingredients of drugs
into groups based on their chemical, therapeutic characteristics, and of the body part on
which they act. It is managed by the World Healthcare Organization Collaborating Centre
(WHOCC) for Drug Statistic Methodology and it has been updated periodically since 1976.
ATC classes are hierarchically organized in 5 levels:

� First level - Indicates the anatomical main group and consists of one letter (e.g., B -
Blood and blood forming organs). As shown in Table 2.6, there are 14 main groups.

� Second level - Indicates the therapeutic subgroup and consists of two digits (e.g., B01 -
Antithrombotic agents).

� Third level - Indicates the therapeutic/pharmacological subgroup and consists of one
letter (e.g., B01A - Antithrombotic agents).

� Fourth level - Indicates the chemical/therapeutic/pharmacological subgroup and consists
of one letter (e.g., B01AC - Platelet aggregation inhibitors excluding heparin).

� Fifth level - Indicates the chemical substance and consists of two digits (e.g., B01AC06
- Acetylsalicylic acid)

The fifth level represents a chemical substance in a certain context of use: the same
active ingredient may belong to different ATC classes (e.g. the acetylsalicylic acid may be
considered as an antiplatelet with code B01AC06 or as an analgesic with code N02BA01).
The ATC classification system is a strict hierarchy, meaning that each code necessarily has
one and only one parent code, except for the 14 codes at the topmost level which have no
parents. The codes are semantic identifiers, meaning they depict in themselves the complete
lineage of parenthood.

In the pharmacovigilance environment, the description of the occurred adverse reaction(s)
is encoded using the Medical Dictionary for Regulatory Activities (MedDRA) classification [76].
MedDRA is a medical terminology used to classify adverse event information associated with
the use of pharmaceuticals and other medical products (e.g., medical devices and vaccines).
MedDRA, developed by the International Conference on Harmonization (ICH), is continuously
enhanced to meet the evolving needs of its users, who include also industry worldwide.
The Maintenance and Support Services Organization serves as repository, maintainer, and
distributor of MedDRA, as well as the source for the most up-to-date information regarding
MedDRA and its application within pharmaceutical industries and regulators. MedDRA
subscribers submit proposed changes to the terminology, and this organization (that includes
a group of internationally based physicians) reviews all proposed changes and provide a timely
response. MedDRA contains a large set of terms, which are structured into five hierarchical
levels. The top level System Organ Class (SOC), groups HighLevel Group Terms (HLGT),
High-Level Terms (HLT), Preferred Terms (PT), and finally Lowest Level Terms (LLT). At
the most specific level, LLT, there are over 70,000 terms which parallel how information

54 2 - Background and Related Work

Code Contents

A Alimentary tract and metabolism

B Blood and blood forming organs

C Cardiovascular system

D Dermatologicals

G Genito-urinary system and sex hormones

H Systemic hormonal preparations, excluding sex hormones and insulins

J Antiinfectives for systemic use

L Antineoplastic and immunomodulating agents

M Musculo-skeletal system

N Nervous system

P Antiparasitic products, insecticides and repellents

R Respiratory system

S Sensory organs

V Various

Table 2.6: ATC - Anatomical main groups of first level

is communicated. These LLTs reflect how an observation might be reported in practice.
Each member of PT defines a single medical concept for a symptom, therapeutic indication,
disease diagnosis, investigation, sign, surgical or medical procedure, and medical social or
family history characteristic. Each LLT is linked to only one PT, but each PT has at
least one LLT (itself) as well as synonyms and lexical variants (e.g., abbreviations, different
word order). Related PT are grouped together into HLT based upon pathology, physiology,
anatomy, etiology or function, and HLT related to each other are in turn linked to HLGT.
Finally, HLGT are grouped into SOC which are groupings by etiology (e.g. Infections and
infestations), manifestation site (e.g. Gastrointestinal disorders) or purpose (e.g. Surgical
and medical procedures). In addition, there is a SOC to contain issues pertaining to products
and one to contain social circumstances. It is important to notice that hierarchy is multiaxial:
for example, a PT (Preferred Term) can be grouped in one or more HLT (High Level Term),
but it belongs to only one primary SOC (System Organ Class) term. MedDRA is updated
twice a year and is available in all european language, chinese, and japanese.

In this thesis we deal with a particular pharmacovigilance dataset, called VigiSegn, that
has been created in a previous project in collaboration with the Italian Ministry of Health on
drugs surveillance over the Italian territory. The main data used in the analysis of Chapter
3 are summarized in the schema of Figure 2-9. In the following, a brief description of the
tables used:

� Patient - Includes data regarding each patient in the VigiSegn dataset, such as sex
and age.

� Report - Collects data of the report of an adverse reaction, and in particular all the

2.3 - Clinical Datasets 55

relevant dates of such report (i.e., entry date, start and end of the adverse reaction).

� Healthcare Structure - Contains all the data about the healthcare structure that
filed the report.

� Drug - Collects multiple combinations of active ingredients that compose the drug (e.g.,
“acetylsalicylic acid/paracetamol” are the active ingredients that compose Doloflex”).

� Commercial Drug - Contains information about the commercial product based on
the reported drug. This table include over 120k medicinal product packages, that are
the combination of their commercial name, their quantity and dosage.

� ATC - Includes data regarding the Anatomical Therapeutic Chemical (ATC) classifica-
tion of the reported drug.

� MedDra - As explained before, Medical Dictionary for Regulatory Activities (MedDRA)
is a medical terminology used to classify adverse event information.

Figure 2-9: Schema of the pharmacovigilance dataset. Each table contains its primary key
except for table Contact, that is the one used in our analysis.

56 2 - Background and Related Work

Chapter 3

Pure Temporally Evolving Functional
Dependencies

In this chapter, we focus on Approximate Temporal Functional Dependency(AT -FDs

are defined in Section 2.1), and in particular on the problem of mining AT -FDs based on
tuple temporal evolution that has not been faced yet. The concept of the temporal evolution
of tuples has been originally introduced by Vianu [110] for the characterization of Dynamic
Functional Dependencies (DFDs), that allow one to express constraints on tuple evolution in
consecutive snapshots of a temporal database.

Here, we consider the extensions of DFDs proposed in [32], called Pure Temporally Evolving
T -FDs (PE-FDs) and, in particular, we consider the problem of extracting all Approximate
PE-FDs, called APE-FDs, from a given temporal clinical database. Pure Temporally Evolving
is one particular class of T -FDs, and more details could be found in Section 2.1.2.

Even confirmed by the feedback we had from clinical domain experts, we may say that
APE-FDs represent dependencies among clinical data in a compact and readable way. Indeed,
APE-FDs represent knowledge at the schema level. Thus, they may be used as a starting
point for deeper data analysis. For testing APE-FDs, we implemented a prototype in two real
world clinical scenarios: psychiatry and pharmacovigilance (illustrated in Sections 2.3.2 and
2.3.3, respectively). This work has been recently published in [96].

3.1 Discovering Pure Temporally Evolving Functional

Dependencies

In the following we focus on Pure Temporally Evolving Functional Dependencies (PE-FDs for
short), as specified in the framework proposed in [32]. Our temporal functional dependencies
will be given on a temporal schema R = U∪{V T} where U is a set of atemporal attributes and
V T is a special attribute denoting the valid time of each tuple. Hereinafter we assume tuples
timestamped with natural numbers (i.e, Dom(V T) = N). Let J ⊆ U be a non-empty subset
of U . We define the set W as W = U \J and set W , which is basically a renaming of attributes
in W . Formally, for each attribute A ∈ W , we have A ∈ W (i.e., W = {A : A ∈ W}).

57

58 3 - Pure Temporally Evolving Functional Dependencies

Definition 16 (Views Evolution and Bounded Evolution). Given an instance r of R, an
instance τ rJ of schema Rev = JWW{V T, V T} is defined as follows:

τ rJ =

u
∣∣∣∣∣∣∣∣ ∃t,t′


r(t)∧r(t′)∧t[J]=t′[J]=u[J]∧u[W]=t[W]∧

u[W]=t′[W]∧t[V T]=u[V T]∧t′[V T]=u[V T]

∧t[V T]<t′[V T]∧

∀t′′((r(t′′)∧t[V T]<t′′[V T])→t′[V T]≤t′′[V T])




Schema Rev is called the evolution schema of R. We will denote as τRJ the view Evolution

on R that is built by expression τ rJ for every instance r of R. View τRJ joins two tuples t1 and
t2 that agree on the values of the attributes in J (i.e. t1[J] = t2[J]), if t2 immediately follows
t1. More precisely, such tuples are joined if t1[V T] < t2[V T] and there does not exist a tuple
t ∈ r with t[J] = t1[J] and t1[V T] < t[V T] < t2[V T] (i.e., there does not exist a tuple that
holds at some point in between the valid times of such tuples).

For application purposes, it would be important to consider in an evolution schema only
those pairs of consecutive tuples whose the difference between V T and V T is within some
given bound. Given a parameter k ∈ N ∪ {+∞}, tuples of τ rJ are filtered by means of the
selection ∆k(τ

r
J) = σV T−V T≤k(τ

r
J) (notice that ∆+∞(τ rJ) = τ rJ).

We will denote as ∆k(τ
r
J) the view Bounded Evolution. It forces to consider only those

tuples belonging to τ rJ having a temporal distance within the given threshold k. In the
following, given a tuple t ∈ τ rJ , we denote its temporal distance t[V T]− t[V T] with ∆(t).

Let us now define, by using the introduced temporal view Evolution, a slightly restricted
version of Pure Temporally Evolving Functional Dependency with respect to that defined in
[32]. Without loss of generality such definition will allow us to simplify the notation and to
focus on a general kind of temporal evolution of considered data.

Definition 17 (Pure Temporally Evolving Functional Dependency). A Pure Temporally
Evolving Functional Dependency over the temporal schema R = U ∪ {V T}, PE-FD for short,
is an expression of the form:

[∆k(τ
R
J)]XY → Z.

We have that X ⊆ W and Y , Z ⊆ W with X 6= ∅ and |Z| = 1 (Z contains a single
attribute). An instance r of R fulfills a PE-FD [∆k(τ

R
J)]XY → Z, written r |= [∆k(τ

R
J)]XY →

Z, if and only if for each pair of tuples t, t′ ∈ ∆k(τ
r
J) we have (t[X] = t′[X] ∧ t[Y] = t′[Y])→

t[Z] = t′[Z].

A PE-FD could express dependencies as “A common therapy follows the same symptom
for all patients”.

Now, we introduce two specializations of PE-FDs. Given a PE-FD [∆k(τ
R
J)]X Y → Z, if

set Y = ∅ (i.e, the dependency is [∆k(τ
R
J)]X → Z), we will say that the PE-FD is simple.

Moreover, if the considered PE-FD is of the type [∆k(τ
R
J)]XY → X we will say that the PE-FD

is an update. PE-FDs featuring both the properties (i.e., PE-FDs of type [∆k(τ
R
J)]X → X)

are called simple updates. A graphical account of such classes is given in Figure 3-1.

3.1 - Discovering Pure Temporally Evolving Functional Dependencies 59

PE -FDs

[
∆k

(
τRJ
)]

XY → Z

update PE -FDs[
∆k

(
τRJ
)]

XY → X

simple PE -FDs[
∆k

(
τRJ
)]

X → Z

simple update PE -FDs[
∆k

(
τRJ
)]

X → X

Figure 3-1: A graphical account of how different classes of PE-FDs are related.

3.1.1 Approximate Pure Temporally Evolving Functional Depen-
dencies

We add approximation to PE-FDs in a very similar way of what has been done for FDs in
Section 2.1.4.

First, we specialize the measurement G3, which considers the minimum number of tuples
in r to be deleted for the FD to hold, to deal with PE-FD as follows:

G3([∆k(τ
R
J)]XY → Z, r) = |r| −max{|s| : s ⊆ r, s |= [∆k(τ

R
J)]XY → Z}

By means of G3 we can define the relative scaled measurement g3 as follows:

g3([∆k(τ
R
J)]XY → Z, r) =

G3([∆k(τ
R
J)]XY → Z, r)

|r|
.

Now we are ready to define the Approximate Pure Temporally Evolving Functional
Dependency.

Definition 18 (Approximate Pure Temporally Evolving Functional Dependency). An Ap-
proximate Pure Temporally Evolving Functional Dependency over the temporal schema
R = U ∪ {V T}, APE-FD for short, is an expression of the form:

[∆k(τ
R
J)]XY

ε→ Z

with 0 ≤ ε ≤ 1, X ⊆ W and Y , Z ⊆ W with X 6= ∅ and |Z| = 1.

An instance r of R satisfies the APE-FD [∆k(τ
R
J)]X Y

ε→ Z, written r |= [∆k(τ
R
J)]XY

ε→ Z,
if and only if g3([∆k(τ

R
J)]XY → Z, r) ≤ ε.

The definitions of simple PE-FD and update PE-FD may straightforwardly transferred
to APE-FDs: [∆k(τ

R
J)]X

ε→ Z is a simple APE-FD; [∆k(τ
R
J)]XY

ε→ X is an update APE-FD;
[∆k(τ

R
J)]X

ε→ X is a simple update APE-FD.

60 3 - Pure Temporally Evolving Functional Dependencies

r =

Name Phys CT Duration (minutes) VT

1 McMurphy Sayer self ∼15 1 Jan 2016

2 McMurphy Sayer family ∼5 5 Jan 2016

3 McMurphy Maguire family ∼15 10 Jan 2016

4 McMurphy Maguire self ∼15 15 Jan 2016

5 McMurphy Maguire self ∼5 20 Jan 2016

6 McMurphy Maguire self ∼5 25 Jan 2016

7 Lowe Sayer family ∼15 7 Jan 2016

8 Lowe Sayer family ∼15 15 Jan 2016

9 Lowe Maguire self ∼15 22 Jan 2016

10 Lowe Sayer self ∼5 28 Jan 2016

11 Lowe Maguire self ∼15 3 Feb 2016

12 Lowe Sayer self ∼5 6 Feb 2016

Table 3.1: An instance r of schema Contact that stores the phone contacts about two
psychiatric cases. Attribute # represents the tuple number and it is used only for referencing
tuples in the text (i.e., # does not belong to the schema Contact).

3.2 Some Motivating Clinical Scenarios

In this section we describe and discuss two scenarios, borrowed from the clinical domain, in
order to provide examples of how PE-FDs and APE-FDs work. The first scenario is taken from
psychiatric case register. Let us consider the temporal schema Contact = {Name, Phys, CT,
Dur}∪{V T}. Such a schema stores values about a phone-call service provided to psychiatric
patients. This service is intended for monitoring and helping psychiatric patients, who are
not hospitalized. Whenever a patient feels the need to talk to a physician, she can call
the service. Data about calls are collected according to schema Contact. For the sake of
simplicity, temporal attribute V T identifies the day when the call has been received. In
addition, the service may be used by people somehow related to patients, as, for instance,
relatives worried about the current condition of a patient.

More precisely, attributeName identifies patients, Phys identifies physicians, CT (Contact
Type) specifies the person who is doing the call (e.g., value ‘self’ stands for the patient himself,
‘family’ for a relative), and Dur stores information about total duration of calls (value ∼ n
means approximately n minutes). An instance r of R is provided in Table 3.1. Instance
τ rName, and τ rJ in general, may be seen as the output of a two-phase procedure. First, table
Contact is partitioned into subsets of tuples, one for each value of Name. Then, each tuple
is joined with its immediate successor in its partition, w.r.t. V T values. The whole relation
τ rName is provided in Table 3.2. In the following we will use t for referencing tuples of r and u
for referencing tuples of τ rJ . Moreover, in the following each tuple u in τ rJ will be identified by
the pair of indexes of the tuples in r that generate u. For instance, the first tuple of τ rJ in
Figure 3.2 will be denoted by u1,2 since it is generated by the join of tuples t1 and t2 in r.

3.2 - Some Motivating Clinical Scenarios 61

τ rName

Name Phys CT Dur V T Phys CT Dur V T

1,2 McMurphy Sayer self ∼15 1 Jan 2016 Sayer family ∼5 5 Jan 2016

2,3 McMurphy Sayer family ∼5 5 Jan 2016 Maguire family ∼15 10 Jan 2016

3,4 McMurphy Maguire family ∼15 10 Jan 2016 Maguire self ∼15 15 Jan 2016

4,5 McMurphy Maguire self ∼15 15 Jan 2016 Maguire self ∼5 20 Jan 2016

5,6 McMurphy Maguire self ∼5 20 Jan 2016 Maguire self ∼5 25 Jan 2016

7,8 Lowe Sayer family ∼15 7 Jan 2016 Sayer family ∼15 15 Jan 2016

8,9 Lowe Sayer family ∼15 15 Jan 2016 Maguire self ∼15 22 Jan 2016

9,10 Lowe Maguire self ∼15 22 Jan 2016 Sayer self ∼5 28 Jan 2016

10,11 Lowe Sayer self ∼5 28 Jan 2016 Maguire self ∼15 3 Feb 2016

11,12 Lowe Maguire self ∼15 3 Feb 2016 Sayer self ∼5 6 Feb 2016

Table 3.2: The evolution expression τ rName.

Going back to our example, it is worth noting that tuples t2 and t7 are not joined in
τ rName, even if t7[V T] = t2[V T] + 2 and there is no tuple t with t[V T] = t7[V T] + 1. This is
due to the fact that t7[Name] 6= t2[Name] forbids the join in τ rName. Moreover, t1 and t3 are
not joined in τ rName . Indeed, the presence of tuple t2 with t1[Name] = t2[Name] = t3[Name]
and t1[V T] < t2[V T] < t3[V T] forbids the join in τ rName . Figure 3-2 graphically depicts how
pairs of tuples (t1, t2), (t2, t3), (t3, t4), (t4, t5), (t5, t6) and (t7, t8), (t8, t9), (t9, t10), (t10, t11), (t11,
t12) are joined in τ rName for the two patients, respectively. Basically, each tuple u ∈ τ rName
corresponds to an edge in Figure 3-2 while we have a node for each tuple in r.

Let us now discuss some temporal dependencies we can derive from such data. We could
be interested in verifying whether there is some relationship between some previous features
of patient’s call and the fact that the considered call was either with him or with a relative.
In our example, we have that r |= [∆5(τContactName)]Phys, Phys→ CT .

In other words, given consecutive calls related to the same patient within 5 days, the couple
composed by the physician of the first call and by the physician of the next one determines the
type of contact of the next call. And it holds for all patients. However, if we consider a wider
time window of 6 days, we have that r 6� [∆6(τContactName)]Phys, Phys→ CT , because of pairs
(t2, t3) and (t10, t11). More precisely, we have that t2[Name] = t3[Name] = “McMurphy”,
t10[Name] = t11[Name] = “Lowe”, t2[Phys] = t10[Phys] = “Sleepy”, t3[Phys] = t11[Phys] =

“Patel”, but t3[CT] 6= t11[CT] (i.e., t3[CT] = “family”, and t11[CT] = “self”). In other words,
we have that the set of tuples {u2,3, u10,11} does not satisfy the FD Phys, Phys→ CT .

The two proposed PE-FDs differ only for the maximum temporal distance allowed. In
particular, tuple u10,11 is one of the responsibles for r 6|= [∆6(τ

Contact
Name)] Phys, Phys→ CT ,

but it does not belong to ∆5(τContactName) because ∆(u10,11) > 5. This allows us to point out a
general property of PE-FDs and of APE-FDs too. Given a PE-FD [∆k(τ

R
J)]XY → Z, if we

have that for every instance r of R it holds r |= [∆k(τ
R
J)]XY → Z, then for every h ≤ k it

holds r |= [∆h(τ
R
J)]XY → Z.

Moving to the problem of mining approximate dependencies, if we consider APE-FD

[∆6(τRName)]Phys, Phys
ε→ CT with ε = 1

12
, we have that r |= [∆6(τRName)] Phys, Phys

ε→ CT .

62 3 - Pure Temporally Evolving Functional Dependencies

t1 t2 t3 t4 t5 t6

McMurphy

t7 t8 t9 t10 t11 t12

4 days 5 days 5 days 5 days 5 days

10

8 days 7 days 6 days 6 days 3 days

Sayer

self

∼15

Sayer

family

∼5

Maguire

family

∼15

Maguire

self

∼15

Maguire

self

∼5

Maguire

self

∼5

Sayer

family

∼15

Sayer

family

∼15

Maguire

self

∼15

Sayer

self

∼5

Maguire

self

∼15

Sayer

self

∼5

Lowe

Figure 3-2: A graph-based representation of τ rName. Nodes represent tuples and are labeled
by the corresponding tuple number. Values for attribute Dur are reported above each node.
Values of Phys and CT attributes are reported below every node, respectively. Every edge
(ti, tj) is labeled by value ∆(ui,j) = tj[V T]− ti[V T] (i.e., the temporal distance between two
tuples). The dashed edge represents a different scenario where t2 and t4 are joined, if t3 would
be deleted, as explained below for APE-FDs.

Indeed, by considering relation r′ = r \ {t3}, this dependency would hold without the
need of approximation (i.e., if tuple t3 is deleted from relation r). More precisely, we have
τ r
′

Name = τ rName \ {u2,3, u3,4} ∪ {u2,4}. Tuple u2,4 was not originally in τ rName because of tuple
t3. Figure 3-2 depicts this new scenario, by replacing edges (t2, t3) and (t3, t4) with the
dashed edge (t2, t4). Moreover, we have r′ |= [∆+∞(τRName)]Phys, Phys→ CT . Thus, it holds
r |= [∆+∞(τRName)]Phys, Phys

ε→ CT with ε = 1
12

.

The second example we propose is borrowed from the internal medicine domain. As
another simple example of how view τRJ works, let us consider the temporal schema ThCy =
{PatId, Phys,Dos} ∪ {V T}. Such a schema allows one to store the values about cycles of
therapies in which a specific, fixed, drug is administered to a patient by a given physician.
Figure 3.3 (a) depicts an instance r of R. Figure 3.3 (b) shows the result of view τThCyPatId to r.
It is easy to see that tuples t1 and t5 are not joined in τ rPatId. Even if t5[V T] = t1[V T] + 1
the fact that t1[PatId] 6= t5[PatId] forbids the join in τ rPatId. Moreover t1 and t3 are
not joined in τ rPatId. Even if t1[PatId] = t3[PatId], we have that the presence of tuple
t2 with t1[PatId] = t2[PatId] = t3[PatId] and t1[V T] < t2[V T] < t3[V T] forbids the
join in τ rPatId. In Figure 3-3 (a) we have a graphical account of how the pairs of tuples
(t1, t2), (t2, t3), (t3, t4), (t5, t6), (t6, t7) and (t7, t8) are joined in τ rPatId. In both the graphs

3.2 - Some Motivating Clinical Scenarios 63

(a)

r =

PatId Phys Dos VT

1 1 Shepherd 30 mg 1 May 2016

2 1 Stevens 60 mg 5 May 2016

3 1 Shepherd 40 mg 20 May 2016

4 1 Shepherd 40 mg 27 May 2016

5 2 Stevens 30 mg 2 May 2016

6 2 Stevens 40 mg 9 May 2016

7 2 Shepherd 60 mg 20 May 2016

8 2 Stevens 20 mg 25 May 2016

(b)

τ rPatId =

PatId Phys Dos VT Phys Dos VT

1,2 1 Shepherd 30 mg 1 May 2016 Stevens 60 mg 5 May 2016

2,3 1 Stevens 60 mg 5 May 2016 Shepherd 40 mg 20 May 2016

3,4 1 Shepherd 40 mg 20 May 2016 Shepherd 40 mg 27 May 2016

5,6 2 Stevens 30 mg 2 May 2016 Stevens 40 mg 9 May 2016

6,7 2 Stevens 40 mg 9 May 2016 Shepherd 60 mg 20 May 2016

7,8 2 Shepherd 60 mg 20 May 2016 Stevens 20 mg 25 May 2016

(c)

τ rPhys =

Phys PatId Dos VT PatId Dos VT

1,3 Shepherd 1 30 mg 1 May 2016 1 40 mg 20 May 2016

1,7 Shepherd 1 30 mg 1 May 2016 2 60 mg 20 May 2016

3,4 Shepherd 1 40 mg 20 May 2016 1 40 mg 27 May 2016

7,4 Shepherd 2 60 mg 20 May 2016 1 40 mg 27 May 2016

5,2 Stevens 2 30 mg 2 May 2016 1 60 mg 5 May 2016

2,6 Stevens 1 60 mg 5 May 2016 2 40 mg 9 May 2016

6,8 Stevens 2 40 mg 9 May 2016 2 20 mg 25 May 2016

Table 3.3: The instances τ rPatId (b) and τ rPhys obtained from applying views τThCyPatId and τThCyPhys

to the instance r (c) respectively.

64 3 - Pure Temporally Evolving Functional Dependencies

depicted in Figure 3-3 (a) nodes are labeled with the tuple number and the value for Dos
attribute is reported above each node. Moreover, we recall from the previous example that
each edge (ti, tj) is labelled with the value tj [V T]−ti[V T] (i.e., the temporal distance between
two tuples). In the scenario for τ rPatId the value for the attribute Phys is reported below each
node, while for τ rPhys the value of PatId is reported below each node.

We would like to point out that it may be the case that a tuple t ∈ r has a more than one
immediate successor in τ rJ (i.e. is joined with more than one tuple). It is the case of view τ rPhys
shown in Figure 3-3 (b), where tuples are joined with respect to the values of attribute Phys.
We have that, since Dr. Shepherd makes two drug administrations at V T = 20, tuple t1 has
both tuples t3 and t7 as its immediate successors. We will see that the number of immediate
successors of a tuple in τ rJ will play a major role in some of the following complexity results.

In this domain we could be interested in understanding whether there are dependencies
among previous and current drug dosages for a given patient, possibly considering the
physicians administering the drug.

In the example depicted in Figures 3.3 and 3-3, we have that r |= [∆+∞(τRPatId)]
Dos, Phys, Phys→ Dos. It means that the dosage and the couple of physicians related to
a drug administration and to the next one respectively, determine the next drug dosage.

τrPatId

t1 t2 t3 t4PatId = 1

t5 t6 t7 t8

4 days 15 days 7 days

7 days 11 days 5 days

Shepherd

30 mg

Stevens

60 mg

Shepherd

40 mg

Shepherd

40 mg

Stevens

30 mg

Stevens

40 mg

Shepherd

60 mg

Stevens

20 mg

PatId = 2

(a)

τrPhys

t1

t3

t7

t4

19 da
ys

19 days 7 da
ys

7 days

Phys = Shepherd

t5 t2 t6 t8
3 days 4 days 16 days

1

60 mg

1

40 mg

1

40 mg

2

30 mg

2

40 mg

2

60 mg

2

20 mg

1

30 mg

Phys = Stevens

(b)

Figure 3-3: A graphical account for the instances τ rPatId (a) and τ rPhys (b) related to the
instance r shown in Figure 3.3 (a).

3.2 - Some Motivating Clinical Scenarios 65

However, r 6|= [∆∞(τRPatId)]Phys, Phys → Dos because both tuples u1,2 and u7,8 belong to
∆∞(τRPatId). More precisely, we have that Phys, Phys→ Dos does not hold on any instance
of ∆k(τ

R
PatId) that contains both u1,2 and u7,8, since u1,2[Phys] = u7,8[Phys] = Shepherd and

u1,2[Phys] = u7,8[Phys] = Stevens but u1,2[Dos] = 60 mg is not equal to u7,8[Dos] = 20 mg.

On the other hand, r |= [∆4(τ
R
PatId)]Phys, Phys→ Dos because having 4 as maximum

allowed time distance implies u7,8 /∈ ∆4(τ
r
PatId) (i.e., t8[V T] − t7[V T] > 4) and thus the

conflict between u1,2 and u7,8 no longer exists. Furthermore, it is easy to see by considering
the pairs u1,2 and u5,6 that r 6|= [∆+∞(τRPatId)]Dos, Phys→ Dos. However, by shrinking the
maximum allowed time distance to 6 we obtain u5,6 /∈ ∆6(τ

r
PatId) and thus we have that

r |= [∆6(τRPatId)]Dos, Phys→ Dos.

Obviously in an instance τ rJ there may be more than one pair (u, u′) which generates
a conflict. Let us consider the simple update PE-FD [∆+∞(τRPatId)] Dos → Dos. Such
PE-FD does not hold on r (i.e., r 6|= [∆+∞(τRPatId)]Dos → Dos). This can be shown using
the pair u1,2 and u5,6 as a witness for a conflict since u1,2[Dos] = u5,6[Dos] = 30 mg and
u1,2[Dos] 6= u5,6[Dos]. However, in this case we have that the conflicting pairs are more than
one. As a matter of fact all pairs (u1,2, u5,6), (u2,3, u7,8), and (u3,4, u4,6) are conflict-generating.
If we want to rule all the conflicts out by playing on the maximum allowed distance, we have
to set it to 6 and then we have r |= [∆6(τRPatId)]Dos→ Dos.

t1 t2 t3 t4PatId = 1

t5 t6 t7 t8

4 days 15 days 7 days

7 days 11 days 5 days

Shepherd

30 mg

Stevens

60 mg

Shepherd

40 mg

Shepherd

40 mg

Stevens

30 mg

Stevens

40 mg

Shepherd

60 mg

Stevens

20 mg

19 days

22 days
18 days

26 days

PatId = 2

Figure 3-4: A graphical account for the possible changes on the view τ rPatId considering the
possible deletions of at most one tuple.

66 3 - Pure Temporally Evolving Functional Dependencies

3.3 Algorithms for Checking APE-FDs

As we proved in Appendix A, given an APE-FD [∆k(τ
R
J)]XY

ε→ Z and an instance r of R, the
problem Check-APE-FD is NP-Complete in |r|. Then, in principle, there is no asymptotically

better algorithm than exploring the whole set of possible subsets r′ of r with |r|−|r′|
|r| ≤ ε.

In the following, we provide two algorithms that make use of heuristics, for pruning the
search space in order to achieve the tractability for many cases.

The first algorithm is the more general one and it may be applied without assumptions
on the input instance r. Such algorithm makes use of two optimization techniques. The
first one consists of trying, whenever it is possible, to split the current subset of r in two
subsets, on which the problem may be solved independently (i.e., choices in one subset do
not affect those in the other one and vice-versa). The latter optimization technique consists
of checking if the current partial solution may not lead to an optimal solution (i.e., a solution
r′ where |r′| is the maximum possible number of tuples that may be kept). If this happens,
the subtree is pruned immediately (i.e., we are looking only for optimal solutions).

The second algorithm is applicable under the assumption that we have a bounded and
relatively small number of tuples that share the same values for both V T and J which is
often the case in clinical domains, as we will discuss later on. In this setting we show how to
provide an upper bound value for all the candidate solutions that contain the current partial
solution and thus we can apply a pure branch-and-bound approach in order to speed up the
algorithm even more.

Before discussing in detail the algorithms and their properties, we need to introduce some
basic concepts and features for the representation of tuples through graph-based structures.

3.3.1 Graph-based Structures for Tuple Representation

To this regard we use a suitable graph representation of tuples. A directed graph is a pair
G = (V,E), where V is a finite set of nodes and E ⊆

(
V
2

)
is its edge set. Our graphs are simple,

i.e., there are no loops and no parallel edges. Let U ⊆ V : we denote by G|U = (U,E|U) the
subgraph of G induced by U , that is, the graph on node set U such that, for every u, v ∈ U ,
(u, v) is an edge in G|U if and only if (u, v) is an edge in G. A Layered Directed Acyclic
Graph (L-DAG for short) is a triple LG = (V,E, l) where (V,E) is a DAG and l is a function
l : V → {1, . . . , p} for some p ∈ N where for every (u, v) ∈ E we have l(u) < l(v). We define
the jump-value of an edge (u, v) ∈ E as jump(u, v) = l(v)− l(u). For each i ∈ {1, . . . , p}, we
denote with Li the set Li = {v ∈ V : l(v) = i}. Obviously the notion of induced subgraph
naturally extends to L-DAG. Given an L-DAG LG = (V,E, l) and a subset U we define the
L-DAG induced by U as LG|U = (U,E|U , l|U) where (U,E|U) is the U -induced subgraph of
the graph (V,E) and l|U : U → N with l|U (v) = l(v) for every v ∈ U . An example of L-DAG
LG = (V,E, l) is given in Figure 3-5. Edges (v2, v7), (v2, v9), (v3, v7) and (v3, v9) have jump
value equal to 3. For instance, for LG we may change the layering function l into l′ where
Li = L′i for every i = 1, . . . 4, L′5 = L5 \ {v7} and L′6 = L6 ∪ {v7}.

We extend the notion of L-DAG with weights, denoting it as wL-DAG. A wL-DAG is
expressed through the tuple WLG = (V,E, l,W), where LG = (V,E, l) is an L-DAG and W

3.3 - Algorithms for Checking APE-FDs 67

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

L1 L2 L3 L4 L5 L6 L7

Figure 3-5: An example of L-DAG.

is a function W : V → N+. Let us notice that in our notion of weighted L-DAG weights are
associated to nodes. Let us now introduce a general problem on L-DAG, called k-Thick Path
(k-TP for short).

