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Summary

The primary process for biomass and oxygen production on our planet is the photosynthetic
conversion of light into chemical energy for CO; fixation. Half of the oxygen and of the carbon present
worldwide is produced by microalgae. Compared to plants, microalgae take advantages to have a short
life cycle, can be cultivated in none-arable land employing waste products and wastewater-derived
effluent as nutrient and do not participate to the food or fuel competition. Nowadays, with the
increasing of world population these limitations of the traditional crops become more and more
significant. For these reasons microalgae are emerging as renewable sources of food/feed, biofuel and
high value products as nutraceutical and pharmacological products.

Microalgae comprise a heterogenous group of organisms living in almost all the habitat on our planet,
making them a huge source of peculiar characteristics and properties only partially known and
exploited. Chlamydomonas reinhardtii is the model species of green algae, the class of microalgae
evolutionary closest to plant, the most studied and characterized and the only one where nuclear
genome and both organelles genomes can be genetically modified. Other green microalgae of
exceptional interest are several species of Chlorella genus. They have been used commercially over
the past 40 years as food and feed supplement for their fast growth rate and their high resistance to
biotic and abiotic stresses. Differently from green algae that contain chloroplasts of endosymbiotic
origin, heterokont algae contain secondary plastids derived from endosymbiotic red algae. Diatoms
and Nannochloropsis spp. are heterokont marine algae that had attracted attention due to their large
amount of lipid accumulation interesting for biofuels production.

Nevertheless, the potential of microalgae for photosynthetic production of biomass has not been fully
exploited, due to their relatively low photosynthetic efficiency in photobioreactor reaching 1-3% of
yield instead of the potential 9-10%. A biotechnological approach is required in order to domesticate
microalgae for mass cultivation, as it was already done for plants.

Chloroplast is the site of the photosynthetic process: in the thylakoid membrane light is collected by
antennae systems of the supercomplexes, PSIl and PSI, that works in series in order to remove
electrons from water and transfer them to NADP* producing NADPH. During the electron transport
protons are transfer across the membrane generating an electrochemical gradient that is used by
ATPase to make ATP. ATP and NADPH produced by this light phase are used by Calvin-Benson cycle to
fix CO; into sugars. In parallel in the mitochondrion another electron transport chain take place,
consuming oxygen and NADH and releasing NAD* and ATP. Sugars oxidized thought the cellular

respiration provided substrate for this mitochondrial electron transport chain. A constantly balance



Summary

between chloroplast and mitochondrion activity is fundamental for the survival of the cells and to

overcome the ever-changing environmental conditions.

In order to better understand the alga’s biology and allow to design biotechnological approaches to
improve biomass yield, in this PhD thesis we investigated the molecular mechanism involved in the
microalgae carbon use efficiency.

In the Chapter 1 we studied the model algae C. reinhardtii, the most thoroughly characterized
unicellular algae.

In the section A the molecular mechanism at the base of Photosystem Il assembly were investigated.
PSIl core complex of C. reinhardtii contains at least 20 subunits with various cofactors, including
electron donors and acceptors, however no detailed studies of the assembly factors have been
performed. In this work we focus our attention of a putative assembly factor of PSII, in particular of
the CP43 subunit, called LPA2 (low PSIl accumulation 2), previously identified in A. thaliana, which
functions are however still unclear. A candidate LPA2 gene in C. reinhardtii was identified by homology
with A. thaliana and its role was studied in vivo thank to a CRISPR-cas9 mutant. Ipa2 mutant showed
an impaired PSIl assembly and an enhanced electron transport around PSI to supplement
photosynthetic energy production, but this increase was insufficient to support photoautotrophic
growth. Moreover, the mutant showed a slower PSII repair. These data demonstrated that LPA2
protein is involved in both de novo biogenesis and repair of PSII.

In the section B the relationship between chloroplast and mitochondrion metabolisms was explored
studying a mutant of C. reinhardtii knockout for a mitochondrial transcription factor. stmé6 is a
knockout mutant for a gene encoding for MOC1 protein, a mitochondrial mTERF protein that act as
transcription terminator preventing the read-through transcription at specific site in the mitochondrial
genome. Previous studies demonstrated that the loss of MOC1 decreased the amount of transcripts
encoding the oxidative phosphorylation complex | subunit nd1 and resulted in a light-sensitive
phenotype. In this work we investigated how a mutation affecting the mitochondrial respiration
perturbed light acclimation of the strain. We found a stimulated mitochondrial reducing equivalent
uptake with a significant increase of the alternative pathway by AOX. This is responsible for decreasing
reducing power available in the stroma misleading the feedback photoprotective mechanisms used to

handle exposure to high light as chlororespiration.

Chapter 2 regards algae of the Trebouxiophyceae family, in particular two species of Chlorella genus

were analysed. Despite the importance of this genus for industrial application, biotechnologically
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intervention to substantially increase biomass and metabolite productivity are slowed down by limited
availability of high-quality genomes and transcriptome.

In the section A we elucidated the molecular basis of the improved growth and biomass yield in
mixotrophic condition, where the cross-talk between chloroplast and mitochondria metabolism is
essential for efficient biomass production. Some microalgae species, as C. sorokiniana, are able to
combine an autotrophic metabolism with the utilization of reduced carbon source available in the
medium, in a so called mixotrophic condition. Acetate is an industrial waste product that can be
exploited for this aim, fostering the revenues of industrial cultivation. The de novo assembly
transcriptome allowed to identify the regulation of several genes involved in control of carbon flux.
Despite a reduction of the chlorophylls content per cell, photosynthetic properties were not
significantly affected in mixotrophy compared to autotrophy. Interestingly, in presence of acetate the
upregulation of the phosphoenolpyruvate carboxylase enzyme was reported suggesting a switch
toward a C4-like carbon fixation in order to recover CO; releases by acetyl-CoA oxidation.

In the section B genetic basis of the highly productive phenotype of C. vulgaris was examined. We
investigated the low light vs. high light adaptation of C. vulgaris cells starting from the de novo genome
assembly, functional annotation and gene expression analysis to correlate the physiological
observation. Nuclear and organelle genomes were obtained combining accurate short-reads Illlumina,
long PacBio reads and Bionano optical mapping, allowing to assembly a near-chromosome scale
genome of 14 scaffolds and the two complete circular organelle genomes. The high-light growth
condition induced a strong decreased of chlorophylls level and a strong induction of lipid accumulation.
The existence of a cytosolic fatty acid biosynthetic pathway was suggested and its upregulation upon
high-light exposure was observed. All the genes encoding for photosynthetic subunit and genes
involved in the key metabolic pathway were identified. Finally, was reported an evidence of a
horizontal gene transfer from the chloroplast to the mitochondria.

In the section C the two Chlorella species previously analysed were investigated for their physiologic
and metabolic responses to different CO; availability highlighting different metabolic response among
green algae. Indeed, rearrangements of mitochondrial and chloroplast metabolisms in 3% CO>
compared to atmospheric level of CO, were evaluated. Increased photosynthates production in both
C. vulgaris and C. sorokiniana is at the base of the observed increased biomass yield in CO; condition:
sugars produced in the chloroplast are indeed redirected to the biosynthesis mainly of lipids (TAG) in
C. vulgaris, and proteins in C. sorokiniana, indicating a general enhanced metabolism. In C. sorokiniana
in 3% CO, were observed several reorganizations of the photosynthetic machinery, while the total dark

respiration was essentially unaffected. The opposite condition was observed in C. vulgaris where the
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3% CO, induced an improved uptake of reducing power by chloroplast leading to a reduced

mitochondrial respiration.

The last chapter (Chapter 3) is focused on the marine algae Nannochloropsis gaditana and the diatom
Thalassiosira weissflogii. These species differ in the pigment composition compared to green algae
that typically contain chlorophyll a and b. N. gaditana contains only the chlorophyll a instead T.
weissflogii contains chlorophylls a and c. In order to improve the carbon use efficiency in these species
we focused our efforts in the manipulation light harvesting mechanisms with a no GMO approach.

In the section A a chemical mutant of N. gaditana with a reduction chlorophyll content per cell
combined with increased lipids productivity was isolated and characterized. e8 mutant showed a
general reorganization of plastid assembly leading to a similar functioning of the photosynthetic
apparatus on a chlorophyll basis. The mutant did not show an increased biomass accumulation but
induced an increased lipid content, a class of macromolecules with a higher energy content per gram.
This is in any case an indication of improved light energy conversion in line with an improved light
penetration in the photobioreactor and more homogenous light availability due to the reduced
chlorophyll content per cell in the mutant. Moreover, thank to lllumina sequencing, we found putative
genes responsible of the observed phenotype, as the mutation in the dgd1 gene, a possible candidate
being involved in the biosynthesis of one of the major lipids found in the thylakoid membrane. A
reduced chlorophyll content per cell coupled with a better light distribution in photobioreactor is likely
at the base of the increased lipid productivity.

In the section B was reported a proof-of-concept that is possible increased the biomass yield
introducing an artificial antenna dyes that improve the light capture without resorting to genetic
modification. The T. weissflogii cells were grown together with an artificial cyanine molecular antenna
(Cy5) that extends the absorbance range of the photosynthetic apparatus exploiting light energy in the
orange spectral region. The dye was incorporate in the algae increasing light dependent growth,
oxygen and biomass production. Time-resolved spectroscopy data indicates that a Cy5-chlorophyll a

energy transfer mechanism happen, compatible with a FRET process.
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Introduction

1.1 The microalgae world

It has been was estimated that there are 72,500 species of algae in the biosphere but an accurate
count of the total number has not yet been performed. Algae are a large, diverse, polyphyletic group
of photosynthetic organisms that include from unicellular microalgae to algae that can reach 45m in
length. Algae can growth in unusual environment as hot springs, salt lakes, snow and ice, but growth
mainly in water, both fresh and saltwater. The higher diversity among algae is not only respect to size
and shape, but also with respect to the formation of various chemical compounds through different
biosynthetic pathways. Thanks to the photosynthetic process, they provide core ecosystem functions
such as supplying half the oxygen present in the atmosphere and contributing to half of the total
carbon fixation worldwide (Li-Beisson et al. 2019; Salomé and Merchant 2019).

The fascinating and diverse biochemistry of algae can have a global impact indeed microalgae have
different area of application from food/feed to pharmaceuticals. Microalgae offer several advantages
compared to plants: they have a relatively simple cell division with a short cell cycle and are fully
photosynthetically active; they can growth in saline or waste water and do not require arable land,
avoiding the competition for food/feed production, unlike most plant crops. Moreover, they can be
used in food or aquaculture industries and for environmental applications such as bioremediation:
can be used to remove pollutants, including phytoremediation of domestic waste-water or to reduce
the CO; content in industrial emissions. Microalga are rich in protein, lipid and carbohydrates, some
species are also rich in pigments, for example carotenoids as astaxanthin and B-carotene useful as

food supplement, trace elements and mineral that can be useful for the human healthy.
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Figure 1. Phylogenetic tree highlighting the diversity and distribution of algae, colours indicate the diversity of
pigmentation (www.keweenawalgae.mtu.edu/index.htm).
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As mentioned at the beginning, microalgae comprise a large group of organisms that can be classified
in the phylogenetic tree show in figure 1. The green lineage or Viridiplantae includes green algae and
land plants and is one of the major groups of oxygenic photosynthetic eukaryotes. Inside that we
found the Chlorophyta phylum, that includes most of the described species of green algae. It can be
divided in three classes: the freshwater or terrestrial Trebouxiophyceae and Chlorophyceae and the
coastal Ulvophyceae.

The model species of green algae, Chlamydomonas reinhardtii (Figure 2) belong to Chlorophyceae
class, especially it is a unicellular, oval-shaped, algae that measures about 5 x 10 um. This alga is the
most thoroughly characterized unicellular algae, is a model for cell biology, microscopy and cell
metabolism, moreover it is the only algae where nuclear genome and both organelles genomes can
be genetically modified (Salomé and Merchant 2019). The cell of C. reinhardtii is surrounded by a cell
wall of glycoproteins and carbohydrates that embedded a contractile vacuole, that control the
intracellular tonicity, a single cup-shaped chloroplast, that occupies over half of the cell volume, and
the other eukaryotic organelles. Starch granules are present between thylakoids membrane stacks
and surrounding the pyrenoid, that is the site of CO, fixation. Moreover, chloroplast includes a
specialized domain called eyespot that contain carotenoid granules and it is important for the
detection of the quality, quantity and direction of the light. Finally, a pair of cilia is localized at one
pole of the cell. Usually C. reinhardtii cells have an asexual cell cycle that required about 8-10 h in
constant growth light. Under adverse conditions, as nutrient scarcity, a sexual cycle could occur

(Salomé and Merchant 2019).
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Figure 2. (A)Transmission electron micrograph (TEM) of a Chlamydomonas cell. (B) Drawing of a C. reinhardtii cell
based on the TEM image in (A) (Salomé and Merchant 2019).

The class of Trebouxiophyceae includes an important microalgae genus, the Chlorella genus. It

comprises unicellular microalgae spherical-shaped with a size ranging from 2 to 10 um. They are

interesting for their rapid growth rate, easily cultivation and scale up and broad industrial application
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from biofuel to food additives. Moreover, they contain a high protein, carotenoids and vitamins
content. However, the lack of genetic resources and the low efficacy of transformation methods has
prevented the development of genetic engineering in these species. Two Chlorella species, C. vulgaris
(GRAS Notice No. GRN000396) and A. protothecoides (C. protothecoides) (GRAS Notice No.
GRNO000519), have been categorized as “generally recognized as safe” (GRAS), so are safe for human
consumption (Yang et al. 2016). Another Chlorella species, C. sorokiniana, is interesting for its strong
adaptability to the environment, such as high tolerance to temperature (up to 42°C) and CO;

concentration (up to 40%).

Differently from green algae that contain chloroplasts of endosymbiotic origin, heterokont algae
contain secondary plastids derived from endosymbiotic red algae. Among heterokont algae there are
diatoms and the Nannochloropsis spp., both are marine unicellular algae that had attracted attention
due to their large amount of lipid accumulation interesting for biofuels production. Indeed,
triacylglycerol accumulation of Nannochloropsis spp. can reach 38% of its total biomass on dry weight
basis under nitrogen depletion (Lin et al. 2019). Moreover, the species Nannochloropsis gaditana is
rich in high-value polyunsaturated fatty acids (FA) (e.g., EPA and DHA), that are important elements
for human diet, for example DHA plays a crucial role as anti-inflammation molecule in allergic
diseases. Diatoms are responsible for ~40% of total organic carbon produced annually in marine
ecosystems. Moreover, they have a wide range of applications, from biofuels, due to their high lipids
content, to photonics, due to their silica cell walls. Thalassiosira weissflogii is a particularly
interesting species due to its carbon acquisition mechanism, based on a C4-like pathway (Zeng et al.
2019, 2020), for this reason it’s a well-study algae together with the model diatoms Phaeodactylum

tricornutum.
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1.2 The oxygenic photosynthesis

Green algae, plants and cyanobacteria produce oxygen starting from C0,, water and light in a process
called photosynthesis, it allows the fixation of the carbon into organic molecules and it is therefore
the primary source of biomass present on the earth. In particular the photosynthetic process is a
redox reaction that uses water as electron donor and leads to the carbon dioxide (CO;) fixation and
to the formation of molecular oxygen (0;) as by-product, which is essential for the survival of aerobic

organisms. The equation of the photosynthetic reaction is the following:
nH,0 + nCO; + light = (CH,0)n+ nO;

Especially the photosynthetic process could be subdivided into a light phase, for which the light is

necessary, and a metabolic light-independent phase (Figure 3).

Chloroplast

e ([CH,0]
~(sugar)

Figure 3. Schematic representation of light-dependent and metabolic phases of photosynthetic process.

During the light-dependent phase the energy from sunlight is captured, as photons, and used to

make high-energy molecules (ATP) and reducing power (NADPH), according to the equations:

ADP + Pi+ energy - ATP
2 NADP*+ 2 H20 + light - 2 NADPH + O2+ 2H*

Instead in the light-independent phase ATP and NADPH are used to reduce CO; into carbohydrate

through the Calvin-Benson-Bassham cycle (Benson and Calvin 1950).
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1.2.1 Chloroplast

The reactions of all the photosynthetic process occur in specific organelles called chloroplasts (Figure
4). These special types of plastids are embedded to a double membrane, the external one is
permeable to water and different ions and metabolite, instead the internal one is permeable only to
small molecule uncharged like O,. Inside the double membrane there is an extensively folded internal
membrane system called thylakoids membrane. These are extensively folded and organized into two
distinct domains: the grana domains, which are characterized by ~5-20 layers of cylindrical stacks of
thylakoid membrane disks, and the stroma lamellae, which are unstacked thylakoids that connect the
grana stacks forming a physically continuous network that separates an internal space, called lumen,
from an external space, called stroma (Gao et al. 2018). Grana are tightly packed with photosynthetic

complexes, indeed proteins occupy around 70-80% of the area.
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Figure 4.Schematic structure reconstruction of a chloroplast.

The soluble enzymes of light-independent phase reactions of the photosynthesis are in the stroma,
instead the light-phase reactions happen in the thylakoid membrane. In particular in the light-phase
three multi-protein membrane complexes, called photosystem II (PSll), photosystem | (PSI) and
cytochrome bgf cooperate to generate a proton gradient across the thylakoid membrane while
transferring electrons from water to NADP*. Then the chloroplast ATP synthase (ATPase) uses the
chemical and electric potential of the proton gradient to generate ATP. These complexes are not
evenly distributed throughout thylakoids: PSIl resides mainly in grana membranes and it is
segregated from PSI, which is almost exclusively localized in the stroma lamellae, Cyt-bef is

distributed in grana and grana margins and ATPase localizes predominantly in the stroma lamellae.

The cell of the model algae Chlamydomonas reinhardtii contains about 80 copies of the chloroplast

genome, which is a circular molecule of 205 kb with two inverted repeats and it is organized in large
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protein-DNA complexes called nucleoids. These complexes are associated with DNA replication and
repair, transcription, RNA processing, and translation. The chloroplast genome contains 99 genes,
including a full set of 30 tRNA genes, 5 rRNA genes, 17 ribosomal protein genes, 32 genes involved in
photosynthetic pathways (including Rubisco large subunit) and 5 genes for RNA polymerase subunits
(Maul et al. 2002). One plastid gene contains introns (psbA), while another is present as three distinct
loci that are independently transcribed (psaA) and post-transcriptionally joined (Salomé and

Merchant 2019).

1.2.2 The light-dependent phase

Two types of photosystems, namely photosystem Il (PSIl, water-plastoquinone oxidoreductase) and
photosystem | (PSI, plastocyanin-ferredoxin oxidoreductase), are responsible for the light-driven
electron transport. Both of which are multi-subunit membrane protein complexes that bind
numerous chlorophylls (Chls), carotenoids (Cars), and other cofactors. In particular, each
photosystem is composed of a core complex and a peripheral antenna system, the latter collects light
energy and transfers it to the reaction center (RC). Moreover, for the light-dependent phase are
needed other two complexes: cytochrome bef (plastoquinone-plastocyanin oxidoreductase) and F-

ATPase (proton-motive force-driven ATP synthase) (Figure 5).

Figure 5. Schematic representation of the light-dependent phase of the photosynthesis.

The first step is the light harvesting. Chlorophylls and other pigments in PSI and PSIl antennae
systems harvest light and funnel it to the photosynthetic reaction center, further inducing the
excitation of chlorophylls known as P680 for PSIl and P700 for PSI to initiate the proton translocation
across the membrane. In PSII, P680 undergoes charge separation, becoming P680*, then one electron

is transferred to a quinone acceptor, called pheophytin (Pheo), and then to a plastoquinone (PQ)
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molecule at the Qa-site. Meanwhile, a water molecule, the authentic electron donor, is oxidized to
molecular oxygen and P680* is eventually reduced. In particular, the missing electron on P680" is
recovered through the oxidation of a tyrosine residue also referred to as Yz. Yz extracts an electron
from a cluster of four manganese atoms (OEC, oxygen-evolving complex), which binds two substrate
water molecules. Upon four consecutive events of charge separation of P680, the manganese cluster
accumulates a total of four oxidizing equivalents, which are used to oxidize two water molecules
leading to the formation of O,, the release of protons in the inner thylakoid space and the return of
manganese cluster to the reduced state. The electron on Qa is then transferred to the PQ at the Qg-
site, which works as a two-electron acceptor and becomes fully reduced and protonated after two
photochemical turnovers of the RC. The reduced plastoquinone (plastoquinol, PQH,) then unbinds
from the PSII and are transferred to the thylakoid-embedded cytochrome bgf, concomitant with the
release of two protons to the luminal side of the membrane. The cyt-bef oxidizes plastoquinol to
plastoquinone and reduces plastocyanin. And then, the plastocyanin is oxidized by PSI. In the PSI,
upon photon absorption, a charge separation occurs with the electron transfer through a Chl and a
bound quinone (Qa) to a set of 4Fe-4S clusters. From these clusters, the electron is used to reduce
ferredoxin on the stromal side. Two ferredoxin molecules can reduce NADP* to NADPH, by

ferredoxin—-NADP* reductase (FNR) enzyme.

Together, PSIl generates the most positive redox potential, while PSI generates the powerful
naturally occurring reductant NADPH (Figure 6). The photocatalytic activity of PSIl and PSl is linked by
the cytochrome be¢f complex, and the proton-motive force generated during the process are utilized
by the F-ATPase to generate ATP, which together with NADPH are supplied as energy compounds for

sugar synthesis from carbon dioxide by the light-independent reaction (Gao et al. 2018).
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Figure 6. Z-scheme of Bendall and Hill that show as the two photosystems act in series. Cofactors involved in electron
translocation between H,O and NADP* are indicated.
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1.2.3 The light-independent phase

During the light-independent phase of photosynthesis, atmospheric CO; is reduced to carbohydrates,
using the chemical free energy (ATP and NADPH) produced during the light reactions. The light-
independent phase includes a series of reactions (Figure 7), overall indicated as Calvin-Benson-

Bassham cycle (Benson and Calvin 1950) that can be summarised with the following reactions:

3CO2+ 3 Ru5P +3 H,0+6ATP+6H"+6 NADPH - 6 GAP + 6 ADP + 6 NADP* + 6 Pi
5 GAP + 3 ATP - 3 Ru5P + 3 ADP

The Calvin cycle allows the synthesis of one glyceraldehyde (GAP) from three CO, molecules and the
regeneration of Ribulose-5-phosphate (Ru5P) to preserve the cyclic character of the process. In
particular starting from three molecules of ribulose 1,5 bisphosphate (Ru5P) are formed 6 molecules
of glyceraldehyde (GAP), one of which is the net gain, the other 5 are used to regenerate Ru5P. The
triose-phosphates generated by the Calvin-Benson cycle in the chloroplast are subsequently
metabolized to build carbohydrates and other cellular constituents.

The key enzyme is the ribulose-1,5-bisphosphate carboxylase/oxygenase, called Rubisco, which
allows the incorporation of CO; in the cycle. Rubisco is found in the stroma, has an extremely slow

catalytic rate and is the most abundant soluble protein in the chloroplast.
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Figure 7. Enzymatic steps involved in the Calvin-Benson-Bassham cycle.

Many enzymes of the Calvin cycle catalyze reversible reactions in common with the glycolytic

pathway of carbohydrate degradation, it is therefore essential that there are mechanisms by which,
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in light, the synthetic apparatus is "turned on" and the degradation apparatus is "turned off". This
also implies that after a period of darkness an induction period is needed to have a perfectly active
Calvin cycle. The regulatory mechanisms exploit oxidation-reduction mechanisms, changes in pH and

in the concentration of Mg?* ions.

Photorespiration

Rubisco also catalyses the oxygenation of ribulosio-5-biphosphate (Ru5BP) in the presence of oxygen
(0,), generating one molecule of 3-phosphoglycerate (3-PGA) and one of 2-phosphoglycolate (2-PG)
at the cost of one ATP and one NAD(P)H.

2-PG is harmful for cellular metabolism; thus, it is rapidly converted to 3-PGA by the
photorespiratory pathway (Figure 8). This pathway has nine enzymatic steps which takes place in
three organelles (chloroplast, peroxisome, and mitochondria) and in the cytosol. The process
generates one molecule each of hydrogen peroxide (H,02) and ammonia (NHs) that can be toxic if
they accumulate to high levels. The ammonia released during the glycine decarboxylation step is
reassimilated by plastidic glutamine synthetase (GS) and ferredoxin-dependent glutamate synthase

(Fd-GOGAT) systems (Simkin, Lopez-Calcagno, and Raines 2019).
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Figure 8. Representation of photorespiration. Glycolate oxidase (GOX), 2-phosphoglycerate phosphatase (PGP), serine-
glyoxylate transaminase (SGAT), glycine-2-oxoglutarate aminotransferase (GGAT), glycerate-3-kinase (GK),
hydroxypyruvate reductase (HPR), glycine decarboxylase (GDC), catalase (CAT), serine hydroxymethyltransferase (SHMT),
Rubisco. Modified from Simkin, Lopez-Calcagno, and Raines 2019.
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1.2.4 Photosynthetic pigments
The photosynthetic pigments are responsible for light absorption, charge separation and energy
transfer toward the reaction centre in both photosystems. These pigments can be divided in two

main classes: chlorophylls and carotenoids.

Chlorophylls

Chlorophylls consist of a central magnesium atom surrounded by a porphyrin ring (a cyclic
tetrapyrrole) with attached a side chain of 20 carbon atoms, known as phytol chain, responsible for
the hydrophobicity.

In the photosynthetic organisms occurs several types of chlorophylls: chlorophylls a and b are the
major types found in higher plants and green algae; chlorophylls ¢ with Chl g, is found in diatoms,
while Chl d and f occur cyanobacteria. Different chlorophylls are distinguished from their
substitutions, e.g. Chl a e b differ in a substituent in the second pyrrole ring, being a methyl for the

former, an aldehyde for the latter (Figure 9).

X=CHj - Clorofila a

X=CHO - Clorofila b HaC

Figure 9. Structure of chlorophyll a and b.

The characteristic ability of Chls to absorb light in the visible region is due to the high number of
conjugated double bonds present in these molecules. Light absorption by chlorophylls lead to a
transition of an electron to excited states, in particular the absorption spectra are characterized by
two main bands : the Qy transition in the red region of the spectrum and the Soret transition in the
blue region (Figure 10). The transition of an electron from Sp to S; (the first excited state)
corresponds to the Qy transition in the red region of the absorption spectrum (around 640 nm for Chl
b and 670 nm for the Chl a). Another absorption band, called Q, is visible in the red region of the
spectrum (around 580-640 nm), even if it is partly masked by the Q, vibronic transitions: it
corresponds to the transition of a ground state (So) electron to the second excited state (S;). The
transition to higher states corresponds to the Soret band, visible in the blue region of the absorption

spectrum (around 430 and 460 nm for Chl a and Chl b, respectively).
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Chlorophyll a and b absorption properties are well known to be modulated by the protein
environment in which they are located. Moreover chlorophylls are indispensable for the proper

folding of some photosynthetic proteins, as the LHC proteins (Paulsen, Finkenzeller, and Kihlein

1993).
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Figure 10. Absorption spectra in acetone 80% of chlorophyll a and b.

Carotenoids

Carotenoids are tetraterpene molecules (C4) derived from 8 isoprene units, which include carotenes
and xanthophylls. Carotenes contain a conjugated system of double bonds consisting of carbon and
hydrogen, while xanthophylls include oxygen atoms in their terminal rings.

The double carbon-carbon bonds interact with each other in a process called conjugation, and the n-
electrons delocalization in the conjugated double bonds system leads to the light absorption in the
visible range 400-500 nm. When carotenoids absorb light, electrons are transferred from the ground
state (So) to the second excited singlet state (Sz2); this strongly dipole-dipole transition is responsible
for the characteristic absorption spectrum. The first excited singlet state (S1) cannot be populated
from the ground state by photon absorption, due to symmetry reasons. Carotenoids are
indispensable in light harvesting and energy transfer during photosynthesis and in the protection of
the photosynthetic apparatus against photooxidative damage. Most carotenoids are bound to
integral membrane proteins, associated with light-harvesting complexes (LHCs), where they absorb
light across a broader range of the spectral region and transfer the energy to chlorophyll, initiating
the photochemical events of photosynthesis. There are also carotenoids located in the core
complexes of both photosystems, and in the cytochrome bsf complex, where they promote the
stability and functionality of the photosynthetic apparatus (Varela et al. 2015). Carotenoids, such as
chlorophylls, are linked to a protein matrix that influences their spectral characteristics. The
polypeptides involved bind carotenoids in a non-covalent way thanks to hydrophobic interactions

and hydrogen bridges with the oxygen atoms present in xanthophylls.
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More than 700 types of carotenoids were identified in nature, the most abundant carotenoids
associated with thylakoid membranes are the a- and B-Carotene (a-Car, B-Car) and the xanthophylls
Lutein (Lut), Violaxanthin (Vio), Neoxanthin (Neo) and Zeaxanthin (Zea). The composition of
carotenoids in the thylakoids is not constant, rather it rapidly changes according to the intensity of

incident light, or during the acclimation to long-term stress.

OH
HO zeaxanthin
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epoxidase,
OH
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Figure 11. Schematic representation of the xanthophylls cycle.

Three xanthophylls, violaxanthin, antheraxanthin and zeaxanthin, take part to the so-called cycle of
xanthophylls, which consists in a light-dependent, reversible de-epoxidation of violaxanthin to
zeaxanthin via the intermediate antheraxanthin (Figure 11). Zeaxanthin decrease light absorption
during excess light condition, thus, the regulation of the xanthophyll cycle has an important
physiological influence in the response to high light. The de-epoxidation reactions converting
violaxanthin to zeaxanthin are catalysed by violaxanthin de-epoxidase (VDE) enzyme (Yamamoto and
Kamite 1972), a lumenal enzyme activated by acidification of the lumenal compartment (Gilmore and
Yamamoto 1992), which occur when there is an excess of light: that condition saturates the electron
transport capacity increasing the transmembrane proton gradient. The enzyme zeaxanthin epoxidase
(ZE), located in stromal side of the thylakoid membranes and constitutively activated (Bouvier et al.
1996), catalyses the epoxidation reaction which completes the cycle. The xanthophylls cycle is a key
component in the activation of several photo-protection mechanisms as thermal energy dissipation

of excess excitation energy (NPQ), this point will be discussed later in the thesis.

1.2.5 Photosystems organization in green algae

Each photosystem is multi-protein supercomplexes composed by a core complex, involved in the
light harvesting, charge separation and electron transport, and by a peripheral antenna system,
involved in the light harvesting and that transfer the excitation energy to the reaction centre in the

core complexes. The core complexes of both PSIl and PSI have been well conserved from
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cyanobacteria to higher plants, whereas their antenna systems are considerably diverse among

different species (Pan et al. 2019).

PSII structure

Photosystem Il (PSII) is water-plastoquinone oxidoreductase capable of absorbing light and splitting
water. In particular, in C. reinhardltii, it is organized as a dimer that consists of 2 PSIl core complexes
(C3), 2 strongly bound LHCII trimers (S-LHCIIs), 2 moderately bound LHCII trimers (M-LHClIs), and 2
naked LHCIl trimers (N-LHCIIs) also called L-LHClls (loosely bound), forming the C,S;M:N;
supercomplex. The antennae system comprises other two subunit: CP26 and CP29 that are
associated with each PSIl core (Figure 12, Shen et al. 2019). In addition, the PSIl supercomplex
contained Chl g, Chl b, neoxanthin, loroxanthin, violaxanthin, lutein, and B-carotene.

The structure of one monomeric core comprises 4 intrinsic transmembrane subunits (D1/PsaA,
D2/PsbD, CP43/PsbC, and CP47/PsbB), 13 low-molecular-mass intrinsic transmembrane subunits
(PsbE, PsbF, PsbH, Psbl, PsbJ, PsbK, PsbL, PsbM, PsbTc, PsbW, PsbX, PsbZ, and Psb30), and 1 extrinsic
subunit (PsbO) attached at the luminal surface (Shen et al. 2019). The monomeric complex acts as
intermediate form in the normal assembly pathway or in the damage-repair cycle.

The core subunits are encoded by psb genes, most of which are plastidial encoded (Pagliano, Saracco,
and Barber 2013), instead the LHCII proteins are all encoded in the nucleus by 9 /hcbm genes
(Lhcbm1-6, Lhcbm8, Lhcbm9 and Lhcbm11). The LHCII complexes help regulate energy flow to the
reaction centers by participating in both light harvesting and energy dissipation (Neilson and

Durnford 2010).

CP29

M-LHCII

PsbZ Psb30 PsbX

Figure 12. Architecture of the C,S;M;N,-PSII-LHCII supercomplex from C. reinhardtii. (A) Representation of the overall
structure with a top view from the stromal side. (B) Side view along the membrane plane. (C) The arrangement of 13
small membrane-intrinsic proteins in each monomer viewed from the stromal side (Shen et al. 2019).
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PSI structure

Photosystem | (PSl) is a plastocyanin:ferredoxin oxidoreductase responsible for light-driven charge
separation and electron transfer from plastocyanin on the lumenal side of the thylakoid membrane
to ferredoxin on the stromal side.

In C. reinhardtii the core complex is composed by 14 subunit (PsaA-L and PsaN-PsaO) similar to that
of plants, instead the antenna system is larger than that of plants with a double belt of light
harvesting protein (LHC) (Su et al. 2019). In particular the central part of the core complex is
composed of two large proteins, PsaA and PsaB, which binds almost all of the cofactors of the
electron transfer chain. PsaC together with PsaD and PsaE forms the docking site for ferredoxin on
the stromal side of the membrane. PsaF and PsaN are important for electron transfer from
plastocyanin to P700. Psal is a hydrophobic protein located close to PsaF and plays a role in the
stabilization of this subunit conformation. PsaH, Psal, Psal, and PsaO form a cluster of integral
membrane proteins and they are involved in interactions with LHCII during state transitions. Finally
PsaG and PsaK are located near PsaA and PsaB, respectively, and have been proposed to be
important for the association of the outer antenna with the core (Drop et al. 2011) (Figure 13).
Finally, the PSI supercomplex binds chlorophylls a and b and the carotenoids loroxanthin, lutein,

neoxanthin, violaxanthin and B-carotene (Pan et al. 2019).

Stroma

Lumen

Figure 13. Structure of C. reinhardtii PSI supercomplexes. A) PSI-10LHCI structure view from the stromal side. B) Side view of
the structure (Su et al. 2019).

The genes encode for the antennae system are called /hca. In C. reinhardtii among 9-10 /hca gene
products have been identify, but the exact copy number of Lhca protein and their location within the
CrPSI-LHCI supercomplexes are still unclear: 8 or 10 LHCI could bind the PSI core. In the PSI-10LHCI

model, 8 LHCI form a double belt at the PsaF side, and two additional Lhca proteins are weakly
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associated to the PsaB side. The PSI-8LHCI structure lacks the two protein in the side layer and
further lacks two core subunits, PsaG and PsaH, which are stabilized by LHCI side layer in the PSI-
10LHCI supercomplexes. The detachment of the side layer may allow the fast regulation of the PSI
antenna size, moreover this dissociation has been suggested to be important in the formation of the

PSI-LHCI—cyt bef supercomplex that is involved in the cyclic electron flow (Su et al. 2019).

1.2.6 Photoprotection mechanism

Algae must face a dynamic environment ever-changing: temperature, CO, concentration, quality and
quantity of light are some of the changing factors that every organism have to overcome in order to
survive. These environmental fluctuations differentially affect the efficiency of electron transfer and
metabolic reactions, imbalance the rate of NADPH/ATP utilization and excitation energy available.
Any disequilibrium can lead to overreduction of photosynthetic electron acceptors and promote the
generation of reactive oxygen species (ROS) and finally to photooxidative stress. Algae evolved
several photoprotective mechanisms to fine-tune the supply of energy avoiding ROS formation and

preventing photoinhibition.

Non-Photochemical Quenching

Non-photochemical quenching (NPQ) is a process that dissipates excess excitation energy as heat to
avoid or decrease photooxidative damage from high light or other stress conditions. This process
quenched the excess of Chl* and so is measured from the decrease of Chl fluorescence from PSII.
NPQ includes short term responses to rapid fluctuations in light, as well as long term responses to

acclimation to high light exposure.
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Figure 14. NPQ mechanisms in C. reinhardtii (Erickson, Wakao, and Niyogi 2015).

In particular, NPQ can be subdivide in four components (Figure 14): gE, energy-dependent
guenching; qT, state transition-dependent quenching; gZ, zeaxanthin-dependent quenching and ql,

photoinhibitory quenching (Erickson, Wakao, and Niyogi 2015). gl is the slowest component because
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is referred to photoinhibition of PSII, in particular to the oxidative damage to the D1 core protein.
This protein is degraded and replaced allowing to control electron flow to PSI, which will become
irreversibly damaged if the capacity of the electron acceptors is exceeded. gZ and qT are induced on
a time scale of minutes: gZ represents the quenching due to the accumulation of zeaxanthin bound
to LHCII, is a ApH independent quenching; qT is related to phosphorylation of migratory LHCII
antenna complexes (see the following paragraph for details). Finally, qE is the rapidly reversible
component of NPQ, the major and most intensively investigated one. gE depends on acidification of
the thylakoid lumen upon formation of high ApH across the thylakoid membrane under excess light
and requires expression of stress-related LHC protein, LHCSR in C. reinhardtii. Two types of LHCSR
proteins of C. reinhardtii have been identified: LHCSR3 and LHCSR1. They are transcriptionally up-
regulated in response to the shift from low light to high light, but they are differential expressed in
response to CO, concentration. Plants rely on another protein PSBS, that like LHCSR, acts as a sensor

of lumen pH for activating quenching (Erickson et al. 2015).

State transitions

The antennae systems of PSI and PSIl have a different composition and hence a different light
absorption spectrum, with PSIl being more effective in absorbing blue light and PSI in absorbing far-
red light. Algae need to rapidly adjust the relative absorption cross-sections of both photosystems in
function of light quality and quantity. This regulation occurs via so-called state transitions, and it
involves the relocation of LHCs between PSIl and PSI.

State 1 State 2

oo m ,sﬁ

ATP cytochrome PSI-LHCI LHCII trimer LHCII trimer
synthase bef supercomplex (phosphorylated)

Figure 15. Proposed remodelling of the photosynthetic supercomplexes during state transitions in C. reinhardtii by
Minagawa and Tokutsu, 2015. Side views of the membrane planes showing alterations in the thylakoid ultrastructure and
photosystem supercomplex composition.
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State 2 occurs when PSIl is too excited, this cause the accumulation of reduced plastoquinone,
resulting in the phosphorylation of LHCII protein by a serine-threonine protein kinase and their
subsequent dissociation from PSIl and association with PSI. Oxidation of the plastoquinone pool
induces the opposite effect, regenerating State 1 (Figure 15). The kinase, STT7 in green algae and
STN7 in vascular plants, is responsible for the LHCIl phosphorylation.

In plant the amount of LHCII that dissociates from PSIl is identical to the amount that re-associates
with PSI, about 20% of total LHClls migrate, instead in C. reinhardtii, Unli et al. 2014 demonstrate
that less than one LHCII trimer attaches per PSI complex on average, and almost 80% of LHClIs can
migrate. Indeed, in C. reinhardtii exists two types of state transition: one is the classical LHCII
migration, like in plants, that explains a 10-20% reduction of the PSII light-harvesting capacity, the
other is a phosphorylation-dependent quenching of aggregated LHClIIs, specific of green algae. This
type of state transitions cause only the reduction of the excitation level of PSIl and explains 80%
change in the light-harvesting capacity observed in C. reinhardtii (Minagawa and Tokutsu 2015).
Moreover, Nagy et al. 2014 found that state transitions in C. reinhardtii deeply affect the
organization of chloroplast thylakoid membranes by introducing reorganizations at different levels of
the structural complexity, in particular affecting the stacking and periodicity of the photosynthetic
membranes (Figure 15).

Seems that in A. thaliana, the association of LHCII to PSI plays an important role in long-term
acclimation to different light, instead in C. reinhardtii state transitions seems more important in the

short-term response mechanisms to increase photoprotection (Unlii et al. 2014).

Alternative electron transport

As mentioned at the beginning of this section, a balance of NADPH/ATP utilization and excitation
energy available is fundamental for cells surviving. Different mechanisms have been proposed to be
responsible for re-equilibration of the NADPH/ATP balance and avoiding overreduction of the NADPH
stromal pool and of photosynthetic electron acceptors.

The most studied alternative pathway is cyclic electron transport (CET, in red in Figure 16), in which
electrons are transferred from ferredoxin (Fd) to the plastoquinone (PQ) pool, generating a trans-
thylakoid H* gradient (ApH) without net production of NADPH. Two pathways of PSI cyclic electron
transport are known: one is antimycin A sensitive, involves ferredoxin (Fd), proton gradient
regulation 5 (PGR5) protein, and proton gradient regulation like 1 (PGRL1) protein, the other is
described as antimycin A insensitive, that involves the multiple-subunit NADH dehydrogenase
complex (NDH-1) for land plant chloroplasts, instead for microalgae involves a plastidial type Il

NAD(P)H dehydrogenase (NDA2) (Dang et al. 2014).
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Another alternative electron transport is the pseudo-cyclic electron transport (pseudoCET, in blue in
Figure 16). This referred to two different pathways: the water—water cycle or Mehler reactions and
the flavodiiron (Flv) pathway. The first one depends on O, reduction around PSI. Resulting ROS is
scavenged by superoxide dismutase (SOD) and ascorbate peroxidase (APX). Flv pathway mediates
direct reduction of O, to H,0 using likely NADPH or Fd as electron donor (Shikanai and Yamamoto

2017).
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Figure 16. Representation of photosynthetic electron transport and alternative electron transport (Shikanai and
Yamamoto 2017)

Chloroplasts also contain an alternate oxidase (PTOX) that oxidizes PQH, and reduces O, to H-0.
Electron flow from PSIlI through PTOX could generate ATP from proton accumulation at PSII,
however, only one proton is transferred into the lumen per electron transferred from PSIl through
PTOX. PTOX is involved also in the chlororespiration, a light-independent electron transport pathway
(Bennoun 1982) that involves the non-photochemical reduction of PQ by a chloroplast NADPH
dehydrogenase and the oxidation of PQH, by a terminal oxidase (PTOX). In Chlamydomonas the
protein involved are the chloroplastic type Il NADPH dehydrogenase (NDA2) and two plastid terminal
oxidases (PTOX1 and PTOX2) (Jans et al. 2008). Chlororespiration provides a mechanism to prevent
the complete oxidation of the plastoquinone pool in the dark, as well as, to prevent its complete
reduction in excess light. Moreover, it modulates the activity of cyclic electron flow around
photosystem | and facilitate NADPH oxidation to dissipate photosynthetic reducing equivalents

reducing photoinhibition and the production of ROS species (Erickson et al. 2015).
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1.3 Aerobic cellular respiration

In photosynthetic cells coexists two main bioenergetic processes: photosynthesis and mitochondrial
respiration. Indeed, both involve an electron transport chain coupled to ATP synthesis. In particular,
photosynthesis converts light energy into chemical energy (NADPH and ATP) and allows the net
fixation of carbon, then respiration converts reducing power contained in carbohydrates into

phosphorylating power releasing CO; (Figure 17).

Chloroplast

Carbon dioxide and water react,
using light energy, to produce
glucose and oxygen

Mitochondrion
Glucose and oxygen react to

produce carbon dioxide, water, and

‘ energy (ATP). i

ATP
Heat....~(énergy)

Figure 17. Schematic view of the relationship between chloroplast and mitochondrion metabolism.

Cellular respiration involves many chemical reactions, that can be summed up in this equation:
(CH,0)n + nO2 = nCO; + nH,0 + ATP

The reactions of cellular respiration can be grouped into three stages: glycolysis, that oxidized
glucose in pyruvate; Krebs cycle, that completely oxidized pyruvate producing CO, and reducing
power (NADH and FADH,); electron transport chain, that together with the oxidative phosphorylation
make the major quantity of ATP (Figure 18). The last two process happen in the mitochondrion, in

the matrix and in the cristae respectively, the first one in the cytosol.
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Figure 18. Overview of the cellular respiration steps.

1.3.1 Mitochondrion

Mitochondria are the main organelles of the cellular respiration. Mitochondrion is a double-
membrane bound organelle that generates most of the chemical energy (ATP) in the cell, for this
reason it is also defines as the ‘powerhouse’ of the cell. It is composed by an outer membrane, that is
permeable to small molecule, thanks to some integral membrane protein called porins, and an inner
membrane, that folds over many times forming layered structures called cristae, that increased
considerably the surface area (Figure 19). The inner membrane hosts the multi-protein complexes of
the respiratory chain and the ATPase complex. The internal space is referred as matrix, instead the
space between the two membrane is referred as intermembrane space. The last one has a
composition similar to the cytosol, being the outer membrane permeable to small molecule, instead

the matrix includes soluble enzyme, the mitochondrial DNA and the ribosomes.
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Figure 19. Schematic structure reconstruction of a mitochondrion.

Chlamydomonas reinhardtii mitochondrial proteome includes approximately 350 proteins, while the
mitochondrial genome, a sequence of 15.8 kb, contains only 12 genes, seven encode for respiratory

chain proteins, three for transfer RNAs (tRNAs), and the other are small and large subunit ribosomal
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RNAs (Popescu and Lee 2007; Yang et al. 2015). Therefore, the majority of proteins contributing to
mitochondrial function, including respiratory activity, are nucleus-encoded and imported into the
organelle by the Transporter Inner Membrane and Transporter Outer Membrane (TIM-TOM) systems
(Yang et al. 2015).

Each cell contains about 130 copies of the mitochondrial genome (Salomé and Merchant 2019) .

1.3.2 Glycolysis
Glycolysis is a cytoplasmic pathway which breaks down glucose into three-carbon compounds called

pyruvate and generates NADH and ATP. Glycolysis takes place in 10 steps as describe in Figure 20.
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Figure 20. Enzymatic steps of the glycolysis pathway.

The whole pathway can be summarized in the following equation:
1 glucose + 2 NAD* + 2 ADP - 2 pyruvate + 2 NADH + 2 ATP + 2 H,0

Only three steps of the glycolysis are irreversible: hexokinase (HK), phosphofructokinase (PFK) and

pyruvate kinase (PK) enzyme reactions. The other enzyme catalysed reversible reaction that take part

31



Introduction

also to the gluconeogenesis process, the metabolic pathway that results in the generation of glucose
from non-carbohydrate carbon substrates. In particular the PFK is the rate-limiting enzyme and it is

inhibited by high ATP concentration and high citrate concentration (Chaudhry et al., 2019).

Glycolysis makes ATP (2 ATP are used but 4 ATP are produced) without the use of oxygen but can
occurs in the presence of oxygen as well. In the aerobic respiration, the pyruvate formed from the
pathway can be used in the Krebs cycle and go through oxidative phosphorylation to be oxidized into

carbon dioxide and water.

Pentose phosphate pathway

Parallel to glycolysis there is an alternative pathway called oxidative pentose phosphate pathway
(OPPP, Figure 21). It could be distinct in two phases: in first one, called the oxidative phase, NADPH is
generated by irreversible reaction, in the second one 5-carbon sugars are synthetized by reversible
reactions. For first glucose-6-phosphate (G6P) is oxidized to 6-phosphoglucolactone (6-PGL) by G6P-
dehydrogenase (GDH), then it is further converted to 6-phosphogluconate (6-PG) and then to
ribulose-5-phosphate (Ru5P), this is the oxidative phase that gives 2 NADPH molecules and 1 CO2
molecule per C6. The nonoxidative phase regenerates fructose-6-phosphate (Fru-6-P) and triose-

phosphate (C3) from Ru5P (C5) (Johnson and Alric 2013).
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Figure 21. Enzymatic steps of the oxidative pentose phosphate pathway.

32



Introduction

The main purpose of this pathway is the generation of reducing equivalents, in the form of NADPH,
used in reductive biosynthesis, such as fatty acid synthesis. Moreover, it regulates the 5-carbon
sugars pool that includes important molecules as ribose-5-phosphate used in the synthesis of

nucleotides and erythrose-4-phosphate used in the synthesis of aromatic amino acids.

1.3.3 Krebs Cycle

The Krebs cycle (Krebs and Johnson 1980), also known as tricarboxylic acid (TCA) cycle or citric acid
cycle, includes a series of reactions that lead to the complete oxidation of glucose derivatives to
carbon dioxide. The Krebs cycle is the final common pathway for the oxidation of amino acids, fatty
acids, and carbohydrates that enter is the cycle as acetyl-CoA. Moreover, the Krebs cycle produced
building blocks for many important processes, including the synthesis of fatty acids, steroids, amino
acids for building proteins, and the purines and pyrimidines. Thus, acetyl-CoA is a key metabolite of
both catabolic and anabolic metabolism.

Under aerobic conditions, the pyruvate generated from glucose by glycolysis is oxidatively
decarboxylated to form acetyl-CoA by the irreversible reaction of the pyruvate dehydrogenase
complex (PDH, Figure 22). This multi-enzymatic complex is composed of three enzymes involving five
cofactors and it controls the entrance of the cycle, for this reason it is under complex regulation by

allosteric and covalent modification.
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Figure 22. Reaction of the pyruvate dehydrogenase complex.

Acetyl-CoA enter in the Krebs cycle reacting with oxaloacetate to form citrate. The cycle includes
eight major steps and the formation of oxaloacetate, the molecule used in the first step to preserve
the cyclic character of the process, as show in Figure 23.

Summarizing the total reaction of the Krebs cycle is the following:
1 pyruvate + 2H,0+ 3NAD* + 1FAD**=> 3CO; + 4NADH + 1 FADH,

NADH and FADH; are then used during the oxidative phosphorylation to make ATP.
The crucial point during the cycle is the citrate synthetase enzyme that is mainly regulator. It is
controlled by a lot of factor including the quantity of acetyl-CoA, oxalacetate, succinyl-CoA, ATP,

NADH and citrate.
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Glyoxylate cycle

Many bacteria, algae and plants are able to exploit acetate or other compounds that yield acetyl-
CoA. They make use of a metabolic pathway that converts two-carbon acetyl units into four-carbon
units (succinate). These reactions sequence, called the glyoxylate cycle (Figure 23), bypasses the two
decarboxylation steps of the Krebs cycle. In particular, one key enzyme, isocitrate lyase, converts
isocitrate to form succinate and glyoxylate. A second key enzyme, malate synthase, condenses
glyoxylate and a second molecule of acetyl-CoA to form malate. The subsequent oxidation of malate
regenerates the oxaloacetate. Thus, the succinate that was formed by isocitrate lyase can be
withdrawn from the cycle and used for cell carbon biosynthesis. A key difference from the Krebs
cycle is that two molecules of acetyl-CoA enter per turn of the glyoxylate cycle, compared with one in
the Krebs cycle. The glyoxylate cycle allows to grow on acetate because the cycle bypasses the

decarboxylation steps of the Krebs cycle.
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Figure 23. Krebs cycle and by-pass steps of the glyoxylate cycle.

1.3.4 Oxidative phosphorylation

The mitochondrial electron transport chain (mETC, Figure 24) is the site of oxidative phosphorylation.
It uses reducing power generated from glycolysis, pyruvate dehydrogenase complex and Krebs cycle
to establish an electrochemical transmembrane gradient that leads ATP synthesis.

The electron transport chain is composed of the ATP synthase complex (called also complex V) and

four oxidoreductase complexes: the NADH dehydrogenase (complex |), the succinate dehydrogenase
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Figure 24. Schematic representation of the electron transport chain in the mitochondrion (Raven and Beardall, 2016).

(complex Il), the cytochrome c reductase (complex lll), and the cytochrome c oxidase (complex IV).
All these complexes reside within the inner mitochondrial membrane.

Complexes | and Il transfer electrons from NADH or FADH, onto ubiquinone, which freely diffuse
within the inner mitochondrial membrane until the complex Ill. Indeed, it transfers electrons from
ubiquinol to cytochrome c. This small protein is localized in the space between the outer and inner
mitochondrial membrane. Finally, complex IV transfers electrons from cytochrome c onto molecular
oxygen. Three of the four oxidoreductase complexes couple electron transport with translocation of
protons from the mitochondrial matrix to the intermembrane space generating a proton gradient
that is used by complex V to catalyse the formation of ATP by the phosphorylation of ADP (Boekema
and Braun 2007).

In addition, could be present an alternative oxidase (AOX) that directly couples the oxidation of
ubiquinol with the reduction of O, to H,0. AOX introduces a branch in the mETC such that electrons
in ubiquinol are partitioned between the cytochrome pathway (complex Ill, cyt ¢, complex 1V) and
AOX. AOX dramatically reduces the energy (ATP) yield of respiration since it is not proton pumping
and since electrons flowing to AOX bypass the proton pumping complexes Ill and IV. These enzymes
are considered to form the basis of an overflow protection mechanism for the respiratory chain

under certain physiological conditions, e.g. high light conditions (Vanlerberghe 2013).
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1.4 Energy reserve in green algae

Algae have two main types of energy reserves: starch (or other polyglucans) and lipids. Green algae
utilized starch, however in diatoms there is chrysolaminarin, in red algae floridean starch and
glycogen and in euglenophytes paramylon.

Starch, in general, and lipids serve as energy source and as a supply of carbon allowing the cells to
become completely independent of a direct supply of energy and carbon from photosynthetic

activity.

1.4.1 Lipid metabolism

Lipids constitute an important part of the algae biomass, reaching until the 90% of the dry weight
(Chen and Jiang 2017). Moreover, microalgae lipids are interesting as a source of valuable nutritional
ingredients, such as long-chain polyunsaturated fatty acids (LC-PUFA, e.g. EPA and DHA) and as
precursors for biodiesel production. However, given the huge diversity of microalgae and their
distinct evolutionary history, lipids metabolism and composition vary substantially among microalgae

world.

The major lipid classes are membrane lipids and storage lipids, in the form of triacylglycerol (TAG);
other lipid classes, present in small amount, comprise terpenoids, sphingolipids, hydrocarbons and
sterols. Among the membrane lipids we found glycosylglycerides, mainly
monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and
sulphoquinovosyldiacylglycerol (SQDG); betaine lipids, as diacylglyceryl-O-(N,N,N-trimethyl)-
homoserine (DGTS), 1,2-diacylglyceryl-3-0-2’(hydroxymethyl)-(N,N,N-trimethyl)-beta-alanine (DGTA)
and diacylglycerylcarboxylhydroxymethylcholine (DGCC); and phosphoglycerides, principally
phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and phosphatidylglycerol
(PtdGro). MGDG, DGDG, SQDG together with phospholipid phosphatidylglycerol (PG) are the main

chloroplast lipids.

De novo fatty acid biosynthesis

De novo fatty acid biosynthesis occurs in the stroma of the chloroplast and requires carbon in the
form of acetyl-CoA, energy (ATP) and reducing power (NADPH). In algae grown photoautotrophically
acetyl-CoA is mostly produced by the oxidative decarboxylation of pyruvate through the PDH enzyme
(Figure 22), other sources are the direct conversion of acetate through acetyl-CoA synthetase (ACS)

or the cleavage of citrate by ATP-citrate lyase (ACL).
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Figure 25. Representative pathways in microalgal lipid biosynthesis shown in black and enzymes shown in red. ACCase,
acetyl-CoA carboxylase; ACP, acyl carrier protein; CoA, coenzyme A; DAGAT, diacylglycerol acyltransferase; DHAP,
dihydroxyacetone phosphate; ENR, enoyl-ACP reductase; FAT, fatty acyl-ACP thioesterase; G3PDH, gycerol-3-phosphate
dehydrogenase; GPAT, glycerol-3-phosphate acyltransferase; HD, 3-hydroxyacyl-ACP dehydratase; KAR, 3-ketoacyl-ACP
reductase; KAS, 3-ketoacyl-ACP synthase; LPAAT, lyso-phosphatidic acid acyltransferase; LPAT, lyso-phosphatidylcholine
acyltransferase; MAT, malonyl-CoA:ACP transacylase; PDH, pyruvate dehydrogenase complex; TAG, triacylglycerols
(Radakovits et al. 2010).

The first step of the fatty acid biosynthesis (Figure 25) is the carboxylation of acetyl-CoA to produce
malonyl-CoA by the acetyl-CoA carboxylase (ACCase). The malonyl-CoA is then converted to malonyl-
acyl carrier protein (ACP) that is then ligated to an acetyl-CoA to form a 3-ketoacyl-ACP. This enter in
a cycle in which is reduced, dehydrated and reduced again until 6-carbon-ACP is formed. The
enzymes involved in this cycle (KAS, KAR, HD, ENR) collectively form the fatty acid synthase (FAS).
Termination of the chain elongations is carried out by an acyl-ACP thioesterase (FAT or TE) which
hydrolyses acyl-ACP to form free fatty acids and ACP (Li-Beisson et al. 2019). The neo-synthesized FAs
are usually further elongated in the endoplasmic reticulum (ER), instead a fraction of the acyl-ACPs
are used in plastids for the generation of phosphatidic acid (PA) by the acylation of glycerol-3-
phospate (G3P). PA is a key intermediate for the formation of PG, moreover PA can be
dephosphorylated to generate diacylglycerol (DAG). DAGs are used for the formation of thylakoid
glycolipids including galactolipids, MGDG, DGDG and SQDG in the plastid envelope membranes. The
free fatty acid exported from the plastid enter into glycerolipid biosynthetic pathways in the ER,

leading to the formation of DAGs. These are used to synthesize extraplastidic membrane lipids
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including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and DGTS. Some phospholipids
can return to the plastid, for the synthesis of thylakoid glycolipids. DAGs are also used for the TAG
synthesis that are packaged in oil droplets in the cytosol. In particular TAG synthesis is catalysed by
diacylglycerol:acyl-CoA  acyltransferases (DAGATs) using acyl-CoA and DAG or by
phospholipid:diacylglycerol acyltransferase (PDAT), which use phospholipids as acyl donor and DAG

as acyl acceptor (Xu et al., 2016).

