
Runtime Enforcement for Control System Security

Ruggero Lanotte
University of Insubria

Como, Italy

ruggero.lanotte@uninsubria.it

Massimo Merro
University of Verona

Verona, Italy

massimo.merro@univr.it

Andrei Munteanu
University of Verona

Verona, Italy

andrei.munteanu@univr.it

Abstract—With the explosion of Industry 4.0, industrial facil-
ities and critical infrastructures are transforming into “smart”
systems that dynamically adapt to external events. The result is
an ecosystem of heterogeneous physical and cyber components,
such as programmable logic controllers, which are more and
more exposed to cyber-physical attacks, i.e., security breaches in
cyberspace that adversely affect the physical processes at the core
of industrial control systems.

We apply runtime enforcement techniques, based on an ad-hoc
sub-class of Ligatti et al.’s edit automata, to enforce specification
compliance in networks of potentially compromised controllers,
formalised in Hennessy and Regan’s Timed Process Language. We
define a synthesis algorithm that, given an alphabet P of observ-
able actions and an enforceable regular expression e capturing a
timed property for controllers, returns a monitor that enforces
the property e during the execution of any (potentially corrupted)
controller with alphabet P and complying with the property e.
Our monitors correct and suppress incorrect actions coming from
corrupted controllers and emit actions in full autonomy when the
controller under scrutiny is not able to do so in a correct manner.
Besides classical properties, such as transparency and soundness,
the proposed enforcement ensures non-obvious properties, such
as polynomial complexity of the synthesis, deadlock- and diverge-
freedom of monitored controllers, together with scalability when
dealing with networks of controllers.

Index Terms—Runtime enforcement, process calculus, control
system security, PLC malware

I. INTRODUCTION

Industrial Control Systems (ICSs) are integrations of net-

working and distributed computing systems with physical pro-

cesses, where feedback loops allow the latter to affect the com-

putations of the former and vice versa. Historically, ICSs relied

on proprietary technologies and were implemented as stand-

alone networks in physically protected locations. However,

with the introduction of Smart Manufacturing (Industry 4.0)

the growing connectivity and integration of these systems has

triggered a dramatic increase in the number of cyber-physical
attacks [1], i.e., security breaches in cyberspace that adversely

affect the physical processes. Some notorious examples are:

(i) the Stuxnet worm, which reprogrammed PLCs of nuclear

centrifuges in the nuclear facility of Natanz in Iran [2]; (ii)

the BlackEnergy cyber-attack on the Ukrainian power grid [3];

(iii) the recent Triton malware that targeted a petrochemical

plant in Saudi Arabia [4]. The gravity of such attacks has

been addressed in high-level forums such as the 2018 World

Economic Forum meeting in Davos.

Published scan data shows how thousands of ICS com-

ponents, and in particular programmable logic controllers

PLCn

ua
n, c

a
n, y

a
n

PLC1

ua
1, c

a
1, y

a
1

ca1 can

Field Communications Network

ya1 yan

Supervisory Control Network

yn uanua1 y1

· · ·

· · ·

Fig. 1. A network of compromised controllers: yi denote genuine sensor
readings from the plant, yai corrupted sensor readings sent from the PLC, ua

i
corrupted actuator commands, and cai corrupted inter-controller communica-
tion channels.

(PLCs), are directly accessible from the Internet to improve ef-

ficiency [5], [6]. Furthermore, controllers are often connected

to each other in so called field communications networks,

opening the way to the spreading of ad-hoc worms coming

from few infected ones (see Figure 1).

Programmable Logic Controllers have an ad-hoc architec-

ture to execute simple repeating processes known as scan
cycles. Each scan cycle consists of three steps: (i) reading

of sensor measurements of the physical process; (ii) execution

of the controller code to determine how the physical process

should change according to both sensor measurements and po-

tential interactions with other controllers; (iii) transmission of

commands to the actuator devices to implement the calculated

changes. The scan cycle of a controller must be completed

within a specific time, called maximum cycle limit, which

depends on the controlled physical process; if this time limit

is violated the controller stops and throws an exception [7].

Due to their sensitive role in controlling industrial processes,

successful exploitation of a controller can have severe conse-

quences on ICSs. In fact, although modern controllers provide

security mechanisms to allow only legitimate firmware to be

uploaded, the running code can typically be altered by anyone

with network or USB access to the controllers. Thus, despite

their responsibility, controllers are vulnerable to several kinds

of attacks, including PLC-Blaster worm [7], Ladder Logic

Bombs [8], and PLC PIN Control attacks [9].

As a consequence, extra trusted hardware components
have been proposed to enhance the security of ICS archi-

tectures [10], [11]. For instance, McLaughlin [10] proposed

to add a policy-based enforcement mechanism to mediate the

246

2020 IEEE 33rd Computer Security Foundations Symposium (CSF)

© 2020, Ruggero Lanotte. Under license to IEEE.
DOI 10.1109/CSF49147.2020.00025

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

actuator commands transmitted by the PLC to the physical

plant; here, a PLC policy is expressed in terms of some

sort of regular expression. Mohan et al. [11] introduced a

different architecture, in which every PLC runs under the

scrutiny of a monitor which looks for deviations with respect

to safe behaviours. If the information obtained via the monitor

differs from the expected model(s) of the PLC, a decision
module is informed to decide whether to pass the control from

the “potentially compromised” PLC to a safety controller to

maintain the plant within the required safety margins.
Both architectures above have been validated by means of

simulation-based techniques. However, as far as we know,

formal methodologies have not been used yet to model and

formally verify security-oriented architectures for ICSs.
In this paper, we propose a formal approach based on run-

time enforcement to ensure specification compliance in net-

works of controllers possibly compromised through colluding
malware that may forge/drop actuator commands, modify sen-

sor readings, and forge/drop inter-controller communications.
Runtime enforcement [12], [13], [14] is a powerful verifica-

tion/validation technique, extending runtime monitoring [15],

[16], [17], and aiming at correcting possibly-incorrect execu-

tions of a system-under-scrutiny (SuS). It employs a kind of

monitor that acts as a proxy between the SuS and the environ-

ment interacting with it. At runtime, the monitor transforms
any incorrect executions exhibited by the SuS into correct

ones by either replacing, suppressing or inserting observable

actions on behalf of the system. The effectiveness of the

enforcement depends on the achievement of the two following

general principles [13]:

• transparency, i.e., the enforcement must not prevent cor-

rect executions of the SuS;

• soundness, i.e., incorrect executions of the SuS must be

prevented.

Our goal is to enforce potentially corrupted controllers us-

ing secure proxies based on a sub-class of Ligatti’s edit

automata [13]. These automata will be synthesised from en-

forceable timed correctness properties to form networks of

monitored controllers, as in Figure 2. The proposed enforce-

ment will enjoy both transparency and soundness together with

the following features:

• observation-based monitoring, i.e., the monitor should

only look at the observables of the controller, and not

at its internal (possibly obfuscated) executing code;

• determinism preservation, i.e., the algorithm to synthesise

the monitor should not introduce nondeterminism;

• feasibility, i.e., the synthesis algorithm should have poly-
nomial complexity in the size of the enforced property;

• deadlock-freedom, i.e., the enforcement must not intro-

duce deadlocks in the monitored controller;

• divergence-freedom, i.e., the enforcement must not intro-

duce divergences in the monitored controller;

• mitigation of incorrect/malicious activities, as in Mohan

et al.’s safety controller [11];

• scalability, i.e., the synthesis algorithm must scale to

networks of controllers.

PLCn

ua
n, c

a
n, y

a
n

PLC1

ua
1, c

a
1, y

a
1

proxy1

ua
1/u1

ca1/c1 y1/y1

proxyn

yn/ync
a
n/cn u

a
n/un

ua1 ca1 y1 yn can uan

c1 cn

Field Communications Network

y1 yn

Supervisory Control Network

yn unu1 y1

· · ·

· · ·

· · ·

Fig. 2. A network of monitored controllers.

Obviously, when a controller is compromised, these objectives

can be achieved only with the introduction of a physically

independent secure proxy, as advocated by McLaughlin and

Mohan et al., which does not have any Internet or USB access,

and which is connected with the monitored controller via

secure channels. This means that the secure proxy should be

bug-free to avoid possible infiltrations of malware.

This may seem like we just moved the problem over to

securing the proxy. However, this is not the case because the

proxy only needs to enforce a timed correctness property of

the system, while the controller does the whole job of con-

trolling the physical process relying on potentially dangerous

communications via the Internet or the USB ports. Thus, any

upgrade of the control system will be made to the controller

and not to the secure proxy. Of course, by no means runtime

reconfigurations of the secure proxy should be allowed.

Finally, notice that malicious alterations of sensor signals

yi at network level, or within the sensor devices, is out of the

scope of this paper. On the other hand, our architecture de-

picted in Figure 2 ensures that the sensor measurements trans-

mitted to the supervisory control network (e.g., to SCADA

devices) will not be corrupted by the controller.

Contribution: Fist of all, we introduce a formal language

to specify controller programs. For this very purpose, we

resort to process calculi, a successful and widespread formal

approach in concurrency theory for representing complex

systems, such as IoT systems [18] and cyber-physical sys-

tems [19], and used in many areas, including verification of

security protocols [20], [21] and security analysis of cyber-
physical attacks [22].

We define a simple timed process calculus, based on Hen-

nessy and Regan’s Timed Process Language (TPL) [23], for

specifying controllers, edit automata, and networks of commu-

nicating monitored controllers. The proposed edit automata

are finite-state and equipped with an ad-hoc semantics for

mitigation, supporting the capability of emitting correct actions

in full autonomy in case the controller is not able to do so.

Then, we define a simple description language to express

timed correctness properties that should hold upon completion

of a finite number of scan cycles of the monitored controller.

247

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

This will allow us to abstract over controllers implementations,

focusing on general properties which may even be shared by

completely different controllers. In this regard, we might resort

to one of the several logics existing in the literature for

monitoring timed concurrent systems, and in particular cyber-

physical systems (see, i.e., Bartocci et al. [24]). Actually,

since our formal language is based on Hennessy and Regan’s

TPL, one might think of using some sort of Hennessy-Milner

Logic [25], as in Aceto el al. [26]. However, the peculiar

iterative behaviour of controllers convinced us to adopt a

simple but expressive sub-class of regular expressions, the

only properties that under precise conditions can be enforced

by finite-state edit automata (see Beauquier et al.’s work [27])1.

Our regular properties allow us to express interesting correct-

ness properties, spanning over consecutive scan cycles, such

as: (i) timed forward causality, e.g., if some sensor signals

are detected then some actions will occur at some point

in the future (communications and/or actuations); (ii) timed
backward causality, e.g., if some actuations occur then some

signals have been previously detected in the past; (iii) timed
mutual exclusion, e.g., certain events may only occur in mutual

exclusion within a certain time interval.

After defining a formal language to describe controller

properties, we provide a synthesis function 〈|−|〉 that, given

an alphabet P of observable actions (sensor readings, actuator

commands, and inter-controller communications) and a deter-

ministic regular property e combining events of P , returns,

in polynomial time, a syntactically deterministic [28] edit

automaton 〈|e|〉P. The resulting enforcement mechanism will

ensure the required features mentioned before: observation-

based monitoring, transparency, soundness, deadlock-freedom,

divergence-freedom, mitigation and scalability.

Notice that, since our enforcement mechanism will be ob-

servation-based, i.e., it will observe only observable actions

in P , the monitor does not need updates when the enforced

controller is reinstalled with an obfuscated variant of its code2

which preserves the observable semantics of the controller.

Last but not least, the same monitor 〈|e|〉P can be used

to enforce different controllers sharing the same observable

actions P and complying with the same enforcing property e.

Outline: Section II contains our formal language to ex-

press monitored controllers. Section III provides a non-trivial

use case in the context of industrial water treatment systems.

Section IV provides a description language for a sub-class of

regular properties to express controller behaviours. Section V

contains an algorithm to synthesise monitors from regular

properties, and the main results of our enforcement. Section VI

draws conclusions and discusses related and future work.

Technical proofs can be found in the appendix.

