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Abstract
The ability to gather information from images is straightforward to hu-

man, and one of the principal input to understand external world. Computer
vision (CV) is the process to extract such knowledge from the visual domain
in an algorithmic fashion.

The requested computational power to process these information is very
high. Until recently, the only feasible way to meet non-functional require-
ments like performance was to develop custom hardware, which is costly,
time-consuming and can not be reused in a general purpose. The recent in-
troduction of low-power and low-cost heterogeneous embedded boards, in
which CPUs are combine with heterogeneous accelerators like GPUs, DSPs
and FPGAs, can combine the hardware efficiency needed for non-functional
requirements with the flexibility of software development. Embedded vision
is the term used to identify the application of the aforementioned CV al-
gorithms applied in the embedded field, which usually requires to satisfy,
other than functional requirements, also non-functional requirements such
as real-time performance, power, and energy efficiency.

Rapid prototyping, early algorithm parametrization, testing, and valida-
tion of complex embedded video applications for such heterogeneous ar-
chitectures is a very challenging task. This thesis presents a comprehensive
framework that:

• is based on a model-based paradigm. Differently from the standard ap-
proaches at the state of the art that require designers to manually model
the algorithm in any programming language, the proposed approach
allows for a rapid prototyping, algorithm validation and parametriza-
tion in a model-based design environment (i.e., Matlab/Simulink). The
framework relies on a multi-level design and verification flow by which
the high-level model is then semi-automatically refined towards the final
automatic synthesis into the target hardware device.

• relies on a polyglot parallel programming model. The proposed model
combines different programming languages and environments such as
C/C++, OpenMP, PThreads, OpenVX, OpenCV, and CUDA to best ex-
ploit different levels of parallelism while guaranteeing a semi-automatic
customization.

• optimizes the application performance and energy efficiency through
a novel algorithm for the mapping and scheduling of the application
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tasks on the heterogeneous computing elements of the device. Such an
algorithm, called exclusive earliest finish time (XEFT), takes into con-
sideration the possible multiple implementation of tasks for different
computing elements (e.g., a task primitive for CPU and an equivalent
parallel implementation for GPU). It introduces and takes advantage of
the notion of exclusive overlap between primitives to improve the load
balancing.

This thesis is the result of three years of research activity, during which all
the incremental steps made to compose the framework have been tested on
real case studies.



Acknowledgements
My primary acknowldegment goes to my advisor, prof. Nicola Bombieri,

for both the academic and personal support.
The second thought reaches Sara, who provided the emotional support

in the most difficult moments.
I want to acknowledge Barbara for helping me to keep pushing my lim-

its, forbidding the rest on laurers.
I can’t forget to give gratitude to my family, especially the remarkable

patience of my mother, who understood deadlines importance and delayed
the dinner preparation.

The almost final acknowledgment goes to the people in my office, with
whom I spent the last three years, for the continuous and prolific information
exchange colored with personal relationship.

Finally, I want to thanks my friends for the warm closeness showed to
me, especially Gianluca, Alessandra and Emanuele.

Thank you all for helping me reaching this goal.





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background and related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Model-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Polyglot framework and integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Polyglot programming languages for heterogeneous
accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Communication between modules . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Scheduling on heterogeneous architectures . . . . . . . . . . . . . . . . . . . . . 10

3 Model-based design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Overview of a OpenVX program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 The OpenVX-based design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Imperative versus data-flow implementation . . . . . . . . . . . . . . 15
3.2.2 Qualitative and quantitative results . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Extending OpenVX for Model-based Design of Embedded Vision
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 From imperative to data-flow: example of ORB descriptor . . 24
3.3.2 OpenVX toolbox for Simulink . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Mapping table between OpenVX primitives and Simulink

blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Polyglot parallel programming model and integration . . . . . . . . . . . . . . 35
4.1 Analysis of polyglot programming environments in the

ORB-SLAM case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Polyglot framework for heterogeneous platforms . . . . . . . . . . . . . . . . 37



4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Performance enhancing with multilevel parallelism . . . . . . . . . . . . . . 42
4.5 Results with optimized version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.1 Runtime Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.2 Qualitative and Quantitative Evaluation and Metrics . . . . . . . 46

4.6 Inter-application integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.1 ROS overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Combining heterogeneous applications . . . . . . . . . . . . . . . . . . . . . . . . 54

5 An algorithm for scheduling and mapping of application tasks for
performance enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 HEFT overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 The proposed scheduling and mapping algorithm . . . . . . . . . . . . . . . . 64
5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1 Summary of the proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Directions for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Summary of the proposed innovative contributions . . . . . . . . . . . . . . . . . . . . . 73
Model-based design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Heterogeneous parallel programming model and integration . . . . . . . . . . . . 73
Low-level performance enhancement: scheduling through exclusive

overlapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



List of Figures

1.1 The paradigm shift from manual customization, through
OpenVX-based design flow, to the proposed model-based design flow. 3

1.2 An overview of the heterogeneous programming model the
corresponding memory stack on the target device. . . . . . . . . . . . . . . . . 4

1.3 The proposed algorithm for scheduling and mapping of application
tasks and its integration in the design flow. . . . . . . . . . . . . . . . . . . . . . . 5

3.1 OpenVX sample application (graph diagram) . . . . . . . . . . . . . . . . . . . . 14
3.2 Dependency graph of the video stabilization algorithm. . . . . . . . . . . . . 15
3.3 OpenCV implementation of the most computational demanding

nodes of the video stabilization algorithm. . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 OpenVX implementation of the most computational demanding

nodes of the video stabilization algorithm. . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 IntCatch 2020 project uses Platypus Lutra boats, about 1m long and

0.5m wide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Video stabilization results on sequences S1 (first row), S2 (second

row), and S3 (third row). (a) A frame in the unstabilized video
overlayed with lines representing point trajectories traced over time.
(b) The corresponding frame in the OpenCV stabilized video. (c)
The OpenVX stabilization results. Point trajectories are significantly
smoother when the stabilization is activated. . . . . . . . . . . . . . . . . . . . . . 19

3.7 OpenVX energy scaling per FPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Methodology overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9 Example for keypoints and ORB extraction, frame 20 of sequence

KITTI06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10 Dataflow elaboration for keypoints and ORB extraction, frame 20 of

sequence KITTI06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11 Difference between the two types of implementation . . . . . . . . . . . . . . 27
3.12 Overview of the Simulink-OpenVX communication . . . . . . . . . . . . . . 29



4.1 Overview of ORB-SLAM application and execution models: (a) the
original code (parallelized for multicore), (b) the state-of-the-art
OpenVX implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Framework overview: memory stack, task mapping, and task
scheduling layers of an embedded vision application developed with
the proposed method on the NVIDIA Jetson TX2 board. . . . . . . . . . . . 38

4.3 Overview of the communication wrapper and its integration in the
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Limitations of the ORB-SLAM application and execution models
on the Jetson board: (a) the original code (no GPU use), (b) the
OpenVX NVIDIA VisionWorks (sequentialization of tracking and
localization tasks and no pipelining). . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 DAG of the feature extraction block and the corresponding
sub-block implementations (GPU vs. CPU). . . . . . . . . . . . . . . . . . . . . . 44

4.6 Samples from the four sequences of the KITTI dataset used for
evaluation. (a) Sequence 03. (b) Sequence 04. (c) Sequence 05. (d)
Sequence 06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Qualitative evaluation of the proposed ORB-SLAM application
version CPU+GPU+pipelining on some parts of KITTI sequence 03
(a), sequence 04 (b), sequence 05 (c) and sequence 06 (d). . . . . . . . . . 46

4.8 The OpenVX-ROS communication thorough the server and client
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Client model time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.10 Server model time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.11 Overview of the proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.12 Overview of ORB-SLAM implementation . . . . . . . . . . . . . . . . . . . . . . . 51
4.13 KITTI sequence 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.14 KITTI sequence 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.15 CNN example for handwritten digit classification . . . . . . . . . . . . . . . . . 55
4.16 Inter-application communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.17 Overview of the ORB-SLAM use case. . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.18 Evaluation of non-functional properties . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Example of DAG, execution time of tasks mapped on CPU/GPU,
and the corresponding HEFT ranking. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Task scheduling algorithms of the DAG of Fig. 5.1: native NVIDIA
VisionWorks (a), HEFT (b), and the proposed optimized HEFT (c). . 63

5.3 Cluster generation step (APPLY(rank, cluster)) for the
example in Fig. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Experimental results with the Tree class of synthetic DAGs on the
Jetson TX2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Experimental results with the Linear class of synthetic DAGs on the
Jetson TX2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

II



List of Tables

3.1 Stabilization quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 OpenCV implementation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 OpenVX implementation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Representative subset of the mapping table between Simulink CVT

and NVIDIA OpenVX-VisionWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Experimental results: High-level simulation time in Simulink . . . . . . . 32
3.6 Experimental results: Comparison of the simulation time spent to

validate the software application at different levels of the design
flow. The board level validation time refers to real execution time
on the target board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Average FPS and Time per frame values on KITTI, sequence 13,
75% of the frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Average FPS and Time per frame values on KITTI, sequence 13,
100% of the frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Runtime performance (FPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Results with sequence 11 (921 frames) . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Results with sequence 13 (3,281 frames) . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Simulation (in Simulink) and execution (on real board) times . . . . . . . 57

5.1 Experimental results with ORB-SLAM+DL on Jetson TX2 . . . . . . . . 68









1

Introduction

Computer vision has gained an increasing interest as an efficient way to automati-
cally extract of meaning from images and video. It has been an active field of research
for decades, but until recently has had few major commercial applications. With the
advent of high-performance, low-cost, energy efficient processors, computer vision
has quickly become largely applied in a wide range of applications for embedded
systems [1].

The term embedded vision refers to this new wave of widely deployed, practical
computer vision applications properly optimized for a target embedded system by
considering a set of design constraints. The target embedded systems usually consist
of heterogeneous, multi-/many-core, low power embedded devices, while the design
constraints, beside functional correctness, include performance, energy efficiency,
dependability, real-time response, resiliency, fault tolerance, and certifiability.

Developing and optimizing a computer vision application for an embedded pro-
cessor can be a non-trivial task. Considering an application as a set of communi-
cating and interacting kernels, the effort for such application optimization goes over
two dimensions: the single kernel-level optimization and the system-level optimiza-
tion. Kernel-level optimizations have traditionally revolved around one-off or single
function acceleration. This typically means that a developer re-writes a computer vi-
sion function (e.g., any filter, image arithmetic, geometric transform function) with
a more efficient algorithm or offloads its execution to accelerators such as a GPU by
using languages such as OpenCL or CUDA [2].

On the other hand, system-level optimizations pay close attention to the overall
power consumption, memory bandwidth loading, low-latency functional computing,
and Inter-Processor Communication overhead. These issues are typically addressed
via frameworks [3], as the parameters of interest cannot be tuned with compilers or
operating systems.

In this context, OpenVX [4] has gained wide consensus in the embedded vi-
sion community and has become the de-facto reference standard and API library for
system-level optimization. OpenVX is designed to maximize functional and perfor-
mance portability across different hardware platforms, providing a computer vision
framework that efficiently addresses current and future hardware architectures with
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minimal impact on software applications. Differently from the standard design flows
that require users to manually customize the application on the target hardware de-
vice, the OpenVX-based design flow starts from a graph model of the embedded ap-
plication and it allows for automatic system-level optimizations and synthesis on the
device targeting performance, and energy efficiency (see Fig. 1.1(a) and Fig. 1.1(b))
[5]–[7].

Nevertheless, the definition of such a graph-based model, its parametrization and
validation is time consuming and far from intuitive to programmers, especially for
the development of medium-complex applications.

In addition, embedded vision finds a large use in the context of Robotics, where
cameras are mounted on robots and the results of the embedded vision applications
are analysed for artificial-intelligence autonomous programs. Indeed, computer vi-
sion allows robots to see what is around them and make decisions based on what
they perceive. In this context, Robot Operating System (ROS) [8] has emerged as a
flexible platform for developing robot software. It is a collection of tools, libraries,
and APIs that aim to simplify the task of creating complex and robust robot appli-
cations across a wide variety of robotic platforms. It is become a de-facto reference
standard in the robotics community. It allows for application re-use and easy integra-
tion of software blocks in complex systems.

As a consequence, the integration of embedded vision applications with ROS-
compatible systems is mandatory to guarantee code reuse, portability and system
modularity.

This thesis proposes a model-based design flow and a comprehensive develop-
ment framework for the design of embedded vision applications that addresses all
the issues underlined above.

The framework relies on three main concepts, which are the main contributions
of this thesis: A model-based design flow, a polyglot parallel programming and in-
tegration model, and an algorithm for scheduling and mapping of application tasks
for performance enhancement.

Model-based design flow

Differently from the standard OpenVX-based design flow that require designers to
manually model the algorithm through OpenVX code, the proposed design flow al-
lows for a rapid prototyping, algorithm validation and parametrization in a model-
based design environment (i.e., Matlab/Simulink). The framework relies on a multi-
level design and verification flow by which the high-level model is then semi-
automatically refined towards the final automatic synthesis on the target device (see
Fig. 1.1(c)). The programmer starts to develop the application in a high-level lan-
guage, possibly visual. At this stage, only the functional verification is needed. The
developer can use all the enviroment functionalities to add the required validation,
which will be carried through next iterations. The second step aims to perform an
equivalent substitution of the primitives to match OpenVX primitives. After the con-
version, the functional correctness of the program can be assessed by the previously
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configured assertion. In the last step, the application is transferred to the real embed-
ded board, and a final validation run ensure the behaviour match the requirements
through the same acceptance test defined in the first step. The proposed design flow
is presented in detail in Section 3.

Fig. 1.1: The paradigm shift from manual customization, through OpenVX-based design flow,
to the proposed model-based design flow.
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Heterogeneous parallel programming model and integration

Fig. 1.2: An overview of the heterogeneous programming model the corresponding memory
stack on the target device.

OpenVX is designed to maximize functional and performance portability across dif-
ferent hardware platforms, providing a computer vision framework that efficiently
addresses different hardware architectures with minimal impact on software appli-
cations. Nevertheless, it can be adopted to model only applications that can be rep-
resented through data-flow graphs. For this reason and for the fact that the vendor-
provided libraries of OpenVX primitive are often incomplete, any real embedded
vision application requires the integration of OpenVX with user-defined code (e.g.,
C/C++, CUDA, OpenCL, etc). In general, user-defined code can benefit from par-
allelization techniques for multi-cores through heterogeneous parallel environments
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(i.e., multi-core + GPU parallelism). Nevertheless, such an integration is not straight-
forward since the memory stack of OpenVX is private and not user-controllable.
At the state of the art, the only possibility to integrate OpenVX code with user-
defined code is to sequentialize the different execution environments, with a con-
sequent strong impact on the system-level optimization. To address this issue, the
second main contribution of this thesis is a model to integrate polyglot parallel pro-
gramming environments for efficient execution on the target device (see Fig. 1.2).
The model allows combining multiple programming environments, i.e., OpenMP,
PThreads, OpenVX, OpenCV, and CUDA to best exploit different levels of paral-
lelism while guaranteeing the semi-automatic customization. The model is presented
in detail in Section 4.

An algorithm for scheduling and mapping of application tasks for
performance enhancement

Fig. 1.3: The proposed algorithm for scheduling and mapping of application tasks and its
integration in the design flow.
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Prior research efforts attempted to optimize the performance of the code generated
from OpenVX toolchains. They proposed techniques to implement different data
access patterns such as DAG node merge, data tiling, and parallelization via OpenMP.
There also have been efforts to make the OpenVX task scheduling deliver real-time
guarantees. Nevertheless, there is no prior work that focuses on efficient mapping
strategies and its corresponding scheduling of OpenVX (DAG-based) applications
for heterogeneous architectures. Prior approaches that propose mapping strategies
for OpenVX considered each DAG node to have only one exclusive implementation
(e.g., either GPU or CPU), and the mapping is driven by the availability of the node’s
implementation in the library: if a node has a GPU implementation then it is mapped
on the GPU. Otherwise it is mapped on a CPU core.

To take into consideration the heterogeneity of the target architectures, the possi-
ble multiple implementations of DAG nodes, and the problem complexity, the hetero-
geneous earliest finish time (HEFT [9]) heuristic for static mapping and scheduling
of OpenVX applications has been implemented. As confirmed in the experimen-
tal analysis, such a HEFT implementation sensibly outperforms (i.e., up to 70% of
performance gain) the state-of-the-art solution currently adopted in one of the most
widespread embedded vision systems (i.e., NVIDIA VisionWorks on NVIDIA Jet-
son TX2). Nevertheless, this thesis experimentally proves that such a heuristic, when
applied to DAG graphs for which not every node has multiple implementations, can
lead to idle periods for the computing elements (CEs). Since not having multiple im-
plementations for all nodes happens in a majority of real embedded vision contexts,
this work proposes, as the third main contribution, an algorithm called XEFT that
reorganizes the HEFT ranking to improve the load balancing.

