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Several techniques and tools have been proposed for the automatic generation of test cases. Usually, these tools are evaluated
in terms of fault revealing or coverage capability, but their impact on the manual debugging activity is not considered. The
question is whether automatically generated test cases are equally effective in supporting debugging as manually written
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We conducted a family of three experiments (five replications) with humans (in total, 55 subjects), to assess whether the
features of automatically generated test cases, which make them less readable and understandable (e.g., unclear test scenarios,
meaningless identifiers), have an impact on the effectiveness and efficiency of debugging. The first two experiments compare
different test case generation tools (Randoop vs. EvoSuite). The third experiment investigates the role of code identifiers
in test cases (obfuscated vs. original identifiers), since a major difference between manual and automatically generated test
cases is that the latter ones contain meaningless (obfuscated) identifiers.

We show that automatically generated test cases are as useful for debugging as manual test cases. Furthermore, we
find that for less experienced developers, automatic tests are more useful on average due to their lower static and dynamic
complexity.
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1. INTRODUCTION

Automated test case generation has been a major area of investigation in the last decade [Pacheco
and Ernst 2007] [Fraser and Arcuri 2011] [Tillmann and Halleux 2008] [Fraser and Zeller 2010].
Tools for automated test case generation typically aim at maximizing branch or path coverage.
Randoop [Pacheco and Ernst 2007] produces Java test cases automatically as random sequences
of method invocations with random parameter values. EvoSuite [Fraser and Arcuri 2011] and
eToc [Tonella 2004] use a genetic algorithm to maximize branch coverage for Java classes un-
der test. Other tools target path coverage by means of dynamic symbolic execution [Godefroid
et al. 2005] [Sen et al. 2005], including DART [Godefroid et al. 2005], CUTE [Sen et al. 2005],
EXE [Cadar et al. 2008] and Crest [Burnim and Sen 2008] for C code; PEX [Tillmann and Halleux
2008] for C# code; and, SAGE [Godefroid et al. 2008] for binary code.

While substantial effort has been devoted to empirically study the effectiveness of these solutions
in revealing faults [Pacheco and Ernst 2007] [Beckman et al. 2010] [Tillmann and Halleux 2008]
[Godefroid et al. 2005] [Fraser and Zeller 2010], the problem of the actual usability of the automat-
ically generated test cases for the developers who rely on them for debugging is a neglected topic.
Automatically generated test cases (autogen, for brevity) are, in fact, less understandable and mean-
ingful than manually designed test cases. Indeed, autogen tests do not exercise any meaningful test
scenario, from the end user’s viewpoint; they do not address explicitly any high-level requirement or
functionality; they include meaningless identifiers and data values. Hence, interpretation of a failing
execution might be substantially more difficult with autogen test cases than with manual tests. This
might impact negatively the debugging activities, in comparison to debugging when supported by
manually written tests.

The problem of the actual usability and effectiveness of autogen test cases is a key problem in
the area of automated software testing. So far, no empirical evidence has been collected to show
if there is any negative impact on debugging and what is the extent of such an impact. When test
case generation technologies are considered for industrial adoption, estimating all the associated
costs, including indirect costs such as an additional cost during debugging, is critical for informed
decision-making.

This paper presents the first family of experiments that investigates the impact of automated test
case generation on debugging. We have considered two test case generators (Randoop [Pacheco and
Ernst 2007] and EvoSuite [Fraser and Arcuri 2011]) in two separate experiments, each replicated
twice, to measure empirically the effectiveness and efficiency of debugging when autogen test cases
are used, as compared to manual test cases available for the applications under test. Since autogen
test cases include meaningless identifiers (e.g., x0, x1) that are generated automatically by tools,
we also investigated, in a separate experiment, whether the obfuscation of identifiers in the test
cases has any negative impact on debugging. This third experiment aims at assessing the role of
meaningful identifiers in test cases during debugging, regardless of any other feature of autogen
tests, to understand if the generation of meaningless identifiers alone has a negative impact on
debugging. In total, we involved 55 human subjects in all replications of our three experiments,
with a wide range of expertise and capabilities (from BSc and MSc students to PhD/Post-docs and
researchers/professors).

This paper extends our previous work [Ceccato et al. 2012] with the following key contributions:

— In addition to the Randoop random test case generator, we consider test cases generated by another
tool, EvoSuite, which generates test cases using genetic algorithms. A new experiment, replicated
twice, was designed and conducted to assess the impact of EvoSuite test cases on debugging.

— We investigate the role of meaningful and understandable code identifiers used in test cases in a
new experiment, where identifiers of manual test cases are deliberately obfuscated.

— We extend the discussion of our findings to account for the results obtained from the new studies,
which allows us to provide a detailed and wide spectrum analysis of the impact of autogen tests
on debugging.
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— We analyze the representativeness of the two applications under test chosen for the empirical
studies, JTopas and XML-Security, by comparing their features with those of other open source
Java projects.

The paper is organized as follows. After commenting related work in Section 2, Section 3 de-
scribes the design underlying the family of three experiments reported in this paper. Sections 4, 5
and 6 report the results of the three experiments. A discussion of the experimental results is provided
in Section 7. Section 8 discusses the threats to the validity of our experiments. We draw our final
conclusions in Section 9.

2. RELATED WORK

Test cases are one of the most relevant sources of information to locate faults. Several papers [Artzi
et al. 2010; Jones et al. 2002; Zeller and Hildebrandt 2002] propose approaches and techniques to
analyze test cases and their execution with the aim of detecting and locating faults. The underly-
ing idea of test-based debugging is that the information collected during test case execution (e.g.,
code coverage and application state) can be useful to identify the set of “suspicious” code state-
ments (i.e., those where the fault may be located). Automatically generated test cases have been
found to be quite effective in detecting faults [Andrews et al. 2008; Ciupa et al. 2007; Duran 1984].
Several automated test case generation tools have been proposed. Concrete and symbolic execution
are mixed in tools such as PEX [Tillmann and Halleux 2008], Cute [Sen et al. 2005] and DART
[Godefroid et al. 2005]. Randoop [Pacheco and Ernst 2007] creates test cases based on randomly
generated sequences of method invocations enriched with assertions automatically inferred through
dynamic analysis. EvoSuite [Fraser and Arcuri 2011] takes advantage of genetic algorithms to gen-
erate test cases for Java classes, with the goal of maximizing the level of branch coverage. Fraser
et al. [Fraser and Zeller 2010] apply mutation analysis to automatically generate test cases. In our
experiment, we compared manually defined test cases to the ones obtained with Randoop and Evo-
Suite. This does not cover the full range of possible test case generators, but we think that Randoop
and EvoSuite are representative of two important families of tools (relying on random testing and
search-based testing). Moreover, the experiment with obfuscated identifiers provides key insights
that hold for all test case generators, since they all generate meaningless (obfuscated) identifiers.

Empirical studies on automated test case generators [Andrews et al. 2008; Ciupa et al. 2007,
Duran 1984] are focused on the fault finding capabilities of tools. However, no study is available
about the impact of automatically generated test cases on debugging. In this paper, we report a
family of experiments that, for the first time, measures the effectiveness of automatically generated
test cases when they are used to carry out debugging tasks.

Most of the literature containing empirical studies related to testing and debugging describes
experiments that do not involve human subjects. For instance, Frankl and Weiss [Frankl and Weiss
1991] compared the capability of revealing faults when test cases satisfy different coverage criteria.
However, their work did not consider the intensive manual activity necessary to locate a fault, after
a test case has revealed it. A few empirical studies on software testing and debugging involved
human subjects, but they considered directions different from the one investigated in this paper. For
instance, the studies by Ricca et al [Ricca et al. 2009] and Huang et al [Huang and Holcombe 2009]
focus on the testing process and strategy, evaluating the impact of the “test first” strategy either on
the accuracy of change tasks or on the quality of the final code.

A few attempts have been made to investigate the relationship between testing and debugging. Fry
et al. [Fry and Weimer 2010] presented an observational study on the accuracy of human subjects in
locating faults. They discovered that certain types of faults are difficult to locate for humans. For in-
stance, “extra statement” faults seem to be easier to detect than “missing statement” faults. However,
the authors did not investigate the role of test cases. They also observed that, independently from
the faults, certain code contexts are difficult to debug for humans. For instance, the array abstraction
is easier than the tree abstraction. Weiser et al. [Weiser and Lyle 1986] empirically evaluated the
impact of a slicing tool on debugging. They did not observe any improvement when developers use
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a slicing tool to debug small, faulty programs. Parnin and Orso [Parnin and Orso 2011] performed
an experiment to investigate how developers use debugging tools and whether these improve per-
formance. Tools are shown to help complete debugging tasks faster. Still, Parnin and Orso’s study
does not consider the role of test cases.

Other empirical studies on software testing, which are to some extent related to the present paper,
include: (1) Itkonen et al. [Itkonen et al. 2009] present an observational study in which they report
the manual (functional) testing practices in four software companies. They noticed that many of the
applied techniques are based on similar ideas as traditional test case design techniques, even if they
rely on experience rather than a formalized technique, as available in scientific literature. (2) Ricca
et al. [Ricca et al. 2009] report a series of studies that investigate the role of acceptance tests when
facing requirement changes. (3) Yu et al. [Yu et al. 2008] performed an experiment to evaluate the
impact of test-suite reduction on the effectiveness of fault-localization techniques. They also show
that fault-localization effectiveness strongly varies depending on the test-suite reduction strategy
considered. (4) Huang et al. [Huang and Holcombe 2009] report an experiment in which they com-
pared the effectiveness of Test First and Test Last strategies. Although their results are not confirmed
statistically, they found that the quality of the produced software increases with an increased time
spent on application testing. (5) Ruthruff et al. [Ruthruff et al. 2005] report an experiment in which
they studied the impact of two factors, i.e., information base and mapping, in fault localization. They
showed that such factors impact to a major extent the effectiveness of fault localization activities.

To the best of our knowledge, our work is the first empirical study with human subjects that
investigates the effectiveness and efficiency of debugging when autogen and manually written test
cases are used.

3. EXPERIMENT DEFINITION AND PLANNING

This section describes the definition, the design, and the settings of the experiments in a structured
way, following the template and guidelines by Wohlin et al. [Wohlin et al. 2012].

The goal of the study is to investigate the differences between manually written and autogen test
cases, with the purpose of evaluating how well they support debugging tasks. The quality focus re-
gards how manually written and autogen test cases affect the capability of developers to correctly
and efficiently debug the code. The results of the experiments are interpreted regarding two per-
spectives: (1) a researcher interested in empirically validating autogen test cases and (2) a quality
manager who wants to understand whether the time spent in writing test cases pays off when facing
actual debugging tasks.

The context of the studies is defined as follows: the subjects of the study are developers facing
debugging tasks, while the objects are applications that contain the faults to be fixed. We collected
empirical data from three experiments:

(1) Manual vs. Randoop [MvVR]: This experiment compares manual test cases to test cases pro-
duced automatically by a random test case generator, Randoop [Pacheco and Ernst 2007].

(2) Manual vs. EvoSuite [MVE]: This experiment compares manual test cases to test cases pro-
duced automatically by an evolutionary test case generator, EvoSuite [Fraser and Arcuri 2011].

(3) Manual vs. Obfuscated [MvO]: This experiment investigates the impact on debugging of a
specific aspect of autogen test cases: the artificial identifiers that appear in their implementa-
tion. To evaluate the impact of artificial identifiers we compare manual test cases with original
identifiers to manual test cases with identifiers obfuscated as in the tests produced by test gen-
eration tools.

While several tools are available for automated test case generation [Pacheco and Ernst 2007;
Fraser and Arcuri 2011; Tillmann and Halleux 2008; Tonella 2004; Godefroid et al. 2005; Sen et al.
2005; Cadar et al. 2008; Burnim and Sen 2008], we restricted our choice to those that support the
Java programming language, because the students involved in the experiment are mostly familiar
with Java. Moreover, we wanted to choose tools that have a reasonable usability and support from
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their developers and that have reached a good maturity level. Under such constraints, the only two
tools that we could find as freely available are Randoop and EvoSuite.

Experiments MvR and MVE do not distinguish two different aspects that affect autogen test cases:
(1) their structure and (2) the identifiers they use. Usually, autogen test cases have a simpler structure
than manual test cases and, differently from manual test cases, they use meaningless, automatically
generated identifiers. The aim of experiment MvO is to factor out one of these two aspects from
the other. Namely, MvO investigates the extent to which the presence of meaningless identifiers in
autogen test cases is detrimental to the debugging activity. Since the simpler structure of autogen
tests is potentially beneficial to debugging, by combining the outcome of MvO with that of MvR and
MVE we can understand whether one of the conflicting aspects, simple structure versus meaningless
identifiers, compensates for or prevails on the other.

Table I. Overview of the family of experiments.

