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Abstract
In recent years, the production of sequential data has been rapidly in-

creasing. This requires solving challenging problems about how to represent
information, how to retrieve information, and how to extract knowledge, from
sequential data. These questions belong to the areas of coding, indexing, and
mining, respectively. In this thesis, we investigate problems from those three
areas.

Coding refers to the way in which information is represented. Coding aims
at generating optimal codes, that are codes having a minimum expected length.
Codes can be generated for different purposes, from data compression to error
detection/correction. The Lempel-Ziv 77 parsing produces an asymptotically
optimal code in terms of compression. We study algorithms to efficiently de-
compress strings from the Lempel-Ziv 77 parsing, using memory proportional
to the size of the parsing itself. We provide the first implementation of an
algorithm by Bille et al., the only work we are aware of on this problem. We
present a practical evaluation of this approach and several optimizations which
improve the performance on all datasets we tested.

Through the Ulam-Rényi game, it is possible to provide optimal adaptive
error-correcting codes. The game consists of discovering an unknown m-bit
number by asking membership questions the answers to which can be erroneous.
Questions are formulated knowing the answers to all previous ones. We want
to find an optimal strategy, i.e., a strategy that can identify any m-bit number
using the theoretical minimum number of questions. We studied the case where
questions are a union of up to a fixed number of intervals, and up to three
answers can be erroneous. We first show that for any sufficiently large m, there
exists a strategy to identify an initially unknown m-bit number which uses at
most four intervals per question. We further refine our main tool to turn the
above asymptotic result into a complete characterization of those instances of
the Ulam-Rényi game that admit optimal strategies.

Indexing refers to the way in which information is retrieved. An index
for texts permits finding all occurrences of any substring, without traversing
the whole text. Many applications require to look for approximate substrings.
One of these is the problem of jumbled pattern matching, where two strings
match if one is a permutation of the other. We study combinatorial aspects of
prefix normal words, a class of binary words introduced in this context. These
words can be used as indices for the Indexed Binary Jumbled Pattern Matching
problem. We present a new recursive generation algorithm for prefix normal
words that is competitive with the previous one but allows to list all prefix
normal words sharing the same prefix. This sheds lights on novel insights that
may help solving the problem of counting the number of prefix normal words
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of a given length. We then introduce infinite prefix normal words, and we show
that one of the operations used by the algorithm, when repeatedly applied to
extend a word, produces an infinite prefix normal word. This motivates the
seeking for other operations that produce infinite prefix normal words. We
found that one of these operations establishes a connection between prefix
normal words and Sturmian words. We also explored the relationship between
prefix normal words and Abelian complexity, as well as between prefix normal
words and lexicographic order.

Mining refers to the way in which information is converted into knowledge.
The process of knowledge discovery covers several processing steps, including
knowledge extraction. We analyze the problem of mining assertions for an
embedded system from its simulation traces. This problem can be modeled
as a pattern discovery problem on colored strings. We present two problems
of pattern discovery on colored strings: patterns for one color only, or for all
colors at the same time. We present two suffix tree-based algorithms. The first
algorithm solves both the one color problem and the all colors problem. We
then, introduce modifications which improve performance of the algorithm
both on synthetic and on real data. We implemented and evaluated the proposed
approaches, highlighting time trade-offs that can be obtained.

A different way of knowledge extraction is based on the information-
theoretic perspective of Pearl’s model of causality. It has been postulated that
the true causality direction between two phenomena A and B is related to the
problem of finding the minimum entropy joint distribution between A and B.
This problem is known to be NP-hard, and greedy algorithms have recently
been proposed. We provide a novel analysis of one of the proposed heuristic
showing that this algorithm guarantees an additive approximation of 1 bit. We
then, provide a general criterion for guaranteeing an additive approximation
factor of 1. This criterion may be of independent interest in other contexts
where couplings are used.



Abstract (Italian)
Negli ultimi anni, la produzione di dati sequenziali è in rapido aumento.

Ciò richiede la risoluzione di problemi sempre più impegnativi su come rappre-
sentare, recuperare informazioni ed estrarre conoscenza dai dati sequenziali.
Queste domande appartengono rispettivamente alle aree di codifica, indiciz-
zazione ed estrazione. In questa tesi si investigano problemi negli ambiti di
queste tre aree.

Per codifica si intende il modo in cui le informazioni sono rappresentate.
Questa mira a generare codici ottimali, ovvero codici con una lunghezza min-
ima attesa, che possono essere generati per scopi diversi, dalla compressione
dei dati alla rilevazione/correzione degli errori. La fattorizzazione Lempel-Ziv
77 produce un codice asintoticamente ottimale in termini di compressione. In
questa tesi studiamo algoritmi per decomprimere in modo efficiente stringhe
dalla fattorizzazione Lempel-Ziv 77, usando memoria proporzionale alla di-
mensione della fattorizzazione stessa. Forniamo la prima implementazione
dell’algoritmo di Bille et al., l’unico lavoro di cui siamo a conoscenza su questo
problema. Presentiamo una valutazione pratica di questo approccio e diverse
ottimizzazioni che migliorano le prestazioni su tutti i dati che abbiamo testato.

Attraverso il gioco di Ulam-Rényi, è possibile costruire codici a correzione
di errori adattivi ottimali. Il gioco consiste nello scoprire un numero sconosciuto
dim bit, ponendo domande di appartenenza le cui risposte possono essere errate.
Nel caso adattivo, le domande sono formulate conoscendo le risposte a tutte
le precedenti domande poste. L’obbiettivo è quello di trovare una strategia
ottima, ovvero una strategia in grado di identificare qualsiasi numero di m bit
usando il minimo numero teorico di domande. Abbiamo studiato il caso in
cui le domande sono l’unione di un numero fissato di intervalli, in cui fino a
tre risposte possono essere errate. Mostriamo innanzitutto che per qualsiasi m
sufficientemente grande, esiste una strategia per identificare un numero di m
bit inizialmente sconosciuto che utilizza al più quattro intervalli. Raffiniamo,
poi, il nostro principale strumento per trasformare il risultato asintotico in una
caratterizzazione completa delle istanze del gioco Ulam-Rényi che ammettono
strategie ottime.

Per indicizzazione si intende il modo in cui le informazioni vengono re-
cuperate. Indicizzare un testo, permette di individuare tutte le occorrenze di
qualsiasi sua sottostringa, senza necessariamente scorrere tutto il testo. Molte
applicazioni richiedono la ricerca di sottostringhe approssimate. Uno di questi
è il problema di jumbled pattern matching, dove due stringhe corrispondono se
una è una permutazone dell’altra. In questa tesi studiamo gli aspetti combinatori
delle parole normali prefisse, una classe di parole binarie introdotte in questo
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contesto, che possono essere usate come indici per il problema indicizzazione
del jumbled pattern matching nel caso binario.

Presentiamo un nuovo algoritmo di generazione ricorsiva per le parole nor-
mali prefisso che è paragonabile con il precedente ma che consente di elencare
tutte le parole normali prefisse condividendo lo stesso prefisso. Questo mette in
risalto nuovi aspetti che possno essere utili nel risolvere il problema di contare
il numero di parole normali prefisse di una certa lunghezza. Introduciamo le
parole normali prefisse infinite e mostriamo che una delle operazioni utilizzate
dall’algoritmo di generazione, quando viene ripetutamente applicata per esten-
dere una parola, produce un parola normale prefissa infinita. Questo ha motivato
la ricerca di altre operazioni che producono parole normali prefisse infinite. Una
di queste operazioni stabilisce una connessione tra le parole normali prefisse e
le parole Sturmiane. Abbiamo esplorato le relazioni tra parole normali prefisse
e la complessità abeliana, come anche tra parole normali prefisse e l’ordine
lessicografico.

Per estrazione si intende il modo in cui le informazioni vengono convertite
in conoscenza. Il processo di scoperta della conoscenza copre diverse fasi di
elaborazione, inclusa l’estrazione della conoscenza. Analizziamo il problema
dell’estrazione di asserzioni per un sistema embedded, date le sue tracce di
simulazione. Questo problema può essere modellato come un problema di
rilevamento di patterns in stringhe colorate. Presentiamo due problemi di
scoperta di patterns su stringhe colorate, vale a dire patterns relativi ad un
solo colore o relativi a tutti i colori contemporaneamente. Presentiamo due
algoritmi basati su alberi dei suffissi. Il primo algoritmo risolve sia il problema
nel caso di patterns relativi ad un solo colore, che il caso di patterns relativi a
tutti i colori. Abbiamo introdotto delle modifiche che aumentano le prestazioni
dell’algoritmo sia sui dati sintetici che sui dati reali. Abbiamo implementato e
valutato gli approcci proposti, evidenziando i diversi compromessi sui tempi di
esecuzione che possono essere ottenuti.

Un altro modo di estrarre la conoscenza è dalla prospettiva della teoria
dell’informazione attraverso il modello di causalità di Pearl. È stato postulato
che la direzione corretta della causalità tra due fenomeni A e B sia corre-
lata al problema di trovare la distribuzione congiunta tra A e B di minima
entropia. Questo problema è noto essere NP-hard e sono stati proposti recen-
temente degli algoritmi greedy. In questa tesi forniamo una nuova analisi di
una delle euristiche proposte dimostrando che questo algoritmo garantisce
un’approssimazione additiva di 1 bit. Quindi, forniamo un criterio generale
per garantire un fattore di approssimazione addizionale di 1. Questo criterio
può essere di interesse indipendente in altri contesti in cui il coupling viene
utilizzato.
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Introduction

Sequential data are sequences of objects where the order matter, e.g., text, natural
language, DNA sequences. In the last decade, sequential data have become more
and more ubiquitous. It has been estimated that between 100 million and as many
as 2 billion human genomes could be sequenced by 2025. Compared to astronomy,
YouTube, and Twitter, genomics is either on par with, or the most demanding of, data
acquisition, storage, distribution, and analysis [128]. This production of textual data at
an unprecedented pace requires solving increasingly challenging problems concerning
space resources, reliability, searching, and extraction of information.

These problems can be grouped in the three tasks of coding, indexing, and mining.

1.1 Coding

Coding refers to the way in which information is represented. For example, the famous
Morse code associates each character of the English alphabet to sequences of dots
and dashes called codewords. See Figure 1.1 for the table of the International Morse
code. Given a text over the English alphabet, the process of translating characters of
the English alphabet into sequences of Morse codewords is called encoding, while the
reverse process is called decoding. A code can be designed for different purposes, e.g.,
to reduce the total length of the encoded text (e.g., data compression), to detect/correct
errors occurred during the transmission of information (e.g., reliability), to obscure the
text (e.g., cryptography).

1.1.1 Data compression and Lempel-Ziv 77

The Morse code is an example of a data compression encoding. The length of Morse
code codewords depends on the frequency of occurrences in texts of the English
language characters, i.e. frequent characters have shorter codewords. The same idea is
applied in the Huffman coding procedure which produces optimal codes, in the sense of
minimum expected length [46].

Another example is the Lempel-Ziv 77 parsing [139], or briefly LZ77, that has been
proved to be asymptotically optimal [46]. It is an adaptive dictionary-based scheme
where the text is divided into two types of substrings, literal and repeat phrases, applying
the following rules (refer to Chapter 2 for a formal definition). Assuming that we have
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Fig. 1.1: International Morse code table. Rhey T. Snodgrass & Victor F. Camp, 1922 [Public domain]

computed the parsing up to a certain position, the next phrase is a literal phrase if the
character in the current position never appeared before, otherwise the next phrase is a
repeat phrase, i.e., the longest substring starting in the current position which appeared
before in the string.

Example 1. Given the text “abaabababba” its LZ77 parsing is the following:

1 2 3 4 5 6 7 8 9 10 11
a b a a b a b a b b a

The vertical bars mark the end of each phrase. The first a and the first b are literal
phrases, while a, aba, bab, and ba are repeat phrases. We write repeat phrases as pairs
where the first entry is the position of the previous occurrence of the phrase and the
second entry is its length, while we write literal phrases as pairs where the first entry is
the new character never seen before and the second is 0.

The final LZ77 encoding of the text “abaabababba” is the following:

(a, 0) (b, 0) (1, 1) (1, 3) (5, 3) (2, 2)

The Lempel-Ziv 77 parsing and its later variants such as Lempel-Ziv 78 [140],
Lempel-Ziv-Welch [137], Sliding window LZ77, have been widely applied in practical
compression schemes and widely-used compression tools (e.g., gzip, LZ4, Snappy).
Recently, Bille et al. [16] proposed a decompression algorithm for LZ77 that works
in space proportional to the length of the parsing. In Chapter 2 we present a practical
evaluation of the algorithm proposed in [16]. We further present a practical solution,
asymptotically worse than [16], that reduce the space and time computational bottle-
necks.
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1.1.2 Reliability and Ulam-Rényi game

The capability of a code to carry reliable information during the transmission through a
communication system is crucial in applications such as space communications, and
teleoperation. Hamming codes are one way of constructing an error-correcting code,
i.e., a code that allows to correct up to a given number of errors which may occur
during the communication. This can be achieved by inserting redundancy in the code.
The underlying idea of Hamming codes is that the number of bits in which any two
codewords differ, the so-called Hamming distance, is as big as possible. For example,
one possible Hamming code to provide error correction of 1 bit is to encode the value 0
with 000 and the value 1 with 111. In this case, if an error occurs then one out of 3 bits
of the codewords will be flipped, i.e. 0 turned into 1 and vice versa. Then, to decode the
original bit we apply a majority consensus rule, e.g., if we receive more than two 0s
then the decoded bit is 0.

Error-correcting codes can be seen as answers to a search problem, the so-called
Ulam-Rényi game. We want to use the minimum number of yes-no questions necessary
to uniquely identify an unknown m-bit number, where up to e answers can be erroneous.
The search problem induces a search tree, in which each node represents a question.
The edges connecting a node with its children are labeled with the answers, and the
leaves contain the unknown m-bit numbers, see Figure 1.2.
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Fig. 1.2: A possible optimal search tree for an adaptive error-correcting code for 2 bits. Each
node reports the question that has to be asked. If the answer to the question is no then we follow
the branch labeled with 0, otherwise, we follow the branch labeled with 1. The leaves store the
result of the search. The red path is the codeword received in Example 2 by the receiver.

The height of the search tree, i.e., the length of the encoding, is significantly affected
by the amount of adaptiveness allowed. If questions can be asked knowing the answers to
all previous ones, then we are in a fully adaptive setting. On the other hand, if no answer
is provided, then we are in a fully non-adaptive setting. For example, Hamming codes
are non-adaptive codes. Adaptiveness is provided, usually, with a noiseless feedback
channel. Adaptiveness is necessary to have optimal codes that are able to correct more
than 1 error [129], except for Golay codes [31].

A real world scenario is given by the case where transmitter and receiver have
different power of transmission, hence one can assume that the bits delivered in one
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direction are sent and received reliably, and error correction is required for the other
direction. As an example, we have satellites orbiting Earth that communicate with a
base station on Earth. Due to issues of power availability, the signal transmitted from
the satellite is usually much weaker than that of the base station, and interferences may
easily cause errors. On the other hand, the error-rate of transmissions from the base
station can be negligible.

Example 2. Let us consider the following scenario. There are two actors, a sender, and
a receiver. The sender wants to communicate a piece of information to the receiver
through a noisy channel. The receiver, on his side, can transmit information back to the
sender through a noiseless feedback channel as in Figure 1.3.

Satellite (sender)
noisy channel

Base station (receiver)

0110 0010

noiseless feedback channel

0100

Fig. 1.3: Communication scenario with a noiseless feedback channel. The first bit sent from the
satellite to the base station is the rightmost one, while the first bit sent from the base station back
to the satellite is the leftmost one. The bit highlighted in red is the result of an error occurred due
to the noisy channel.

Both the sender and the receiver hold the same search tree, see Figure 1.2. Let x = 2
be the message that the sender wants to send. As in Figure 1.3, the sender first starts
from the root of the search tree and answers the question “is x ∈ [0, 1]?”. The answer

“no” is encoded as a 0 and it is sent through the noisy channel to the receiver. No error
occurs, the receiver reads a 0 from the channel and sends it to the sender back through
the noiseless feedback channel. Both the sender and the receiver received a 0 thus they
move on the search tree following the left branch of the root. At the second round, the
sender answers the question “is x ∈ [1, 2]?”, the answer “yes” is encoded as a 1 and
it is sent through the channel. It is correctly received from the receiver who sends it
back to the sender. Both the sender and the receiver received a 1, thus they move on
the search tree following the right branch (the red path highlighted in Figure 1.2). In
the third round, the sender answers the question “is x ∈ [1, 2]?”, the answer “yes” is
encoded and it is sent to the receiver. This time an error occurs and the 1 is changed
into a 0 on the receiver side, who sends it back to the sender through the feedback
channel. Both the sender and the receiver received a 1, thus they move on the search
tree following the right branch. Finally, in the last round, the sender sends a 0, which
is correctly received by the receiver who sends it back through the feedback channel.
Both the sender and the receiver move through the left branch of the search tree leading
to a leaf labeled with 2, decoding the message correctly.