Lipid catabolism

Lipid catabolism plays an important role in microalgae indeed cells rapidly remodel or degrade
storage lipids to face changes in temperature, light and/or nutrient conditions, ensuring cells survival
and growth. Nitrogen starvation is one of the stronger stress related to lipid metabolism, indeed N
depletion trigger accumulation of TAG in the lipid droplet, partly synthesising de novo FA and partly
recycling membrane lipids, by contrast, N resupply causes massive degradation of the TAGs and

resynthesise of membrane lipids.

Fatty acid degradation is an oxidative process that produce acetyl-CoA. It requires highly specialized
enzyme called lipases and involves trafficking of FA released from all organelles to peroxisomes. FA
has to be activated to its CoA ester then, in the form of acyl-CoA, are ready for the oxidative attack at
the B-carbon position, starting the fatty acid B-oxidation. The location of FA B-oxidation varies
extensively in microalgae occurring either in the peroxisome, the mitochondrion or both. The core
reactions of FA B-oxidation require a cyclic reaction of four enzymatic steps: oxidation, hydration,
dehydrogenation and thiolytic cleavage of an acyl-CoA. An acetyl-CoA is cleaved off the acyl-CoA
each round of the B-oxidation. The end product is acetyl-CoA, H,O, and NADH. Acetyl units are
usually utilized through the glyoxylate cycle after the synthesis of 4-carbon compounds as succinate.
That can enters the Krebs cycle in mitochondria, releasing malate which can be converted to hexose

and sucrose in the cytosol via gluconeogenesis (Kong et al. 2018; Li-Beisson et al. 2019).

1.4.2 Starch metabolism

Starch is a polysaccharide that constitute the storage form of carbohydrate in plastids. It is composed
of amylopectin, a branched chain of glucose units, that is the major component of starch, and
amylose, which can be helical or linear.

The substrate for starch synthesis (Figure 26, A) is the activated glucosyl donor, ADP-Glucose
(ADPGIc). In particular, fructose-6-phosphate (Fru6P), an intermediate of the Calvin Cycle, is

converted to glucose-6-phosphate (Glc6P) and then into glucose-1-phosphate (GIc1P) that is, finally,
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converts into ADPGIc and inorganic pyrophosphate by an ADP-glucose pyrophosphorylase (AGPase).
Then starch synthases (SSs) enzymes catalyze the elongation of glucans transferring the glucosyl
moiety from the sugar nucleotide to the non-reducing end of the growing polyglucan chain. Soluble
SSs forms are involved in amylopectin synthesis, whereas the granule-bound starch synthase (GBSS)
forms participate in amylose synthesis. Branching enzymes (BEs) and isoamylase (ISA) enzymes
cleave linear glucose chain and transfer the cleaved portion to a glucose residue to form branches
allowing the granule crystallization.

Starch is degraded (Figure 26, B) by hydrolysis of the constituent glucans to maltose and glucose. For
first, glucan water dikinase (GWD) and phosphoglucan water dikinase (PWD) phosphorylate the
surface of the starch granule, making it accessible for B-amylase action that hydrolyse the linear
chains. Then is required a debranching enzyme (DBE) enzyme that release malto-oligosaccharides.
Starch is also metabolized to branched glucans by a-amylase and to linear glucans by a-amylase,
ISA3, and pullulanase. These linear glucans are further metabolized through B-amylase to maltose,
through a debranching enzyme (DPE) to glucose or through starch phosphorylase to glucose-1-
phosphate. Maltose and glucose are then transported from chloroplast to cytosol (Busi et al. 2014,

Zeeman, Kossmann, and Smith 2010).
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Figure 26. Starch synthesis (A) and degradation (B) pathways in chloroplasts (Busi et al. 2014).

1.4.3. Regulation of the carbon flux into the cell: organelle communication

The photosynthetic process produces NADPH and ATP that are subsequently used to drive CO;
assimilation via the Calvin-Benson cycle. Thus, global outputs of photosynthesis are triose phosphate,
i.e. glyceraldehyde 3-phosphate (GA3P), reducing equivalents (NADPH) and phosphorylating power
(ATP). These three compounds support all activities in a cell. The efficient production, management
and partition of the three major photosynthetic products (C, ATP and NADPH) are essential. Cell

membranes are not permeable to these molecules, therefore coordinating NAD(P)H and ATP levels
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between various subcellular compartments requires specific trafficking mechanisms. Communication
between organelles is critical for survival of photosynthetic organisms (Burlacot, Peltier, and Li-
beisson 2019).

Into details, a shared metabolite pool between chloroplast and mitochondrion can maintains a sink
for excess reducing equivalents and a source for additional ATP. These are needed to sustain carbon
fixation and protect the photosynthetic electron transport chain from damage by over-reduction of
the chloroplast (Erickson et al. 2015). In addition to chloroplasts and mitochondria, peroxisomes are
a third subcellular compartment involved in energetic metabolism. Indeed, NADH is produced by B-
oxidation of fatty acids.

Communication among chloroplast, mitochondrion and peroxisome is summarized in Figure 27.
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Figure 27. Schematic view of the regulation of the ATP/NADPH pool in Chlamydomonas reinhardtii (Burlacot, Peltier, and
Li-beisson 2019).

For Chlamydomonas reinhardtii several shuttles have been proposed include: the ADP/ATP
translocator, malate/oxaloacetate or malate/aspartate shuttle or triose phosphate translocator. In
particular, malate dehydrogenase (MDH) catalyses the reversible oxidation of NAD(P)H to NAD(P)*,
oxidizing malate to oxaloacetate (OAA) in the meantime. Malate or OAA can be shuttled across
subcellular membranes by metabolite transporters. MDH transporter are involved both in the
chloroplast-mitochondrion communication that in the chloroplast-peroxisomal communication.
Another shuttle is the dihydroxyacetone 3—phosphate (DHAP)/3—phosphoglycerate (3—PGA) shuttle.
DHAP export coupled with its oxidation to 3—PGA generates NADH (or NADPH) for respiratory energy
production. The rate of shuttling depends on the rate at which chloroplastic 3—PGA is reduced and

cytosolic DHAP is oxidized (Hoefnagel, Atkin, and Wiskich 1998).
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1.5 Strategies to improve microalgae strain

In the past, in order to improve microalgae applicability, in terms of biomass yield and synthesis of
high-value product, the aim was to enhance photo-bioreactor design, reduce energy consumption for
microalgae harvesting and enhance the extraction techniques for high-value compounds. In the
recent years, the rapid development of molecular biotechnology, from whole genome sequencing to
gene editing techniques, expanded the aim to genetic, systematic and synthetic engineering. In
particular, the availability of genome and its functional annotation allow the reconstruction of
genome-scale metabolic networks. These lead to hypothesis to iteratively guide experiments to
further improve knowledge of alga’s biology and help the metabolic engineering to enhanced
features of interest (Figure 28). Thus, the application of genome scale data, together to the omics
technologies, are becoming fundamental on the development of hypothesis-driven research in algae

biotechnologies.
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Figure 28. Relationship between -omics and strain improvement (Dal’'Molin et al. 2016).

For these reasons, omics data are gathering more and more interest, so much that we talk of
‘algomics’, defines as the study of microalgal cell metabolism using omics technologies such as
genomics, transcriptomics, proteomics, and metabolomics (Salama et al. 2019). The significant
advances in the next-generation sequencing technology allow to obtain high throughput data with
low cost, facilitating the rapid accumulation of genomic sequences that provide data to apply omics
technology. In Nov. 2018 the number of public available algal sequenced genomes was estimated to
be 40-60. Most of them belong to the division of Chlorophyta, instead the second most populous
group of microalgae with sequenced genomes are diatoms (Fu et al. 2019). Similarly, several
organelles, including mitochondria and plastid, have also been sequenced in microalgae. Integration
of different ‘omics’ datasets with the evidence of functional role of genes give insight into
biochemical and regulatory networks to understand and control microalgal physiology and metabolic

pathways. Moreover, these omics data enable application of gene editing technologies. Indeed, the
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CRISPR system allows to perform precise gene manipulation, but genomic information is necessary.
Currently, this technique was applied only in few algae species, as Chlamydomonas reinhardtii (Baek
et al. 2018), Nannochloropsis species (Ajjawi et al. 2017; Naduthodi et al. 2019) and P. tricornutum
(diatom, Nymark et al. 2016). To date, conventional bioengineering approaches relying on random
insertion of transgenes, allowing reverse genetics studies of gene function or the expression of gene
of interest. The last available approach to generate mutants is the random mutagenesis by physical
methods (UV-light, y- and X-rays) or chemical mutagens, e.g. N'-nitro-N nitrosoguanidine (NTG) and
ethyl methanesulfonate (EMS). In this case, lots of single nucleotide polymorphisms (SNPs) are
accumulates in the same mutant, making difficult to understand what is gene/genes responsible for a
phenotype or leading to lethal mutations. The advantages are that transformation protocols as well
as genomic information are not necessary, moreover it avoids restrictions to GMO for outdoor

production system.

State of art in order to improve carbon use efficiency

Algal biomass basically has three major components: lipids, proteins, and carbohydrates (Figure 29).
Proteins are the main component of most algae species (30-71% on a dry basis), carbohydrates
concentration ranges from 4% to 58% on a dry basis and lipids concentration range between 2% and
19% in most species, but can reach 80-85% in some cases (Bhujade et al. 2017). The Krebs cycle is a
crucial metabolic pathway that links carbohydrate, lipid, and protein metabolism, but how algae
control carbon partitioning is not yet fully understood. It's important to consider that improved

carbon use efficiency leads to increase not only in the total biomass productivity, but also change the
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Figure 29. Lipid, protein, and carbohydrate composition of various algae (Bhujade et al. 2017)
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algae composition, two aspects that are closely interlinked with the photosynthetic efficiency and
that are critical to reach the prefixed goals. For example, starch can be fermented to bioethanol,
instead lipids can be transesterificated to produce biodiesel, and finally protein can be useful in feed
and food supplements. Increasing of algal biomass can be induced, either by controlling environment
conditions or by introducing genetic modifications.

Growth conditions are key factors to increase biomass yield. Each species has specific needs in term
of light, nutrients, temperature and pH that must be optimized. The induction of some stress alters
biochemical pathways leading to the accumulation of specific products, for example N-starvation is
widely used strategy to increase lipid accumulation. Indeed, cells redirect carbon skeleton from
proteins into pyruvate, the central carbon metabolism intermediate, which could be used to
synthetized lipids. However, N-starvation also leads to growth retardation or even cell death.
Another possibility is supplying carbon sources as glucose, glycerol or acetate in a heterotrophic or
mixotrophic growth, indeed several microalgae are able to growth using different organic substrate.
This overcome the limitations due to light availability increasing the biomass yield but adding extra
production costs.

Regarding genetic modification, metabolic pathways inside algal cells can be altered to increase the
production of carbohydrates, lipids, and other important compounds of interest. For example, Ajjawi
et al. 2017 generates CRISPR-cas9 mutant of Nannochloropsis gaditana, which accumulated about
double lipid content compared to WT strain by alteration of a transcription factor that redirect the
metabolism from proteins to lipid synthesis. In C. reinhardtii mutants of phosphoenolpyruvate
carboxylase (PEPC) showed an increased total fatty acids production due to the redirection of carbon
flux through lipid biosynthesis. Indeed, PEPC catalyses the conversion of PEP in oxalacetate that can
enter in Krebs cycle providing substrates for protein biosynthesis. Thus, in the knock-down mutants
the blockage of flux towards TCA pathway redirect carbon flux to lipid production. This was
confirmed by an over-expression mutants of CrPEPC1 gene in which was observed an increased
carbon flux to the TCA, but not to fatty acid synthesis (Deng et al. 2014; Wang et al. 2017).

Pinto et al. 2013 increased production of a metabolite of interest, hydrogen, engineering C.
reinhardtii strain with a lower rubisco levels, activity and stability. Rubisco normally plays a key role
in the Calvin cycle that is the main competitor for the reducing power required by hydrogenases. On
the other hand, rubisco inefficiency is a main limiting step for CO; fixation rate and thus for biomass
yield. Rubisco has been studied intensively and is a prime target for genetic engineering to improve
photosynthetic efficiency. The main strategies adopted were the direct engineering of rubisco by
targeted and random mutagenesis, directed evolution and overexpression in cyanobacteria and

tobacco (Wei et al. 2017). However, these efforts were limited by the difficulty of simultaneously
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elevating catalytic rate and substrate specificity of rubisco. Other strategy was applied by Wei et al.
2017 that overexpressed a rubisco activase gene in N. oceanica, enhancing photosynthesis and
improving productivity of both biomass (+46%) and lipids (+41%).

Another strategy to increased biomass yield is improve the utilization of the light source: a huge
problem in the microalgae cultivation is the cell shading. Indeed, cells in the layers close to the light
receive an excess light energy, instead cells in the inner layers receive an insufficient irradiation. This
cause photoinhibition in the external layer and photolimitation in the inner layer, reducing the
growth rate and the overall productivity. To address this issue, one approach is reducing the light-
harvesting complexes of cells. This strategies was applied for Chlamydomonas for which several
mutants were generated (Jeong et al. 2017; Kirst et al. 2012; Perrine, Negi, and Sayre 2012), but also
in the non-model species of the Chlorella genus. Both for C. vulgaris (Dall’Osto et al. 2019) and C.
sorokiniana (Cazzaniga et al. 2014) chemical mutants with a reduction in the antenna systems were
selected, showing an increased biomass of 68% and 30%, respectively, compared to WT strain.
Another strategy is enhancing light utilization by altering the light composition. Fu et al. 2017
expressed an enhanced green fluorescent protein (eGFP) in the model diatom Phaeodactylum
tricornutum, allowing absorption of excess blue light and its intracellular emission in the green
spectral band. The engineered P. tricornutum achieved 28% higher efficiency in photosynthesis than
the parental strain. Further, its reaches 50% more biomass production rate respect to its WT strain
under simulated outdoor sunlight conditions.

Understanding carbon metabolism and energy conversion mechanisms in microalgae is the first step
to achieve significant progress in yields to make microalgae competitive in the market for the

production of biofuels and bioproducts of interest.
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In this work we studied the role of a protein of C. reinhardtii involved in the assembly of the PSlI
supercomplexes. To drive light-dependent photosynthesis in photosynthetic eukaryotes, the proper
assembly of photosystem Il (PSll) is essential. In Arabidopsis, the CP43/PsbC PSIl subunits is
assembled into the PSIl complex via its interaction with an auxiliary protein called low PSII
accumulation 2 (LPA2). However, the function of the LPA2 protein in the green microalga
Chlamydomonas reinhardtii is unknown. To elucidate the function of LPA2 in C. reinhardtii in vivo, we
generated a knockout Ipa2 mutant by using the CRISPR-Cas9 target-specific genome-editing system.
Biochemical analyses showed a drastic reduction in the level of CP43 in the mutants and accordingly
lower levels of F,/Fn and PSIl supercomplex compared with the wild type. Our profile of chloroplast
proteins in the Ipa2 mutant showed an increase in the level of a subunit of the cytochrome bef
complex, which accepts electrons from PSIl, and also an increased level of the LHCI and Rubisco
subunits, suggesting that the mutant compensated for its PSIl deficiency. Accordingly, Ipa2 had
increased PSI activity, cyclic electron transport and state transition. A strong reduction in the level of
CP43 in Ipa2 led to a reduction in the chlorophyll (Chl) content per cell and destabilized PSlI, resulting
in an impairment of photoautotrophic growth. Taken together, our data indicate that in C

reinhardtii, LPA2 is required for PSIl assembly and for its proper function.
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INTRODUCTION

Photosystem Il (PSll) is the initial complex in the linear electron transport of photosynthesis in
chloroplasts (Nelson and Junge 2015). It comprises the light-harvesting antenna complex that
absorbs sunlight and the core complex that converts light into photochemical energy (Govindjee et
al. 2001; Wobbe et al. 2016). The PSIl core complex contains at least 20 subunits with various
cofactors, including electron donors and acceptors (Gokhale and Sayre 2009). Due to the structural
complexity of PSlI, the proper assembly of its subunits is important for its function (Nickelsen and
Rengstl 2013; Lu 2016). The biogenesis of PSll is a stepwise assembly process (Nickelsen and Rengstl
2013; Lu 2016). The first step is the formation of the reaction center (RC) complex, which is
composed of the D1 and D2 proteins (Nanba and Satoh 1987; Anbudurai et al. 1994). Then, the RC
complex sequentially binds to the inner antenna proteins CP47 and CP43 (Boehm et al. 2011). Next,
the oxygen-evolving complex assembles on the lumenal side of the PSII pre-complex, which is
converted into an active monomeric PSIl (Bricker et al. 2012). Finally, the active PSIl forms dimers
and is surrounded by the peripheral light-harvesting antenna complex, which completes the de novo
biogenesis of PSII (Wobbe et al. 2016).

Unsurprisingly, many regulatory factors are involved in the properly organization of PSIl subunits. Of
these, Psb27 in cyanobacteria interacts with CP43 and PSIl during both de novo biogenesis and repair
of PSIl (Komenda et al. 2012). Because two Psb27 homologs have been identified in the green
lineage, the role of cyanobacterial Psb27 was proposed to be divided between two genes in
eukaryotes (Nickelsen and Rengstl 2013). One of them, Psb27-H2 (LPA19), participates in de novo PSII
assembly by interacting with D1 and CP43 (Wei et al. 2010). In cyanobacteria, CP43 incorporation
into PSII requires another assembly factor, SII0606, whose absence produces a drastic reduction in
the level of PSIl (Zhang et al. 2010). A homolog of SIl0606 is found in the unicellular algae
Chlamydomonas reinhardtii, but not in the land plant Arabidopsis thaliana, suggesting that SII0606
might be functionally replaced by other proteins in higher plants (Chi et al. 2012; Nickelsen and
Rengstl 2013). One possible replacement is LPA2, which has been suggested to interact with CP43
during PSIl assembly in A. thaliana, even if based on reports which have been then retracted (Ma et
al. 2007; Cai et al. 2010). LPA2 homologs have been found in other higher plants but not in C.
reinhardtii or cyanobacteria (Chi et al. 2012; Nickelsen and Rengstl 2013). Therefore, CP43 assembly
was not expected to require an LPA2 homolog in C. reinhardtii, but no detailed study of the assembly
factors for CP43 in this microalga had been performed.

In this work, we identified an LPA2 homolog in the C. reinhardtii genome and we investigated the
function of this interesting protein in vivo. We used the ribonucleoprotein (RNP)-mediated CRISPR-

Cas9 system to generate a target-specific knockout mutant (/pa2) of C. reinhardtii. In the absence of
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the LPA2 protein, the mutant had a reduced amount of CP43 and dysfunctional PSIl supercomplexes.

These results indicate that LPA2 is required for efficient CP43 assembly in PSIl biogenesis in C.

reinhardtii. In addition, the Ipa2 mutant had enhanced electron transport around PSI, suggesting that

PSI can be used to dissipate excitation energy in PSll-deficient conditions.

RESULTS

LPA2 gene in C. reinhardtii

The putative LPA2 gene (Cre02.g105650) was newly identified in the C. reinhardtii genome based on

the amino acid sequence similarity between its product and the LPA2 in A. thaliana (Fig. 1).

Homologs were also identified in the green linage,

including chlorophytes, but not in cyanobacteria,
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Figure 1. Phylogenetic tree (A) and amino acid sequence alignment (B) of LPA2 homologs in the green lineage. The 48
sequences were aligned using MUSCLE alignment, and selected species representing each clade are shown in B. The
phylogenetic tree was obtained using the Neighbor-joining method and all analyses were conducted in Geneious R10

software. Accession numbers of LPA2 homologs used are available in the Supplemental Table S1.

54



Chapter 1| Section A

suggesting that the LPA2 protein is of eukaryotic origin (Fig. 1A). The C. reinhardtii LPA2 gene
(CrLPA2) encodes a protein of 175 amino acids, including a 24 amino acid-long chloroplast transit
peptide predicted by Predalgo software (https://giavap-genomes.ibpc.fr/predalgo/) and two
transmembrane domains (amino acids 109-131 and 146-163) determined by TMHMM software
(http://www.cbs.dtu.dk/services/TMHMMY/). The CrLPA2 protein shares 23.2% identity and 43.2%
similarity with its Arabidopsis homolog (Fig. 1B).

To validate the function of the C. reinhardtii LPA2, we analyzed the light dependent expression of
LPA2. We exposed C. reinhardtii strain CC503 to high light (500 umol photons m2s™?) for 0, 30, and
60 min and used qRT-PCR to analyze the transcript levels of ELIP, LPA2 ,and psbC (Supplemental Fig.
S1A). LPA2 expression increased after exposure to high light, similar to the expression of ELIP and
psbC, indicating light-dependent expression. Western blotting revealed the presence of LPA in the
purified chloroplasts, specifically in the thylakoid membranes but not in the stromal fraction

(Supplemental Fig. S1B).
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Figure 2. CRISPR-Cas9 mediated /pa2 mutant generation in C. reinhardtii. A. The measurement of F,/F, to select putative
LPA2 gene knockout mutants grown on TAP agar medium under 50 pmol photons m?2s™. The cells (marked with white
arrows) presenting lower F,/F,, than the background cells were picked and confirmed by Sanger sequencing. B. DNA
sequence alignment of the wild type (WT) and /pa2 mutants obtained from Figure 2A (#1-2) at the LPA2 locus. The 20-bp
target sequence of sgRNA is underlined, and the PAM sequence is shown in blue. The column on the right indicates the
number of inserted (+) or deleted (=) bases. C. Immunoblot with LPA2 and Atpp (loading control) antibodies in the WT and
Ina2#2 mutant, which was used for all further experiments. Proteins were loaded on the basis of equal cell numbers, and
the WT samples were loaded at three different concentrations (25, 50, and 100%). D. The measurement of Chl
fluorescence kinetics in the WT and Ipa2#2 mutant grown in liquid TAP medium under 50 pmol photons m?2s™. The
measuring light (ML) and saturating light (SL) were 5 and 1250 pumol photons m2s, respectively. The F,/Fq, differed
significantly between the WT and /pa2 mutant, as determined by student t-test (n=4; the values shown are means + SD;
p<0.05).
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Generation of knock-out mutants without the LPA2 gene in C. reinhardtii

To further characterize C. reinhardtii LPA2, we generated target-specific knockout mutants by using
preassembled Cas9 protein—small guide RNA (sgRNA) RNP complex—mediated CRISPR-Cas9. The Ipa2
mutants were generated by sgRNA2 containing the 5-CAAGGGCTTTGGTTCAGAGACGG-3' sequence
(Table S2). Based on a previous study on an LPA2 homolog (Chi et al. 2012), we screened for mutants
showing abnormal Chl fluorescence. Transformants with lower F,/F., fluorescence signals than the
background cells (Fig. 2A) were selected for Sanger sequencing analysis of the target locus. All such
transformants had small indels in the LPA2 gene (Fig. 2B). The transformation efficiency, calculated
as the ratio of the number of mutants to the total colony number, was 0.495%, which was similar to
the mutation frequency obtained from the total gDNA of CRISPR-Cas9-transfected cells (0.4%; Table
S3). We selected the Ipa2#2 mutant for further investigation because it had a frame-shift mutation
that led to the early termination of the LPA2 protein. The absence of the LPA2 protein in the mutant
was verified by immunoblotting (Fig. 2C). Analysis of the Ipa2#2 mutant for potential off-target

effects by targeted deep sequencing revealed no indels (Table S4).

Decreased chlorophyll content in the /pa2 mutant

As first revealed during mutant screening, the Ipa2 mutant had an aberrant F,/Fn, fluorescence signal
(Fig. 2D). Interestingly, although the F.,/Chl ratio of the mutant was similar to that of the wild type,
the Fo/Chl ratio of the mutant was increased, resulting in a low F,/F, fluorescence signal. The
increased Fo/Chl ratio suggests the partial disconnection of antenna complexes from PSII.

To understand the change in Chl fluorescence caused by the mutation, we analyzed the Chl-binding
properties of the Ipa2 mutant (Table 1). In photoautotrophic cultures, the mutant exhibited a 53%
reduction in total Chl content per cell in comparison with the wild type, while the Chl a/b ratio were
not significantly affected. The reduction in Chl content per cell was not related to a change in cell

size, which was similar in the mutant compared to WT strain (Table 1).

Cell dimension

Chl/cell (pg/cell) Chl a/b ratio Chl/car (diameter, um)
WT 2.50 +£0.11 2.61+0.01 3.20+£0.03 8.92+0.81
Ipa2 1.17 £ 0.05%* 2.47 £0.07 2.82 +0.08* 8.39+0.75

Table 1. Chlorophyll (Chl) content for cells, Chl a/b ratio, Chl/carotenoids ratio and cell dimensions of the wild type (WT)
and Ipa2 mutant. Significantly different values in Ipa2 versus WT are indicated by *, as determined by student t-test (n=3;
the values shown are means * SD; p < 0.05) .
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The Ipa2 mutant accumulates a low amount of CP43 and CP47

We investigated the effect of the LPA2 gene mutation on the organization of photosynthetic
complexes in isolated thylakoid membranes (Fig. 3). In the 2D-Deriphat/SDS-PAGE analysis, the
intensity of the bands representing the PSIl core and PSIl supercomplexes was markedly reduced in
the Ipa2 mutant, with a particularly strong decrease in the CP43/CP47 band.

These results were then confirmed by western blot analyses of specific photosystem subunits in the
Ipa2 mutant (Fig. 4) showing the strongest decrease in CP43 (26.3 + 12.0% of the wild type; Figure
4B) followed by CP47 (42.5 + 2.4%). As reported in Supplemental Figure S4, the expression level of
PsbC gene was not changed in Ipa2 mutant compared to WT, suggesting that the reduced CP43
accumulation was related to impaired PSIl assembly. Only a slight decrease in D1, D2 and PsbO was
observed in the mutant, while PsbP was essentially unaffected. The accumulation of LHCII complexes
in the Ipa2 mutant was similar to that in the wild type, indicating that the LHCII/PSII ratio in the
mutant was increased. PSI accumulation was not affected by the LPA2 mutation (Fig. 4C), with a

consequent increase in the PSI/PSII ratio in the Ipa2 mutant in comparison with the wild type.

A WT Ipa2 Figure 3. 2D-Deriphat/SDS-PAGE of purified
thylakoid membranes. Deriphat-PAGE of WT
and Ipa2 mutant, (A) density of each band
was quantified by densitometry, PSlI-
supercomplex (PSH-LHCIl) are indicated.
Second dimension of 2D-Deriphat/SDS-PAGE
were performed running the Deriphat-PAGE
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Figure 4. Coomassie blue stained SDS-PAGE gel (A) and immunoblot analysis (B, C) of chloroplast proteins from the wild
type (WT) and Ipa2 mutant. Results from immunoblotting with antibodies against PSII-LHCII are presented in B, and results
from immunoblotting with antibodies against PSI-LHCI, Cyt f, AtpB, and RbcL are presented in C. Each lane was loaded on a
per Chl basis (1 ug), and the WT samples were loaded at three different concentrations (0.25, 0.5, and 1 pg). The amounts
of proteins in the Ipa2 mutant compared to the WT are presented next to the protein bands (n = 3; the values shown are
means * SD). The statistical significance of differences between WT and /pa2 is indicated as * if p < 0.05 and ** if p < 0.01,
as determined by student t-test.

Interestingly, the number of LHCI subunits in the mutant increased to an average of 125% of the wild
type, suggesting that PSI had increased its light harvesting activity when PSIl was partially
destabilized.

The accumulation of the cytochrome bgf complex and ATP synthase was investigated by western
blotting with antibodies specific to cytochrome f and the ATPase B-subunit, respectively (Fig. 4C). The
levels of both subunits were slightly increased in the Ipa2 mutant. The large Rubisco subunit, a
representative enzyme of the Calvin-Benson cycle, was clearly increased in the mutant (1.6 times the
wild-type level). Thus, the low amounts of CP43 and PSII in the [pa2 mutant caused an increase in the
levels of the cytochrome bgf complex, Rubisco and ATP synthase, which contribute to reduce the
excitation pressure on the photosynthetic apparatus oxidizing plastoquinone pool, and regenerating

NADP* and ADP respectively.

The Ipa2 mutant had impaired photoautotrophic growth and reduced photosynthetic activity

To investigate how the mutation affected the growth, WT and /pa2 mutant were cultivated under
phototrophic, mixotrophic and heterotrophic conditions. Under heterotrophic conditions (with
acetate as a source of organic carbon, Fig. 5A), the growth of Ipa2 mutant was similar compared to
the WT case, demonstrating that the mutation introduced was not affecting light-independent cell

functions. In mixotrophy, Ipa2 mutant was growing slower than that of the wild type (Fig. 5C).
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Figure 5. Growth curves of WT and Ipa2 mutant. Heterotrophic (A), phototrophic (B) an mixotrophic (C) growth of the Ipa2
mutant measured in liquid medium and compared to the WT (wild type). Growth curves were fitted by using Hill function
(n=4).

Instead, under autotrophic conditions, the growth of Ipa2 was severely impaired (Fig. 5B),
presumably because the lower photosynthetic activity of the mutant could not maintain whole-cell
metabolism under these conditions.

Photosynthetic activity of /pa2 mutant was then analyzed by pulse-amplitude-modulated (PAM)
fluorescence (Fig. 6). The fraction of the absorbed light used for PSIl photochemistry (DPSIl) was
—ZS—l

lower in the mutant than in the wild type at light intensities below 400 pumol m but similar at

higher irradiances (Fig. 6A and B). The controlled thermal dissipation of the absorbed excitation
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energy (ODNPQ) was also lower in the Ipa2 mutant than in the wild type, whereas the fraction of
absorbed energy lost by uncontrolled dissipation (DNO) was higher in Ipa2 (Fig. 6A and B).
Accordingly, the NPQ values (calculated as (Fm-Fn')/Fm’) were lower in the [pa2 mutant than in the
WT, implying a lower photoprotective capacity in the mutant (Fig. 6C). The fraction of closed PSII
centers, calculated from the 1-g, value, was similar in [pa2 mutant compared to wild type (Fig. 6D).
This result indicates that despite the reduced efficiency of PSlI, the redox state of Qa was kept similar
to the WT case at the different light intensities due to an adaptation of the overall photosynthetic
apparatus. We further investigated PSII activity by measuring the light-dependent oxygen evolution
curves and found reduced oxygen evolution on a per-cell basis in the Ipa2 mutant, confirming its
reduced photosynthetic activity (Fig. 7A). On a chlorophyll basis, we found that the Ipa2 mutant had
similar O, evolution compared to WT (Fig. 7B); this result is likely related to adaptation events at the
level of the photosynthetic apparatus as a consequence of reduced PSII activity.

Then we investigated the organization of the photosynthetic apparatus on the basis of 77K
fluorescence emission spectra. In the Ipa2 mutant, the spectra showed the presence of disconnected
LHC proteins with a peak at 680 nm, confirming the partial destabilization of the PSIl complexes
(Supplemental Fig. S2). Interestingly, the Ipa2 mutant had increased PSI fluorescence at 715 nm,
suggesting an increased PSI/PSII ratio.

We reasoned that the altered amounts of LHC in the /pa2 mutant might affect the state transitions
that balance the energy between PSI and PSII using LHCIlI migration from PSII to PSI. We examined

the capacity of WT and /pa2 mutant to perform state transitions by measuring the 77K fluorescence
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Figure 7. Oxygen evolution rates of WT and /pa2 mutant in response to different light intensities were measured

subtracting the rate of oxygen consumption in the dark. Net oxygen evolution rates were normalized to total cell contents
(A), or to Chl content (B). Error bars are indicated as standard deviation (n=3).
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emission spectra of cells under state 1 or state 2 conditions (Fig. 8A and B). The Ipa2 mutant showed
increased migration of light harvesting antenna proteins to PSI under state 2 conditions, suggesting
an increased pool of mobile LHCII subunits, likely as a consequence of the reduced PSIl assembly (Fig.

8C).

The Ipa2 mutant has enhanced electron transport flow around PSI

To examine whether the increased amount of PSI affected its activity, we measured PSI activity as
maximum P700 oxidation, which was higher on a per Chl basis in the /pa2 mutant than in the wild
type (Fig. 8D) but similar on a per cell basis due to the reduced Chl content per cell in the mutant
(Supplemental Fig. S3A). These results are in agreement with the western blotting results (Fig. 4) and
suggest that the defect in PSII activity increased PSI activity in the Ipa2 mutant.

We then measured the electrochromic shift (ECS) to estimate the proton-motive force (pmf) across

the thylakoid membranes generated by the light-driven electron flux. The pmf in the Ipa2 was similar
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Figure 8 State transitions analysis by 77K fluorescence emission spectra of the wild type (WT; A) and /pa2 mutant (B) in
state 1 (S1) or state 2 (S2) conditions. (C, D) Maximal P700 oxidation on a Chl basis in the WT and Ipa2 mutant. E. Linear
electron flow (LEF) and cyclic electron flow (CEF) of the WT and /pa2 estimated from the electrochromic shift (ECS) on a
Chl basis. Errors are reported as standard deviation, the statistical significance of differences between WT and mutant is
indicated as * if p < 0.05 and ** if p < 0.01, as determined by unpaired two sample t-test (n=4).
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to that in the WT (Fig. 8E; Supplemental Fig. S3B). Considering the reduced PSII activity in the Ipa2
mutant, we investigated the possible influence of cyclic electron flow (CEF) around PSI on pmf by
measuring the ECS in the presence of DCMU to inhibit linear electron flow. The Ipa2 mutant had an
increased fraction of pmf related to CEF (Fig. 8E and Supplemental Fig. S3B), causing a similar total

pmf despite decreased PSlI activity.

LPA2 as a possible player in D1 repair in C. reinhardtii

High light damages PSII, which increases the need for its de novo assembly or repair. Under high light,
the expression of the LPA2 transcript in both the /pa2 mutant and wild type was increased
(Supplemental Fig. S4), suggesting that LPA2 might have a repair function. To explore the potential
role of the LPA2 protein in repairing D1 proteins, we performed light shift experiments and
monitored the rate of photodamage or recovery from photo-inhibition. We monitored and
quantified the level of D1 protein during high light exposure in the presence or absence of
lincomycin, a chloroplast protein biosynthesis inhibitor, to quantify D1 decay kinetics in the absence
of its synthesis (Fig. 9). In the Ipa2 mutant, the level of D1 protein decreased faster than in the wild
type when they were shifted from low light to high light (Fig. 9), indicating that LPA2 might be

involved in D1 repair and PSIl assembly.
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Figure 9. Time course analysis for the loss of the D1 protein after a low light (LL) to high light (HL) shift. The wild type
(WT; black circles with solid line) and Ipa2 mutant (gray circles with dashed line) were grown under LL to the late log
phase. The cells were incubated in the presence of lincomycin (Lm). Protein blots probed with antibodies against the D1
protein are shown in A; 20ug of total proteins were loaded for each lane. Densitometric quantification of the
corresponding protein blots for the WT and Ipa2 mutant are shown in B.
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DISCUSSION

Although photosynthetic eukaryotes have, through endosymbiosis, acquired chloroplasts that
perform oxygenic photosynthesis, the chloroplast genome does not encode all the proteins
necessary for the photosynthetic machinery (Fischer et al. 2016). Numerous nuclear genes not only
directly encode the components of the photosynthetic apparatus, but also regulate multiple proteins
for the biogenesis and assembly of protein complexes in the chloroplast, e.g., the CoSRP54, CpSRP43,
CpFTSY, and LTD proteins from the chloroplast signal recognition particle pathway participate in
LHCP assembly (Kirst and Melis 2014; Jeong et al. 2017; Ziehe et al. 2017; Jeong et al. 2018). In the
green microalga C. reinhardtii, an early study on several mutants that lack PSIl subunits revealed that
the absence of CP43 did not affect the synthesis of D1, D2, or CP47 under continuous light, and the
loss of D1, D2, or CP47 did not alter CP43 synthesis (de Vitry et al. 1989). The fact that the synthesis
and accumulation of CP43 are independent of other RC components implies the existence of specific
factors for the assembly of CP43. Therefore, to expand our understanding of PSIl biogenesis and
assembly in C. reinhardtii, we used the CRISPR-Cas9 methodology to investigate a nuclear-encoded
protein, LPA2, and elucidate its role in PSIl biogenesis via a photochemical and biochemical analysis

of a Ipa2 mutant.

LPA2 is required for CP43 assembly in the PSIl of C. reinhardtii

CP43 is a 43kDa chlorophyll-binding protein that contains six transmembrane helices (Bricker 1990).
It functions as an inner PSIl antenna by transferring excitation energy from the peripheral antenna
complexes to the RC (Bricker and Frankel 2002). It is also essential for oxygen evolution in PSII by
providing lumenal residues for the ligation of the Mn,CaOs cluster and interactions with oxygen
evolving complex proteins (Suorsa and Aro 2007; Umena et al. 2011; Bricker et al. 2012). Because of
these important properties, Synechocystis PCC 6803 or C. reinhardtii mutants that lack the psbC gene
product cannot grow phototrophically or show detectable oxygen evolution (Roegner et al. 1991;
Zerges et al. 2003; Marin-Navarro et al. 2007). Likewise, the lack of the LPA2 protein, which is
localized in the thylakoid membranes, resulted in a drastic reduction in CP43 and the inability of the
Ipa2 mutant to grow in minimal medium (Fig. 5B). Because the psbC transcript remained in the
mutant at the wild-type level (Supplemental Fig. S4), these results suggest that the LPA2 protein is
involved in the post-translational regulation or integration of CP43 in the thylakoid membranes.

The Ipa2 mutant showed reduced D1 regeneration at high light intensity (Fig. 9). D1 is the PSII
component most sensitive to excess light energy (Melis 1999; Nickelsen and Rengstl 2013);
photodamaged D1 is rapidly replaced with newly synthesized D1 (Nickelsen and Rengstl 2013; Jarvi et

al. 2015; Lu 2016). For D1 replacement, PSIl is partially disassembled by the detachment and
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reassembly of CP43 (Nickelsen and Rengstl 2013; Jarvi et al. 2015; Lu 2016). In A. thaliana, LPA3 is a
major factor required for CP43 detachment during D1 repair; no evidence suggests that LPA2 is
involved in PSIl repair (Chi et al. 2012; Jarvi et al. 2015). However, our D1 regeneration results in the
Ipa2 mutant indicate that C. reinhardtii LPA2 is likely involved in CP43 cooperation during PSIl repair,

as well as, in de novo biogenesis of PSII.

Lack of LPA2 affects the accumulation of the photosynthetic machinery

The absence of the LPA2 protein increased the Fo/Chl ratio and shifted the peak of the 77K
fluorescence emission spectra to 680nm in the Ipa2 mutant, indicating that the efficiency of
excitation energy transfer from the antenna complex to the RC is reduced due to the partial
disconnection of the PSII-LHCII supercomplex (Fig. 2D, 8B and Supplemental Fig. S2). Likewise, native
Deriphat-PAGE showed a lower level of the PSII-LHCII supercomplexes in the mutant, if any (Fig. 3),
but the unconnected LHCII remained as a free antenna (Fig. 4). A large decrease in CP43 and CP47 in
the mutant implies that C. reinhardtii LPA2 participates in their accumulation, being these subunits
an important link between the PSIl RC and antenna complex. The reduced PSIl assembly in Ipa2
caused a reduction of PSIl activity on a cell basis (Fig. 7A), which contributed to the strong reduction
in growth observed in the Ipa2 mutant (Fig. 5), which became even more severe under autotrophic
conditions, which cause the whole-cell metabolism to rely on photosynthesis. The increase in the
ONO of the mutant also indicates insufficient photoprotective regulation of energy dissipation, which
poses a serious problem for mutant survival without a carbon source (Fig. 6B).

It is noteworthy that the reduced PSII level increased the PSI/PSII ratio in the mutant. Unlike PSII, the
abundance of PSI core subunits and PSI activity were not reduced by the lack of LPA2 protein (Fig. 4
and 8D). These observations differ from previous reports showing lower PSI activity in mutants
defective in PSIl biogenesis (Zhang et al. 2011; Wang et al. 2013). These features suggest that the
Ipa2 mutant might preferentially operate PSI-mediated electron transport flow to release excitation
pressure and generate trans-thylakoid proton transport to compensate for the inactive PSIl. Indeed,
the fraction of CEF, which is critical in maintaining the pmf, was increased in the Ipa2 mutant
compared to the WT (Fig. 8E).

The imbalance between PSIl and PSI in the Ipa2 mutant resulted in another interesting phenotype:
overaccumulation of the cytochrome bgf complex and Rubisco, which are downstream acceptors of
electron flow, possibly to release excess energy. Similarly, ATP synthase content was increased in
Ipa2 mutants, suggesting a faster relaxation of lumen acidification (Fig. 4). However, the observed
reorganization of photosynthetic apparatus in the [pa2 mutant is not sufficient to sustain autotrophic

growth, likely due to reduced NADPH formation and increased photosensitivity.
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In this study, we demonstrated that C. reinhardtii LPA2 is essential for the assembly of PSlI
complexes, being specifically involved in CP43 attachment to PSIl core. However, the detailed
mechanism by which LPA2 plays that role should be investigated further. The process of PSIl protein
assembly is complicated, and the functions of various assembly factors are almost certainly
coordinated. Some of these factors, such as LPA1/rep27, PAM68, and Alb3, which function in the
same step, could form a protein complex (Armbruster et al. 2010), so it is necessary to build a protein
interaction network that can provide a comprehensive view of the interplay among different
assembly factors, repair complexes, and PSIl subunits. PSIl assembly factors such as Alb3 and PAM68
emerged early in the evolution of photosynthetic organisms because they are present in all
cyanobacterial groups, green algae, and land plants (Chi et al. 2012). LPA2, on the other hand, is
present in photosynthetic eukaryotes (Fig. 1), but no homolog of LPA2 has been identified in the
cyanobacterium Synechocystis PCC6803, suggesting that LPA2 appeared in the green plant lineage
(Chietal., 2012).

In conclusion, the knockout mutation of LPA2 in C. reinhardtii resulted in a drastic reduction in the
level of PSII, with a concomitant decrease in its efficiency. Under high irradiance, the decay kinetics
of the D1 protein in /pa2 mutant are much faster than in the wild type, indicating that LPA2 might
take part in the D1 repair cycle. More interestingly, the Ipa2 mutant increased the accumulation of
the cytochrome bgf complex, ATP synthase, and PSI proteins to overcome the PSIl deficiency caused
by the LPA2 mutation. Therefore, Ipa2 mutant had increased PSI activity and CEF to supplement
photosynthetic energy production, but those increases were insufficient to support
photoautotrophic growth. Thus, the LPA2 protein is a critical factor for PSII assembly, both de novo

biogenesis and repair, in C. reinhardtii.

65



Chapter 1| Section A

MATERIALS AND METHODS

Sequence alignments and phylogenetic analysis. LPA2 homologs in the green lineage were identified
by BLAST searches and are summarized in Table S1. The amino acid sequences were aligned using
MUSCLE with the default settings (Edgar 2004). A phylogenetic tree was constructed using the
Neighbor-joining method with 1000 bootstrap replicates (Saitou and Nei 1987). All analyses were
performed using Geneious R10 software.

CRISPR-Cas9-driven mutagenesis. All procedures were performed according to Baek et al. (2016)
using 100 pg of Cas9 protein and 70 pg of gRNA. After CRISPR-Cas9 transformation, cells were
incubated in TAP liquid medium supplemented with 40 mM sucrose for 12 h and harvested for
genotype characterization or immediately diluted (to 2 x 10® cells) and plated on TAP medium
containing 1.5% agar to obtain single colonies. The colonies were screened on the basis of the F,/Fn,
fluorescence signal using a Walz Imaging PAM System (M-series; Heinz Walz GmbH). To confirm the
mutation of the target site, the putative mutants were further analyzed by Sanger sequencing.
Genotype characterization. Genomic DNA was extracted as described in Jeong et al. (2018). For
Sanger sequencing, the target regions were PCR-amplified with specific primers (5'-
GTAGTGTGCTTACATTTGCTGATT-3"' and 5'-CTACTGCTTCTGGATCTGTCC-3' for the Ipa2 gene locus).
The PCR products were separated by agarose gel electrophoresis, eluted from the gel, and
sequenced (Macrogen). For targeted deep sequencing, genomic DNA segments that encompassed
the nuclease target sites were amplified using Phusion polymerase (New England Biolabs). Equal
amounts of the PCR amplicons were subjected to paired-end read sequencing using the lllumina
MiSeq platform. The obtained next-generation sequencing data were analyzed using Cas-Analyzer
(Park et al. 2017). Reads that occurred only once were excluded to remove errors associated with
amplification and sequencing. Insertions and deletions (indels) located around the Cas9 cleavage site
(3 bp upstream of the protospacer—adjacent motif sequence) were considered to be mutations
induced by Cas9. To examine the occurrence of potential off-target mutation sites, we used Cas-
OFFinder (Bae et al. 2014), which lists potential off-target sites with a DNA or RNA bulge in length
that differ from the on-target sites by up to 4 nucleotides.

Pigment and cell size analysis. Pigment analyses were performed by HPLC as described in Lagarde et
al. (2000). Cell size was investigated using Countless®Il FLautomated cell counter (Thermo Fisher).
Growth analysis. C. reinhardtii strains were grown in minimal (HS) medium or in presence of acetate
(TAP medium (Kropat et al 2011)). Growths were evaluated in 80 ml photobioreactors in Multi-
cultivator system (Photon Sysrtem Instrumets, Cech republic) growing the different strains at 70
umol photons m™2 s in HS or TAP medium, for autotrophic and mixotrophic condition respectively,

or in the dark in TAP medium for the heterotrophic condition.
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2D-Deriphat/SDS-PAGE electrophoresis. 2D-Deriphat/SDS-PAGE analysis was performed as
described in Jeong et al. (2018). Thylakoid membranes isolated according to Ferrante et al. (2012) at
a Chl concentration of 0.5 mg/mL were solubilized with n-dodecyl-a-D-maltoside (final concentration
0.75% for both wild type and Ipa2), incubated on ice for 10 min, and centrifuged at 20,000 xg for 10
min to remove unsolubilized material. Thylakoid membrane proteins (25 pg Chl) were loaded in each
lane. After separation, one-dimensional native Deriphat—PAGE strips were cut and soaked in SDS-
PAGE stacking buffer containing 5 M urea twice for 25 min each. The proteins were then separated
by SDS-PAGE (12% gel containing 2 M urea). The acrylamide gels were stained with Coomassie blue.
Immunoblot analysis for profiling chloroplast proteins was performed as described by Jeong et al.
(2018). Antibodies were purchased from Agrisera, except for LPA2 antibody. Polyclonal antibodies for
LPA2 protein were raised against two peptides, CGFGSETAKQKEAEAEASTSKP and
EALEARIKSRRKGRVEPKVKVC (Abrfontier).

Photosynthetic activity analysis. PSIl activity was analyzed by fluorescence measurements on whole
cells using a Dual-PAM 100 instrument (WALZ). Specifically, ¢PSIl, oNO, oNPQ, and NPQ were
measured using different actinic lights from 0 to 1700 pmol photons m?s™®. 77K fluorescence
emission spectra were acquired with a charge-coupled device spectrophotometer (JBeamBio) as
previously described in Allorent et al. 2013. State transitions were measured on whole cells induced
to state 1 or state 2 as described in Fleischmann et al. (1999). Maximum P700 activity was measured
with the Dual-PAM 101 following the kinetics of transient absorption at 830 nm after a pulse of
saturating light. Whole cells were treated with DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea),
ascorbate, and methyl-viologen, as described in Bonente et al. 2012. Electrochromic shift
measurements were performed using a Photosynq that set the actinic light at 500 pmol photons m?2s.
Light dependent O, evolution curves were measured using Clark-electrode as reported in Perozeni et
al., 2019.

De novo biosynthesis of the D1 protein. To block the translation of the chloroplast-encoded D1
protein, lincomycin, an inhibitor of plastid protein biosynthesis, was added to the cultures as
described in Jin et al. (2003), and the cells were incubated under either normal growth light (50 pmol
photons m?s?) or high light (500 umol photons m2s?). Cells were harvested 0, 30, 60, and 90 min
after the light treatment, and the cell pellets were resuspended in Laemmli sample buffer (Laemmli
1970) without bromophenol blue. After vigorous vortexing, the protein content of the crude extracts
was measured using Bradford reagent (Bio-Rad) and 20ug of total proteins were loaded for each
lane. SDS-PAGE and immunoblot analyses were performed using an antibody against the D1 protein

(Agrisera).
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RNA expression analysis. Total RNA was isolated from high light treated cells using a RNeasy Plant
Mini Kit (Qiagen). Total RNA (1 pg) was used as a template for cDNA synthesis using SuperScript IlI
reverse transcriptase (ThermoFisher Scientific). Then, the cDNA was used as a template to amplify
PsbC with real-time PCR using SYBR Premix Ex Taq Il (TaKaRa) and a Thermal Cycler Dice Real Time
System (TaKaRa). The relative quantities of the transcript were normalized to those of the
constitutively expressed RACK1 gene. The primer sequences used for the amplification were 5'-
CAAGAACGTCGTGCTGCTGAA-3' and 5'-CCTGCGTGCCATAAGTGACC-3' for PsbC, 5’-
GCTCGCGATGTGTTTGCTTTC-3> and 5’ -TGGTGAGGGAGAATAGCAGGA-3°  for  ELIP, 5’-
CAACTACAGCTGGGTGATCCT-3° and 5’-AGTGTCCAGCTCCCTTTCAG-3° for LPA2 , and 5'-
GGCTGGGACAAGATGGTCAA-3' and 5'-GAGAAGCACAGGCAGTGGAT-3' for RACK1.
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Table S1. Accession numbers of LPA2 homologs used in the phylogenetic analysis.

Species

Group

Gene bank/Phytozome accession number

Amaranthus hypochondriacus
Amborella trichopoda
Ananas comosus
Aquilegia caerulea
Arabidopsis thaliana
Boechera stricta
Brachypodium distachyon
Brassica rapa FPsc
Cuapsella rubella
Carica papaya
Chlamydomonas reinhardtii
Chlorelta variabilis
Citrus clementina
Cucumis sativis
Dunaliella salina
Eucalyptus grandis
Eutrema salsugineum
Fragaria vesca
Glycine max
Gossypium raimondii
Kalanchoe laxiflora
Linum usitatissimum
Linum usitatissimum 2
Manihot esculenta
Marchantia polymorpha
Medicago truncatula

Mimulus gutiatus

Dicotyledoneae

Basal Angiosperm

Basal Angiosperm

Dicotyledoneae
Dicotyledoneae

Dicotyledoneae

Monocotyledoneae

Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Chlorophyte
Chlorophyte
Dicotyledoneae
Dicotyledoneae
Chlorophyte
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Embryophyte
Dicotyledoneae

Dicotyledoneae

AHYPO_006270-RA
evin 27.model AmTr v1.0 scaffold00058.17
Ac0026752
Aqcoe7G073500
AT5G51545
Bostr. 1577450292
Bradi3g02420
Brara.C01471
Carubv10027154m
evim.model.supercontig_3.292
Cre02.g105650
XP_005849843.1
Ciclev10005924m
Cucsa.251500.1
Dusal.0628s500005.1
Eucgr.A02878
Thhalv10015015m
mrma21269.1-v1.0-hybrid
Glyma.09G232600
Gorai.001G046100
Kalax.0009s0079
Lus10031710
Lus10031131
Manes. 14G034000
Mapoly0002s50242
Medtr4g035825

Migut.F00451
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Musa acuminata
Oropetium thomaeum
Oryza sativa
Panicum virgalum
Panicum virgatum
Panicum virgatum 2
Phaseolus vulgaris
Physcomitrella patens
Populus trichocarpa
Prunus persica
Salix purpurea
Setaria viridis
Solanum lycopersicum
Sorghum bicolor
Sphagnum fallax
Spirodela polyrhiza
Theobroma cacao
Trifolizim pratense
Vitis vinifera
Volvox carteri

Zea mays

Basal Angiosperm
Monocotyledoneae
Monocotyledoneae
Dicotyledoneae
Monocotyledoneae
Monaocotyledoneae
Dicotyledoneae
Embryophyte
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Monocotyledoneae
Dicotyledoneae
Monocotyledoneae
Embryophyte
Basal Angiosperm
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Chlorophyte

Monocotyledoneae
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GSMUA_Achr1T08220_001
Oropetium_20150105_14227A
0s02g03250
Pavir Ab00158
Pavir.Aa03429
Pavir.]26988
Phvul.011G004500
Pp3c26_11240V3
Potri.015G129600
Prupe.2G280700
SapurV1A.0456s0270.1
Sevir.1G 102700
Solyc03g083570
Sobic.004G023400
Sphfalx0027s0201
Spipo16G0002300
Thecc1 EG014960t1
Tp57577 TGAC v2 mRNA15623
GSVIVT01018558001
Vocar.008350005.1

GRMZM2G043500_TOI

Table S2. Target sequences of sgRNA used to recognize the Ipa2 gene.

GC Mismatches
Cleavage Out-of-
content
RGEN target (5' to 3') Position position Direction frame
(%, wio 012 3 4
(%) score
PAM)
gRNALl GTTGTCCGCTCCAAGGGCTTTGG 79 18.03 + 60 594 1.0 0 0 8
gRNA2 CAAGGGCTTTGGTICAGAGACGG 90 20.11 + 50 744 1 0 0 0 5
gRNA3 GCAAGCACCTCCAAGCCGTCGGG 139 29.41 + 65 502 1.0 0 217
gRNA4 CAAGGGGCGTGTTGAGCCCAAGG 216 44.02 + 65 627 1 0 0 0 11
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Table S3. Mutation (insertion and deletion; indel) frequency of wild type and RGEN-transfected

cells for each sgRNA.

Target sites Cells

Total counts

Mutation counts

Mutation ratio (%)

Wild type 53898 21 0.00%
gRNAI1 52609 71 0.10%
Wild type 42061 3 0.00%
gRNA2 41760 172 0.40%
Ipa2
Wwild type 32156 2 0.00%
gRNA3 34532 492 1.40%
Wild type 334 0 0.00%
gRNA4 316 0 0.00%

Table S4. Analysis of off-target effects in the wild type and Ipa2 mutant. Mutation frequencies at

potential off-target sites of the Ipa2 gene-specific sgRNA2 were measured by targeted deep

sequencing in the wild type and /pa2#2. Potential off-target sites that differed from the on-target

sites by up to 4 nucleotides were selected. Different nucleotides between the on-target and off-

target are highlighted in red.

Target (5" to 3”) Cells Total counts Mutation counts  Mutation ratio (%)

Wild type 31640 0 0.00%
CAAGtGCTTTGGeTteGAGACGG

Ipa2 #2 23022 0 0.00%

o S Wild type 145319 53 0.00%

2AAGGGCTeTGGe TCAGAGEAGG )

Ipa2 #2 129094 63 0.00%

Wild type 274203 2190 0.80%
CzgAGGGCTTTGGTgCeGgGATGG

Ipa2 #2 255326 1996 0.80%

Wild type 165055 747 0.00%
CgAGGGCTTTGGTgCeGgGATGG )

Ipa2 #2 155692 622 0.00%

Wild type 45015 5 0.00%
CAAGGGCTTeGGTgCAGecAAGG

fpa2 #2 41168 10 0.00%

Wild type 30798 0 0.00%
CAAGcGCTTTGeaTCAGAGgTGG

Ipa2 #2 29474 2 0.00%
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Supplemental figures

Figure S1. LPA2 expression in C. reinhardtii. A. RNA expression analysis of LPA2 with psbC and ELIP in
Chlamydomonas reinhardtii. gRT PCR was performed with the RNAs extracted from wild type cells
exposed to high light (500 pmol photons m™ s™!) for 0, 30, and 60 minutes (n > 3; values shown are
means + SE). B. Immunoblot analysis of WT C. reinhardetii fractions. C, chloroplast fraction; S, stroma

fraction; T, thylakoids fraction. Proteins were loaded on an equal protein basis (30 pg).
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Figure S2. 77K fluorescence emission spectra of wild type (WT) and Ipa2 mutant.
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Figure S3. Maximum P700 oxidation (A) and light dependent Electrochromic Shift (ECS; B)

normalized on a cell basis.
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Figure S4. The comparison of transcription level of PsbC and LPA2 in WT and Ipa2 mutant. Time

course analysis of relative psbC and LPA2 transcripts in both WT and /pa2 mutant.
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Impaired mitochondrial transcription termination disrupts

the stromal redox poise in Chlamydomonas

A. Uhmeyer?!, M. Cecchin?, M. Ballottari? and L. Wobbe'?

IBjelefeld University, Faculty of Biology, Center for Biotechnology, 33615 Bielefeld, Germany

2Universita degli Studi di Verona, Department of Biotechnology, 37134 Verona, Italy

This work was published in Plant physiology in July 2017.

In this section we investigate the relationship between chloroplast and mitochondrial metabolisms.
We characterized the Chlamydomonas reinhardtii mutant stmé6 that is devoid of the mitochondrial
transcription termination factor MOC1, resulting in enhanced photosynthetic hydrogen production
and diminished light tolerance. We analysed the modulation of mitochondrial and chlororespiration
during the acclimation of stm6 and the MOCI1-complemented strain to excess light. Although light
stress stimulated mitochondrial respiration via the energy-conserving cytochrome ¢ pathway in both
strains, the mutant was unable to finetune the expression and activity of oxidative phosphorylation
complex | in excess light, which was accompanied by an increased mitochondrial respiration via the
alternative oxidase pathway. Furthermore, stmé6 failed to fully activate chlororespiration and cyclic
electron flow due to a more oxidized state of the chloroplast stroma, which is caused by an increased
mitochondrial electron sink capacity. Increased susceptibility to photoinhibition of PSIl in stmé6
demonstrates that the MOC1-dependent modulation of mitochondrial respiration helps control the

stromal redox poise as a crucial part of high-light acclimation in C. reinhardltii.
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INTRODUCTION

Photosynthetic organisms apply multiple strategies to adjust their photosynthetic machineries and
the cellular metabolism to changes in light quality and quantity (Noguchi and Yoshida, 2008). So far
most of the studies carried out to analyze the mechanisms underlying light acclimation in higher
plants and green algae have focused on the adjustment of biochemical processes in the chloroplast,
as a response to constantly changing external factors affecting photosynthetic performance such as
light availability. However, it is quite evident that unperturbed photosynthetic activity requires
functional mitorespiration in the light (Noguchi and Yoshida, 2008), and this dependence was
demonstrated by the characterization of mutants (Dutilleul et al.,, 2003; Sweetlove et al., 2006;
Schonfeld et al., 2004) primarily affected in mitochondrial metabolism that display a severe
impairment of photosynthetic performance.

