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SOMMARIO 

Lo studio delle cinetiche del consumo di ossigeno (VO2) si focalizza sul comprendere 

come il metabolismo del corpo umano si adatta, durante la transizione da una 

condizione di riposo/esercizio ad un’altra, in modo da soddisfare le esigenze 

energetiche necessarie alla locomozione. Essendo un indice integrato della capacità di 

utilizzare l’ossigeno e di funzionalità polmonare, cardiovascolare e muscolare, 

l’interesse verso questa materia è cresciuto in maniera costante durante il XX e l’inizio 

del XXI secolo. Grazie allo sviluppo di nuove tecnologie e al crescente interesse della 

comunità scientifica, la conoscenza riguardante le cinetiche del VO2 è aumentano 

considerevolmente. Ciò nonostante, alcuni argomenti specifici legati alle cinetiche del 

VO2 rimangono dibattuti e richiedono ulteriore ricerca. Tra questi vi è sicuramente la 

perdita di efficienza di locomozione che si registra ad intensità metaboliche medie ed 

elevate, dopo il periodo di adattamento in cui un nuovo stato stazionario del VO2 

dovrebbe invece già essere stato raggiunto. 

Questo fenomeno prende il nome di “componente lenta” del VO2, e rappresenta un 

ulteriore aumento di consumo di ossigeno rispetto a quanto previsto per un dato stato 

stazionario. Chiarire le basi fisiologiche di questo fenomeno è considerato di 

fondamentale importanza sia per il suo collegamento diretto con l’incapacità di 

tollerare l’esercizio fisico, sia per raggiungere una migliore comprensione degli 

adattamenti che avvengono all’interno del corpo umano durante esercizio fisico. Come 

conseguenza, la ricerca ha cercato di chiarire quali siano i meccanismi alla base della 

componente lenta del VO2 e di sviluppare strategie d’intervento volte a ridurne il 

manifestarsi. Non di meno, una serie di incertezze riguardo il significato fisiologico di 

questo fenomeno persistono e richiedono ulteriore studio. 

Lo scopo di questa tesi è di cercare di colmare parte di queste lacune e di comprendere 

le origini della componente lenta del VO2, così come la perdita di efficienza che essa 

sottintende. Nel capitolo uno è fornita una breve spiegazione della risposta del VO2 

durante esercizio, e delle attuali teorie esplicative per la componente lenta del VO2. Nel 

capitolo due, sono spiegati gli scopi di ricercar di questa tesi. Il capitolo tre, quattro, 
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cinque, e sei illustrano i risultati di quattro diversi studi sperimentali. Infine, il capitolo 

sette riassume i principali risultati della tesi.  
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ABSTRACT 

The study of the oxygen consumption (VO2) kinetics is focused on the understanding 

of how human metabolism adjusts during the transition from a condition of 

resting/movement to another in order to satisfy the new energetic demand. As an 

integrated index of pulmonary, cardiovascular and muscles capacity VO2 kinetics have 

gained progressively increasing interests during the XX and the early XXI centuries. 

Thanks to the development of new technologies as well as an always increasing 

community of interested scientists in this subject, the knowledge in this field has been 

expanded considerably. However, some of the topics related to VO2 kinetics remain 

debated and call for further research. One of these topics is the loss of efficiency of 

human locomotion that occurs at the higher metabolic intensities, after the transitory 

period in which a new steady-state in VO2 should be achieved. 

This phenomenon is typically called VO2 “slow component”, as representative of a 

further increase in VO2 after the expected steady-state. The importance of the VO2 slow 

component lies in its link with exercise tolerance and on the understanding of the 

adaptations of the human body during physical activity. Therefore, researchers have 

tried to define the physiological underpinning of the slow component and to develop 

intervention strategies to reduce its amplitude. Nevertheless, a number of physiological 

uncertainties regarding the mechanistic bases of the slow component exist and require 

to be clarified.  

The purpose of this thesis was to deal with this gap and to study the origins of the VO2 

slow component, and the loss of efficiency of locomotion that the slow component 

represents. In chapter one, a brief explanation of the VO2 response during exercise and 

the current explanatory theories for the VO2 slow component are provided. In chapter 

two, the experimental aims of the thesis are explained. Then, the results of four 

different studies are presented in chapters three, four, five, and six. Finally, chapter 

seven summarizes the main findings of this research work. 
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CHAPTER  

1  

Exercise Tolerance and VO2 

Response During Constant vs 

Incremental Work rate 

Exercise 
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Exercise (in)Tolerance: 

 

Exercise tolerance is the ability to produce the required level of force/power for an 

adequate time to accomplish a certain task. It can influence a broad number of 

activities, and have an impact in a large spectrum of contexts ranging from sport to 

daily life.  

The inability to tolerate an adequate amount of exercise may be a major mechanism in 

contributing to functional decline; a key landmark on the pathway from independence 

to “disability”, and to a significant decline in quality of life. A substantial reduction in 

exercise tolerance is recognized to limit mobility, particularly in sedentary people and 

older adults, and therefore represents a barrier to gain many of the well-studied exercise 

benefits (Zaleski et al. 2016). 

While in the young and in the adult populations exercise intolerance can limit the 

amount of specific physical activities (e.g. running, cycling, walking, etc.), in the 

elderly, it limits the ability to perform the activities necessary to everyday life 

accelerates the transition from a state of independence to that of dependence (Poole et 

al. 1994).  

During whole-body exercise, (in)tolerance is determined by a combination of factors 

such as i) the maximum oxygen uptake (VO2max, i.e. the highest level of whole-body 

aerobic capacity); ii)  the ratio of the gas exchange threshold (GET) and the respiratory 

compensation point (RCP) relative to VO2max; GET and RCP represent respectively the 

lower boundary for fatigue accumulation and the upper intensity still compatible with 

a metabolic steady-state; iii)  the speed of adjustment of metabolism during a transition 

from no effort/low effort to a higher exercise intensity (described by the VO2 kinetics); 

iv) and the cost/efficiency of locomotion (defined here as the ratio of a required 

metabolic energy input to mechanical energy output: ∆VO2/∆W).  

These above listed parameters (that highlight the importance of VO2 measures) are 

typically obtained from two main exercise paradigms: the ramp incremental (RI) and 
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constant work rate tests (figure 1, CWR). RI protocols were developed at the end of the 

20th century to test the physiological responses to linear and continuous increases in 

exercise intensity (work rate) ranging from no-effort to maximum; CWR are typically 

used to investigate the adjustment of VO2 (amplitude and speed) during the transition 

phase to a new steady-state.  

Originally, the control of pulmonary VO2 has been characterized as a first-order linear 

system (i.e. to a given increase in exercise intensity correspond a given increase in VO2: 

∆VO2/∆W). 

 

 

Figure 1, schematic representation of the expected VO2 response during ramp incremental 

and constant workrate exercises. 

 

However, empirical evidence (following the development of high-resolution metabolic 

carts) demonstrated that the VO2 follows a more complicated response (e.g. 

cardiodynamic phase, slow component etc.), that this first-order model is valid only 

upon the reach of the intensity corresponding to GET, and when exercise intensity rises 

above GET, the VO2 responses loses its linearity and leads to higher ∆VO2/∆W. More 

specifically, during RI and CWR exercises (respectively as a function of work rate or 

time) it is possible to discriminate a developing increase in VO2 (figure 2), termed 
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“excess VO2” during RI and VO2 slow Component (VO2sc) during CWR. Both these 

phenomena represent an increased and unexpected cost of exercise that challenges the 

assumptions regarding the physiological adaptations to exercise. 

 

 

Figure 2, schematic representation of the excess VO2 and the VO2 slow component during 

ramp incremental and constant workrate exercises. 

 

Clarifying the origin of this increased cost of locomotion is of interest because it could 

possibly increase the knowledge on muscle energetics, on the control of metabolism 

and the underpinnings of skeletal muscle contraction. Moreover, and importantly, these 

increases in VO2 are typically interpreted and correlated with subjects’ exercise 

intolerance. In this chapter, a brief explanation of the VO2 response during RI and CWR 

is provided contextualizing the excess VO2 and the VO2sc as measures of loss of 

efficiency of human locomotion. 

 

VO2 response during constant workrate exercise: 

 

In all activities of daily living there are a lot of challenges in which the energy demands 

of the working muscles might quickly go from rest to a new steady-state/non-steady-
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state level. In this sense, the study of the dynamic adjustments of the VO2 responses is 

of interest to clarify how the metabolic pathways adapt to these continuous variations 

(Poole and Jones 2012), and to gain an overall insight of the body’s capacity to adapt 

to them.  

After the introduction of metabolic carts with a high resolution of measurement (i.e. 

breath-by-breath), the pulmonary VO2 response following the onset of exercise has 

been described by physiologist in three phases (Poole and Jones 2012): 

• Phase I: at the onset of CWR exercise, there is an early rapid increase in VO2 

that starts with the first breath and is spurred by the quick initial elevation of 

cardiac output and pulmonary blood flow; 

• Phase II: an exponential increase in VO2 with a time constant of 20-45 sec in 

healthy adults, drives VO2 to the actual or towards the initially anticipated 

steady-state values. This phase, called “primary component” reflects the arrival 

at the lung of venous blood draining the exercising muscles and reflects the 

kinetics of O2 consumption in the exercising muscles; 

• Phase III: represents the steady-state (or expected steady-state) values, and it is 

typically achieved within the first 2-3 min of exercise, mainly according to the 

subject’s fitness level. 

 

Moreover, it is broadly accepted and demonstrated that the VO2 profile changes 

differently according with exercise intensity, describing three exercise domains: 

moderate, heavy, and severe (figure 3). 

• during moderate exercise (below GET/lactate threshold), work rate can be 

sustained for about long periods and there is not a metabolic acidosis. A steady-

state is usually attained in about 3 min in young and healthy adults. 

• during heavy exercise (above GET and below RCP/Maximal Metabolic Steady 

State), can be identified a metabolic acidosis with an increase in lactate and H+. 

A metabolic steady-state and in VO2  is obtainable but delayed to a time period 
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of 6-10 min, due to the appearance of the “VO2 slow component”; Exercise in 

this domain is sustained with a bigger contribution of glycolysis to ATP 

production, but at whole-body level there is still a balance between lactate 

production and removal. Protracting exercise in this domain leads to extensive 

fatigue accumulation, mostly due to glycogen stores depletion and heat 

accumulation. 

• during severe exercise (above RCP/Maximal Metabolic Steady State), VO2 

gradually increases as steady-state conditions are not achievable, eventually 

reaching the VO2max. Since there is no more balance between production and 

removal of lactate, blood and muscle lactate progressively increase over time. 

In the severe domain, fatigue is accumulated “intensively” by depletion of the 

anaerobic energy sources (called W’ in the Critical Power model) and increased 

acidosis. 

 

 

Figure 3. On the left: schematic representation of VO2 kinetics in response to different work-

rate intensities (Poole & Jones 2012. Oxygen uptake kinetics): below the gas exchange 

threshold (GET, moderate exercise), above GET but below the respiratory compensation point 

RCP, heavy exercise) and RCP with the VO2 projecting to VO2max (severe exercise). Each curve 

has a Phase 1 and a phase 2 and, in addition, the >VT figure has a discernible “slow 

component” (Phase 3). On the right: the same representation is provided using data from a 

representative subject. 
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Whereas the VO2 response below GET is described by a mono-exponential function, 

the VO2 response above GET, has been shown to be better described by bi-exponential 

processes which represents the amplitude of the VO2sc (figure 3). This suggests an 

intensity-dependent loss of muscle efficiency as high intensity exercise proceeds. 

Moreover, during CWR at higher power outputs, the VO2 causes an “excess” of oxygen 

consumption and brings the subjects to VO2max. Therefore, the subject in unable to 

sustain exercise, or progressively decreases the power output in order to oppose the 

development of VO2sc. In the field of physiology, the study of VO2sc is of interest to 

enhance basic understanding of muscle energetics, metabolic control and the 

determinants of the efficiency of skeletal muscle contraction and the underpinnings of 

exercise intolerance.  

 

VO2 response during ramp incremental exercise: 

 

RI test is characterized by a linear and continuous increase in work rate. In this 

protocol, the specific non steady-state conditions provides information on the ability of 

the aerobic system to adjust to continuously changing metabolic demand (Poole and 

Jones 2012). During the initial phase of ramp test, despite the linear increase in work 

rate, the pulmonary VO2 response lags the metabolic demand by a time interval, 

typically defined as mean response time (MRT). The MRT is quantified as the time 

interval between the onset of the ramp and the intersection of the extrapolation of the 

baseline VO2 and the backwards extrapolation of the linear VO2/time  relationship 

below the GET (Boone and Bourgois 2012). Following this initial delay, VO2 increases 

linearly with time (t) and work rate (W). Below the GET, the linear phase of the VO2 

response to ramp exercise has described by the following equation:  

y= ax + b  

where a is the relationship between + VO2 and work rate (∆VO2/∆W) and b is the y-

intercept or VO2 at baseline work rate determined from the linear VO2/W relationship. 
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The ∆VO2/∆W represents an expression of delta efficiency. This parameter is used to 

quantify mechanical muscle efficiency and is one of the main parameters considered in 

planning endurance (long duration) activities and events. Above GET, also the 

anaerobic metabolism is involved into exercise, leading to a slow VO2 response as 

similar as VO2sc in constant work rate ((figure 4 (Boone and Bourgois 2012)). This 

suggests that in high intensity exercise the VO2/W linearity is lost; the upward 

deflection in the VO2/W, named “excess” VO2, due to a delayed additional increase in 

VO2 is ascribed to a drop in mechanical muscle efficiency, that is typically considered 

equivalent to the VO2sc which occurs during constant work rate (Grassi et al. 2015) 

Finally, it should be considered that a clear emergence of the excess VO2 its emergence 

in not always guaranteed, and can be influenced by both subjects’ fitness level and by 

the RI protocol (e.g. excess VO2 manifest more during “slow” W*min-1 ramps) (Boone 

and Bourgois 2012; Iannetta et al. 2019a). 

 

 

 

Figure 4. From Grassi et al. 2015.VO2 response during incremental ramp test when intensity 

exercise is above GET/lactate threshold. The relationship between power output and VO2 is 

linear until GET; than linearity is lost and the VO2 response is greater in compared with power 
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output leading early exhaustion. The upwards curvilinear deflection leads to excess VO2 

caused by a drop in mechanical efficiency.  

 

 

Loss of efficiency: 

 

The most immediate consequence of the arise of the VO2sc during CWR and the excess 

VO2 during RI (Jones et al. 2011), compared to situations in which these phenomena 

do not manifest, is the early exhaustion of the subject as well of a bigger accumulation 

of fatigue-related processes leading to metabolic instability and recruitment of 

additional muscle fibres (Jones et al. 2011). Considering that the magnitude of the 

VO2sc can exceed 1L of extra O2, the impact of loss of efficiency cannot be 

underestimated, especially in populations with already low levels of VO2max such as 

patients. Moreover, the loss of the VO2/W linearity has also more practical 

consequences such as the not straightforward translation of a work rate measured 

during RI (the typical test for cardiopulmonary evaluation) to CWR (the easiest 

protocol for training interventions) (Keir et al. 2018a). 

For these reasons, and to gain a better insight into the metabolic control during exercise, 

the causes of  the loss of efficiency have been studied for decades using different 

approaches and models (Jones et al. 2011). Nowadays, it is commonly accepted that 

the loss of efficiency could be caused by: i) a progressive recruitment over time of new 

muscle fibres (Poole and Jones 2012) ii) metabolic instability within the fibres that 

requires a higher energetic input to sustain the same mechanical output iii) a complex 

interaction of both these processes. A schematic representation of the 

factors/mechanisms possibly causing the loss of efficiency linked with the VO2sc in 

presented in the figure below (figure 5). 
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i) Recruitment hypothesis: a number of studies have tested the hypothesis that a 

progressive recruitment of low-efficiency, glycolytic, type II muscle fibres is 

the main mechanism responsible for the reduced efficiency at exercise 

intensities above the lactate threshold (Jones et al. 2011). VO2sc or excess VO2 

have been hampered by the poor temporal and spatial resolution of the available 

techniques (i.e. Electromyography, Magnetic Resonance Imaging) leading to 

conflicting results (Vanhatalo et al. 2011). 

ii) Metabolic instability hypothesis: as an alternative hypothesis, the genesis of the 

reduced efficiency has been attributed to fatigue of the working fibres (mostly 

type I) (Woledge 1998). Fatigue itself causes an increase in the ATP and/or O2 

cost of exercise during exercise due to the accumulation of metabolites (Pi, 

IMP, AMP, H+, K+) in fatiguing muscles that affect Ca2+ dynamics, troponin 

sensitivity to Ca2+ and the contraction force of the cross-bridges attachment 

(Grassi et al. 2015).  

iii) Recruitment-instability hypothesis: an alternative or complementary 

explanation is that VO2sc and excess VO2 arise due to the combined effects of 

fatigue on the initially recruited fibres (both type I and II fibres) and the 

recruitment of new, less efficient fibres. Type I fibres might be increasingly 

activated at a high contraction velocity that is sub-optimal in terms of force 

production. This would require the activation of additional motor units (mainly 

type II fibres that due to the higher recovery cost, require increasing energy 

(ATP) and O2 over time) (Jones et al. 2011). 
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Figure 5. Adapted from Grassi et al. 2015, factors/mechanisms possibly causing the loss of 

efficiency linked with the VO2sc. 

 

 

State of the Art, methodological discrepancies and new theories: 

 

To date, the recruitment of new muscle fibres and/or metabolic instability within the 

already working fibres are considered the two phenomena that interplay to the loss of 

efficiency and the VO2sc. Specifically, during exercises in which the level of muscle 

contraction is not maximal, it is thought that the VO2sc mostly originates from the 

recruitment of additional muscle fibres (Jones et al. 2011), but experimental evidences 

also showed that VO2sc may manifest within the already active fibres (Zoladz et al. 

2008; Vanhatalo et al. 2011). Nevertheless, the magnitude of this interaction in terms 
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of the relative contribution to the VO2sc (%), as well as how this interaction changes 

over time or according to exercise intensity (e.g. is not clarified if the recruitment of 

new muscle fibres can be considered the main mechanism to VO2sc both in the heavy 

and severe domains) has still to be quantified and described.  

In addition, the interpretation of results of previous researches on the VO2sc is not 

always straightforward due to some methodological discrepancies that can somehow 

mislead the researchers. For example, the VO2sc is reported as an increase in VO2 after 

the moment in which a metabolic steady-state should be achieved, the VO2sc in the 

heavy exercise domain is considered “physiologically equivalent” to the VO2sc in the 

severe domain. However, there is no direct evidence for this to be. Also, some 

investigations are performed at intensities corresponding to the boundary between the 

heavy and severe domains (e.g. ∆50% between GET and VO2max) (Saunders et al. 

2003), but without accounting for methodological pitfalls that may have elicited the 

prescription of exercise in the wrong exercise domain (Iannetta et al. 2019b). 

Another problem when investigating the nature of VO2sc is that only the VO2 measured 

at the level of the mouth is considered, while the other energetic contributors to exercise 

(i.e. glycolysis), as well as the ventilatory portion of the VO2sc (typically 15 to 20% of 

the VO2sc (Poole et al. 1991)) are usually not or scarcely considered. This may be 

particularly important in studies that investigated how the VO2 response is affected by 

interventions such as training (Saunders et al. 2003), priming, or glycogen depletion 

(Bouckaert et al. 2004; Carter et al. 2004; Krustrup et al. 2004b; Korzeniewski and 

Zoladz 2015). In fact, in all these scenarios the phase II of VO2 can be fasten-up or 

slowed by the enhancement/impairment of the contribution of aerobic metabolism to 

exercise, in turn affecting the subsequent VO2sc. Pertinently, a recent study (O’Connell 

et al. 2017) refuted that the energy demand of a constant, high-intensity exercise 

changes over time. By subtracting the VO2 cost of ventilation and accounting for the 

contribution of the glycolytic energy sources (di Prampero et al. 1999) O’Connell 

quantified the total, “adjusted” metabolic cost of muscle exercise over time during a 

constant work rate trial in the severe domain. It was concluded that the oxygen cost of 
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locomotion does not increase over time, other than what required by the augmenting 

cost of ventilation. In other words, these findings suggest that VO2sc may in fact not 

represent a loss of efficiency as a function of time but rather a delayed adjustment of 

the oxidative metabolism. 

This thesis will try to deal with some of the aspects discussed in this chapter. 

Specifically, the first part will focus on the role of muscle recruitment in increasing the 

loss of efficiency, while the second part will investigate across the different exercise 

intensity domains i) the bioenergetic contributors to exercise and the loss of efficiency 

and ii) by applying non-invasive measures of muscle metabolism and activation will 

evaluate the contribution of metabolic instability and muscle recruitment to the loss of 

efficiency. 
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CHAPTER  

2  

Experimental Aims 
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Purposes and Research Questions: 

 

Part 1 

Clarifying the origin of the loss of efficiency linked to the rise of the oxygen 

consumption (VO2) slow component (VO2sc), and the excess of VO2 is of interest to 

increase the knowledge on muscle energetics and the control of muscle metabolism. 

Moreover, this loss of efficiency is typically interpreted and related with subjects’ 

exercise intolerance, and the understanding of its mechanisms could represent the 

starting point through the development of better training and intervention strategies. 