Experiment Treatments Replication  University Subjects
MvR Manual tests Randoop tests I Univestity of Trento 7 MSc
I Univestity of Milano 14 BSc + 8 MSc
Bicocca
MvVE Manual tests ~ EvoSuite tests I Univestity of Milano 6 Researchers
Bicocca
1I Fondazione = Bruno 9 Researchers
Kessler
MvO Original Obfuscated I Univestity of Milano 11 MSc studentes
identifiers identifiers Bicocca

The overview of the experiments is summarized in Table I. Experiment MVR was conducted
in two replications: the first one involved 7 MSc students of the University of Trento, attending
the “Software Analysis and Testing” course. The second replication involved 14 BSc students
of the University of Milano-Bicocca, attending the “Software Analysis and Testing” course, and
8 MSc students of the University of Milano-Bicocca, attending the “Software Quality Control”
course. Experiment MVE involved 6 professors/post-docs from University of Milano-Bicocca and
9 researchers/post-docs from Fondazione Bruno Kessler. MVE differs from MvR on both the type
of autogen test cases used in the experiment and the skills of the subjects (mostly PhD students
and researchers instead of MSc and BSc students). The involvement of skilled subjects allows the
assessment of the role of experience and ability on debugging. Experiment MvO was conducted
at the University of Milano-Bicocca and involved 11 MSc students, attending the “Software De-
velopment Process” course. MSc students from Trento and from Milan share a similar background
in computer programming and software engineering, having attended courses with similar content
(e.g., Java programming; fundamentals of software engineering; etc.) in previous years at the two
universities. The initial results obtained from MvR have been used to tune the design of the exper-
iments MVE and MvO. We report the differences of the empirical setup when applicable. All the
subjects involved in the studies have basic skills in Java programming, debugging, and use of the
Eclipse IDE!.

The applications used in the experiment are JTopas and XML-Security, further characterized in
Appendix A. Both applications are available with manually written tests. Moreover, some of their
faults are documented in the SIR? repository [Do et al. 2005].

JTopas is a customizable tokenizer that tokenizes input text files. It allows users to customize
the grammar of the input files by specifying the structure of keywords, compounds and comments,
and the case sensitivity. JTopas consists of 15 classes and 4,482 NCLoCs (Non-Comment Lines of
Code). XML-Security is a library that provides functionalities to sign and verify signatures in XML

Lhttp://www.eclipse.org
2http://sir.unl.edu/portal/index.php. Software-artifact Infrastructure Repository.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.


http://www.eclipse.org

39:6

documents. It supports many mature digital signature and encryption algorithms on standard XML
formats, such as XHTML and SOAP. It consists of 228 classes, for a total of 29,255 NCLoCs.

3.1. Hypotheses Formulation

Based on the study definition reported above, we formulate the following null hypotheses to be
tested:

Hy;. There is no difference in the effectiveness of debugging, when debugging is supported by
different kinds of test cases.
Hys. There is no difference in the efficiency of debugging, when debugging is supported by
different kinds of test cases.

However, since different kinds of test cases are considered in different experiments (see Table I),
these hypotheses can be broken down as follows:

— Experiment MvR
Hy1 r. There is no difference in the effectiveness of debugging, when debugging is supported
either by manually written or Randoop test cases.
Hysr. There is no difference in the efficiency of debugging, when debugging is supported
either by manually written or Randoop test cases.

— Experiment MvE
Hy1 g. There is no difference in the effectiveness of debugging, when debugging is supported
either by manually written or EvoSuite test cases.
Hyop. There is no difference in the efficiency of debugging, when debugging is supported
either by manually written or EvoSuite test cases.

— Experiment MvO
Hoy10. There is no difference in the effectiveness of debugging, when debugging is supported
either by manually written or Obfuscated test cases.
Hys0. There is no difference in the efficiency of debugging, when debugging is supported
either by manually written or Obfuscated test cases.

These null hypotheses are two-tailed because there is no a-priori knowledge on the expected
trend that should favor either manually written or autogen test cases. On the one hand, manual test
cases are meaningful for a developer who is determining the position of a fault, while automatic
tests may contain meaningless statements and code identifiers that may confuse developers. On the
other hand, manual tests could be difficult to understand because they may require understanding
of complex parts of the application logic, while automatically generated tests may be simpler, since
they are generated without a clear knowledge of the application business logic.

The null hypotheses indicate that we have two dependent variables: debugging effectiveness and
debugging efficiency. In experiments MvR, MVE and MvO, we asked subjects to fix eight faults in
total (four faults for each subject application).

During their fault fixing activities, developers typically resort to a regression test suite to check
whether the code changes introduced to fix the bug have broken any pre-existing functionality.
In MVE and MvO, we have provided the developers with the regression test suites available for
the object applications, XML-Security and JTopas. To avoid any interference between regression
testing and bug localization and correction, we made sure that the regression test suite cannot reveal
the faults to be fixed in the experiments.

To determine whether manual and autogen test cases differ according to the identifier understand-
ability and code complexity metrics, we introduce two additional derived null hypotheses:

DHys. There is no difference in the number of artificial / user-defined identifiers of the man-
ually written and autogen test cases used in the experiment.

DHyy. There is no difference in the static / dynamic complexity of the manually written and
autogen test cases used in the experiment.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.



39:7

Experimental support for the alternative hypotheses associated with D Hys and D Hy4 provides
useful information for the interpretation of the results about the two dependent variables considered
in Hyy and Hos.

We have collected the participants opinions on the performed debugging tasks through survey
questionnaires. Answers are on a Likert scale, whose extremes are strongly agree/disagree and
whose middle point is uncertain. We analyze the answers to the survey questionnaires by formulat-
ing the following null-hypotheses:

HQxos. Participants are uncertain about what stated in question Qx.
HQxo6. There is no difference in the answer to question Qx between participants who were
supported by different kinds of test cases during debugging.

3.2. Variable Selection

In our experiments, the effectiveness of debugging is measured as the number of correctly fixed
faults. We evaluated the correctness of the fixes by running a predefined set of test cases that cover
the faults in the subject programs (these test cases have not been provided to subjects). If all the test
cases passed, we further manually inspected the fixed code to verify whether the fix was correct.
The efficiency of debugging is evaluated as the number of correct tasks (i.e., the number of correctly
fixed faults) divided by the total amount of time spent for these tasks (measured in minutes): eff =

%, where C'orr; is equal to one if the i-th task is performed correctly, zero otherwise, while
Time; is the time spent to perform the i-th task. In other words, efficiency is measured as the
number of correctly performed tasks per minute.

The independent variables (the main factors of the experiments) are the treatments applied during
the execution of the debugging tasks. The two alternative treatments in the three experiments are:
(1) manually written test cases: those distributed as unit tests for the object applications (obtained
from the SIR repository); and, (2) either test cases automatically generated by Randoop [Pacheco
and Ernst 2007] (MvR experiment), or test cases automatically generated by EvoSuite [Fraser and
Arcuri 2011] (MVE experiment), or obfuscated test cases (MvO experiment).

The understandability of the test cases that reveal the faults might affect the debugging perfor-
mance and may vary substantially between manual and autogen test cases. Since we cannot control
this factor in the experiments, because it depends on how manual test cases have been defined and
how the test case generation algorithms work, we measure this factor in our experimental setting.
The test case understandability might, in fact, represent one of the key features in which manual
and autogen test cases differ, which could possibly explain some of the observed performance dif-
ferences.

Unfortunately, there is no easy, widely-accepted way of measuring the understandability of test
cases. We approximate such measurement by considering two specific factors of understandability,
namely identifier meaningfulness and complexity of the test code. For the former we manually
classify each identifier in a test case as either Artificial (automatically generated) or UserDef (user-
defined) and count the respective numbers. In order to measure the test case complexity, we consider
both static metrics (MeLOC and McCabe) and dynamic metrics (Exec. methods and Exec. LOCs),
which provide an approximation of how complex a test case is from the developer’s perspective?.
Metrics are computed using the Eclipse plugin Metrics (http://metrics.sourceforge.net). As static
metrics we measure:

— MeLOC, number of non-blank and non-comment lines of code inside each method body;
— McCabe, cyclomatic complexity of each test method.

As dynamic metrics, we consider the amount of application code exercised by each test case. We
count it at two granularity levels:

3 Although some of the used metrics are actually size metrics, we regard them as test case complexity indicators, since they
reflect the perceived complexity associated with the usage of the test cases during debugging.
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— Exec. methods, the number of methods executed by a test case;
— Exec. LOCs, the number of statements executed by a test case.

3.3. Other factors
We measured the following other factors that could influence the dependent variables:

(1) The subjects’ ability;

(2) The subjects’ experience;
(3) The object system;

(4) The experiment session; and
(5) The fault to be fixed.

(1) Subjects’ ability: the ability of subjects in performing debugging tasks was measured using a
pre-test questionnaire with questions about programming and debugging ability, experience with
the development of large applications, and scores in academic courses related to development and
testing. In the case of MvR, where subjects include BSc students, we also exploited the results of
a training session where subjects were asked to answer some code-understanding questions and
to fix faults in each of the two object applications. According to the answers given to the pre-
questionnaire and the results of the training lab, we classified the subjects who participated in MvR
into three categories. High ability subjects are those who had experience with the development of
large applications, they have an academic score of at least 27/30* and completed correctly at least
50% of the tasks in the training lab. Medium ability subjects are those who either had experience
with the development of large applications or have an academic score of at least 27/30, and correctly
completed at least 25% of the tasks in the training lab. The rest of the subjects are classified as low
ability subjects. In MvO, since subjects did not participate to a training session, we use these same
definitions of the ability levels, except for the part about the number of correctly completed tasks.
Finally, since all the participants to MVE have both experience with large applications and valuable
CVs, we do not consider ability levels in MVE (i.e., all subjects involved in MVE are high ability
subjects).
(2) Subjects’ experience: we classified subjects according to four levels of experience: BSc students,
MSc students, PhD/Post-docs, and researchers/professors. In MvR we used BSc and MSc students,
in MVE we used PhD/Post-docs and researchers/professors, and in MvO we used MSc students
only. Thus, this factor is investigated in MvR and MVE, but not in MvO. In addition to the subjects’
experience, for PhD/Post-docs and researchers/professors we also considered the subjects’ research
field as a factor.
(3) Object system (i.e., application): since we adopted a balanced design with two systems (see
Section 3.4), subjects could show different performance on different systems. Hence the system is
also a factor.
(4) Experiment session (i.e., Lab): We measured whether any learning effect occurred between the
two labs (see Section 3.4 for a description of the counter-balanced design that we adopted).
(5) Fault to be fixed: since faults are all different (a detailed description of the faults used in our
experiments is provided in Appendix A), the specific features of the fault to be fixed may interact
with the main factor.

For each factor, we test if there is any effect on the debugging effectiveness and debugging effi-
ciency and we check its interaction with the main factor. We formulate the following null hypotheses
on the other factors:

Hy,. the factor 7, i = 1..5, does not significantly influence effectiveness and efficiency in
performing debugging tasks.

4In the Italian academic grade system, a score of 27/30 corresponds to a B in the ECTS grade system and to an A- in the US
system.
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These null hypotheses are also two-tailed, because we do not have any a-priori knowledge about
the direction in which a factor could influence effectiveness and efficiency. Whenever a statistically
significant influence exists, we also test the interaction of the factor with the main factor.

3.4. Experimental Design

We adopted a counter-balanced design: each replication of the experiments consists of two experi-
mental sessions (Lab 1 and Lab 2), with 2-hours allocated for each lab. Subjects have been split into
four groups, balancing the level of ability and experience in each group. This design ensures that
each subject works on the two applications (J7opas and XML-Security) and with the two different
treatments (manual vs autogen test cases), as shown in Table II. Moreover, this design allows us to
study the effect of all the factors, using statistical tests.

Table Il. Experimental design. A = autogen test cases, M = manually
written test cases.

Groupl Group2 Group3 Group4
Lab 1 JTopas M XML-Security M JTopas A XML-Security A
Lab 2 | XML-Security A JTopas A XML-Security M JTopas M

3.5. Experimental Procedure and Material

Before each experiment, we asked the subjects to fill a pre-questionnaire in which we collected
information about their ability and experience in programming and testing. BSc students have also
been trained with lectures on testing and debugging, and participated in a training laboratory where
they were asked to cope with debugging tasks very similar to the experimental tasks. This made us
confident that all the subjects, including BSc students, were quite familiar with the development en-
vironment and the debugging process. In the case of BSc students, their effectiveness in the training
tasks has been used to assess the subjects’ level of ability.

To perform the experiment, subjects used a personal computer with the Eclipse development
environment equipped with a standard Java debugger. We distributed the following material:

— The application code: depending on the group, either JTopas or XML-Security. The code contains
four faults in every repetition of MvR, MVE, and MvO; subjects are said that there are four faults
to be debugged and that one fault revealing test case is available per fault;

— Fault revealing test cases: either manually written or autogen, depending on the group the subjects
belong to, as shown in Table II. Each test case reveals exactly one fault; faults are supposed to be
addressed in order and they are sorted according to their difficulty, from easier to harder to fix.
The difficulty of the tasks has been established in a testing session by the authors of this paper.
A regression test suite is provided in MvE and MvO, to allow subjects to check for regressions
once they have completed the fault fixing task;

— Printed instructions describing the experimental procedure.

Before the experiment, we gave subjects a description of the experimental procedure, but no
reference was made to the study hypotheses. The experiment has been carried out according to the
following instructions:

(1) Import the application code into Eclipse;

(2) For each fault revealing test case, (i) mark the start time; (ii) run the test case and use it to debug
the application and fix the fault; (iii) mark the stop time;

(3) Create an archive containing the modified source code and send it to the experimenter by email;

(4) Fill a post-experiment survey questionnaire.