Problem 1. (k-TP). Given an L-DAG LG = (V,E, l) and a natural number k, determine
whether or not there exists a node subset V ′ ⊆ V , such that |V ′| ≥ k and for every u, v ∈ V ′,
with l(u) < l(v), there exists a directed path from u to v in LG|V ′ .

For instance, if we consider the L-DAG in Figure 3-5 we have that the set V ′ =
{v1, v2, v3, v7, v9, v8, v11} is a possible solution for k-TP with k ≤ 7 while V ′′ = {v1, v2, v3, v4, v7, v8, v11}
is not a candidate solution since there is no path from v3 to v4 and l(v3) < l(v4). In a solution
we may choose to take more than one node per layer as well as completely ignore all the
nodes in a layer. Then, we may see a candidate solution V ′ as the result of a two-step
non-deterministic guess:

1. first we select a set of p′ ≤ p layers {l1, . . . lp′} ⊆ {1, . . . , p} (let us assume li < lj for
every 1 ≤ i < j ≤ p′) which will be all and only the layers which contain at least one
node in our solution;

2. for 1 ≤ i ≤ p′ we select a non-empty set Vi ⊆ V such that l(v) = li for every v ∈ Vi
and for every (v′, v) ∈ Vi−1 × Vi we have (v′, v) ∈ E.

Going back to the example in Figure 3-5, in V ′′ condition 2 is violated because by choosing
v4 we choose layer 3 as the non-empty layer following layer 2 but (v3, v4) /∈ E. As a matter
of fact, V ′′ \ {v3} (i.e., we choose only v2 in the layer 2) turns out to be candidate solution.
In V ′ we ignore layers 3 and 4 by not choosing any node in them. Instead, we choose layer 5
as the non-empty layer following layer 2 and everything works just fine.

The k-TP problem may naturally be extended to wL-DAG by imposing the set V ′ to
satisfy Σv∈V ′W(v) ≥ k. In [33] we prove that the k-TP problem on wL-DAG is NP-hard.
Our proof can be naturally extended to prove that the non-weighted version of the problem
is NP-hard too.

68 3 - Pure Temporally Evolving Functional Dependencies

3.3.2 The First Algorithm

Both algorithms rely on the concept of color that we will explain through an example in the
following. Given an APE-FD [∆k(τ

R
J)]XY

ε→ Z and an instance r of R, let us suppose that
we are solving the problem Check-APE-FD on such instance with a simple guess-and-check
procedure, which makes use of two, initially empty, subsets r+ (the tuples to be kept in the
solution) and r− (the tuples to be deleted in the solution) of r. At each step the procedure
guesses a tuple t in r \ (r+ ∪ r−) and decides non-deterministically (guessing phase) either
to update r+ to r+ ∪ {t} (i.e., t is kept in the current partial solution) or to update r− to
r− ∪ {t} (i.e, t is deleted in the current partial solution). When r = r+ ∪ r− (checking phase),
the procedure returns Y ES if r+ |= [∆k(τ

R
J)]XY

ε→ Z and |r−| ≤ ε · |r|, otherwise it returns
NO. Hereinafter, we call partial solution a triple (r, r+, r−), such that (r+ ∪ r−) ⊆ r and
r+ ∩ r− = ∅. If r = r+ ∪ r− we simply say that (r, r+, r−) is a solution. A solution (r, r+, r−)
is consistent if and only if r+ |= [∆k(τ

R
J)]XY

ε→ Z. Given two partial solutions (r, r+
1 , r

−
1)

and (r, r+
2 , r

−
2), we say that (r, r+

2 , r
−
2) extends (r, r+

1 , r
−
1) if and only if r+

1 ⊆ r+
2 and r−1 ⊆ r−2 .

Is there a way to check whether we are generating an inconsistent solution, possibly
without guessing all tuples in r? Violations of the latter constraint (i.e., |r−| ≤ ε · |r|) are
fairly simple to detect during the guessing phase. Indeed, it suffices to check after each
insertion in r− if |r−| exceeds ε·|r|. If it is the case, the procedure may return NO immediately
without guessing any further. Violations of the first constraint (i.e., r+ |= [∆k(τ

R
J)]XY → Z)

during the guessing phase are trickier to detect.

When two tuples t, t′ share the same value for attribute J (i.e., t[J] = t′[J]), we say that
they are in the same J-group and t[J] is the value of the J-group containing t and t′. For
the sake of brevity, for a given j ∈ Dom(J) we will use j-group for denoting the J-group
with value j. An ordered pair, written o-pair, is a pair (t, t′) ∈ r× r such that t and t′ are
in the same J-group and t[V T] < t′[V T]. We say that a pair (t, t′) is an edge if and only
if 0 < t′[V T]− t[V T] ≤ k. Given a triple (r, r+, r−), an o-pair (t, t′) is active if and only if
t, t′ ∈ r+ and for every tuple t̂ in the same J-group of t if t[V T] < t̂[V T] < t′[V T] we have
t̂ ∈ r− (i.e., t and t′ are selected in the current partial solution and all the tuples between t
and t′ in the same J-group have been deleted). Given two valid times vt, vt′ ∈ Dom(V T)
and a value j ∈ Dom(J), vt and vt′ are consecutive in the j-group if and only if there
exists an active o-pair (t, t′) with t[V T] = vt, t′[V T] = vt′, and t[J] = j. It is important
to observe that we may have two distinct values j, j′ ∈ Dom(J) and two distinct valid
times vt, vt′ ∈ Dom(V T) which are consecutive in j-group and not consecutive in j′-group.
Moreover, we may have edges (t, t′) that are not active and active pairs (t, t′) that are not
edges, such is the case of active pairs (t, t′) with t′[V T]− t[V T] > k. A color is a tuple c on
the schema C = XY Z and we say that two colors (x, y, z) and (x′, y′, z′) are conflicting if
and only if x = x′, y = y′, and z 6= z′. Given an o-pair (t, t′), its color, denoted by c(t, t′), is
the tuple c(t, t′) = (t[X], t′[Y], t′[Z]). Two o-pairs (t, t′), (t′′, t′′′) are conflicting if and only if
c(t, t′) and c(t′′, t′′′) are conflicting.

Theorem 1. Given an APE-FD [∆k(τ
R
J)]XY

ε→ Z, an instance r of R, and a partial solution
(r, r+, r−), if there exist two active and conflicting edges (t, t′) and (t′′, t′′′), then for every

3.3 - Algorithms for Checking APE-FDs 69

solution (r, r+
f , r

−
f) that extends (r, r+, r−) it holds r+

f 6|= [∆k(τ
R
J)]XY → Z (i.e., the solution

is inconsistent).

The above theorem guarantees that from a partial solution (r, r+, r−) that features at
least two conflicting edges we cannot reach a consistent solution (r, r+

f , r
−
f). In such a case

we may return immediately NO without considering any further (r, r+, r−). The colors of a
partial solution (r, r+, r−) are represented by the set colors(r, r+, r−) = {(t[X], t′[Y], t′[Z]) :
(t, t′) is an active edge in (r, r+, r−)}. Clearly, the hypothesis of Theorem 1 applies if and
only if set colors(r, r+, r−) contains at least two conflicting colors.

Then, by means of colors, our above guess-and-check procedure may be improved by adding
the control on the size of r− and by keeping updated the current set of colors colors(r, r+, r−).
Once an insertion of a tuple in either r+ or r− introduces a color c that is conflicting with at
least one color in (r, r+, r−), the procedure answers NO immediately. An example of how the
procedure works is given in Figure 3-6, where we have an instance of 5 tuples with ε = 0.2
(i.e., we may delete at most one tuple) and k = 6 (all the tuples are in the same window).
The execution depicted in Figure 3-6 guesses the values of tuples from the oldest (t1) to the
newest one (t2) according to the value of V T . First it tries to put the current tuple t in r+; if
no violation arises, it continues; if some violation arises, it tries to insert tuple t in r−; if no
violation arises, it continues, otherwise it goes back to the previous choice (i.e., backtracking).
Every internal node is labelled with the current tuple, which will be guessed next; every leaf
is labeled either with Y ES (i.e., the current branch is a solution) or NO (i.e, a violation has
arisen); the current set of colors is reported within the node. Nodes are numbered according
to their order of appearance. We have that the root is n1 followed by the introduction of
nodes n2 . . . n4 in this precise order. If we introduce t4 in the partial solution associated to
n4, we violate the first constraint. Since in n4 adding t4 in r− does not generate any violation,
node n5 is created as child of n4. However, node n5 cannot be extended without introducing
a violation in the above constraints. Indeed, if we put t5 in r+, we introduce a conflicting
color; if we put t5 in r−, we exceed the maximum number of allowed deletions. We backtrack
to n4. As all the possible choices have been explored, we backtrack to n3, where the choice of
adding t3 to r− is attempted, generating node n6. From n6 we put t5 in r+ without violating

any constraint and thus we have that {t1, t2, t4, t5} |= [∆6(τRJ)]XY
0.2→ Z.

Let us now consider in some more detail the first algorithm. Basically, the algorithm
works similarly to the previous procedure, except for some trivial technicalities. Two more
heuristics have been introduced, to possibly stop earlier, during the exploration of a branch in
the tree of computation. The main procedure of the algorithm is reported in Figure 3-9, while
auxiliary procedures are reported in Figures 3-7 and 3-8. The algorithm is implemented by
function TupleWiseMin that takes 4 arguments. The first argument is Gr, which is derived
from r considering the APE-FD [∆k(τ

R
J)]XY

ε→ Z that has to be checked. More precisely, Gr

is an instance of schema J,X, Y, Z, V T, count, with Dom(count) = N. We have that t ∈ Gr

if and only if there exists t′ ∈ r for which (t′[J], t′[X], t′[Y], t′[Z]) = (t[J], t[X], t[Y], t[Z])
and t[count] = |{t′ ∈ r : (t′[J], t′[X], t′[Y], t′[Z]) = (t[J], t[X], t[Y], t[Z])}|, that is, we count
how many tuples in r share the same values for attributes J,X, Y, and Z, respectively. The
input parameter k is the length for the grouping sliding window. Sets G+

r and G−r , originally

70 3 - Pure Temporally Evolving Functional Dependencies

J X Y Z V T

1 j1 x1 y1 z1 1

2 j1 x2 y1 z1 2

3 j1 x1 y1 z2 3

4 j1 x2 y1 z2 4

5 j1 x1 y1 z2 5

x1|y1|z1 x2|y1|z1 x1|y1|z2 x2|y1|z2 x1|y1|z2(x1, y1, z1)

(x1, y1, z2)

(x1, y1, z2)

(x1, y1, z2)

(x2, y1, z2)

(x2, y1, z2)

(x2, y1, z2)

(x1, y1, z2)

(x1, y1, z2)

(x2, y1, z2)

t1, {}n1

t2, {}n2

t3, {(x1, y1, z1)}n3

t4,

{
(x1, y1, z1),
(x2, y1, z2)

}
n4 t4, {(x1, y1, z1)}n6

t5,

{
(x1, y1, z1),
(x2, y1, z2)

}n5

t5,

{
(x1, y1, z1),
(x2, y1, z2)

}
n7

NO

conflict between
(x1, y1, z1) and (x1, y1, z2)

NO

conflict between
(x1, y1, z1) and (x1, y1, z2)

NO

|r−| > 1

Y ES

r = r+ ∪ r−, |r−| ≤ 1,

colours(r, r+, r−) =

{
(x1, y1, z1),
(x2, y1, z2)

}

t1 ∈ r+

t2 ∈ r+

t3 ∈ r+ t3 ∈ r−

t4 ∈ r+

t4 ∈ r−

t5 ∈ r+ t5 ∈ r−

t4 ∈ r+

t5 ∈ r+

Figure 3-6: An example of how the use of colors improves a guess and check procedure for
solving the problem Check-APE-FD.

initialized to ∅, represent the tuples of Gr that are either kept or deleted in the current
solution, respectively. On instances s of schema J,X, Y, Z, V T, count, we denote with ||r||
the sum on the count attribute for the tuples in s (i.e., ||s|| =

∑
t∈s t[count]). Finally, C is a

set of colors which is initially set to ∅. A color c is a tuple on the schema X, Y, Z. As we will
see, C keeps track via colors of the constraints introduced so far in the construction of the
solution.

Procedure TupleWiseMin returns the minimum number of tuples that has to be deleted
from r in order to obtain an instance r′ such that r′ |= [∆k(τ

R
J)]XY → Z. Then if such

minimum is less or equal than ε · |r| we can conclude r |= [∆k(τ
R
J)]XY

ε→ Z, else we have
r 6|= [∆k(τ

R
J)]XY

ε→ Z. Given Gr, G
+
r , G−r , and a set of colors C we say that an edge

(t, t′) ∈ Gr ×Gr is pending if and only if the following conditions hold:

1. t, t′ /∈ G−r and (t[X], t′[Y], z) /∈ C for every z ∈ Dom(Z);

3.3 - Algorithms for Checking APE-FDs 71

procedure InBetween(Gr, t1, t2)

comment:
returns the subset of Gr consisting of all the tuples in the same J-group
of t1 and t2 that feature valid times between t1[V T] and t2[V T].

return {t ∈ Gr : t1[V T] < t[V T] < t2[V T] ∧ t[J] = t1[J]}

procedure EdgeConflict?((t1, t2), (t′1, t
′
2))

comment: returns true if and only if the two input edges feature conflicting colors.

if t1[X] = t′1[X] ∧ t2[Y] = t′2[Y] ∧ t2[Z] 6= t′2[Z]
then return true
else return false

procedure ColorConflict?((t1, t2), C)

comment:
returns true if and only if the color of the edge (t1, t2) is conflicting with
at least one color in the set of colors C.

if ∃c(c ∈ C ∧ t1[X] = c[X] ∧ t2[Y] = c[Y] ∧ t2[Z] 6= c[Z])
then return true
else return false

procedure E!(Gr, k, G
+
r , G

−
r)

comment: returns the set of all and only active edges in the current partial solution.

return

{
(t1, t2) :

t1[J] = t2[J] ∧ 0 < t2[V T]− t1[V T] ≤ k∧
{t1, t2} ⊆ G+

r ∧ InBetween(Gr, t1, t2) ⊆ G−r)

}
procedure E?(Gr, k, G

+
r , G

−
r , C)

comment: returns the set of all and only pending edges in the current partial solution.

return

(t1, t2) :
t1[J] = t2[J] ∧ 0 < t2[V T]− t1[V T] ≤ k ∧ {t1, t2} ∩G−r = ∅∧
¬ColorConflict?((t1, t2), C) ∧ InBetween(Gr, t1, t2) ∩G+

r = ∅∧
({t1, t2} ∪ InBetween(Gr, t1, t2)) * (G+

r ∪G−r)


procedure GroupIndependent?(j, Gr, k, G

+
r , G

−
r , C)

comment:
returns true if and only if in the current partial solution pending edges
involving tuples belonging to the J-group with value j are not conflicting
with the pending edges introduced by other J-groups.

Ej ← {(t1, t2) ∈ E?(Gr, k, G
+
r , G

−
r , C) : t1[J] = j}

Ej ← E?(Gr, k, G
+
r , G

−
r , C) \ Ej

if ∃t1∃t2∃t1∃t2((t1, t2) ∈ Ej ∧ (t,t2) ∈ Ej ∧ EdgeConflict?((t1, t2), (t1, t2)))
then return false
else return true

Figure 3-7: Auxiliary procedures used by procedures presented in Figures 3-8, 3-9 and 3-11.

72 3 - Pure Temporally Evolving Functional Dependencies

procedure MaxConsistentSubset(E)

comment:
returns the maximal subset E ′ of E such that for every edge (t′1, t

′
2) ∈ E ′

and for every edge (t1, t2) ∈ E we have that c(t′1, t
′
2) and c(t1, t2) are not

conflicting.

E ′ ← ∅

for each (t1, t2) ∈ E do

{
if ∀t1∀t2((t1, t2) ∈ E → ¬EdgeConflict?((t1, t2), (t1, t2)))

then E ′ ← E ′ ∪ {(t1, t2)}
return E ′

procedure Reach?(t1, t2, Nodes, Edges)

comment:
returns true if and only if there exists a path from t1 to t2 in the graph
(Nodes, Edges). It is a function that checks whether there exists a path
between two nodes in a graph or not .

if ∃({t1 . . . tm} ⊆ Nodes)(t1 = t1 ∧ tm = t2 ∧ ∀(1 ≤ i < m)((ti, ti+1) ∈ Edges))
then return true
else return false

procedure ReplacePath?(t, t, Gr, k, G
+
r , G

−
r , C)

comment:
returns true if and only if in the current partial solution the consecutive
valid times t[V T] and t[V T] in t[J]-group may be safely replaced.

if ¬∃t1(t1 ∈ Gr ∧ t1[J] = t[J] ∧ t[V T] < t1[V T] < t[V T])
then return false

Ns ← {t1 ∈ G+
r : t1[J] = t[J] ∧ t1[V T] = t[V T]}

Ne ← {t1 ∈ G+
r : t1[J] = t[J] ∧ t1[V T] = t[V T]}

Nm ← {t1 ∈ G−r : t1[J] = t[J] ∧ t[V T] < t1[V T] < t[V T]}
N ← Ns ∪Ne ∪Nm

Ẽ ← {(t1, t2) : t1 ∈ N ∧ t2 ∈ N ∧ t1[V T] < t2[V T] ∧ (t1 /∈ Ns ∨ t2 /∈ Ne)}
Pairs← {(t1, t2) : t1 ∈ N ∧ t2 ∈ N ∧ t1[V T] + k < t2[V T] ∧ (t1 /∈ Ns ∨ t2 /∈ Ne)}
Ẽok ← (MaxConsistentSubset(E?(Gr, k, G

+
r , G

−
r , C)) ∩ Ẽ) ∪ Pairs

NotSafe← ∅
for each (t1, t2) ∈ Ẽ \ Ẽok

do

for each (t1, t2) ∈ (E?(Gr, k, G
+
r , G

−
r , C) ∪ E!(Gr, k, G

+
r , G

−
r) ∪ Ẽ)

do

{
if EdgeConflict?((t1, t2), (t1, t2))

then NotSafe← NotSafe ∪ {(t1, t2)}
Ẽ ← Ẽ \NotSafe
if ∃t1∃t2∀t1∀t2(t1, t2 ∈ Nm∧t1 ∈ Ns∧t2 ∈ Ne∧(t1, t1), (t2, t2) ∈ Ẽ∧Reach?(t1, t2, N, Ẽ))

then return true
return false

Figure 3-8: Auxiliary procedures used by procedure TupleWiseMin (Figure 3-9).

3.3 - Algorithms for Checking APE-FDs 73

Algorithm 3.3.1: TupleWiseMin(Gr, k, G
+
r = ∅, G−r = ∅, C = ∅)

procedure MaximalPaths?(Gr, k, G
+
r , G

−
r , C)

comment:
returns true if and only if in the current partial solution for every J-group
j-group every pair of consecutive valid times vt and vt′ in j-group cannot
be safely replaced.

if ∃t1∃t2((t1, t2) ∈ E!(Gr, k, G
+
r , G

−
r) ∧ReplacePath?(t1, t2, k, Gr, G

+
r G
−
r , C))

then return false
else return true

procedure IsConsistent?(Gr, k, G
+
r , G

−
r , C)

comment:
returns true if and only if the current partial solution features consistent
colors in C and for every J-group j-group every pair of consecutive valid
times vt and vt′ in j-group cannot be safely replaced.

if ∃t1∃t2((t1, t2) ∈ E!(Gr, k, G
+
r , G

−
r) ∧ ColorConflict?((t1, t2), C))

then return false
if MaximalPaths?(Gr, k, G

+
r , G

−
r , C)

then return true
else return false

main

comment:
returns the minimum value m = min ||Gr \G′r||
for G′r in {G′′r ⊆ Gr : G′r |= [τXY ZcountGr

]XY → Z}.
if Gr = ∅ then return ||G−r ||
if ∃j(j ∈ Dom(J) ∧GroupIndependent?(j,Gr, k, G

+
r , G

−
r , C))

then


Gr ← {t ∈ Gr : t[J] = j}

return

(
TupleWiseCheck(Gr, k, G

+
r ∩Gr, G

−
r ∩Gr, C)+

TupleWiseCheck(Gr \Gr, k, G
+
r \Gr, G

−
r \Gr, C)

)
let t ∈ Gr

if IsConsistent?(Gr \ {t}, k, G+
r ∪ {t}, G−r , C)

then

{
C ′ ← C ∪ {(t′[X], t′′[Y], t′′[Z]) : (t′, t′′) ∈ E!(Gr \ {t}, k, G+

r ∪ {t}, G−r)}
mt ← TupleWiseCheck(Gr \ {t}, k, G+

r ∪ {t}, G−r , C ′)
else mt ← +∞

if IsConsistent?(Gr \ {t}, k, G+
r , G

−
r ∪ {t}, C)

then

{
C ′ ← C ∪ {(t′[X], t′′[Y], t′′[Z]) : (t′, t′′) ∈ E!(Gr \ {t}, k, G+

r , G
−
r ∪ {t})}

m\t ← TupleWiseCheck(Gr \ {t}, k, G+
r , G

−
r ∪ {t}, C ′)

else m\t ← +∞
return min(mt,m\t)

Figure 3-9: The main procedure for a tuple-wise check of APE-FDs. Notice that we use a
compact notation for the recursive procedure which is initially called TupleWiseMin(Gr, k).
Here, when G+

r , G−r , and C are omitted in the procedure call, they get their respective default
values specified in the procedure declaration (i.e., ∅ for each of them in this case).

74 3 - Pure Temporally Evolving Functional Dependencies

2. for every t′′ with t′′[J] = t[J] and t[V T] < t′′[V T] < t′[V T] we have t′′ /∈ G+
r ;

3. there exists t′′ ∈ (Gr∪{t, t′})\(G−r ∪G+
r) with t′′[J] = t[J] and t[V T] ≤ t′′[V T] ≤ t′[V T].

Informally speaking, a pending edge is an edge that is not active in the current partial
solution but it may become active during the computation and, if it happens, it introduces a
new color in C. In our algorithm, pending edges for the current partial solution are retrieved
by procedure E?, while active edges are retrieved by procedure E!.

Procedure TupleWiseMin (Figure 3-9) works as follows. If G+
r ∪ G−r = Gr, it means

that we have obtained a solution without violating any constraint and thus we can return
||G−r || (i.e., the number of deleted tuples). If G+

r ∪G−r 6= Gr, the algorithm guesses a tuple
t ∈ Gr \ (G+

r ∪G−r) and proceeds as follows. First, it checks if inserting t into G+
r does not

cause any violation of constraints. If so, it stores in mt the value of the recursive call to
TupleWiseMin where t belongs to G+

r and C has been updated accordingly. By inserting a
tuple t in G+

r , the algorithm is asserting that t belongs to the current partial solution, while
by inserting t in G−r the algorithm is asserting that t does not belong to the current partial
solution. If a constraint is violated, the algorithm stores in mt the value +∞, which means
that t may not be kept in the current solution.

Then, it checks if inserting t into G−r does not cause any violation in the constraints. If it
is the case, it stores in m\t the value of the recursive call to TupleWiseMin, where G−r and C
are updated accordingly. If a constraint is violated, the algorithm stores in m\t the value +∞,
which means that t must be kept in the current partial solution. In procedure TupleWiseMin
the only way in which a constraint may be violated is that, after the insertion a tuple t in
G+

r (resp. G−r), an edge (t′, t′′) turns out to be active and its color (t′[X], t′′[Y], t′′[Z]) turns
out to be conflicting with at least one color in C.

As pointed out by the example in Figure 3-6, checking each step for consistency is itself
an optimization, even if it is trivial, since it allows us to prune entire subtrees in the tree
of computations without exploring them. We propose here two further optimizations for
this procedure. The first one allows us to restrict the search space by splitting the problem
into independent sub-problems in a divide-and-conquer fashion. Let us suppose that at a
certain step of our computation there exists a value j ∈ {t[J] : t ∈ Gr}, for which for each
pair of conflicting pending edges (t, t′) and (t̂, t̂′) we have that either all t, t′, t̂, and t̂′ belong
to the j-group or all t, t′, t̂, and t̂′ do not belong to the j-group (such condition is verified
by sub-procedure GroupIndependent? reported in Figure 3-8.) Let Gr = {t : t[J] = j}. As
every edge involving tuples in the j-group is not conflicting with every edge that may be
introduced outside the j-group, then we can split the problem into the two sub-problems
(Gr, k, G

+
r ∩Gr, G

−
r ∩Gr) and (Gr \Gr, k, G

+
r \Gr, G

−
r \Gr). Such problems are independent

and may be solved separately. The resulting value for the solution is the sum of the values
returned by TupleWiseMin applied to both the two sub-problems. Let H = |Gr \ (G+

r ∪G−r)|
and h = |{t ∈ (Gr \ (G+

r ∪G−r)) : t[J] = j}|. In this case, the upper bound of the complexity
at the current step of computation drops from O(2H) to O(2H−h + 2h).

The second optimization allows us to prune a sub-tree of computation even before a
contradiction arises. It verifies, in many cases, whether every possible solution that may

3.3 - Algorithms for Checking APE-FDs 75

be built starting from the current partial one turns to be not minimal. Suppose that
there exists an active o-pair (t, t′) in a partial solution (Gr, G

+
r , G

−
r), such that there exists

t̂ ∈ Gr in the same J-group of t with t[V T] < t̂[V T] < t′[V T]. By definition of active
o-pair, we have that t̂ belongs to G−r as well as every tuple t̂′ in the same J-group of t with
t[V T] < t̂′[V T] < t′[V T]. Here the additional condition is that there exists at least one
of such tuples. Given a partial solution (Gr, G

+
r , G

−
r), we define set colors(Gr, G

+
r , G

−
r) =

{(x, y, z) : there exists an active edge (t, t′) with c(t, t′) = (x, y, z)}. Let us define the
set of colors pending(Gr, G

+
r , G

−
r) = {(x, y, z) : there exists a pending edge (t, t′) with c(t,

t′) = (x, y, z)}, which collects all and only the colors that may be introduced later on in the
current computation.

A color (x, y, z) is safe in (vt, vt′, j) if and only if one of the following three conditions
hold:

1. (x, y, z) ∈ colors(Gr, G
+
r , G

−
r);

2. every color (x, y, z′) ∈ pending(Gr, G
+
r , G

−
r) satisfies z′ = z (i.e., (x, y, z) is a pending

color and there is no pending color that is conflicting with (x, y, z));

3. the color is not conflicting with any color in colors(Gr, G
+
r , G

−
r)∪ pending(Gr, G

+
r , G

−
r)

and do not exist two tuples t̂, t̂′ ∈ (G+
r ∪ G−r) ∩ {t̂′′ ∈ Gr : t̂′′[J] = j ∧ vt ≤ t̂′′ ≤ vt′},

such that (t̂, t̂′) is an edge and the color (t̂[X], t̂′[Y], t̂′[Z]) is conflicting with (x, y, z).

The three conditions above imply that if a color is safe in (vt, vt′, j) then it is neither in conflict
with a color in colors(Gr, G

+
r , G

−
r) nor with a color in pending(Gr, G

+
r , G

−
r). However, this is

just a necessary but not sufficient condition. Let us consider the example shown in Figure 3-10
and assume that k ≥ 7 (i.e., every o-pair in the example is also an edge). We have that the
active edges are (t1, t2), (t2, t3), (t3, t4), and (t4, t5) for the j1-group and (t7, t12), (t8, t12) for the
j2-group, since we have t9, t10, t11 ∈ G−r . Thus, we have colors(Gr, G

+
r , G

−
r) = {(x1, y4, z4),

(x2, y5, z6), (x5, y6, z6), (x4, y6, z5), (x1, y6, z6), (x2, y6, z6)} and, since we have to decide the
status of tuple t6, we have pending(Gr, G

+
r , G

−
r) = {(x1, y3, z2)}. Suppose that we are

interested in the colors which are safe in (1, 5, j2).
For instance c(t7, t9) = (x1, y3, z3) (i.e., the dotted edge in the j2-group in Figure 3-

10) is not safe in (1, 5, j2) because it does not belong neither to colors(Gr, G
+
r , G

−
r) nor

to pending(Gr, G
+
r , G

−
r) (conditions 1 and 2) and it is in conflict with the unique color

(x1, y3, z2) ∈ pending(Gr, G
+
r , G

−
r) . On the other hand, colors c(t8, t9) = (x2, y3, z3),

c(t8, t10) = (x2, y4, z4) and c(t10, t11) = (x4, y5, z5) (i.e., the dashed edges in Figure 3-10)
are safe in (1, 5, j2), because they are neither in conflict with colors either in colors(Gr, G

+
r ,

G−r) or in pending(Gr, G
+
r , G

−
r) and there are no other edges in j2 with valid times be-

tween 1 and 5 that exhibit either (x2, y3), or (x4, y5), or (x2, y3) as first two components
of their colors (thus condition 3 applies to these colors). Colours c(t7, t10) = (x1, y4, z4)
and c(t11, t12) = (x5, y6, z6) (i.e., the continuous edges in j2-group in Figure 3-10) are safe
in (1, 5, j2), because they belong to colors(Gr, G

+
r , G

−
r) and thus both satisfy condition 1.

Finally, colors c(t8, t11) = (x2, y5, z5), and c(t8, t10) = (x4, y6, z6) are not safe in (1, 5, j2)
(i.e., the X-labeled edges in Figure 3-10), because they are in conflict with two colors in

76 3 - Pure Temporally Evolving Functional Dependencies

j1 x1|y1|z1
t1

x2|y4|z4
t2

x5|y5|z6
t3

x4|y6|z6
t4

x1|y6|z5
t5

x2|y3|z2
t6

x1|y1|z1
t7

x2|y2|z2
t8

x3|y3|z3
t9

x4|y4|z4
t10

x5|y5|z5
t11

x6|y6|z6
t12

X

X

j2

G+
r = {t1, t2, t3, t4, t5, t7, t8, t12}

G−r = {t9, t10, t11}

Gr \ (Gr ∪ G−r) = {t6}

J X Y Z VT count

1 j1 x1 y1 z1 2 1
2 j1 x2 y4 z4 4 1
3 j1 x5 y5 z6 5 1
4 j1 x4 y6 z6 6 1
5 j1 x1 y6 z5 7 1
6 j1 x2 y3 z2 6 1
7 j2 x1 y1 z1 1 1
8 j2 x2 y2 z2 2 1
9 j2 x3 y3 z2 3 1
10 j2 x4 y4 z3 4 1
11 j2 x5 y5 z4 5 1
12 j2 x6 y6 z5 6 1

Figure 3-10: An example of how a partial solution may be improved.

colors(Gr, G
+
r , G

−
r); more precisely, (x2, y5, z5) is in conflict with (x2, y5, z6) and (x4, y6, z6) is

in conflict with (x4, y6, z5).

Given a partial solution (Gr, G
+
r , G

−
r) and the triple (vt, vt′, j), a (vt, vt′, j)-replace DAG

is a DAG (V,E) where V = {t ∈ G+
r : t[V T] = vt ∧ t[J] = j} ∪ {t ∈ G−r : vt < t[V T] <

vt′ ∧ t[J] = j} ∪ {t ∈ G+
r : t[V T] = vt′ ∧ t[J] = j} and

E =

{
(t, t′) ∈ V × V :

(t[V T] 6= vt ∨ t′[V T] 6= vt′) ∧ t[V T] < t′[V T]∧
c(t, t′) is safe in (vt, vt′, j)

}
∪

{(t, t′) ∈ V × V : (t[V T] 6= vt ∨ t′[V T] 6= vt′) ∧ t′[V T]− t[V T] > k}

A node t ∈ V is a starting node (resp. ending node) if and only if vt < t[V T] < vt′ and,

3.3 - Algorithms for Checking APE-FDs 77

for every t′ ∈ V with t′[V T] = vt (resp. t′[V T] = vt′), we have (t′, t) ∈ E (resp. (t, t′) ∈ E).
A replace path in a (vt, vt′, j)-replace DAG (V,E) is any path t1 . . . tm in (V,E) for which t1
is a starting node and tm is an ending node. We say that vt and vt′ in j can be safely replaced
if and only if there exists a replace path in the (vt, vt′, j)-replace DAG (V,E). Figure 3-10
depicts the (1, 5, j2)-replace DAG, where t10 is the only initial node that is not an ending
one, and t11 is the only ending node that is not a starting one. Since t10 is connected to t11

we have that t10t11 is a replace path in the (1, 5, j2)-replace DAG and thus 1 and 5 can be
safely replaced in j2. Using the above definitions of replace DAGs/paths we can provide the
following result.

Theorem 2. Given a partial solution (Gr, G
+
r , G

−
r), if there exists a group j with two

consecutive valid times vt and vt′ such that vt and vt′ can be safely replaced in j, then every
consistent solution that follows (Gr, G

+
r , G

−
r) is not optimal.