The two main putative mechanisms of the loss of efficiency are metabolic instability 

within the working muscle fibres or recruitment of new less efficient fibres. However, 

given the difficulty to selectively affect either one of these contributors, the exact 

physiological mechanisms underpinning the loss of efficiency remains elusive.  

The first part of this thesis will focus on the possible role of increased muscular 

activation (necessary to maintain the same work rate when fatigued) as explanatory 

theory of the loss of efficiency. In particular, the two studies presented in Part 1 will 

explore the effect of acute, non-metabolic fatigue interventions, on the loss of 

efficiency during RI and CWR exercises:  

• Study 1: the main objectives of this study will be i) evaluating two acute, non-

metabolic fatiguing interventions to impair maximal force and possibly 

augment muscle recruitment at a given absolute work rate ii) testing the 

physiological response to acute fatigue in non-steady-state conditions as during 

RI exercise. 

• Study 2: the most “effective” fatiguing intervention detected in study 1 (i.e. the 

intervention that elicits the highest force impairment) will be applied during 

constant workrate cycling in the severe exercise intensity domain to test the 

impact of acute fatigue on the VO2sc. 
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The underlying hypothesis of both these studies is that the loss of muscle strength 

induced with the fatiguing interventions will translate in increased muscle activation at 

a given absolute work rate; in turn, increased muscle activation will increase the VO2 

cost of locomotion and reduce exercise tolerance 

 

Part 2 

A well-established concept on the VO2sc is that roughly 85 % of it origins from the 

working muscles, while the remaining 15% is ascribable to the VO2 cost of ventilation. 

Most of the studies concerning the VO2sc ignore this distinction. Interestingly, a recent 

research from O’Connell et al. (2017) evaluated these two components together with 

the anaerobic contribution to ATP resynthesis and suggested that the VO2sc may in fact 

represent a shift in energetic sources and increasing cost of ventilation over time rather 

than loss of efficiency. 

Applying the same approach, and implementing measures of peripheral muscular 

activation and metabolism, this part of the thesis will: 

• In Study 3, evaluate the bioenergetics of the VO2sc in the three exercise 

domains. 

• In Study 4, test the contribution of both metabolic instability and fiber 

recruitment to the VO2sc in the three exercise domains 

It was hypothesized that the contributors to the VO2sc will differ between different 

exercise domains. 
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CHAPTER  

3  

Response to Acute Non-

Metabolic Fatigue During 

Ramp Incremental Exercise 

 

Based on the article published in Respiratory Physiology and Neurobiology 270 (2019) 

103281, doi: 10.1016/j.resp.2019.103281. 

 

Alessandro L Colosio, Emmanuele Baldessari, Enrico Basso, Silvia Pogliaghi. 
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Abstract: 

We tested the hypothesis that acute, non-metabolic fatigue, by reducing maximal power 

output and possibly increasing muscle recruitment at a given exercise intensity, will 

reduce indexes of exercise tolerance during incremental cycling. Ten subjects 

performed three ramp incremental tests respectively after static stretching (STRC), 

dropjumps (DJ) or control (CTRL). Fatigue was assessed as reduction in maximal 

power output (sprintPO) during isokinetic sprints. During the ramps we measured: 

oxygen consumption (VO2), power output (PO), and surface electromyography. sprintPO 

was reduced after STRC and DJ (p=0.007) yet not after CTRL. During the ramps, the 

interventions augmented muscle excitation vs CTRL (p≤0.001). Peak PO and VO2 were 

reduced after STRC (302±39W p=0.033, 3365±465 ml*min-1 p=0.015) and DJ 

(300±37W p=0.023, 3413±476 ml*min-1 p=0.094) vs CTRL (314±41W, 3505±486 

ml*min-1). Interventions were associated with early occurrence of the ventilatory 

thresholds and increased VO2 vs CTRL (p=0.029). The physiological response after 

acute non-metabolic fatigue suggests a link between exercise intolerance and the 

decreased ability to produce force. 
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Introduction: 

Exercise tolerance, i.e. the ability to sustain a specific amount of force/power to 

complete a movement task, is fundamental in maintaining independence (for work, 

sport and leisure activities) and quality of life (American College of Sports Medicine 

2017). During whole-body exercise above the Gas Exchange Threshold (GET) and in 

particular above the Critical Power, exercise intolerance is associated with an increased 

cost of locomotion expressed as augmented gain of oxygen consumption (VO2) for a 

given gain in absolute work rate, compared to below threshold intensities. This loss of 

efficiency  of locomotion is experimentally described as “excess-VO2” during 

incremental exercise, and “VO2 Slow Component” during constant work rate exercise 

(Jones et al. 2011; Grassi et al. 2015). Previous studies determined that roughly 85% 

of this phenomenon originates from the contracting muscles, while the remaining 15% 

corresponds to the increased VO2 cost of ventilation (Poole et al. 1991). Several 

researchers focused on the possible causes of the muscular component of the loss of 

efficiency using a series of approaches (Jones et al. 2011 for a summary) and two main 

theories have been proposed: i) decreased metabolic stability of type I muscle fibres, 

caused by the negative effect of physiological metabolites (Pi, IMP, AMP, H+, K+), 

associated with increased O2 cost of ATP resynthesis and/or increased ATP cost of 

contraction (Jones et al. 2011; Grassi et al. 2015) ii) recruitment of fast-fatigable 

intrinsically inefficient type II muscle fibres, to obtain/maintain the external power 

output above a certain intensity threshold (e.g. Critical Power) (Jones et al. 2011; Poole 

and Jones 2012; Grassi et al. 2015). However, the exact physiological mechanisms 

underpinning the loss of efficiency remain elusive, one of the reasons being the 

difficulty to selectively affect either metabolic stability or type II fibres recruitment in 

human models. In fact, the different manipulations used in interventional studies (e.g. 

speed of movement, intensity modulation, aerobic training, priming exercise, 

nutritional interventions) affect to some extent both metabolic stability and fibres 

recruitment (Jones et al. 2011). 
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In this context, different authors explored the effect of acute, non-metabolic fatigue 

interventions, on the loss of efficiency. These interventions reduce the ability of 

muscles to produce force without inducing metabolic changes within the fibres. As 

such, non-metabolic fatigue interventions, should elicit increased muscle activation at 

a given absolute intensity (recruitment theory), while avoiding the confounding effect 

of intracellular homeostasis perturbations (metabolic instability theory). Among these 

authors, Hopker et al. (Hopker et al. 2016) evaluated the effect of 100 dropjumps (DJ) 

on VO2 Slow Component during cycling exercise at the heavy-to-severe boundary. 

Notwithstanding a significant acute fatigue, the authors found no effect of DJ on VO2. 

On the contrary, Esposito et al. (2012) found that when maximal force was acutely 

reduced following stretching (STRC) manoeuvres, the oxygen cost of locomotion 

increased both during ramp incremental and constant work rate exercises (Esposito et 

al. 2012; Limonta et al. 2015). However, given that measures of muscles recruitment 

(e.g. electromyography, EMG) are missing in the above cited studies, a link between 

muscle recruitment and loss of efficiency remains to be conclusively 

demonstrated/dismissed.  

Considering the above contrasting results with acute, non-metabolic fatiguing 

interventions, further research is needed to investigate the possible link between 

fatigue, muscle excitation and augmented VO2 at a given absolute work rate.  

Accordingly, this study was designed to investigate the effects of acute, non-metabolic 

fatigue induced by either DJ or STRC interventions on muscle excitation (i.e. EMG) 

and oxidative metabolism (i.e. VO2) during incremental cycling. Considering the 

possible role of increased muscular activation (necessary to maintain the same work 

rate when fatigued) as explanatory theory of the loss of efficiency phenomena, we 

hypothesis that both STRC and DJ i) will reduce maximal muscle force; ii) in turn, 

force loss will translate in increased muscle excitation at a given absolute work rate; 

iii) finally, increased muscle excitation will impair maximal and submaximal indexes 

of exercise tolerance and reduced efficiency during a ramp incremental test performed 

to exhaustion. 



 

23 
 

 

Methods: 

Participants:  

Ten active men gave written informed consent to participate in the study (25±4 years 

age, 80±13 kg body mass 176±8 cm stature, 25.6±2.3 BMI). Inclusion criteria were 

male sex and age between 20 and 35 years; exclusion criteria were smoking and any 

condition that could influence the physiological responses during testing. The study 

was approved by Departmental Ethics Committee and adhered to the principles of the 

declaration of Helsinki. All participants were instructed to avoid caffeine consumption 

and physical activity respectively for at least 8 h and 24 h before each testing session.  

Protocol:  

Subjects visited the laboratory on five occasions within a maximum of three weeks. In 

the first two occasions, they were familiarized with the experimental procedure 

(isokinetic sprinting and incremental cycling) and the position on the ergometer was 

recorded for the successive appointments. On the third, fourth and fifth visit, separated 

by no less than 2 days of recovery, subjects performed the following identical protocol:  

i) PRE-isokinetic cycling sprints to measure maximal power output at baseline  

ii) a 40-minutes intervention (either STRC, DJ, or control (CTRL)), with the DJ always 

executed as last session to avoid interference due to the long lasting effects of eccentric 

exercises (Twist and Eston 2005)) 

iii) POST-isokinetic cycling sprints  

iv) a ramp incremental test to exhaustion.   

A schematic representation of the protocol is presented in figure. 1 (panel A). 

Tests were conducted at the same time of the day in an environmentally controlled 

laboratory (22-25°C, 55-65% relative humidity), after a standardised meal as 

previously described in (Keir et al. 2015).  
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Figure 1, Panel A: session protocol; Panel B: Isokinetic sprints test protocol; the black bar 

represents the 5 sec sprints while the shaded bars are the 30 sec of freewheeling cycling 

necessary to approach the required number of rpm. 

 

 

Isokinetic Sprints 
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Isokinetic maximal sprints were performed on an electromagnetically braked cycle-

ergometer equipped with a pedal force measurement system and controlled by 

computer (Sport Excalibur PFM, Lode, Groningen, NL). The ergometer was set up into 

an isokinetic mode that limited the peak pedalling frequency and used to measure 

maximal force expressed on the pedals. Frequencies of 60 and 120 rpm were chosen to 

measure velocity-specific peak power as proposed by Cannon et al. (Cannon et al. 

2011), and controlled by the electromagnetic breaking system of the flywheel. Each 

sprints session was composed of 4, five-seconds maximal sprints alternating between 

60-120-60-120 rpm. The 4 maximal sprints were separated by a 2-min passive rest, to 

maximise recovery while limiting the total duration of the sprints session. For each 

five-seconds sprint, participants started to cycle with the bike set at freewheeling, 

gradually attaining the required rpm within 30 sec. Sprints procedure (schematised in 

figure 1, panel B) was completed within 9 minutes.  

 

Ramp incremental tests 

The ramp incremental tests were performed on an electromagnetically braked cycle 

ergometer (Sport Excalibur, Lode, Groningen, NL) and consisted of a 4-min baseline 

cycling at 20 W, followed by a 25-W*min-1 increase in power output (PO) until 

volitional exhaustion. Participants were asked to pick a self-selected cadence in the 

range of 70-90 rpm and to maintain it throughout all tests. Breath-by-breath pulmonary 

gas exchange, ventilation and heart rate were continuously measured using a metabolic 

cart (Quark B2, Cosmed, Italy) as previously described (De Roia et al. 2012). Surface 

EMG of the left vastus lateralis muscle was continuously recorded by means of a 

wireless system (Wave wireless EMG, Cometa, Milan, Italy). A pair of surface 

Ag/AgCl electrodes (Blue sensor, Ambu®, Ballerup, Denmark) was attached to the 

skin with a 2-cm inter-electrode distance. The electrodes were placed longitudinally 

with respect to the underlying muscle fibres arrangement, according to the 

recommendations by Surface EMG for Non-Invasive Assessment of Muscles 

(Hermens et al. 2000). Before electrode application, the skin was shaved, scratched 
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with sandpaper and cleaned with alcohol in order to minimize impedance. Semi-

permanent ink marks allowed consistent re-positioning of the electrodes between 

sessions. The EMG transmitter connected to the electrodes was well secured with 

adhesive tape to avoid movement-induced artifacts.  

Capillary blood samples (20 μl) were drawn from the ear lobe before and at the 1st,3rd, 

5th and 7th min after exhaustion. Samples were immediately analysed using an electro-

enzymatic technique (Biosen C-Line, EKF Diagnostics, Barleben, Germany) and the 

highest value was considered as the peak of blood lactate accumulation for the 

incremental test. 

 

Interventions 

CTRL consisted in 40 minutes of resting in a sitting position under the control of the 

examiner. 

STRC: six cycles of STRC, in which each position was maintained for 80 sec, were 

used to maximise acute force reduction (Behm et al. 2016). The standardised stretching 

protocol sequentially involved the quadriceps of the right leg, the right hamstrings, left 

quadriceps, left hamstrings, with no recovery between exercises. Subjects were 

continuously encouraged to stretch muscles to the point of discomfort. The total 

duration of the STRC intervention was about 40 minutes. STRC effectiveness in 

increasing flexibility was measured pre and post STRC and CTRL (before the 

isokinetic sprints) using a sit-and-reach test (Limonta et al. 2015). 

DJ: participants dropped 100 times from a 40-cm high platform down to 90° knee 

angle, with a resting period between each DJ of 20 sec (Skurvydas et al. 2000; Hopker 

et al. 2016). While the original version of this protocol entails a maximal jump after 

each drop, this part of the protocol was omitted to avoid the confounding effect of 

metabolic fatigue being added to the non-metabolic fatigue induced by eccentric 

exercise. DJ intervention lasted 40 minutes. In order to confirm minimal metabolic 

activation during DJ (Hopker et al. 2016), capillary blood samples were drawn before 
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and at the 1st,3rd, 5th and 7th minutes after the end of the 100-DJ to determine peak lactate 

accumulation. 

 

Data analysis  

Isokinetic Sprints test: Crank torque was measured independently from the two crank 

arms by strain gauge transducers (maximal recordable force 2000 N, <0.5 N resolution 

and measurement uncertainty of <3%). Angular velocity of the crank was recorded 

every 2 degrees using three independent sensors sampling in series with uncertainty of 

measurement <1%. Overall power for each pedaling cycle was calculated as the sum 

of the left and the right crank as resulted by the pedal force measurement analysis 

software. The initial and the last pedaling cycles of each sprint were excluded from 

computation. Then, maximal power expressed during each pedaling cycle was detected 

and cycles were averaged to obtain a mean peak power output for every sprint. Finally, 

mean peak power output (sprintPO) of the two repetitions of the 60 and 120 rpm sprints 

performed either pre-or post-intervention were averaged to increase measure reliability 

and the relative change between pre and post conditions. (∆sprintPO) was calculated as 

follows: 

∆sprintPO = [(sprintPO post - sprintPO pre) / sprintPO pre) * 100]  

Ramp incremental test: The raw EMG signal was rectified and smoothed using a 

fourth-order band-pass Butterworth digital filter with a frequency range set between 20 

and 500 Hz. Root mean square (RMS) was calculated every second and averaged at 5 

sec intervals from the raw signal and was used as an index of the total muscle excitation 

(Moritani et al., 1986; Ryan & Gregor, 1992). The RMS recorded during the last 2 

minutes of 20 W baseline for each test was used to normalize the ramp portion of the 

tests (Iannetta et al. 2017). 

Gas exchange variables and heart rate were sampled breath by breath; aberrant data-

points that lay 3 SD from the local mean were removed and thereafter data were 

interpolated at 5 sec intervals; finally, gas exchange threshold (GET), respiratory 
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compensation point (RCP), maximum VO2 (VO2max) and peak PO (POpeak) were 

determined as previously described (Fontana et al. 2015). Briefly, VO2max was 

determined as the highest VO2 obtained over a 10s interval and POpeak was defined as 

the highest mechanical power output achieved upon exhaustion during the RI exercise. 

GET and RCP were estimated by visual inspection from gas exchange variables by 

three blinded expert reviewers (Beaver, 1985; Whipp, 1989). 

In addition, VO2 and RMS signals obtained during CTRL, DJ and STRC were 

compared at the same absolute work rate by performing a linear interpolation every 

10% of the POpeak reached during CTRL. Finally, RMS and VO2 changes as a function 

of work rate (% of the POpeak reached during CTRL) were expressed as multiples of 20 

W baseline values and the RMS/VO2 ratio was calculated using these normalized units.  

Statistics 

After assumptions verification (i.e., normality, homogeneity of variance), repeated 

measures ANOVA was applied to compare flexibility values (pre and post sit-and-

reach after CTRL/STRC) and blood lactate accumulation before and after the DJ and 

CTRL.  

Pre and post sprintPO at 60 and 120 rpm were compared within and between STRC, DJ, 

and CTRL conditions using a two-way repeated measures ANOVA (time x condition); 

∆sprintPO (condition x pedalling frequency) among interventions at the two speeds were 

compared by two-way repeated measures ANOVA.  

A two-way repeated measures ANOVA was performed to compare VO2, RMS and 

RMS/VO2 ratio between conditions over different work rate percentages (work rate x 

condition). Finally, a one-way repeated measures ANOVA was used to compare 

POpeak, VO2max, GET, RCP, incremental Lactate peak, ventilation, heart rate and post-

DJ Lactate peak between conditions.  

Data are presented as means ± SD. 95% Confidence intervals around mean differences 

(95% ∆CIs [lower limit, upper limit]) and effect sizes of those differences (Cohen’s d, 

ranked as trivial (0-0.19), small (0.20-0.49), medium (0.50-0.79) and large (0.80 and 
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greater) (Cumming 2014a)) are also reported as objective and standardized measures 

to quantifying the magnitude of difference after intervention vs control condition 

(Winter, 2014). In effect size calculation, the SD in the control condition was used to 

standardize the mean difference for each contrast (Field, 2012).  

All statistical analyses were performed using Sigmaplot version 12 and α was set in 

advance at the 0.05 level; statistical significance was accepted when p < α.  

 

Results: 

Flexibility, as measured by sit-and-reach test, was not significantly different at baseline 

between CTRL and STRC and significantly improved only after STRC (+0.4±7.6 cm 

pre vs +5.9±6.5 cm post STRC, p<0.001, d=0.847 , 95%CI=+1.881, +9.969; +0.9±5.2 

cm pre vs +0.9±5.3 cm post CTRL, p=0.832, d=0.009 , 95%CI=-2.389, +4.189). Blood 

lactate concentration was not significantly different at baseline between CTRL and DJ 

and was not significantly affected by either DJ protocol (1.0±0.3 mmol*L-1 pre vs 

1.1±0.2 mmol*L-1 post DJ, p=0.110, d=0.349, 95%CI=0.305, 1.660) or CTRL (1.0±0.2 

mmol*L-1 pre vs 1.1±0.3 mmol*L-1 post CTRL, p=0.274, d=0.405, 95%CI=0.338, 

1.690). 

During isokinetic sprints, A significant interaction between “condition” and “time” was 

detected for the 60 (p=0.002) and the 120 (p=0.008) rpm. Post-hoc analysis revealed 

that sprintPO was significantly reduced by DJ and STRC during the lower speed, 60 

RPM sprints and during the higher speed, 120 RPM sprints (table 1). On the contrary, 

no changes were found between pre and post after CTRL for both the pedaling 

frequencies (table 1). Regarding ∆sprintPO, a main effect of “condition” was detected 

(p=0.007), while there was no main effect of “pedaling frequency” (p=0.532). No 

interaction was found between “condition” and “pedaling frequency” (p=0.097).  

During the ramp incremental tests, muscle excitation increased as a function of work 

rate during CTRL; both the interventions significantly affected muscle excitation (i.e. 

RMS, main effect: p≤0.001) that was increased at a given absolute work rate vs CTRL 
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(figure 2). Post-hoc analysis revealed significantly higher muscle excitation for DJ 

compared to CTRL at work rate ≥ 20% of CTRL peak power output; furthermore, a 

significantly higher muscle excitation was observed for STRC compared to CTRL at 

work rate ≥ 40% of the CTRL peak power output. 

Acute fatigue and increased muscular excitation translated in reduced peak power 

output after DJ compared to CTRL and reduced peak power output and VO2max after 

STRC. Moreover, both thresholds occurred at a lower W and VO2 after DJ and STRC. 

These data are presented extensively in table 2 together with the blood lactate, 

ventilation and heart rate values measured in different conditions. 

A significant main effect of intervention was detected for VO2 (p=0.029) as a function 

of work rate; both interventions resulted in an increased VO2 at a given absolute work 

rate vs CTRL (figure 2).  