During the experiment, teaching assistants were present in the laboratory to prevent collaboration
among subjects and to verify that the experimental procedure was respected — in particular that
faults were addressed in the right order and that time was correctly marked.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.



39:10

After the experiment, subjects have been asked to fill a post-experiment survey questionnaire on
the subjects’ behavior during the experiment, so as to find justification for the quantitative observa-
tions. The questionnaire we used for MvR consists of 17 questions related to:

Q1:. Adequacy of the time given to complete the tasks;

Q2:. Clarity of tasks;

03-4:. Difficulties experienced in understanding the source code of the application and the
source code of the test cases;

05:. Difficulties in understanding the features under test;

Q6:. Difficulties in identifying the portion of code to change;

Q7-8:. Use and usefulness of the Eclipse debugging environment;

09:. Number of executions of the test case;

Q10-11:. Percentage of total time spent looking at the code of the test cases and of the appli-
cation;

Q12:. Difficulties in using the test cases for debugging;

Q13:. Fixes of bugs achieved without fully understanding the bugs, relying just on test cases;
Q14:. Need for inspecting the application code to understand bugs;

Q15:. Perceived level of redundancy in test cases;

Q16:. Usefulness of local variables in test cases to understand the test;

Q17:. Test cases being misleading (they initially drove the subject to wrong paths in locating
faults).

Answers are given on the following five-level Likert scale [Oppenheim 1992]: strongly agree,
agree, uncertain, disagree, strongly disagree.

After the experiment MvR, we recognized that several questions have not been useful, especially
considering that the answers were formulated in a Likert scale. For the studies MVE and MvO, we
thus formulated a new post-questionnaire that includes open questions, to address the issues with
the Likert scale. The new questionnaire still includes questions Q1, Q2, Q3, Q4, Q7 and Q8 from
the previous questionnaire, but it also includes two open questions:

0OQ]I:. Requesting a description of the main challenges faced during debugging;
0Q?2:. Requesting a description of the debugging process that has been followed.

In the case of MVE, since subjects consist of PhD students, post-docs, researchers and professors,
we also added two questions aimed at determining whether the subjects had already some experience
with the object applications (question SQ7) and with the SIR faults (question SQO2).

3.6. Seeded Faults

We seeded faults that satisfy the following requirements. First, faults are located in different parts of
the object applications. Second, each fault is revealed by a manual and an autogen test case. Third,
faults do not interact with each other, i.e., each test case reveals a single fault. Finally, faults are
based on the bugs available in the Software-artifact Infrastructure Repository (SIR).

In MvR, eight faults have been seeded into the two applications for debugging. In order to meet
the four requirements, since the autogen test cases are not able to reveal some of the SIR faults, we
slightly changed these faults so that they can be detected. However, such changes do not modify
the nature of the faults. An example of such changes, together with a thorough description and
characterisation of the faults used in the empirical study, can be found in Appendix A.2.

In MVE, among the eight seeded faults, six have been generated by the mutation tool Jester®,
while two are in common with MvR (the other six faults used in MvR could not be revealed by
any EvoSuite test, so we have replaced them). A characterisation and detailed description of the six
mutants used in experiment MVE can be found in Appendix A.2.

Shttp://sir.unl.edu
Shttp://jester.sourceforge.net.
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3.7. Analysis Method

General linear model (GLM) incorporates a number of different statistical models: ANOVA, AN-
COVA, MANOVA, MANCOVA, ordinary linear regression, t-test and F-test. To test the effective-
ness and efficiency of subjects in performing debugging tasks (Hy; and Hyo) we used a general
linear model. This consists of fitting a model of the dependent output variables (effectiveness and
efficiency of debugging) as a function of the independent input variables (all the factors, including
the main factor, i.e., the kind of test cases). A general linear model allows to test the statistical
significance of the influence of all factors on the effectiveness and efficiency of debugging (Ho1,
Hoa, Hoc,, Hoey» Hocy ). We assume significance at 95% confidence level (a=0.05), so we reject the
null-hypotheses having p-value<0.05. In case of relevant factors, the interpretations are formulated
by visualizing interaction plots.

In case we can not reject the null hypothesis, we risk to commit a type-II error, i.e., accepting a
null hypothesis that is actually false. We can estimate the probability of committing a type-II error
as 1 — Power, where Power is the statistical power of the adopted general linear model.

We used a non-parametric statistical test, the Wilcoxon two-tailed paired test [Wohlin et al. 2012],
to address the derived null hypotheses D Hys and D Hpy4. The use of non-parametric tests does not
require any assumption on the normal distribution of the population. Such a test checks whether
differences between different types of test cases in terms of (i) the number of artificial/user-defined
identifiers and (ii) difference in the static/dynamic complexity are statistically significant.

In order to understand whether the test case complexity is a property that characterizes the main
treatments (manual vs. autogen test cases), we measured the goodness of the test case complexity
metrics as predictors of the treatment. Specifically, we computed the confusion matrix where each
test case complexity metric is a possible predictor and the binary classification between manual
and autogen test cases is the predicted factor. Standard classification metrics (number of true/false
positives/negatives) and derived metrics (precision, recall, accuracy, and F-measure) are then used
to assess the degree to which manual and autogen test cases can be separated using the test case
complexity as the distinguishing feature. Specifically, correct classifications are indicated as TP
(true positives, i.e., correctly classified as autogen) and TN (true negatives, i.e., correctly classified
as non-autogen), while errors are of two types: FP (false positives, i.e., manual test cases classified
as autogen) and FN (false negatives, i.e., autogen test cases classified as non-autogen). The four
derived metrics [van Rijsbergen 1979] are defined as follows: precision = TP / (TP + FP); recall =
TP / (TP + FN); accuracy = (TP + TN) / (TP + FP + TN + FN); F-measure = 2 precision * recall /
(precision + recall).

Regarding the analysis of the survey questionnaires, we evaluate the questions related to time
availability, general difficulties found by subjects, and the use of the debugging environment (Q1-
Q8) by verifying whether the answers are either “Strongly agree” (2) or “Agree” (1). We test medi-

ans, using a two-tailedMann-Whitney test for the null hypothesis H Qxgs, i.e., @Qx = 0, where zero

corresponds to “Uncertain”, and Qx is the median for question Q. The same test is also performed
for questions SQ1 and SQ?2.

Among these questions, for those specific to test cases (Q4-Q8), the answers of the subjects using
manually written tests are compared to the answers of the subjects using autogen tests. In this case
a two-tailed Mann-Whitney test is used for the null hypothesis HQxog, i.€., Qautogen = @ Manual-
The same comparison is also performed for the questions Q9-Q17.

To analyze the answers to the open questions, we adopted the following process. We summarized
the answers given by the subjects who worked with different treatments, and we compared them
to look for commonalities and differences. We grouped similar answers into common concepts
and we discarded non-confirmed observations, that is those that were reported by just one subject.
Eventually we compared the concepts emerged from answers formulated by subjects who worked
with different treatments.
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4. RESULTS OF MANUAL VS. RANDOOP [MVR]

This experiment compares manual and Randoop test cases [Pacheco and Ernst 2007]. It was repli-
cated twice, the first time with 7 master students from University of Trento, and the second with 8
master and 14 bachelor students from University of Milano-Bicocca.

The data used in this section have been already reported in our previous conference paper [Cec-
cato et al. 2012]. They are provided also in this paper for completeness and to facilitate the compar-
ison with the results of the experiments presented in the next two sections. Moreover, in this section
we carry out a different and more detailed analysis as compared to the conference paper.

4.1. Debugging Effectiveness

Figure 1 (top) shows the boxplot of the effectiveness in fault fixing. The figure compares the number
of correct answers given by the subjects when the faults are debugged using either manually written
or randomly generated test cases. Figure 1 (bottom) shows descriptive statistics (mean, median and
standard deviation) of effectiveness for the two distinct factors.

Effectiveness (# of correct tasks)

T T
Manual Randoop

Mean Median Sd
Manual tests 0.89 0.00 1.31
Randoop tests 1.65 1.00 1.50

Fig. 1. Boxplots and descriptive statistics for Effectiveness (Manual vs. Randoop): debugging was significantly more ef-
fective when Randoop test cases are used.

Table Ill. GLM analysis of Effectiveness (Manual vs. Ran-
doop); p-values in bold face indicate a statistically signifi-
cant influence on Effectiveness.

Estimate  Std. Error  tvalue  Pr(>[t])

(Intercept) -0.8222 0.2448 -3.36 0.0016
Treatment 0.1679 0.0795 2.11 0.0405
System -0.0325 0.0799 -0.41 0.6860
Lab 0.1075 0.0819 1.31 0.1962
Experience 0.2246 0.0837 2.68 0.0102
Ability 0.2258 0.0676 3.34 0.0017

Table III reports the analysis of effectiveness of debugging with GLM. The model takes into
account not only the effect of the main treatment (manual or autogen test cases) but all the factors
that we considered in our experimental design, i.e., the system, the lab, the experience and ability of
participants. Statistically significant cases are in boldface. We can observe that subjects who used
autogen tests showed better effectiveness (i.e., correctly fixed more faults) than subjects who used
manually written tests. Data confirm the trend with significance at 95% confidence level (aw = 0.05).
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Thus we reject Ho1r and conclude that The debugging effectiveness is higher when debugging is
supported by random tests than manually written tests.

From Table III we can also understand the role of the other factors in influencing the main factor.
Let us first consider Ability (high, medium or low) and Experience (BSc or MSc student). We can
notice that both Ability and Experience have a significant effect. From the interaction plots reported
in Figure 2, we can notice that the high ability and high experience subjects are associated with
a line substantially higher than the line for the low ability/experience subjects. For what concerns
experience (see Figure 2 (a)), we can notice that lines are not parallel and tend to diverge, instead.
This indicates some interaction between experience and main treatments. Indeed, high experience
subjects improve their performance when using autogen tests much more than lower experience
subjects do. In other words, subjects with high experience are better at taking advantage of the
higher effectiveness provided by autogen tests.

Experience o Ability

— msc 4 high
— ---- bsc — medium
== low

20

Mean of effectiveness
1.0 1
1
Mean of effectiveness
1.0 1.5
1 1

0.5

Manual Randoop Manual Randoop

Treatment Treatment
(a) Experience (b) Ability

Fig. 2. Interaction plot of Effectiveness between Treatment (Manual vs. Randoop) & Experience/Ability; diverging/con-
verging lines indicate potential interactions. High experience subjects exhibit higher effectiveness increase when using Ran-
doop test cases as compared to low experience subjects.

In Table III, we can notice that System and Lab are not significant factors, thus there is no effect
of the system and no learning effect between the two experimental sessions.

Finally, we analyze the role of Fault as a factor, to see if the faults influenced the result or inter-
acted with the main factor (manual vs. autogen tests) to influence the result. We cannot study the
impact of this factor on effectiveness, as the latter is a metrics over all faults, while we are interested
in each fault individually. So we resort to C'orr;, which measures the correctness of the fix for each
t-th fault.

The analysis is performed separately for the two systems (JTopas and XML-Security) because
faults are different. Results of the analysis with GLM by Treatment and Fault on Correctness do
not reveal any statistically significant influence of the faults on the effectiveness of debugging (see
Table IV).

Table IV. GLM analysis of Correctness by Treatment and Fault (Manual vs. Randoop); p-values in bold face indicate a
statistically significant influence on Correctness

Estimate  Std. Error  tvalue  Pr(>[t]) Estimate  Std. Error  tvalue  Pr(>[t])
(Intercept) 0.4699 0.1549 3.03 0.0029 (Intercept) -0.0247 0.1450 -0.17 0.8650
Treatment 0.0675 0.0830 0.81 0.4172 Treatment 0.2710 0.0812 3.34 0.0011
Fault -0.0617 0.0383 -1.61 0.1089 Fault 0.0052 0.0379 0.14 0.8915

(a) Jtopas (b) Xml-Security
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4.2. Debugging Efficiency

The same procedure used with effectiveness was also applied to efficiency. Figure 3 (top) shows
the boxplot for efficiency with the two treatments. It compares the efficiency of the subjects when
the faults are debugged using either manually written or randomly generated test cases. The corre-
sponding descriptive statistics are reported in Figure 3 (bottom).

Table V reports the analysis with GLM. The trend shown for effectiveness is confirmed here:
the efficiency of subjects working with autogen tests is higher than when working with manually
written tests. Thus we reject Hyop and conclude that The efficiency of debugging is higher when
debugging is supported by random tests than manually written tests.

0.15
I

0.10
I

Efficiency (#correct/time(m])
0.05
Il

§

T T
Manual Randoop

0.00
1

Mean Median Sd
Manual tests 0.01 0.00 0.02
Randoop tests  0.03 0.02 0.04

Fig. 3. Boxplots and descriptive statistics for Efficiency (Manual vs. Randoop): debugging was significantly more efficient
when Randoop test cases are used.

Table V. GLM analysis of Efficiency (Manual vs. Randoop);
p-values in bold face indicate a statistically significant in-
fluence on Efficiency.