II. A FORMAL LANGUAGE FOR MONITORED CONTROLLERS

In this section, we introduce our Timed Calculus of Moni-
tored Controllers, called TCMC, as an extension of Hennessy

1Regular properties have also been used by McLaughlin [10] to express the
security policies for PLCs in his enforcing monitor C2.

2This is usually what engineers do when a PLC appears to be compromised.

and Regan’s Timed Process Language (TPL) [23], to express

networks of controllers integrated with edit automata sitting

on the network interface of each controller to monitor/correct

their interactions with the rest of the system. Like TPL we

adopt a discrete notion of time: time proceeds in time slots
separated by tick-actions.

Let us start with some preliminary notation. We use s, sk ∈
Sens to name sensor signals; a, ak ∈ Act to indicate actuator
commands; c, ck ∈ Chn for channels; z1, zk for generic names.

Controller: In our setting, controllers are nondetermin-

istic sequential timed processes evolving through three main

phases: sensing of sensor signals, communication with other

controllers, and actuation. For convenience, we use five differ-

ent syntactic categories to distinguish the five main states of a

controller: ���� for initial states, ����� for sleeping states,

���	 for sensing states, �
� for communication states, and

�
� for actuation states. In its initial state, a controller is a

recursive process waiting for signal stabilisation in order to

start the sensing phase:

���� � P ::= X
����� � W ::= tick.W

∣∣ S

The main process describing a controller consists of some

recursive process defined via equations of the form X =
tick.W , with W ∈ �����; here, X is a process variable
that may occur (free) in W . For convenience, our controllers

always have at least one initial timed action tick to ensure time-
guarded recursion, thus avoiding undesired zeno behaviours:

each recursive call requires at least one time unit. Then, after

a determined sleeping period, when sensor signals get stable,

the sensing phase can start.

During the sensing phase, the controller waits for a finite
number of admissible sensor signals. If none of those signals

arrives in the current time slot then the controller will timeout
moving to the following time slot (we adopt the TPL construct

�·�· for timeout). The syntax is the following:

���	 � S ::= �∑i∈I si.Si�S
∣∣ C

where
∑

i∈I si.Si denotes the standard construct for nonde-

terministic choice. Once the sensing phase is concluded, the

controller starts its calculations that may depend on commu-
nications with other controllers governing different physical

processes. Controllers communicate with each other for mainly

two reasons: either to receive notice about the state of other

physical sub-processes or to require an actuation on a physical

process which is out of their control. We adopt a channel-
based handshake point-to-point communication paradigm as

in TPL. Notice that, in order to avoid starvation, the com-

munication is always under timeout. The syntax for the

communication phase is:

�
�� � C ::= �∑i∈I ci.Ci�C
∣∣ �c.C�C ∣∣ A

In the actuation phase a controller eventually transmits a

finite sequence of commands to actuators, and then, it emits a

fictitious control signal end to denote the end of the scan cycle.

248

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

(Sleep)
−

tick.W
tick−−−→W

(Rec)
X = tick.W

X
tick−−−→W

(ReadS)
j ∈ I

�∑i∈I si.Si�S
sj−−−→ Sj

(TimeoutS)
−

�∑i∈I si.Si�S tick−−−→ S

(InC)
j ∈ I

�∑i∈I ci.Ci�C
cj−−−→ Cj

(TimeoutInC)
−

�∑i∈I ci.Ci�C tick−−−→ C

(OutC)
−

�c.C�C′ c−−→ C
(TimeoutOutC)

−
�c.C�C′ tick−−−→ C′

(WriteA)
−

a.A
a−−→ A

(End)
−

end.X
end−−−→ X

TABLE I
LABELLED TRANSITION SYSTEM FOR CONTROLLERS.

After that, the whole scan cycle can restart. Formally,

��� � A ::= a.A
∣∣ end.X

Remark 1 (Scan cycle duration and maximum cycle limit):
As expected, the signal end must occur well before the max-
imum cycle limit of the controller. We actually work under

the assumption that our controllers successfully complete their

scan cycle in less than half of the maximum cycle limit. The

reasons for this assumption will be clarified in Remark 2.

The operational semantics in Table I is along the lines of

Hennessy and Regan’s TPL [23].

In the following, we use the metavariable α to range over

the set of all observable actions: {s, a, c, c, tick, end}. These

actions denote: sensor readings, actuator commands, channel

transmissions, channel receptions, passage of time, and end of

scan cycles, respectively.

Monitored controller(s): The core of our runtime enforce-

ment relies on a (timed) sub-class of finite-state Ligatti et

al.’s edit automata [13], i.e., a particular class of automata

specifically designed to modify/suppress/insert actions in a

generic system in order to preserve its correct behaviour. The

syntax follows:

���� � E ::= go
∣
∣ ∑

i∈I αi/βi.Ei

∣
∣ X

The special automaton go will admit any action of the

monitored system, while the edit automaton
∑

i∈I
αi/βi.Ei

replaces actions αi with βi, and then continues as Ei, for any

i ∈ I , with I finite; here, the metavariables βi range over the

same set of actions seen above for α together with the non-
observable action τ . Finally, recursive automata X are defined

via equations of the form X = E, where the automata variable

X may occur (free) in E. The operational semantics of our edit

automata is the following:

(Go)
−

go
α/α−−−−→ go

(Edit)
j ∈ I

∑
i∈I αi/βi.Ei

αj/βj−−−−−→ Ej

(recE)
X = E E

α/β−−−→ E′

X
α/β−−−→ E′

Our monitored controllers, written E �� {J}, consist of a

controller J , for J ∈ ���� ∪ ����	 ∪ ��
� ∪ ��

 ∪
���, and an edit automaton E enforcing the behaviour of J ,

according to the two following transition rules:

(Enforce)
J

α−−→ J ′ E
α/β−−−→ E′

E��{J} β−−→ E′ ��{J ′}

(Mitigation)
J

end−−−→ J ′ E
α/α−−−−→ E′ α∈ Sens∪ Chn∗ ∪ Act∪{tick}

E��{J} α−−→ E′ ��{J}
The rule (Enforce), inspired by [26], can be used for enforc-

ing suppressions (when β = τ) or corrections (when β 	= τ) of

observable actions α emitted by the controller under scrutiny

(we focus on observation-based monitoring).

Thus, in a monitored controller E �� {J} in which the

controller J works correctly, the enforcement never occurs

(i.e., when applying rule (Enforce) we always have α = β),

and the two components E and J evolve in a tethered fashion,

moving through related correct states.

On the other hand, if J is corrupted (for instance, due to

the presence of a malware) then E and J may get misaligned

within some scan cycle as reaching unrelated states. In this

case, the remaining actions emitted by the controller will be

suppressed by the monitor until the controller reaches the end

of the scan cycle, signalled by the emission of the end-action3.

Once the compromised controller has been driven to the end of

its scan cycle, the transition rule (Mitigation) goes into action.

The rule (Mitigation) allows the insertion of a sequence

of activities driven by the edit automaton in full autonomy.

Intuitively, if the compromised controller signals the end of

the scan cycle by emitting the action end and, at the same

time, the current edit automaton E is not in the same state,

then E will command the execution of a safe trace, without

any involvement of the (user program of the) controller, to

reach the end of the controller cycle. When both the controller

and the edit automaton will be aligned (at the end of the

3In general, malware that aims to take control of the plant has no interest in
delaying the scan cycle and risking the violation of the maximum cycle limit
whose consequence would be the immediate controller shutting down [7].

249

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

T1

h1−
m1−...

l1−
m1−

...

��
valve�

pump1

�

chemical
dosing
pump2

raw water

T2

h2−

l2−

Filtration
unit

T3

h3−

l3−

�

pump3

Reverse
osmosis
unit

clean water

PLC1 PLC2 PLC3
l1,m1, h1on1, on2, open

off1, off2, close
l2, h2 l3, h3on3

off3

open req, close req

Fig. 3. A simplified Industrial Water Treatment System.

scan cycle) they will synchronise on the action end, via an

application of the transition rule (Enforce), and from then on

they will continue in a tethered fashion.
Remark 2: The assumption made in Remark 1 ensures us

enough time to complete the mitigation of the scan cycle, well

before the violation of the maximum cycle limit.
Obviously, we can easily generalise the concept of moni-

tored controller to a field communications network of parallel

monitored controllers, each one acting on different actuators,

and exchanging information via channels. These networks are

formally defined via a straightforward grammar:

���� � N ::= E��{J} ∣∣ N ‖ N

with the following operational semantics:

(ParL)
N1

α−−→ N ′
1

N1 ‖ N2
α−−→ N ′

1 ‖ N2

(ParR)
N2

α−−→ N ′
2

N1 ‖ N2
α−−→ N1 ‖ N ′

2

(ChnSync)

N1
c−−→ N ′

1 N2
c−−→ N ′

2

N1 ‖ N2
τ−−→ N ′

1 ‖ N ′
2

N2 ‖ N1
τ−−→ N ′

2 ‖ N ′
1

(TimeSync)
N1

tick−−−→ N ′
1 N2

tick−−−→ N ′
2 N1 ‖ N2

τ−−→�
N1 ‖ N2

tick−−−→ N ′
1 ‖ N ′

2

Notice that monitored controllers may interact with each

other via channel communication (see Rule (ChnSync)). More-

over, via rule (TimeSync) they may evolve in time only when

channel synchronisation may not occur (our controllers do not

admit zeno behaviours). This ensures maximal progress [23],

a desirable time property when modelling real-time systems:

channel communications will never be postponed.
Having defined the possible actions β of a monitored field

network (we recall that β may also range over τ -actions, due

to an application of rule (Enforce)), we can easily concatenate

actions to define execution traces.
Definition 1 (Execution traces): Given a finite execution

trace t = β1 . . . βk, we write N
t−−→ N ′ as an abbreviation

for N = N0
β1−−−→ N1

β2−−−→ · · · βk−1−−−−−→ Nk−1

βk−−−→ Nk = N ′.
In the rest of the paper we adopt the following notations.

Notation 1: As usual, we write ε to denote the empty trace.

Given a trace t we write | t | to denote the length of t, i.e.,
the number of actions occurring in t. Given a trace t we write

t̂ to denote the trace obtained by removing the τ -actions from

t. Given two traces t′ and t′′, we write t′ · t′′ for the trace

resulting from the concatenation of t′ and t′′. For t = t′ · t′′
we say that t′ is a prefix of t and t′′ is a suffix of t.

III. USE CASE: THE SWAT SYSTEM

In this section, we describe how to specify in TCMC a non-

trivial network of PLCs to control (a simplified version of) the

Secure Water Treatment system (SWaT) [29].

SWaT represents a scaled down version of a real-world

industrial water treatment plant. The system consists of 6
stages, each of which deals with a different treatment, in-

cluding: chemical dosing, filtration, dechlorination, and reverse

osmosis. For simplicity, in our use case, depicted in Figure 3,

we consider only three stages. In the first stage, raw water is

chemically dosed and pumped in a tank T1, via two pumps

pump1 and pump2. A valve connects T1 with a filtration unit
that releases the treated water in a second tank T2. Here, we

assume that the flow of the incoming water in T1 is greater

than the outgoing flow passing through the valve. The water

in T2 flows into a reverse osmosis unit to reduce inorganic

impurities. In the last stage, the water coming from the reverse

osmosis unit is either distributed as clean water, if required

standards are met, or stored in a backwash tank T3 and then

pumped back, via a pump pump3, to the filtration unit. Here,

we assume that tank T2 is large enough to receive the whole

content of tank T3 at any moment.

The SWaT system has been used to provide a dataset

containing physical and network data recorded during 11 days

of activity [30]. Part of this dataset contains information about

the execution of the system in isolation, while a second part

records the effects on the system when exposed to different

kinds of cyber-physical attacks. Thus, for instance, (i) drops
of commands to activate pump2 may affect the quality of

the water, as they would affect the correct functioning of the

250

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

chemical dosing pump; (ii) injections of commands to close

the valve between T1 and T2, may give rise to an overflow of

tank T1 if this tank is full; (iii) integrity attacks on the signals

coming from the sensor of the tank T3 may result in damages

of the pump pump3 if it is activated when T3 is empty.