The main idea of the XEFT is to schedule, in the same timespan, primitives which
have the implementation exclusively for one accelerator, called exclusive nodes. It
starts with the original ranking generated by HEFT, and it re-organizes such exclu-
sive nodes by putting them close together forming various clusters, respecting DAG
precedence topology. Due the load-balancing property of HEFT, the probability such
ordering will enhance the exclusive overlapping (i.e., the overlapping of exclusive
nodes) is higher. Fig. 1.3 shows an example of a scheduling with the various over-
lapping highlighted. As confirmed by the experimental results conducted on a very
large set of real and synthetic benchmarks, XEFT can improve the system perfor-
mance up to 33% over HEFT, and 82% over the state of the art approaches. XEFT is
presented in detail in Section 5.
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Background and related work

In this thesis, three major points will be analyzed: an enhanced model-based design
flow, the integration of several applications and languages, and finally a new sched-
uler specifically suited for the lacking of implementation for specific accelerators.
This chapter serves to summarize state-of-the-art techniques, and to show the possi-
ble improvement analyzed later in the respective section.

2.1 Model-based

Usually, vision applications are built using libraries. OpenCV is a popular open
source library of primitives for computer vision. It comprises a comprehensive set
of over 2,500 functions ranging from simple building-block functions such as matrix
arithmetic functions to substantial computer vision modules such as object detection
and image stabilization. OpenCV enables developers to quickly implement and test
sophisticated computer vision algorithms. A subset of primitives are implemented in
CUDA or OpenCL to be accelerated on a GPU.

Since the target for this thesis is the embedded platform NVIDIA Jetson TX2,
a closed-source porting of such library called OpenCV4Tegra was used, provided
by NVIDIA specifically optimized for the Tegra architecture. However, during the
performance optimization of a computer vision system, platform-level bottlenecks
require a lot of work to be identified, and the solution is platform-specific. Tradi-
tional methods are not well suited to address these issues. OpenVX has been pro-
posed to address such system-level issues by means of a graph-based paradigm [3].
Graphs are used to specify a computing method. They are constructed, then verified
for correctness, consistency, and connectedness, and finally processed.

The target embedded system (for computer vision applications) can have on-chip
resources (computational, power, area, etc.) as large a an autonomous car or as small
as a battery operated device. In both cases, the final goal for developers is maximizing
performance while decreasing power consumption. Different works have been pre-
sented to optimize OpenVX in this direction. JANUS [10] is a compilation system
for OpenVX that can analyse and optimize the graph to take advantage of parallel
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resources in many-core systems or FPGAs. Using a database of prewritten OpenVX
kernels, it automatically adjusts the image tile size and relies on kernel duplication
and coalescing to meet a defined area target, or to meet a specified throughput target.

Dekkiche et al. [7] investigated on how OpenVX responds to different data access
patterns. They tested optimizations like kernel merge, data tiling, and paralleliza-
tion via OpenMP. They also proposed an approach to target both system-level and
kernel-level optimizations on different hardware architectures. The approach con-
sists in merging OpenVX and the Numerical Template ToolBox (NT

2) library [11].
In this way, OpenVX addresses system-level optimizations, while NT

2 targets sin-
gle kernels acceleration on different processing elements with minimal cost of code
rewriting.

One of the main bottlenecks that can be addressed with OpenVX is the memory
bandwidth limits imposed by the architectural constraints. Tagliavini et al. strongly
investigated on this issue. They first proposed ADRENALINE [5], which is a frame-
work for graph analysis and image tiling to accelerate the execution of image pro-
cessing on cluster-based many-core accelerators. They then refined the approach by
proposing tiling techniques optimized for different data access patterns [12]–[14].

Glenn et al. [15] presented a variant of OpenVX that is amenable to real-time
analysis. They presented some graph transformation techniques to eliminate graph
cycles due to back edges and to enable pipelining. These transformations enable real-
time constraints to be validated. In particular, the specific constraint they consider is
that end-to-end graph response times are provably bounded [6].

Yang et al. [16] proposed a much more fine-grained approach for scheduling
OpenVX graphs. The approach is designed to enable additional parallelism and to
eliminate schedulability-related processing-capacity loss that arises when programs
execute on both CPUs and GPUs. They presented a response-time analysis for this
new approach and the evaluation of its efficacy.

Implementing or porting OpenVX for different hardware architectures has been
the focus of many research groups in the last years [17]–[19]. VisionWorks is the
NVIDIA closed-source porting to Tegra architecture. While it provide excellent
kernel-level acceleration, experimental evaluations show a simple scheduling mech-
anism: if a primitive has a GPU implementation it is mapped there, otherwise it is
executed on the CPU. Since the GPU implementation for computer vision primitives
are more efficient than the CPU one, it is a good strategy if the nodes are executed
sequentially, like in the VisionWorks runtime. However, there are a level of paral-
lelism between CPU and GPU that could be exploited to increase the application
performance.

2.2 Polyglot framework and integration

In this thesis, the integration is analyzed in two directions. The first one focuses on
intra-application combination of multiple languages. The second one highlight the
communications between two applications that have to exhange data.
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2.2.1 Polyglot programming languages for heterogeneous accelerators

Embedded applications requires to pack efficient solutions with a limited power bud-
get. The key to achieve these results is to use several accelerators to increase the
performance-per-watt metric. However, each computing element must be correctly
programmed and fine-tuned to express the maximum efficiency. Due to different pro-
gramming paradigm and architectural changes, an ad-hoc language is more efficient
than a general one [20]–[22]. The choice of the programming language is thus depen-
dant on the available accelerators and OS support. In this thesis, other than the basic
C language used to program the CPU, three others parallel languages were used:

• Pthread. It implements a MIMD (Multiple Instruction on Multiple Data) archi-
tecture. It is targeted for CPU-level parallelism, and it is useful to perform sev-
eral different tasks at once. For example, a core could sort an array while another
one is computing the least square analysis on another set of points. Albeit be-
ing a powerful tool, deadlock situations could happen if synchronization is not
managed properly.

• OpenMP: this parallel framework distribute work in a shared memory system.
Up to version 4.5, it could only target CPU multi-core parallelism. From this
release, it can also target GPU offloading. It consists in code-level annotation to
mark sections that can be parallelized. During execution, a runtime system will
dinamically allocate and map threads based on available resources. [23]

• CUDA: in 2007, NVIDIA introduced this proprietary C-like language to exploit
their hardware for General Purpose GPU (GPGPU) programming and not only
for graphics processing [24]. GPU architectures are very efficient to implement
SIMD instructions, since they were designed for this use case. Albeit having
less powerful cores than a CPU, they usually outnumber them by 2 or 3 order of
magnitude. This solution is useful for problems which are highly parallelizable.

• OpenCL: OpenCL language that aims to provide an homogeneous code-base for
various accelerators [25]. It provides a C-like language targeting both CPUs and
GPUs. There are two reasons this language is not used in this thesis. First of
all, at the moment of the writing it is not officially supported on the Tegra ar-
chitecture, which is the target of the experiments. Second reason is performance
related: programs written in CUDA are more efficient than OpenCL ones [21].
This is not surprising, since CUDA is released by NVIDIA that can adapt it to
best express in a high-level language the hardware capability of their architec-
ture.

2.2.2 Communication between modules

To connect two different applications, an interface must be specified to delimit in-
put/output boundaries. ROS [8] is the de-facto standard for the decentralized commu-
nication in robotic systems. The data exchange is performed by a message passing
mechanism and a publish-subscribe communication using a unique string as iden-
tifier called topic. A node is the ROS object which is responsible to feed or con-
sume the data served over a topic. Each node registers itself on a roscore, which is a
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network-reachable service which is responsible to manage the nodes requests. When
a node want to publish data over a topic, a request is sent to the roscore. It notifies
the pending nodes that requested the subscription for that topic. It then provides to
both the nodes the information to open a direct connection. Using this approach, the
orchestration is centralized, but the communication itself is decentralized.

The adoption of ROS provides different advantages. First, it allows the platform
to model and simulate blocks running on different target devices. Then, it implements
the inter-node communication in a modular way and by adopting a standard and
widespread protocol, thus guaranteeing code portability.

2.3 Scheduling on heterogeneous architectures

There has been extensive prior research in task scheduling for multi/many cores at
different levels of abstractions over the last decade. We kindly refer the reader to an
extensive overview of mapping and scheduling strategies that can be found in [26].
Considering our target applications (i.e., embedded vision), we limit our focus on the
class of static scheduling for heterogeneous architectures, for which we summarize
the most recent and related works next.

TETRiS [27] is a run-time system for static mapping of multiple applications on
heterogeneous architectures. It takes advantage of compile-time information to map
and migrate applications by preserving the predictable performance of using static
mappings. Nevertheless, it does not apply to DAG-based applications, and it does
not support the concept of multiple (i.e., one implementation of a node for each CE)
and exclusive implementations (i.e., the implementation of a node for a given CE) of
nodes for heterogeneous CEs (e.g., CPUs and GPUs).

We consider an application being represented by a directed acyclic graph (DAG),
G = (V,E), where V is the set of v tasks and E is the set of e edges between the tasks
(we use the terms task and node interchangeably in the thesis). Each edge (t, q) ∈ E
represents the precedence constraint such that task t should complete its execution
before task q starts.

In [28] first, and then in [29], the authors proposed an approach and its opti-
mization to schedule DAG-based OpenVX applications for multi-cores and GPU ar-
chitectures. Their approach allowed the application performance to be increased by
overlapping sequential executions of the application. On the other hand, it does not
consider the multiple implementations of DAG nodes, i.e., the mapping algorithm
targets the best local solution: If there exists a GPU kernel for a DAG node then that
node is mapped onto the GPU.

To support the mapping of each DAG node onto one CE among different het-
erogeneous possibilities we consider the heterogeneous earliest finish time (HEFT)
algorithm [9]. HEFT schedules tasks in two phases. The first is the task prioritizing
phase, in which the tasks are ranked according to each task’s priority as follows1:
1 In this work, we consider the upward ranking [9] since it has shown to provide the best re-

sults for our graph characteristics. However, the optimization based on the exclusive over-
lap is independent from any ranking methodology.
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rank(t) = wt + max
q∈succ(t)

(ct,q + rank(q)), (1)

where succ(t) is the set of immediate successors of task t, ct,q is the average com-
munication cost of edge (t, q), and wt is the average computation cost of task t.

The second is the processor selection phase, in which each task t on the rank list
is mapped onto the CE that minimizes the finish time of t.

In [30], comparison between several heuristic has been proposed ranking them
by several factor, especially for primitive numbers and core count. Due the fact this
work is targeted for embedded platform with low number of core, HEFT has compa-
rable performance to more complex heuristic like CEFT [31] or PEFT [32]. Even if
HEFT suffers from the deep difference between CPUs and GPUs [33], optimizations
shown its portability and potentiality for embedded multi/many-core architectures
[34]–[36].





3

Model-based design flow

This section consists of three parts. First, it presents a quick overview about how to
write a OpenVX program (Section 3.1). Then, it presents a real case study in which
an OpenVX-based design flow has been applied, by underlining the advantage of
such an approach versus the manual code refinement (see Section 3.2). Finally, it
presents the proposed model-based design flow (see Section 3.3).

3.1 Overview of a OpenVX program

OpenVX relies on a graph-based software architecture to enable efficient computa-
tion on heterogeneous computing platforms, including those with GPU accelerators.
It provides a set of primitives (or kernels) that are commonly used in computer vi-
sion algorithms. It also provides a set of data objects like scalars, arrays, matrices and
images, as well as high-level data objects like histograms, image pyramids, and look-
up tables. It supports customized user-defined kernels for implementing customized
application features.

The programmer constructs a computer vision algorithm by instantiating kernels
as nodes and data objects as parameters. Since each node may use the mix of the pro-
cessing units in the heterogeneous platform, a single graph may be executed across
CPUs, GPUs, DSPs, etc.. Fig. 3.1 and Listing 3.1 give an example of computer vi-
sion application and its OpenVX code, respectively. The programming flow starts by
creating an OpenVX context to manage references to all used objects (line 1, Listing
3.1). Based on this context, the code builds the graph (line 2) and generates all re-
quired data objects (lines 4 to 11). Then, it instantiates the kernel as graph nodes and
generates their connections (lines 15 to 18). The graph integrity and correctness is
checked in line 20 (e.g., checking of data type coherence between nodes and absence
of cycles). Finally, the graph is processed by the OpenVX framework (line 23). At
the end of the code execution, all created data objects, the graph, and the the context
are released.
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Fig. 3.1: OpenVX sample application (graph diagram)

1 vx_context c = vxCreateContext();
2 vx_graph g = vxCreateGraph(context);
3 vx_enum type = VX_DF_IMAGE_VIRT;
4 /* create data structures */
5 vx_image in = vxCreateImage(c, w, h, VX_DF_IMAGE_RGBX);
6 vx_image gray = vxCreateVirtualImage(g, 0, 0, type);
7 vx_image grad_x = vxCreateVirtualImage(g, 0, 0, type);
8 vx_image grad_y = vxCreateVirtualImage(g, 0, 0, type);
9 vx_image grad = vxCreateVirtualImage(g, 0, 0, type);

10 vx_image out = vxCreateImage(c, w, h, VX_DF_IMAGE_U8);
11 vx_threshold threshold = vxCreateThreshold(c, VX_THRESHOLD_TYPE_BINARY,

VX_TYPE_FLOAT32);
12 /* read input image and copy it into "in" data object */
13 ...
14 /* construct the graph */
15 vxColorConvertNode(g, in, gray);
16 vxSobel3x3Node(g, gray, grad_x, grad_y);
17 vxMagnitudeNode(g, grad_x, grad_y, grad);
18 vxThresholdNode(g, grad, threshold, out);
19 /*verify the graph*/
20 status = vxVerifyGraph(g);
21 /*execute the graph*/
22 if (status == VX_SUCCESS)
23 status = vxProcessGraph(g);

Listing 3.1: OpenVX code of the example of Fig. 3.1

3.2 The OpenVX-based design flow

To explain the advantages of adopting OpenVX in a design flow of embedded vision
application this section introduces a real case study as a running example. Such a
benchmark implements a stabilization algorithm for digital image streams. In partic-
ular, the application is applied to a visual stream captured by a camera mounted on
a small ASV (Autonomous Surface Vehicles) [37], [38]. Since embedded hardware
to damp the camera effects is generally expensive, a software implementation of the
digital stabilization is preferable.

An unstabilized video stream is an image sequence that exhibits unwanted per-
turbations in the apparent image motion. The goal of digital video stabilization is to
improve the video quality by removing unwanted camera motion while preserving
the dominant motions in the image sequence. As an example, for obtaining an obsta-
cle detection solution, stabilization is a crucial pre-processing step before performing
higher-level processing like object tracking. Stabilization is necessary since the ac-
curacy of predicted object trajectories can decrease in case of unstabilized image
streams [15].
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Fig. 3.2 shows an overview of the adopted video stabilization algorithm, which
is represented through a dependency graph. The input sequence of frames is taken
from a high-definition camera, and each frame is converted to the gray-scale format
to improve the algorithm efficiency without compromising the quality of the result.
A remapping operation is then applied to the resulting frames to remove fish-eye
distortions. A sparse optical flow is applied to the points detected in previous frame
by using a feature detector (e.g., Harris or FAST detector). The resulting points are
then compared to the original point to find the homography matrix. The last N matri-
ces are then combined by using a Gaussian filtering, where N is defined by the user
(higher N means more smoothed trajectory a the cost of more latency). Finally, each
frame is inversely warped to get the final result.

Dashed lines in Fig. 3.2 denote inter-frame dependencies, i.e., parts of the algo-
rithm where a temporal window of several frames is used to calculate the camera
translation.

Although this algorithm does not represent particular challenges for the sequen-
tial implementation targeting CPU-based embedded systems, it presents a large de-
sign space to be explored when implemented for hybrid CPU-GPU systems. On the
one hand, several primitives of the algorithm (graph nodes) can benefit from GPU
acceleration while, on the other hand, their offloading on GPU involves additional
memory-transfer overhead. The mapping exploration between nodes and computa-
tional elements (i.e., CPU or GPU) is thus crucial both for the performance and for
the energy consumption.

To best explore correctness, performance, and energy consumption of the algo-
rithm, we implemented the software in all the possible configurations (nodes vs.
CPU/GPU) and by adopting both a standard design flow based on the OpenCV li-
brary and an OpenVX-based design flow.

3.2.1 Imperative versus data-flow implementation

The difference between OpenCV and OpenVX relies on their execution paradigm.
OpenCV encourages an imperative programming approach, while OpenVX imposes

Fig. 3.2: Dependency graph of the video stabilization algorithm.
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a data-flow paradigm. Although both models are semantically equivalent, standard
design flows rely on the imperative approach. Moving to the data-flow paradigm
can pose several limitations, as discussed in the next sections. The following two
paragraphs present and compare the video stabilization implementation in the im-
perative and data-flow approaches, by underlining the results in terms of obtained
performance.

An imperative implementation for standard OpenCV-based design flows

OpenCV provides the implementation for CPU of all the primitives of the video
stabilization algorithm. In addition, it provides the GPU implementation of the fol-
lowing five nodes:

• Convert to Grayscale.
• Remapping.
• Feature detection (either based on Harris or FAST algorithm).
• Optical Flow.
• Warping.