Finally, the stability of RMS/VO2 ratio as a function of exercise intensity in all 

conditions indicates that muscle activation relative to metabolic intensity was not 

affected by work rate (main effect of intensity: p=0.375, figure 2). On the contrary, a 

significant main effect of interventions was demonstrated on RMS/VO2 ratio (main 

effect: p=0.023) (figure 2). However, post-hoc analysis revealed significant increases 

in muscle activation relative to metabolic intensity only at < 40% of CTRL POpeak 

following DJ and at 90% of CTRL POpeak following STRC compared to CTRL (figure 

2). Between 40 and 80% of CTRL POpeak the increase in muscle activation was matched 

by an equivalent increase in VO2.  
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Table 1, Mean ± SD peak power output during isokinetic sprints pre and post conditions  

    pre (W) post (W) p d 95%CI [LL, UL] ∆ (W) ∆ (%) p 

Control 
60 RPM 640 ± 54 649 ± 60 0.334 +0.167 610, 691 +4 ± 15 +0.6 ± 3.8 CTRL vs DJ 

120 RPM 949 ± 169 942 ± 171 0.469 -0.056 868, 1016 -7 ± 19 -0.7 ± 2.4 0.019 

Dropjumps 
60 RPM 653 ± 48 621 ± 49 0.002 -0.668 589, 654 -32 ± 30 -5.2 ± 3.1 CTRL vs STRC 

120 RPM 929 ± 114 908 ± 96 0.034 -0.185 846, 971 -21 ± 32 -2.3 ± 3.5 0.011 

Stretching 
60 RPM 663 ± 59 631 ± 84 0.003 -0.536 590, 671 -38 ± 29 -5.4 ± 4.7 STRC vs DJ 

120 RPM 973 ± 97 944 ± 95 0.003 -0.294 881, 1008 -29 ±10 -2.9 ± 3.0 0.634 

 

Isokinetic sprints peak power output is presented for the 60 and 120 RPM pedalling frequencies pre and post each intervention with p-

values, confidence intervals and Cohen’s effect size (d).  Bolded values represent significant differences between pre and post absolute 

values. ∆ represents the mean difference between pre and post sprints. Regarding ∆sprintPO, a main effect of “condition” was detected 

(p=0.007), while there was no main effect of “pedaling frequency” (p=0.532) nor interaction between “condition” and “pedaling 

frequency” (p=0.097). 
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Table 2, Mean ± SD cardiorespiratory data during the 20W warm-up, at peak, Gas Exchange Threshold (GET), and 

Respiratory Compensation Point (RCP). 

Acronyms represent: W: power measured in watts, VO2:  oxygen consumption, HR: heart rate, VE: ventilation, [La-]: peak blood lactate 

concentration. Bolded values represent significant differences versus control, no significant differences were found between DJ and 

STRC. 

    Control 
95%CI  

[LL,UL] 
Dropjumps p d 

95%CI  

[LL,UL] 
Stretching p d 

95%CI  

[LL,UL] 

Warm-up 
VO2 (ml*min-1) 1103 ± 320 904, 1301 1167 ± 289 0.612 +0.221 988, 1346 1088 ± 339 0.833 -0.044 878, 1298 

HR (b*min-1) 107 ± 14 98, 116 103 ± 10 0.321 -0.421 97, 109 98 ± 18 0.149 -0.467 87, 110 

 VE (L*min-1) 16 ± 2 15, 18 16 ± 3 0.997 0.000 14, 18 16 ± 2 0.999 0.000 15, 17 

Peak 

W 314 ± 41 289, 340 300 ± 37 0.023 -0.380 277, 323 302±39 0.033 -0.314 278, 326 

VO2 (ml*min-1) 3505 ± 486 3204, 3806 3413 ± 476 0.094 -0.194 3118, 3707 3365 ± 465 0.015 -0.301 3077, 3653 

HR (b*min-1) 183 ± 11 176, 189 179 ± 11 0.131 -0.298 173, 186 181 ± 9 0.804 -0.132 176, 187 

VE (L*min-1) 151 ± 17 141, 162 154 ± 24 0.688 +0.125 139, 169 154 ± 17 0.578 +0.176 140, 162 

[La-] (mmol*L-1) 12 ± 1 11, 13 10 ± 2 0.038 -0.941 9, 11 10 ± 1 0.247 -1.189 10, 11 

 Time (sec) 704 ± 98 643, 765 671 ± 87 0.022 -0.379 617, 725 679 ± 82 0.073 -0.305 628, 730 

GET 

W 153 ± 44 125, 180 136 ± 52 0.070 -0.325 104, 128 136 ± 48 0.054 -0.363 106, 165 

VO2 (ml*min-1) 2150 ± 464 2133, 2167 1998 ± 524 0.050 -0.291 1673, 2322 1955 ± 484 0.018 -0.403 1655, 2255 

HR (b*min-1) 142 ± 17 131, 152 133 ± 19 0.027 -0.480 121, 144 134 ± 17 0.051 -0.452 124, 144 

 VE (L*min-1) 56 ± 12 49, 63 53 ± 17 0.572 -0.176 42, 64 52 ± 14 0.460 -0.286 49, 63 

RCP 

W 236 ± 44 209, 263 205 ± 45 0.003 -0.692 177, 233 209 ± 34 0.007 -0.796 188, 230 

VO2 (ml*min-1) 2883 ± 488 2580, 3185 2585 ± 451 0.004 -0.659 2305, 2865 2615 ± 402 0.006 -0.666 2366, 2864 

HR (b*min-1) 164 ± 14 155, 173 153 ± 16 0.002 -0.710 163, 173 159 ± 15 0.091 -0.340 150, 168 

 VE (L*min-1) 87 ± 18 76, 99 76 ± 17 <0.001 -0.647 65, 87 83 ± 22 0.126 -0.182 76, 98 
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Figure 2, Mean ± SD VO2 (top panel) and Root Mean Square (RMS, medium panel) values and 

RMS/VO2 ratio every 10-100% of Control W are presented. Symbols represent: black dots= 

control condition, black squares (Stretching), white squares (dropjumps). Significant main 

effect of intervention was detected for VO2 (p=0.029) and RMS (p≤0.001). Statistical 

differences resulting from the post-hoc analysis are represented by blank dots (DJ vs CTRL) 

and asterisks (STRC vs CTRL).  



 

34 
 

Discussion: 

In this study, we tested the physiological response to ramp incremental exercises 

performed in separated days in CTRL conditions and after two distinct acute fatiguing 

interventions (i.e. DJ and STRC). Both interventions caused acute, non-metabolic 

fatigue (detected as reduced maximal cycling power); in turn, acute fatigue augmented 

muscle recruitment for a given absolute work rate during ramp incremental cycling, 

reduced maximal (peak power output and VO2max) and submaximal indexes of exercise 

tolerance (GET, RCP), compared to CTRL. Moreover, both acute fatiguing 

interventions were associated with metabolic loss of efficiency (i.e. higher VO2 at an 

identical submaximal work rate). These findings suggest a possible link between 

exercise intolerance/loss of efficiency and the observed decreased ability to produce 

force as a result of acute, non-metabolic fatigue interventions.  

The isokinetic sprints test used in this investigation was able to detect a velocity-

specific peak power output impairment after both interventions compared to CTRL. 

No changes in velocity-specific peak power output occurred after CTRL (CTRL: 60 

rpm +1.3±3.8 %, 120 rpm: -0.7±2.4 %). On the contrary, maximal sprintPO at both 

velocities was significantly reduced by both interventions (STRC: 60 rpm: -4.8±4.7 %; 

120 rpm: -2.9±3.0 %; DJ: 60 rpm: -4.9±3.1 %; 120 rpm: -2.3±3.5 %). The amplitude 

of sprintPO impairments after STRC measured in our study were consistent with 

previous investigations that used a variety of techniques to quantify maximal 

strength/power (Behm and Chaouachi 2011; Behm et al. 2016). On the contrary, force 

reduction after DJ was lower than the 10% reduction reported by Hopker et al. (Hopker 

et al. 2016), during 6 seconds isokinetic sprints at 90 rpm. Their protocol included 

maximal jumping after dropping while our protocol did not; this is the likely cause of 

the larger fatigue effect reported by Hopker et al. compared to our study. Furthermore, 

our study was the first to investigate fatigue at two sprint velocities following DJ and 

STRC, in the attempt to detect a possible differential impairment of fast vs slow motor 

units. Previous studies had proposed that STRC (Limonta et al. 2015) may 

preferentially affect fast motor units, and therefore the higher sprint velocity. However, 
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our data did not demonstrate differences in the velocity-specific peak power output at 

higher compared to lower pedaling frequency (Cannon et al. 2011). This finding 

favours the idea that STRC and DJ induce acute, non-metabolic fatigue to a similar 

extent in both fast and slow motor units. 

This is the first time that acute fatiguing interventions were used to impair maximal 

force while contextually measuring metabolism and muscular excitation. The values 

measured during CTRL condition revealed an average aerobic fitness of our sample 

similar to the reference, sedentary population of young male adults (absolute VO2max 

3505±486 ml*min-1; normalized VO2max: 43.9±6 ml*min-1 *kg-1 corresponding at the 

50° percentile of the ACSM’s guidelines) (American College of Sports Medicine 

2017), and a mean peak power output of 314±41 W. Both the interventions caused a 

small impairment of VO2max (STRC: 3365±465 ml*min-1  (≈ -4% vs CTRL, p=0.015); 

DJ: 3413±476 ml*min-1 (≈ -2.6% vs CTRL, p=0.094)) and significant impairments of 

peak power output both after STRC and DJ (STRC: 302±39 W (≈ -4% vs CTRL, 

p=0.033); DJ: 300±37 W (≈ -4.5% vs CTRL, p=0.023)).  

Impairment of maximal indexes of performance was accompanied by a higher 

metabolic activation at the same absolute work rate compared to the control condition 

(figure 2) throughout the incremental test. In specific, a statistically significant loss of 

efficiency was identified at absolute work rate in the range of 40 to 80 % of CTRL-

peak power output after STRC and of 20 to 80 % of CTRL-peak power output after DJ. 

Our results agree with previous work (Limonta et al. 2015) that reported a raised 

VO2/W ratio during ramp incremental exercises performed after passive STRC. On the 

contrary, our data are in contrast with Hopker et al., that, in spite of a reduced exercise 

tolerance following DJ, reported similar VO2 values for a given intensity (Hopker et 

al. 2016). Unfortunately, in the above investigations, a direct measure of muscular 

excitation was lacking, making it difficult to establish a clear relationship between 

possible alterations of muscle recruitment and VO2 at a given work rate. In our study, 

the RMS/VO2 ratio data suggest that, between 40 and 80% of CTRL POpeak, the 

increase in VO2 observed following the fatiguing interventions was proportional to the 
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augmented muscle excitation. It should also be noted that the fatiguing interventions 

did not alter the ventilation patterns during the different ramp incremental tests (table 

2), supporting the idea that the changes in VO2 found after DJ and STRC were mostly 

due to a loss of efficiency in the working muscles rather than to an increased cost of 

ventilation (Coast et al. 1993). 

This is also indirectly supported by the occurrence of GET (STRC: -195 ml*min-1; DJ: 

- 162 ml*min-1) and RCP (STRC: -268 ml*min-1; DJ: - 298 ml*min-1) at lower absolute 

power outputs compared to the control condition. These thresholds represent the 

boundaries of the “heavy” and “very heavy” exercise domains (Keir et al. 2015), and 

consequently the edge of an augmented involvement of type two muscle fibres (Poole 

and Jones 2012). Importantly, the “shift” of these boundaries towards lower power 

outputs could lead to fatigue and exercise intolerance for a previously well tolerated 

work rate (Keir et al. 2015, 2016). Therefore, our results suggest a link between the 

ability of the body to maintain metabolic stability and the muscle’s absolute capacity 

to produce force. Moreover, given that changes in VO2/W ratio during ramp 

incremental exercise (i.e. “excess” VO2) are considered equivalent to the VO2 slow 

component measured during constant work rate cycling (Grassi et al. 2015), it is 

reasonable to speculate that fatiguing interventions would elicit increased muscular 

excitation and metabolic activation also when cycling at a fixed work rate. 

The main cause of STRC-induced loss of performance has been suggested to be the 

reduction in neural drive caused by prolonged periods of sensory stimulations (possibly 

at peripheral, spinal or supra-spinal level), rather than the accumulation of metabolites 

within the muscles (Behm et al. 2016; Trajano et al. 2017). In addition, low lactate 

values measured following DJ intervention by this and other investigation confirmed 

low to null metabolic activation (Hopker et al. 2016). However, the exact physiological 

mechanisms underlying the impairment of force production after both STRC and DJ 

have not been clearly identified (Skurvydas et al. 2000; Twist and Eston 2005; Trajano 

et al. 2017). Therefore, we cannot exclude that some extent of metabolic activation may 

be present also in these mostly non-metabolic fatiguing interventions.  
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Conclusion: 

Two acute, non-metabolic fatiguing interventions significantly reduced maximal 

cycling power output while augmenting muscle recruitment during ramp incremental 

cycling. Augmented muscle recruitment impaired maximal and submaximal indexes of 

exercise tolerance and led to metabolic inefficiency. Although further studies are 

warranted to identify a direct cause-effect relationship, these findings suggest a 

possible link between exercise intolerance/loss of efficiency and the observed decrease 

in the ability to produce force as a result of acute, non-metabolic fatigue.  
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Abstract: 

We tested the hypothesis that static stretching, an acute, non-metabolic fatiguing 

intervention, reduces exercise tolerance by increasing muscle activation and affecting 

muscle bioenergetics during cycling in the “severe” intensity domain. Ten active men 

(24±2 years, 74±11 kg, 176±8 cm) repeated an identical constant work rate cycling 

test, two tests were done in control conditions and two after stretching, that caused a 

5% reduction of maximal isokinetic sprinting power output. We measured: i) oxygen 

consumption (VO2); ii) electromyography: iii) deoxyhemoglobin iv) blood lactate 

([La-]); v) time to exhaustion (TTE) vi) perception of effort. Finally, VO2 and 

deoxyhemoglobin kinetics were determined. Force reduction following stretching was 

accompanied by augmented muscle excitation at a given work rate (p=0.025), and a 

significant reduction in TTE (p=0.002). The time to peak of VO2 was reduced by 

stretching (p=0.034), suggesting an influence of the increased muscle excitation on the 

VO2 kinetics. Moreover, stretching was associated with a mismatch between O2 

delivery and utilization during the on-kinetic, increased perception of effort and [La-], 

that are all compatible with an increased contribution of the glycolytic energy system 

to sustain the same absolute intensity. These results suggest a link between exercise 

intolerance and the decreased ability to produce force. 
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Introduction: 

During whole-body exercise at constant work rate in the moderate domain, oxygen 

consumption (VO2) adapts to the energetic demands of locomotor and ventilatory 

muscles within 3 minutes (Poole and Jones 2012). If relative intensity rises above the 

gas exchange threshold (GET), approximately after the third minute of exercise VO2 

displays a “slow component” (VO2sc) that is typically interpreted as an increased cost 

of locomotion for a given exercise intensity (Poole and Jones 2012). In particular, when 

exercise is performed between the metabolic rates associated to the GET and the 

respiratory compensation point (RCP; i.e. heavy intensity domain) (Keir et al. 2015, 

2018b) VO2sc tends to a steady-state; however, when effort rises above RCP (i.e. severe 

exercise domain) a steady-state is no longer achievable and VO2 increases over time 

tending to the maximum oxygen consumption (VO2max) (Jones et al. 2011). The 

magnitude of VO2sc is considered linked with exercise intolerance and fatigue (Grassi 

et al. 2015). Therefore, during the past forty years many researchers have focused their 

attention on clarifying its physiological bases (Jones et al. 2011). Two main theories 

have been proposed to explain the physiological origin of VO2sc: i) decreased 

metabolic stability of type I muscle fibres associated with increased O2 cost of ATP 

resynthesis and/or increased ATP cost of contraction (Jones et al. 2011; Grassi et al. 

2015) and/or ii) recruitment of fast-fatigable intrinsically inefficient type II muscle 

fibres to obtain/maintain the external power output above a certain intensity threshold 

(e.g. RCP) (Jones et al. 2011; Poole and Jones 2012; Grassi et al. 2015). However, the 

exact physiological mechanisms underpinning VO2sc remain elusive, one of the reasons 

being the difficulty to selectively affect either metabolic stability or type II fibre 

recruitment in human models. In fact, the different manipulations used in interventional 

studies (e.g. speed of movement, intensity modulation, aerobic training, priming 

exercise, nutritional interventions) affect to some extent both metabolic stability and 

fibre recruitment (Jones et al. 2011). 

An interesting approach to selectively augment fibre recruitment while trying to avoid 

the perturbation of metabolic stability is acute, non-metabolic fatigue that reduces the 
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ability of muscles to produce force. Among the interventions able to cause acute, non-

metabolic fatigue, a promising model could be static stretching, that can impair force 

production as result of prolonged nervous stimulation (Trajano et al. 2017). It was 

broadly documented that stretching, particularly when positions are maintained for 

more than 60 sec, can impair maximal force in many different tasks and conditions for 

a period lasting up to 1 hour (Behm et al. 2016). Given that no effort is required to 

perform stretching, and that force impairment after stretching is mostly caused by 

neural mechanisms (Trajano et al. 2017), this would be a particularly convenient model 

to acutely reduce force and investigate the link between muscle activity and 

metabolism. Indeed, recent studies (Esposito et al. 2012) documented that when 

maximal force was acutely reduced by stretching, the oxygen cost of locomotion 

increases both during ramp incremental (exercise modality in which the VO2sc is 

defined as “excess VO2” (Grassi et al. 2015)) and constant work rate exercises 

(Esposito et al. 2012; Limonta et al. 2015). However, the above studies did not 

specifically investigate the underpinnings of VO2sc and were, therefore, lacking 

measures to investigate the link between muscle activation and increased VO2 (e.g. 

electromyography, EMG). In a recent study from our group, the effects of stretching 

on the VO2 response during ramp incremental cycling were described while also 

implementing measures of muscle excitation (Colosio et al. 2019). We found that when 

muscle force is acutely impaired by stretching also muscles excitation increases, at 

unison with an increased cost of locomotion (i.e. VO2 at a given absolute work rate).  

The above findings, in an incremental exercise paradigm, support the existence of a 

sequence of events, i.e. acute fatigue, increased muscle activation, loss of metabolic 

efficiency, causing the VO2sc with increasing exercise intensity. In this context, 

constant work rate exercise represents the ideal model to determine the possible role of 

increased muscular activation over time (necessary to maintain the same work rate 

when fatigued) in the genesis of the VO2sc. In fact, only under prolonged, constant work 

rate conditions, the increased cost of locomotion (i.e. VO2sc) at a given intensity has 

the time to fully manifest itself. The confirmation of a connection between 
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fatigue/increased muscle activation and the loss of metabolic efficiency over time 

during a constant work rate exercise paradigm would further support the existence of a 

causative link.  

Accordingly, this study investigated the effects of acute, non-metabolic fatigue induced 

by stretching on central and peripheral physiological measures (VO2, blood lactate 

accumulation [LA-], EMG, Near-Infrared Spectroscopy (NIRS)) during constant work 

rate cycling in the severe exercise domain. We hypothesis that stretching i) will reduce 

maximal muscle force; ii) in turn, force loss will translate in increased muscle 

excitation at a given absolute work rate iii) increased muscle excitation will reduce 

exercise tolerance and increase the VO2 cost of locomotion. Finally, this study will 

provide the first comprehensive investigation on the effects of static stretching on high-

intensity constant work rate cycling. 
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Materials and methods: 

Participants:  

Ten active men gave written informed consent to participate in the study (age: 24±2 

years, body mass: 74±11 kg, stature: 176±8 cm). Inclusion criteria were male sex and 

age between 20 and 35 years; exclusion criteria were smoking and any condition that 

could influence the physiological responses during testing. The study was approved by 

Departmental Ethics Committee and adhered to the principles of the declaration of 

Helsinki. All participants were instructed to avoid physical activity for at least 24 h 

before each testing session and followed a standard and individualised food intake 

prescription before all the testing sessions to minimise variability of glycogen stores 

and glucose oxidation (i.e. 2 g of low glycemic index carbohydrates per kg of body 

weight, 2 hours before testing; 0.5 L of water in the 90 min before testing; restriction 

from caffeine during the 8 h before testing). 

 

Experimental Protocol:  

After medical clearance, participants visited the laboratory on eight occasions within a 

maximum of three weeks.  

On the first two visits, subjects familiarized with a test consisting of isokinetic sprints 

for the determination of the maximal cycling power output. On the third appointment, 

isokinetic sprints were performed pre and post either the control condition (i.e. 40 min 

of seated rest, control) or 40 min of stretching, to determine the effect of stretching on 

the maximal cycling power output. On the fourth visit, subjects performed a ramp 

incremental test to exhaustion for the determination of the GET, the RCP and the 

VO2max. Then, during the last four visits participants repeated four identical constant 

work rate trials in the severe exercise intensity domain (at a power output 

corresponding to ∆60% between GET and VO2max). Randomly, 2 of the constant work 

rate trials were done in control conditions and 2 after 40 min of stretching. A schematic 

representation of the protocol is provided in figure 1. 



 

45 
 

All the tests were conducted at the same time of the day in an environmentally 

controlled laboratory (22-25°C, 55-65% relative humidity), on an electromagnetically 

braked cycle ergometer (Sport Excalibur, Lode, Groningen, Netherlands). Ergometer 

position was chosen during the first familiarization visit and recorded for the successive 

appointments. 

 

 

Figure 1, Schematic representation of the overall protocol (above), and of the single testing 

sessions (below). 

 

 

Stretching procedure 

Control consisted in 40 minutes of resting in a sitting position under the examiner’s 

surveillance. 
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Six cycles of stretching, were used to maximise acute force reduction (Behm et al. 

2016). The standardised stretching cycle sequentially involved i) the quadriceps of the 

right leg, ii) the right hamstrings, iii) left quadriceps, iv) left hamstrings. Each position 

was maintained for 80 sec with no recovery between positions. Subjects were 

continuously encouraged to stretch muscles to the point of discomfort. The total 

duration of the stretching intervention was about 40 minutes. Stretching effectiveness 

in increasing flexibility was measured pre and post stretching and control using a sit-

and-reach test (Limonta et al. 2015).  