Several functions of mitochondrial respiration in the light are discussed, and among the proposed
functions is the prevention of a stromal overreduction under excess light conditions, implicating the
export of chloroplast reducing equivalents and their consumption by mitochondria (Noguchi and
Yoshida, 2008; Zhang et al., 2012). In higher plants, the non-proton pumping, respiratory enzyme
alternative oxidase seems to be required for this “electron sink” function of mitochondria
(Vishwakarma et al., 2014). In contrast to the components of the cytochrome ¢ pathway, which
pump protons across the inner mitochondrial membrane, enzymes of the alternative pathway do not
contribute to ATP formation and are not inhibited by a large electrochemical proton gradient, which
can exist under stress conditions (Rasmusson and Wallstrém, 2010). Besides dissipating excess
reducing power in the chloroplast, a flow of reducing equivalents from the chloroplast to
mitochondria can completely replace photophosphorylation as a source of cellular ATP, as was
recently shown for the diatom Phaeodactylum tricornutum (Bailleul et al., 2015).

For the unicellular green alga Chlamydomonas reinhardetii, a large collection of dum mutants exists
(for review, see Salinas et al., 2014), which lack individual components of the cytochrome pathway.
These mutants have been characterized in detail regarding their photosynthetic performance under
low-light conditions in the presence acetate (Cardol et al., 2003). The phenotype of dum mutants was
characterized by a decreased quantum efficiency of linear photosynthetic electron transport and a
block in state Il with increased rates of cyclic electron transport (Cardol et al., 2003; Cardol et al.,
2009). Furthermore, nonphotochemical plastoquinone reduction via chlororespiration is elevated in
the mutants (Cardol et al., 2003; Houyoux et al., 2011). Although photosynthetic performance is
decreased and light acclimation perturbed in dum mutants grown mixotrophically (Cardol et al.,
2003), even the most affected dum mutants in terms of mitochondrial ATP production do not show a

light-sensitive phenotype under photoautotrophic conditions (Dorthu et al., 1992; Cardol et al.,
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2009). In contrast to observations made with dum mutants lacking complexes of the cytochrome
pathway, a knockdown of the alternative oxidase AOX1 does not result in a decreased
photosynthetic performance of C. reinhardtii cells, as can be concluded from an unaltered
photosynthetic light saturation curve (Mathy et al., 2010).

Another C. reinhardtii mutant, affected in mitochondrial respiration and designated stm6, was
identified in a forward genetics screen aiming at the identification of nuclear genes implicated in light
acclimation processes (Schonfeld et al., 2004). The gene, knocked-out in this mutant, encodes the
mitochondrial mTERF (Kleine and Leister, 2015) factorMOC1, which binds specifically to a sequence
within the mitochondrial rRNA-coding module S3 and prevents read-through transcription at this site
by acting as a transcription terminator in vivo (Wobbe and Nixon, 2013). Besides decreasing the
amount of unprocessed mitochondrial sense transcripts, a loss of MOC1 leads also to diminished
amounts of mature transcripts encoding the oxidative phosphorylation (OXPHOS) complex | subunit
nd1 (Wobbe and Nixon, 2013). An interesting aspect of the phenotype displayed by stmé6 is that
processes primarily located in the chloroplast are severely affected by the absence of functional
mitochondrial transcription termination: the mutant produces high amounts of hydrogen under
anaerobic conditions in the light (Kruse et al., 2005) and shows a reduced nonphotochemical
guenching capacity associated with decreased light tolerance (Nguyen et al., 2011).

Enhanced photobiological hydrogen production could be partly explained by an increased respiratory
consumption of acetate (Kruse et al., 2005) via cyanide-insensitive pathways (Schonfeld et al., 2004)
that results in an earlier onset of hydrogen production by a quicker establishment of anaerobic
conditions required for the activation of the hydrogenase pathway (Kruse et al., 2005; Doebbe et al.,
2010; Nguyen et al., 2011). Additionally, this faster transition from aerobic to anaerobic conditions in
sulfur-depleted stmé6 cultures was recently proposed to reduce the exposure time of PSIl to reactive
oxygen species formed in sulfur-deprived cells when the PSII repair cycle is impaired. In this study, a
higher residual PSIl activity was seen for stm6 within the anaerobic phase and suggested as an
explanation for the higher hydrogen production capacity, since both wild type and stm6 maintained
electron flow to the hydrogenase by water-splitting and linear electron transport (Volgusheva et al.,
2013). However, several studies demonstrated the competition between cyclic electron flow and
hydrogen production in C. reinhardtii (Tolleter et al., 2011; Steinbeck et al., 2015), and the inability of
stmé6 to switch from linear to cyclic electron flow under anaerobic conditions (Kruse et al., 2005)
should largely contribute to its elevated hydrogen production capacity.

Mitochondrial transcription termination mediated by MOC1 is enhanced following exposure of
photoautotrophic C. reinhardtii cultures to excess light, which is accompanied by a strong

accumulation of MOC1 under these conditions (Wobbe and Nixon 2013). At the same time, stmé6
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shows reduced growth under photoautotrophic high-light conditions (Schonfeld et al., 2004; Nguyen
et al., 2011) and strong lipid peroxidation already under low-light conditions in acetate-containing
medium (Schonfeld et al., 2004). Impaired accumulation of protein LHCSR3, as a key factor required
for energy dependent quenching (gE), together with a lowered nonphotochemical quenching
capacity were proposed to contribute to the high-light sensitivity of stm6 (Nguyen et al., 2011), but
the connection between perturbed light acclimation and altered mitochondrial respiration remained
unclear.

In this study, we analyzed the modulation of mitochondrial respiration/chlororespiration and the
impact of mitochondrial reductant uptake on the stromal redox poise following a transfer of
photoautotrophic C. reinhardtii cultures from low light to high light that either contained or were

devoid of MOC1.

RESULTS

A knockout of MOC1 perturbs the modulation of mitochondrial respiration occurring as a long-
term response to excess light

As reported previously (Wobbe and Nixon, 2013), a transfer of photoautotrophically grown C.
reinhardtii cultures from low light (100 umol photons m™ s?) to high light (1500 pmol photons m?2s?)
triggers an accumulation of the mitochondrial transcription termination factor MOC1 (Fig. 1A). Under
these conditions, MOC1 accumulation enhances transcription termination at its binding site in the
mitochondrial genome, resulting in a decline of mitochondrial antisense RNA levels, which originate
from read-through transcription at an unoccupied binding site. In the same study (Wobbe and Nixon,
2013), expression of the nd1 gene, encoding a mtDNA-encoded subunit of OXPHOS complex |, was
shown to be most affected by a MOC1 knockout among the protein-encoding genes present in the
mitochondrial genome of C. reinhardtii. Under photoheterotrophic cultivation conditions and using
moderate light intensities, absence of MOC1 results in a decreased accumulation of nd1 transcripts
(Wobbe and Nixon, 2013).

To analyze whether the high light-induced accumulation of MOC1 is accompanied by changes in the
level of nd1 transcripts (Fig. 1B), RT-qPCR was performed with RNA samples derived from low light-
and high light-acclimated cells, which either contained MOC1 or were devoid of it. In the MOC1-
complemented strain, referred to as B13 (Schonfeld et al., 2004) in the following, nd1 levels (Fig. 1B,
black bars) remained unaltered after the onset of high light exposure (1.30 + 0.37 [SE] at ts with to
set to 1). In the MOC1 knockout mutant stm6, nd1 levels were significantly (P < 0.05) lower than
respective B13 levels during high light exposure and at to (Fig. 1B, red bars). While in strain B13 the

prestress levels of transcript nd1 were maintained during prolonged high light exposure, stmé6
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displayed a different behaviour with lower transcript levels found at higher light intensities (0.72 +
0.03 at to versus 0.37 £ 0.14 at t3n; P < 0.1). In line with earlier findings (Wobbe and Nixon, 2013), the
differences seen between B13 and stmé6 levels of cox1, encoding a subunit of OXPHOS complex IV,
were insignificant for all time points (Fig. 1B, gray/orange bars; P > 0.1). Furthermore, none of the
two strains showed significant alterations of the cox1 transcript level after 3 h of high light exposure

(P > 0.1). High light-induced changes in the level of cob transcript (green/blue bars), which encodes
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Figure 1. Gene expression modulation of mitorespiratory components in response to excess light is altered in mutant stm6.
A, Immunodetection of MOC1 (IB) in the MOC1-complemented strain (B13). A photoautotrophic culture was grown at a
low light intensity (100 pmol photons m™ s?) before splitting it into two new cultures at ton. One of the cultures was
cultivated at low light intensity (LL) and the other one under high light conditions (1500 umol photons m2 s!). Protein
samples were taken at indicated time points. Loading control: Coomassie Brilliant Blue (CBB) stain. B, RT-qPCR analysis of
nd1, cox1, and cob transcript levels in B13 and stmé6 before (0h) and distinct hours after the onset of high light stress.
Expression levels were normalized to the mRNA level of B13 at to, (set to 1). SEs are derived from three biological
replicates, each including at least three technical replicates (n = 3). Asterisks indicate significant differences between B13
and stmé6 according to a two-tailed Student’s t test (*P < 0.05; **P < 0.1). C, mRNA levels of nucleus-encoded complex |
(NUO5/21) and complex IV subunits (COX3C/5C) before (0 h) and after exposure to high light (3 h). SEs are derived from
two biological replicates, each including three technical replicates (n = 2). D, Expression levels of transcripts encoding
mitochondrial alternative oxidase (AOX1) and two different rotenone-insensitive NAD(P)H dehydrogenases (NDA1/5). SEs
are derived from three biological replicates, each including three technical replicates (n = 3). E, Immunodetection of
proteins AOX1, cox1, COX2B, and histone H3. Top: Representative immunoblot results. Loading control: Immunodetection
of histone H3 and Coomassie Brilliant Blue-staining (CBB). Bottom: Relative protein levels (B13 to set to 1) obtained by
densitometric scanning of immunoblot signals. Error bars indicate the SE derived from three biological replicates, each
including three technical replicates (n = 3).
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an OXPHOS complex Il subunit, were insignificant, and for none of the time points significant strain-
to-strain differences in cob levels could be observed (P > 0.1). To analyze the impact of high light
stress on the expression of nucleus-encoded components of OXPHOS complex | and IV, two
representative subunits were chosen for each respiratory complex (Fig. 1C). Transcript accumulation
during high light acclimation could be observed for only NUO21 in strain B13 (gray bar; 1 versus 1.96
+0.01; P< 0.05), and differences between stm6 and B13 were seen for only COX3C at to (green/ blue
bars; 1 versus 0.19; P < 0.05).

We also analyzed if the application of high light stress alters the expression of genes encoding
components of the alternative respiratory pathway in the mitochondrion (Fig. 1D). In
Chlamydomonas, the gene AOX1 encodes the major mitochondrial alternative oxidase (Dinant et al.,
2001; Baurain et al., 2003), and AOX1 mRNA levels declined in response to high light in both strains.
Transcript levels of AOX1 were, however, significantly (P < 0.05) higher in stmé6 (red bars) compared
to B13 (black bars) before (to; 2.33 + 0.31 for stmé6 with B13 set to 1) and during growth in high light
(tsh; 1.08 + 0.07/stm6 and 0.48 + 0.01/B13). In contrast to AOX1, expression of the NDA1 gene
increased during cultivation of B13 in high light (3.11 + 1.05 at ts, versus 1 at to; gray bars; P > 0.1).
This gene encodes a matrix-facing rotenone-insensitive NAD(P)H dehydrogenase located in the inner
mitochondrial membrane (Lecler et al., 2012). This strong difference between NDA1 transcript levels
in low and high light cultivated cells could not be seen in stm6 (2.49 + 0.36 at to versus 2.96 + 0.49 at
tan; orange bars), which showed high levels already under low light conditions (2.49 + 0.36 versus 1; P
< 0.05). A higher mRNA level in stm6 versus B13 under low light conditions (3.34 + 0.67 versus 1; P <
0.05) could also be observed for NDA5 (UniProt KB: A6YT86; green/blue bars; see Supplemental
Table S1 for Phytozome locus names), which encodes a putative rotenone-insensitive NAD(P)H
dehydrogenase that is targeted to the mitochondrion according to the prediction tool PredAlgo
(Tardif et al., 2012). NDA1 and NDA5 mRNA levels did not differ significantly between high light-
grown stmé and B13 cells (P > 0.1), and changes in the transcript level between low and high light
conditions were insignificant for NDA5 in both cell lines (P > 0.1).

The higher level of AOX1 mRNA in stm6 versus B13 under limited and excess light conditions was also
reflected by higher AOX1 protein levels in low light- (to; 2.94 + 0.90 versus 1; P < 0.1) and high light-
cultivated (ts; 0.96 + 0.30 versus 0.39 £+ 0.11; P > 0.1) stm6 cells in comparison to those of cell line
B13 (Fig. 1E, aAOX1). In both strains the AOX1 level decreased following the exposure to high light
(stmé6/P > 0.1; B13/P < 0.05). Protein levels of the complex IV subunit COX2B (Fig. 1E, aCOX2B)
declined in B13 by about 25% (1 at to versus 0.74 + 0.05; P < 0.05). A similar, steady decline could not
be observed for stm6, since COX2B protein levels remained almost unaltered after a transfer from

low light to high light (0.82 + 0.24 at to versus 0.96 * 0.10 at tgn; P > 0.1). The levels of cox1 protein
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did not differ significantly between both strains, and high light acclimation was not accompanied by
significant changes in the amount of this protein either (P values > 0.1).

Overall, expression analyses revealed that stmé6 fails to maintain the prestress level of mitochondrial
transcripts encoding the complex | subunit nd1, but expresses genes encoding enzymes required for
alternative modes of respiration at higher levels than B13. While the protein and transcript levels of
AOX1 are constitutively higher in stm6 compared to B13 (Fig. 1, D and E), differences in the transcript
levels of NDA1/5 are more prominent under low light conditions (Fig. 1D). The acclimation to excess
light implicates a strong down-regulation of AOX1 expression, whereas observed transcriptional
changes (Fig. 1C; COX3C/5C) and the analysis of protein levels (COX2B; cox1; Fig. 1E) do not indicate a

similar expression pattern for complex IV components.
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Figure 2. Perturbed acclimation of mitochondrial respiration in response to high light in the absence of MOC1. A, Dark
respiration in stmé (red bars) and B13 (black bars) before (to) and after the onset of high light stress (t2-8h). Values are
normalized to the respiration rate determined for B13 at to (set to 100%). Error bars represent the SE derived from five
biological replicates (n = 5). Asterisks indicate significant differences between B13 and stm6 according to a two-tailed
Student’s t test (P < 0.05). B, The relative contribution of alternative respiration (AOX/PTOX) to dark respiration.
Alternative respiration was measured as dark respiration in the presence of 1 mM KCN, which could be inhibited by 1 mM
nPG (KCN+nPG). Values are given relative to the dark respiration in the absence of inhibitor (set to 100%). SEs are derived
from three biological replicates (n = 3). C, the relative contribution of OXPHOS complex IV to dark respiration was
measured as dark respiration in the presence of 1 mM nPG, which could be inhibited by 1 mM KCN (nPG+KCN). D,
Inhibition of OXPHOS complex | by the addition of 100 uM rotenone. Error bars indicate the SE derived from six biological
replicates (n = 6).
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To investigate if the differences between stmé6 and B13 that were seen in regard to the expression
modulation of genes implicated in mitochondrial respiration (Fig. 1) are translated into a distinct
respiratory activity, dark respiration rates were determined for mutant stmé6 (red bars) and B13
(black bars) before and after cultivation in excess light for several hours (Fig. 2A). In
photoautotrophic low light conditions, stm6 showed an increased rate of dark respiration (152 + 21%
[SE] versus 100% for B13), which is in accordance with higher respiratory rates previously found for
the mutant during cultivation in the presence of acetate (Kruse et al., 2005). In both strains, exposure
to excess light for 8 h dramatically increased the rates of dark respiration (~180% [B13] and ~150%
[stm6] increase relative to to), and similar rates were recorded after prolonged high light cultivation
(tan: 278 £ 47%/B13 and 252 + 27%/stm6).

A more detailed analysis of mitochondrial respiration in both strains revealed further differences (Fig.
2, B-D). Within mitochondrial respiration, oxygen can be either consumed via the classical
cytochrome ¢ pathway, implicating the full respiratory chain with OXPHOS complexes |, II, lll, and 1V,
or by action of nonproton-pumping (energy-dissipative) pathways composed of the enzymes AOX
(Moore et al., 2013) and rotenone-insensitive (type IlI) dehydrogenases (Mgller et al., 1993).
Importantly, the latter pathway, although efficient in consuming reducing power, does not
contribute to ATP synthesis, whereas operation of the cytochrome c pathway generates a strong
proton motive force enabling ATP production. In addition to respiratory pathways located in
mitochondria, chlororespiration (Bennoun, 1982) can contribute to dark respiration. Within this
pathway, electrons from NADPH can be transferred to oxygen via the concerted action of the plastid-
localized NADPH:plastoquinone oxidoreductase NDA2 (Jans et al.,, 2008) and a plastid terminal
oxidase (PTOX), which transfers electrons from plastoquinol to oxygen (Nawrocki et al., 2015). To
determine the relative contribution of cyanide-sensitive complex IV (cytochrome ¢ oxidase) and
cyanide-insensitive alternative respiration (AOX and PTOX activity) to mitochondrial respiration (Fig.
2B), rates of dark respiration were analyzed in the presence/absence of potassium cyanide (Mathy et
al.,, 2010). Complex IV-based activity was inhibited by adding potassium cyanide (Fig. 2B; B13/
stm6_KCN) to assess the relative activity of alternative respiration, which was subsequently inhibited
(B13/ stm6_KCN+nPG) by the addition of n-propyl gallate (nPG; Mgller et al., 1988; Vanlerberghe
2013). In low light-acclimated (to) cells of B13 and stm6, the addition of KCN had similar effects (95.7
+ 2.9 [SE] for B13 and 98.0 + 2.0 for stm6) on the rates of dark oxygen uptake, but in contrast to B13
cyanide-insensitive respiration could be fully inhibited by the addition of nPG in stm6 (to;
B13/stm6_KCN+nPG), indicating that oxygen consumption in cyanide-treated B13 cultures was not
merely based on alternative respiration (AOX+PTOX). In the course of high light-treatment (tan—tsn),

strong differences in the activity of cyanide-insensitive respiration between stmé6 and B13 became
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evident. Cyanide-insensitive respiration was significantly higher in stmé6 versus B13 (tsn—tsn; P < 0.05)
and at the end of the time-course, stmé6 displayed a 2-fold higher relative contribution of cyanide-
insensitive respiration (65.8 + 5.8 versus 32.7 + 0.4). Except for time points to and tzn, the residual
respiration, unrelated to complex IV activity or alternative respiration and observed after adding KCN
along with nPG to B13 and stmé6 cultures, was comparable. The acclimation to high light was
accompanied by a significant decrease (to versus tsh; P < 0.05 for B13 and stmé) in the relative
contribution of alternative respiration, which was more pronounced in B13 (63% decrease in B13
versus 32% in stmé6 from to to tsn). A more prominent decrease of alternative respiration following
high light acclimation in B13 versus stmé6 could also be observed, when alternative respiration was
calculated by subtracting residual respiration (KCN + nPG) from cyanide-insensitive respiration (KCN)
before normalizing to cell counts (Supplemental Fig. S1). While for B13 an ~50% reduction (100% at
to versus 50 + 21% at tgn; P < 0.1) in alternative respiration rates per cell was notable, such a decrease
could not be observed for stm6 (213 + 50% at to versus 295 + 167% at ts,; P > 0.1). In addition,
cellular rates of alternative respiration were higher in stm6 compared to B13 throughout the entire
time-course. The higher amounts of AOX1 protein in stmé6 (~2-fold) compared to B13 (Fig. 1E;
aAOX1), which were observed in low light and excess light conditions, indicate that alternative
respiration, highly active in stm6, is mainly composed of AOX1-based oxygen consumption. When
nPG addition preceded the addition of KCN (Fig. 2C; B13/ stm6_nPG), the differences between B13
and stm6 were statistically insignificant (P > 0.05), indicating that complex IV contributes to
mitochondrial respiration to a comparable extent in both strains. This is in good agreement with the
comparable expression of complex IV subunits in B13 and stmé (Fig. 2; COX3C/5C; COX2B; cox1)
observed for light-stressed cells. The increase in the relative contribution of nPG-insensitive (complex
IV) respiration seen for both strains after a transfer from low to high light (from 76.6 + 4.3% t0 91.7 +
5.0% in B13 and from 58.5 + 11.6% to 81.5 + 6.2% in stm6) was not statistically significant (P > 0.05).
Respiration in the presence of nPG could be effectively inhibited by the addition of KCN,
demonstrating that nPG-insensitive respiration was mainly composed of complex IV activity
(B13/stm6_nPG+KCN).

The inhibitor rotenone in conjunction with dark respiration measurements can be used to
disentangle complex I-based electron transfer from NADH to ubiquinone and the respective transfer
catalyzed by rotenone-insensitive type ll-dehydrogenases (Mgller et al., 1993; Lecler et al., 2012). To
assess the relative contribution of complex | activity to mitochondrial electron transport in low light-
and high light acclimated cells, the inhibiting effect of rotenone on dark respiration was analyzed in
B13 and stmé6 (Fig. 2D). The effect of rotenone on dark respiration increased during the acclimation

to excess light in B13 (91.8 + 5.0% at to versus 69.7 + 2.7% at tsh; P < 0.05), indicating that the
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acclimation to excess light implicates a modulation of complex | activity. An increased engagement of
complex | in mitochondrial electron transport following high light acclimation could not be noted for
stm6 (79.1 £ 7.7% at to versus 81.2 £ 1.7% at tgn). After several hours of high light exposure, rotenone
had significantly smaller (~10-15%) effects on dark respiration in stm6 compared to B13 (ten and tan;
P < 0.05). A lower contribution of complex | to mitochondrial respiration in light-stressed stmé cells
corresponds well to the mutants’ inability to maintain the prestress level of mitochondrial transcript
nd1, encoding a key subunit of complex |, after the exposure to excess light (Fig. 1B, nd1). Higher
transcript levels of NDA1l and NDA5 (Fig. 1D), encoding rotenone insensitive NAD(P)H
dehydrogenases, in low light acclimated stmé6 cells were, however, not reflected by a lower
sensitivity of dark respiration toward rotenone (Fig. 2D, to).

It should be noted, however, that the effects exerted on dark respiration by KCN were much more
prominent than those seen for nPG or rotenone. Especially for inhibitors of the alternative pathway,
it is known that their effect on dark respiration is moderate and that the actual contribution of
alternative respiration is obscured by compensatory changes in other pathways, if used alone (Mgller
et al.,, 1988).

An analysis of the respiratory activity displayed by stm6 and B13 under high light stress revealed
remarkable differences. Mitochondrial electron transport in the mutant implicates energy-dissipating
pathways to a greater extent, which produce less ATP per molecule of oxygen consumed. A higher
contribution of respiratory electron flow based on the activity of AOX (Fig. 2B) is in good agreement
with the higher mRNA and protein levels found for AOX1 before and during exposure to excess light
(Fig. 1, D and E). In both strains, the exposure to light stress stimulated mitochondrial respiration
(Fig. 2A) and increased the relative contribution of energy-conserving pathways involving complex IV
(Fig. 2, B and C). A diminished contribution of AOX-based respiration under high light conditions in
both strains fits well to the decrease in protein levels in response to light stress (Fig. 1E). Although
AOX activity decreases in both strains following exposure to high light, the remaining AOX1 activity in
stmé6 is higher than that observed in B13, which is in accordance with higher AOX1 levels detected in
light-stressed stmé6 cells (Fig. 1E). Although transcript analyses suggest that stmé6 accumulates higher
amounts of rotenone-insensitive dehydrogenases under low light conditions, a lower sensitivity of
dark respiration toward rotenone could not be seen for stm6 under these conditions. In contrast to
B13, however, the mutant fails to adjust complex | activity in response to excess light, and the lower
relative contribution of complex | (Fig. 2D) corresponds nicely to the decline in nd1 transcript levels

following the onset of light stress (Fig. 1B).
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The MOC1-free mutant fails to induce chlororespiration in response to excess light

A knockout (Schonfeld et al., 2004) or knockdown (Nguyen et al., 2011) of MOC1 has been reported
to decrease the growth rate of C. reinhardtii cells under high light conditions. We wanted to assess
whether this reduced light tolerance is caused by an increased susceptibility of stm6 to
photoinhibition. The degree of photoinhibition upon exposure to high light can be estimated by
measuring the quantum vyield of PSIl (F,/F.) following a dark incubation (Maxwell and Johnson,
2000).

Within the first 2 h of high light treatment, the MOC1- complemented strain B13 (black squares)
showed a significant decline of the maximum PSII quantum vyield (from 0.76 + 0.02 [SE] to 0.55 +
0.02; Fig. 3A). From the second hour onwards, however, F,/F, values did not decline further,
indicating successful acclimation to high light stress in the presence of MOC1 (0.52 + 0.02 at tgh). In
contrast, the maximum quantum vyield decreased continuously in stmé (red circles) and was
significantly lower in the mutant compared to the complemented strain after 8 h of cultivation (0.52

+ 0.02 [B13] versus 0.25 * 0.04 [stm6]). Importantly, starting values were almost identical in both
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strains (0.76 + 0.02 [B13] versus 0.72 + 0.01 [stm6]), which demonstrates that observed differences
are high light induced.

An analysis of the stoichiometric composition of the photosynthetic apparatus in low and high light
acclimated cells revealed further differences between stm6 and B13 (Table I; Supplemental Fig. S2).
Immunodetection of CP43, PSAA, and LHCII was used to quantify changes in the amount of PSlI, PSI,
and major light harvesting antenna, respectively (Supplemental Fig. S2). In B13, the PSI/PSII ratio
declined after 8 h of high light exposure, while the opposite trend was observed for stm6, which was
mainly based on a decrease in CP43 levels (from 0.99 + 0.16 to 0.43 + 0.02), which were used as a
proxy for PSIl. To confirm the different PSI and PSII accumulation in B13 and stmé6, the PSI/PSII ratios
were evaluated also by electrochromic shift measurements (Bailleul et al., 2010). While at to a similar
PSI/ PSII ratio was detected for stm6 and B13 (1.39 + 0.23 and 1.60 + 0.12, respectively), after 8 h of
illumination a decrease of the PSI/PSIl ratio was evident for B13 (PSI/PSII ratio decreased to 0.87 +
0.16), but not for stm6, where rather a significant increase of the PSI/PSII ratio was observed (to 1.80
+ 0.23). This increase in the PSI/PSII ratio and the reduction in CP43 levels observed in stmé might be
partly attributed to the strong photoinhibition seen for stmé6 cells cultivated in excess light (Fig. 3A).
Consistently, LHCII/PSII ratios increased during the high light treatment only in stmé (2.71 + 0.57 at
tgn versus 0.63 £ 0.10 at to).

Altered mitochondrial respiration has been shown to affect chlororespiration in C. reinhardtii
(Houyoux et al., 2011), a process that can dissipate excess reducing equivalents formed in high light
(Houyoux et al., 2011) or during nitrogen deprivation (Saroussi et al., 2016). To investigate, if an
altered PTOX activity in B13 affects photosynthetic electron transport and the plastoquinone (PQ)
pool redox state (Fig. 3B) in the light, we determined the quantum yield of PSIl (®PSIl) in the
presence and absence of nPG (Formighieri et al., 2012). In B13 (black squares), inhibition of PTOX
(dotted lines) significantly (P < 0.05) reduced ®PSll in low light grown cells (to; 100% versus 86.4 *

1.6% [SE]), whereas the effects of nPG addition were insignificant (P > 0.05) in low light-acclimated
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stmé6 cultures (red circles, 69.3 + 4.4% versus 65.8 + 5.5%). The reduced photochemical quantum
yield (~30% lower) of low light-acclimated stmé6 cells in comparison to those of B13 could reflect the
lowered PSI/PSII ratio (Table 1) besides a diminished activity of PTOX. ®PSII differences caused by
nPG addition were insignificant (P > 0.05) in high light acclimated cells (tan-tsn) of both strains.

Chlororespiration was thus investigated in both strains by recording the post illumination Fo
fluorescence rise in the presence of nPG, which can be used to assess the nonphotochemical
reduction of the plastoquinone pool via NAD(P)H:plastoquinone oxidoreductases (Fig. 3, C—H). In the
case of B13, a transient increase of Fo was evident at to or after 4 and 8 h of high light illumination,
which was further increased in the presence of nPG at t4n and tsh. These results demonstrate that
high light increases the rate of nonphotochemical plastoquinone reduction in B13. Differently, in the
case of stm6, neither a transient Fo rise nor an effect of nPG could be detected, indicating very low, if
any, activity of nonphotochemical PQ reduction in the mutant. As a control, we performed the same
experiment on the dum20 mutant (Remacle et al., 2001; Salinas et al., 2014), which lacks the nd1
subunit of OXPHOS complex | and is thus characterized by a low mitorespiration. As reported in

Supplemental Figure S3, dum20 displayed a strong post illumination Fo fluorescence rise upon high
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Figure 4. The expression of chlororespiratory enzymes is
altered in mutant stm6. A, RT-qPCR analysis of PTOX1/2,
C and NDA2/3 mRNA levels in B13 and stmé6 before (to) and 2
2.5, h after the onset of high light exposure (tn). Values are
;D normalized to the mRNA level found in ;3 at to (set to 1).
m 2.0 SEs are derived from three biological replicates, each
9: 15 including three technical replicates (n = 3). B,
o Immunodetection of proteins NDA2, PTOX2, and histone
g 1.0- I 573 NDA2 H3. T:)p: Representat?ve irfnr:_unoblot results. Loadin_g
_% . -stm6_NDA2 co.nt.ro. Imm-um?d.etectlon o |storTe H3 an.d Coomassie
20 Bl 373 PTOX2 Brilliant Blue-staining (CBB). C, Relative protein levels (B13
o [ stm6_PTOX2 to set to 1) obtained by densitometric scanning of
0.0 0 4 8 immunoblot signals. Error bars indicate the SE derived from
time (h) three biological replicates, each including three technical

replicates (n = 3).
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light treatment and nPG addition, which was more pronounced than the one seen for B13 or stmé6.
This high rate of PQ reduction in the dark is likely a consequence of the stromal overreduction caused
by reduced mitorespiration and has been reported for other mitochondrial mutants before (Houyoux
et al., 2011). To rule out that effects seen on Fo fluorescence by the addition of nPG are caused by
AOX inhibition, we analyzed the Fq rise in an AOX1 knockdown mutant (T53; Mathy et al., 2010) and
the reference strain (Supplemental Fig. S4). The relative increase in post illumination fluorescence
following nPG treatment was comparable in both strains (Supplemental Fig. S4, A and B; ~1.9
[parental] versus ~1.85 [T53]). As reported before (Mathy et al.,, 2010), AOX1 expression was
diminished to undetectable levels in strain T53 (Supplemental Fig. S4C). Therefore, the strong rise in
Fo fluorescence upon nPG addition should mainly reflect an inhibition of PTOX.

In the next step, we analyzed the expression modulation of chlororespiratory enzymes following
exposure of B13 and stmé6 cells to excess light (Fig. 4A). The C. reinhardtii nuclear genome encodes
two PTOX genes, and PTOX2 was shown to represent the major oxidase controlling the PQ redox
poise in the dark (Houille- Vernes et al., 2011). Although PTOX1 activity is comparably low in dark-
acclimated C. reinhardtii cells (Houille-Vernes et al., 2011), residual chlororespiratory activity in a
PTOX2 knockout mutant together with the phenotype caused by heterologous Cr-PTOX1 expression
in tobacco (Ahmad et al., 2012; Feilke et al.,, 2016) indicate that this enzyme functions as a
plastoquinol: oxygen oxidoreductase in vivo. For the dissipation of excess reducing equivalents, PTOX
enzymes need to work in concert with chloroplast type II-NAD(P)H dehydrogenases. In response to
high light treatment (tzn), the mRNA encoding NDA2 accumulated between two and 3-fold, with a
higher induction noted for B13 (3.42 + 0.64 versus 1.99 + 0.54 in stm6; P > 0.1). In contrast, the
mMRNA level of NDA3, which is chloroplast localized according to a proteomics study (Terashima et al.,
2011), but whose function remains unknown, remained unaltered in response to light stress in
strains B13 and stmé.

Following high light exposure, the mRNA encoding PTOX1 accumulated in both cell lines (5.39 £ 1.76
versus 1 [B13] and 9.90 + 4.55 versus 2.84 [ stmé6]; P > 0.1), with a higher starting level at t, detected
in stm6 (2.84 + 0.55 versus 1 in B13; P > 0.1). In contrast, in both strains the level of PTOX2 mRNA did
not differ between time points to and ta.

In addition to mRNA levels, the protein levels of NDA2 and PTOX2 were analyzed (Fig. 4B) because a
chlororespiratory function of these two enzymes has already been demonstrated (Jans et al., 2008;
Desplats et al., 2009; Houille-Vernes et al.,, 2011). Only in B13, NDA2 protein levels increased
significantly by about 87% after a transition from low light to excess light (from 1 [to] to 1.87 + 0.30
[tsn]; P < 0.05), whereas NDA2 levels remained almost unaltered in stm6 (1.17 + 0.12 versus 1.25 +

0.29). Similarly, PTOX2 levels declined significantly by ~30% only in B13 (1 versus 0.68 + 0.09; P <
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0.05), but not in stm6 (0.80 * 0.13 versus 0.75 + 0.08). Thus, high light-acclimated cells of B13
accumulated higher levels of NDA2 than those of stm6 (1.87 + 0.30 versus 1.25 + 0.29; P > 0.1), while
the levels of PTOX2 were comparable (0.68 + 0.09 versus 0.75 + 0.08).

An absence of MOC1 impairs the acclimation of C. reinhardtii to excess light, as can be seen by the
higher susceptibility of mutant stmé6 to photoinhibition (Fig. 3A). Besides differences in stoichiometric
adjustments leading to an altered composition of the photosynthetic apparatus (Table 1), a
modulation of chlororespiration as another acclimatory response to excess light is affected in stm6
(Figs. 3, B—H). At least for high light acclimated cells, the lower activity of chlororespiration in stmé6
versus B13 can be partly explained by the lower expression level of the NAD(P)H:plastoquinone
oxidoreductase NDA2 (Fig. 4B), which accumulates following exposure to light stress in B13 but not in
stm6. An accumulation of NDA2 in response to light stress has been reported before (Houyoux et al.,
2011) and correlates well with the higher activity of nonphotochemical PQ reduction in high light-
treated cells of B13 (Fig. 3, E and G).

A deregulated mitorespiration in mutant stmé perturbs the stromal redox poise

Absence of MOC1 in the mutant stmé6 leads to a different modulation of respiratory activity in the
mitochondrion and chloroplast (Figs. 1-4). At least in low light-acclimated cells, consumption of
cellular reducing equivalents based on mitorespiration is higher in the mutant (Fig. 2A). The strong
reduction of chlororespiratory activity in stmé6 (Fig. 3, C—H) indicates that altered respiratory activity
in the mitochondrion, also seen in the modes of mitochondrial electron transport preferred by stmé6
versus B13 (Figs. 1E and 2, B and D), might affect the chloroplast redox state. Chlororespiration
implicates nonphotochemical plastoquinone reduction using NADPH as a reducing equivalent, and its
activity is correlated with the stromal redox poise (Houyoux et al., 2011).

To determine the redox state of the chloroplast stroma (NADPH:NADP* ratio) in stm6, B13, and a
dum mutant (Salinas et al., 2014), P700 oxidation kinetics were recorded for low light- and high light-
acclimated cultures (Fig. 5). The dum20 mutant (Remacle et al., 2001) was included as a reference
strain to characterize the effects of a lower activity of mitochondrial respiration on the stromal redox
state.

Oxidation of P700 and accumulation of P700* (the photooxidized primary electron donor of PSI) was
followed as a decreased Aygs during illumination of the sample with orange actinic light of different
intensities (from 35 to 940 umol photons m™? s?), exciting both PSI and Il (Fig. 5). Oxidation kinetics
were normalized to the maximum level of P700* determined at 940 pmol photons m? s upon
addition of methyl viologen and ascorbate. Upon illumination with actinic light, a sharp absorbance

decrease can be observed at 705 nm due to a fast rate of electron transport from PSI to NADP* and a
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slow rereduction mediated by electron flow from NADPH back to P700* or from the activity of PSII
and linear electron flow (Alric et al., 2010). A steady-state amount of P700" is reached when both
electron transport processes operate at equal rates. In the absence of PSI photoinhibition, the total
amount of P700" that can be obtained is therefore mainly determined by the capacity of electron
sinks downstream of PSI (NADP* availability) and the activity of cyclic and linear electron flow.

In low light-acclimated cultures (Fig. 5A), stmé6 (red curve) accumulated the largest fraction of P700*
when actinic light intensities exceeding 35 umol photons m? s were used. The lowest steady-state
amount of photooxidizable P700 was seen for strain dum20 (blue curve), which correlates well with
the highly reductive cellular redox state and stimulated cyclic electron flow reported for dum
mutants (Cardol et al., 2003; Houyoux et al., 2011).

Similarly, stmé6 showed also the largest fraction of P700" after 8 h of growth under high light
conditions (Fig. 5C), even at the lowest actinic light intensity investigated (35 umol photons m? s?).
Again, dum20 mutant showed the lowest fraction of P700" compared to B13 and stm6, when higher
light intensities (560 and 940 pumol photons m2 s!) were used, while similar P700 oxidation levels
were seen for B13 and dum20 only at lower actinic light intensities.

To block linear and cyclic electron flow during the P700 oxidation measurement, the photosynthetic

electron transport inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-6-
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isopropyl-3-methyl-1,4-benzoquinone (DBMIB) were added (Fig. 5, B and D). Under this condition,
rereduction of P700* via PSIl activity and due to electron recycling from reduced primary acceptors to
PSl is abolished. The obtainable P700" fraction is then only determined by the availability of primary
downstream electron acceptors and hence the stromal redox state. Following the inhibition of
photosynthetic electron transport with DCMU and DBMIB, samples showed a higher fraction of
P700%, especially at lower light intensities. Again, and independent of the light intensity used, the
highest P700" fraction was noted for stm6. B13 and dum20 were characterized by a much lower
P700" fraction compared to stm6, with dum20 being the strain with the lowest level of P700",
especially at lower actinic light intensities. These analyses confirmed that the higher We next wanted
to analyze the impact of mitochondrial electron sink capacity on the stromal redox state in further
detail by adding inhibitors of mitochondrial electron transport prior to P700 measurements
conducted with high-light acclimated stmé6 (red bars), B13 (black), and dum20 (blue) cultures (Fig. 5,
E and F). These experiments were performed using an actinic light intensity of 940 pmol photons m™
s and by normalizing the observed P700* to the maximum level of P700* obtained, as described
above. In addition, all experiments were performed in the presence of PET inhibitors (DCMU+DBMIB)
to ensure that the differences observed in photooxidizable P700, seen after inhibition of
mitochondrial electron transport, indeed reflect a limited availability of NADP* in the chloroplast
stroma and not differences in the P700* rereduction rate based on PSII activity and cyclic electron
flow. As shown in Figure 5, B and D, stm6 accumulates the largest amounts of P700*, followed by B13
and dum20, when PET is inhibited by adding DCMU and DBMIB. Addition of myxothiazol, which can
be used to inhibit the cyt bcl complex (OXPHOS complex IIl) of the mitochondrial respiratory chain
(von Jagow and Engel, 1981), showed marked effects on P700* accumulation only in strain dum20,
while effects in B13 and stmé6 were not evident (Fig. 5, E and F; DC+DB+M) for both to and tgh
samples.

The absence of a myxothiazol effect in B13 and stm6 might be explained by a rapid activation of the
alternative oxidase pathway in these strains, which bypasses complex Ill by transferring electrons
from reduced ubiquinone directly to oxygen. AOX activity is known to represent a “safety vale”
preventing an overreduced state of the cell under conditions when complex Il is inhibited
(Vishwakarma et al., 2015). Effects seen in dum20 indicate that the activation of the alternative
pathway might be delayed in this mutant, resulting in an overreduced mitochondrial redox state,
which eventually translates into a more reduced chloroplast stroma. Inhibitors of AOX were thus
applied to investigate the relation between AOX activity and stromal redox poise. P700
measurements performed in the presence of DCMU, DBMIB, and nPG (Fig. 5, DC+DB+nPG) showed a

strong reduction in the oxidizable P700 fraction in the case of stm6, whereas effects on dum20 and
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B13 were absent (to) or less pronounced (tsn). It is worth mentioning that the remarkable nPG effect
on P700 oxidation in stm6 should not be related to PTOX inhibition, since in this mutant
chlororespiration was almost not induced (Fig. 3).

A complete inhibition of mitochondrial respiration (Fig. 5, E and F; DC+DB+M+S) can be achieved by
the combined use of myxothiazol and salicylhydroxamic acid (SHAM; Schonbaum et al., 1971), which
inhibits complex Il and AOX at the same time. Addition of these inhibitors strongly diminished the
P700* fraction in stmé6 and B13 for both types of samples (to and tgn), whereas the effect in dum20
was negligible compared to the effect caused by adding myxothiazol alone. Full inhibition of
mitochondrial respiration or inhibition of AOX prior to the measurement of P700 oxidation kinetics
led to almost identical steady-state levels of P700" in stm6 and B13 (Fig. 5), indicating that marked
differences in P700* levels in the presence of PET inhibitors (Fig. 5, B and D) can be explained by a
low (dum20), high (stm6), and wild-type-like (B13) reductant sink capacity of the mitochondrion.
Importantly, the overoxidized state of the chloroplast stroma in stm6 can be transformed in a
reduced state by blocking AOX activity or mitorespiration completely, demonstrating that the high
availability of NADP* is caused by a stimulated mitorespiration and not by an increased sink capacity
of the Calvin cycle for NADPH (Alric et al.,, 2010). The consequences of the higher P700 activity
observed in stm6 compared to B13 were then further investigated by measuring the kinetics of
plastocyanin (PC) oxidation. As expected, stm6 showed a higher level of PC oxidation and a faster

kinetics compared to B13, when normalized to the PSI content (Supplemental Fig. S5). This indicates
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that the more oxidized stroma stimulates the oxidation of PSI electron donors. Taken together, these
results indicate that the flow of reducing equivalents from the chloroplast to mitochondria is
enhanced in stmé6.

In addition to recording the kinetics of P700 oxidation in the light, P700" rereduction (Supplemental
Fig. S6) was also analyzed after switching off the light, once a steady-state level of photooxidized
P700 was reached. The dark rereduction rate of P700* can be used to estimate the rate of cyclic
electron flow, especially when cells are treated with DMCU (Alric et al., 2010). P700* rereduction
rates were determined for B13, stm6, and dum20 after growth in either low (to) or high (ts) light
intensities (Fig. 6). In low light-and stm6 (9.8 + 1.0 s). These rates were decreased by ~23% upon
addition of DCMU in B13 and dum20, while a stronger decrease was measured in stm6 (~50%
decrease), indicating a substantial contribution of cyclic electron flow in B13 and dum20 but not in
stm6. Addition of DCMU and DBMIB instead strongly slowed down P700* rereduction, with the
lowest rate seen for stmé6. Growth in high light increased the observed rate in all strains. Cyclic
electron flow (CEF) rates obtained from untreated samples were still far lower in stm6 (15.1 + 2.3 s%)
compared to B13 (25.1 + 1 s?) and dum20 (69.6 + 5.2 s1). Interestingly, the comparison of P700
rereduction rates observed in samples containing or lacking DCMU demonstrates that only in B13 a
substantial linear electron flow was detected, while for both stm6 and dum20 the CEF rates were
similar to the rate of P700 rereduction in the absence of DCMU. The higher CEF rate observed for
dum20 compared to stmé6 at tsn suggests that in dum20 the absence of a DCMU effect is likely related
to a strong CEF activation, while in stm6 reduction of linear electron flow is due to PSI
photoinhibition, as witnessed by the strong reduction of F,/F., after 8 h of high light treatment (Fig.
3A).

We also analyzed if the lower activity of CEF seen for stm6 under low light conditions (Fig. 6A, DC)
could be caused by an altered expression of genes PGR5 and PGRL1 (Supplemental Fig. S7). The
proteins PGR5 and PGRL1 have already been shown to represent crucial components of the
ferredoxin-dependent pathway of cyclic electron transport in C. reinhardtii (Petroutsos et al., 2009;
Johnson et al., 2014). Comparable levels of PGR5/PGRL1 mRNA (Supplemental Fig. S7, A and B) and
PGRL1 protein (Supplemental Fig. S7C) could be detected in stmé6 and B13, when low light and high
light-acclimated cultures were analyzed. At least for PGRL1 it can be stated that the amount of this
protein should not limit the overall CEF capacity in mutant stmé.

In conclusion, the higher rate of mitochondrial reductant consumption in stmé results in a higher
availability of PSI electron acceptors and thus a less reduced stroma (Fig. 5), which could provide an

explanation for the low rate of cyclic electron flow observed in this mutant (Fig. 6A).
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Figure 7. Overview of the putative pathways that contribute to the export of excess reducing equivalents from the
chloroplast to mitochondria in C. reinhardtii. Genes, up-regulated in stmé (Fig. 8) under low-light conditions are highlighted
in red and those that are down-regulated in green. Genes up-regulated in response to light stress are written in bold. 1,3-
BPG, 1,3-bisphosphoglycerate; RuBP, ribulose-1,5-bisphosphate; 2-PGA, 2-phosphoglycerate; LCI20, low CO2-inducible
gene; OMT1, 2-oxoglutarate/malate transporter; MITC14, dicarboxylate-tricarboxylate carrier; MDH3-5, malate
dehydrogenase; PGK1/2, phosphoglycerate kinase; GAP1/2, glyceraldehyde-3-phosphate dehydrogenase; GAPN1,
nonphosphorylating glyceraldehyde-3- phosphate dehydrogenase; PGM, phosphoglycerate mutase; PGH1, enolase.

Several genes encoding components of chloroplast-mitochondria crosstalk pathways are up-
regulated in low light-acclimated stmé6 cells

Different pathways for the export of chloroplast reducing equivalents to mitochondria have been
identified by previous studies conducted mainly with higher plants (Noguchi and Yoshida, 2008). The
triose phosphate-phosphate transporter (TPT) shuttle exports dihydroxyacetone phosphate (Fig. 7)
from the chloroplast to the cytosol, which is then converted into glyceraldehyde-3-phosphate (G3P)
that can be consumed by glycolysis following two distinct pathways (Fig. 7; GAPN1 and GAP2/PGK2).
The nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN1;
UniProt KB: AS8IYT1; see Supplemental Table S1 for Phytozome locus numbers) catalyzes the
conversion of G3P into 3-phosphoglycerate (3-PGA) and NADPH, while a two-step reaction
implicating the phosphorylating, NAD-dependent glyceralaldehyde-3-phosphate dehydrogenase
(GAP2; A8JFT3) and phosphoglycerate kinase (PGK2; A8JFT4) leads to additional ATP formation. In
higher plants, most of the cytosolic G3P should be consumed by the NADP-specific GAP, since its
NAD-specific counterpart has a lower affinity for G3P (Scagliarini et al., 1990; Noguchi and Yoshida,

97



Chapter 1 | Section B

2008). 3-PGA can be reimported into the chloroplast via exchange with inorganic phosphate.
Reducing equivalent formed by these glycolytic reactions can be directly consumed by external
(intermembrane space-facing; NDex) type Il dehydrogenases, and NDA5 (A6YT86; Fig. 1D) is one of
the two rotenone-insensitive NAD(P)H dehydrogenases with predicted mitochondrial targeting
sequences. This enzyme might represent the NDex enzyme of C. reinhardetii, since NDA1 (Lecler et al.,
2012) was shown to be located at the inner mitochondrial membrane (matrix-facing; NDin). A BLAST
analysis performed with a bona fide TPT from Arabidopsis (Arabidopsis thaliana; APE2; Schneider et
al., 2002) predicts the existence of four close homologs (e-values in the range of 3.2 x 103 to 4.5 x
10°2), namely TPT3/APE2 UniProt KB: ASHNO02), TPT2/PPT2 (Q7XJ66), TPT25/ CGL51 (A8JFB4), and
TPT1 (Q84XW3), with chloroplast transit sequences according to Predalgo (Tardif et al., 2012).

Under low light conditions stmé6 displays a significantly (P < 0.05) higher mRNA expression of the
putative TPT encoded by gene TPT25 (1.97 + 0.31 [SE] versus 1 in B13; Fig. 8A). Expression of the
genes TPT2 (~2.2-fold in B13; P < 0.05; ~1.5-fold in stm6; P > 0.1) and TPT25 (~1.7-fold in B13 [P >
0.1]; ~1.4-fold in stmé6 [P > 0.1]) is induced by high light in both strains, whereas TPT1 is down-
regulated (0.35 + 0.11 versus 1 in B13; 0.59 + 0.18 versus 1.09 + 0.18 in stm6; P < 0.05 for B13).
Accumulation of GAPN1-encoding mRNAs (~2-fold) could also be observed following high light
treatment in both strains but was only significant (P < 0.05) in the case of B13. Induction of GAP2 was
only noted for B13 (~1.6-fold; P < 0.05), which was probably due to a higher GAP2 mRNA level in low
light acclimated stmé6 cells (1.74 + 0.32; P < 0.1; Fig. 8B). Significant differences in the mRNA level of
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t|me (h)

98



Chapter 1 | Section B

PGK2 could not be seen in response to high light exposure, and both strains displayed similar mRNA
levels in low and high light (Fig. 8B).

Cytosolic 3-PGA formed by the action of either GAPN1 or GAP2/PGK2 can be further consumed by
glycolytic reactions (PGM, PGH1 [A8JH98]; Fig. 7) to yield phosphoenolpyruvate, which is convertible
into malate (Mal) via a two-step reaction involving phosphoenolpyruvate carboxylase (PEPC2
[Q6R2V6]) to yield oxaloacetate [OAA]). The conversion of OAA into Mal consumes NADH and is
catalyzed by MDH3 (A8J0W9), which likely represents the cytosolic NAD dependent malate
dehydrogenase of C. reinhardtii.

Dicarboxylate-tricarboxylate carriers have been identified as shuttle systems for the import of
cytosolic malate into plant mitochondria (Picault et al., 2004; Noguchi and Yoshida, 2008). The
Arabidopsis gene At5g19760 encodes a protein with confirmed dicarboxylate-tricarboxylate carriers
activity (Picault et al., 2002), and the closest homolog (e-value 4.7 x 10*%) encoded by the nuclear
genome of C. reinhardtii is MITC14 (A8J3F7;, MITC14 in Fig. 7). Subsequent to its import into
mitochondria, conversion of Mal into OAA via malate dehydrogenase generates NADH and MDH4
(A8JHUO) likely fulfils this function in mitochondria of C. reinhardtii. MITC14 as well as MDH4 can be
detected in the mitochondrial proteome (Atteia et al., 2009).

Another export system for excess reducing equivalent formed in the chloroplast is the malate-
oxaloacetate shuttle that comprises a plastidic malate dehydrogenase, which transfers reducing
equivalents onto OAA to form Mal. Mal is then exported from the chloroplast in exchange with
oxaloacetate by transporters located on the chloroplast envelope (Noguchi and Yoshida 2008). In
silico analyses suggest that the Mal-OAA shuttle active in C. reinhardtii could be constituted by MDH5
(Q9FNS5), which is the only NADP-dependent enzyme (Lemaire et al., 2005) with a predicted
chloroplast localization and transporters OMT1 (A8JDE3; Terashima et al., 2011) and LCI20 (A8HXI4;
Johnson and Alric 2013).

Higher levels of transcripts encoding the enolase PGH1 could be detected in stm6 versus B13 in low
light (Fig. 8B; 1.97 + 0.28 versus 1 at to; P < 0.05), and in both strains exposure to light stress was
accompanied by the accumulation of PGH1 transcript (2.97 + 1.50 versus 1 in B13 and 5.82 + 2.71
versus 1.97 + 0.28 in stm6; P > 0.1). The levels of PEPC2 and MDH3 transcripts remained almost
unaltered.

Excess light significantly reduced the level of MITC14 in stm6 (from 1.42 + 0.29 at to to 0.59 + 0.14 at
tan; P < 0.1) and in B13 (from 1 to 0.47 + 0.05; P < 0.05). No differences could be observed for the
levels of MDH4 RNA in both strains, but MDH5 mRNA was expressed at higher amounts in low light-
acclimated stmé6 cells (1.95 + 0.05 versus 1; P < 0.05). In B13, MDH5 levels slightly increased in

response to light stress (1.43 + 0.18 versus 1; P < 0.1), whereas levels declined in stmé6 (1.95 + 0.05
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versus 1.65 + 0.20; P > 0.1). Higher levels of MDH5 mRNA in low light-acclimated stmé6 cells were
accompanied by lower levels of OMT1 (0.64 + 0.11; P < 0.05) and LCI20 (0.62 + 0.02; P < 0.05) mRNA.
Growth of the complemented strain in excess light caused an increased mRNA expression of
triosephosphate-phosphate translocators (TPT2, TPT25) and GAPN1,which is required for the
conversion of G3P to 3-PGA in a reaction implicating the formation of NADPH in the cytosol. Working
in concert with NDA5, the combined operation of TPTs and GAPN1 could provide a pathway for the
transport for chloroplast reducing equivalents to mitochondria in light-stressed C. reinhardtii cells.
The high light induction of genes GAP2 and PGH1 might indicate an increased conversion of cytosolic
3-PGA into malate. However, mRNA expression of the genes potentially involved in the transport of
cytosolic malate into mitochondria (MITC14) and its oxidation to oxaloacetate (MDH4) was not
induced by high light. In addition to the triosephosphate shuttle, the malate valve can be a means to
export chloroplast reducing equivalents to mitochondria. Exposure to light stress was accompanied
by a higher mRNA expression of the putative malate valve component MDH5, but transporters
potentially involved in the export of malate from the plastid (OMT1, LCI20) were not expressed at
higher levels under high light.

The induction of several genes, likely implicated in the transport of reducing equivalents from
chloroplast to mitochondria, fits well to the observed increase in mitochondrial respiration in
response to light stress (Fig. 2A). Regarding the increased cooperation between mitochondria and
chloroplast in stmé6 (Fig. 5), it is difficult to deduce further supportive evidence from the analysis of
MRNA levels, since the number of differentially regulated genes in stmé6 versus B13 is too small to
see a general trend. Furthermore, genes belong to different pathways, making it difficult to depict a

pathway preferentially used by stmé6 (Fig. 7).

DISCUSSION

In C. reinhardtii the mitochondrial mTERF protein MOC1 was demonstrated to act as a transcription
terminator, which is needed to prevent read-through transcription at specific sites in the
mitochondrial genome. As has been shown previously, under photoheterotrophic conditions a loss of
MOC1 in mutant stmé6 leads to a specific decrease in the levels of transcript nd1, which encodes a
subunit of mitochondrial complex | (Wobbe and Nixon 2013). Intriguingly, the perturbed regulation
of mitochondrial gene expression in stm6 results in a light-sensitive phenotype under
photoautotrophic conditions (Nguyen et al., 2011). In this study, we analyzed how a deregulated
mitochondrial respiration in mutant stmé6 might contribute to a decreased light tolerance in
photoautotrophic conditions. The light-sensitive phenotype displayed by stm6 indicates that MOC1

could play a special role during the acclimation of C. reinhardtii cells to excess light, and the transfer
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of low light-acclimated cells to higher light intensities indeed resulted in a strong accumulation of the
MOC1 protein (Fig. 1A). This strong accumulation correlates well with the reduced level of
mitochondrial antisense RNAs, which are formed as a result of improper transcription termination at
the MOC1 binding site that has been observed in high light-acclimated wild-type cells in a previous
study (Wobbe and Nixon 2013). Increased transcription termination in light-stressed wild-type cells
should favour the formation of protein encoding sense transcripts and result in more prominent
differences between the ndl RNA levels present in MOC1-containing cells and those devoid of
MOC1. Indeed, transcript levels of nd1 differed more strongly between B13 and stm6 under excess
light conditions (Fig. 1B). The RNA level of nucleus-encoded complex | and complex IV subunits did
not differ significantly between light-stressed stm6 and B13 cells, and only for NUO21 an induction
by high light could be observed in strain B13 (Fig. 1C). Immunoblot analyses (Fig. 1E) demonstrated
that the amount of the nucleus-encoded complex IV subunit COX2B declined (B13) following high
light acclimation or remained unchanged (stm6). Considered that there is no concomitant increase in
the protein level of mitochondrially encoded cox1 (Fig. 1E), a higher availability of nucleus-encoded
complex IV subunits should anyway not result in higher amounts of complex IV in light-stressed cells.
The decline of nd1 transcript levels in high light-treated stm6 cells suggests that an enhanced
transcription termination, based on a higher availability of MOC1 in light-stressed wild-type cells, is
needed to guarantee a sufficient provision of this mRNA in mitochondria during the acclimation to

excess light.