The proof of the theorem is straightforward. Let us suppose that t1 . . . tm is a replace
path in the (vt, vt′, j)-replace DAG. By definition we have t1, . . . , tm ∈ G−r . It suffices to

take any consistent solution (Gr, G
+

r , G
−
r) that follows (Gr, G

+
r , G

−
r) and such that (Gr, G

+

r ∪
{t1, . . . , tm}, G

−
r \ {t1, . . . , tm}) is still a consistent solution. Non-optimality immediately

follows.
We take advantage of Theorem 2 by pruning every computation rooted in a partial

solution (Gr, G
+
r , G

−
r) that features a J-group j-group and two consecutive valid times vt and

vt′ in the j-group, such that vt and vt′ can be safely replaced in j. Verifying whether such
condition applies or not may be performed in polynomial time. In procedure TupleWiseMin,
this optimization is realized by sub-procedures MaximalPaths? and ReplacePath? reported
in Figure 3-8 and 3-9, respectively.

3.3.3 The Second Algorithm

Let us now propose another algorithm, reported in Figure 3-13, for solving problem Check-
APE-FD. Such an algorithm, whose main procedure is called EdgeWiseMin, strongly differs
from TupleWiseMin in approaching the problem. In principle it works better, but it may
work only under a quite reasonable assumption on the input, which we will discuss in detail
later on.

At every step, procedure EdgeWiseMin, instead of guessing if a tuple belongs to the
current partial solution, guesses if a color is forbidden or allowed in the current partial solution.
Informally, forbidding a color (x, y, z) means avoiding all the active edges (t, t′) ∈ Gr ×Gr

for which c(t, t′) = (x, y, z). On the other hand, allowing a color (x, y, z) means forbidding
all the active edges (t, t′) ∈ Gr × Gr whose colors are conflicting with (x, y, z). In order
to do that, we introduce the concept of color-partial solution. A color-partial solution is a
triple (Gr, C+, C−), such that C+, C− ⊆ Dom(X)×Dom(Y)×Dom(Z) are disjoint subsets
of colors (i.e, C+ ∩ C− = ∅) and for every pair of colors (x, y, z), (x′, y′, z′) ∈ C+ (x, y, z) is
not conflicting with (x′, y′, z′) (i.e, if x′ = x and y′ = y then z′ = z).

Let CPS = (Gr, C+, C−) be a color-partial solution: we say that a solution (Gr, Gr \
G−r , G

−
r) is induced by CPS if and only if the two following conditions hold:

78 3 - Pure Temporally Evolving Functional Dependencies

procedure SourceSinkShortestPath(Nodes, Edges, T ime,Weight)

comment:

returns the shortest path from a source node to a sink node in a Weighted
DAG (Nodes, Edges). The weight of each edge is provided by the function
Weight. The topological order of the elements of Nodes is provided by the
function Time whch is used for identifying the source (Time(source) =
−∞) and the sink (Time(sink) = +∞) nodes. Finally, the shortest path is
returned as a subset of Nodes.

for each n ∈ Nodes
{
Predecessor(n)← nil
V alue(n)← +∞

V alue(source)← 0
current time← min(Img(Time) \ {−∞})
while current time < +∞

do


for each n{n′ ∈ Nodes : Time(n′) = current time}

do

{
V alue(n)← min(n′,n)∈Edges V alue(n

′) +Weight(n, n′)
Predecessor(n)← min(n′,n)∈Edges n

′

current time← min{time ∈ Img(Time) : time > current time}
current node← Predecessor(sink)
shortest path← ∅
while current node 6= source

do

{
shortest path← shortest path ∪ {current node}
current node← Predecessor(current node)

return shortest path

Figure 3-11: Auxiliary procedure for the main ones in Figure 3-13. SourceSinkShortestPath
returns the shortest path from source to sink on the DAG provided by BuildDag. The
solution is given as a set of nodes (i.e., subsets of Gr) and it omits source and sink nodes.

3.3 - Algorithms for Checking APE-FDs 79

procedure BuildDag(Gr, k, C+, C−)

comment:
given a set Gr for which there exists j ∈ Dom(J) such that for every t ∈ Gr

we have t[J] = j. Let CPS = (Gr, C+, C−) The procedure returns the

unfolded DAG for LjCPS.

Nodes← {S ⊆ Gr : S 6= ∅ ∧ ∀t∀t′(t ∈ S ∧ t′ ∈ S → t[V T] = t′[V T])}
EndNodes← {source, sink}
AllNodes = Nodes ∪ EndNodes

let Time : AllNodes→ Dom(V T) ∪ {−∞,+∞} s.t. Time(S) =


t[V T]

S ∈ Nodes∧
t ∈ S

−∞ S = source

+∞ S = sink

Edges← {(source, S) : S ∈ Nodes} ∪ {(S, sink) : S ∈ Nodes}
∪{(S, S ′) : S ∈ Nodes, S ′ ∈ Nodes, T ime(S ′)− Time(S) > k}

Edges←
{

(S, S ′) :∀t∀t′
((

t ∈ S ∧ t′ ∈ S ′∧
t′[V T]− t[V T] > 0

)
→
(
¬ColorConflict((t[X],t′[Y],t′[Z]),C+)

∧(t[X],t′[Y],t′[Z])/∈C−

))}
let Weight : Edges→ N s.t.

Weight(S, S ′) =


∑

t∈Gr:T ime(S)<t[V T]≤T ime(S′)∧t/∈S′ ||t|| if S, S ′ ∈ Nodes∑
t∈Gr:t[V T]≤T ime(S′)∧t/∈S′ ||t|| if S = source∑
t∈Gr:t[V T]>Time(S)∧t/∈S′ ||t|| if S ′ = sink

return (Nodes ∪ EndNodes, Edges, T ime,Weight)

Figure 3-12: Auxiliary procedure for the main ones in Figure 3-13. BuildDag build a
single-source-single-sink DAG which nodes are non-empty subsets of Gr. Each subset is
formed by tuples sharing the same value for V T and thus function Time is well defined.

80 3 - Pure Temporally Evolving Functional Dependencies

Algorithm 3.3.2: EdgeWiseMin(Gr, k, C+ = ∅, C− = ∅, optimal = +∞)

procedure PartialSolution(Gr, k, C+, C−)

comment:
let CPS = (Gr, C+, C−), the procedure returns a pair (V alue, Colors) for
which V alue = val(CPS) and there exists a minimal solution (Gr, Gr \G−r ,
G−r) induced by (Gr, C+, C−) for which Colors = colors(Gr, Gr \G−r , G−r).

V alue← 0
Colors← ∅
for each j ∈ {t[J] : t ∈ Gr}

do



Gj
r ← {t ∈ Gr : t[J] = j}

ShortestPath← SourceSinkShortestPath(BuildDAG(Gj
r, k, C+, C−))

Gr ←
⋃
S∈ShortestPath S

V alue← V alue+
∑

t∈Gr
||t||

ActiveEdges←
{

(t, t′) :
t ∈ Gr ∧ t′ ∈ Gr ∧ 0 < t′[V T]− t[V T] ≤ k∧
∀t′′(t′′ ∈ Gr → t′′[V T] ≤ t[V T] ∨ t′′[V T] ≥ t′[V T])

}
Colors← Colors ∪ {(t[X], t′[Y], t′[Z]) : (t, t′) ∈ ActiveEdges}

return (V alue, Colors)

main

comment:
returns the minimum value m = min ||Gr \G′r||
for G′r in {G′′r ⊆ Gr : G′r |= [τXY ZcountGr

]XY → Z}.
m← 0
Colors← ∅
for each g ∈ {g : ∃(t ∈ Gr)(t[J] = g)}

do


(V alue, C)← PartialSolution(Gbr, k, C+, C−)
m← m+ V alue
Colors← Colors ∪ C

if m ≥ optimal then return optimal

for each c ∈ Colors



for each c′ ∈ Colors
if c[X] = c′[X] ∧ c[Y] = c′[Y] ∧ c[Z] 6= c′[Z]

then


mc ← EdgeWiseMin(Gr, k, C+ ∪ {c}, C−, optimal)
m¬c ← EdgeWiseMin(Gr, k, C+, C− ∪ {c}, optimal)
m← min(mc,m¬c)
return min(m, optimal)

return m

Figure 3-13: The main procedure for the edge-wise checking of a APE-FD

[∆k(τ
XY Zcount
Gr

)]XY
ε→ Z. The procedure returns the minimum number of tuples to

delete in r in order to obtain an instance r′ ⊆ r such that r′ |= [∆k(τ
R
r)]XY → Z .

Like procedure TupleWiseMin of Figure 3-9 the initial call to the recursive procedure is
EdgeWiseMin(Gr, k) with C+, C−, and optimal initialized to their respective default values.

3.3 - Algorithms for Checking APE-FDs 81

1. for every color (x, y, z) in C+ and for each edge (t, t′) ∈ Gr × Gr for which c(t, t′) =
(x, y, z′), if (t, t′) is active then z′ = z.

2. for every color (x, y, z) in C− and for each edge (t, t′) ∈ Gr×Gr, if c(t, t′) = (x, y, z) then
(t, t′) is not active in (Gr, G

+
r , G

−
r). It means that one of the following two conditions

holds:

� t ∈ G−r or t′ ∈ G−r ;

� there exists a tuple t′′ ∈ G+
r such that t[V T] < t′′[V T] < t′[V T] and t′′[J] = t[J]

(t[V T] and t′[V T] are not consecutive in the current partial solution for the J-group
with value t[J]).

An induced solution (Gr, Gr \G−r , G−r) by CPS is minimal if and only if an induced solution

(Gr, Gr \ G
−
r , G

−
r) by CPS does not exist with |G−r | > |G

−
r |. In this case we say that

(Gr, Gr \G−r , G−r) is an induced minimal solution. Since all the induced minimal solutions by
CPS have the same size, we say that the value of CPS, denoted by val(CPS), is the value
||G−r ||, where (Gr, Gr \G−r , G−r) is a minimal induced partial solution.

In an opposite way from TupleWiseMin, in this algorithm color-partial solutions induce
complete minimal solutions. However such solutions may be inconsistent. The algorithm
tries to obtain consistency by either forcing or forbidding one color at a time. This is done by
means of sets C+ and C−, which are both initialized to ∅ at the beginning of the procedure.
As we informally said above, if a color (x, y, z) belongs to C+, it means that the current
partial solution must avoid all the active edges (t, t′) such that t[X] = x, t′[Y] = y, and
t′[Z] 6= z; if a color (x, y, z) belongs to C−, it means that the current partial solution must
avoid all the active edges (t, t′) such that t[X] = x, t′[Y] = y, and t′[Z] = z.

As a general overview of the algorithm, let us consider the following simplified procedure
(let CPS = (Gr, C+, C−) be the current color-partial solution):

1. compute a minimal solution (Gr, Gr \G−r , G−r) induced by CPS;

2. if (Gr, Gr \G−r , G−r) is consistent, return val(CPS) = ||G−r ||;

3. if (Gr, Gr \G−r , G−r) is inconsistent, let (t, t′) be an active edge in (Gr, Gr \G−r , G−r),
such that there exists an active edge (t′′, t′′′) in (Gr, Gr \G−r , G−r), which is conflicting
with (t, t′). Then, return the minimum value between those returned by two recursive
calls, one where C+ is updated to C+ ∪ {(t[X], t′[Y], t′[Z])}, and the other one where
C− is updated to C− ∪ {(t[X], t′[Y], t′[Z])}.

Two observations are omitted in the above procedure w.r.t. function EdgeWiseMin. The
first one is that the procedure does not take into account the fact that the value ||G−r || of
the color-partial solution computed at point 1. is a lower bound for the optimal solution
that may be achieved in the current branch of the computation. Procedure EdgeWiseMin
uses it in a classical branch-and-bound fashion by propagating the value of the current
optimal solution (if any) in the tree of recursive calls (in Figure 3-13 this is done by means of

82 3 - Pure Temporally Evolving Functional Dependencies

parameter optimal). In step 1., if the computed value ||G−r || is greater than the optimal one,
we immediately return from the recursive call, because no better solution may be found.

The last omitted observation regards how the value of the color-partial solution val(CPS)
is computed, where CPS = (Gr, C+, C−). For every J-group in Gr, i.e. any set of tuples
having value j for attribute J , we build the following wL-DAG LjCPS = (V j, Ej,Lj,Wj)
where V j = {t ∈ Gr : t[J] = j}. For each t ∈ V j we haveWj(t) = t[count] and Lj(t) = t[V T],
and

Ej =

{(t, t′) ∈ V j × V j : t′[V T]− t[V T] > k}
∪

{(t, t′) ∈ V j × V j : 0 < t′[V T]− t[V T] ≤ k ∧ c(t, t′) ∈ C+}
∪{

(t, t′) ∈ V j × V j :
0 < t′[V T]− t[V T] ≤ k ∧ c(t, t′) /∈ C−∧
∀x∀y∀z((x,y,z)∈C+→c(t,t′) is not conflicting with (x,y,z)

}
Let J(Gr) be the set {j : ∃t(t ∈ Gr ∧ t[J] = j)} = {j1, . . . , jh}. For every 1 ≤ i ≤ h let

M i
CPS be the maximum value for which the wL-DAG LjiCPS admits an M i

CPS-thick path. The
following result is straightforward.

Theorem 3. For every color-partial solution CPS = (Gr, C+, C−) we have

val(CPS) = ||Gr|| −
∑

j J(Gr)

M j
CPS

Theorem 3 tells us that for computing val(CPS) we need to compute for every j ∈ J(Gr)
the maximum value M j

CPS, for which LjCPS admits an M j
CPS-thick path. Given a wL-DAG

LG, we will call MAX-ThickPath (Max-TP for short) the problem of finding the maximum
M for which LG admits a M -Thick Path. Max-TP may be solved by a simple dichotomic
search having a decision procedure that solves the problem M -TP (Problem 1), which is
NP-Complete [33]. Here our assumption comes into play and allows us to find M j

CPS for
every j ∈ J(Gr) in a “reasonable” time. Indeed, in the instances that are used to prove the
NP-completeness the number of nodes in any layer, roughly corresponding to the number
of tuples of the given relation at a corresponding time point, is supposed to increase as the
number of time points/layers increases.

This is not the case in many daily applications, especially in the clinical domain, where
we may have a great number of tuples but scattered along the time-line. In the follow-
ing we will provide a formal definition of our assumption. Given j ∈ J(Gr) we define
V T (Gr, j) = {vt : ∃t(t ∈ Gr∧ t[V T] = vt∧ t[J] = j)}, MaxLevel(Gr, j) = maxvt∈V T (Gr,j) |{t :

t[J] = j ∧ t[V T] = vt}|, MaxCount(Gr, j) = maxvt∈V T (Gr,j)

(∑
t∈Gr∧t[V T]=v∧t[J]=j ||t||

)
, and

the value space(j,Gr) as the value 2MaxLevel(Gr,j) · |V T (Gr, j)| · log2(MaxCount(Gr, j)). Let
MaxSpace(Gr) = maxj∈J(Gr) space(j, Gr). We will see that EdgeWiseMin is applicable
to our instance, if we have O(MaxSpace(Gr)

2) bits for computing it. The problem with
MaxSpace(Gr) is that it is exponential in MaxLevel(Gr, j), but this value depends on the
maximum number of tuples that shares the same values for attributes V T and J and differs
on at least one among the attributes X, Y, and Z in the original instance r. As we say

3.3 - Algorithms for Checking APE-FDs 83

above, we assume this value to be manageable as it happens in many real world applications.
Hereinafter, we will suppose to have O(MaxSpace(Gr)

2) bits for performing our computation.

source
{v1}

{v2}

{v3}

{v2, v3}

{v4}

{v5}

{v4, v5} {v6}

{v7}

{v9}

{v7, v9} {v8}

{v10}

{v11}

{v10, v11}
sink

1

1

4

1

1

4

2

2

2

4

1

4

4

4

4 3

V’ W’(source,V’) W’(V’,sink) V’ W’(source,V’) W’(V’,sink) V’ W’(source,V’) W’(V’,sink)

{v1} 0 10 {v6} 5 5 {v11} 10 0

{v2} 2 8 {v7} 7 3 {v2, v3} 1 8

{v3} 2 8 {v8} 8 2 {v4, v5} 3 6

{v4} 4 6 {v9} 7 3 {v7, v9} 6 3

{v5} 4 6 {v10} 10 0 {v10, v11} 9 0

Figure 3-14: The unfolding of the wL-DAG of Figure 3-5 into a weighted DAG for solving
the MAX-TP problem. The table below the graph provides the weights for source-to-node
edges and node-to-sink edges, which are both represented by dashed lines. Continuous edges
without labels have weight 0. P = source{v1}{v2, v3}{v7, v9}{v8}{v11}sink is a source-sink
shortest path with value 4.

Let us suppose to have a wL-DAG LG = (V,E,L,W) and we want to solve MAX-TP
on it. Given a wL-DAG LG = (V,E,L,W), a subset V ′ ⊆ V is a level-subset if and only
if V ′ 6= ∅ and L(v) = L(v′) for every v, v′ ∈ V ′. Let V = {V ′ ⊆ V : V ′ is a level-subset}.
By definition of level subset the function L′ : V → N, such that for every V ′ ∈ V we have
L′(V ′) = L(v) for some v ∈ V ′, turns out to be well defined. We define the unfolding of
wL-DAG LG = (V,E,L,W) as the weighted DAG U(LG) = (V ∪ {source, sink}, E ′,WE′),

84 3 - Pure Temporally Evolving Functional Dependencies

where

E ′ =
{(source, V ′) : V ′ ∈ V} ∪ {(V ′, sink) : V ′ ∈ V}∪

{(V ′, V ′′) ∈ V × V : ∀v∀v′(v ∈ V ′ ∧ v′ ∈ V ′′ → (v, v′) ∈ E)} ,

For every (source, V ′) ∈ E ′ we have

W ′(source, V ′) =
∑

v∈V \V ′:L(v)≤L(V ′)

W(v),

For every (V ′, sink) ∈ E ′ we have

W ′(V ′, sink) =
∑

v∈V L′(V ′)<L(v)

W(v),

And for every (V ′, V ′′) ∈ E ′ with V ′, V ′′ ∈ V we have

W ′(V ′, V ′′) =
∑

v∈V \V ′′:L′(V ′)<L(v)L′(V ′′)

W(v).

For instance, the DAG in Figure 3-14 is the result of unfolding the wL-DAG in Figure
3-5. The unfolding of a wL-DAG, in the worst case scenario, is exponential in the size of LG.
Given a wL-DAG LG = (V,E,L,W), we define Wall(LG) =

∑
v∈V W(v) as the sum of all the

weights associated to nodes in V . It is straightforward to prove that the union of all the
internal nodes in a source-to-sink path in the unfolding of a wL-DAG LG is a thick path in
LG and, on the other hand, every thick path in LG may be associated with a source-to-sink
path in its unfolding. Moreover, for every source-to-sink path p in the unfolding of LG, let
wp be its weight. The weight of the thick path associated with p is exactly Wall(LG)− wp
(i.e., LG admits a thick path with value Wall(LG)− wp). With these premises we can prove
the following result.

Theorem 4. Given a wL-DAG LG = (V,E,L,W), let w the value of the shortest source-
to-sink path in its unfolding. We have that the value of MAX-TP on LG = (V,E,L,W) is
equal to Wall − w.

Given a color-partial solution CPS = (Gr, C+, C−), procedure EdgeWise computes the
value val(CPS) (performed by procedure PartialSolution in Figure 3-13) summing up all
the values M j

CPS for every j ∈ J(Gr). Each M j
CPS is computed as value of a source-

to-sink shortest path (performed by procedure SourceSinkShortestPath in Figure 3-11)
on the unfolding of LjCPS (built by procedure BuildDag in Figure 3-11). For building
U(LjCPS), on which we will compute value of a source-to-sink shortest path, we may need
O(MaxSpace(Gr)

2) bits.
Finally, let us observe that procedure PartialSolution does not return only the value

val(CPS) of the current color-partial solution CPS = (Gr, C+, C−). Since it effectively
computes a minimal solution (Gr, G

+
r , G

−
r) induced by CPS in order to provide val(CPS), it

returns the set colors(Gr, Gr \G−r , G−r), that is, the set of all and only the colors associated

3.4 - Mining APE-FDs 85

to active edges in (Gr, Gr \ G−r , G−r). If such a set does not contain two colors (x, y, z)
and (x, y, z′) such that z 6= z′, then we have that (Gr, C+, C−) is a consistent solution and
we may return val(CPS). Otherwise, procedure EdgeWiseMin takes a color (x, y, z) in
colors(Gr, Gr \ G−r , G−r), such that there exists (x, y, z′) in colors(Gr, Gr \ G−r , G−r) with
z 6= z′ and performs two recursive calls, one in which C+ is updated to C+ ∪ {(x, y, z)} and
the other in which C− is updated to C− ∪ {(x, y, z)}.

3.4 Mining APE-FDs

In this section, we consider the problem of mining APE-FDs on a given instance r of a
temporal schema R from a practical point of view. We will describe a prototype that performs
such task. In particular, we point out two big computational challenges we addressed in the
implementation of our prototype.

Let us start with the formal definition of our problem. Given a temporal schema
R = U ∪ {V T}, an instance r of R, a non-empty set J ⊆ U , a threshold 0 ≤ ε ≤ 1, and a
value k ∈ N, we denote as PE(r, k, ε) the set of all the APE-FDs [∆k(τ

R
J)]XY

ε→ Z, formally
introduced in Section 3.1, such that r |= [∆k(τ

R
J)]XY

ε→ Z.
A set S of APE-FDs is complete if and only if for every [∆k(τ

R
J)] XY

ε→ Z belonging

to S, there exists X ′ ⊆ X and Y
′ ⊆ Y such that [∆k(τ

R
J)] X ′Y

′ ε→ Z ∈ PE(r, k, ε). A
complete APE-FD-set PE(r, k, ε) is minimal if and only if for every [∆k(τ

R
J)] XY

ε→ Z ∈ S,
set S \ {[∆k(τ

R
J)]XY

ε→ Z} is not complete anymore. Given a complete minimal APE-FD-set
PE(r, k, ε), every subset PE(r, k, ε) ⊆ PE(r, k, ε) is called a minimal partial.

Given a temporal schema R = U ∪ {V T}, an instance r of R, a non-empty set J ⊆ U , a
threshold 0 ≤ ε ≤ 1, and a value k ∈ N, we are interested in finding a minimal complete set
PE(r, k, ε). However, in order to do that we have to deal with two computational problems:

� there exist temporal schemas R = U ∪ {V T}, instances r of R, non-empty sets J ⊆ U ,
thresholds 0 ≤ ε ≤ 1, and values k ∈ N, for which the smallest minimal complete set S
w.r.t. such parameters is exponential in the size of U ;

� given a single APE-FD [∆k(τ
R
J)]XY

ε→ Z on a schema R = U ∪ {V T}, and an instance
r of R, deciding whether or not r |= [∆k(τ

R
J)]XY

ε→ Z is a NP-complete problem.

The first result may be obtained by adapting a result of Kivinen et al. [62] on approximate
functional dependencies. The second result is proved in Appendix A. However, such theoretical
bounds are both difficult to achieve in real world domains. For instance, the size of PE(r, k, ε)
could be exponential in |U |, but in real case scenarios we have that |U | is less or equal than
50 elements. Moreover, the instance built in [62] for achieving the exponential lower bound is
far from real world instances. An even worse situation occurs for the complexity of checking a
single APE-FD: such a problem is NP-Complete in the number of tuples and thus we cannot
rely on the fact that such set is small. Quite the opposite in fact, since instances are supposed
to grow day by day. This problem is known as the curse of cardinality, whose relevance
has been recently pointed out for temporal inference of sequential patterns in [68]. As in

86 3 - Pure Temporally Evolving Functional Dependencies

the previous case, we observe that the instance specified in Appendix A for proving the
NP-hardness result has been built in a very complex and constrained way. Such an instance
does not even remotely resemble some real world scenario. Thus, we are allowed to design and
implement a prototype for the practical mining of such dependencies on real world datasets,
and evaluate its performances.

3.4.1 Prototype Overview

Not discouraged by the dramatic premise reported in Appendix A, we developed a prototype
that, given a temporal schema R = U ∪ {V T}, an instance r of R, a non-empty set J ⊆ U ,
a threshold 0 ≤ ε ≤ 1, and a value k ∈ N returns a minimal complete set PE(r, k, ε). The
prototype is called Attila, which stands for Approximate Temporal Tailored Inference Lean
Application. In the following, we provide a high-level description of Attila modules and
their interaction. Moreover, we provide a detailed description of novel ideas underlying key
features of the prototype. The implementation of Attila follows the principles of distributed
programming, where different tasks are executed by different processes (possibly executed on
different machines). Attila is composed by three main processes:

� Worker is responsible for keeping the current status by maintaining a representation of
the minimal partial PE(r, k, ε) of PE(r, k, ε). Worker maintains a compact representation
of the set of the APE-FDs checked so far as well as a compact representation of the
APE-FDs that remain to be checked in the future. Worker updates its state according
to the last APE-FD [∆k(τ

R
J)]XY

ε→ Z that has been checked. The next state depends
on the fact that either r |= [∆k(τ

R
J)]XY

ε→ Z or r 6|= [∆k(τ
R
J)]XY

ε→ Z. In both
cases Worker marks [∆k(τ

R
J)]XY

ε→ Z to not be checked anymore. In this way, it can
determine precisely the next APE-FD to check;

� Contributor is responsible for checking a single APE-FD against the instance r. Contribu-
tor retrieves APE-FD from Worker. When Contributor gets an APE-FD [∆k(τ

R
J)]XY

ε→ Z,
it schedules jobs for checking [∆k(τ

R
J)]XY

ε→ Z among the computational units that
will effectively check the given APE-FD;

� Sub-Contributor is the basic computational unit that depends on Contributor. Sub-
Contributor takes advantage of the graph representation generated by Contributor for
resolving a sub-problem of the original one. More precisely, Sub-Contributor receives a
sub-problem of the one stored by Contributor for checking a given [∆k(τ

R
J)]XY

ε→ Z
against it. During the computation, Contributor may send a reduction of the sub-
problem Sub-Contributor is dealing with. This is due to the fact that Contributor may
assign portions of a problem to several Sub-Contributors.

Processes composing Attila are hierarchically organized. We may have one Worker that
manages minimal partial PE(r, k, ε), but more than one Contributor is needed for checking
several dependencies at the time. Each Contributor may have several Sub-Contributor in order
to speed-up the checking procedure.

3.4 - Mining APE-FDs 87
worker contributor choreography

Register Contributor
Unregistered Contributor

Worker

Set Complete

Worker

Registered Contributor

Request APEFD
Registered Contributor

Worker

New Dependency Checked
Registered Contributor

Worker

APEFD Set Complete?

Free to work on
a new APEFD

StopSend APEFD Status

Register to Worker

Yes

No

Figure 3-15: A BPMN choreography showing the interaction between a Worker and its
(possibly) many Contributors.

In the following, we provide a detailed description of each process type in order to give
a general idea of how computations are handled. Worker is responsible for managing the
minimal partial PE(r, k, ε). At the end of computation, PE(r, k, ε) turns out to be a minimal
complete set, which is the goal of our distributed procedure. Worker interacts only with its
pool of Contributors. A graphical account of how such interaction happens is given by the
BPMN choreography [82] reported in Figure 3-15. A Contributor can register to the Worker
at any time increasing by one the number of APE-FDs that may be checked simultaneously.
Worker may receive APE-FD request only by registered Contributors. For this reason, it keeps
two auxiliary APE-FD-sets Pending and Assigned ⊆ Pending. Pending is a minimal set of
APE-FDs such that Pending ∩ PE(r, k, ε) = ∅ and, if for every ∆k(τ

R
J)]XY

ε→ Z ∈ Pending
r |= [∆k(τ

R
J)]XY

ε→ Z, then Pending ∪ PE(r, k, ε) is a minimal complete APE-FD-set.
Pending contains all APE-FDs among whom Worker must choose every time is asked for an
APE-FD by some of its Contributor. Assigned represents all APE-FDs in Pending already
assigned to Contributors. Every time a Contributor returns the result of APE-FD-check on
an element of Assigned, Pending and PE(r, k, ε) are updated according to the fact that
either r |= [∆k(τ

R
J)]XY

ε→ Z or r 6|= [∆k(τ
R
J)]XY

ε→ Z. More precisely, we have that
[∆k(τ

R
J)]XY

ε→ Z is removed from both Pending and Assigned, and

� if r |= [∆k(τ
R
J)]XY

ε→ Z, then Worker inserts such APE-FD in PE(r, k, ε);

� if r 6|= [∆k(τ
R
J)]XY

ε→ Z, then for each attribute W ∈ U \ (X ∪Y ∪{Z}), dependencies
[∆k(τ

R
J)]XWY

ε→ Z and XYW
ε→ Z are inserted in Pending.

88 3 - Pure Temporally Evolving Functional Dependencies

GAF

Phys

−→
CT

1

Phys

Phys

GAF

−→
CT

1

Figure 3-16: The update of the set PE(r, k, ε) = {[∆k(τ
Contact
PatId)]GAF,Phys

ε→ CT} (left)

into the set PE′(r, k, ε) = {[∆k(τ
Contact
PatId)]GAF,Phys

ε→ CT, [∆k(τ
Contact
PatId)]GAF,Phys

ε→ CT}
(right).

Basically Worker performs three operations: (i) it extracts an APE-FD [∆k(τ
R
J)] XY

ε→ Z
from Pending, (ii) it updates PE(r, k, ε) when it is the case, and (iii) it updates Pending
and Assigned when the status of a new dependency is discovered. In order to efficiently
perform such operations we make use of Ordered Binary Decision Diagrams (OBDDs)[21].
An OBDD is a single-rooted directed acyclic graph representing a propositional formula ψ.
Every node is labeled with a propositional variable, except for the only terminal 11. From
every non-terminal node v we have at most two outgoing edges low(v) (dotted line, as in
Figure 3-16) and high(v) (solid line, as in Figure 3-16), where low(v) means that variable v
is taken with value 0, while high(v) means that such a variable is taken with value 1. Every
path from the root to terminal node 1 represents a variable truth assignment. Thus, an
OBDD may be seen as the set of all truth assignments for some formula ψ. Worker keeps
track of sets PE(r, k, ε), Pending, and Assigned by means of three formulas ψPE, ψP and
ψA, represented by different OBDDs, respectively. The APE-FDs in PE(r, k, ε) (resp. in
Pending and Assigned) represent all and only the solutions of ψPE (resp. of ψP and of ψA).
Hereinafter, with a little abuse of notation we will use ψ for denoting both the formula and
the OBDD that represents all its possible solutions. Informally, updates of these three sets
are implemented by adding conjuncts/disjuncts to their respective formulas.

For representing set PE(r, k, ε) as all and only the solutions of a formula, it suffices
to assign to each attribute Xi ∈ U three variables xi, xi,

−→x i. Then, formula ψPE has be
satisfied by assignments σ : {x1, . . . , xn, x1, . . . , xn,

−→x i, . . . ,
−→x n} → {0, 1}. An APE-FD

[∆k(τ
R
J)]XY

ε→ Z belongs to PE(r, k, ε) if and only if the assignment σ(xi) = 1 ∀ Xi ∈ X,
σ(yj) = 1 ∀ Y j ∈ Y , and σ(−→z) = 1 satisfies ψPE. According to this approach, for instance,

a1 ∧ a2 ∧ a3 ∧ −→a 4 represents APE-FD [∆k(τ
R
J)]A1A2A3 → A4. Clearly, if a formula ψPE

represents all the possible APE-FDs, an OBDD for ψPE represents them as well. The same
approach may be used for sets Pending and Assigned. Hereinafter, we refer to ψ as the
OBDD representing all and only the assignments σ such that σ |= ψ.

A Worker begins the APE-FD mining task by initializing two OBBDs representing ψPE =

1We use OBDD without the 0 terminal.

3.4 - Mining APE-FDs 89

ψA = ⊥ . Initially, ψPE = ⊥ (i.e., PE(r, k, ε) = ∅) since the distributed procedure has not
discovered any valid APE-FD yet. ψP is true only for those assignments that represent
well-formed APE-FDs. In order to extract from ψP an APE-FD to be tested, we take the
solution associated with any root-to-terminal path in the OBDD for ψP ∧ ¬ψA. For inserting
an APE-FD [∆k(τ

R
J)]XY

ε→ Z in PE(r, k, ε) it suffices to update ψPE to ψPE ∨ ψ where
ψ =

∧
Xi∈X xi ∧

∧
Xi∈Y xi ∧

−→z . Moreover, for deleting a solution from Pending it suffices to
update ψP :

� if we have that r |= [∆k(τ
R
J)]XY

ε→ Z, then we update ψP to ψP ∧ ¬ψ;

� if we have that r 6|= [∆k(τ
R
J)]XY

ε→ Z, then we update ψP to ψP ∧ ψ where ψ = −→z →
(
∨
Xi∈U\X xi ∨

∨
Xi∈U\Y xi) (i.e., if −→z holds, then at least one of variables not contained

in the formula for the given APE-FD must hold).

It is worth noting that we have a search operation for APE-FDs that is linear in |U |. Moreover,
boolean operations on OBDDs are implemented in very efficient way by many packages on the
market (in our prototype we used BuDDy [67]). This solution allows us to have a compact
representation of sets of APE-FDs that can be manipulated efficiently.