 

Isokinetic maximal sprints 

To assess force reduction after stretching, isokinetic maximal sprints were performed 

on an electromagnetically braked cycle-ergometer in isokinetic mode equipped with a 

pedal force sensor (Sport Excalibur PFM, Lode, Groningen, NL) as previously 

described (Colosio et al. 2019). In brief, two pedalling frequency (60 and 120 rpm) 

were used to measure velocity-specific peak power as proposed by Cannon et al. 

(Cannon et al. 2011). Each sprints session was composed of 4, five-seconds maximal 

sprints alternating between 60-120-60-120 rpm. The 4 maximal sprints were separated 

by a 2-min passive rest, to maximise recovery while limiting the total duration of the 

sprints session. 

 

 

Ramp incremental test 

The ramp incremental test consisted of a 4-min baseline cycling at 20 W, followed by 

increases in power output (PO) ranging from 17.5 to 25 W*min-1 according to 

individuals’ predicted fitness level with the aim of obtaining a time to exhaustion 

around 8-12 minutes (American College of Sports Medicine 2017) using a method 

extensively described elsewhere (Pogliaghi et al. 2014). Participants were asked to pick 
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a self-selected cadence in the range of 70-90 rpm and to maintain it throughout all tests. 

Failure to maintain the indicated cadence within 5 rpm (for longer than 5 sec) during 

testing despite strong verbal encouragement was considered as the criterion for 

exhaustion. Breath-by-breath pulmonary gas exchange, ventilation and heart rate were 

continuously measured using a metabolic cart (Quark B2, Cosmed, Italy) as previously 

described (De Roia et al. 2012). 

  

Constant work rate trials 

After the preliminary ramp incremental test, subjects completed 4 constant work rate 

trials  at the power output corresponding to the 60%Δ between GET and VO2max. Two 

of the constant work rate trials  were performed after stretching and 2 after control in a 

randomized order. In each condition, one constant work rate trial lasted 10 min while 

the other one was performed to exhaustion to allow recording of time to exhaustion 

(TTE) after control and stretching. Constant work rate trials were preceded by a 4-min 

warm-up at 20 W in which cycling cadence was limited to 30 rpm to minimize any 

metabolic activation that could influence the effects of stretching and the physiological 

response at the onset of exercise. Throughout the test, subjects kept the same, constant 

rpm selected during the ramp incremental test and the same bike position selected 

during the sprints test. 

Surface EMG of the right vastus lateralis and biceps femoris muscles were 

continuously recorded by means of a wireless system (Wave wireless EMG, Cometa, 

Milan, Italy). A pair of surface Ag/AgCl electrodes (Blue sensor, Ambu®, Ballerup, 

Denmark) was attached to the skin with a 2-cm inter-electrode distance. The electrodes 

were placed longitudinally with respect to the underlying muscle fibres arrangement, 

according to the recommendations by Surface EMG for Non-Invasive Assessment of 

Muscles (Hermens et al. 2000). Before electrode application, the skin was shaved, 

scratched with sandpaper and cleaned with alcohol in order to minimize impedance. 

Semi-permanent ink marks allowed consistent re-positioning of the electrodes between 
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sessions. The EMG transmitter connected to the electrodes was well secured with 

adhesive tape to avoid movement-induced artifacts.  

VO2, ventilation (VE), respiratory exchange ratio (RER), and heart rate (HR) data were 

measured with the same method described for the ramp incremental test. During each 

constant work rate trial, capillary blood samples (20 μl) were drawn from the earlobe 

in the last 30 sec of warm-up, during the 1st,3rd, 5th, 7th, 10th and then every 5 min of the 

trial to exhaustion. Moreover, blood samples were drawn at the 1st,3rd, 5th and 7th min 

after exhaustion. Samples were immediately analysed to measure [La-] (Biosen C-Line, 

EKF Diagnostics, Barleben, Germany).  

Deoxygenation of the left vastus lateralis was evaluated in microcirculation using a 

quantitative near-infrared spectroscopy system (Oxiplex TSTM, ISS, Champaign, 

USA) that provided continuous measurement (sampling frequency 1 Hz) of the 

absolute concentrations (µM) of deoxyhemoglobin ([HHb]). After shaving, cleaning 

and drying of the skin area, the NIRS probe was positioned longitudinally on the belly 

of the vastus lateralis muscle ~15 cm above the patella, attached to the skin with a bi-

adhesive tape and secured with elastic bandages around the thigh. The device was 

calibrated before each test after a warm-up of at least 30 minutes as per manufacturer 

recommendations.  

Finally, perceptual responses to exercise was monitored using a 0-100 rating perceived 

exertion (RPE) scale (Borg and Kaijser 2006). The scale was displayed to the 

participants during baseline, every five minutes during the constant work rate trials and 

immediately after exhaustion. 

 

 

Data analysis  

Isokinetic Sprints test: Crank torque was measured independently from the two crank 

arms by strain gauge transducers (maximal recordable force 2000 N, <0.5 N resolution 
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and measurement uncertainty of <3%). Angular velocity of the crank was recorded 

every 2 degrees using three independent sensors sampling in series with uncertainty of 

measurement <1%. Overall power for each pedaling cycle was calculated as the sum 

of the left and the right crank as resulted by the pedal force measurement analysis 

software. The initial and the last pedaling cycles of each sprint were excluded from 

computation. Then, maximal power expressed during each pedaling cycle was detected 

and cycles were averaged to obtain a mean peak power output for every sprint. Finally, 

mean peak power output of the two repetitions of the 60 and 120 rpm sprints performed 

either pre-or post-intervention were averaged and the relative % change between pre 

and post conditions were calculated.  

 

Ramp incremental test: For the gas exchange variables, aberrant data-points that lay 3 

SD from the local mean were removed, and trials were linearly interpolated on a 1-sec 

basis and then averaged every 5 sec. VO2max was determined as the highest VO2 

obtained over a 10-sec interval (Fontana et al. 2015). GET and RCP were determined 

with the standard technique from gas exchange variables by three blinded expert 

reviewers as detailed elsewhere (Fontana et al. 2015). Briefly, GET was determined by 

visual inspection as the VO2 at which CO2 output began to increase out of proportion 

in relation to VO2, with a systematic rise in the VE-to-VO2 relation and end-tidal PO2 

whereas the ventilatory equivalent of VCO2 (VE/VCO2) and end-tidal PCO2 is stable 

(Beaver et al. 1986). RCP was determined as the point where end-tidal PCO2 began to 

fall after a period of isocapnic buffering (Whipp et al. 1989). This point was confirmed 

by examining VE/VCO2 plotted against VO2 and by identifying the sec breakpoint in 

the VE-to-VO2 relation. VO2max was determined as the highest VO2 obtained over a 10-

sec interval. Finally, we determined the constant work rate equivalent to the specific 

severe (60%Δ between GET and VO2max) VO2 target. To this aim, the VO2/W 

relationship identified with the incremental test was left-shifted to account for the 

individual mean response time. Briefly, the mean response time was determined as the 

time interval between the onset of the incremental portion of the exercise (time = 0) 
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and the increase of the VO2 signal above baseline. It was determined as the x coordinate 

of the intersection of the forward extrapolation of the baseline VO2 and the back-wards 

extrapolation of the linear VO2–time relationship below the GET (Fontana et al. 2015). 

 

Constant Work Rate Trials  

The raw EMG signal was rectified and smoothed using a fourth-order band-pass 

Butterworth digital filter with a frequency range set between 20 and 500 Hz. Root mean 

square (RMS) was calculated every second and averaged at 30 sec intervals from the 

raw signal and was used as an index of the total muscle excitation for vastus lateralis 

(RMSVL) and biceps femoris (RMSBF) (Moritani et al., 1986; Ryan & Gregor, 1992). 

Thereafter, the RMS recorded during the last 2 minutes of 20 W baseline for each test 

was used to normalize the constant work rate trials and expressed as multiples of 

baseline. 

Time to exhaustion was calculated as the total duration of exercise from work rate onset 

to failure. 

VO2 during constant work rate trials was cleaned and interpolated using the same 

procedure described for the ramp incremental test. Then, data of the two constant work 

rate trials performed in each condition were mediated in order to reduce breath-by-

breath signals variability. Finally, 30 sec means were calculated. 

Net [La-] accumulation during constant work rate trials was calculated as the difference 

between [La-] at a specific timepoint and the [La-] during cycling at 20 W. The highest 

value after exercise end was considered as the peak of blood lactate concentration. 

NIRS derived [HHb] response during constant work rate trials was time aligned with 

the onset of exercise transition, treated by subtracting the steady-state value measured 

during the last 2 min of warm-up, and then averaged at 30 sec bins. 

VO2, [HHb] kinetics and VO2sc: 
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Using 1 sec bins data, the on-transient responses to exercise of VO2 was modelled as 

follows: first, the VO2 response from -60 up to 180 seconds (time 0 being exercise 

onset) was preliminarily characterized with a two-component model (linear + 

exponential), integrated by a Heaviside function, after the exclusion of the data-points 

of the initial 20 sec of exercise that correspond to the cardiodynamic phase (Murias et 

al. 2011a)). With this approach, we derived the initial parameters for the primary 

component. Then, the complete on-transient responses to exercise of VO2 were 

modelled from the onset of work rate to the end of the 10th min (or to exhaustion for 

tests that lasted less than 10 min after stretching) using the following two-component 

exponential equation integrated by a Heaviside function (De Roia et al. 2012):  

Y(t) = Ybsln + AMPp ( 1– e – ( t  –  TD
p 

) /  τ
p ) + AMPsc ( 1- e - ( t – TD

sc 
) /  τ

sc ) 

Where Y(t) represents the increase in VO2 at the onset of exercise, Yblsn is the baseline 

VO2 value recorder during the 4 min 20 W cycling, AMPp and AMPsc represent the 

amplitude of the VO2 response above the baseline value of the primary and the slow 

component respectively; τp and τsc and TDp and TDsc are the time constant and the time 

delay of the response for each component. The mean response time (MRT) was then 

calculated as the sum of τ + TD. Furthermore, we calculated the time requested to reach 

VO2max during constant work rate trials by resolving on the individual fitting of VO2 

data for the time coordinate corresponding to VO2max.  

[HHb] signal was fitted on a time window of -60 to 180 sec (time 0 being exercise 

onset) using a two-component model (linear + exponential), integrated by a Heaviside 

function, as previously described (De Roia et al. 2012).  

Finally, [HHb] and VO2 data were normalized with 0% corresponding to the value 

recorded while cycling at 20 W baseline and 100% reflecting the maximal response in 

the 180 sec window and expressed as ∆[HHb] and ∆VO2. Individualized 1 sec ∆[HHb] 

and ∆VO2 were time-aligned by left-shifting the VO2 data by 20 sec (i.e. the typical 

duration of the cardiodynamic phase in young individuals (Murias et al. 2011b). Then, 

the ratio between ∆[HHb]/∆VO2 was calculated during the first 180 sec of exercise to 
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express the fractional muscle O2 extraction required to sustain a given net increment of 

VO2 (De Roia et al. 2012). Finally, the following indexes were calculated: 

∆[HHb]/∆VO2 AUC, as the integral of the total mismatch between O2 delivery and 

utilization (i.e. index values > 1); ∆[HHb]/∆VO2 peak, as the maximal value reached 

within the 180 sec; ∆[HHb]/∆VO2 time to peak, as the time requested to reach the peak 

in ∆[HHb]/∆VO2. Moreover, given that these time-resolved values are typically 

implemented during steady-state condition, an overall quantification of the increase in 

fractional muscle O2 extraction required to sustain a given net increment in VO2 during 

the primary phase of exercise was calculated by dividing the amplitudes of the response 

in VO2 and [HHb] between the onset of exercise and the onset of the slow component: 

overall ∆[HHb]/∆VO2 (Tam et al. 2018).  

 

 

Statistics 

After assumptions verification (i.e., normality, homogeneity of variance), two-way 

repeated measures ANOVA was applied to compare flexibility values (pre and post sit-

and-reach after control/stretching). Pre and post peak power output measured during 

isokinetic sprints at 60 and 120 rpm were compared pre and post between stretching, 

using a two-way repeated measures ANOVA (time x pedalling frequency). 

For constant work rate trials, two-way repeated measures ANOVAs were performed to 

compare VO2, net [La-], RPE, [HHB], RMSVL and RMSBF between conditions over 

time (time x condition). Post-hoc analyses were performed using Holm-Sidak test. 

Student’s t-test was applied to compare between conditions the time to exhaustion, 

parameters of VO2 and [HHb] kinetics (τ, TD and MRT), time to VO2max, 

∆[HHb]/∆VO2 AUC, ∆[HHb]/∆VO2 peak, ∆[HHb]/∆VO2 time to peak, overall 

∆[HHb]/∆VO2. 

Data are presented as means ± SD. α was set in advance at the 0.05 level and 

significance was accepted when p < α. The 95% confidence intervals of the TDp and 
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TDsc, τp and τsc of VO2 kinetics and of TD and τ of [HHb] kinetics were calculated 

based on the asymptotic intervals of the non-linear parameters resulting from the fitting 

(Field et al. 2012). Effect sizes of the differences between control and stretching were 

also reported (Cohen’s d, ranked as trivial (0-0.19), small (0.20-0.49), medium (0.50-

0.79) and large (≥ 0.80)) as objective and standardized measures to quantifying the 

magnitude of difference after stretching vs control (Cumming 2014b). In Cohen’s 

effect size calculation, the SD in the control condition was used to standardize the mean 

difference for each contrast (Field et al. 2012). Moreover, generalized eta squared (ηG
2) 

were calculated to quantify the effects sizes of different independent variables during 

the constant work rate trials (Olejnik and Algina 2003; Bakeman 2005). Based on an 

expected standard deviation of breath-by-breath VO2 measurements for steady-state 

exercise equal to 2.5%, and a minimum detectable change in VO2 of 100-170 ml·min-

1 at a VO2 of 2.1 to 3.5 L·min-1 (Keir et al. 2015), the minimum sample size to obtain 

a power of 0.8 was 6 individuals. All statistical analyses were performed using 

Sigmaplot version 12.   
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Results: 

Flexibility, as measured by sit-and-reach test, was not significantly different at baseline 

between stretching and control and significantly improved only after stretching 

(+0.3±6.5 cm pre vs +6.1±5.9 cm post stretching, p<0.001, d=+0.89 +0.7±5.1 cm pre 

vs +0.8±4.9 cm post control, p=0.784, d=+0.02). The peak power output measured 

during isokinetic sprints pre stretching was reduced, after the intervention, of ≈ 5% 

(table 1). ANOVA revealed a significant main effect of “time” (p≤0.001) and “pedaling 

frequency” (p≤0.001), whit no interaction (p=0.885). Post-hoc analysis confirmed that 

peak power output was significantly reduced by stretching both during the 60 RPM and 

the 120 RPM sprints (table 1).  

Subjects mean VO2max and peak PO measured at the end of the ramp incremental test 

were respectively 3505±375 ml*min-1 and 315±26 W. GET and RCP were detected at 

a VO2 of 2155±355 ml*min-1 and 2900±472 ml*min-1. The calculated target VO2 and 

PO for the ∆60% constant work rate trials were 3030±411 ml*min-1 and 232±29 W 

(74±7% of the peak PO) respectively. As expected under the non-steady-state 

conditions of the severe intensity domain, the contribution of the VO2 slow component 

raised the actual experimental VO2 above the initially predicted target so that values 

close to VO2max were measured in the last 20 sec of the 10-min trials. In one subject 

only, the target intensity turned out to fall clearly below the desired severe domain (i.e. 

both VO2 and [La-] were stable over time after the 10th min of exercise and time to 

exhaustion exceeded 40 min). Therefore, for this subject the constant work rate trials 

performed until that moment were repeated at +20 W after a wash-out period of three 

weeks in order to assure a metabolic intensity corresponding to the desired severe 

intensity domain. 

The time to exhaustion of the control constant work rate trials was 839±200 sec 

(14’19’’±3’20’’). stretching significantly affected this parameter, that was reduced to 

743±166 sec (12’23’’±2’46’’, p=0.002, d=-0.48). Reduced TTE was associated with 

increased levels of RMSVL, [HHb], peak net [LA-], and perceived exertion at 

exhaustion (figure 2). In fact, RMSVL, [HHb], peak net [La-], and perceived exertion 
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were significantly higher in the stretching vs control condition (main effect of “time” 

RMSVL: p<0.00, ηG
2: 0.30, [HHb]: p<0.00, ηG

2: 0.65, peak net [La-]: p<0.00, ηG
2: 0.99,  

perceived exertion: p<0.00, ηG
2: 0.990, main effect of  “condition” RMSVL: p=0.025, 

ηG
2: 0.44, [HHb]: p=0.011, ηG

2: 0.53, net [LA-]: p=0.023, ηG
2: 0.49, perceived exertion: 

p=0.003, ηG
2: 0.50; “time” x “condition” interactions for RMSVL: p<0.001, ηG

2: 0.70, 

[HHb]: p=0.007, ηG
2: 0.34, , net [LA-]: p=0.221, ηG

2: 0.01 and perceived exertion: 

p=0.044, ηG
2: 0.01). On the contrary, there were no changes in VO2, and RMSBF in 

stretching vs control (main effect of “time” VO2: p<0.001, ηG
2: 0.99, RMSBF: p<0.001, 

ηG
2: 0.77; no main effect of “condition” VO2: p=0.864, ηG

2: 0.01, RMSBF: p=0.362, 

ηG
2: 0.09). VO2 kinetics analysis revealed that the time required to reach the VO2max 

during constant work rate trials was reduced by stretching (control= 709±183 vs 

stretching 639±197, p=0.034, d=-0.38).  

Other parameters regarding VO2 and [HHb] kinetics (e.g. τ, TD etc.) are presented in 

table 2 and figure 3 displays the mean signals during the transient phase after control 

and stretching. VO2 showed no changes between control and stretching in time delay 

(p=0.874, d=+0.04), and in τ (p=0.066, d=-0.31, table 2). On the contrary, stretching 

reduced the time delay of [HHb] (p=0.023, d=-0.61, table 2 and figure 3), but no 

difference was detected in τ (p=0.690, d=+0.19). Finally, during the transient phase 

(first 180 sec of exercise), ∆[HHb]/∆VO2 revealed an increased mismatch in oxygen 

delivery and utilization at the peripheral level after stretching (figure 3), corroborated 

by a significant difference between conditions in ∆[HHb]/∆VO2 peak (p=0.038, 

d=+1.01), and a larger, yet not significant of ∆[HHb]/∆VO2 AUC (p=0.099, d=+0.59 

table 2 and figure 3). 
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Figure 2, The physiological responses during control (black dots) and stretching (white dots) 

conditions are presented in 30 sec means ±SD. * represent statistical difference between 

control and stretching for a given timepoint. 
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Figure 3, The VO2 (top panel), [HHb] (medium panel), and ∆[HHb]/∆VO2 (bottom panel) 

kinetics during the first 180 sec after exercise onset are presented during control (black dots) 

and stretching (white dots). * represent statistical difference between control and stretching 

for a given value of the kinetics. Acronyms represent: TD = time delay, τ = time constant of 

response, MRT = mean response time, AUC = area under the curve.  
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Table 1, Mean ± SD peak power output during isokinetic sprints pre and post static 

stretching  

  
Pre stretching  

(W) 

Post stretching 

(W) 
∆% p d 

60 RPM 670 ± 132 626 ± 107 * - 6.0 ± 5.3 0.009 - 0.33 

120 RPM 903 ± 86 863 ± 112 * - 4.6 ± 4.8 0.014 - 0.46 

 

Isokinetic sprints peak power output is presented for the 60 and 120 RPM pedalling frequencies pre 

and post STRC with p-values.  * represents significant differences between pre and post values.  
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Table 2, Mean ± SD kinetics parameters for oxygen consumption and deoxyhemoglobin 

 Control Stretching p d 

VO2  
Baseline (ml*min-1) 787.1 ± 174.6 790.7 ± 105.9 0.938 + 0.02 

AMPp (ml*min-1) 2015.4 ± 480.1 2045.2 ± 509.9 0.607 + 0.06 

TDp (sec) 14.7 ± 4.8 14.9 ± 10.7 0.873 + 0.04 

TDp 95% CI (sec) 13.2 – 16.2 13.6 – 16.1   

τp (sec) 32.6 ± 10.5 29.3 ± 11.2 0.066 - 0.31 

τp 95% CI (sec) 29.8 – 35.4 26.9 – 31.8   

MRTp (sec) 47.3 ± 10.7 44.2 ± 12.3 0.116 - 0.29 

AMPsc (ml*min-1) 752.1 ± 386.9 756.1 ± 272.8 0.207 + 0.01 

TDsc (sec) 152.6 ± 37.5 155.3 ± 25.6 0.803 + 0.05 

TDsc 95% CI (sec) 146.5 – 158.7 147.1 – 163.4   

τsc (sec) 321.9 ± 149.7 282.9 ± 111.5 0.333 - 0.26 

τsc 95% CI (sec) 251.9 – 392.0 147.1 – 163.4   

[HHb]  
Baseline (µM) 24.7 ± 9.4 27.3 ± 10.3 0.138 + 0.38 

AMP (µM) 14.8 ± 9.4 17.3 ± 12.2 0.359 + 0.26 

TD (sec) 6.9 ± 3.8 4.6 ± 3.0 0.023 - 0.61 

TD 95% CI (sec) 6.2 – 7.7 4.0 – 5.3   

τ (sec) 16.8 ± 6.5 18.0 ± 4.7 0.689 + 0.19 

τ 95% CI (sec) 15.7 – 17.9 16.8 – 19.2   

MRT (sec) 23.7 ± 9.0 22.6 ± 7.5 0.767 - 0.12 

∆[HHb]/∆VO2  
AUC 30.4 ± 15.8 41.1 ± 16.1 0.099 + 0.75 

Peak 1.9 ± 0.5 2.4 ± 0.4 0.038 + 1.01 

Time to Peak (sec) 18.9 ± 5.8 18.4 ± 8.5 0.891 - 0.09 

Overall ∆[HHb]/∆VO2 ratio 

(µM*ml*min-1) 
0.011 ± 0.008 0.014 ± 0.012 0.275 + 0.28 

 

Values for VO2, [HHb] and ∆[HHb]/∆VO2 kinetics are presented. Acronyms represent: AMP = 

amplitude, TD = time delay, τ = time constant of response, MRT = mean response time, AUC = area 

under the curve. Subscripts in VO2 kinetics represent: p = primary component, sc = slow component.
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Discussion: 

This investigation evaluated the physiological effects of acute non-metabolic fatigue 

induced by static stretching on high-intensity constant work rate cycling performance. 