Light stress induces a switch from the energy-dissipating to the energy-conserving mode of
mitochondrial electron transport

In contrast to the phosphorylating (ATP-generating) cytochrome ¢ pathway, composed of OXPHOS
complexes |-V, which are assembled from a multitude of nuclear and mitochondrial subunits, the
nonphosphorylating pathway (implicating AOX and type Il NAD(P)H dehydrogenases) does not rely
on multisubunit complexes. This should facilitate activity modulation of the latter pathway based on
expression control in response to excess light (Noguchi and Yoshida, 2008), and in Arabidopsis mRNA
expression of transcripts encoding distinct isoforms of AOX is induced by the application of high light
stress (Yoshida et al., 2009, 2011). For C. reinhardtii a different response following exposure to light
stress could be observed, but more importantly the RNA and protein levels of AOX1 in stmé6
exceeded those of B13 in low and high light conditions (Fig. 1, D and E). At least under low light
conditions, the amount of transcripts encoding the type II-NAD(P)H dehydrogenases NDA1 and NDAS
was also elevated in stm6 versus B13 (Fig. 1D). These findings are in good agreement with the higher

contribution of cyanide- (Fig. 2B) and rotenone-insensitive respiration (Fig. 2D) to mitochondrial
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respiration in stmé. In principle, cyanide-insensitive respiration can be composed of mitochondrial
AOX activity and chlororespiration. The low activity of chlororespiration (Fig. 3) and the
overaccumulation of AOX1 protein (Fig. 1E) suggest that the high activity of cyanide-insensitive
respiration in stmé6 is mainly composed of AOX-dependent oxygen consumption. A higher activity of
AOX in stm6 has also been observed under photoheterotrophic conditions before (Schonfeld et al.,
2004). Furthermore, the lower contribution of complex | to dark respiration in stmé6 compared to B13
(Fig. 2D, ten and tgn) indicates that the diminished availability of ndl transcripts (Fig. 1B) might
represent a limitation for the assembly of complex | in this strain. Overall light stress induced a switch
from energy-dissipating mitorespiration based on the AOX pathway to the energy-conserving
cytochrome ¢ pathway. This modulation of respiratory activity in the mitochondrion was mainly
achieved by a strong down-regulation of AOX1 expression (Fig. 1, D and E) in response to light stress,
a process that occurs in both strains. Importantly, however, stmé6 still retains a high AOX1 activity
(Fig. 2B; Supplemental Fig. S1) and AOX1 protein levels that exceed those of B13. The higher relative
contribution of complex | activity to respiration in light-stressed B13 versus stmé6 cells (Fig. 2D) might
reflect the inability of mutant stmé6 to maintain the prestress level of transcript nd1l during light
stress exposure (Fig. 1B). The modulation of AOX1 activity noted for light-stressed cells of C
reinhardtii differs from the high light response observed in Arabidopsis, which up-regulates AOX
activity following exposure to excess light (Yoshida et al., 2007). It should be noted, however, that a
recent study demonstrated that AOX accumulation in high light acclimated Arabidopsis plants does
not result in an increased activity of alternative respiration, while excess light stimulates the activity

of the cytochrome ¢ pathway (Florez-Sarasa et al., 2016).

Impaired fine-tuning of complex | activity by a deactivation of MOC1-dependent transcription
termination stimulates mitochondrial respiration

Besides a switch in the preferred mode of respiratory electron transport, total rates of dark
respiration increased significantly in mutant and wild type when challenged by light stress (Fig. 2A).
In line with this observation, several genes encoding components of the crosstalk pathways,
connecting chloroplast and mitochondria in C. reinhardtii, were induced on the transcript level by
excess light (Figs. 7 and 8). This stimulation of dark respiration has already been described as the
phenomenon termed light enhanced dark respiration (Padmasree et al., 2002) and is positively
correlated with the light intensity and the duration of pre illumination in C. reinhardtii (Xue et al.,
1996). Enhanced provision of photosynthate as a substrate for mitochondrial respiration is discussed
as the mechanism behind the observed light enhanced dark respiration (Padmasree et al., 2002).

While low light-acclimated cells of stmé6 displayed a higher dark respiration rate compared to B13
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(Fig. 2A; to), these rates were similar in high light-acclimated B13 and stmé6 cultures (tan-tsn). For high
light-acclimated stmé6 cells it has, however, to be considered that light stress causes severe PSII
photoinhibition in this strain (Figs. 3, A and B, and 6B; Table I). The higher respiratory capacity of
stm6 observed under low light conditions (Fig. 2A, to), could therefore be obscured in light-stressed
cells by the reduced provision of respiratory substrates as result from the decline in PSII activity (Fig.
3, Aand B).

Higher rates of dark respiration in acetate-containing media have been observed before (Kruse et al.,
2005) and were proposed to represent one of the main reasons for the rapid induction of
photosynthetic hydrogen production in this mutant (Nguyen et al., 2011; Volgusheva et al., 2013).
Considering the effect of a MOC1 inactivation on mitochondrial nd1 expression (Wobbe and Nixon,
2013; Fig. 1B) and the lower activity of complex | found in stm6 (Fig. 2D), the up-regulation of
nonphosphorylating pathways in stmé seems counterintuitive, since a reduced electron flow through
complex | should reduce mitochondrial ATP yields. An increase of total respiration rates in the
mitochondrion, however, might represent a compensatory mechanism that helps to maintain
sufficient ATP production. A complete deficiency of complex | has different outcomes in higher plants
and the green alga C. reinhardtii (Sabar et al., 2000; Remacle et al., 2001; Kuhn et al., 2015). While
complex | mutants from C. reinhardtii show decreased rates of dark respiration (Remacle et al.,
2001), corresponding Arabidopsis and tobacco (Nicotiana tabacum) mutants show an increased dark
respiration and a concomitant stimulation of AOX-based respiration (Sabar et al., 2000; Kihn et al.,
2015). A stimulation of total mitorespiration and AOX activity was also observed in an Arabidopsis
mutant, which contains only trace amounts of functional complex | (Kiihn et al., 2015). It remains,
however, difficult to compare the situation in stmé6 with the one existing in constitutive complex |
mutants, since stmé still retains a significant complex | activity, although the modulation of complex |

activity is perturbed (Fig. 2D).

The enhanced electron sink capacity of mitochondria in stmé perturbs the chloroplast redox poise

While mitorespiration in stmé6 is increased under low light conditions, the activation of the
chlororespiratory pathway by light stress is perturbed (Figs. 2A and 3, C— H). The diminished activity
of chlororespiration in stmé is partly caused by an inability to induce the expression of NDA2 as a
component of the chlororespiratory pathway (Fig. 4B). On the other hand, it has been proposed that
chlororespiration, a pathway that consumes NADPH, could be activated as a response to the stromal
overreduction, occurring in C. reinhardtii during growth in high light (Houyoux et al., 2011). The
reduced activity of this pathway in the mutant should therefore also reflect the more oxidized

stroma found in stmé6 (Fig. 5). This could also be noted (Supplemental Fig. S3) for the dum20 strain
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used in this study, whose stromal compartment is overreduced (Fig. 5, dum20). These observations
indicate a negative correlation between the capacity of mitochondrial reductant uptake and the
activity of chlororespiration. Experiments with inhibitors for complex Ill and AOX (Fig. 5) revealed
that the differences seen between dum20, B13, and stmé6 in terms of their stromal redox state (Fig.
5) are largely attributable to the distinct activity of mitochondrial respiration in these strains. Similar
stromal redox states in B13 and stmé6 following complete inhibition of mitochondrial respiration or
specific inhibition of the alternative pathway (Fig. 5) further demonstrate that the more oxidized
stroma in chloroplasts of stmé6 is a direct result of an increased mitochondrial reductant sink capacity
with a significant contribution of the AOX pathway (Figs. 1, D and E, and 2B). Although evidence for
an enhanced flow of plastidic reducing equivalents to mitochondria in stmé6 exists (Figs. 2 and 5),
MRNA expression analyses of genes encoding components of the chloroplast-to-mitochondria
crosstalk pathways (Figs. 7 and 8) did not provide further insights into the pathways preferentially
used by stm6. Additional work will be needed to depict the precise mode of redox crosstalk between

chloroplast and mitochondria in stmé6.

Light acclimation mechanisms controlled by the stromal redox state are affected in stmé

The question arises how the stimulation of mitochondrial reductant uptake and the resulting
perturbation of the stromal redox poise in stm6 contribute to its light-sensitive phenotype (Figs. 3, A
and B, and 6B; Table I). A transfer of stmé6 cells from low light to high light conditions causes strong
photoinhibition of PSIl as can be seen by a loss of activity (Fig. 3A) and a diminished number of PSII
complexes compared to high light-acclimated B13 cells (Table I).

The enzyme PTOX has been proposed to act as a “safety valve,” protecting PSIl by preventing the
overreduction of the PQ pool (Ort and Baker, 2002). A significant impact of PTOX inhibition on the PQ
pool redox state could only be noted for low light-acclimated B13 cultures (Fig. 3B), indicating that
PTOX activity contributes more to PSII protection in B13 compared to stm6. PTOX can be either
supplied with electrons from water-splitting at PSIl, or from the oxidation of NADPH by
NADPH:plastoquinone oxidoreductases. The latter pathway feeds electrons into the PQ pool in a PSII-
independent fashion and involves NDA2 in C. reinhardtii (Jans et al., 2008; Houyoux et al., 2011). This
pathway is severely impaired in low light- and high light-acclimated cells of stm6, as demonstrated by
the absence of a post illumination Fq rise in this mutant (Fig. 3, C—H). Besides the limited substrate
supply for the nonphotochemical reduction of the PQ pool in the more oxidized stroma of stmé6 (Fig.
5), activity could be additionally restricted by the availability of NDA2 (Fig. 4). Although

chlororespiration should be a means to prevent PQ pool overreduction and could dissipate excess

104



Chapter 1 | Section B

reducing equivalents in the chloroplast, the restricted electron flow capacity of this pathway
challenges its prominent role for PSII protection under high light conditions (Nawrocki et al., 2015).

Among the most important mechanisms for PSIl protection is the so-called energy-dependent
quenching gE, which reduces PSIl excitation pressure under excess light conditions and is activated
by an acidification of the thylakoid lumen (Wobbe et al., 2016). The strongly diminished qE capacity
of mutants lacking components of the ferredoxin-PGRL1/PGR5 pathway of cyclic electron flow
indicates that this process is required for the lumen acidification, which triggers qE (Kukuczka et al.,
2014; Johnson et al., 2014). A reduced nonphotochemical quenching capacity has also been
demonstrated for stm6, which could be partly explained by an inability to induce the expression of
LHCSR3 (Nguyen et al., 2011). Low light-acclimated cells of stm6 show a reduced CEF capacity
compared to B13 (Fig. 6A, to), which could impede acclimation mechanisms that are triggered by an
acidification of the thylakoid lumen, such as qE or chlororespiration. Recently, it was shown that
PTOX1 from C. reinhardtii, when heterologously expressed in tobacco, only attaches to the thylakoid
membrane under alkaline conditions in the stroma (Feilke et al.,, 2016), which suggests that
chlororespiration might be fine-tuned by CEF rates. The reduced CEF capacity of stmé6 cells prior to
the onset of light stress might thus restrict the induction of qE and contribute to PSIl photoinhibition.
High CEF rates are typically seen following the establishment of an overreduced state in C. reinhardtii
cells, which can be achieved by the inhibition of mitochondrial respiration in anaerobic conditions
(Takahashi et al., 2013). Against this background, the low CEF activity of stm6, whose stroma is more
oxidized (Fig. 5, to), fits well to its stimulated mitochondrial respiration in low light conditions (Fig. 2A,
o). In addition to the CEF pathway, implicating PGR5 and PGRL1, another pathway involving NDA2
exists in C. reinhardtii (Jans et al., 2008; Desplats et al., 2009), which can represent the main CEF
pathway under certain stress conditions (Saroussi et al.,, 2016). The activity of NDA2-dependent,
nonphotochemical PQ reduction is low in stmé6 (Fig. 3, C—H) and at the same the modulation of NDA2
expression is perturbed in the mutant (Fig. 4B). This altered activity of NDA2 should contribute to the
CEF phenotype noted for stm6. For low light-acclimated cells of stm6, the diminished activity of
NDA2 (Fig. 3, C and D) cannot be explained by a limited availability of the enzyme (Fig. 4B, to), but
should rather reflect a restricted substrate supply in a more oxidized stroma (Fig. 5, to), which is in
turn caused by a stimulated mitorespiration. Increased mitorespiration observed in stmé6 is thus
responsible for decreasing reducing power in the stroma, subtracting the feedback mechanism used
by green algae and higher plants to manage exposure to high light. In this context, it should be noted
that this study was conducted with cultures grown in COz-enriched air (2% [v/v]), which was recently
found to be associated with a low contribution of LHCSR3-dependent qE to photoprotection (Correa-

Galvis et al., 2016; Polukhina et al., 2016). It is therefore likely that the impairment of other
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photoprotective mechanisms, controlled by the stromal redox state, also contributes to the
enhanced susceptibility of stmé6 to photoinhibition. In general, the need for a mitochondrial electron
sink that helps reduce the excitation pressure in the chloroplast should also depend on NPQ capacity
as another mechanism to avoid the accumulation of excess reducing equivalents. The extent of
cooperation between mitochondria and chloroplast might therefore differ between distinct
metabolic modes of a C. reinhardtii cell, as the preference for a certain photoacclimation strategy
changes in response to an altered carbon supply (Polukhina et al., 2016). A study, conducted with a
PGRL1-deficient cell line from C. reinhardtii, which cannot reequilibrate the plastidic ATP/NADPH
balance based on CEF activation, revealed that this mutant adapts to the CEF impairment based on
higher rates of Mehler reactions and Mehler-like reactions catalyzed by flavodiiron proteins at PSlI,
besides an increased cooperation between chloroplast and mitochondria (Dang et al., 2014). This
indicates that an uptake of excess reducing equivalents by mitochondria is only one of several
mechanisms that help prevent overreduced states in a C. reinhardtii chloroplast during the
acclimation to excess light.

As mentioned above, in C. reinhardtii, CEF is stimulated by anaerobic conditions, a physiological
situation that is associated with a decreased capacity of the mitochondrion to act as a reductant sink
and that ultimately leads to an overreduced state of the chloroplast stroma (Takahashi et al., 2013).
Interestingly, stm6 also shows impaired CEF under anaerobic conditions (Kruse et al., 2005), which
resemble the full inhibition of mitorespiration caused by inhibitor treatment (Fig. 5, E and F). Under
anaerobic, hydrogen-producing conditions, stm6 prefers linear photosynthetic electron transport to
the hydrogenase to prevent an accumulation of reducing equivalents in the chloroplast (Kruse et al.,
2005; Volgusheva et al., 2013). A difference between these two mechanisms that relieve the plastidic
redox pressure, caused by a diminished mitochondrial uptake of reducing equivalents, might be the
regulation of involved components. So far, a redox regulation of hydrogenase activity has not been
described, but several lines of evidence exist for the activity modulation of PGRL1 by the thioredoxin
system, whose activity state is itself tightly coupled to the stromal redox poise (Petroutsos et al.,
2009; Hertle et al., 2013). Against this background, it might be speculated that the impaired
activation of CEF is a consequence of the perturbed redox poise in chloroplasts of stmé6.

A previous study revealed that stm6 shows a state transition phenotype by being blocked in state |
under aerobic conditions when light, preferentially exciting PSIl, is applied, while anaerobiosis
induces state Il in stmé6 cells (Schoénfeld et al., 2004). This phenotype could also be connected to the
perturbed stromal redox poise in stmé6, since the activity of STT7 kinase, which initiates state |-state
Il transitions by phosphorylating LHCII proteins, was proposed to be regulated by the ferredoxin-

thioredoxin system (Rintamaki et al., 2000). Interestingly, stm6 shows an enhanced mitochondrial
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electron sink capacity and is blocked in state I, while dum mutants, characterized by lower rates of
mitochondrial respiration, are blocked in state Il (Cardol et al., 2003). The fact that anaerobiosis, a
situation when mitochondrial respiration is inhibited, can be used to drive stmé6 into state Il, further
supports the view that an altered mitorespiration in stmé6 contributes to the state transition
phenotype.

The switch from nonphosphorylating to phosphorylating (energy conserving) modes of mitochondrial
respiration, seen during the acclimation to excess light (Fig. 2), could serve two functions. Besides
relieving the chloroplast redox pressure caused by excess light, the increased contribution of the
cytochrome ¢ pathway should generate extra ATP. A metabolic modelling study conducted with C.
reinhardtii indicated that under photoautotrophic conditions, an export of sugar
(G3P/dihydroxyacetone phosphate) from the chloroplast coupled to its consumption via glycolysis,
TCA cycle, and oxidative phosphorylation is associated with higher ATP yields than those that can
theoretically be obtained by photophosphorylation in the chloroplast (Kliphuis et al., 2011). In
diatoms, it was recently shown that carbon dioxide fixation depends on the import of mitochondrial
ATP into the chloroplast, which is generated from reducing equivalents that were formed in the
chloroplast (Bailleul et al., 2015). The enhancement of mitochondrial transcription termination
(Wobbe and Nixon, 2013) caused by elevated levels of MOC1 (Fig. 1A) could be a central part of the
regulatory switch observed in mitochondria of light-stressed C. reinhardtii cells, and its impairment

leads to a perturbed chloroplast redox poise.

CONCLUSION

In C. reinhardtii, the acclimation to excess light not only modulates photosynthetic electron transport
but also the modes of mitochondrial electron flow by favouring ATP-forming pathways. An increased
cooperation between mitochondria and chloroplast in light stress is evidenced by higher rates of
mitochondrial respiration and the transcriptional up-regulation of metabolic pathways that connect
plastidic and mitochondrial NAD(P)H pools. In addition to mitochondrial respiration,
chlororespiration is activated when C. reinhardtii is exposed to excess light. A loss of the mTERF
protein MOC1, which is needed for proper transcription termination in C. reinhardtii mitochondria,
disrupts mitochondrial light acclimation and stimulates mitochondrial reducing equivalent uptake in
the MOC1-free mutant stmé6 based on a high activity of the AOX pathway. The constitutively
enhanced electron sink capacity of mitochondria in stmé6 is detrimental for the activation of
photoprotective mechanisms controlled by the stromal redox poise such as chlororespiration and

partly explains its high-light sensitive phenotype.
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MATERIALS AND METHODS

Chemicals and Enzymes. nPG, potassium cyanide, DCMU, DBMIB, myxothiazol, and SHAM were
purchased from Sigma-Aldrich.

Statistical Analysis. Students’ two-tailed t test for independent samples was applied to statistically
evaluate results, and two significance thresholds were distinguished (P < 0.05/P < 0.1). Error bars
indicate either SE or SD, and the number of replicates used to calculate SE and SD is indicated in the
figure legends.

Strains and Culture Conditions. The MOC1 knockout mutant stm6 was generated via random
insertion of plasmid pArg7.8 (Debuchy et al., 1989), carrying the Arg-7 gene, into the nuclear genome
of the Arg auxotrophic strain, CC1618. The MOC1-complemented strain B13 (Schénfeld et al., 2004)
was generated by cotransforming stmé with a 37-kb Moc1-containing cosmid isolated from a cosmid
library and the Cry1 gene as a dominant selectable marker conferring resistance to emetine (plasmid
p613; Nelson et al.,, 1994). Mutant dum20 (Remacle et al., 2001) and the AOX1 knockdown strain
(T53; parental strain cwi15 arg7-8 mt*) along with its reference strain cw15 mt* (strain 83; Mathy et
al., 2010) were kindly provided by C. Remacle (University of Liége, Belgium). dum20 is derived from
wild type 137C and lacks OXPHOS complex | activity completely, due to the deletion of one T at
codon 243 of the mitochondrial gene nd1 (Remacle et al., 2001). Liquid cultures of Chlamydomonas
reinhardtii, bubbled with carbon dioxide-enriched air (2% v/v), were cultivated photoautotrophically
in HSM (Harris, 2009) at low/moderate (100 umol photons m? s) and high light (1500 umol photons
m2 s?) conditions in FMT 150 photobioreactors (Photon Systems Instruments).

SDS-PAGE and Immunoblotting. For the preparation of SDS-PAGE samples, cell pellets containing 10’
cells were resuspended in 100 pL lysis buffer (2% [w/v] SDS, 60 mM Tris-HCl, pH 6.8, 100mM
dithiothreitol, and 10% [w/v] glycerol) and boiled for 5 min at 95°C. The protein concentration in
samples was determined using the amido black assay (Popov et al., 1975). Protein samples (10 pg per
lane) were separated on 10% (w/v) or 15% (w/v) denaturing SDS-PAGE gels containing 6 M urea and
stained with Coomassie Brilliant Blue R-250 or electroblotted onto nitrocellulose membrane (0.2-mm
pore size; GE Healthcare). Immunoblotting analyses were performed using specific primary
antibodies and a horseradish peroxidase-conjugated secondary antibody (Agrisera). Signals were
visualized using the FUSION-FX7 detection system (Peqglab). The following polyclonal antisera were
used as primary antibodies: rabbit anti-MOC1 (Wobbe and Nixon 2013), rabbit anti-AOX1 (kindly
provided by SabeehaMerchant), rabbit anti-coxl (S. Merchant), anti-COXIIb (Agrisera; product
AS06151), rabbit anti-histone H3 (Agrisera; product AS10710), rabbit anti-NDA2 (kindly provided by
Claire Remacle (University of Liege, Belgium)), rabbit anti-PTOX2 (kindly provided by Xenie Johnson,
CEA, Cadarache), and rabbit anti-PGRL1 (kindly provided by M. Hippler, University of Muenster,
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Germany). Immunodetection and quantification of proteins PSAA, CP43, LHCII, and ARSA (Formighieri
et al., 2013) was performed as described previously (Bonente et al., 2012).

RT-gPCR. Real-time RT-PCR was performed with total RNA samples that were subjected to DNasel
(RQ1 RNase-free DNase; Promega) digest prior to reverse transcription and PCR amplification using
the SensiFAST SYBR No-ROX One-Step Kit (BIOLINE). SYBR Green | fluorescence was recorded on a
DNA Engine Opticon (Bio-Rad). Per sample 100 ng total RNA was used and RPL13 (gene ID: 5718254)
as well as RACK1 (gene ID: 5723548) served as housekeeping genes. Primer sequences are given in
Supplemental Table S2. Relative mRNA expression levels for transcripts in mutant stm6 and the
complemented strain (B13) were calculated according to Pfaffl (2001).

Whole Cell Respiration. Samples derived from low light (to)-/high light (tzsn)-acclimated
photoautotrophic stm6/B13 cultures were subjected to respiratory rate measurements in the dark
using a Clark-type O, electrode (Oxygraph Plus; Hansatech Instruments; Clark, 1956). Respiratory
rates (RR), measured at 25°C, were normalized to haemocytometer cell counts (Neubauer Improved)
in order to compare total rates of cellular respiration in B13 and stmé6. To discriminate between the
individual contributions of the alternative, the cytochrome c¢ pathway, and complex | versus
rotenone-insensitive dehydrogenases, dark respiration measurements were conducted as follows:
cell samples (107 cells in 2 mL) were directly transferred from photobioreactors to the measurement
chamber of the Clark electrode. After 1 min, respiration rates were recorded for 2 min prior to the
addition of the first inhibitor. Then respiration rates were recorded for 2 additional min before the
second inhibitor (omitted for complex I) was added to the sample and measurements were
continued for another 2 min. Alternative respiration (AOX+PTOX) was inhibited by adding 1 mM nPG
(Cournac et al., 2000; Mgller et al., 1988), while the cytochrome ¢ oxidase pathway (complex IV) was
inhibited by adding 1 mM potassium cyanide (KCN; Mathy et al., 2010). Rotenone (Mgller et al.,
1993; Lecler et al., 2012) was used at a concentration of 100 uM to inhibit complex | activity. To
assess the relative contribution of the cytochrome c oxidase pathway, respiration was first measured
in the absence of inhibitors (set to 100%) before alternative respiration was inhibited by adding nPG.
Cytochrome c-dependent respiration was then inhibited using KCN and the residual respiration
determined in relation to the uninhibited state. The contribution of alternative respiration was
determined by reversing the order of inhibitor addition (KCN followed by nPG).

Chlorophyll Fluorescence Analyses. To determine the F,/F, and ®PSII of low light (to)- and high light
(tz-sn)- acclimated cells grown in photoautotrophic media, 2 mL samples of the culture were
incubated in the dark and aerated for 20 min. Chlorophyll fluorescence changes were recorded

during a 10 min induction curve with actinic light (800 umol photons m? s?) using a Mini PAM

109



Chapter 1 | Section B

(Waltz) and fluorescence parameters calculated according to the following equations (Maxwell and

Johnson 2000):

DPSIT — Fm —\Pt
Fwi
F_V _ Fm FO
Pm PW

Chlorophyll rereduction in the dark after illumination with 150 umol photons m?2 s was measured in
the presence or absence of 1 mM nPG as described by Houille-Vernes et al. (2011).

P700 Oxidation Kinetics. PSI reaction center activity was monitored as a transient decrease of 705
nm absorption as previously described, using a JTS 10-LED pump-probe spectrometer (Bio-Logic SAS;
Bonente et al., 2012). In particular, P700 oxidation kinetics were measured applying an actinic orange
light at different light intensities, from 35 to 940 umol photons m? s. DCMU, DBMIB, myxothiazol,
SHAM, and nPG were added as reported in “Results” before measurements at concentrations of 10
UM, 2 uM, 5 uM, 1mM, and 1mM, respectively. Maximal P700" levels were determined at 940 pmol
photons m2s?tin the presence of DCMU, DBMIB, ascorbate (2 mM), and methyl viologen (1 mM).
P700* rereduction kinetics in the dark were investigated after 30 s of illumination with 940 umol
photons m? st and fitted with an exponential function (Alric et al., 2010). Plastocyanin oxidation
kinetics were measured using the same set up described for P700 oxidation kinetics but using a
probing light at 740 nm.

PSI/PSII Ratio Analysis by Electrochromic Shift . Electrochromic shift was measured to evaluate the
PSI/PSII ratio on whole cells untreated or treated with DCMU and hydroxylamine as described by
Bailleul et al. (2010).
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Supplemental tables

Table S1. Phytozome locus numbers of genes analysed in the present study.

Name Description Phytozome UniProt KB
locus name
NDAS Type-ll NADH dehydrogenase Cre16.9671000 ABYT86
GAPN1 glyceraldehyde-3-phosphate Cre12.9556600 ABIYT1
dehydrogenase (NADP) [EC:1.2.1.9]
non-phosphorylating GAPDH
GAP2 Glyceraldehyde 3-phosphate Cre07.9354200 ABJFT3
dehydrogenase
PGK2 Phosphoglycerate kinase Cre07.9g354250 ABJFT4
TPT3/APEZ | Triose phosphate transporter Cre01.g045550 ABHNO2
TPT2 Triose phosphate/phosphate translocator Cre06.g263850 Q7XJ66
TPT25/CGL51 Triose phosphate transporter Cre16.9663800 A8JFB4
TPT1 Triose phosphate transporter Cre08.9g379350 QB84XW3
PGH1 Enolase Cre12.g513200 ABJHI8
PEPC2 Phosphoenolpyruvate carboxylase Cre03.9171950 QBR2VE
MDH3 NAD-dependent malate dehydrogenase Cre02.9145800 ABJOWY
MITC14 Mitochondrial substrate carrier protein, Cre16.9672650 ABJIF7
possible 2-oxoglutarate/malate carrier
MDH4 NAD-dependent malate dehydrogenase, Cre12.g483950 A8JHUO
mitochondrial
MDH5 NADP-dependent malate dehydrogenase, Cre09.g410700 QYFNS5
chloroplastic

OMTH Oxoglutarate:malate antiporter Cre17.g713350 A8JDE3
LCI20 2-oxoglutarate/malate translocator Cre06.9260450 ABHXJ4

Table S2. Sequences of primers used for RTQPCR experiments.

Gene

Sequence 5" to 3" (fw / rev)

cob

gectacccaactccaatgaa / gtgagegtaacgcaagatca

cox1

tggtaatgccagecctatic / taagcggtccaaccagtace

nd1

acgcgaccceatttgatctac / agegaagaacagggceagtaa

NUOS

attgaggaggccatcaccaa / gtactcaaagcccgacacac

NUO21

agaacccgacctticcgatt / aaatggaggtgaacagageg

COXsC

caagcaaggctgtctatgeg / taccgettctegttccagty

COX3C

ctgcagtcctetgectteg / ctecttettgtegtcacegt

AOX1

atgcacctcatcaccttcct / atgtcttgacagectectee

NDAS

gttagggaaggggcttggat / caccacaccacaacaatggc

PTOX1

gatgaagagtgcagegceattt / ttgaagttgtcccageecag

PTOX2

acctgttcgacgagttccag / gcagcaatgtccttggcaat

NDA2

ttccgtagcetgtgggtttce / tggatgaaaatgeccctece

NDA3

cctgaagaagaagtaccegge / accettgagcaacacctigt

PGRS

gtecacceagtetaccaacg / aagcagcettgcagaagtect

PGRL1

cttccactecgtgtgggatgt / cgcagtagtcagcageaaca

MDH5

gcgaagaaggcctatggagt / caccggaagcaagcatgaat

OMT1

tgaatgtggtcgctcagge / cgtagtgatgatgecccacga

LCI20

cattgcgacgctgttcgtg / ctgtgegcaagegacttgat

MDH3

cggctggtcaaattggetatg / taagegecateeactagete

MDH4

tacgatattgctggcacceee / cggegttgatetigaacagg

DTC

cagaagatgacccccaaccee / tecatgaacacgagegtgaa

TPT1

caacgtgctgtccaagaage / ctgagettccagecctcaaa

TPT3

tcccatcatgticggtgtgg / gcagtgecatccagagactt

TPT2

aagggcaaggacatgtcagg / agaacaccatcgacaggcag

TPT25

cgagccttgtcagccagatt / ggctgtcacaggaagacgag

GAP2

caaggtctccaccgactacg / ggtcacgacaacgtcatcca

GAPN1

tggtgcagtgcttccatgce / cttcttggegatggagatgee

PGK2

cagagcgccaggtttcattt / gagcatgcaggcaccaaaag

PGH1

gggcaaacgtctggcaaata / cgaagaggacaccagttggg

PEPC2

gcgtggtctttgagagcetga / ctetgggcetaggtetetggt

NDA1

tecagttcegtgttcattg / gggaataccaaaggtgetg
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Supplemental figures

Figure S1. Alternative respiration in B13 and stmé6 normalized to the cell number. Alternative
respiration per cell was calculated by subtracting residual respiration rates in the presence of both
inhibitors (KCN+nPG) from cyanide-insensitive respiration (only KCN) before normalizing to cell
counts. Values are given relative to alternative respiration rates found in low light-acclimated B13
cells (set to 100%). Error bars indicate the standard error derived from three biological replicates
(n=3). Asterisks (*:p<0.05; **:p<0.1) indicate significant differences between B13 and stmé6 according

to a two-tailed Student’s t-test.
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Figure S2. Representative immunoblots. See table 1.
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Figure S3. Post-illumination F, fluorescence rise in low light- and high light acclimated cultures of
the mitochondrial dum20 mutant. Kinetics of chlorophyll fluorescence emission in the dark after five
minutes of illumination with 150 pmol photons m? s white actinic light. Measurements were
conducted before (to) and after the exposure to excess light (tsn/tsh). n-propyl gallate (nPG) was

added to inhibit PTOX.
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Figure S4. Post-illumination F, fluorescence rise in high light-acclimated cultures of an AOX1 knock-
down strain. (A and B): Kinetics of chlorophyll fluorescence emission in the dark after five minutes of
illumination with 150 umol photons m? s white actinic light. Measurements were conducted after
the exposure to excess light for eight hours. N-propyl gallate (nPG) was added to inhibit PTOX. An
AOX1 knock-down strain (T53) was used along with its reference strain.

(C): Immunodetection of AOX1 (upper panel) in the reference strain and T53. A Coomassie brilliant

blue stain (CBB) served as a loading control.
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Figure S5. Plastocyanin oxidation. Plastocyanin oxidation was measured as transition absorption at
740 nm. Oxidation kinetics were normalized to PSI content.
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Figure S7. Expression of PGRL1 and PGR5. (A and B): RTgPCR analysis of PGR5/PGRL1 transcript
levels in B13 (black bars) and stmé6 (red bars) following exposure to excess light. Standard errors are
derived from three biological replicates, each including at least two technical replicates (n=3). (C):
Immunodetection of protein PGRL1. Left part: Representative immunoblot results.Loading control:
Immunodetection of histone H3 and Coomassie brilliant blue staining (CBB). Right part: Relative
protein levels (B13 to set to 1) obtained by densitometric scanning of immunoblot signals. Error bars
indicate the standard error derived from two biological replicates, each including two technical

replicates (n=2).
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Section A

Molecular basis of autotrophic vs mixotrophic growth

in Chlorella sorokiniana

M. Cecchin, S. Benfatto, F. Griggio, A. Mori, S. Cazzaniga, N. Vitulo, M. Delledonne and M. Ballottari
Universita degli Studi di Verona, Department of Biotechnology, 37134 Verona, Italy

This work was published in Scientific Reports in April 2018.

In this work, we investigated the molecular basis of autotrophic vs. mixotrophic growth of Chlorella
sorokiniana, one of the most productive microalgae species with high potential to produce biofuels,
food and high value compounds. To increase biomass accumulation, photosynthetic microalgae are
commonly cultivated in mixotrophic conditions, adding reduced carbon sources to the growth media.
In the case of C. sorokiniana, the presence of acetate enhanced biomass, proteins, lipids and starch
productivity when compared to autotrophic conditions. Despite decreased chlorophyll content,
photosynthetic properties were essentially unaffected while differential gene expression profile
revealed transcriptional regulation of several genes mainly involved in control of carbon flux.
Interestingly, acetate assimilation caused upregulation of phosphoenolpyruvate carboxylase enzyme,
enabling potential recovery of carbon atoms lost by acetate oxidation. The obtained results allowed to
associate the increased productivity observed in mixotrophy in C. sorokiniana with a different gene

regulation leading to a fine regulation of cell metabolism.

125



Chapter 2 | Section A

INTRODUCTION

Photosynthetic conversion of light provides the energy necessary for biomass formation in living
organisms. Among photosynthetic species, unicellular microalgae are of great interest due to their high
potential for industrial cultivation as light energy converting systems for the production of biomass,
food and biofuels, without being in competition with traditional agriculture (Hannon et al. 2010b; Lum,
Kim, and Lei 2013). Photo-autotrophic growth of microalgae indeed requires light, CO,, water and
nutrients yielding lipids, proteins and sugars rich biomass. However, some microalgae species have
also the peculiar capability to grow in mixotrophic mode, where the autotrophic metabolism is
integrated with a heterotrophic metabolism, that oxidizes the reduced carbon source available in the
medium. Mixotrophic cultivation of microalgae holds the potential to significantly improve biomass
production, thus fostering the revenues of industrial cultivation: this is particularly important for
biofuels production, where productivity and cultivation costs must be respectively maximized and
minimized to be sustainable (Hannon et al., 2010; Wan et al., 2011). The main substrates used for
mixotrophic growth of microalgae are glucose, ethanol or cheaper waste products of several industrial
processes as acetate or glycerol. Extensive work on Chlamydomonas reinhardtii, the model organism
for green algae, demonstrated increased biomass and lipid productivity in mixotrophy compared to
autotrophy (Johnson and Alric 2012, 2013). Even in the case of non-model species as Chlorella spp. or
Scenedesmus, mixotrophic growth is effective to increase the biomass and lipid productivity (Combres
et al. 1994; T. Li et al. 2014; Wan et al. 2011). Howeuver, this is not a general feature of microalgae,
since some species, as the marine algae Nannochloropsis gaditana, exhibited similar growth in
autotrophy and in presence of different reduced carbon source, due to a reduced photosynthetic
efficiency in mixotrophy (Sforza et al. 2012). In this work autotrophic growth of the thermotolerant
high productive strain Chlorella sorokiniana was compared to its mixotrophic growth in the presence
of acetate as reduced carbon source in the medium. Acetate was reported to be assimilated in C.
reinhardtii as acetyl-CoA which enters the Krebs cycle upon condensation with oxaloacetate to
produce citrate. Acetate assimilation in several algae species is strictly linked to the activity of isocitrate
lyase enzyme which redirects isocitrate toward the glyoxylate cycle, thus preventing carbon loss as CO;
upon completion of the Krebs cycle (Combres et al. 1994; Martinez-Rivas and Vega 1993; Plancke et
al. 2014a; Sun, Chen, and Du 2016). Acetyl-CoA is mainly produced in photosynthetic organisms by
oxidation of pyruvate mediated by the mitochondrial pyruvate dehydrogenase enzyme and fuelled by
photosynthetic produced sugars. An alternative pathway for acetate assimilation is present in the
chloroplast, where acetyl-CoA is used for de novo production of fatty acids (J. Li et al. 2014). The
interaction between photosynthesis and acetate metabolism is further complicated by the reciprocal

influence of mitochondria and chloroplasts redox state: for instance, in C. reinhardtii alteration of
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mitochondrial reduction state of plastoquinones (Johnson and Alric 2012; Uhmeyer et al. 2017). To
investigate the influence of mixotrophic growth in presence of acetate in C. sorokiniana,
photosynthetic properties and differential gene expression of autotrophic vs. mixotrophic cultures
were thus analysed in order to identify strategy to further foster the metabolism and improve biomass

production for industrial applications.

RESULTS

Cultivation of C. sorokiniana in autotrophy vs. mixotrophy

C. sorokiniana cells were grown in airlift photobioreactors in presence or absence of acetate, inducing
respectively mixotrophic or autotrophic metabolism. Cells grown in mixotrophy reached higher cell
density compared to cells grown in autotrophy, with a 61% increase in the presence of acetate (Fig.

1A). Growth curves were fitted with sigmoidal functions with lower dx values in mixotrophy (0.61)
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Figure 1. Growth curves, biomass productivity and accumulation of macromolecules in mixotrophy vs. autotrophy. Panel A:
growth curves of C. sorokiniana growth in autotrophy vs. mixotrophy fitted with sigmoidal curves; Panel B: first derivate of
growth curves reported in Panel A; Panel C: dry weight and average daily productivity; Panel D: relative protein, lipid and
starch content per cell or volume of culture.

127



Chapter 2 | Section A

compared to autotrophy (0.73) indicating faster growth triggered by acetate. Moreover, mixotrophic
growth was characterized by the highest daily maximum productivity estimated from the first derivate
of the sigmoidal fitting functions (Fig. 1B). Mixotrophy determined 42% increase of total biomass
production as compared to autotrophy, with an average and maximum daily productivity of 0.23 and
0.66 gr L''day™, respectively, in mixotrophy and 0.16 and 0.39 gr L"*day™ in autotrophy (Fig. 1C). The
productivity obtained in autotrophic conditions allowed to estimate a photosynthetic efficiency of
~2.36% on the basis of average daily productivity and ~5.86% considering the maximum daily
productivity. In mixotrophy, 2 Kcal/L increase of energy stored as biomass was obtained as a
consequence of the 3.48 Kcal/L added to the growth medium as acetate, indicating a metabolic
energetic efficiency of acetate utilization of at least ~57%, close to the energetic yield of acetyl-CoA
oxidized by the Krebs cycle previously reported in the case of C. reinhardtii (Johnson and Alric 2013).
As expected, lipids, proteins and starch were all consistently increased in mixotrophy-grown cells when
compared to autotrophic conditions, of 58%, 24% and 138% respectively on a cell basis. Considering
the higher cell density reached in mixotrophy compared to autotrophy, the lipid, protein and starch
productivity per volume of culture were increased in mixotrophy by ~133%, ~82% and ~250%

respectively (Fig. 1D).

Photosynthetic properties of C. sorokiniana in autotrophy vs. mixotrophy

Photosynthetic properties of C. sorokiniana in autotrophy vs. mixotrophy were investigated to
determine the influence of acetate assimilation on the autotrophic metabolism. C. sorokiniana cells
was characterized by a ~50% reduction of chlorophyll content per cell in mixotrophy compared to
autotrophy (Supplementary Table S1). Chl a/b and Chl/Car ratios however were similar in both
conditions and the carotenoid composition was not significantly different when normalized to
chlorophyll content. The fluorescence parameter F,/Fr, is generally used as an indicator of the wellness
of the photosynthetic apparatus, being related to the photochemical efficiency of the PSII. As reported
in Fig. 2A, cells grown either in autotrophic or mixotrophic conditions showed similar F,/Fn, values of
~0.6 through the entire cultivation period. Net oxygen evolution curves measured at different light
intensities were similar on a chlorophyll basis for cells grown in autotrophy or mixotrophy (Fig. 2B) and
the parameters Pmax and half saturation light intensities, calculated by hyperbolic fitting of the oxygen
evolution curves, were not significantly different (Supplementary Table S2). However, dark respiration
measured on mixotrophic cells was increased compared to autotrophic cells, either when normalized
per chlorophyll content, or per cell concentration (Supplementary Table S2) indicating increase
mitochondrial electron transport to oxygen as a consequence of increased NADH production in the

presence of acetate. The photoprotective properties of C. sorokiniana cells were then investigated
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Figure 2. Photosynthetic properties of C. sorokiniana in autotrophy vs. mixotrophy. Panel A: PSII efficiency (F.,/F) variation
during cultivation; Panel B: net oxygen evolution curves at different light intensities fitted with hyperbolic functions; Panel C:
NPQ induction curves measured at 1500 pmol m=2s7%. Panel D: proton motive force (PMF) induced by 940 umol m=2s7! in
autotrophic and mixotrophic cells. Chemical (ApH) and electric (AW) components of PMF are indicated.

measuring the Non-photochemical quenching (NPQ) induction curves: this process consists into
thermal dissipation of a variable portion of the light absorbed by the photosynthetic apparatus and it
is induced upon lumen acidification when light is absorbed in excess. As reported in Fig. 2C, NPQ curves
were almost identical in autotrophic or mixotrophic cells, demonstrating that C. sorokiniana has similar
photoprotective properties in the two conditions. NPQ induction is triggered by lumen acidification:
total proton motive force (PMF) and its composition in chemical (ApH) and electric (AW) components
were thus analyzed by pump-probe transient absorption at 520 nm, since carotenoids shift their
absorption when electrochemical proton gradient across thylakoid membranes is established (Electro-
Chromic Shift ECS) (Bailleul et al. 2010). PMF ApH and AW were not significantly different in mixotrophy
compared to autotrophy (Fig. 2D). When linear photosynthetic electron transport was blocked adding
the PSll inhibitor DCMU, a strong reduction in PMF was observed in both conditions, with a higher ApH

formation in mixotrophy compared to autotrophy. This result indicates an increased PSll-independent
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reduction of plastoquinones in the presence of acetate which oxidation causes release of protons, as

reported in the case of C. reinhardtii (Plancke et al. 2014a; Uhmeyer et al. 2017).

De novo transcriptome assembly and gene expression analysis of C. sorokiniana in autotrophy vs.
mixotrophy

To investigate the molecular basis of acetate assimilation, the transcriptome of C. sorokiniana was
analyzed in autotrophy and mixotrophy conditions by the mean of RNA-sequencing. Transcriptome
was assembled de novo identifying 123590 non-redundant contigs (Supplementary Dataset S1),
ranging from 224 bp to 16 Kbp and with average length of 1.1 Kbp (Supplementary Figure S1).
Transcriptome functional annotation was obtained for 70101 transcripts, of which 53435 were
associated to Gene Ontology (GO) Terms (Fig. 3). N50 value of the assembled transcriptome was 1792
bp. To further evaluate the transcriptome quality and completeness, BUSCO analysis was run for a set
of 303 universal single-copy genes putatively universally found in eukaryotes as single copies (Simdo

et al. 2015).
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Figure 3. Annotation of C. sorokoniana transcriptome. C. sorokiniana transcripts annotated by blast2Go were functionally
grouped on the basis of Gene Onthology (GO) terms “cellular component”, “molecular function” and “biological processes”.
The distribution of the different groups is reported on the basis of the node score associated to each group considering GO

term with node score higher than 1%.
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This analysis identified complete information for 94.4% of orthologs and fragmented information for
the 5.0%, only 0.6% are missing, demonstrating a high completeness of the de novo assembled
transcriptome. Reconstructed 18 S rRNA (TR1035|c8_g4) matched the 18 S rRNA sequences available
for C. sorokiniana UTEX 1230 deposited in NCBI with more than 97% of identity (Supplementary Table
S3), confirming the identity of the strain analysed. Most annotations were obtained by alignment with
the publicly available data of Chlorella variabilis (Supplementary Figure S2), due to the close evolutive
origin of the two species (Mansfeldt et al. 2016; Rosenberg et al. 2014). In addition, 15496 annotated

sequences were located in KEGG-derived metabolic pathways (Kanehisa et al. 2016, 2017; Kanehisa
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and Goto 2000) (Supplementary Figure S2) demonstrating that all the enzymes involved in glycolysis,
gluconeogenesis, Krebs cycle, glyoxylate cycle, reductive and non-reductive pentose phosphate cycle
and Calvin-Benson cycle were identified in the de novo assembled C. sorokiniana transcriptome.
Differential expression analysis revealed that 285 transcripts encoding for 259 different proteins were
upregulated in mixotrophy, while 721 transcripts corresponding to 620 proteins were downregulated
as compared to autotrophic conditions (Supplementary Dataset S2).

Pathway annotation allowed to identify the differentially expressed transcripts involved in relevant
biological processes crucial for the algae metabolism among which photosynthesis, chlorophyll and
carotenoid metabolism, photorespiratory pathway, carbohydrates, acetyl-CoA, fatty acids and amino
acids metabolism, sulphur, nitrogen, phosphate assimilation and transport processes across

membrane (Fig. 4).

Photosynthesis. Transcripts coding for LHC subunits homologous to Lhcb4 and LHCII subunits were
downregulated in mixotrophy compared to autotrophy, in agreement with the reduced chlorophyll
content per cell in the presence of acetate. Similar downregulation of LHC genes has been reported in
the case of C. reinhardtii grown in presence of acetate (Kindle 1987). However, any downregulation of
PSI or PSII core subunits was not observed in mixotrophy, with translational and post-transduction
regulative mechanisms likely involved in the overall accumulation of PSIl and PSI subunits as previously
suggested in the case of A. thaliana (Floris et al. 2013). The accumulation of PSI, PSIl and LHCII subunits
were thus investigated by immunoblotting (Fig. 5): when loaded with the same amount of chlorophylis,
the PSll subunit CP43 and LHCII were detected in a similar amount in both autotrophic and mixotrophic
conditions, while the PSI subunit PsaA was slightly increased in mixotrophy. The finding of almost
double amount of the mitochondrial subunit COX2 in mixotrophy when SDS-PAGE were loaded at the
same amount of chlorophylls nicely fit with the 50% reduction of chlorophyll content per cell in
presence of acetate, indicating that in mixotrophy chlorophyll and chlorophyll binding proteins are
generally reduced, with a slight increase on a chlorophyll basis of PSI. The increase in PSI content per
cell in mixotrophy is likely related to the increased plastoquinone reduction in presence of acetate (Fig.
2D). Differential gene expression analysis indicated also the reduced expression of PSBS subunit in
mixotrophy, which was confirmed by western blot analysis, where PSBS accumulation was detected
only in autotrophy but not in mixotrophy (Fig. 5). PSBS is a protein subunit crucial for NPQ induction in
higher plants, being the sensor of lumenal pH: occurrence of PSBS protein in microalgae has been
recently reported for several species, being in C. reinhardtii transiently induced by high light or UV
exposure, even if its functional role in photoprotection is still under debate (Allorent et al. 2016;
Tibiletti et al. 2016). The similar NPQ traces observed in C. sorokiniana in presence (mixotrophy) or

absence (autotrophy) of PSBS suggest that this protein has a minor role on NPQ induction in this
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A Autotrophy Mixotrophy Figure 5. Western blot analysis of chlorophyll binding
1 075 0.5 025 1 075 05 025 ugchl proteins. PSI, PSIl, LHCIl and PsbS accumulation in
COX?2 mixotrophy vs. autotrophy were investigated by

immunoblot analysis. In the case of PSI and PSII their
PsaA relative accumulation was investigated using antibody
recognizing PsaA (subunit of PSI) and CP43 (subunit of
PSII). Mitochondrial COX2 subunit was also quantified
as a control. Samples were loaded on SDS-PAGE gels
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LHCII Panel A. Each immunoblotting analysis was performed
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Significantly different data are indicated (n = 3; P <
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0.5+

PROTEIN /CHL (a.u.)

0.0-

cor? pShh cpad et

species but could be involved in other photoprotective mechanisms interacting with PSIl or LHC
subunits. Differently, C. sorokiniana transcripts homologous to LHCSR proteins, protein subunits
involved in NPQ induction in C. reinhardtii, were not differentially expressed in presence or absence of
acetate. Among protein subunits involved photosynthetic electron transport, plastocyanin and
cytochrome c6 were downregulated in mixotrophy. It is interesting to note that in mixotrophy
downregulation of a PGR5-like subunits was also detected: PGR5 has been reported to be involved in
cyclic electron transport around PSI in higher plants and green algae, mediating plastoquinones
reduction by Ferredoxin-NADP+ reductase (FNR) (Alric 2014). Differently, Ferredoxin and FNR subunits
were upregulated in mixotrophy: in presence of acetate the increased reducing power derived from
acetate consumption causes an overreduction of plastoquinones (Fig. 2), likely inhibiting
plastoquinones reduction by cyclic electron transport around PSI but increasing demand of PSl electron
acceptor as Ferredoxin and FNR, consistently with the increased PSI content on a chlorophyll basis
detected in mixotrophic cells (Fig. 5, Supplementary Figure S3). Differential gene expression was
observed in the case of enzymes involved in carbon fixation. Glyceraldehyde 3-phosphate
dehydrogenase (phosphorylating) was downregulated in mixotrophy: this is the final enzyme
producing glyceraldehyde 3-phosphate in the Calvin-Benson cycle, confirming the crucial role of
photosynthates in autotrophy. It is interesting to note that C. sorokiniana transcriptome revealed the

expression of enzymes involved also in a C4-like carbon fixation pathway like either the NAD- or NADP-
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malic enzyme type or the phosphoenolpyruvate carboxykinase type C4 cycle (Supplementary Figure
S4). The presence of a possible C4-like carbon fixation pathway in C. sorokiniana has been indeed
already proposed in the case of the strain LS-211. Among these enzymes, the key subunit involved in
carbon fixation is the cytoplasmic phosphoenolpyruvate carboxylase (PPC) was upregulated in
mixotrophy, while all the other enzymes putatively involved in a C4-like carbon fixation pathway were
similarly expressed in both autotrophy and mixotrophy. Upregulation of PPC in mixotrophy suggests
that C. sorokiniana switches on C4-like carbon fixation in presence of acetate in order to recover CO,
released by acetyl-CoA oxidation (Fig. 6). Upregulation of PPC in mixotrophy could also be involved in
anaplerotic reaction for oxaloacetate production and CO, recovery in mixotrophic cells characterized
by high mitochondrial respiration. Other enzymes putatively involved in C4-like fixation pathway as
pyruvate-orthophosphate dikinase (PPDK) and aspartate aminotransferase (AspAT) are instead
downregulated in mixotrophy; these enzymes allow respectively for production of phosphoenol-
pyruvate (PEP) and oxaloacetate from pyruvate and aspartate. PEP and oxaloacetate are intermediates
for both C4-like carbon fixation but also for gluconeogenesis and these enzymes could be involved in
autotrophy to accumulate PEP and oxaloacetate to be used for glycolysis, gluconeogenesis or other
metabolic pathways. Consistently with the increased CO; content in mixotrophy, carbonic anhydrase
enzyme resulted to be downregulated. It is interesting to note that in mixotrophy RUBISCO activase
was downregulated, while a RUBISCO accumulation factor (RAF) was upregulated: in autotrophy, the
relative low CO; content compared to mixotrophy is likely responsible for the needing for increased
rubisco activase expression, since this enzyme catalyses the carbamylation of RUBISCO required for its
activation (Pollock et al. 2003), while in mixotrophy RAF upregulation contributes to the assembly of
RUBISCO complex to improve carbon fixation. Consistently, increased activity of RUBISCO has been

reported in C. sorokiniana cells grown in mixotrophy in presence of glucose (Li et al. 2016).

Carbohydrate metabolism. Among the glycolytic enzymes, fructokinase, glyceraldehyde 3-phosphate
dehydrogenase, phosphoglycerate mutase and pyruvate kinase were downregulated in mixotrophy,
indicating the crucial role of this metabolic process in absence of acetate, where sugars produced by
the dark phase of photosynthesis are used to produce ATP and reducing power. Differently in
mixotrophy diphosphate-fructose-6 -phosphate-1-phosphotransferase (PFP) and a NADP+ dependent
glyceraldehyde-3-phosphate dehydrogenase (GapN) were upregulated. PFP, an enzyme found in
plants and some bacteria, catalyses the formation of fructose 1,6-bisphosphate from fructose 6-
phosphate using inorganic pyrophosphate as the phosphoryl donor, rather than ATP, as in the case of
phosphofructokinase (PFK) enzyme: the use of inorganic pyrophosphate makes the reaction reversible,

increasing the rate of gluconeogenesis (Alves et al. 2001), consistently with the increased starch

134



“" \ \‘.
GLYCOLATE |
\ |
GLYQXYLAT|
\ |
\ |

ACETATE

@

ACETATE

Light phase photosynthesis (PC, FD, FNR)

Lysine, Threonine, Methionine, Isoleucine, Tryptophan biosynthesis

Citoplasmic Ribosomal Protein Subunits

Light phase photosynthesis (LHC, PGRS5, PSBS)

Glutamate, Glutamine, Asparagine and Cysteine biosynthesis
Sulphur, Nitrogen, Phosphate assimilation and Metal uptake

Pentose-P pathway
Chloroplastic Ribosomal Protein Subunits
SQDG biosynthesis (UDP-sulfoquinovose synthase)

Chapter 2 | Section A

Figure 6. Model of metabolic pathways in
autotrophy vs. mixotrophy in C. sorokiniana.
Metabolic pathways are reported in yellow if
not transcriptionally regulated, in red or blue
if down or upregulated in mixotrophy
respectively. PEP: phosphoenol-piruvate; RAF:
RUBISCO accumulation factor; G3P:
Glyceraldehyde 3-phosphate; PDK: pyruvate
dehydrogenase kinase; PC: plastocyanin; Fd:
FNR: Ferredoxin-NADP+
reductase; PPC: phosphoenolpyruvate
carboxylase; ALDH: aldehyde dehydrogenase;
GOX: glycolate oxidase; SHMT: serine
hydroxymethyltransferase; AOX: alternative
oxidase; PPDK: pyruvate-orthophosphate

dikinase; AspAT: aspartate aminotransferase.

ferredoxin;

accumulation observed in mixotrophy. GapN enzyme is a glycolytic enzyme which catalyses an

alternative reaction to produce NADPH and glycerate 3-phosphate directly from glyceraldehyde-3-

phosphate, without producing the intermediate glyceraldehyde-1,3-bisphosphate: this alternative

reaction leads to only one ATP yield for each glyceraldehyde-3-phosphate, but produces NADPH rather

than NADH (Ettema et al. 2008). Phylogenetic analyses and database searches indicated a preferred

distribution of GapN in hyperthermophilic Archaea suggesting a role of GapN in metabolic

thermoadaptation (Ettema et al. 2008), which could be related to the thermotolerance of C.

sorokiniana. NADPH in autotrophy is rather produced by the light phase of photosynthesis and by the

pentose phosphate pathway: downregulation of a transaldolase and a ribokinase involved in the

pentose phosphate pathway were indeed detected in mixotrophy. It is worth to note that in

135



Chapter 2 | Section A

mixotrophy UDP-sulfoquinovose synthase enzyme was downregulated: this enzyme catalyzes the
production of UDP-6-sulfoquinovose from UDP-glucose and sulphite, a precursor of sulfolipid
sulfoquinovosyl diacylglycerol (SQDG), a key lipid in thylakoid membranes. Downregulation of UDP-
sulfoquinovose synthase in mixotrophy could thus be related to the decreased thylakoid accumulation

in mixotrophy, consistently with the reduced chlorophyll content observed in presence of acetate.

Acetyl-CoA and fatty acids metabolism. Regulative mitochondrial pyruvate dehydrogenase kinase
(PDK) was found expressed only in mixotrophy: this serine/threonine kinase inactivates pyruvate
dehydrogenase by phosphorylation, inhibiting acetyl-CoA accumulation from pyruvate (Roche et al.
2001), as expected in presence of acetate. In addition, an aldehyde dehydrogenase (ALDH) was found
downregulated in mixotrophy. ALDH has been reported to be involved in the so called pyruvate
dehydrogenase complex (PDHC) bypass pathway, by which pyruvate is converted into acetate which is
then imported into chloroplast as acetyl-CoA for fatty acid accumulation (J. Li et al. 2014): in
mixotrophy this enzyme is thus downregulated since acetate is already available in the medium. Only
three enzymes involved in fatty acid metabolism were found differentially expressed: a plastid type Il
fatty acid synthase (FabF), catalysing the first step of fatty acid biosynthesis adding malonyl-ACP to a
short fatty acid chain, was detected as downregulated in mixotrophy. This result is consistent with the
main role of plastid in autotrophic metabolism and lipid biosynthesis. Interestingly both type | and type
Il fatty acid synthase enzymes were present in the assembled transcriptome of C. sorokiniana: type |
fatty acid synthase as FAS1 has been reported to be active in the cytoplasm and not present in plants,
where usually the plastid type Il fatty acid synthase are present. However, the expression of FAS1
enzymes has been already reported in other microalgal species as Nannochloropsis gaditana (Alboresi
et al. 2016). Other two enzymes involved in the elongation of very long (<16 C) fatty acids longer were
found differentially expressed: a very-long-chain 3-oxoacyl-CoA and a very-long-chain enoyl-CoA
reductase were downregulated and upregulated respectively in mixotrophy. These enzymes are
components of the enzymatic system called elongase that adds two carbons to the chain of long- and
very long-chain fatty acids (Millar and Kunst 1997). The different and opposite expression of elongase
subunits indicates that the increase lipid content observed in mixotrophy is more influenced on the

increased acetyl-CoA availability rather than on the different expression of biosynthetic enzymes.