The complete design space exploration of OpenCV consists of 32 configurations
with the Harris-based feature detection plus 32 configurations with the FAST-based
one. We exhaustively implemented and compared all the possible configurations.
We also conducted the system-level optimization for each configuration, which, by
adopting OpenCV, is a manual and time consuming task. Indeed, although any sin-
gle function downloading on GPU requires a quite straightforward code interven-
tion (i.e., a function signature replacement), the system-level optimization involves a
more accurate and time consuming analysis of the CPU-GPU data dependency in the
overall data flow. As an example, consider the three nodes feature detection, compute
homography, and optical flow. Any configuration requiring the first mapped on the
CPU and the others on the GPU involves one data transfer from the CPU main mem-
ory (the output of the feature detection) to the GPU main memory (as input for either
the optical flow or homography). A second (useless) CPU-GPU data transfer leads,
in this algorithm implementations, to a 15% performance loss. Finding such data
dependency and optimizing all the CPU-GPU data transfer, in the current OpenCV
release, is let to the programmer.

The profiling analysis of all these code versions underlines that the feature de-
tection and optical flow nodes are the two most computational demanding functions
of the algorithm. Fig. 3.3 depicts their OpenCV structure, by underlining how they
are implemented (in terms of data exchange structures and the primitive signature) if
run on the CPU or offloaded on the GPU. Their mapping on CPU or GPU involves
the main important differences from the performance and power consumption point
of view, as shown in section 3.2.2.

Even though OpenCV primitives for GPUs are implemented both in OpenCL and
CUDA, only CUDA implementations can be adopted for the Jetson board.
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Fig. 3.3: OpenCV implementation of the most computational demanding nodes of the video
stabilization algorithm.

A data-flow implementation for OpenVX-based design flows

Listing 3.2 shows the most important parts of the OpenVX code. Some primitives
have been tested both with the version released in the standard OpenVX library and
in the VisionWorks library.
1 vx_context context = vxCreateContext();
2 /* create data structure */
3 vx_image gray = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_U8);
4 vx_image rect_image = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_U8);
5 vx_array curr_list = vxCreateVirtualArray(graph, VX_TYPE_KEYPOINT, 1000);
6 vx_matrix homography = vxCreateMatrix(context, VX_TYPE_FLOAT32, 3, 3);
7 /* create graph and relative structure */
8 vx_graph graph = vxCreateGraph(context);
9 vxColorConvertNode(graph, frame, gray);

10 vx_node remap_node = vxRemapNode(graph, gray, rect_image,
VX_INTERPOLATION_BILINEAR, remapped);

11 nvxCopyImageNode(graph, rect_image, out_frame, 0));
12 vxGaussianPyramidNode(graph, remapped, new_pyramid);
13 vx_node opt_flow_node = vxOpticalFlowPyrLKNode(graph,old_pyramid, new_pyramid,

points, points, curr_list, VX_TERM_CRITERIA_BOTH, s_lk_epsilon,
s_lk_num_iters, s_lk_use_init_est, s_lk_win_size);

14 nvxFindHomographyNode(graph, old_points, curr_list, homography,
NVX_FIND_HOMOGRAPHY_METHOD_RANSAC, 3.0f, 2000, 10, 0.995f, 0.45f, mask);

15 homographyFilterNode(graph, homography, current_mtx, curr_list, frame, mask);
16 matrixSmootherNode(graph, matrices, smoothed);
17 truncateStabTransformNode(graph, smoothed, truncated, frame, s_crop);
18 vxWarpPerspectiveNode(graph, frame_out_sync, truncated,

VX_INTERPOLATION_TYPE_BILINEAR, frame_stabilized);
19 nvxHarrisTrackNode(graph, rect_image, new_points, NULL, curr_list, 0.04, 3, 18,

NULL);
20 /* force node to GPU */
21 vxSetNodeTarget(remap_node, NVX_TARGET_GPU, NULL);
22 /* force node to CPU */
23 vxSetNodeTarget(opt_flow_node, NVX_TARGET_CPU, NULL);

Listing 3.2: OpenVX Code Example

The programming flow starts by creating a context (line 1). Based on this context, the
program builds the graph (line 8) and the corresponding data objects (lines 3-6). The
whole algorithm is then finalized as a dataflow graph by linking data objects through
nodes (lines 9-19). Lines 21 and 23 show how processing nodes can be manually
forced to be mapped on specific processing elements.
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Fig. 3.4: OpenVX implementation of the most computational demanding nodes of the video
stabilization algorithm.

The OpenVX environment allows automatically changing the nodes-to-processing
elements mapping and the corresponding data exchange system-level optimization. It
also provides both the Harris-based and FAST-based feature detector, both available
for CPU and GPU. In particular, it provides two different versions for each primitive:
the first one is the standard "general purpose" OpenVX version, while the second one
is provided in the VisionWorks library and is optimized for tracking algorithms.

In order to verify the best configuration targeting performance and to figure out
the best one targeting power efficiency, we developed and tested all the possible
configurations by forcing the nodes-to-processing elements mapping.

In the OpenVX mapping exploration, we considered the following differences
from OpenCV:

1. Harris/FAST tracker: OpenVX/VisionWorks provides the Harris/FAST tracker,
which optimizes the flow of data by giving priority to the points tracked in the
previous frame instead of the new detected ones, if they are in the same area.

2. OpenVX relies on column-major matrices, while OpenCV relies on row-major
matrices. This is important especially in the remap cases, where the OpenCV
backend is used to build the coordinates of the remapped points.

3. VisionWorks relies on a delay object to store an array of temporal objects (e.g.,
N frames back). This is not possible in OpenCV.

Fig. 3.5: IntCatch 2020 project uses Platypus Lutra boats, about 1m long and 0.5m wide.
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(a) (b) (c)

Fig. 3.6: Video stabilization results on sequences S1 (first row), S2 (second row), and S3
(third row). (a) A frame in the unstabilized video overlayed with lines representing point
trajectories traced over time. (b) The corresponding frame in the OpenCV stabilized video.
(c) The OpenVX stabilization results. Point trajectories are significantly smoother when the
stabilization is activated.

3.2.2 Qualitative and quantitative results

Experiments have been carried out on real data collected in a small lake near Verona,
Italy with a GoPro Hero 3 Black camera mounted on the bow of the Platypus Lu-
tra boat (see Fig. 3.5). In particular, we analyzed three different image sequences
(see Fig. 3.6), registered at 60 FPS with 1920×1080 wide angle resolution. Sequence
S1 is particularly challenging due to large rolling movements, while Sequence S2
presents strong sun reflections on the water surface, and the boat is very close to the
coast. The last Sequence S3 presents a similar view-point with respect to S1, but with
lower rolling. The three sequences can be downloaded from the IntCach AI website1,
together with the source code of the different implementations that has been consid-
ered. Additional sequences, not analyzed in this work, can be downloaded from the
IntCatch Vision Data Set2.

Stabilization results. In order to show the importance of video stabilization as a
necessary preprocessing step for horizon line detection, we have considered the three
sequences in Fig. 3.6, using them as input for a feature tracking algorithm. Supple-
mental videos can be downloaded at goo.gl/mg4fH1 for a clearer demonstration
of our results.
1 http://profs.scienze.univr.it/~bloisi/intcatchai/intcatchai.
html

2 http://profs.sci.univr.it/bloisi/intcatchvisiondb/intcatchvisiondb.html

goo.gl/mg4fH1
http://profs.scienze.univr.it/~bloisi/intcatchai/intcatchai.html
http://profs.scienze.univr.it/~bloisi/intcatchai/intcatchai.html
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Table 3.1: Stabilization quantitative results

Sequence
Number of MAD
tracked points Unstabilized OpenCV OpenVX

S1 10 31.5 11.3 10.4
S2 10 25.0 8.2 6.8
S3 10 23.4 10.4 10.7

We used the well-known Kanade-Lucas-Tomasi feature tracker (KLT) for track-
ing points around the horizon line in the camera field of view. The obtained feature
points are visualized by tracing them through time [39]. The first column in Fig. 3.6
contains the results when the input consists of images that have not been stabilized.
The second and the third column show the results generated by the OpenCV and
OpenVX based implementation, respectively.

We use the median absolute deviation with median as central point (MAD) to
estimate the stabilization quality by measuring the statistical dispersion of the points
generated by the KLT algorithm:

MAD = median (∣xi −median(X)∣) (3.1)

where X = {x1, x2, ..., xn} is the n original observations.
Table 3.1 shows the MAD values obtained with the unstabilized images and with

the preprocessed data generated by OpenCV and OpenVX. The stabilization allows
to obtain lower MAD values. It is worth noticing that the alternatives generated by
the same environment (i.e., OpenCV or OpenVX) give comparable results in terms
of MAD, while differ in terms of performance and power consumption as discussed
in the next paragraph.

Computational load results. Multiple mappings between routines and process-
ing elements have been evaluated using different metrics. Live capture has been sim-
ulated from recorded video stored in the Jetson internal memory by skipping the
frames in accordance with the actual processing speed of the considered implemen-
tation.

Tables 3.2 and 3.3 show the obtained results in terms of frames per second (FPS)
together with the following metrics:

Ppeak = max
t

P (t) (3.2)

Table 3.2: OpenCV implementation results

Remap Cvt color Warping Optical
Flow

Features Pavg

(W)
Ppeak

(W)
FPS E(Tend)

(J)

GPU GPU GPU GPU CPU/HARRIS 5.1 11 7.5 772
GPU GPU GPU GPU GPU/FAST 5.7 15 16.3 855
GPU GPU GPU GPU GPU/HARRIS 6.0 17 15.3 906
GPU GPU GPU GPU CPU/FAST 5.3 15 13.7 810
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Table 3.3: OpenVX implementation results

Remap Cvt color Warping Optical
Flow

Features Pavg

(W)
Ppeak

(W)
FPS E(Tend)

(J)

GPU GPU GPU CPU GPU/HARRIS
OPENVX

5.4 12 36.5 810

GPU GPU GPU CPU GPU/FAST
VISIONWORKS

5.1 11 15.3 760

GPU GPU GPU GPU CPU/FAST
VISIONWORKS

4.3 11 16.2 639

* GPU GPU GPU GPU GPU/FAST
OPENVX

5.3 12 60 804

* GPU GPU GPU GPU GPU/HARRIS
OPENVX

5.2 11 60 776

* GPU GPU GPU GPU GPU/FAST
VISIONWORKS

5.2 12 60 780

* GPU GPU GPU GPU GPU/HARRIS
VISIONWORKS

5.1 11 60 764

E(t) = ∫
t

0
P (t) (3.3)

Pavg =
E(Tend)
Tend

(3.4)

where P (t) = V (t)I(t) is the instant power usage and Tend is the total duration
of the analyzed sequence in seconds. Table 3.3 has an asterisk at the beginning of
rows which correspond to configurations that have been chosen by Visionworks au-
tomatically. The value E(Tend) denotes the absolute battery consumption measured
in Joule (J), Pavg gives a measure of the average instant power usage during com-
putation measured in Watt (W), and Ppeak is the maximum instant power usage in
Watt.

A Powermon board [40] has been used to measure the energy consumption. The
absolute value of energy is an important measure that determines the battery capac-
ity required for a mobile platform to perform the work. The number of processed
frames is equally important to understand how well the algorithm performs. It is
worth noticing that the OpenCV implementation is not able to achieve real-time per-
formance with high resolution high frame rate data.

We investigated the maximum value of FPS that different configurations can
reach and the corresponding power consumption. We also investigated how the
power consumption scales with the performance. Since no OpenCV implementation
allows achieving real-time performance (60 FPS), we used a high resolution timer to
simulate the actual capture rate of the camera.

The results underline that the best OpenCV implementation allows reaching 16.3
FPS at the cost of 855 J energy consumption. They also underline that OpenCV does
not allow selecting between performance-oriented or energy-saving mode, since the
most appropriate energy saving configuration (-10% J) provides very insufficient
performance. In contrast, OpenVX allowed us to implement four different config-



22 3 Model-based design flow

urations that guarantee appropriate performance (60 FPS) and energy scaling over
FPS, as underlined in Fig. 3.7.

3.3 Extending OpenVX for Model-based Design of Embedded
Vision Applications

Fig. 3.8 depicts the overview of the proposed design flow. The computer vision appli-
cation is firstly developed in MATLAB/Simulink. The choice for the MATLAB plat-
form is due to convenience, since it contains a huge amounts of vision-related func-
tions that allows a quick prototyping of the application. Moreover, it contains sev-
eral libraries for other areas (e.g. aeronautics), upon this methodology could be ap-
plied. For our use case, we exploit a computer vision oriented toolbox of Simulink3.
Such a block library allows developers to define the application algorithms through
Simulink blocks and to quickly simulate and validate the application at system level.
The platform allows specific and embedded application primitives to be defined by
the user if not included in the toolbox through the Simulink S-Function construct [41]
(e.g., user-defined block UDB Block4 in Fig. 3.8). Streams of frames are given as in-
put stimuli to the application model and the results (generally represented by frames
or streams of frames) are evaluated by adopting any ad-hoc validation metrics from
the computer vision literature (e.g., [39]). Efficient test patterns are extrapolated, by
using any technique of the literature, to asses the quality of the application results by
considering the adopted validation metrics.
3 we selected the Simulink Computer Vision toolbox (CVT), as it represents the most

widespread and used toolbox in the computer vision community. The methodology, how-
ever, is general and can be extended to other Simulink toolboxes.

Fig. 3.7: OpenVX energy scaling per FPS
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The high-level application model is then automatically synthesized for a low-
level simulation and validation through Matlab/Simulink. Such a simulation aims
at validating the computer vision application at system-level by using the OpenVX
primitive implementations provided by the HW board vendor (e.g., NVIDIA Vision-
Works) instead of Simulink blocks. The synthesis, which is performed through e
Matlab routine, relies on two key components:

1. The OpenVX toolbox for Simulink. Starting from the library of OpenVX primi-
tives (e.g., NVIDIA VisionWorks [42], INTEL OpenVX [43], AMDOVX [44],
Khronos OpenVX standard implementation [45]), such a toolbox of blocks for
Simulink is created by properly wrapping the primitives through Matlab S-
Function, as explained in Section 3.3.2.
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2. The OpenVX primitives-Simulink blocks mapping table. It provides the mapping
between Simulink blocks and the functionally equivalent OpenVX primitives, as
explained in Section 3.3.3.

As explained in the experimental results, we created the OpenVX toolbox for
Simulink of the NVIDIA VisionWorks library as well as the mapping table between
VisionWorks primitives and Simulink CVT blocks. They are available for download
from https://profs.sci.univr.it/bombieri/VW4Sim.

The low-level representation allows simulating and validating the model by
reusing the test patterns and the validation metrics identified during the higher level
(and faster) simulation.

Finally, the low-level Simulink model is synthesized, through a Matlab script,
into an OpenVX model, which is executed and validated on the target embedded
board. At this level, all the techniques of the literature for OpenVX system-level
optimization can be applied. The synthesis is straightforward, as all the key infor-
mation required to build a stand-alone OpenVX code is contained in the low-level
Simulink model. Both the test patterns and the validation metrics are be re-used for
the node-level and system-level optimization of the OpenVX application.

3.3.1 From imperative to data-flow: example of ORB descriptor

In our syntax, we cannot use conditional and loop operators. Therefore, there are
some algorithm that need to be rewritten to comply with this rule. There is not an
automatic way to do such rewrite, thus we present, as an example, how we managed
to convert an adaptive-threshold keypoints extraction algorithm from ORB-SLAM
[46], which will be used later in section 4.1.

In computer vision, a descriptor is an object which represents a visual feature of
an image. It could encode shape, color, or other meaningful values that are able to
identify some sort of knowledge. In particular, the ORB descriptor [47] is a vector
that encodes the neighborhood of a point in an image with a good speed in computa-
tion, and it is resilient to illumination and orientation changes. This allows the search
of points correspondence in two images to calculate, for example, the triangulation.

One way to gather enough information to match two images and yet to reduce as
much as possible the amount of points needed for the image matching, is to compute
such descriptor on some interesting points, called keypoints or corners, spread across
the image, computed on a recursively scaled image up to some level.

Being data-flow oriented, OpenVX does not allow the use of conditional paths or
loops. Specifically, the implementation of the keypoint extraction in ORB-SLAM2
[46] follows the example depicted in Figure 3.9. The original image is split into
several sub-images. In each of these tiles, a keypoint extraction procedure like the
well-known (and OpenVX native block) FAST [48] is performed, using a pre-defined
threshold. If no points are found, a lower one is applied specifically for that tile.
This process allows to select a first high-value threshold to produce high-quality
keypoints, if those are available. However, low quality keypoints are tolerated to
allow an evenly spaced distribution among the image.

https://profs.sci.univr.it/bombieri/VW4Sim
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This procedure performs a loop over all the tiles and a conditional path is used
to decide if the second threshold has to be applied. This process could be imple-
mented in the OpenVX context by a custom definition for the FAST block, to allow
an adaptive, per-cell threshold selection. On the other hand, this new approach could
lead to the loss of the optimizations that have been made for the target board for the
native FAST block. Therefore, it is preferable to express the needed functionality
by re-using, as much as possible, the primitive implementations provided with the
primitive library of the target device vendor.