We had hypothesized that stretching, through a sequence of events going from a 

reduction of maximal muscle force, to an increase in muscle excitation at a given 

absolute work rate, to an increase the VO2 cost of locomotion would ultimately reduce 

exercise tolerance. In agreement with our hypothesis, stretching caused a significant 

fatigue, as indicated by the reduction of the maximal power output during isokinetic 

sprints. In turn, force reduction was accompanied by an augmented muscle excitation 

at a given work rate. Finally, the above sequence of events was associated with a 

significant reduction in time to exhaustion.  Contrary to our hypothesis, no changes 

were detected between control and stretching in the magnitude of VO2sc in the time 

window in which VO2sc is typically investigated (from the ≈ 2nd-3rd to the 9th-10th min). 

However, the time required to reach VO2max was reduced by stretching, suggesting an 

influence of the increased muscle excitation on the dynamics of VO2 during constant-

work rate exercise in the severe intensity domain. In support of this, stretching was 

associated with an increased metabolic instability/mismatch between O2 delivery and 

O2 utilization during the on-kinetic, increased perception of effort and an increased 

blood lactate accumulation, that are all compatible with an increased contribution of 

the glycolytic energy system to sustain the same absolute intensity.  

The effectiveness of stretching in acutely impairing maximal force/power was 

previously proven during cycling-specific (Colosio et al. 2019) and non-specific tasks 

(Behm et al. 2016). In agreement with the above findings, our study confirmed a 

reduction of the maximal cycling PO following stretching intervention of a similar 

order of magnitude (i.e. ≈ 5%) (table 1) of that previously described. The physiological 

causes of the impairment of maximal PO documented after repeated bouts of prolonged 

stretching remain to be elucidated and supraspinal, spinal or muscle-related 

mechanisms have all been proposed as possible explanatory causes of reduced maximal 

force (Trajano et al. 2017). Independently from the cause, a reduction of maximal force 
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may translate in the requirement of higher levels of relative force to maintain the same 

absolute work rate. In turn, this could augment the recruitment of high-order, fast 

fatiguing, motor units (progressive recruitment theory (Henneman et al. 1965)) or the 

frequency of activation of motor units, at the same absolute power output. Both 

mechanisms are likely to cause an increase in the overall electrical activity of the 

muscle, as evaluated by surface EMG (Vigotsky et al. 2018).  

To our knowledge, our study was the first to examine EMG after stretching during 

cycling. According to our hypothesis, the impairment of maximal PO documented after 

stretching translated in augmented muscular excitation of the vastus lateralis (figure 2); 

this finding supports the hypothesis that either the recruitment of higher order motor 

units or an increased activation frequency were necessary to sustain exercise at the 

same absolute work rate compared to the control condition (figure 2). The increase in 

muscle activation (vs control) manifested clearly within the first minute after the onset 

of exercise, with no further effect over time. This would support the idea that the 

increased muscle excitation following stretching was a result of the acute loss in 

maximal PO rather than to progressive fatigue. Interestingly, our intervention affected 

the muscle excitation of the vastus lateralis to a larger extent than that of the biceps 

femoris (figure 2). We speculate that this difference may be due to a larger 

effectiveness of stretching on the extensor of the knee compared to the flexor (i.e. 

mostly for the different anatomical insertion of these muscles). Moreover, a smaller 

contribution of the biceps femoris than the vastus lateralis during cycling, particularly 

in a sample of non-cyclist subjects, may have influenced these results.   

Contrary to our hypothesis, increased muscle excitation did not influence the VO2sc. 

Previous studies on the VO2sc response following fatigue have led to inconsistent 

results: the VO2sc was augmented (Colosio et al. 2019), unaffected (Hopker et al. 2016), 

or even diminished (Deley et al. 2006). This may be explained by the heterogeneity of 

the fatiguing protocols adopted in the different studies (e.g. stretching, dropjumps, 

electrical stimulation, etc.), by the exercise domain investigated (heavy/steady-state vs 

severe/non-steady-state) and by the time window considered and the analysis strategy 
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(e.g. fitting, integral, etc.). Furthermore, in the non-steady-state, severe-intensity 

exercise used in our study, VO2 rapidly projects to VO2max (figure 2) reaching this upper 

ceiling within ~10 min. Under these conditions the potential for an increase in the VO2sc 

(i.e. the difference in VO2 between the ≈ 2nd-3rd and the 9th-10th min) in response to 

stretching may have been too small to be measurable. In support of this view, the 

magnitude of the stretching effect measured in our study is consistent with the rather 

small increase in VO2 (around 100-150 ml*min-1) reported by Esposito et al. (Esposito 

et al. 2012) following stretching. Interestingly however, our data showed a reduction 

in the time necessary to reach VO2max (of ≈ 70 sec, ≈ 10%) and augmented peak [La-] 

and peak RPE (figure 2) following stretching compared to the control condition. These 

findings appear compatible with a faster projection of VO2 towards VO2max following 

stretching, possibly driven by the increased amount of muscle fibres necessary to 

sustain the same absolute work rate, as indicated by the increased EMGVL in the 

fatigued condition. 

Finally, a mirror intervention of acute-fatigue that could provide complementary 

information on the link between muscle recruitment and VO2sc is represented by 

strength training. In this context, Tam et al. trained for two months a group of older 

people with either interval training or resistance training (Tam et al. 2018). A direct 

comparison with this study is not fully applicable due to the lack of EMG measures 

and to the fact that anatomical and functional adaptations other than an isolated 

improvement of muscle strength occurred in Tam’s study. Still, the increased muscle 

strength reported together with a slight decrease of the VO2sc amplitude seem to 

corroborate a possible role of muscle activation in the genesis of the VO2sc (Tam et al. 

2018). 

Regarding the metabolic impact of stretching documented with NIRS (figure 2), a 

reduced time delay of the [HHb] kinetics at the onset of exercise (figure 3) and an 

augmented peak [HHb]/VO2 ratio (figure 3, table 2) were observed. These indexes 

indicate an earlier mismatch between oxygen delivery and oxygen utilization within 

the working muscles and a larger mismatch during the on-kinetics, respectively (Grassi 
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et al. 2003). Both findings are compatible with either an increase in oxygen extraction 

and/or a lower oxygen delivery in the working muscles. While this is the first study 

that measured tissues oxygenation levels during cycling after stretching, recent studies 

showed that stretching can induced temporary ischemia followed by reactive 

hyperaemia and possibly enhance O2 delivery at the macro- (Venturelli et al. 2019) and 

micro- (Trajano et al. 2014) circulatory levels. Therefore, while a reduction in muscle 

perfusion cannot be completely ruled out, it seems unlikely that oxygen availability in 

the working muscles would be reduced post stretching. Alternatively, stretching may 

be associated with a faster oxygen extraction caused by a faster and larger disturbance 

of intracellular homeostasis. The higher deoxygenation during the fatigued condition 

may be explained by the greater proportion of glycolytic muscle fibres being involved 

into exercise. In fact, the glycolytic fibres seem to display higher levels of O2 extraction 

compared to the aerobic fibres at the onset of exercise (Ferreira et al. 2006; Koga et al. 

2014), possibly due to a local Bohr effect (Jensen 2004). Interestingly, these 

speculations appear consistent with the finding of a faster projection of VO2 towards 

VO2max following stretching. 

In conclusion, prolonged stretching caused acute fatigue as indicated by a reduced the 

maximal power output in isokinetic sprints. Stretching-induced fatigue, in turn, caused 

augmented levels of muscle excitation at a given work rate when cycling in the severe 

exercise domain, and a significant reduction in time to exhaustion. No changes were 

detected between control and stretching in the magnitude of VO2sc “per-se”; however, 

the time required to reach VO2max was reduced by stretching, suggesting an influence 

of the increased muscle excitation on the kinetics of the slow component of VO2. 

Finally, stretching was associated with an increased metabolic instability/mismatch 

between O2 delivery and O2 utilization during the on-kinetic, increased perception of 

effort and an increased blood lactate accumulation, all these phenomena are compatible 

with an increased contribution of the glycolytic energy system to sustain the same 

absolute intensity.  
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Abstract:  

In humans, when exercising at constant work rate in the heavy and severe domains of 

exercise the VO2 displays a slow component (VO2sc) that is considered to be associated 

with increasing energy demand of the muscles over time. While the physiological 

underpinnings the VO2sc are still debated, recent studies suggested that VO2sc could be 

attributed to a shift in energetic sources rather than increased energy demand. We tested 

the hypothesis that the overall cost of cycling is affected by time during metabolic 

transitions in different intensity domains. Eight active men performed 3 constant work 

rate trials of 3, 6 and 9 min respectively in the moderate, heavy and severe domains. 

VO2, VO2 of ventilation (VE) and blood lactate accumulation ([La-]) were quantified 

to calculate the adjusted oxygen cost of exercise (AdjO2Eq, i.e. the measured VO2 minus 

the VO2 cost of VE, plus the VO2 equivalent of [La-]) for the 0-3, 3-6 and 6-9 time 

segments at the three intensities and compared it by a two-way (time, intensity) RM-

ANOVA. After the transient phase, AdjO2Eq was unaffected by time in moderate (ml*3 

min-1 at 0-3, 0-6, 0-9 min: 2126±939 < 2687±1036, 2731±1035) and heavy (4278±1074 

< 5121±1268, 5225±1123 ml*3 min-1). On the contrary, a significant effect of time was 

identified in severe (5863±1413 < 7061±1516 < 7372±1443 ml*3 min-1). In the 

moderate and heavy domains, AdjO2Eq was unchanging, suggesting that VO2sc only 

represents a shift in energetic sources (aerobic and anaerobic). In the severe domain, 

VO2sc was also associated with increased energy demand.  
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Introduction: 

After the cardio-dynamic phase, oxygen consumption (VO2) during constant heavy and 

severe intensity exercise, is better fitted by a two-components rather than a single-

component model. Based on this observation, it has been suggested, that a slow 

component of VO2 exists (VO2sc), that does not start at exercise onset but rather appears 

later in exercise (time delay ~ 120-180 sec) (Jones et al. 2011). Furthermore, it has been 

assumed, but not proven, that in association with VO2sc, the muscle displays an 

increasing energy demand as a function of time (Jones and Poole 2005).  

VO2sc represents an increased O2 cost of locomotion when exercise is protracted more 

than 3 min at constant work rate above the lactate threshold (LT) (Jones et al. 2011). 

Typically, when exercise is performed between the lactate threshold (LT) and the 

critical power, (i.e. heavy intensity domain) VO2sc tends to steady-state. On the 

contrary, when effort rises above critical power (i.e. severe exercise domain) a steady 

state is not achievable and VO2 increases tending to the maximum oxygen consumption 

(VO2max) (Jones et al. 2011). The magnitude of VO2sc is considered to be associated 

with exercise intolerance and fatigue (Grassi et al. 2015). For this reason many 

researchers during the past forty years have focused their attention on clarifying its 

physiological mechanisms (Jones et al. 2011).  

A key finding from these studies was that roughly 85% of the VO2sc originates from 

the contracting muscles, while the remaining 15% corresponds to the increased VO2 

cost of ventilation (Poole et al. 1991). Focusing on the muscular component of the 

VO2sc, subsequent investigations proposed that the recruitment of less efficient type II 

fibres necessary to maintain a specific power output (PO) (Jones et al. 2011) or 

metabolic changes occurring within the working fibres (Zoladz et al. 2008; Vanhatalo 

et al. 2011) could elicit an increased cost of locomotion. Nevertheless, a satisfactory 

theory explaining the mechanisms underpinning the VO2sc is still missing.  

In this context, a recent study (O’Connell et al. 2017) refuted that the energy demand 

of a constant, high-intensity exercise changes over time. By subtracting the VO2 cost 
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of ventilation and accounting for the contribution of the glycolytic energy sources (di 

Prampero 1986; di Prampero et al. 1999; O’Connell et al. 2017) O’Connell quantified 

the total, adjusted metabolic cost of muscle exercise over time during a constant work 

rate trial in the severe domain. The authors concluded that the oxygen cost of 

locomotion does not increase over time, other than what required by the augmenting 

cost of ventilation. The apparent VO2 increases over time would be the result of the 

shift in metabolic sources after the first three min of exercise (i.e. an increased 

contribution of the aerobic metabolism to ATP resynthesis, mirrored by a decreased 

contribution of anaerobic ATP resynthesis over time). In other words, these findings 

suggest that VO2sc may in fact not represent a loss of efficiency as a function of time 

but rather a delayed adjustment of the oxidative metabolism. However, while this new 

hypothesis could explain why a satisfying explanatory theory of VO2sc is still missing, 

the amount of literature that reported VO2sc in different exercise modalities (i.e. whole-

body vs isolated muscles) and models (i.e. humans vs animals) calls for further 

investigation (Jones et al. 2011). In particular, the intensity domain in which O’Connell 

measures were obtained is not fully clear; while most studies in the field of VO2 

kinetics define intensity domains based on gas exchange thresholds, O’Connell used 

lactate-based measures. Yet, the correspondence between the above methods remains 

a controversial issue (Keir et al. 2015, 2018b; Broxterman et al. 2018). In addition, loss 

of efficiency, metabolic shift among substrates and excess ventilation manifest and 

increase differently over time in the three domains of exercise (e.g. no loss of efficiency 

is present in the moderate domain while an elevated steady state is reached in the heavy 

yet not in the severe domain) (Poole and Jones 2012). Therefore, O’Connell’s findings 

need to be confirmed and broadened with particular consideration to the three intensity 

domains of exercise. 

Accordingly, by calculating the energy cost of ventilation, the glycolytic contribution 

to exercise, and directly measuring the aerobic cost of locomotion, we tested the 

hypothesis that the overall cost of cycling is affected by time during metabolic 

transitions in different intensity domains. Specifically, we hypothesised that: i) the 
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overall cost of locomotion would progressively increase going from the moderate to 

the heavy to the severe exercise domain; ii) the overall cost of locomotion would not 

be affected by time during metabolic transitions in the moderate and heavy exercise 

domains (i.e. no VO2sc exists at these intensities); iii) the overall cost of locomotion 

would be affected by time during metabolic transitions in the severe exercise domain 

(i.e. VO2sc will manifest at this intensity). 

 

Methods: 

Ethical Approval 

The study was conducted according to the Declaration of Helsinki and all procedures 

were approved by the University of Verona Ethics Committee for Research on Human 

Subjects. Procedures and risks were explained to each subject, and all participants 

volunteered and gave informed written consent to participate before the start of the 

study. 

Participants 

Eight active men were recruited in the study (age 25 ± 2 years, body mass 74 ± 10 kg, 

height 181 ± 5 cm, VO2max 49.3 ± 3.4 ml*kg-1*min-1). Inclusion criteria were male sex 

and age between 20 and 35 years; exclusion criteria were smoking and any condition 

that could influence the physiological responses during testing. All participants were 

instructed to avoid caffeine consumption and physical activity respectively for at least 

8 h and 24 h before each testing session. Moreover, to minimise variability of glycogen 

stores and glucose oxidation, participants followed a standard food intake prescription 

before all the testing sessions as previously described (Keir et al. 2015). 

 

Experimental Protocol 
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After medical clearance, participants visited the laboratory on ten occasions within a 

maximum of four weeks. All subjects completed: i) a preliminary maximal ramp 

incremental exercise test to exhaustion for the determination of gas exchange threshold 

(GET), respiratory compensation point (RCP) and the maximum oxygen uptake 

(VO2max); ii) three constant work rate trials (CWR) respectively of 3, 6 and 9 min in 

the “moderate” exercise intensity domain iii) three CWR respectively of 3, 6 and 9 min 

in the “heavy” exercise intensity domain iv) three CWR trials respectively of 3, 6 and 

9 min in the “severe” exercise intensity domain. Tests of ii) iii) and iv) aimed at 

determining VO2 response and blood lactate ([La-]) accumulation as a function of time 

in the three exercise intensity domains in order to evaluate the overall energetic 

contribution of the aerobic and anaerobic metabolisms (di Prampero et al. 1999) to ATP 

turnover. Moreover, these tests were executed in randomized order with the only 

exception of the longest CWR in the “severe” exercise domain, that was completed as 

first to assure that subjects were able to sustain the PO for the required time. All 

exercise tests were conducted on an electromagnetically braked cycle ergometer (Sport 

Excalibur, Lode, Groningen, Netherlands), at a similar time of the day in an 

environmentally controlled laboratory (18°C, 55-65% relative humidity). 

Ramp incremental test 

The ramp incremental test consisted of a 3-min baseline cycling at 50 W, followed by 

a 30-W*min-1 increase in PO until volitional exhaustion. Participants were asked to 

pick a self-selected cadence in the range of 70-90 rpm and to maintain it throughout all 

subsequent tests. Failure to maintain the indicated cadence within 5 rpm (for longer 

than 5 sec) during testing despite strong verbal encouragement was considered as the 

criterion for exhaustion. Breath-by-breath pulmonary gas exchange and ventilation 

were continuously measured using a metabolic cart (Jaeger Oxycon Pro, Viasys 

Healtcare GmbH, Höchberg, Germany) as previously described (De Roia et al. 2012). 

Heart rate (HR) was monitored continuously (H7 Sensor, Polar, Kempele, Finland). 

Constant work rate trials 
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After the preliminary ramp incremental test, subjects completed 3 CWR within each 

exercise intensity domain (i.e. moderate, heavy, and severe) in a randomized order: 

i) Moderate: 3 CWR respectively of 3,6 and 9 min at 80% of GET. 

ii) Heavy: 3 CWR respectively of 3,6 and 9 min at 50%Δ between GET and 

RCP. 

iii) Severe: 3 CWR respectively of 3,6 and 9 min at 60%Δ between GET and 

VO2max. 

Each CWR was preceded by a 3-min warm-up at 20 W. Throughout the test, subjects 

kept the same, constant rpm and bike position as selected during the ramp incremental 

test. 

VO2 and HR data were measured with the same method described for the ramp 

incremental test. Moreover, Capillary blood samples (65 μl) were drawn from the 

fingertip in the last 30s of warm-up and at the 1st,3rd, 5th and 7th min after each test and 

were immediately analysed (Radiometer ABL90 FLEX, Radiometer Medical ApS, 

Brønshøj, Denmark) to measure [La-]. The highest value was considered as the peak of 

blood lactate concentration and used for further analysis to calculate anaerobic 

energetic contribution.  

Data Analysis 

Ramp Incremental Test:  

For the gas exchange variables, aberrant data-points that lay 3 SD from the local mean 

were removed, and trials were linearly interpolated on a 1-sec basis and then averaged 

every 5-sec. VO2max was determined as the highest VO2 obtained over a 10-sec interval 

(Fontana et al. 2015). GET and RCP were determined with the standard technique from 

gas exchange variables by three blinded expert reviewers as detailed elsewhere 

(Fontana et al. 2015). Briefly, GET was determined by visual inspection as the VO2 at 

which CO2 output began to increase out of proportion in relation to VO2, with a 

systematic rise in the ventilation (VE)-to-VO2 relation and end-tidal PO2 whereas the 
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ventilatory equivalent of VCO2 (VE/VCO2) and end-tidal PCO2 is stable (Beaver et al. 

1986). RCP was determined as the point where end-tidal PCO2 began to fall after a 

period of isocapnic buffering (Whipp et al. 1989). This point was confirmed by 

examining VE/VCO2 plotted against VO2 and by identifying the sec breakpoint in the 

VE-to-VO2 relation. VO2max was determined as the highest VO2 obtained over a 10-sec 

interval. Finally, we determined the constant work rate equivalent to the specific 

moderate (80% of GET), heavy (50% Δ between GET and RCP) and severe (60%Δ 

between GET and VO2max) VO2 targets. To this aim, the VO2/W relationship identified 

with the incremental test left-shifted to account for the mean response time (Fontana et 

al. 2015). 

 

Constant Work Rate Trials:  

VO2, VCO2, and VE during CTL were sampled breath-by-breath and interpolated using 

the same procedure described for the ramp incremental test. Interpolated data from 

different CTL performed at the same exercise intensity were mediated in order to 

reduce breath-by-breath signals variability (data from 3 tests were mediated in the time 

segment from 0 to 3 min and data from 2 tests were mediated between 3 and 6 min) 

(Keir et al. 2014). The sum of the oxygen consumed during each 3-min time segment 

was then considered as the aerobic energetic contribution to exercise. 