Glyoxylate pathway and photorespiration. Differently from previous works in C. reinhardltii, isocitrate
lyase, the key enzyme for the assimilation of acetate/acetyl-CoA in the glyoxylate pathway (Plancke et
al. 2014a) was not upregulated in mixotrophy in C. sorokiniana. Since glyoxylate production by

photorespiratory pathway has been recently proposed to participate to acetate assimilation in C.
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sorokiniana, the different enzymes involved in photorespiration were considered, among which
glycolate oxidase (GOX), serine hydroxymethyltransferase (SHMT) were upregulated while serine
glyoxylate aminotransferase (SGAT) was downregulated. GOX produces glyoxylate from glycolate,
which is then the substrate of SGAT which catalyses the interconversion of L-serine and glyoxylate to
hydroxypyruvate and glycine (Fig. 6). SHMT catalyses the reversible, conversions of serine to glycine in
the mitochondria. Downregulation of SGAT and upregulation of GOX can be related to increase
glyoxylate production to be redirected toward the glyoxylate cycle to produce malate upon
condensation with acetyl-CoA. The reduced activity of SGAT in mixotrophy would thus cause a
reduction in the mitochondria of the substrate of SHMT, glycine, with consequent upregulation of

SHMT to complete the photorespiratory cycle.

Oxidative phosphorylation. Any differential gene expression was not observed in the case of
mitochondrial oxidative phosphorylation, with the exception of alternative oxidase (AOX) which was
downregulated in mixotrophy. AOX indeed has been reported not to be involved in acetate metabolism
in C. reinhardtii, and its downregulation in C. sorokiniana suggests the preferential activation of
mitochondrial electron transport via the energy-conserving cytochrome c pathway to produce ATP

consuming NADH produced by acetate assimilation.

Sulphur, nitrogen, phosphate assimilation and transport systems across membranes. A sodium
sulphate co-transporter and adenylylsulphate kinase (CysC) enzyme, involved in sulphate conversion
into sulphite, were detected as downregulated in mixotrophy, indicating downregulation of sulphur
assimilation pathway in presence of acetate, likely related to the release of acetate caused by sulphur
assimilation. Indeed, in plants sulphur assimilation proceeds mainly by cysteine biosynthesis: cysteine
production starts from serine which is first acetylated to O-acetyl-serine and then de-acetylated
reacting with sulphide to produce L-cysteine releasing acetate. Consistently, in presence of acetate the
enzyme serine O-acetyltransferase (CysE) was found downregulated. Similarly, phosphate transporters
and alkane phosphatases, involved in phosphate mobilization, were found downregulated in
mixotrophy. In the case of nitrogen assimilation, the glutamate synthase resulted to be downregulated
in mixotrophy, suggesting reduced nitrogen assimilation in this condition: nitrogen assimilation occurs
indeed in the chloroplast where nitrate is reduced to nitrite and ammonium, which is then used for
the production of glutamate and glutamine. Another enzyme linked to ammonium assimilation,
asparagine synthase, was downregulated in mixotrophy. Considering the importance of nitrogen and
glutamate for chlorophyll biosynthesis, this result indicates that downregulation of components of

nitrogen assimilation is linked with the reduced chlorophyll content per cell observed in mixotrophy.
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However it is worth to note that in mixotrophy a NRT1/PTR FAMILY (NPF) transporter was found
upregulated: NPF is a nitrate or di/tri-peptide transporters which can also transport plant hormones
auxin (indole-3-acetic acid), abscisic acid (ABA) and gibberellin (GA), as well as secondary metabolites
(glucosinolates) (Chiba et al. 2015). NPF upregulation could thus be related to the activation of a
different nitrate import system or be involved in signalling pathway in mixotrophy, as discussed below.
Several ABC transporters resulted to be differentially expressed in autotrophy compared to
mixotrophy: ABCB1, ABCC4, ABCG1, ABCG2 were downregulated while ABCA1 and ABCC2 were
upregulated in mixotrophy. In mixotrophy, an ionotropic glutamate receptor (GRIN1) was found
downregulated: these proteins are ligand gated channels which are involved in particular in Ca®* influx,
consistently with the peculiar role of Ca%* in the regulation of cell function in autotrophy. Components
involved in iron uptake were downregulated in mixotrophy as in particular the metal transporter
NRAMP, the iron binding proteins ferritin and transferrin and multicopper ferroxidase for the oxidation
of Fe?* to Fe®". The reduced expression of components involved in iron uptake in mixotrophy is likely
linked to the reduced chlorophyll per cell content in presence of acetate, since iron in photosynthetic
organisms is mainly located in the thylakoid membranes (Glaesener, Merchant, and Blaby-Haas 2013).
It is worth to note that also the copper transporter ATPase RAN1 kinase resulted to be downregulated
in mixotrophy: this kinase is also a component of the ethylene signalling pathway (Igbal et al. 2013).
Moreover a zinc transporter and a ZIP family transporter (Rosakis and Koéster 2004) were observed
downregulated in mixotrophy, confirming the general reduced expression in mixotrophy of genes

involved in nutrient assimilation and metal uptake.

Chlorophyll and carotenoid metabolism. Chlorophyll content per cell was reduced in presence of
acetate (Supplementary Table S1). However, transcripts encoding for uroporphyrinogen-Ill synthase,
coproporphyrinogen 1ll oxidase and magnesium chelatase, which leads to production of the
chlorophyll precursor Mg-protoporphyrin-IX from glycine were upregulated in mixotrophy. These
results suggest that the regulation of nitrogen and iron uptake rather than differential expression of
chlorophyll biosynthetic enzyme is at the base of the control of chlorophyll content per cell in C.
sorokiniana. In the case of carotenoid biosynthetic pathway, a carotenoid oxygenase was
downregulated in mixotrophy, even if the function of this enzyme remains unclear. Moreover, in
mixotrophy two transcripts coding for astaxanthin binding fasciclin family proteins were detected as
downregulated: these proteins were reported as water soluble protein that bind carotenoids and in
particular astaxanthin, being involved in microalgae in the resistance to photo-oxidative stress
(Kawasaki et al. 2013). Astaxanthin was not detected in C. sorokiniana in these conditions

(Supplementary Table S1), even if the enzymes CrtO and CrtZ for its production were identified in the
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annotated transcriptome. More stressful conditions could be required for astaxanthin significant
production with a putative role of astaxanthin binding fasciclin family proteins for its accumulation

(Raman and Mohamad 2012).

Amino acids metabolism. As discussed above, glutamate synthetase, asparagine synthase, serine O-
acetyltransferase and aspartate aminotransferase enzymes involved respectively in
glutamate/glutamine, asparagine and cysteine biosynthesis and aspartate de-amination to produce
oxaloacetate were found downregulated in mixotrophy. In addition, transcripts encoding for a serine-
glyoxylate transaminase were found downregulated in presence of acetate: this enzyme catalyses the
production of glycine and 3-hydroxypyruvate from serine and glyoxylate and its downregulation is
consistent with the increased requirement of glyoxylate in mixotrophy for acetate assimilation and
with the reduced glycine demand, considering the use of glycine as the precursor for chlorophyll
biosynthesis. Differently a chloroplastic-like bifunctional aspartokinase homoserine dehydrogenase
(ThrA) was upregulated in presence of acetate: this enzyme was found in bacteria and plant
chloroplasts, catalysing the first and third steps of the aspartate pathway, by which aspartate is used
as a precursor for lysine, threonine, methionine and isoleucine. In addition, an anthranilate
phosphoribosyltransferase (trpD) enzyme was upregulated in mixotrophy: this enzyme catalyses the
accumulation of the precursors for tryptophan biosynthesis. Increased expression of enzymes involved
in the biosynthesis of tryptophan, lysine, threonine, methionine and isoleucine could be the related to
the increased protein content per cell observed in mixotrophy. Moreover, consistently with the
increase protein accumulation observed in mixotrophy, several ribosomal protein subunits were
upregulated in presence of acetate. Only in the case of ribosomal chloroplast subunit RP-S16 and RP-
LE30 downregulation was observed in mixotrophy, consistently with the reduced chlorophyll content
and reduced accumulation of chlorophyll binding subunits observed in presence of acetate.

Transcription factor and signalling. Three transcription factors were found differentially expressed in
autotrophy compared to mixotrophy: a transcription initiation factor TFIID TATA-box-binding protein
(TBP) were upregulated in mixotrophy, while two Squamosa promoter binding protein (SPB3 and SPB4)
and a Whirly transcription factor were found downregulated in mixotrophy. TBP is a general
transcription factor involved in the RNA polymerase |l preinitiation complex (Lee and Young 2000),
while SBP and a Whirly transcription factor are transcription factors commonly found in plants. SBP
transcription factors play important roles among others in flower and fruit development, plant
architecture and response to hormones (Chen et al. 2010), while Whirly transcription factors were
reported to be involved in plant defence (Desveaux et al. 2004), chloroplast biogenesis (Prikryl et al.

2008) and plastid genome stability (Maréchal et al. 2009). Downregulation of SBP and Whirly
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transcription factors in mixotrophy could be related to the reduced chlorophyll content photosynthetic
proteins per cell and a reduced autotrophic metabolism observed in presence of acetate. Several
transcripts involved in signalling were found differentially expressed in autotrophy compared to
mixotrophy. The MAP kinases PKA, RAN1, CTR1 and PR1 were found downregulated in mixotrophy
while a different transcript for PKA, CTR1 and LZK were upregulated in mixotrophy (Supplementary
Table S3). It is interesting to note that PR1 kinase in A. thaliana has been reported to be involved in
biotic stress defence being a component of the salicylic acid signalling (Ben Rejeb, Pastor, and Mauch-
Mani 2014), while CTR1 and RAN1 are component of the ethylene signalling pathway in higher plants
(Igbal et al. 2013). In autotrophy, an increased expression of protein involved in auxin response as the
auxin transporter AUX1, an auxin efflux carrier and an auxin binding protein were also detected
suggesting a possible ethylene/auxin dependent modulation of gene expression in autotrophy.
Interestingly a cyclin dependent kinase and G2/mitotic-specific cyclin-B were detected upregulated in
mixotrophy, suggesting a possible role of cyclin in the increased cell density yielded in presence of
acetate (Supplementary Table S4). Other serine/threonine kinase and phosphatase are upregulated or
downregulated in mixotrophy, indicating specific signalling pathways and phosphorylation processes
in these conditions (Supplementary Table S4). It is interesting to note the down-regulation of a
chloroplast calcium sensing (CAS) protein and a calcium-dependent kinase in mixotrophy, consistently
with the downregulation of putative calcium influx channel GRIN1 in presence of acetate as discussed
above. CAS has been reported in C. reinhardtii to be involved in the regulation of photoacclimation and
calcium dependent regulation of photosynthetic cyclic electron transport (Petroutsos et al. 2011;
Terashima et al. 2012), which is indeed enhanced in autotrophy compared to mixotrophy. Interestingly
a subunit of superoxide-generating NADPH oxidase was found downregulated in mixotrophy: this
enzyme produces the reactive oxygen species superoxide and it has been reported to be involved in
reactive oxygen species dependent signalling mechanisms (Jiménez-Quesada, Traverso, and Alché
2016). Similarly, two transcripts coding for superoxide dismutase, which catalyses superoxide
scavenging was downregulated in the same mixotrophic conditions, indicating fine regulation of the

superoxide concentration as a possible signal for acclimation to different growth conditions.

DISCUSSION

The study describes the impact of acetate availability on gene expression and photosynthetic
properties of C. sorokiniana. The availability in the medium of a reduced carbon source as acetate
increased biomass yield, cell density and daily productivity of C. sorokiniana cells compared to
autotrophic growth. Increase in biomass yield and productivity in mixotrophy was related mainly to an

increase of starch and lipid content per cell, even if total protein content was also increased.
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Photosynthetic traits were not significantly affected in mixotrophy compared to autotrophy: however,
upregulation of genes coding for electron acceptors downbhill plastoquinones pool as plastocyanin,
ferrodoxin and FNR, and downregulation of PGR5-like subunit suggests increased electron transport
from plastoquinones to NADPH and reduced cyclic electron transport across PSI. Increased reduction
of plastoquinone pool in presence of acetate is indeed related to increase transferring of reducing
power from mitochondria to the chloroplast, as a consequence of increased NADH production during
acetate assimilation. The reduced chlorophyll content per cell observed in mixotrophy was not
controlled by differential gene expression of chlorophyll biosynthetic enzymes but rather by
downregulation of protein subunits involved in nitrogen assimilation, glycine biosynthesis, iron uptake
and accumulation of thylakoid lipid SQDG. Assimilation of acetate has been reported in several
organisms to be linked to glyoxylate cycle (Martinez-Rivas and Vega 1993; Plancke et al. 2014b) and
photorespiration (Xie et al. 2016), by which glyoxylate is produced. The advantage of glyoxylate cycle
toward acetate assimilation is the production of NADH without decarboxylation of isocitrate occurring
in the Krebs cycle with the loss of two CO, molecules. However, the presence of acetate did not induce
in C. sorokiniana any upregulation of glyoxylate cycle enzymes but only caused an increased expression
in mixotrophy of the enzymes GOX and serine hydroxymethyltransferase (SHMT), which are both
involved in the photorespiratory pathway (Fig. 6) (Xie et al. 2016). Acetyl-CoA produces by acetate
assimilation is thus likely consumed in the Krebs cycle or through the glyoxylate produced by a
photorespiratory-like pathway: it is important to note that assimilation of acetate through these
pathways is accompanied by CO; release by isocitrate decarboxylation or by the activity of the SHMT
enzymes respectively, increasing the relative CO, concentration in mixotrophic cells. Increased CO,
production in mixotrophic conditions is confirmed by the downregulation in presence of acetate of
several genes commonly induced in C. reinhardtii by relative low CO; concentration as carbonic
anhydrase, RUBISCO activase or components of carbon concentrating mechanism (Fig. 4) (Eriksson et
al. 1998; Pollock et al. 2003). De novo transcriptomes reported in this or previous works (Sun et al.
2016), demonstrate in C. sorokiniana the presence and expression of genes involved in C4-like carbon
fixation pathway: interestingly, the key CO, fixing enzyme PPC is upregulated in mixotrophy (Fig. 4).
These findings suggest that, carbon loss due to acetate oxidation is reduced by the activation in
mixotrophy of an alternative carbon fixation pathway by PPC. This strategy allows to maximize the
energetic yield of acetate assimilation, reducing the loss of carbon atoms. C4-like carbon fixation
pathway has been already reported in the case of diatoms (Reinfelder, Kraepiel, and Morel 2000),
suggesting a peculiar properties of some unicellular microalgae to improve CO; assimilation using

different pathway in parallel with the Calvin-Benson cycle.
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In conclusion, a fine regulation of cellular metabolism is induced by the availability of acetate in the
growth medium. The metabolism shift was characterized by the downregulation of glycolysis, pentose
phosphate pathway and acetyl-CoA production from pyruvate, while glyoxylate production,
biosynthesis of several amino acids and protein translation are increased. Acetate induces also an
increase of lipid accumulation which however is not directly related to differential expression of
biosynthetic genes. Three transcription factors were identified as differently expressed in autotrophy
vs. mixotrophy with TBP upregulated in mixotrophy and the plant specific SBP and Whirly transcription
factors downregulated in mixotrophy. These transcription factors are putatively responsible for the
different gene expression herein reported, even if the activation/inhibition of other transcription
factor cannot be excluded. Several kinases and phosphatases were indeed differently expressed in
presence or absence of acetate, which could be involved in the regulation of gene expression.
Components involved in ethylene, auxin, salicylic acid and calcium signalling were downregulated in
mixotrophy, pointing for a complex network of regulation of gene expression and cell functions. Even
if further work is necessary, these signalling components may have a role in the regulation of gene
expression in C. sorokiniana under autotrophic condition and possibly in other unicellular microalgae,

similar to what described in multicellular higher plants.
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MATERIALS AND METHODS

Microalgae cultivation. C. sorokiniana UTEX 1230 cells were grown in 1 L airlift photobioreactors in
BG11 medium at 450 umol m™2st with day/night cycles of 16/8 hours with CO, addition “on demand”
on the base of the pH of the medium as described in Cazzaniga et al., 2014, with the addition of acetate
(1 gr/L) in the case of mixotrophic cultivation. Daily cell counts and dry weight determination were
performed as described in Cazzaniga et al., 2014.

Photosynthetic parameters. Fluorescence parameters (F./Fm, NPQ) were measured by WALZ PAM-
100 fluorometer as described in Cazzaniga et al., 2014. Electrochromic shift (ECS) measurements at
520 nm were performed using a Joliot-type spectrophotometer JTS-10 (Biologic) as described in
Bailleul et al., 2010. Oxygen evolution curves were measured as described in Cazzaniga et al., 2014.
RNA extraction and RNA seq analysis. RNA was extracted from three independent biological replicates
of each culture condition at exponential phase using a modified TRIzol SIGMA-ALDRICH protocol. Cells
were disrupted by glass beads (Micro-organism lysing VKmix, Bertin Technologies). RNA samples were
further purified with the SIGMA Spectrum Plant Total RNA kit including a DNAse treatment step. RNA
guality and quantity were determined using a Nanodrop 2000 spectrophotometer (Thermo Scientific,
Wilmington, DE) and a Bioanalyzer Chip RNA 7500 series Il (Agilent, Santa Clara, CA). Directional RNA-
seq library preparation was performed starting from 1 ug total RNA using the TruSeq RNA Sample Prep
Kit v2 (lllumina Inc., San Diego, CA, USA) after capturing poly-adenylated transcripts. Library quality
was assessed with a High Sensitivity DNA Kit on a 2200 Tape Station (Agilent, Wokingham, UK).
Libraries were sequenced with an lllumina HiSeq. 1000 sequencer (lllumina Inc., San Diego, CA, USA)
generating ~22 million 100-bp paired-end reads per sample. Low-quality reads (>50 bases with quality
<7 or >10% undetermined bases) and putative PCR duplicate reads were removed and lllumina TruSeq
adapter sequences were clipped. Low-quality bases at read ends were trimmed (minimum quality 16,
minimum read length 50 bp) with cutadapt (http://code.google.com/p/cutadapt/).

Transcriptome de-novo assembly and differential expression analysis. De novo transcriptome
assembly was carried out with the Trinity (v. 2.0.6) software using reads of all samples as input with
the following parameters: -seqType fq, -max_memory 128 G, -CPU 20, -min_contig_length 200,
jaccard_clip, -normalize_ reads -normalize_by read_set, -SS_lib_type RF, and a default k-mer value of
25. Abundance of each transcript was calculated using the align_and_estimate_abundance.pl script
from Trinity software 2.0.6. Default settings were used except for the options -est_method RSEM -
aln_method bowtie -trinity_mode -prep_reference -SS_lib_type RFFR. RSEM version 1.2.2919 was
used to estimate the abundance of each transcript. The row count matrix was at first filtered removing
all the very low expressed genes showing a mean expression value below 10 reads count across all the

samples. The identification of the differentially expressed genes was performed using the negative
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binomial distribution-based method implemented in EdgeR (Robinson, McCarthy, and Smyth 2009).
The counts were normalized to take into account the different sequencing depth using the TMM
(Trimmed Mean of M-value) method implemented in EdgeR. Genes with a p-value lower or equal 0.05,
after false discovery rate correction, were considered significantly differentially expressed. Differential
expression analysis was performed using the negative binomial distribution-based method
implemented in DESeq on the summed read counts per transcript (Anders and Huber 2010).
Transcriptome functional annotation. The transcriptome functional annotation was performed by
means of a similarity search against the non-redundant protein database (NCBI) using Blastp and
setting an e-value threshold of 1e-5. Further annotation were retrieved using InterProscan5 (Jones et
al. 2014) against several different databases (PROSITE patterns, PRINTS, PFAM, PRODOM, SMART,
TIGRFAM and PANTHER) for the identification of conserved protein domains and functional
annotation. Gene Ontology annotations were assigned running Blast2GO 2.6.0 (Conesa et al. 2005) on
the blast and InterProscan results. Sequences were also analysed by KAAS (KEGG Automatic
Annotation Server) platform to obtain KO annotation (Kanehisa et al. 2016, 2017; Kanehisa and Goto
2000). Transcripts differently expressed with KO annotation were visualized by KEGG Mapper platform
(http://www.kegg.jp/kegg/tool/map_pathway.html), while the remaining transcripts functionally
annotated were manually inspected by retrieving the function of the closest homolog gene. List of
transcripts identified in the de novo C. sorokiniana assembled transcriptome with functional
annotation, where retrieved, are reported in Supplementary data, Data file S1. Trascriptome
completeness was evaluated by BUSCO analysis using as a reference a dataset of 303 universal single-
copy genes putatively universally found in eukaryotes as single copies (Simao et al. 2015).

Statistical analysis. Descriptive statistical analysis with mean and standard deviation were applied for
all the data reported except for differential gene expression analysis. Differential gene expression was
considered significant when the p-value associated to the comparison autotrophic vs. mixotrophic was
lower or equal 0.05, after the false discovery rate correction implemented in the DESeq algorithm. The
non-parametric Mann-Whitney was applied to compare the impact of autotrophic vs. mixotrophic
conditions, unless otherwise stated. All the analyses were performed using OriginPro 8 software.
Differences of P < 0.05 were considered significantly different.

Data availability. All the data generated during and/or analysed during the current study are available
from the corresponding author on reasonable request. All next-generation sequencing data and
contigs assembled from Illumina reads are available in the NCBI Bioproject PRINA416862. In the

Supplementary Dataset S3 the sequences of all transcripts identified in this work are reported.
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Table S1. Pigment analysis of C. sorokiniana cells in autotrophy vs. mixotrophy. Chlorophyll content

per cell is reported as pg of chlorophyll. Pigment data are reported normalized to 100 chlorophylls. Chl

a/b: chlorophyll a/b; Car: carotenoid; Nx: neoxanthin; Vx: violaxanthin; Ax: anteraxanthin; Lut: Lutein;

B-Car: B-carotene. Standard deviation (s.d.) are reported (n = 6).

chijcen | Mo jchleal ol cnib | Nx | vx | Ax | Lut | pecar

a/b r
Mixotrophy | 1.10E-07 | 271 | 3.50 | 73.04 | 2696 | 524 | 1.76 | 0.53 | 18.13 | 2.88
s.d. 143608 | 017 | 001 | 258 | 143 | 026 | 0.03 | 013 | 061 | 0.14
Autotrophy | 2.036:07 | 3.01 | 353 | 7508 | 24.92 | 524 | 1.87 | 0.47 | 18.00 | 2.79
s.d. 3.19E-08 0.50 0.16 6.86 3.42 0.11 0.13 0.05 1.03 0.02

Table S2. Photosynthesis and respiration rates. O, evolution/consumption were measured with a

Clark-type oxygen electrode. Standard deviation is reported (n = 4).

AUTOTROPHY s.d. MIXOTROPHY s.d.
(umol OI:r:'?)r(ng chl) 128.60 3.67 128.36 8.26
HaIf-saturatiot12 ir-11tensity 135.17 22,93 11599 711
(umol m?s™)
(umi?sgzh::i:;ls'l) 4.82E-09 1.43E-09 6.20E-09 9.84E-10
(umolla(::‘zpli'nr'ftrLognChl'l) 23.75 8.55 53.61 11.28
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Table S3. Identification of 18S transcripts in C. sorokiniana de novo assembled transcriptome using

C. sorokiniana UTEX1230 18S sequences available at NCBI.

C. sorokiniana First sequence aligned in
UTEX 1230 de novo C. sorokiniana e-value Identities Gaps
sequence transcriptome
10/1140
KR904895.1 0 1110/1140 (97%)
(1%)
TR1035|c8_g4 il 11/1436
KJ676112.1 0 1404/1436 (98%)
(1%)
KP645225.1 0 737/739 (99%) 1/739 (0%)

Table S4. Putative regulative phosphatases and kinases differently regulated in mixotrophy

compared to autotrophy in C. sorokiniana.

Transcript logFC Description
DOWNREGULATED IN MIXOTROPHY
TR7705|c0_g1_i2 -4.34233 Phytochrome-associated serine threonine-
phosphatase
TR7716|c0_g8 il -1.85008 phosphatase 1
TR7716|c0_g8 i3 -3.9312 phosphatase 1
PHOSPHATASES
TR51265|c0_gl1_i12 -1.62184 ser thr phosphatase family
TR51284|c0_g1 i3 -7.73373 probable serine threonine phosphatase 2A
regulatory subunit B delta isoform X2
TR13958|c1_g2 il 7.875484 phosphoinositide phosphatase SAC9
TR9072|c0_gl_i2 -11.4016 Serine threonine- kinase CTR1
TR1026|c3_g5_i8 -9.20802 Serine threonine- kinase CTR1
TR1066|c3_g2_il6 -10.2851 cyclic nucleotide dependent kinase
TR1066|c3_g2_il17 -9.15322 cyclic nucleotide dependent kinase
TR43814|cl_g2_i4 -10.8645 Serine threonine- kinase CTR1
KINASES TR43853|c0_g2_il -2.46651 probable receptor kinase At5g39020
TR44339|c0_g1 i1 -7.78603 Serine threonine- kinase CTR1
TR45584|c0_g4 _i9 -3.22761 Serine threonine- kinase
TR50242|c0_g1 i3 -3.82414 serine threonine- kinase
TR50242|c0_gl_i4 -2.33285 serine threonine- kinase
TR53297|c1_gl_i17 -9.12487 Calcium-dependent kinase 29
TR9072|c0_gl_i2 -11.4016 Serine threonine- kinase CTR1
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UPREGULATED IN MIXOTROPHY

TR11354|c0_g1 il 7.287051 | phosphatase 1 regulatory subunit 7

PHOSPHATASES TR13958|c1_g2 il 7.875484 | phosphoinositide phosphatase SAC9
TR24888|c0_gl_i2 7.714205 phosphoinositide phosphatase SAC6-like
TR17426|c0_g2_i3 2.274882 | Serine threonine- kinase CTR1
TR2167|c0_g1 i1 8.781701 | Serine Threonine kinase
TR2977|c0_gl il 4.872873 | cyclin dependent kinase
TR4032|c0_g5_i10 7.556271 | serine threonine- kinase receptor R831
TR43839|c0_g1 i5 8.889553 | serine threonine- kinase ATR

KINASES

TR45177|c0_gl1_i20 3.200082 | serine threonine- kinase
TR45177|c0_g1_i32 8.550787 | serine threonine- kinase
TR45657|c5_g6_i5 7.554033 | serine threonine- kinase receptor R831
TR51340|c1_g3_i12 7.626945 | probable serine threonine- kinase At1g09600
TR981|c0_gl_i4 9.336607 | Serine threonine- kinase CTR1

Supplemental Figures

Figure S1. De novo assembly of C. sorokiniana transcriptome, distribution of transcript lengths

among the different sequences.
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Figure S2. Functional annotation of C. sorokiniana transcriptome. Panel A. data distribution among
total transcripts with Gene Ontology (GO) and KEGG Orthology (KO) annotation. Panel B: number of
sequences with a number of GO terms reported on the X-axis. Panel C: Distribution of annotated

sequences among different species.
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Figure S3. Western blot analysis on photosynthetic subunits. SDS-PAGE gels were transferred on
nitrocellulose filters which were cut between 30 and 40 KDa and between 50 and 60 KDa according to
the migration of prestained molecular marker (NIPPON Genetics Europe, PINK Prestained Protein
Ladder). Immunoblotting analysis using LHCII, PSBS and COX2 specific antibodies were performed on
the filters with protein at lower apparent MW, CP43 on the filters with proteins at intermediate (50-

40 KDa) apparent MW, and PsaA on the filters with proteins at higher apparent MW.
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Figure S4. Carbon fixation pathways in C. sorokiniana. Carbon fixation pathways visualized on the base
of KEGG Map Pathway (http://www.kegg.jp/kegg/tool/map_pathway.html) (Kanehisa et al. 2016,
2017; Kanehisa and Goto 2000). Metabolic reactions for which catalysing enzymes were detected in
the C. sorokiniana transcriptome are indicated in yellow in the case of enzymes not differentially
expressed, blue and red in case of enzymes respectively upregulated and downregulated in
mixotrophy. PPC: phosphoenolpyruvate carboxylase; PPDK: pyruvate-orthophosphate dikinase;
AspAT: aspartate aminotransferase; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase
(phosphorylating)

CARBOM FIXATION IN PHOTOSYNTHETIC ORGAMNISMI

(_Carbon fhation pathways in pr\:kerymes)

e esisf ™~~~ —
ryptophin biosyuthesis \ 41222
v
T {41213 e D-Fructase 67

OStarch
i 311

[3L33 Reductive pentose <_kﬁ
hosphate cycle
FC P -Bensyucn eyele) Glucnn:‘ngenesls

| 41213
be{5311 I Glyoesclichyes-3P

D-Fructose 1,6F2

Y
Sedoheptuloce OI Sedoheptulose-TP Glycerone-P J
2 i.l 1 121.03)[ 12159
Ribose-5PO) L2t GAPDH
1 3-Bisphospho-
s
Ribulose-5F O 5131 O
4 Divarbozylic acid eyele ST g Fyhiose3
oG
(atmnsphere) PPC e ? AL

Glycerate-3P £

Phosphoenol O 41131 © Oaloasetate !
pyrrvate A |
R P PRV TS (PR G R Ty o Glyoigrlate and dicarbozylate
€02 fatrmosphere) metabolism
- =

1.1.1.40 dalate

Pymnvate Ot
i—t. ——

COz

Aspartate 2611 / o2
: T [2611] : {oundle-sheeth celly
Phosphoenol-
ASPAT [2511] [11183] | e
o =
(dark) (light)
~ dildeh Oraloacetate I - '
E [27s1] I | E 2791
a Alaning Pymwvate | 8 a )
2612 —T—C*2612 0 | Starch Pymvate O
|
I,
I
|
|
|
|
|
|

154


http://www.kegg.jp/kegg/tool/map_pathway.html

Chapter 2 | Section A

Supplemental Datasets

Dataset S1. List of C. sorokiniana transcripts identified in the de novo assembled transcriptome with
functional annotation retrieved by blast2go. Available at https://doi.org/10.1038/s41598-018-24979-8.
Dataset S2. List of C. sorokiniana transcripts differently regulated in mixotrophy compared to
autotrophy. Available at https://doi.org/10.1038/s41598-018-24979-8.

Dataset S3. FASTA sequences of all transcripts identified in this work in C. sorokiniana cells grown in

autotrophy or mixotrophy. Available at https://doi.org/10.1038/s41598-018-24979-8.
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In this section genetic basis of the highly productive phenotype of C. vulgaris was examined. Chlorella
vulgaris is a fast-growing fresh-water microalga cultivated on the industrial scale for applications
ranging from food to biofuel production. To advance our understanding of its biology and to establish
genetics tools for biotechnological manipulation, we sequenced the nuclear and organelle genomes of
Chlorella vulgaris 211/11P by combining next generation sequencing and optical mapping of isolated
DNA molecules. This hybrid approach allowed us to assemble the nuclear genome in 14 pseudo-
molecules with an N50 of 2.8 Mb and 98.9% of scaffolded genome. The integration of RNA-seq data
obtained at two different irradiances of growth (high light, HL versus low light, LL) enabled us to
identify 10 724 nuclear genes, coding for 11 082 transcripts. Moreover, 121 and 48 genes, respectively,
were found in the chloroplast and mitochondrial genome. Functional annotation and expression
analysis of nuclear, chloroplast and mitochondrial genome sequences revealed particular features of
Chlorella vulgaris. Evidence of horizontal gene transfers from chloroplast to mitochondrial genome
was observed. Furthermore, comparative transcriptomic analyses of LL versus HL provided insights

into the molecular basis for metabolic rearrangement under HL versus LL conditions leading to
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enhanced de novo fatty acid biosynthesis and triacylglycerol accumulation. The occurrence of a
cytosolic fatty acid biosynthetic pathway could be predicted and its upregulation upon HL exposure
was observed, consistent with the increased lipid amount under HL conditions. These data provide a
rich genetic resource for future genome editing studies, and potential targets for biotechnological
manipulation of Chlorella vulgaris or other microalgae species to improve biomass and lipid

productivity.
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INTRODUCTION

Photosynthetic conversion of light into chemical energy for CO; fixation is the primary process for
biomass production on our planet. The improvement of photosynthetic biomass production is thus
critical to satisfy the world demand for food and energy (Ort et al., 2015), which requires
fundamentally improving photosynthetic efficiency (Ort et al., 2015; Kromdijk et al., 2016; Kirst et al.,
2017). Among the organisms with the highest photosynthetic efficiency observed in real cultivation
cases, microalgae scored efficiencies of 1-3%, although this is still significantly lower compared with
their maximum potential (9-11%) (Walker, 2009), highlighting the potential for further improvement.
In addition, unicellular microalgae are promising platforms for biomass, food or biofuel production:
they can be cultivated in none-arable land in open ponds or in closed photobioreactors potentially
employing waste products and wastewater-derived effluents as nutrients (Lum et al., 2013). However,
biotechnological manipulation of microalgae to further boost biomass and metabolite productivity
require the availability of high-quality genomes and transcriptomes (Merchant et al., 2007; Radakovits
et al.,, 2012; Vieler et al., 2012; Ajjawi et al., 2017; Roth et al., 2017). High-quality genomes are
especially critical considering the newly developed technology of genome editing methods (Naduthodi
et al., 2018).

Among the many candidates of algal strains for biotechnological applications, a genus of considerable
interest is Chlorella (Blanc et al., 2010; Juneja et al., 2016; Zuniga et al., 2016; Sarayloo et al., 2017,
Arriola et al., 2018). Several species of Chlorella have been proposed or have already been used
commercially over the past 40 years as a food and feed supplement because of their fast growth and
their high resistance to biotic and abiotic stresses (Lum et al., 2013). Chlorella vulgaris is one of the
most cultivated species at the industrial scale because of the high biomass yield and the possibility to
grow either in autotrophic or mixotrophic conditions, in the latter case with the addition of reduced
carbon source to further improve the biomass yield (Lv et al., 2010; Zuniga et al., 2016).

Lipid metabolism is among the most investigated topics for microalgae industrial application with the
aim to produce biofuels or biomass with high nutrition content. De novo fatty acid biosynthesis occurs
in plant cells mainly in the chloroplast catalyzed by fatty acid synthase type Il (FAS2) multisubunit
complex, while animals and fungi possess FAS type | complexes (FAS1) located in the cytosol which
appear as large multi-enzyme complexes composed by one or two large polypeptide chains (Alboresi
et al.,, 2016). In type | system, the constituent catalytic components are covalently linked in
multifunctional megasynthases, whereas in type Il system, the catalytic components are independent
monofunctional polypeptides (Smith and Tsai, 2007). The occurrence of FAS1-like complexes in algal
cell have already been suggested in the oleaginous species Nannochloropsis oceanica and

Nannochloropsis gaditana (Vieler et al., 2012; Alboresi et al., 2016), but not yet in the green lineage,
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where, however, the genome resources available for green algae are limited. For Chlorella genus, only
a few species for which high-quality or draft genomes are available (Blanc et al., 2010, 2012; Gao et
al., 2014; Roth et al., 2017; Arriola et al., 2018; Guarnieri et al., 2018; Hovde et al., 2018). In the specific
case of C. vulgaris, a fragmented genome of 113 scaffolds has been recently reported (Guarnieri et al.,
2018), and the high-number of scaffolds jeopardizes an effective implementation of genome editing
methods. Indeed, the reported C. vulgaris genome has been obtained only based on short-reads
produced with Illlumina (San Diego, CA, USA) sequencing, whose assembly is challenging and error-
prone (Yoshinaga et al., 2018). Moreover, several questions remained unsolved, such as the presence
of genes involved in sexual reproduction (Merchant et al., 2007; Blanc et al., 2010; Roth et al., 2017)
or the molecular basis for fatty acid biosynthesis (Vieler et al., 2012; Alboresi et al., 2016). In this work,
in order to unravel the genetic information underlying C. vulgaris features, a combination of different
sequencing technologies and optical mapping led to the reconstruction at near-chromosome level of
the nuclear, chloroplast and mitochondrial genomes of C. vulgaris 211/11P strain. Moreover, we
provide functional annotation of the genomes with the help of comparative RNA-seq analyses of

strains grown under two most encountered conditions, that is, low light (LL) versus high light (HL).

RESULTS

Chlorella vulgaris biomass productivity and composition

Chlorella vulgaris 211/11P was grown photoautotrophically under LL (70 pmol m2s™) or HL (1000 pmol
m2 s) to evaluate its biomass productivity and composition. Cultivation in HL conditions caused a
strong decrease in chlorophyll and an increase in carotenoids/chlorophyll ratio (Figure 1 A and B). This
is consistent with previous report for other green algae species as a mechanism to improve
photoprotection and decrease the risk of photodamage (Bonente et al., 2012). Growth in HL was faster
compared with the LL conditions (Figure 1C). Accordingly, the dry weight harvested when cell density
reached the stationary phase was higher for cells grown in HL compared with cells grown in LL (Figure
1D). Cell diameter nevertheless remained similar in LL versus HL conditions (Figure 1E): the two-fold
increase in biomass accumulation observed in HL was thus related to a combined effect of increased
cell density and, more relevant, of increased weight of individual cell, likely due to different biomass
composition. As reported in Figure 1F, starch and protein content per cell were not significantly
different in LL compared with HL. Strikingly, HL-grown cells showed a strong increase in lipid
accumulation. In particular, the triacylglycerol (TAG) fraction of the total lipid in the cell was increased
from 12% in LL to 79% in HL. The increase in TAG content was accompanied by strong decrease in
monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and the phospholipid

phosphatidylglycerol (PG) (Figure 2A). This result is consistent with the reduced chlorophyll content

160



Chapter 2 | Section B

a) (b) (€)
6x10 1x10°% m L
5x107 03 1 x10°] LL fit .
p— 7
3 4x10 ~ T
= 3x1077 002 @
©] - & )
o 2x10 O Q
1x107 01
0.0 e —
LL HL LL HL 0 2 4 6 8 10 12
Time (days)
d e f Il TAG
@ 20 . (A)“ ® 0.5 I POLAR LIPIDS
_ i E S | EEMSTARCH
35 e =3 © 04{ _IPROTEIN
S | — m
£ 12 3 25 03] {
= [ £ 2 €% J
s 08 | I 2 9 0.2
© m £
g 0.4 E 1 8 0.1
0.0 : 0.0 L
LL HL LL HL LL HL LL HL LL HL

Figure 1. Growth curves, productivity and biomass composition of Chlorella vulgaris 211/11P in low light (LL) compared
with high light (HL). (a, b) Chlorophyll (Chl) content per cell (a) and carotenoid to chlorophyll ratio (b) in LL and HL. (c)
Growth curves of cells grown in LL and HL fitted by sigmoidal function (Hill function). (d) Dry weight of total biomass
harvested at the end of the growth curves reported in (a). (e) Average cell diameter at the end of the growth curves reported
in (c). (f) Biomass composition analysis in terms of lipids, proteins and starch. Lipid content are indicated either as
triacylglycerol (TAG) or as polar lipids (PL, the sum of major membrane lipids). Error bars are reported in terms of standard
deviation (n = 3 for data reported in a, b, e, f; n = 10 for data reported in (c) and (d)).

per cell observed in HL, being MGDG, DGDG, sulfoquinovosyldiacylglycerol (SQDG, not detectable in C.
vulgaris 211/11P) and PG the main lipids present in the thylakoid membranes where chlorophyll
binding proteins are embedded (Kobayashi, 2016). The fatty acid profile of cells grown in LL versus HL
condition is reported in Figure 2B: HL-grown cells present a strong increase in palmitic acid (16:0), oleic
acid (18:1), linoleic acid (18:2) and a-linolenic acid (18:3) with oleic acid as the most abundant fatty

acid in HL-grown cells (Figure 2B).

Development of a high-quality reference genome sequence of Chlorella vulgaris

In order to investigate the genetic basis underlying the highly productive phenotype of C. vulgaris
211/11P, we have sequenced, assembled and functionally annotated its nuclear genome. Genome
assembly was obtained by integrating different genomic approaches displaying complementary
features, i.e., PacBio producing long-reads, Illumina for accurate short-reads and Bionano optical
mapping providing high scaffolding power. Genome sequencing analysis was conducted initially
predicting a potential genome size of ~50 Mb, as for other Chlorella spp. (Blanc et al., 2010; Arriola et

al., 2018; Guarnieri et al., 2018). High coverage (~128x) raw PacBio reads (Table S1) were assembled
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Figure 2. Polar lipid and fatty acid composition in Chlorella vulgaris 211/ 11P cells grown in LL versus HL conditions. (a) A
given amount of lipid extracts, harvested from LL- or HL-grown conditions, was subjected to thin layer chromatography to
investigate polar lipid profile. (b) Fatty acid profiles obtained by gas chromatography techniques as detailed in Materials and
methods. Data are means of three biological replicates with standard deviation shown. Significantly different values in HL
versus LL are indicated by * (P < 0.05). MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; PG,
phosphatidylglycerol; PE, phosphatidylethanolamine; PC, phosphatidylcholine; DGTS, diacylglycerol N,N,N-
trimethylhomoserine.

into a draft genome assembly of 39.8 Mb (Table S2), consisting of 641 Kb and N50 of 1.8 Mb. To
improve the quality of the assembled genome, lllumina paired-end reads (~50x, Table S1), as well as
raw PacBio reads, were aligned to the PacBio-based assembly to correct sequencing errors: 3076
single-nucleotide variants (SNVs) and 32821 small insertions and deletions (InDel) were corrected,
whereas the remaining 81 SNV and 190 InDel account only for the 0.0007% of the reconstructed
genome (Table S3). The resulting polished PacBio-based contigs were anchored into a nearly
chromosome-scale assembly by integrating optical mapping data (~1400x) obtained using the Bionano
Genomics (San Diego, CA, USA) technology (Figure S1 and Table S1). As reported in Table S1, the
integration of Bionano data resulted into a genome assembly where 26 of the contigs obtained from
PacBio data were anchored into 14 scaffolds (Figure 3) with an N50 value of 2.8 Mb and the longest
scaffold of 5.4 Mb. Eight unplaced contigs were identified by subsequent manual analysis as part of
the chloroplast and the mitochondrial genomes, and they were therefore removed from the nuclear
genome assembly, remaining 29 unplaced contigs that counted only for <1.1%. The 14 scaffolds of the
nuclear genome contained 98.9% of the assembled C. vulgaris 211/11P genome, i.e. the highest
percentage when compared with other algal genomes available (Table 1). The generated assembly
represents a greater than 100-fold improvement in contiguity compared with the previously published

assembly of C. vulgaris UTEX395 (Table S4) and it has the highest N50 among other algal genomes of
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similar size as Chromochloris zofingiensis (Roth et al., 2017) and Chlorella variabilis (Blanc et al., 2010)

(Table 1).
Alignment plot
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E li: I genome. Chlorella vulgaris 211/11P genome was
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Chlorella vulgaris nuclear genome annotation and phylogenetic analysis

Identification of genes present in the assembled C. vulgaris 211/11P genome was performed by
integration of directional RNA-seq data obtained from C. vulgaris 211/11P cells cultivated in LL and HL
into the gene annotation pipeline. Genome annotation identified 10724 genes, coding for 11082
transcripts with an average length of 3062 bp and 8.12 exons per gene on average (Table 1). The gene
models predicted for C. vulgaris 211/11P were used to determine codon usage (Table S5), which is
found similar to the codon usage of C. reinhardtii (Merchant et al., 2007). The number of protein-
coding genes is significantly higher compared with the previous genome presented for C. vulgaris
UTEX395 where only 7100 transcripts were predicted (Guarnieri et al., 2018). Consistently, more than
20% of the genes identified in C. vulgaris 211/11P was not found in the draft genome of C. vulgaris
UTEX395 by local BLAST (Figure S2). To further evaluate the transcriptome quality and completeness,
Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis was performed on a benchmark of
303 genes putatively found in all eukaryotes in single copy: this analysis identified complete
information for 289 (95.4%) of orthologs and fragmented information for 3 (1%), while only 11 genes
(3.6%) were missing, demonstrating a high completeness of the de novo assembled genome.
Furthermore, when the mRNA-seq libraries were aligned to the genome assembly, 85.58 + 0.32% of
reads aligned uniquely (mean £ SD, n = 6) and an additional 11.81 + 0.37% aligned to multiple locations,
indicating that the genome assembly covered nearly all coding genes.

Functional genome annotation performed by BLAST2GO analysis reported 5642 associated to Gene
Ontology (GO) terms (Figure 4). As reported in Figure S3, considering the top-hit species distribution,
most of the C. vulgaris 211/11P genes (~71% of the total genes) were annotated with genes from

Chlorella variabilis, followed by Auxenochlorella protothecoides and Coccomyxa subellipsoidea.
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Figure 4. Gene Ontology (GO) classification of annotated Chlorella
vulgaris 211/11P genes. Chlorella vulgaris transcripts annotated using
the blast2Go program were functionally grouped based on the GO terms
‘molecular function’ (a), ‘cellular component’ (b) and ‘biological process’
(c). The distribution of the different groups is reported based on the
node score associated to each group considering GO term with node
score higher than 1%.

Chlorella vulgaris

211/11P (this work)

40 Mbp

Sequenced genome size

PacBio + BioNano

Genome technologies
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98.9%

% scaffolded genome
Scaffold N50
% G+C

2.8 Mbp
61%

10 724
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No of genes

Exon average length (bp)

Intron average Length (bp)
Ave Exons Per transcript

8.12

Table 1. Comparison of Chlorella vulgaris 211/11P genome with other
known microalgae genomes.
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Functional annotation of the C. vulgaris 211/11P genome was then exploited for the analysis of the
phylogenies of the 211/11P strain. In particular, 111 single-copy genes shared with other species with
an available genome were used for protein alignment and phylogenetic tree construction. As reported
in Figure S4, C. vulgaris 211/11P is closely related to C. vulgaris UTEX395 strain and to other species

from the Chlorella genus as C. variabilis and A. protothecoides.

Chloroplast and mitochondrial genomes

Complete (circular) chloroplast genome of C. vulgaris 211/11P was reconstructed with no gaps or
ambiguous nucleotides and is 165504 bp in length with 121 genes encoded (Figure 5 and Table 2). The
overall GC content of the chloroplast genome is 32%, increased to 35% in coding sequence. Among the
genes found in the chloroplast genome six genes encode for rRNA, 18 for ribosomal proteins, 46 genes

encode for tRNA, seven genes are component of RNA polymerase and two genes encode for a

Figure 5. Chlorella vulgaris 211/11P chloroplast and
mitochondrial genomes. Chloroplast (a) and mitochondrial (b)
genomes were assembled based on PacBio data. Location of
putative genes and their sense of transcription are indicated.
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translation initiation factor (infA) and a protein elongation factor Tu (tufA). In total, 31 genes were
identified encoding for subunits of the complexes involved in the light phase of photosynthesis (PSI,
PSII, cytochrome bsf and ATP synthase) and a gene for the large subunit of RUBISCO was also identified.
Among the other genes present in the C. vulgaris 211/11P chloroplast genome, ycfl-ycf4 were
identified with the ycf3 and ycf4 involved in PSI assembly (Boudreau et al., 1997). Genes involved in
plastid division as minD and minE were also found in the chloroplast genome, as previously reported
for other Chlorella spp. (Wakasugi et al., 1997). Notably, three introns were identified in genes psbA,
rpoC2 and rrnl as previously reported for C. reinhardtii (Maul et al., 2002). RpoB, chiL and rps3 genes
were also found to contain introns.

C. vulgaris 211/11P mitochondrial genome was entirely reconstructed as having a 91 560 bp size with
48 genes encoded, for a total of 16% of the coding region (Figure 5, Table 2). The large size of C. vulgaris
211/11P mitochondrial DNA is consistent with the mitochondrial genomes of other green algae as C.
zofingiensis or higher plants, but significantly larger than the mitochondrial genome of some other
green algae such as Chlamydomonas eugametos or C. reinhardtii (Denovan-Wright et al., 1998; Roth
et al., 2017). The increased size of C. vulgaris 211/11P mitochondrial genome is largely due to the
occurrence of high level of non-coding sequences (84%). Among the genes in the mitochondrial
genome, four genes encode for rRNA and 30 for tRNA, while three genes encode for ribosomal
proteins. Seven genes encoding for subunits of complex I, and two genes for complexes IIl and IV
subunits (cob and cox1 respectively) were also identified together with a gene for alpha subunit of
mitochondrial ATP synthase. Notably, a pseudogene rpoC2 was found also in the mitochondrial
genome, even if with a low expression profile (rpoC2). rpoC2 was usually found in the chloroplast

genome coding for a RNA polymerase beta subunit (Shimada et al., 1990) but traces of rpoC2 plastid

Chlamydomonas Chlorella Nannochloropsis
Chremochloris reinhardtii (v5.5) variabilis gaditana B-31
Chlorella vulgaris zofingiensis (Merchant et al., 2007;  NC64A (Blanc  (Corteggiani Carpinelli
Chloroplast genome 211/11P (this work) (Roth et al., 2017) Blaby et al., 2014} et al., 2010) et al., 2014)
Sequenced genome size 165 kbp 181 kbp 204 kbp 125 kbp 115 kbp
Annotated protein-coding 71 71 67 + 1 (tscA) 79 93
genes
Annotated rRNAs 4 6 10 3 6
Annotated tRNAs 46 31 29 31 28
% G+C 31.7% 31% 34% 34% 54.2%
Chlamydomonas Nannochloropsis
Chromochloris reinhardtii (v5.5) Chlorella gaditana B-31
Chlorella vulgaris zofingiensis (Merchant et al., 2007;  variabilis NC64A (Corteggiani
Mitochondrial genome 211/11P (this work)  (Roth et al,, 2017)  Blaby et al., 2014) {Blanc et al., 2010)  Carpinelli et al,, 2014)
Sequenced genome size 92 kbp 42 kbp 16 kbp 78 kbp 42 kbp
Annotated protein-coding 14 22 8 32 5
genes
Annotated rRNAs 4 6 14 3 2
Annotated tRNAs 30 24 3 27 26
% G+C 29.8% 36% 45% 28% 54.2%

Table 2. Comparison of Chlorella vulgaris 211/11P chloroplast and mitochondrial genome with other known microalgae
genomes.
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gene in the mitochondrial genome have been already reported occasionally in mitochondrial genome
of land plants (Goremykin et al., 2009; Straub et al., 2013). This result suggests an uncommon
horizontal gene transfer from chloroplast to mitochondrial genome in Chlorophyta which was
previously reported only upon land colonization (Wang et al., 2007; Gandini and Sanchez-Puerta,

2017).

Differential gene expression in high light versus low light conditions

RNA-seq data allowed us to identify the genes which were differently expressed in LL versus HL. In
particular, 684 genes were upregulated in LL, while 816 genes were upregulated in HL. GO classification
of differentially expressed genes is reported in Figure S5. Putative transcription factors upregulated in
LL or HL are reported in Table S6 with 23 genes and 16 genes, respectively, being identified. The genes
showing the highest differential transcription (highest log2FC) in LL or in HL are reported in Table S7:
genes encoding for chlorophyll binding proteins, nitrate transporter, ferric reductase, protein involved
in the cell cycle and a subunit involved in mRNA stability were identified among the genes upregulated
in LL. These findings agree with the higher content of chlorophyll per cells in LL, and with the
involvement of nitrogen and iron metabolism involved in the biosynthesis of these pigments. In HL the
genes showing the strongest upregulation were those encoding proteins for lipoylation, acetyl-CoA
synthetase, early light-inducible chloroplastic-like proteins, H (+) hexose cotransporter and a
cryptochrome subunits. Genome annotation and analysis of differentially expressed genes were then
used to elucidate the different metabolic pathways and their changes in LL versus HL. Some of these

pathways are detailed in the following sections.

Identification of genes involved in key metabolic pathways

The functional annotation of the C. vulgaris 211/11P genome allowed the identification of genes
coding for the key enzymes involved in the different metabolic pathways of the cell, such as glycolysis,
gluconeogenesis, the tricarboxylic acid (TCA) and glyoxylate cycles, photosynthesis, lipid and pigment
metabolism (Table S8-510). Genes involved in some critical metabolic pathways and cellular functions

are described in detail here.

Photosynthesis. All genes, except for the psbX gene, encoding subunits of the membrane complexes
or soluble electron carriers involved in the light phase of photosynthesis, are encoded either by nuclear
or chloroplast genomes of C. vulgaris 211/11P (Table S8). Genes encoding for PSII core subunits were
identified in the chloroplast and nuclear genome, in agreement with previous data reported for A.

thaliana and C. reinhardetii (Daniell et al., 2016). No homologous gene could be found in the C. vulgaris
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211/11P genome only in the case of the psbX gene. PSBX is a low molecular mass subunit of
Photosystem Il, which has been reported previously in higher plants and in some algae (Shi et al., 1999;
Shi and Schréder, 2004). Antisense genotypes on this subunit in A. thaliana or knockout mutants in
cyanobacteria were characterized by a 30—40% reduction of PSIl accumulation, but no apparent
growth phenotype was observed, suggesting this subunit is not essential for the photosynthetic
process (Shi et al., 2012).

For the PSI complex, all core subunits were identified with the exception of PsaM and PsaX: PsaM has
been previously reported in cyanobacteria, in some green algae, mosses and gymnosperms but not
angiosperms, whereas PsaX has only been found in cyanobacteria (Scheller et al., 2001). Different
genes were identified in C. vulgaris 211/ 11P genome encoding for Light Harvesting Complexes (LHC),
the pigment-binding antenna proteins bound to the periphery of photosystems devoted to light
harvesting and photoprotection.

While both LHCIl and LHCI type complexes could be identified, being bound to PSIl and PSI respectively,
no gene coding for a LHCB6 (CP24) protein was found, supporting that this PSIl antenna proteins
appeared only in land plant, in agreement with previous finding (Koufil et al., 2016). Interestingly a
homolog for the LHCB4 (CP29) subunit could not be found in the C. vulgaris UTEX395 genome (Table
S8). Most of the genes encoding for LHC complexes were heavily downregulated in HL, in agreement
with the reduced chlorophyll content per cell observed in this condition (Figure 1).

Notably both the LHC-like subunits PSBS and LHCSR were found in C. vulgaris 211/11P encoded by
single genes: these subunits are involved in the photoprotective mechanism known as non-
photochemical quenching (NPQ), where a significant portion of the excitation energy absorbed by
photosystems is thermally dissipated (Li et al., 2000; Peers et al., 2009). Distinct from C. reinhardtii,
where LHCSR subunits are strongly overexpressed in HL (Peers et al., 2009), /hcsr gene in C. vulgaris
211/11P is constitutively expressed either in LL- or HL-grown cells (Table S8). Also, for psbs, C. vulgaris
211/11P behaves differently compared with C. reinhardtii: in the latter psbs is only transiently
expressed under UV or HL conditions (Allorent et al., 2016; Correa-Galvis et al., 2016; Tibiletti et al.,
2016), whereas in C. vulgaris 211/11P the psbs gene is always expressed but upregulated in HL (Table
S8), as in the case of A. thaliana (Ballottari et al., 2007). These results suggested a different regulation
of NPQ in C. vulgaris 211/11P compared with C. reinhardtii, even if the potential role of LHCSR and
PSBS in NPQ induction in the former require additional confirmatory experiments.

Genes encoding for protein subunits reported in C. reinhardtii and involved in alternative chloroplast
electron transport pathways are present in the C. vulgaris 211/11P genome, but not differently
expressed in LL or in HL (Table S8), such as PGRL1 (Petroutsos et al., 2009), PGR5 (Johnson et al., 2014)

and a type Il calcium-dependent NADH dehydrogenase (NDA2) (Desplats et al., 2009; Saroussi et al.,
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2016), involved in cyclic electron flow or PTOX involved in chlororespiration (Rumeau et al., 2007,
Houille- Vernes et al., 2011).

For the dark phase of photosynthesis and carbon fixation, all subunits previously reported to be
involved in this pathway have been identified (Table S8) but generally not differently expressed in LL
versus HL. Only phosphoglycerate kinase and ribose 5-phosphate isomerase showed upregulation in
LL: these enzymes are also involved in the oxidative pentose phosphate pathway, which might be more
relevant in LL than in HL.

Notably, based on the KEGG Mapper tool, all enzymes required for a C4-like carbon fixation pathway
are present in the C. vulgaris 211/11P genome (Figure S6), with the key enzyme involved in carbon
fixation in C4 compound phosphoenolpyruvate carboxylase (PPC), encoded by two genes g3928 and
g4635, predicted in the cytosol and in the mitochondria, respectively. These two isoforms of PPC might
have a role in oxaloacetate formation in the anaplerotic reactions, or for gluconeogenesis or as
alternative carbon fixation to RUBISCO, as previously suggested for C. sorokiniana (Cecchin et al.,

2018).