In the FAST procedure, each keypoint has an associated strength. The routine
generates all the keypoints that have a strength higher than a selected threshold. Such
a property can be used to implement the aforementioned strategy by reversing the
two steps: first, the list of all keypoints with the lower threshold are selected. Then,

Fig. 3.9: Example for keypoints and ORB extraction, frame 20 of sequence KITTI06
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a custom procedure prunes the keypoints with low quality if higher ones are present
in the same window.

Figure 3.10 shows an example of such a mechanism applied to an image. The
points indicated by red diamonds correspond to keypoints with lower reliability,
while the green squares express the ones with higher strength. Using this structure to
compute adaptive threshold, loops and conditional instructions can be applied inside
a node that takes, as input, the output of the FAST routine. If a green point is de-
tected in a sub-window, then all the red points in that image portion are filtered out.
In Figure 3.10, only the top-left square contains no high reliability keypoints. The
lower threshold is used only for that tile, granting an even distribution of keypoints
across the image, while keeping high quality corners for the rest of the image.

Fig. 3.10: Dataflow elaboration for keypoints and ORB extraction, frame 20 of sequence
KITTI06
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Differences between imperative and data-flow version

To avoid too much clutter in the keypoints, a procedure called non-maximum sup-
pression has been used after the corner detection inside the FAST routine. This tech-
nique discards points which are too close to each other, keeping the one with the
maximum value within a radius. Therefore, the keypoints found by the FAST proce-
dure in a sub-section of image could differ from the keypoints present in that region
given the whole image as input, especially around the edge of the sub-window. To
illustrate this behavior, Figure 3.11 shows the difference between the execution of
the imperative and data-flow approaches, by using low values for threshold window
size to emphasize the differences. The green marks represent points present in both
images, while the red ones indicate a corner present in only one image.

(a) Imperative

(b) Dataflow

Fig. 3.11: Difference between the two types of implementation

Points which are exclusively present in the imperative version are spread around
the border between adjacent windows as depicted in Figure 3.11a. This effect is due
to non-maximum suppression, which has not the information to prune very close key-
points when the stronger corner is outside of the reference window. The imperative
version has the same keypoints of the data-flow implementation with the addition of
other corners near window edges.

The only exception to this behavior can be observed at column 6 and the row
before the last one in Figure 3.11b. Due to non-maximum suppression, a high relia-
bility corner is pruned because another one is present and very close to it. However,
this keypoint belongs to another window, thus marking that sub-window without any
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high-reliability corner, and thus forcing the adaptive threshold to be set to the lowest
value.

In the majority of cases, however, the two implementations are almost equivalent.
When they are not, the selected corners are very close to each other, leading to no
substantial difference between the two versions.

3.3.2 OpenVX toolbox for Simulink

The generation of the OpenVX toolbox for Simulink relies on the S-function con-
struct, which allows describing any Simulink block functionality through C/C++
code. The code is compiled as mex file by using the Matlab mex utility [49]. As
with other mex files, S-functions are dynamically linked subroutines that the Mat-
lab execution engine can automatically load and execute. S-functions use a special
calling syntax (i.e., S-function API) that enables the interaction between the block
and the Simulink engine. This interaction is very similar to the interaction that takes
place between the engine and built-in Simulink blocks.

1 function s_colorConvert(block)
2 setup(block);
3
4 function setup(block)
5 % Number of ports and parameters
6 block.NumInputPorts = 1;
7 block.NumOutputPorts = 1;
8
9 block.RegBlockMethod(’Start’, @Begin);

10 block.RegBlockMethod(’Stop’, @End);
11 block.RegBlockMethod(’Outputs’, @Outputs);
12 function begin(block)
13 %create vx_image
14 gray = m_vxCreateImage();
15 function end(block)
16 %destroy vx_image
17 m_vxReleaseImage(gray);
18 function outputs(block) //computation phase:
19 in = block.InputPort(1).Data;
20 ret_val = m_vxColorConvert(in, gray);
21 block.OutputPort(1).Data = gray;

Listing 3.3: Matlab S-function Code for the Color Converter node.

We defined a S-function template to build OpenVX blocks for Simulink that, as
for the construct specifications, consists of four main phases (see the example in
Listing 3.3, which represents the Color Converter node of Fig. 3.1):

• Setup phase (lines 4-11): it defines the I/O block interface in terms of number
of input and output ports and the block internal state (e.g., point list for tracking
primitives).

• Begin phase (lines 12-14): It allocates data structure in the Simulink mem-
ory space for saving the results of the block execution. Since the block exe-



3.3 Extending OpenVX for Model-based Design of Embedded Vision Applications 29

cutes OpenVX code, this phase implementation relies on a data wrapper for the
OpenVX-Simulink data exchange and conversion.

• End phase (lines 15-17): It deallocates the created data structures at the end of
the simulation (after the computation phase).

• Computation phase (lines 18-21): it reads the input data and executes the code
implementing the block functionality. It makes use of a primitive wrapper to
execute OpenVX code.

mex_function(	){
vx_context ctx =	vxCreateContext(	)
}

Matlab/Simulink context

…
//block1	execution:
m_vxCreateImage(	)

m_vxCreateContext(	)

…
m_vxNode(	)
//enf of	block1
…
//block2	execution
...
//end	of	block2

Context wrapper OpenVX context

mex_function(	ctx,	I/O	data	){
mem_lock()		
vx_image img =	vxCreateimage(	)
}

Data	wrapper

vxCreateContext(	 ){
…
}

vxCreateImage(	){
}

Primitive	wrapper

mex_function(	ctx,		img ){
context m_ctx =	ref_to_context(ctx)
vx_image m_vximg =	ref_to_image(img)
mem_lock()		
m_vxNode(	)
}

vxNode(	){
}

Fig. 3.12: Overview of the Simulink-OpenVX communication

Three different wrappers have been defined to allow communication and syn-
chronization between the Simulink and the OpenVX environments. They are sum-
marized in Fig. 3.12. The context wrapper allows creating the OpenVX context (see
line 1 of Listing 3.1), which is mandatory for any OpenVX primitive execution. It
runs once for the whole system application. The data wrapper allows creating the
OpenVX data structures for the primitive communication (see in, gray, gradx, grady ,
grad, and out in the example of Fig. 3.1 and lines 4-11 of Listing 3.1). It runs once
for each application block. The primitive wrapper allows executing, in the Simulink
context, each primitive functionality implemented in OpenVX. To speed up the sim-
ulation, the wrapped primitives work through references to data structures, which are
passed as function parameters during the primitive invocations to the OpenVX con-
text. To do that, the wrappers implement memory locking mechanisms (i.e., through
the Matlab mem_lock()/mem_unlock() constructs) to prevent data objects to be re-
leased automatically by the Matlab engine between primitive invocations.
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3.3.3 Mapping table between OpenVX primitives and Simulink blocks

To enable the application model synthesis from the high-level to the low-level rep-
resentation, mapping information is required to put in correspondence the built-in
Simulink blocks and the corresponding OpenVX primitives. In this work, we de-
fined such a mapping table between the Simulink CVT Toolbox and the NVIDIA
OpenVX-VisionWorks library. The table, which consists of 58 entries in the current
release, includes primitives for image arithmetic, flow and depth, geometric trans-
forms, filters, feature and analysis operations. Table 3.4 shows, as an example, a
representative subset of the mapped entries.

Simulink block Visionworks primitive Notes to the developer

CVT/AnalysisAnd -
Enhancement/ EdgeDetection

vxuCannyEdgeDetector If Simulink EdgeDetection set
as Canny

CVT/AnalysisAnd -
Enhancement/ EdgeDetection

vxuSobel3x3 If Simulink EdgeDetection set
as Sobel

CVT/AnalysisAnd -
Enhancement/ EdgeDetection

vxuConvolve If filter size different from 3x3

CVT/Morphological
operation/Opening

vxuErode3x3 +

vxuDilate3x3

CVT/Filtering/Median Filter vxuMedianFilter3x3

CVT/Filtering/Median Filter vxuNonLinearFilter If filter size different from 3x3

Math Op./Subtract +
vxuAbsoluteDifference

Math Op./Abs

CVT/Conversion/Color space
conversion

vxuColorConvert

CVT/Statistics/2D Mean

vxuMeanStdDev
Only mean and standard
deviation of the entire image
supported

CVT/Statistics/2D Standard-
Dev

Simulink/Math opera-
tions/Real/ComplexTo
-Imag vxuMagnitude

Gradient magnitude computed
through complex numbers

Simulink/Math opera-
tions/Real/Imag to Magnitude

Table 3.4: Representative subset of the mapping table between Simulink CVT and NVIDIA
OpenVX-VisionWorks

We implemented three possible mapping strategies:
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1 vx_userNode(){
2 vx_status processingOpenVX(vx_node node, const vx_reference *parameters,

vx_uint32 num)
3 {
4 //convert data in internal representation
5 SimulinkBlockFunctionality(); //C/C++ code of the UDB functionality
6 return VX_SUCCESS;
7 }
8 vx_status validationOpenVX(vx_node node, const vx_reference parameters[],

vx_uint32 num, vx_meta_format metas[]))
9 {

10 //insert parameter validation
11 return VX_SUCCESS;
12 }
13
14 vx_status singleShotProcessing(vx_context context, parameters)
15 {
16 //create graph and execute it
17 }
18
19 vx_status registerCustomKernel(vx_context context)
20 {
21 vx_status = vxAddUserKernel(context, ...);//register kernel in context
22 return VX_SUCCESS;
23 }
24 }

Listing 3.4: Overview of wrapper for user-defined Simulink block implementations

1. 1-to-1: the Simulink block is mapped to a single OpenVX primitive (e.g., color
converter image arithmetic).

2. 1-to-n: the Simulink block functionality is implemented by a concatenation of
multiple OpenVX primitives (e.g., the opening morphological operation).

3. n-to-1: a concatenation of multiple Simulink blocks are needed to implement a
single OpenVX primitive (e.g., subtract + absolute blocks).

For some entry, the mapping also depends on the Simulink block setting. As
an example, the OpenVX primitive for edge detection is selected depending on the
setting of the corresponding CVT block. The setting includes the choice of the filter
algorithm (i.e., Canny or Sobel) and the filter size.

The blocks listed in the left-most column of the table form the OpenVX toolbox
for Simulink. Any Simulink model built from them can undergo the proposed au-
tomatic refinement flow. In addition, user-defined Simulink blocks implemented in
C/C++ are supported and translated into OpenVX user kernels. They are eventually
loaded and included in the OpenVX representation as graph nodes. To do that, we
defined the wrapper represented in Listing 3.4, which follows the node implemen-
tation directives required by the standard OpenVX for importing user kernels4. The
wrapper invocation (i.e., vx_userNode()) is similar to the invocation of any built-
in OpenVX node (i.e., vxNode()) in the OpenVX context through the previously
presented context wrapper (see the righ-most side of Fig. 3.12).
4 www.khronos.org/registry/OpenVX/specs/1.0/html/da/d83/group_
_group__user__kernels.html

www.khronos.org/registry/OpenVX/specs/1.0/html/da/d83/group__group__user__kernels.html
www.khronos.org/registry/OpenVX/specs/1.0/html/da/d83/group__group__user__kernels.html
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Context
Original input stream Selected test patterns

Video real
time (min)

Model
simulation
time (min)

Frames (#) Video real
time (min)

Model
simulation
time (min)

Frames (#)

Indoor 364 492 1.296.278 20.5 30.5 72.112

Outdoor 192 263 648.644 11.0 13.0 36.935

Table 3.5: Experimental results: High-level simulation time in Simulink

Finally, some restrictions on the Simulink block interfaces are required to allow
the Simulink/OpenVX communication as well as the model synthesis. The set of data
types and data structures available for the high-level model is reduced to the subset
supported by OpenVX, whereby each I/O port of the Simulink blocks consists of:

• Dimension d ∈ {1D, 2D, 3D, 4D}, e.g., greyscale, RGB or YUV, and usually
the 4th dimension for alpha or depth channel.

• Size s ∈ {N ×M × 1, N ×M × 3, N ×M × 4}.
• Type t ∈ {uint8, f loat}, where uint8 is generally used for representing data

(pixels, colours, etc.) while float is generally used for representing interpolation
data.

3.3.4 Results

We applied the proposed model-based design flow for the development of the em-
bedded software implementing the digital image stabilization algorithm represented
as running example in Fig. 3.2.

We firstly modelled the algorithm application in Simulink (CVT toolbox). The
nodes Optical flow and Filtering have been inserted as user-defined blocks, since
they implement customized functionality and are not present in the CVT toolbox.
We conducted two different parametrizations of the algorithm, and in particular of
the feature detection phase: For an indoor and for an outdoor application context. The
first targets a system for indoor navigation of an Unmanned aerial vehicle (UAV),
while the second targets a system for outdoor navigation of an Autonomous Surface
Crafts (ASCs) [50].

We validated the two algorithm configurations starting from input streams reg-
istered by different cameras at 60 FPS with 1280x720 (1080P) and 1920x1080
wide angle resolution, respectively. Table 3.5 reports the characteristics of the input
streams (columns Video real time and #Frames) and the time spent for simulating
the high-level model on such video streams in Simulink (Model simulation time).
Starting from the original video streams, we extrapolated a subset of test patterns,
which consist of the minimal selection of video streams necessary to validate the
model correctness by adopting the Smith et al. validation metrics for light field video
stabilization [39]. The table reports the characteristics of such selected test patterns
(sequences of frames).
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Validation level
Sim./Exec. time (min)

Indoor Outdoor

Simulink High-Level model 30.5 13.0

Simulink Low Level model 59.0 26.0

Software application on target embedded
system device

20.5 11.0

Table 3.6: Experimental results: Comparison of the simulation time spent to validate the soft-
ware application at different levels of the design flow. The board level validation time refers
to real execution time on the target board.

We then applied the Matlab synthesis script to translate the high-level model
into the low-level model by using the OpenVX toolbox for Simulink generated from
the NVIDIA VisionWorks v1.6 [42] and the corresponding Simulink CVT-NVIDIA
OpenVX/VisionWorks mapping table, as described in Sections 3.3.2 and 3.3.3, re-
spectively. In particular, the low level simulation in Simulink allowed us to vali-
date the computer vision application implemented through the primitives provided
by the HW board vendor (e.g., NVIDIA OpenVX-VisionWorks) instead of Simulink
blocks.

Finally, we synthesized the low-level model into pure OpenVX code, by which
we run the real time analysis and validation on the target embedded board (NVIDIA
Jetson TX1). Table 3.6 reports a comparison among the different simulation time
(real execution time for the OpenVX code) spent to validate the embedded software
application at each level of the design flow. At each refinement step, we reused the
selected test patterns to verify the code over the adopted validation metrics [39] for
both the contexts and by assuming a maximum deviation of 5%. The results un-
derline that the higher level model simulation is faster as it mostly relies on built-in
Simulink blocks. It is recommended for functional validation, algorithm parametriza-
tion, and test pattern selection. It provides all the benefits of the model-based design
paradigm, while it cannot be used for accurate timing analysis, power, and energy
measurements. The low level model simulation is much slower since it relies on
actual primitive implementation and many wrapper invocations. However, it repre-
sents a fundamental step as it allows verifying the functional equivalence between
the system-level model implemented through blocks and the system-level model im-
plemented through primitives. Finally, the validation through execution on the target
real device allows for accurate timing and power analysis, in which all the techniques
at the state of the art for system-level optimization can be applied.
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Polyglot parallel programming model and integration

Due to the limitation of OpenVX to model complex applications through data-flow
graphs and to the incompleteness of the OpenVX primitive libraries provided by
the device vendors, any real embedded vision application requires the integration
of OpenVX with user-defined C/C++ code. On the one hand, the user-defined code
can benefit from parallelization techniques for multi-cores, thus providing heteroge-
neous parallel environments (i.e., multi-core + GPU parallelism). On the other hand,
due to the private and not user-controlled memory stack of OpenVX, such an inte-
gration leads to the sequentialization of the different execution environments, with a
consequent strong impact on the system-level optimization.

This section presents a model that combines different programming environ-
ments, i.e., C/C++, OpenMP, PThreads, OpenVX, OpenCV, and CUDA to best
exploit different levels of parallelism while guaranteeing the semi-automatic cus-
tomization.

4.1 Analysis of polyglot programming environments in the
ORB-SLAM case study

In order to understand the limitations of the state-of-the-art environments for paral-
lel programming embedded vision applications and the contribution of the proposed
framework, we first present the case study, which will be used as a model in the
subsequent sections. The case study, ORB-SLAM [51], represents a typical real em-
bedded application, which is applied in different contexts, ranging from automotive
to robotic systems. NVIDIA Jetson TX2, which is a widespread and low-cost em-
bedded board, is the target platform.