Each tank has its own PLC, possibly connected with the

others via dedicated communication channels. In the rest of

the section, we propose a possible implementation of the three

PLCs governing the three tanks.

Let us start with the code P1 of the controller PLC1

managing the tank T1. Its definition in TCMC is the following:

P1 = tick.
(�l1.�close req.on1.on2.close.end.P1�(on1.on2.open.end.P1)

+m1.�open req.open.end.P1 + close req.close.end.P1�(end.P1)

+h1.�close req.off1.off2.close.end.P1�(off1.off2.open.end.P1)�(end.P1)
)

PLC1 waits for one time slot (to get stable sensor signals)

and then checks the water level of the tank T1, distinguishing

between three possible states. If T1 reaches a low level (signal

l1) then the PLC listens for requests at channel close req to

close the valve between T1 and T2, arriving from PLC2 (the

controller of tank T2). If PLC1 gets such a request then it

turns both pumps on (commands on1 and on2), closes the valve

(command close), and then returns; otherwise, it times out, turns

both pumps on, opens the valve (command open), and then

returns. If the level of the tank is high (signal h1) then PLC1

listens for requests arriving at channel close req from PLC2. If a

request arrives then the PLC turns both pumps off (commands

off1 and off2), it closes the valve, and then returns; otherwise

it times out, turns both pumps off, opens the valve, and then

returns. Finally, if the tank T1 is at some intermediate level

between l1 and h1 (signal m1) then PLC1 listens for requests

from PLC2 of opening the valve; if PCL1 gets an open req

request then it opens the valve, letting the water flow from T1

to T2, and returns; otherwise, if it gets a close req request then

it closes the valve, and then returns.

PLC2 manages the water level of tank T2. Its code P2 is

defined in TCMC via the following equation:

P2 = tick.(�l2.�open req.end.P2�end.P2

+h2.�close req.end.P2�end.P2�end.P2)

Here, after one time slot, the level of T2 is checked. If the

level is low (signal l2) then PLC2 sends a request to PLC1,

via the channel open req, to open the valve letting the water to

flow from T1 to T2, and then returns. Otherwise, if the level

of tank T2 is high (signal h2) then PLC2 asks PLC1 to close

the valve, via the channel close req, and then returns.

Finally, PLC3 manages the water level of tank T3. Its code

P3 is defined in TCMC via the following equation:

P3 = tick.(�l3.off3.end.P3 + h3.on3.end.P3�end.P3)

Here, after one time slot, the level of the backwash tank T3

is checked. If the level is low (signal l3) then PLC3 turns off

the pump pump3 (command off3), and then returns. Otherwise,

if the level of T3 is high (signal h3) then the pump is turned on

(command on3) and the whole content of T3 is pumped back

into the filtration unit of T2; after that the PLC returns.

IV. A FORMAL LANGUAGE FOR CONTROLLER PROPERTIES

In this section, we provide a simple description language to

express correctness properties that we may wish to enforce at

runtime in our controllers. As discussed in the Introduction,

we resort to (a sub-class of) regular properties, the logical

counterpart of regular expressions, as they allow us to express

interesting classes of properties referring to one or more scan

cycles of a controller. The proposed language distinguishes

between two kinds of properties: (i) global properties, e ∈
�����, to express general controllers’ execution traces; (ii)

local properties, p ∈ �����, to express traces confined to a

finite number of consecutive scan cycles. The two families of

properties are formalised via the following regular grammar:

e ∈ ����� ::= p∗

p ∈ ����� ::= ε | p1; p2 | ∪i∈Iπi.pi

where πi ∈ Sens ∪ Act ∪ Chn∗ ∪ {tick} ∪ {end} denote atomic
properties, sometimes called events, that may occur as prefix

of a property. With an abuse of notation, we use the symbol

ε to denote both the empty property and the empty trace.

The semantics of our logic is naturally defined in terms

of sets of execution traces which satisfy a given property; its

formal definition is given in Table II.

However, the syntax of our logic is a bit too permissive with

respect to our intentions, as it allows us to describe partial scan

cycles, i.e., cycles that have not completed. Thus, we restrict

ourselves to considering properties which builds on top of local

properties associated to complete scan cycles, i.e., scan cycles

whose last action is an end-action. Formally,

Definition 2: Well-formed properties are defined as follows:

• the local property end.ε is well formed;

• a local property of the form p1; p2 is well formed if p2
is well formed;

• a local property of the form ∪i∈Iπi.pi is well formed if,

for any j ∈ I either πj .pj = end.ε or, pj is well formed.

A global property p∗ is well-formed if p is well-formed.

In the rest of the paper, we adopt the following notations.

Notation 2: We omit trailing empty properties, writing π
instead of π.ε. For k > 0, we write πk.p as a shorthand for

π.π...π.p, where prefix π appears k consecutive times. Given a

local property p we write events(p) to denote the set of events

occurring in p; for a global property e = p∗, events(e) is given

by events(p). Given a set of events A and a local property p,

we use A itself as an abbreviation for the property ∪π∈Aπ.ε,
and A.p as an abbreviation for the property ∪π∈Aπ.p. Given

a set of events A, with end 	∈ A, we write A≤k, for k ≥ 0, to

denote the property defined as follows:

• A≤0 � end

• A≤k � end ∪ A.A≤k−1, for k > 0.

Thus, the property A≤k captures all possible sequences of

events of A whose length is at most k, for k ∈ N.

A. Some significant correctness properties

In this section, we describe three different classes of correct-

ness properties, expressible in our language, which are suitable

251

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

�
p∗

�
� {ε} ∪⋃

n∈N+{t | t = t1 · . . . · tn, with ti ∈
�
p
�
, for 1 ≤ i ≤ n}

�
ε
�

� {ε}
�
p1; p2

�
� {t | t = t1 · t2, with t1 ∈

�
p1

�
and t2 ∈

�
p2

�}
�⋃

i∈I πi.pi
�

�
⋃

i∈I{t | t = πi · t′, with t′ ∈ �
pi

�}
TABLE II

TRACE SEMANTICS OF OUR REGULAR PROPERTIES.

to describe significant controller properties spanning over a

finite number of scan-cycles: timed forward causality, timed
backward causality and timed mutual exclusion.

In order to properly define these three classes of properties,

we introduce four predicates relating events, properties and

time (i.e., scan cycles). Thus, given an event π, a local property

p and a natural number n, we write π pfx∀
n p (resp., π sfx∀

n p)

to say that for any trace t in
�
p
�

the action π (associated to the

event π) must appear in some prefix (resp., suffix) of t, within

at most n scan cycles. As the end of a scan cycle is always

represented via the action end, this means that in all traces in�
p
�

the action π is always preceded (resp., followed) by at

most n− 1 end-actions. Formally,

Definition 3: Let p ∈ ����� be a well-formed local

property, π be an event, and n ∈ N be a natural number.

The predicate π pfx∀
n p (resp., π sfx∀

n p) returns true only if

for any t ∈ �
p
�

there exists a trace t′ · end, which is a prefix

(resp., suffix) of t, such that the action π occurs in t′ and the

action end occurs in t′ at most n− 1 times.

Similarly, given an event π, a local property p and a natural

number n we write π pfx∃
n p (resp., π sfx∃

n p) to prescribe

that the action π (associated to the event π) must appear in

some prefix (resp., suffix) of at least one trace in
�
p
�

, within

at most n scan cycles. Formally,

Definition 4: Let p ∈ ����� be a well-formed local

property, π be an event, and n ∈ N be a natural number.

The predicate π pfx∃
n p (resp., π sfx∃

n p) returns true only if

there is a trace t ∈ �
p
�

and a trace t′ · end, which is a prefix

(resp., suffix) of t, such that the action π occurs in t′ and the

action end occurs in t′ at most n− 1 times.

Now, everything is in place to define our classes of proper-

ties. In what follows, the variables π1, π2 and πi, for i ∈ I , will

range over untimed events, i.e., π1, π2, πi ∈ Sens∪Act∪Chn∗.

Timed forward causality: In this class we collect proper-

ties expressing the causality between a triggering event π1 and

a second event π2 that will occur at some point in the future.

For instance, if an event π1 occurs (e.g., a sensor signal) then a

subsequent event π2 (e.g., some communication or actuation)

will occur in the future, for the first time, within a specific time

interval, e.g., after m scan cycles and before n scan cycles,

with 0 ≤ m ≤ n ∈ N. For simplicity, we do not allow nesting

between causes and effects, i.e., once a triggering event π1

has occurred it may occur again only after an occurrence of

the event π2.4 Thus, we write π1 entails [m,n] π2 to denote a

4This is a reasonable requirement in cyber-physical systems, where physical
processes are sensed only after some proper actuation has been completed.

class of properties of the form (p; (q∪π1.r))
∗ ∈ �����, for

p, q, r ∈ ����� such that:

• the event π1 does not occur neither in p nor in q (this

because if the event π1 does not occur at all then the

whole property is trivially satisfied);

• the event π1 does not occur in r (we do not allow nested

causality);

• for m > 0 it holds that ¬(π2 pfx∃
m−1 r), i.e., if the event

π1 occurs then π2 never occurs in the following m − 1
scan cycles captured by r (including the current one);

• π2 pfx∀
n r, i.e., if the event π1 occurs then the event π2

must always occur within at most n scan cycles captured

by r (including the current scan cycle).

As an example, we might enforce a timed forward property

in PLC1 of our use case to prevent water overflow in the tank

T2, due to a misuse of the valve connecting the tanks T1 and

T2. Assuming that z ∈ N is the time (expressed in scan cycles)

required to overflow the tank T2, we might consider to enforce

a timed forward property of the form:

open req entails [0,w] close

with w << z, saying that if the PLC receives a request to open

the valve (i.e., the event open req occurs) then the valve will be

eventually closed (the event close will eventually occur) within

at most w scan cycles (including the current one). This ensures

us that the valve will remain open at most w scan cycles, with

w << z, preventing the overflow of T2. As the scan cycle of

PLC1 is at most 6 actions long, a possible implementation of

this property is the following:(
tick.A; (A≤5 ∪ open req.Bz

4)
)∗
,

with A = {l1,m1, h1}∪{on1, on2, off1, off2, open, close}∪{close req}∪{tick}
being the set of all possible actions of PLC1 except for open req

and end, while Bk
h is the set of all admitted actions in the

following k scan cycles, where h counts intra-scan-cycles

actions. Formally,

• Bk
h � close.A≤h−1∪ (A\{close}).Bk

h−1∪ end.tick.Bk−1
6 , for

k > 1, and h > 0;

• Bk
0 � end.tick.Bk−1

6 , for k > 1; B1
0 � close.end.

Timed backward causality: In this class we collect prop-

erties that express the causality between a triggering event π1

and a second event π2 that occurred back in the past. For

instance, if an event π1 occurs (e.g., an actuator command)

then an event π2 (e.g., either some sensor signal or some

communication) must have occurred in the past at least m scan
cycles earlier but no more than n scan cycles earlier. Again,

for simplicity we do not consider nesting between causes π1

252

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

〈|p∗|〉P � X, for X = 〈| p |〉PX
〈| ε |〉PX � X

〈| p1; p2 |〉PX � 〈| p1 |〉PZ , for Z = 〈| p2 |〉PX , Z fresh

〈| ⋃i∈I πi.pi |〉PX � Z, for Z =
∑

i∈I πi/πi.〈| pi |〉PX +
∑

α∈P\(∪i∈Iπi∪{tick,end})
α/τ .Z, Z fresh

TABLE III
MONITOR SYNTHESIS FROM OUR REGULAR PROPERTIES.

and effects π2. Thus, we write π1 requires [m,n] π2 to denote a

class of properties of the form (s; (p∪(q;π1.r)))
∗ ∈ �����,

for p, q, r, s ∈ �����, such that:

• π1 does not occur neither in s nor in p (if π1 does not

occur at all then the property is trivially satisfied);

• for m > 0 it holds that ¬(π2 sfx∃
m−1 q), i.e., if the event

π1 occurs then the event π2 never occurred in the previous

m− 1 scan cycles captured by q;

• π2 sfx∀
n q, i.e., if the event π1 occurs then π2 must have

occurred in the past, at most n scan cycles earlier.