The Ulam-Rényi game is studied in many variants. In Chapter 3 we consider the
multi-interval version of the problem, in which questions are represented by set of
intervals of the search space. Using multi-intervals questions allows to reduce the space
to store questions in the nodes of the search tree. In general, we need 2m bits to store
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one question, i.e. the set representing it, while using k interval-questions we need only
2k ·m bits to store the beginning and the end of each interval. We show that if up to 3
errors occur, there exists a sequence of 4-intervals questions that uniquely identify all
elements of the search space, and the length of the search —equivalently the encoding—
is the smallest possible.

1.2 Indexing

One of the most frequent tasks on sequential data, and on data in general, is to search
where a given pattern occurs in the data. Donald Knuth devoted an entire chapter of
Volume 3 of his The art of Computer Programming [81] to algorithms for searching.

In texts, we usually want to search for all occurrences of a short string — called
pattern— inside the text, that is usually much longer. This process is called string
matching and it can be performed in a sequential or indexed form. In the former setting,
we sequentially traverse the text to report all occurrences of the pattern. In the latter
setting, we preprocess the text to build the index, which allows to find all occurrences of
a given pattern, without traversing the text. The choice of which string matching form
has to be used, lies on the type of text we have to handle. Indexing is usually chosen
when the text is large, it does not change over time, and we have enough space to save
the index [100].

The most well-known index in strings is the suffix tree, introduced by Peter Weiner
in 1973 [136]. See Figure 1.4 for an example of a suffix tree. The suffix tree allows to
locate all substrings of the text using space linear in the length of the text, and it can be
built in linear time [8]. This is remarkable because a string of length n can have O(n2)
possible substrings, while the suffix tree requires only O(n) space. Furthermore, given
a pattern of length O(m), the suffix tree allows finding all occurrences of the pattern in
O(m+ occ), where occ is the number of occurrences of the pattern in the text.

1.2.1 Approximate patterns and prefix normal words

Depending on the application, one may want to search approximate occurrences of the
given pattern. One type of approximate pattern matching is jumbled pattern matching [5,
6, 7, 23, 29, 34, 49, 65, 66, 85, 98]. Here, given a text and a pattern, we want to find
all substrings of the text that are permutations of the characters of the pattern, i.e. a
substring with the same multiplicity of the characters of the pattern.

Example 3. Consider “The history of how radium came to be”, clearly “madame curie”
does not match any substring of this text. However, we have that “madame curie”
appears in the text as a jumbled pattern. In particular “radium came” is a permutation
of “madame curie”, i.e. it contains the same characters. An index for jumbled pattern
matching for the text “The history of how radium came to be” would need to store the
information that there is a substring of the text that contains 2 a’s, 1 c, 1 d, 2 e’s, 1 i, 2
m’s, 1 r, and 1 u.

For alphabets of size greater than 3, there are hardness results for the jumbled indexing
problem, under different 3-SUM Hardness assumptions [7]. — The 3-SUM problem is
the problem of finding three elements a ∈ A, b ∈ B, and c ∈ C from three integer sets
A, B, and C, such that a+ b = c — The best index for jumbled pattern matching [29]
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Fig. 1.4: Suffix tree of “BANANA$”. The suffix tree is a rooted tree where the concatenation of
the labels in each root to leaf path is a suffix of “BANANA$”. In particular, a leaf is numbered
with i if its root to leaf path is the i-th suffix of “BANANA$”. The red path represents the
substring “ANA” of “BANANA$”. The leaves under the lowest red node are the indices of the
occurrences of the substring “ANA” in “BANANA$”.

has strongly subquadratic construction and strongly sublinear query time, which for
larger alphabets approaches the conditional lower bounds shown in [7].

For binary alphabets, there exists an index for the decision version of the jumbled
pattern matching problem — decide whether a permutation of the pattern occur in the
text — that uses linear space and constant query time [23], and it can be built in strongly
subquadratic time, i.e., O(n1.859) [29]. This index is based on the interval property of
binary string [23], where given a binary string, if there are two substrings of length
` of the string having a and b 1s, respectively, then the text contains a substring of
length ` with all intermediate number of 1s. Thus, storing for each length ` of the text,
the maximum and the minimum number of 1s in a substring of length `, to answer a
query, it is enough to check if the required number of 1s in the query is in between the
minimum and the maximum number of 1s for a substring of the length of the query.
This information can be encoded in two binary strings called prefix normal forms (See
Chapter 4 for formal definitions), and retrieved in constant time, e.g., using a rank data
structure.

Those binary strings have special properties, i.e., one of the two string (resp. the
other) has the property that the number of 1s (resp. 0s) in the prefix is always greater than
or equals to the number of 1s (resp. 0s) in any other substring of the same length. Words
with this structure are referred to as prefix normal words (See Chapter 4 for formal
definitions). This equivalence between indices and prefix normal words suggested that
a combinatorial characterization of these words could shed light on algorithmic and
complexity issues of jumbled pattern matching. This has motivated the study of the
language of prefix normal words [57].

We will treat prefix normal words in Chapter 4. In particular, we present a new
algorithm for generating all prefix normal words of a fixed length. The new algorithm
runs in worst-case linear time per words, which is competitive with the previous one [24]
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that runs in amortized linear time per words. However, it allows in addition to list all
prefix normal words sharing the same prefix. Moreover, it gives new insights into
properties of prefix normal words. We then introduce infinite prefix normal words.
We show that one of the operation used by the algorithm, when repeatedly applied to
extend a word, produces an infinite prefix normal word. We use a similar extension
operation to establish connections between prefix normal words and Sturmian words,
a well-known class of infinite binary words. We further show connections between
prefix normal words and lexicographic order. We also show that is always possible to
compute the abelian complexity function of a word given its prefix normal forms, while
the converse is not always possible. We then provide sufficient conditions to compute
the prefix normal forms of a word, given its abelian complexity function. We further
extend a recent result on computing the abelian complexity function of binary uniform
morphisms (See Chapter 4 for formal definitions) to compute the prefix normal forms
of binary uniform morphisms. Finally, we provide a characterization of periodicity and
aperiodicity of prefix normal words based on their minimum density, a parameter that
we introduce in this context.

1.3 Mining

The process of knowledge discovery from data, also known as KDD, is a workflow
composed of 7 steps [71], as shown in Figure 1.5:

Data cleaning: Clears the data from noise, inconsistency, and redundan-
cies.

Data integration: Combines multiple sources of the data.
Data selection: Selects and retrieve data that are important to the analysis.

Data transformation: Converts data into the form suitable for mining, usually by
aggregation operations.

Data mining: Discovers interesting patterns in the data.
Pattern evaluation: Sifts the mined patterns using interestingness measures to

find those representing knowledge.
Knowledge presentation: Represents and visualizes the extracted knowledge to the

users.

Data cleaning, integration, selection, and transformation are pre-processing steps,
in which data are prepared to be mined. The data mining step is the core step in which
interesting patterns and knowledge are discovered. Pattern evaluation and knowledge
presentation are post-processing steps in which the discovered knowledge is refined
through filtering steps. Data mining can be applied in all those data that carry information
for a target application, independent of the type of data. The common sources of data are
databases and data warehouses, but the mining process can be also applied to streams,
graphs, texts, etc. . .. Data mining tasks can be tuned according to the functionalities
that we want to use. The functionalities include characterization and discrimination,
mining of frequent patterns, classification, clustering, etc. Depending on the chosen
functionality, it varies the types of mined patterns. These data mining tasks can be
classified into two categories, (i) descriptive tasks that characterize properties in the
data, and (ii) predictive tasks that perform induction to make predictions. Data mining
was originally applied in the discovery of frequent itemsets and association rules in
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Fig. 1.5: Data mining as a step in the process of knowledge discovery. [71]

basket data, i.e. items that were frequently bought together in a retail store. Nowadays,
data mining is applied wherever there are data, e.g., in business intelligence, search
engines, software engineering, bioinformatics, and embedded system verification, to
cite just a few areas.

1.3.1 Assertion mining and colored strings

Assertion mining is a task of the embedded systems verification process where predictive
data mining tasks are applied to extract knowledge from simulation traces of a device.
Knowledge is represented in the form of assertions1 that describe behaviors of the
device. The aim is to verify that the implemented functionalities of the device are
correct with respect to its model. Furthermore, the mined assertions improves the set
of assertions used in future steps of the design process of the device, in the context of
so-called assertion based design [63].

Example 4. Let us consider a device that takes in input two integers a and b and produce
as output their product a× b. A possible assertion on the behavior of this device is that
“it is always true that if either a or b are 0 then the result is 0”. Another possible assertion
is that “it is always true that if a is 1 then the result is b”, or is that “it is always true that
if one of a and b is negative and one of a and b is positive then the result is negative”.

Designers typically write assertions by hand. It might take months to obtain a set of
assertions that is small and effective (i.e. it covers all functionalities of the device) [63].
1 Assertions are logic formulae expressed in temporal logics such as Linear Temporal Logic

(LTL) or Computation Tree Logic (CTL).
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Assertion mining automatically generates assertions from simulation traces to help
designers with the verification process. For this purpose, it is possible to model the
assertion mining process as searching for patterns in a colored string (See Chapter 5 for
formal definitions).

Motivated by the assertion mining problem, in Chapter 5 we propose two pattern
discovery problems on colored strings. We provide upper bounds on the number of the
possible mined patterns. We present a baseline algorithmic solution that solves both
problems. We refine the baseline solution to specifically solve one of the two problems.
Finally, we present an experimental evaluation of the proposed approaches over both
synthetic and real datasets.

1.3.2 Causality discovery and greedy minimum-entropy coupling

A different view of extracting knowledge from data is from the information-theoretic
perspective of Pearl’s model of causality. By causality, we mean the dependency relation
between two variables: “A variable X is a cause of a variable Y if Y in any way relies
on X for its value” [106]. Here the knowledge discovery process wants to infer the
causality direction between X and Y , i.e., if X causes Y or vice versa. In Pearl’s model
of causality [105], given two random variables X and Y , if X causes Y then there
exists an exogenous random variable E independent of X and a function f such that
Y is function of X and E. It is possible to find pairs of functions f and g such that
both Y is function of X and E, and X is function of Y and E′. In order to identify the
correct causal direction between X and Y , it has been postulated that in the true causal
direction, the entropy of the exogenous random variable E is small [83]. The problem
of evaluating the entropy of the exogenous random variable E, is equivalent to finding
the minimum entropy joint distribution of X and Y .

We focus on algorithms for minimum entropy coupling in Chapter 6. Minimum
entropy coupling is a central issue not only in causality discovery, but also in the
information-theoretic analysis of clustering and channel quantization. Since the problem
is known to be NP-hard, several heuristics and approximation algorithms have recently
been proposed. We start by giving a novel analysis of a heuristics proposed in [83]. We
are able to show that, in fact, this algorithm guarantees a 1-bit additive approximation.
Leveraging on the analytic tools employed in the previous result, we then provide a
general characterization of a class of algorithms — which does not include the one
in [83]— that guarantees 1-bit additive approximation for the problem. This criterion
may be of independent interest in other contexts where couplings are used.
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Lempel-Ziv 77 decompression

This chapter is devoted to the Lempel-Ziv 77 decompression algorithm.
Lempel-Ziv (LZ) parsing (or factorization), often referred to as LZ77, has been the

subject of hundreds of papers in the past 40 years. The technique is not only foundational
to data compression, where it is the basis for several widely-used compression tools
(e.g., gzip, LZ4, Snappy), but is also central to many compressed data structures
(e.g., [12, 89]) and efficient string processing algorithms (e.g., [10, 86]).

Because obtaining the parsing is a computational bottleneck in these applications,
efficient LZ parsing algorithms have been heavily studied, especially recently [4, 13,
68, 80]. There has been considerably less work on decompression — i.e., obtaining
the original string given the parsing — most probably because the natural (i.e. naive)
decompression algorithm is so simple and fast in practice. The naive algorithm, how-
ever, uses O(n) working space as it may make accesses to all areas of the string it is
decompressing. This may be unacceptable in scenarios where RAM is at a premium,
such as on small devices, or when the entire decompressed string cannot be stored and
is instead processed as it is decompressed in a streaming manner by another process.

In this chapter we study algorithms to efficiently decompress strings from the LZ
parsing that use working memory proportional to the size, z, of the parsing itself, not
that of the output string, n, as in the naive algorithm. The only work we are aware of
on this problem is recent and due to Bille et al. [16], who describe an algorithm using
O(n logδ σ) time and O(z log1−δ σ) space for any 0 ≤ δ ≤ 1.

The main contribution of this chapter is an implementation and experimental analysis
of Bille et al.’s algorithm. Our results show that when implemented as described,
the approach is extremely slow in practice compared to the naive decompression
algorithm, and has constant factors in its space usage that lead to no space advantage
either. To remedy this we introduce several novel optimizations that drastically improve
performance and lead to relevant space-time tradeoffs on all datasets we tested.

The remainder of this chapter is organized as follows. The next section lays down
notation and defines basic concepts. Then, in Section 2.2, we describe the approach of
Bille et al. Our refinements and practical optimizations to that approach are described
in Section 2.3. Section 2.4 is devoted to experimental results and analysis.

The contents of this chapter have been published in [111].
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2.1 Preliminaries

A string S = S[1..n] = S[1]S[2] · · ·S[n] of length n = |S| is a sequence of characters
(or symbols) over an alphabet Σ of size σ = |Σ|. We denote with ε the empty string.
We denote with S[i..j] a substring (or factor) of S starting at position i and ending in
position j, with S[i..j] = ε if i > j. We call S[1..j] the j-th prefix of S, and S[i..n]
the i-th suffix of S. For ease of exposition we assume, as in [56], that S is prefixed by
Σ = {c1, . . . , cσ} in the negative positions, i.e., for all i = 1, . . . , σ, S[−i] = ci for
each ci ∈ Σ and S[0] = $ /∈ Σ.

The Lempel-Ziv (LZ) factorization of S is a decomposition of S into factors
S[1..n] = S[u1..u1+`1−1]S[u2..u2+`2−1] · · ·S[ui..ui+`i−1] · · ·S[uz..uz+`z−1],
where u1 = 1 and ui = ui−1 + `i−1 for i = 2, . . . , z. For each i = 1, . . . , z, the
factor S[ui..ui + `i − 1] is the longest prefix of S[ui..n] that occurs at some posi-
tion pi < ui in S, and so S[ui..ui + `i − 1] = S[pi..pi + `i − 1]. The LZ factor-
ization of S can be expressed as a sequence of pairs (p1, `1)(p2, `2) . . . (pz, `z) ∈
({−σ, . . . , n} × {1, . . . , n})z . We refer to S[ui..ui + `i − 1] as the i-th phrase of the
factorization, to S[pi..pi + `i − 1] as the source of the i-th phrase, and `i its length. We
require that pi + `i ≤ ui so that phrases and their sources do not overlap1.

2.2 Bille et al.’s algorithm

The key device in Bille et al.’s LZ decoding algorithm [16] is the so-called τ -context,
which, essentially, is the set of positions that are within τ of an LZ phrase boundary.
Formally, let τ be a positive integer. The τ -context of a string S (induced by the LZ
factorization Z of S) is the set of positions j where either j ≤ 0 or there is some k such
that uk − τ < j < uk + τ. If positions i through j are in the τ -context of S, then we
simply say “S[i..j] is in the τ -context of S”.

We can define a string that contains all the characters at positions in the τ -context.
Namely, the τ -context string of S, denoted by Sτ , is the subsequence of S that includes
S[j] if and only if j is in the τ -context of S.

In [16, Lemma 9] it is shown how to map positions from the τ -context of S to Sτ .

Lemma 2.1. Let Z be an LZ factorization of string S[1..n] with z phrases and let τ be
a positive integer. Given t sorted positions 1 ≤ a1 ≤ . . . ≤ at ≤ n in the τ -context of
S we can compute the corresponding positions b1, . . . , bt in Sτ in O(z + t) time and
space.

Moreover, in [16, Algorithm 1], the authors show how to translate each substring of S
of length at most τ to a substring in Sτ . To decompress a substring of S we split it into
chunks of length at most τ and extract each chunk by repeatedly mapping it into the
sources of the phrases until they can be retrieved as substrings of Sτ .