Figure 3-16 shows an example of how PE(r, k, ε) is updated if we represent it through
formula ψPE. In this example, we borrow two dependencies from the psychiatric case register
introduced in a simplified way in Section 3.1 and discussed in detail in Section 3.4.2. The
real world schema differs from the example since patients are identified by PatId attribute
in place of their names. Furthermore, several attributes are used for storing information
regarding registered calls. The most significant attribute is Global Assessment of Function-
ing (GAF): it is a numeric value provided by the physician at the end of the call, and
it scores the patient’s mental health status. Figure 3-16 shows an update operation on
PE(r, k, ε) = {[∆k(τ

Contact
PatId)]GAF,Phys

ε→ CT}, where PE(r, k, ε) is updated to PE′(r, k, ε)
= {[∆k(τ

Contact
PatId)]GAF,Phys

ε→ CT, [∆k(τ
Contact
PatId)]GAF,Phys

ε→ CT}. As one may notice,
each node v has at most two outgoing edges, one solid and one dashed representing high(v)
and low(v) respectively. Taking a solid edge high(v) in a root-to-terminal path denotes that
the attribute corresponding to v belongs to the dependency. Taking a dashed edge low(v) in
a root-to-terminal path denotes that the attribute corresponding to v does not belong to the
dependency. As an example, the OBDD shown in Figure 3-16 (right) features two paths from
the root node, labeled Phys, to terminal node 1. Since the edge (Phys, Phys) is dashed, the

path Phys, Phys,GAF,
−→
CT, 1 represents the dependency [∆+∞(τContactPatId)]GAF,Phys

ε→ CT .
Such dashed edge implies that attribute Phys is not taken in X while it is taken in Y because
the outgoing edge the path takes from Phys is a continuous one.

Let us consider now the Contributor process. Until now we just considered it as a process
which asks Worker for an dependency and eventually answers whether r |= [∆k(τ

R
J)]XY

ε→ Z
holds or not, as shown by the BPMN choreography in Figure 3-15. Thus, Contributor is
responsible for checking a single APE-FD at a time. Since the complexity is intractable (recall
that the problem in NP-Complete), Contributor does not deal directly with the computation.
Indeed, as mentioned before, it splits a problem among several computational units called
Sub-Contributors.

90 3 - Pure Temporally Evolving Functional Dependenciescontributorsub

Register SubContributor
Unregistered SubContributor

Registered Contributor

Set Complete

Worker

Registered Contributor

Request sub-problem
Registered SubContributor

Registered Contributor

sub-problem Closed
Registered SubContributor

Registered Contributor

APEFD checked?

Free to work on
a new sub-problem

Stop

Send sub-problem Status

Register to Contributor

Reduce Problem

Update Problem Status

Registered Contributor

Registered SubContributor

Request APEFD
Registered Contributor

Worker

Free to work on
a new APEFD

Set Complete

Contributor

Registered SubContributor

Stop

Yes

No

Figure 3-17: A BPMN choreography showing the interaction between a Contributor and its
(possibly) many Sub-Contributors.

The way in which a Contributor deals with its pool of Sub-Contributors is very close
to the interaction between Worker and its Contributors and it is described by the BPMN
choreography diagram provided in Figure 3-17. The status of the problem is managed by
Contributor and it is represented by a binary tree, where each node is labelled with a tuple and
its two children represent either the case in which the tuple is inserted in the current solution
or it is removed form it. Sub-problems are generated by asserting that a tuple belongs or
not to the final solution. This procedure generates a tree. Initially the whole tree is given
to a single Sub-Contributor to visit. Suppose that a new Sub-Contributor registers himself to
the same Contributor during a computation. Such Contributor selects the sub-problem of a
Sub-Contributor and a tuple t in r. Contributor splits the sub-problem in two parts, one in
which t must belong to the solution and the other in which t does not belong to the solution.
One portion is given to the new Sub-Contributor and the “old” Sub-Contributor is notified to
reduce its problem to the other portion. Usually we have multiple Sub-Contributors that work
in a subtree rooted at the node where the reduce operation happens, and thus, as reported in
Figure 3-17, we have to notify all of them about the reduction.

Figure 3-18 shows an example of how Contributor works. Suppose that there is exactly one
Sub-Contributor sc1 that is exploring the tree (a) on the top of Figure 3-18. At a certain point,
a new Sub-Contributor sc2 registers himself to the Contributor and requests a sub-problem.
Now Contributor looks at the active sub-problem and chooses the one of sc1. At the root of
such problem there is tuple t1. Therefore, Contributor splits the sub-problem in two more
sub-problems: one where t1 is forced to be deleted (tree (b) in Figure 3-18), and the other
where t1 is kept (tree (c) in Figure 3-18). Finally, the exploration of sub-tree (c) is given to
sc2 and sc1 is notified that its exploration of the tree (a) is reduced to the exploration of the
subtree (b).

Sub-Contributor is the minimal computation unit: it simply performs tasks assigned by its
master Contributor. Sub-Contributor listens constantly to its Contributor in order to receive

3.4 - Mining APE-FDs 91

t1

t2 t2

t3 t3 t3 t3

.

0 1

0 1

0 1 0 1

0 1

0 1 0 1

sc1

(a)

t1

t2

t3 t3

.

0

0 1

0 1 0 1

(b)

sc1 t1

t2

t3 t3

.

1

0 1

0 1 0 1

sc2

(c)

R
ed

u
ce

N
ew

P
rob

lem

Figure 3-18: A graphical account of how the tree is splitted among Sub-Contributors.

reduction of its current sub-problem for speeding up the process, meanwhile it explores its
current sub-problem searching for a solution. Sub-Contributor operates in two symmetric ways
that may be seen as two concurrent threads. The first thread assumes that its sub-problem
contains the solution and performs a depth-first search of the tree in order to find it. The other
thread assumes that the sub-problem does not contain the solution and tries to find a counter-
example. In order to deal with the latter task, the Sub-Contributor translates the sub-problem
into a Linear Programming problem and verifies its feasibility. This symmetric approach
turns out to be very efficient. Attila makes use of the open-source linear programming library
GNU Linear Programming Kit (GLPK) [89] to perform such linear programming tasks.

3.4.2 Mining APE-FDs on Clinical Domains

In the following, we discuss APE-FDs extracted by means of the introduced prototype. These
results provide also an early validation of our prototype. In particular, we considered two
application domains. The first one refers to psychiatry. Data regarding contacts between
patients and psychiatrists are collected. Section 2.3.2 provides a detailed description of
this domain. We extracted from relation Contact for the psychiatric domain the following
APE-FDs:

� [∆+∞(τContactPatId)]GAF
ε→ numPsychologists with ε = 0.1. This dependency states that,

for each pair of consecutive calls of the same patient, the number of psychologists of the
second call uniquely depends on patient’s GAF score of the first call. This may indicate
that some (even implicit) policy determines the number of psychologists needed for
following patients, according to the previous patients’ condition.

� [∆+∞(τContactPatId)]Service,GAF
ε→ CT with ε = 0.1. This dependency states that, for

each pair of consecutive calls for the same patient, the second contact type (family

92 3 - Pure Temporally Evolving Functional Dependencies

member, a neighbour, the police, . . .) uniquely depends on the previous patient’s GAF
score and Service (clinical psychiatry, medical psychology, psychotherapy, . . .).

� [∆+∞(τContactPatId)]GAF ,Physician
ε→ Request with ε = 0.1. This dependency states that,

for each pair of consecutive calls of the same patient, the request (it could be group
psychotherapy, family psychotherapy, legal medical evaluation, . . .) of the second call
depends on the physician and on the patient’s GAF score of the previous call.

The other domain we considered is the pharmacovigilance one, and it is described in
Section 2.3.3. The temporal data are used to investigate any cause-effect relationship among
drugs and reaction(s) in different time periods, or according to the exposure time frame.
As for the temporal feature, we focused here on the evolution of reports considering single
drugs (by using PhProd (Pharmaceutical Product, i.e., active principle) as join attribute in
the evolution expression). Indeed, we could investigate physician behaviors through time
w.r.t. previously reported adverse events. In other words, it would be interesting to verify
if past adverse event cases lead to future good practices. As an example, changes in drug
dosages could be related to the fact that physicians are aware of past cases of adverse events.
Reducing or increasing dosages of previously suspected drugs may be seen as attempt to
avoid such adverse events.

Among APE-FDs extracted from a recent instance of Reports schema of the Italian Network
of Pharmacovigilance we introduce here the following APE-FD.

� [∆+∞(τReportsPhProd)]PhProd ,Dos
ε→ Dos with ε = 0.2. Such a dependency may point out

that, when an ADR of a drug is reported, the dose is usually adjusted in the same
way, depending on the previous administrations to possibly different patients. This
is a good indicator that Italian physicians methodically use the Italian Network of
Pharmacovigilance in managing patients’ therapies.

3.4.3 Performance Analysis

In this section, we provide a short and preliminary performance analysis of the various
components of Attila. We did run two kinds of test. The first one was on a single machine, to
have a first estimate of the time required for mining APE-FDs on a large real-world database.
The second test involved a single APE-FD, checked using a server and at most two distinct
remote machines. By this test we wanted to observe how significantly the time required for
checking a single APE-FD decreases, when the problem is split among different computational
units.

First of all, we analyzed performances regarding the whole system. In particular, we
considered the case when the computation is entirely done by only a physical machine.
We tested our prototype on an instance of Contact schema. It consists of approximately
1.5 · 106 rows. APE-FDs of the kind [∆+∞(τContactPatId)]XY

ε→ Z were extracted with ε = 0.1.
Figure 3-19 shows the outcome of such experiment. Attila tested almost 4500 APE-FDs in
approximately 10 days. Figure 3-19 shows that among tested APE-FDs (i.e., holding and not
holding), a large portion of APE-FDs, denoted by superset, is subsumed by holding APE-FDs.

3.4 - Mining APE-FDs 93

Dependencies Tested: 4427
Execution Time (hours): 218

Superset

28%

Not Checked

24%

Not Valid

47%

Valid

1%

Figure 3-19: The result of the execution of Attila on a single machine (Intel Core i3(TM)
CPU M 330 2.13GHz, 4GB) on an instance of table Contact (∼ 1.5 · 106 rows).

Thus, they have not been tested (i.e., only minimal APE-FDs need to be tested). Worker is
often idling, since most of the computation is performed by Contributors. As discussed in
Section 3.4, a Contributor must visit a tree, which is exponentially large in the instance size.
This operation is theoretically unfeasible for large instances. However, by employing simple
pruning conditions (e.g., too many tuples deleted, violated constraints, and so on), the tree
size may be decreased.

We analyzed the interactions between Contributor and Sub-Contributor by using APE-FD

[∆+∞(τReportsPhProd)]PhProd ,Dos
ε→ Dos with ε = 0.2, as described in Section 3.4.2. Figure 3-20

shows comparison between various configurations of Sub-Contributors when checking APE-FDs.
We considered five possible situations:

(i) a single local Sub-Contributor (Server) running on the Contributor machine;

(i) a single local Sub-Contributor, and a remote Sub-Contributor (Remote);

(i) two local Sub-Contributors and a single remote Sub-Contributor,

(i) two remote Sub-Contributors;

(i) a single local Sub-Contributor, and two remote Sub-Contributors.

By two remote Sub-Contributors we intend two separate physical machines with identical
hardware/specs running a Sub-Contributor each. As expected, the performances improve
when the task is distributed among different machines.

Figure 3-21 depicts the number of closed branches, which increases according to the size
of the instance. We can conclude that our instances are easier to solve than the fictional
instances used to prove NP-hardness results.

94 3 - Pure Temporally Evolving Functional Dependencies

0 200 400 600 800 1,000 1,200 1,400 1,600

1,397

1,102

953

1,021

836

Time (sec.)

1 Server+2 Remote

2 Remote

2 Server+1 Remote

1 Server+1 Remote

1 Server

Figure 3-20: The result of Attila execution varying Sub-Contributors configurations on the
same instance of the schema Reports consisting of ∼ 1.5 ∗ 105 rows (Server: 6 Core AMD
Opteron(TM) 4284 3GHz, 8GB, Remote: AMD Phenom(TM) II X6 1055T Processor 2.8
GHz, 8GB).

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

1,200

rows(x 1000)

Time (sec.) Branch Closed (x 100)

Figure 3-21: The number of closed branches considering incremental portions of the same
instance of schema Reports (the time refers to the execution on a Intel Core i3(TM) CPU M
330 2.13GHz, 4GB machine).

3.5 Conclusions

In this chapter, we proposed a framework for extracting Approximate Pure Temporally
Evolving Functional Dependencies (APE-FDs for short) from a temporal database. Moreover,
we have addressed the data complexity of such problem. Unfortunately this complexity turns
out to be NP-Complete even for the most simple of such dependencies. When we look for
the set of APE-FDs holding over an instance r, sizes of the result set are determined by the
number of attributes. For some instances, the lower bound of such size is exponential. We
dealt with these problems by using model checking techniques, distributed computations,
and linear programming techniques. The implemented prototype has proved to be efficient in
two real world clinical scenarios. Moreover, we discussed interesting APE-FDs extracted from

3.5 - Conclusions 95

psychiatry and pharmacovigilance domains. These results may provide analysts with a better
understanding of the underlying data. We plan to further improve and extend our prototype
in order to deal with different types of approximate functional dependencies. Moreover, we
plan to further validate mined APE-FDs with clinical experts.

96 3 - Pure Temporally Evolving Functional Dependencies

Chapter 4

Discovering Quantitative Temporal
Functional Dependencies on Clinical
Data

In the previous chapter, we proposed a new kind of functional dependency (APE-FD), based
on Pure Temporally Evolving that is one particular class of T -FDs (as illustrated in detail in
Section 2.1.2). In this chapter, we focus on a new kind of approximate temporal functional
dependency that uses Pure Temporally Grouping. This functional dependency is more focused
on the quantitative aspect of the data. In the original concept of AT -FDs, shown in Section
2.1.4, the comparisons between atemporal attributes are done by using only equality. For
this reason, if we want to analyze data from an OLAP perspective, such dependencies are
not well suited for extracting rules related to some quantitative data, in particular when we
want to analyze different values for clinical measurements that have meaningless variations
within some specified threshold.

To this end, we propose a new kind of approximate temporal functional dependencies,
called Multi Approximate Temporal Functional Dependency (MAT -FD), that
considers “small variations” for the values of quantitative attributes, while retaining the
compactness and the simplicity of AT -FDs. Another novel aspect presented in this chapter is
represented by the design of a mining algorithm for extracting MAT -FDs from a given clinical
data set. In order to extract knowledge from the data set, the algorithm generates and tests
possible candidates of valid MAT -FDs. Then, it collects the valid ones, according to some
optimality criteria, both for the temporal dimension and for the involved attributes. This
means that checking if the data set satisfies a given MAT -FDs is an operation that is intensively
used during the mining process, and its complexity deeply affects the overall complexity of
the whole mining process. We propose a graph-based solution for performing such operation,
and we address its complexity. Finally, we develop a tool, called SW-MATFDminer, that
implements the algorithm above. The tool has been designed to extract MAT -FDs regardless
of the application domain (i.e., it is a general-purpose tool). In particular, we provide results
from the use of our tool to mine data coming from intensive care units and collected within
the MIMIC III dataset (that is illustrated in Section 2.3.1). Let us recall that this work has

97

98 4 - Discovering Quantitative Temporal Functional Dependencies on Clinical Data

been published in [30].

4.1 Multi Approximate Temporal Functional Depen-

dencies

In the following, we introduce a new type of approximate temporal FDs, based on a mul-
tidimensional relational model, usually adopted in relational OLAP approaches [61]. Here
atemporal attributes of a relational schema are distinguished in dimensional (alphanumeric)
and measure-related (quantitative) attributes. More formally, let us consider relations over
a relational schema R with attributes D ∪ {M} ∪ {V T}, where D represents all atemporal
attributes or dimensions, M represents a quantitative attribute containing values of some
measure, and V T is the attribute denoting the valid time of tuples.

4.1.1 A Motivating Example

Throughout this chapter we will refer to examples drawn from table 4.1. The table represents
a relation containing hospitalization data of patients. The schema of such relation is composed
by the following attributes: VT (valid time), patient (patient name), Systolic blood pressure
(value of systolic blood pressure), Drug (name of the drug), ICD9 (International Classification
of Diseases, 9th revision) [43].

Considering a time window of one week, we can observe that if the patient is under a
treatment with a drug, then the values of his pressure are stable within a specified range.
On the other hand, if we consider for each patient his pressure (regardless of whether he is
under a treatment), we observe that the values of blood pressure are not within the specified
range for the functional dependency Patient→ Pressure to hold. Such kind of dependency
involving quantitative data cannot be derived/represented through a T -FD or an A-FD, as
they involve only textual data, compared through equality.

In this chapter, we propose a new kind of functional dependency that allows us to mine
information such as “In most cases, patients with the same treatment have the same diastolic
blood pressure within a range of 10mm/Hg, considering a maximal time window of 1 week”.

Clinicians could be interested in the properties entailed by such functional dependency.
For example, assuming that the given sliding window is the maximal for which the FD
holds, one may observe that for hospitalizations longer than 7 days the blood pressure slowly
changes. Moreover, because of the approximation (as explained in section 2.1 and subsection
4.1.2), clinicians can rely on information that cannot be retrieved by means of FDs.

4.1.2 Definition and Model

After having introduced FDs, A-FDs, and T -FDs, we now introduce the concepts of DT -FDs

and MAT -FDs.
In the following, we consider relations over a relational schema R with attributes D ∪

{M} ∪ {V T}, where D represents all atemporal attributes or dimensions, M represents

4.1 - Multi Approximate Temporal Functional Dependencies 99

a quantitative attribute containing values of some measure, and VT indicates a temporal
attribute. For these functional dependencies, we consider pure temporal grouping of the form
[k]X → M (that is proposed in [32]), where k ∈ N is the parameter of a specific temporal
grouping function t−Group that is, in our case, the sliding window (SW) grouping.

A sliding window SW (i, k) includes all the time points in interval [i, i+k− 1]. Thus, once
the length of the SW over relation r (i.e., k in the example) has been fixed, every SW over
r will feature that length. Every SW sets up a group (or chain) over which our functional
dependency is checked.

As seen in section 2.1, T -FD and A-FD can detect functional dependencies only if values
for Y attribute are equal. This is a limitation when some attribute is a measure and the
difference in its values is negligible.

To successfully consider some quantitative features of clinical data, we introduce the
concept of Delta Temporal Functional Dependency (DT -FD). DT -FDs are functional
dependencies that focus on measures, and they allow us to constrain quantitative data
with some threshold when comparing numerical values. Consequently, we introduce a new
parameter, namely δ, we need to use in the specification and evaluation of the new functional
dependency. Intuitively, δ is a user-defined parameter and represents the maximum distance
allowed between the measures of two tuples within a sliding window, for the FD to hold.
Formally, given a relational schema R = D ∪ {M} ∪ {V T}, a natural number k, and a real
number δ ≥ 0, a DT -FD is an expression of the form [k]X →

δ
M with X ⊆ D. Now, we

define when an instance r of R satisfies a given DT -FD.

VT Patient Systolic Blood Pressure Drug ICD9

2017-01-07 Michael 115 Atenolol V553

2017-01-08 Michael 145 - V301

2017-01-09 Michael 122 Atenolol V660

2017-01-10 Michael 125 Atenolol V660

2017-01-11 Michael 118 Atenolol V553

2017-01-12 Michael 131 - V552

2017-05-01 Michael 145 Atenolol V553

2017-05-04 Michael 142 Atenolol V553

2017-05-07 Michael 141 Atenolol V553

2017-01-07 Sebastian 132 Lisinopril V553

2017-01-08 Sebastian 135 Lisinopril V553

2017-01-09 Sebastian 170 - V660

2017-01-10 Sebastian 128 Lisinopril V310

2017-01-11 Sebastian 150 - V596

2017-01-12 Sebastian 130 Lisinopril V310

Table 4.1: A subset of one of the tables we create to mine MAT -FDs.

100 4 - Discovering Quantitative Temporal Functional Dependencies on Clinical Data

Patient Mike Mike Mike Mike Mike Mike Mike

Day 1 1 1 2 2 2 3

Systolic blood pressure in mmHg (M) 118 122 125 118 123 119 116

Patient Mike Mike Mike Mike Mike Mike Mike

Day 3 3 4 4 4 5 5

Systolic blood pressure in mmHg (M) 120 118 117 123 121 124 145

Patient Mike Mike Mike Mike Mike Mike Mike

Day 5 6 6 6 7 7 7

Systolic blood pressure in mmHg (M) 120 116 124 122 122 120 118

Table 4.2: Systolic blood pressure of a single patient during a week.

V T

M

1 2 3 4 5 6 7 8

100

105

110

115

120

125

130

135

140

145

150

Figure 4-1: Graphic representation of data in table 4.2(δ = 10).

Definition 19. (DT-FD) Let r be an instance over relational schema R = D ∪ {M} ∪ {V T},
and [k]X →

δ
M be a DT -FD over R. We say that r satisfies [k]X →

δ
M , written r |= [k]X →

δ
M , if and only if every pair of tuples t1, t2 ∈ r satisfies the following formula:

∃i(t1[V T], t2[V T] ∈ SW (i, k))→ |t2[M]− t1[M]| ≤ δ.

Let us notice that DT -FDs may express constraints on the range of measurements for tuples
whose valid times are within a given range. If we expect the data to conform to such a DT -FDs

we can easily impose it as a constraint at schema level. If it is not the case (i.e., tuples in r are
in general not constrained to respect a DT -FD), we may be interested whether or not “almost”
the tuples in our instance satisfy a given DT -FD. Then we are moving our perspective from
imposing constraints, derived from our previous knowledge, on the given schema to extracting
knowledge from the data present in our instance. In order to do that we take advantage of the
approximation concept. Approximation is defined by means of a measurement error, namely

4.1 - Multi Approximate Temporal Functional Dependencies 101

Q, for DT -FD. Such a measurement considers the minimum number of tuples in r to be deleted
for the DT -FD to hold. Formally, Q([k]X →

δ
M, r) = |r| −max{|s| | s ⊆ r ∧ s � X →

δ
M}.

The related scaled measurement q is defined as q([k]X →
δ
M, r) = Q([k]X →

δ
M, r)/|r|.

In this approximation, a user-defined threshold ε specifies the maximum error allowed,
that is the percentage of tuples in the entire relation r to be deleted.

In the following, we consider DT-FD with approximation, obtaining a new type of ap-
proximate functional dependency called Multi Approximate Temporal Functional
Dependency (MAT -FD). Given a relational schema R = D ∪ {M} ∪ {V T}, a natural
number k, a real number δ ≥ 0, and a real number 0 ≤ ε ≤ 1, a MAT -FD is an expression of
the form [k]X

ε→
δ
M where X ⊆ D. Now, let us define when an instance r of R satisfies a

given MAT -FD.

Definition 20. (MAT -FD) Let r be an instance over the relational schema R = D ∪ {M} ∪
{V T}, and [k]X

ε→
δ
M be a MAT -FD over R. We say that r satisfies [k]X

ε→
δ
M , written

r |= [k]X
ε→
δ
M , if and only if q([k]X →

δ
M, r) ≤ ε

Let us observe data in Table 4.2 and their representation in Figure 4-1. These data
represent the values of systolic blood pressure of a patient during a week, having three
measurements each day. Let r be the instance consisting of tuples shown in Table 4.2. Let
us suppose that we want to verify DT -FD r |= [7]Patient →

10
Pressure. Clearly, it is not

the case because the difference between the two values of 145 and of 124, both measured
on the fifth day, exceeds 10. Since those tuples happen to have the same day as valid time
they are grouped together by SW (i, 7) and thus r 6|= [7]Patient →

10
Pressure. However, it

is easy to see that almost all values fit within the given delta (δ = 10) and only the second
measurement of the fifth day, with a value of 145, does not belong to it. This is a typical
situation where the approximation helps, because deleting only one tuple (i.e., the one with
the value of 145 on the fifth day) allows us to obtain a valid DT -FD. In this example, ε could

be up to 4.76% for the MAT -FD to hold (1 tuple over 21), that is: [7]Patient
4.76→
10

Pressure.
Over a relation r, several MAT -FDs can be discovered. However, minimal MAT -FDs are

of particular interest, because many other MAT -FDs can be derived from the minimal one.
We define a minimal MAT -FD as follows:

Definition 21 (Minimal MAT -FD). Given a MAT -FD over r, we define [k]X
ε→
δ
M to be

minimal for r if r � X
ε→
δ
M and ∀X ′ ⊂ X we have that r 2 [k]X ′

ε→
δ
M .

We recall that MAT -FD must hold, with an error smaller than ε, over the entire dataset. If
we delete a tuple inside a SW, that tuple will remain deleted in all the SWs (either following
or preceding the current SW), which include that tuple.

It is also important to remind that DT -FD and MAT -FD are functional dependencies,
and this means that our mining focus is on extracting properties that describe relationships
between attributes, and not between their values. So, in our previous example, we found
a dependency Patient → Pressure, regardless the name of the patient nor the values of
pressure.

102 4 - Discovering Quantitative Temporal Functional Dependencies on Clinical Data

Start

1,[5, 5]

2,[5, 8]

2,[8, 8]

3,[5, 7]

3,[5, 8]

3,[7, 7]

3,[7, 8] 4,[7, 9]

4,[8, 9]

4,[9, 9]

5,[6, 6]

5,[6, 7]

5,[6, 8]

5,[6, 9]

End
0

1

0

0

1

0

1

0

0

0

3

1
1

1

1

1

1 0

0

0

2

0

2

0

0

0

1

1

1

V T

M

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

V T 1 2 3 4 5
M 5 8 7 9 6

k = 3
δ = 3

Figure 4-2: An example of graph build over an instance rx.

As we will show in Section 4.3, MAT -FDs may be used to detect variations in trends
of the given measure M . Moreover, let us focus on MAT -FDs [k]X

ε→
δ
M where value k is

the maximum value for which r |= [k]X
ε→
δ
M (i.e., r 6|= [k′]X

ε→
δ
M for k′ ≥ k). A small

(resp. large) value for such k may indicate that the chosen measure M is quickly (resp.
slowly) changing over time in the context determined by X. However, since they operate at
the attribute level, MAT -FDs per se do not provide information neither about the quality
(ascending, descending or stable) of the trends nor about the values of such trends.

4.2 Mining MAT -FDs

In this section, we introduce the problem of mining MAT -FDs on a given instance r of a
temporal schema R. Moreover, we point out two main computational challenges we addressed
in the implementation in our prototype. Given a relational schema R = D ∪ {M} ∪ {V T},
an instance r of R, a threshold 0 ≤ ε ≤ 1, a real value δ ∈ R≥0, and a value k ∈ N we focus
on the problem of returning a set S of MAT -FDs of the kind [k′]X

ε→
δ
M :

(i) for every MAT -FD [k′]X
ε→
δ
M in S, we have k′ ≥ k and r |= [k′]X

ε→
δ
M ;

(ii) for every MAT -FD [k′]X
ε→
δ
M in S, MAT -FD [k]X

ε→
δ
M is minimal for r;

(iii) for every MAT -FD [k′]X
ε→
δ
M in S we have r 6|= [k′′]X

ε→
δ
M if k′′ > k′ (i.e., the sliding

window is maximal).

A maximal set S that satisfies conditions (i), (ii), and (iii) is called complete. Given a
temporal schema R = D ∪ {M} ∪ {V T}, an instance r of R, a threshold 0 ≤ ε ≤ 1, a
real value δ ∈ R≥0, and a value k ∈ N we are interested in finding a complete set S w.r.t.
such parameters. However, in order to solve such problem we have to deal with two main
computational problems: (a) what is the minimum size for a complete set S; (b) what is the

4.2 - Mining MAT -FDs 103

computational complexity of deciding if r |= [k]X
ε→
δ
M for a given MAT -FD [k]X

ε→
δ
M . Let

us consider the first problem. Unfortunately, it may be proved, by easily adapting a result of
Kivinen et al. [62], that there exist temporal schemas R = D ∪ {M} ∪ {V T}, instances r of
R, thresholds 0 ≤ ε ≤ 1, real values δ ∈ R≥0, and values k ∈ N, for which the the smallest
minimal complete set S w.r.t. such parameters is exponential in the size of D. However, the
instance built to prove such a result does not seem to resemble real case scenarios. Moreover,
the number of attributes usually does not exceed 50 and does not grow overtime like the
number of tuples. Moreover, we can adapt the procedure from [95] to prune the search space
for a minimal complete set S. Problem (b) is polynomial in the size of r but it requires to
design a new algorithm to be solved. The rest of this section is devoted to the description
of such algorithm. For the sake of brevity, given an instance r of R,a set X ⊆ D, and an
element x ∈ πX(r) we denote with rx the instance σX=x(r). It may be easily proved that
given an instance r of R and a MAT -FD [k]X

ε→
δ
M we have that r |= [k]X

ε→
δ
M if and only

if:

∑
x∈πx(r)

(
max

r′⊆rx,r′|=X→
δ
M

|r′|

)
≥ (1− ε)|r|.

The above result guarantees the soundness and completeness of the following procedure for
verifying whether or not r |= [k]X

ε→
δ
M . Let r = rx1 ∪ . . .∪ rxn , where πX(r) = {x1, . . . , xn}

then:

1. initialize C = 0

2. for each 1 ≤ i ≤ n:

(a) compute maxxi = maxr′⊆rxi ,r′|=[k]X→
δ
M |r

′|

(b) C = C +maxxi

3. if C ≥ (1− ε)|r| then return r |= [k]X
ε→
δ
M else return r 6|= [k]X

ε→
δ
M .

Now we focus on the only interesting point 2.a of the procedure in which we have to compute

maxx = max
r′⊆rx,r′|=[k]X→

δ
M

|r′|.

This means that the problem of finding maxx may be encoded as the following integer linear
programming problem (for each t ∈ rx let bt be the boolean variable associated to t):

max(Σt∈rxbt)

bt + bt′ ≤ 1,

 (for each t, t′ ∈ rx with
|t[V T]− t′[V T]| ≤ k
and |t[M]− t′[M]| > δ


bt ∈ {0, 1}, for each t ∈ rx

(4.1)

104 4 - Discovering Quantitative Temporal Functional Dependencies on Clinical Data

Algorithm: MaxInstance(rx, δ, k)

N ← E ← ∅
G← (N,E,WE)
V T imes← SORT (πV T (rx))
for i← 0 . . . |V T imes| − 1

ct← V T imes[i]
V al≤ct ← σct−k≤V T≤ct(rx))
V al=ct ← πY (σV T=ct(rx))
for each (lb, ub) ∈ V al≤ct × V al≤ctif

(
lb ≤ ub ∧ ub− lb ≤ δ∧

∃v(v ∈ V al=ct ∧ lb ≤ v ≤ ub)

)
then N ← N ∪ {(ct, [lb, ub])}

for each ((ct, [lb, ub]), (ct, [lb, ub])) ∈ N ×N

if

({
t ∈ rx :

ct− k ≤ t[V T] ≤ ct∧
(t[M] < lb ∨ t[M] > lb)

}
= ∅
)


e← {((ct, [lb, ub]), (ct, [lb, ub]))}
E ← E ∪ {e}
countct ← |{t ∈ rx : lb ≤ t[M] ≤ ub}|
W(e)←

∣∣{t ∈ rx : ct < t[V T] ≤ ct}
∣∣− countct

N ← N ∪ {start, end}
for each (ct, [lb, ub]) ∈ N \ {start, end}

e← (start, (ct, [lb, ub]))
e← ((ct, [lb, ub]), end)
E ← {e, e}
countct ← |{t ∈ rx : lb ≤ t[M] ≤ ub}|
W(e)← |{t ∈ rx : t[V T] ≤ ct}| − countct
W(e)← |{t ∈ rx : t[V T] > ct}|

return |rx| −DAG SHP (G, start, end)

Figure 4-3: The pseudocode for finding the maximum cardinality of a set r′ ⊆ rx which
satisfies r′ |= [k]X

ε→
δ
M .

However, from the above encoding we can just infer that the sub-problem of finding maxx
belong to the complexity class NP. Fortunately, we prove that the problem of finding maxx
may be solvable in polynomial time. An algorithm solves this problem is shown in Figure
4-3. The idea underlying the algorithm in Figure 4-3 consists of building a weighted directed
acyclic graph (WDAG) G = (N,E,WE) where N is a finite set of nodes, E ⊆ N × N
and WE : E → N≥0. With the exception of two special nodes start and end each node in
N is a triple (ct, [lb, ub]) where ct ∈ πV T (rx) and [l, u] is an interval (where lb stands for
“lower bound” and ub stand for “upper bound”) with lb, ub ∈ πM(rx) and length at most δ
(ub− lb ≤ δ).

4.2 - Mining MAT -FDs 105

A triple (ct, [l, u]) belongs to N if and only if:

� there exists t ∈ rx such that t[V T] = ct and lb ≤ t[M] ≤ ub (i.e., there exists at least
one tuple at time ct witnessing a value of M included in the interval [lb, ub]);

� there exists t, t′ ∈ rx with ct − k ≤ t[V T], t′[V T] ≤ ct with t[M] = lb and t′[M] = ub
(i.e., both values lb and ub are witnessed by some tuples t and t′ whose VTs are included
in the interval [ct− k, ct]).