As an example, we might enforce a timed backward property

in PLC3 of our use case to prevent damages in the pump

pump3 due to lack of water in the tank T3. Thus, we might

consider to enforce a property of the form:

on3 requires [0,0] h3

saying that if the pump3 is on then the level of the tank T3

must have been (previously) sensed as high in the current scan

cycle, preventing pump damages. As the scan cycle of PLC3

is at most 2 actions long, a possible implementation of this

property is:

(tick; (l3.A≤1 ∪ h3; on3.end))
∗

where A = {l3, h3} ∪ {off3} ∪ {tick} is the set of all possible

actions of PLC3 except for on3 and end.

Timed mutual exclusion: In this class we collect proper-

ties denoting that certain events πi, for i ∈ I , may occur only

in mutual exclusion within n consecutive scan cycles.

Thus, we write mutual exclusion [n]A, with n ≥ 0 and

A = ∪i∈Iπi to denote a class of properties of the form:(
p; (q∪(∪i∈Iπi.ri))

)∗∈ �����, for p, q, ri∈�����, where:

• for all i ∈ I the event πi does not occur neither in p
nor in q (if πi does not occur at all then the property is

trivially satisfied);

• for all i ∈ I the event πi does not occur in ri (we do not

consider nesting of properties);

• for all i ∈ I , all traces in
�
ri

�
are n scan cycles long,

i.e., they contain n occurrences of the end action;

• ¬(πi pfx
∃
n πj .rj), for all i, j ∈ I , with i 	= j (the events

πi are in mutual exclusion for n consecutive scan cycles).

As an example, we might enforce a timed mutual exclusion

property in the PLC2 of our use case to prevent chattering

of the valve, i.e., rapid opening and closing which may cause

mechanical failures on the long run. Thus, we might consider

to enforce a property of the form:

mutual exclusion [3]{open req, close req}

saying that the events to request the opening and the closing of

the valve (events open req and close req, respectively) may only

occur in mutual exclusion within 3 consecutive scan cycles.

As the scan cycle of PLC2 has at most 2 actions, a possible

implementation of the property is the following:

(tick.A; (open req.end.B2 ∪ close req.end.B2))∗

where A={l2, h2} ∪ {tick} is the set of all possible actions of

PLC2 except for open req, close req, and end, while Bk is the set of

all admitted actions in the following k scan cycles. Formally,

Bk � tick.A≤2;Bk−1, for k > 0, and B0 � ε.

V. MONITOR SYNTHESIS

In this section, we provide an algorithm to synthesise moni-

tors from regular properties of the kind defined in the previous

section. In particular, given (i) a set P of observable actions

(i.e., different from τ -actions), and (ii) a global property

e ∈ ����� whose events are contained in (the set of events

associated to) P , the synthesis returns an edit automaton that

is capable to enforce (the preservation of) the property e
during the execution of a generic controller whose actions are

contained in P . As we distinguish global properties from local

ones, we define our synthesis algorithm in two steps.

The synthesis algorithm is defined in Table III by induction

on the structure of the property given in input. The monitor

〈|p∗|〉P associated to a global property p∗ and a set of actions

P , is an edit automaton defined via the recursive equation X =
〈| p |〉PX , to enforce the local property p during each scan cycle

via the edit automaton resulting from the synthesis 〈| p |〉PX ,

parametric in the automata variable X and the set of actions P .

The edit automaton 〈| p1; p2 |〉PX associated to the property

p1; p2 is given by the sequential composition of the corre-

sponding edit automata. The two automata are composed by

replacing in 〈|p1 |〉PZ the free edit variable Z, where Z 	= X,

with the continuation 〈| p2 |〉PX . Finally, the edit automaton

associated to a union property ∪i∈Iπi.pi permits all actions

associated to the events πi, and suppresses all the others.

Remark 3 (Synthesis vs. mitigation): Notice that our syn-

thesised enforcers never suppress tick-actions and end-actions.

In particular, end-actions are crucial watchdogs signalling the

end of a controller scan cycle: if the enforcer is in line with

the controller then a new scan cycle is free to start, otherwise,

if this is not the case, the enforcer launches a mitigation cycle

by yielding some correct trace, without any involvement of the

controller, to reach the completion of the current scan cycle.

Our synthesis algorithm allows us to define an enforcement

mechanism that ensures the features stated in the Introduc-

253

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

〈| D≤k |〉PX � Dk, for Dk =
∑

α∈D
α/α.〈| D≤k−1 |〉PX +

∑

α∈P\(D∪{tick,end})
α/τ .Dk

〈| D≤0 |〉PX � D0, for D0 = end/end.〈| ε |〉PX +
∑

α∈P\{tick,end}
α/τ .D0

〈| ε |〉PX � X

TABLE IV
SYNTHESIS OF THE GENERIC PROPERTY D≤k , FOR k ≥ 0.

tion: observation-based monitoring, determinism preserva-
tion, feasibility, transparency, soundness, deadlock-freedom,

divergence-freedom, and scalability.
Let us formally prove these requirements. In the following,

with a small abuse of notation, given a set of actions P , we

will use P to denote also the set of the corresponding events.
Our enforcing monitoring is trivially observation-based as

our edit automata admit only correcting actions of the form
α/β, in which the metavariable α, by definition, cannot be the

non-observable action τ .
As concerns determinism preservation, we focus on Aceto

et al.’s syntactic notion of deterministic edit automata [28].
Definition 5: An edit automaton E is called syntactically

deterministic if for any sub-term
∑

i∈I
αi/βi.Ei occurring in E

it holds that αk 	= αh, for k, h ∈ I and k 	= h.
Now, by inspection on the definition of 〈| ∪i∈Iπi.pi |〉PX our

synthesis algorithm does not introduce nondeterminism. The

proof of the following result is by induction on the structure

of the enforced property.
Proposition 1 (Determinism preservation): Given a global

property e ∈ ����� and a set of actions P , the edit

automaton 〈|e|〉P is syntactically deterministic.
The complexity of the algorithm is polynomial on the size of

the set P and the dimension of the enforced property e; where,

intuitively, the dimension of e, written dim(e), is given by the

number of operators occurring in it.
Proposition 2 (Polynomial Complexity): Given a property

e ∈ ����� and a set of actions P such that events(e) ⊆ P ,

the complexity of the algorithm to synthesise 〈|e|〉P is O(m·n),
with m = dim(e) and n being the size of the set P .

Let us move to the next required property: transparency. In-

tuitively, the enforcement induced by a property e ∈ �����
should not prevent those traces of the controller under scrutiny

satisfying the property e itself [13].
Theorem 1 (Transparency): Let e ∈ ����� and P be a set

of observable actions such that events(e) ⊆ P . Let P ∈ ����
be a controller whose actions are contained in P . Let t be a

trace of go��{P}. If t ∈ �
e
�

then t is a trace of 〈|e|〉P ��{P}.
Another important property of our enforcement is sound-

ness. Intuitively, a monitored controller yields only execution

traces which satisfy the enforced property.
Theorem 2 (Soundness): Let e ∈ ����� be a well-formed

global property and P be a set of observable actions such that

events(e) ⊆ P . Let P ∈ ���� be a controller whose actions

are contained in P . If t is a trace of the system 〈|e|〉P ��{P}
then t̂ is a prefix of some trace in

�
e
�

(for t̂, see Notation 1).
Here, it is important to stress that in general soundness does

not ensure deadlock-freedom of the monitored controller. That

is, it may be possible that the enforcement of some property

e causes a deadlock of the controller P under scrutiny. In

particular, this may happen in our controllers only when the

initial sleeping phase does not match the enforcing property.

Intuitively, a local property will be called a k-sleeping property

only if it allows k initial time instants of sleep.

Definition 6: For k ∈ N
+, we say that p ∈ ����	 is a

k-sleeping local property, only if
�
p
�

= {t | t = t1 · ... ·
tn, for n > 0, s.t. ti = tick

k·t′i·end, end /∈ t′i, and 1 ≤ i ≤ n}.

We say that p∗ is a k-sleeping global property only if p is.5

The enforcement of k-sleeping properties does not introduce

deadlocks in k-sleeping controllers.

Proposition 3 (Deadlock-freedom): Let e = p∗, for p ∈
����	, be a k-sleeping property, and P be a set of observable

actions such that events(e) ⊆ P . Let P ∈ ���� be a controller

of the form P = tick
k.S whose set of observable actions is

contained in P . Then, 〈|e|〉P ��{P} does not deadlock.

Another important property of our enforcement mechanism

is divergence-freedom. In practise, the enforcement does not

introduce divergence: monitored controllers will always be

able to complete their scan cycles by executing a finite number

of actions. This is because in our enforcing regular properties

e the number of events within two subsequent end events is

always finite.6

Proposition 4 (Divergence-freedom): Let e ∈ ����� be

a well-formed global property and P be a set of observable

actions. Let P ∈ ���� be a controller whose set of observable

actions is contained in P . Then, there exists a k ∈ N
+ such

that whenever 〈|e|〉P �� {P} t−−→ E �� {J}, if E �� {J} t′−−→
E′ ��{J ′}, with | t′ |≥ k, then end ∈ t′.

Finally, the soundness of our runtime enforcement scale to

field communications networks of controllers. Intuitively, the

soundness of a monitored controller is preserved when running

in parallel with other controllers in the same field communi-

cations network. By an application of Theorem 2 we have:

Corollary 1 (Scalability): Let e ∈ ����� be a well-formed

global property and P be a set of observable actions such

that events(e) ⊆ P . Let N ∈
��� be a field network and

P ∈ ���� be a controller whose set of observable actions is

contained in P . If (〈|e|〉P ��{P}) ‖ N
t−−→ (E��{J}) ‖ N ′, for

some t, E, J and N ′, then whenever 〈|e|〉P ��{P} t′−−→ E��{J}
the trace t̂′ is a prefix of some trace in

�
e
�

.

As an example, we show an application of Corollary 1 to

the field network consisting of the three PLCs of our case

5It is easy to see that k-sleeping properties are always well-formed.
6Technically speaking, the edit automaton 〈|e|〉P may not diverge.

254

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

study, enforced by the three properties given in Section IV ,

respectively:

• e1 �
(
tick.A; (A≤5 ∪ open req.Bz

4)
)∗

, the timed forward

causality property for PLC1, whose corresponding edit

automaton is synthesised in Table V;

• e2 � (tick.A; (open req.end.B2∪ close req.end.B2))∗ the timed

mutual exclusion property for PLC2, whose correspond-

ing edit automaton is synthesised in Table VI;

• e3 � (tick; (l3.A≤1 ∪ h3; on3.end))
∗ the timed backward

causality property for the controller PLC3, whose corre-

sponding edit automaton is synthesised in Table VII.

The three syntheses above rely on the synthesis of general

properties of the form D≤k, for an arbitrary set of events D,

given in Table IV.

A straightforward application of Corollary 1 follows:

Proposition 5: Let
∏3

i=1 〈|ei|〉��{PLCi} t−−→∏3
i=1 Ei ��{Ji}

be an arbitrary trace of the whole monitored network. Then,

for any 1 ≤ i ≤ 3, if 〈|ei|〉��{PLCi} ti−−→ Ei ��{Ji} then t̂i
is a prefix of some trace in

�
ei

�
.

VI. CONCLUSIONS, RELATED AND FUTURE WORK

We have defined a formal language to express networks of

monitored controllers, potentially compromised with colluding

malware that may forge/drop actuator commands, modify sen-

sor readings, and forge/drop inter-controller communications.

The runtime enforcement has been achieved via a finite-

state sub-class of Ligatti’s edit automata equipped with an

ad-hoc operational semantics to deal with system mitigation,

by inserting actions in full autonomy when the monitored

controller is not able to do so in a correct manner.

Then, we have defined a simple description language to

express ad-hoc timed regular properties which have been used

to describe both causality and mutual exclusion of events

laying in intervals of time expressed in terms of scan cycles of

the monitored controller. Some sort of regular properties have

already been used by McLaughlin [10] to express security
policies for PLCs in his enforcing monitor C2.