VO2sc was calculated as the sum of the amount of oxygen exciding the VO2 reached at 

the end of the 0-3 min time segment (Santana et al. 2007). 

Work of breathing (WB) was calculated based on VE using the equation by Coast et 

al.: 

WB= -0.430 + 0.050 * VE + 0.00161 VE2 

Then, the WB was used to calculate the amount of VO2 requested by ventilatory 

muscles (VO2VM): 

VO2VM= 34.9 + 7.45 *WB (Coast et al. 1993) 
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Anaerobic (glycolytic) contribution to exercise was calculated from the amount of [La-] 

accumulation over time calculated as follows: 

• 0-3 min segment [La-] accumulation = 3-min CWR peak [La-] – warm-up [La-] 

• 3-6 min segment [La-] accumulation = 6-min CWR peak [La-] – 3-min CWR 

peak [La-] 

• 6-9 min segment [La-] accumulation = 9-min CWR peak [La-] – 6-min CWR 

peak [La-] 

The so obtained values were utilized to estimate the energy contribution from anaerobic 

glycolysis in each time segment, based on the oxygen equivalent for lactate of Di 

Prampero (i.e. 1 mmol*L-1  [La-] accumulation = 3.0 ml*kg-1 VO2) (di Prampero et al. 

1999). 

Overall energetic cost of activity (expressed as ml of oxygen) was calculated as 

described by O’Connell et al. and defined as “Adjusted Oxygen Equivalent” (AdjO2Eq):  

AdjO2Eq= measured VO2 (ml O2 * 3min-1) - VO2VM (ml O2 * 3min-1) + Oxygen 

Equivalent of Lactate (ml O2 * 3min-1).  

VO2 gain (VO2gain, i.e. the amount of oxygen equivalent utilized to sustain each W 

during cycling) was calculated as the ratio between the amount of AdjO2Eq required to 

sustain exercise during a specific time segment and the number of W imposed by the 

test: VO2gain= (3min AdjO2Eq - warm-up AdjO2Eq) / (test PO (W) - warm-up PO (W)). 

 

Statistics 

After assumptions verification (i.e., normality, homogeneity of variance), the within-

subject coefficient of variation and two-way repeated measures ANOVA (trial x 

intensity domain) were used to evaluate VO2 data repeatability measured at the end of 

the third min of exercise of each CWR.  
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A two-way repeated measures ANOVA was also performed to assess differences over 

time between different intensities domains (time segment x intensity domain) for VO2, 

VO2VM, O2 equivalent of [La-], AdjO2Eq, VO2gain. Post-hoc analysis was performed 

using Holm-Sidak method. 

Data are presented as means ± SD. All statistical analyses were performed using 

Sigmaplot version 12 and α was set in advance at the 0.05 level. Statistical significance 

was accepted when p < α.  

 

Results: 

Subjects’ anthropometrical and functional characteristics obtained during the ramp 

incremental test are reported in Table 1. 

Repeatability of group mean VO2 data (10-sec averages) is displayed in figure 1. 

Average measured VO2 displays a complete overlap among the three durations trials 

(3, 6, 9 min) at the three intensities (moderate, heavy, severe). Furthermore, mean VO2 

values of the last 10 sec of the third min of exercise for the 9, 6, and 3-min CWR were 

respectively: 3328 ± 470, 3231 ± 434, 3285 ± 443 ml*min-1 (Severe) 2804 ± 408, 2783 

± 492, 2793 ± 470 ml*min-1 (Heavy), and 1979 ± 281, 1966 ± 330, 2095 ± 258 ml*min-

1 (Moderate), with a mean within-subject coefficient of variation of 3.3 ± 2.4 % 

(Severe), 4.3 ± 1.4 % (Heavy), 3.7 ± 1.4 % (Moderate). As expected, ANOVA on these 

VO2 values revealed a significant main effect of the intensity domain at which exercise 

was performed (p≤0.001) but no significant main effect among the three trials 

performed at the same intensity (p=0.437). 

Mean values of PO and per-min measures of VO2, VCO2, VE and HR in the last 30s 

of each time segment are displayed in Table 2, along with measures of [La-] at the end 

of warm-up and at the end of each time segment (peak [La-]). ANOVA revealed a 

significant “time segment” x “intensity domain” interaction for VO2 (p≤ 0.001), VCO2 

(p= 0.014), VE (p≤ 0.001), HR (p= 0.011) and [La-] (p≤ 0.001). In detail, HR and [La-] 

reached a steady-state within the 3rd min only in the moderate and heavy-intensity 
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exercise trials, while they increased over time in the severe exercise trials. VO2, VCO2 

and VE reached a steady-state within the 3rd min in the moderate-intensity and within 

the 6th min of the heavy-intensity exercise trials. On the contrary, these parameters 

continued to increase significantly over time in the severe exercise trials. 

An overview of the energetic contributors to exercise (i.e. measured VO2, VO2VM, [La-] 

equivalent of O2, and AdjO2Eq) is reported as 10-s averages and over 3-min time 

segments in figure 2 and in Table 3. For all time segments, the contribution of anaerobic 

glycolysis (as represented by [La-] equivalent) was significantly increased going from 

moderate to heavy to severe intensity trials (significant main effect of intensity, 

p<0.001). Furthermore, for all exercise intensities there was a significant reduction of 

the contribution of glycolysis over time segments (significant main effect of time 

segment, p<0.001). In particular, a limited and invariant contribution of anaerobic 

glycolysis was detected for the moderate-intensity domain; Additionally, the 

contribution of anaerobic glycolysis decreased from 0-3 to 3-6 time segments of the 

heavy-intensity exercise trials, yet no further after that; finally, contribution of 

anaerobic glycolysis continued to decrease over time in the severe exercise trials (figure 

3). 
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Table 1, Subjects’ anthropometrical and functional characteristics obtained during the ramp incremental test. 

Subjects Characteristics Ramp Incremental Test 

# 

Weight 

(kg) 

Height 

(cm) 

Age 

(years) 

PPO  

(W)   

VO2max 

(ml*min-1) 

VO2max 

(ml*min-1*kg) 

MRT 

(sec) 

GET 

(ml*min-1) 

RCP 

(ml*min-1) 

8 ♂ 74 ± 9 180 ± 5 25 ± 1 376 ± 36 3643 ± 457 49 ± 3 41 ± 12 2418 ± 385 3093 ± 377 

 

Values are means ±SD. PPO: peak PO; VO2max: peak of oxygen consumption; MRT: mean response time; GET: gas exchange threshold; 

RCP: respiratory compensation point. 
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Figure 1, Repeatability of VO2: group mean VO2 data are displayed as 10s-averages 

respectively for the “severe” (top panel), “heavy” (medium panel) and “moderate” (bottom 

panel) exercise intensity domain. Symbols represent the three duration trials: black dots= 9-

min CTL, white dots= 6-min CTL, black triangles= 3-min CTL.
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Table 2, Metabolic response in the moderate, heavy and severe exercise domains. 

    
 Severe  

  Work rate VO2 VCO2 VE HR [La-] 

Time Segment (W)  (ml*min-1) (ml*min-1)  (L*min-1)  (b*min-1)  (mmol*L) 

Warm-up 20.0 ± 0.0 1034.5 ± 51.4 743.8 ± 479.1 17.7 ± 2.2 73.2 ± 9.6 1.7 ± 0.6 

0 to 3 min 267.0 ± 37.5 3198.7 ± 435.6 3585.8 ± 599.2 92.9 ± 26.9 157.3 ± 4.7 6.7 ± 1.6 

3 to 6 min 267.0 ± 37.5 # 3489.1 ± 498.8 # 3792.3 ± 597.9 # 109.9 ± 31.1 # 169.5 ± 5.5 9.2 ± 2.4 # 

6 to 9 min 267.0 ± 37.5 #* 3615.5 ± 521.9 #* 3888.1 ± 634.2 #* 119.1 ± 31.0 #* 175.2 ± 4.8 # 10.7 ± 2.5 #* 

 
  Heavy 

  Work rate VO2 VCO2 VE HR [La-] 

Time Segment (W)  (ml*min-1) (ml*min-1)  (L*min-1)  (b*min-1)  (mmol*L) 

Warm-up 20.0 ± 0.0 1067.7 ± 57.6 605.8 ± 58.6 18.6 ± 2.6 74.2 ± 8.4 1.8 ± 0.8 

0 to 3 min 208.9 ± 28.7 2771.6 ± 429.3 2748.8 ± 438.2 66.5 ± 14.4 141.5 ± 11.2 3.4 ± 1.1 

3 to 6 min 208.9 ± 28.7 # 2851.5 ± 425.4 # 2818.3 ± 400.8 # 70.9 ± 13.4 # 146.3 ± 15.3 3.9 ± 1.4  

6 to 9 min 208.9 ± 28.7 # 2822.7 ± 395.7 # 2741.1 ± 367.5 # 71.0 ± 13.1 # 151.1 ± 15.2 4.1 ± 1.4  

 

  Moderate 

  Work rate VO2 VCO2 VE HR [La-] 

Time Segment (W)  (ml*min-1) (ml*min-1)  (L*min-1)  (b*min-1)  (mmol*L) 

Warm-up 20.0 ± 0.0 1026.3 ± 65.3 566.4 ± 60.7 17.1 ± 1.7 73.3 ± 8.5 1.7 ± 0.6 

0 to 3 min 128.7 ± 27.0 1951.6 ± 261.7 1731 ± 275.5 42.9 ± 8.1 117.5 ± 23.6 2.4 ± 0.8 

3 to 6 min 128.7 ± 27.0 1987.1 ± 277.4 1841.5 ± 275 45.3 ± 7.2 122.0 ± 27.0 1.8 ± 0.6 

6 to 9 min 128.7 ± 27.0 1992.3 ± 298.7 1871.7 ± 332.7 47.6 ± 9.8 122.9 ± 29.0 1.3 ± 0.3 

 

Values are means ±SD. Values of PO and per-min measures of VO2, VCO2, VE and HR in the last 30s of each time segment are displayed, 

along with measures of lactate concentration ([La-]) at the end of warm-up and at the end of each time segment. ANOVA revealed a 
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significant “intensity” x “time” interaction for VO2 (p≤ 0.001), VCO2 (p= 0.014), VE (p≤ 0.001), HR (p= 0.011) and [La-] (p≤ 0.001). 

Multiple comparisons are also displayed: # represents significant statistical difference with 0 to 3 min segment; * represents significant 

statistical difference with 3 to 6 min segment. For greater clarity were omitted: comparisons vs warm-up (always significantly different, 

with the only exception of [La-] in the moderate exercise intensity domain) and between exercise domains (always significantly different, 

with the only exception of HR between “severe” and “heavy” during the 0-3 segment). 
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Figure 2, An overview of the energetic contributors to exercise is reported in 10-s averages for 

the “severe” (top panel), “heavy” (medium panel) and “moderate” (bottom panel) exercise 

intensity domain. White columns represent directly measured VO2. Grey columns indicate the 

O2 cost requested by ventilation. The black dashed line displays the energy provided by 

glycolytic sources over 3 min segments. Finally, the black solid line represents the adjusted 

cost of exercise accounting for both aerobic and glycolytic energy sources. Please note that 

during all the first 3 min segments, the contribution of immediate energy sources (O2 and 

phosphocreatine) was not accounted and was probably the cause of the lower adjusted VO2 

between the first and the sec time segments (di Prampero et al. 1999; Hill 1999). 
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Table 3, Energetic contributors to exercise in the moderate, heavy and severe exercise domains. 

Severe  

  VO2 VO2VM [La-] Equivalent AdjO2Eq VO2gain 

Time Segment  (ml O2*3min-1)  (ml O2*3min-1)  (ml O2*3min-1)  (ml O2*3min-1) (ml O2*min-1 * W) 

0 to 3 min 5037 ± 1155 356 ± 113 1182 ± 492 5863 ± 1413 7.9 ± 1.2 

3 to 6 min 7096 ± 1509 # 623 ± 234 # 588 ± 256 # 7061 ± 1516 # 9.5 ± 1.2 # 

6 to 9 min 7780 ± 1573 #* 729 ± 270 #* 321 ± 259 #* 7372 ± 1443 #* 9.9 ± 1.1 # 

Heavy  

  VO2 VO2VM [La-] Equivalent AdjO2Eq VO2gain 

Time Segment  (ml O2*3min-1)  (ml O2*3min-1)  (ml O2*3min-1)  (ml O2*3min-1) (ml O2*min-1 * W) 

0 to 3 min 4062 ± 1184 216 ± 62 452 ± 254 4278 ± 1074 7.5 ± 1.1 

3 to 6 min 5289 ± 1321 # 295 ± 77 # 128 ± 169 # 5121 ± 1268 # 9.0 ± 1.3 # 

6 to 9 min 5450 ± 1180 # 304 ± 77 # 79 ± 135 # 5225 ± 1123 # 9.2 ± 1.0 # 

Moderate  

  VO2 VO2VM [La-] Equivalent AdjO2Eq VO2gain 

Time Segment  (ml O2*3min-1)  (ml O2*3min-1)  (ml O2*3min-1)  (ml O2*3min-1) (ml O2*min-1 * W) 

0 to 3 min 2200 ± 906 140 ± 25 67 ± 94 2126 ± 939 6.4 ± 1.8 

3 to 6 min 2823 ± 1083 # 169 ± 33 34 ± 58 2687 ± 1036 # 8.1 ± 1.7 # 

6 to 9 min 2910 ± 1067 # 189 ± 40 0 ± 0 2731 ± 1035 # 8.3 ± 1.8 # 

 

Values are means ±SD. Values are reported over 3-min time segments. VO2: directly measured VO2; VO2VM: VO2 requested by 

ventilatory muscles; [La-] equivalent: oxygen equivalent of lactate; AdjO2Eq: energy cost of exercise expressed as a sum of aerobic and 

glycolytic sources (VO2 + [La-] equivalent) and subtracted by VO2VM. ANOVA revealed a significant “intensity” x “time” interaction 

for VO2 (p≤ 0.001), VO2VM (p≤ 0.001), [La-] equivalent (p≤ 0.001), and AdjO2Eq (p≤ 0.001). Multiple comparisons are displayed in the 
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table: # represents significant statistical difference with 0 to 3 min segment; * represents significant statistical difference with 3 to 6 

min segment. Please note that values measured during warm-up were subtracted. For greater clarity comparisons between intensity 

domains were omitted (always significantly different, with the exceptions of i) [La-] equivalent between “heavy” and “moderate” during 

the 3-6 and 6-9 time segments and ii) VO2gain between “severe” and “heavy” in the 0-3 segment iii) VO2gain between “severe” and 

“heavy” and “heavy” and “moderate” in the 3-6 segment). 
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Figure 3, 3-min mean oxygen equivalents of aerobic (grey, i.e. VO2 subtracted by VO2VM) and 

glycolytic (white, i.e. [La-] equivalent) cost of exercise are represented respectively for the 

“severe” (top panel), “heavy” (medium panel) and “moderate” (bottom panel) exercise 

intensity domain. ANOVA revealed a significant “intensity” x “time” interaction both for 

aerobic (p≤ 0.001) and anaerobic (p≤ 0.001) cost of exercise. Multiple comparisons are 

displayed as: # significant statistical difference with 0 to 3 min segment; * significant statistical 



 

84 
 

difference with 3 to 6 min segment. ° and § represent respectively statistical difference with the 

“moderate” and “heavy” exercise intensity domain. Please note that values measured during 

warm-up were subtracted. 
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Discussion: 

By comprehensively quantifying aerobic and glycolytic energy sources used during 

exercise, deprived of the VO2 cost of ventilation (i.e. AdjO2Eq), this study tested the 

hypothesis that the overall cost of cycling is affected by time during metabolic 

transitions in the moderate, heavy and severe intensity domains. In agreement with our 

hypothesis, our findings suggest that: i) the overall cost of locomotion does not increase 

over time during metabolic transitions in the moderate domain; ii) in the heavy intensity 

domains, the emergence of a VO2 slow component is associated with a “metabolic 

shift” between aerobic and anaerobic metabolisms protracted beyond the 3rd min of 

exercise and to a higher VO2 cost of ventilation, rather than to an increased cost of 

locomotion over time; iii) finally, a true loss of efficiency over time may manifest only 

in the severe intensity domain. This investigation provides new insight into the 

mechanisms underpinning VO2sc and exercise tolerance.  

The fitness level of our sample measured during the ramp incremental tests indicated 

that the participants of this investigation were active subjects. (VO2max: 49±3 ml*min-

1*kg, see Table 1 for the other characteristics) (American College of Sports Medicine 

2017). Metabolic responses measured during CWR trials (Table 2) were consistent 

with values reported by another investigation that tested a similar group of subjects 

while cycling in comparable exercise intensity domains (Black et al. 2017). In addition, 

the pulmonary VO2 kinetics were similar to those previously reported in the literature: 

no VO2sc (i.e. the % difference between the pulmonary VO2 at the end and the third min 

of exercise) was measured in the moderate (0.9±3.51 %) domain; a small VO2sc, 

evolving to steady state, was present in the heavy domain (4.2±3.4 %); a larger VO2sc 

and no steady state were detected in the severe domain (11.4±4.9 %) (Santana et al. 

2007; O’Connell et al. 2017).  

By applying an approach previously proposed by O’Connell et al. (O’Connell et al. 

2017), our study quantified the individual contributors to the overall net VO2 cost of 

exercise (i.e. AdjO2Eq) and their interplay during metabolic transition and steady-state. 

While O’Connell et al. studied the VO2 of active muscles, the VO2 associated with 
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ventilation and the VO2 equivalent of [La-] in the severe domain only, we extended the 

analysis to the three exercise intensity domains.  

As expected, based on the changes in ventilation described above, the VO2 associated 

with ventilation increased going from moderate (3±3 % of the VO2sc), heavy (7±3 %), 

to severe (14±7 %) intensity. In agreement with previous work (Poole et al. 1991), this 

finding confirms that ~85% of the VO2sc occurs within the working muscles. In 

addition, our study demonstrated that the VO2 associated with ventilation increased 

over exercise time in the severe domain only. Furthermore, for all the exercise domains, 

the O2 equivalent of [La-] accumulation decreased after the transition phase (i.e. 0-3 

time segment), compatible with a progressive decrease of the contribution of glycolysis 

to ATP resynthesis over time (di Prampero et al. 1999). Interestingly, in the domains 

below RCP, this decreased contribution of glycolysis to the energy provision was 

“mirrored” by an increased contribution of oxidative metabolism, to satisfy an invariant 

energetic demand (Table 3 and figure 3). In other words, the VO2sc that is observed in 

the heavy domain may be related to a “metabolic switch” between anaerobic and 

aerobic energy sources of ATP resynthesis rather than to an augmented cost of 

locomotion over time. Such a view is in agreement with the findings and interpretations 

of previous humans studies, performed in the heavy/severe domain of exercise 

(Krustrup et al. 2004a; O’Connell et al. 2017)  as well as with studies based on 

computer modeling of the skeletal muscle bioenergetics (Korzeniewski and Zoladz 

2015). For exercise in the severe domain however, we found that accounting for the 

total energetic cost of locomotion did not completely explain VO2sc. We were the first 

to demonstrate that, in this domain, the AdjO2Eq continued to increase showing an 

augmented energy requirement to sustain the same PO, compatible with a true loss of 

efficiency over time. 

Relative to the severe intensity domain, the partial discrepancy between our data and 

O’Connell’s may be explained by methodological differences between both studies: i) 

as we did, most studies in the field of VO2 kinetics define intensity domains based on 

gas exchange thresholds (De Roia et al. 2012; Poole and Jones 2012); on the contrary, 
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O’Connell used lactate-based measures. Yet, the correspondence between the above 

methods remains controversial (Keir et al. 2015, 2018b; Broxterman et al. 2018) and 

the difference may have led to unmatched intensity domains among our studies. ii) 

O’Connell incremental protocol for VO2max detection was performed after 10 min of 

recovery from a ~20-min protocol with 3-min steps used for LT determination. This 

approach could be responsible for an underestimation of peak-PO and consequently of 

∆60% and may not have guaranteed an exercise intensity corresponding to the severe 

domain for all participants. In summary, while a direct comparison between different 

studies may be difficult, our data provides the first, comprehensive, domain-specific 

characterization of the contributors to the observed VO2sc. 

Traditionally, VO2sc has been attributed to an increased cost of locomotion when 

exercise is protracted more than 3 min at a constant work rate in the heavy and severe 

exercise intensity domains, in relation to either fatigue or recruitment of higher order 

motor units or both  (Jones et al. 2011). Interestingly, while a clear distinction between 

exercises performed above and below RCP is a common concept in exercise physiology 

(Poole and Jones 2012), VO2sc measured in the heavy and in the severe exercise 

domains is usually considered as the expression of a single phenomenon (Jones et al. 

2011; Grassi et al. 2015). In this context, a recent paper based on mathematical 

modelling of the muscle bioenergetics, proposed that a metabolic shift between the 

aerobic and the anaerobic energy systems, caused by a progressive inhibition of the 

glycolytic ATP supply by cytosol acidification, may also contribute to VO2sc  

(Korzeniewski and Zoladz 2015). The authors also suggest that the size of the VO2sc 

can increase when the contribution of glycolysis to ATP resynthesis (and in turn proton 

accumulation) is higher; a lower VO2 in the initial stages of exercise rather than an 

increased VO2 after 3-6 min into exercise may explain the larger  VO2sc at the higher 

exercise intensities (Korzeniewski and Zoladz 2015).  