The main idea of the algorithm, given a position a in S, is to move the position a to
the source of the phrase covering it, until it falls into the last τ elements of a phrase,
at which point it is guaranteed that the position has at least τ elements on the right
belonging to the τ -context. Moreover, while moving the position we guarantee that
the substring of length at most τ starting in the new position, say a′, is equivalent to
the original substring of length at most τ starting at the original position a. Namely,
S[a..a+ τ − 1] = S[a′..a′ + τ − 1]. This leads to the following lemma.
1 We inherit this restriction from Bille et al. [16].
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Lemma 2.2. Given positive integer τ and string S[1..n], let Z be the LZ factorization of
S with z phrases. Given t = O(z) positions a1, . . . , at in S, we can compute positions
b1, . . . , bt in the τ -context of S in O(z log n) time and O(z) space, such that bi ≤ ai
and S[ai..min(ai + τ − 1, n)] = S[bi..bi + (min(ai + τ − 1, n) − ai + 1)], for all
i = 1, . . . , t.

To achieve this result, a mergeable dictionary data structure [73] is used. A mergeable
dictionary maintains a dynamic collection G of ` sets {G1, G2, . . . , G`} of t elements
from an ordered universe U = {1, . . . , |U|}, under the operations:

• (A,B) ← split(G, x): Splits G ∈ G into two sets A = {y ∈ G | y ≤ x} and
B = {y ∈ G | y > x}. G is removed from G while A and B are inserted.

• C ← merge(A,B): Creates C = A ∪ B. C is inserted into G, A and B are
removed.

• G′ ← shift(G, x) for some x such that y + x ∈ U for each y ∈ G: Creates the
set G′ = {y + x | y ∈ G}. G is removed from G while G′ is inserted.

in worst case O(t log |U|) time and using O(t) space.
In order to decompress the text S in O(z) working space, we must also compute

the τ -context string Sτ from Z in O(z) working space. It is possible to compute an LZ
factorization Zτ of Sτ directly from Z by splitting every phrase of Z into two phrases
of Zτ consisting of the first and last O(τ) elements, respectively. Then, using Lemma
2.2 we find a substring in Sτ that is identical to those phrases. Finally, using Lemma
2.1, we find the sources of those phrases as positions in the τ -context string Sτ . We can
summarize it in the following lemma.

Lemma 2.3. Let Z be the LZ factorization of S[1..n] with z phrases. We can construct
an LZ factorization Zτ of Sτ with O(z) phrases in O(z log n) time and O(z) space.

We then decompress the LZ factorization Zτ of the τ -context string Sτ naively in
O(zτ) time. A string of length zτ can be stored in O(zτ log σ

logn ) using word packing.

Lemma 2.4. Let τ be a positive integer and let Z be the LZ factorization of the text S
of length n over an alphabet of size σ with z phrases. We can construct and store the
τ -context of S in O(z(log n+ τ)) time and O(zτ log σ

logn ) space.

The decompression algorithm is based on how to decompress a substring of the text
S of length `. First we split the substring into consecutive substrings of length τ , then
we process a batch of z substrings at a time. Using Lemma 2.2 we can find a substring
s′ in the τ -context of S for every substring s in the batch.

Theorem 2.1. Let S[1..n] be a string compressed into an LZ factorization with z
phrases and let τ = k log n for some positive integer k. It is possible to decompress a
substring of S of length ` in O(`+ `

k + z log n) time and O(zk log σ) space.

2.3 Practical Small Space LZ Decompression

We implemented Bille et al.’s approach as described in the previous section, using the
data structure of Karczmarz [77], extended to support the shift operation , as the
mergeable dictionary. The results were extremely disappointing: the algorithm took
266 seconds and consumed 248Mb of RAM to decompress a file of z = 35319 phrases
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of uncompressed size 92Mb. The naive algorithm, in contrast, took just 0.20 seconds,
using 93Mb of RAM.

Subsequent profiling showed that the main bottleneck in our implementation was
the mergeable dictionary operations, and so we set about designing a fast, practical
replacement for our implementation of [77]. This alternative mergeable dictionary is
the subject of the next subsection.

2.3.1 A Fast, Practical Mergeable Dictionary

In this section we show how we replaced the mergeable dictionary used in [16, Algo-
rithm 1] with an ad-hoc data structure B that holds t elements from an ordered universe
U = {1, . . . , |U|} with an attached satellite information r(·)(i.e. the rank with which
the elements are inserted into B), under the operations:

• insert(x, r̃): insert an element x ∈ U in B with r(x) = r̃.
• report(a, c,O) for some 1 ≤ a < c ≤ |U|: for each y ∈ B such that a ≤ y ≤ c

stores y in position r(y) in the output array O. y is removed from B.
• shift(a, c, x) for some 1 ≤ a < c ≤ |U| and some negative integer x such that
c+ x < a and a+ x, c+ x ∈ U : for each y ∈ B such that a ≤ y ≤ c insert y + x
in B with r(y + x) = r(y), while y is removed from B.

Let m be the smallest element involved by the operation report(a, c,O) or by the
operation shift(a, c, x), i.e. m = a. We require that every future operation insert,
report or shift does not involve any element greater than or equals to m, namely
it is possible to insert(x, r̃) only if x < m, it is possible to report(a, c,O) only if
c < m and it is possible to shift(a, c, x) only if c < m.

We represent the data structure B as follows. Let b be a positive integer. We divide
the universe U into b |U|b c+ 1 buckets of length b such that for all i = 0, . . . , b |U|b c an
element x ∈ U is contained in the i-th bucket if b · i ≤ x ≤ b · (i+ 1)− 1.

We represent each bucket as a dynamic array which keeps a position x into the
universe U storing the relative position of x within the bucket, i.e. storing the reminder
x′ = x mod b. In order to reconstruct the original value x, given the reminder x′ stored
in the i-th bucket, we can retrieve x as x = b · i+ x′. Note that elements stored within
the same bucket are not in order. We now describe how each operation is implemented,
when B holds t elements.

Insert. Let x be an element from the universe U and let r̃ its satellite information.
We insert x into B inserting the element x mod b to the dynamic array representing
the bxb c-th bucket, followed by its satellite information r̃. This operation takes O(1)
time to be performed.

Report. Let a and c be two integers such that 1 ≤ a < c ≤ |U| and let O be an
array. To report all the elements y in B such that a ≤ y ≤ c we start scanning from the
bucket b cbc down to the bucket bab c. For every reminder y′ in the buckets, we retrieve the
corresponding element y and we put O[r(y)] = y. To perform the report operation
we spent O(t) time.

Shift. Let a, c, x be three integers such that a + x, c + x ∈ U and c + x < a. To
shift by x all the elements y in B such that a ≤ y ≤ c, as for the operation report,
we start scanning from the bucket b cbc down to the bucket bab c. For every reminder y′ in
the buckets, we retrieve the corresponding element y. If by+x

b c leads to the same bucket
as y, the remainder y′ is updated to the current value (y + x) mod b. Otherwise, we
insert(y + x, r(y)). To perform shift takes O(t) time.
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To remove elements from B, as required, after each operation report and shift,
we free all the memory used for buckets with an index greater than bmb c, where m
is the minimum element involved. The elements belonging to the bmb c-th bucket are
excluded from further computations, by checking whether a ≤ y ≤ c, while performing
the operations report(a, c,O) and shift(a, c, x).

For each bucket, we store its length and a pointer to its first element. Since elements
are removed releasing the memory, we can only insert elements in the dynamic arrays.
Then, we can implicitly store the capacity of the dynamic array using its length, i.e., the
capacity is the upper power of 2 of the length.

To analyze the space complexity of the data structure, we consider only the case
when all the insert operations are performed at the beginning. Let us consider B after
t insert operations. At this point, the shift operation is the only operation that can
insert new elements in the dynamic arrays. Let us consider the shift(a, c, x) operation
on B, for some 1 ≤ a < c ≤ |U|. Let y be an element in the interval a ≤ y ≤ c that
belongs to the i-th bucket. We can observe that the shift operation can, either create
an element y′ in a bucket j < bab c, or it modify the element in the i-th bucket. In the
latter case, we have that the space consumption remains unchanged. In the former case
we have that one element is created and the element y either is deleted, or it will be
deleted before the element y′ will be involved in a shift operation. There are O( |U|b )
buckets of length b and O(t) elements in the buckets. Then, we can conclude that the
space complexity of the data structure isO(t+ |U|b ). We summarize this in the following
lemma.

Lemma 2.5. The data structure B holding t elements (i.e., after t insert performed
at the beginning), supports any sequence of k shift and report operations in worst
case O(t · k) time and O(t+ |U|

b ) space.

We are now ready to use the B data structure and rewrite Lemma 2.2.

Lemma 2.6. Given a positive integer τ and a text S of length n, let Z be a LZ
factorization of the text S with z phrases. Let B be a data structure with bucket
size b. Given t positions in S, a1, . . . , at, we can compute b1, . . . , bt positions in
the τ -context of S in O(z · t) time and O(t + n

b ) space, such that bi ≤ ai and
S[ai..min(ai+τ−1, n)] = S[bi..bi+(min(ai+τ−1, n)−ai+1)], for all i = 1, . . . , t.

Proof. To begin with, for each point ai we insert an element xi in B with i as satellite
information. Then we start scanning the phrases of Z in the reverse order. The i-th
phrase is processed as follows: (i) if the length of the current phrase is smaller than or
equal to τ , then we just skip to the next phrase, (ii) otherwise, we first report all the
points that are between the beginning of the last phrase that has length greater than
τ and the first position of the last τ elements of the current phrase, since all of those
positions are in the τ -context of S. Then, we scan all the elements that are within the
current phrase, without the last τ elements, and we shift them moving those positions to
their corresponding positions in the source of the phrase, i.e. shifting each element by
pi − ui. Once we have scanned all the phrases, we output all the elements between the
beginning of the last phrase greater than τ and the beginning of the text. At each stage a
position x in B is either reported or shifted.

In the former case, we have that every position inside a bucket within the beginning
of the last phrase that has length greater than τ and the first position of the last τ
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elements of the current phrase, is already in the τ context. Thus, it is followed by at
least τ characters. In the latter case, we are shifting the position x by pi − qi, thus
moving to that position to its source. By definition of LZ factorization we have that
S[x..x + τ − 1] = S[x + pi − ui..x + pi − ui + τ − 1]. Thus, at each stage of the
algorithm we guarantee that if we move one position, the new position has the same τ
characters on the right and if we output one position, this position is in the τ -context.

Note that for each phrase i which length is greater than τ we perform one report
and one shift and we have that ui < ui + `i − τ − 1 < ui + `i − τ < uj − 1 < uj ,
where j is the index of the previous phrase which length is smaller than τ . Furthermore,
we have that pi + `i − τ − 1 < ui since each phrase is non overlapping. All those
observations show that we are not violating the conditions for using the data structure
B.

We have t elements in B that are inserted at the beginning and we perform O(z)
report and one shift operations , thus from Lemma 2.5 we have that the worst
case running time is O(z · t) and we use O(t+ n

b ) space.

Since Lemma 2.6 is used to compute the LZ factorization of the τ -context directly
from Z . We can rewrite Lemma 2.3 according with the results of Lemma 2.6.

Lemma 2.7. Let Z be the LZ factorization of string S[1..n] with z phrases over an
alphabet of size σ and let B be a data structure with bucket size b. We can construct an
LZ factorization Zτ of Sτ with O(z) phrases in O(z2) time and O(z + n+σ

b ) space.

2.3.2 Hybrid Decompression

We now describe a further performance optimization, which can be seen as a hybrid of
the naive and τ -context based approaches.

Our first observation was that if, in the course of decompressing a chunk using the
τ -context, we encounter a phrase that has its source inside the current chunk, then we
can decompress that phrase using the naive algorithm, provided we decompress it after
the characters of the chunk that make up its source have been decompressed. We say
such as phrase has an in-chunk source. Our strategy then is to decompress all phrases
not having in-chunk sources with the τ -context algorithm, and then decompress those
that do using the (relatively much faster) naive algorithm.

We can extend the applicability of this idea at a slight (user controllable) increase in
memory usage. In particular, we enhance the decompression algorithm with a cache of
previously decompressed pieces of text. Now, as well as decompressing phrases with
in-chunk sources, whenever we encounter a phrase that has its source in cache, we can
decompress it naively. The next difficulty is to try to ensure that the pieces of text we
keep in the cache will be heavily used.

To this end, we logically divide the text into blocks of length s. In a preprocessing
phase we count, for each block, the number of times a character contained in the block
is contained in a source for some phrase. The total count, which we call the block’s
utility, gives the number of times the block would be accessed by the naive algorithm.
We maintain block utility as phrases are decompressed (when a phrase of length ` that
falls in block x is decompressed we decrease x’s utility by `) in order to heuristically
keep blocks with high remaining utlity in cache to increase the chance of decompressing
a phrase from cache. We update the cache each time we decompress a chunk of length
zτ .
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Decompression now operates as follows. S is logically divided into blocks of length
s. The initial utility of each block is computed with a scan over the phrases. As before,
we decompress S in chunks of zτ characters, right to left. For each chunk, scan all
the phrases that compose the chunk. If a phrase’s source is in the current chunk, skip
to the next phrase; otherwise, check if the blocks composing the phrase are stored in
cache and, if so, we copy characters from cache to array storing the current partially
decompressed chunk. If the blocks are not found in cache, we decompress the phrase
using the τ -context. We later rescan any phrases that were skipped — these must have
their sources inside the current chunk and so can be naively decoded. Each time we
decompress a substring we update its containing blocks’ utility. We then output the
decompressed chunk and update cache as follows.

If c is the total cache size then we can store at most bc/sc blocks in it. After
decoding a chunk we want to update cache to contain the bc/sc blocks with highest
utility among those already in cache and those within the chunk. We maintain a minheap
of (utility, block ID) pairs, keyed on utility. After decoding a chunk we iterate over all
its blocks, replacing the heap root whenever we see a block with utility greater than it.
This takes O(logbc/sc) time as we are only manipulating block IDs, not blocks, and
O(bzτ/sc logbc/sc) over a whole chunk. We then replace old blocks in cache with new
blocks in O(c) time, for total time O(c+ bzτ/sc logbc/sc).

2.4 Experimental Results

We implemented variants of the decompression algorithms described in the previous
sections and measured their performance on several real-world datasets.

2.4.1 Setup.

We performed experiments on a 2.10 GHz Intel R© Xeon R© E7-4830 v3 CPU equipped
with 30 MiB L3 cache and 1.5 TiB of DDR5 main memory. Only a single thread of
execution was used. The OS was Linux (Ubuntu 14.04, 64bit) running kernel 3.19.0.
Programs were compiled using g++ 5.4 with -O3 -msse4.2 options.

2.4.2 Data.

For our experiments we use real-world texts taken from the Pizza&Chilli corpus
(http://pizzachili.dcc.uchile.cl/repcorpus.html). See Table 2.1.

2.4.3 Algorithms.

We compared the following different setups of our implementation:

• plain: the algorithm described in [16] using [77] for the mergeable dictionary.
• bucket: as plain, but using the mergeable dictionary described in Section 2.3.
• cache-o: as bucket, with cache.
• cache-i: as bucket, with in-chunk source decompression.
• cache-a: as bucket, with both cache and in chunk source decompression.

We can tune the following parameters: τ , the length of the pieces of phrases that
compose the τ -context; b, the size of the buckets of the text S; c, the total cahce size.
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Name Description σ n/108 n/z

cere Baking yeast genomes 5 4.61 271.20
einstein Wikipedia articles in German 139 0.92 2626.30
kernel Linux Kernel sources 160 2.57 324.72
world CIA World Leaders files 89 0.47 266.91

Table 2.1: Files used in the experiments. The value of n/z refers to the average length of a phrase
in the LZ factorization and it is included as a measure of repetitiveness of the data.
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Fig. 2.1: Each plot shows three different trends of the space-time consumption obtained varying
three parameters: τ-context length( ), block size( ), cache size( ).
Note when one parameter is varying, the other two parameters are fixed to default values, i.e.
τ = log n, b = n/z, and c = 5Mb. The numbers near each point refer to the value of the
parameter we are varying, e.g. the value 1.5 for the τ-context length( ) means that
the value of τ = 1.5 logn. The value 16 for the block size( ) means that the value of
b = 16n/z. The value 5 for the cache size( ) means that the value of c = 5Mb.

naive plain bucket cache-o cache-i cache-a cache-a?

cere 0.23 (35) 121 (21) 7.07 (10) 6.13 (11) 5.94 (10) 5.21 (11) 3.09 (10)
einstein 0.20 (329) 266 (898) 8.54 (11) 7.41 (12) 1.60 (8) 1.42 (9) 0.51 (11)
kernel 0.11 (42) 94 (4) 5.72 (11) 4.30 (11) 3.11 (9) 2.51 (10) 1.25 (10)
world 0.02 (34) 23 (22) 1.13 (11) 0.84 (11) 0.68 (10) 0.46 (10) 0.26 (12)

Table 2.2: Time in secs (in brackets memory usage in Mb/z) for the algorithms on each data set.
Parameters used are τ = log n, b = n/z, c = 5Mb, except cache-a? has τ = 3.5 logn.
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Fig. 2.2: Each bar shows the percentage of each data set decoded that is by each part of algorithm
cache-a (i.e., using cache, using the τ -context or decoding naively from the current chunk).
The parameters used are τ = logn, b = n/z, and c = 5Mb.