Once defined a formal language to describe controller

properties, we have provided a synthesis function 〈|−|〉 that,

given an alphabet P of observable actions (sensor readings, ac-

tuator commands, and inter-controller communications) and a

deterministic regular property e, where the events in e are part

of the alphabet P , returns, in a time which is polynomial in the

sizes of P and e, a syntactically deterministic and observation-
based edit automaton 〈|e|〉P ; here observation-based means that

the monitoring acts only on those observable actions occurring

in P . The resulting enforcement mechanism will ensure the

required features advocated in the Introduction: transparency,

soundness, deadlock-freedom, divergence-freedom, mitigation

and scalability. In particular, with regards to mitigation, as

reported in Remark 3, our synthesised enforcers never suppress

end-actions as they are crucial watchdogs signalling the end of

a controller scan cycle: if the enforcer is aligned with the

controller then a new scan cycle is free to start, otherwise, if

this is not the case, the enforcer launches a mitigation cycle

by yielding some correct trace, without any involvement of the

controller, to reach the completion of the current scan cycle.

Notice that the same monitor 〈|e|〉P can be used to enforce

different controllers sharing the same observable actions P
and complying with the same enforcing property e (both the

controller and the property e must agree on the duration of

the initial sleeping phase). Furthermore, in the Introduction

we have carefully argued about the advantages of securing the

monitoring proxy rather than the controller itself.

Finally, an exemplification of our enforcement mechanism

has been provided by means of a non-trivial running example

in the context of industrial water treatment systems.

Related work: The notion of runtime enforcement was

introduced by Schneider [12] to enforce security policies.

These properties are enforced by means of security automata,

a kind of automata that terminates the monitored system in

case of violation of the property.

Ligatti et al. [13] extended Schneider’s work by proposing

the notion of edit automata, i.e., an enforcement mecha-

nism able of replacing, suppressing, or even inserting system

actions. In general, Ligatti et al.’s edit automata have an

enumerable number of states, whereas in the current paper we

restrict ourselves to finite-state edit automata. Furthermore, in

its original definition the insertion of actions is possible at

any moment, whereas our monitoring edit automata can insert

actions, via the rule (Mitigation), only when the controller under

scrutiny reaches a specific state, i.e., the end of the scan cycle.

We also use correcting actions of the form α/β, in the style of

Aceto et al. [26]. These actions can be easily expressed in the

original Ligatti’s formulation by inserting the action β first,

and then suppressing the action α.

Bielova [31] provided a stronger notion of enforceability

equipped with a predictability criterion to prevent monitors

from transforming invalid executions in an arbitrary manner.

Intuitively, a monitor is said predictable if one can predict the

number of transformations used to correct invalid executions,

thereby avoiding unnecessary transformations.

Falcone et al. [32], [14] proposed a synthesis algorithm,

relying on Street automata, to translate most of the property

classes defined within the Safety-Progress hierarchy [33] into

enforcers. In the Safety-Progress classification our global

properties can be seen as guarantee properties for which all

execution traces that satisfy a property contain at least one

prefix that still satisfies the property.

Beauquier et al. [27] proved that finite-state edit automata

(i.e. those edit automata we are actually interested in) can

only enforce a sub-class of regular properties. Actually they

can enforce all and only the regular properties that can be

recognised by a finite automata whose cycles always contain

at least one final state. This is the case of our enforced regular

properties, as well-formed local properties in ����� always

terminate with the “final” atomic property end.

Some interesting results on runtime enforcement of reactive
systems (which have many aspects in common with control

systems) have been presented by Könighofer et al. [34]. They

defined a synthesis algorithm that given a safety property

255

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

〈|(tick.A; (A≤5 ∪ open req.Bz
4)
)∗|〉P � X, for X = 〈| tick.A; (A≤5 ∪ open req.Bz

4) |〉PX
〈| tick.A; (A≤5 ∪ open req.Bz

4) |〉PX � 〈| tick.A |〉PU , for U = 〈| A≤5 ∪ open req.Bz
4 |〉PX

〈| tick.A |〉PU � V, for V = tick/tick.〈| A |〉PU +
∑

α∈P\{tick,end}
α/τ .V

〈| A |〉PU � A, for A =
∑

α∈A
α/α.〈| ε |〉PU +

∑

α∈P\(A∪{tick,end})
α/τ .A

〈| A≤5 ∪ open req.Bz
4 |〉PX � W, for W = end/end.〈| ε |〉PX +

(∑

α∈A
α/α.〈| A≤4 |〉PX

)
+ open req/open req.〈| Bz

5 |〉PX
〈| Bk

h |〉PX � Bk
h, for Bk

h = close/close.〈| (A\{close})≤h−1 |〉PX +
∑

α∈A\{close}

α/α.〈| Bk
h−1 |〉PX + R

R � end/end.〈| tick.Bk−1
6 |〉PX +

∑

α∈P\(A∪{tick,end})
α/τ .Bk

h

〈| tick.Bk
h |〉PX � Y, for Y = tick/tick.〈| Bk

h |〉PX +
∑

α∈P\{tick,end}
α/τ .〈| tick.Bk

h |〉PX
〈| Bk

0 |〉PX � Bk
0 , for Bk

0 = end/end.〈| tick.Bk−1
6 |〉PX +

∑

α∈P\{tick,end}
α/τ .Bk

0

〈| B1
0 |〉PX � B1

0, for B1
0 = close/close.〈| end.ε |〉PX +

∑

α∈P\{close,tick,end}

α/τ .B1
0

〈| end.ε |〉PX � Z, for Z = end/end.〈| ε |〉PX +
∑

α∈P\{tick,end}
α/τ .Z

〈| ε |〉PX � X

TABLE V
SYNTHESIS FROM THE TIMED FORWARD CAUSALITY PROPERTY e1 OF PLC1 ,

WHERE P = {l1,m1, h1} ∪ {on1, on2, off1, off2, open, close} ∪ {close req, open req} ∪ {tick, end}, AND A =
{l1,m1, h1} ∪ {on1, on2, off1, off2, open, close} ∪ {close req} ∪ {tick}, FOR k ∈ {2, 3, 4}, AND h ∈ {1, 2, 3, 4, 5, 6}.

〈|(tick.A; (open req.end.B2 ∪ close req.end.B2))∗|〉P � X, for X = 〈| tick.A; (open req.end.B2 ∪ close req.end.B2) |〉PX
〈| tick.A; (open req.end.B2 ∪ close req.end.B2) |〉PX � 〈| tick.A |〉PU , for U = 〈| open req.end.B2 ∪ close req.end.B2 |〉PX

〈| tick.A |〉PU � V, for V = tick/tick.〈| A |〉PU +
∑

α∈P\{tick,end}
α/τ .V

〈| A |〉PU � A, for A =
∑

α∈A
α/α.〈| ε |〉PU +

∑

α∈P\(A∪{tick,end})
α/τ .A

〈| open req.end.B2 ∪ close req.end.B2 |〉PX � W, for W = open req/open req.〈| end.B2 |〉PX + close req/close req.〈| end.B2 |〉PX + R

R �
∑

α∈P\{open req,close req,tick,end}

α/τ .W

〈| end.B2 |〉PX � B, for B = end/end.〈| B2 |〉PX +
∑

α∈P\{tick,end}
α/τ .B

〈| Bk |〉PX � Bk, for Bk = tick/tick.〈| A≤2;Bk−1 |〉PX +
∑

α∈P\{tick,end}
α/τ .Bk

〈| B0 |〉PX � B0, for B0 = 〈| ε |〉PX
〈| A≤2;Bk−1 |〉PX � 〈| A≤2 |〉PY , for Y = 〈| Bk−1 |〉PX

〈| end.ε |〉PX � Z, for Z = end/end.〈| ε |〉PX +
∑

α∈P\{tick,end}
α/τ .Z

〈| ε |〉PX � X

TABLE VI
SYNTHESIS FROM THE TIMED BACKWARD CAUSALITY PROPERTY e2 OF PLC2 ,

WHERE P = {l2, h2} ∪ {open req, close req} ∪ {tick, end}, AND A = {l2, h2} ∪ {tick}, k ∈ {1, 2}.

〈|(tick.ε; (l3.A≤1 ∪ h3.ε; on3.end.ε))
∗|〉P � X, for X = 〈| tick.ε; (l3.A≤1 ∪ h3.ε; on3.end.ε)) |〉PX

〈| tick.ε; (l3.A≤1 ∪ h3.ε; on3.end.ε) |〉PX � 〈| tick.ε |〉PU , for U = 〈| l3.A≤1 ∪ h3.ε; on3.end.ε |〉PX
〈| tick.ε |〉PU � V, for V = tick/tick.〈| ε |〉PU +

∑

α∈P\{tick,end}
α/τ .V

〈| l3.A≤1 ∪ h3.ε; on3.end.ε |〉PX � W, for W = l3/l3.〈| A≤1 |〉PX + h3/h3.〈| ε; on3.end.ε |〉PX +
∑

α∈P\{l3,h3,tick,end}
α/τ .W

〈| ε; on3.end.ε |〉PX � 〈| ε |〉PR for R = 〈| on3.end.ε |〉PX
〈| on3.end.ε |〉PX � Y, for Y = on3/on3.〈| end.ε |〉PX +

∑

α∈P\{on3,tick,end}
α/τ .Y

〈| end.ε |〉PX � Z, for Z = end/end.〈| ε |〉PX +
∑

α∈P\{tick,end}
α/τ .Z

〈| ε |〉PX � X

TABLE VII
SYNTHESIS FROM THE TIMED BACKWARD CAUSALITY PROPERTY e3 OF PLC3 ,

WHERE P = {l3, h3} ∪ {on3, off3} ∪ {tick, end}, AND A = {l3, h3} ∪ {off3} ∪ {tick}.

256

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

returns a monitor, called shield, that analyses both inputs

and outputs of a reactive system, and enforces the desired

property by correcting the minimum number of output actions.

More recently, Pinisetty et al. [35] proposed a bi-directional

runtime enforcement mechanism for reactive systems, and

more generally for cyber-physical systems, to correct both

inputs and outputs. They express the desired properties in

terms of Discrete Timed Automata (DTA) whose labels are

system actions. Thus, an execution trace satisfies a required

property only if it ends up on a final state of the corresponding

DTA. Although the authors do not identify specific classes of

correctness properties as we aim to do, DTAs are obviously

more expressive than our class of regular properties. However,

as not all regular properties can be enforced [27], they pro-

posed a more permissive enforcement mechanism that accepts

also execution traces which may reach a final state.

Finally, Aceto et al. [26] developed an operational frame-

work to enforce properties in HML logic with recursion

(μHML) relying on suppression only. They also enforced the

safety of the syntactic fragment of the logic by providing

an automated synthesis algorithm that generates correct sup-

pression monitors from formulas. Enforceability of modal μ-

calculus (a reformulation of μHML) was previously tackled

by Martinelli and Matteucci [36].

As regards papers in the context of control system se-
curity closer to our objectives, McLaughlin [10] proposed

the introduction of an enforcement mechanism, called C2,

similar to our secure proxy, to mediate the control signals

uk transmitted by the PLC to the plant. Thus, like our secured

proxy, C2 is able to suppress commands, but unlike our proxy,

it cannot autonomously send commands to the physical devices

in the absence of a timely correct action from the PLC.

Furthermore, C2 does not seem to cope with inter-controller

communications, and hence with colluding malware operating

on PLCs of the same field network.

Mohan et al. [11] proposed a different approach by defining

an ad-hoc security architecture, called Secure System Simplex
Architecture (S3A), with the intention to generalise the notion

of “correct system state” to include not just the physical state

of the plant but also the cyber state of the PLCs of the system.

In S3A, every PLC runs under the scrutiny of a side-channel
monitor which looks for deviations with respect to safe execu-
tions, taking care of real-time constraints, memory usage, and

communication patterns. If the information obtained via the

monitor differs from the expected model(s) of the PLC, a de-
cision module is informed to decide whether to pass the control

from the “potentially compromised” PLC to a safety controller
to maintain the plant within the required safety margins. As

reported by the same authors, S3A has a number of limitations

comprising: (i) the possible compromising of the side channels

used for monitoring, (ii) the tuning of the timing parameters

of the state machine, which is still a manual process.