ORB-SLAM solves the simultaneous localization and mapping problem when
RGB camera sensors are adopted. It computes, in real-time, the camera trajectory and
a sparse 3D reconstruction of the scene in a wide variety of environments, ranging
from small hand-held sequences of a desk to a car driven around several city blocks.
It builds a 3D map starting from an input stream and/or it performs localization
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Fig. 4.1: Overview of ORB-SLAM application and execution models: (a) the original code
(parallelized for multicore), (b) the state-of-the-art OpenVX implementation.

by considering the current map. The application consists of three main blocks (see
Figure 4.17):
- The tracking and localization block computes visual features, it localizes the agent
in the environment, and, in case of significant discrepancies between an already saved
map and the input stream, it communicates updating information of the map to the
mapping block. The processing rate (i.e., the supported frame rate per second) and
the main power consumption of the whole application strongly depend on this block
performance.
- The mapping block updates the environment map by using information (detected
map changes) sent by the localization block. In case of a well consolidated map, this
module can be shut down to save system resources.
- The loop closing block aims at adjusting the scale drift error accumulated during
the input analysis, which is unavoidable when adopting a monocular vision system
(i.e., RGB camera). When a loop in the agent pathway is detected, this block updates
the mapped information through a high latency heavy computation, during which
the first two blocks must be suspended. This can lead the agent to loose tracking and
localization information and, as a consequence, the agent to get temporary lost. As a
consequence, the computation efficiency of this block (run on-demand) is crucial for
the quality of the whole application results.
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In the best ORB-SLAM implementation at the state of the art [51], due to their
concurrent execution model, the three blocks are implemented to be run in parallel
through PThreads on shared-memory multiprocessors. In addition, since the bundle
adjustment task, both local in the mapping block and global in the loop closing block,
can have long latencies, it is a primary target for parallelization. Its nested and data-
independent loops well apply for directive-based automatic parallelization. Thus,
the state of the art code is available with OpenMP directives for parallel execution
on multi-cores. No block is originally considered for parallel execution on GPU (see
Figure 4.17(a)).

The manual implementation of any sub-block for GPU is out of the scope of this
work. Rather, due to the complexity of such a parallelization task for this application
class yet considering different design constraints (power consumption and energy
efficiency beside performance), we consider the semi-automatic embedding of the
application through OpenVX.

We rely on standard libraries of computer vision functions, which are provided by
the target board vendors (i.e., VisionWorks [42] for NVIDIA boards). The library can
be extended through user-defined or third-party CUDA kernels, which are integrated
in the OpenVX implementation as custom nodes.

On the other hand, due to the limitation of OpenVX to model complex applica-
tions through data-flow graphs and to the incompleteness of the vendor library, the
OpenVX application has to be often integrated to standard C/C++ code. In the ORB-
SLAM case study, only the tracking sub-block can be modeled through a data-flow
graph and is worth to be optimized for CPU/GPU execution.

4.2 Polyglot framework for heterogeneous platforms

Figure 4.2 depicts the overview of the proposed framework. We consider six differ-
ent languages and parallel programming environments (environments in the follow-
ing): C/C++, Pthreads, OpenMP, OpenCV, OpenVX, and CUDA. The environments
heterogeneity allows implementing different application blocks with the most appro-
priate style, such as C/C++ for control parts, Pthreads for concurrent execution func-
tions on the CPUs, OpenMP for directive-based automatic parallelization of code
chunks, CUDA for any kernel (if available) acceleration on GPU, and OpenVX for
primitive-based parallelization of data-flow routines. OpenCV has been chosen to
implement standard I/O communication protocols of computer vision applications
through standard data-structures and APIs. This allows the embedded vision appli-
cations to be portable and efficiently integrated to any other application compliant to
the standard.

For the sake of clarity and without loss of generality, we consider, as a running
example, the widespread and most popular NVIDIA Jetson TX2 as the target plat-
form. Such an embedded board relies on a shared-memory architecture, in which
two different clusters of CPUs (four cores Cortex-A57 CPUs and two cores Denver
CPUs) and a GPU with two symmetric multiprocessors share an unified memory
space.



38 4 Polyglot parallel programming model and integration

The top of Figure 4.2 depicts the stack layer involved by the concurrent execution
of each environment. It relies on two main parts:

• The user-controlled stack, which allows for shared memory-based communi-
cation among processes running on different CPUs. They include C/C++ pro-
cesses, OpenCV APIs, Pthreads, and processes generated by OpenMP.

• The private (not user-controlled) stack, which is created and handled by OpenVX
and allows for communication between OpenVX graph nodes running on differ-
ent CPUs or on the GPU.

The tasks related to the user-controlled stack are mapped to the CPU cores by the
operating system (i.e., Linux Ubuntu for the NVIDIA Jetson). The OpenVX tasks are
mapped to the CPU cores or GPU multiprocessors by the OpenVX runtime system.

To enable the full concurrency of the two parts, to avoid sequentialization of the
two sets of tasks, and to avoid the consequent synchronization overhead, we associate
the two parts to a single unified scheduling engine. This allows all the tasks mapped
to the CPU cores (of both stack parts) to be scheduled by the operating system, while
the GPU task scheduling, the CPU-to-GPU communication and synchronization (i.e.,
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Fig. 4.2: Framework overview: memory stack, task mapping, and task scheduling layers of
an embedded vision application developed with the proposed method on the NVIDIA Jetson
TX2 board.
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Fig. 4.3: Overview of the communication wrapper and its integration in the system.

GPU stream and kernel engine) to be controlled by the OpenVX runtime system.
To do that, we propose a C/C++-OpenVX template-based communication wrapper,
which allows for memory accesses to the OpenVX data structures on the private stack
and for full control of the OpenVX context execution by the C/C++ environment.

Figure 4.3 gives an overview of the wrapper and its integration in the system. The
OpenVX initialization phase generates the graph context and allocates the private
data structures. Such allocation returns opaque pointers to the allocated memory
segments, i.e., pointers to private memory areas which layout is unknown to the
programmer.

OpenVX read and write primitives (Write-Read_on_vx_Datastructure()
in the Figure) have been defined to access the private data structures through the
opaque pointers. The primitives are invoked from the C/C++ context and, through
the communication wrapper APIs, they set a mutex mechanism to safety access the
OpenVX data structures. The same mutex is shared with the OpenVX runtime sys-
tem for the overall graph processing (vxProcessGraph() in the Figure). As a
consequence, the mechanism guarantees synchronization during the accesses to the
shared data structures between the OpenVX and C/C++ contexts when run concur-
rently on multicores. It is important to note that the invocation of the overall graph
processing, which is performed in the C/C++ environment, starts the execution of the
data-flow oriented OpenVX code. As shown in Figure 4.3, such an invocation can be
performed concurrently by different C/C++ threads, and each invocation involves
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a mapping and scheduling of the corresponding graph instance. The proposed com-
munication wrapper and mutex system allow for synchronization among the different
concurrent OpenVX graph executions and the C/C++ calling environments.

Standard mutex mechanisms are adopted to synchronize all the other C/C++
based contexts belonging to the user-controlled stack, when accessing shared data
structures.

The mutex-based communication wrapper allows for multi-level parallel execu-
tion of the application. Considering for example the ORB-SLAM case study, the
first level of parallelism is implemented by the Pthreads, which run the three main
modules of the application on different CPU cores.

Then, the tracking block of the first module is implemented in OpenVX and run
on a CPU core and on the GPU. The parallel implementation of the graph nodes
offloaded on the GPU is provided by the OpenVX library vendor (i.e., NVIDIA
VisionWorks for our case study) and are optimized for the specific GPU architecture.

Finally, OpenMP provides another level of parallelism when a block is enriched
with parallel directives (e.g., Mapping and Loop closing blocks in the example). Each
of these blocks is executed in parallel by the threads generated automatically by the
compiler, which run on the available CPU cores.

4.3 Results

The framework has been applied to embed the ORB-SLAM application on the Jetson
TX2 incrementally. We started from the most efficient parallel implementation at the
state of the art [52]. We then integrated modularly the different parallel environments
supported by the framework as follows:

• Version 1 (Pthreads): It is the starting version [52], in which the three main
blocks (Tracking and localization, Mapping, and Loop closing blocks) are run
concurrently by Pthreads on the CPU cores.

• Version 2 (Phtreds+OpenMP): It extends version 1, by enabling OpenMP paral-
lelism. In particular, it parallelizes the bundle adjustment task, both local in the
mapping block and global in the loop closing block.

Table 4.1: Average FPS and Time per frame values on KITTI, sequence 13, 75% of the fre-
quencies

Version
Mapping

FPS
Time per

frame (ms)
Energy (J) Avg Power (W)

Peak
power (W)

% frame processed
Energy per
frame (J)A57 Denver GPU SM

Version 1 3 - - 7.6 131.4 1,205 3.37 4.05 3,097/3,281 (94.4%) 0.357
Version 2 4 2 - 7.6 132.2 1,125 3.43 5.24 3,021/3,281 (92.1%) 0.372

Version 3 3 - 2 9.1 109.7 1,039 3.78 5.62 3,279/3,281 (99.9%) 0.378

Version 4 4 2 2 9.5 105.6 1,242 5.79 7.85 3,260/3,281 (99.4%) 0.381

Version 5 3 - 2 11.3 88.2 1,184 3.61 5.46 3,269/3,281 (99.0%) 0.362

Version 6 4 2 2 11.3 88.4 1,197 5.65 7.92 3,271/3,281 (99.8%) 0.366
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Table 4.2: Average FPS and Time per frame values on KITTI, sequence 13, 100% of the
frequencies

Version
Mapping

FPS
Time per

frame (ms)
Energy (J) Avg Power (W)

Peak
power (W)

% frame processed
Energy per
frame (J)A57 Denver GPU SM

Version 1 3 - - 8.8 114.1 1,917 5.84 8.54 3,264/3,281 (99.5%) 0.587

Version 2 4 2 - 8.8 113.2 1,967 6.00 9.61 3,269/3,281 (99.6%) 0.602

Version 3 3 - 2 9.8 102.2 1,954 5.96 9.54 3,276/3,281 (99.8%) 0.597

Version 4 4 2 2 9.9 101.0 1,945 7.93 11.01 3,280/3,281 (100%) 0.593

Version 5 3 - 2 12.8 78.1 1,895 5.98 9.65 3,274/3,281 (99.0%) 0.579

Version 6 4 2 2 12.8 78.3 1,843 7.62 11.70 3,279/3,281 (99.9%) 0.562

• Version 3 (Pthreads+OpenVX): It extends version 1 (i.e., with Pthreads, without
OpenMP parallelism) by implementing the tracking sub-block in OpenVX.

• Version 4 (Pthreads+OpenMP+OpenVX): It extends version 3 by enabling also
OpenMP.

• Version 5 (Pthreads+OpenVX+CUDA): starting from version 3, we reused a
CUDA kernel that implements the ORB primitive in the tracking sub-block. We
modularly replaced the corresponding OpenVX VisionWork primitive with such
a more optimized kernel.

• Version 6 (Pthreads+OpenMP+OpenVX+CUDA): It extends version 5 by en-
abling also OpenMP.

We validated and evaluated all the versions by using the KITTI dataset [53],
which is a standard and widespread benchmark for SLAM applications. The dataset
consists of video streams captured by driving around a car equipped with RGB cam-
era in the mid-size city of Karlsruhe, in rural areas and on highways. For the sake of
space, we present the results obtained on the sequence number 13, since it is the most
meaningful to show the variance of workload in all the three blocks of ORB-SLAM
and the corresponding effects on the design constraints.

For the evaluation, we set the Jetson TX2 board with two different configura-
tions: medium frequency (75%) and maximum frequency (100%). They represent
the frequency setting of 4 board components, i.e., the four cores Cortex-A57 cluster
(1.42 GHz and 2.035 GHz as medium and maximum frequency, respectively), the
two cores Denver cluster (1.42 GHz and 2.035 GHz), the GPU (1.032 GHz and 1.3
GHz), and the memory (1.062 GHz and 1.866 GHz).

Tables 4.1 and 4.2 show the results for the medium and maximum frequency set-
ting, respectively. The best results are reported in bold. The mapping columns report
the number of processing elements used by the different versions during computa-
tion. The Pthreads guarantee the minimum level of parallelism, by enabling one core
per block. OpenMP has been set to use the maximum number of available CPU cores
(6). The GPU is enabled only by OpenVX/CUDA.

Columns FPS and Time per frame report information about the application per-
formance, and, in particular, FPS represents the maximum number of frames per
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second supported by the embedded system. The columns underline how each level
of parallelism influences the overall performance.

To understand the effect of the different versions on power and energy efficiency,
the tables report the total energy spent for the computation of the whole stream, the
average and peak power, and the average energy per frame.

Finally, the tables report information about the quality of service (QoS) results.
It includes the number of frames correctly processed against those skipped for the
overloading of the processing elements. Frame skipping is caused by the mapping
and loop closing blocks that run the bundle adjustment computation and, due to the
work overload, their latency prevent the tracking block in analysing new frames.
The maximum number of frames skipped tolerated is a design constraints, since it
involves the QoS of the application like the number of times the system gets lost.

The tables underline that, as expected, the performance (FPS) provided by the
different versions are strictly correlated with the power consumption. Enabling all
the processing elements through the different levels of parallelism leads to the best
performance at the cost of the higher peak power. However, we found that OpenMP
allows improving the performance in the overall heterogeneous context not in all
cases. Version 6 is an example, in which switching on the OpenMP parallelism does
not provide better performance than the Pthread+OpenVX+CUDA version while it
increases the peak power consumption. On the other hand, version 6 provides better
QoS in the maximum frequency configuration. This is due to the fact that OpenMP
is strictly involved by the bundle adjustment phases, which affect the frame skipped
while they do not affect the supported FPS. This does not happen in the medium
frequency setting as the CPU frequency in which such a kernel is run does not allow
the tracking block to respect the real time constraints.

We found that, for the medium frequency configuration, version 3 is the most
energy efficient and provides the best QoS results. Version 5 provides the best per-
formance and does not involve the worst power consumption. Version 6 provides the
best performance, and it pays the almost best QoS (99.8%) with the highest power
consumption.

For the maximum frequency configuration, version 5 provides the best tradeoff
in terms of performance and power consumption, while version 6 provides the best
tradeoff in terms of performance, energy efficiency, and QoS.

In conclusion, the experimental results show how the different versions and, for
each of them a frequency configuration of the single processing elements, provide
a very large mapping space to be explored (which is out of the scope of this work).
Such a space can provide the best solution for each of the considered design con-
straints like performance, power consumption, energy efficiency, and quality of ser-
vice.

4.4 Performance enhancing with multilevel parallelism

The original implementation of the algorithm [46] provides two levels of parallelism.
The first level is given by the three main algorithm blocks (see Fig. 4.4), which are
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Fig. 4.4: Limitations of the ORB-SLAM application and execution models on the Jetson
board: (a) the original code (no GPU use), (b) the OpenVX NVIDIA VisionWorks (sequen-
tialization of tracking and localization tasks and no pipelining).

implemented to be run as parallel PThreads on shared-memory multi-core CPUs.
The second level is given by the automatic parallel implementation (i.e., thorugh
OpenMP directives) of the bundle adjustment sub-block, which is part both of the
local mapping and loop closing blocks. This allows the parallel computation of such
a long latency task on multi-core CPUs. No blocks or sub-blocks are considered for
parallel execution on GPU in the original code (see Fig. 4.4(a)).

To fully exploit the heterogeneous nature of the target board (i.e., multi-core
CPUs combined with many-core GPU), we added two further levels of parallelism.
The first is given by the parallel implementation for GPU of a set of tracking sub-
blocks (see Fig. 4.5). The second is given by the implementation of a 8-stage pipeline
of such sub-blocks. We focused on the feature extraction block as, for the datasets
analysed in this work (i.e., KITTI [53]), it is the most important bottleneck that char-
acterizes the processing rate in terms of supported FPS. Other to these additions, we
pipelined the execution of ORB feature extraction block and Localization block to
further improve system throughput, leveraging PThreads parallelism level.
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Fig. 4.5: DAG of the feature extraction block and the corresponding sub-block implementa-
tions (GPU vs. CPU).

To do that, we first re-designed the model of the feature extraction block as a
direct acyclic graph (DAG) by adopting the OpenVX standard1 as shown in Fig. 4.5.
The transformation of the original implementation, which was originally conceived
for CPUs only, into a CPU/GPU parallel execution requires a control on the com-
munication between code running on the CPUs and on the GPU. In particular, the
mapping phase is critical, requiring a temporal synchronization between the blocks
of the algorithm to be successful.

NVIDIA provides VisionWorks, which extends the OpenVX standard through ef-
ficient implementations of embedded vision kernels and runtime system optimized
for CUDA-capable GPUs. Nevertheless, such a toolkit has some limitations, which
do not allow for the target multi-level parallelism. In particular, the VisionWorks
runtime system, which manages synchronization and execution order among the
DAG sub-blocks, implicitly sequentializes the tracking and localization block ex-
ecution (see Fig. 4.4(b)). This is due to the fact that only the tracking sub-block
can be modeled as DAG and, although the rest of the system can be integrated as
C/C++/OpenCV code, their communication and synchronization is solved through
a mutex-based mechanism (see Fig. 4.4). Such a sequentialization leads to the idle
state of the GPU whenever the localization block is running. In addition, Vision-
Works does not support pipelined execution among DAG sub-blocks.