Carotenoid biosynthesis. Carotenoid biosynthetic genes were identified in the C. vulgaris 211/11P
genome (Table S8). Each of the genes involved in carotene and xanthophyll biosynthesis was found in
single copy with some particular genes such as prolycopene isomerase, {-carotene desaturase and -
carotene isomerase being identified in the C. vulgaris 211/11P but not in the C. vulgaris UTEX395
genome. Notably, a gene coding for neoxanthin synthase could be identified in C. vulgaris 211/11P
(Figure S7), catalyzing the synthesis of neoxanthin from violaxanthin (Dall’Osto et al., 2007), even if
further experimental evidences are required to support the enzymatic activity of the putative
neoxanthin synthase herein identified. Most of the genes encoding for enzymes involved in carotenoid
biosynthesis were present in higher levels in HL (Table S8), in agreement with the increased carotenoid
content per cell identified in this condition (Figure 1). In the C. vulgaris 211/11P genome no gene
coding for a beta-carotene ketolase (BKT) was identified. This is the key enzyme together with a
hydroxylase (CRTZ) for astaxanthin biosynthesis from beta-carotene or zeaxanthin in different algal
species known to accumulate astaxanthin as Haematococcus lacustris (formerly known as
Haematococcus pluvialis) or C. zofingiensis (Zhong et al., 2011). Whereas CTRZ is present in C. vulgaris
211/11P and upregulated in HL (gene g8453), the absence of BKT explains the absence of astaxanthin
in this organism and suggests the possibility of biotechnological manipulation to induce the

accumulation of this carotenoid that would have increased value to the market for C. vulgaris.
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Glycolysis, gluconeogenesis and oxidative pentose phosphate pathway. Complete set of genes
encoding for glycolysis and gluconeogenesis were retrieved in the Chlorella vulgaris 211/11P genome.
Most of these genes were not differently expressed in LL versus HL except for genes coding a
chloroplastic phosphoglycerate kinase and a cytoplasmic fructose-bisphosphate aldolase, and
fructose- 1,6-bisphosphatase |, which were all downregulated in HL. While fructose-bisphosphate
aldolase might be involved in both glycolysis and gluconeogenesis, fructose-1,6-bisphosphatase | is
specifically involved in gluconeogenesis, leading to the accumulation of fructose-6P (Rufty and Huber,
1983). Considering the cytoplasmic predicted localization of both enzymes fructose-bisphosphate
aldolase and fructose-1,6-bisphosphatase | upregulated in LL, a possible downregulation of cytosolic
gluconeogenesis in HL can be proposed as a consequence of redirection of carbon flow towards lipid
accumulation (Figure 1). The upregulation of chloroplastic phosphoglycerate kinase in LL is consistent
with upregulation of the gene encoding ribose 5-phosphate isomerase (Table S8). These enzymes are
involved in both carbon fixation and the oxidative pentose phosphate pathway and their upregulation
in LL might be related to reduced photosynthetic NADPH formation at low irradiance, therefore with
increased requirement for NADPH formation by oxidative pentose phosphate pathway. Further

experimental evidence is required to support this hypothesis.

TCA cycle and glyoxylate cycle. Genes encoding for enzymes involved in the TCA cycle and the
glyoxylate cycle were identified in C. vulgaris 211/11P. Among these genes, differential expression in
LL versus HL was observed only for two genes encoding citrate synthase and malate synthase, both
upregulated in HL. Interestingly both enzymes catalyze reactions in which acetyl-CoA is a substrate
(Figure 6): citrate synthase catalyzes acetyl-CoA binding to oxaloacetate, forming citrate as the initial
step in the TCA cycle or in the glyoxylate cycle. Malate synthase is involved in the glyoxylate cycle,
catalyzing malate formation from acetyl-CoA and glyoxylate (Boyle and Morgan, 2009; Plancke et al.,
2014). Glyoxylate cycle has been reported to be in ancestral peroxisomes in C. reinhardtii (Kong et al.,
2017) but its localization should be further investigated in C. vulgaris. HL acclimation therefore
stimulated upregulation of genes encoding for enzymes involved in acetyl-CoA consumption, which is
likely to be more abundant at high irradiance due to increased carbon fixation and increased sugar

production.

Lipid biosynthesis. Genes encoding key proteins of lipid metabolism were identified in C. vulgaris
211/11P genome, most of which showed alterations in transcription upon HL exposure (Table S9).
Consistent with increased TAG accumulation under HL (Figure 1F), the genes encoding enzymes

involved in earlier steps of de novo fatty acid synthesis, the formation of glycerol-3-phosphate (G3P)
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and TAG packaging proteins were upregulated (Table S9). Intriguingly, no change in the expression of
genes involved in polar membrane lipid synthesis nor TAG assembly enzymes was observed. Among
the highly upregulated genes was a gene coding for acetyl-CoA synthetase (ACS). ACS is involved in the
pyruvate dehydrogenase bypass pathway, by which acetyl-CoA is produced by glycolytic pyruvate
through the intermediates acetaldehyde and acetate (Lin and Oliver, 2008). The importance of ACS
enzymes in lipid biosynthesis in plant cells has been demonstrated in A. thaliana, in which mutations
in acs genes caused a strong reduction in plant fitness (Lin and Oliver, 2008). Two genes coding for ACS
enzymes were identified in C. vulgaris 211/11P, g2176 and g2145, the former being predicted in the
cytosol, while the latter in the chloroplast: only the gene encoding the cytosolic ACS was upregulated
in HL, suggesting a possible cytoplasmic biosynthesis of fatty acids triggered by HL exposure (Figure 6).
However, fatty acid biosynthesis in Chlorophyta was generally considered to occur in the chloroplast
catalyzed by fatty acid synthase (FAS) type Il complex, while cytosolic fatty acid biosynthesis occurs in
fungal/animal cells catalyzed by FAS type | complex (Schweizer and Hofmann, 2004). In HL conditions,
several genes encoding for FAS type Il subunits were downregulated (Figure 6 and Table S9), with the
only exception being the chloroplastic malonyl-CoA: ACP transacylase. Intriguingly, in addition to genes
coding for FAS type Il subunits, a single large gene encoding for polyketide synthase (PKS)/FAS type |
multisubunit complex was also identified (g276). The occurrence of PKS/FAS1-like complexes in algal
cells has already been reported in the oleaginous species Nannochloropsis oceanica and
Nannochloropsis gaditana, and suggested to be involved in cytosolic biosynthesis of fatty acids (Vieler
et al., 2012; Poliner et al., 2015; Alboresi et al., 2016). For Chlorophyta, several PKS multisubunit
complexes have been reported (Poliner et al., 2015; Heimerl et al., 2018), even if their function is still
under debate. For C. reinhardtii, a PKS complex has been reported to be expressed only during zygote
formation and to be involved in zygote maturation (Heimerl et al., 2018). The putative PKS/FAS type |
gene identified in C. vulgaris 211/11P is 55 kbp and contains all the protein domains required for fatty
acid biosynthesis containing 11 B-ketoacyl synthetase domains, nine ketoreductase domains, nine
dehydroreductase domains and six enoylreductase domains (Smith and Tsai, 2007; Schweizer and
Hofmann, 2004) (Figure S8). The absence of an acyltransferase domain can be compensated by the
cytoplasmic isoform of malonyl-CoA: ACP transacylase enzyme (Figure S9), which catalyzes the
acyltransferase reaction required for fatty acid biosynthesis by the PKS/FAS type | multisubunit
complex identified. Consistent with the increase in several polyunsaturated fatty acids (Figure 2),
upregulation under HL of FAD4 (Zauner et al., 2012) and FAD7 (Nguyen et al., 2013) encoding genes
was found.

In addition to de novo fatty acid biosynthesis, enzymes involved in the supply of glycerol backbones

and TAG packaging were upregulated in HL. Two G3P dehydrogenase (GPD) enzymes were indeed
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identified in the C. vulgaris 211/11P genome, but only the non-chloroplastic GPD2 was upregulated in
HL: this enzyme has been reported in C. reinhardtii to be involved in supplying G3P for TAG synthesis
and accumulation in nutrient starvation (Driver et al., 2017).

HL acclimation led to an increased accumulation of several plastid (PLAP/fibrillin) lipid-associated
proteins: these subunits have been reported to be involved in the formation of lipid droplets (LDs)
observed in cells accumulating neutral lipids or carotenoids (Youssef et al., 2010), which are both
strongly increased under HL in C. vulgaris 211/ 11P (Figure 1). Surprisingly, no genes encoding oleosin
or major lipid droplet protein (MLDP) were identified in C. vulgaris; these proteins are the main LD-
associated proteins reported in higher plants (Murphy, 2012) and green algae (Moellering and
Benning, 2010), respectively. Two genes were identified encoding for caleosin, a calcium binding
protein that can be found in multicellular plants and green algae, and frequently described as an LD-
associated protein (Lin et al., 2012; Charuchinda et al., 2015). Among the two caleosin genes identified
in C. vulgaris 211/11P, none was upregulated in HL, but rather the g8244 gene was downregulated
under these conditions. This result suggested that LD formation under HL involved not only de novo

synthesis of fatty acids and TAG accumulation but also synchronization with LD packaging proteins.

Identification of genes involved in meiosis and motility. C. vulgaris strains have been usually described
as nonmotile and asexual (Yamamoto et al., 2004). Genes previously reported to be associated with
meiosis and motility were searched for in the C. vulgaris 211/11P genome. Previously DMC1 and Rad51
DNA recombinase homologs were reported in the C. vulgaris genome (Guarnieri et al., 2018). In
addition to DMC1 and Rad51 DNA recombinase homologs, the main genes involved in meiosis (Malik
et al., 2007) were present and transcribed in the C. vulgaris 211/11P genome (Table S8) and this
situation is similar to that previously reported for other green algae such as C. zofingiensis (Roth et al.,
2017) or C. variabilis NC64A (Blanc et al., 2010) in which sexual reproduction is cryptic and not well
defined. This result suggested a possible sexual reproductive stage also in C. vulgaris 211/11P with
gamete formation. In agreement with this finding, a gene in the C. vulgaris 211/11P genome encoding
gametolysin was found (g3347), together with a gene encoding a protein containing a domain with a
putative CGS1/HAP2 function and that is essential for cell fusion (Blanc et al., 2010; Wong and Johnson,
2010) (Figure S10). The genes involved in motility were then investigated by comparison with the genes
listed in CiliaCut, a group of genes identified in C. reinhardtii involved in the formation of sensory or
motility cilia and flagella (Merchant et al., 2007). Among the 195 genes in CiliaCut, 114 genes were
identified in C. vulgaris 211/11P (58.4%). In particular, 78.2% of the genes in CiliaCut that were present
in the diatom Thalassiosira pseudonana were present also in C. vulgaris 211/11P (Table S10): 84.2% of

the T. pseudonana genes in MotileCut (genes in CiliaCut involved in motile flagella functions) were
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present also in C. vulgaris 211/11P. This result suggested that C. vulgaris 211/11P might be able to
form gametes with motile flagella as previously observed for T. pseudonana during gametogenesis

(Moore et al., 2017).
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Figure 6. A schematic model of lipid biosynthesis in Chlorella vulgaris 211/11P. Proteins encoded by differently expressed
genes are indicated in red (upregulated in HL) or in blue (downregulated in HL). Similar color code is used for chemical
reactions catalyzed by differently expressed enzymes. ACCase, acetyl-CoA carboxylase; MCT, malonyl-CoA: ACP transacylase;
KAS, 3-ketoacyl- synthase; KAR, 3-oxoacy-ACP reductase; HAD, 3-hydroxyacyl-ACP dehydratase; ENR, enoyl- ACP reductase;
FAS1/2, fatty acid synthase type 1/2; SAD, stearate desaturase; FAD2, w-6 fatty acid desaturase, A12; FAD4, A3 palmitate
desaturase; FAD5, palmitate A7 desaturase; FAD6, w6 fatty acid desaturase; FAD7, chloroplast glycerolipid w3 fatty acid
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acid; PAP, phosphatidate phosphatase; DAG, diacylglycerol; DGAT, diacylglycerol acyltransferase; PLAPs/fibrillin, Plastid-
lipid-associated protein PAP/fibrillin family protein; ER, endoplasmic reticulum; TAG, triacyclglycerols.
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DISCUSSION

Integration of highly accurate lllumina sequencing with long-reads (PacBio) and optical mapping
(Bionano Genomics) allowed us to obtain the assembled genome of C. vulgaris 211/11P in 14 scaffolds
with a relatively good N50 of 2.8 Mb. This is a >100-fold improvement compared with the recently
released C. vulgaris genome (Guarnieri et al., 2018) (Table S4). We can speculate that the 14 pseudo-
molecules reconstructed may represent the chromosomes of C. vulgaris 211/11P, with 98.9% of
scaffolded genome, a much higher percentage compared with most other available genomes of green
algae (Table 1). The C. vulgaris 211/11P genome size of 40 Mbp was close to that of other members of
the Chlorella genus or closely related species (Table 2). The GC content of the C. vulgaris 211/11P
genome was similar compared with C. variabilis or C. reinhardtii, but higher compared with C
zofingiensis. The integration of RNA-seq data allowed us to obtain a detailed functional annotation of
the assembled C. vulgaris 211/11P genome with a number of transcripts and proteins consistent with
the data reported for C. variabilis, but almost halved compared with C. reinhardtii or C. zofingiensis,
revealing a strong variability in the green lineage. For comparison, for the microalga Nannochloropsis
gaditana (Heterokonta) with a much smaller genome (23 Mbp) a similar protein number compared
with C. vulgaris 211/11P was observed. Notably, exon and intron average length and the number of
exons per transcript were similar when compared with another member of the Chlorella genus,
Chlorella variabilis NC64A, but shorter compared with C. reinhardtii or C. zofingiensis (Table 1). It is
worth noting that the improved quality of genome and functional annotation of C. vulgaris 221/11P
strain allowed us to identify 2285 genes that were not previously predicted in C. vulgaris UTEX395
strain (Guarnieri et al., 2018), among which were genes highly differently expressed in LL versus HL
conditions, transcription factors putatively involved in HL or LL acclimation, enzymes involved in
carotenoid biosynthesis and genes involved in motility (Tables S6—510). The absence of these and other
genes in the previously reported genome of C. vulgaris UTEX395 strain could be related to the fact that
C. vulgaris 211/11P and UTEX395 strains are different (Figure S5) or to the low quality of the reported
C. vulgaris UTEX395 genome (Table S4).

The results obtained by genome assembly and functional annotation revealed the presence of some
peculiar features in C. vulgaris 211/11P in common with higher plants, but different from the model
organism for green algae, C. reinhardtii. Evidence for horizontal transfer from the chloroplast to the
mitochondria could be found in C. vulgaris 211/11P, as for fragments of plastid rpoC2 gene found as a
pseudogene in the mitochondrial genome. Chloroplast gene or gene fragments were indeed previously
observed only in mitochondria of higher plants, attributed to the earlier event of plastid to
mitochondria horizontal gene transfer to the common ancestor of extant angiosperms and

gymnosperms: the analysis of C. vulgaris 211/11P genome demonstrated that this horizontal gene
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transfer can be found also in some Chlorophyta, but not in the model organism for green algae C.
reinhardtii (Wang et al., 2007). The possible functions of plastid genes in mitochondrial genome is still
not clear, being usually not expressed (Wang et al., 2007). For C. vulgaris 211/11P, the plastid gene
rpoC2 was found in the mitochondrial genome as a fragment with a low expression profile: further
experiments are required to investigate its possible role in mitochondrial gene expression.

Another plant-like feature found in C. vulgaris 211/P is the mitochondrial genome size (91.5 kbp),
which is larger than the mitochondrial genome of C. reinhardtii (15.7 kbp) and more similar to the
mitochondrial genome found for higher plants (Blaby et al., 2014).

A mixed situation compared with higher plants and other green algae was found in C. vulgaris 211/11P
considering the genes involved in photoprotection. LHCSR subunits have been reported to be critical
for tuning photosynthetic efficiency and photoprotection in microalgae (Peers et al., 2009; Berteotti
et al., 2016) while PSBS has a similar function in higher plants (Li et al., 2000). In C. reinhardtii LHCSR
subunits are upregulated in HL (Peers et al., 2009) while PSBS is only transiently expressed in HL or
upon UV exposure (Allorent et al., 2016; Correa-Galvis et al., 2016; Tibiletti et al., 2016). In C. vulgaris
211/11P both LHCSR and PSBS genes are expressed in LL and HL, with only PSBS being upregulated in
HL (Table S8), adding further evidence of the strongly debated role of PSBS protein also in green algae
and not only in higher plants. LHCSR and PSBS accumulation and functioning should be further
investigated in detail in C. vulgaris to determine their role in photoprotection and HL acclimation.

In other cases, genes found in higher plants and in C. reinhardtii were not identified in C. vulgaris, as
for oleosins: these proteins are the major lipid droplet-associated proteins found in higher plants, but
their conservation was reported also for some green algae as C. reinhardtii and Volvox carterii (Huang
et al., 2013). C. vulgaris 211/11P was also characterized by the absence of genes encoding MLDP
proteins, the major proteins involved in LD formation in green algae (Moellering and Benning, 2010)
as for the other green alga species Auxenochlorella protothecoides (Lin et al., 2012). Rather, caleosins
and PLAP/ fibrillin proteins were the main proteins involved in LD formation in C. vulgaris 211/11P with
a strong upregulation of the latter under HL conditions in which TAGs are mainly accumulated (Figure
1). These finding suggested a divergent evolution among green algae, leading to specialized molecular
mechanisms at the base of the phenotypes observed with an evolutive pressure driven by interaction
with the environment. Caleosins have been reported to be present both in higher plants and in green
algae with a peroxidase activity associated that was proposed to be involved in oxylipin production
(Charuchinda et al., 2015): oxylipins are molecules produced by enzymatic or non-enzymatic fatty acid
oxidation that trigger the cell response to oxidative stress. In LL-adapted C. vulgaris 211/11P cells,
caleosin genes were upregulated (Table S9), suggesting their main role in LD formation in LL with the

possibility to produce oxylipin upon oxidative stress. In contrast, when cells were acclimated to HL
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conditions, these gene were downregulated, this was likely to be due to the previous activation of cell
mechanisms allowing HL acclimation and prevention of oxidative stress. Further experiments are
required to validate the role of caleosins and PLAP/fibrillin proteins in TAGs accumulation and HL
acclimation.

HL acclimation led to a strong increase in TAG and a decrease in the main lipids found in thylakoid
membranes, such as galactolipids MGDG, DGDG and the phospholipid PG. Reduction of thylakoid lipids
in HL is indeed consistent with a decrease in the chlorophyll content per cell and downregulation of
the main chlorophyll binding proteins, the LHC (Table S8) in these conditions, as a consequence of
increased irradiation and the reduced need for light harvesting. The observed TAG accumulation
suggested that increased carbon fixation redirects carbon flow towards fatty acid biosynthesis with
strong increase in the HL of palmitic acid (16:0), oleic acid (18:1), linoleic acid (18:2) and a-linolenic
acid (18:3) (Figure 2). These fatty acids are then assembled into TAGs and stored in LDs.

The genomic and transcriptomic data described here allowed us to draw a model based on this
phenotype, as discussed (Figure 6), taking into consideration that further events in translation or
posttranslational levels could also take place, affecting the highlighted metabolic pathways. Potential
dual sites for fatty acid biosynthesis in C. vulgaris 211/11P can be proposed based on identification of
cytosolic ACS involved in the pyruvate dehydrogenase bypass pathway (Lin and Oliver, 2008), a
PKS/FAS type | and a cytosolic malonyl-CoA: ACP transacylase. Cytosolic lipid production by PKS/FAS
type | is a common metabolic pathway in animal and fungal cells but it was recently suggested to be
present also in some microalgae species (Vieler et al., 2012; Alboresi et al., 2016); further experimental
evidence is required to support this finding in C. vulgaris. The similar starch content per cell observed
in HL further suggested that the increased carbon fixation caused increased triose-P to be used to
produce acetyl-CoA in the plastid and, in the cytosol, to produce precursors for fatty acid biosynthesis.
Accordingly, enzymes involved in cytosolic gluconeogenesis were downregulated in HL, suggesting a
preferential use of chloroplast-derived triose-P to produce pyruvate and acetyl-CoA. Increased lipid
accumulation in C. vulgaris 211/11P in HL can therefore be related to increased acetyl-CoA production
in the chloroplast and in the cytosol by ACSs leading to upregulation of enzymes involved in TAG
assembly, as the GDP2 enzyme and LD stabilization, as PLAP/fibrillin subunits (Figure 6). Further
experiments are required to validate the metabolic model proposed in Figure 6 that, at the present
stage, is based only on genomic and transcriptomic data. The different enzymes involved in lipid
accumulation (Table S9) and the transcription factor identified as differently expressed in HL versus LL
(Table S6) could be potential targets for biotechnological manipulation of C. vulgaris to increase lipid

production and biomass productivity.
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Interestingly, genes involved in sexual reproduction and motility were also identified in C. vulgaris
211/11P (Table S10) even if further research activity is required to induce gamete formation and
mating under laboratory conditions. Understanding sexual reproduction in this species would be
critical for accumulating in the same strain genetic traits for increased productivity.

In conclusion, the assembly and functional annotation of the C. vulgaris 211/11P genome potentially
enabled the application of genome-editing technologies in this species and allowed the identification
of potential targets for biotechnological manipulation of this organism, for its exploitation for biomass

and high value products or for transferring specific C. vulgaris 211/11P properties to other species.
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MATERIALS AND METHODS

Chlorella vulgaris cultivation. The C. vulgaris 211/11P strain was obtained from the Culture Collection
of Algae at Goettingen University (CCAP 211/11P strain). Cells were grown photoautotrophically in BG-
11 medium at 25°C in flasks in low (70 pmol photons m?2s) or high (1000 pmol photons m? s1) white
light irradiation with a 16 h light : 8 h dark photoperiod (Allen and Stanier, 1968).

Lipid, protein and starch analysis. Due to its strong cell wall, C. vulgaris 211/11P cells were first
sonicated three times in a solution containing 1 ml EDTA 1 mM and acetic acid 0.15 M. Total lipid was
extracted from sonicated cells following the method of Bligh and Dyer (1959). Lipid extracts were
separated by thin layer chromatography and quantified for neutral or polar lipids based on
densitometry and comparison with known amounts of lipid standards (Siaut et al., 2011). For fatty acid
composition analysis, one given fraction of the lipid extracts was converted to their fatty acid methyl
esters (FAMEs) and then analyzed using gas chromatography—flame ionization detection (GC-FID) as
detailed in Siaut et al. (2011). Proteins and starch content of the harvested biomass were analyzed as
reported previously in Cecchin et al. (2018).

DNA extraction and quality control. DNA was extracted from 500 ml C. vulgaris 211/11P liquid cultures
with a cell density of 5 x 107 cell per ml using the cetyltrimethyl ammonium bromide (CTAB) extraction
buffer. Extracted DNA was treated with 200 ug ml* RNase A at 37°C for 20 min and subsequently
purified using 1.8x Agencourt AMPure XP beads (Beckman Coulter s.r.l., Milan, Italy). DNA purity and
integrity were assessed using a NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilmington,
DE, USA) and by capillary electrophoresis on a 2200 TapeStation (Agilent Technologies, Santa Clara,
CA, USA), respectively. DNA quantification was performed using the Qubit dsDNA HS Assay kit (Life
Technologies, Monza, Italy).

lllumina sequencing. DNA (500 ng) was fragmented through sonication using a Covaris $220
instrument (Covaris, Woburn, MA, USA) and DNA-seq libraries were generated using the TruSeq DNA
kit according to the manufacturer’s instructions (lllumina, San Diego, CA, USA). Library length was
assessed by capillary electrophoresis on a 2200 TapeStation (Agilent Technologies) and quantified by
gPCR using primers annealing to the adapter sequences. DNA-seq libraries were sequenced on an
Illumina HiSeq1000 platform and generating 100-bp paired-end reads for a total of 2.5 Gb.

PacBio sequencing. Genomic DNA (16 pg) was used for the preparation of two independent single-
molecule real-time (SMRT) bell libraries according to the manufacturer’s protocol (Pacific Biosciences;
20-kb template preparation using BluePippin, SageScience, Beverly, MA, USA size selection system
with a 15-kb cut-off). Sequencing was performed on a PacBio RS-II platform (Pacific Biosciences, CA,

USA) generating 6.4 Gb of SMRT data using PacBio P6-C4 chemistry.
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BioNano genome mapping. High-molecular-weight DNA was extracted from the pellet of 2 L of cell
culture with optical density (OD);so = 5.3, corresponding approximately to a total of 3 g. The cell wall
was destroyed by grinding in liquid nitrogen. Ground cells were resuspended in IrysPrep Plant
Homogenization Buffer (Bionano Genomics) supplemented with 0.2% beta-mercaptoethanol and 1
mM spermine-spermidine (HB+) and filtered through a 40-um cell strainer. Nuclei were collected by
centrifugation at 4500 g for 20 min at 4°C. A centrifugation at 60 g for 2 min at 4°C was used to remove
debris, whereas nuclei were collected from the supernatant (3500 g for 20 min at 4°C). Nuclei were
further purified by centrifugation over an IrysPrep Density Gradient (Bionano Genomics, San Diego,
CA, USA) at 4500 g for 40 min at 4°C. The nuclei band (white layer) was collected from the gradient
interphase and washed two times in HB+ and collected by centrifugation at 2500 g for 20 min. Only
the nuclei pellet (white band) was collected with a wide bore tip and transferred for washing after each
centrifugation step. Nuclei were embedded in agarose plugs and high-molecular-weight DNA was
extracted as previously described (Stankova et al., 2016). The mega-base size of extracted DNA was
verified by pulsed-field electrophoresis (PFGE). DNA (300 ng) was labelled and stained using the Nt.
BspQl nicking endonuclease in combination with the NLRS DNA labelling kit (Bionano Genomics). The
nicked and labelled DNA was then loaded onto an IrysChip for imaging on the Irys system (BioNano
Genomics) for three runs of 30 cycles in one flow cell. Molecules of <150 kb in length, label SNR <2.75,
label intensity >0.6 and having less than 20 labels were removed. Bionano data were assembled into
consensus genome maps using the BioNano Solve pipeline (v5678.6119rel) with RefAligner (v.6119).
Genome assembly. The C. vulgaris 211/11P genome was assembled using FALCON (Chin et al., 2016)
v1.8.7. A second assembly run was performed using the 12% of PacBio subreads that did not align on
the first assembly, applying more relaxed parameters. The two assemblies were merged. PacBio
subreads were aligned to the assembly using pbalign (v0.2.0.138342) and then the GenomicConsensus
package (v0.9.2) with the Quiver algorithm was used to remove errors present in the consensus
sequences. To further improve the genome quality, a second polishing iteration was performed using
Illumina data: reads were aligned using BWA-MEM software (0.7.15-r1140) and the Pilon (v1.22) tool
was used to correct errors. A hybrid assembly combining the polished PacBio assembly with the optical
map was performed with the Bionano Solve Pipeline (v5678.6119rel), RefAligner (v.6119) using a
merging-step P-value of 10! and a ‘Min alignment length and Max endoutlier’ parameter of 80.

Organelle genome assembly. The organelle genomes were assembled using the Organelle_PBA
pipeline (Soorni et al., 2017). The sequences were then polished following the same approach used for
the nuclear genome. The alignment between the FALCON assembly and the organelle genomes was
performed using Blastn (v2.6.0). Those PacBio contigs aligning to the organelle genome with a

similarity of at least of 99% were manually removed.
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RNA extraction and RNA-seq analysis. RNA was extracted from 500 ml of C. vulgaris 211/11P in liquid
cultures with a cell density of 7 x 107 cell per ml. RNA quality and quantity were determined using a
NanoDrop 2000 spectrophotometer (Thermo Scientific) and a Bioanalyzer Chip RNA 7500 series |l
(Agilent, Santa Clara, CA, USA), respectively. Directional RNA-seq library preparation was performed
starting from 1 ug total RNA using the TruSeq RNA Sample Prep Kit v2 (Illumina Inc.) after capturing
poly-adenylated transcripts. Library quality was assessed using a High Sensitivity DNA Kit on a 2200
Tape Station (Agilent, Wokingham, UK) and quantification of libraries was performed by qPCR using
primers annealing to the adapter sequences. Libraries were sequenced with an Illlumina Next-Seq500
sequencer (lllumina Inc.) generating ~22 million 75-bp paired-end reads per sample.

Gene annotation. Gene annotation of the nuclear genome was performed using the unsupervised
RNA-seq-based BRAKER1 pipeline, which takes advantage of two gene predictors: GeneMark-ET 4.32
and AUGUSTUS 3.0.3 (Specht et al., 2011). Briefly, both RNA-seq data from the two different growth
conditions, LL and HL, were used for the annotation. Quality of reads obtained from each sample was
assessed using FastQC software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and
reads with more than 10% of undetermined bases or more than 50 bases with a quality score <7 were
discarded. Reads were then clipped from the adapter sequences using Scythe software version 0.980
(https://github. com/vsbuffalo/scythe), and low-quality ends (Q score <20 on a 10-nt window) were
trimmed with Sickle version 0.940 (https:// github.com/vsbuffalo/sickle). The two RNA-seq data were
merged and alignment of reads to the assembled genome was performed using HISAT2
(https://ccb.jhu.edu/software/hisat2/index.shtml) v2.0.1. Finally, the aligned RNA-seq reads were
used as input for the BRAKER1 pipeline. The quality and completeness of the transcriptome were
evaluated using BUSCO (http://busco.ezlab.org/) (Sim&o et al., 2015). The web application GeSeq was
used to annotate the organelle genomes with default parameters plus the tRNAscan-SE activated and
selecting C. reinhardtii in the NCBI RefSeq database (Tillich et al., 2017). Some genes were also
manually curated based on RNA-seq mapped reads. Organelle genome maps were then generated
using the OGDRAW tool (Lohse et al., 2013).

Differential expression analysis. RNA-seq data were filtered as described in the previous section and
aligned to the assembled reference genome with HISAT2 (v2.0.1) (Kim et al.,, 2015). Differential
expression analysis between the two growth conditions was conducted with DESeq2 (v1.16.1) (Love et
al., 2014) using the gene annotations generated.

Transcriptome functional annotation. Transcriptome functional annotation was performed by the
Blast2Go platform based on NCBI’s RefSeq database (Conesa et al., 2005). Annotated sequences were
analyzed using the KAAS (KEGG Automatic Annotation Server) platform to obtain KO annotation
(Kanehisa and Goto, 2000; Kanehisa et al., 2016, 2017). Transcripts differently expressed with KO
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annotations were visualized using the KEGG Mapper platform, while the remaining transcripts
functionally annotated were manually inspected by retrieving the function of the closest homolog
gene.

Phylogenetic analysis. Phylogenetic analysis was performed by BUSCO analysis as previously reported
(Waterhouse et al., 2017). In particular, 111 single copy genes shared with other species with an
available genome were used for protein alignment and phylogenetic tree construction. BUSCO 3.0.2
software with the eukaryota_odb9 database and the genome of each species Chlorella vulgaris,
Chlorella protothecoides sp0710, Chlorella variabilis NC64A, Coccomyxa subellipsoidae,
Chlamydomonas reinhardtii, Volvox carteri, Chromochloris zofingiensis, Arabidopsis thaliana,
Micromonas pusilla CCMP1545 and Ostreococcus tauri were used to identify the single-copy
orthologous genes. Of these, only those shared between the 10 species were selected. For each
protein a multiple alignment was performed among the species using MUSCLE 3.8.31 (Edgar, 2004),
and then the alignments were concatenated. The tree was built using the web application Phylogeny.fr
running PhyMl and TreeDyn for construction and visualization, respectively (Dereeper et al., 2008).
Subcellular localization prediction. Subcellular localization prediction was performed using the

PredAlgo tool, as previously described (Tardif et al., 2012).
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SUPPLEMENTARY INFORMATION

Supplemental Figures

Figure S1. Example of optical mapping-based scaffolding of Chlorella vulgaris 211/11P genome.
PacBio contigs and Bionano consensus map are colored in blue, while hybrid assembly in green; vertical
lines represent the recognition sites of the enzyme Nt.BspQl used for the insertion of the fluorescent
probes in the isolated DNA molecules for the generation of the optical maps.
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Figure S2. Number of transcripts identified in Chlorella vulgaris 211/11P based on BLAST results
using Chlorella vulgaris UTEX 395 as a reference genome. Selected threshold value for e-value was
set to 1x1073.

2
g

2
g

5
8

2000

Number of transcripts

79.6% 20.4%

BLASTED NOT BLASTED

Figure S3. Distribution of Chlorella vulgaris 211/11P gene annotation results. The top-Hit species
distribution obtained by functional annotation of C. vulgaris genome by BLAST2GO software is
reported.
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Figure S4. Phylogenetic analysis of Chlorella vulgaris 211/11P strain.
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Figure S5. Gene Ontology (GO) classification of Chlorella vulgaris 211/11P differently expressed
genes in LL vs. HL conditions. Differentially expressed genes up-regulated in low light (LL) (a, b, c) or
high light (HL) (d, e, f) were functionally grouped on the basis of GO terms cellular component (a, d),
molecular function (b, e) and biological processes (c, f). The distribution of the different groups is
reported based on the node score associated to each group considering GO term with node score
higher than 1%.
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Figure S6. Carbon fixation pathway in Chlorella vulgaris 211/11P identified by KEGG Mapper. Carbon

fixation map by KEGG Mapper (map00710) is reported. The enzymes identified in C. vulgaris genome

are reported in green.
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Figure S7. ldentification of a neoxanthin synthase enzyme in Chlorella vulgaris 211/11P. Panel A:
Clustal Omega protein alighment of the protein sequence encoded by Chlorella vulgaris 211/11P gene
g5367 and the protein sequence identified in Arabidopsis thaliana as neoxanthin synthase. Panel B:
representation of the domain identified in the putative neoxanthin synthase of C. vulgaris and the
identified neoxanthin synthase encoded in the A. thaliana genome.
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Figure S8. Polyketide synthase/fatty acid synthase Type | enzyme in C. vulgaris 211/11P. Panel A:
phylogenetic tree of putative PKS/FAS type | enzyme found in C. vulgaris 211/11P (g276.t1), highlighted
in yellow). Panel B: protein domains identified by INTERPROSCAN in g276 gene product.
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Figure S9. Protein alignment of two Malonyl-CoA: ACP transacylase enzymes identified in C. vulgaris
211/11P. In the case of g6284.t1 transit peptide for chloroplast import is indicated as predicted by
PREDALGO software.
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Figure $10. Alignment of Chlorella vulgaris 211/11P g3658 gene product with HAP2 from
Chlamydomonas reinhardtii.
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Supplemental Tables

Table S1. Summary of raw PacBio and lllumina sequencing data and Bionano mapping data.
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Table S2. Chlorella vulgaris 211/11P genome assembly statistics. *Two round assembly merged, not

polished
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Table S3. Single nucleotide variants (SNV) and insertion-deletion (InDel) in the Chlorella vulgaris
211/11P assembled genome before and after correction with lllumina and PacBio data.

PacBio PacBio+lllumina
SNV 3076 81
InDel 32821 190
TOTAL 35897 271
% GENOME 0.09% 0.0007%

Table S4. Comparison of Chlorella vulgaris genomes reported for strain UTEX 395 and 211/11P.

Chlorella vulgaris Chlorella vulgaris
UTEX 395 (Guarnieriet | 211/11P (this work)
al 2018)

Total sequence length 37,342,230 40,437,856
Total assembly gap length 40,625 634,943
Gaps between scaffolds 0 0
Number of scaffolds 3,600 14
Scaffold N50 27,824 2,825,136
Scaffold L50 358 6
Number of contigs 4,754 45

Contig N50 20,333 1,802,178
Contig L50 501 8
Number of component sequences (WGS or clone) 3,600 43
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Table S5. Codon usage in Chlorella vulgaris 211/11P. The codon usage table gives for each codon: i.
Sequence of the codon. ii. The encoded amino acid. iii. The proportion of usage of the codon among
its redundant set, i.e. the set of codons which code for this codon's amino acid. iv. The expected
number of codons, given the input sequence(s), per 1000 bases. v. The observed number of codons in
the input sequences.

#Codon AA Fraction Frequency Number

GcA A 0.253  37.206 219120  .op  p 0.210  13.228 77906
GcC A 0.299  44.031 259312 .. 0.322 20.337 119770
GG A 0.257  37.744 222285 (il o 0.265  16.701 98356
GCT A 0.191  28.126 165643  Lip  p 0.204  12.849 75669
TGC  C 0.807  13.076 77007 i g 0.149 9.126 53746
TGT  C 0.193 3.132 18448 o Q 0.851  51.994 306208
GAC D 0.673  30.175 177711  ,on g 0.036 5264 13336
GAT D 0.327  14.646 86253  aoe g 0.133 §.447 49746
GRA  E 0.174 9.821 57841 oo p 0.096 6.071 35754
GAG E 0.826  46.536 274064 oo  p 0.383  24.222 142651
TTC  F 0.574 15.009 88392 .o g 0.260 16.441 96828
TTT  F 0.426  11.137 65592  lap g 0.092 5 836 34368
GGA G 0.101 8.659 50998  p.- g 0.431 31.268 184148
GGC G 0.579  49.753 293009  jor & 0.068 1.047 29137
GGG G 0.194  16.684 98255 ... o 0.105 7.604 44785
GGT G 0.126  10.870 64018  rio & 0165  12.228 72014
CAC  H 0.757  17.008 100166 .o o 0.127 9.212 54252
CAT H 0.243 5.454 32123 g7 s 0.101 7202 42943
ATA I 0.120 3.013 17743 pep 0.220 10.108 59529
ATC I 0.610  15.291 90055  ic 1 0.392  18.005 106035
ATT I 0.270 6.762 39822 ..z g 0.232 10.661 62786
AMA K 0.144 4.609 27143 a7 0.15¢6 7150 42107
AAG K 0.856  27.343 161029  on ¢ 0.052 3.318 19543
CTA L 0.030 3.019 17777 gre v 0.201  12.871 75304
cTC L 0.1495  14.949 88040 o 0.635 40.676 239551
CTG L 0.636  63.856 376067  opg vy 0.112 7.183 42301
crT L 0.072 7.198 42392 455 g 1.000  13.320 78445
TTA L 0.008 0.852 5017 TAC Y 0.754 13.708 80730
TT6 L 0.104  10.452 61556 .0y 0.246 1.481 26391
ATG M 1.000  19.628 115598 o 0.086 0.164 564
AAC N 0.784  16.095 94787  1ag  + 0.210 0.398 2346
AAT N 0.216 4.424 26056  pga  + 0.703 1.331 7840

These supplementary are available online:
https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.14508

Table S6. Identification of Chlorella vulgaris 211/11P transcription factor differently expressed in low
light (LL) vs. high light (HL) conditions.

Table S7. Identification of Chlorella vulgaris 211/11P most differently expressed genes in low light vs.
high light.

Table S8. Identification of key genes involved in different metabolic pathway in Chlorella vulgaris
211/11P.

Table S9. Identification of key genes involved in lipid biosynthesis and degradation in Chlorella vulgaris
211/11P.

Table S10. Identification of genes involved in flagella and cilia formation in Chlorella vulgaris 211/11P

according to the CiliaCut list.
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In this section we evaluated the metabolic adaptation to high CO; level of the two Chlorella species
previously analysed. Indeed, microalgae, unicellular photosynthetic organisms, represent potential
solutions to efficiently fix CO; through the light driven photosynthetic process. In order to boost CO;
fixation in microalgae it is essential to elucidate the physiologic and metabolic responses at the base
of CO; assimilation and carbon flow. In this work two different Trebouxiophyceae species, Chlorella
sorokiniana and Chlorella vulgaris, were investigated for their metabolic responses to different CO,
availability. High CO; flux caused a common increase in biomass accumulation but a different response
of plastid and mitochondrial metabolisms. In C. sorokiniana we observed a higher carbon fixation in
high CO; condition, a balance of the NADPH redox state and a similar total respiration in the two
conditions analysed. Moreover, in this species were observed several rearrangements of the
photosynthetic machinery. In C. vulgaris we reported a higher carbon fixation in high CO, condition
and a higher NADPH consumption suggesting that the chloroplast subtract reducing power from the
mitochondrion that indeed showed a lower total dark respiration. These findings highlight different
metabolic response to high/low CO, availability among green algae and suggest possible

biotechnological manipulation in order to boost CO; fixation.
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INTRODUCTION

Microalgae produce half of the oxygen present in the atmosphere and contribute to half of the total
carbon worldwide (Li-Beisson et al. 2019; Salomé and Merchant 2019). Indeed, thanks to the
photosynthetic process algae exploit light to fix CO; in organic compound. Carbon dioxide is one of the
most important greenhouse gasses responsible of the global warning. CO; level in the Earth’s surface
is constantly increasing reaching 407.4 + 0.1 ppm for 2018, an increase of 2.4 + 0.1 ppm from 2017
(Dlugokencky et al., 2019). Finding a way to reduce the global impact of CO, emissions is fundamental
to reduce the effects of human activity in the worldwide poise.

Microalgae are emerging as possible solution to their ability to growth with high level of CO, producing
biomass that can be exploited for several aims: as food or feed supplement, biofuels or to produce
high value products. Moreover, these photosynthetic organisms do not require arable land, have a fast
life cycle and can growth employing waste products and wastewater-derived effluent (Lum, Kim, and
Lei 2013).

Light is harvested in the algae chloroplast by pigment binding protein complexes called Photosystem |
(PSI) and Il (PSIl). These complexes are composed by a core complex, where photochemical reactions
occur, and an external antenna system which increases light harvesting efficiency and is involved in
photoprotection (Gao et al. 2018; Pan et al. 2019). PSI and PSIl work in series in order to strip electrons
from water and transfer them to NADP* producing NADPH. During this linear electron transport
protons are pumped from stroma to the lumen generating an electrochemical gradient used by ATPase
to synthetize ATP. ATP and NADPH are then used by the Calvin Benson cycle to fix CO; into sugars. In
parallel in the mitochondria another electron transport chain takes place, consuming oxygen and
NADH and releasing NAD* and ATP. A constantly balance between chloroplast and mitochondrion
activity is fundamental for the survival of the cells and to overcome the ever-changing environmental
conditions.

It is important to point out that CO; diffusion in the water environments, where microalgae live, is
strongly reduced compared to CO; diffusion in air: for this reason microalgae evolved an efficient
system for CO, accumulation in the cell called Carbon Concentrating Mechanism (CCM), a complex
mechanism by which inorganic carbon is actively transported close to the enzyme responsible for its
fixation, the RUBISCO enzyme, which is co-localized with the carbonic anhydrase necessary for
dehydration of bicarbonate. CCM mechanism is induced at low CO, concentration due to the fact that
CO;-limitation reduces the consumption of ATP and NADPH by the Calvin Benson cycle leading to an
over-reduced photosynthetic electron transport chain (Wang, Stessman, and Spalding 2015). CO,
availability is thus a critical issue for photosynthetic efficiency and biomass accumulation in microalgae

cultures: in the case of model organism Chlamydomonas reinhardtii CO, has been reported to act as a
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molecular switch inducing a complex network of cell adaptation, among which a fine control of
accumulation of PSIl antenna complexes at the translation level. In particular, in condition of low CO,
concentration, the accumulation of cytosolic RNA-binding protein NAB1 is triggered: this subunits
down-regulates the translation of transcripts encoding light-harvesting antenna proteins acting as a
translational repressor (Berger et al. 2014; Mussgnug et al. 2005). The reduction of PSIl antenna
proteins reduces the excitation pressure on the photosynthetic apparatus as a response of reduced
CO; availability (Berger et al. 2014).

Among several microalgae species discovered nowadays Trebouxiophyceae represent an evolutionary
defined class of green algae (Chlorophyta) comprising the green freshwater algae of the Chlorella
genus, one of the first microalgae to be cultured on a large scale due to their easy cultivation and high
resistance to stresses (Borowitzka et al. 2018; Yang et al. 2016). Species belonging to the
Trebouxiophyceae class are evolutionarily divided from the model species of green algae, C.
reinhardtii, belonging to the Chlorophyceae class. Chlorella species are interesting for industrial
cultivation of microalgae, being reported rapidly accumulating biomass containing high lipids, proteins,
carotenoids and vitamins content (Lum et al. 2013). However, the lack of genetic resources and the
low efficiency of transformation methods has limited the development of genetic engineering in these
species (Lin et al. 2019).

In this work two Chlorella species, Chlorella sorokiniana and Chlorella vulgaris, were investigated for
their physiologic and metabolic responses to different CO; availability highlighting different metabolic
response to high/low CO, availability among green algae. Indeed, to boost carbon use efficiency is
necessary elucidate in fine details the metabolic rearrangements at the base of CO, assimilation and

carbon flow.

RESULTS

Biomass productivity and composition

C. sorokiniana and C. vulgaris cells were grown in 80 ml batch airlift photobioreactors bubbled with air
(atmospheric level of CO, concentration of ~0.04%, defined as AIR condition throughout the
manuscript) or air enriched with 3% of CO, (defined as CO, condition throughout the manuscript).
Chlorella strains were cultivated at 300 umol photons m? s until the saturation phase was reached.
Growth kinetics were followed by measuring the optical density at 720nm and fitted with sigmoidal
function as showed in Figure 1A and 1D, for C. sorokiniana and C. vulgaris respectively. In both species
the supplement of CO, enhanced the growth with a steeper growth rate as highlight by first derivate
of the growth curves (Figure 1B-1E). Total biomass production showed an increase by 153% and 169%,
respectively in C. sorokiniana and C. vulgaris, in CO, compared to AIR condition (Figure 1C-1F).

Moreover, the maximum daily productivity was increased of more than 4 times in both species in CO,
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Figure 1. Growth curve and biomass productivity in C. sorokiniana (panel A-C) and C. vulgaris (panel D-F) in AIR condition
(~0.04% CO,, solid line or full colour) compared to CO, condition (3% CO,, dash line or colour). (A, D): growth curve obtained
measuring OD at 720nm fitted with sigmoidal function. (B, E): first derivate of growth curves reported in panels A and D. (C,
F) Dry weight (g/L), average and maximum daily productivity (g L'* day) obtained harvesting the biomass at the end of the
growth curve. Error bars are indicated as standard deviation (n=3).

condition (Figure 1C-1F). These data confirmed that in the cultivation conditions adopted the
photosynthetic process was limited by the CO, availability in AIR condition.

Biomass composition at the end of the growth curve was evaluated underling a significant increase of
lipids in both species, while different effects were observed in the case of proteins and starch content
per dry weight (Figure 2). Indeed, CO; condition triggered an accumulation of proteins only in the case
of C. sorokiniana, while a decrease of starch content was observed in C. vulgaris grown in CO,. This
suggests a different behaviour of the two species characterized by diverse metabolic rearrangement
leading to different storage strategies in presence of the surplus of carbon dioxide.

Lipid analysis was then performed showing in both species a decrease of the fraction of phospholipids
in CO; condition with an increase of galactolipids in C. sorokiniana and of triacylglycerols (TAG) in C.
vulgaris (Figure 3A-3D). Lipid fraction was further investigated by GC analysis (Figure 3B-3E) and by
thin layer chromatography (Figure 3C-3F). Interestingly a strong increased of
monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were observed in C.

sorokiniana in CO, (Figure 3C). These classes of lipids constitute the major component of the chloroplast
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Figure 2. Relative starch, protein and lipid content per dry weight in C.sorokiniana (Panel A) and C. vulgaris (Panel B) in AIR
(full colour) vs. CO; condition (dash colour). Data are means of three biological replicates with standard deviation shown
(n=3). Significantly different values in CO, versus AIR are indicated by * if p < 0.05 and ** if p < 0.01, as determined by student
t-test.

membrane suggesting possible rearrangements at level of the chloroplast organization.

TAG can derivate by recycling of preexisting membrane polar glycerolipids as well as from de novo
biosynthesis of fatty acids (Simionato et al. 2013), in C. vulgaris most of the polar lipids classes were
decreased in CO; condition (Figure 3F), likely due to the redirection of the metabolism in the TAG
biosynthesis. Thus, at high CO, concentration C. vulgaris redirect the metabolism from the storage of
starch to the storage of TAG, a more energetic biomass sink, while C. sorokiniana increased the fraction
of lipids involved in thylakoids assembly.

Interesting DGTS content was increased in both species (Figure 3C-3F). DGTS are non-phosphorous
betaine lipids that were found involved in the phosphate starvation response in fungi and recently
found also in Nannochloropsis oceanica (Murakami et al. 2018; Riekhof et al. 2014). This might suggest
that DGTS was accumulated in both species grown in CO, conditions due to nutrient deficiency at the
end of the growth curve related to the fast growth rate.

The fatty acid profile resulting in C. vulgaris and C. sorokiniana grown in AIR and CO; is reported in
Figure 3B-3E: in C. vulgaris cells grown in 3% CO, a strong increase in palmitic acid (16:0),
hexadecadienoic acid (16:2), stearic acid (18:0) and oleic acid (18:1) was observed, together with a
decreased of 3-hexadecenoic acid (16:1 (3t)). In C. sorokiniana in CO, condition an increase of
palmitoleic acid (16:1 (9)), hexadecadienoic acid (16:2), hexadecatrienoic acid (16:3), linoleic acid
(18:2) and a-Linolenic acid (18:3) and a decrease of oleic acid (18:1) was reported. The strong increase
in palmitic and oleic acid observed in C. vulgaris is in line with the increased TAG accumulation
observed in this species, being C16:0 and C18:1 fatty acids the main constituent of TAG in oil bodies in

microalgae (Siaut et al. 2011).
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Figure 3. Lipid composition of biomass in C. sorokiniana (panel A-C) and C. vulgaris (panel D-F). Panel A and D: lipid
composition in AIR (full colour) vs. CO; (dash colour) condition in terms of phospholipids, galactolipids and triacylglycerol
(TAG). Panel B and E: Fatty acids profile obtained by gas chromatography. Panel C and F: Polar lipid profile obtained by thin
layer chromatography. Data are means of three biological replicates with standard deviation shown. Significantly different
values in CO, versus AIR are indicated by * if p < 0.05 and ** if p < 0.01, as determined by student t-test. MGDG,
monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; PG, phosphatidylglycerol; PE, phosphatidylethanolamine;
PC, phosphatidylcholine; DGTS, diacylglycerol N,N,N-trimethylhomoserine.

High CO; level altered chlorophylls content and photosystems organization only in C. sorokiniana
The fluorescence parameter of F,/Fn, define the PSIl maximum quantum yield and thus can be used as
indicator of the wellness of the culture. As reported in Figure 4C similar F,/Fn, values were reported in
both conditions. Interesting we observed a strong decreased chlorophylls per cells ratio in C.
sorokiniana grown in CO, condition, but any difference was detected in C. vulgaris (Figure 4A). Cells of
C. sorokiniana grown with 3% CO, showed a 40% less Chl/cell ratio compared to cell grown in AIR
condition, suggesting a rearrangement of the photosynthetic machinery, not observed in the case of
C. vulgaris but previously reported for the model algae C. reinhardtii (Polukhina et al. 2016).
Interestingly in the case of C. sorokiniana an increased Chl a/b ratio was evident in CO, condition
(Figure 4B): Chl b is bound only to the Light Harvesting Complexes (LHC) subunits, the external antenna
proteins of photosystems, while Chl a is bound to both antennae and core complex. A variation of the

Chl a/b ratio suggests a change in the antenna/core complex stoichiometry.
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C. sorokiniana C. vulgaris

Figure 4. (A) Chlorophylls content per cell, (B) chlorophylls a/b ratio and (C) PSIl maximum quantum yield expressed as F,/Fm
((Fm-Fo)/Fm ) in C. sorokiniana (grey colour) and C. vulgaris (red colour) in AIR (full colour) or CO, (dash colour) condition. Data
are means of three biological replicates with standard deviation shown. Significantly different values in CO; versus AIR are
indicated by ** (p < 0.01), as determined by student t-test.

To better investigated remodelling of the component of electron transport chain PSI/PSII ratio and

LHCII/PSII ratio were evaluated (Figure 5). Immunoblot analysis confirmed rearrangements of the

photosynthetic apparatus in C. sorokiniana but not in C. vulgaris: in C. sorokiniana both PSI/PSII and

LHCII/PSII ratio were decreased in CO, condition indicating a reduction of the light harvesting

complexes of PSIl and a reduced content of PSI on chlorophylls basis in CO; enriched condition. The

reduced LHCII/PSII ratio observed in C. sorokiniana fits well with the reduced Chl/cell and increased

Chl a/b ratio.
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Figure 5. Immunoblot analysis of the PSI (PsaA antibody), PSII (CP43 antibody) and LHCII (LHCII antibody) and ratio PSI/PSII
and LHCII/PSII calculated by lane quantification for C. sorokiniana (left panel, grey colour) and C. vulgaris (right panel, red
colour) in AIR (full colour) or CO, (dash colour) condition. Data are means of three biological replicates with standard
deviation shown. Significantly different values in CO, versus AIR are indicated by ** (p < 0.01), as determined by student t-

test.
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In C. reinhardtii was reported that the higher CO, availability increased the functional PSIl antenna size
(Berger et al. 2014), thus we investigated PSIl antenna size in the Chlorella species herein analysed.
Fast Chl a fluorescence emission in presence of DCMU was measured for both C. vulgaris and C.
sorokiniana grown in AIR and CO; condition: functional antenna size of PSIl was indeed reported to be
inversely proportional to the time require to reach 2/3 of the maximum fluorescence emission (Shmuel
Malkin et al. 1981). As reported in Supplemental Figure S2 no difference in PSIl functional antenna size
was measured neither in C. sorokiniana nor in C. vulgaris depending on CO; availability. This result
indicates that the reduction of LHCII/PSII ratio measured in the case of C. sorokiniana was not affecting
the PSII light harvesting capacity.

LHC complexes are also involved in the process called state transitions, where a fraction of the antenna
complexes bound to PSIl moves to PSI in order to maintain the excitation balance between the two
photosystems. This process is triggered in C. reinhardtii by LHC phosphorylation catalysed by a kinase
enzyme called STT7 (Depege, Bellafiore, and Rochaix 2003). As reported in Figure 6, upon induction
both C. vulgaris and C. sorokiniana were able to undergo state transitions in both AIR and CO;
conditions. However, in the case of C. vulgaris, cells grown in 3% CO, exhibited an increased capacity

for state transitions compared to cells grown in AIR.
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Figure 6. State transitions analysis by 77K fluorescence emission spectra in state 1 (S1) or state 2 (S2) conditions in C.
sorokiniana (grey colour, upper part) and C. vulgaris (red colour, bottom part) in AIR (full colour or solid line) or CO; (dash
colour or line). Data in C e F are means of biological replicates with standard deviation shown (n=4 per C. vulgaris, n=3 per C.
sorokiniana). Significantly different values in CO, versus AIR are indicated by * (p < 0.05), as determined by student t-test.
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The lower level of PSI on chlorophylls basis in C. sorokiniana in CO, condition was confirmed by in vivo
measurement of P700 photochemical activity, being P700 the reaction center of PSI (Figure 7). PSI
activity was followed measuring the formation of oxidized P700 by transient absorption measurements
at 830 nm: increased P700 oxidation was measured during a saturating pulse of light in the presence
of DCMU, which inhibits linear electron transport, and ascorbate and methyl viologen as electron
donor and acceptor, respectively. In the case of C. sorokiniana a reduction of the maximum PSI activity
was observed in CO; condition, confirming the western blot analysis.
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Figure 7. Maximal P700 oxidation on a chlorophyll basis in C. sorokiniana (left, grey colour) and C. vulgaris (right, red colour)
in AIR (full colour) or CO, (dash colour) normalized to AIR condition. Data are means of three biological replicates with
standard deviation shown. Significantly different values in CO, versus AIR are indicated by ** (p < 0.01), as determined by
student t-test.

High CO; concentration altered ATP and NADPH balance

Photosynthetic electron transport is coupled with the formation of a proton gradient across the
thylakoid membrane, exploited by ATPase as proton motif force to produce ATP. ATPase content on
chlorophylls basis and proton-motive force (pmjf) upon exposure to different light intensity were
evaluated (Figure 8). Proton motive force (pmf) can be quantified measuring the light dependent-
electrochromic shift of carotenoid absorption (Bailleul et al. 2010). In this case the behavior of the two
Chlorella species was similar: an increase of the ATPase content in CO, condition combined with a
reduced pmf. Likely the higher level of ATPase pumped faster the proton in the stroma resulting in a
higher ATP production in CO; sample reducing the accumulation of the pmf across the membrane.
Furthermore, we investigated the influence of cyclic electron flow (CEF) around PSI measuring ECS in
presence of DCMU to inhibit linear electron flow (Figure 8B-8D, darker lines). Only a 2-7% of residual

pmf was detected, indicating a low level of CEF not correlated with CO, concentration level.
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Figure 8. Immunoblot analysis of ATPase content (atpC subunit antibodies) and ECS measurements in C. sorokiniana (grey
colour) and C. vulgaris (red colour) in AIR (full colour or solid line) or CO; (dash colour or line) condition. Data are means of
three biological replicates with standard deviation shown. Significantly different values in CO; versus AIR are indicated by *
if p < 0.05 and ** if p < 0.01, as determined by student t-test.

PSl is a plastocyanin-ferredoxin oxidoreductase that reduces NADP* to NADPH by a ferredoxin—-NADP*
reductase (FNR) enzyme. In parallel in the mitochondrion the respiratory electron transport chain
oxidase NADH releasing NAD*. Chloroplasts and mitochondria communicate to balance the
NAD*/NADH pool (Johnson and Alric 2013; Uhmeyer et al. 2017). We evaluated the NADPH formation
rate by following NADPH fluorescence changes upon exposure to actinic light of 300 pmol photons m™
s for 120s. In both species either in AIR and CO, condition the rates of NADPH fluorescence during
actinic light exposure were negative, indicating that the NADPH consumption was higher than the
production (Figure 9). It's interesting to observe that in C. sorokiniana the same balance between
NADPH formation and consumption was maintained comparing AIR vs. CO; condition, while in C.

vulgaris a higher rate of NADPH consumption was observed in CO; condition.
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Figure 9. Rate of NADPH formation upon exposure to 300 umol photons m=2s7* of light for 120s in C. sorokiniana (grey colour)
and C. vulgaris (red colour) in AIR (full colour) or CO, (dash colour) condition. Data are means of three biological replicates
with standard deviation shown. Significantly different values in CO, versus AIR are indicated by ** (p < 0.01), as determined
by student t-test.