2.4.4 Results.

Runtime and memory usage is reported in Table 2.2. cache-a∗ represents a faster
parameter configuration for the algorithm cache-a, on each dataset. naive decom-
pression is always fastest, but always uses significantly more space than the other
algorithms. Results for einstein show that the difference in memory usage can be
enormous — cache-a∗ uses 30 times less memory than naive, and is only about
two times slower.

2.4.5 Effects of cache and in-chunk decompression.

Among the new algorithms: cache-i is always faster than cache-o, but the combi-
nation of these techniques in cache-a is always faster still, showing that both types
of hybrid decompression matter. cache-a∗ is always at least two times faster than the
algorithm bucket, using roughly the same amount of memory — demonstrating the
effectiveness of hybrid decompression. Indeed, Figure 2.2 illustrates use of in-block
sources and cache is generally correlated with faster decompression.

2.4.6 Parameter Tuning.

In Figure 2.1 for each dataset, we report three different trends of the performance of
the algorithm cache-a varying three parameters, i.e. τ -context length, block size and
cache size. For each one of these parameters, it is possible to identify a common trend
among all data sets. The first relation is between τ and runtime, the bigger the τ is, the
faster the algorithm is. On the other hand, the effect of τ on the memory consumption
seems to be data dependent for the smaller values of τ while for bigger values of τ , the
memory consumption seems to grow linearly in τ . Increasing bucket size b slows down
the cache-a algorithm while decreasing memory consumption. The same trend can
be seen in the variation of the cache size c, though the effect of this variation is smaller.
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Ulam-Rényi game

This chapter is devoted to the study of the Ulam-Rényi game with multi-interval
questions. In the Ulam-Rényi game with multi-interval questions, two players, called
Questioner and Responder—for reasons which will become immediately clear—fix
three integer parameters: m ≥ 0, e ≥ 0 and k ≥ 1. Then, Responder chooses a number
x from the set U = {0, 1, . . . , 2m − 1}, and keeps it secret to Questioner. The task of
Questioner is to identify the secret number x chosen by Responder asking k-interval
queries. These are yes-no membership questions of the type “Does x belong to Q?”
where Q is any subset of the search space which can be expressed as the union of
≤ k intervals. We identify a question with the subset Q. Therefore, the set of allowed
questions is given by the family of sets:

T =

{
k⋃
i=1

{ai, ai + 1, . . . , bi} | 0 ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ ak ≤ bk < 2m

}
.

With the aim of making Questioner’s search as long as possible, Responder can
adversarially lie up to e times during the game i.e., by answering yes to a question
whose correct answer is no or vice versa.

For any m and e let Nmin(2m, e) = min{q | 2q−m ≥
∑e
i=0

(
q
i

)
}. It is known (see,

e.g., [15]) that in a game over a search space of cardinality n = 2m and e lies allowed to
Responder, Nmin(2m, e) is a lower bound on the number of questions that Questioner
has to ask in order to be sure to identify Responder’s secret number. This lower bound
holds in the version of the game in which questions can refer to any subset, without the
restriction to k-interval queries. A fortiori, the lower bound holds for the multi-interval
game for any value of k. Strategies of size Nmin(2m, e), i.e., matching the information
theoretic lower bound, are called perfect.

It is known that for any e ≥ 0 and up to finitely many exceptional values of
m, Questioner can infallibly discover Responder’s secret number asking Nmin(2m, e)
questions. However, in general such perfect strategies rely on the availability of arbitrary
subset questions [127]. When the cardinality of the search space is 2m the description
of an arbitrary subset query requires 2m bits. Moreover, in order to implement the
known strategies using Nmin(2m, e) queries, Θ(e2m) bits are necessary to record the
intermediate states of the game (see the next section for the details). In contrast, a
k-interval-query can be expressed by simply providing the boundaries of the k-intervals
defining the question, hence reducing the space requirements of the strategy to only
2k ·m bits.
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On the basis of these considerations, we will focus on the following problem:

Main question

For given e ≥ 0, denote by ke the smallest integer k such that for all sufficiently large
m Questioner has a perfect strategy in the multi-interval game over the set of m-bit
numbers only using k-interval queries. What is the value of ke for e = 1, 2, . . . ?

In [99] it was proved that for e = 2 for any m ≥ 0 (up to finitely many exceptions)
there exists a searching strategy for Questioner of size Nmin(m, e) (hence perfect)
only using 2-interval questions, and, conversely, perfect strategies which only use 1-
interval questions cannot generally exist. The case e = 1 is analysed in [32] where
it is shown that perfect strategies exists for e = 1 even when only using 1-interval
questions. However, simple comparison questions, namely yes-no questions of the type
“Is x ≤ q?”, are not powerful enough to provide perfect strategies for the case e = 1
[9, 126].

These results show that for e ≤ 2, the answer to our main question is ke = e.
In [32] it was proved that for any e ≥ 1 there exists k = O(e2) such that for

all sufficiently large m Questioner can identify an m-bit number by using exactly
N(2m, e) k-interval questions when Responder can lie at most e times. In [32], it is
also conjectured that ke = O(e) interval might suffice for any e and all sufficiently
large m. We will refer to this as the linearity conjecture.

Our result

We focus on the case e = 3. We first show that for any sufficiently large m, there exists
a strategy to identify an initially unknown m-bit number when up to 3 answers are lies,
which matches the information theoretic lower bound and only uses 4-interval queries.
We then show how to refine our main tool to turn the above asymptotic result into a
complete characterization of the instances of the Ulam-Rényi game with 4-interval
question and 3 lies that admit strategies using the theoretical minimum number of
questions. For this, we build upon the result of [101] and show that if there exists a
strategy for the classical Ulam-Rényi game with 3 lies over a search space that uses
the information theoretic minimum number of questions, then the same strategy can be
implemented using only 4-interval questions.

With reference to the Main question posed above, these results show that k3 ≤ 4,
which significantly improves the best previously known bound of [32] yielding k3 ≤ 10.
It remains an open problem whether k3 = 4. More interesting, our novel analytic tool
(Lemma 3.2) naturally lends itself to a generalization to any fixed e. The main open
question is how to generalize Theorem 3.1 in order to prove the linearity conjecture
ke = O(e).

Related work

The Ulam-Rényi game [114, 131] has been extensively studied in various contexts
including error correction codes [3, 15, 39, 53, 108], learning [14, 27, 38], many-valued
logics [39, 40], wireless networks [88], psychophysics [78, 79], and, principally, sorting
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and searching in the presence of errors (for the large literature on this topic, and the
several variants studied, we refer the reader to the papers [21, 40, 53, 109] and the book
[31]).

The contents of this chapter have been published in [41, 42].

3.1 Basic facts

From now on we concentrate on the case e = 3 and 4-interval questions. Let Q be the
subset defining a question asked by Questioner. Let Q be the complement of Q, i.e.,
Q = {0, 1, . . . , 2m− 1} \Q. If Responder answers yes to question Q, then we say that
any number y ∈ Q satisfies the answer and any y ∈ Q falsifies the answer. If Responder
answers no to question Q, then we say that any number y ∈ Q satisfies the answer and
any y ∈ Q falsifies the answer.

At any stage of the game, we can partition the search space into e + 2 subsets,
(A0, A1, A2, A3, A>3), where Aj (j = 0, . . . , 3) is the set of numbers falsifying ex-
actly j of Responder’s answers, and therefore contains Responder’s secret number
if he has lied exactly j times. Moreover, A>3 is the set of numbers falsifying more
than e of the answers. Therefore, A>3 is the set of numbers that cannot be the secret,
because, otherwise, Responder would have lied too many times. We refer to the vector
(A0, A1, A2, A3, A>3) as the state of the game, since it is a complete record of Ques-
tioner’s state of knowledge on the numbers which are candidates to be Responder’s
secret number, as resulting from the sequence of questions/answers exchanged so far.

We will find it convenient to have an alternative perspective on the state of the
game. For a state σ = (A0, A1, A2, A3, A>3) and for each y ∈ U we define σ(y) as the
number of answers falsified by y, truncated at 4. Then for any i = 0, . . . , 3, we have
σ(y) = i if and only if y ∈ Ai. For each i = 0, 1, . . . , 3, we will also write σ−1(i) to
denote the set Ai. And define σ−1(4) = A>3 = ∪3

i=0Ai to denote the set of numbers
that as a result of the answers received cannot be Responder’s secret number. From now
on, we refer to a state of the game as the state σ = (A0, ..., Ae), since the set A>e can
be reconstructed from the sets A0, . . . , Ae and the universe U .

Definition 3.1 (States and Supports). A state is a map σ : U → {0, 1, 2, 3, 4}. The
type of σ is the quadruple τ(σ) = (t0, t1, t2, t3) where ti = |σ−1(i)| for each i =
0, 1, 2, 3. The support Σ of σ is the set of all y ∈ U such that σ(y) < 4. A state is final
if and only if its support has cardinality at most one. The initial state α is the function
mapping each element of U to 0.

Let (A0, . . . , Ae) be the current state andQ be the new question asked by Questioner.
Questioner’s new state of knowledge if Responder answers yes to Q is obtained by the
following rules:

A0 ← A0 ∩Q and Aj ← (Aj ∩Q) ∪ (Aj−1 ∩Q), for j = 1, . . . , e

If Responder answers no, the above definitions and rules apply with Q replaced
by its complement Q = {0, 1, . . . , 2m − 1} \ Q, i.e., answering no is the same as
answering yes to the complementary question Q.

With the above functional notation we formalise this as follows:
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Definition 3.2 (Answers and Resulting States). Let σ be the current state with support
Σ and Q be the new question asked by Questioner. Let b ∈ {yes, no} be the answer
of Responder. Define the answer function b : Σ → {0, 1} associated to question Q by
stipulating that b(y) = 0 if and only if y satisfies answer b to question Q. Then, the
resulting state σb is given by σb(y) = min{σ(y) + b(y), 4}.

More generally, starting from state σ after questions Q1, . . . , Qt with answers

b1, . . . , bt the resulting state is σb1 b2 ··· bt = min{σ(y) +

t∑
j=1

bj(y), 4}.

In particular, for σ being the initial state we have that the resulting state after t
questions is the truncated sum of the corresponding answer functions associated to
Responder’s answers.

Definition 3.3 (Strategy). A strategy of size q is a full binary tree of depth q where
each internal node ν maps to a question Qν . The left and right branch stemming out
of ν map to the function answers yes and no associated to question Qν . Each leaf
` is associated to the state σ` resulting from the sequence of questions and answers
associated to the nodes and branches on unique path from the root to `. In particular, if
b1, . . . , bq are the answers/branches leading to ` then we have σ` = αb1 ··· bq as defined
above.

The strategy is winning if and only if for all leaves ` we have that σ` is a final state.

We can also extend the above definition to an arbitrary starting state. Given a state σ,
we say that a strategy S of size q is winning for σ if for any root to leaf path in S with
associated answers b1, . . . , bq the state σb1 ··· bq is final .

We define the character of a state σ as ch(σ) = min{q | wq(σ) ≤ 2q}, where
wq(σ) =

∑3
j=0 |σ−1(j)|

∑3−j
`=0

(
q
`

)
is referred to as the qth volume of σ. Intuitively, the

qth volume counts the number of possible sequences of Responders’ answers when
there are q questions left.

We have that the lower boundNmin(2m, e),mentioned in the introduction, coincides
with the character of the initial state σ0 = (U , 0, . . . , 0) (see Proposition 3.1 below).
Notice also that a state has character 0 if and only if it is a final state.

For a state σ and a question Q let σyes and σno be the resulting states according
to whether Responder answers, respectively, yes or no, to question Q in state σ. Then,
from the definition of the qth volume of a state, it follows that for each q ≥ 1, we have
wq(σ) = wq−1(σyes) + wq−1(σno). A simple induction argument gives the following
lower bound [15].

Proposition 3.1. Let σ be the state of the game. For any integers 0 ≤ q < ch(σ) and
k ≥ 1, starting from state σ, Questioner cannot determine Responder’s secret number
asking only q many k-interval-queries.

In order to finish the search withinNmin(2m, e) queries, Questioner has to guarantee
that each question asked induces a strict decrease of the character of the state of the
game. The following lemma provides a sufficient condition for obtaining such a strict
decrease of the character.

Lemma 3.1. Let σ be the current state, with q = ch(σ). LetQ be Questioner’s question
and σyes and σno be the resulting states according to whether Responder answers,
respectively, yes or no, to question Q.
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If |wq−1(σyes) − wq−1(σno)| ≤ 1 then it holds that ch(σyes) ≤ q − 1 and
ch(σno) ≤ q − 1.

Proof. Assume, w.l.o.g., that wq−1(σyes) ≥ wq−1(σno). Then, from the hypothesis,
it follows that wq−1(σno) ≥ wq−1(σyes) − 1. By definition of character we have
2q ≥ wq(σ) = wq−1(σyes) + wq−1(σno) ≥ 2wq−1(σyes)− 1, hence, wq−1(σno) ≤
wq−1(σyes) ≤ 2q−1 + 1/2, which together with the integrality of the volume, implies
that for both σyes and σno the (q − 1)th volume is not larger than 2q−1, hence their
character is not larger than q − 1, as desired. ut

A question which satisfies the hypothesis of Lemma 3.1 will be called balanced. A
special case of balanced question is obtained when for a state σ = (A0, . . . , Ae) the
question Q is such that |Q ∩Ai| = |Ai|/2 for each i = 0, . . . , e. In this case, we also
call the question an even splitting.

Definition 3.4 (Interval). An interval in U is either the empty set ∅ or a set of consecu-
tive elements [a, b] = {x ∈ U|a ≤ x ≤ b}. The elements a, b are called the boundaries
of the interval.

Definition 3.5 (4-interval-question). A 4-interval question (or simply a question) is
any subset Q of U such that Q = I1 ∪ I2 ∪ I3 ∪ I4 where for j = 1, 2, 3, 4, Ij is an
interval in U .

The type ofQ (w.r.t. state σ), denoted by |Q|, is the quadruple |Q| = [aQ0 , a
Q
1 , a

Q
2 , a

Q
3 ]

where for each i = 0, 1, 2, 3 , aQi = |Q ∩ σ−1(i)|.

Following [99] we visualize the search space as a necklace and restrict it to the set
of numbers which are candidate to be the secret number, i.e., we identify U with its
support Σ = U ∩

⋃3
i=0Ai.

For any non-final state, i.e., |
⋃3
i=0Ai| > 1, for each x ∈

⋃3
i=0Ai we define the

successor of x to be the number x + r mod 2m for the smallest 0 < r < 2m such
that x+ r mod 2m ∈

⋃3
i=0Ai. In particular, for the initial state, 0 is the successor of

2m − 1.
For a, b ∈

⋃3
i=0Ai we say that there is an arc from a to b and denote it by 〈a, b〉 if the

following two conditions hold: (i) σ(x) = σ(a) for each element x encountered when
moving from a to b in U passing from one element to its successor; (ii) σ(c) 6= σ(a)
and σ(d) 6= σ(b) where a is the successor of c and d is the successor of b. We say that
arc 〈a, b〉 is on level σ(a) and call a and b the left and right boundary of the arc.

In words, an arc is a maximal sequence of consecutive elements lying on the same
level of the state σ.

For the sake of definiteness, we allow an arc to be empty. Therefore, we can associate
to a state σ a smallest sequence Lσ of (possibly empty) arcs a0, . . . , ar−1 such that for
each i the levels of arcs ai and a(i+1) mod r differ exactly by 1. Note that, by requiring
that the length r be minimum the sequence Lσ is uniquely determined up to circular
permutations.

For each i = 0, 1, . . . , r − 1, we say that arcs ai and a(i+1) mod r are adjacent (or
neighbours). We say that ai is a saddle if both adjacent arcs are on a lower level, i.e.,
a(i−1) mod r, a(i+1) mod r ⊆ σ−1(k − 1) and ai ⊆ σ−1(k) for some k.