Since VisionWorks is not open source, we re-implemented and made open source
both an advanced runtime system targeting multi-level parallelism and a library of
accelerated computer vision primitives compliant to OpenVX for the Jetson TX2
board.
1 https://www.khronos/openvx

https://www.khronos/openvx
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Fig. 4.6: Samples from the four sequences of the KITTI dataset used for evaluation. (a) Se-
quence 03. (b) Sequence 04. (c) Sequence 05. (d) Sequence 06.

4.5 Results with optimized version

To evaluate the results of our modified version of ORB-SLAM2, we used four se-
quences from the KITTI dataset (see Fig. 4.6) as done in the original paper by Mur-
Artal and Tardos [46].

The KITTI dataset [53] contains sequences of 1,242×375 images recorded at
10 FPS from a car in urban and highway environments (see Fig. 4.6). We consider
four sequences, namely 03, 04, 05, 06. Sequences 03 and 04 do not contain loops,
while sequences 05 and 06 contain different numbers of loops. Public ground-truth
is available for the considered sequences. We implemented and evaluated three dif-
ferent versions of ORB-SLAM2, in which the tracking block exploits:

1. CPU + pipelining
2. CPU + GPU
3. CPU + GPU + pipelining
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Table 4.3: Runtime performance (FPS)

Sequence CPU CPU+pipelining CPU+GPU CPU+GPU+pipelining

03 6.99 15.23 17.90 27.79
04 7.47 15.96 20.70 30.33
05 6.54 15.56 18.52 27.97
06 6.68 16.03 19.66 32.30

4.5.1 Runtime Performance

Table 4.3 shows the performance of the original ORB-SLAM2 code2 and our three
different versions (publicly available on GitHub3) running on the Jetson TX2 board.
The results have been generated using the same settings for comparing the different
versions and by repeating five times the execution of each considered sequence.

The results in Table 4.3 highlight the different performance achieved by the origi-
nal code and the three different versions in terms of supported FPS. The original code
run on such an embedded and low-power board does not support real-time execution,
by achieving in average 7 FPS. Both pipelining and heterogeneous CPU+GPU exe-
cution allow improving the performance by exploiting different kinds of parallelism.
The CPU+GPU+pipelining version provides the best results thanks to the multi-level
(combined) parallelism. It supports real-time executions with frame rates above 25
FPS.

4.5.2 Qualitative and Quantitative Evaluation and Metrics

Fig. 4.7 shows the qualitative results of our best implementation (i.e., CPU+GPU+pipelining).
For the quantitative evaluation of the result quality, we considered three differ-

ent metrics: the root mean squared error for the absolute translation (RMSE ATE),
the root mean squared error for the average relative pose error (RMSE RPE) [54]
2 https://github.com/raulmur/ORB_SLAM2
3 https://github.com/xaldyz/dataflow-orbslam

Fig. 4.7: Qualitative evaluation of the proposed ORB-SLAM application version
CPU+GPU+pipelining on some parts of KITTI sequence 03 (a), sequence 04 (b), sequence
05 (c) and sequence 06 (d).

https://github.com/raulmur/ORB_SLAM2
https://github.com/xaldyz/dataflow-orbslam
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Table 4.4: Quantitative results

Version Original CPU + pipelining CPU + GPU CPU + GPU + pipelining
Sequence ATE(m) RPE(m) % cov. ATE(m) RPE(m) % cov. ATE(m) RPE(m) % cov. ATE(m) RPE(m) % cov.

03 0.73 0.15 70.87 1.33 0.09 99.90 1.15 0.09 99.92 1.13 0.08 99.97
04 0.82 0.46 15.01 1.31 0.11 99.92 0.39 0.26 19.63 0.37 0.11 99.72
05 6.58 0.76 23.09 7.44 0.82 82.99 10.54 1.05 91.03 13.88 1.18 95.58
06 1.29 0.29 27.37 16.04 1.11 89.98 15.46 0.99 77.36 16.30 1.14 91.75

and the percentage of the reconstructed map. Measuring the absolute distances be-
tween the estimated and the ground truth trajectory using ATE provides a measure
of the global consistency of the estimated trajectory. Moreover, ATE has an intu-
itive visualization that facilitates visual inspection (see Fig. 4.7). The RPE measure
allows us to evaluate the local accuracy of the SLAM system, i.e., to measure the
error related to two consecutive poses [54]. The percentage of reconstructed map is
calculated from an initialization step. ATE and RPE are considered on the portion of
the reconstructed map.

Table 4.4 shows the quantitative results. With the original implementation, the
processing speed (around 7 FPS) fails to meet the 10 FPS requirement of the dataset.
As a consequence, only a partial reconstruction is available. Since the metrics are
defined only for the reconstructed portion of the map, the low map coverage recon-
struction leads to a very low (misleading) absolute error. This behaviour is more
evident in the ATE, while the RPE is comparable in all versions. The analysis un-
derlines a slight quality degradation of the results provided by the implementations
for GPU when run above 28 FPS. This is due to the different implementation and
synchronization of the feature extraction primitives with respect to the original se-
quential version. In general, by considering both the performance and the quality
of the results, the CPU+GPU+pipelining implementation provides the highest FPS,
it gets lost sensibly less, and provides a negligible degradation of results w.r.t. the
original sequential implementation.

4.6 Inter-application integration

To perform an easy integration between several modules, they have to share the same
way to exchange data. In this context, ROS is the de-facto standard communication
mechanism adopted in robotic applications. It provides a distributed system to per-
form decentralized communication using common defined interfaces, thus exposing
the input/output boundary of a system.

4.6.1 ROS overview

Based on such a message passing interface, the proposed design flow relies on
two communication models:
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• Client model: The OpenVX application actively fetches inputs from a particular
ROS node. It relies on a client communication wrapper, as shown in the upper
side of Figure 4.8. It is particularly suited for intensive yet synchronous commu-
nication (e.g., data acquisition of the OpenVX application from an input sensor).

• Server model: It allows the OpenVX application to be run on-demand. The exter-
nal environment, which is implemented as ROS node, sends an execution request
through an input data structure. The OpenVX application executes and returns
the result as a response packet. It relies on a server communication wrapper, as
shown in the bottom side of Figure 4.8. It is well suited to implement sporadic
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Listing 4.1: Skeleton implementation for the (a) server model and the (b) client model

1 bool function_service(ServerType::
Request &req, ServerType::
Response &res)

2 {
3 // compute the results
4 res.output1 = openvx2ros(

wrapper_openvx(ros2openvx(req.
input1), ros2openvx(req.input2)))
;

5 if(errors) return false;
6 else return true;
7 }
8
9 int process_init()

10 {
11 ros::init(0, [], "service_server");
12 ros::NodeHandle n;
13 // Inform that this server is up
14 ros::ServiceServer service =

n.advertiseService(
15 "topic_service",
16 function_service);
17 ros::spin();
18 }

(a)

1 int process_init()
2 {
3 ros::init(0, [], "service_client")

;
4 ros::NodeHandle n;
5
6 ros::ServiceClient client =
7 n.serviceClient<ServerType>(

"topic_service");
8 ros::Publisher pub =
9 n.advertise<DataType>(

10 "topic_out",
11 10);
12 ServerType srv;
13 //fill input data(opt. parameter)
14 srv.req.input1 = ...;
15 if (client.call(srv))
16 {
17 // processing went good
18 n.publish(
19 openvx2ros(
20 wrapper_openvx(
21 ros2openvx(
22 srv.res.output1))));
23 }
24 else
25 {
26 // processing fails
27 }
28 }

(b)
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communication (e.g., interpretation of the map built by a SLAM application by
an external agent).

Listing 4.1(a) shows the skeleton implementation of the server interface. The
process_init function is responsible to perform the node initialization in the ROS
framework. It adds the current process to the ROS node list in the master server (line
14). This node is sensitive to the topic specified in line 15. Line 16 specifies the
function that will be called on the server invocation. Lines 1-7 provide the invoca-
tion of the OpenVX application. Two parameters are necessary to the function: the
request, which contains the input data, and the response, which will be updated by
the computing function. Conversion functions are defined to convert the data format
between ROS and OpenVX. Finally, line 17 implements the busy waiting until the
ROS framework shuts down all the nodes. Figure 4.10 shows the temporal evolution
of the OpenVX-ROS communication based on the server model of Figure 4.1(a).

Listing 4.1(b) depicts the skeleton for the client interface. After adding the pro-
cess to the list of ROS nodes (line 3), the system informs the ROS framework that
the client requests need to be forwarded to the topic_service listener (lines 6-7). The
wrapper creates the object to write the results of the computation (lines 8-11). Pa-
rameters are filled in line 14, and the call to request data is performed in line 15.
In case of positive message receiving, the OpenVX computation is called (line 19-
22), through ad-hoc functions to convert the data format between ROS and OpenVX.
The system publishes the results back to the network (line 18). Figure 4.9 shows the
temporal evolution of such a client model process.

An overview of the framework can be seen in fig. 4.11
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Fig. 4.11: Overview of the proposed framework
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4.6.2 Results

The proposed OpenVX-ROS framework has been applied to customize the ORB-
SLAM application [51]. The application receives the input stream by a camera
through ROS as depicted in figure 4.12 We tested the application on the KITTI
dataset [53], which is a standard set of benchmarks for computer vision applications.
For the sake of space, we present only the results obtained with the KITTI sequences
11 and 13 (10 frames per second -FPS- each). They have been chosen as they rep-
resent inputs with different workload on the three blocks. In particular, sequence 11
mostly relies on the tracking block while it never uses the mapping and loop closure
blocks (see Fig. 4.13). In contrast, sequence 13 also runs the other two computing
intensive blocks each time the trajectory returns on an already visited point in the
map (see Fig. 4.14).

The application processes the stream and generates the map of the visited external
environment. A route controller, which is run on an external board, queries the map
generated by the ORB-SLAM application to elaborate trajectories toward a target
position. The whole package has been customized to run on an NVIDIA Jetson TX2
board. Such an heterogeneous low-power embedded system is equipped with a quad-
core ARM CPU, and a 256 CUDA cores Pascal GPU.

Tables 4.5 and 4.6 report the obtained results in terms of number of CPU cores
used by the application blocks, whether the GPU has been used by any application
block, the average time required for processing one frame, the corresponding per-
formance i.e., the maximum FPS, the average time required by the mapping phase,
the total energy consumption for the whole stream analysis, the peak power of the
board, and the result accuracy. The result accuracy expresses how many frames the
application has been able to elaborate over the whole sequence and, among them,
how many frames gave correct mapping information. For example, 54/675 accuracy
with sequence 1 means that 675 over 921 frames have been elaborated and only 54
of them were useful. The result accuracy is highly correlated to the supported FPS.

Performance information has been collected through the CUDA runtime API
to measure the execution time and through the clock64() device instruction for
throughput values to ensure clock-cycle accuracy of time measurements. Power and

Local MappingTracking Loop Closure

Route 
Controller

VisionWorks

CUDA C++ROS

ROS MAP

C/C++
OpenMP

C/C++
OpenMP

Vision sensor Jetson TX2

Fig. 4.12: Overview of ORB-SLAM implementation
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Table 4.5: Results with sequence 11 (921 frames)

ORB-SLAM
Version

#CPU
cores

GPU
usage

Avg.
time per
frame
(ms)

Avg.
FPS

Avg
map
(ms)

Total
Energy
(J)

Peak
power
(W)

Accuracy
(frames/
frames)

Sequent. 1 N 133 7,5 335 488 9.4
54/675

(8%)

Multith. 3 N 105 9.5 250 534 9.5
586/837

(71%)

OpenMP 4 N 111 9.0 240 519 11.0
392/803

(49%)

OpenVX 4 Y 68 14,7 288 599 13,2
894/916

(98%)

OpenVX+

OpenMP
4 Y 70 14,3 292 601 13,5

894/916

(98%)

Table 4.6: Results with sequence 13 (3,281 frames)

ORB-SLAM
Version

#CPU
cores

GPU
usage

Avg.
time per
frame
(ms)

Avg.
FPS

Avg
map
(ms)

Total
Energy
(J)

Peak
power
(W)

Accuracy
(frames/
frames)

Sequent. 1 N 137 7.3 336 1,758 9.8
95/2,336

(5%)

Multith. 3 N 122 8.2 338 1,815 9.9
750/2,617

(29%)

OpenMP 4 N 111 9.0 240 519 11.0
392/803

(49%)

OpenVX 4 Y 124 8.0 447 1,814 10.3
397/2,576

(16%)

OpenVX+

OpenMP
4 Y 83 12,1 320 2116 13,4

1,904/3,269

(59%)
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energy consumption information have been collected through the Powermon2 power
monitoring device [55].

All these information are reported for four different versions of ORB-SLAM we
developed and analysed. The first version is the original code retrieved from [51],
which is run on a single core of the CPU. The second version is the original code
with the multi-threading feature enabled (i.e., each block is mapped on a correspond-
ing thread and run on a different CPU core). The third version is the original code
enriched with OpenMP directives. In this version, the mapping and loop closure
computations are parallelized when the map exceeds a given threshold and requires
more computational power to be processed. The fourth version consists of the orig-
inal code, in which the feature detection and ORB algorithms of the tracking block
have been implemented by using OpenVX and CUDA, respectively. We adopted the
NVIDIA VisionWorks primitive library for implementing the OpenVX blocks. We
parallelized the CUDA code of ORB from scratch.

The table underlines that different customizations can be considered starting
from the same applications, and that the best version depends on the selected de-
sign constraints and on the input stream. Considering sequence 11 and targeting per-
formance, version OpenVX that adds the GPU computation to the multithreaded
original version provides the best frame per second at the cost of the highest peak
power. In this context, OpenMP does not provide any benefit as it is scarcely applied
(loop closure phase never runs in seq. 11) while it introduces overhead. In contrast,
OpenVX+OpenMP provides the best performance with sequence 13, in which the

Fig. 4.13: KITTI sequence 11
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Fig. 4.14: KITTI sequence 13

two phases are efficiently parallelized in the CPU cores. If the application is run in
an energy-saving context, and considering the characteristics of the input stream (10
FPS), the multithreaded version limited to three CPU cores provides the best energy
efficiency and the most limited power consumption. This is due to the fact that this
version, for both sequence 11 and 13 provides the maximunm FPS most similar to
the FPS of the streams read in input.

4.7 Combining heterogeneous applications

The trend in the last years for object detection and recognition is through use of
machine learning techniques. In case of images, a particular class of models called
Convolutional Neural Networks (CNNs) are used to gather a lot of prior knowl-
edge using labeled data in an automatic fashion. Their capacity can be controlled by
varying their depth and breadth, and they also make strong and mostly correct as-
sumptions about the nature of images (namely, stationarity of statistics and locality
of pixel dependencies) [56].

Figure 4.15 shows an example of a model which is used to recognize handwritten
numbers. The input image is processed by a set of filter, each one with his own
parameters. A train phase is used to customize the parameters by using the labeled
data. This step became feasible using large dataset only in recent years, due the
GPGPU acceleration.
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Fig. 4.15: CNN example for handwritten digit classification

We applied the proposed model-based design flow to develop and optimize the
ORB-SLAM application combined with an image recognition system based on Deep
Learning [57] running on the same board (see Figure 4.16).

Image
publisher

Image
view

ORB-SLAM

Img recognition
(Deep	Learning)

Results

Results

Embedded	Vision	Software

Fig. 4.16: Inter-application communication

Along the ORB-SLAM/DL-based image recognition design flow, we measured
the execution time of the algorithm implementations at different refinement steps, by
using the KITTI dataset[53], which is a standard set of benchmarks for SLAM and
computer vision applications.

Table 4.7 reports the execution time we obtained at different refinement levels.
Starting from the original video streams, we extrapolated a subset of test patterns,
which consist of the minimal selection of video streams necessary to validate the
model correctness. TODO

We then applied the Matlab synthesis script to translate the high-level model
into the low-level model by using the OpenVX toolbox for Simulink generated from
the NVIDIA VisionWorks v1.6 [42] and the corresponding Simulink CVT-NVIDIA
OpenVX/VisionWorks mapping table.

Finally, we synthesized the low-level model into pure OpenVX code, by which
we run the real time analysis and validation on the target embedded board (NVIDIA
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Fig. 4.17: Overview of the ORB-SLAM use case.

Jetson TX2) with the different code versions generated through the heterogeneous
language programming.

We observed a slightly reduced execution time for the Simulink low-level model
execution with respect to the high-level model despite the overhead introduced by the
wrappers. This is due to the fact that the algorithm implementation in Simulink re-
quired specialized MATLAB code that was not available with Simulink CVT library
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Validation level Sim./Exec. time (sec)

Simulink High-Level model 404.0

Simulink Low Level model 762.0

Software application on target embedded
system device (with accelerators) - Version
3: Pthreads+OpenVX

30.0

Table 4.7: Simulation (in Simulink) and execution (on real board) times

as native blocks. We developed custom code in MATLAB to meet the requirements,
and imported such a code as user-defined Simulink blocks using S-functions. As for
the model-based design flow, the main focus of the Simulink implementation was to
target the functional verification of the embedded application.