To our knowledge, this is the first experimental study to determine the contributors of 

VO2sc in the three intensity domains of exercise. Our findings (i.e. a delayed metabolic 

shift in the heavy domain and a true loss of efficiency over time in the severe intensity 
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domain only) appear to support the theory proposed by Korzeniewski & Zoladz, 2015. 

We speculate that, with increasing exercise intensity, the recruitment of bigger, 

preferentially glycolytic muscle fibres could explain a higher contribution of glycolysis 

to ATP resynthesis at exercise onset and therefore a delayed VO2 steady state. 

Furthermore, the recruitment of these intrinsically less efficient and fatigable type II 

fibres could explain the true loss of efficiency that appears over time in the severe 

domain of exercise (Jones et al. 2011; Grassi et al. 2015; Colosio et al. 2019). While 

direct measures of muscle activation were not performed in this investigation, the 

appearance of a loss of efficiency as a function of exercise intensity/PO seems 

compatible with this hypothesis. Future researches should focus on quantifying and 

separating the contribution of ventilation and anaerobic glycolysis to the overall cost 

of exercise while contextually measuring muscle excitement.  

In conclusion, the innovative methodological approach applied in this study allowed to 

discriminate three contributors to the VO2sc: increased VO2 cost of ventilation, delayed 

shifting between aerobic and glycolytic metabolism, and loss of efficiency over time. 

How these mechanisms contribute to the VO2sc depends on relative exercise intensity, 

with a true loss of efficiency over time occurring only at intensities above RCP.  

 

Limitations: 

It should be acknowledged that data interpretation in this investigation depends upon 

estimates of the energetic yield of lactate accumulation and of the VO2 cost of 

ventilation and ignores the contribution of oxygen stores and anaerobic alactic 

mechanism of ATP resynthesis.  

The di Prampero equation (di Prampero et al. 1999), was used to obtain the energy 

equivalent of blood lactate accumulation. This equation was developed using the 

following approach: first the O2 cost of a supramaximal exercise was estimated by 

extrapolating the sub-maximal VO2/PO relationship; then, the difference between the 

estimated and the actual VO2 of exercise was calculated; finally, this difference was 
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divided by the lactate accumulated over the time of the measure in order to calculate 

the O2 equivalent of lactate accumulation. 

The above described method relies on the following assumptions: i) fingertip capillary 

lactate reflects whole-body lactate accumulation; ii) blood lactate accumulation in 

whole-body, in vivo conditions reflects the net result of whole-body lactate production 

and clearance and therefore it is an indicator of the net glycolytic contribution to ATP 

resynthesis. This approach has been equally criticized and endorsed and its validity is 

still debated. Clearly, using the same fixed value of O2 equivalent of lactate 

accumulation for all the individuals may impact the accuracy of the estimate of the 

glycolytic contribution to exercise at the individual level. However, this systematic bias 

would have a similar impact across domains and across time, and therefore should not 

preclude our ability to estimate the contribution of anaerobic metabolism to the overall 

cost of exercises in our experimental setup. An extensive explanation of the advantages 

and the limitations of this method is reported elsewhere (di Prampero et al. 1999). 

Referring the VO2 cost of ventilation, different predictive equations were proposed for 

calculating the work of ventilation and its translation in VO2 cost (Aaron et al. 1992b, 

1992a; Coast et al. 1993) and a variability across individuals of around ±10% has been 

described (Aaron et al. 1992a, 1992b). With the aim to quantify the effect of using 

different predictive equations, we compared the equations from Aaron et al. 

(characterized by a higher cost of ventilation) and the equations of Coast et al. (used in 

our study) at different levels of ventilation. Using Aaron’s compared to Coast’s 

equation would cause an increase in the estimated cost of ventilation from a minimum 

of 19% in the moderate to a maximum of 25% in the severe domain of exercise. The 

effect of using the less conservative Aaron’s equation would be a larger contribution 

of ventilation to the VO2sc, implying a smaller loss of efficiency over time for all 

exercise intensities. Finally, as also discussed in relation to the O2 equivalent of lactate, 

the use of an identical equation for different individuals may have affected the accuracy 

of our calculations; however, this systematic bias would have a similar impact across 

domains and across time, and therefore should not preclude our ability to estimate the 
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contribution of the cost of ventilation to the overall cost of exercises in our 

experimental setup. As a final consideration, a possible effect of time or fatigue on the 

VO2 cost of ventilation should also be considered. However, to our knowledge the 

existence of this phenomenon, its temporal appearance and its magnitude have not yet 

been described. A reduction of the VO2 cost of ventilation over time during a constant 

work rate exercise appears very unlikely. On the contrary, similarly to the loss of 

efficiency of locomotor muscles, a loss of efficiency of ventilator muscles might 

manifest when exercise is protracted. Also in this case, the effect of an unaccounted 

loss of efficiency of ventilation over time on our results would imply an overestimation 

of the locomotor loss of efficiency. 

Finally, during the first three minutes of exercise, the contribution of the immediate 

energy sources (i.e. the O2 stores and phosphocreatine contribution) to ATP resynthesis 

were not quantified. Ignoring this contribution, quantifiable around 680±90 ml of O2 

(di Prampero et al. 1999; Hill 1999), has clearly caused an underestimation of the 

energy cost of exercise during the onset phase, but should not have altered the cost 

quantification of the following part of exercise, and therefore the interpretation of our 

findings in the relation to the VO2sc 
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Abstract: 

This investigation was designed to focus on the steady-state phase of exercise by 

evaluating the relative contribution of metabolic instability and muscle activation to 

the oxygen consumption (VO2) slow component (VO2sc). We tested the following 

hypotheses: i) after the initial 3 min, VO2, metabolic instability and muscle activation 

display a different tendency to increase over time depending on the relative exercise 

intensity (i.e. no changes occur in the moderate domain and increasing dynamics are 

observed in the heavy and severe intensity domains); ii) the increase in VO2sc is 

explained by a combination of metabolic instability and muscle activation. Eight active 

men performed 3 constant work rate trials of 9 min respectively in the moderate, heavy 

and severe domains. VO2, root mean square by EMG (RMS), deoxyhaemoglobin by 

NIRS ([HHb]) and hematic values of metabolic stability (i.e. [La-], pH, HCO3
-) were 

measured.  The physiological responses during exercise in the three intensities domains 

were compared by a two-way (time, intensity) RM-ANOVA. Moreover, the 

relationships between the increases after the third min of NIRS and EMG with VO2 

were compared with simples and a multiple linear regressions. We found a domain-

dependent dynamic over time for VO2, [HHb] (taken as an index of metabolic 

instability), RMS (taken as an index of muscle excitation) and the whole-body hematic 

markers of metabolic instability. Both [HHb] and RMS showed a medium to high 

correlation with VO2 ([HHb] r =0.68, p<0.001; RMS r=0.59, p=0.002). Moreover, the 

multiple linear regression showed that both metabolic instability as measured by NIRS 

and muscle excitation detected by EMG concurred to VO2 (r =0.75, [HHb] p=0.005, 

RMS p=0.042). About 75% of the variability of the VO2sc was explained by a 

combination of the dynamics of [HHb] and RMS. 
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Introduction: 

During constant workrate exercise (CWR), oxygen consumption (VO2) response is 

linearly related to work rate with a ratio of around ~ 10 ml*min-1*W (Poole and Jones 

2012). However, as exercise intensity increases, and particularly at intensities above 

the gas exchange threshold (GET), this relationship is lost and a further, theoretically 

unexpected, increase in VO2 is detectable. This increase in VO2, defined as the “slow 

component” of VO2 (VO2sc), is usually interpreted as an increased O2 cost of 

locomotion and manifest ~3 min after exercise onset (Jones et al. 2011). Typically, 

when exercise is performed in the heavy intensity domain, between GET and the 

respiratory compensation point (RCP, or the critical power), VO2sc tends to steady-

state. On the contrary, when effort rises above RCP (i.e. severe exercise domain) a 

steady-state is not achievable and VO2 tends to the maximal oxygen consumption 

(VO2max) (Jones et al. 2011).  

Of the VO2sc recorded at the mouth, around 85% originates from the contracting 

muscles, while the remaining 15% is caused by the increased cost of ventilation (Poole 

et al. 1991). Pointing the muscular component of the VO2sc, it was proposed that either 

the recruitment of less efficient type II motor units necessary to maintain a specific 

power output (PO) (Jones et al. 2011; Colosio et al. 2019) or metabolic instability 

occurring within the working fibres (Zoladz et al. 2008; Vanhatalo et al. 2011) could 

represent the main physiological underpinnings. In both these scenarios, muscle 

contractions become less efficient, therefore requiring a higher energetic demand in 

order to maintain the same external power output. Moreover, Grassi et at. have 

proposed that as exercise is protracted these two phenomena may mutually influence 

each other in a vicious circle in which the changes in homeostasis of the working 

muscle lead to a loss of efficiency, that in turn may cause the recruitment of larger and 

less efficient motor units, therefore further affecting metabolic stability (Grassi et al. 

2015).  

Adding complexity, recent studies (O’Connell 2017, Study 3), by applying a method 

that accounts for the VO2 cost of ventilation and the VO2 equivalent of lactate 
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accumulation, questioned the very existence of a VO2sc. Analysing the response 

between different intensity domains, the authors (Colosio et al. 2020) suggested that in 

the heavy domain the observed increase in VO2 over time could be the result of a 

delayed adjustment of VO2, while in severe also a “true” loss of efficiency manifest. It 

was speculated that the recruitment of intrinsically less efficient and fatigable type II 

fibres could explain the loss of efficiency reported in the severe intensity domain (Jones 

et al. 2011; Grassi et al. 2015; Colosio et al. 2019).  

Given that both metabolic instability and muscle recruitment can change according to 

the domain in which exercise is performed (Poole and Jones 2012), and because the 

VO2sc may not entail the same physiological underpinnings in heavy and in severe 

(Study 3), a study aimed at testing the muscle contributors to the VO2sc in different 

domains would help in clarifying the origins of this phenomenon. However, the 

implementation of methods designed to quantify muscle metabolism and muscle 

excitation are not often performed simultaneously due to complexity or economic 

reasons. 

In this context, near-infrared spectroscopy (NIRS) provides a non-invasive index of 

oxygen extraction that reflects the imbalance between delivery and utilization within 

the working muscle (Grassi et al. 2003; Grassi and Quaresima 2016) and in turn may 

be associated with metabolic instability (Grassi et al. 2015). Furthermore, 

electromyography (EMG), allows an indirect estimate of motor units activation during 

muscle contraction. Interestingly, while the use of these techniques has increased 

exponentially during the past two decades, no study has applied them in unison to gain 

insight into the origins of the VO2sc.  

Therefore, this investigation was designed to focus on the steady-state phase of exercise 

by evaluating the relative contribution of metabolic instability (measured with NIRS 

and the hematic changes in metabolic balance/homeostasis) and muscle excitation to 

the VO2sc. We tested the following hypotheses: i) after the initial 3 min, VO2, metabolic 

instability and muscle excitation display a different tendency to increase over time 

depending on the relative exercise intensity (i.e. no changes occur in the moderate 
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domain and increasing dynamics are observed in the heavy and severe intensity 

domains); ii) the increase in VO2sc is explained by a combination of metabolic 

instability and muscle excitation. 

 

Methods: 

Ethical Approval 

The study was conducted according to the Declaration of Helsinki and all procedures 

were approved by the University of Verona Ethics Committee for Research on Human 

Subjects. Procedures and risks were explained to each subject, and all participants 

volunteered and gave informed written consent to participate before the start of the 

study. 

 

Participants 

Eight active men were recruited in the study (age 25 ± 2 years, body mass 74 ± 10 kg, 

height 181 ± 5 cm, VO2max: 3643±457 ml*min-1, 49±3 ml*min-1*kg). Inclusion criteria 

were male sex and age between 20 and 35 years; exclusion criteria were smoking and 

any condition that could influence the physiological responses during testing. All 

participants were instructed to avoid caffeine consumption and physical activity 

respectively for at least 8 h and 24 h before each testing session. Moreover, to minimise 

variability of glycogen stores and glucose oxidation, participants followed a standard 

food intake prescription before all the testing sessions as previously described (Keir et 

al. 2015). 

 

Experimental Protocol 

VO2, EMG and NIRS data for this investigation were collected during the 9-min trials 

of a previous investigation (Study 3) in which participants performed 3 tests 
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(respectively of 3, 6, and 9 min) in every exercise intensity domain within a maximum 

of four weeks. Briefly, all subjects completed: i) a preliminary maximal ramp 

incremental exercise test to exhaustion for the determination of gas exchange threshold 

(GET), respiratory compensation point (RCP) and the maximum oxygen uptake 

(VO2max); ii) three constant workrate (CWR) trials in the “moderate” exercise intensity 

domain iii) three CWR in the “heavy” exercise intensity domain iv) three CWR trials 

in the “severe” exercise intensity domain. (di Prampero et al. 1999). Moreover, the 

hematic response to exercise (i.e. blood lactate ([La-]) accumulation, pH, bicarbonate 

(HCO3
-)) was characterized at baseline and every 3 min, by taking blood samples at the 

1st,3rd, 5th and 7th min after exercise stop of the 3, 6 and 9 min CWR respectively. Tests 

were executed in randomized order with the only exception of the longest CWR in the 

“severe” exercise domain, that was completed as first to assure that subjects were able 

to sustain the PO for the required time. All exercise tests were conducted on an 

electromagnetically braked cycle ergometer (Sport Excalibur, Lode, Groningen, 

Netherlands), at a similar time of the day in an environmentally controlled laboratory 

(18°C, 55-65% relative humidity). 

Ramp incremental test: 

The ramp incremental test consisted of a 3-min baseline cycling at 50 W, followed by 

a 30-W*min-1 increase in PO until volitional exhaustion. Participants were asked to 

pick a self-selected cadence in the range of 70-90 rpm and to maintain it throughout all 

subsequent tests. Failure to maintain the indicated cadence within 5 rpm (for longer 

than 5 sec) during testing despite strong verbal encouragement was considered as the 

criterion for exhaustion. Breath-by-breath pulmonary gas exchange and ventilation 

were continuously measured using a metabolic cart (Jaeger Oxycon Pro, Viasys 

Healtcare GmbH, Höchberg, Germany) as previously described (De Roia et al. 2012). 

Heart rate (HR) was monitored continuously (H7 Sensor, Polar, Kempele, Finland). 

Constant workrate trials: 
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After the preliminary ramp incremental test, subjects completed 3 CWR within each 

exercise intensity domain (i.e. moderate at 80% of GET, heavy at 50%Δ between GET 

and RCP, and severe at 60%Δ between GET and VO2max) in a randomized order. 

Each CWR was preceded by a 3-min warm-up at 20 W. Throughout the test, subjects 

kept the same, constant rpm and bike position as selected during the ramp incremental 

test. 

VO2 and HR data were measured with the same method described for the ramp 

incremental test.  

Capillary blood samples (65 μl) were drawn from the fingertip in the last 30s of warm-

up and at the 1st,3rd, 5th and 7th min after each test and were immediately analysed using 

a benchtop blood analyser (Radiometer ABL90 FLEX, Radiometer Medical ApS, 

Brønshøj, Denmark) to measure [La-], pH and HCO3
-. The highest value of [La-] was 

considered as the peak of blood lactate concentration and used for further analysis. The 

blood sample with the highest [La-] was also used to define pH and HCO3
- at a given 

time point. 

Deoxygenation of the left vastus lateralis was evaluated in microcirculation using a 

quantitative near-infrared spectroscopy system (Oxiplex TSTM, ISS, Champaign, 

USA) that provided continuous measurement (sampling frequency 1 Hz) of the 

absolute concentrations (µM) of deoxyhaemoglobin ([HHb]). After shaving, cleaning 

and drying of the skin area, the NIRS probe was positioned longitudinally on the belly 

of the vastus lateralis muscle ~15 cm above the patella, attached to the skin with a bi-

adhesive tape and secured with elastic bandages around the thigh. The device was 

calibrated before each test after a warm-up of at least 30 minutes as per manufacturer 

recommendations.  

Surface EMG of the right vastus lateralis muscle was continuously recorded by means 

of a wireless system (1000 Hz; ZeroWire, Noraxon, Scottsdale, AZ, USA). A pair of 

surface Ag/AgCl electrodes (Blue sensor, Ambu®, Ballerup, Denmark) was attached 

to the skin with a 2-cm inter-electrode distance. The electrodes were placed 
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longitudinally with respect to the underlying muscle fibres arrangement, according to 

the recommendations by Surface EMG for Non-Invasive Assessment of Muscles 

(Hermens et al. 2000). Before electrode application, the skin was shaved, scratched 

with sand-paper and cleaned with alcohol in order to minimize impedance. Semi-

permanent ink marks allowed consistent re-positioning of the electrodes between 

sessions. The EMG transmitter connected to the electrodes was well secured with 

adhesive tape to avoid movement-induced artefacts.  

 

Data Analysis 

Ramp Incremental Test:  

For the gas exchange variables, aberrant data-points that lay 3 SD from the local mean 

were removed, and trials were linearly interpolated on a 1-sec basis and then averaged 

every 5-sec. VO2max was determined as the highest VO2 obtained over a 10-sec interval 

(Fontana et al. 2015). GET and RCP were determined with the standard technique from 

gas exchange variables by three blinded expert reviewers as detailed elsewhere 

(Fontana et al. 2015). Briefly, GET was determined by visual inspection as the VO2 at 

which CO2 output began to increase out of proportion in relation to VO2, with a 

systematic rise in the ventilation (VE)-to-VO2 relation and end-tidal PO2 whereas the 

ventilatory equivalent of VCO2 (VE/VCO2) and end-tidal PCO2 is stable (Beaver et al. 

1986). RCP was determined as the point where end-tidal PCO2 began to fall after a 

period of isocapnic buffering (Whipp et al. 1989). This point was confirmed by 

examining VE/VCO2 plotted against VO2 and by identifying the second breakpoint in 

the VE-to-VO2 relation. Finally, we determined the constant work rate equivalent to 

the specific moderate (80% of GET), heavy (50% Δ between GET and RCP) and severe 

(60%Δ between GET and VO2max) VO2 targets. To this aim, the VO2/W relationship 

identified with the incremental test left-shifted to account for the mean response time 

(Fontana et al. 2015). 
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Constant workrate trials:  

VO2 during CWR was sampled breath-by-breath, interpolated using the same 

procedure described for the ramp incremental test, and time-aligned with the onset of 

exercise. To isolate O2 contributing to locomotion (VO2m), the VO2 requested by 

ventilation was subtracted from the VO2 measured at the mouth level as broadly 

described elsewhere (study 3). In brief, the work of breathing was calculated based on 

VE using the equation by Coast et al.: 

Work of breathing = -0.430 + 0.050 * VE + 0.00161 VE2 

Then, the work of breathing was used to calculate the amount of VO2 requested by 

ventilatory muscles: 

VO2 requested by ventilation = 34.9 + 7.45 * work of breathing (Coast et al. 1993) 

NIRS derived [HHb] response was time-aligned with the onset of exercise transition. 

Raw EMG signal was rectified and smoothed using a fourth-order band-pass 

Butterworth digital filter with a frequency range set between 20 and 500 Hz. Root mean 

square (RMS) was calculated every second from the raw signal and was used as an 

index of the total muscle excitation for vastus lateralis (Moritani et al., 1986; Ryan & 

Gregor, 1992). Thereafter, the RMS recorded during the last 2 minutes of 20 W 

baseline for each test was used to normalize the CWR and expressed as multiples of 

baseline. 

Then, the slopes of increase of each signal were calculated (i.e. VO2m, [HHb], RMS, 

[La-], pH and HCO3
-) in the time window between the 180 and 540 sec after exercise 

start. Based on the prediction of the time to steady-state of this sample of subjects 

(calculated as the time delay (25±2 sec) + 4 * tau (30±3 sec)), 180 sec was chosen as 

the minimum time to achieve a steady-state in all the intensity domains. 
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These slopes were used to calculate the % increases after the values reached after the 

first 180 sec of exercise, as follow: 

Y(t) = Y180 + (SlopeY * t) / (Y180 / 100) 

Where Y(t) represents the increase of a given signal at the time point corresponding to 

180 sec after exercise onset, Y180 is the mean value obtained from data between 170 

and 180 sec after exercise onset, SlopeY is the slope of increase of a given signal in the 

time window between 180 and 540 sec, t is the time coordinate.  

Statistics 

After assumptions verification (i.e., normality, homogeneity of variance), a two-way 

repeated-measures ANOVA was performed to assess differences over time in the 180-

540 sec time window, and between different intensities domains (time segment x 

intensity domain) for VO2m, [HHb], RMS, [La-], pH, and HCO3
-. Post-hoc analysis was 

performed using Holm-Sidak method. 

The linear relationships between the slope of the % change of VO2m and the % change 

of RMS, and [HHb] were modelled, and Pearson’s product moment correlation 

coefficients were calculated. Finally, a multiple linear regression was run incorporating 

both RMS and [HHb] to test the combined muscle recruitment/metabolic instability 

contribution in predicting the slope of VO2m (i.e. VO2sc). 