Estimate  Std. Error  tvalue  Pr(>[t])

(Intercept) -0.0924 0.0240 -3.85 0.0004
Treatment 0.0200 0.0078 2.57 0.0135
System 0.0046 0.0078 0.59 0.5587
Lab 0.0100 0.0080 1.24 0.2200
Experience 0.0195 0.0082 2.38 0.0219
Ability 0.0182 0.0066 2.74 0.0087

From Table V, we can also understand the role of the other factors. Both Ability and Experience
have a significant effect and interact with the main treatment. The interaction plots in Figure 4
indicate a similar effect as for the effectiveness: higher ability/experience subjects are particularly
good at taking advantage of the higher efficiency associated with the use of autogen tests.

Factors System and Lab do not have a significant influence on efficiency of debugging.

Since we cannot study the impact of the Fault factor on efficiency, as the latter is a metrics
over all faults, while we are interested in each fault individually, we resort to Time;, which is
the time taken to produce the fix for the i-th fault. The analysis is performed separately for the
two systems (JTopas and XML-Security) because faults are different. Results of the analysis with
GLM by Treatment and Fault on 7ime are significant for XML-Security, while they are close to
significance, but not significant (at level 0.05), for JTopas (see Table VI). Faults influence efficiency
and, as apparent from the interaction plot in Figure 5, they also interact with the main factor to
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Experience Ability

0.06
I

— msc high
- bsc — medium
- low

0.04
I

0.04
I

Mean of efficiency
Mean of efficiency

0.02
I

0.02
I I

0.00

Manual Randoop Manual Randoop

Treatment Treatment
(a) Experience (b) Ability

Fig. 4. Interaction plot of Efficiency between Treatment (Manual vs. Randoop) & Experience/Ability; diverging/converg-
ing lines indicate potential interactions. High experience subjects exhibit higher efficiency increase when using Randoop test
cases as compared to low experience subjects.

influence Time. In fact, fault 1 is quite different from faults 2-4, since with fault 1 manual and
random tests are equally (in-)efficient, resulting in the highest mean fixing time, while for the other
faults random tests support a more efficient debugging activity. We conclude that for faults (as
fault 1) that are particularly difficult to debug, the choice between manual and random tests does
not affect efficiency, while for normal faults (the majority of XML-Security faults, i.e., faults 2-4),
random tests are preferable.

Table VI. GLM analysis of Time by Treatment (Manual vs. Randoop) and Fault; p-values in bold face indicate a statis-
tically significant influence on Time.

Estimate  Std. Error  tvalue Pr(>t)) Estimate  Std. Error  tvalue Pr(>t])
(Intercept) ~ 36.8888 6.6480 5.55 0.0000 (Intercept)  50.6453 6.3140 8.02 0.0000
Treatment ~ -5.3017 3.6000 -1.47 0.1431 Treatment — -6.3437 3.4764 -1.82 0.0704
Fault  -3.0500 1.6777 -1.82 0.0712 Fault  -9.1720 1.6638 -5.51 0.0000

(a) Jtopas (b) Xml-Security

Treatment

-- Manual
— Randoop

Mean of Time

Fault

Fig. 5. Interaction plot of Time between Treatment (Manual vs. Randoop) & Fault for Xml-Security. Fault 1 requires a
similar amount of fixing time for both treatments, while for the other faults manual tests require more time than Randoop.
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4.3. Test Case Understandability

Table VII shows the occurrence of artificially generated and user-defined identifiers in autogen and
in manual test cases. User-defined identifiers are of course present also in autogen test cases, for
instance due to names of classes instantiated or methods called in the test cases. Artificial identifiers
may be present in manual test cases as well, for instance when code generation tools (e.g., tools for
parser generation from grammars) are used. This never happens in our two case studies.

Each random test case has on average 28 artificial identifiers and the difference with manual test
cases (having no artificial identifiers) is statistically significant according to the Wilcoxon paired
test. Random tests have on average 15 user-defined identifiers less than the corresponding manual
tests. This difference is not statistically significant (it would be significant at level 0.10).

In summary, the number of artificial (meaningless) identifiers in random test cases is substantially
higher than in manual test cases and the number of user-defined (meaningful) identifiers substan-
tially smaller. The difference in the identifiers does not explain the observed difference in effective-
ness and efficiency, which goes in the opposite direction: random tests yield superior performance.

Table VII. Occurrences of artificial/user-defined identifiers in
the test cases (Manual vs. Randoop)

Random tests Manual tests
Artificial IDs UserDef IDs Artificial IDs UserDef IDs
JTopas
Tl 20 4 0 36
T2 18 9 0 59
T3 19 8 0 26
T4 61 22 0 16
XML-Security
Tl 7 3 0 9
T2 63 27 0 18
T3 13 5 0 20
T4 23 7 0 21

Table VIII. Descriptive statistics and paired analysis (Wilcoxon’s test) of static (top) and dynamic (bottom) test case metrics
(Manual vs. Randoop): Manual tests are substantially more complex than Random tests according to the dynamic metrics
Methods and LOCs.

Metric N  Randoop.mean Randoop.sd Manual.mean Manual.sd diff. mean diff. median  diff.sd  p.value

MeLoc 8 21.50 14.98 20.88 15.42 0.62 0.50 21.12 1.00
McCabe 8 1.75 0.71 2.38 2.20 -0.62 0.00 2.07 0.59
Methods 8 28.38 15.50 119.75 116.97 -91.38 -65.00  120.77 0.04

LOCs 8 117.00 65.39 676.38 707.53 -559.38 -416.50  725.33 0.04

Figure 6 shows the boxplots of the four complexity metrics, for manual and autogen test cases.
While the two types of tests are quite similar with respect to MeLoc complexity, manual tests have
slightly higher McCabe complexity than random tests. However, none of these two metrics differ
by a statistically significant amount. The difference between test cases is more pronounced when
considering dynamic complexity metrics. Manual test cases are more complex than random tests
both in Executed Methods and Executed LoCs.

The mean number of methods (119.75) and LOCs (676.38) executed by manual test cases (see
Table VIII) is substantially higher than the number of methods (28.38) and LOCs (117.00) executed
by random tests. The ratio is the order of two for JTopas, while it is even higher for XML-Security
(reaching an order of magnitude when LOCs are considered). The difference between manual and
random test cases is statistically significant at 95% confidence level, so we can reject the null hy-
pothesis D Hy, (with respect to dynamic metrics).

We also computed the confusion matrix (see Table IX) associated with a nearest neighbor classi-
fier that predicts the test case type based on one of the two dynamic complexity metrics (either the
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Fig. 6. Boxplots of test case size and complexity (Manual vs. Randoop). The figures suggest that Manual and Randoop are
comparable in terms of MeLoc and McCabe. With respect to executed methods and LoCs, Manual is more complex.

Table IX. Nearest neighbor classifier pre-
diction of the test case type (Manual vs.
Randoop) based on executed methods or
LOCs.

Metric Randoop Manual
TP FN FP TN

Exec. Methods 6 2 2 6

Exec. LOCs 8 0 2 6

executed methods or LOCs). The predictor classifies a new test case by determining the available
test case having the closest dynamic complexity metrics value and assigning it to the class (autogen
or manual) of such closest test case [Cover and Hart 1967]. The confusion matrix was obtained by
applying 1-fold cross validation.

Table X. Prediction performance metrics for the Nearest Neigh-
bor classifier using executed methods or LOCs; the test case
type is Manual or Randoop.

Metric Precision  Recall Accuracy F.measure
Exec. Methods 0.75 0.75 0.75 0.75
Exec. LOCs 0.80 1.00 0.88 0.89
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Executed LOCs is a better predictor than executed methods. The values reported in Table X
(bottom) for this predictor are quite close to one, showing that in our experiment it is possible to
predict the type of a test case from its dynamic complexity metrics (specifically, executed LOCs)
with high accuracy. This means that the autogen and manual test cases used in the experiment can
be characterized with a high accuracy respectively as low dynamic complexity and high dynamic
complexity test cases.

In summary, manual test cases are dynamically more complex than random test cases. This might
explain the observed performance degradation exhibited by subjects working with manual test cases,
despite the presence of more meaningful identifiers in these test cases.

4.4. Analysis of Post Questionnaire

We used the answers to the questions from Q1 to Q8 to gain insights on the subjects’ activity. Results
are summarized in Table XI. Considering data over all the replications, answers to questions Q2,
Q4, Q7 and Q8 produced statistically significant results (p-value < 0.05), while answers to the other
questions are not statistically significant. Subjects found the tasks to be clear (2 =1, i.e., “agree”,
with p-value <0.01) and, overall, they had no difficulty in understanding the source code of the test
cases (Q4). The debugger was used (Q7) only by high ability subjects, although it was judged useful

(Q8) by all.

Table XI. Analysis of post questions Q1-Q8. Mann-Whitney test for the null hypothesis median(Qx) = 0 (Manual vs.
Randoop); p-values in bold face indicate that the result is statistically significant at level 0.05.

Question Low ability High ability All

median p.value median p.value median p.value
Q1: Enough time not certain 0.59 agree 0.01 not certain 0.10
Q2: Tasks clear not certain 0.05 strongly agree 0.01 agree <0.01
Q3: No difficulty in understand application code  not certain 0.37 not certain 0.23 not certain 0.98
Q4: No difficulty in understand test code not certain 1.00 not certain 1.00 agree 0.03
Q5: Easily understand the feature under test not certain 0.85 not certain 0.37 not certain 0.30
QO6: No difficulty in identifying where to fix not certain 0.19 not certain 0.07 not certain 0.32
Q7: Used the Eclipse debugger not certain 0.30 strongly agree 0.01 agree 0.01
Q8: Debugger was useful agree 0.41 agree 0.01 agree <0.01

Then, we compared the answers for the questions specific to test cases (Q9 to Q17), to understand
if any statistical difference can be observed between subjects who worked with manually written test
cases and those who used autogen ones. The unpaired Mann-Whitney’s test never reported statistical
significance, so we omit the table (it can be found in the technical report [Ceccato et al. 2013]).

Let us now analyze the differences between the answers given by the low and by the high ability
subjects (see Table XI, columns 2-3, 4-5). According to the post questionnaire, there is a remarkable
difference in the use of the Eclipse debugger (Q7) between the low and high ability subjects, in that
only the latter declare to have used it extensively. This might be part of the explanation for the gap
between manual and random test cases observed in both effectiveness and efficiency (see Figures 1
and 3). Without the debugger, low ability subjects could take advantage only of simple test cases
(i.e., those generated by Randoop), while they could not manage the complexity of most manual test
cases, resulting in lower performance in the latter case. On the contrary, high ability subjects, who
used the debugger more extensively, were able to take advantage also of the complex test scenarios.
Of course, they also had better performance with the simpler, random tests.

Differently from the low ability subjects, high ability subjects considered the debugger useful
(Q8), which is consistent with the extensive use of the Eclipse debugger (Q7), reported only by
the high ability subjects. Another difference is that time was regarded as sufficient to complete the
debugging task (Q1) and tasks were regarded as clear (Q2) by high ability subjects, while this was
not the case for low ability subjects.
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5. RESULTS OF MANUAL VS. EVOSUITE [MVE]

This experiment compares manual and autogen test cases, but considers a different test case genera-
tion algorithm (i.e., EvoSuite [Fraser and Arcuri 2011]) and subjects with higher experience. It was
also replicated twice, the first time with six professors/post-docs from University of Milano-Bicocca
and the second time with nine researchers/post-docs from Fondazione Bruno Kessler. Participants
were asked to locate and fix faults, supported by (i) manually written test cases, or (ii) test cases
generated by EvoSuite.

5.1. Debugging Effectiveness

Figure 7 shows the boxplots of the effectiveness in fault fixing. The median of the effectiveness when
debugging with EvoSuite tests is lower than when manual tests are used, but the overall distribution
of effectiveness is very similar. Figure 7 (bottom) reports the corresponding descriptive statistics.

Table XII reports the analysis with GLM to study the influence of the main factor (i.e. the treat-
ment) and of the other factors on the effectiveness of debugging. The statistical test reports a p-
value>0.05. Thus, we cannot reject the null hypothesis Hyi g, stating that There is no difference in
the effectiveness of debugging when debugging is supported either by manually written or EvoSuite
test cases. The probability of a type II error (accepting a false null hypothesis), obtained from GLM
power analysis, is 1%.

Effecliveness (# of correct tasks)

T T
Evosuite Manual

Mean Median Sd
Manual tests 2.73 4.00 1.58
EvoSuite tests 2.73 3.00 1.28

Fig. 7. Boxplots and descriptive statistics for Effectiveness (Manual vs. EvoSuite): debugging was equally effective with
Manual and EvoSuite test cases.

Table XII. GLM analysis of Effectiveness (Manual vs. Evo-
Suite); p-values in bold face indicate a statistically signifi-
cant influence on Effectiveness.

Estimate  Std. Error  tvalue  Pr(>|t))

(Intercept) 1.4103 0.3845 3.67 0.0012
Treatment -0.0264 0.1128 -0.23 0.8167
Experience -0.1538 0.1279 -1.20 0.2408
Field 0.0962 0.1279 0.75 0.4595
System -0.4014 0.1128 -3.56 0.0016
Lab 0.0048 0.1128 0.04 0.9664

Table XII also reveals the role of the factors in influencing the dependent variable, i.e., the de-
bugging effectiveness.
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As first factor we studied if the Experience of participants (PhD student/post-doc or researcher-
s/professors) influenced the results. Differently from the MvR experiment, we can notice that expe-
rience did not influence the effectiveness of debugging. Then, we considered if the research Field of
participants (software testing or a different field) influenced the results. Also in this case, the large
p-values bring us to accept the null hypothesis (non-influence of the research field).