Future work: We are currently working on the simulation

of secure proxies, based on our enforcement mechanism, to

monitor PLCs whose code is written in the structured text
programming language, which is general enough to represent

the other four languages for PLCs [37]. To this end, we

have implemented in Python a synthesis algorithm that returns

enforcers written in Verilog [38], an hardware description

language used to model electronic systems. We are testing

a number of case studies in a co-simulated environment, i.e.,
an integration of two simulation environments built on top of

Simulink [39] and ModelSim [40], where Simulink is used to

run the system under scrutiny, while ModelSim simulates the

runtime behaviour of the enforcer written in Verilog.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful

comments. We also thank Adrian Francalanza, Yuan Gu and

Davide Sangiorgi for their comments on early drafts of the

paper. The authors have been partially supported by the project

“Dipartimenti di Eccellenza 2018–2022” funded by the Italian

Ministry of Education, Universities and Research (MIUR).

REFERENCES

[1] Y. Huang, A. A. Cárdenas, S. Amin, Z. Lin, H. Tsai, and S. Sastry,
“Understanding the physical and economic consequences of attacks on
control systems,” IJCIP, vol. 2, no. 3, pp. 73–83, 2009.

[2] D. Kushner, “The real story of STUXnet,” IEEE Spectrum, vol. 50, no. 3,
pp. 48 – 53, 2013.

[3] ICS-CERT, “Cyber-Attack Against Ukrainian Critical Infrastructure,”
2015, https://ics-cert.us- cert.gov/alerts/IR-ALERT-H-16-056-01.

[4] B. Johnson, D. Caban, M. Krotofil, D. Scali, N. Brubaker, and C. Glyer,
“Attackers deploy ICS attack framework “TRITON” and cause opera-
tional disruption to critical infrastructure,” Threat Research Blog, 2017.

[5] B. Radvanovsky, “Project shine: 1,000,000 internet-connected SCADA
and ICS stystems and counting,” 2013, Tofino Security.

[6] J.-O. Malchow and J. Klick, “Sicherheit in vernetzten systemen: 21,”
2014, dFN-Workshop. Paulsen, C., 2014, ch. Erreichbarkeit von digitalen
Steuergeräten - in Lagebild, pp. C2-C19.

[7] R. Spenneberg, M. Brüggerman, and H. Schwartke, “PLC-Blaster: A
Worm Living Solely in the PLC,” in Black Hat, 2016, pp. 1–16.

[8] N. Govil, A. Agrawal, and N. O. Tippenhauer, “On Ladder Logic Bombs
in Industrial Control Systems,” in SECPRE@ESORICS 2017, ser. LNCS,
vol. 10683. Springer, 2018, pp. 110–126.

[9] A. Abbasi and M. Hashemi, “Ghost in the PLC Designing an Unde-
tectable programmable Logic Controller Rootkit via Pin Control Attack,”
in Black Hat, 2016, pp. 1–35.

[10] S. E. McLaughlin, “CPS: stateful policy enforcement for control system
device usage,” in ACSAC. ACM, 2013, pp. 109–118.

[11] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3A:
secure system simplex architecture for enhanced security and robustness
of cyber-physical systems,” in HiCoNS. ACM, 2013, pp. 65–74.

[12] F. B. Schneider, “Enforceable security policies,” ACM Transactions on
Information and System Security, vol. 3, no. 1, pp. 30–50, 2000.

[13] J. Ligatti, L. Bauer, and D. Walker, “Edit automata: enforcement
mechanisms for run-time security policies,” International Journal of
Information Security, vol. 4, no. 1-2, pp. 2–16, 2005.

[14] Y. Falcone, L. Mounier, J. Fernandez, and J. Richier, “Runtime en-
forcement monitors: composition, synthesis, and enforcement abilities,”
Formal Methods in System Design, vol. 38, no. 3, pp. 223–262, 2011.

[15] A. Francalanza, L. Aceto, A. Achilleos, D. P. Attard, I. Cassar,
D. Della Monica, and A. Ingólfsdóttir, “A Foundation for Runtime
Monitoring,” in RV, ser. LNCS, vol. 10548. Springer, 2017, pp. 8–29.

[16] Y. Falcone, K. Havelund, and G. Reger, “A Tutorial on Runtime
Verification,” in EDSS, ser. NATO Science for Peace and Security Series.
IOS Press, 2013, vol. 34, pp. 141–175.

[17] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
Journal of Logic Programming, vol. 78, no. 5, pp. 293–303, 2009.

[18] R. Lanotte and M. Merro, “A semantic theory of the Internet of Things,”
Information and Computation, vol. 259, no. 1, pp. 72–101, 2018.

[19] R. Lanotte, M. Merro, and S. Tini, “A Probabilistic Calculus of Cyber-
Physical Systems,” Information and Computation, 2020.

257

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

[20] M. Abadi, B. Blanchet, and C. Fournet, “The Applied Pi Calculus:
Mobile Values, New Names, and Secure Communication,” Journal of
the ACM, vol. 65, no. 1, pp. 1:1–1:41, 2018.

[21] D. Macedonio and M. Merro, “A semantic analysis of key management
protocols for wireless sensor networks,” Science of Computer Program-
ming, vol. 81, pp. 53–78, 2014.

[22] R. Lanotte, M. Merro, A. Munteanu, and Viganò, L., “A Formal
Approach to Physics-based Attacks in Cyber-physical Systems,” ACM
Transactions on Privacy and Security, vol. 23, no. 1, pp. 3:1–3:41, 2020.

[23] M. Hennessy and T. Regan, “A process algebra for timed systems.”
Information and Computation, vol. 117, no. 2, pp. 221–239, 1995.

[24] E. Bartocci, J. V. Deshmukh, A. Donzé, G. E. Fainekos, O. Maler,
D. Nickovic, and S. Sankaranarayanan, “Specification-Based Monitoring
of Cyber-Physical Systems: A Survey on Theory, Tools and Applica-
tions,” in Lectures on Runtime Verification - Introductory and Advanced
Topics, ser. LNCS. Springer, 2018, vol. 10457, pp. 135–175.

[25] M. Hennessy and R. Milner, “Algebraic Laws for Nondeterminism and
Concurrency,” Journal of the ACM, vol. 32, no. 1, pp. 137–161, 1985.

[26] L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir, “On runtime
enforcement via suppressions,” in CONCUR. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018, pp. 34:1–34:17.

[27] D. Beauquier, J. Cohen, and R. Lanotte, “Security policies enforcement
using finite and pushdown edit automata,” International Journal of
Information Security, vol. 12, no. 4, pp. 319–336, 2013.

[28] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and S. Ö.
Kjartansson, “On the Complexity of Determinizing Monitors,” in CIAA,
ser. LNCS, vol. 10329. Springer, 2017, pp. 1–13.

[29] A. P. Mathur and N. O. Tippenhauer, “SWaT: a water treatment testbed
for research and training on ICS security,” in CySWater@CPSWeek.
IEEE Computer Society, 2016, pp. 31–36.

[30] J. Goh, S. Adepu, K. N. Junejo, and A. Mathur, “A Dataset to Support
Research in the Design of Secure Water Treatment systems,” in CRITIS,
ser. LNCS, vol. 10242. Springer, 2017, pp. 88–99.

[31] M. Bielova, “A theory of constructive and predictable runtime enforce-
ment mechanisms,” Ph.D. dissertation, University of Trento, 2011.

[32] Y. Falcone, J.-C. Fernandez, and L. Mounier, “What can you verify
and enforce at runtime?” International Journal on Software Tools for
Technology Transfer, vol. 14, no. 3, pp. 349–382, 2012.

[33] Z. Manna and A. Pnueli, “A Hierarchy of Temporal Properties,” Stanford
University, Tech. Rep., 1987.

[34] B. Könighofer, M. Alshiekh, R. Bloem, L. Humphrey, R. Könighofer,
U. Topcu, and C. Wang, “Shield synthesis,” Formal Methods in System
Design, vol. 51, no. 2, pp. 332–361, 2017.

[35] P. S. Pinisetty, S.and Roop, S. Smyth, N. Allen, S. Tripakis, and R. V.
Hanxleden, “Runtime Enforcement of Cyber-Physical Systems,” ACM
TECS, vol. 16, no. 5s, pp. 178:1–178:25, 2017.

[36] F. Martinelli and I. Matteucci, “Through modeling to synthesis of
security automata,” ENTCS, vol. 179, pp. 31–46, 2007.

[37] D. Darvas, I. Majzik, and E. Blanco Vinuela, “Formal Verification of
Safety of PLC Based Control Software,” in IFM, ser. LNCS, vol. 9681.
Springer, 2016, pp. 508–522.

[38] D. Thomas and P. Moorby, The Verilog R© Hardware Description Lan-
guage. Springer Science & Business Media, 2008.

[39] The MathWorks Inc., Symbolic Math Toolbox, Natick, Massachusetts,
United States, 2019.

[40] Mentor Graphics, “Mentor Graphics ModelSim,” 2014.

APPENDIX

A. Proofs of Section V
In order to prove the polynomial complexity of the synthesis

algorithm, we provide a formal definition of size of both global

and local properties. Intuitively, the size of a property is given

by the number of operators occurring in it.
Definition 7: Let dim() : ����� ∪ ����� → � be our

property-size function, defined as follows:

dim(p∗) � 1 + dim(p)

dim(ε) � 1

dim(p1; p2) � dim(p1) + dim(p2) + 1

dim(
⋃

i∈I αi.pi) � | I | +∑
i∈I dim(pi).

Let us prove Proposition 2 (Polynomial complexity).
Proof: Let e = p∗, for some p ∈ �����. We prove that

the recursive structure of the function returning 〈|p∗|〉P can be

characterised in the following form: T (m) = T (m − 1) + n,

with m = dim(p) and n being the size of the set P . The result

follows because T (m) = T (m− 1) + n is O(m · n).
As 〈|p∗|〉P � X, for X = 〈| p |〉PX , the proof is by case analy-

sis on the structure of the local property p, by examining each

synthesis step in which the synthesis function is processing

m = dim(p) symbols. In what follows we identify: (i) how

many symbols of p the synthesis functions processes, (ii) how

many times the synthesis function calls itself, and (iii) how

many computations performs in that step.

– Let p ≡ ε. As dim(ε) = 1, it follows that T (1) = 1.

– Let p ≡ p1; p2. Let m = dim(p1; p2). By definition, the

synthesis 〈|p1; p2|〉P does not consume any symbol and calls

itself on p1 and p2 with m1 and m2 symbols, respectively,

with m1 + m2 = m − 1. Thus, we can characterise the

recursive structure as: T (m) = T (m1) + T (m2). Notice that

the complexity of this recursive form is smaller than the

complexity of T (m− 1) + n.

– Let p ≡ ⋃
i∈I πi.pi. Let m = dim(

⋃
i∈I πi.pi). By

definition, the synthesis 〈|⋃i∈I πi.pi|〉P consumes all events

πi, for i ∈ I . The synthesis algorithm re-calls itself | I |
times on pi, with dim(pi) symbols, for i ∈ I . Further-

more, the algorithm performs at most n operations due to a

summation over over α ∈ P \ (
⋃

i∈I πi ∪ {tick, end}), with

|P \ (⋃i∈I πi∪{tick, end}) |< n. Thus, we can characterise the

recursive structure as T (m) =
∑

i∈I T (dim(pi)) + n. Since∑
i∈I dim(pi) = m−| I | ≤ m− 1, the complexity is smaller

than that of T (m− 1) + n.

Let us prove Theorem 1 (Transparency).
Proof: We prove a more general result. Let e = p∗ for

p ∈ ����� and P ∈ �	�
. We prove that for any trace t of

go��{P}, if t is a prefix of some trace in
�
p∗

�
then:

1) 〈|p∗|〉P ��{P} t−−→ E��{J}, where either E = 〈| p′ |〉PX or

E = Z, with Z = 〈| p′ |〉PX , for some property p′ sub-term

of p, and for some automaton variable X and controller J ;

2) there is a trace t′ such that t′ ∈ �
p′

�
and t · t′ is a prefix

of some trace in
�
p∗

�
.