A pair (ct, [lb, ub]), (ct′, [lb′, ub′]) ∈ N ×N belongs to E if and only if:

� ct < ct′ ;

� ct < ct′ − sw or for every tuple t ∈ rx such that ct− sw ≤ t[V T] ≤ ct∧ lb ≤ t[M] ≤ ub
we have lb′ ≤ t[M] ≤ ub. For every (ct, [lb, ub]) ∈ N we have (start, (ct, [lb, ub])),
((ct, [lb, ub]), end)∈E.

Finally, for each e = ((ct, [lb, ub]), (ct′, [lb′, ub′])) in E we have:

WE(e)=

∣∣∣∣∣∣
t∈rx:

t[V T] ∈ (ct, ct′)∨
(t[V T] = ct′ ∧ t[M] /∈ [lb′, ub′])


∣∣∣∣∣∣.

For each e = (start, (ct, [lb, ub])) in E we have:

WE(e)=

∣∣∣∣∣∣
t∈rx:

t[V T] < ct∨
(t[V T] = ct ∧ t[M] /∈ [lb, ub])


∣∣∣∣∣∣.

For each e = ((ct, [lb, ub]), end) in E we have:

WE(e) =
∣∣{t ∈ rx : t[V T] > ct

}∣∣ .
Once we have built the graph G we are interested in finding the value of the shortest path
that goes from start to end in G. As a matter of fact, it is possible to prove with a technique
similar to the one used in [29] that the value v of the minimum shortest path between start
and end in G represents the minimum cardinality for a set r′ ⊆ r such that rx \ r′ |= X →M
and thus |rx| − v is the solution of the linear integer problem 4.1. For the complexity analysis
we have that the |N | ≤ |πV T (rx)| · |πM(rx)|2 ≤ |rx|3 and thus |E| ≤ |rx|6. The classical
shortest path algorithm on DAGs works in O(|N |+ |E|) steps and thus the complexity of
our algorithm turns out to be O(|rx|). Let πX(r) = {xi, . . . , xn} when we check the single
MAT -FD we call the above algorithm for every value xi ∈ and thus the complexity of checking
a single MAT -FD is O(|rx1|6) + . . .+O(|rxn|6) which is bounded by O(|r|6). Figure 4-2 shows
an instance of rx (the value of X is omitted since all the tuples are supposed to agree on such
value) and the corresponding WDAG built using k = δ = 3. In Figure 4-2, nodes belonging
to the shortest path from start to end are highlighted as well as the relative tuples in the
graphical representation of rx. As we detect when we implemented the algorithm in Figure
4-3 an O(|rxn|6) may affect dramatically the performance of the mining process (e.g., for

106 4 - Discovering Quantitative Temporal Functional Dependencies on Clinical Data

a relatively small instance of 100 tuples you may need to build a graph with 1012 edges).
However, there are several optimizations we applied in order to deal with such complexity
issue. They do not affect the asymptotic complexity, nevertheless they dramatically improve
the performances of the the algorithm on real-world instances. In the following we will
describe one of such optimizations along with an example. It immediately follows from the
definition of WE that for every of edge (n, n′) in E such that there exists a path n1, n2, . . . nm
in G with n1 = n and nm = n′ we have that WE(n, n′) >

∑m−1
i=1 WE(ni, ni+1). We call such

edges useless. It easy to prove that removing useless edges from E does not affect the value
for any shortest path in G then we can restrict ourselves to a subset E ′ of E such that
E ′ = {(n, n′) ∈ E : (n, n′) is not useless }. Figure 4-2 represents an instance of rx and the
relative graph G build on rx with δ = sw = 3 devoid of useless edges.

4.3 Mining Clinical Data

4.3.1 The Dataset

In order to motivate and validate our approach, we consider the clinical domain of intensive
care and in particular we apply our solution to MIMIC (described in details in subsection 2.3.1).
Data from Intensive Care Unit (ICU) are particularly useful for testing DT -FD and MAT -FD,
because they contain several measurements of high temporal resolution parameters such as
hourly vital signs (heart rate, blood pressures, oxygen saturation, and so on). Moreover,
these are the type of data where their measures are strongly affected by daily fluctuation,
measurement error, bad reporting and so on, and having a delta helps to extract more
significant information. Before proceeding with the mining procedure for MAT -FDs, an ETL
process (Extract, Transform, Load) is required. This process allows us to extract data from
MIMIC database and transform them in order to create tables with all the dimensions and
a measure we want to analyze. In particular, we focused on table ChartEvents that
contains all the charted data available for a patient; ICUstays that defines a single ICU
stay; Prescriptions that contains all the prescriptions of a certain drug to a patient;
Diagnoses ICD that contains ICD-9 [43] (International Classification of Diseases, 9th
revision) diagnoses for patients; Admissions that defines patients hospital admissions. From
these tables, we extract and transform some attributes as follows.

� VT - VT (Valid Time) represents dates in which patients are admitted, i.e. for each
day a patient is admitted, there will be a tuple with the date of that day as VT. VT
corresponds completely with the date (without the time) from attribute ChartTime
(table ChartEvents), that is the date at which a measurement is charted (and in
almost all cases, this is the date which best matches the date of actual measurement).
Moreover, VT represents also dates from table Prescriptions. However, in MIMIC the
prescription of a drug to a patient is represented with an interval formed by StartDate
and EndDate, so we transformed each interval in a punctual representation (i.e. a
tuple with a VT value for each day the prescription is valid for a patient). Because

4.3 - Mining Clinical Data 107

we retrieve VT from multiple tables, we decide to set the granularity to the finest one
available on all the tables considered.

� Subject ID - A unique identifier which specifies an individual patient.

� Hadm ID - Represents a single patient’s admission to the hospital. Let us remember
that a patient could experience more than one admission.

� Language - Language of the patient.

� Ethnicity - Ethnicity of the patient.

� ICD9 Code - Contains the code corresponding to the diagnosis assigned to the patient.
In particular, we selected the most frequent diagnosis to the patient.

� Admission Type - describes the type of the admission (elective, urgent, newborn or
emergency).

� LOS - Represents the length of stay for the patient for the considered ICU stay, which
may include one or more ICU units. In our analysis, we extract the average length of
stay for each admission.

� Drug - From table “Prescriptions”, we extract Drug, that is the name of the most
administered drug in a day to a patient.

� ValueNum - ValueNum is extracted from table ChartEvents. Every measure
charted is identified by an ItemID, and filtering by it allows us to create a table with
the selected measure as a new attribute. In other words, we create a table with all the
attributes previously described, adding a new attribute that represents the measure we
filter by ItemID (that is heart rate, blood pressure, and so on). To preserve consistency
with other attributes, we extract the daily average value of the measure in order to
maintain only a tuple for each day a patient is admitted.

Finally, let us recall that all dates represented in the MIMIC database have been shifted
to protect patient confidentiality. MIMIC database contains data collected in 12 years, but
these data are randomly distributed over 110 years. However, dates have been maintained
internally consistent for a given patient. This distribution nullifies every temporal relation
between patients, but to preserve the original time window of 12 years, we decide to delete
the offset between all patient’s first admission (i.e., after our processing the first day of the
first admission for all patients is the same).

After our transformation process, we finally obtain 2 tables for each measure we consider,
that are heart rate, respiratory rate, SpO2, systolic arterial blood pressure, diastolic arterial
blood pressure. The first table represents data of only those patients for which a given measure
is charted during the whole hospitalization period. The second table is a subset the first one,
and it contains only data for patients whose admissions last at least 7 days. From now on,
we refer to the first tables as group TG1 and to the second ones as group TG2. Table 4.3
collects some statistics about the patients we selected for our mining.

108 4 - Discovering Quantitative Temporal Functional Dependencies on Clinical Data

TG1 TG2

Average number of patients 33.864 7.945

Average hospitalization days for a patient 7,59 19,61

Average duration of hospitalization in days 6,15 13,69

Table 4.3: Statistics about patients selected for our mining, and their admission(s).

Measure ε δ
Tested MAT -FDs Valid MAT -FDs Total Rows Processing Time (hh:mm:ss)

TG1 TG2 TG1 TG2 TG1 TG2 TG1 TG2

Heart rate 0.1 10 32 50 5 6 345.020 233.138 05:26:28 05:27:07

Respiratory rate 0.1 3 39 55 5 9 261.238 157.950 00:08:12 00:04:29

SpO2 0.1 3 53 52 6 6 261.009 157.677 00:31:34 00:25:31

Arterial BP [Systolic] 0.1 10 39 55 6 9 138.185 83.818 03:41:40 03:36:07

Arterial BP [Diastolic] 0.1 10 47 53 7 6 135.848 82.556 01:15:31 01:11:15

Table 4.4: Summary of MAT -FDs mining.

4.3.2 System Configuration

For miningMAT -FD on the MIMIC subset depicted in subsection 4.3.1, we developed a running
prototype for mining analysis: SW-MATFDminer (Sliding Windows Multi Approximate
Temporal Functional Dependency Miner). SW-MATFDminer is a Java based system that
extract rules of multi approximate temporal functional dependency for sliding window (SW)
temporal grouping. The prototype allows the user to configure multiple parameters, such as:
delta and epsilon approximations, minimum and maximum SWs accepted, name of attributes
to use as measures. Moreover, there are flags to enable multi-threaded mining and resuming
function. SW-MATFDminer was tested on a machine with a Intel® Core� i7-6700 and 32
GB of RAM, equipped with Windows 10 64-bit, Java 1.8, and PostgreSQL 9.6.

4.3.3 Results

For our test, we set SW-MATFDminer parameters as follows: the maximum percentage of
tuples to be deleted (ε) is 0.1; delta (δ) has a value of 10 for heart rate, systolic and diastolic
arterial blood pressure and 3 for respiratory rate and SpO2; minimum window size is 1 day;
maximum window size is 12 years, that is the maximum distance in time between the tuples
we consider. This means that the mining algorithm returns the max. window size for
MAT -FD to hold within this specified interval. If the resulting SW equals the maximum one,
then the MAT -FD is considered atemporal.

Table 4.4 summarizes the results of our mining. Overall, we analyze 10 tables, that is a
table of TG1 and TG2 for all the five measures considered. Each table consists of 8 attributes
and a mining algorithm would need 2560 (i.e. 10 · 28) functional dependencies to validate.
However, due to pruning operations, SW-MATFDminer tested only 475 dependencies in

4.3 - Mining Clinical Data 109

Group MAT -FD

TG1

[1]Hadm ID
0.1→
10
Heart rate

[1]LOS,Drug, ICD9 Code
0.1→
10
Heart rate

[1]Subject ID
0.1→
3
Resp. rate

[1]LOS,Drug, ICD9 Code
0.1→
3
Resp. rate

[12]Subject ID
0.1→
3
SpO2

[13]Hadm ID
0.1→
3
SpO2

[1]Hadm ID
0.1→
10
Systolic arterial BP

[1]LOS,Drug, ICD9 Code
0.1→
10
Systolic arterial BP

[2]Hadm ID
0.1→
10
Diastolic arterial BP

[4]LOS,Drug, ICD9 Code
0.1→
10
Diastolic arterial BP

TG2

[2]LOS,Drug, ICD9 Code
0.1→
10
Heart rate

[1]LOS,Language, ICD9 Code
0.1→
10
Heart rate

[1]Subject ID
0.1→
3
Resp. rate

[2]LOS,Drug, ICD9 Code
0.1→
3
Resp. rate

[7]Subject ID
0.1→
3
SpO2

[7]Hadm ID
0.1→
3
SpO2

[1]Subject ID
0.1→
10
Systolic arterial BP

[1]LOS,Drug, ICD9 Code
0.1→
10
Systolic arterial BP

[2]Hadm ID
0.1→
10
Diastolic arterial BP

[2]Subject ID
0.1→
10
Diastolic arterial BP

Table 4.5: An excerpts of our results with 2 valid MAT -FDs for each mined table. The length
of the maximum sliding window found, is expressed in days.

21 hours 47 minutes and 54 seconds, and 65 of them are valid. The processing time for a
measure, as it can be seen in table 4.4, may be highly variable. In fact, it depends by the
number of tuples, the amount of MAT -FDs to tested, but it is also influenced by the number
of nodes and edges we had to create. SW-MATFDminer implements a dichotomic search
algorithm to extract the maximum sliding windows for which the MAT -FD holds. The length
of a sliding window determines how many nodes and edges have to be created, and this
affects the processing time. Table 4.5 shows an excerpt of our results and, in the following,

110 4 - Discovering Quantitative Temporal Functional Dependencies on Clinical Data

we describe some meaningful MAT -FDs that have been discovered by SW-MATFDminer:

� [7]Hadm ID
0.1→
3
SpO2: this dependency points out that SpO2 varies slowly during patient’s

hospitalization. As depicted in table 4.3, the average duration of hospitalization is
13.69 days for patients in TG2, and a maximum sliding window of 7 days indicates that
the level of oxygen saturation is fairly stable. However, it is not constant during the
whole hospitalization time-span, otherwise the maximum sliding window would have
been larger.

� [4]LOS,Drug,ICD9 Code
0.1→
10
Diastolic arterial BP : this dependency links patients with the

same diagnosis, length of stay in ICU and under the same treatment, with their diastolic
arterial blood pressure, in a window of 4 days. As it can be seen in table 4.5, the same
dependency holds also for the systolic arterial blood pressure ([1]LOS,Drug, ICD9 Code

0.1→
10

Systolic arterial BP). However, it holds with a smaller sliding window (1 day) and
this indicates that systolic pressure suffers from an higher fluctuation during the
hospitalization.

4.4 Conclusions

In this chapter, we introduced and discussed multi approximate temporal functional de-
pendencies (MAT -FDs). We have evaluated and discussed their expressiveness by means of
some examples taken from the clinical domain. More precisely, we proposed an algorithm
to mine MAT -FDs over a given data set and we implemented it into a working prototype
called SW-MATFDminer. We used SW-MATFDminer to mine data belonging to the clinical
domain of intensive care and in particular we applied our solution to the MIMIC database.
Our study proves SW-MATFDminer to be an interesting tool for mining clinical data. The
derived dependencies may provide physicians with new kind of knowledge underlying medical
data.

As future work, we plan to further validate mined MAT -FDs with clinical experts, to focus
on the more clinically relevant derived knowledge. Moreover, it would be interesting to extract
MAT -FDs from different clinical domains. Finally, a tuning of the proposed prototype will be
considered. In particular, SW-MATFDminer could benefit from parallelization techniques
applied to distributed computing to reduce processing time.

Chapter 5

Discovering and Analyzing
Trend-Event Patterns on Clinical
Data

In the previous chapter, we mined MIMIC III EHR dataset to derive a new kind of Approx-
imate Temporal Functional Dependency that focuses on quantitative attributes. In
this chapter, we use the same ICU dataset to infer a new kind of temporal pattern that also
focuses on quantitative attributes.

Considering the current literature and the need for significative synthesis information
for several medical domains, we propose a new kind of temporal pattern called Trend-Event
Patterns, namely TE -Ps. The TE -P family of temporal patterns focus on the interaction of
trends and events. For us, a trend is formed by consecutive values of a given measurement
attribute that are stationary, increasing, or decreasing under the constraint that all the
values of such trend stay within a defined range. In other words, all the values that form a
trend are allowed to have negligible variations within some specified threshold. For instance,
TE -Ps could express concepts like “patient’s systolic blood pressure was rising before the
administration of lisinopril then, after the administration, it stabilized”.

Another contribution in this chapter is the development of a tool, called TEPminer, which
implements the algorithm to extract TE -Ps. Even though TEPminer has been designed to be
a general-purpose tool (i.e., it is able to mine TE -Ps regardless of the application domain),
we tested it using data coming from intensive care units (ICUs) contained in MIMIC III EHR
dataset (that is illustrated in Section 2.3.1). To speed up the mining process, TEPminer
exploits multithread functions to analyze data of each patient independently. Finally, we
took advantage of OLAP analysis to present some multidimensional analysis on TE -Ps, where
patterns are evaluated in an aggregate form based on the level of detail we want to use.

The novelties in this work have been published in [75].

111

112 5 - Discovering and Analyzing Trend-Event Patterns on Clinical Data

5.1 Trend-Event Patterns

In this section, we introduce a new kind of temporal pattern named Trend-Event Patterns,
TE -Ps for short.

Let us recall that with TE -Ps we want to express concepts like “A patient’s body temper-
ature was increasing before the administration of paracetamol. After such administration,
body temperature was steady”. In other words, a TE -P is a pattern formed by an event E
and two different trends for the same measure and dimensions: one before E and one after E.
We call those trends trendpre and trendpost respectively.

We use Figure 5-1 as a reference to explain TE -Ps. In this figure we recreated a typical
scenario of raw data for a given measure and for a patient. Our first goal is to discover every
possible event, then to eventually derive a trend before and a trend after it. In Figure 5-1
raw measure data are depicted as scattered squares, where every square represents a tuple
and its position is given by its measure and its valid time VT, i.e. the time when the tuple is
valid in the represented real world [103]. Event E is represented by a vertical line, placed on
its corresponding VT.

To derive a TE -P from this scenario, we need to start from the event, and more specifically
from the time when such event happened. From this point we can partition measures,
according to their VT. Every tuple before the event could potentially be part of trendpre,
while every tuple after the event could be in trendpost. In both trends the first tuple is denoted
as tstart, while the last one is tend. The tuple in trendpre that is closer to the event is called
tpreend, because it is the last tuple of it; while the tuple in trendpost that is closer to the event is
called tpoststart, as it represents the beginning of such trend. In our proposal, there can only be
one single event for every VT. Thus, if there are many events that occur at the same time,
they will be merged together in a single event. For example, let the event be a single drug
administered to a patient: if in a certain moment the patient receives two different drugs,
the event is formed by the conjunction of these two drugs and it is different from the events
formed by these two drugs taken individually.

For us, a trend is graphically depicted as a segment line from tstart to tend and, ideally,
every other tuple of such trend should lay in this segment. However, this is an unlikely
scenario with real data. Thus it is necessary to allow a threshold (called ∆y) on the segment
line, and every tuple of a trend must be within such threshold. Tuple text1 represents the
violation of the above constraint: a trend from tprestart to text1 excludes many tuples in-between
and consequently it is not a valid trend.

There are few more constraints necessary to determine a valid trend: some of them are
tuple-related and some trend-related.

The time distance between two subsequent tuples must be less than a predefined parameter,
called max ∆V T . Tuple text2 is an example of violation of the constraint above: the time
distance between that tuple and its predecessor, that is tpostend , is greater that max ∆V T and
consequently it could not be admitted in the trend. Moreover, the number of tuples needed
to form a trend must be greater or equal the minNumTuples parameter.

As for trend-related constraints, we must assure that a trend has a minimum/maximum
duration (min ∆duration/max ∆duration respectively) and that it begins/ends not too far from

5.1 - Trend-Event Patterns 113

VT

M

E

∆y

∆y

max ∆V T

Σ = minNumTuples

max ∆start max ∆start

min ∆durationmin ∆duration

max ∆durationmax ∆duration

max ∆V T

∆y

∆y

text1

tpostend

tpoststart

tpreend

tprestart

max ∆V T

text2

Figure 5-1: This figure shows an example of TE -P. We have two trends, one from tprestart to
tpreend that precedes event E, and a second one from tpoststart to tpostend right after E. These are valid
trends because they respect every constraint. In fact, text1 and text2 , are external to these
trends because they violate ∆y or max ∆V T .

the event (max ∆start). All these constraints will be better described later on this chapter. It
is important not to perceive all these constraints as a limitation on the number of retrieved
trends. Instead, these parameters are extremely useful for extracting just those trends that
clinicians might think are appropriate for the kind of event and measure they are analyzing.
Alternatively, they could set these parameter in the opposite way, to mine and to analyze
TE -Ps coming from an “unexpected” scenario.

As shown in Figure 5-2, every trend that has been retrieved is then labeled as {increasing,
steady, decreasing} according to its weighted rate of change and a predefined threshold called
max increase.

Now we are ready to give the definition of TE -P. A TE -P is a pattern with an expression
of the form:

[trendpre;E;trendpost]

For example, let E be the ”administered drugs” attribute, and paracetamol an e ∈ E.
Concepts like “A patient’s body temperature was increasing before the administration of
paracetamol. After such administration, body temperature was steady” would be written as
TE -P as:

[increasing ;paracetamol ;steady]

From now on, we’ll describe all the previous concepts in a more formal way.

114 5 - Discovering and Analyzing Trend-Event Patterns on Clinical Data

max increase (%)

-max increase (%)

increasing

steady

decreasing

VT

measure

1 h

Figure 5-2: In this figure we show how trends are labeled, based on their weighted rate of
change.

Let us start with some basic notions about trends. We consider classical temporal schema
R = U ∪ {V T} where R is a set of atemporal attributes and V T is an attribute denoting the
valid time of each tuple. We may safely assume Dom(V T) = R. Given an attribute M ∈ U
we say that M is a measure if and only if Dom(M) is a metric space. We assume that for
all measures M it holds Dom(M) = R. Now, we give the criteria under which two tuples
are connected in order to form a valid trend on some measurement M in U . First, tuples
must share the same values for some non-empty dimensions D ⊆ U . Also, tuples must be
temporally ordered using their VT : this means that, given an instance r of R, two tuples
t, t′ satisfy t → t′ if and only if t[D] = t′[D], t[V T] < t′[V T], there is no tuple t′′ in r with
t′′[D] = t[D] s.t. t[V T] < t′′[V T] < t′[V T]. In the following, we assume that there are no
tuples with the same VT.

Given a trend tr, we denote with tstart the first tuple of tr, and with tend the last one.
A trend tr is a non-empty set of tuples tr = {tstart, . . . , tend} satisfying tstart → . . . → tend.
Implicitly, it means that ∀ti ∈ tr, tstart[V T] < ti[V T] < tend[V T].

As noted before, with TE -Ps we are interested in relations between an event, trendpre,
and trendpost. Let tevent be the tuple that denotes the event. Tuples in trendpre are defined as
follows: ∀ti ∈ trpre, ti[V T] ≤ tevent[V T]; while tuples in trendpost are defined as ∀ti ∈ trpost,
ti[V T] > tevent[V T].

A maximal trend tr is a trend such that for every t ∈ r \ tr we have that tr ∪ {t} is no
longer a trend. By definition, all the tuples ti ∈ tr share the same values for the attributes in
D (resp. E), then we denote them with tr[D] (resp. tr[E]). Any trend must satisfy all the
following condition on measures and on VT to hold (as also shown in Figure 5-1):

� minNumTuples - This is a constraint that denote the minimum number of tuples that
are needed to form a trend. With just two tuples we can construct a line segment that

5.1 - Trend-Event Patterns 115

can form a trend, however this parameter is needed to better define our trend. In other
words, there is a trend if:

tend∑
k=tstart

tk ≥ minNumTuples

� max ∆V T - This parameter indicates the maximum time distance between two adjacent
tuples to be part of the same trend. Given two tuples tm ∈ tr and tm+1, tm+1 ∈ tr if
t[V T]m+1 − t[V T]m ≤ max ∆V T . This is useful to avoid those measures that are taken
too far away one another. Let us imagine a scenario where we want to monitor heart
rate right after a panic attack: if a measurement is taken 10 hours after the last one,
then is no longer meaningful for our trend.

� max ∆start - Another condition on VT is given by max ∆start. For us, a trend is
insightful if the measure that is closer to the event, is measured within a negligible
time distance, that is max ∆start. In other words, max ∆start represents the maximum
distance between a trend and an event E.

� min ∆duration - Control the time distance of a trend from an event is of fundamental
importance. For this reason we introduce min ∆duration, that represents the minimum
distance of a trend from an event. This parameter is necessary to avoid those trends
where most measures of a trend are concentrated in a small time frame that is, also,
really close to the event. An example could be the monitoring of blood pressure after
the administration of a drug for hypertension: it is not interesting nor meaningful to
have measurements of blood pressure every 5 minutes after the administration of a
drug to test the long-term effectiveness of such drug.

� max ∆duration - The complementary parameter of min ∆duration is max ∆duration. This
parameter, that defines the maximum time distance of a trend from an event, is
particularly useful when the goal is to extract trends for testing short-term effects
of a certain event. As mentioned above, a panic attack is a meaningful example of
such situation. In fact, it is important to monitor heart rate right after that event
occurs, but it is not so interesting to track its behavior after many hours. However,
max ∆duration is different from max ∆V T because its related to the whole trend, while
max ∆V T considers couple of adjacent tuples within the trend.

� ∆y - A trend tr from tstart to tend is graphically represented by a line segment. Ideally,
all tuples in tr must lay in that segment, but it is a highly unlikely situation with real
word data. However, we could tolerate a small threshold where the difference between
the measure and its ideal position in the segment is negligible. ∆y represents that

116 5 - Discovering and Analyzing Trend-Event Patterns on Clinical Data

threshold, and must hold for all the tuples in tr. Given tn ∈ tr, let ti[M] the projection
of tn[M] on tr, namely:

ti[M] = (ti[V T]− tstart[V T]) ∗m+ tstart[M] (5.1)

where

m =
tend[M]− tstart[M]

tend[V T]− tstart[V T]

there is a trend tr if ∀tn[M] ∈ {t[M]start, . . . , t[M]end} then ti[M]−∆y≤ tn[M] ≤
ti[M]+∆y.

If all the constraints depicted above hold, then we have a valid trend tr. The trend is then
labeled using the alphabet Σ = {increasing, steady, decreasing}. To correctly label a trend,
we need to calculate its weighted rate of change (in percentage), that is:

changeRate =
tend[M]− tstart[M]

tend[V T]− tstart[V T]
∗ 100

tstart[M]

As shown in Figure 5-2, we define a new parameter max increase as a threshold for changeRate,
and we determine the label of a trend as follows:

� increasing : changeRate > max increase

� decreasing : changeRate < -(max increase)

� steady : otherwise

5.2 Mining TE -Ps

In this section we describe the algorithm that we used to mine TE -Ps. Let Table 5.1 represent
a small excerpt of our data. First of all, we need to pick a dimension d ∈ D that we want to
use to group data. In Table 5.1, D = {Subject ID, Hadm ID, ICUstay ID}, that represent an
unique identifier for a patient, for his/her admission, and for his/her stay in ICU respectively.
We partition Table 5.1 in order to group all the tuples of every different d, so the algorithm
will extract TE -Ps only related to d.

For each partition d, 2 different lists are created:

� measuresList - containing only the measures and VT of such partition, ordered by their
VT

� eventsList - that contains all the events of such partition, their VT and the index of
the closest measures that preceded them

5.2 - Mining TE -Ps 117

This separation is useful to speed-up the mining process, because we avoid to check
sequentially if every following tuple represents an event or a measure.

In the following, we describe step-by-step the procedure to validate the trend that preceded
an event. The validation of a trend post-event is specular to this one, and thus it is omitted.
It is fundamental to note that the following algorithm is performed for every event. If
there are no valid trends for an event, the current event is ignored and the whole process
restart for the next one. Figure 5-1 could help to better understand the following steps.

1. Check for minNumTuples. Given the current event, we retrieve from eventsList the
index (in measuresList) of the closest measure that preceded it. We check if there are a
minimum number of tuples (minNumTuples) before that measure. Consequently it is
also immediate to retrieve the measure right after the event, as it is the next element
in measuresList. Then, we check if there are minNumTuples from that measure to the
end of measuresList. If it doesn’t exist, the event is ignored.

2. Check for max ∆start. Given the considered event and its closest measures that preceded
it, we have to check the difference of their VT, that have to be lower or equal than
max ∆start. Otherwise, the event is ignored. From now on, all the constraints to define
one extremity of the trend are satisfied, and we call tpreend the closest measure that
preceded the event.

3. Discover tprestart. In this step, we initiate a loop through measuresList to find the initial
point of the trend, called tprestart. Initially, tprestart is the measure right before tpreend, and for
each iteration tprestart becomes the preceding tuple in measuresList if all the measures from
tprestart to tpreend satisfy all the constraints. Therefore, the number of iterations corresponds
to the number of tuples in the trend. In the following, we explain all the steps performed
within a single loop:

(a) Check for max ∆V T . It is necessary to check if the temporal distance between two
adjacent tuples is less than max ∆V T . To achieve that, we check the VT difference
between tprestart and its subsequent tuple. If this constraint is not satisfied, we exit
the loop.

(b) Check for max ∆duration. Analogously, it is necessary to check if he temporal
distance between tprestart and the event is less than max ∆duration. Again, if this
constraint is not satisfied, we exit the loop.

(c) Check for ∆y. As already mentioned in Section 5.1, all the measures of a trend
must lay on the segment from tprestart to tpreend, plus a negligible threshold that is ∆y.
Therefore, we have to check that every tuple ti satisfies this constraint, and to do
so we use the equation 5.1 listed in Section 5.1. If even a single measure exceeds
∆y we cannot have a valid trend with the current tprestart and we exit both loops.

118 5 - Discovering and Analyzing Trend-Event Patterns on Clinical Data

4. Check minNumTuples. After tprestart is finally retrieved, we check the number of measures
in the current trend, that must be greater than minNumTuples, otherwise the current
event is ignored.

5. Check min ∆duration. The retrieval of tprestart is also necessary to check if the trend violates
min ∆duration. In fact, we have to check whether the time distance between tprestart and
the event is greater than min ∆duration or not. In the first scenario the event is ignored,
otherwise we finally have a valid trend.

We mined the trend that preceded an event, and we follow the same steps (but moving
from tpoststart to tpostend) to retrieve the trend post-event. If they are both valid trends, they need
to be labeled as {increasing, decreasing, steady} based on their weighted rate of change, as
shown in Section 5.1. Finally, we need to check whether an event influenced them or not. To
verify this condition, we create a new segment from tprestart to tpostend : if all the tuples in-between
are included in ∆y, then there is only a trend from tprestart to tpostend . Thus, the event is not
influencing the considered measure. After all these processes, we finally obtain a valid TE -P.

5.2.1 Optimized Algorithm for Mining TE -Ps

The algorithm shown above is what we proposed in our paper [75]. Since then, we thought
on a way to improve it and to reduce its complexity. In particular, the admissibility of a
trend given a new tuple is particularly time consuming, because it is necessary to re-check if
every tuple within the new trend satisfies the constraint of ∆y, as shown in the part 3c of
the algorithm. A possible solution could be inherited from the method called Scan Along
Polygonal Approximation (SAPA-2) proposed in [8] and its extension, called Sample skipping
method with amplitude and time error limitation, proposed in [17].

The basic idea of this algorithm is to analyze and store only the minimum highest and
the maximum lower slopes given by the trends of the previous measures. With this approach,
testing the admissibility of a tuple in the trend requires only a comparison between its slope
and these two bounds.

t

d
a

A (n)

A (n+k)

A (m)

n n+k m

Figure 5-3: Definition of distance, amplitude and time errors.

5.3 - Mining Clinical Data 119

As shown in Figure 5-3, let us consider three tuples at instants n, n + k and m with
n < n + k < m, and having amplitudes A(n), A(n + k) and A(m), respectively. Let us
consider the distance d between the real measure at instant n + k and the segment joining the
tuples at instants n and m: this technique aims at limiting the distance error (d < dadmissible).
However, the distance error contains a square root and the calculation could be excessively long
for the amount of tuples we have to analyze. Thus it is preferred to use the a/t relationship:
|a|
|t| = A(m) − A(n)

m − n
. By simplifying the distance error test, we can impose: a < dadmissible or

t < dadmissible, according to the slope of the segment that interpolates two tuples. In this way,
as long as the slope of the signal is smaller than 1 only an amplitude error test is run. When
the absolute value of the slope exceeds 1, the test is run on t, i.e. on the time error. The
amplitude and time tests are run when the slope of the interpolating segments is smaller or
greater than a specified threshold.

5.2.2 Multidimensional Modeling of Trends for OLAP Analysis

After all the TE -Ps have been retrieved, we represent them as a data-cube to analyze them
in some aggregate form. The data cube structure offers a powerful data retrieval and data
analysis environment, in addition to analytical modeling capabilities. In our cube, we used as
measures all the starting/ending points for the trends, as well as the number of rows, slopes,
and duration of the trends. All the parameters listed in Table 5.2 and Table 5.3, the event
name, and patient ID are some of the dimensions we used to analyze our TE -Ps. As shown
in Figure 5-4, a better representation of dimensions and measures used in our OLAP analysis
is given by the Dimensional Fact Model (DFM), that is a graphical formalism specifically
designed to support the conceptual modeling phase in a datawarehouse project. Let us denote
that, in this aggregate analysis, we could group only those events that are equal. For example,
if we use drug administration attribute as event, the administration of paracetamol and its
influence on vital signs is analyzed separately from paracetamol administered in conjunction
with codeine.

5.3 Mining Clinical Data

5.3.1 The Dataset

We applied our techniques in the clinical domain of Intensive Care Unit (ICU) present in
MIMIC (described in details in subsection 2.3.1) in order to motivate and validate our
algorithm.

ICU data contain multiple measurements of high temporal resolution parameters such
as hourly vital signs (heart rate, blood pressures, oxygen saturation, body temperature and
so on) and these measures could potentially form a trend. Moreover they record every drug
administered to a patient, and this is what we select as an event.