Data are presented as means ± SD. All statistical analyses were performed using 

Sigmaplot version 12 and α was set in advance at the 0.05 level. Statistical significance 

was accepted when p < α.   
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Results: 

GET and RCP were identified at a VO2 respectively of 2418±385 and 3094±377 

ml*min-1, while the VO2 targets in the moderate, heavy and severe exercise domains 

were identified at: 1935±308 ml*min-1, 2743±348 ml*min-1 and 3154±408 ml*min-1. 

VO2 values recorded in the last 30 sec of exercise were: 1973±478 ml*min-1 for 

moderate, 3013±365 ml*min-1 for heavy and 3640±514 ml*min-1 for severe, 

highlighting a clear contribution of the VO2 slow component in the rise of VO2 over 

time both in the heavy and severe domains. The mean VO2 profile, and the other 

physiological variables, are represented in the three exercise intensity domains in figure 

1. 

In figure 2, the dynamic changes in these variables after 180 sec of exercise are 

presented. ANOVAs revealed a significant “time” x “intensity domain” interaction for 

VO2m  (p<0.001), [HHb] (p<0.001),  RMS (p<0.001),  [La-] (p<0.001),  and HCO3
- 

(p<0.001),  but not for pH, in which there was a tendency to significance (p=0.068) and 

a significant main effect of the intensity domain in which exercise was performed 

(p=0.009). All the multiple comparisons between domains at different time-points 

resulting from the post-doc analysis are presented in figure 2. In brief, VO2m and 

muscle [HHb] continued to increase over time after the first 180 sec of exercise in 

severe (% difference between 540 and 180 sec: VO2m +9.4±4.7%, p<0.001; [HHb] 

+9.4±5.4%, p<0.001) and in heavy (% difference between 540 and 180 sec: VO2m 

+2.7±2.7%, p<0.001; [HHb] +5.8±4.9%, p<0.001), but not in moderate (VO2m -

2.4±2.1%, p= 0.001; [HHb] +0.3±2.7%, p=1.000). Muscle excitation increased over 

time only in severe (% difference between 540 and 180 sec in RMS: severe 

+13.1±13.2%, p<0.001, heavy +5.4±8.5%, p=0.110, moderate +2.5±8.5%, p=1.000). 

The comparison between different domains revealed that in severe, both VO2m, [HHb] 

and RMS were different from heavy and moderate; while in heavy VO2m and [HHb] 

were the only signals to reach statistical significance versus moderate (figure 2). 

Regarding the hematic values, blood lactate concentration increased over time in severe 

(% difference between 540 and 180 sec: +63.4±39.1%, p<0.001), remained stable in 
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heavy (% difference between 540 and 180 sec: +22.3±33.7%, p=0.093), and decreased 

in moderate (% difference between 540 and 180 sec: -35.5±18.5%, p=0.004); while 

both pH and HCO3
- decreased over time in the severe domain only (% difference 

between 540 and 180 sec in severe: pH -0.6±0.6%, p<0.001, HCO3
- -16.1±5.8%, 

p<0.001; heavy: pH +0.1±0.3%, p=0.646, HCO3
- -1.6±5.7%, p=0.418; moderate: pH 

+0.2±0.4%, p=0.438, HCO3
- +2.5±3.8%, p=0.463). 

Finally, the relationships of [HHb] and RMS with VO2m are presented in figure 3. Both 

the variables showed a medium to high correlation with VO2m ([HHb] r =0.68, p<0.001; 

RMS r=0.59, p=0.002). Moreover, the multiple linear regression showed that both 

metabolic instability as measured by NIRS and muscle excitation detected by EMG 

concurred to VO2m (r =0.75, [HHb] p=0.005, RMS p=0.042), as described by the 

following equation: 

VO2sc = -0.00289 + (0.520 * [HHb]) + (0.193 * RMS) 

Where: VO2sc represents the slope of % increase in VO2m after the third minute of 

exercise; [HHb] represents the slope of % increase in deoxyhaemoglobin after the third 

minute of exercise; and RMS represents the slope of % increase in root mean square 

after the third minute of exercise. 
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Figure 1, the physiological responses during cycling in different exercise domains are presented in 30 sec means ±SD.  Symbols 

represent: white square: moderate exercise domain, white circle: heavy exercise domain, black circle: severe exercise domain. 
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Figure 2, the dynamic changes of VO2, [HHb], and RMS after the third minute of exercise are represented in the top panels (as the % 

increase after the value reached the third minute of exercise). In the bottom panels the changes of the hematic values of metabolic 

stability are displayed. Symbols represent: white square: moderate exercise domain, white circle: heavy exercise domain, black circle: 

severe exercise domain. Main effects resulting from ANOVA are represented in each panel, and the statistical differences resulting from 

the posthoc analysis are expressed by the letters (S vs M: severe vs moderate; S vs H: severe vs heavy; H vs M: heavy vs moderate)  
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Figure 3, the correlations between the increases in RMS and [HHb] with VO2m are presented. 

Symbols represent: white square: moderate exercise domain, white circle: heavy exercise 

domain, black circle: severe exercise domain.   
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Discussion: 

By implementing measures of peripheral metabolism and muscle excitation, this study 

investigated the contribution of metabolic instability (i.e. [HHb]) and increased muscle 

excitation (i.e. RMS) to the VO2sc in the moderate, heavy and severe exercise intensity 

domains. According to our hypothesis, our results showed that after the third min of 

exercise: i) in the moderate domain, neither VO2m, nor [HHb] or RMS increased over 

time; in heavy, an increase in VO2sc occurred, in association with an increase in [HHb] 

but not in RMS; in severe, VO2sc, [HHb] and RMS were all increasing over time and 

the amplitude of these responses significantly differed from both moderate and heavy; 

ii) the increases in [HHb] and RMS were significantly correlated with the increase in 

VO2sc. Overall, our findings are consistent with the hypothesis that the appearance of a 

loss of efficiency of locomotion over time may be caused by a combination of 

metabolic instability within the working fibres and the increased muscle excitation.  

In 2015, Grassi et al. extensively reviewed the complex interplay of mechanisms 

underpinning the VO2sc (Grassi et al. 2015), but until today no study has focused on 

directly testing the changes and interactions of these mechanisms in different intensity 

domains. Therefore, this investigation contributed to fill this gap.  

As expected, our data confirm no further increases in VO2m (-2.4±2.1% p=0.001), 

[HHb] (+0.3±2.7%, p=1.000), and RMS (+2.5±8.5%, p=1.000) after the third minute 

of exercise during moderate intensity transitions, indicating that a steady-state was 

achieved in all these variables within 180s.  

In the heavy domain, a slow component of VO2m (+2.7±2.7%, p<0.001) ensued after 

the third minute and was accompanied by increased [HHb] (+5.8±4.9%, p<0.001) but 

only a small, non-significant increase in RMS (+5.4±8.5%, p=0.110). In this domain, 

the VO2sc is typically described as a loss of efficiency over time; however, it was 

recently proposed that VO2sc may, in fact, represent a delayed “metabolic shift” 

between anaerobic and aerobic sources for ATP resynthesis that occurs in coincidence 

with an increased cost of locomotion in the heavy domain of exercise (i.e. loss of 
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efficiency vs moderate but not developing over time) (Study 3). Indeed, performing 

exercise in the heavy exercise domain entails the recruitment of bigger, intrinsically 

more glycolytic and less efficient moto units (Poole and Jones 2012); this, in turn, may 

lead to slower VO2 kinetics (Barstow et al. 1996) and larger VO2 gain (i.e. loss of 

efficiency of locomotion) (Jones et al. 2011) even without the recruitment of new 

muscle fibres over time. A possible physiological explanation for this phenomenon was 

proposed in a recent paper by Korzeniewski and Zoladz (Korzeniewski and Zoladz 

2015). The authors suggested that a larger contribution of glycolysis to ATP resynthesis 

(as during exercise above GET due to the recruitment of higher order muscle fibres) 

would slow the on-set VO2 kinetics and justify the appearance of a delayed steady-state 

or VO2sc. This possibility was also corroborated by a study showing an increase in the 

amplitude of the primary component of VO2, and in turn a reduction of the amplitude 

of the VO2sc, when heavy exercise was performed in a condition of glycogen depletion 

(Carter et al. 2004). The possibility that the VO2sc may in fact represent a delayed 

adjustment of VO2 seems therefore possible, even if further studies will need to confirm 

this hypothesis. In support of this view, our data indicate increased levels of [HHb], 

compatible with increased metabolic instability within the working muscle or increased 

O2 cost, without augmented muscle excitation (i.e. EMG) over time (figure 1 and 2). 

Moreover, [HHb] showed a slow component until the ~6th min of exercise, reaching a 

steady-state thereafter (figure 1). It is reasonable to speculate that if a loss of efficiency 

over time would have occurred within the working motor units, its effects would have 

been protracted until the end of exercise. In fact, the progressive accumulation of 

metabolites (Pi, IMP, ADP, H+, K+) (Grassi et al. 2015) would have probably led to a 

decreased efficiency/fatigue of the active fibres, to the recruitment new fibres, and 

further moving away from homeostasis.  

Finally, in the severe domain, VO2m, [HHb] and RMS continuously increased over time 

of ~9-13% after the third minute of exercise (figure 2). This is an expected finding for 

exercise performed at an intensity in which a metabolic steady-state is not achievable, 

an increasing level of metabolic perturbation occurs and the recruitment of higher-order 
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motor units is necessary to protract exercise (Poole and Jones 2012). In fact, the aerobic 

energetic system alone is unable to sustain the required levels of ATP resynthesis and 

increased dependence on anaerobic metabolism is needed. This leads to release of H+ 

and other metabolites (Grassi et al. 2015) that impair muscle contraction and require 

the further contributions of larger, less efficient motor units to sustain exercise.  

A different development of metabolic instability over time in the three domains was 

also confirmed by the hematic markers of metabolic acidosis (figure 1 and 2). As 

expected, increasingly larger amounts of [La-] accumulated in the initial 3 min of 

exercise (early lactate) in the three domains, along with increasing reductions of blood 

pH and bicarbonate concentration. Thereafter, a steady-state of these variables was 

maintained in the 3 to 9 min time-window for both the moderate and heavy exercise 

domains. In the severe domain only, [La-] significantly increased (+63.4±39.1%, 

p<0.001), and both pH (-0.6±0.6%, p<0.001) and HCO3
- -16.1±5.8%, p<0.001) 

decreased over time, indicating a mismatch between blood lactate production and 

removal and an increasing metabolic acidosis. While changes in [La-], and acidosis 

between domains were recently shown by others (Vanhatalo et al. 2016; Black et al. 

2017), this is the first study that concurrently performed non-invasive and time-

resolved measures of VO2m, local muscle metabolism, muscle excitation and blood 

markers of metabolic instability.  

The final aim of this investigation was to gain insight into the relative contribution of 

the two main putative physiological underpinnings of the VO2sc, metabolic instability 

and increased muscle recruitment. Our data indicate that [HHb] and RMS, both 

individually (figure 3) and combined in a multiple linear equation, had a significant 

impact on the prediction of the slope of the slow component. Moreover, the multiple 

linear equation indicated that the contribution to the VO2sc was ~2.7 times larger for 

[HHb] than RMS, even if this quantitative indication should be taken carefully due to 

the different signal-to-noise ratio of the variables (higher for EMG) and to the presence 

of a slow component of RMS only in the severe domain (figure 1 and 2). To our 

knowledge, only two other studies provided data of simultaneous measurement of 
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metabolic instability and muscle excitation during constant work rate exercises in 

different intensity domains (Keir et al. 2016; Black et al. 2017). In one of these studies, 

Keir et al. (Keir et al. 2016) found that the development of the VO2sc in the severe 

domain was accompanied by peripheral muscle fatigue (i.e. reduced maximal isometric 

contraction), without increases in the EMG signal, concluding that metabolic instability 

was the only probable cause of the VO2sc. However, the lack of a slow component in 

the EMG response compared to our results may be explained by the different exercise 

intensities that were used in our studies. In Keir et al. 2016 the average VO2 reached at 

the 9th minute into exercise corresponded to ~+5% of the VO2 at RCP, i.e. in close 

proximity with the heavy-severe boundary (Thomas et al. 2016), while in our study it 

represented ~ +17% of RCP. Pertinently with this speculation, recent findings showed 

that the muscle excitation might change according to the relative intensity within the 

severe domain, with larger activation occurring at the higher intensities (Iannetta et al. 

2019b). The relatively small dynamics of the VO2sc reported in Keir’s study is also 

compatible with an intensity only slightly above the maximal lactate steady-state 

(Iannetta et al. 2018) or the critical power (Billat et al. 1995; Carter et al. 2002; Sawyer 

et al. 2012). The only other investigation that examined contemporarily neuromuscular 

and metabolic changes over prolonged exercise sessions reported a clear difference in 

the neuromuscular response during exercise in the severe vs heavy and moderate 

domains: fatigue/metabolic instability develops intensively in the severe domain (due 

to a large metabolic imbalance) and extensively in the heavy and moderate domains 

(due to substrates depletion and accumulation of fatigue-related metabolites) (Black et 

al. 2017). While their study is not easily comparable with ours due to difference in the 

design, Black’s data support a significant accumulating metabolic imbalance and 

muscle excitation in the initial 10 min of exercise only for the severe intensity domain. 

In conclusion, this investigation tested the “instability-recruitment” theory proposed by 

Grassi et al. in 2015 (Grassi et al. 2015) to explain the origins of the VO2sc. In the three 

exercise intensity domains, our study demonstrated a domain-dependent dynamic over 

time for VO2, [HHb] (taken as an index of metabolic instability), RMS (taken as an 
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index of muscle excitation) and the whole-body hematic markers of metabolic 

instability. About 75% of the variability of the VO2sc was explained by a combination 

of the dynamics of [HHb] and RMS.  
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CHAPTER  

7  

General Discussion 
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The main purpose of this thesis was to investigate the physiological underpinnings of 

the so-called oxygen consumption (VO2) “slow component” (VO2sc). In particular, the 

study focused on the two main putative mechanisms, i.e. metabolic instability and 

muscle recruitment, behind the loss of efficiency of human locomotion at intensities 

above the gas exchange threshold (GET). The first part of the thesis, composed by two 

studies, tested the hypothesis that acute non-metabolic fatiguing interventions, by 

reducing the maximal force of the lower limbs and thus possibly increasing the muscle 

excitation for a given work rate, would increase the VO2sc. In the second part of the 

thesis, the physiological response to exercise was investigated across the different 

exercise intensity domains by i) evaluating the bioenergetic contributors to exercise 

and by ii) applying non-invasive measures of muscle metabolism and activation in 

order to test the contribution of metabolic instability and muscle recruitment to the loss 

of efficiency. This section will briefly summarise the findings of these studies. 

 

 

Muscle recruitment contribution to the VO2sc: 

Typically, two main mechanisms are considered responsible for the rise of the VO2sc: 

the recruitment of less efficient, bigger muscles fibres; or the loss of metabolic stability 

within the already working fibres, described as a loss of the capacity to produce a 

specific mechanical output for a given energetic input (i.e. increased O2 cost of ATP 

resynthesis and/or increased ATP cost of contraction (Jones et al. 2011; Vanhatalo et 

al. 2011; Grassi et al. 2015)). While a more recent theory considers these two 

phenomena interdependent (Grassi et al. 2015), it is still not clear if and to what extent 

one of these two may prevail and/or occur first. One of the main difficulties in this sense 

is the difficulty to selectively affect either metabolic stability or fibres recruitment in 

human models. The different manipulations used in interventional studies (e.g. speed 

of movement, intensity modulation, aerobic training, priming exercise, nutritional 

interventions) affect, to some extent, both metabolic stability and fibres recruitment. 
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Considering the possible role of increased muscular activation (necessary to maintain 

a given absolute work rate) as the explanatory theory of the VO2sc, in study 1 and 2 it 

was observed that acutely affecting the maximal force can indeed modify the VO2 

response. In study 1, non-metabolic fatigue augmented the level of muscle excitation 

for a given absolute work rate during ramp incremental cycling, reduced the attainable 

level of maximum VO2 (VO2max), and reduced the absolute work rate corresponding to 

GET and the respiratory compensation point (RCP). Moreover, acute fatigue was 

associated with a higher VO2 at an identical submaximal work rate, suggesting a 

possible link between loss of efficiency with the observed decreased ability to produce 

force and the augmented muscle activation. In study 2, non-metabolic fatigue during 

severe constant workrate cycling led to a similar physiological response. The reduction 

in maximal force increased the level of muscle excitation, induced early achievement 

of VO2max, and impaired performance. These results suggest an influence of the 

increased muscle excitation on the kinetics of the VO2sc. 

While limitations of these studies should be taken into accounts, such as the indirect, 

non-invasive nature of our measures and the confunding effect of a small yet possible 

metabolic perturbation induced by the fatiguing interventions, these results seem to 

confirm a key role of muscle recruitment in the origin of the VO2sc. From a practical 

standpoint, these studies suggest adopting strategies to delay the involvement of bigger 

muscle fibres during aerobic exercise in order to improve exercise tolerance.  
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Figure 1 (readapted from study 1 & 2). left panels: : root mean square (top) and VO2 

(bottom) values are presented every 10-100% of the three ramp incremental tests 

performed in control condition or after the fatiguing interventions (stretching and 

dropjumps); right panels: root mean square (top) and VO2 (bottom) during severe cycling 

in control condition or after the fatiguing intervention (stretching). 

 

 

 

Bioenergetics of the VO2sc in different exercise domains: 

This study was inspired by the publication of an article from O’Connell et al. 

(O’Connell et al. 2017) who, contrary to the very existence of a VO2sc, proposed that 

the energy demand of a constant high-intensity exercise does in fact not change over 

time. These authors used an innovative approach to investigate the VO2sc by subtracting 

the VO2 cost of ventilation and accounting for the contribution of the glycolytic energy 

sources  in order to quantify the total metabolic cost of exercise (di Prampero 1986; di 
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Prampero et al. 1999; O’Connell et al. 2017). Using the same approach, we quantified 

the energetic contributors to locomotion in the different exercise intensity domains, 

finding that every exercise domain is characterised by a different bioenergetic 

response. In specific, we found that: in moderate the cost of locomotion does not 

increase over time during metabolic transitions; in the heavy intensity domain, the 

emergence of a VO2sc, is explained by a “metabolic shift” between aerobic and 

anaerobic metabolisms protracted beyond the 3rd min of exercise (i.e. indicative of a 

“delayed adjustment of VO2”) and to a higher VO2 cost of ventilation, rather than to an 

increased cost of locomotion over time; finally, the severe was the only exercise 

domain in which an actual loss of efficiency manifests over time. If confirmed by future 

studies, the main implications of these results would be that:  

• The VO2sc in heavy indeed represents a loss of efficiency of locomotion 

compared with exercise performed in moderate domain (i.e. higher O2 cost * 

W); however, this increased cost of locomotion is present at the very onset of 

exercise rather than developing over time.  

• In this domain, a steady-state in VO2 is not reached within ~3 min but requires 

a more extended amount of time (i.e. delayed adjustment).  

• The VO2sc in heavy and in the severe domains of exercise may be explained by 

different physiological mechanisms and should not be studied interchangeably. 
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Figure 2 left panel: the classical model of VO2 kinetics in response to different work-rate 

intensities; right panel: the new, hypothetical model with the delayed steady-state in the 

heavy domain. 

 

 

Muscle metabolic instability vs muscle recruitment: 

Study 4 was designed to test the “instability-recruitment” proposed by Grassi et al. in 

2015  (Grassi et al. 2015), and the contribution of muscle metabolic instability and/or 

fibres recruitment to the rise of the VO2sc between different intensity domains. To do 

this, we implemented:  

• near-infrared spectroscopy, to gain insight of muscles oxygen extraction (by 

means of deoxyhaemoglobin, [HHb]), reflective of the imbalance between O2 

delivery/utilization, that in turn may be associated with intracellular metabolic 

instability (Grassi and Quaresima 2016).  

• Electromyography, to indirectly estimate the activation of motor units during 

muscle contraction (quantified with the root mean square, RMS).  

• Blood markers of whole-body metabolic instability (i.e. [La-], pH, HCO3
-).  

Results of this investigation demonstrated a domain-dependent dynamic over time for 

VO2, [HHb], RMS, and the whole-body hematic markers of metabolic instability. 

About 75% of the variability of the VO2sc was explained by a combination of the 

dynamics of [HHb] and RMS. These findings were consistent with the hypothesis that 

the appearance of a loss of efficiency of locomotion over time may be caused by a 

combination of metabolic instability within the working fibres and the increased 

muscle activity.  
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essere dopo le mie nonne, per essere la mia amica più grande (magari non il lunedì 

mattina). Silvia, per essere stata la prima persona ad avermi dato la possibilità di 

esprimere il mio valore, per avermi supportato, e per avermi svelato questo mondo 

nuovo. A mia mamma Ornella, per non avere mai mollato e per la forza e il coraggio 

che possiedi; forza e coraggio sono gli astri con cui oriento la mia vita, e tu ne sei 

l’esempio più grande. 

Speriamo che gli anni a venire siano pieni come quelli appena passati e di passarli 

insieme, per quanto possibile. Lascio qui, e mi lascio per quando riguarderò questa tesi 

tra un po’ di tempo, tre delle frasi che più mi ispirano, chissà se in futuro saranno ancora 

le stesse. 

“Many a law, many a commandment have I broken, but my word never” –  Sir Walter Scott 

“Vivere ardendo e non bruciarsi mai” – Gabriele D’Annunzio 

“What’s normal anyways?” – Forrest Gump 

 

Ale 

 