We proceed by induction on the length n of the trace t.
Base case. Let n = 1. Let t = β ∈ Sens ∪ Chn∗ ∪ Act ∪

{tick, end} a trace of go��{P} which is a prefix of some trace

in
�
p∗

�
. By definition, β ∈ events(p∗) ⊆ P .

We now analyse the possible actions of the edit automaton

〈|p∗|〉P . By definition, 〈|p∗|〉P � X, for X = 〈| p |〉PX . We

proceed by case analysis on the structure of p:

– Let p ≡ ε. This case is not admissible as p would not be

well-formed.

– Let p ≡ p1; p2. By definition, the synthesis returns

〈| p1 |〉PZ , for Z = 〈| p2 |〉PX , and Z 	= X. Now, if p1 	= ε
then in order to analyse the transitions afforded by 〈| p1 |〉PZ
we resort to one of the other two cases. Similarly, if p1 = ε
then 〈| p1 |〉PZ = Z, with Z = 〈| p2 |〉PX , and for the analysis of

〈| p2 |〉PX we resort to one of the other cases.

258

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

– Let p ≡ ⋃
i∈I πi.pi. By definition, the synthesis algorithm

returns an edit automaton defined via the following equation:

Z =
∑
i∈I

πi/πi.〈| pi |〉PX +
∑

α∈P\(∪i∈Iπi∪{tick,end})

α/τ.Z .

Thus, the possible transitions of 〈| p |〉PX are:

• 〈| p |〉PX
πi/πi−−−−−→ 〈| pi |〉PX , for πi ∈ events(p∗);

• 〈| p |〉PX
α/τ−−−→ Z, for α ∈ P \ (∪i∈Iπi ∪ {tick, end}).

Since β is a prefix of some trace in
�
p∗

�
, then it follows that

β = πj , for some j ∈ I . By an application of rule (Enforce),

triggered by rules (recE) and (Rec), we have that:

1) 〈|p∗|〉P ��{P} β−−→ 〈| pj |〉PX ��{J}, and

2) since
�
pj

� 	= ∅, there is a possibly empty trace t′ ∈ �
pj

�

such that β · t′ is a prefix of some trace in
�
p∗

�
.

Inductive case. Let n ∈ N, for some n > 1. Let t be a trace

of go �� {P} long n such that t is a prefix of some trace in�
p∗

�
. Since n > 1, then t = t′′ · β, for some trace t′′ and

action β. By inductive hypothesis we have:

1) 〈|p∗|〉P ��{P} t′′−−−→ E ��{J}, where either E = 〈| p′ |〉PX
or E = Z, with Z = 〈| p′ |〉PX , for some property p′ sub-

term of p, and for some variable X and controller J ;

2) there is a trace t′ such that t′ ∈ �
p′

�
and t′′ · t′ is a prefix

of some trace in
�
p∗

�
.

We now analyse the possible transitions of the edit automa-

ton 〈| p′ |〉PX . We proceed by case analysis on the structure of

the property p′:
– Let p′ ≡ ε. By definition, the synthesis returns an

automaton variable X defined via an equation. Thus, we resort

to one of the other cases, depending on the definition of X.

– Let p′ ≡ p′1; p
′
2. By definition, the synthesis returns

〈| p′1 |〉PZ , for Z = 〈| p′2 |〉PX , and Z 	= X. Thus, in order to

analyse the possible transitions of 〈| p′1 |〉PZ we resort to one of

the other two cases.

– Let p′ ≡ ⋃
i∈I πi.p

′
i. By definition, the synthesis algorithm

of Table III returns an edit automaton defined via the following

recursive equation:

Z =
∑
i∈I

πi/πi.〈| p′i |〉PX +
∑

α∈P\(∪i∈Iπi∪{tick,end})

α/τ.Z .

Thus, the possible transitions of 〈| p′ |〉PX are:

• 〈| p′ |〉PX
πi/πi−−−−→ 〈| p′i |〉PX , for πi ∈ events(p∗);

• 〈| p′ |〉PX
α/τ−−−→ Z, for α ∈ P \ (∪i∈Iπi ∪ {tick, end}).

We recall that t = t′′ · β is a prefix of some trace in
�
p∗

�
.

Furthermore, by inductive hypothesis, there is a trace t′ ∈�
p′

�
=

�⋃
i∈I πi.p

′
i

�
such that t′′ · t′ is a prefix of some trace

in
�
p∗

�
. It follows that β = πj , for some j ∈ I . Thus, by an

application of rule (Enforce) we have:

1) 〈| p′ |〉PX ��{J} β−−→〈| p′j |〉PX ��{J ′}, for some J ′,
2) there is a trace t′j ∈ �

p′j
�

such that β · t′j is a prefix of

some trace in
�
p′

�
.

Finally, for t = t′′ · β, we derive the required result:

1) 〈| p∗ |〉PX ��{J} t−−→ 〈| p′j |〉PX ��{J ′}, for some J ′, and

2) there is a trace t′j ∈ �
p′j

�
such that t · t′j is a prefix of

some trace in
�
p∗

�
.

In order to prove Theorem 2 we need two lemmata.

Lemma 1 (Soundness of the synthesis): Let e = p∗, for some

p ∈ �����, and P be a set of actions such that events(e) ⊆
P . Let 〈|e|〉P

α1/β1−−−−−→ . . .
αn/βn−−−−−→ E be an arbitrary execution

trace of the synthesised automaton 〈|e|〉P . Then,

1) for t = β1 · . . . · βn the trace t̂ is a prefix of some trace

in
�
e
�

, and

2) either E = 〈| p′ |〉PX , for some property p′ sub-term of p
and some automaton variable X, or E = Z, with Z =
〈| p′′ |〉PX , for some property p′′ sub-term of p, with p′′

possibly equal to p, and some automaton variables X, Z.

Proof: By induction on the length of the execution trace.

Base case. Let n = 1. Let 〈|p∗|〉P
α/β−−−→ E. As 〈|p∗|〉P �

X, for X = 〈| p |〉PX , this transition may only be due to an

application of rule (recE) because 〈| p |〉PX
α/β−−−→ E. Thus, we

proceed by case analysis on the structure of the property p.

– Let p ≡ ε. Impossible as p would not be well-formed.

– Let p ≡ p1; p2. By definition, the synthesis algorithm

returns 〈| p1 |〉PZ , for Z = 〈| p2 |〉PX , and Z 	= X. Now, if p1 	= ε
then in order to analyse the transitions afforded by 〈| p1 |〉PZ
we resort to one of the other cases. Similarly, if p1 = ε
then 〈| p1 |〉PZ = Z, with Z = 〈| p2 |〉PX , and for the analysis

of 〈| p2 |〉PX we resort to one of the other cases.

– Let p ≡ ⋃
i∈I πi.pi. By definition, the synthesis algo-

rithm of Table III returns and edit automaton defined via the

following recursive equation:

Z =
∑
i∈I

πi/πi.〈| pi |〉PX +
∑

α∈P\(∪i∈Iπi∪{tick,end})

α/τ.Z .

Thus, the edit automaton 〈| p |〉PX admits the following two

families of transitions:

• 〈| p |〉PX
πi/πi−−−−→ 〈| pi |〉PX , for πi ∈ events(e) ⊆ P;

• 〈| p |〉PX
α/τ−−−→ Z, for and α ∈ P \ (∪i∈Iπi ∪ {tick, end}).

In the first case, it is easy to see that: 1) πi is a prefix of some

trace in
�
p∗

�
, for any i ∈ I , and 2) in the derivative 〈| pi |〉PX ,

the property pi is a sub-term of p. In the latter case, 1) τ̂ = ε
is a prefix of

�
p∗

�
, and 2) Z = 〈| p |〉PX .

Inductive case. Let n ∈ N, with n > 1.

Let 〈|p∗|〉P
α1/β1−−−−−→ . . .

αn−1/βn−1−−−−−−−−−→ E′ αn/βn−−−−−→ E. By

inductive hypothesis we have that:

1) for t′ = β1 · . . . · βn−1, the trace t̂′ is a prefix of some

trace in
�
p∗

�
, and

2) either E′ = 〈| p′ |〉PX , for some property p′ sub-term of p
and some automaton variable X, or E′ = Z, with Z =
〈| p′′ |〉PX , for some property p′′ sub-term of p, with p′′

possibly equal to p, and some automaton variables X, Z.

Let us focus on the transition E′ αn/βn−−−−−→ E. With a reasoning

similar to that of the base case, we derive that: 1) either β̂n

is a prefix of some trace in
�
p′

�
or β̂n is a prefix of some

259

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

trace in
�
p′′

�
, and 2) either E = 〈| p′1 |〉PX , for some automaton

variable X and some property p′1 sub-term of p′, or E = Z, with

Z = 〈| p′2 |〉PX , for some variables X and Z and some property p′2
sub-term of p′, or E = 〈| p′′1 |〉PX , for some variable X and some

property p′′1 sub-term of p′′, or E = Z, with Z = 〈| p′′2 |〉PX , for

some variables X and Z and some property p′′2 sub-term of p′′.
Thus, for t = t′ · βn, we derive that: 1) the trace t̂ = t̂′ · β̂n

is a prefix of some trace in
�
p∗

�
, and 2) either E = 〈| q |〉PX ,

for some variable X and some property q sub-term of p, or

E = Z, with Z = 〈| r |〉PX , for some variables X and Z and

some property r sub-term of p.

Lemma 2 (Trace decomposition): Let e = p∗, for some

p ∈ �����, P ∈ ���� and P be the set of all possible actions

of P such that events(e) ⊆ P . Then, for any execution trace

〈|e|〉P ��{P} β1−−−→ E1 ��{J1} β2−−−→ . . .
βn−−−→ En ��{Jn} holds:

1) 〈|e|〉P
α1/β1−−−−−→ E1

α2/β2−−−−−→ . . .
αn/βn−−−−−→ En, with αi ∈ P ,

2) J0 = P and either Ji−1
αi−−−→ Ji or Ji = Ji−1, for 1 ≤ i ≤ n.

Proof: By induction on the length n of the execution trace

〈|e|〉P ��{P} β1−−−→ E1 ��{J1} β2−−−→ . . .
βn−−−→ En ��{Jn}.

Base case. Let n = 1. Let 〈|e|〉P �� {P} β−−→ E �� {J}.

The following facts hold: (i) P ≡ X , for X = tick.W ,

can only yield a tick-action by an application of rule (Rec);

(ii) the synthesis function in Table III never returns an edit

automaton that suppresses a tick-action; (iii) events(e) ⊆ P .

From these facts and by an application of rule (Enforce),

triggered by applications of rule (recE) and (Rec), we derive

that: 1) 〈|e|〉P
tick/tick−−−−−→ E, and 2) P

tick−−−→ W , for W ∈ 	�

�.

Inductive case. Let n > 1. By inductive hypothesis we have:

1) 〈|e|〉P
α1/β1−−−−−→ E1

α2/β2−−−−−→ . . .
αn−1/βn−1−−−−−−−−−→ En−1, αi ∈ P ,

2) J0 = P and either Ji−1
αi−−−→ Ji or Ji = Ji−1, for 1 ≤ i ≤ n.

Consider the action En−1 �� {Jn−1} βn−−−→ En �� {Jn}.

By an application of Lemma 1 we have that either En−1 =
〈| p′ |〉PX , for some property p′ sub-term of p, or En−1 = Z
with Z = 〈| p′′ |〉PX for some property p′′ sub-term of p, with

p′′ possibly equal to p, and some automaton variable X and Z.

We proceed by case analysis on the structure of p′ (the case

analysis for p′′ is similar):

– Let p′ ≡ ε. By definition, its synthesis returns X. Thus,

we resort to one of the other cases.

– Let p′ ≡ p′1; p
′
2. By definition, the synthesis returns

〈| p′1 |〉PZ , for Z = 〈| p′2 |〉PX and Z 	= X. Thus, in order to analyse

the transitions of 〈| p1 |〉PZ we resort to one of the other cases.