We say that ai is a mode if both adjacent arcs are on a higher level, i.e.,
a(i−1) mod r, a(i+1) mod r ⊆ σ−1(k + 1) and ai ⊆ σ−1(k) for some k.
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We say that ai is a step if for some k, ai ⊆ σ−1(k) and either a(i−1) mod r ⊆
σ−1(k− 1), a(i+1) mod r ⊆ σ−1(k+ 1) or a(i−1) mod r ⊆ σ−1(k+ 1), a(i+1) mod r ⊆
σ−1(k − 1).

Based on the above notions, we now define a well-shaped state for e lies.

Definition 3.6. Let σ be a state and Lσ be its associated list of arcs. Then, σ is well
shaped if and only if the following conditions hold:

• for i = 0, . . . , e− 1, in Lσ there are exactly (2i+ 1) arcs lying on level i.
• in Lσ there are exactly e arcs lying on level e.

It is not hard to see that for the case e = 3 under investigation, the only two feasible
well-shaped states are described as follow: σ−1(0) is an arc S in Σ; σ−1(1) is the
disjoint union of three arcs H ,N and O in Σ with N and O adjacent to S; σ−1(2) is
the disjoint union of five arcs A,B,C, L and M in Σ with B and C adjacent to H , L
adjacent to N ; σ−1(3) is the disjoint union of three arcs P,Q,R in Σ with R and P
adjacent to A.

Starting with S and scanning U with positive orientation, we can list the twelve arcs
(restricted to Σ) in one of the following two possibilities:

σ1 = L2N1S0O1M2Q3B2H1C2R3A2P 3 (3.1)
σ2 = L2N1S0O1B2H1C2Q3M2R3A2P 3 (3.2)

where for an arc X the notation Xi is meant to denote the fact that X ⊆ σ−1(i).
Well-shaped states of type (3.1) and (3.2) are shown in Figures 3.1 and 3.2 respectively.
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Fig. 3.1: A well-shaped state of type (3.1). Arcs S,H,A are modes at level 0, 1, 2, respectively.
Arcs Q,R, P are saddles at level 3. The remaining arcs are steps. The arrow shows the positive
orientation.
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Fig. 3.2: A well-shaped state of type (3.2). Arcs S,H,M,A are modes. Arcs B,Q,R, P are
saddles. The remaining arcs are steps. The arrow shows the positive orientation.
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3.2 The key result - structure of perfect 4-interval strategies for 3
lies

The strategy we propose is based on the approach of Spencer [127]. We will show how
to implement questions in this strategy as 4-interval questions. The main technical tool
will be to show that we can define 4-interval balanced questions and also guarantee that
each intermediate state is well-shaped.

In this section, we will characterise questions in terms of the ratio between the
components of the question and the components of the state they are applied to. We will
show conditions for the existence of questions that can be implemented using only 4
intervals and such that the resulting states are well-shaped whenever the state they are
applied to is well shaped.

For each of them, we show how to select the exact amount of elements in the query
among the arcs representing the state. Then, we prove that no other cases are allowed
and finally we show that the well shapeness property of the state is preserved in both
states resulting from the answer to the query.

Our main technical tool is the following theorem, whose proof is deferred to the
next section.

Theorem 3.1. Let σ be a well-shaped state of type τ(σ) = (a0, b0, c0, d0). For all
integers 0 ≤ a ≤ a0, 0 ≤ b ≤

⌈
1
2b0
⌉
, 0 ≤ c ≤

⌈
1
2c0
⌉
, 0 ≤ d ≤

⌈
2
3d0

⌉
, there exists a

4-interval question Q of type |Q| = [a, b, c, d] that we can ask in state σ and such that
both the resulting “yes” and “no” states are well-shaped.

Before going into the details of the proof, we now show how to employ Theorem
3.1 to show that asymptotically, every instance of the Ulam-Rényi game with 3 lies over
a space of cardinality 2m admits a perfect startegy that only uses 4-interval questions.
For this, we use the main result of [127] that rephrased in our setting e = 3 guarantees
that for all sufficiently large m, the strategy using the following two steps is perfect for
the Ulam-Rényi game with 3 lies over the search space of size 2m:

1. As long as the state satisfies
∑2
i=0 |σ−1(i)| > 1 ask a question Q of type

[aQ0 , a
Q
1 , a

Q
2 , a

Q
3 ] where, for i = 0, 1, 2, aQi ∈

{⌊
1
2 |σ
−1(i)|

⌋
,
⌈

1
2 |σ
−1(i)|

⌉}
with

the choice of whether to choose floor or ceiling alternating among those levels where
|σ−1(i)| is odd. The value of aQ3 is appropriately computed, based on the choices
of aQ0 , a

Q
1 , a

Q
2 , in order to guarantee that the resulting question is balanced, i.e.,

aQ3 =
⌊

1
2 (
∑2
j=0(|σ−1(j)| − 2aQj )

(
q
j

)
+ σ−1(3))

⌋
, where q + 1 is the character of

σ;
2. when the state satisfies

∑2
i=0 |σ−1(i)| ≤ 1, ask a balanced question Q of type

[0, 0, 0, aQ3 ].

The main point in the argument of [127] is that, up to finitely many exceptions, for
all m = log |U|, the value aQ3 defined in 1. is feasible, in the sense that using the above
rules yields 0 ≤ aQ3 ≤ |σ(−1)(3)|.

We can now employ Theorem 3.1 to show that the above step can be implemented by
a 4-interval-question. Let Q be the question defined in 1. Let Q be the complementary
question, and [aQ0 , a

Q
1 , a

Q
2 , a

Q
3 ] denote its type. For i = 0, 1, 2, we have aQi , a

Q
i ≤⌈

1
2 |σ
−1(i)|

⌉
. Moreover, we have min{aQ3 , a

Q
3 } ≤

⌈
2
3 |σ
−1(3)|

⌉
. Therefore, asking
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Q or Q according to whether aQ3 ≤ aQ3 guarantees that the question satisfies the
hypothesis of Theorem 3.1 and then it can be implemented as 4-interval question which
also preserves the well-shape of the state.

The condition in 2. can also be easily guaranteed only relying on 4-interval questions.
In fact, the following proposition shows that questions in point 2. are implementable by
4-interval questions, preserving the well-shape of the state.

Proposition 3.2. Let σ be a well-shaped state with |σ−1(3)| > 0 and
∑2
i=0 |σ−1(i)| ≤

1. Let ch(σ) = q. Then, starting in state σ the Questioner can discover the Respounder’s
secret number asking exactly q many 1-interval-queries.

Proof. We prove the proposition by induction on q, the character of the state. If q =
1, the only possibility is

∑2
i=0 |σ−1(i)| = 0 and |σ−1(3)| = 2. Then, a question

containing exactly one of the elements in σ−1(3) is enough to conclude the search.
Now assume that q > 1 and that the statement holds for any state with the same

structure and character ≤ q − 1.
If
∑2
i=0 |σ−1(i)| = 0 then the solution is provided by the classical binary search in

the set σ−1(3), which can be clearly implemented using 1-interval-queries. Notice also
that the number of intervals needed to represent the new state, is never more than the
number of intervals needed to represent σ.

Assume now that
∑2
i=0 |σ−1(i)| 6= 0 and let j be the index such that |σ−1(j)| = 1.

Let c be the only element in the jth level.
Let α =

∑3−j
i=0

(
q−1
i

)
≤ 2q−1. By the assumption of the character of σ follows that∑3−j

i=0

(
q
i

)
≤ wq(σ) ≤ 2q, hence 3− j < q and in addition, because of the assumption

ch(σ) = q we have
∑3−j
i=0

(
q−1
i

)
+ |σ−1(3)| = wq−1(σ) > 2q−1.

Choose I to be the largest interval including c and 2q−1 − α other elements from
the 3rd level. The above observation guarantees the existence of such interval. The
possible states arising from such a question satisfy wq−1(σyes) = 2q−1 and are such
that wq−1(σno) = wq(σ)−wq−1(σyes) ≤ 2q−2q−1. Hence, both states have character
not larger than q − 1. It is also not hard to see that they both have a structure satisfying
the hypothesis of the proposition. This proves the induction step.

Note that the number of intervals necessary to represent the new state is not larger
than the initial one, then the state is also well-shaped. ut

We have shown that any question in the perfect strategy of [127] can be implemented
by 4-interval questions. We can summarise our discussion in the following theorem.

Theorem 3.2. For all sufficiently large m in the game played over the search space
{0, . . . , 2m − 1} with 3 lies, there exists a perfect 4-interval strategy. In particular, the
strategy uses at most Nmin(2m, 3) questions and all the states of the game are well
shaped, hence representable by exactly 12 logm bits (12 numbers from U).

3.3 The proof of Theorem 3.1

Let σ be a state and 〈a, b〉 be a non-empty arc of σ. We say that a question Q splits
the arc 〈a, b〉 if there exists an interval I in Q that intersects 〈a, b〉 and contains exactly
one of its boundaries a, b. In words, there is an interval in the question such that some
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non-empty part of the arc satisfies a yes answer and some non-empty part of the arc
satisfies a no answer.

If a question Q splits exactly one arc on level i of σ according to whether such an
arc is a mode, a saddle, or a step, we say that at level i the question Q (or, equivalently,
an interval of Q) is mode-splitting, saddle-splitting, step-splitting, respectively.

Let Q be a step-splitting question at level i. Let 〈a, b〉 be the arc at level i which is
split by an interval I of Q. Then, by definition I contains exactly one of the boundaries
of the arc. If I contains the boundary of the arc that flanks an arc at level i+ 1 we say
that Q (or, equivalently, an interval of Q) is downward step-splitting; if I contains the
boundary of the arc that flanks an arc at level i− 1 we say that Q (or, equivalently, an
interval of Q) is upward step-splitting.

We say that a question Q covers entirely the arc 〈a, b〉 if [a, b] is contained in one of
the intervals defining Q.

If a question Q covers entirely an arc on level i of σ according to whether such an
arc is a mode, a saddle, a step, we say that at level i the question Q (or, equivalently,
an interval of Q) is mode-covering, saddle-covering, step-covering, respectively. Refer
to Figure 3.3 for a pictorial representation of the interval types and questions effect on
states.
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Fig. 3.3: An example of state dynamics. The question Q is represented by the intervals
I(0), I(1), I(2) and I(3). The interval I(0) is mode-splitting at level 0 and upward step-splitting
at level 1; I(1) is mode-covering at level 1 and saddle-splitting at level 2; I(2) is mode-covering
at level 2 and saddle-covering at level 3; I(3) is saddle-splitting at level 3. In the resulting states
the filled volumes indicate the arcs of the state remained unchanged. The σyes, σno states are
represented on the support of the original state σ to show how the elements belonging the lowest
level disappear (the blank gaps on the shapes) from the support when they are in contradiction
with more than 3 answers.

We will define conditions on the intersection between the intervals defining a
question and the arcs of a (well-shaped) state σ such that both σyes and σno are well
shaped. It turns out that these conditions can be defined locally, level by level and arc
by arc.

Let σ be a well shaped state and let Lσ be its associated list of arcs (including
possibly empty ones) where consecutive arcs differ in level by exactly one. For each
i = 0, 1, 2, 3, let Lσ(i) denote the list of arcs on level i of σ, |Lσ(i)| denote the number
of arcs on level i of σ.
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Given a question Q asked in state σ we denote by Lσyes and Lσno the lists of arcs
associated to the states σyes and σno resulting from answering yes and no to question
Q.

For the rest of this section, we focus on questionsQ satisfying the following property
with respect to the current state σ:

Property P: For each i = 0, 1, 2, and each arc a ∈ Lσ(i), at most one interval of Q
intersects a, and altogether, Q splits at most one arc on level i.

We now introduce some anlaytic tools to quantify the relationship between the
state σ and the states σyes and σno resulting from the answer to Q. For each pair of
consecutive arcs a and b in Lσ we assume (for the sake of the analysis) that there is a
phantom element εab between a and b and sitting on level max{`a, `b} where `a, `b are
the levels of a and b respectively. For each arc x let us define x+ as the set containing
all the elements in x and the phantom elements flanking x. Phantom elements are only
used for analysing the effect of a question. So for every new question we consider only
the phantom elements defined by the state where the question is asked. Moreover, as
opposed to the actual elements and arcs of the state, which may change level as a result
of the answer to the question, by definition, the level of a phantom element is fixed and
(during the analysis of Q) it remains the same also after the answer to the question Q.

Note that for each phantom element ε, and each list L ∈ {Lσ,Lσyes,Lσno} there is
exactly one arc x ∈ L which lies on the same level of ε and flanks it. We refer to this arc
as the arc of L containing ε. This might also be an empty arc that is in L to guarantee
that consecutive arcs differ by exactly one level.

Let Eσ be the set of phantom elements and for each i = 0, 1, 2, 3 let Eσ(i) be the
set of phantom elements on level i. It is not hard to see that we have |Eσ| = |Lσ|.

Fix an arc a ∈ Lσ. Let Aσa (resp. Aansa , for ans ∈ {yes, no}) be the set of arcs
in Lσ (resp. Lσans) containing elements of a+. For each i = 0, 1, 2, 3, let Aσa(i) (resp.
Aansa (i)) be the set of arcs in Lσ(i) (resp. Lσans) containing elements of a+. We have

3∑
i=0

∑
a∈Lσ(i)

|Aσa(i)| = |Lσ|+|Eσ| = 2|Lσ| and
∑
a∈Lσ

|Aσa(i)| = |Lσ(i)|+|Eσ(i)|.

(3.3)
We now focus on the cardinality of sets Aansa (`), for fixed i = 0, 1, 2, 3, a ∈ Lσ(i)

and ans ∈ {yes, no}. We distinguish four cases according to the position of the
phantom elements ε1, ε2 ∈ a+ (i.e., flanking a).
Case 1. ε1 is on level i (like a) and ε2 is on level i+ 1. Therefore, their containing arcs
in Lσans will be different, hence for ` = i, i+ 1 we have |Aσa(`)| = 1 ≤ |Aansa (`)|. The
latter set might contain an additional arc on level ` if and only if a proper subinterval of
a including the element of a flanking ε1 falsifies ans and moves to level i+ 1, creating
a new arc also here. In formulas, |Aansa (`)| = |Aσa(`)| + b

(1)
ans(`) where b(1)

ans = 1 if
` = i, i + 1 and there exists a proper subarc of a flanking ε1 that falsifies ans; and
b
(1)
ans(`) = 0 otherwise.

Case 2. ε1, ε2 are both on level i + 1 (while a ∈ Lσ(i)). Therefore, in Aansa (i + 1)
there will be two different arcs containing ε1 and ε2 and there will be one arc in
Aansa (i) containing the elements of a satisfying ans (the elements falsifying ans will
be contained in one of the arcs containing a phantom element), unless all the elements
in a falsify ans, in which case there will be no arc in Aansa (i) and only one arc in
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Aansa (i + 1). In formulas, |Aansa (i)| = |Aσa(i)| − b(2)
ans(`) where b(2)

ans(`) = 1 if and
only if ` = i, i+ 1 and all the elements of a falsify ans, and b(2)

ans(`) = 0 otherwise.
Case 3. i ≤ 2 and ε1, ε2 are both on level i, like a, hence this is the arc of Lσ containing
them. This case is similar to Case 1. We have that Aansa (`) contains an additional arc
with respect to Aσa(`) if and only if some elements of a falsify ans (the remaining
elements are contained in the arcs containing the phantom elements). In formulas,
|Aansa (i)| = |Aσa(i)|+ b

(3)
ans(`) where b(3)

ans(`) = 1 if and only if ` = i, i+ 1 and some
of the elements in a falsify ans, and b(3)

ans(`) = 0 otherwise.
Case 4. i = 3 and ε1, ε2 are both on level i, like a, hence this is the arc of Lσ containing
them. In this case, elements of a falsifying ans will simply disappear from the state
σans and Aansa (`) will contain one arc for ` = 3 and 0 for ` < 3. In case Q contains an
interval that coincides with a then for ans = no we have a very special situation, i.e,
there is no arc on level 3 and the two arcs on level 2 flanking a in Lσ get merged into
one single arc. We account for this exceptional case (when an interval of Q coincides
with a) by setting Anoa (2) = 1 (even if according to the definition no arc on level 2

contains elements of a+). In formulas, we have |Aansa (`)| = |Aσa(`)| − b(4)
ans(`) where

b
(4)
ans(`) = 1 if and only if there is an interval of Q which coincides with a, ` = 2, 3,

and ans = no; and b(4)
ans(`) = 0 otherwise.