Effects of CO, on the mitochondrial respiration

Mitochondrial respiration is a fundamental process that allows to produce ATP releasing NAD* that can
return to the chloroplast where is reduced by FNR enzyme. The mitochondrial electron transport chain,
also called cytochrome pathway, includes an ATP synthase complex, called also complex V, and four
oxidoreductase complexes that oxidase the reducing power and produce ATP thank to the
electrochemical gradient that is formed across the membrane. In addition, an alternative oxidase
(AOX) might operate directly coupling the oxidation of ubiquinol with the reduction of O, to H,O
introducing a branch in the electron transport chain dramatically reducing the energy yield (ATP). AOX
have a role in the protection mechanism for the respiratory chain (Boekema and Braun 2007,
Vanlerberghe 2013).

The contribution of cytochrome and alternative pathways (Figure 10) was investigated measuring the
dark respiration in the presence of two specific inhibitor: SHAM (salicylhydroxamic acid) that inhibits
the alternative oxidase and so the alternative pathway, and myxothiazol that locks the complex IlI
blocking the cytochrome pathway (Dang et al. 2014). We observed that the total dark respiration on
cells basis is essentially unaffected in C. sorokiniana, instead a strong reduction was reported for C.
vulgaris in CO; condition. In both species a reduction of the fraction of dark respiration operating
through AOX was evident, leading to an increased efficiency of ATP production by NADH oxidation

through the cytochrome pathway.
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Figure 10. Dark respiration in C. sorokiniana and C. vulgaris in AIR and CO; conditions normalized to cells content. The relative
contribution of cytochrome (full colour) and alternative respiration (blank colour) was reported. Data are means of three
biological replicates with standard deviation shown. Significantly different values in CO; versus AIR are indicated by ** (p <
0.01), as determined by student t-test.

DISCUSSION

Atmospheric CO; concentration has significantly increased over the last 100 years. This has strongly
contributed to climate change and global warming leading to a potential severe environmental crisis.
Microalgae are promising platforms to capture CO,, possibly integrating microalgae cultivation with
CO; recovery from flue gasses, thus reducing industry derived CO, emission. For this reason,
understanding the metabolic pathways involved in the CO, metabolism is crucial to develop new
strategies for improving the ability of microalgae to acquire and accumulate carbon. In this work we
focus our attention in two Chlorella species widely use at industrial level, C. sorokiniana and C. vulgaris,
growing them bubbled with atmospheric level of CO;, (~0.04% CO,, AIR condition) or 3% CO, (CO,
condition). In CO, condition a ~160% increased of biomass yield was observed in both species, but the
biomass composition was different in the two species (Figure 1 and 2). In C. vulgaris a decrease of
starch accumulation and an increase of lipid accumulation, in particular of TAG, were detected. This
suggests a redirection of the energy reserves from starch to TAG accumulation, a class of
macromolecules with a higher energy content per gram, indicating an improved light energy
conversion. In C. sorokiniana not only lipids, but also proteins content increased, being the latter the
major sink for the extra-carbon fixation occurring in cells grown at high CO, concentration. Differently
from C. vulgaris, in C. sorokiniana the increase in the lipid fraction of total dry biomass was mainly

related to an increase in polar lipid DGDG and MGDG, the major lipids of photosynthetic membranes
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(Li-Beisson et al. 2019) (Figure 3). This increased content of DGDG and MGDG, however, was not
correlated with the chlorophyll content per cell: the strong increase in protein content observed in C.
sorokiniana grown in 3% CO, was indeed more evident than the increase in DGDG and MGDG, likely
causing a preferential accumulation of macromolecules not related with the thylakoidal membranes
or with a general re-organization of the thylakoid membranes. The observed reduction of Chl content
per cell in C. sorokiniana grown in CO; condition compared to AIR was in line with the results obtained
previously in C. reinhardtii (Polukhina et al. 2016), while this was not the case of C. vulgaris, where a
similar Chl content was detected independently from CO, availability (Figure 4A). Again, similarly to
the C. reinhardtii case, C. sorokiniana grown in CO, condition was characterized by reduction of
LHCII/PSII content and a reduction of PSI/PSII ratio, while these adaptations were not observed in the
case of C. vulgaris (Figure 5). The reduced LHCII/PSII content observed in the case of C. sorokiniana
grown in CO; condition was not affecting the functional antenna size of PSII: differently from previous
observation in C. reinhardetii, functional antenna size of PSIl was not influenced by CO, availability in
both Chlorella species herein investigated (Figure S2). In C. reinhardtii it was indeed reported that high
CO; availability caused an increase of the functional antenna size of PSll, by translational control of
antenna proteins by NAB1, repressor of translation of specific LHC subunit, inhibited at high CO;
concentration (Berger et al. 2014). A following paper was instead reporting a general reduction of
LHCII/PSII content in C. reinhardtii grown in high CO,, in parallel with a decrease of PSI/PSIl ratio
(Polukhina et al. 2016). Considering the possibility of LHCII proteins to function as PSI antenna, it was
not excluded by Polukhina and coworkers that the decrease of LHCII content per PSIl observed at high
CO; might be mainly related to the amount of LHCII proteins acting as PSl antenna. Here we report a
similar acclimation mechanism only in the case of C. sorokiniana, with the difference that PSIl antenna
size was not modulated by CO; availability. In general it si possible to hypothisize that the increased
capacity of Calvin Benson cycle to regenerate NAD* and ADP, thanks to the increased CO; availability,
trigger the light phase of photosynthesis in order to keep the NADPH/NAD* ratio similar to the AIR
case, as reported in Figure 9: this occurs by increasing the total amount of PSIl compared to PSI and
relatively redistributing the excitation pressure among PSI and PSII reducing the excitation pressure at
the level of the former reducing the LHCII content bound. This acclimation process would explain the
reduced LHCII/PSII content despite the similar PSIl antenna size observed. The absence of such
acclimation mechanisms in the case of C. vulgaris could be at the base of the strong reduction of
NADPH/NAD" ratio observed at high CO, concentration, as a consequence of increased NADPH
consumption by the Calvin Benson cycle.

Interestingly, the amount of RUBISCO was similar in both species in the two conditions analysed on a

cell basis (Supplemental Figure S1), suggesting an enhanced RUBISCO activity due to the higher
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availability of substrate rather than an upregulation of the enzyme.

In both species in CO, condition a decrease of pmf was reported together with an increased ATPase
content (Figure 8), likely the higher level of ATPase prevent the accumulation of the electrochemical
gradient, suggesting a higher ATP production in CO; condition. Interestingly, the total dark respiration
is differentially regulated in the two Chlorella species (Figure 10): in C. sorokiniana total dark
respiration was similar in AIR compared to CO, condition, with an increased NADH oxidation through
the cytochrome pathway and reduced AOX activity. Differently, in C. vulgaris a strong reduction of dark
respiration in CO, condition was evident, despite an increase of cytochrome/alternative pathway ratio.
Additionally, in C. vulgaris there was a higher NADPH consumption in CO; suggesting that chloroplast
acts as a sink of reducing power subtracting them from the mitochondrion. Moreover, the reduction
of starch accumulation and the increase of TAG suggested a redirection of photosynthate. As already
reported for P. tricornutum an increase of acetyl-coA, likely produced by glycolic pathway in our
Chlorella, and reducing power is at the base of the increased TAG accumulation (Li-Beisson et al. 2019).
In C. sorokiniana we observed the same balance of the NADPH redox state and a similar dark
respiration in the two conditions analysed. The rearrangements of the photosynthetic machinery in
CO; condition improved the pool of NADPH and ATP, likely matching the increased substrate (CO,)
availability for sugar production by the Calvin Benson cycle.

Increased photosynthates production in both C. vulgaris and C. sorokiniana is at the base of the
observed increased biomass yield in CO, condition: sugars produced in the chloroplast are indeed

redirected to the biosynthesis mainly of lipids (TAG) in C. vulgaris, and proteins in C. sorokiniana,

C. sorokiniana C. vulgaris
+CO, Proteins +CO,
Lipids

+MGDG

+DGDG

Proteins

Lipids
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CO, fixation,
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NADPH \
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Figure 11. Model of the main metabolic rearrangements of C. sorokiniana and C. vulgaris cells grown with 3% CO..
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indicating a general enhanced metabolism leading to a faster cell divisions and a steeper exponential
growth phase in CO; condition. A summary of the adaptation to CO; condition is shown in Figure 11.

Elucidation of the molecular rearrangements in enriched CO, condition could be useful in order to
develop strategies to improve in these species and in other microalgae of industrial interest their

sustainability, biomass yield and utilization for bioremediation.
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MATERIAL AND METHODS

Microalgae cultivation. C. sorokiniana UTEX 1230 and C. vulgaris 211/11P strain (Culture Collection of
Algae at Goettingen University CCAP 211/11P strain) cells were grown in the Multi-Cultivator MC 1000
tubes aerated with air or with 3% CO,-enriched air obtained by a gas mixing system. Cells were grown
in BG11 medium starting from 1*10° cell/ml at 300 pmol photons m~2s™ (Allen and Stanier 1968). Cell
number was determined Countless®Il FL automated cell counter (Thermo Fisher). The cell density was
automatically monitored every ten minutes by measuring the absorption at 720 nm. For physiological
measurements, cultures were harvested during the exponential growth phase. At the end of the
growth curve the dry weight determination was performed: cell culture was harvested by
centrifugation at 4500g for 5 min at 20°C then drying in a lyophilizer for 48h and then net dry weight
was calculated.

Biomass composition analysis. Lipid, starch and protein content of the biomass harvested at the end
of the exponential phase were analyzed as previously reported in Cecchin et al. 2019.

Photosynthetic parameters and pigments extraction. The pigments were extracted with 100% DMSO
at 60°C in dark conditions and measured with Jasco V-550 UV/VIS spectrophotometer. Proton motive
force upon exposure to different light intensities was measured by Electrochromic shift (ECS) with
MultispeQ v2.0 (PhotosynQ) according to Kuhlgert et al. 2016 and normalized to the chlorophylls
content of the sample. PSIl activity was analyzed by fluorescence measurements on whole cells using
a Dual-PAM 100 instrument (WALZ). 77K fluorescence emission spectra were acquired with a charge-
coupled device spectrophotometer (JBeamBio) as previously described (Allorent et al. 2013). State
transitions were measured on whole cells induced to state 1 or state 2 as described in Fleischmann et
al. 1999. PSII functional antenna size was measured from fast chlorophyll induction kinetics induced
with a red light of 11 umol photons m? s’ on dark-adapted cells incubated with 50 pM DCMU (S Malkin
et al. 1981). The reciprocal of time corresponding to two-thirds of the fluorescence rise (12/3) was taken
as a measure of the PSIl functional antenna size (Shmuel Malkin et al. 1981). P700 activity was
measured with the DUAL-PAM-100 (Heinz-Walz) following the transient absorption at 830 nm upon
exposure to actinic light. Maximum P700 activity was measured after a pulse of saturating light. Whole
cells were treated with DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea), ascorbate, and methyl-
viologen, as described in Bonente et al. 2012. The formation rate of NADPH was determined with the
NADPH/9-AA module of the Dual-PAM 101 (Schreiber and Klughammer 2009). Cells were harvested
and resuspended in BG11 medium with 10% of Ficol to reduce cells precipitation. Measurement was
performed as described in Schreiber and Klughammer 2009 at the same light intensity of growth (300
pumol photons m™2s™). The slope during the light phase, between 60-120s, was used to determine the

rate of NADPH formation.
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SDS-PAGE and immunoblotting. SDS-PAGE and immunoblotting were performed as described in
Bonente et al. 2011. Antibodies used were obtained from Agrisera company
(https://www.agrisera.com/). Protein content was quantified by image analysis software (Imagelab,
Biorad) and normalized on the basis of chl or cell content of the loaded sample.

Mitochondrial respiration. Samples in the exponential phase were subjected to respiratory rate
measurements in the dark using a Clark-type O, electrode (Oxygraph Plus; Hansatech Instruments;
Clark, 1956). Respiratory rates were normalized to cells number obtained by Countless®ll FL
automated cell counter (Thermo Fisher). To discriminate between the individual contributions of the
alternative and the cytochrome pathway dark respiration measurements were conducted as follows:
cell samples (5*107 cell/ml) were transferred to the measurement chamber of the Clark electrode,
respiration rates were recorded for 3 min prior to the addition of the first inhibitor, then respiration
rates were recorded for 3 additional min finally the second inhibitor was added and measurements
were continued for another 3 min. Alternative respiration was inhibited by adding 2 mM SHAM
(Salicylhydroxamic acid), while the cytochrome pathway (complex Ill) was inhibited by adding 5uM
myxothiazol. To assess the relative contribution of the cytochrome pathway, respiration was first
measured in the absence of inhibitors (total dark respiration) before alternative respiration was
inhibited by adding SHAM. Cytochrome dependent respiration was then inhibited using myxothiazol
and the residual respiration determined in relation to the uninhibited state. The contribution of
alternative respiration was determined by reversing the order of inhibitor addition (myxothiazol

followed by SHAM) (Bailleul et al. 2015).

214


https://www.agrisera.com/

Chapter 2 | Section C

REFERENCES

Allen, M. M. and R. Y. Stanier. 1968. “Growth and Division of Some Unicellular Blue-Green Algae.” Journal of General
Microbiology.

Allorent, Guillaume, Ryutaro Tokutsu, Thomas Roach, Graham Peers, Pierre Cardol, Jacqueline Girard-Bascou, Daphné
Seigneurin-Berny, Dimitris Petroutsos, Marcel Kuntz, Cécile Breyton, Fabrice Franck, Francis André Wollman, Krishna
K. Niyogi, Anja Krieger-Liszkay, Jun Minagawa, and Giovanni Finazzi. 2013. “Dual Strategy to Cope with High Light in
Chlamydomonas reinhardtii.” Plant Cell.

Bailleul, B., P. Cardol, C. Breyton, and G. Finazzi. 2010. “Electrochromism: A Useful Probe to Study Algal Photosynthesis.”
Photosynth.Res. 106(1573-5079 (Electronic)):179-89.

Bailleul, Benjamin, Nicolas Berne, Omer Murik, Dimitris Petroutsos, Judit Prihoda, Atsuko Tanaka, Valeria Villanova, Richard
Bligny, Serena Flori, Denis Falconet, Anja Krieger-Liszkay, Stefano Santabarbara, Fabrice Rappaport, Pierre Joliot, Leila
Tirichine, Paul G. Falkowski, Pierre Cardol, Chris Bowler, and Giovanni Finazzi. 2015. “Energetic Coupling between
Plastids and Mitochondria Drives CO, Assimilation in Diatoms.” Nature.

Berger, Hanna, Olga Blifernez-Klassen, Matteo Ballottari, Roberto Bassi, Lutz Wobbe, and Olaf Kruse. 2014. “Integration of
Carbon Assimilation Modes with Photosynthetic Light Capture in the Green Alga Chlamydomonas reinhardtii.”
Molecular Plant.

Boekema, Egbert J. and Hans Peter Braun. 2007. “Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation
System.” Journal of Biological Chemistry 282(1):1-4.

Bonente, G., M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi. 2011. “Analysis of
LhcSR3, a Protein Essential for Feedback de-Excitation in the Green Alga Chlamydomonas reinhardtii.” PLoS.Biol.
9(1545-7885 (Electronic)):e1000577.

Bonente, Giulia, Sara Pippa, Stefania Castellano, Roberto Bassi, and Matteo Ballottari. 2012. “Acclimation of Chlamydomonas
reinhardtii to Different Growth Irradiances.” Journal of Biological Chemistry.

Borowitzka M.A., Microalgae in Medicine and Human Health: A Historical Perspective, Chapter 9 in Microalgae in Health and
Disease Prevention Ira A. Levine, Joél Fleurence Academic Press, 2018, Pages 195-210.

Cecchin, Michela, Luca Marcolungo, Marzia Rossato, Laura Girolomoni, Emanuela Cosentino, Stephan Cuine, Yonghua Li-
Beisson, Massimo Delledonne, and Matteo Ballottari. 2019. “Chlorella Vulgaris Genome Assembly and Annotation
Reveals the Molecular Basis for Metabolic Acclimation to High Light Conditions.” Plant Journal 1-17.

Dang, Kieu-Van, Julie Plet, Dimitri Tolleter, Martina Jokel, Stéphan Cuiné, Patrick Carrier, Pascaline Auroy, Pierre Richaud,
Xenie Johnson, Jean Alric, Yagut Allahverdiyeva, and Gilles Peltier. 2014. “ Combined Increases in Mitochondrial
Cooperation and Oxygen Photoreduction Compensate for Deficiency in Cyclic Electron Flow in Chlamydomonas
reinhardtii .” The Plant Cell 26(7):3036-50.

Depege, N., S. Bellafiore, and J. D. Rochaix. 2003. “Role of Chloroplast Protein Kinase Stt7 in LHCII Phosphorylation and State
Transition in Chlamydomonas.” Science 299(1095-9203):1572-75.

Dlugokencky, E.J., Hall, B.D., Montzka, S.A., Dutton, G., Mihle, J., Elkins, J.W. (2019). Atmospheric composition [in State of
the Climate in 2018, Chapter 2: Global Climate]. Bulletin of the American Meteorological Society, 100(9), $48-S50.

Fleischmann, M. M., S. Ravanel, R. Delosme, J. Olive, F. Zito, F. A. Wollman, and J. D. Rochaix. 1999. “Isolation and
Characterization of Photoautotrophic Mutants of Chlamydomonas reinhardtii Deficient in State Transition.”
J.Biol.Chem. 274(0021-9258):30987-94.

Gao, Jinlan, Hao Wang, Qipeng Yuan, and Yue Feng. 2018. “Structure and Function of the Photosystem Supercomplexes.”
Frontiers in Plant Science 9(March):1-7.

Johnson, Xenie and Jean Alric. 2013. “Central Carbon Metabolism and Electron Transport in Chlamydomonas reinhardtii:
Metabolic Constraints for Carbon Partitioning between Qil and Starch.” Eukaryotic Cell 12(6):776-93.

Kuhlgert, Sebastian, Greg Austic, Robert Zegarac, Isaac Osei-Bonsu, Donghee Hoh, Martin I. Chilvers, Mitchell G. Roth, Kevin
Bi, Dan TerAvest, Prabode Weebadde, and David M. Kramer. 2016. “MultispeQ Beta: A Tool for Large-Scale Plant
Phenotyping Connected to the Open PhotosynQ Network.” Royal Society Open Science.

Li-Beisson, Yonghua, Jay J. Thelen, Eric Fedosejevs, and John L. Harwood. 2019. “The Lipid Biochemistry of Eukaryotic Algae.”

215



Chapter 2 | Section C

Progress in Lipid Research 74(January):31-68.

Lin, Way-Rong, Shih-I. Tan, Chuan-Chieh Hsiang, Po-Kuei Sung, and |. Son Ng. 2019. “Challenges and Opportunity of Recent
Genome Editing and Multi-Omics in Cyanobacteria and Microalgae for Biorefinery.” Bioresource Technology
291(June):121932.

Lum, Krystal K., Jonggun Kim, and Xin G. Lei. 2013. “Dual Potential of Microalgae as a Sustainable Biofuel Feedstock and
Animal Feed.” Journal of Animal Science and Biotechnology 4(1):1-7.

Malkin, S, P. A. Armond, H. A. Mooney, and D. C. Fork. 1981. “Photosystem Il Photosynthetic Unit Sizes from Fluorescence
Induction in Leaves. Correlation to Photosynthetic Capacity.” Plant Physiol. 67:570-79.

Malkin, Shmuel, Paul A. Armond, Harold A. Mooney, and David C. Fork. 1981. “Photosystem Il Photosynthetic Unit Sizes from
Fluorescence Induction in Leaves.” Plant Physiology.

Murakami, Hiroki, Takashi Nobusawa, Koichi Hori, Mie Shimojima, and Hiroyuki Ohta. 2018. “Betaine Lipid Is Crucial for
Adapting to Low Temperature and Phosphate Deficiency in Nannochloropsis.” Plant Physiology.

Mussgnug, Jan H., Lutz Wobbe, Ingolf Elles, Christina Claus, Mary Hamilton, Andreas Fink, Uwe Kahmann, Aliki Kapazoglou,
Conrad W. Mullineaux, Michael Hippler, Jorg Nickelsen, Peter J. Nixon, and Olaf Kruse. 2005. “NAB1 Is an RNA Binding
Protein Involved in the Light-Regulated Differential Expression of the Light-Harvesting Antenna of Chlamydomonas
reinhardtii.” Plant Cell.

Pan, Xiaowei, Peng Cao, Xiaodong Su, Zhenfeng Liu, and Mei Li. 2019. “Structural Analysis and Comparison of Light-Harvesting
Complexes | and I.” Biochimica et Biophysica Acta (BBA) - Bioenergetics (June):0-1.

Polukhina, Iryna, Rikard Fristedt, Emine Dinc, Pierre Cardol, and Roberta Croce. 2016. “Carbon Supply and Photoacclimation
Cross Talk in the Green Alga Chlamydomonas reinhardtii.” Plant Physiology.

Riekhof, Wayne R., Surabhi Naik, Helmut Bertrand, Christoph Benning, and Dennis R. Voelker. 2014. “Phosphate Starvation
in Fungi Induces the Replacement of Phosphatidylcholine with the Phosphorus-Free Betaine Lipid Diacylglyceryl-N,N,N-
Trimethylhomoserine.” Eukaryotic Cell.

Salomé, Patrice A. and Sabeeha S. Merchant. 2019. “A Series of Fortunate Events: Introducing Chlamydomonas as a Reference
Organism.” The Plant Cell 31(8):1682-1707.

Schreiber, Ulrich and Christof Klughammer. 2009. “New NADPH / 9-AA Module for the DUAL-PAM-100 : Description ,
Operation and Examples of Application .” PAM Application Notes.

Siaut, Magali, Stéphan Cuiné, Caroline Cagnon, Boris Fessler, Mai Nguyen, Patrick Carrier, Audrey Beyly, Fred Beisson,
Christian Triantaphylides, Yonghua Li-Beisson, and Gilles Peltier. 2011. “Oil Accumulation in the Model Green Alga
Chlamydomonas reinhardtii: Characterization, Variability between Common Laboratory Strains and Relationship with
Starch Reserves.” BMC Biotechnology.

Simionato, Diana, Maryse A. Block, Nicoletta La Rocca, Juliette Jouhet, Eric Maréchal, Giovanni Finazzi, and Tomas
Morosinotto. 2013. “The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes de Novo Biosynthesis
of Triacylglycerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus.”
Eukaryotic Cell.

Uhmeyer, Andreas, Michela Cecchin, Matteo Ballottari, and Lutz Wobbe. 2017. “Impaired Mitochondrial Transcription
Termination Disrupts the Stromal Redox Poise in Chlamydomonas.” Plant Physiology.

Vanlerberghe, Greg C. 2013. “Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling
Homeostasis during Abiotic and Biotic Stress in Plants.” International Journal of Molecular Sciences 14(4):6805-47.

Wang, Yingjun, Dan J. Stessman, and Martin H. Spalding. 2015. “The CO, Concentrating Mechanism and Photosynthetic
Carbon Assimilation in Limiting CO,: How Chlamydomonas Works against the Gradient.” Plant Journal.

Yang, Bo, Jin Liu, Yue Jiang, and Feng Chen. 2016. “Chlorella Species as Hosts for Genetic Engineering and Expression of
Heterologous Proteins: Progress, Challenge and Perspective.” Biotechnology Journal 11(10):1244-61.

216



Chapter 2 | Section C

SUPPLEMENTARY INFORMATION

Figure S1. RUBISCO content determined by western blot. Content of RUBISCO normalized to cell
number in C. sorokiniana (grey colour) and C. vulgaris (red colour) in AIR (full colour) or CO; (dash
colour) condition determined by western blot analysis (RbcL subunit antibody). Data are means of
three biological replicates with standard deviation shown. No statistical differences were determined

by t-student test.

content / cell

C.sorokiniana C.vulgaris

Figure S2. Functional antenna size of the photosystem Il. Functional antenna size of the photosystem
11 (1/72/3) normalized to AIR condition in C. sorokiniana (grey colour) and C. vulgaris (red colour) in AIR
(full colour) or CO; (dash colour) condition. Data are means of three biological replicates with standard
deviation shown. No statistical differences were determined by t-student test.
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Section A

Improved lipid productivity in Nannochloropsis gaditana
in nitrogen replete conditions by selection of

pale green mutants
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This work was published in Biotechnology for Biofuels in April 2020.

Nannochloropsis gaditana is a photosynthetic unicellular microalga considered one of the most
interesting marine algae to produce biofuels and food additive due to its rapid growth rate and high
lipids accumulation. Although microalgae are attractive platforms for solar energy bioconversion, the
overall efficiency of photosynthesis is reduced due to the steep light gradient in photobioreactors.
Moreover, accumulation of lipids in microalgae for biofuels production is usually induced in a two-
phase cultivation process by nutrient starvation, with additional time and costs associated. In this work
a biotechnological approach was directed for the isolation of strains with improved light penetration
in photobioreactor combined with increased lipids productivity. Mutants of Nannochloropsis gaditana
were obtained by chemical mutagenesis and screened for having both a reduced chlorophyll content
per cell and increased affinity for Nile Red, a fluorescent dye which binds to cellular lipid fraction.
Accordingly, one mutant, called e8, was selected and characterized for having a 30% reduction of
chlorophyll content per cell and an almost 80% increase of lipid productivity compared to WT in
nutrient replete conditions, with C16:0 and C18:0 fatty acids being more than doubled in the mutant.
Whole genome sequencing revealed mutations in 234 genes in e8 mutant among which a non-
conservative mutation in dgd1 synthase gene. This gene encodes for an enzyme being involved in the

biosynthesis of DGDG, one of the major lipids found in the thylakoid membrane and it thus involved in
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chloroplast biogenesis. Lipid biosynthesis is strongly influenced by light availability in several
microalgae species, including Nannochloropsis gaditana: reduced chlorophyll content per cell and
more homogenous irradiance in photobioreactor is at the base for the increased lipid productivity
observed in the e8 mutant. The results herein obtained presents a promising strategy to produce algal
biomass enriched in lipid fraction to be used for biofuel and biodiesel production in a single cultivation
process, without the additional complexity of the nutrient starvation phase. Genome sequencing and
identification of the mutations introduced in e8 mutant suggests possible genes responsible for the
observed phenotypes, identifying putative target for future complementation and biotechnological

application.
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INTRODUCTION

Microalgae are photoautotrophic organisms that can be cultivated to exploit light energy to fix CO>
into organic biomass. Microalgae derived biomass can then be used for several applications, among
which the production of food, high value products and/or biofuels (Akbari, Eskandani, and
Khosroushahi 2014; Bernaerts et al. 2019; Camacho, Macedo, and Malcata 2019; Résch, RoRmann,
and Weickert 2019). Some microalgal species indeed can accumulate high amounts of lipids, the
biomass constituents with the highest energy associated (Rodolfi et al. 2009). Fatty acids are mainly
synthesized in the chloroplast and then used as building blocks for triacylglycerols (TAGs), which are
deposited in densely packed lipids bodies located in the cytoplasm of the algal cell (Siaut et al. 2011).
In oleaginous algae the lipid content varies between 20 to 70% and can reach values up to 90% of algal
total dry weight under certain conditions, such as nitrogen deprivation (Chen and lJiang 2017).
Nutritional stress is a common strategy adopted by the microalgae research community to boost TAGs
accumulation which can be converted to biodiesel by a transesterification reaction (Wijffels and
Barbosa 2010). Two-phase cultivation for inducing lipid biosynthesis in microalgae is however a costly
process, requiring modification of the growth medium and additional time required before biomass
harvest. Species belonging to the genus Nannochloropsis are marine unicellular microalgae (HIBBERD
1981) considered among the most promising strains for cultivation in large scale systems, as open
ponds or closed photobioreactors, for biodiesel production due to their fast growth rate, lipids
accumulation (up to 65-70% of total dry weight) and ability to adapt to different irradiation (Hodgson
et al. 1991; Ma et al. 2014; Rodolfi et al. 2009). In addition, 30% of fatty acids accumulated in
Nannochloropsis are polyunsaturated fatty acids among which Eicosapentaenoic acid (EPA, 20:5w3),
one of the major omega-3 fatty acid reported to have positive effect in human health (Gill and Valivety
1997). This yellow green alga belongs to the class the pico-plankton Eustigmatophyceae, composed by
species mainly living on the coasts. The cells of Nannochloropsis have reduced size (3-5 um) (HIBBERD
1981), with a single chloroplast occupying most of the cell volume (Andersen et al. 1998; Lubian 1982).
It shows a peculiar pigments content, presenting only chlorophyll (Chl) a and lacking other accessory
chlorophylls such as Chl b or ¢ while violaxanthin and vaucheriaxanthin are the most represented
carotenoids (Basso et al. 2014). The N. gaditana genome is available and its assembly includes nuclear
(~29 Mbp) and organellar genomes, containing ~10.000 gene models (Corteggiani Carpinelli et al.
2014; Radakovits et al. 2012). The availability of a genome sequence and transformation methods
allow genetic engineering strategies to further improve this naturally productive species (Simionato et
al. 2013; Verruto et al. 2018).

Although microalgae are attractive biomass, bioproducts and biofuel producers, their photosynthetic
efficiency is much lower compared to their theoretical potential (Formighieri, Franck, and Bassi 2012).

Light use efficiency of microalgae in photobioreactors is indeed limited by the steep light gradient due
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to the strong optical density of the near-molar concentration of chlorophylls in cells (Melis 2009). This
non-homogeneous light penetration results in a low productivity of the system, being the inner layers
almost in the dark (Melis 2009). Mutant strains with reduced pigment content per cell resulting either
from a truncated antenna size or a lower overall density of photosynthetic units per cell were reported
for different species, as C. reinhardtii, C. vulgaris, C. sorokiniana and N. gaditana, being characterized
by an increased productivity (Cazzaniga et al. 2014; Jeong et al. 2017; Kirst, Garcia-Cerdan, et al. 2012;
Perin et al. 2015). In addition, up to 80% of the light absorbed by the external layers is dissipated as
heat by the activation of photoprotective processes, with consequent loss of light use efficiency and
biomass productivity (Erickson, Wakao, and Niyogi 2015). The photoprotective mechanism involved in
the energy dissipation as heat, is known as non-photochemical quenching (NPQ), a short-time
response to energy absorbed in excess, triggered by lumen acidification when the photosynthetic
apparatus is saturated (Ballottari et al. 2016; Liguori et al. 2013).

These photosynthetic limitation influences both biomass yield and lipid accumulation. Indeed, the key
challenge for the oleaginous algae is to maximize lipid production maintaining high biomass yields
(Janssen, Wijffels, and Barbosa 2019; Rodolfi et al. 2009). The main strategies at industrial level to
trigger lipids accumulation in microalgae is to induce nutrients starvation, especially nitrogen
starvation: in these conditions cells redirect carbon metabolism into nitrogen-free lipid molecules
(Rodolfi et al. 2009). However, this approach strongly reduces cells growth rate, affecting overall
biomass and lipid productivities. Some positive results were obtained by overexpression or
downregulation of transcriptional factor increasing the lipid production with moderate or even
positive effects for the growth (Ajjawi et al. 2017; Kang et al. 2019). However, the possibility to use
genetic modified organisms (GMOs) at industrial scale is still limited by the different acceptance and
legislation in the different countries, hampering the application of the promising results obtained.

In this work we report a biotechnological approach by chemical mutagenesis to isolate N. gaditana
strains with increased lipid productivity in absence of nutrient starvation. The strategy adopted was
the selection of strains with both a reduction in cell pigmentation, to allow a better light distribution

in photobioreactor, and an increased Nile Red staining, as a probe for lipid accumulation.

RESULTS

Mutagenesis and selection of mutant strains

N. gaditana mutants were obtained by chemical mutagenesis, using the alkylating agent Ethyl-
Methane-Sulfonate (EMS) that inserts random single-point mutations (SNP) in the genome. Surviving
colonies with a visible “pale green” phenotype in solid medium were initially selected, transfer to liquid
medium and screened by measuring absorption of chlorophyll a (at 680nm) and cell scattering (at

730nm).
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Figure 1. Chlorophylls per cell and Nile Red staining of mutated strains. Chlorophyll content per cell (A) and Nile Red
fluorescence per cell (B) were normalized to the WT case. Errors are reported as standard deviation (n=3), significantly
different values are marked with * if p < 0.05 and ** if p < 0.01, as determined by unpaired two sample t-test (n=3). In the
case of sample marked with ° p-value of 0.0597 was obtained.

The resulting 680/730 nm absorption ratio provides a relative indication of the chlorophyll content per
cell. Seven strains were selected having a 680/730 nm absorption at least 25% decreased compared to
the WT case (Supplementary Figure S1). These strains were then evaluated for their chlorophyll
content per cell by extracting pigments, quantifying them and counting the cells: only 3 mutants
showed a decreased Chl/cell ratio (Figure 1A). These mutants were then further analysed for their lipid
content by Nile Red staining: as reported in Figure 1B, only in the case of mutant e8, an increased Nile
Red fluorescence was measured per cell. The selected mutant e8 was thus characterized by a 30%
reduction of chlorophyll content per cell and ~180% increase in Nile Red staining, suggesting an

increased lipid content.

Photosynthetic characterization of e8 mutant

Pigment composition of e8 strain was analyzed by HPLC and compared to the WT case. As reported in
Table 1, the accumulation of the different carotenoid species was similar in the e8 mutant strain
compared to WT. Chl/cell reduction observed in e8 mutant was related to the total cell content of
chlorophylls but the pigments composition on a chlorophylls basis was essentially unaffected. Only in
the case of zeaxanthin a significant increase was observed in the e8 mutant compared to WT, with a
~180% increase on a chlorophyll basis.

In order to evaluate if the reduced Chl/cell ratio observed in e8 mutant was related to a truncated

antenna phenotype (Kirst, Garcia-Cerdan, et al. 2012; Kirst, Formighieri, and Melis 2014), the
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(Vio+Vau)/

Chl/cell (%) Chla chl/ car Vio Vau Anthera Cantha Zea B-car B-car

WT 100+159 100£5.04 2.31+0.17 20.51+1.1112.17+0.71 3.56+0.48 0.67+0.53 3.21+0.6 3.27+0.31 10.49*1.06

e8 67.9+12* 100£9.16 2.17+0.18 19.14+0.9413.37+0.73 3.64+£0.5 1.03+£0.34 590+1.32* 2.97+£0.38 9.92£0.8

Table 1. Pigment analysis of WT and e8 mutant strain. Chlorophyll content per cell (Chl/cell) was set to 100% in the case of
WT. The concentration of pigments in pmol was determined by HPLC and normalized to 100 pmol of chlorophyll a (Chl).
Violaxanthin: vio, vaucheriaxanthin: vau, B-carotene: B-Car, antheraxanthin: anthera, zeaxanthin: zea, canthaxanthin:
cantha. Standard deviations are reported for the different values (n=5 for Chl/cell values, n=3 for the other values).
Significantly different values are marked with * if p < 0.05, as determined by unpaired two sample t-test (n=3).

functional antenna size of Photosystem Il (PSIl) was estimated measuring the kinetics of fluorescence
induction in cells treated with the PSII inhibitor 3- (3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)
(Malkin et al. 1981). The inhibitor DCMU blocks the electron transport from PSII to plastoquinone pool,
inducing PSII to re-emit as fluorescence the excitation energy absorbed: upon DCMU treatment, in
limiting light, the capacity of light harvesting and energy transfer to reaction center of PSll is inversely
proportional to the fluorescence emission kinetics (Figure 2A) (Malkin et al. 1981). The differences in
antenna size were thus quantified as the reciprocal of the time required to reach 2/3 of the maximum

fluorescence (1/ta/3, Figure 2B). As reported in Figure 2A e8 mutant strain showed fluorescence

induction kinetics similar to the WT case. Thus, the reduced Chl/cell ratio was not related to a reduced
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Figure 2. PSII functional antenna size and PSII maximum quantum yield. (A) Fluorescence induction kinetics of PSIl antenna
size of wild type and selected mutant. (B) PSII functional antenna size expressed as the reciprocal of the time required to
reach 2/3 of the maximum fluorescence emission, T2/37}(%). (C) PSIl maximum quantum yield calculated as (Fv-Fo) / Fm from
basal chlorophyll fluorescence in the dark (Fg) and maximum chlorophyll fluorescence induced by a saturating pulse (Fu).
The statistical analysis of the results obtained was performed by unpaired two sample t-test (n=4, no statistically significant
difference being p-value=0.09 for PSII functional antenna size and p=0.78 for F,/F, values).
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antenna/core complex ratio and reduced light harvesting capacity of PSII. PSIl maximum quantum yield
was then measured by pulse amplitude modulated fluorescence as F./Fn (Figure 2C). F,/F, was not
significantly different in e8 mutant compared to WT, suggesting that the mutations introduced in e8
were not deleterious to photosynthesis.

Photosynthetic performances of e8 was then evaluated measuring the light dependent oxygen
evolution. Net oxygen evolution rates at different light intensities are reported in Figure 3A normalized
to the chlorophyll content and fitted with hyperbolic functions, showing no major differences between
WT and e8 mutant. Similarly, dark respiration rate of WT and e8 was not significantly different,
suggesting that mitochondrial respiration was not affected by the mutation introduced in the mutant

(Figure 3B).
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Figure 3. Photosynthetic parameters of e8 mutant compared to WT. (A) Net oxygen production of wild type and e8 mutant
strain normalized to chlorophyll content, measured at different actinic light intensities. Experimental data were fitted with
hyperbolic function. (B) Dark respiration rate normalized to cell content. (C) Non-Photochemical Quenching (NPQ) formation
and relaxation in wild type and e8 mutated strain, actinic light 1500 umol photons m2 s, (D) Proton-motive force (pmf) for
wild type (WT) and e8 obtained by electrochromic shift measurement (ECS) at 1000 umol photons m2 s and normalized to
the chlorophyll content. Errors are reported as standard deviation, the statistical significance of differences between WT
and e8 is indicated as * (p < 0.05), as determined by unpaired two sample t-test (n=4).
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Light dependent electron transport in photosynthetic organisms is coupled to proton transport across
the thylakoid membrane into the lumen, which are then used by ATPase to produce ATP. Light
dependent proton motive force (pmf) can be estimated measuring the light dependent-electrochromic
shift (ECS) of carotenoid absorption. Carotenoid absorption spectra are indeed sensitive to the
membrane potential (Bailleul et al. 2010). As reported in Figure 3C a significant increase in pmf was
evident in e8 mutant when exposed to actinic light, indicating an increased proton transport across
thylakoid membranes. This result suggests that the reduction of Chl content per cell observed in e8
mutant did not negatively influenced trans-thylakoid proton transport but rather increased the light
dependent pmf, because of possible adaptation of the photosynthetic apparatus to the e8 mutant
phenotype.

Considering the increased pmf observed in e8 mutant, the activation of photoprotective mechanisms
triggered by lumenal ApH was then investigated as xanthophyll cycle activation and NPQ induction.
Light dependent zeaxanthin accumulation was measured in WT and e8 mutant upon exposure to
strong light (2500 umol photons m2 s!) for one hour in order to induce violaxanthin de-epoxidation
(Supplementary Figure S2): e8 mutant strain showed a higher de-epoxidation index only in the first
minutes of illumination, due to the higher accumulation of zeaxanthin at time zero compared to the
WT, but on a longer time scale the zeaxanthin content was similar in the two strains. Considering the
role of this xanthophyll in the photoprotective mechanisms adopted by N. gaditana (Cao et al. 2013;
Chukhutsina et al. 2017) we measured the NPQ induction kinetics in e8 mutant compared to WT. As
reported in Figure 3D the NPQ kinetics were similar in e8 mutant compared to the WT case. NPQ
induction was indeed reported to be only partially related to the xanthophyll cycle activation in N.
gaditana (Chukhutsina et al. 2017): the zeaxanthin content in e8 mutant and WT, even if different in
the first minutes of illumination, was likely sufficient to saturate the zeaxanthin dependent NPQ
component in both strains at the actinic light used.

In order to investigate possible different photosensitivity of the e8 mutant compared to WT,
chlorophyll bleaching kinetics were measured upon exposure to strong light (2500 umol photons m=
s1). As reported in Supplementary Figure S3, the exposure to strong light causes in both WT and e8
strain a similar decrease in chlorophyll absorption, with a ~30% chlorophyll loss after 14 hours of
illumination. This result demonstrates that the e8 strain is not impaired in photoprotective

mechanisms.

Biomass and lipid productivity
Biomass productivity, defined as biomass dry weight obtained on a daily basis, in WT and e8 mutant
strain were analyzed in 80 ml batch airlift photobioreactors illuminated with continuous white light at

different irradiances, from 60 to 1500 umol photons m?2 s, As reported in Figure 4 and Supplementary
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Figure S4A increased biomass productivity was measured at 60 and 200 umol photons m? s, but not
at higher irradiances. Lipid accumulation at these growth conditions was thus evaluated by Nile Red
staining (Chen et al. 2009). As reported in Supplementary Figure S4B an increased lipid accumulation
on a dry weight basis was evident in e8 mutant at all the different irradiances of growth, with the
exception of the highest one, 1500 pmol photons m s, Lipid content per volume of culture was thus

increased in e8 mutant grown at 60, 200 and 400 pmol photons m? s compared to the WT case
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Figure 4. Biomass and lipid productivity of wild type and e8 mutant growth at 400 umol photons m2 s, (A) Growth curves
of WT and e8 mutant obtained measuring the optical density at 720 nm fitted with sigmoidal function. (B) Maximum daily
productivity in terms of gr L'* day™. (C) Dry weight at the end of the growth curve (g/L). (D, E) Lipid content in terms of mg
of lipids per liters of culture (D) or mg of lipids per gram of dry weight (E). (F) Lipid productivity in terms of mg of lipids per
liters of culture per day. (G) Acyl chain composition of lipid fraction from WT and e8 mutant. Errors are reported as standard
deviation, significantly different values are marked with * if p < 0.05 and ** if p < 0.01, as determined by unpaired two
sample t-test (n=3).
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(Supplementary Figure S4C). As reported in Supplementary Figure S4D a 295%, 100% and 34% increase
in Nile Red staining was measured respectively at 60, 200 and 400 pmol photons m? s compared to
WT. The increased lipid accumulation phenotype of e8 mutant was thus more evident at lower
irradiances, suggesting a role of light availability on the lipid accumulation phenotype observed.
Interestingly, on a volume basis e8 mutant grown at 400 umol photons m? s was accumulating a
similar level of lipid compared to the WT case grown at 1500umol photons m? s (Supplementary
Figure S4C).

Fatty acid accumulation and productivity were then analyzed at 400 umol photons m? s, being this
light intensity sufficient to essentially reach the maximum Nile red staining on a volume basis in e8
mutant. In particular, lipid fraction of WT and e8 mutant strain were explored by GC analysis of the
total acyl lipid as Fatty acid methyl esters (FAME). As reported in Figure 4, e8 mutant was characterized
by a ~80% increase of FAME accumulation and daily productivity compared to WT on a volume basis.
Accordingly, FAME fraction on total biomass was increased by ~60% in e8 mutant compared to the WT
case (Figure 4E), while on a cell basis the FAME accumulation of e8 mutant was increased by 115%. As
reported in Figure 4G, palmitic acid (C16:0) and palmitoleic acid (C16:1) were the major fatty acids
accumulated in both WT and e8 mutant, with a strong increase being observed in the latter. Moreover,
myristic acid (C14:0), stearic acid (C18:0), oleic acid (cis C18:1), elaidic acid (trans C18:1) and linoleic
acid (C18:2) were also strongly increased in e8 mutant compared to WT on a volume basis.
Interestingly, the strongest increase was observed in the case of the saturated stearic acid (C18:0) and
palmitic acid (C16:0) with a more than two-fold increase in e8 compared to WT.

Lipids production in N. gaditana is triggered upon nitrogen deficiency, where metabolism is switched
accumulating nitrogen-free lipids (Hodgson et al. 1991; Rodolfi et al. 2009; Simionato et al. 2011). The
influence of nitrogen starvation on the FAME accumulation properties of €8 mutant compared to WT
were thus investigated: reduced nitrogen source (nitrate) were thus removed at the end of the growth
curve reported in Figure 4A, in order to boost lipid biosynthesis (Hodgson et al. 1991; Rodolfi et al.
2009; Simionato et al. 2011). A slight reduction of total biomass yield was evident in nitrogen deplete
condition (-N) in e8 mutant compared to WT (Supplementary Figure S5A), while a more evident
difference was measured in the case of lipid fraction (Supplementary Figure S5B). In -N condition the
WT strain induced a strong accumulation of fatty acids as previously reported (Alboresi et al. 2016;
Simionato et al. 2013), especially palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0),
linoleic acid (C18:2) and oleic acid (C18:1 CIS), while no significant increase of total FAME was evident
in e8 mutant in -N compared to nitrogen replete (+N) condition (Supplementary Figure S6). e8 mutant
is thus more productive in terms of lipid accumulation in nitrogen replete conditions, but it is not able

to further increase its lipid fraction in nitrogen deficiency.
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Light distribution is improved in e8 mutant

The results obtained demonstrate that the reduced Chl/cell ratio and the improved light distribution
observed vyielded an increased lipid productivity in +N condition. Light distribution in the
photobioreactors herein adopted were thus estimated considering the chlorophyll concentration
measured in photobioreactors at exponential phase, the absorption spectra of whole cells in the 400
— 700 nm region, the irradiance arriving to the surface of photobioreactor (400 umol photons m2s?)
and its diameter (3 cm). As reported in Figure 5A and in Supplementary Figure S7, the transmittance
at 675 nm and 450 nm, the main peaks of chlorophyll a absorption, were higher in the e8 mutant
compared to WT: being the transmittance the ratio between the light not being absorbed or reflected
by the sample and the incident light, it was possible to calculate the irradiance arriving at the center
of photobioreactor (1.5 cm) considering an incident irradiance of 400 umol photons m%s™. As reported
in Figure 5B e8 mutant was exposed to a 6-fold higher irradiance at the center of the photobioreactor

compared to the WT case.
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Figure 5. Transmittance and light penetration in photobioreactors. Transmittance (A) and irradiances (B) at different layer
of photobioreactors were calculated considering the absorption spectra of whole cells, the incident light intensity (400 umol
photons m2s1) and the concentration of chlorophyll at exponential phase in photobioreactors. Error bars are reported as
standard deviation (n=3).

Genetic characterization of the mutant strain

e8 mutant strain was investigated at genetic level to identify those mutations putatively responsible
for the phenotypic traits observed. Whole genome lllumina sequencing was performed for WT and eS8,
using the reference genome available for N. gaditana for reads alignment and genome assembly
(Corteggiani Carpinelli et al. 2014). As reported in Supplementary Table S1, a 20X coverage was
obtained for at least 95% of the genome of both WT and mutant strain. The comparison between WT

and e8 allowed to identify the single nucleotide polymorphisms (SNP) induced in mutant strain by EMS
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Predicted effect

Total SNPs OTHERs
LOW MODERATE HIGH

240 36 80 1 123 SNPs

Table 2. Statistics of the mutations found in e8 mutant strain. Total number of SNPs found is reported in the first column.
The predicted effect of mutations are reported according to SNPeff software: HIGH is for mutation probably causing protein
truncation, loss of function or triggering nonsense mediated decay, MODERATE are non-disruptive variants that might
change protein effectiveness and LOW are mutations harmless or unlikely to change protein behavior. SNPs with predicted
non-coding variants or variants affecting non-coding genes, where predictions are difficult or there is no evidence of impact
were not considered: the number of remaining SNPs are reported in the last column (OTHER).

treatment. In particular, e8 resulted to be mutated in 234 genes, among which 113 genes with not-
silent mutations (Table 2 and Supplementary Dataset S1). The high number of mutations identified
complicates the association of the phenotypes observed with the genetic traits of the e8 mutant.
Mutated genes were grouped according to their Gene Ontology (GO) terms and clustered using GO
slim terms of plant: as reported in Supplementary Figure S8 several biological processes, molecular
functions and cellular component were potentially affected by mutations.

Among the different mutations, genes encoding for chloroplast located proteins were investigated in
order to find possible mutations at the base of the reduced chlorophyll content phenotype: chloroplast
transit peptides were predicted using HECTAR software (Gschloessl, Guermeur, and Cock 2008)
identifying only 4 mutated genes for putative plastid located proteins (Supplementary Table S2). In
particular, a plastid chaperone protein with a DnaJ domain (Naga_100340g1) was mutated: protein
subunits with Dnal domains have been previously reported to be involved in plastids in several
processes ranging from biogenesis of thylakoid membranes, translation, to mRNA stability (Chiu et al.
2013). Other mutations on chloroplast targeted proteins were on genes encoding for NHL-repeat
protein (Naga_100040g45), for a dehydrogenase reductase SDR (Short-chain
dehydrogenase/reductase) -family protein (Naga_100641g4) and a protein of unknown function
(Naga_100008g127). Homologous proteins in the case for NHL-repeat protein (Naga_100040g45) and
dehydrogenase reductase SDR-family protein were reported to be respectively involved in biotic and
abiotic stresses (Hemsley et al. 2013) and in the secondary metabolism (Moummou et al. 2012) but
their possible correlation with the phenotype observed in e8 mutant is not obvious.

Among the SNPs identified in gene upstream regions, possibly affecting gene expression, a mutation
was identified in a Photosystem Il s4 domain protein (Naga_100303g8). Photosystem Il s4 domain
protein in the cyanobacterium Synechocystis sp. PCC 6803 has been reported to be involved in

balancing photosynthetic electron transport (Inoue-Kashino et al. 2011). However, the similar PSII

232



Chapter 3| Section A

quantum vyield (Fy/Fn) observed in WT and e8 mutant suggest that impact of the mutation in this
Photosystem Il s4 domain protein is minor.

Other mutated genes found in e8 mutant possibly linked with the reduced chlorophyll content per cell
observed include genes involved in regulation of gene expression, as a CCT (CONSTANS, CO-like and
TOC1) domain containing protein (Naga_100027g10). This gene in higher plants is involved in control
of flowering and heading (Li and Xu 2017; ZHANG et al. 2017) and could thus be putatively involved in
the regulation of chlorophyll biosynthesis and/or plastid morphology. Other mutations identified on a
transcription elongation factor (Naga_100012g30), a regulator of chromosome condensation
(Naga_100664g1) and a ribosomal RNA small subunit methyltransferase B (Naga_100044g6) could
generally lead to altered gene expression and protein synthesis.

Since the selected mutant showed an increased lipid content per cell, mutations affecting lipid
metabolism were also investigated: mutations in a beta-ketoacyl synthase (Naga_100086g24), 24-
dehydrocholesterol reductase (Naga_100012g52) and digalactosyldiacylglycerol synthase 1 (dgdi,
Naga_100010g107) were identified. The beta-ketoacyl synthase (Naga_100086g24) and 2,4-
dehydrocholesterol reductase are involved in lipid biosynthesis (Alboresi et al. 2016; Lu et al. 2014),
and the correlation between mutations in these genes and the observed phenotypes in e8 is not
obvious. More interesting is the case of the gene encoding for the digalactosyldiacylglycerol synthase
1 (dgd1, Naga_100010g107): this gene is mutated in the CDS region, leading to the substitution of a
proline residue with a serine. Thus, the mutation introduced caused the substitution of an aliphatic
residue with a polar one, potentially affecting the enzymatic activity of the protein. A dgd1 mutant of
Arabidopsis was previously isolated showing a reduction of 90% of DGDG content and strong reduction
in chlorophyll content per leaf area (Klaus et al. 2002). Consistently with a reduced activity of DGD1
enzyme, a strong reduction of C20:5 fatty acid (EPA) on total lipid fraction was evident in e8 mutant
either in +N or -N conditions (Supplementary Information Figure S6B). C20:5 has been indeed
previously reported in N. gaditana to be the major constituents of MGDG and DGDG being found
almost essentially in these lipids in +N conditions (Simionato et al. 2013). For these reasons, in the
specific case of N. gaditana, the quantification of C20:5 fatty acid can be used as a proxy of MGDG and
DGDG accumulation, demonstrating a reduced content of the main thylakoidal lipids in e8 mutant

compared to the WT case.

DISCUSSION

In this work mutants with reduced chlorophyll content per cell and increased lipid productivity were
screened upon random chemical mutagenesis in N. gaditana. The strategy to improve productivity
reducing the chlorophyll content per cell has been reported for several microalgae as N. gaditana

(Perin et al. 2015), Chlamydomonas reinhardtii (Jeong et al. 2017; Kirst, Garcia-Cerdan, et al. 2012;
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Polle, Kanakagiri, and Melis 2003), Chlorella sorokiniana (Cazzaniga et al. 2014), Chlorella vulgaris
(Dall’Osto et al. 2019) and cyanobacteria (Kirst et al. 2014) among others. Generation of mutants by
chemical mutagenesis presents the advantage to produce strains not considered as GMO (genetically
modified organism, and thus more easily cultivatable in outdoor systems without the restrictive
authorizations required for GMO strains in several countries (Beacham, Sweet, and Allen 2017).
Functional PSIl antenna size and light dependent oxygen evolution were not altered in pale green
mutant e8, indicating a more general reorganization of plastid assembly in this mutant leading to a
similar functioning of the photosynthetic apparatus on a chlorophyll basis, despite the reduction in
total chlorophyll per cell. In line with this finding e8 mutant did not present any mutations on light
harvesting subunits. Unaltered photosynthetic efficiency in pale green mutant has been previously
reported in several microalgae species (Cazzaniga et al. 2014; Dall’Osto et al. 2019; Jeong et al. 2017;
Kirst, Garcia-Cerdan, et al. 2012; Kirst et al. 2014; Perin et al. 2015; Polle et al. 2003), being chlorophyll
content per cell not necessarily influencing the functionality of the photosynthetic apparatus, but
rather being possibly linked to chloroplast biogenesis. Consistently e8 mutant was characterized by a
strong reduction in C20:5 fatty acid accumulation, being this lipid the main constituent of thylakoid
glycerolipids MGDG, DGDG and SQDG in N. gaditana (Simionato et al. 2013).

e8 mutant was characterized by an increased biomass productivity compared to the WT case at low-
medium light, while at saturating irradiances an increased lipid accumulation was rather observed
(Figure 4, Supplementary Figure S4). Since lipids are a class of macromolecules with the highest energy
density, an increased lipid accumulation implies an improved light energy conversion efficiency.
Considering the irradiance dependent phenotype and the similar photosynthetic properties compared
to the WT case (Figure 3, Figure 5, Supplementary Figure S4), the improved photosynthetic efficiency
at the base of the increased lipid content in e8 mutant is thus related to the improved light penetration
in the photobioreactor and more homogenous light availability due to the reduced chlorophyll content
per cell observed in the mutant (Table 1, Figure 5). Accordingly, the zeaxanthin content measured in
e8 mutant was increased compared to WT (Table 1): zeaxanthin accumulation is indeed triggered in
high light, providing other evidences for the increased penetration of light in photobioreactors in the
case of e8 mutant cultivation. In N. gaditana lipids production is triggered by high light (Alboresi et al.
2016): the improved light distribution in e8 mutant could thus be the major reason for the increased
lipid productivity observed in the e8 mutant.

In order to elucidate the genetic base of the reduced chlorophyll content per cell phenotype and to
investigate other possible genetic traits associated to the increased lipid content phenotype whole
genome sequencing was performed and mutations on 234 genes were identified, among which 113 in
coding regions. Interestingly, e8 mutant present a non-conservative mutation of dgd1 gene, encoding

for a key enzyme involved in DGDG biosynthesis. DGDG and MGDG are the major lipids of
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photosynthetic membranes. dgd1 mutant of Arabidopsis showed an impaired DGDG synthesis with a
rearrangements in all pigment-protein complexes (Klaus et al. 2002). In plants and in algae DGDG is
synthetized in at least two parallel pathways, the ‘prokaryotic pathway’, restricted to plastid, and the
‘eukaryotic pathway’ which involves both plastid and endoplasmic reticulum (Klaus et al. 2002; Liang,
Wen, and Liu 2019). The dgd1 gene mutated in the e8 mutant encodes for an enzyme involved in the
‘eukaryotic pathway’. Mutation in dgd1 gene in A. thaliana caused a reduction in DGDG biosynthesis
for thylakoid assembly and pale green leaves (Dormann et al. 1995). Thus, we suggest that mutation
in in dgd1 gene in e8 mutant is responsible for the reduction in chlorophyll content per cell. The
increased lipid accumulation in e8 mutant could be a consequence of an improved light availability
experienced by the mutant strain compared to WT (Figure 5), because of the reduced cells
pigmentation. This consideration is consistent with previous observations about increased lipid
accumulation in N. gaditana upon exposure to high irradiances (Alboresi et al. 2016; Meneghesso et
al. 2016; Simionato et al. 2011). Similar effects of high irradiances on lipid biosynthesis were reported
also in the case of Nannochloropsis oceanica and Phaeodactylum tricornutum (Huete-Ortega et al.
2018). Alternatively, the high lipid accumulation observed in the case of e8 could be a consequence of
a re-direction of fatty acid metabolism due to altered glycerolipids accumulation: this is however
unlikely, considering similar lipid accumulation in the dgd1 mutant of A. thaliana (Klaus et al. 2002).
However, the mutations introduced in e8 mutant have a side effect in nitrogen starvation: in -N
condition, the increased lipid production trait was lost in e8. In N. gaditana nitrogen starvation induces
a lipid accumulation through the degradation of existing membrane lipids (MGDG and DGDG mainly)
and in part by the de novo synthesis of TAG (Simionato et al. 2013). In e8 mutant, due to the mutation
in dgd1 gene, membrane glycerolipids are likely kept to a minimum level sufficient to avoid impairment
of photosynthetic membrane integrity, allowing for a sustainable photoautotrophic growth, but the
reduced pool of thylakoid membrane lipids impairs the lipid boost observed in nitrogen starvation.
Whole genomic sequencing of the mutant revealed that it was characterized by several SNPs: this is a
disadvantage in using chemical mutagenesis to produce strains with phenotypic traits of interest,
making the correlation between genotype and phenotype extremely difficult and increasing the
possibility of unexpected phenotypes in some peculiar conditions. RNA-seq analysis could also provide
additional information in order to interpret the phenotypic traits observed in e8 mutant.