We considered if the particular System used in the experimental sessions (JTopas or XML-
Security) influenced the result. Differently from the MvR experiment, we can notice that the subject
system had a significant effect in influencing the effectiveness (p-value<0.05). Figure 8 shows the
interaction plot of Effectiveness between Treatment and System. We can notice that when working
on XML-Security participants had, on average, a lower effectiveness than when working on J7opas,
both with manual tests and with EvoSuite tests. Moreover, such gap is amplified when manual tests
are used, hence indicating a level of interaction with the main factor. XML-Security was more dif-
ficult to debug and the associated difficulty was further increased when manual tests were available
for the debugging task.

System

35

-- Jtopas
——  Xml-security|

25 3.0

Mean of effectiveness

2.0

Evosuite Manual

15

Treatment

Fig. 8. Interaction plot of Effectiveness between Treatment (Manual vs. EvoSuite) & System; diverging/converging lines
indicate potential interactions. XML-Security is more difficult to debug than Jtopas and it becomes even more difficult when
Manual test cases are used.

We analyzed the learning effect by studying the Lab factor. We can notice (see Table XII) that
the lab did not influence the effectiveness. The last factor that we consider is the Fault. We analyze
whether the faults influenced the result and whether they interacted with the main factor to influence
the result. We adopt the same analysis procedure that was applied for the MvR experiment (i.e.,
GLM for Corr; for each i-th fault).

Table XIII reports the results of GLM for Correctness by Treatment and Fault. There is a statisti-
cally significant influence of Fault only for XML-Security.

Table XIIl. GLM analysis of Correctness by Treatment and Fault (Manual vs. EvoSuite); p-values in bold face indicate
a statistically significant influence on Correctness

Estimate ~ Std. Error  tvalue Pr(>t)) Estimate  Std. Error  tvalue  Pr(>[t])
(Intercept) 0.7887 0.1632 4.83 0.0000 (Intercept) 1.0155 0.2412 4.21 0.0001
Treatment 0.1161 0.0832 1.39 0.1686 Treatment  -0.1696 0.1264 -1.34 0.1847
Fault  -0.0333 0.0371 -0.90 0.3733 Fault  -0.1133 0.0564 -2.01 0.0492

(a) Jtopas (b) Xml-Security

By looking at the interaction plot shown in Figure 9, we can notice that overall, the use of autogen
tests increases the proportion of correctly executed debugging tasks, as compared to the use of
manual tests, but such improvement is fault specific. For Fault 1 the improvement is marginal; for
Faults 2-3 there is a remarkable improvement; Fault 4 is a case where the difference between autogen

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2015.



39:21

and manual tests is substantial. On Fault 4 the mean correctness of debugging is more than doubled
when autogen tests are used.

Treatment

-- Evosuite
— Manual

Mean of Correctness
02 03 04 05 06 07

Fig. 9. Interaction plot of Correctness between Treatment (Manual vs. EvoSuite) & Fault on XML-Security; diverging/-
converging lines indicate potential interactions.

5.2. Debugging Efficiency

A similar procedure was used to study the efficiency of debugging. Figure 10 shows the boxplot of
the efficiency with the two alternative treatments. The picture reveals no clear trend. The efficiency
with EvoSuite is on average higher than with manual tests, but the distribution is similar.

Table XIV shows the result of the analysis with GLM. Statistical significance is not reached (p-
value>0.05), so we cannot reject the null hypothesis Hoop, stating that There is no difference in
the efficiency of debugging when debugging is supported either by manual or EvoSuite test cases.
The probability of a type II error (accepting a false null hypothesis), obtained from GLM power
analysis, is 1%.

In summary, EvoSuite test cases are as good as manual test cases in supporting debugging in
terms of both effectiveness and efficiency.

Efficiency (#correct/time[m])

0.00 005 0.10 0.15 020 0.25

T T
Evosuite Manual

Mean Median Sd
Manual tests 0.07 0.04 0.07
EvoSuite tests 0.10 0.05 0.10

Fig. 10. Boxplots and descriptive statistics for Efficiency (Manual vs. EvoSuite): debugging was equally efficient with
Manual and EvoSuite test cases
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Table XIV. GLM analysis of Efficiency (Manual vs. Evo-
Suite); p-values in bold face indicate a statistically signif-
icant influence on Efficiency.

Estimate  Std. Error  tvalue  Pr(>[t])

(Intercept) 0.2978 0.0810 3.68 0.0012
Treatment -0.0294 0.0238 -1.24 0.2273
Experience -0.0025 0.0269 -0.09 0.9269
Field -0.0096 0.0269 -0.36 0.7252
System -0.1208 0.0238 -5.08 0.0000
Lab 0.0213 0.0238 0.90 0.3789

From Table XIV, we can see that factors Experience, Field and Lab did not influence the results.
As with effectiveness, we can notice that the factor System has a significant effect in influencing the
efficiency (p-value<0.05). Figure 11 shows the interaction plot of Efficiency between Treatment
and System. Similarly to the interaction plot for the effectiveness (see Figure 8), when working on
XML-Security participants had, on average, a lower efficiency than when working on J7opas, both
with manual tests and with EvoSuite tests. Moreover, the availability of manual tests further reduces
the debugging efficiency on both Jtopas and XML-Security, hence revealing some interaction with
the main treatment.

System

0.15
I

-- Jtopas
——  Xml-security

Mean of efficiency
0.10
Il

0.05
1

\

Evosuite Manual

Treatment

Fig. 11. Interaction plot of Efficiency between Treatment (Manual vs. EvoSuite) & System; diverging/converging lines
indicate potential interactions. XML-Security is more difficult to debug than Jtopas; both become more difficult to debug
when Manual test cases are used.

For the factor Fault, we apply GLM to estimate Tvme; for each i-th fault. Table XV reports the
results of GLM for Time by Treatment and Fault. No statistically significant influence of Fault on
Efficiency was reported by the statistical test.

Table XV. GLM analysis of Time by Treatment (Manual vs. EvoSuite) and Fault; p-values in bold face indicate a
statistically significant influence on Time.

Estimate  Std. Error  tvalue Pr(>t) Estimate  Std. Error  tvalue Pr(>t))
(Intercept) 6.7574 5.5761 1.21 0.2306 (Intercept) 17.3869 6.4545 2.69 0.0093
Treatment 1.8973 2.8439 0.67 0.5074 Treatment 7.2589 3.3810 2.15 0.0361
Fault -0.3333 1.2690 -0.26 0.7937 Fault -2.3333 1.5087 -1.55 0.1275

(a) Jtopas (b) Xml-Security
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5.3. Test Case Understandability

Table X VI reports the number of artificial/user defined identifiers in EvoSuite test cases (second and
third columns) and in manual test cases (fourth and fifth columns). This table differs from Table VII
because Randoop and EvoSuite reveal different faults and correspondingly different manual test
cases are used in experiments MvR and MVE. No artificial identifiers are present in manual test
cases, while EvoSuite tests contain both artificial and user-defined identifiers.

Table XVII reports the results of the Wilcoxon test on the identifiers. EvoSuite test cases have on
average 3 artificial identifiers and manual tests have on average 12 user-defined identifiers more than
EvoSuite tests. This difference is statistically significant according to the results of the Wilcoxon test
(p-value<0.05). So we can reject the null-hypothesis D Hysr and we can formulate the alternative
hypothesis that the number of meaningless (artificial) identifiers in EvoSuite tests is higher than in
manual tests and the number of meaningful (user-defined) identifiers is smaller.

Table XVI. Occurrences of artificial/user-defined identifiers in
the test cases (Manual vs. EvoSuite)

EvoSuite tests Manual tests
Artificial ID  UserDef ID  Artificial ID  UserDef ID
JTopas
Tl 2 5 0 27
T2 3 7 0 18
T3 3 6 0 15
T4 2 5 0 18
XML-Security
Tl 4 10 0 26
T2 3 8 0 27
T3 3 9 0 9
T4 1 6 0 12

Table XVII. Paired (Manual vs. EvoSuite) analysis of artificial/user-defined identifiers (Wilcoxon’s test); p-values
in bold face indicate a statistically significant difference between Manual and EvoSuite tests.

IDtyper N Manmean Mansd Evomean Evo.sd diff mean diff.median diff.sd p.value
Artificial ID 8 0.00 0.00 2.62 0.92 -2.62 -3.00 0.92 0.01
UserDefID 8 19.00 7.01 7.00 1.85 12.00 12.00 7.13 0.02

Figure 12 compares the complexity metrics computed on EvoSuite and manual test cases. While
the two types of tests are very similar with respect to McCabe complexity, manual tests have higher
MeLoc. Manual tests have also higher dynamic complexity than EvoSuite tests, in terms of both
Executed Methods and Executed LoCs.

These trends are confirmed by the results of the Wilcoxon test reported in Table XVIII. While
there is no statistically significant difference on McCabe complexity, differences in all the other
(static and dynamic metrics) are statistically significant. So we can reject the null-hypothesis
DHy,g and formulate the alternative hypothesis that static (MeLoc) and dynamic complexity of
manually written test cases is significantly higher than in EvoSuite test cases.

In summary, as observed in the case of Randoop test cases, manual tests on the one hand contain
a higher number of meaningful identifiers than EvoSuite tests. On the other hand, manual tests are
more complex than EvoSuite test cases. Differently from the MvR experiment, in this experiment
the lower complexity of EvoSuite test cases is not associated with a higher effectiveness or efficiency
of debugging. At the same time, the reduced understandability of EvoSuite tests does not make them
less effective than manual test cases during debugging, in terms of effectiveness and efficiency.
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Fig. 12. Boxplots of test case size and complexity (Manual vs. EvoSuite). The two types of tests are comparable with
respect to McCabe complexity. Manual tests have higher MeLoc, Executed Methods, and Executed LoCs.

Table XVIII. Descriptive statistics and paired analysis (Wilcoxon’s test) of static (top) and dynamic (bottom)
test case metrics (Manual vs. EvoSuite): Manual tests are substantially more complex than EvoSuite tests
according to the static metrics MeLoc and the dynamic metrics Methods and LOCs.

Metric N  Man.mean Man.sd Evo.mean Evo.sd diff.mean diff.median  diff.sd p.value
MeLoc 8 27.25 34.03 4.12 1.73 23.12 7.00 34.46 0.02
McCabe 8 1.62 1.41 1.25 0.46 0.38 0.00 1.60 0.85
Methods 8 84.88 93.07 18.62 10.70 66.25 27.00 91.14 0.01
LoCs 8 429.12  477.50 74.50 43.94 354.62 161.50  473.89 0.01

5.4. Analysis of Post Questionnaire

Results of the Mann-Whitney test for questions Q1-Q4 are shown in Table XIX. Statistical signifi-
cance is observed for Questions Q1, Q2 and Q4, but not for Q3. Participants strongly agree that they
had enough time to complete the tasks and that tasks were clear. While they agree that understand-
ing the application is required to complete the tasks, they are not certain that understanding the test
cases is also required.

Questions Q7 and Q8 deal with the used (Q7) and most used (Q8) features of the IDE. All the
features mentioned in the questionnaire have been used, with debugger and code navigation reported
as the most used features.

Participants never used either JTopas or XML-Security before the experiment (question SQ1),
and never used the faults from the SIR repository related to these two applications (SQ2).
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Table XIX. Analysis of post questions Q1-Q4. Mann-Whitney test
for the null hypothesis median(Qz) = 0 (Manual vs. EvoSuite); p-
values in bold face indicate that the result is statistically significant

at level 0.05.
Question Median P-value
Q1: Enough time strongly agree <0.01
Q2: Tasks clear strongly agree <0.01
Q3: Test case understanding required not certain 0.68
Q4: Application understanding required ~ agree <0.01

Questions OQ1 and OQ2 deal with the main challenges faced during debugging and with the
followed process, respectively. The most frequently reported challenge during debugging (OQ1) is
understanding the application code both when using manual and EvoSuite tests. Only 2 participants
indicated understanding the test cases as a challenge, which corroborates our interpretation of the
answers to Q3.

The strategy adopted to fix faults (OQ2) does not show relevant differences when using manual
or EvoSuite test cases. Interestingly, understanding the test cases is not among the actions taken by
participants to locate and fix the faults (still, in line with Q3).

According to the post questionnaire, the code of the test cases is not to be necessarily understood,
in the opinion of the expert subjects involved in MVE, while it is supposed to be deeply understood
according to the less experienced subjects involved in MvR. This could explain the different results
obtained in the two studies. The analysis of the manual tests, which are more complex than Randoop
and EvoSuite tests, is hard and takes time. The less experienced subjects performed better with
Randoop tests because these tests are simpler to understand as compared to the manual tests. The
expert subjects involved in MVE, who did not spend much time understanding the tests, performed
equally well with EvoSuite and manual tests, despite the higher complexity of the latter tests. On
the other hand, deep understanding of the application logic was reported as the major challenge by
many subjects, when using either random and EvoSuite tests. Another remarkable difference is in
the use of the debugger and of the code navigation functionalities offered by the IDE. Differently
from experiment MVR, the expert subjects involved in MVE made extensive use of the IDE, in
particular debugging and code navigation functionalities.