We now observe that for i = 0, 1, 2, we have∑
a∈Lσ

|Aansa (i)| = |Lσans(i)|+ |Eσ(i)|. (3.4)

For each a ∈ Lσ, i = 0, 1, 2, 3 and ans ∈ {yes, no}, let us now define
δ(a,Q, ans, `) = |Aσa(i)| − |Aansa (i)|, and ∆ans

` (σ,Q) =
∑
a∈Lσ δ(a,Q, ans, `).

Then, for all i = 0, 1, 2 we have that |Lσans(i)| = |Lσ(i)|+∆ans
i (σ,Q).

Since σ is well shaped, by definition, σyes and σno are both well shaped if for
each i = 0, 1, 2 we have |Lσ(i)| = |Lσyes(i)| = |Lσno(i)|. Thus, using (3.3) and (3.4) it
follows that σyes and σno are well shaped if

for all i = 0, 1, 2, ∆yes
i (σ,Q) = 0 and ∆no

i (σ,Q) = 0, (3.5)

as this will imply |Lσyes(`)| = |Lσno(`)| = |Lσ(`)| = 2` − 1 for ` = 0, 1, 2, and
consequently, also |Lσyes(3)| = |Lσno(3)| = |Lσ(3)| = 3.

The following proposition, which is easily verified on the bases of the 4 cases
analysed above, summarizes the values of δ() which are significant for our analysis.
For an example of all cases—except d) and g)—considered in the proposition, refer to
Figure 3.3.

Proposition 3.3. Let σ be a state and a be a non empty arc ofLσ(i). LetQ be a question
that splits at most one arc per level and such that each arc is intersected by at most one
interval of Q. Then we have

a) if Q is saddle-splitting at level i, then for ` = i, i+ 1 we have δ(a,Q, yes, `) =
δ(a,Q, no, `) = 1, i.e., the number of arcs is increased by 1 on level i and i + 1
both in the case of a yes and a no answer, since part of the saddle is transferred to
the next level and therefore in the list of arcs there will be an additional (empty) arc
between the part going to level i+ 1 and the flanking arc at level i− 1.
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b) if Q is mode-splitting at level i, then for ` = i, i+ 1 we have δ(a,Q, yes, `) =
δ(a,Q, no, `) = 0, i.e., the number of arcs remains unchanged on level i and
i+ 1 both in the case of a yes and a no answer, since the part of the mode that is
transferred to level i+ 1 get merged with the flanking arc on level i+ 1— recall
that the value of δ is defined with respect to the local changes within a+.

c) if Q is upward step-splitting at level i, then for ` = i, i + 1 we have
δ(a,Q, yes, `) = 0 and δ(a,Q, no, `) = 1, i.e., the number of arcs is increased
by 1 on level i and i + 1 only in the case of a no answer, since part of the step
is transferred to the next level and therefore in the list of arcs there will be an
additional (empty) arc between the part going to level i+ 1 and the flanking arc at
level i− 1.

d) if Q is downward step-splitting at level i, then for ` = i, i + 1 we have
δ(a,Q, yes, `) = 1 and δ(a,Q, no, `) = 0, i.e., the number of arcs is increased
by 1 on level i and i + 1 only in the case of a yes answer, since part of the step
is transferred to the next level and therefore in the list of arcs there will be an
additional (empty) arc between the part going to level i+ 1 and the flanking arc at
level i− 1.

e) if Q is saddle-covering at level i on a saddle a, then for ` = i, i + 1 we have
δ(a,Q, yes, `) = 0 and δ(a,Q, no, `) = 1, i.e., the number of arcs is increased by
1 on level i and i+ 1 only in the case of a no answer, since the saddle is transferred
to the next level and therefore in the list of arcs there will be an additional (empty)
arc between the saddle going to level i+ 1 and one of the flanking arc at level i−1.
— note that the other empty needed arc is the saddle arc becoming empty at level i.

f) if Q is mode-covering at level i on a mode a, then for ` = i, i + 1 we have
δ(a,Q, yes, `) = 0 and δ(a,Q, no, `) = −1, i.e., the number of arcs is decreased
by 1 on level i and i+1 only in the case of a no answer, since the mode is transferred
to level i + 1 and gets merged with both the flanking arcs at level i + 1 into one
single arc at level i+ 1.

g) if Q is step-covering at level i on the step a, then for ` = i, i + 1 we have
δ(a,Q, yes, `) = δ(a,Q, no, `) = 0, i.e., the number of arcs remains unchanged
on level i and i+ 1 both in the case of a yes and a no answer, since the arc (which
was a step at level i) is transferred to level i+ 1 and gets merged with the flanking
arc on level i+ 1 and at level i we have a new empty arc (to satisfy the unit increase
in the level of adjacent arcs).

For the complementary question Q, the same rules apply with the role of yes and no
swapped.

Using Proposition 3.3 and the condition in (3.5), we have the following sufficient
conditions for building a question that preserves well-shapeness.

Lemma 3.2. Given a well-shaped state σ and a question Q, if the following set of
conditions is satisfied then both the resulting states σyes and σno are well-shaped. For
each i = 0, 1, 2 at most one arc is split on level i. Moreover, exactly one of the following
holds

(i) at level i the question Q is mode-splitting;
(ii) at level i the question Q is upward step-splitting and mode-covering.

(iii) at level i the question Q is downward step-splitting and a mode is completely
uncovered—equivalently the complementary question Q is mode-covering at level
i.
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(iv) at level i the question Q is saddle-splitting and mode-covering and there is also
a mode completely uncovered—equivalently the complementary question Q is
mode-covering at level i.

In addition, if besides the condition in (i)-(iv) the question Q is also saddle-covering
(respectively a saddle is uncovered, i.e. covered in Q) then Q also covers (respectively
leaves uncovered) a mode different from the one possibly used to satisfy (i)-(iv).

Proof. Fix i = 0, 1, 2. Let a ∈ Lσ(i) be the split arc at level i. Then

i) if Q is mode-splitting at level i, then for ` = i, i+ 1 we have that δ(a,Q, yes, `) =
δ(a,Q, no, `) = 0.

ii) ifQ is upward step-splitting at level i, then for ` = i, i+1 we have δ(a,Q, yes, `) =
0 and δ(a,Q, no, `) = 1. Moreover, let b ∈ Lσ(i) be the mode entirely covered at
level i, then for ` = i, i+ 1 we have δ(b,Q, no, `) = −1.
Summing up level by level all the δ() elements, for ` = i, i + 1 we have that
δ(a,Q, no, `) + δ(b,Q, no, `) = 0.

iii) if Q is downward step-splitting at level i, then for ` = i, i + 1 we have that
δ(a,Q, yes, `) = 1 and δ(a,Q, no, `) = 0. Moreover, let b ∈ Lσ(i) be the
completely uncovered mode at level i, then for ` = i, i + 1 we have that
δ(b,Q, yes, `) = −1.
Summing up level by level all the δ() elements, for ` = i, i + 1 we have that
δ(a, I, yes, `) + δ(b,Q, yes, `) = 0.

iv) if Q is saddle step-splitting at level i, then for ` = i, i + 1 we have that
δ(a,Q, yes, `) = δ(a,Q, no, `) = 1. Moreover, let b ∈ Lσ(i) be the entirely
covered mode at level i, then for ` = i, i + 1 we have that δ(b,Q, no, `) = −1.
Also let c ∈ Lσ(i) be the completely uncovered mode at level i, then for ` = i, i+1
we have that δ(c,Q, yes, `) = −1.
Summing up level by level all the δ() elements, for ` = i, i + 1 the result is
δ(a,Q, yes, `) + δ(c,Q, yes, `) = 0 and δ(a,Q, no, `) + δ(b,Q, no, `) = 0.

To verify the last part of the statement, let us now assume that besides the condition
in (i)-(iv) the question Q is also saddle-covering (respectively a saddle is uncovered,
i.e. covered in Q). Let b ∈ Lσ(i) be a saddle at level i covered by some interval
Ib of Q (respectively Q). Then for ` = i, i + 1 we have that δ(b,Q, yes, `) = 0
and δ(b,Q, no, `) = 1 (respectively δ(b,Q, yes, `) = 1 and δ(b,Q, no, `) = 0). Let
c ∈ Lσ(i) be a mode at level i —recall that c is different from the one possibly used to
satisfy the previous cases — covered by some interval Ic of Q (respectively Q). Then
for ` = i, i+ 1 we have that δ(c,Q, no, `) = −1 (respectively δ(c,Q, yes, `) = −1).
Summing up all the δ() elements we have that δ(b,Q, no, `) + δ(c,Q, no, `) = 0
(respectively δ(b,Q, yes, `) + δ(c,Q, yes, `) = 0) for ` = i, i+ 1 .

It remains to consider the contribution given by the remaining arcs. These are only
arcs covered completely by an interval either in Q or in Q. Here we only deal with such
arcs not already taken care of above. Note that these arcs are all step arcs. In fact, all
mode arcs covered or uncovered by Q are already dealt with in the analysis of points
(i)-(iv) above, or in the special case considering saddle arcs. Let a be such an arc and let
i = 0, 1, 2 such that a ∈ Lσ(i). Let I be the interval either in Q or in Q covering a. By
Proposition 3.3 we have that if a is a step arc δ(a,Q, yes, `) = δ(a,Q, no, `) = 0 for
every ` = 0, 1, 2. Therefore, for each i = 0, 1, 2, ∆yes

i = ∆no
i = 0, hence by (3.5) the

resulting states σyes and σno are well shaped. ut
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Now we are ready to prove our main technical result.
Theorem 3.1. Let σ be a well-shaped state of type τ(σ) = (a0, b0, c0, d0). For all

integers 0 ≤ a ≤ a0, 0 ≤ b ≤
⌈

1
2b0
⌉
, 0 ≤ c ≤

⌈
1
2c0
⌉
, 0 ≤ d ≤

⌈
2
3d0

⌉
, there exists a

4-interval question Q of type |Q| = [a, b, c, d] that we can ask in state σ and such that
both the resulting “yes” and “no” states are well-shaped.

Proof. We first show how to select the intervals of the question Q in order to satisfy the
desired type. We proceed level by level. For each i = 0, 1, 2, 3, we show how to select
up to 4 intervals that cover the required number of elements in the first i levels. For
each level i = 0, 1, 2, 3 we record in a set E(i) the extremes of the intervals selected
so far that have a neighbour on the next level. We refer to the elements in E(i) as the
boundaries at level i. When processing the next level, we try to select arc neighbouring
the elements in E(i) since this means we can cover elements at the new level without
using additional intervals. Arguing with respect to such boundaries, we show that the
(sub)intervals selected at all level can be merged into at most 4 intervals. Hence the
resulting question Q is a 4-interval question. Finally, we will show that asking Q in σ
both the resulting states are well-shaped states.

Recall the arc notation used in (3.1)-(3.2). In our construction, a special role will be
played by the arcs S,H,A, which are the greatest mode respectively of level 0, 1 and
2, and the larger between their two neighbouring arcs at the level immediately below.
Therefore, let us denote by A(1) the larger arc between N and O; we denote by A(2) be
the larger arc between B and C; and finally, we denote by A(3) the larger arc between
R and P .

Moreover, we denote by s+ the boundary between S and A(1) and with s− the other
boundary of S.

Analogously, we denote by h+ the boundary between H and A(2) and with h− the
other boundary of H .

We denote by a+ the boundary between A and A(3) and with a− the other boundary
of A.
Level 0. For any 0 < a ≤ a0 there exists s∗ ∈ S such that denoting by S∗ the sub-arc
of S between s∗ and s+ we have that |S∗| = a and the boundary of S∗ includes s+.
Then we have E(0) ⊇ {s+}.

Therefore, with one interval I(0) = S∗ we can accommodate the a elements on
level 0 and guarantee that this interval has an extreme at s+.

Moreover, the interval I(0) on arc S is a mode-splitting interval.
Level 1. By the assumption b ≤

⌈
1
2b0
⌉
, and the definition of A(1) it follows that

b ≤ |A(1)|+ |H|. We now argue by cases

1. b ≤ |H|. Then there exists h∗ in H such that the sub-arc H∗ ⊆ H between h∗ and
h+ satisfies |H∗| = b and we can cover it with one interval I(1) with a boundary at
h+.

2. |H| < b ≤ |H|+ |A(1)|. Then, there exists x∗1 ∈ A(1) such that letting X(1) be the
sub-arc of A(1) between x∗1 and s+, we have |X(1)|+ |H| = b and we can cover
these b elements extending the previously defined I(0) so that it covers X(1) too
and having I(1) = H. In this case we have that the boundaries of I(1) are both h+

and h−.

Summarising, we can cover the a elements on level 0 and the b elements on level 1 with
at most two intervals and guarantee that the boundaries of these intervals include h+.
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Moreover either the interval I(1) on arc H is a mode-splitting interval or the interval
I(1) covers entirely the mode H and the interval I(0) on arc A(1) is a step-splitting
interval.

Then, the choice of the intervals so far satisfies conditions in Lemma 3.2.
Level 2. Again we argue by cases

1. c ≤ |A|. Then, there exists a∗ in A such that letting A∗ be the sub-arc of A between
a∗ and a+ we have |A∗| = c and we can cover it with one interval I(2) = A∗ with
one boundary in a+.

2. |A| < c ≤ |A|+ |A(2)|. Then, there exists x∗ ∈ A(2) such that letting X(2) be the
sub-arc of A(2) between x∗ and h+, we have |X(2)|+ |A| = c and we can cover
these c elements extending the previously defined I(1) so that it covers X(2) too
and having I(2) = A. In this case we have that the boundaries of I(2) are both a+

and a−.
3. c > |A|+ |A(2)|. Let E denote the largest arc on level 2 not in {A(2), A}. Then, by

the definition of A(2) we have that |A|+ |A(2)|+ |E| ≥ |Y |+ |Z| where Y and Z
denote the arcs on level 2 not in {A,A(2), E}. This is true because, at least one of
the arcs Y,Z is not larger than A(2) and the other one is not larger than E.
Then, by the assumption c ≤

⌈
c0
2

⌉
it follows that |A| + |A(2)| + |E| ≥ c. Let z

be the boundary of A(2) on the opposite side with respect to H . Let e+ be the
boundary between E and a neighbouring arc at level 3 or at level 1 according to
whether z is flanking an arc at level 1 or an arc at level 3—with reference to Figures
3.1, 3.2, is an easy direct inspection shows that such a choice is always possible.
Therefore, there exists e∗ ∈ E such that letting E∗ be the sub-arc of E between e∗

and e+ we have |A|+ |A(2)|+ |E∗| = c and we can cover the corresponding set
of elements by: (i) extending I(1) from h+ and have it include the whole A(2); (ii)
defining I(2) = A; defining a fourth interval I(3) = E∗. Therefore, we have that
the boundaries of I(2) are both a+ and a− and, in the case of a σ of type in Fig. 3.2,
the boundary of I(3) includes e+, and the boundary of I(1) is the boundary z of the
arc A(2) where it joins its adjacent arc at level 3.

Summarising, we can cover the a elements on level 0 and the b elements on level 1
and the c elements of level 2 with at most four intervals. More precisely, if, proceeding as
above we only use three intervals, I(0), I(1), I(2), (and set I(3) = ∅), we also guarantee
that the boundaries of these intervals include a+. On the other hand, if we use four
intervals, (in particular, I(3) 6= ∅) we have that the boundaries of these intervals include
a+, a− and exactly one between e+, z. Therefore {a+, a−} ⊂ E(2) ⊂ {a+, a−, z, e+}.
Notice that, since there are only three arcs at level 3; in the case where I(3) 6= ∅ either
there is an arc on level 3 with both ends neighbouring the boundaries in E(2), or each
arc on level 3 has one end neighbouring a boundary in E(2).

Moreover exactly one of the following cases holds (i) the interval I(2) on arc A
is a mode-splitting interval; (ii) the interval I(2) covers entirely the mode H and the
interval I(1) on arc A(2) is an upward step-splitting interval; (iii) the interval I(2) covers
the mode H , no interval intersects mode M and the interval I(1) on arc A(2) is saddle-
splitting; (iv) the interval I(2) covers the mode H and the interval I(1) covers the arc
A(2) and the interval I(3) on arc E is downward step-splitting; (v) the interval I(2)

covers the mode H , the interval I(1) covers the arc A(2), hence it is saddle-covering,
and the interval I(3) on arc E is upward step-splitting. .
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In all the above five cases, the (partial) question built so far, with the intervals
defined for levels 0, 1, 2, satisfy the conditions of Lemma 3.2.
Level 3. Let us denote by W,U the two arcs at level 3 which are different from A(3),
with |W | ≥ |U |. Then, by definition we also have |A(3)| ≥ |U |, hence |A(3)|+ |W | ≥
2
3d0 ≥ d. We now argue by cases:

1. d < |A(3)|. Then, there exists x∗3 in A(3) such that the sub-arc X(3) between a+

and x∗3 has cardinality |X(3)| = d and can be covered by extending I(2) (which
have a boundary at a+).