All the data we are using from MIMIC need a process of E.T.L. (Extract, Transform, Load)
before the mining procedure could start. We focused on 3 different tables: ChartEvents,

120 5 - Discovering and Analyzing Trend-Event Patterns on Clinical Data

Figure 5-4: Dimensional Fact Model (DFM) used for our OLAP analysis.

where all the vital signs of every patient are stored; InputEvents MV, that contains any
fluid administered to the patients, such as oral or tube feedings or intravenous solutions
containing medications; D Items, that is the definition table, where we can correctly label
every event related to a patient.

From these tables, we extract and transform some attributes as follows:

� Subject ID - A unique identifier that specifies an individual patient.

� Hadm ID - Represents a single patient’s admission to the hospital. Let us remember
that a patient could experience more than one admission.

� ICUstay ID - A unique identifier that defines any single ICU stay.

� VT - Represents the Valid Time (VT), that is the date and time in which a vital
sign is charted. In almost all cases, this is the date which best matches the date of
actual measurement. VT is also used to identify the moment when a fluid have been
administered to a patient from InputEvents MV table.

� Event - From the label attribute in D Items, we create Event to identify every drug
admitted to patients during their stay. If multiple drugs are admitted to a patient at
the same time (i.e., same VT), they are joined together and not treated as separate
events. For example, if a patient received paracetamol and epinephrine in the same VT,
their influence on vital signs is analyzed together even if the medications are stored
separately.

5.3 - Mining Clinical Data 121

� ValueNum - ValueNum is extracted from table ChartEvents. Every measure
charted is identified by an ItemID, and the filtering process by this attribute is used
for creating a new table with the selected measure as a new attribute.

In other words, for each attribute that represents the measure we filter by ItemID
(e.g., blood pressure, respiratory rate, heart rate, and so on) we create a new table with
it and all the other attributes previously described.

At the end of our transformation process, we obtain a table for each measure we consider,
that are heart rate, respiratory rate, SpO2, systolic arterial blood pressure, diastolic arterial
blood pressure, and body temperature.

Table 5.1 represents an excerpt of the table that we create, where D={Subject ID,
Hadm ID, ICUstay ID}, M=ValueNum (Heart rate), VT=VT and E=Event.
Attribute Row # is just added in the table to facilitate the explanation.

In this table we have data from 2 different patients, one with Subject ID 33 864 and
the other one with 23 460. Patient 33 864 had 2 different stays in ICU during the same
admission, one with ID 1515, and the other one with 1523. This is useful to explain the
different outcome based on the attribute of grouping: if we group using Subject ID or
Hadm ID, we should consider all the measures from row 1 to 22, to check if they form trends
for events atropine and paracetamol. On the contrary, if we group using ICUstay ID we
need to separate the measures from row 1 to 11, to the ones from row 12 to 22. Finally, let
us focus on the administration of atropine in rows 6 and 28. Even though they represent the
same drug admitted in the same VT, they are treated as two separate events because they
are referring to different patients.

5.3.2 System Configuration

To mine TE -Ps on the MIMIC subset depicted in subsection 5.3.1, we developed a running
prototype for mining analysis: TEPminer (Trend-Event Pattern miner). TEPminer is a Java
based system that extract trend-event patterns, and allows the user to configure multiple
parameters, such as: ∆y, max ∆start, max ∆V T , min ∆duration, max ∆duration, minNumTuples,
max increase (defined as max hourly increase), and the name of attributes to use as: ID for
the patient, VT, trends and events. Moreover, because of the grouping by dimension, the
extraction of TE -Ps is bound to single patients. Consequently, TEPminer exploits multithread
functions to speed-up the mining process, analyzing data of each patient independently.
TEPminer was tested on a machine with a Intel® Core� i7-6700 and 32 GB of RAM,
equipped with Windows 10 64-bit, Java 10, and PostgreSQL 9.6.2.

TEPminer is also designed to store any possible meaningful parameter related to trends
and events to allow us to analyze TE -Ps from many different points of view. In fact, after the
mining process, we used Saiku1 as an OLAP software to perform multidimensional analysis
on TE -Ps.

1https://www.meteorite.bi/products/saiku

122 5 - Discovering and Analyzing Trend-Event Patterns on Clinical Data

Row # VT Subject ID Hadm ID ICUstay ID Event ValueNum

1 07 Jan 2011 11:25 33 864 7945 1515 - 55

2 07 Jan 2011 11:55 33 864 7945 1515 - 57

3 07 Jan 2011 12:25 33 864 7945 1515 - 58

4 07 Jan 2011 12:55 33 864 7945 1515 - 62

5 07 Jan 2011 13:25 33 864 7945 1515 - 65

6 07 Jan 2011 13:30 33 864 7945 1515 Atropine -

7 07 Jan 2011 13:55 33 864 7945 1515 - 65

8 07 Jan 2011 14:25 33 864 7945 1515 - 62

9 07 Jan 2011 14:55 33 864 7945 1515 - 67

10 07 Jan 2011 15:25 33 864 7945 1515 - 69

11 07 Jan 2011 15:55 33 864 7945 1515 - 62

12 08 Jan 2011 14:25 33 864 7945 1523 - 55

13 08 Jan 2011 14:55 33 864 7945 1523 - 57

14 08 Jan 2011 15:25 33 864 7945 1523 - 58

15 08 Jan 2011 15:55 33 864 7945 1523 - 62

16 08 Jan 2011 16:25 33 864 7945 1523 - 60

17 08 Jan 2011 16:55 33 864 7945 1523 - 61

18 08 Jan 2011 17:25 33 864 7945 1523 - 62

19 08 Jan 2011 17:30 33 864 7945 1523 Paracetamol -

20 08 Jan 2011 17:55 33 864 7945 1523 - 67

21 08 Jan 2011 18:25 33 864 7945 1523 - 69

22 08 Jan 2011 18:55 33 864 7945 1523 - 71

23 07 Jan 2011 11:25 23 460 6941 1569 - 45

24 07 Jan 2011 11:55 23 460 6941 1569 - 46

25 07 Jan 2011 12:25 23 460 6941 1569 - 48

26 07 Jan 2011 12:55 23 460 6941 1569 - 43

27 07 Jan 2011 13:25 23 460 6941 1569 - 44

28 07 Jan 2011 13:30 23 460 6941 1569 Atropine -

29 07 Jan 2011 13:55 23 460 6941 1569 - 55

30 07 Jan 2011 14:25 23 460 6941 1569 - 52

31 07 Jan 2011 14:55 23 460 6941 1569 - 59

32 07 Jan 2011 15:25 23 460 6941 1515 - 62

33 07 Jan 2011 15:55 23 460 6941 1515 - 64

Table 5.1: Excerpt of the table we create to extract TE -Ps from heart rate. Here we can
observe different measurement of heart rate, for two different patients during three ICU stays,
interrupted by the administration of atropine or paracetamol.

max ∆start max ∆V T min ∆duration max ∆duration ∆y(%) minnumTuples

{1;2} h 6 h 2 h {8;12} h {0.5;1;2.5;5;10;20} 10

Table 5.2: Running parameters for TEPminer.

5.3 - Mining Clinical Data 123

HR DBP SBP RR Temp SpO2

Max Hourly

Increase (%)
6.0 2.5 2.5 4.0 0.5 2.0

Table 5.3: Values used to define the max hourly increase for each vital sign considered.

5.3.3 Results

For our test, we set TEPminer parameters as shown in Table 5.2 and Table 5.3. The first
table contains values used independently from the vital sign considered, while the second
one focus on the maximum hourly increase, in percentage, that we used to label a trend as
{increasing,steady,decreasing}. This parameter is specific to every vital sign we used, that are:
heart rate [HR], diastolic blood pressure [DBP], systolic blood pressure [SBP], respiratory
rate [RR], body temperature [Temp], and oxygen saturation [SpO2].

Overall, we analyze 144 different combination of parameters (the combination of 6 vital
signs x 2 different max ∆start x 2 max ∆durationx 6 ∆y) and we obtained 10 822 440 TE -Ps in
906 seconds. Without multithread, the same mining took 1567 seconds and this shows the
importance of parallelization in TEPminer.

Vital Sign Trend pre Trend post # Trends

STEADY STEADY 121 190

Diastolic Blood Pressure DECREASING STEADY 14 336

STEADY INCREASING 11 910

STEADY STEADY 123 014

Systolic Blood Pressure DECREASING STEADY 13 171

STEADY INCREASING 12 531

STEADY STEADY 840 064

Heart Rate DECREASING STEADY 11 417

STEADY INCREASING 5923

STEADY STEADY 71 490

Resp. Rate STEADY INCREASING 3320

INCREASING STEADY 2896

STEADY STEADY 584 120

SpO2 STEADY DECREASING 4740

INCREASING STEADY 3329

STEADY STEADY 38 864

Temperature INCREASING STEADY 14 018

STEADY INCREASING 2078

Table 5.4: Three most frequent types of TE -Ps for each vital sign with all the events considered
together.

124 5 - Discovering and Analyzing Trend-Event Patterns on Clinical Data

Figure 5-5: Given the same trend, there are slope differences when the event is actively
influencing the trend. This figure shows the slope difference for an increasing trend related
to heart rate, where the true flag indicates the events that are influencing the trends.

Table 5.4 shows the 3 most frequent kind of TE -Ps, where steady-steady represents
the most frequent for any vital sign considered. An explanation could be that most of the
events are not strongly influencing the considered vital sign, even if they change the slope of
the trend. Apart from the steady-steady occurrence, all the other kind of TE -Ps could
be intended as a process of stabilization of the vital signs, because they move from or to a
steady position.

Moreover, TEPminer integrates a flag for every event, marking them only if they are
actively influencing the trends or not (as explained in 5.1). The OLAP analysis allows us
to analyze the average of slopes of a certain type of trend, and we expect a significantly
difference between the slope that precedes an event and the one that succeeds it, when the
event has an influence on the considered vital sign. Figure 5-5, that focus on increasing
trends related to heart rate, shows exactly this difference in slopes.

Finally, Figure 5-6 shows an interesting example of multidimensional analysis. We focused
on a specific drug, propofol, that is a strong sedative and hypnotic mainly used for the
starting and maintenance of general anesthesia, sedation for mechanically ventilated adults,

5.3 - Mining Clinical Data 125

and procedural sedation; and its impact on an increasing respiratory rate.
In fact, we fixed trend pre to be increasing in order to analyze the outcoming trends

and it is clearly visible the effect of propofol. Overall, there are 248 trend post and 218 of
them (88%) indicate a stabilization in the respiratory rate, and in only 4 trends (1.6%) it is
still increasing.

This example shows why multidimensional analysis are another method that helps us to
confirm the effectiveness of a certain drug. Moreover, Figure 5-6 contains a column taken
from the Saiku interface that shows the flexibility and ease of use to analyze our data cube.
In fact, an user just need to select a subset of measures and dimensions, and arrange them in
this column to perform the typical OLAP operations (e.g., roll-up or drill-down) and analysis.

Figure 5-6: In this figure we show the effect of propofol on respiratory rate. We fixed the
trend pre as increasing and it’s clearly visible the effect of propofol in stabilizing the
respiratory rate. On the left, there is an excerpt of Saiku interface that underlines the
flexibility of our OLAP analysis.

126 5 - Discovering and Analyzing Trend-Event Patterns on Clinical Data

5.4 Conclusions

In this chapter we introduced a new kind of Temporal Patterns, called Trend-Event Patterns
(TE -Ps), that are useful to infer correlations between trends and events in a completely
automated way. We have evaluated and discussed their expressiveness by means of some
examples taken from the clinical domain. More precisely, we proposed an algorithm to mine
TE -Ps over a given dataset and we implemented it into a working prototype called TEPminer.
We used TEPminer to mine data belonging to a healthcare domain of intensive care and
in particular we applied our solution to the MIMIC-III EHR database. Our results prove
TEPminer to be an interesting tool for mining clinical data. Moreover, TE -Ps were analyzed
in a multidimensional aggregate way using an OLAP analysis.

In the future, we aim to deepen our understanding of TE -Ps through 4 different approaches.
The first one focus on an extensive multidimensional analysis, where we will mix trends
retrieved from different vital signs to observe the behavior of a certain drug on multiple
parameters. An example could be to analyze the effect of some sedative, given after an
increasing respiratory rate, on any other vital sign. Successively, it is interesting to extract
association rules and functional dependencies, also in their approximate form, starting from
TE -Ps. This will allow us to analyze trend-event rules from many different perspectives,
any one of them with a different level of detail: we could analyze a single TE -P, perform a
multidimensional OLAP analysis on an aggregation of TE -Ps, extract only some trend-event
rules based on a certain support/confidence/etc, or even analyze trend-event rules from an
attributes perspective. Finally, it is always fundamental to receive a validation on all these
rules from clinicians.

Chapter 6

Mining Compact Predictive Pattern
Sets Using Classification Model

In the previous chapter, we showed interesting temporal patterns extracted from ICU data
contained in MIMIC III dataset. However, all the methodologies proposed in the previous
chapters could extract rules that hold only for the given data. That is, if more data are added
the mining has to be done again. The fact that these rules are not valid with additional data
in the same dataset implies that the current rules are not capable of prediction.

In this chapter, we propose a new methodology to extract predictive patterns. This is
done by studying new ways of improving pattern rule mining that can lead to a smaller set of
rules that are sufficient to capture the essential underlying patterns in the data. This requires
analyzing relations among the mined rules and defining criteria for assessing the importance
of individual rules w.r.t. other rules. The key principle studied and applied in this work for
filtering the rules is rule redundancy (i.e., eliminate spurious patterns). Briefly, a pattern is
called spurious when it is predictive when evaluated alone, but is redundant given one of its
subpatterns. Spurious patterns may be formed by adding irrelevant items to other simpler
predictive patterns. Approach in [11] eliminates spurious patterns using statistical test based
on binomial distribution. Later the same authors proposed a more robust Bayesian criterion
to perform the spurious pattern elimination [9]. Our approach builds upon the minimum
predictive pattern mining idea proposed above, in order to eliminate spurious and highly
redundant rules, and attempts to improve it by reducing the set of mined minimum predictive
rules using an auxiliary classification model that combines the rules into one model. Since, in
general, the search for the optimal set of rules is equivalent to the optimal subset selection
problem [63], we propose and experiment with a more efficient greedy rule selection algorithm
that avoids the need to explore and evaluate all possible rules subsets.

Again, we have tested our method on data from MIMIC-III EHR dataset (that is illustrated
in Section 2.3.1). More specifically, our goal is to discover patterns that are associated with
sepsis and its treatments. We compare our method to the original one [11] and show that the
number of rules found by our method is significantly smaller than the original set. Moreover,
we show that the performance of the classification model that is based upon our rule set is
close or better than classification models built by Batal’s rule sets.

127

128 6 - Mining Compact Predictive Pattern Sets Using Classification Model

6.1 Method

6.1.1 Definitions

In this chapter we use some of the concepts that are already been described and defined in
Section 2.1.5. In particular, the concept of Item (Definition 10) , Itemset pattern (Definition
12), Subpattern (Definition 13), Support(Definition 14), and Frequent Pattern(Definition 15).

Here we are interested in mining patterns that are predictive of class c. So for pattern
P , we can define a predictive pattern (or a rule) R: P ⇒ c with respect to class label c.
The confidence of R is the precision (or posterior probability of c in group DP). Note that
confidence of Φ⇒ c is the prior probability of c. We say that rule R′: P ′ ⇒ c′ is a subrule of
rule R: P ⇒ c if c′ = c and P ′ ⊂ P .

Let Ω = {P1, ..., Pm} be a set of patterns predictive of c. Given a dataset D = {xi, yi}ni=1

defined in d-dimensional feature space and a set of patterns Ω the instances in D can be
mapped into a new m-dimensional binary array DΩ as follows:
xi → {bi,1, ..., bi,m} where bi,j = 1 if Pj ∈ xi and bi,j = 0 if Pj /∈ xi.
We refer to new DΩ = {x′

i, yi}ni=1 as to the pattern induced projection of the dataset D based
on patterns in Ω. The pattern induced dataset DΩ and its instances can be used to define
and also learn a binary classification model f : x′

i → yi = c that distinguishes instances with
the target class c from other classes. Effectively, this classification model combines a set of
patterns predictive of c into a unified model for predicting the same class.

6.1.2 Problem

Our objective is to identify a small set of predictive patterns (rules) for the target class c
from the data. To achieve this we propose a new two-step pattern mining process.

First, the number of predictive rules one can define by considering just the rule support
and its precision can be enormous and may include a large number of spurious patterns.
Hence we restrict our attention only to non-spurious rules. We mine these rules using Apriori
algorithm proposed by [11] that includes binomial test when selecting more specific rules.

Second, to further limit the number of predictive rules we combine the minimal predictive
patterns into a unified classification model to search for the optimal minimal pattern set Ω∗

predictive of the target class c. We define the optimal pattern set to be the minimal pattern
set that leads to the best combined generalization performance discriminating class c from
the rest of the classes.

In the following we first describe the idea behind the minimum predictive patterns, and
the unified classification models. After that we propose a greedy search algorithm that
combines the two ideas into one search mechanism for identifying small sets of predictive
patterns.

6.1 - Method 129

6.1.3 Minimum Predictive Patterns

Our solution builds upon the concept of minimum predictive patterns (MPPs) proposed by
Batal and Hauskrecht [11].

Definition 22 (Minimal Predictive Pattern). A predictive pattern R : A → c is called
minimal, if and only if, R predicts class c significantly better than all its subpatterns.

The gist of this definition is that every item in the condition of the predictive pattern
R is an important contributor to its prediction, that is, removal of any of the items in the
condition would cause a significant drop in its predictive performance. The significance of the
pattern R is determined using a statistical test derived from the binomial distribution. Let us
assume we are interested in testing the significance of rule R : A→ c. Assume that pattern
A consists of N instances, out of which Nc instances belong to class c. Let Pc represents the
highest probability achieved by any subpattern of R, that is, Pc = max(A

′ ⊂ A)Pr(c|A′).
To test, if the pattern R is significantly different, we hypothesize (null hypothesis) that

Nc is generated from N according to the binomial distribution with probability Pc. If we
cannot reject the hypothesis at some significance level, then, R is not significantly different
from the subpattern with Pc. However, we say that pattern R is significantly different when
we can reject the above hypothesis and show that the probability that generated Nc class
x instances out N is significantly higher than Pc. We can perform this test using a one
sided significance test and calculate its p-value. If this p-value is significant (smaller than a
significance level α), we conclude that R significantly improves the predictability of c over all
its simplifications, and hence R is a MPP.

The mining algorithm to mine minimal predictive patterns relies on the Apriori algorithm
that uses a minimum support parameter. The algorithm generates all patterns starting
from more general patterns to more specific that satisfy the minimum support, but only the
patterns that satisfy the binomial test (the minimality condition) are retained. As shown by
studies in [11] such an algorithm retains significantly smaller subset of predictive patterns.

6.1.4 Combining Predictive Patterns via Classification Model

Our second solution attempts to reduce the number of minimum patters mined by considering
their combinations. Briefly, we are interested in retaining only a subset of minimum predictive
patterns that are critical for predictive performance of the classification model defined on the
pattern induced dataset.

There are many classification models one can define on the binary dataset induced by
the predictive patterns. In this work, instead of considering all possible classification models,
we restrict our attention to linear support vector machines (SVM) models with shared
discriminant functions (discriminating class c from the rest of the classes) that are defined
by a linear combination of predictive patterns. To judge and compare the quality of such
models across many features we use the area under the ROC curve (AUROC) statistic.

In general the problem of finding the optimal subset of minimum predictive patterns that
leads to the best performing classification model is intractable. In order to make the search

130 6 - Mining Compact Predictive Pattern Sets Using Classification Model

more efficient we resort to greedy pattern search approach. To make the choices of patterns
we rely on the wrapper approach that tests, and selects patterns by considering the internal
validation approach. That is, in order to compare two distinct sets of patterns Ω and Ω′, we
use the internal train and test splits of the data to evaluate the AUROC performance of the
two sets in combination with the SVM model. The model and its patterns set with better
AUROC performance is preferred. In the following we describe the specific algorithm we use
to search a subset of minimum predictive patters to identify the best set.

6.1.5 Greedy Pattern Subset Selection Algorithm

Our approach starts by splitting dataset D into the training and test sets. All pattern
selection and learning is always done on the training set. We use the test set only for the
final evaluation.

Since our algorithm searches and compares many different subsets of predictive patterns,
we use internal validation process to measure their quality and choose better subsets. Briefly,
in order to evaluate and compare the goodness of a specific set of patterns Ω to other candidate
sets, we use a classification model based on the linear SVM that is run on the data induced
by Ω. We use multiple internal validation splits of the training data to make the comparison.
The training dataset is divided as follows: first we randomly pick 30% of the data rows and
use them as the test set, the remaining rows are reshuffled 10 times and for every reshuffle
80% of the data are used as the internal training set and the remaining 20% as the internal
validation set. The goodness of Ω is then estimates by averaging the AUROC score for all
internal splits obtained through reshuffling.

While our ultimate goal would be to find a set of predictive patterns that are optimal in
terms of the quality of the predictive performance of a classifier that combines them, the full
search is infeasible. To avoid the full pattern subset search, we adapt a greedy approach that
generates, examines and selects the patterns level-wise, where a level k covers all k-patterns.
More specifically, our method uses a two-stage procedure.

First, using an Apriori algorithm with the minimum support threshold and the binomial
test proposed by Batal et al, we generate a set of minimum predictive patterns for each level
k. Second, we use these minimum level-wise patterns to construct greedily the final set of
patterns. We implemented two procedures to conduct the greedy search. One that searches
and constructs the subset of patterns starting from the most general (level 1) patterns and
gradually adds new more specific (higher level) patterns. We refer to this procedure as the
top-bottom greedy procedure. The other procedure starts from the most specific patterns
(the highest level minimum predictive patterns) and greedily adds to the set more general
patterns of lower complexity. We refer to this method as to the bottom-up greedy procedure.

Let us assume that Ω′ is our current set of patterns (selected in the previous steps). Our
greedy search algorithm on level k works by first trying each minimum pattern on level k
in combination with Ω′. Each of these combinations are ranked in terms of the AUROC
score based on the internal validation. This order defines a greedy order in which all k-level
minimum patterns are sequentially tried and if successful (in terms of AUROC improvement)
they are added (one-by-one) to the resulting set of patterns. The same procedure for greedily

6.2 - Experiments 131

adding the patterns on level k is applied whether we build the patterns in the top-down
fashion (from level 1 patterns) or from the bottom-up (from highest level patterns). The
reason for using the bottom-up greedy search process is that it tends to retain a greater
number of the more specific patterns.

6.2 Experiments

6.2.1 Data

To test and validate our method, we analyze clinical data derived from MIMIC III dataset
[58] with the goal of identifying patterns predictive of sepsis diagnosis. Further details on
MIMIC are available in subsection 2.3.1. Before analysis, it is necessary to transform the
MIMIC-III raw data in a form that we could mine. This was accomplished through an E.T.L.
(Extract, Transform, Load) process. One source of our data was ChartEvents, that is the
vital signs table. We used it to extract specific measurements of heart rate, diastolic and
systolic blood pressure, white blood cells, and body temperature across the admission. For
each of these variables we created two attributes, one containing its maximum value during
the hospitalization of a patient, and the other one containing its minimum value. Instead of
numerical values, all these measurements were discretized to low, normal and medium ranges,
using the thresholds shown in Table 6.1.

Other information we selected from the records came from Procedures ICD table which
we used to determine whether a patient had a procedure or not (true\false attribute is created)
during the hospitalization. We applied the same transformation to table Diagnoses ICD to
identify all the patients diagnosed with sepsis. InputEvents MV table consists of medication
administration records. We used it to extract some medications administered to the patient,
such as vancomycin, piperacillin/tazobactam, ciprofloxacin, epinephrine, norepinephrine,
vasopressin, dopamine, metoprolol, potassium chloride, phenylephrine, omeprazole (prilosec),
and pantoprazole (protonix).

Let us note that while some of these medications are commonly used for treating patients
with sepsis, whereas other medications such as metoprolol, potassium chloride, phenylephrine,
omeprazole (prilosec), and pantoprazole (protonix) are more general. These were included to
test the effectiveness of our method when mining patterns related to sepsis. At the end of
the E.T.L. process we obtain data for 21 880 patients, 2806 of them with sepsis.

Heart Rate Diastolic BP Systolic BP White Blood Cells Body Temperature

Low < 60 < 60 < 90 < 4.0 < 36.0

High > 90 > 90 > 140 > 12.0 > 38.0

Table 6.1: Thresholds used to discretize the considered vital signs in low, medium, high.

132 6 - Mining Compact Predictive Pattern Sets Using Classification Model

6.2.2 Results

Table 6.2 shows the results we obtained on MIMIC-III data for the minimum predictive rule
mining approach by Batal and Hauskrecht [11], and two versions of our greedy classification
model driven subset selection approach. The main statistics we use to evaluate the quality
of the predictive rule set is the area under the ROC (Receiver Operating Characteristics)
curve (AUROC) [42]. All AUROC statistics listed in the table are obtained on the test data.
In addition to AUROC performances, we list the number of patterns found by the different
methods. For example, the minimum predictive pattern (MPP) baseline used 62 patterns and
reached AUROC performance of 0.8602. As we can see, both greedy methods outperformed
(in terms of the AUROC classification performance) the baseline. Moreover this improvement
is accompanied by a significant reduction in the total number of patterns used in the set
compared to the baseline.

We note that while there is nearly no difference in the AUROC performance among
the two versions of our greedy method, the number of patterns found and used by the two
is significantly different. In particular, we observe that the majority of the patterns in
the bottom-up approach are more complex patterns while the majority of patterns in the
top-down approach are 1-patterns. This shows that bottom-up approach tends to keep more
detailed patterns compared to the top-down approach.

Finally, we investigate for possible differences between the AUROC curves shown in Figure
6-1 (bottom-up approach) and in Figure 6-2. We used the method proposed by Delong et
al. [38] to calculate the standard error of the AUROC curves and also to find differences
between the two AUROC. Let us recall that an area of 0.8643 means that a randomly selected
individual from the positive group has a test value larger than that for a randomly chosen
individual from the negative group in 86.43% of the time, whereas the 95% confidence interval
is the interval in which the true (population) Area under the ROC curve lies with 95%
confidence.

The significance level P shows the probability of the hypothesis that the difference between
the two AUROC curves is 0, while z statistic measures standard deviation and helps to decide
whether or not to reject the null hypothesis. For example, the z score values when using a
95% confidence interval are ±1.96 standard deviations and P is 0.05. If z score is between
±1.96, P will be > 0.05, and the null hypothesis cannot be reject. Otherwise, if the Z score
falls outside that range, P will be < 0.05 and it is possible to reject the null hypothesis,
considering a significant difference between the two distributions.

The summarization of the differences between the two curves is shown in Figure 6-3. In
all these Figures (6-1, 6-2, 6-3) the true positive rate (Sensitivity) is plotted in function of the
false positive rate (100-Specificity) for different cut-off points. Each point on the ROC curve
represents a sensitivity/specificity pair corresponding to a particular decision threshold.

6.2 - Experiments 133

Figure 6-1: ROC curve for our bottom-up approach.

Figure 6-2: ROC curve for Batal’s MPP approach.

134 6 - Mining Compact Predictive Pattern Sets Using Classification Model

Figure 6-3: Comparison between MPP and our bottom-up ROC curves to show the differences.

Method AUROC Number of patterns

MPP (Batal et al) 0.8602 62

Our method (bottom-up) 0.8643 33

Our method (top-down) 0.8635 19

Table 6.2: Comparison between the results for our method and Batal et al’s predictive pattern
mining method.

6.3 Discussion

Sepsis is the systemic response to infection, and there are many conditions that would indicate
its occurrence during the admission or hospital stay, such as: temperature > 38 ◦C or < 36 ◦C;
heart rate > 90 beats per minute; systolic blood pressure < 90 mm Hg, and white blood cell
count > 12,000/cu mm or < 4,000/cu mm [18]. Moreover, patients with sepsis are usually
treated with antibiotics such as vancomycin, piperacillin / tazobactam, ciprofloxacin, and
drugs treating episodes of hypotension such as epinephrine, norepinephrine, phenylephrine,
vasopressin, and dopamine [37].

Table 6.3 lists all minimal predictive patterns that we mined using the bottom-up greedy
procedure. The table entries include the absolute weight the rule was assigned by the final
classification model, the rule support and the rule precision. By analyzing the results with

6.3 - Discussion 135

Pattern Rule Weight Support Precision

Norepinephrine = true 0.4667 0.1453 0.4933

Norepinephrine = true & Vancomycin = true 0.2628 0.1114 0.5615

Piperacillin/Tazobactam = true 0.2476 0.143 0.3991

MaxSystolicBloodPressure = low 0.1981 0.4311 0.1571

Ciprofloxacin = true 0.1750 0.1157 0.2970

Vancomycin = true 0.1619 0.3890 0.2612

Pantoprazole(Protonix) = true & MaxSystolicBloodPressure = low 0.1418 0.1437 0.2801

Norepinephrine = true & Piperacillin/Tazobactam = true 0.1159 0.0566 0.6482

MaxWhiteBloodCells = high 0.1017 0.5669 0.1699

MinWhiteBloodCells = low & MaxHeartRate = high 0.0870 0.0653 0.2780

Vancomycin = true & MinWhiteBloodCells = high 0.0856 0.0940 0.2773

PotassiumChloride = true & MaxWhiteBloodCells = high 0.0738 0.3275 0.1793

Vancomycin = true & MaxHeartRate = high 0.0628 0.3015 0.2871

MinWhiteBloodCells = low 0.0601 0.0913 0.2312

MinDiastolicBloodPressure = low & MaxWhiteBloodCells = high 0.0533 0.3102 0.1847

Vancomycin = true & MaxWhiteBloodCells = high 0.0527 0.2821 0.2797

Pantoprazole(Protonix) = true & Piperacillin/Tazobactam = true 0.0512 0.0662 0.4438

MaxWhiteBloodCells = high & MaxSystolicBloodPressure = low 0.0500 0.3255 0.1792

Piperacillin/Tazobactam = true & MaxWhiteBloodCells = high 0.0471 0.1106 0.4238

Pantoprazole(Protonix) = true & Ciprofloxacin = true 0.0380 0.0574 0.3436

MinTemp = low 0.0369 0.0618 0.1706

Vancomycin = true & MaxDiastolicBloodPressure = high 0.0324 0.1089 0.3023

Ciprofloxacin = true & MaxHeartRate = high 0.0241 0.0930 0.3251

Ciprofloxacin = true & MaxWhiteBloodCells = high 0.0117 0.0873 0.3263

Pantoprazole(Protonix) = true & Norepinephrine = true 0.0094 0.0679 0.5496

MaxWhiteBloodCells = high & MaxHeartRate = high 0.0075 0.4129 0.1974

Pantoprazole(Protonix) = true & Vancomycin = true 0.0058 0.1433 0.3423

Pantoprazole(Protonix) = true & PotassiumChloride = true 0.0053 0.1616 0.2442

Pantoprazole(Protonix) = true & MinDiastolicBloodPressure = low 0.0047 0.1369 0.2882

PotassiumChloride = true & MaxDiastolicBloodPressure = high 0.0047 0.1320 0.2184

MaxDiastolicBloodPressure = high & MaxHeartRate = high 0.0001 0.1451 0.2278

MaxSystolicBloodPressure = low & MaxHeartRate = high 0.0015 0.3109 0.1942

Pantoprazole(Protonix) = true & MaxWhiteBloodCells = high 0.0001 0.1851 0.2534

Table 6.3: The mined set of minimal predictive patterns with their absolute weight, support
and precision.

136 6 - Mining Compact Predictive Pattern Sets Using Classification Model

respect to sepsis symptoms and treatments we see 21 patterns (out of 33) that match exactly
sepsis related symptoms and/or treatments, and 9 more with the sepsis related patterns
but in conjunction with Pantoprazole (Protonix). Pantoprazole is a proton pump inhibitor
(PPI) and, even though it is not used to treat sepsis, PPIs are used for stress-related mucosal
damage (SRMD). SRMD is an erosive gastritis of unclear pathophysiology, which can occur
rapidly after a severe insult such as trauma, surgery, sepsis or burns [20]. In other words, it
is still reasonable to mine patterns with Pantoprazole, because it is weakly related to sepsis.
Finally, we have only 3 patterns, indicated in Table 6.3 in italic, that include items we would
consider to be weakly related to sepsis: 2 patterns have MaxDiastolicBloodPressure = high
and one that includes PotassiumChloride = true. This demonstrates our algorithm is able to
select a much smaller subset of patterns compared to MPP method and that the majority of
the patterns predictive of sepsis are reasonable.

6.4 Conclusion

In this work we have developed and tested a new framework for mining predictive patterns
that compactly describe a class of interest. It uses a greedy algorithm to mine the most
predictive patterns level-wise and including only those that improve the overall class prediction
performance. We tested our approach on intensive care data from MIMIC-III EHR database,
focusing on patterns predictive of sepsis. The results preserve the overall classification quality
of state-of-the-art methods based on minimum predictive pattern mining approach, but with
a significant reduction in the number of extracted patterns.