At each refinement step, we reused the selected test patterns to verify the code
over the adopted validation metrics [39] for both the contexts and by assuming a
maximum deviation of 5%. The results underline that the higher level model simu-
lation is faster as it mostly relies on built-in Simulink blocks. It is recommended for
functional validation, algorithm parametrization, and test pattern selection. It pro-
vides all the benefits of the model-based design paradigm, while it cannot be used
for accurate timing and power analysis.

The low level model simulation is much slower since it relies on actual primitive
implementation and many wrapper invocations. However, it represents a fundamental
step as it allows verifying the functional equivalence between the system-level model
implemented through blocks and the system-level model implemented through prim-
itives.

Finally, we run the validation through execution on the target real device for both
functional and non-functional verification. In particular, we evaluated performance,
power consumption and energy efficiency of the different code versions generated
thanks to the heterogeneous language programming presented in Section 3.3 (Version
1, 2, and 3 in the following). We compared their non-functional properties with those
provided by the most efficient parallel implementations at the state of the art [52]
of the same algorithm (Reference SoA 1 and 2 in the following). In particular, we
consider:

• Reference SoA 1 (Pthreads): It is the state of the art version [52], in which
the three main blocks (Tracking and localization, Mapping, and Loop closing
blocks) are run concurrently by Pthreads on the CPU cores.

• Reference SoA 2 (Phtreds+OpenMP): It extends Reference SoA 1 by enabling
OpenMP parallelism. In particular, it parallelizes the bundle adjustment task,
both local in the mapping block and global in the loop closing block.

• Version 1 (OpenVX+Pthreads): It is the first version generated with the proposed
framework. It implements the tracking sub-block in OpenVX, while the other
two blocks are implemented in C/C++ and run concurrently through Pthreads.
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• Version 2 (OpenVX+Pthreads+OpenMP): It extends Version 1 by enabling also
OpenMP in the Mapping and Loop closing blocks.

• Version 3 (OpenVX+CUDA+Pthreads): starting from Version 1, we reused a
CUDA kernel that implements the gaussian blur primitive in the tracking sub-
block. We modularly replaced the corresponding OpenVX VisionWork primitive
with such a more optimized kernel.

• Version 4 (OpenVX+CUDA+Pthreads+OpenMP): It extends version 3 by en-
abling also OpenMP.

The Pthreads guarantee the minimum level of parallelism, by enabling one CPU
core per block. OpenMP has been set to use the maximum number of available CPU
cores (i.e., 4+2 in the Jetson). The GPU is enabled only by OpenVX/CUDA.

Figure 4.18 summarizes the results. The first plot (FPS) reports information about
the ORB-SLAM application performance. FPS represents the maximum number
of frames per second supported by the embedded system. It has been measured in
two system configurations: with the only ORB-SLAM application running on the
board (all board resources available for the developed application) and with ORB-
SLAM running concurrently with the image recognition -DL- system (board re-
sources shared). The results show the benefit of the heterogeneous language pro-
gramming, by which Version 3 and Version 4 almost increase the performance by
100% with respect to the parallel versions for multicore at the state of the art, and
by 50% with respect to Version 1 and 2 (without CUDA) generated by the proposed
flow. On the other hand, the plot also shows that the versions that rely on the only
multi-core CPUs are slightly better when run concurrently with GPU-hungry appli-
cations (i.e., DL). This is due to the fact that scheduling ORB-SLAM tasks on GPUs
in these cases causes more overhead (for resource contention) than benefits.

The second and third plots report the energy efficiency and peak power con-
sumption of the system. The results show that Version 3 provides the best results
by guaranteeing up to 20% and 15% of energy and peak power reduction, respec-
tively, w.r.t. the other versions in the first configuration. The plots show that, when
the DL application is switched on, the Ref. Soa implementations are the most energy
efficient while the peak power is fairly the same.

In general, the results show that, as expected, exploiting the heterogeneous char-
acteristics of the board allows reaching the best performance and energy efficiency
of the system. This underlines the benefits of the proposed method, by which the dif-
ferent computing elements are fully exploited by the different programming environ-
ments. On the other hand, we found that adopting all the possible environments is not
always the best solution. Version 6 is an example, in which switching on the OpenMP
parallelism does not provide better performance than the Pthread+OpenVX+CUDA
version while it increases the peak power consumption.

In conclusion, the experimental results show how the different versions provide a
very large mapping space to be explored. Such a space can provide the best solution
for each of the considered design constraints like performance, power consumption,
and energy efficiency.



4.7 Combining heterogeneous applications 59

Fig. 4.18: Evaluation of non-functional properties
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An algorithm for scheduling and mapping of
application tasks for performance enhancement

Prior research efforts have used OpenVX for embedded vision [5], [7], [58], and
attempted to optimize the performance of the generated code. They proposed tech-
niques to implement different data access patterns such as DAG node merge, data
tiling, and parallelization via OpenMP. There also have been efforts to make the
OpenVX task scheduling deliver real-time guarantees [29]. Nevertheless, to the best
of our knowledge, there is no prior work that focuses on efficient mapping strategies
and its corresponding scheduling of OpenVX (DAG-based) applications for hetero-
geneous architectures. Prior approaches that propose mapping strategies for OpenVX
considered each DAG node to have only one exclusive implementation (e.g., either
GPU or CPU), and the mapping is driven by the availability of the node’s implemen-
tation in the library: If a node has a GPU implementation then it is mapped on the
GPU. Otherwise it is mapped on a CPU core.

What is missing is a mapping strategy that targets the system throughput rather
than kernel throughput. The fact that there can be multiple implementations for nodes
(e.g. one that is executable on a GPU and another on CPU), which are often available
in the OpenVX libraries [42]–[45], can allow for additional mapping flexibility, and
as a consequence, for better load balancing at the application level (e.g., a CPU
implementation that is slower at kernel level can lead to a faster application at system
level). However, such a combined mapping and scheduling problem is similar to the
Quadratic Assignment Problem, a well-known NP-hard problem. Finding an optimal
solution satisfying all the given DAG constraints is difficult. Thus, heuristics based
on the application domain knowledge need to be employed to find a near-optimal
solution.

To take into consideration the heterogeneity of the target architectures, the multi-
ple implementations of DAG nodes, and the problem complexity, this thesis proposes
an implementation of the heterogeneous earliest finish time (HEFT) heuristic [9] for
static mapping and scheduling of OpenVX applications. We show that the HEFT im-
plementation sensibly outperforms (i.e., up to 70% of performance gain) the state-
of-the-art solution currently adopted in one of the most widespread embedded vision
systems (i.e., NVIDIA VisionWorks on NVIDIA Jetson TX2). Then, we show that
such a heuristic, when applied to DAG graphs for which not every node has multiple
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implementations, can lead to idle periods for the computing elements (CEs). Since
not having multiple implementations for all nodes happens in a majority of real em-
bedded vision contexts, this thesis proposes an algorithm that reorganizes the HEFT
ranking to improve the load balancing. The algorithm aims at generating sequences
of nodes with the single implementation (which we call clusters of exclusive nodes)
in the ranking with the objective of reducing idle times caused by the combination
of DAG constraints and exclusive implementation.

This section presents the results on a very large set of synthetic benchmarks
and on a the ORB-SLAM application combined with an NVIDIA image recognition
application based on deep-learning.

5.1 HEFT overview

In this section we first propose an implementation of the task mapping and schedul-
ing for OpenVX, which is based on the HEFT heuristic with up-word ranking and
max functions [9]. To our knowledge, the application of HEFT on such platforms
has not been considered in prior work. We adapted the algorithm in order to support
the exclusive implementation of DAG nodes. We then propose an optimization of
HEFT that, starting from a given ranking list, it reorganizes the list to improve the
task overlapping and the overall application performance. It is important to note that
the proposed optimization is independent from the HEFT variants, since it applies to
any ranking list.

2 3 4

5 6 7

1

0

node tCPU tGPU HEFT
# (ms) (ms) rank (max)
0 1 - 15
1 - 10 10
2 4 2 14
3 4 1 10
4 6 - 6
5 4 2 14
6 4 1 10
7 6 - 6

Fig. 5.1: Example of DAG, execution time of tasks mapped on CPU/GPU, and the correspond-
ing HEFT ranking.

The limitation of current state of the art can be stated with the example in Fig.
5.1, which represents the DAG model of an application to be deployed on a hetero-
geneous CPU/GPU board, and for which there exists a library of primitives for the
node implementations. The library provides the exclusive implementation for CPU
of node #0 (which is the application starting point), of node #4 and of node #7, the
exclusive implementation for GPUs (i.e., GPU kernel) of node #1, while it provides
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the multiple implementation (CPU implementation and an equivalent GPU kernel)
of nodes #2, #3, #5, and #6. The table in Fig. 5.1 summarizes the execution time of
each primitive when executed in isolation on the corresponding CEs.
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(b): HEFT task scheduling order: 0, 2, 5, 1, 3, 6, 4, 7
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(a): NVIDIA VisionWorks standard task scheduling order: 0, 1, 2, 5, 3, 6, 4, 7
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(c): Optimized HEFT task scheduling order: 0, 2, 5, 3, 6, 1, 4, 7
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Fig. 5.2: Task scheduling algorithms of the DAG of Fig. 5.1: native NVIDIA VisionWorks (a),
HEFT (b), and the proposed optimized HEFT (c).

For brevity, we assume the CPU-GPU data transfer time to be negligible in this
example (it has been considered in the methodology and in our experimental anal-
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ysis), and we consider the target heterogeneous system to consist of one CPU core
and one GPU. We also assume task executions to be non-preemptive.

Fig. 5.2(a) represents the task mapping and scheduling of the application imple-
mented by the NVIDIA VisionWorks runtime system. A similar approach is imple-
mented by the AMD OpenVX (AMDOVX) runtime system. The mapping relies on
the best local optimization, that is, a node is mapped on the GPU if there exists the
corresponding GPU kernel in the library. The scheduling relies on the topological or-
der of tasks in the DAG, and honours the topological order constraints among nodes.
However, this approach does not implement overlapping among tasks.

Fig. 5.2(b) shows the mapping and scheduling of the proposed HEFT implemen-
tation for OpenVX, which takes advantage of both task overlapping and the mapping
optimized at system-level. Starting from a task ranking generated as described in
equation (1), one node at a time is mapped onto the CE that involves a better system
execution time. This means that a node can be mapped on a CE that leads to a higher
execution time at task level (see tasks of nodes #5, #3, and #6 in the example of Fig.
5.2(b)). Assuming that the nodes have the multiple implementation and not neces-
sarily all the GPU kernels outperform the corresponding CPU primitives, the HEFT
algorithm heuristically provides load balancing on the CEs by overlapping the task
execution. As confirmed by our experimental results, this leads to improvements to
the system performance (i.e., reduction to the application makespan). However, there
are nodes that do not have multiple implementations. In this case, the iterative nature
of task mapping and balancing of HEFT can lead to large idle periods. An example
is the idle period on the GPU in Fig. 5.2(b), which could be avoided (or reduced) by
an implementation of node #7 for GPU.

In general, the main limitation of HEFT in the context of heterogeneous architec-
tures is that, by following the rank order, it maps one task at a time by guaranteeing
the best load balancing at each iteration. It does not consider the single or multiple
implementation of the nodes.

5.2 The proposed scheduling and mapping algorithm

Our idea is that the load balancing can be improved by prioritizing the overlapping
between exclusive nodes, which we call exclusive overlapping. Considering the stan-
dard definition of overlapping between two tasks t and q as follows:

O(t, q) = max (0,min (tend, qend) −max (tstart, qstart)), (2)

where tstart and tend are the starting and ending times of t, respectively. We define
exclusive overlapping (XO) between two tasks t and q running on different CEs as
follows:

XO(t, q) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

O(t, q), if (∄ tCPU ∧ ∄ qGPU )
∨ (∄ tGPU ∧ ∄ qCPU )

0, otherwise
, (3)
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where tCPU (tGPU ) represents the CPU implementation (GPU implementation)
of task t.

Exclusive overlapping applies to nodes that cannot compete for the same CE due
to exclusive implementations. It is a subset of the standard overlapping. We define the
total overlapping and the total exclusive overlapping between tasks of an application
A as follows:

O(A) = ∑
t,q∈A

O(t, q), (4)

XO(A) = ∑
t,q∈A

XO(t, q), (5)

Fig. 5.2(c) shows the exclusive overlapping between the tasks of the example. The
main idea is that increasing XO can reduce idle times caused by the combination of
DAG constraints and exclusive implementation (see for example the idle time on the
GPU between instants 13 and 25 in Fig. 5.2(b)). Our experimental analysis shows
that increasing XO corresponds to an increase of the standard overlapping and to an
improvement of performance.

To increase XO, we propose an algorithm (Algorithm 1) that, starting from a
given ranking list, it reorganizes the list to identify and generate clusters of exclusive
nodes, i.e., sequences of exclusive nodes that are strictly consecutive in the ranking
(see nodes #1, #4, and #7 in Fig. 5.2(c)).
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Fig. 5.3: Cluster generation step (APPLY(rank, cluster)) for the example in Fig. 5.1.

The algorithm starts by defining the standard HEFT ranking from the applica-
tion graph (row 2). One node at a time, and for all nodes of the ranking (row 4),
the algorithm identifies a new cluster starting from the next exclusive node of the



66 5 An algorithm for scheduling and mapping of application tasks for performance enhancement

Algorithm 1 Cluster identification and generation
1: procedure BUILDCLUSTER(graph)
2: rank ← build_rank(graph)
3: i ← 0
4: while i < size(rank) do
5: if rank[i] is exclusive then
6: candidates ← rank[i]
7: j ← i + 1
8: while j < size(rank) do
9: if rank[j] is exclusive ∧∀p ∈ candidates, p � rank[j] then

10: candidates ← candidates ∪ rank[j]
11: j ← j + 1

12: totalcpu ← reducesum(candidates, tcpu)
13: totalgpu ← reducesum(candidates, tgpu)
14: C ← exclusive CPU nodes in candidates
15: G ← exclusive GPU nodes in candidates

16: if totalgpu <
totalcpu

ncores
) then

17: cluster ← G
18: for all c ∈ C do
19: t ← reducesum(cluster, tcpu)
20: if ∣totalgpu −

t+ccpu
ncores

∣ < ∣totalgpu − t
ncores

∣ then
21: cluster ← cluster ∪ c
22: else
23: for all g ∈ G do
24: t ← reducesum(cluster, tgpu)
25: if ∣ totalcpu

ncores
− t + ggpu∣ < ∣ totalcpu

ncores
− t∣ then

26: cluster ← cluster ∪ g

27: APPLY(rank, cluster)
28: i ← clusterend + 1
29: else
30: i ← i + 1

return rank

list (row 6). It searches among all the next nodes in the ranking that are exclusive
and that do not have topological constraints in the DAG with the current cluster
nodes (i.e., that are not in the same DAG path). The second condition is necessary to
avoid serialization among the cluster nodes. The algorithm then calculates the total
makespan of the cluster nodes for each CE (rows 12 and 13). The shortest among
the calculated makespans characterizes the maximum XO of the cluster under gen-
eration. For the sake of clarity, in Algorithm 1, we considered two possible cluster
makespans (totalcpu and totalgpu). The algorithm completes the cluster identifica-
tion by including all nodes (for the same CE) that give the shortest makespan and,
incrementally, with the exclusive nodes that bring to a comparable makespan on the
other CEs (rows 16-26). The first node of any other CE that causes makespan unbal-
ancing starts a new cluster in the following iteration of the algorithm.

The algorithm implements the cluster generation by moving either the identified
nodes up on the ranking or the cluster down on the ranking. All the identified nodes
(i.e., candidates in Algorithm 1) and the cluster can be moved and made adjacent
since, for the condition in row 9, they cannot have topological constraints against
each other.

The APPLY(rank,cluster) function implements such a node shift in the
ranking by considering the identified cluster. For the sake of clarity we show the two
shift types for the running example (see Fig. 5.3). Considering that nodes #1, #4,
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#7 have not topological constraints, G = {#1}, C = {#4,#7}, totalcgu = 10, and
totalcpu = 12, the cluster starts by node #1 (Fig. 5.3(a)). The algorithm annexes the
CPU node #4 to the cluster in two steps. First (Fig. 5.3(b)) by moving node #4 up-
word in the ranking since it has not topological constraints with the switching nodes
(node #6 in the example). Then (Fig. 5.3(c)) by moving downword the cluster since
node #4 has topological constraints with node #3. For the same concept, the algo-
rithm annexes node #7 to the cluster by moving downword the cluster (Fig. 5.3(d)),
since node #7 has a topological constraint with node #6.

5.3 Experimental results

We evaluated the proposed algorithms by considering two categories of benchmarks.
The first is the ORB-SLAM application [46] combined with the image recognition
system based on Deep Learning (DL) [57]. We considered three different versions
of the applications: Monocular with a 41 node DAG, stereo (81 nodes), and 4-stereo
(161 nodes). We used the standard KITTI input dataset[53] for the evaluation, which
consists of video streams taken by a car driven around city blocks.