2. |A(3)| < d ≤ |A(3)|+ |W |.
We have two sub-cases:
• I(3) = ∅. I.e., for accommodating the question’s type on Levels 0,1,2, we have

only used three intervals. By assumption, there exists a sub-arc W ∗ of W such
that |W ∗|+ |A(3)| = d. Then, defining I(3) = W ∗, and extending I(2) (as in
the previous case) so that it includes the whole of A(3) guaranteeing that the
four intervals I(0), . . . , I(3) define a question of the desired type.

• I(3) 6= ∅. Then, by the observations above, as a result of the construction on
level 2, either there is an arc on level 3 with both ends at a boundary in E(2) or
each arc on level 3 has a boundary in E(2). In the latter case, we can clearly
extend the intervals I(2) and I(3) in order to cover d elements on level 3. In
the former case, let Z denote the arc with both ends at boundaries in E(2). If
|Z| ≥ d, we can simply extend I(2) and I(3) towards the internal part of Z
until they include d elements of Z. If |Z| < d then we can extend I(2) so that
it includes Z and I(3).

Since the way intervals are extended on level 3 do not affect the arc covering and
splitting on the previous level, we have that in all cases the resulting 4-interval question
satisfies the conditions of Lemma 3.2, which guarantees that both resulting states are
well-shaped. The proof is complete. ut

Refer to Figures 3.4 and 3.5 for a pictorial representation of the 4-interval question
construction in the proof of Theorem 3.1.
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Fig. 3.4: A well-shaped state like in (3.1) and the cuts of a 4 interval question.
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Fig. 3.5: A well-shaped state like in (3.2) and the cuts of a 4 interval question.
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We assume the following relative order on the arcs’ sizes. On level 1 we assume
N ≥ O and on level 2 we assume B ≥ C, L ≥ M and A ≥ M . The questions are
depicted for both the feasible well-shaped states for a 3 lies game. Then on level 0
the arc S is split (the light blue question), on level 1 either H is split (the dark green
question) or N is split (the dark green and the light green question) and H is covered
entirely. On level 2 one of the following holds, either A is split (the red question) or B
is split (the orange and red question) and the mode A is covered entirely, or L is split
(the yellow, orange and red question) and the mode A is covered entirely. In order to
guarantee the well-shapeness preservation, note that in the questions depicted in figure
3.5 on level 2 the mode M is entirely uncovered, moreover the interval splitting arc L
is upward step-splitting in Figure 3.4 and downward step-splitting in Figure 3.5.

3.4 The non asymptotic strategy

In this section we show how to employ the machinery of Lemma 3.2 to obtain an exact
(non-asymptotic) characterization of the instances of the Ulam-Rényi game with 3 lies
on a serach space of cardinality 2m that admit a perfect strategy only using 4-interval
questions. For this we will exploit the perfect strategies of [101] and show that they can
be implemented using only 4-interval questions. We are going to prove the following
result.

Theorem 3.3. For all m ∈ N \ {2, 3, 5} in the game played over the search space
{0, · · · , 2m − 1} with 3 lies, there exists a perfect 4-interval strategy.

The following three lemmas provides alternatives to Theorem 3.1 for guaranteeing
the existence of 4-interval questions that preserves the well-shapedness of the resulting
states.

Lemma 3.3. Let σ be a well-shaped state of type τ(σ) = (0, b0, c0, d0). For all integers
0 ≤ b ≤

⌈
1
2b0
⌉
, 0 ≤ c ≤

⌈
1
2c0
⌉
, 0 ≤ d ≤ d0, there exists a 4-interval question Q of

type |Q| = [0, b, c, d] that can be asked in state σ and such that both the resulting “yes”
and “no” states are well-shaped.

Proof. The proof structure is analogous to the proof of Theorem 3.1
Level 1. By the assumption b ≤

⌈
1
2b0
⌉

and definition of H as the greatest mode of level
1 it follows that b ≤ |H|. Then there exists h∗ in H such that the sub-arc H∗ ⊆ H
between h∗ and h+ satisfies |H∗| = b and we can cover it with one interval I(0) with a
boundary at h+. Then we have E(1) ⊇ {h+}.

Summarising, we can cover the b elements on level 1 with at most one interval and
guarantees that the boundaries of these intervals include h+.

Moreover the interval I(0) on arc H is a mode-splitting interval.
Level 2. As showed in Theorem 3.1, we can cover the b elements on level 1 and the c
elements on level 2, with at most three intervals. Moreover, if, proceeding as in Theorem
3.1 we only use two intervals, I(0), I(1), (and set I(2) = ∅) we also guarantee that the
boundaries of these intervals include a+. Otherwise, if we use three intervals, we have
that the boundaries of those intervals include a+, a− and exactly one between e+, z.
Level 3. Let us denote by W,U the two arcs at level 3 which are different from A(3).
We now argue by cases:
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1. I(2) = ∅. We show how to cover up to d0 elements on level 3. Extending I(1) we
can cover as much as we need from the arc A(3), after that we can use the two
remaining intervals I(2) and I(3) to cover, respectively W and U . This guarantees
that with at most four intervals I(0), . . . , I(3) we have a question of the desired
type.

2. I(2) 6= ∅. Then, by the observations above, both the boundaries include a+ and a−.
As before, Extending I(1) we can cover as much as we need from the arc A(3) and
the other neighbouring arc of A, say W . Finally, we can use the remaining interval
I(3) to cover the last uncovered arc U .

In all cases the resulting 4-interval question satisfies the Lemma 3.2 conditions,
which guarantees that both resulting states are well-shaped. ut

Lemma 3.4. Let σ be a well-shaped state of type τ(σ) = (1, b1, c1, d1). For all integers⌊
1
4c1
⌋
≤ c ≤

⌈
1
2c1
⌉
, 0 ≤ d ≤ d1, there exists a 4-interval question Q of type

|Q| = [1, 1, c, d] that we can ask in state σ and such that both the resulting “yes” and
“no” states are well-shaped.

Proof. Let U be the smallest arc on level 2, different from A and B. Then, assuming
that |A| ≥

⌊
1
4c1
⌋
, we have that |U | ≤

⌊
1
4c1
⌋
. This is true because, by the minimality of

U we have |U | ≤
⌊

(1− 1
4 )

3 c1

⌋
≤
⌊

1
4c1
⌋
.

Let V be the neighbouring arc of U at level 1. We denote with v− the boundary
between U and V and with u+ the other boundary of U . The existence and uniqueness
of u+ is guaranteed by the definition of U that excludes that it is a saddle.

This proof has a different scheme with respect to the proof structure of Theorem
3.1. In fact, the interval used to accommodate the element on level 1, is defined after
the evaluation of the intervals at level 2.
Level 0. This is treated as in Theorem 3.1, then we have one element of level 0 that is
accommodated by interval I(0). The interval on arc S is a mode-covering interval.
Level 2. We argue by cases

1.
⌊

1
4c1
⌋
≤ c ≤ |A|. Then, there exists a∗ in A such that letting A∗ be the sub-arc of

A between a∗ and a+ we have |A∗|+ |U | = c.
We can cover it using the interval I(1) = U with one boundary in u+, and with one
other interval I(2) = A∗ with one boundary in a+.

2. |A| < c ≤
⌈

1
2c1
⌉
. Again we argue by cases on the size of the mode H at level 1.

In particular, we have that either the mode H contains at least one element, or the
mode H is empty. In the former case, we can proceed as in the proof of Theorem
3.1 guaranteeing that the boundary h+ is included in the interval I(1). Moreover, if
we use tree intervals, we guarantee that the interval I(2) has the boundaries a+ and
a−, and if we use four intervals, we guarantee that the intervals I(1) and I(3) have
exactly one boundary between e+ and z. In the latter case, we can argue by cases
Subcase 2.1

⌊
1
4c1
⌋
≤ c ≤ |A| + |U |. Then, there exists x∗ ∈ U such that letting

X(2) be the sub-arc of U between x∗ and u−, we have |X(2)|+ |A| = c and we can
cover these c elements using the interval I(1) to covers X(2) and having I(2) = A.
In this case we have that the boundaries of I(2) are both a+ and a−.
Subcase 2.2 c > |A|+ |U |. Let E denote the largest arc on level 2 not in {U,A}.
Note that, since the mode at level 1 is empty we can glue together the arcs B and
C flanking the mode. Then, we have that |A| + |U | + |E| ≥ |Y | where Y is the
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arc on level 2 not in {A,U,E}. This is true because, E ≥ Y . Therefore, there
exists e∗ ∈ E such that letting E∗ be the sub-arc of E between e∗ and e+ we have
|A|+ |U |+ |E∗| = c and we can cover the corresponding set of elements by: (i)
using I(1) to cover the whole U ; (ii) defining I(2) = A; defining a fourth interval
I(3) = E∗. Therefore, we have that the boundaries of I(2) are both a+ and a− and,
the boundary of I(3) includes e+, and the boundary of I(1) is the boundary u+ of
the arc U where this joins its adjacent arc at level 3.

Summarizing, we can cover one element on level 0 and the c elements of level 2
with at most four intervals. More precisely, the main difference with the analysis on
Theorem 3.1, is that if we only use three intervals, I(0), I(1), I(2), (and set I(3) = ∅),
we also guarantee that the boundaries of these intervals include a+ and one between
a− and u+. Conversely, if we use four intervals, we have that the boundaries of these
intervals include a+, a− and exactly one between e+, z. Thus, either {a+, u+} ⊂ E(2)
or {a+, a−} ⊂ E(2) ⊂ {a+, a−, z, e+}. Indeed, if the mode H is empty, and we are
using four intervals, we have that the boundaries of these intervals include a+, a−, e+

and u+. Thus we have that {a+, a−, e+, u+} ⊂ E(2).
Moreover, the analysis of the splitting intervals is the same as the cases on Theorem

3.1, in addition we have that in the first case, the interval I(1) covers the arc U and the
interval I(2) on arc A∗ is a mode-splitting interval.
Level 1. From the previous arguments, we have that one boundary between u− and
h+ is included in the interval I(1). Then, if I(1) include the boundary u− then we can
extend it from u− up to v∗ in V such that letting X∗ be athe sub arc of V between v∗

and u− with |X∗| = 1. Otherwise, if the boundary included in I(1) is h+ then we can
extend I(1) from u− up to h∗ in H such that letting X∗ be the sub arc of H between h∗

and u− with |X∗| = 1. Then, we can cover one element on level 0, one element on level
1 and the c elements of level 2 with at most four intervals. And the boundaries at level 3
remain unchanged. Moreover, the interval I(1) covers the arc X∗ and is mode-splitting
if the arc X is the mode H , otherwise is downward-step splitting.
Level 3. Let us denote by W,Z the two arcs at level 3 which are different from A(3),
with |W | ≥ |Z|.

1. d ≤ |A(3)|+ |W |. This case is handled like in Theorem 3.1.
2. |A(3)|+|W | < d. There exists a sub-arc Z∗ of Z such that |Z∗|+|W |+|A(3)| = d.

As a result of the construction used on the previous level, we have that E(2) has at
least two boundaries. One boundary is one end of the arc A(3). The other boundary
in E(2) is one end of the arc X ∈ {A(3),W,Z}. We have two sub-cases:
Subcase 2.1 I(3) = ∅. Then we have that either {a+, a−} ⊆ E(2) or {a+, u−} ⊆
E(2). Moreover, either there is an arc on level 3 with both ends at a boundary in E(2)
or two arcs on level 3 with a boundary in E(2). In the former case, we can extend
the interval I(2) to cover the arcs X ,that is the arc A(3), including the interval
I(1). Then, redefining the interval I(1) as I(1) = W and defining I(3) = Z∗, we
guarantee that the four intervals I(0), . . . , I(3) define a question of the desired type.
In the latter case, we can extend the interval I(2) to cover the arcs A(3) and X ,
that is different from A(3). Then, defining I(3) = Z∗, it guarantees that the four
intervals I(0), . . . , I(3) define a question of the desired type.
Subcase 2.2 I(3) 6= ∅. Then, by the observations above, as a result of the con-
struction on level 2, either there is an arc on level 3 with both ends at a boundary
in E(2) or each arc on level 3 has a boundary in E(2). In the latter case, we can
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clearly extend the intervals I(2) and I(3) in order to cover d elements on level 3.
In the former case, we can extend the interval I(2) to cover the arcs X and A(3),
including the interval with the boundary at one and of X , say I(3). Then, redefining
the interval I(3) as I(3) = Z∗, it guarantees that the four intervals I(0), . . . , I(3)

define a question of the desired type.

Since in all the cases, the conditions of Lemma 3.2 are satisfied, the resulting states are
well shaped. ut

Lemma 3.5. Let σ be a well-shaped state with type τ(σ) = (1, 1, c2, d2), for every
integer 0 ≤ d ≤ d2, there exists a 4-interval question Q of type |Q| = [1, 0, 2, d] such
that the resulting “yes” and “no” states are well-shaped.

Proof. LetE be a non empty arc on level 2 and let e+ its boundary with U ∈ {P,Q,R}.
We use one interval I(0) to cover one element from the mode S. If |E| ≥ 2, we take
an interval I(1) on the arc E, in particular there exists e∗ in E such that the sub arc
E∗ ⊆ E with |E∗| = 2 is covered by I(1). In order to cover d elements on level
3, we extend the interval I(1) over U to cover up to |U | elements. Then, we use the
remaining two intervals I(2), I(3) to cover the remaining d− |U | elements over the arcs
{P,Q,R} \ {U}. In this case, we have that the interval I(0) is a mode-splitting interval.
The interval I(1) either is a mode-splitting interval or it is a downward step-splitting
interval while a mode at level 2 is completely uncovered. The intervals I(2) and I(3)

involves only arcs on level 3, thus they are not involved in the arc covering and spitting
on the lower levels. The conditions of Lemma 3.2 are satisfied, then we have that both
the resulting states are well shaped. Otherwise, |E| = 1, let F be a non empty arc,
different from E, on level 2 and let f+ its boundary with V ∈ {P,Q,R} \ {U}. Then,
we use the interval I(1) to cover entirely the arc E, and there exists f∗ ⊆ F such that
the sub arc F ∗ ∈ F is the arc spanning from f∗ to f+ which has |F ∗| = 1, covered by
an additional interval I(2). In order to cover d elements on level 3, as before, we extend
the interval I(1) over U to cover up to |U | elements and we extend the interval I(2) over
V to cover up to |V | elements. Finally, if necessary, the remaining interval I(3) is used
to include the remaining d− |U | − |V | elements over the last arc {P,Q,R} \ {U, V }.
In this case, we have that the interval I(0) is a mode-splitting interval. The interval I(1)

either is a mode-covering interval or it is a step-covering interval while the interval
I(2) is either a mode-splitting interval or it is a downward step-splitting interval. If
the interval I(2) is a downward step-splitting interval and the interval I(1) is a mode-
covering interval, then there exists a completely uncovered mode. The interval I(3)

involves only arcs on level 3, thus they are not involved in the arc covering and spitting
on the lower levels. The conditions of Lemma 3.2 are satisfied, then both the resulting
states are well shaped. ut

Lemma 3.6. Let σ be a well-shaped state of type τ(σ) = (1, 0, 3, d3). For every integer
0 ≤ d ≤ d3 there there exists a 4-interval question Q of type |Q| = [1, 0, 0, d] such that
the resulting “yes” and “no” states are well-shaped.

Proof. We use one interval I(0) to cover one element from the mode A. Then we use
the remaining three intervals I(1), . . . , I(3) to cover d elements over the remaining three
arcs, respectively P ,Q andR. We have that the interval I(0) is a mode-covering interval,
while the intervals I(1), . . . , I(3) involves only arcs at level 3 that does not affect the
splitting covering of the lower levels. The conditions of Lemma 2 are satisfied and the
resulting states are well shaped. ut
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3.4.1 The proof of the main theorem

Definition 3.7 (nice and 4-interval nice state). Following the a standard terminology
in the area, we say that a state σ is nice if there exists a strategy S of size ch(σ) that is
winning for σ. In addition we say that a state σ is 4-interval nice if: (i) σ is well shaped;
(ii) there exists a strategy S of size ch(σ) that is winning for σ and only uses 4-interval
questions

A direct consequence of the above definition is that a state σ is 4-interval nice if it
is well-shaped and, either it is a final state, or there is a 4-interval question for σ such
that both the resulting yes and no states are 4-interval nice.