6. RESULTS OF MANUAL VS. OBFUSCATED [MVO]

Since MvR and MvVE indicate that the presence of meaningful identifiers and the fact that tests are
manually created with a specific intent in mind are not relevant for debugging, we designed this
experiment to specifically investigate the impact of the identifiers on the debugging activity. This
study was conducted involving 11 MSc students from the University of Milano-Bicocca. Partici-
pants have been asked to locate and fix faults, supported by (i) manually written test cases, or (ii)
manually written test cases with obfuscated identifiers.

We produced the obfuscated test cases from the manually written test cases by changing the name
of every local variable and method parameter into x followed by an incremental number, and the
name of every class attribute into y followed by an incremental number. In this way no variable or
parameter has a name that describes the semantics of the value it stores.

6.1. Debugging Effectiveness

Figure 13 shows the boxplot of the effectiveness in fault fixing. The figure compares the number
of correctly fixed faults when participants worked with the original, manually written, test cases
(indicated as clear in the boxplot) to the number of correct fixes when working with obfuscated test
cases (indicated as obfuscated in the boxplot). The effectiveness of clear tests is sometimes higher
than the effectiveness of obfuscated tests. However, the two distributions have the same median,
suggesting that the type of the identifier (clear or obfuscated) has no impact on the effectiveness of
debugging tasks.
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Table XX shows the GLM for effectiveness when clear and obfuscated test cases are used. Statis-
tical significance is not reached (p-value is not <0.05), that is we cannot reject the null hypothesis:
there is no difference in the effectiveness of debugging, when debugging is supported by manually
written test cases, either with clear or obfuscated identifiers. The probability of a type II error in
this claim is 23%; this relatively high value is due to the low number of subjects (11) and the high
dispersion of data.

Accuracy (# of correct tasks)
2
Il

o o
T T
clear obfuscated

Mean Median Sd
Manual tests 2.18 2.00 1.08
Obfuscated tests 1.75 2.00 0.89

Fig. 13. Boxplots and descriptive statistics for Effectiveness (Manual vs. Obfuscated): debugging was equally effective
with Manual and Obfuscated test cases.

Table XX. GLM analysis of Effectiveness (Manual vs. Ob-
fuscated); no factor has a statistically significant (p-value
< 0.05) influence on Effectiveness.

Estimate  Std. Error  tvalue  Pr(>]t|)

(Intercept) 0.6641 0.4319 1.54 0.1464
Treatment -0.0348 0.1202 -0.29 0.7763
Ability -0.0472 0.0994 -0.48 0.6420
System -0.1598 0.1202 -1.33 0.2049
Lab 0.1371 0.1274 1.08 0.3002

For what concerns the other factors, we can notice that none of them had a statistically signifi-
cant influence on effectiveness (see Table XX), with the exception of faults for XML-Security (see
Table XXI).

By looking at the interaction plot shown in Figure 14, we can notice that some faults are fixed
equally well on clear and on obfuscated code (Faults 3-4), while on other faults (1-2) having either
clear or obfuscated code is slightly preferable.

Table XXI. GLM analysis of Correctness by Treatment (Manual vs. Obfuscated) and Fault; p-values in bold face indicate
a statistically significant influence on Correctness

Estimate  Std. Error  tvalue  Pr(>t) Estimate  Std. Error  tvalue Pr(>t))
(Intercept) 0.9743 0.3043 3.20 0.0028 (Intercept) 1.0911 0.3292 3.31 0.0029
Treatment -0.2171 0.1730 -1.25 0.2173 Treatment -0.0050 0.1664 -0.03 0.9764
Fault -0.0160 0.0782 -0.20 0.8388 Fault -0.2877 0.0837 -3.44 0.0021

(a) Jtopas (b) Xml-Security
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Fig. 14. Interaction plot of Correctness between Treatment (Manual vs. EvoSuite) & Fault on XML-Security; diverging/-
converging lines indicate potential interactions.

6.2. Debugging Efficiency

Figure 15 shows the boxplots of efficiency when the faults are debugged using manually written
test cases either with clear or obfuscated identifiers. Also in this case the efficiency of clear tests
is sometimes higher than the efficiency of obfuscated tests. However, the two distributions have
similar medians, suggesting that the type of the identifier (clear vs. obfuscated) has no impact on
the efficiency of debugging.

Table XXII reports the GLM for efficiency. The test did not reach statistical significance, so also
for efficiency we cannot reject the null hypothesis: there is no difference in the efficiency of debug-
ging, when debugging is supported by manually written test cases, either with clear or obfuscated
identifiers. The probability of a type II error is 13%.

——

Efficiency (#correct/time(m])
000 001 002 003 004 005

o
T T

clear obfuscated

Mean Median Sd
Manual tests 0.02 0.02 0.01
EvoSuite tests 0.01 0.02 0.01

Fig. 15. Boxplots and descriptive statistics for Efficiency (Manual vs. Obfuscated): debugging was equally efficient with
Manual and Obfuscated test cases.

For what concerns the other factors, we can notice that none of them had a statistically significant
influence on effectiveness, including the faults (see Tables XXII and XXIII).

6.3. Test Case Understandability

In Sections 4, 5, we have found no significant difference in the effectiveness or efficiency of de-
bugging when comparing Randoop/EvoSuite against manual tests. In Section 6, identifier names
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Table XXII. GLM analysis of Efficiency (Manual vs. Obfus-
cated); no factor has a statistically significant (p-value <
0.05) influence on Efficiency.

Estimate  Std. Error  tvalue  Pr(>]t])

(Intercept) 0.0224 0.0207 1.08 0.2988
Treatment -0.0041 0.0058 -0.70 0.4931
Ability -0.0018 0.0048 -0.38 0.7088
System -0.0053 0.0058 -0.91 0.3769
Lab 0.0094 0.0061 1.54 0.1470

Table XXIIl. GLM analysis of Time by Treatment (Manual vs. Obfuscated) and Fault; no factor has a statistically
significant (p-value < 0.05) influence on Time.

Estimate  Std. Error  tvalue  Pr(>t)) Estimate  Std. Error  tvalue  Pr(>t))
(Intercept)  32.3684 10.2913 3.15 0.0032 (Intercept)  18.1722 15.0818 1.20 0.2400
Treatment 1.8230 5.8527 0.31 0.7571 Treatment 7.8179 7.6261 1.03 0.3155
Fault -2.5308 2.6453 -0.96 0.3448 Fault 1.9106 3.8342 0.50 0.6228

(a) Jtopas (b) Xml-Security

alone (clear vs. obfuscated) have been found to be insufficient to explain the lack of apparent dif-
ference between autogen and manual tests. We now investigate whether the understandability of the
obfuscated and the clear tests that we used in the study was indeed significantly different.

Even if we renamed the identifiers in the tests, references to external entities, such as library or
application methods called from the test cases, are not changed, so meaningful identifiers are still
present in the obfuscated test cases. Table XXIV reports the number of obfuscated and user-defined
identifiers for obfuscated test cases in the second and third columns, and the number of obfuscated
and user-defined identifiers for clear test cases in the fourth and fifth columns. Table XXV reports
the results of the Wilcoxon test on identifiers. The results confirm the impact of obfuscation: the
difference in the number of obfuscated identifiers (first row) and of user defined identifiers (second
row) between obfuscated and clear test cases is statistically significant (p-value = 0.01). We can thus
reject D Hyso.-

Since the obfuscation process does not alter the static/dynamic metrics, D Hy40 is not applicable
in this study.

In summary, the use of test cases with an understandability that is statistically significantly lower
than the understandability of manually written test cases did not result in any major difference in
the effectiveness and efficiency of debugging.

Table XXIV. Occurrences of obfuscated/user-defined identifiers in the
test cases (Manual vs. Obfuscated)

Obfuscated tests Manual tests
Obfuscated IDs  UserDef IDs  Obfuscated IDs  UserDef IDs
JTopas
Tl 9 35 0 44
T2 12 31 0 43
T3 5 13 0 18
T4 6 18 0 24
XML-Security
Tl 3 15 0 18
T2 8 18 0 26
T3 6 25 0 31
T4 5 12 0 16
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Table XXV. Paired analysis (Wilcoxon’s test) of static (top) and
dynamic (bottom) test case metrics (Manual vs. Obfuscated vs.
User-Defined)

Id type N diff.mean diff.median diff.sd  P-value
Obfuscated 8 6.75 6.00 2.82 0.01
UserDef 8 -6.62 -6.00 2.92 0.01

6.4. Analysis of Post Questionnaire

Results of Questions Q1-Q4 are summarized in Table XXVI. Questions Q1-Q2 do not have statisti-
cal significance, while Questions Q3-Q4 do (p-value <0.05). Participants (MSc students) agree that
test case understanding and application code understanding are required to complete the debugging
tasks.

We compared the answers of participants who worked with clear test cases with those of par-
ticipants who worked with obfuscated test cases. No question shows any statistically significant
difference.

Table XXVI. Analysis of post questions Q1-Q4. Mann-Whitney
test for the null hypothesis median(Qz) = 0 (Manual vs. Ob-
fuscated); p-values in bold face indicate that the result is statis-
tically significant at level 0.05.

Question Median P-value
Q1: Enough time not certain 0.85
Q2: Tasks clear agree 0.10
Q3: Test case understanding required agree 0.04
Q4: Application understanding required  agree <0.01

Questions Q7 and Q8 investigate what features of the IDE have been used to complete the debug-
ging task and which one of these features was the most useful. The debugger and code navigation
facilities resulted to be the most used features. For each feature, we used the Fisher’s exact test to
compare the answers given when using clear tests with the answers given when using obfuscated
tests. No statistically significant difference is observed.

Questions OQ1 and OQ2 are open questions, meant to let participants formulate free comments
on how they faced the debugging tasks. The main challenges (OQ1) for the subjects who worked
with both clear and obfuscated tests are the comprehension of the application code and domain, the
lack of comments, and the lack of a general overview of the application architecture. It is interesting
to notice that the presence of meaningless identifiers in obfuscated test cases are not mentioned as
a challenge. The steps followed by participants to fix the faulty code (0Q2) are quite standard and
they are the same with either clear or obfuscated identifiers.

Summarizing the results of the post questionnaire, participants agree that code (both test code and
application code) understanding was very important to successfully complete the debugging tasks.
This is consistent with the results reported for MvR, where the subjects (MSc and BSc students)
indicated test case understanding as a relevant factor. However, obfuscation of the identifiers does
not seem to be a barrier to the usability of the test cases in debugging. This is also in agreement
with the observation (see experiments MvR and MvVE) that static and, even more, dynamic com-
plexity metrics better reflect the difficulty of debugging, as compared to the understandability of the
tests. The answers to the open questions of the post questionnaire support this finding: the presence
of meaningless identifiers was not reported as a challenge, while comprehension of code, domain
and overall architecture has been reported as the major difficulty encountered while executing the
debugging tasks.
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7. DISCUSSION

In this section we report the findings (Find) that we derived from our experiments. Each finding is
summarized with one sentence, followed by a summary of the piece of evidence that supports the
finding. We discuss how we interpreted the piece of evidence and a list of the practical implications
generated by the finding.

Findl. Meaningfulness of test case identifiers does not affect debugging effectiveness and effi-
ciency.

Pieces of Evidence.

— Test cases generated with EvoSuite and Randoop include meaningless identifiers (see the
analysis reported in Sections 4.3 and 5.3).

— The presence of meaningless identifiers did not negatively affect effectiveness and efficiency
(see the analysis about effectiveness reported in Sections 4.1, 5.1, and 6.1, and the analysis
about efficiency reported in Sections 4.2, 5.2, and 6.2).

— Experienced subjects did not spend time understanding the purpose of the test cases, either
manual or autogen (see the analysis of the post-questionnaire reported in Section 5.4)

Interpretation. Manual test cases are implemented with a specific intent in mind, so as to ex-
ercise a meaningful and representative test scenario. Moreover, (in our experiments) manual
tests include mostly user-defined identifiers. On the contrary, autogen test cases, generated by
Randoop or EvoSuite, do not explicitly cover any meaningful testing scenario and include a
large number of artificially generated identifiers. Obfuscated test cases are still associated with
a meaningful test scenario, because they are derived from manual test cases, but they include
a substantial number of artificial, meaningless identifiers. All these differences do not result
in superior debugging performance of subjects using manual test cases. We conjecture that the
presence of meaningless identifiers in autogen tests is not an influential factor because such
identifiers appear only when debugging the top-level methods in a test execution (i.e., the test
methods). Below such top level, identifiers are perfectly understandable and meaningful. More-
over, any difficulty of interpretation of a test method due to its identifiers does not matter as long
as the test reveals a fault. Subjects (in particular, subjects with higher experience, as PhD/Post-
docs and researchers/professors) did not even attempt to attribute any intent to autogen tests.
They did not spend any time understanding the purpose of the test cases, while they focused on
understanding the bug and the application code.

Practical Implications.
Impl.1. Since lacking of meaningful identifiers does not affect debugging performance,
while the simplicity of autogen tests can ease debugging, developers should consider testing
components with autogen tests first, to quickly rule out the faults that can be addressed with
automatic tools, and then design the manual tests, to reveal the other faults that cannot be
addressed with autogen tests.

Find2. Test case complexity affects debugging effectiveness and efficiency of less experienced
subjects.

Pieces of Evidence.