– Let p′ ≡ ⋃
i∈I πi.p

′
i. By definition, the synthesis of

Table III returns an edit automaton defined via the following

recursive equation:

Z =
∑
i∈I

πi/πi.〈| p′i |〉PX +
∑

α∈P\(∪i∈Iπi∪{tick,end})

α/τ.Z

Thus, the possible transitions of 〈| p′ |〉PX are:

• 〈| p′ |〉PX
πi/πi−−−−→ 〈| p′i |〉PX , for πi ∈ events(e) ⊆ P ,

• 〈| p′ |〉PX
α/τ−−−→ Z, for α ∈ P \ (∪i∈Iπi ∪ {tick, end}).

Let us analyse the possible transitions of Jn−1.

1) Let Jn−1
πi−−−→ Jn, for πi ∈ events(e) ⊆ P . As

〈| p′ |〉PX
πi/πi−−−−→ 〈| p′i |〉PX , by an application of the rule (Enforce)

we have 〈| p |〉PX �� {Jn−1} πi−−−→ 〈| p′i |〉PX �� {Jn}, which

concludes the proof of this case.

2) Let Jn−1
end−−−→ Jn, with πi 	= end for all i ∈ I . By

an application of rule (Mitigation), the edit automaton may

produce autonomously the action πi. Thus, we have that

〈| p′ |〉PX ��{Jn−1} πi−−−→ 〈| p′i |〉PX ��{Jn}, with Jn = Jn−1,

which concludes the proof of this case.

3) Let Jn−1
α−−→ Jn, for α ∈ P \ (∪i∈Iπi ∪ {tick, end}).

Since 〈| p′ |〉PX
α/τ−−−→ Z, by an application of rule (Enforce), we

have 〈| p′ |〉PX ��{Jn−1} τ−−→ Z��{Jn}, which concludes the

proof of this case.

4) Let Jn−1
tick−−−→ Jn, with πi 	= tick for all i ∈ I . As

the monitor 〈| p′ |〉PX does not allow tick-actions, the monitored

controller 〈| p′ |〉PX ��{Jn−1} may not perform any action.

Let us prove Theorem 2 (Soundness).
Proof: Let t = β1 · . . . · βn be an execution trace such

that 〈|e|〉P �� {P} t−−→ E �� {J}, for some E ∈ ��
� and

some controller J . By an application of Lemma 2 there exist

Ei ∈ ��
� and αi ∈ P , for 1 ≤ i ≤ n, such that:

〈|e|〉P
α1/β1−−−−−→ E1

α2/β2−−−−−→ . . .
αn/βn−−−−−→ En = E .

By Lemma 1 the trace t̂ is a prefix of some trace in
�
e
�

.

Let us prove Proposition 3 (Deadlock-freedom).
Proof: We prove that if 〈|e|〉P �� {P} t−−→ E �� {J}, for

some E ∈ ��
� and some J , then there exist β, E′ and J ′ such

that E��{J} β−−→ E′ ��{J ′}. We proceed by case analysis on

the structure of the controller J .

– Let J = tick
k−l.S, for 0 ≤ l ≤ k−1. In this case, we have

to show that the enforcer allows tick-actions, i.e., E
tick/tick−−−−−→

E′, thus β = tick. According to the syntax of our controllers,

there are two different possibilities to reach the controller J :

either P
tick−−−→ . . .

tick−−−→ J or P
t′−−→ end.X

end−−−→ P
tick−−−→

. . .
tick−−−→ J , for some trace t′. We focus on the latter case, as

the former is simpler. By an application of Lemma 2 we can

decompose the trace 〈|e|〉P ��{P} t−−→ E��{J} as

〈|e|〉P ��{J0} β1−−−→ E1 ��{J1} β2−−−→ . . .
βn−−−→ En ��{Jn}

such that:

1) 〈|e|〉P
α1/β1−−−−−→ E1

α2/β2−−−−−→ . . .
αn/βn−−−−−→ En = E, αi ∈ P

2) J0=P , Jn= J, either Ji−1
αi−−−→ Ji or Ji=Ji−1, for 1≤i≤n.

By inspection on the synthesis algorithm we know that

the edit automata resulting from the synthesis never suppress

tick-actions and end-actions. Thus, the execution trace of item

1) can be refined as follows: 〈|e|〉P
α1/β1−−−−−→ E1

α2/β2−−−−−→
. . .

αn−l−1/βn−l−1−−−−−−−−−−−−−→ En−l−1

end/end−−−−−→ En−l

tick/tick−−−−−→ . . .
tick/tick−−−−−→

En = E. By an application of Lemma 1, the trace t̂ is a

260

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

prefix of some trace in
�
e
�

; as e is k-sleeping, it follows

that t = t′ · end · tick
l, with t′ = β1 · ... · βn−l−1. Still by

an application of Lemma 1 we have that either E = 〈| p′ |〉PX ,

for some property p′ sub-term of property p, or E = Z with

Z = 〈| p′′ |〉PX for some property p′′ sub-term of p, with p′′

possibly equal to p, and some automaton variables X and Z.

Summarising, E comes from the synthesis of some property.

By inspection on the synthesis algorithm we know that the

edit automata resulting from the synthesis never deadlock,

i.e., E
α/β−−−→ E′, for some E′, α and β. By Lemma 1

the trace t̂ · β̂ must be a prefix of some trace in
�
e
�

. As

e is k-sleeping and the edit automata resulting from the

synthesis never suppress tick-actions, it holds that E
tick/tick−−−−−→ E′.

As J = tick
h−l.S

tick−−−→ tick
h−l−1.S = J ′, we have that

E��{J} β−−→ E′ ��{J ′}, for β = tick, as required.

– Let J ∈ ���� ∪ ���� ∪�	
. We have to show that

for any α-action of the controller there is an α/β-action of the

enforcer, for some β. By an application of Lemma 1, we have

that either E = 〈| p′ |〉PX , for some property p′ sub-term of p
and some automaton variable X, or E = Z, with Z = 〈| p′′ |〉PX ,

for some property p′′ sub-term of p, with p′′ possibly equal

to p, and some automaton variables X, Z. We proceed by case

analysis on the structure of p′ (the case for p′′ is similar):

• Let p′ ≡ ε. By definition it is synthesised into X. Thus,

we resort to one of the other cases.

• Let p′ ≡ p′1; p
′
2. By definition, the synthesis algorithm

returns 〈| p′1 |〉PZ , for Z = 〈| p′2 |〉PX and Z 	= X. Thus, we

resort to one of the other cases.

• Let p′ ≡ ⋃
i∈I πi.p

′
i. By definition, the synthesis of Ta-

ble III returns an edit automaton defined via the following

recursive equation:

Z =
∑
i∈I

πi/πi.〈| p′i |〉PX +
∑

α∈A\(∪i∈Iπi∪{tick,end})

α/τ.Z

Thus, the possible transitions of 〈| p′ |〉PX are:

– 〈| p′ |〉PX
πi/πi−−−−→ 〈| p′i |〉PX , for πi ∈ events(e) ⊆ P ,

– 〈| p′ |〉PX
α/τ−−−→ Z, for α ∈ P \ (∪i∈Iπi ∪ {tick, end}).

Now, let us consider the possible transitions of J .

1) Let J
πi−−−→ J ′, for πi ∈ events(e) ⊆ P . As we

have 〈| p′ |〉PX
πi/πi−−−−→ 〈| p′i |〉PX , by an application of rule

(Enforce) it follows that E��{J} πi−−−→ 〈| p′i |〉PX ��{J ′},

as required, for E′ = 〈| p′i |〉PX and β = πi.

2) Let J
end−−−→ J ′, with πi 	= end for all i ∈ I . By an ap-

plication of rule (Mitigation), we have 〈| p′ |〉PX ��{J} πi−−−→
〈| p′i |〉PX ��{J}, for some i ∈ I , as required, for β = πi.

3) Let J
tick−−−→ J ′, with πi 	= tick for all i ∈ I . As J ∈

����∪����∪�	
, this tick-action can be derived only

by an application of one of the following transition rules:

(TimeoutS), (TimeoutInC) and (TimeoutOutC). By inspection

on these three rules, we derive that there is a J ′′ such

that J
α−−→ J ′′, for some α ∈ (Chn∗ ∪ Sens) ⊆ P . Now,

depending on α, by an application of rule (Enforce) we

derive that either 〈| p′ |〉PX ��{J} πi−−−→ 〈| p′i |〉PX ��{J ′′} or

〈| p′ |〉PX ��{J} τ−−→ Z��{J ′′}, as required.

4) Let J
α−−→ J ′, for α ∈ P\(∪i∈Iπi ∪ {tick, end}). Since

〈| p′ |〉PX
α/τ−−−→ Z, by an application of rule (Enforce) we

have 〈| p′ |〉PX ��{J} τ−−→ Z��{J ′}, as required.

In order to prove Proposition 4 we need a definition.

Definition 8: Let pre() : �
��∪����
∪����∪����∪
�	
 → � be a function that given a controller J returns

an upper bound to the number of transitions that may be

performed by J before an end-action. The definition follows:

pre(X) � pre(tick.W), with X = tick.W

pre(tick.W) � 1 + pre(W)

pre(�∑i∈I si.Si�S) � 1 +max (pre(S),max i∈I(pre(Si)))

pre(�∑i∈I ci.Ci�C) � 1 +max (pre(C),max i∈I(pre(Ci)))

pre(�c.C1�C2) � 1 +max (pre(C1), pre(C2))

pre(a.A) � 1 + pre(A)

pre(end.X) � 0 .

Let us prove Proposition 4 (Divergence-freedom).
Proof: Let e = p∗, for p ∈ ���
�. Let P ∈ �
��, P

be the set of all possible actions of P , and t a trace such that

〈|e|〉P �� {P} t−−→ E �� {J}. We define k = pre(P) + kp,

where kp is the length of the longest trace of
�
p
�

. Notice

that, by definition of our controllers, pre(P) is always finite.

Furthermore, kp is finite too as local properties in ���
� do

not contain Kleene operators. As a consequence, k is finite.

Thus, we prove that if E �� {J} t′−−→ E′ �� {J ′}, with

| t′ |≥ k, then end ∈ t′. More precisely, we prove that whenever

E �� {J} t′−−→ E′ �� {J ′}, with | t′ |≥ pre(J) + kp, then

end ∈ t′. The result follows as J is a derivative of P , and hence

pre(J)≤pre(P). We proceed by structural induction on J .

– Let J ≡ end.X . Let E �� {J} t′−−→ E′ �� {J ′} such that

| t′ |≥ pre(end.X) + kp ≥ kp. We reason by contradiction

supposing that end 	∈ t′. Since J may only perform an end-

action, it follows that t′ is entirely derived by applications of

rule (Mitigation). In fact, rule (Enforce) cannot be used in the

derivation of t′ as end 	∈ t′ and our synthesis never suppress

end-actions. Notice that actions inferred by applications of rule

(Mitigation) are always different from τ ; thus, t̂′ = t′ and

t̂ · t′ = t̂ · t′. By Theorem 2, the trace t̂ · t′ must be a prefix of

some trace in
�
p∗

�
. Since | t′ |≥ kp, where kp is the length

of the longest trace of
�
p
�

, and p is well-formed, it follows

that end ∈ t′. In contradiction with the assumption end 	∈ t′.

– Let J ≡ �∑i∈I si.Si�S. Let E �� {J} t′−−→ E′ �� {J ′}
such that | t′ |≥ pre(J)+kp. Let β be the first action of t′, i.e.,

t′ = β · t′′, for some trace t′′, such that E �� {J} β−−→ E′′ ��

{J ′′} t′′−−−→ E′ ��{J ′}, for some E′′ and J ′′. By inspection on

J , it follows that either J ′′ = Si, for some i ∈ I , or J ′′ = S.

Since | t′ |≥ pre(J)+kp, it follows that | t′′ |≥ pre(J ′′)+kp.

As J ′′ is sub-term of J , by inductive hypothesis it follows that

end ∈ t′′. Thus, end ∈ t′ = β · t′′, as required.

The other cases are similar to the previous ones.

261

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on August 19,2020 at 08:29:27 UTC from IEEE Xplore. Restrictions apply.