Chapter 7

Conclusions

In this thesis, we proposed a framework (graphically depicted in Figure 1-1) that integrates
different approximate data mining techniques applied to clinical data. The framework
includes and extends different mining techniques and, in particular, it focuses on Approximate
Temporal Functional Dependencies and Patterns. For the first one, two different proposals
have been done: Pure Temporally Evolving Functional Dependencies (Chapter 3) and Multi
Approximate Temporal Functional Dependencies (Chapter 4). Even for patterns, we proposed
two new different mining techniques: Trend-Event Patterns (Chapter 5) and Predictive
Patterns (Chapter 6).

The flexibility and interestingness of this framework ares given by different kinds of
information it can extract even from the same clinical dataset. Chapters 4, 5, and 6 provide
some concrete examples of these features. Using ICU data contained in the publicly-available
MIMIC III dataset, we were able to extract a specific kind of Approximate Temporal Functional
Dependency, Temporal Pattern, or Predictive Pattern.

The flexibility of this framework is extended to the underlying tools used to mine clinical
data. Indeed, it is not necessary to create a new tool for every new technique proposed, but
it is quite straightforward to extend the current framework.

Some limitations of the current framework need to be discussed and faced. From the
computational side, when we have to combine many different attributes in a powerset, we
inherently have to deal with an exponential complexity (O(2n) - where n is the number
of attributes). Nevertheless, pruning strategies may help to reduce the real number of
combinations to test. This, combined with parallelization techniques, may help to reduce the
computational time. Often this is still not enough, and we have to limit our set of attributes
to retrieve results in a reasonable time. Moreover, the framework needs further clinical
validations. In our previous discussions with clinicians, we noted that it is challenging to
have insightful feedback on the finer details, such as tuning the length of a sliding window for
MAT -FDs or tuning the parameters to retrieve TE -Ps. This should encourage us to increase
the effort in creating and refining techniques that are also easily adoptable by clinicians.

Overall, clinicians gave us positive feedback on the results obtained. In particular, both
AT -FDs generated some interest because their rules are valid at the attribute-level, whereas
usually they have to deal with rules that explicitly consider attribute values. Attribute-level

137

138 7 - Conclusions

rules may help them to validate or discover concepts at a higher level of abstraction or
aggregation. On the other hand, pattern mining produces results clinicians are more familiar
with. Even though TE -Ps were initially used only for validation, they result interesting when
used in their aggregate form. TE -Psare not only useful to validate known behaviors, but they
also help to analyze the amount of outliers and their behavior.

Predictive patterns share the same advantages of TE -Ps. Moreover, they also have the
benefit of prediction, but, for now, they are not considering the temporal aspect. They have
been successfully used to verify the clinical conditions that affect a patient with severe sepsis,
which is a disease hard to diagnose because many of its symptoms are common to other
diseases.

Right now, the framework includes techniques to mine temporal patterns and predictive
patterns. In the future, it would be interesting to combine these two concepts and discover
some new interesting predictive temporal patterns. This idea could possibly develop in two
different directions.

The first one is to use the classification method seen in Chapter 6 and use it to predict
a set of the most “meaningful” temporal patterns previously discovered. Let us recall that
with the current Trend-Event Patterns we have hundreds of thousands of patterns, and
right now, the best way to analyze them is in some aggregate form through OLAP analysis.
However, the combination of a classifier and temporal patterns could lead to a small (but
highly significant) set of patterns.

The second direction consists of the integration of the temporal aspect in the current
predictive patterns. In Chapter 6, we extracted patterns that predict sepsis. However, it
could be interesting to understand whether these patterns change during time (e.g., if they
hold within a fixed-size sliding window).

Both directions could help us to obtain an even smaller and more descriptive set of
patterns, and this is particularly helpful in the path of introducing these patterns in a daily
clinical routine.

Bibliography

[1] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan.
Automatic subspace clustering of high dimensional data for data mining applications.
In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD 1998, Proceedings ACM
SIGMOD International Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 94–105. ACM Press, 1998. doi:10.1145/276304.276314.

[2] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules
between sets of items in large databases. In Peter Buneman and Sushil Jajodia, editors,
Proceedings of the 1993 ACM SIGMOD International Conference on Management of
Data, Washington, DC, USA, May 26-28, 1993., pages 207–216. ACM Press, 1993.
doi:10.1145/170035.170072.

[3] Rakesh Agrawal and John C. Shafer. Parallel mining of association rules. IEEE Trans.
Knowl. Data Eng., 8(6):962–969, 1996. doi:10.1109/69.553164.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Proceedings of VLDB, 1994. URL: https://dl.acm.org/
doi/10.5555/645920.672836.

[5] F Amaddeo, G Bisoffi, R Micciolo, M Piccinelli, and M Tansella. Frequency of
contact with community-based psychiatric services and the lunar cycle: a 10-year
case-register study. Social psychiatry and psychiatric epidemiology, 32(6):323–326, 1997.
doi:10.1007/BF00805436.

[6] Francesco Amaddeo, Jennifer Beecham, Paola Bonizzato, A Fenyo, M Knapp, and
Michele Tansella. The use of a case register to evaluate the costs of psychiatric
care. Acta Psychiatrica Scandinavica, 95(3):189–198, 1997. doi:10.1111/J.1600-
0447.1997.TB09619.X.

[7] Francesco Amaddeo and Michele Tansella. Information systems for mental
health. Epidemiology and Psychiatric Sciences, 18(1):1–4, 2009. doi:10.1017/
S1121189X00001378.

[8] R. C. Barr, S. M. Blanchard, and D. A. Dipersio. Sapa-2 is the fan. IEEE Trans-
actions on Biomedical Engineering, BME-32(5):337–337, May 1985. doi:10.1109/
TBME.1985.325548.

139

https://doi.org/10.1145/276304.276314
https://doi.org/10.1145/170035.170072
https://doi.org/10.1109/69.553164
https://dl.acm.org/doi/10.5555/645920.672836
https://dl.acm.org/doi/10.5555/645920.672836
https://doi.org/10.1007/BF00805436
https://doi.org/10.1111/J.1600-0447.1997.TB09619.X
https://doi.org/10.1111/J.1600-0447.1997.TB09619.X
https://doi.org/10.1017/S1121189X00001378
https://doi.org/10.1017/S1121189X00001378
https://doi.org/10.1109/TBME.1985.325548
https://doi.org/10.1109/TBME.1985.325548

140 Bibliography

[9] Iyad Batal, Gregory Cooper, and Milos Hauskrecht. A Bayesian Scoring Technique for
Mining Predictive and Non-Spurious Rules. In Proceedings of the European conference
on Principles of Data Mining and Knowledge Discovery (PKDD), 2012. doi:10.1007/
978-3-642-33486-3 17.

[10] Iyad Batal and Milos Hauskrecht. A supervised time series feature extraction technique
using DCT and DWT. In M. Arif Wani, Mehmed M. Kantardzic, Vasile Palade, Lukasz A.
Kurgan, and Yuan (Alan) Qi, editors, International Conference on Machine Learning
and Applications, ICMLA 2009, Miami Beach, Florida, USA, December 13-15, 2009,
pages 735–739. IEEE Computer Society, 2009. URL: https://ieeexplore.ieee.org/
xpl/conhome/5379696/proceeding, doi:10.1109/ICMLA.2009.13.

[11] Iyad Batal and Milos Hauskrecht. Constructing classification features using minimal
predictive patterns. In Proceedings of the 19th ACM international conference on
Information and knowledge management, pages 869–878. ACM, 2010. doi:10.1145/
1871437.1871549.

[12] Iyad Batal, Hamed Valizadegan, Gregory F. Cooper, and Milos Hauskrecht. A pat-
tern mining approach for classifying multivariate temporal data. In Fang-Xiang Wu,
Mohammed Javeed Zaki, Shinichi Morishita, Yi Pan, Stephen Wong, Anastasia Chris-
tianson, and Xiaohua Hu, editors, IEEE International Conference on Bioinformatics
and Biomedicine, BIBM 2011, Atlanta, GA, USA, November 12-15, , 2011, pages
358–365. IEEE Computer Society, 2011. URL: https://ieeexplore.ieee.org/xpl/
conhome/6120121/proceeding, doi:10.1109/BIBM.2011.39.

[13] Florian Beil, Martin Ester, and Xiaowei Xu. Frequent term-based text clustering.
In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada, pages
436–442. ACM, 2002. doi:10.1145/775047.775110.

[14] Riccardo Bellazzi, Cristiana Larizza, Paolo Magni, and Roberto Bellazzi. Tempo-
ral data mining for the quality assessment of hemodialysis services. Artificial In-
telligence in Medicine, 34(1):25 – 39, 2005. Artificial Intelligence in Medicine in
Europe {AIME} ’03. URL: http://www.sciencedirect.com/science/article/pii/
S093336570400123X, doi:10.1016/j.artmed.2004.07.010.

[15] Riccardo Bellazzi, Cristiana Larizza, and Alberto Riva. Temporal abstractions for
interpreting diabetic patients monitoring data. Intelligent Data Analysis, 2(1-4):97–122,
1998. doi:10.1016/S1088-467X(98)00020-1.

[16] Riccardo Bellazzi and Blaz Zupan. Predictive data mining in clinical medicine: current
issues and guidelines. International journal of medical informatics, 77(2):81–97, 2008.
doi:10.1016/J.IJMEDINF.2006.11.006.

https://doi.org/10.1007/978-3-642-33486-3_17
https://doi.org/10.1007/978-3-642-33486-3_17
https://ieeexplore.ieee.org/xpl/conhome/5379696/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5379696/proceeding
https://doi.org/10.1109/ICMLA.2009.13
https://doi.org/10.1145/1871437.1871549
https://doi.org/10.1145/1871437.1871549
https://ieeexplore.ieee.org/xpl/conhome/6120121/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6120121/proceeding
https://doi.org/10.1109/BIBM.2011.39
https://doi.org/10.1145/775047.775110
http://www.sciencedirect.com/science/article/pii/S093336570400123X
http://www.sciencedirect.com/science/article/pii/S093336570400123X
https://doi.org/10.1016/j.artmed.2004.07.010
https://doi.org/10.1016/S1088-467X(98)00020-1
https://doi.org/10.1016/J.IJMEDINF.2006.11.006

Bibliography 141

[17] M. Bertinelli, A. Castelli, C. Combi, and F. Pinciroli. Data compression applied to
dynamic electrocardiography. Medical and Biological Engineering and Computing,
27(1):33–40, Jan 1989. doi:10.1007/BF02442167.

[18] Roger C Bone, Robert A Balk, Frank B Cerra, R Phillip Dellinger, Alan M Fein,
William A Knaus, Roland MH Schein, and William J Sibbald. Definitions for sepsis
and organ failure and guidelines for the use of innovative therapies in sepsis. Chest,
101(6):1644–1655, 1992. doi:10.1378/CHEST.101.6.1644.

[19] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. The Wadsworth Statistics/Probability Series, 1984. ISBN-10: 0534980538.

[20] Stephen Brett. Science review: the use of proton pump inhibitors for gastric acid
suppression in critical illness. Critical care, 9(1):45, 2004. doi:10.1186/CC2980.

[21] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., 35(8):677–691, August 1986. doi:10.1109/TC.1986.1676819.

[22] S. Chakravarty and Y. Shahar. Acquisition and analysis of repeating patterns in
time-oriented clinical data. Methods of information in medicine, 40(5):410–420, 2001.
doi:10.1055/S-0038-1634201.

[23] Shubha Chakravarty and Yuval Shahar. CAPSUL: A constraint-based specification of
repeating patterns in time-oriented data. Ann. Math. Artif. Intell., 30(1-4):3–22, 2000.
doi:10.1023/A:1016661915959.

[24] Dustin Charles, Meghan Gabriel, Talisha Searcy, et al. Adoption of electronic
health record systems among us non-federal acute care hospitals: 2008-2013. ONC
data brief, 9:1–9, 2013. URL: https://www.healthit.gov/sites/default/files/
oncdatabrief16.pdf.

[25] Hong Cheng, Xifeng Yan, Jiawei Han, and Chih-Wei Hsu. Discriminative frequent
pattern analysis for effective classification. In Rada Chirkova, Asuman Dogac, M. Tamer
Özsu, and Timos K. Sellis, editors, Proceedings of the 23rd International Conference on
Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007,
pages 716–725. IEEE Computer Society, 2007. URL: https://ieeexplore.ieee.org/
xpl/conhome/4221634/proceeding, doi:10.1109/ICDE.2007.367917.

[26] Edgar Frank Codd. Normalized data structure: A brief tutorial. In Edgar Fred
Codd and Albert L. Dean, editors, SIGFIDET Workshop, pages 1–17. ACM, 1971.
doi:10.1145/1734714.1734716.

[27] Carlo Combi and Luca Chittaro. Abstraction on clinical data sequences: an object-
oriented data model and a query language based on the event calculus. Artificial
Intelligence in Medicine, 17(3):271–301, 1999. doi:10.1016/S0933-3657(99)00022-6.

https://doi.org/10.1007/BF02442167
https://doi.org/10.1378/CHEST.101.6.1644
https://doi.org/10.1186/CC2980
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1055/S-0038-1634201
https://doi.org/10.1023/A:1016661915959
https://www.healthit.gov/sites/default/files/oncdatabrief16.pdf
https://www.healthit.gov/sites/default/files/oncdatabrief16.pdf
https://ieeexplore.ieee.org/xpl/conhome/4221634/proceeding
https://ieeexplore.ieee.org/xpl/conhome/4221634/proceeding
https://doi.org/10.1109/ICDE.2007.367917
https://doi.org/10.1145/1734714.1734716
https://doi.org/10.1016/S0933-3657(99)00022-6

142 Bibliography

[28] Carlo Combi, Massimo Franceschet, and Adriano Peron. Representing and reasoning
about temporal granularities. J. Log. Comput., 14(1):51–77, 2004. doi:10.1093/
logcom/14.1.51.

[29] Carlo Combi, Matteo Mantovani, Alberto Sabaini, Pietro Sala, Francesco Amaddeo, Ugo
Moretti, and Giuseppe Pozzi. Mining approximate temporal functional dependencies
with pure temporal grouping in clinical databases. Comp. in Bio. and Med., 62:306–324,
2015. doi:10.1016/j.compbiomed.2014.08.004.

[30] Carlo Combi, Matteo Mantovani, and Pietro Sala. Discovering quantitative temporal
functional dependencies on clinical data. In 2017 IEEE International Conference on
Healthcare Informatics, ICHI 2017, Park City, UT, USA, August 23-26, 2017, pages
248–257. IEEE Computer Society, 2017. URL: https://ieeexplore.ieee.org/xpl/
conhome/8030514/proceeding, doi:10.1109/ICHI.2017.80.

[31] Carlo Combi, Angelo Montanari, and Giuseppe Pozzi. The T4SQL Temporal Query
Language. In CIKM, pages 193–202. ACM, 2007. doi:10.1145/1321440.1321470.

[32] Carlo Combi, Angelo Montanari, and Pietro Sala. A uniform framework for temporal
functional dependencies with multiple granularities. In Advances in Spatial and Temporal
Databases - 12th International Symposium, SSTD 2011, Proceedings, pages 404–421,
2011. doi:10.1007/978-3-642-22922-0 24.

[33] Carlo Combi, Romeo Rizzi, and Pietro Sala. The price of evolution in temporal databases.
In 22nd International Symposium on Temporal Representation and Reasoning, TIME
2015, pages 47–58. IEEE, 2015. doi:10.1109/TIME.2015.24.

[34] Carlo Combi and Alberto Sabaini. Extraction, analysis, and visualization of temporal
association rules from interval-based clinical data. In Artificial Intelligence in Medicine
- 14th Conference on Artificial Intelligence in Medicine, AIME 2013. Proceedings, pages
238–247, 2013. doi:10.1007/978-3-642-38326-7 35.

[35] Carlo Combi and Pietro Sala. Mining approximate interval-based temporal dependencies.
Acta Inf., 53(6-8):547–585, 2016. doi:10.1007/s00236-015-0246-x.

[36] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995. doi:10.1007/BF00994018.

[37] R Phillip Dellinger, Mitchell M Levy, Andrew Rhodes, Djillali Annane, Herwig Gerlach,
Steven M Opal, Jonathan E Sevransky, Charles L Sprung, Ivor S Douglas, Roman
Jaeschke, et al. Surviving sepsis campaign: international guidelines for management
of severe sepsis and septic shock, 2012. Intensive care medicine, 39(2):165–228, 2013.
doi:10.1097/CCM.0B013E31827E83AF.

[38] ER DeLong, DM DeLong, and DL Clarke-Pearson. Comparing the areas under two
or more correlated receiver operating characteristic curves: a nonparametric approach.
Biometrics, 44(3):837—845, September 1988. doi:10.2307/2531595.

https://doi.org/10.1093/logcom/14.1.51
https://doi.org/10.1093/logcom/14.1.51
https://doi.org/10.1016/j.compbiomed.2014.08.004
https://ieeexplore.ieee.org/xpl/conhome/8030514/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8030514/proceeding
https://doi.org/10.1109/ICHI.2017.80
https://doi.org/10.1145/1321440.1321470
https://doi.org/10.1007/978-3-642-22922-0_24
https://doi.org/10.1109/TIME.2015.24
https://doi.org/10.1007/978-3-642-38326-7_35
https://doi.org/10.1007/s00236-015-0246-x
https://doi.org/10.1007/BF00994018
https://doi.org/10.1097/CCM.0B013E31827E83AF
https://doi.org/10.2307/2531595

Bibliography 143

[39] Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis. Frequent
substructure-based approaches for classifying chemical compounds. IEEE Transactions
on Knowledge and Data Engineering, 17:1036–1050, 2005. doi:10.1109/TKDE.2005.127.

[40] Marián Dvorský. Common permutation problem. CoRR, abs/0803.4261, 2008. URL:
http://arxiv.org/abs/0803.4261.

[41] I Ralph Edwards and Cecilia Biriell. Harmonisation in pharmacovigilance. Drug safety,
10(2):93–102, 1994. doi:10.2165/00002018-199410020-00001.

[42] Tom Fawcett. An introduction to ROC analysis. Pattern recognition letters, 27(8):861–
874, 2006. doi:10.1016/J.PATREC.2005.10.010.

[43] National Center for Health Statistics (US). The International Classification of Diseases,
9th Revision, Clinical Modification: Procedures: tabular list and alphabetic index,
volume 3. US Department of Health and Human Services, Public Health Service,
Health Care Financing Administration, 1980. URL: https://www.cdc.gov/nchs/icd/
icd9cm.htm.

[44] Liqiang Geng and Howard J Hamilton. Interestingness measures for data mining: A sur-
vey. ACM Computing Surveys (CSUR), 38(3):9, 2006. doi:10.1145/1132960.1132963.

[45] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and
H Eugene Stanley. Physiobank, physiotoolkit, and physionet: components of a new
research resource for complex physiologic signals. Circulation, 101(23):e215–e220, 2000.
doi:10.1161/01.cir.101.23.e215.

[46] L Grigoletti, G Perini, A Rossi, A Biggeri, C Barbui, M Tansella, and F Amaddeo.
Mortality and cause of death among psychiatric patients: a 20-year case-register
study in an area with a community-based system of care. Psychological medicine,
39(11):1875–1884, 2009. doi:10.1017/S0033291709005790.

[47] Birger Haarbrandt, Erik Tute, and Michael Marschollek. Automated population of
an i2b2 clinical data warehouse from an openehr-based data repository. Journal of
Biomedical Informatics, 63:277–294, 2016. doi:10.1016/j.jbi.2016.08.007.

[48] Ira J Haimowitz and Isaac S Kohane. Managing temporal worlds for medical trend
diagnosis. Artificial Intelligence in Medicine, 8(3):299–321, 1996. doi:10.1016/0933-
3657(95)00037-2.

[49] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques.
Elsevier, 2011. eBook ISBN: 9780123814807.

[50] David T. Hau and Enrico W. Coiera. Learning qualitative models of dynamic systems.
Machine Learning, 26(2):177–211, 1997. doi:10.1023/A:1007317323969.

https://doi.org/10.1109/TKDE.2005.127
http://arxiv.org/abs/0803.4261
https://doi.org/10.2165/00002018-199410020-00001
https://doi.org/10.1016/J.PATREC.2005.10.010
https://www.cdc.gov/nchs/icd/icd9cm.htm
https://www.cdc.gov/nchs/icd/icd9cm.htm
https://doi.org/10.1145/1132960.1132963
https://doi.org/10.1161/01.cir.101.23.e215
https://doi.org/10.1017/S0033291709005790
https://doi.org/10.1016/j.jbi.2016.08.007
https://doi.org/10.1016/0933-3657(95)00037-2
https://doi.org/10.1016/0933-3657(95)00037-2
https://doi.org/10.1023/A:1007317323969

144 Bibliography

[51] Manfred Hauben and Lester Reich. Communication of findings in pharmacovigilance:
use of the term “signal” and the need for precision in its use. European journal of
clinical pharmacology, 61(5-6):479–480, 2005. doi:10.1007/S00228-005-0951-4.

[52] John H. Holmes, Thomas E. Elliott, Jeffrey S. Brown, Marsha A. Raebel, Arthur J.
Davidson, Andrew F. Nelson, Annie Chung, Pierre La Chance, and John F. Steiner.
Clinical research data warehouse governance for distributed research networks in
the USA: a systematic review of the literature. JAMIA, 21(4):730–736, 2014. doi:

10.1136/amiajnl-2013-002370.

[53] Frank Höppner. Knowledge discovery from sequential data. PhD thesis, Braun-
schweig University of Technology, Germany, 2003. URL: http://opus.tu-bs.de/opus/
volltexte/2003/406/index.html.

[54] Frank Höppner and Frank Klawonn. Finding Informative Rules in Interval Sequences,
pages 125–134. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. doi:10.1007/3-
540-44816-0 13.

[55] Ykä Huhtala, Juha Karkkainen, Pasi Porkka, and Hannu Toivonen. Efficient discovery
of functional and approximate dependencies using partitions. In Data Engineering,
1998. Proceedings., 14th International Conference on, pages 392–401. IEEE, 1998.
doi:10.1109/ICDE.1998.655802.

[56] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: An efficient
algorithm for discovering functional and approximate dependencies. The computer
journal, 42(2):100–111, 1999. doi:10.1093/COMJNL/42.2.100.

[57] Christian S. Jensen, Richard T. Snodgrass, and Michael D. Soo. Extending existing
dependency theory to temporal databases. IEEE Trans. Knowl. Data Eng., 8(4):563–
582, 1996. doi:10.1109/69.536250.

[58] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger G Mark. Mimic-iii, a freely accessible critical care database. Scientific data,
3:160035, 2016. doi:10.1038/sdata.2016.35.

[59] Viktor Jovanoski and Nada Lavrac. Classification rule learning with apriori-c. In EPIA,
2001. doi:10.1007/3-540-45329-6 8.

[60] Po-shan Kam and Ada Wai-Chee Fu. Discovering temporal patterns for interval-based
events. In Yahiko Kambayashi, Mukesh K. Mohania, and A Min Tjoa, editors, Data
Warehousing and Knowledge Discovery, Second International Conference, DaWaK
2000, London, UK, September 4-6, 2000, Proceedings, volume 1874 of Lecture Notes in
Computer Science, pages 317–326. Springer, 2000. doi:10.1007/3-540-44466-1\ 32.

https://doi.org/10.1007/S00228-005-0951-4
https://doi.org/10.1136/amiajnl-2013-002370
https://doi.org/10.1136/amiajnl-2013-002370
http://opus.tu-bs.de/opus/volltexte/2003/406/index.html
http://opus.tu-bs.de/opus/volltexte/2003/406/index.html
https://doi.org/10.1007/3-540-44816-0_13
https://doi.org/10.1007/3-540-44816-0_13
https://doi.org/10.1109/ICDE.1998.655802
https://doi.org/10.1093/COMJNL/42.2.100
https://doi.org/10.1109/69.536250
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1007/3-540-45329-6_8
https://doi.org/10.1007/3-540-44466-1_32

Bibliography 145

[61] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling. John Wiley & Sons, Inc., New York, NY, USA, 2nd edition,
2002. URL: https://dl.acm.org/doi/book/10.5555/560521.

[62] Jyrki Kivinen and Heikki Mannila. Approximate inference of functional dependen-
cies from relations. Theor. Comput. Sci., 149(1):129–149, 1995. doi:10.1016/0304-
3975(95)00028-U.

[63] Daphne Koller and Mehran Sahami. Toward optimal feature selection. Technical report,
Stanford InfoLab, 1996. URL: https://dl.acm.org/doi/10.5555/3091696.3091731.

[64] Benjamin Kuipers. Qualitative simulation. Artificial intelligence, 29(3):289–338, 1986.
doi:10.1016/0004-3702(86)90073-1.

[65] Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In Proceedings
of ICDM, 2001. doi:10.1109/ICDM.2001.989534.

[66] Nada Lavrač. Selected techniques for data mining in medicine. Artificial intelligence in
medicine, 16(1):3–23, 1999. doi:10.1016/S0933-3657(98)00062-1.

[67] Jørn Lind-Nielsen. BuDDy - A Binary Decision Diagram Package. http://

vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/.

[68] Chuanren Liu, Kai Zhang, Hui Xiong, Geoff Jiang, and Qiang Yang. Temporal
skeletonization on sequential data: patterns, categorization, and visualization. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, page 13361345. ACM, 2014. doi:10.1109/TKDE.2015.2468715.

[69] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Functional and approximate depen-
dency mining: database and fca points of view. Journal of Experimental & Theoretical
Artificial Intelligence, 14(2-3):93–114, 2002. doi:10.1080/09528130210164143.

[70] Riccardo Lora, Alberto Sabaini, Carlo Combi, and Ugo Moretti. Designing the reconciled
schema for a pharmacovigilance data warehouse through a temporally-enhanced er
model. In Proceedings of the 2012 international workshop on Smart health and wellbeing,
pages 17–24. ACM, 2012. doi:10.1145/2389707.2389711.

[71] Michael Mampaey, Nikolaj Tatti, and Jilles Vreeken. Tell me what i need to know:
succinctly summarizing data with itemsets. In Chid Apté, Joydeep Ghosh, and Padhraic
Smyth, editors, Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego, CA, USA, August 21-24, 2011,
pages 573–581. ACM, 2011. doi:10.1145/2020408.2020499.

[72] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes
in event sequences. Data Min. Knowl. Discov., 1(3):259–289, 1997. doi:10.1023/A:
1009748302351.

https://dl.acm.org/doi/book/10.5555/560521
https://doi.org/10.1016/0304-3975(95)00028-U
https://doi.org/10.1016/0304-3975(95)00028-U
https://dl.acm.org/doi/10.5555/3091696.3091731
https://doi.org/10.1016/0004-3702(86)90073-1
https://doi.org/10.1109/ICDM.2001.989534
https://doi.org/10.1016/S0933-3657(98)00062-1
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/
https://doi.org/10.1109/TKDE.2015.2468715
https://doi.org/10.1080/09528130210164143
https://doi.org/10.1145/2389707.2389711
https://doi.org/10.1145/2020408.2020499
https://doi.org/10.1023/A:1009748302351
https://doi.org/10.1023/A:1009748302351

146 Bibliography

[73] Matteo Mantovani. Approximate temporal functional dependencies on clinical
data. In 2017 IEEE International Conference on Healthcare Informatics, ICHI
2017, Park City, UT, USA, August 23-26, 2017, page 328. IEEE Computer Soci-
ety, 2017. URL: https://ieeexplore.ieee.org/xpl/conhome/8030514/proceeding,
doi:10.1109/ICHI.2017.30.

[74] Matteo Mantovani, Carlo Combi, and Milos Hauskrecht. Mining compact predictive
pattern sets using classification model. In David Riaño, Szymon Wilk, and Annette
ten Teije, editors, Artificial Intelligence in Medicine - 17th Conference on Artificial
Intelligence in Medicine, AIME 2019, Poznan, Poland, June 26-29, 2019, Proceedings,
volume 11526 of Lecture Notes in Computer Science, pages 386–396. Springer, 2019.
doi:10.1007/978-3-030-21642-9\ 49.

[75] Matteo Mantovani, Carlo Combi, and Matteo Zeggiotti. Discovering and analyzing
trend-event patterns on clinical data. In 2019 IEEE International Conference on
Healthcare Informatics, ICHI 2019, Xi’an, China, June 10-13, 2019, pages 1–10. IEEE,
2019. URL: https://ieeexplore.ieee.org/xpl/conhome/8895688/proceeding, doi:
10.1109/ICHI.2019.8904774.

[76] MedDRA MSSO. About MedDRA. In About MedDRA, pages –, 2010. URL: http:
//www.meddramsso.com/public about meddra.asp.

[77] R.H.B. Meyboom, M. Lindquist, A.C.G. Egberts, and I.R. Edwards. Signal selection
and follow-up in pharmacovigilance. Drug Safety, 25(6):459–465, 2002. doi:10.2165/
00002018-200225060-00011.

[78] Fabian Mörchen. Algorithms for time series knowledge mining. In Tina Eliassi-Rad,
Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos, editors, Proceedings of the
Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Philadelphia, PA, USA, August 20-23, 2006, pages 668–673. ACM, 2006.
doi:10.1145/1150402.1150485.

[79] Robert Moskovitch and Yuval Shahar. Medical temporal-knowledge discovery via
temporal abstraction. In AMIA annual symposium proceedings, volume 2009, page 452.
American Medical Informatics Association, 2009. PMID:20351898.

[80] Robert Moskovitch and Yuval Shahar. Classification of multivariate time series via
temporal abstraction and time intervals mining. Knowl. Inf. Syst., 45(1):35–74, 2015.
doi:10.1007/s10115-014-0784-5.

[81] G Niklas Norén, Roland Orre, Andrew Bate, and I Ralph Edwards. Duplicate detection
in adverse drug reaction surveillance. Data Mining and Knowledge Discovery, 14(3):305–
328, 2007. doi:10.1007/s10618-006-0052-8.

[82] Object Management Group. Business Process Model and Notation (BPMN), v2.0.2.
URL: http://www.omg.org/spec/BPMN/2.0.2/PDF/.

https://ieeexplore.ieee.org/xpl/conhome/8030514/proceeding
https://doi.org/10.1109/ICHI.2017.30
https://doi.org/10.1007/978-3-030-21642-9_49
https://ieeexplore.ieee.org/xpl/conhome/8895688/proceeding
https://doi.org/10.1109/ICHI.2019.8904774
https://doi.org/10.1109/ICHI.2019.8904774
http://www.meddramsso.com/public_about_meddra.asp
http://www.meddramsso.com/public_about_meddra.asp
https://doi.org/10.2165/00002018-200225060-00011
https://doi.org/10.2165/00002018-200225060-00011
https://doi.org/10.1145/1150402.1150485
https://doi.org/10.1007/s10115-014-0784-5
https://doi.org/10.1007/s10618-006-0052-8
http://www.omg.org/spec/BPMN/2.0.2/PDF/

Bibliography 147

[83] World Health Organization. The importance of pharmacovigilance, 2002.

[84] World Health Organization et al. The ICD-10 classification of mental and behavioural
disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health
Organization, 1992.

[85] Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios Gunopulos. Dis-
covering frequent arrangements of temporal intervals. In Proceedings of the 5th IEEE
International Conference on Data Mining (ICDM 2005), 27-30 November 2005, Hous-
ton, Texas, USA, pages 354–361. IEEE Computer Society, 2005. URL: https://

ieeexplore.ieee.org/xpl/conhome/10470/proceeding, doi:10.1109/ICDM.2005.50.

[86] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umesh-
war Dayal, and Meichun Hsu. Prefixspan,: mining sequential patterns efficiently by
prefix-projected pattern growth. Proceedings 17th International Conference on Data
Engineering, pages 215–224, 2001. doi:10.1109/ICDE.2001.914830.

[87] Riccardo Pertile, Valeria Donisi, Laura Grigoletti, Andrea Angelozzi, Giuseppe Zamengo,
Grazia Zulian, and Francesco Amaddeo. DRGs and other patient-, service-and area-
level factors influencing length of stay in acute psychiatric wards: the veneto region
experience. Social psychiatry and psychiatric epidemiology, 46(7):651–660, 2011. doi:
10.1007/s00127-010-0231-1.

[88] Alistair EW Pollard, Tom J abd Johnson. The mimic-iii clinical database, 2016.
doi:10.13026/C2XW26.

[89] Jennifer Pryor and John W. Chinneck. Faster integer-feasibility in mixed-integer
linear programs by branching to force change. Computers & Operations Research,
38(8):1143 – 1152, 2011. URL: http://www.sciencedirect.com/science/article/
pii/S0305054810002546, doi:10.1016/j.cor.2010.10.025.

[90] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
doi:10.1023/A:1022643204877.

[91] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., 1993. doi:10.1007/BF00993309.

[92] Alberto Rossi, Vera Morgan, Francesco Amaddeo, Marco Sandri, Michele Tansella, and
Assen Jablensky. Psychiatric out-patients seen once only in south verona and western
australia: a comparative case-register study. Australian and New Zealand Journal of
Psychiatry, 39(5):414–422, 2005. doi:10.1080/j.1440-1614.2005.01590.x.