Mutant complementation or specific mutagenesis with homologous recombination or genome editing
will allow to prove the correlation between specific mutations and the observed phenotypes. The
mutations introduced leading to reduced pigmentation and improved lipid productivity could then be

considered to possibly extend these phenotypic traits in other microalgal species.

235



Chapter 3| Section A

CONCLUSIONS

The characterization of the biomass and lipid production of N. gaditana e8 mutant demonstrate that
reduced chlorophyll content per cell could be a convenient trait to be selected for improving lipid
production in nitrogen replete conditions. Indeed, the selected mutant exhibited an increased lipid
productivity in +N condition of ~80% compared to WT on a volumetric base. This trait is interesting
considering the strong increased in C16:0, C16:1, C18:0 and C18:1 without the energetic and economic
costs of inducing nutrient starvation, and their possible use for biodiesel production (Dianursanti,
Sistiafi, and Putri 2018; Hoffmann et al. 2010). Improved photosynthetic efficiency by manipulating
chlorophyll per cell content is thus a suitable strategy to increase lipid productivity in N. gaditana.
Reduced chlorophyll per cell phenotype can be obtained by chemical mutagenesis, as reported in this
work, or by specific genetic manipulation by homologous recombination (Kilian et al. 2011) or genome
editing (Ajjawi et al. 2017; Naduthodi et al. 2019). Direct genetic engineering would have also allow

reducing the risk of introducing additional mutations with possible negative side effects.
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MATERIAL AND METHODS

Culture conditions, mutagenesis and mutant selection. N. gaditana WT (CCAP849/5) and mutants
were cultivated in sterile filtered f/2 medium (Guillard and Ryther 1962) modified as described in
Alboresi et al. 2016. Cells were grown at temperature of 24 = 1°C, in a 16h light/8h dark photoperiod
with a fluorescent light of about 70 umol photons m2 s (low light = LL). Cells number were monitored
with a Blirker Counting Chamber (HBG, Germany) under light microscope. Chemical mutagenesis was
induced using the mutagenic agent ethyl-methane-sulfonate (EMS) as described in the following: EMS
was added to 102 cell/ml at concentrations of 0.75%, 1.5%, 2% and 2.5%. Samples were incubated for
2hin dark and then diluted in 10% sodium thiosulfate solution inactivating the EMS activity. Cells were
then centrifuged, washed twice with 1M NaCl, dissolved in 500ul of f/2 medium and kept overnight
under low light. Cells were then plated on f/2 solid medium and kept under control light for at least 2
weeks. The cells treated with EMS concentration inducing a 95% of mortality was used for the following
screening procedure. Pale green mutants were selected on the base of visible phenotype. Selected
colonies were cultured in liquid f/2 medium and the chlorophyll content per cell was estimated by
measuring absorption of whole cells at 680 nm and at 730 nm: strains with at least a 25% reduced
680/730 absorption ratio were selected. Further screening was performed measuring the chlorophyll
content per cell and nile red staining as described below and in the Results section.

Nile red staining. Lipid content by Nile Red staining was evaluated as previously reported (Chen et al.
2009).

Measurement of photosynthetic parameters. /In vivo chlorophyll fluorescence was measured with
Dual PAM-100 fluorometer (Walz, Effeltrich, Germany) at room temperature (RT) using a saturating
light at 6000 pmol photons m™ s and actinic light of 1500 umol photons m? s™. The NPQ parameter
were calculated form the maximum fluorescence induced by a saturating pulse in the dark (Fu) or after
actinic light exposure (Fu') as (Fm — Fum')/Fm’. Proton motive force upon exposure to different light
intensities was measured by Electrochromic shift (ECS) with MultispeQ v2.0 (PhotosynQ) according to
(Kuhlgert et al. 2016). PSII functional antenna size was measured following kinetic of PSII fluorescence
emission in cells treated with 1 x 10> M 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). PSIl antenna
size is inversely proportional to the time required for reaching 2/3 of the maximum fluorescence
emission (Malkin et al. 1981). Oxygen evolution curves were performed as described (Perozeni, Stella,
and Ballottari 2018). Net oxygen production was calculated subtracting the oxygen consumption in the
dark after each measurement at the different actinic lights. Experimental data were fitted with
hyperbolic functions in order to retrieve the Pmax (maximum photosynthetic activity) and half
saturation light intensity values (light intensity at which the oxygen evolved is half of Pmax).

Pigment extraction and analysis. The chlorophyll a and total carotenoids were extracted from N.

gaditana with 100% DMSO at 60°C for 24 h in dark conditions and analyzed by HPLC as described in
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(Lagarde, Beuf, and Vermaas 2000). De-epoxidation index was calculated as (zea + anthera/2)
/(antera+viola+zea).

Biomass and lipid productivity. Biomass productivity of WT and e8 mutant were evaluated in small
photobioreactors (80 ml) in Multi-Cultivator MC1000 system (Photon System Instrument, Cech
republic) at 24°C under continuous light at 60, 200, 400 or 1500 pmol m?2s? as described in the Results
section. Biomass accumulation were evaluated considering the dry weight per volume (gr/L) obtained
at the end of the growth curve. Maximum daily productivity (gr L'day?) were determined at the
exponential phase of growth curve. Fatty acid methyl esters (FAME) were measured at the end of the
exponential phase as reported in (Dall’Osto et al. 2019). Lipid and fatty acids accumulation were
expressed on a volume base (mg/L) or as a fraction of biomass dry weight (mg/gr). Daily lipid
productivity was calculated from lipid content and the time (days) at which the lipid analysis was
performed.

Sequencing and computational analysis. Sequencing of mutant and WT strain was carried out on an
Illumina NextSeq and an Illumina HiSeq1000 respectively. The raw reads resulting from sequencing
were processed using Scythe (Anon n.d.) and Sickle (Joshi and Fass 2011) to remove Illumina adapters
and low-quality reads. All sequences were mapped to the N.gaditana B-31 assembly (Corteggiani
Carpinelli et al. 2014) using the Burrows- Wheeler Aligner (BWA)(Li and Durbin 2010). Deduplication
and indel realignment were performed with PicardTools(Anon n.d.). Variants were identified were
identified using three software: GATK (Depristo et al. 2011), Freebayes v1.3.1(Garrison and Marth
2012) and breseq v0.35.1 (Deatherage and Barrick 2014). Variants were quality filtered (DP>5 and
QUAL>30) and for each sample only mutations identified by three out of three variant callers were
selected. Variants found in both samples were then discarded. Prediction of SNPs effect was
performed using SNPeff software (Cingolani et al. 2012). The dataset of SNPs identified are reported
in Supplementary Dataset S1. Only SNPs not predicted with MODIFIER effect, thus only SNPs located
elsewhere than upstream or downstream of a gene, 5’ or 3’ UTR regions or intergenic regions were
considered for the following analysis. Targeting prediction was performed using HECTAR (Gschloessl
et al. 2008). GO analyses were performed on Blast2go (Conesa et al. 2005), using Blast2go GO term
grouped using plant slim subset and eventually visualized with REVIGO (Supek et al. 2011) in base of

the number of gene for each GO term.
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Sequenced data discussed in this work have been submitted to the Sequence Read Archive (SRA)

repository of the NCBI database and are available under Bioproject accession number PRINA623339.

Supplemental dataset

Supplemental dataset S1. List of the 240 SNPs identified in e8 and their effect predicted by SNPeff software.

The dataset is available online:

https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-020-01718-8

Supplemental Tables

Table S1. Coverage obtained by lllumina sequencing for WT and e8 mutant strain.

wr e8
mean coverage 115.02 72.42
% 1X cov 98.79 98.81
% 5X cov 98.47 98.63
% 10X cov 98.01 98.10
% 20X cov 96.92 95.77

Table S2. Mutation identified on gene coding for proteins putatively located in the chloroplast.

Prediction of chloroplast transit peptide was performed with Hectar software.

Mutant Gene Mutation Annotation
e8 Naga_100008g127 | 3_prime_UTR_variant | Protein of unknown function DUF1118
e8 Naga_100040g45 missense_variant nhl repeat containing protein 2
e8 Naga_100340g1 missense_variant chaperone protein
dehydrogenase reductase sdr family
e8 Naga_100641g4 missense_variant
member 9
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Supplemental Figures

Supplementary Figure S1. Mutants screening by 680/730 nm absorption ratio. Absorption ratio
680/730 nm was used to assay the chlorophylls per cell content. Only colonies with a reduction of at

least 25% was selected for further analyses. Error bars are reported as standard deviation (n=3).
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Supplementary Figure S2. Light dependent zeaxanthin accumulation in WT and e8. Samples were
illuminated for 1 h with a strong light (2500 pmol photons m2st). Pigments composition was evaluated
at different time points by DMSO extraction and HPLC analysis. (A) Depoxidation index calculated as
(zea + anthera/2) /(antera+viola+zea). (B) Zeaxanthin per carotenoid content. (C) Zeaxanthin per
chlorophyll content. Errors are reported as standard deviation, significantly different values are

marked with * if p < 0.05 and ** if p < 0.01, as determined by unpaired two-sample t-test (n=3).
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Supplementary Figure S3. Chlorophyll bleaching in wild type and e8 mutant strain exposed to strong
light. Chlorophyll bleaching kinetics of WT and e8 mutant strains were determined measuring the
decrease of chlorophyll absorption upon exposure to 2500 umol photons m2 s, Errors are reported
as standard deviation (n=3). The statistical analysis of the results obtained was performed by unpaired
two sample t-test revealing no statistically significant difference being p-values > 0.1 at the different

time points.
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Supplementary Figure S4. Biomass and lipid productivity of WT and e8 mutant at different

irradiances. (A) Maximum daily productivity in terms of gr L' day’. (B, C) Nile Red fluorescence of WT

and e8 mutant normalized to dry weight (B) or to the culture volume (C). (D) Fold change of Nile Red

fluorescence and biomass dry weight on a volumetric base in e8 mutant compared to WT. Errors are

reported as standard deviation, significantly different values are marked with * if p < 0.05 and ** if p

< 0.01, as determined by unpaired two sample t-test (n=3).
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Supplementary Figure S5. Dry weight and FAME content in WT and e8 mutant in nitrogen starvation.
Dry weight (A) and FAME content (B) in cells grown in nitrogen deplete medium for WT and e8 mutant
strain. Errors are reported as standard deviation, the statistical significance of differences between WT

and e8 is indicated as ** (p < 0.01), as determined by unpaired two-sample t-test (n=3).

400

350
300
1 _
"'EJ 250—_
< 200—_
o 150
= ]
100 -

50 +

250



Chapter 3| Section A

Supplementary Figure S6. Acyl chain composition of lipid fraction from WT and e8 mutant in nitrogen
replete conditions (+N) or after nitrogen starvation (-N). (A) fatty acid content per liter of culture. (B)
Fold change of fatty acid fraction on total fatty acids content in e8 normalized to the WT case. Errors
are reported as standard deviation, statistically significantly different values between WT and e8in (A)
and values statistically significantly different than 1 in (B) are marked with * if p < 0.05 and ** if p <

0.01, as determined by unpaired two sample t-test (n=3).
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Supplementary Figure S7. Visible light transmittance in photobioreactors at different layers for WT

and e8 mutant cultures.
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Supplementary Figure S8. GO slim terms of mutated genes of e8. The GO terms were restricted to GO

slim terms of plant for an easier visualization. Each dot is proportional with the number of genes

related to a specific category of GO terms (max 30 genes, min 1 genes).
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Section B
Incorporating a molecular antenna in diatom microalgae

cells enhances photosynthesis
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Diatom microalgae have great industrial potential as next-generation sources of biomaterials and
biofuels. Effective scale-up of their production can be pursued by enhancing the efficiency of their
photosynthetic process in a way that increases the solar-to-biomass conversion yield. A proof-of-
concept demonstration is given of the possibility of enhancing the light absorption of algae and
increasing their efficiency in photosynthesis by in vivo incorporation of an organic dye which acts as an
antenna and enhances cell growth and biomass without resorting to genetic modification. A molecular
dye (Cy5) is incorporated in Thalassiosira weissflogii diatom cells by simply adding it to the culture
medium and thus filling the orange gap that limits their absorption of sunlight. Cy5 enhances diatoms’
photosynthetic efficiency and cell density by 49% and 40%, respectively. Time-resolved spectroscopy
reveals Forster Resonance Energy Transfer (FRET) from Cy5 to algal chlorophyll. Our approach lays the
basis for non-genetic tailoring of diatoms’ spectral response to light harvesting, opening up new ways

for their industrial valorisation.
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INTRODUCTION

Drastic changes in climate and reduction in the availability of raw chemical materials are drawing
academic and industrial research, as a matter of considerable urgency, towards photosynthetic
organisms as living factories for the large-scale production of fuels and active chemical products.
Phytoplankton have great industrial potential in this context, which includes diatoms, the major group
of microalgae responsible for ocean pH, worldwide carbon recycling and atmospheric CO, regulation
(Priyadarshani and Rath 2012). Diatoms are envisioned as a valuable energy and food source for the
nearfuture, potentially producing more biomass per unit of land area than terrestrial organisms (Sayre
2010). These unicellular eukaryotic microalgae (Lavaud, Rousseau, and Etienne 2004) ensure the
oxygen content in marine ecosystems (Field et al. 1998; Yang, Lopez, and Rosengarten 2011) and
control the Earth’s carbon cycle, as they are responsible for ~40% of total organic carbon produced
yearly in seawater (Falkowski et al. 2004; Rabosky and Sorhannus 2009). Their excellent lipid-
accumulation properties make diatoms promising candidates for large-scale production of biofuels
(Hildebrand et al. 2012). Further scientific interest in diatoms focuses on their suitability for application
in biomedicine (Cicco et al. 2015; Leone et al. 2017; Ragni, Cicco, et al. 2018; Vona et al. 2016) and
photonics (Irimia-Vladu et al. 2017; Ragni et al. 2017; Ragni, Scotognella, et al. 2018) given their
mesoporous silica cell walls (frustules), whose hierarchically organized nanostructure has functions
linked to cell protection from predators and harmful solar wavelengths. Despite the variety of
applications, the high costs of large-scale cultivation have so far restricted diatoms’ suitability for
industrial production (Trentacoste et al. 2013). A possible way of circumventing this problem is to
enhance their growth-improving photosynthetic efficiency that increases biomass and CO; fixation
(Kirschbaum 2011). In principle, photosynthesis can be enhanced by modifying external parameters
such as CO, concentration, light intensity (Terry 1986) or algal excitation wavelengths (Mann and Myers
1968; Schofield, Bidigare, and Prézelin 1990) but these procedures face several limitations including
cost of artificial illumination, change of the natural light availability, possible photoinhibition
phenomena occurring at high irradiances and CO; trapping in the liquid phase (Stephenson et al. 2011).
Photosynthetic efficiency can also be enhanced by genetic modification of microalgae, for example by
inhibiting their photoprotective mechanisms that limit light absorption (Melis 2009; de Mooij et al.
2015). Genetic modification can overcome microalgal non-photochemical quenching (NPQ) by
inhibition of genes that normally reduce photosynthetic efficiency under high light intensities. In the
last ten years, an alternative approach to the photosynthetic enhancement has been explored, based
on the enlargement of sunlight absorption capability (la Gatta et al. 2019; Hassan Omar et al. 2016;
Milano et al. 2012; Sissa et al. 2019) by endowing microalgae cells with chromophores capable of

absorbing light in solar spectral regions where algal absorption is otherwise limited, and transferring
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the collected light energy to the pigment-protein complexes of the photosystem units, thus favoring
photochemical reactions. Following this approach, Fu et al. genetically expressed the enhanced green
fluorescent protein (eGFP) in Phaeodactylum tricornutum diatoms, outperforming the wild-type
parental strain in biomass production rate under outdoor simulated sunlight conditions (Fu et al. 2017).
However, genetic tools are expensive and still limited to a few genetically fully-sequenced species of
diatoms (Banerjee et al. 2018; Jeon et al. 2017; Ng et al. 2017), which prevents general industrial
applications. Tailored organic dyes can, in principle, constitute an alternative photosynthesis-
enhancingtoolin living algal cells, promoting light harvesting without the need for genetic modification.
Proof of the possibility of enhancing photosynthesis by organic dyes in green microalgae such as
Chlorella sorokiniana (Prokop et al. 1984), Dunaliella salina (Burak, Dunbar, and Gilmour 2019) and
Nannochloropsis gaditana (Sung et al. 2018) was demonstrated using solutions of spectral shifting dyes
located in external cavities surrounding the photo-bioreactors used for the cell growth. This protocol
ensures transfer of the energy harvested by the dyes to algal cells without altering their viability.
However, it requires expensive equipment to avoid direct contact of dyes with cell cultures and is thus
incompatible with large scale applications. Alternative photosynthesis-enhancing strategies, which in
principle are more profitable in terms of scalability, resort to the incorporation of spectral shifting dyes
into living algal cells. The dyes used must fulfill certain requirements: (i) irrelevant toxicity for the target
living organisms, (ii) light absorption and emission properties suitable for energy transfer to algal
photosystems, and (iii) amphiphilic chemical structures that are both dispersible in water and easily
incorporated into cells. Current literature gives a few examples of studies relating to the effects on
photosynthesis of the in vivo incorporation of organic dyes in living diatoms cells. In particular,
rhodamines have shown considerable efficiency in penetrating diatom cells and staining both their cell
wall and their cytoplasm (Li, Chu, and Lee 1989). However, they were found to be toxic for various
species such as Coscinodiscus granii and wailesii (Kucki and Fuhrmann-Lieker 2012). Their toxicity was
also demonstrated for plants and fungal cells (Strugger 1938; Weber 1937), and the suitability of
rhodamines was thus restricted to enhancing the efficiency of photosynthetic complexes extracted
from photosynthetic organisms (Gundlach et al. 2009). Recently, in vivo incorporation of a BODIPY
(dipyrrometheneborondifluoride) dye into diatom microalgae has been shown to increase diatoms’
biomass rapidly in short-term cultivation but a decrease in cell population was observed 24 hours after
adding the dye, revealing overall harmful effects on diatom cultures rather than the expected
beneficial cell proliferation (Fu et al. 2017). These studies thus confirm that in principle enhancement
of algal photosynthesis can be pursued by the in vivo incorporation of dyes selected to extend algal
absorption cross-sections, but that the biocompatibility of incorporated dyes is an issue that must be

overcome. Here we demonstrate that the in vivo incorporation of a cyanine dye (Cy5, Figure 1) in
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Thalassiosira weissflogii diatom cells simply by adding it to the culture medium is not detrimental for
cells and increases light-dependent cell growth, oxygen and biomass production, by improving diatoms’
spectral response to light harvesting with no need for genetic engineering. Time-resolved spectroscopy
indicates that energy transfer compatible with a FRET mechanism occurs between Cy5 and the
chlorophyll a of living diatoms. This proof-of-concept paves the way for the development of light
harvesting dyes that, upon incorporation into living algae cells, enhance photosynthesis and favor large
scale biomass production.

Oxygen production
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Figure 1. Effects of in vivo incorporation of the Cy5 antenna dye in Thalassiosira weissflogii diatoms. Scale bar of the confocal
diatoms micrograph: 10 um.

RESULTS

The antenna dye

Cy5 is a cyanine dye selected as a model molecular antenna due to its (/) commercial availability, (i)
recognized suitability as an imaging tool for biomolecular systems, (iii) amphiphilic chemical structure
(Figure 1) favoring both molecular dispersion in aqueous media in the presence of biocompatible
content of dimethylsulphoxide and molecular permeation through cell membranes. Moreover, (iv) light
absorption and emission properties of Cy5 are suitable for light harvesting and energy transfer to
chlorophylls of Thalassiosira weissflogii diatoms since Cy5 absorbs light in the range 570 - 650 nm and
emits light at wavelengths (Amax: 660 nm) where the chlorophyll a absorption in diatoms cells is
maximum (Figure 2). In fact, the UV-vis absorption spectrum (red line in Figure 2) of photosynthetic
pigments extracted from Thalassiosira weissflogii, shows the major Chl a absorption peaks at 430 and
662 nm and less intense peaks due to xanthophylls (480 nm) and Chl ¢ (580, 620 nm) (Mantoura and
Llewellyn 1983; Yacobi 2012). The major Chl c absorption peak at 450 nm is weakly visible, being hidden
by xanthophylls and Chl a absorption.
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Figure 2. Absorption spectra of Cy5 (blue continuous line) and pigments (red line) extracted from Thalassiosira weissflogii
diatoms and emission spectrum of Cy5 (dashed blue line) inseawater.

Diatoms’ growth kinetics

Diatoms’ growth in culture medium enriched with Cy5 (1 uM final concentration) was monitored under
normal lighting conditions (light:dark 16h:8h, light intensity 70 pmol m? s?) and compared to a
reference sample of diatoms grown in the absence of the dye (Figure 3A): in both cases, exponential
growth started after 48h, reaching a plateau at the 5™ day. In particular, the concentration curve of Cy5-
treated diatoms was steeper than in the control in the exponential growth period 48-70h. After 8 days,
the cell concentration of the sample treated with Cy5 exceeded the value observed for the control
sample by 40%. The growth rate, calculated in the exponential phase between 48h and 70h, was 0.9 +
0.2 for algae grown with Cy5 and 0.4 + 0.3 for the control. We also observed a 23% increase in biomass
dry weight (Figure 3B) for algae grown for 8 days, under normal lighting conditions, in the presence of
Cy5 versus the control. To check that the increase of algal growth and biomass is effectively related to
photosynthetic enhancement (Kirschbaum 2011), we performed the same experiments in the absence
of light, inhibiting photosynthesis (Figure 3C). In this case, the growth curve of algae incubated with Cy5
did not differ from the control growth curve. This result confirms that the effect of Cy5 on cell growth
and biomass are dependent on dye photoexcitation and rules out any possible effects of Cy5 in non-
photosynthetic related metabolic pathways. As an additional control experiment, diatoms were grown
in the presence of Cy5 and the culture excited with blue light (410 — 450 nm), which allowed algal
photosynthesis to occur but excluded the contribution of Cy5, which is not excited at that wavelength

(Figure 3D). In this case, too, Cy5 did not affect algal growth with respect to the control.
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Figure 3. (A) Curves for diatom growth and (B) biomass recorded under normal lighting conditions, in the presence (blue line)
and absence (red line) of Cy5. Curves for diatom growth recorded under (C) darkness and (D) under blue light excitation.

Photosynthetic activity

Cy5’s ability to enhance diatom photosynthesis was also investigated by measuring the photosynthetic
activity as light-dependent evolution of oxygen by cells, in an early exponential phase, grown in the
presence and absence of Cy5 (Figure 4A). The presence of Cy5 increases the maximum photosynthetic
activity (Pmax) by 49% versus the control sample (Figure 4B). This result, together with the light-
dependent effect of Cy5, supports the hypothesis that the dye generates photosynthetic enhancement.
In fact, oxygen production is related to the water splitting photosynthetic mechanism that fuels
electron transport chains; hence, the improved O, production in the presence of Cy5 can be regarded
as plausible proof of photosynthetic enhancement. Moreover, oxygen consumption in the dark was
similar in the presence and absence of Cy5, suggesting that there are no major effects of Cy5 on

mitochondrial oxidative pathways (Figure 4C). Increased photosynthetic activity was consistent with

the increased growth rate.
Location of the dye in the cells

Once the light-dependent effect of Cy5 on diatom growth had been assessed, confocal analysis was

performed on bare and Cy5 treated diatoms to investigate the location of the dye in cell structures.
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Figure 4. Light response curves. (A) Algae oxygen evolution rates at different actinic lights in the presence (blue line) and
absence (red line) of Cy5. Experimental data were fitted with hyperbolic function y= Pmax * x/(K; + x), obtaining Pmax values
(B); (C) Oxygen consumption by dark respiration.

Samples were obtained using diatoms incubated with Cy5 in the earlier stage (45 minutes) and in the
growth plateau stage (8 days), to evaluate both the incorporation of Cy5 and cell morphology related
to their viability. Emission colours were arbitrarily assessed as red and blue for chloroplasts and Cy5,
respectively, to distinguish their photoluminescence. Confocal microscopy images detected 45 min
after incubation unequivocally showed the presence of Cy5 in diatom frustules (Figure 5A: ii. Row 2)
where chloroplasts appeared sticker (Figure 5A: i. Row 2). Interference from the fluorescence of
photosynthetic organelles in the Cy5 channel, also observed in the control sample (Figure 5A: ii. Rows
1-4) did not allow the location of Cy5 in chloroplasts to be unambiguously assessed. The dye’s
incorporation in cells was also confirmed observing Cy5 emission in the mitotic septum, as shown in
Figure 5A (ii. and iii. Row 2) and in the 3D reconstruction of Figure 5B (Desclés et al. 2008). Confocal
analysis was also performed after 8 days’ incubation with Cy5, i.e. in proximity of the growth plateau
(Figure 5: row 3 and 4). A weak photoluminescence of Cy5 was still observed in the cell walls (Figure
5A: ii. and iii. Row 4), moreover diatoms’ morphology, as well as the location and intensity of
chloroplasts’ luminescence (Figure 5A: ii. and iii. Row 4) confirmed the viability of Cy5 treated

microalgae versus the control (Figure 5A: Rows 1 and 3). General morphological assessment using bright
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Figure 5. (A) Confocal microscopy images of diatom control, and diatoms grown with Cy5 1 uM after 45 minutes and 8 days’
incubation in normal lighting conditions (light: dark 16:8 h). Red and blue colors were arbitrarily assigned for chloroplast and
Cy5 emission, respectively (Size bar 10 um). (B) 3D reconstruction of diatom incubated with Cy5 after 45 minutes (Size bar 10
pum).

field microscopies showed that all diatoms, examined at 45 min and 8 days (Figure 5A: iv. Rows 1-4)
were able to produce similar box-like silica structures both in the presence and absence of Cy5.

Confocal microscopy images were also recorded for bare and Cy5 treated cells under darkness, in order
to inhibit photosynthesis (Figure S1). The presence of Cy5 was still evident after 8 days but with a
weaker signal and, after 8 days, diatoms and chloroplasts changed morphology due to the negative

effects of prolonged darkness that inhibited photosynthesis.
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Time resolved fluorescence spectroscopy

Interaction between Cy5 and the photosynthetic apparatus was investigated by time-resolved
fluorescence spectroscopy measurements using a streak camera, as described in the Materials and
Methods section. Figures 6A and Supplementary Figure S2 showed the temporal decays from Cy5
incorporated in the diatoms at different times after incubation, obtained by integrating the
fluorescence signal over the 625-775 nm spectral range. Temporal decay of the molecular Cy5 dye was
also recorded. Figure 6B showed the fluorescence lifetime obtained fitting, with a monoexponential

decay function, the temporal profiles as a function of the incubation time of diatoms with Cy5.
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A decrease of Cy5 fluorescence lifetime after 24 h incubation was observed and kept almost constant
up to 96 hours (Figure 6B). Over longer time periods, a recovery of the fluorescence lifetime was
detected but even at 144 h, the fluorescence decay was still faster versus the measurements carried
out after 45 minutes (Figure 6A). Lifetime decrease of Cy5 is consistent with the FRET process between
Cy5 (donor) and Chl a (acceptor). Forster radius (Ro), the distance at which energy transfer rate is 50%,

for this donor acceptor pair is 5.1 nm (Yacobi 2012). By comparing the Cy5 fluorescence lifetime in the
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presence and absence of the Chl acceptor from our diatoms we evaluated a FRET vyield of energy

transfer between donor and acceptor of about 20% and 5% at 24 h and 144 h, respectively.

Immunoblotting quantification of photosynthetic subunits

Immunoblotting analysis was performed with specific antibodies recognizing subunits of PSI (PsaA),
PSII (CP43), chloroplast ATPase (ATPase C subunit) and RUBISCO (Rbcl) (Figure 7), in order to evaluate
whether the increased photosynthetic efficiency observed in the presence of Cy5 could be related to
an effect of Cy5 on the stoichiometry of the photosynthetic apparatus. As reported in the
Supplementary material (Figure S3), no major changes were observed for PSI, PSIl and RUBISCO
content on a chlorophyll basis in the presence or absence of Cy5. Cy5 caused a ~30% increase only for
chloroplast ATPase protein. These results indicate that the increased light harvesting properties of the
photosynthetic apparatus in the presence of Cy5 did not change the PSI/PSIl or the
RUBISCO/chlorophylls ratios but caused a relative increase in ATPase content per chlorophyll, allowing

more efficient proton transport from the lumen back to the stroma for the production of ATP.
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Figure 7. Immunoblotting quantification of photosynthetic subunits. The bands appearing upon western blot analysis were
quantified by densitometry and normalized to the control case (blue line) to determine the protein content in the Cy5 treated
sample (red line).

DISCUSSION

Effective ways of increasing the productivity and growth rate of diatoms have an important impact on
their use as a source of biomaterials and biofuels (Lavaud et al. 2004). The large-scale production of
microalgae and related biocomponents can be facilitated by enhancing photosynthesis. The use of

light-absorbing molecules to increase light collection in spectroscopic regions not covered by
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photosynthetic pigments of the microalgae represents a suitable and scalable approach which would
rule out the need to use technologies based on genetic modification. A limited number of spectral
shifting systems and dyes (Prokop et al. 1984; Wondraczek et al. 2013) converting unabsorbed
wavelength regions from white light sources into absorbable light have been reported in the literature.
However, due to their toxicity, these dyes had to be maintained physically separate from the algal
culture, acting, that is, just as spectral shifting solutions. This introduces complexity into the structure
of bioreactors and reduces the industrial applicability of thisapproach (Weber 1937).

Here we have described a simple amphiphilic cyanine molecule Cy5 (Figure 1) functioning as an
artificial antenna. The dye can fill the diatom pigment absorbance gap in the orange spectral region, is
non-toxic and leads to increased growth and biomass production (Figure 2 and 3). The introduction of
Cy5 in Thalassiosira weissflogii diatoms occurs simply by adding the dye in the culture medium
exploiting its water solubility and amphiphilic properties for crossing cell membranes. In normal white
lighting conditions (70 pmol m?2s?), the addition of Cy5 leads to a ~23% increase in diatom biomass
production (Figure 3B) with a 40% increase in cell density (Figure 3A) in a week. The enhanced cell
density mediated by Cy5 was achieved using 1 uM dye concentration, which is significantly lower than
that previously used for dyes spatially confined from cultures (Prokop et al. 1984). The involvement of
Cy5 in the photosynthetic pathway was demonstrated in a preliminary way by evaluating the
consistent Cy5 light dependent effect on diatoms’ growth in different lighting conditions (Figure 3). In
fact, the growth of Cy5 treated diatoms was increased under a white light source that excites the Cy5
antenna (Figure 3A). On the contrary, no effect was observed when diatom cells treated with Cy5 were
grown in dark conditions (Figure 3C) or on illumination with blue light (410-450 nm) which is not
absorbed by Cy5 (Figure3D).

Oxygen production measurements provided further evidence of increased photosynthetic activity by
Cy5 (Figure 4). The Pmax parameter (Figure 4B), indicating the maximum oxygen produced by the
photosystem, was 49% higher on Cy5 stained diatoms, while no Cy5 effect was observed in dark
respiratory conditions (Figure 4C). Cy5’s effect on O, production occurs both at low and high light
irradiance: as reported in the literature, this result may be due to a photosynthetic apparatus
rearrangement in order to manage the increased metabolicactivity (Bonente et al. 2012).

Confocal microscopy images demonstrated the dye’s incorporation (Figure 5). The presence of the dye
in cells, in close proximity to chloroplasts, is significant when attempting to bring about Cy5-Chl energy
transfer. Time-resolved fluorescence spectroscopy (Figure 6 and Supplementary Figure S2) revealed a
decrease in Cy5 excited state lifetime over a period of days with a maximum after 24h of incubation,
suggesting that a FRET mechanism from Cy5 to Chl a pigments potentiating light harvesting is a

plausible explanation for the increase observed in photosynthetic efficiency. After 24h, the observed
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qguenching of the incorporated Cy5 emission gradually decreases but never reaches the start value,
suggesting that energy transfer occurs over days. Slow Cy5 degradation over a period of days and
consequent absorbance-emission decay can be held responsible for FRET rate fading over time, since
reducing the donor concentration determines a consequent increase in donor-acceptor average
distance.

In keeping with the hypothesis that energy transfer from the Cy5 antenna to the chlorophyll a
determines enhanced photosynthetic efficiency, increased chloroplast ATPase enzyme was detected
in cells treated with Cy5, allowing more efficient proton transport from the lumen to the stroma
producing the ATP. Hence, improved light harvesting by Cy5 causes increased electron transport across
the photosynthetic apparatus, as witnessed by increased light-dependent oxygen evolution compared
to the control. We evaluated the expression of protein relating to photosynthesis after the
incorporation of Cy5 in normal lighting conditions. Photosynthetic electron transport is coupled with
proton transport from lumen to stroma to establish the electrochemical proton gradient used by the
ATPase to produce ATP: accordingly, in the presence of Cy5 a ~30% increase in the chloroplast ATPase
complex was detected enabling Cy5 stained cells to properly manage the increased proton transport
into the lumen, likely preventing lumen over-acidification (Figure 7 and Supplementary Figure S3).
RUBISCO is a key enzyme for photosynthesis, whose activity is strongly controlled by the organism in
order to manage metabolic activity. The RUBISCO content was similar in both the presence and
absence of Cy5, suggesting that the increased photosynthetic efficiency of Cy5 treated cells is due to
increased production of ATP and NADPH during the photosynthetic light phase, which are then used
by the Calvin- Benson cycle to fix CO; in the biomass.

In summary, we achieved enhanced photosynthesis in Thalassiosira weissflogii diatoms by simple
addition of the Cy5 dye to the algal growing medium. The dye acts as a FRET donor to diatom

Chlorophyll a, increasing growth and biomass.

CONCLUSION

Microalgae are highly attractive for industry as feedstock for food and pharmaceutics and as a source
of lipids for biofuel production. However, the costs of achieving a high rate of growth, the difficulties
in genetically modifying non model microalgal species for increasing growth, and the resistance of
public opinion toward genetically modified organisms, limit their industrial use. In this work, we
demonstrated enhanced photosynthesis in diatom microalgae that increases biomass and growth
without resorting to genetic modification. We stained living Thalassiosira weissflogii diatoms with a
cyanine Cy5 dye, which fills the orange absorption gap of the photosynthetic pigments and increases

light harvesting. Besides the enhanced growth and biomass, Cy5 increases diatom oxygen production.
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The most credited role for Cy5, demonstrated by spectroscopic measurements, is that it acts as an
energy transfer donor for chlorophyll. Moreover, the energy transfer occurs on Chl a, which is a
pigment present in most photosynthetic organisms. This approach may thus be in principle extended
to other classes of photosynthetic organisms and can sustain diatoms and, in general, microalgae
industrial valorization. The enhanced light response may boost algal growth by increasing the
photoactive range in large incubators. In addition, the potential tuning of the spectral response makes

it possible to envision the use of algae with any desired light spectrum, whether natural or artificial.
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MATERIALS AND METHODS

Algal culture conditions. The algal strain of Thalassiosira weissflogii diatoms (CCAP 1085/10, Scottish
marine Institute, Scotland UK) was used. Diatoms were grown in F/2 Guillard-enriched seawater
medium (Vona et al. 2018) with 1:3000 of the stock sodium metasilicate, under sterile conditions in
polystyrene 250 mL flasks. Before producing F/2 Guillard, seawater was sterilized in an autoclave and
filtered twice (4- 7um @). Flasks were maintained in a photobioreactor under continuous fluorescent
light (18 + 2°C, 65% * 5% humidity, light : dark cycle 16 : 8h, Pump Photon Flux: 70 pmol m2s?).
Pigments extraction and spectrophotometric analysis. In keeping with the literature (Calvano et al.
2015), 1mL of washed algae was added in pigment extraction solution containing 8mL of pure acetone,
1820uL of distilled water and 180ul of ammonium hydroxide 19%. The mixture was then centrifuged
(5000rpm for 15’) and 2mL of pure hexane were added. The absorbance spectrum of pigments in
hexane was evaluated by UV-visible spectrophotometer (Shimadzu UV-2401 PC).

Diatom incubation with Cy5 and evaluation of cells’ growth and biomass. Thalassiosira weissflogii
diatoms were added in polystyrene 50mL flasks containing freshly prepared F/2 Guillard enriched
seawater medium (final diatom density of 5*10* cell/mL; final flask volume 50mL). Diatoms in flasks
were incubated with Cy5 by adding 1uL of Amersham Pharmacia Cyanine 5 NHS ester (concentration
of the stock of 0.0019M in pure DMSO, Aexc = 640nm, Aem = 670nm) in the 50mL flask. Diatom samples
treated with the dye (Cy5) and used as bare cells in the control (Ctrl) were produced in triplicates.
Algae were grown for 8 days in the photobioreactor, (18 + 2°C, 65% + 5% humidity, light : dark cycle
16 : 8h), maintained at different light regimes. Growth in white light was achieved using 70 pmol m?s’
1neon source conditions. Blue light (440 - 480nm) was used at the same intensity and lighting cycle
conditions used for white light. Diatom growth was evaluated daily by Thoma Chamber in contrast
phase microscopy. Diatom density of each sample was calculated in triplicates and monitored for a
week. According to literature, diatom growth rate was evaluated from 48h to 70h of incubation, in the
exponential growth phase. Biomass accumulation at the end of the growth curve was determined as
dry weight per liter, as reported in the literature (Perozeni et al. 2018).

Confocal microscopy. Diatom samples were washed in Milli-Q water. Diatoms were then pelleted and
characterized by confocal laser scanning microscopy (LSM-510 confocal microscope, Zeiss).
Microscopy configuration used was: UV/Diode laser (Aexc = 405nm for chlorophyll, Aexc = 640nm for
Cy5) and HC PL APO CS2 63x/1.40 QOil objective. Emission spectra were recorded in the visible spectral
range (Alem = 670 - 750nm for chlorophyll, Akex = 650 - 670nm for Cy5). Colors were arbitrarily
assessed as blue for Cy5 and red for chloroplasts.

Time resolved fluorescence spectroscopy. Time-resolved fluorescence measurements were carried

out using a Ti:sapphire laser (Chameleon Ultra I, Coherent) with a repetition rate of 80 MHz and pulses
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with a temporal full width half maximum (FWHM) of ~140fs. The output was sent to an optical
parametric oscillator (OPO) providing pulses in the NIR (1000 - 1400nm). The signal was, then, doubled
by beta barium borate crystal (BBO) to reach the final excitation light at 620nm. A streak camera
system (C5680, Hamamatsu), coupled to a spectrometer, was selected as the detection system giving
spectro-temporal matrices with spectral and temporal resolutions of ~1nm and ~20ps, respectively.
The fluorescence signal was separated from excitation light by a proper set of high pass filters.
Oxygen evolution curves. Oxygen evolution curves were performed as described in the literature
(Perozeni et al. 2018). Net oxygen production was calculated subtracting oxygen consumption in the
dark after each measurement at different actinic lights. Experimental data were fitted with hyperbolic
functions in order to retrieve the Pmax (maximum photosynthetic activity).

SDS-PAGE and immunoblotting. SDS-PAGE and immunoblotting were performed as described in the
literature (Bonente et al. 2011). Antibodies used were obtained from the Agrisera company
(https://www.agrisera.com/).

Statistics. A one-way ANOVA test was performed to evaluate the significance in difference between

samples. Data were considered statistically significant for p < 0.05.
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SUPPLEMENTARY INFORMATION

Supplementary Figure S1. Confocal microscopy of diatoms incubated with Cy5 under dark. Confocal
microscopy of diatom control and diatoms grown with Cy5 1 uM after 45 minutes and 8 days of
incubation in darkness, avoiding photosynthesis (Size bar 10 um). Samples were produced as described
in the main text. Under normal lighting conditions, the presence of Cy5 was still evident after 8 days
but with a weaker signal due to the degradation of the dye. After 8 days, diatoms and chloroplasts

changed morphology due to the negative effects of prolonged darkness on Thalassiosira weissflogii

cultures.
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Supplementary Figure S2. Time-resolved fluorescence spectroscopy of Cy5 treated diatoms. Time-
resolved fluorescence spectroscopy measurements were performed every day over a week on living
pigmented diatoms grown with Cy5 and the temporal decay was compared to the one of Cy5 free in
solution. The maximum quenching occurs after 24 hours of incubation and it is preserved until 96
hours. For longer times an increase of the fluorescence lifetime was observed. These evidences

support the hypothesis of energy transfer among Cy5 and Chlorophyll a.

1.2 .
Cy5 in algae 45'
==Cy5 in algae 24 h
1 Cy5in algae 48 h
—Cybinalgae 72 h
0.8 —Cyb in algae 96 h
Cy5 in algae 120 h
£ —Cy5 in algae 144 h
ZO 0.6 8
= —Cyb free
-
o
0.4 1
0.2 1
'7_‘.“‘ T T T T 1
-500 0 500 1000 1500 2000 2500

Time (ps)

Supplementary Figure S3. Protein expression. Photosynthetic protein expression of bare and Cy5
treated diatoms was monitored by immunoblotting analysis. Specific antibodies recognizing the large
subunits of RUBISCO (RbcL), CP43, PsaA and the C subunit of chloroplastic ATPase (AtpC) were used to
perform immunoblotting reactions. Samples were loaded with the same amount of chlorophylls (0.7
ug) in the descriptive figure. Similar results were obtained with different loading. As mentioned in the
main text, no difference of PsaA, CP43 and RUBISCO (RbcL) amounts was observed between the control
and the Cy5 treated sample. Conversely, the ATPase C subunit was more present in diatoms grown in

the presence of the dye.
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The aim of this thesis is the study of molecular mechanisms in order to improve the carbon use
efficiency in several species of microalgae. This work contributes to the knowledge of the microalgae
world, with a molecular approach in order to developed new biotechnologically intervention
fundamental nowadays to increased yield in terms of biomass, lipid or production of high value

products, reducing costs of the industrial application.

In the chapter 2 we contribute to lack of genetic and metabolic information of two species of the
Chlorella genus. Chlorella genus includes several species widely used at industrial level for their fast
growth and high resistance to biotic and abiotic stresses. However, the lack of efficient and
reproducible transformation protocols and the limited genetic information restrict the
biotechnological approach in these species. In the section A the transcriptome of C. sorokiniana was
de novo assembled and annotated, while in the section B the genome and also transcriptome of C.
vulgaris were de novo assembled. The collected data allow to define the metabolic pathway present
in these microalgae, identifying peculiar genes and regulation. Finally, in the section C a direct
comparison at metabolic level of the two species was performed underling several differences beside
they belong to the same green algae family.

Interestingly in both species a type | and type Il fatty acid synthase enzymes can be found at genomic
and transcriptomic level. In plant cells de novo fatty acid biosynthesis occurs mainly in the chloroplast
catalysed by FAS2 multisubunit complex, while in animals and fungi FAS1 large multi-enzyme
complexes located in the cytosol appear. The occurrence of a FAS1-like complexes in microalgae has
already been suggested in the oleaginous alga Nannochloropsis spp. but not in the green lineage. C.
vulgaris and C. sorokiniana genetic data suggested the presence of both FAS1 and FAS2 complexes,
pointing out a different lipid metabolism compared to the model green algae C. reinhardtii. Further
experiments are necessary to confirm these data and the role of these proteins. The inducted
conditions in C. vulgaris (HL vs. LL) and C. sorokiniana (mixotrophy vs. autotrophy) affected the lipid
content with an increased in particular of triacylglycerols. In both cases, the higher availably of
reducing power, due to the excess of light in the former and the assimilation of acetate in the latter,
enriched the acetyl-CoA pool that is the precursor for fatty acids biosynthesis. In C. sorokiniana any
genes directly related to lipid pathway was differential expressed suggesting that the increased lipid
content is more influenced on the increased acetyl-coA availability. In C. vulgaris an upregulation of
the cytosolic acetyl-coA synthetase (ACS) gene was observed: this enzyme is responsible for the
synthesis of acetyl-CoA by glycolytic pyruvate. In addition, enzymes involve in the supply of glycerol
backbones (GDP2 enzyme) and TAG packaging (PLAP/fibrillin subunits) were upregulated. The

increased lipid accumulation in high light could be related to increased acetyl-CoA production in the
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chloroplast and in the cytosol (by ACS) leading to upregulation of enzyme involved in TAG assembly
and lipid droplets stabilization.

Another common characteristic of the Chlorella species herein analysed is the presence of genes
encoding for C4-like carbon fixation pathway. In C. sorokiniana in mixotrophy the upregulation of the
phosphoenolpyruvate carboxylase enzyme enabled potential recovery of carbon atoms lost by acetate
oxidation.

Finally, both Trebouxiophyceae species showed an uncommon regulation of genes involved in the
photoprotective mechanisms of nonphotochemical quenching (NPQ), a mechanism that dissipate as
heat the excess of absorbed light. In higher plant PSBS protein controls non-photochemical induction,
as well as, LHCsr protein done in the case of C. reinhardtii, where only a transient expression of PSBS
gene under UV or HL condition was reported. In the model algae LHCsr transcription is induced in high
light condition, instead in both C. vulgaris and C. sorokiniana any significant differential expression was
observed (in HL and mixotrophy conditions respectively). Moreover, in mixotrophic conditions in C.
sorokiniana PSBS gene was downregulated leading to a lower protein accumulation but unaffecting
the NPQ level. In HL conditions in C. vulgaris PSBS protein is induced although NPQ induction was not
evaluated. Despite further experiment are necessary to confirm the role of LHCsr and PSBS protein in
Chlorella species a behaviour different from C. reinhardtii is predictable.

In the section C the two Chlorella species previously analysed were compared for their adaptation to
3% CO,. Despite the similarities found by genetic analysis, the comparison of the metabolic
rearrangements induced by high CO; level showed considerable differences. The two species showed
opposite behaviour, altering mainly the photosynthetic apparatus in C. sorokiniana and mainly the
mitochondrial metabolism in C. vulgaris. Indeed, C. sorokiniana showed rearrangements of chloroplast
light-dependent machinery similar to that was previously reported for C. reinhardtii grown in high CO;
condition. The modifications of the photosynthetic apparatus led to the optimization of the light usage,
improving carbon fixation rate. The major sink for the extra-carbon fixation was mainly proteins, but
also polar lipids. Instead, in C. vulgaris was detected a decrease of starch content and an increase of
lipid accumulation, in particular of TAG. This suggests a redirection of the energy reserves from starch
to TAG accumulation, a class of macromolecules with a higher energy content per gram, indicating an
improved light energy conversion. In C. vulgaris the photosynthetic apparatus was essentially
unaffected, while the mitochondrial respiration was strongly downregulated, the opposite behaviour
of C. sorokiniana. The different metabolic responses to CO; availability highlight different adaptation
response among green algae, underling the needs to elucidate metabolic pathways and their

regulation in fine detail in each species for rational metabolic engineering.
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Also in C. reinhardtii we studied the behaviour of chloroplast and mitochondrion and in particular their
crosstalk, studying a knockout mutant for a mitochondrial transcription termination factor (Chapter
1B). MOC1 mutant was identified in a forward genetic screen aimed at the identification of nuclear
genes involved in light acclimation processes. Interestingly a mitochondrial factor was identified,
remarking the importance of the communication between several compartments of the cell. The
mutant had an excess uptake of reducing power in the mitochondrion preventing the high light
acclimation of the cells. In wild type cells lumen acidification triggered photoprotective mechanisms
as NPQ and chlororespiration, instead in the mutant the increased mitochondrial energy-dissipating
pathway (AOX pathway) decreased the reducing power in the stroma damaging the feedback
photoprotective mechanisms. The incorrect perception of the stromal redox state, over-oxidize by the
excessive uptake of reducing power, explains the high-light sensitive phenotype of the mutant. This
study underlines the importance of a more integrated vision of all the cell metabolisms instead to focus
our attention only in the analysis of one specific metabolism/process.

Regarding C. reinhardtii, in the Chapter 1A a CRISPR-cas9 knock-out mutant was studied determining
the role of LPA2 protein for PSIl assembly and for its proper function. Our results suggested that LPA2
is likely involved in CP43 cooperation during PSIl repair, as well as, in de novo biogenesis of PSIl. CP43
acts as an inner PSIl antenna and it is also essential for oxygen evolution in PSII. The lack of the LPA2
protein resulted in a drastic reduction in CP43 and thus in the inability of the Ipa2 mutant to grow in
autotrophic condition. The CP43 transcript remained unaffected in the mutant indicating that LPA2
protein is involved in the post-translational regulation or integration of CP43 in the thylakoid
membranes. Interestingly, the abundance of PSI core subunits and PSI activity were not reduced and
CEF was increased, suggesting that /[pa2 mutant overcomes lack of PSII operating PSI-mediated
electron transport flow to supplement photosynthetic energy production, but those increases were
insufficient to support photoautotrophic growth. We conclude that LPA2 protein is a critical factor for
PSll assembly, both de novo biogenesis and repair, in C. reinhardltii.

The knowledge of basic mechanisms of photosystems assembly and their regulation is important in
order to develop new molecular approaches to improve yields. Such as, several mutants of proteins
involved in the chloroplast signal recognition particle (CpSRP) pathway were generated. This pathway
correctly assembles LHC proteins and some PSll-core and PSl-core proteins: knock-out of SRP proteins
generate pale green mutants with a higher oxygen saturation curve and thus with an improved growth
rate (Kirst and Melis 2014). The reduction of the chlorophylls content is a well-known strategy to
increased biomass yield already utilized for several species as Chlamydomonas reinhardtii (Jeong et al.
2017; Polle, Kanakagiri, and Melis 2003), Chlorella sorokiniana (Cazzaniga et al. 2014), Chlorella

vulgaris (Dall’Osto et al. 2019) and cyanobacteria (Kirst, Formighieri, and Melis 2014) among others. In

279



Conclusion

this thesis a pale green mutant was generated by chemical mutagenesis for N. gaditana (Chapter 3A).
The mutant showed a reduced chlorophyll content per cell combined with an increased lipid
accumulation. Indeed, differently from other reported pale green mutants, in e8 mutant the higher
light availability, due to the better light distribution, is converted in a higher lipid accumulation rather
than an increased biomass yield. Since lipids are a class of macromolecules with the highest energy
density, an increased lipid accumulation indicates an improved light energy conversion efficiency. The
reduced chlorophyll content per cell and consequently a more homogeneous irradiation in the
photobioreactor were suggested to be at the basis of the increased lipid productivity observed in the
e8 mutant. Whole genomic sequencing of the mutant revealed several SNPs: this is a disadvantage in
using chemical mutagenesis, because it makes genotype-phenotype correlation extremely difficult and
it increases the possibility of unexpected phenotypes in some peculiar conditions. dgd1 gene was
proposed as main responsible of the phenotype: it encode for a key enzyme involved in DGDG
biosynthesis, one of the major lipids of photosynthetic membranes and it thus involved in chloroplast
biogenesis. However, only mutant complementation or specific mutagenesis with homologous
recombination or genome editing will allow to confirm the correlation between specific mutations and
the observed phenotypes.

The presence of several mutations is the main disadvantage of the chemical mutagenesis approach,
on the other hand, the fact that they are non-GMO organisms is a strong advantage. Indeed, this
ensures a more easily cultivatable in outdoor systems without the restrictive authorizations required
for GMO strains in several countries.

A no-GMO strategy was applied also for the diatom Thalassiosira weissflogii for which the light
absorption spectra was extended, better exploiting the light available and thus improving biomass
yield and growth (Chapter 3B). In this work we demonstrated the ability to increase biomass
production extending the absorbance range of the photosynthetic apparatus, thanks to the addition
of an amphiphilic cyanine molecule, Cy5, that exploits light energy in the orange spectral region. Our
data suggested a FRET mechanism that transfer energy from Cy5 to Chl a pigment. Diatoms showed an
increased maximum oxygen production that outcomes in an increase biomass production and cells
growth. However, a decreased Cy5 excited state lifetime was observed over day, making this dye not
ideal for a prolonged use. The strategy based on the enlargement of sunlight absorption capability were
already applied for Dunaliella salina (Burak, Dunbar, and Gilmour 2019) and Nannochloropsis gaditana
(Sung et al. 2018), where dyes were located in an external space between light and the growing cells,
and for P. tricornutum, for which was generated a mutant expressing eGFP protein (Fu et al. 2017).
The advantages of our work lie in the ease of application: transformation protocol was not needed

neither generation of GMO organisms nor specific structures to keep the dye separated from cells. We
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achieved enhanced photosynthesis in the diatom Thalassiosira weissflogii by simple addition of the Cy5

dye to the algae growth medium.
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Future perspective

Despite the variety of applications, the high costs of large-scale cultivation of microalgae have so far
limited their use for industrial production. For this reason, it is necessary to enhance their
photosynthetic efficiency, improving their growth, biomass yield and CO; fixation. The work presented
in this thesis proposed different mode of action in order to improve future researches given by the

high quantities of genetic information and experimental material provide.

In particular in the Chapter 1 two mutants of Chlamydomonas were studied. MOC1 is a mTERF factor
which knock-out causes an impaired HL acclimation of the strain; instead LPA2 is a protein fundamental
for the proper assembly and function of the PSIl and thus to sustain the phototrophic growth. Tuning
photoprotection to increased biomass yield it's a well-known strategy. Indeed, plants and algae
dissipate an excess of light in stress conditions that could be used to photochemical reactions. For
example, Kromdijk et al. 2016 increased photosynthetic efficiency of Nicotiana tabacum plants
through acceleration of NPQ relaxation. MOC1 factor doesn’t act directly as photoprotective
mechanism but its fundamental for the HL acclimation of the strain. For this reason, accelerate the HL-
stress perception could favour a faster cell response, reducing ROS generation and better exploiting
the available energy for photochemistry. Thus, if we overexpressed MOC1 under a HL-induced
promoter, maybe we could reduce HL-stress condition of the cell optimizing light use efficiency.
Moreover, also LPA2 protein could be overexpressed. Indeed, increase the expression of LPA2 could
accelerate the D1 repair in stressful condition, allowing a faster recovery to stress and a better
functionality of PSIl. Understanding the molecular basis of cells acclimation and its regulation is
fundamental to study new approaches to improve yields. A deeper knowledge of the microalgae
biology and in particular in our case of the photosynthetic apparatus, is a key tool in order to design

new strategies to improve the growth phenotype.

Then in the Chapter 2, we focused our effort on Chlorella genus. In the last section we focused on
photosynthetic and mitochondrial rearrangements that occur under high CO, availability. Further
investigations are necessary to elucidate the response of the Calvin-Benson cycle, being it the first and
mainly site of CO; organication. The key regulatory enzymes of the cycle could be differently express
and regulate in order to manage the higher availability of CO,. Their activity influences the redox state
of the cell, due to their consumption of NADPH and ATP, thus study these enzymes is important to

better understand the redox balance of the cell.
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Chlorella is a genus of huge interest for industrial application, however biotechnological approaches
are restricted by the limited genetic information available and the lack of efficient and reproducible
transformation protocols. This prevent not only to generate insertional mutants, but also to confirm
role of genes identified by genetic analysis. This thesis reduced the lack of genetic information by
making available the complete transcriptome of two Chlorella species and the high-resolution genome
of one of them. The genomic data of C. vulgaris makes accessible the species-specific codon usage and
the possibility to identify promoter and regulatory elements to optimize transformation vectors.
Furthermore, thanks to our data, we identified new potential targets to improve growth and biomass
yield in the Chlorella genus and peculiar metabolic pathways not present in the model algae. However,
the availability of reliable transformation protocols is necessary to verify role of genes identified by
genomic/transcriptomic analysis: studies with knock-out or overexpression mutants will allow to
confirm genes function, actually only predicted in silico. In particular the new pathways identified, such
as C4-like pathway and FAS genes, require further investigation, as well as, the regulation of the
photoprotection mechanisms involving LHCsr and PSBS proteins. Among the putative targets to
improve growth, the overexpression of the phosphoenolpyruvate carboxylase enzyme could be an
interesting possibility. Indeed, in Chlorella sorokiniana under mixotrophic condition this gene was

overexpressed in order to recovery of carbon atoms lost by acetate oxidation.

Generation of mutants are necessary also in the case of mutant of Nannochloropsis gaditana. We
generated a pale green chemical mutant that showed an increased lipid accumulation in nitrogen
replete medium without affecting cells growth. The mutation responsible for the observed phenotype
was not completely assay, indeed several mutations were identified from the SNPs study. For these
reason generation of knock-out mutants is necessary to confirm the phenotype-genotype correlation.
Moreover, further studies could be addressed to large-scale cultivation of the mutant strain in order
to evaluate if the higher lipid accumulation and growth phenotype will be confirmed in not-controlled
laboratory conditions and if the strain is suitable for industrial applications.

Another interesting approach to improved growth for industrial application is the addition of a dye
that enlarges the light absorption capacity of the cultivated strain. The strategy reported in this thesis
is based on the utilization of an amphiphilic dye, Cy5, added directly to the growth medium. In
particular, the energy transfer occurs from Cy5 to Chl a, which is a pigment present in most
photosynthetic organisms. Therefore, this approach can be in principle extended to other diatoms
species, but also in general to other microalgae, paying particular attention in the algae pigment
composition with respect to the spectrum of absorption/emission of dye. However, the dye utilized in

our work, Cy5, have still some limitations, indeed it’s partially degraded over the days. Further studies
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are necessary to improved Cy5 lifetime and/or to find other dyes with higher stability over long
periods. Moreover, it is necessary take into account the costs that should not be prohibitive with
respect to benefits, in order to boost the revenues for an industrial application.

Taken together, the data discussed in this thesis represent a rich genetic resource for future genome
editing studies, and potential targets for biotechnological manipulation to improve biomass and lipid

productivity of several microalgae species of industrial interest.
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