The second category is a set of synthetic DAGs. We designed a parametric DAG
generator that generated, for our evaluation, around 40,000 DAGs with different
characteristics: Size (from 20 to 250 nodes), node degree, execution times of CPU
and GPU node implementations, exclusive implementation vs. multiple implementa-
tion of nodes, CPU/GPU speedup for nodes with multiple implementation. We col-
lected the generated DAGs in two classes: Tree, for DAGs with high average degree,
medium small diameters, and low standard deviation. Linear for the rest. The idea
was to classify the DAGs depending on the average level of topological constraints
among nodes.

For all benchmarks, we used the NVIDIA Jetson TX2 as target architecture,
which is a prevalent low-power heterogeneous device used in industrial robots, ma-
chine vision cameras, and portable medical equipment. It consists of a dual-core
Denver2 64-bit CPU + quad-core ARM A57 complex, and a 256-core Pascal GPU.
We evaluated the embedding, mapping and scheduling process for 2, 3, 4, and 5
CPUs core + 1 GPU. We assigned one CPU core for the OpenVX runtime system
and CPU/GPU synchronization.

Table 5.1 presents the results obtained by running the different configurations of
ORB-SLAM+DL on the target architecture with the different CPU/GPU scenarios
(i.e., #CPU cores enabled beside the GPU). The table shows the comparison of the
different mapping and scheduling approaches considered in this thesis, i.e., NVIDIA
VisionWorks (VW) [42], standard HEFT, and the optimized HEFT (XEFT). The
schedule length ratio (SLR) normalizes the makespan over the maximum critical
path.

Our results show that, as expected, HEFT sensibly improves the application per-
formance w.r.t. the scheduling system currently released with the NVIDIA Vision
Work library. The improvement ranges from a minimum of 33.7% to a maximum
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ORB-SLAM
version

CPU
cores

(#)

DL
time
(ms)

Max XO
(ms)

Overlap (ms) XO (ms) Idle time (%) XO / Max_XO (%) Makespan (ms) Speedup SLR

HEFT XEFT HEFT XEFT HEFT XEFT HEFT XEFT VW HEFT XEFT
HEFT
on VW

XEFT
on VW

XEFT
on HEFT HEFT XEFT

Monocular 2 15 30.0 43.1 46.0 10.7 24.5 45.9% 27.6% 35.8% 81.8% 74.7 39.9 31.7 46.6% 57.5% 20.4% 2.45 1.95
Monocular 3 15 44.1 62.1 70.2 18.7 32.5 31.5% 20.7% 42.3% 73.7% 74.7 30.2 25.3 59.6% 66.2% 16.3% 1.86 1.56
Monocular 4 15 44.1 76.0 80.2 26.5 29.4 28.2% 40.5% 60.0% 66.6% 74.7 26.5 25.3 64.6% 66.2% 4.4% 1.63 1.56
Monocular 5 15 44.1 90.1 82.0 37.8 31.3 21.8% 40.9% 85.6% 70.9% 74.7 23.0 24.4 69.2% 67.4% -5.7% 1.42 1.50
Monocular 2 20 40.0 51.6 55.2 7.0 32.5 43.9% 15.5% 17.6% 81.2% 79.7 46.0 32.7 42.3% 59.0% 29.0% 2.16 1.54
Monocular 3 20 44.1 72.3 80.2 19.1 32.5 31.9% 30.8% 43.4% 73.7% 79.7 35.4 30.3 55.6% 62.0% 14.3% 1.66 1.43
Monocular 4 20 44.1 92.9 98.2 31.3 34.4 21.2% 30.1% 71.0% 77.9% 79.7 29.5 28.7 63.0% 64.0% 2.6% 1.39 1.35
Monocular 5 20 44.1 103.2 100.4 41.0 37.4 23.1% 35.1% 93.0% 84.7% 79.7 26.9 27.9 66.3% 65.0% -3.8% 1.26 1.31
Monocular 2 25 44.1 60.3 70.4 0.3 36.8 42.9% 14.4% 0.7% 83.5% 84.7 52.8 35.3 37.7% 58.3% 33.2% 2.01 1.34
Monocular 3 25 44.1 84.9 92.0 16.6 34.2 29.3% 25.1% 37.6% 77.4% 84.7 40.0 34.4 52.8% 59.5% 14.1% 1.52 1.31
Monocular 4 25 44.1 107.3 109.4 32.9 37.4 20.2% 31.2% 74.7% 84.7% 84.7 33.6 32.9 60.3% 61.2% 2.2% 1.28 1.25
Monocular 5 25 44.1 119.2 119.2 42.3 42.3 22.0% 22.0% 95.9% 95.9% 84.7 30.6 30.6 63.9% 63.9% 0.0% 1.16 1.16
Stereo 2 15 30.0 66.4 67.8 5.7 21.1 50.7% 43.8% 18.9% 70.3% 118.8 67.4 60.3 43.3% 49.2% 10.5% 4.15 3.71
Stereo 3 15 45.0 92.5 96.6 8.8 25.5 40.7% 31.3% 19.6% 56.7% 118.8 52.0 46.8 56.3% 60.6% 9.9% 3.20 2.88
Stereo 4 15 60.0 115.4 121.4 17.2 45.1 32.8% 15.3% 28.7% 75.2% 118.8 42.9 35.9 63.9% 69.8% 16.5% 2.64 2.21
Stereo 5 15 75.0 133.0 137.0 15.6 41.5 32.4% 25.8% 20.8% 55.3% 118.8 39.4 34.2 66.9% 71.2% 13.1% 2.42 2.11
Stereo 2 20 40.0 74.2 76.6 9.8 30.4 48.8% 38.7% 24.4% 75.9% 123.8 72.4 62.5 41.5% 49.5% 13.7% 3.41 2.94
Stereo 3 20 60.0 101.9 110.0 6.4 46.1 42.2% 17.6% 10.7% 76.9% 123.8 58.8 44.5 52.6% 64.1% 24.3% 2.76 2.09
Stereo 4 20 80.0 122.1 127.1 12.4 50.6 39.3% 19.0% 15.5% 63.2% 123.8 50.3 39.2 59.3% 68.3% 22.1% 2.37 1.85
Stereo 5 20 88.2 146.3 147.0 16.0 41.5 34.2% 35.2% 18.1% 47.0% 123.8 44.4 39.2 64.1% 68.3% 11.7% 2.09 1.85
Stereo 2 25 50.0 81.0 87.0 0.0 36.7 51.2% 31.7% 0.0% 73.4% 128.8 83.0 63.7 35.6% 50.5% 23.2% 3.16 2.43
Stereo 3 25 75.0 110.8 123.1 0.0 57.3 44.2% 10.0% 0.0% 76.4% 128.8 66.2 45.6 48.6% 64.6% 31.1% 2.52 1.74
Stereo 4 25 88.2 134.1 147.1 6.2 50.6 40.7% 28.1% 7.0% 57.3% 128.8 56.6 44.2 56.1% 65.7% 21.9% 2.16 1.68
Stereo 5 25 88.2 163.4 167.8 13.0 44.9 33.4% 36.4% 14.8% 50.9% 128.8 49.1 43.3 61.9% 66.4% 11.8% 1.87 1.65
4-stereo 2 15 30.0 112.7 114.0 1.8 1.0 57.3% 54.3% 6.1% 3.2% 207.0 131.9 124.7 36.3% 39.8% 5.5% 5.63 5.32
4-stereo 3 15 45.0 155.5 159.6 8.3 0.9 47.8% 43.2% 18.5% 2.1% 207.0 99.3 93.7 52.1% 54.8% 5.6% 4.23 3.99
4-stereo 4 15 60.0 189.2 195.5 10.5 0.0 44.1% 39.0% 17.5% 0.0% 207.0 84.6 80.2 59.1% 61.3% 5.2% 3.61 3.42
4-stereo 5 15 75.0 217.8 228.7 12.4 13.3 42.0% 35.0% 16.5% 4.3% 207.0 75.1 70.4 63.7% 66.0% 6.3% 3.20 3.00
4-stereo 2 20 40.0 120.3 126.7 0.0 16.6 56.3% 48.6% 0.0% 41.4% 212.0 137.7 123.2 35.0% 41.9% 10.6% 5.87 5.25
4-stereo 3 20 60.0 164.2 179.5 7.8 21.8 48.1% 34.3% 13.0% 36.4% 212.0 105.5 91.0 50.2% 57.1% 13.7% 4.50 3.88
4-stereo 4 20 80.0 202.2 215.6 9.7 16.1 43.8% 32.9% 12.2% 20.1% 212.0 89.9 80.3 57.6% 62.1% 10.6% 3.83 3.43
4-stereo 5 20 100.0 237.0 248.6 13.7 61.4 40.1% 29.1% 13.7% 61.4% 212.0 79.1 70.1 62.7% 67.0% 11.4% 3.37 2.99
4-stereo 2 25 50.0 130.7 137.3 0.0 33.4 54.6% 43.9% 0.0% 66.8% 217.0 144.0 122.4 33.7% 43.6% 15.0% 5.48 4.66
4-stereo 3 25 75.0 181.4 188.8 0.0 27.1 45.1% 32.9% 0.0% 36.1% 217.0 110.1 93.8 49.3% 56.8% 14.8% 4.20 3.57
4-stereo 4 25 100.0 222.4 236.0 3.8 89.0 40.3% 22.9% 3.8% 89.0% 217.0 93.2 76.6 57.1% 64.7% 17.8% 3.55 2.92
4-stereo 5 25 125.0 258.3 276.5 8.1 114.4 38.1% 17.4% 6.4% 91.5% 217.0 83.5 66.9 61.5% 69.2% 19.8% 3.18 2.55

Table 5.1: Experimental results with ORB-SLAM+DL on Jetson TX2

of 69.2%. Then, the table shows that XEFT provides an exclusive overlapping de-
gree that is higher than that provided by HEFT in almost all cases (see double col-
umn XO). The only case of XO reduction is with the simpler application versions
(monocular) run on a large number of CPU cores (i.e., 5). For this reason, in these
two contexts, also the overall performance improvement provided by XEFT against
HEFT is slightly negative (-5.7% and -3.8%).

The idle time values show that this category of benchmarks scheduled with HEFT
suffers from load imbalance. The efficiency of HEFT to provide exclusive overlap-
ping is reported in column XO/Max_XO and it is higher with simpler applications
and with low levels of maximum potential XO. The clustering effect of XEFT is a
reduction of the idle times in the CEs and an increase of the XO efficiency. The two
values improve by increasing the application complexity.

In general, XEFT provides a performance improvement w.r.t. HEFT up to 33.2%
and, more importantly, it provides the same or better performance of HEFT with less
architectural resources (e.g., with one less CPU core).

Figures 5.4 and 5.5 show the performance comparison between XEFT and HEFT
on the synthetic benchmarks. The two figures identify each benchmark on the plot by
considering two metrics evaluated with HEFT: the XO and the idle time. As an exam-
ple, the rightmost side and top side of the plot group the benchmarks for which HEFT
provides the highest XO and the highest idle time, respectively. For each benchmark,
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the circle and the cross represent the improvement and loss of performance, respec-
tively. The size of circles(crosses) represents the improvement(loss) measure.

The figures aim at understanding the correlation between the XEFT efficiency
w.r.t. HEFT and the DAG characteristics. For both the synthetic classes, the results
underline that XEFT generally outperforms HEFT with benchmarks for which (i)
HEFT suffers from idle time, and (ii) the XO efficiency of HEFT is low. This class
of benchmarks are grouped, in both figures, in the leftmost top side. XEFT cannot
improve the HEFT performance if the benchmark, with HEFT, is already well bal-
anced (low idle time) or already presents high XO efficiency. In these cases, XEFT
can lead to a loss of performance up to 19%.

Figure 5.4 shows that HEFT already performs well with the main parts of DAGs
of class Tree. This is due to the fact that they provide high potential overlapping,
less node constraints and, as a consequence, HEFT generates low idle time. Since
the potential XO is also related to the number of exclusive nodes, which has been
generated with a Gaussian distribution for the analysis, XEFT improves the perfor-
mance mostly in benchmarks with less than 80% XO of HEFT. Figure 5.5 shows
that the rest of the benchmarks are more distributed over the space. Here it is evident
the main contribution of XEFT on the leftmost top side of the plot, to which also the
ORB-SLAM+DL benchmarks belong.

Fig. 5.4: Experimental results with the Tree class of synthetic DAGs on the Jetson TX2



Fig. 5.5: Experimental results with the Linear class of synthetic DAGs on the Jetson TX2
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Conclusion and future work

In this thesis, a thorough design flow has been presented to develop embedded vision
applications. Specifically, three areas have been covered:

6.1 Summary of the proposed approach

• Model-based design flow. Unlike conventional software development, the algo-
rithm of an embedded vision application has to be thought in a data-flow man-
ner. This change leads to some refactor in primitive usages, but the verification
of changes is made easy with the introduction of multi-level verification flow.

• Polyglot parallel programming model and integration. To fully utilize all the
heterogeneous resources of the target device, several languages must co-exist.
This thesis proposed a methodology that combines polyglot programming lan-
guages and environments to develop efficient applications in a very short amount
of time, allowing portability across different hardware architectures.

• An algorithm for scheduling and mapping of application tasks for perfor-
mance enhancement. This part is responsible to apply device-specific optimiza-
tions. The thesis presented the XEFT algorithm to overcome the HEFT limita-
tions when applied in embedded devices. XEFT has been tested in a real-world
case study, and it allowed a real-time execution with a 4x speedup w.r.t. the orig-
inal implementation.

6.2 Directions for future research

While the presented design flow covers the full toolchain for the development of em-
bedded vision applications, there are two areas which could be extended. The first
resides in the modeling of conditional and loop instructions that are not present in
the OpenVX semantic, to provide a smoother transition from the traditional devel-
opment. The second is the extension of the methodology to more than two types of
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accelerators in case, such as DSPs of FPGAs. A higher number of accelerators in-
creases the heterogeneity level of primitives provided by vendors. This can increase
the need of exclusive overlapping to reduce idle times in the application scheduling.



Summary of the proposed innovative contributions

This chapter reports the innovative contributions to the State of the Art by the work
proposed in this thesis. The division resembles chapters organization. The contribu-
tions inside each group are in chronological ordered.

Model-based design flow

1. S. Aldegheri, D. D. Bloisi, J. J. Blum, et al., “Fast and power-efficient embedded
software implementation of digital image stabilization for low-cost autonomous
boats,” in Field and Service Robotics, M. Hutter and R. Siegwart, Eds., Cham:
Springer International Publishing, 2018, pp. 129–144, ISBN: 978-3-319-67361-5

2. S. Aldegheri and N. Bombieri, “Extending OpenVX for model-based design
of embedded vision applications,” in 2017 IFIP/IEEE International Conference
on Very Large Scale Integration (VLSI-SoC), 2017, pp. 1–6. DOI: 10.1109/
VLSI-SoC.2017.8203457

3. S. Aldegheri, S. Manzato, and N. Bombieri, “Enhancing performance of com-
puter vision applications on low-power embedded systems through heteroge-
neous parallel programming,” in 2018 IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC), 2018, pp. 119–124. DOI: 10.1109/
VLSI-SoC.2018.8644937

Polyglot parallel programming model and integration

1. S. Aldegheri, N. Bombieri, N. Dall’Ora, et al., “A framework for the design
and simulation of embedded vision applications based on OpenVX and ROS,”
in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018,
pp. 1–5. DOI: 10.1109/ISCAS.2018.8351514

2. S. Aldegheri and N. Bombieri, “Integrating Simulink, OpenVX, and ROS for
model-based design of embedded vision applications,” in VLSI-SoC: Opportu-
nities and Challenges Beyond the Internet of Things, M. Maniatakos, I. A. M.

https://doi.org/10.1109/VLSI-SoC.2017.8203457
https://doi.org/10.1109/VLSI-SoC.2017.8203457
https://doi.org/10.1109/VLSI-SoC.2018.8644937
https://doi.org/10.1109/VLSI-SoC.2018.8644937
https://doi.org/10.1109/ISCAS.2018.8351514
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Elfadel, M. Sonza Reorda, et al., Eds., Cham: Springer International Publishing,
2019, pp. 178–197, ISBN: 978-3-030-15663-3

3. S. Aldegheri and N. Bombieri, “Rapid prototyping of embedded vision systems:
Embedding computer vision applications into low-power heterogeneous archi-
tectures,” in 2018 International Symposium on Rapid System Prototyping (RSP),
2018, pp. 63–69. DOI: 10.1109/RSP.2018.8631995

An algorithm for scheduling and mapping of application tasks for
performance enhancement

1. S. Aldegheri, D. D. Bloisi, N. Bombieri, et al., “Data flow ORB-SLAM for real-
time performance on embedded GPU boards,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 1–6

2. S. Aldegheri, N. Bombieri, and H. Patel, “On the task mapping and schedul-
ing for DAG-based embedded vision applications on heterogeneous multi/many-
core architectures,” in 2020 Design, Automation Test in Europe Conference Ex-
hibition (DATE), 2020, pp. 1–4

https://doi.org/10.1109/RSP.2018.8631995
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