— Autogen test cases are simpler than manual test cases (see static and dynamic test case com-
plexity in Sections 4.3 and 5.3)

— Less experienced subjects performed better with autogen test cases than manual test cases
(see analysis of efficiency and effectiveness in Sections 4.1 and 4.2)

— Experienced subjects performed almost equally well with autogen and with manual test cases
(see analysis of effectiveness and efficiency in Sections 5.1 and 5.2)

— Less experienced subjects tried to understand the purpose of the analyzed tests (see answers
to the post questionnaire in Section 4.4)
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— Test case complexity is not reported as a meaningful factor for debugging (see answers of
the post questionnaire in Section 5.4)

Interpretation. Manual test cases exercise complex, long execution scenarios that would require
substantial effort to be fully understood. Autogen test cases are simple, short linear sequences
of method invocations. In experiment MvR, involving less experienced subjects (BSc and MSc
students), this difference provides an explanation for the superior performance of autogen test
cases. In fact, the (less experienced) subjects involved in this experiment report a substantial ef-
fort devoted to test case understanding, which is a major obstacle with manual test cases. On the
contrary, the experienced subjects involved in experiment MvE (PhD/Postdocs and researcher-
s/professors) performed equally well with manual and autogen test cases, showing that for ex-
perienced testers the complexity of the test cases is not a relevant obstacle. This is confirmed by
their answers to the post questionnaires, in which test case complexity is never mentioned as a
major factor affecting the debugging process.

Practical Implications.
Imp2.1. Less experienced developers should debug the failures produced by autogen tests
and simple manual tests before being allocated to the debugging of complex manual test
cases.

Find3. Ability and experience are key factors affecting the debugging performance.

Pieces of Evidence.

— The low ability students had hard-time with both the debugging process and the debugging
tools (see analysis of the post questionnaire Section 4.4), and experienced difficulties in
fixing faults regardless of the type of test cases used (see analysis of interactions between
treatment and experience in Sections 4.1 and 4.2).

— The high ability students knew the debugging process and the debugging tools (see post
questionnaire in Sections 4.4, 6.4) and performed significantly better with autogen tests than
manual tests (see analysis of interaction between treatment and experience in Sections 4.1,
4.2).

— The experienced subjects spent more time on the bug than on the test code (see analysis of
post questionnaire in Section 5.4) and performed well with both autogen and manual test
cases (see analysis of efficiency and effectiveness in Sections 5.1, 5.2).

Interpretation. We considered four levels of experience (BSc students, MSc students,
PhD/Post-docs and researchers/professors) and we further analyzed the actual ability of
BSc/MSc students through questionnaire and debugging exercises. The performance of subjects
is distributed along a spectrum that nicely follows their levels of ability and experience. Low
ability/BSc students have a quite poor performance regardless of the type of test cases used.
They had a hard time fixing the faults and they encountered difficulties on the whole debugging
process, including the use of tools and environments. High ability/MSc students show a good
performance when using autogen test cases. For them, availability of focused, simple test cases
empowers their fault finding capabilities. These subjects have enough ability and skills to take
advantage of the simplicity of the fault revealing test cases generated automatically by tools,
while they face more difficulties when provided with complex, manually written test cases.
They know the debugging process and the associated tools relatively well, but they still work
much better if simple test cases are provided. At the end of the spectrum are experienced sub-
jects (PhD/Post-docs and researchers/professors), who have good debugging performance with
any kind of test case (manual or autogen). As long as a test case reveals the fault, these subjects
can perform debugging accurately and efficiently. They do not spend much time on the test case
itself and they rather focus on the understanding of the bug and of the application code.

Practical Implications.
Imp3.1. Low ability developers should not be allocated to debugging at all.
Imp3.2. Debugging of complex manual tests should be allocated to senior developers.
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Find4. The debugging performance depends on the complexity of the system.

Pieces of Evidence.

— The subject system has a significant effect in influencing the efficiency for experienced sub-
jects (see analysis in Sections 5.1, 5.2).

— The control-flow of failing tests is more complicated in XML-Security than JTopas (see
analysis of dynamic complexity in Section A.2)

— Understanding the application code has been reported as a significant factor in all the exper-
iments (see analysis of post questionnaires in all experiments, reported in Sections 4.4, 5.4,
and 6.4)

Interpretation. Experienced subjects had a similar performance with both manual and autogen
tests, but demonstrated a different effectiveness when working with JTopas rather than XML-
Security, although the faults themselves consist in either case of similar unit-level defects. Ac-
tually, in the failing executions, XML-Security follows a control-flow that is more complicated
to understand and analyze than JTopas. This is expected to be associated with a higher applica-
tion code understanding effort. Since such an effort has been reported by all subjects as a major
factor affecting their debugging performance, we conclude that the complexity of the system
when exercised under the failing scenario is a key factor affecting the capability of accurately
and efficiently fixing the bug.

Practical Implications.
Imp4.1. Tt is important to take into consideration the complexity and the nature of the
system, not only the nature of the tests, when allocating debugging tasks to developers.

Find5. Usage of advanced debugging environments is fundamental with complex test scenarios.

Pieces of Evidence.

— Only the subjects who took advantage of the Eclipse debugger mastered the most complex
manual test cases (see analysis of feedback questionnaire for MvR, reported in Section 4.4,
and the post questionnaire for MVE, reported in Section 5.4).

Interpretation. Only subjects being able to effectively use the Eclipse debugger could take ad-
vantage of the more complex manual test cases to fix faults. When the complexity of a test case
becomes high, automation of the debugging activities is required in order for the tester to be
able to effectively and efficiently investigate the execution, and locate and fix the fault. Experi-
enced subjects used extensively the debugging functionalities offered by Eclipse and were not
impacted by the complexity of the test scenarios.

Practical Implications.
Imp5.1. The use of proper automation tools is fundamental for success when the system
and the faults are not trivial.
Imp5.2. Training junior developers on the use of debugging tools is an investment with a
very high potential return, to be seen during the execution of actual debugging tasks.

To summarize, we can highlight two key findings. First, the efficiency and the effectiveness of
debugging are not affected by autogen test cases; rather, autogen test cases, compared to manually
written tests, are easier to debug for the least experienced developers. Second, the understandability
of the test cases (e.g., the presence of meaningful identifiers and the existence of a meaningful test
scenario) does not affect debugging, while the static and, more importantly, the dynamic complexity
of the tests strongly impacts the effectiveness and the efficiency of debugging.

We have listed a number of implications derived from these findings. For what concerns the use
of tools for automated test case generation, we observe that the debugging capabilities of testers,
especially the less experienced ones, can be amplified by providing them with focused and simple
autogen test cases that reveal the faults to be fixed. Such a benefit is not compromised by the use of
meaningless identifiers in the test cases. Hence, whenever the same fault can be revealed by com-
plex, manual test cases, but also by simple, automated tests, the latter are preferable because they
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can be usually generated faster than manually written tests and, for the less experienced people,
they even maximize the debugging performance. The faults that can be revealed by both autogen
and manual test cases are typically the ones that cause failures that can be detected without ex-
ploiting any specific knowledge of the application, such as crashes, hangs, exceptions and assertion
violations.

Based on the results obtained in our experiments, we reconsider the whole testing process and
the potential room for automated test case generation. We think that our results suggest the fol-
lowing strategy: (1) first, generate automated test cases and fix any bug possibly revealed by them;
(2) write/consider manual test cases only later. Compared to autogen tests, manual tests are more
expensive to be implemented and to use by less experienced subjects. As a result, less experienced
developers should consider autogen tests first in debugging. Besides, autogen and manual test cases
are equally effective for experienced developers, so the choice between them is not critical for these
subjects.

When using autogen test cases, developers might occasionally experience false positives. For in-
stance, an autogen test case might fail because it violates an implicit method precondition. However,
this is a general problem of automated test case generation and is out of the scope of the present
investigation. Under the assumption of a reasonably low false positive rate, according to the results
of our empirical study, increasing the number of faults that are debugged using failing autogen test
cases, and decreasing the ones that are debugged using manual test cases, can significantly improve
the debugging effectiveness and efficiency.

8. THREATS TO VALIDITY

The main threats to the validity of this experiment belong to the conclusion, internal, construct and
external validity threat categories.

Conclusion validity threats concern the relationship between treatment and outcome. We used
statistical tests (General Linear Models and Wilcoxon) to draw our conclusions. Inability to reject
the null hypothesis exposes us to type-II errors (incorrectly accepting a false null hypothesis), when
we claim that no statistically significant difference was observed in the experiments. However, this
probability was computed and reported, and it was always fairly low. We have further mitigated this
threat by replicating the experiment MvE, in which the null hypothesis could not be rejected, two
times, so as to increase the number of participants. In fact, the probability of a type II error can be
reduced by increasing the sample size. In MvO the probability of a type II error is relatively high
(23%) on effectiveness, but it is acceptable (13%) on efficiency.

Since we used GLM to determine the statistical significance of our results, we have applied the
ShapiroWilk test to check the normality of the residuals. The only case of deviation from normality
is on the first experiment (i.e., MVR), but the inspection of the corresponding Q-Q plot did not reveal
major problems. The survey questionnaire was designed using standard scales and improved after
experiment MVR to better detect issues and opinions.

Internal validity threats concern external factors that may affect the independent variable. Sub-
jects were not aware of the experimental hypotheses. Subjects were not rewarded for the participa-
tion in the experiment and they were not evaluated on their performance in doing the experiment.

Construct validity threats concern the relationship between theory and observation. They are
mainly due to how we measure the effectiveness of debugging. We relied on previously defined test
cases to objectively evaluate whether the fixes were correct. The order in which subjects face tasks
might affect the results. To control this factor we pre-ordered tasks (by difficulty). The ability of
students was estimated according to their development background and using their exam scores.
For the BSc students involved in MvR we also used the result of the training lab.

External validity concerns the generalization of the findings. In our experiments we considered
test cases generated by Randoop and EvoSuite. Although other generators could be used, the results
obtained with two generators, working according to different principles, already support well our
interpretations.
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Our studies exploited two different real-world systems from different domains and with different
complexity. In principle different results could be obtained for different systems. To mitigate this
issue we identified the domain of validity of the reported results by characterizing the two applica-
tions, their tests and their faults, within the domain of open source software. The characterization
reported in Appendix A could be used by other researchers to compare their results with ours.

The study was performed in an academic environment, which may differ substantially from an
industrial setup. However, we mitigate this threat by using subjects with different levels of expe-
rience and ability, including highly experienced PhD/Postdocs and researchers/professors, some of
which with experience in professional software development. Moreover, we considered ability and
experience as factors to detect any influence on the results.

9. CONCLUSION

We conducted a family of three experiments having a common goal: understanding the impact
of automatically generated test cases on the effectiveness and efficiency of debugging. The first
two experiments are based on test cases produced by two different test case generators, Randoop
and EvoSuite. The third experiment used manually written test cases with obfuscated identifiers.
It investigated the impact of identifier obfuscation alone, since all test case generators produce
“obfuscated” (meaningless) identifiers. Experiments were conducted on two applications, JTopas
and XML-Security, which have been found empirically to include test cases that are representative
of medium-complex test suites available with open source projects and faults that are representative
of real faults. In total, we involved 55 human subjects in the experiments, with a wide range of
experience and ability, from MSc and BSc students to PhD/Post-docs and researchers/professors.

The key findings obtained from our experiments are that while meaningfulness of the identifiers
that appear in test cases is not significantly detrimental to debugging, complexity of the test cases is
a major factor affecting both effectiveness and efficiency of debugging. Although autogen test cases
contain meaningless identifiers, they usually consist of very simple, linear statement sequences.
They have been found to be equally effective as manual test cases for debugging, in general. Indeed,
they are even more effective than manual test cases when they are used by subjects with intermediate
testing experience and ability (such as MSc students with high ability), thanks to their low dynamic
complexity. Experienced subjects (PhD/Post-docs and researchers/professors) are affected more by
the complexity of the system under test than the test cases themselves. According to the answers
they gave to the post-questionnaire, their understanding effort was focused mostly on application
code, not on test case code, during debugging, while for less experienced subjects the understanding
of the test code was also quite important.

The overall result of our family of experiments indicates that automatically generated test cases
are not a major factor that affects the performance of testers while debugging. Other factors — test
case dynamic complexity, system complexity, developers’ experience, use of tools — have been
found to play a much more prominent role. Hence, in the testing process, automated test case gen-
eration has the potential to give a key contribution, by inexpensively providing evidence of faults
and by supporting debugging of such faults as effectively as manually defined test cases. We rec-
ommend to run automatically-generated test cases first and to use them in debugging the detected
faults. Developers can take advantage of the fault revealing capability of automated tools without
any major negative impact on the debugging effectiveness and efficiency.

As with any empirical research, our study is open to further validation and refinement. By repli-
cating our study in different configurations (with alternative systems, faults, test case generation
tools and subjects) we will be able to accumulate a body of knowledge on the impact of automated
test case generation on debugging, which is a key issue when tools are to be adopted in production
software development environments. We provide all the material and data of our study to facilitate
and support future replications’.