[93] Lucia Sacchi, Cristiana Larizza, Carlo Combi, and Riccardo Bellazzi. Data mining
with temporal abstractions: learning rules from time series. Data Min. Knowl. Discov.,
15(2):217–247, 2007. doi:10.1007/s10618-007-0077-7.

https://ieeexplore.ieee.org/xpl/conhome/10470/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10470/proceeding
https://doi.org/10.1109/ICDM.2005.50
https://doi.org/10.1109/ICDE.2001.914830
https://doi.org/10.1007/s00127-010-0231-1
https://doi.org/10.1007/s00127-010-0231-1
https://doi.org/10.13026/C2XW26
http://www.sciencedirect.com/science/article/pii/S0305054810002546
http://www.sciencedirect.com/science/article/pii/S0305054810002546
https://doi.org/10.1016/j.cor.2010.10.025
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1007/BF00993309
https://doi.org/10.1080/j.1440-1614.2005.01590.x
https://doi.org/10.1007/s10618-007-0077-7

148 Bibliography

[94] Pietro Sala. Approximate interval-based temporal dependencies: The complexity
landscape. In Temporal Representation and Reasoning (TIME), 2014 21st International
Symposium on, pages 69–78. IEEE, 2014. doi:10.1109/TIME.2014.20.

[95] Pietro Sala, Carlo Combi, Matteo Cuccato, Andrea Galvani, and Alberto Sabaini.
A Framework for Mining Evolution Rules and Its Application to the Clinical Do-
main. In 2015 International Conference on Healthcare Informatics, ICHI 2015, pages
293–302. IEEE Computer Society, 2015. URL: http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=7349543, doi:10.1109/ICHI.2015.42.

[96] Pietro Sala, Carlo Combi, Matteo Mantovani, and Romeo Rizzi. Discovering evolving
temporal information: Theory and application to clinical databases. SN Computer
Science, 1(3):153, May 2020. doi:10.1007/s42979-020-00160-9.

[97] Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe. An efficient algorithm
for mining association rules in large databases. In Umeshwar Dayal, Peter M. D. Gray,
and Shojiro Nishio, editors, VLDB’95, Proceedings of 21th International Conference on
Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland, pages 432–444.
Morgan Kaufmann, 1995. URL: http://www.vldb.org/conf/1995/P432.PDF.

[98] Yuval Shahar. A framework for knowledge-based temporal abstraction. Artif. Intell.,
90(1-2):79–133, 1997. doi:10.1016/S0004-3702(96)00025-2.

[99] Yuval Shahar. Dynamic temporal interpretation contexts for temporal abstraction.
Ann. Math. Artif. Intell., 22(1-2):159–192, 1998. doi:10.1023/A:1018998326167.

[100] Yuval Shahar. Knowledge-based temporal interpolation. J. Exp. Theor. Artif. Intell.,
11(1):123–144, 1999. doi:10.1080/095281399146643.

[101] Yuval Shahar and Carlo Combi. Temporal reasoning and temporal data maintenance
in medicine: Issues and challenges. Computers in Biology and Medicine, 27(5):353–368,
1997. doi:10.1007/978-1-4419-6543-1.

[102] Yuval Shahar and Mark A. Musen. Knowledge-based temporal abstraction in clinical
domains. Artificial Intelligence in Medicine, 8(3):267–298, 1996. doi:10.1016/0933-
3657(95)00036-4.

[103] Richard T Snodgrass, Michael H Böhlen, Christian S Jensen, and Andreas Steiner.
Adding valid time to SQL/temporal. ANSI X3H2-96-501r2, ISO/IEC JTC, 1, 1996.

[104] Margarita Sordo, Gabriela Ochoa, and Shawn N. Murphy. A PSO/ACO approach to
knowledge discovery in a pharmacovigilance context. In GECCO (Companion), pages
2679–2684, 2009. doi:10.1145/1570256.1570382.

[105] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Generaliza-
tions and performance improvements. In Peter M. G. Apers, Mokrane Bouzeghoub,

https://doi.org/10.1109/TIME.2014.20
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7349543
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7349543
https://doi.org/10.1109/ICHI.2015.42
https://doi.org/10.1007/s42979-020-00160-9
http://www.vldb.org/conf/1995/P432.PDF
https://doi.org/10.1016/S0004-3702(96)00025-2
https://doi.org/10.1023/A:1018998326167
https://doi.org/10.1080/095281399146643
https://doi.org/10.1007/978-1-4419-6543-1
https://doi.org/10.1016/0933-3657(95)00036-4
https://doi.org/10.1016/0933-3657(95)00036-4
https://doi.org/10.1145/1570256.1570382

Bibliography 149

and Georges Gardarin, editors, Advances in Database Technology - EDBT’96, 5th
International Conference on Extending Database Technology, Avignon, France, March
25-29, 1996, Proceedings, volume 1057 of Lecture Notes in Computer Science, pages
3–17. Springer, 1996. doi:10.1007/BFb0014140.

[106] JE Tello, M Mazzi, M Tansella, P Bonizzato, J Jones, and F Amaddeo. Does so-
cioeconomic status affect the use of community-based psychiatric services? a south
verona case register study. Acta Psychiatrica Scandinavica, 112(3):215–223, 2005.
doi:10.1111/j.1600-0447.2005.00558.x.

[107] Juan Eduardo Tello, Julia Jones, Paola Bonizzato, Mariangela Mazzi, Francesco Amad-
deo, and Michele Tansella. A census-based socio-economic status (ses) index as a tool
to examine the relationship between mental health services use and deprivation. Social
science & medicine, 61(10):2096–2105, 2005. doi:10.1016/j.socscimed.2005.04.018.

[108] Hannu Toivonen. Sampling large databases for association rules. In T. M. Vijayara-
man, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda, editors, VLDB’96,
Proceedings of 22th International Conference on Very Large Data Bases, September
3-6, 1996, Mumbai (Bombay), India, pages 134–145. Morgan Kaufmann, 1996. URL:
http://www.vldb.org/conf/1996/P134.PDF.

[109] Natalia Vanetik, Ehud Gudes, and Solomon Eyal Shimony. Computing frequent graph
patterns from semistructured data. In Proceedings of the 2002 IEEE International
Conference on Data Mining (ICDM 2002), 9-12 December 2002, Maebashi City, Japan,
pages 458–465. IEEE Computer Society, 2002. URL: https://ieeexplore.ieee.org/
xpl/conhome/8435/proceeding, doi:10.1109/ICDM.2002.1183988.

[110] Victor Vianu. Dynamic functional dependencies and database aging. Journal of the
ACM (JACM), 34(1):28–59, 1987. doi:10.1145/7531.7918.

[111] Jianyong Wang and Jiawei Han. BIDE: efficient mining of frequent closed
sequences. In Z. Meral Özsoyoglu and Stanley B. Zdonik, editors, Proceed-
ings of the 20th International Conference on Data Engineering, ICDE 2004, 30
March - 2 April 2004, Boston, MA, USA, pages 79–90. IEEE Computer Society,
2004. URL: https://ieeexplore.ieee.org/xpl/conhome/9217/proceeding, doi:

10.1109/ICDE.2004.1319986.

[112] Jianyong Wang and George Karypis. HARMONY: Efficiently mining the best rules for
classification. In Proceedings of SDM, 2005. doi:10.1137/1.9781611972757.19.

[113] X Sean Wang, Claudio Bettini, Alexander Brodsky, and Sushil Jajodia. Logical design
for temporal databases with multiple granularities. ACM Transactions on Database
Systems (TODS), 22(2):115–170, 1997. doi:10.1145/249978.249979.

[114] Jef Wijsen. Reasoning about qualitative trends in databases. Information Systems,
23(7):463–487, 1998. doi:10.1016/S0306-4379(98)00023-4.

https://doi.org/10.1007/BFb0014140
https://doi.org/10.1111/j.1600-0447.2005.00558.x
https://doi.org/10.1016/j.socscimed.2005.04.018
http://www.vldb.org/conf/1996/P134.PDF
https://ieeexplore.ieee.org/xpl/conhome/8435/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8435/proceeding
https://doi.org/10.1109/ICDM.2002.1183988
https://doi.org/10.1145/7531.7918
https://ieeexplore.ieee.org/xpl/conhome/9217/proceeding
https://doi.org/10.1109/ICDE.2004.1319986
https://doi.org/10.1109/ICDE.2004.1319986
https://doi.org/10.1137/1.9781611972757.19
https://doi.org/10.1145/249978.249979
https://doi.org/10.1016/S0306-4379(98)00023-4

150 Bibliography

[115] Jef Wijsen. Temporal FDs on complex objects. ACM Trans. Database Syst., 24(1):127–
176, 1999. doi:10.1145/310701.310715.

[116] Jef Wijsen. Trends in databases: Reasoning and mining. IEEE Trans. Knowl. Data
Eng., 13(3):426–438, 2001. doi:10.1109/69.929900.

[117] Jef Wijsen. Temporal dependencies. In Encyclopedia of Database Systems, pages
2960–2966. Springer US, 2009. doi:10.1007/978-0-387-39940-9 396.

[118] Edi Winarko and John F. Roddick. ARMADA - an algorithm for discovering richer
relative temporal association rules from interval-based data. Data Knowl. Eng., 63(1):76–
90, 2007. doi:10.1016/j.datak.2006.10.009.

[119] World Health Organization and WHO Collaborating Centre for International Drug
Monitoring. The Importance of Pharmacovigilance. Safety monitoring of medicinal prod-
ucts. World Health Organization, 2002. URL: https://apps.who.int/iris/handle/
10665/42493/.

[120] Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin. Summarizing itemset pat-
terns: a profile-based approach. In Proceedings of SIGKDD, 2005. doi:10.1145/
1081870.1081907.

[121] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In
Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2002),
9-12 December 2002, Maebashi City, Japan, pages 721–724. IEEE Computer So-
ciety, 2002. URL: https://ieeexplore.ieee.org/xpl/conhome/8435/proceeding,
doi:10.1109/ICDM.2002.1184038.

[122] Ying Yang, Geoffrey I. Webb, and Xindong Wu. Discretization methods. In Oded Mai-
mon and Lior Rokach, editors, The Data Mining and Knowledge Discovery Handbook.,
pages 113–130. Springer, 2005. doi:10.1007/0-387-25465-X 6.

[123] Osmar R Zaiane, Man Xin, and Jiawei Han. Discovering web access patterns and trends
by applying OLAP and data mining technology on web logs. In Proceedings IEEE
International Forum on Research and Technology Advances in Digital Libraries-ADL’98-,
pages 19–29. IEEE, 1998. doi:10.1109/ADL.1998.670376.

[124] Mohammed J. Zaki. Spade: an efficient algorithm for mining frequent sequences. In
Machine Learning Journal, pages 31–60, 2001. doi:10.1023/A:1007652502315.

[125] Grazia Zulian, Valeria Donisi, Giacomo Secco, Riccardo Pertile, Michele Tansella, and
Francesco Amaddeo. How are caseload and service utilisation of psychiatric services
influenced by distance? a geographical approach to the study of community-based
mental health services. Social Psychiatry and Psychiatric Epidemiology, 46(9):881–891,
2011. doi:10.1007/s00127-010-0257-4.

https://doi.org/10.1145/310701.310715
https://doi.org/10.1109/69.929900
https://doi.org/10.1007/978-0-387-39940-9_396
https://doi.org/10.1016/j.datak.2006.10.009
https://apps.who.int/iris/handle/10665/42493/
https://apps.who.int/iris/handle/10665/42493/
https://doi.org/10.1145/1081870.1081907
https://doi.org/10.1145/1081870.1081907
https://ieeexplore.ieee.org/xpl/conhome/8435/proceeding
https://doi.org/10.1109/ICDM.2002.1184038
https://doi.org/10.1007/0-387-25465-X_6
https://doi.org/10.1109/ADL.1998.670376
https://doi.org/10.1023/A:1007652502315
https://doi.org/10.1007/s00127-010-0257-4

Chapter 8

List of Publications

In the following list, there is a summary of the publications or submissions written during this
PhD. If the list of the authors is in alphabetical order, it symbolizes an equal contribution
for that work.

� [30] Carlo Combi, Matteo Mantovani, and Pietro Sala. Discovering quantitative temporal
functional dependencies on clinical data. In 2017 IEEE International Conference on
Healthcare Informatics, ICHI 2017, Park City, UT, USA, August 23-26, 2017, pages
248–257. IEEE Computer Society, 2017. URL: https://ieeexplore.ieee.org/xpl/
conhome/8030514/proceeding, doi:10.1109/ICHI.2017.80

� [73] Matteo Mantovani. Approximate temporal functional dependencies on clini-
cal data. In 2017 IEEE International Conference on Healthcare Informatics, ICHI
2017, Park City, UT, USA, August 23-26, 2017, page 328. IEEE Computer Soci-
ety, 2017. URL: https://ieeexplore.ieee.org/xpl/conhome/8030514/proceeding,
doi:10.1109/ICHI.2017.30

� [74] Matteo Mantovani, Carlo Combi, and Milos Hauskrecht. Mining compact predictive
pattern sets using classification model. In David Riaño, Szymon Wilk, and Annette
ten Teije, editors, Artificial Intelligence in Medicine - 17th Conference on Artificial
Intelligence in Medicine, AIME 2019, Poznan, Poland, June 26-29, 2019, Proceedings,
volume 11526 of Lecture Notes in Computer Science, pages 386–396. Springer, 2019.
doi:10.1007/978-3-030-21642-9\ 49

� [75] Matteo Mantovani, Carlo Combi, and Matteo Zeggiotti. Discovering and analyzing
trend-event patterns on clinical data. In 2019 IEEE International Conference on
Healthcare Informatics, ICHI 2019, Xi’an, China, June 10-13, 2019, pages 1–10. IEEE,
2019. URL: https://ieeexplore.ieee.org/xpl/conhome/8895688/proceeding, doi:
10.1109/ICHI.2019.8904774

� [96] Pietro Sala, Carlo Combi, Matteo Mantovani, and Romeo Rizzi. Discovering
evolving temporal information: Theory and application to clinical databases. SN
Computer Science, 1(3):153, May 2020. doi:10.1007/s42979-020-00160-9

151

https://ieeexplore.ieee.org/xpl/conhome/8030514/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8030514/proceeding
https://doi.org/10.1109/ICHI.2017.80
https://ieeexplore.ieee.org/xpl/conhome/8030514/proceeding
https://doi.org/10.1109/ICHI.2017.30
https://doi.org/10.1007/978-3-030-21642-9_49
https://ieeexplore.ieee.org/xpl/conhome/8895688/proceeding
https://doi.org/10.1109/ICHI.2019.8904774
https://doi.org/10.1109/ICHI.2019.8904774
https://doi.org/10.1007/s42979-020-00160-9

152 8 - List of Publications

Appendix A

The Computational Complexity of
Checking APE-FDs

APE-FDs are proposed in Chapter 3. Here, we address the complexity of checking an APE-FD

against an instance r. We call this problem Check-APE-FD:

Problem 2. (Check-APE-FD). Given a temporal schema R, a PE-FD [∆k(τ
R
J)] XY → Z on

R, an instance r of R, and a real number 0 ≤ ε ≤ 1, determine whether r |= [∆k(τ
R
J)]XY

ε→ Z
or not.

Let us consider, for example, the PE-FD [∆+∞(τThCyPatId)]Phys, Phys → Dos. We have
proved above that r 6|= fd. Figure 3-4 graphically reports all the possible τ r

′

PatId where r′ is
obtained from r by deleting exactly one tuple. For example if r′ = r \ {t1}, it means that
the dotted edge (t1, t2) has been removed. This means that t1 and t2 are not joined in τ r

′

PatId.
Moreover if we take r′ = r \ {t2} we have that both the edges (t1, t2) and (t2, t3) are removed
and the dashed edge (t1, t3) turns out to be “active”. This means that t1 and t2 are not
joined in τ r

′

PatId as well as t2 and t3, but t1 and t3 turn out to be joined in τ r
′

PatId due to the
absence of t2. Let us observe that in this case the join operation involving t1 and t3 belongs
to τ r

′

PatId and not to τ rPatId. This specific behavior, in which the deletion of a tuple introduces
additional, possibly different, constraints as a side effect, instead of just removing existing
ones, gives us a hint on the problem Check-APE-FD. Such problem is not so easy to solve.
Notice that r \ {t1} 6|= [∆+∞(τThCyPatId)]Phys, Phys→ Dos as well, because of the pairs (t2, t3)

and (t6, t7). However r \ {t2} |= [∆+∞(τThCyPatId)]Phys, Phys → Dos and thus we have that

r |= [∆+∞(τThCyPatId)]Phys, Phys
ε→Dos with ε = 1

8
.

Therefore, problem Check-APE-FD belongs to the complexity class NP . In order to prove
that, it suffices to apply a guess-and-check algorithm. First, this algorithm guesses a set r′

with |r′| ≤ ε · |r|. Then, if r \ r′ |= [∆k(τ
R
J)]XY → Z, the algorithm returns Y ES, otherwise

NO. In the procedure above we implicitly make use of a function that verifies, given an
instance r of R and a PE-FD [∆k(τ

R
J)]XY → Z, whether r |= [∆k(τ

R
J)]XY → Z holds or

not. We can call this problem Check-PE-FD. Since there is no approximation, checking
if r |= [∆k(τ

R
J)]XY → Z may be performed in polynomial time [32]. For this reason we

can conclude that Check-APE-FD belongs to the complexity class NP. In the following, we

153

154 A - The Computational Complexity of Checking APE-FDs

w = b

1

b

2
a
3

b

4

b

5
a
6

b

7

b

8
a
9

b

10
a
11

a
12

b

13
a
14

b

15
a
16

b

17
a
18

s = 3 4 6 9 10 14 15

w‖s = a b a a b a b

Figure A-1: An example of a word w‖s obtained by applying a sequence s to a word w.

will prove that Check-APE-FD is NP-hard even in the case of the most constrained kind of
APE-FDs, which is represented by the class of simple update APE-FDs. From now on, we will
consider Problem 2 only for simple update APE-FDs. Considering the inclusions shown in
Figure 3-1, we can immediately conclude that our hardness result directly propagates to the
other classes of APE-FDs.

In this section, we will make use of finite words w on a finite non-empty alphabet Σ (i.e.,
w ∈ Σ∗). We will use the standard notation w[i] for denoting the i-th symbol of word w.
Given a word w, we denote with first(w) and last(w) its first and its last element, respectively
(i.e., first(w) = w[1] and last(w) = w[|w|]). Moreover, a finite increasing sequence of N
(N>-sequence) is a finite word s on (N \ {0})∗, where for every i, i′, with 1 ≤ i < i′ ≤ |s|, we
have s[i] < s[i′]1. Given a N>-sequence s we denote with first(s) and last(s) its first and
its last element, respectively (i.e., first(s) = s[1] and last(s) = s[|s|]). A N>-sequence s,
for which for every i, with 1 ≤ i < |s|, we have w[i + 1] = w[i] + 1, is called strict and we
denote it with [b, e], where b = first(s) and e = last(s). Given a word w and a N>-sequence
s, we denote with w‖s the word w‖s = w[first(s)] . . . w[last(s)] (for a graphical account of
how a word is filtered by a sequence please refer to Figure A-1). Given a word w and a
pair (b, e), with 1 ≤ b ≤ e ≤ |w|, we call the word w‖[b,e] a slice of w. Given two words
w1, w2 ∈ Σ∗ we say that w1 is a sub-sequence of w2 (written w1 v w2) if and only if there
exists an N>-sequence s for which w1 = w2‖s. For instance, w1 = abaabba is a sub-sequence
of w2 = bbabbabbabaabababa with s = 3 4 6 9 10 14 15. A word w is repetition free if and
only if for every a ∈ Σ we have |{i : w[i] = a}| ≤ 1. A word w is a permutation of Σ if and
only if w is repetition free and |w| = |Σ|.

The proof that Check-APE-FD is NP-hard is done in two steps. First, we describe a
known NP-Complete problem called Common Permutation Problem (CP -P for short). Then
we introduce a problem called Periodic Repair Problem (PR-P) and we prove that CP -P
may be reduced to it using logarithmic space. Finally we reduce the PR-P to Check-APE -FD

using logarithmic space.
Let us begin with the Common Permutation Problem which has been proved to be

NP-Complete in [40].

Problem 3. (CP -P). Given a finite alphabet Σ and two words w1, w2 over it, is there a
permutation wp of Σ for which wp v w1 and wp v w2?

1a N>-sequence is nothing more than a different representation for a finite set of positive naturals, but it
turns out for our purposes to see it as a particular kind of word over positive naturals.

155

Consider Σ = {a, b, c} we have that the pair w1 = bcbab and w2 = accaacb is a positive
instance of Problem 3 because cab v w1 and cab v w2. On the other hand, the pair
w1 = bcbac and w2 = acab is a negative instance of Problem 3 since both words do not share
any permutation of Σ as their subsequence. More precisely, w1 contains the permutations
bca, bac and cba while w2 contains the permutations acb and cab.

A word w is periodic if and only if for every pair of indexes (i, i′), with 1 ≤ i, i′ < |w|, we
have that w[i] = w[i′] implies w[i+ 1] = w[i′ + 1]. Let us observe that if w is repetition-free
then it is periodic. Moreover, if w is periodic for every pair (b, e), with 1 ≤ b ≤ e ≤ |w|, we
have that w‖[b,e] is periodic (i.e, every slice of a periodic word is itself periodic). The following
lemma turns out to be useful for our reduction.

Lemma 1. Given a periodic word w, if w is not repetition-free then there exists an index
i < |w| such that last(w) = w[i].

Proof. Since w is not repetition free, there exists two indexes i, i′, with 1 ≤ i < i′ ≤ |w|,
such that w[i] = w[i′]. We prove the claim by induction on ∆ = |w| − i′. For the base
of the induction we have ∆ = 0 and thus the claim trivially holds since i is the index we
were looking for. Let us consider ∆ = n + 1. Since w is periodic and w[i] = w[i′] we have
that w[i + 1] = w[i′ + 1]. Thus positions i + 1 and i′ + 1 witness a repetition and since
|w| − (i′ + 1) < |w| − i′ = ∆ we can apply the inductive hypothesis and prove our claim.

In order to prove that Check-APE-FD is NP-Complete even for simple update PE-FD

[∆k(τ
R
J)]X → X, we introduce the following intermediate problem called Periodic Repair

Problem (PR-P for short):

Problem 4. (PR-P) Given a word w = a1 . . . an, a finite alphabet Σ, and a natural number
k, determine whether a periodic word w′ v w exists such that |w′| ≥ k.

Problem 4 belongs to the complexity class NP. A simple non-deterministic algorithm for
PR-P guesses an N>-sequence s such that |s| ≥ k and last(s) ≤ |w| (i.e., s “chooses” only
positions in 1 . . . |w|). Then it suffices to check whether or not w‖s is periodic (periodicity
checking may be performed in logarithmic space).

In the following, we describe how to reduce CP -P to PR-P. Let us consider two words w1

and w2 on an alphabet Σ with length n1 and n2, respectively. We assume without loss of
generality that Σ is a finite subset of the negative integers (i.e., Σ ⊆ Z−). Let n = max(n1, n2)
and σ = |Σ|. Let us consider the following word w over the alphabet Σ ∪ {1, . . . , n} (· is the
classical word concatenation operator):

w = 1 · . . . · n · w1 · 1 · . . . · n · w2 · 1 · . . . · n.

Finally, we put k = 3n+ 2σ. Such reduction operates in logarithmic space. The following
two lemmas prove the soundness and completeness of the above reduction.

Lemma 2. If there exists a permutation wp of Σ which is a common subsequence of w1, w2,
then there exists a N>-sequence s, with |s| ≥ 3n+ 2σ and last(s) ≤ 3n+ |w1|+ |w2|, such
that w‖s is periodic.

156 A - The Computational Complexity of Checking APE-FDs

1

1
. . . n

n n+1

w1[1] . . .
n+|w1|

last(w1) 1

n+|w1|+1

. . . n

2n+|w1| 2n+|w1|+1

w2[1] . . .
3n

last(w2) 1

3n+1

. . . n
4nw

s1n sw1 s2n sw2 s3n

.

w‖s

.

w‖s1n

.

w‖sw1

.

w‖s2n

.

w‖sw2

.

w‖sn3

Figure A-2: A graphical account of how s1
n, sw1 , s

2
n, sw2 , and s3

n filter blocks of w.

Proof. First, let us recall that wp is a repetition-free sequence of symbols in Z−. By hypothesis
we have wp v w1 and wp v w2 and thus there exists a pair of N>-sequence s1 and s2 with
|s1| = σ, |s2| = σ and w1‖s1 = w2‖s2 = wp.

Let sj with j ∈ {1, 2} be the N>-sequence such that |sj| = σ and for every 1 ≤ i ≤ σ we
have sj[i] = sj[i] + nj + σ(j − 1). Let us observe that sj is a simple shift of the indexes in
the sequence sj with j ∈ {1, 2}. Then we may define s as follows:

s =
[1, n] · s1 · [n+ |w1|+ 1, 2n+ |w1|] · s2·
·[2n+ |w1|+ |w2|+ 1, 3n+ |w2|+ |w1|]

By construction we have w‖s = 1 . . . n · wp · 1 . . . n · wp · 1 . . . n. Since Σ ∩ {1, . . . n} = ∅
there are not “conflicts” between the blocks 1 . . . n and wp, thus we can conclude that w‖s is
periodic.

Lemma 3. If there exists a sequence s with 3n+ 2σ ≤ |s| ≤ 3n+ |w1|+ |w2| for which w‖s is
periodic, then there exists a permutation wp of Σ which is a common subsequence of w1, w2.

Proof. First we define s1
n, sw1 , s

2
n, sw2 , s

3
n such that s = s1

n · sw1 · s2
n · sw2 · s3

n and last(s1
n) ≤ n,

n + 1 ≤ sw1 [1] ≤ last(sw1) ≤ n + |w1|, n + |w1| + 1 ≤ s2
n[1] ≤ last(s2

n) ≤ 2n + |w1|,
2n + |w1| + 1 ≤ sw2 [1] ≤ last(sw2) ≤ 2n + |w1| + |w2| and n + |w1| + |w2| + 1 ≤ s3

n[1].

157

Informally s1
n, sw1 , s

2
n, sw2 , s

3
n are the indexes in s that concern the sub-words 1 . . . n (first

block), w1, 1 . . . n (second block), w2 and 1 . . . n (third block) respectively. A graphical
account of this decomposition of w‖s is given in Figure A-2. This means that we may
retrieve the sub-sequence selected by s on w restricted to the first block by means of the
operation w‖s1n . If we want to retrieve the sub-sequence selected by s on w restricted to
the w1 block we write w‖sw1

and so on for the second block 1 . . . n (i.e., w‖s2n), the block
w2 (i.e., w‖sw2

), and the third block 1 . . . n (i.e., w‖s3n). Let us notice that w‖s is equal to
w‖s1n · w‖sw1

· w‖s2n · w‖sw2
· w‖s3n .

Suppose by contradiction that |s2
n| = 0. Then we have that w′ = w‖sw1

· w‖sw2
is a slice

of w‖s and thus w′ is periodic. Moreover we have that w′′ = w′ · (w‖s3n) is a slice of w‖s and
thus w′′ is periodic. Two cases may arise, i.e. either |s3

n| = 0 or not.

If |s3
n| = 0 we have that w‖s v 1 . . . n · w′ and by a counting argument we have that

|w‖s| ≤ 3n which is a contradiction since 3n+ 2σ ≤ |w‖s| and σ > 0 by definition.

If |s3
n| > 0 we prove that w′′ is repetition free. Again by contradiction, from Lemma

1 we will have that, since w′′ is periodic, there must exists an index i < |w′′| for which
w′′[i] = w′′[n]. However |s3

n| > 0 implies w′′[n] ∈ {1, . . . , n} and thus, since Σ∩{1, . . . , n} = ∅
, such i′ cannot exist (contradiction). If w′′ is repetition free we have that |w′′| ≤ σ + n and
since w‖s v 1 . . . n · w′′ we have that |w‖s| ≤ 2n+ σ, which contradicts |w‖s| ≥ 3n+ 2σ.

We have now that |s2
n| > 0. Consider the slice w′ = w‖sw1

· w‖s2n : we have just proved
that |w‖s2n| > 0 and we have that w′ is periodic being a slice of w‖s. By applying Lemma 1
as we did above we can claim that w‖sw1

is repetition free and thus |w‖sw1
| ≤ σ. Suppose

now by contradiction that w‖sw2
is not repetition free. If |s3

n| > 0 we reach immediately a
contradiction by applying Lemma 1 on the word w‖sw2

· w‖s3n . Then we have |s3
n| = 0 and

by definition |w‖sw2
| ≤ n. This implies w‖s v 1 . . . n · w‖sw1

· 1 . . . n · w‖sw2
which means

|w‖s| ≤ 3n+ σ (contradiction).

At this point we have that both w‖sw1
and w‖sw2

are repetition free and thus |w‖sw1
| ≤ σ

and |w‖sw2
| ≤ σ. Since 3n + 2σ ≤ |w‖s| we have that |w‖sw1

| = σ and |w‖sw2
| = σ and

thus both w‖sw1
and w‖sw2

are permutations of Σ. It remains to prove that they are the
same permutation. Let us observe that, since |w‖sw1

| = |w‖sw2
| = σ and |w‖s| ≥ 3n + 2σ,

by a counting argument we have that w‖s1n = w‖s2n = w‖s3n = 1 . . . n. and thus w‖s =
1 . . . n · w‖sw1

· 1 . . . n · w‖s2n · 1 . . . n.

Suppose by contradiction that there exists i, with 1 ≤ i ≤ σ, such that w‖sw1
[i] 6= w‖sw2

[i],
and let i be the minimum index that fulfills such a property. Two cases may arise:

1. If i = 1 we have that w‖s[n + 1] = w‖sw1
[i] and w‖s[2n + σ + 1] = w‖sw2

[i]. Let
us recall that w‖s[n] = w‖s[2n + σ] = n and thus by periodicity of w‖s we have
w‖s[n+ 1] = w‖s[2n+ σ + 1] (contradiction).

2. If i > 1 since w‖s is periodic we have that w‖sw1
[i−1] 6= w‖sw2

[i−1] but this contradicts
the minimality in the choice of i.

158 A - The Computational Complexity of Checking APE-FDs

Now we reduce Problem PR-P to Check-APE-FD in logarithmic space. Suppose that we
have an instance of PR-P consisting of a word w ∈ Σ∗ and a natural number k. We define
the instance rw on the temporal schema R = {J,X} ∪ V T as rw = {t | t[J] = 0 ∧ ∃i(t[X] =

w[i] ∧ t[V T] = i)} and we put εw,k = |w|−k
|w| . The pair w, k is a positive instance of PR-P if

and only if the triple [∆+∞(τRJ)]X → X, rw and εw,k is a positive instance of Check-APE-FD.
[∆+∞(τRJ)]X → X, rw and εw,k may be built using logarithmic space on the input w, k.
Finally, we can conclude this section by explicitly providing the desired result.

Theorem 5. Problem Check-APE -FD is NP-Complete.

	Introduction and Overview
	Motivation
	Contribution and Overview

	Background and Related Work
	Data Mining Techniques
	Functional Dependencies
	Temporal Functional Dependencies
	Approximate Functional Dependencies
	Approximate Temporal Functional Dependencies
	Pattern Mining
	Pattern Mining for Supervised Learning
	Temporal Patterns

	Classification Model - Support Vector Machine
	Clinical Datasets
	MIMIC
	Psychiatric Case Register
	Pharmacovigilance

	Pure Temporally Evolving Functional Dependencies
	Discovering Pure Temporally Evolving Functional Dependencies
	Approximate Pure Temporally Evolving Functional Dependencies

	Some Motivating Clinical Scenarios
	Algorithms for Checking APE-FDs
	Graph-based Structures for Tuple Representation
	The First Algorithm
	The Second Algorithm

	Mining APE-FDs
	Prototype Overview
	Mining APE-FDs on Clinical Domains
	Performance Analysis

	Conclusions

	Discovering Quantitative Temporal Functional Dependencies on Clinical Data
	Multi Approximate Temporal Functional Dependencies
	A Motivating Example
	Definition and Model

	Mining MAT-FDs
	Mining Clinical Data
	The Dataset
	System Configuration
	Results

	Conclusions

	Discovering and Analyzing Trend-Event Patterns on Clinical Data
	Trend-Event Patterns
	Mining TE-Ps
	Optimized Algorithm for Mining TE-Ps
	Multidimensional Modeling of Trends for OLAP Analysis

	Mining Clinical Data
	The Dataset
	System Configuration
	Results

	Conclusions

	Mining Compact Predictive Pattern Sets Using Classification Model
	Method
	Definitions
	Problem
	Minimum Predictive Patterns
	Combining Predictive Patterns via Classification Model
	Greedy Pattern Subset Selection Algorithm

	Experiments
	Data
	Results

	Discussion
	Conclusion

	Conclusions
	References
	List of Publications
	The Computational Complexity of Checking APE-FDs