"Replication package available at http://selab.fbk.eu/ceccato/replication_packages/debugging_replication_package.tgz.
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A. CHARACTERIZATION OF TEST CASES AND FAULTS

In this appendix, we analyze the complexity of the test cases and of the mutation faults used in
our experiments. The test case complexity analysis is useful to position our test cases in the larger
spectrum of the test cases that can be found in existing (open source) software projects. Since we
used mutants, in addition to SIR faults, we analyze the complexity of the considered mutants as
compared to SIR faults known for the programs used in our experiments. Unfortunately, there is no
established metrics and procedure for such an assessment, so we had to resort to a set of custom
complexity metrics, which all together are expected to provide a reasonable characterization of test
cases and of mutation faults.

A.1. Complexity of Manual Test Cases

In our empirical studies we used JTopas and XML-Security as subject systems. Here we characterize
the complexity of the manual test cases provided with the distributions of JTopas and XML-Security,
as compared to a sample of applications available as open source code and released with a manual
test suite. The aim is to understand whether the manual test suites of the two subject applications
can be classified as representative of the simple/average/complex test suites available in a sampled
population of open source software systems, thus obtaining deeper insights about the generality and
the scope of the conclusions reported in the paper.

The applications used in the characterization are shown in Table XXVII. They are Java appli-
cations from several different domains for a total of 784,086 NCLoCs (Non-Comment Lines of
Code). All the applications include a full suite of test cases for a total of 372,664 Test NCLoCs
(Non-Comment Lines of Test Code). They have been randomly sampled from open source code
repositories (such as GitHub®, Sourceforge®, and Google code'®). The selection criteria are three
folds: (1) diversity: the selected applications must be of different domains and sizes; (2) test avail-
ability: a test suite should accompany the source code; and (3) maturity: the selected applications
must be well tested in terms of the proportion of test code vs source code, and they must be popularly
used (received at least 1000 downloads).

Table XXVII. Applications used in the characterization of the test case complexity

Name Domain NCLoCs Test NCLoCs
JTopas parsing 4,482 4,547
Xml-Security cryptography 29,255 11,438
H2database database engine 111,080 37,788
Gwt-dev Google web toolkit 108,972 18,823
Gwt-user Google web toolkit 168,405 85,873
Jason-marshaller ~ JSON marshalling library for Java 2,773 4,448
Java2word conversion utility 2,567 1,733
Jcloud-core cloud computing library 19,058 12,310
Jcloud-blobstore  cloud computing library 5,783 4,148
Jcloud-compute cloud computing library 12,711 3,735
Jfreechart chart utility 94,550 48,554
Jgap genetic programming library 43,501 19,771
Jodatime date and time library 27,213 51,679
Openmrs-api medical record system 78,381 29,541
Openmrs-web medical record system 31,318 4,388
Pmd source code analyzer 60,572 14,513
Xstream XML utility 17,202 19,375
TOT 784,086 372,664
Shttps://github.com

9http://sourceforge.net
10https://code.google.com
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We are interested in characterizing the sampled applications in terms of static and dynamic com-
plexity metrics (MeLOC and McCabe; Exec. methods and Exec. LOCs; see Section 3), by analyzing
the distribution of the metrics values to check if any difference holds among the applications’ test
suites and if applications can be grouped based on the test suite complexity level. Our null hy-
pothesis is that there is no significant difference in the metric distribution between the test suite
of application A and that of application B. To test this null hypothesis we perform pairwise com-
parisons among all the pairs of test suites using an unpaired non-parametric statistical test, the
Mann-Whitney two-tailed test. We assume a significance level of 95% (a = 0.05), that is we reject
the null hypothesis if p-value < 0.05. When multiple comparisons are performed, the number of
hypotheses in a test increases, and so does the likelihood of witnessing a rare event. Hence, the
chance to reject a true null hypotheses may also increase (type I error). To control this problem, we
adopt the Bonferroni correction and the Holm correction [Holm 1979].

Let us first consider the static complexity metrics. The boxplot in Figure 16 shows the distribution
of MeLLOC (method lines of code) across all applications, sorted by their medians. Data for JTopas
and XML-Security are highlighted in green. As we can notice, XML-Security is positioned in the
medium of the spectrum, while JTopas is in the middle of the right half of the spectrum.

Based on the pairwise comparisons, we computed the clusters of applications that provide Me-
LOC values statistically similar to our two subject applications. The two clusters which contain
JTopas and XML-Security are reported in Table XX VIII (column 2) and are represented in Figure 16
as different fill textures. XML-Security has values of MeLOC that are similar to three applications
in the middle of the spectrum (Gwt-dev, Java2world and Gwt-user). JTopas is similar to almost all
the applications in the right part of the spectrum. Depending on the correction method, such similar
applications are either 6 (Bonferroni correction) or 5 (Holm correction; the excluded one, Jgap, is
marked by an asterisk).
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Fig. 16. Boxplots of static Method-LOCs. XML-Security is positioned in the middle of the spectrum, while JTopas is in
the middle of the right half of the spectrum.

In the case of the McCabe complexity, all the applications have median equal to 1, so all the appli-
cations can be considered equivalent with respect to this metric. This result indicates that developers
tend to write test cases with a very simple control flow.
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Table XXVIII. Similarity clusters — asterisk means not included by
Holm correction

Application MeLOC Exec. Methods  Exec. LOCs

XML-Security ~ Gwt-dev JTopas Pmd*
Java2world Pmd Xstream
Gwt-user JTopas

JTopas Jcloud-compute ~ Openmrs-api™® Pmd
H2database Pmd Xstream™
Jfreechart XML-Security XML-Security

Openmrs-api
Openmrs-web
Jgap”

Switching to dynamic metrics'!, the boxplots of Exec. methods and Exec. LOCs are shown re-
spectively in Figure 17 and Figure 18. In both cases, JTopas and XML-Security are positioned in
the middle-right part of the spectrum and they belong to the same similarity clusters. Clusters are
reported in Table XXVIII (columns 3 and 4). For Exec. methods the cluster includes Openmrs-api
and Pmd, while the similarity cluster for Exec. LOCs includes Pmd and Xstream.
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Fig. 17. Boxplots of dynamic Executed Methods. JTopas and XML-Security are positioned in the middle-right part of the
spectrum.

In summary, we can conclude that the test suites of JTopas and XML-Security are representative
of medium/complex open source test suites. In particular, in terms of static metrics, XML-Security
is in the middle range, while JTopas is in the upper range for the LOC metrics. All applications
are indistinguishable in terms of McCabe metrics. For what concerns the dynamic metrics, both
subject applications belong to the medium/high complexity range. Hence, they can be regarded
as representative of open source systems provided with medium/high complexity test suites. This
defines the context in which our empirical results can be interpreted.

11When considering dynamic metrics, we had to exclude some applications, because their execution figures were incomplete
due to special test environment requirements that we could not satisfy.
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Fig. 18. Boxplots of dynamic Executed LOCs. JTopas and XML-Security are positioned in the middle-right part of the
spectrum.

A.2. Seeded Faults

In MvVR, seeded faults have been obtained from SIR. However, since some of the faults available in
SIR for JTopas and XML-Security are not revealed by any of the test cases generated by Randoop,
we have slightly modified them so as to make them detectable by the tool, without altering their
nature.

For instance, according to the SIR repository, Fault #3 of JTopas is injected into the application
by removing the getMessage (. .) method from the Ext IndexOutOfBoundsException
class. Since Fault #3 is not detected by autogen test cases, we changed the location of Fault #3 to
the TokenException class, so that it can be revealed by both autogen and manual tests.

Correct Code Faulty Code
public boolean hasNext() { public boolean hasNext() {
// simple: check the current list for a successor | // simple: check the current list for a successor
if (listHasNext()) { if (listHasNext()) {
return true; return true;
} }
// which is the current array ? // which is the current array ?
SortedArray array = null; SortedArray array = null;
if (_arrays[@] != null) { if (_arrays[@] != null) {
array = _arrays[0]; array = _arrays[0];
} else { } else {
array = _arrays[1]; array = _arrays[2];
// skip the rest of method’s code // skip the rest of method’s code
} ¥

Fig. 19. An example of a fault seeded into JTopas. The correct code is on the left listing, while the faulty one is on the
right. The fault is in the highlighted line.

Figure 19 shows one of the the faults used in our experiments. The fault was injected in method
hasNext() of a class of JTopas. The correct index 1 of variable _array was replaced by a faulty
index 2, causing an ArraylndexOutOfBoundsException exception. It is worth noticing that the fault
looks rather simple when it is isolated, but when it is put in a context with layers of code and
within a program that performs several different functionalities, looking for the fault is non-trivial.
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When running the corresponding JUnit test case that triggers the fault, the developer will receive
the exception together with a stack of methods called prior to the exception. Such a call stack
is particularly useful in debugging because it helps the developer narrow down the area (classes,
methods, code blocks) where the fault is hidden. The developer, then, can put breakpoints into the
code and use a debugger to step back and forth to hunt and fix the fault.
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Fig. 20. Boxplots comparing mutants and SIR bugs on Stack Size, LOCs to Failure and LOCs between Fault and Failure

Randoop and EvoSuite reveal two different sets of faults, that are not completely overlapping.
This forced us to replace six of the eight faults used with Randoop when executing experiment MvE.
We generated six new faults with the Jester mutation tool. Existing literature [Andrews et al. 2005]
indicates that artificially generated bugs (mutations) can be reliably used in testing experiments.
However, we have also verified that the faults actually seeded by Jester in our case are indeed similar
to the faults available in the SIR repository. The latter are regression faults manually re-inserted into
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the code by experienced programmers. The metrics we used to characterize the faults produced by
the mutation tool Jester as compared to the ones in the SIR are:

— Stack size at fault location: We stop the execution of the test case when it executes a faulty
statement (fault location) and we measure the call stack size. The call stack size depends on how
many nested method invocations have occurred since the beginning of the program up to the fault
location. A large size of the call stack indicates that the developer may have to analyze a lot of
call relationships before reaching the fault, while on a small stack only a few methods are to be
inspected.

— LOC:s to the failure: This metric counts how many statements a test case executes since the
beginning of the program, before executing the statement that results in a program failure. This
metric is relevant to characterize the fault, because it indicates how many lines a programmer
may have to inspect before encountering the one that produces the failure.

— LOC:s between fault and failure: This metric measures how many statements are executed be-
tween the fault (i.e., the incorrect program statement) and the fault manifestation (i.e., the failure).
This metric is relevant because it quantifies the number of steps that a programmer may have to
backtrack to link the program failure to the statement that caused the problem.

Figure 20 shows the boxplots for JTopas and XML-Security. In particular they compare the faults
injected by the mutation tool (mutant) with the faults documented in the SIR repository (SIR), on
a total of 16 data points. As we can see in Figure 20(a), there is no big difference between the
stack size for SIR and mutant faults, even if there is some difference on the stack size between the
two applications. Probably, XML-Security is more complex than JTopas, so faults involve a larger
invocation stack on the former application. However, the size is consistent across different faults.

Table XXIX. ANOVA test to compare faults by category (mutant vs. SIR bug)
and by application; p-values in bold face indicate a statistically significant

difference.
Df Sum Sq Mean Sq Fvalue Pr(>F)
F.category 1 0.56 0.56 0.10  0.7523
Application 1 76.56 76.56 14.19  0.0027
F.category:Application 1 0.56 0.56 0.10  0.7523
Residuals 12 64.75 5.40
(a) Failure stack size
Df Sum Sq Mean Sq Fvalue Pr(>F)
F.category 1 86289.06 86289.06 049  0.4963
Application 1 796110.06  796110.06 454 0.0544
F.category:Application 1 46764.06 46764.06 0.27  0.6149
Residuals 12 2103265.25 175272.10
(b) LOC:s to failure
Df Sum Sq Mean Sq Fvalue Pr(>F)
F.category 1 14042.25 14042.25 1.19  0.2960
Application 1 9900.25 9900.25 0.84  0.3769
F.category:Application 1 7482.25 7482.25 0.64  0.4406
Residuals 12 141115.00 11759.58

(c) LOCs from fault to failure

In Figure 20(b) we can see that the number of statements executed before reaching the failure
point is quite constant on JTopas for SIR faults vs. mutations. It is slightly higher for SIR faults on
XML-Security. In Figure 20(c) we can see that the median number of statements from the faulty
statement to the fault manifestation does not change much across faults and applications.

To test if the differences observed in the graphs are statistically significant, we used two-way
Analysis Of Variance (ANOVA) [Wohlin et al. 2012]. Table XXIX reports the three ANOVA tables
by Fault Category and Application, to study the variance of the metrics due to the kind of fault
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(mutant or SIR), to the specific application (JTopas and XML-Security) and to the interaction of
these two factors. We regard as statistically significant cases those with p-value<0.05 (shown in
boldface). There is only one statistically significant case, related to the influence of the specific
application on the failure stack size. We observe no significant influence of the kind of fault on the
considered metrics, so we cannot reject the following null hypotheses:

— There is no difference between faults seeded by the mutation tool and faults from the SIR repos-
itory, with respect to the failure stack size;

— There is no difference between faults seeded by the mutation tool and faults from the SIR reposi-
tory, with respect to the number of statements executed from the beginning of the program to the
statement resulting in a program failure;

— There is no difference between faults seeded by the mutation tool and faults from the SIR repos-
itory, with respect to the number of statements executed between the faulty statement and the
failure.

Based on these statistical results, we deem the six mutants used in the experiment with EvoSuite
as comparable to the faults obtained from the SIR repository.
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