With this definition we can state the following, which gives a sufficient condition
for the claim of Theorem 3.3.

Lemma 3.7. Fix an integer m ∈ N . If every well-shaped state of type (1,m,
(
m
2

)
,
(
m
3

)
)

is 4-interval nice then there exists a 4-interval question perfect strategy in the game
with 3 lies over the space of size 2m.

Proof. In the light of Definition 3.7 we will show that if (1,m,
(
m
2

)
,
(
m
3

)
) is 4-interval

nice then (2m, 0, 0, 0) is 4-interval nice.
We have the following claim directly following from Theorem 3.1.

Claim For each j = 0, 1, . . . ,m−1 let σ(j) = (2m−j , j2m−j ,
(
j
2

)
2m−j ,

(
j
3

)
2m−j). By

Theorem 3.1 if σ is a well-shaped state of type σ(j) then there is a 4-interval question
Q of type |Q| = [ |σ

−1(0)|
2 , |σ

−1(1)|
2 , |σ

−1(2)|
2 , |σ

−1(3)|
2 ] such that both the resulting yes

and no state are well shaped of type σ(j+1).
Therefore, starting from the well-shaped state (2m, 0, 0, 0) by repeated applica-

tion of the Claim, we have that there is a sequence of 4-interval questions such
that for every possible sequence of answers the resulting state is well-shaped and
of type (1,m,

(
m
2

)
,
(
m
3

)
). Since all the above questions are balanced, we also have that

ch(1,m,
(
m
2

)
,
(
m
3

)
) = ch(2m, 0, 0, 0)−m.

Therefore if it is true that every well-shaped state of type (1,m,
(
m
2

)
,
(
m
3

)
) is 4-

interval nice, it follows that (2m, 0, 0, 0) is also 4-interval nice, as desired. ut

The following lemma is actually a rephrasing (in the present terminology) of Propo-
sition 3.2.

Lemma 3.8. For n ∈ N let T (n) = {(1, 0, 0, n), (0, 1, 0, n), (0, 0, 1, n), (0, 0, 0, n)}.
Fix n ∈ N and let σ be a state of type τ ∈ T (n). Then σ is 4-interval nice.

Proof. First we observe that every state in σ is well-shaped since it has one arc on level
j ≤ 2 and one arc on level 3. The existence of a perfect strategy only using 4-interval
questions is a direct consequence of Proposition 3.2. ut

Definition 3.8 (0-typical state [70][101]).
Let σ be a state of type (t0, t1, t2, t3) with ch(t0, t1, t2, t3) = q. We say that σ is

0-typical if the following holds

t0 = 0; t2 ≥ t1 − 1; t3 ≥ q.

Lemma 3.9. Let σ be a 0-typical well shaped state of character ≥ 12, then there exists
a 4-interval question Q such that both the resulting states σyes and σno are 0-typical
well-shaped and ch(σyes) < ch(σ) and ch(σno) < ch(σ).
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Proof. Let (0, t1, t2, t3) be the type of σ. From [70, Theorems 3.3, 3.4] and [101,
Lemma 2] we have that if the type of Q is defined according to the following cases, then
both the resulting states σyes and σno are 0-typical and in addition ch(σyes) < ch(σ)
and ch(σno) < ch(σ).

Case 1. ch(σ) = k ≥ 3 and t2 ≥ 3k − 3
Case 1.1. t1 and t2 are even numbers. Then Q is chosen of type [0, t12 ,

t2
2 ,
⌊
t3
2

⌋
].

Case 1.2. t1 is even and t2 is odd. Then Q is chosen of type [0, t12 ,
⌊
t2
2

⌋
,
⌊
t3+k−1

2

⌋
].

Case 1.3. t1 is odd and t2 is even. Then Q is chosen of type1 [0, t1 −
⌊
t1
2

⌋
, t2 − ( t22 +

B1), t3−
⌊
t3−t−1

2

⌋
], whereB1 =

⌊
1
2

⌊
k2−k+2
2(k−1)

⌋⌋
and t = (2B1 +1)(k−1)−

k2−k+2
2 .

Case 1.4. t1 and t2 are odd. ThenQ is chosen of type2 [0, t1−
⌊
t1
2

⌋
, t2−(

⌊
t2
2

⌋
+B1), t3−⌊

t3−t−1
2

⌋
], where B1 =

⌈
1
2

⌊
k2−k+2
2(k−1)

⌋⌉
and t = 2B1(k − 1)− k2−k+2

2 .

Case 2. ch(σ) = k ≥ 4 and t3 ≥ k2.
Case 2.1. t1 and t2 are even numbers. Then Q is chosen of type [0, t12 ,

t2
2 ,
⌊
t3
2

⌋
].

Case 2.2. t1 is even and t2 is odd. Then Q is chosen of type [0, t12 ,
⌊
t2
2

⌋
,
⌊
t3+k−1

2

⌋
].

Case 2.3. t1 is odd and t2 is even. Then Q is chosen of type [0,
⌊
t1
2

⌋
, t22 ,

⌊
t3+t

2

⌋
], where

t = (k
2−3k+2

2 ) .
Case 2.4. t1 and t2 are odd. Then Q is chosen of type3 [0, t1 −

⌊
t1
2

⌋
, t2 −

⌈
t2
2

⌉
, t3 −⌊

t3+t
2

⌋
], where t = (k

2−5k+4
2 ).

By Lemma 3.3, for each one of the type considered in the above 8 cases, there is
a 4-interval question of that type such that the resulting states are well-shaped. This
completes the proof of the claim. ut

The 0-typical states of character ≤ 12. Let W̃ be the set of quadruples (0, t1, t2, t3)
such that for each τ ∈ W̃ the following two conditions are satisfied:

• every state σ of type τ is nice
• there exist 0 ≤ α1 ≤ dt1/2e and 0 ≤ α2 ≤ dt2/2e and 0 ≤ α3 ≤ t3 such that

asking a question of type [0, α1, α2, α3] in a state σ of type τ both the resulting
states σyes and σno have character smaller than σ.

Note that if σ is a well shaped state whose character is in W̃ then it is also 4-interval
nice, by Lemma 3.3.

We can exhaustively compute all the states in W̃ of character ≤ 12. More precisely,
we will compute all the pairs t1, t2, such that there exists t3 and (0, t1, t2, t3) ∈ W̃ ;
ch(0, t1, t2, t3) ≤ 12.

Let

M̃(t1, t2) =


1 t1 = t2 = 0;

0 t1 + t2 = 1;

min
0≤α1≤d t12 e, 0≤α2≤d t22 e

˜MinC(t1, t2, α1, α2) otherwise,

1 In [70, Theorem 3.3] the equivalent question of type [0,
⌊
t1
2

⌋
, t2

2
+B1,

⌊
t3−t−1

2

⌋
] is used.

2 In [70, Theorem 3.3] the equivalent question, type [0,
⌊
t1
2

⌋
,
⌊
t2
2

⌋
+B1,

⌊
t3−t−1

2

⌋
], is used.

3 In [70, Theorem 3.4] the equivalent question of type [0,
⌊
t1
2

⌋
,
⌈
t2
2

⌉
,
⌊
t3+t
2

⌋
], is used.



3.4 The non asymptotic strategy 43

where setting σ̃ = (0, t1, t2, 0) and σ̃yes = (0, y1, y2, y3) and σ̃no = (0, n1, n2, n3)
being the resulting yes and no states when question [0, α1, α2] is asked in state σ̃ and

• k1 = ch(σ̃yes)
• k2 = ch(σ̃no)
• k3 = ch(0, y1, y2, M̃(y1, y2))
• k4 = ch(0, n1, n2, M̃(n1, n2))

we have ˜MinC(t1, t2, α1, α2) = min{t3 | ch(0, t1, t2, t3) > max{k1, k2, k3, k4}}.
It is not hard to see that the quantities M̃ and ˜MinC can be computed by a

dynamic programming approach. The following proposition shows that they correctly
characterize quadruples in W̃ .

Proposition 3.4. The quadruple τ = (0, t1, t2, d) is in W̃ if and only if d ≥ M̃(t1, t2).

Proof. The statement immediately follows by [70, Definition 3.14, Corollary 3.15,
Proposition 3.16] where it is shown that a state (0, t1, t2, t3) is nice if and only if
t3 ≥ M(t1, t2) where M(t1, t2) is defined like M̃(t1, t2) but for the fact that αi can
be as large as ti for i = 1, 2. ut

By using the above functions, we can have an algorithm that exhaustively compute
all the 0-typical states of character ≤ 12 which are not in W̃ . It turns out all such states
have character ≤ 11. The states are reported in Table 3.1. It turns out that the output of
the computation of M̃(t1, t2) coincides with the output of the computation ofM(t1, t2),
the function considered in [70] which does not require αi ≤

⌈
ti
2

⌉
(i = 1, 2). In other

words, every well shaped state of character ≤ 12 which is nice is also 4-interval nice.
The following proposition summarizes the above discussion.

Proposition 3.5. Let σ be a 0-typical well shaped state of type (0, t1, t2, t3). If
ch(0, t1, t2, t3) ≥ 12, then σ is 4-interval nice. If ch(0, t1, t2, t3) ≤ 12 then σ is
4-interval nice unless it is one of the states in Table 3.1.

Lemma 3.10. Let σ be a well-shaped state of type (1, 0, 3, n) with n ≥ 7, then σ is
4-interval nice. Namely, there exists a 4-interval question Q such that both the resulting
states σyes and σno are 4-interval nice.

Proof. From [101, Lemma 5] for 7 ≤ n ≤ 9, we have that if the question Q is
defined as in Table 3.2 then the resulting states σyes and σno have character strictly
smaller than ch(σ) and they are nice. In addition, by Lemmas 3.3 and 3.6, we have
that each question reported in the table can be implemented using at most 4-intervals.
Moreover, the resulting states are also 4-interval nice as consequence of Lemma 3.8 and
as consequence of the observation that the state (0, 0, 4, 0) corresponds to the state (4, 0)
that is nice by [109] and, since the state has only four elements, it is straightforward to
implement every question with at most 4-intervals. From those observations, it follows
that a well shaped state of type (1, 0, 3, n), for 7 ≤ n ≤ 9 is 4-interval nice.

Let us now consider the case n ≥ 10. Let the question Q be a question of
type [1, 0, 3, x], then the resulting states σyes and σno have types (1, 0, 0, 3 + x) and
(0, 1, 3, n − x) respectively. Again from [101, Lemma 5] for n ≥ 10, we have that if
x =

⌊
(n+ 3q +

(
q
3

)
)/2
⌋
, where ch(σ) = q + 1, the resulting states σyes and σno are

nice. Moreover, from Lemma 3.6 it follows that the question Q can be implemented us-
ing at most 4 intervals, then we have that the resulting states σyes and σno are also well
shaped. Indeed, note that σyes is 4-interval nice by Lemma 3.8 while σno is 0-typical,
then it is 4-interval nice by Proposition 3.5.
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Character State Values of t3 Character State Values of t3

ch = 6 (0, 1, 5, t3) 6 ≤ t3 ≤ 7 ch = 9 (0, 7, 16, t3) 9 ≤ t3 ≤ 30
(0, 2, 1, t3) 6 ≤ t3 ≤ 13 (0, 7, 17, t3) 9 ≤ t3 ≤ 20
(0, 2, 2, 6) (0, 7, 18, t3) 9 ≤ t3 ≤ 10

(0, 8, 9, t3) 9 ≤ t3 ≤ 54
(0, 8, 10, t3) 9 ≤ t3 ≤ 44

ch = 7 (0, 2, 7, t3) 7 ≤ t3 ≤ 14 (0, 8, 11, t3) 9 ≤ t3 ≤ 34
(0, 3, 2, t3) 7 ≤ t3 ≤ 25 (0, 8, 12, t3) 9 ≤ t3 ≤ 24
(0, 3, 3, t3) 7 ≤ t3 ≤ 17 (0, 8, 13, t3) 9 ≤ t3 ≤ 14
(0, 3, 4, t3) 7 ≤ t3 ≤ 9 (0, 9, 8, t3) 9 ≤ t3 ≤ 18

ch = 10 (0, 13, 25, t3) 10 ≤ t3 ≤ 21
(0, 13, 26, 10)

ch = 8 (0, 3, 15, t3) 8 ≤ t3 ≤ 10 (0, 14, 17, t3) 10 ≤ t3 ≤ 53
(0, 4, 9, t3) 8 ≤ t3 ≤ 27 (0, 14, 18, t3) 10 ≤ t3 ≤ 42
(0, 4, 10, t3) 8 ≤ t3 ≤ 18 (0, 14, 19, t3) 10 ≤ t3 ≤ 31
(0, 4, 11, t3) 8 ≤ t3 ≤ 9 (0, 14, 20, t3) 10 ≤ t3 ≤ 20
(0, 5, 4, t3) 8 ≤ t3 ≤ 35 (0, 15, 14, t3) 10 ≤ t3 ≤ 30
(0, 5, 5, t3) 8 ≤ t3 ≤ 26 (0, 15, 15, t3) 10 ≤ t3 ≤ 19
(0, 5, 6, t3) 8 ≤ t3 ≤ 17
(0, 5, 7, 8) ch = 11 (0, 25, 30, t3) 11 ≤ t3 ≤ 13

Table 3.1: The table shows all the states of character ≤ 12 which are 0-typical but non nice
[70][101]. This set coincides with the set of types of well shaped states that are 0-typical but non
4-interval nice.

Lemma 3.11. Fix m ≥ 33 and let σ be a well shaped state of type (1,m,
(
m
2

)
,
(
m
3

)
).

Then, there exists a sequence of three 4-interval questions such that all the resulting
states are 4 interval-nice and of characters ≤ ch(σ)− 3.

Proof. By [101, Lemma 7] for a state σ satisfying the hypothesis of the lemma, there
exists a sequence of three questions such that all the resulting states are nice and
of character ≤ ch(σ) − 3. In particular, denoting by (1, b0, c0, d0) the state of type
(1,m,

(
m
2

)
,
(
m
3

)
) the questions are defined according to the following rules, where Qi

is the ith question (i = 1, 2, 3,) and Y ESi (resp. NOi) denotes the state resulting from
the answer yes (resp. no) to question Qi.

Let q = ch(1,m,
(
m
2

)
,
(
m
3

)
)− 2.

Table 3.2: First part of the proof of Lemma 3.10 and first part of the proof of [101, Lemma 5]

Case State Question Implementation Yes-State No-State

n = 7 (1, 0, 3, 7) [1, 0, 0, 2]? Lemma 3.6 (1, 0, 0, 5)a (0, 1, 3, 5)
(0, 1, 3, 5) [0, 1, 0, 5]? Lemma 3.3 (0, 1, 0, 8)a (0, 0, 4, 0)b

n = 8 (1, 0, 3, 8) [1, 0, 0, 3]? Theorem 3.6 (1, 0, 0, 6)a (0, 1, 3, 5)
(0, 1, 3, 5) [0, 1, 0, 5]? Lemma 3.3 (0, 1, 0, 8)a (0, 0, 4, 0)b

n = 9 (1, 0, 3, 9) [1, 0, 0, 4]? Theorem 3.6 (1, 0, 0, 7)a (0, 1, 3, 5)
(0, 1, 3, 5) [0, 1, 0, 5]? Lemma 3.3 (0, 1, 0, 8)a (0, 0, 4, 0)b

a 4-interval nice by Lemma 3.8. b Nice by [109] and having only four elements all the questions
can be implemented using at most 4 intervals
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Let Q1 be a question of type |Q1| = [1,
⌊
b0
2

⌋
,
⌊
c0
2

⌋
−
⌊
b0
2

⌋
, x]?. With x =

⌊
α
2

⌋
where α = d0 + 2

⌊
c0
2

⌋
− c0−2

⌊
b0
2

⌋
−
(
q+1

3

)
+
(
q+1

2

)
(b0 + 1−2

⌊
b0
2

⌋
) + (q+ 2)(c0 +

4
⌊
b0
2

⌋
− b0 − 2

⌊
c0
2

⌋
).

Thus, Y ES1 = (1,
⌊
b0
2

⌋
, b0 − 2

⌊
b0
2

⌋
+
⌊
c0
2

⌋
, c0 −

⌊
c0
2

⌋
+
⌊
b0
2

⌋
+ x) and NO1 =

(0, b0 + 1−
⌊
b0
2

⌋
, 2
⌊
b0
2

⌋
+ c0 −

⌊
c0
2

⌋
,
⌊
c0
2

⌋
−
⌊
b0
2

⌋
+ d0 − x) are the resulting states.

Let us now denote the type of Y ES1 as (1, b1, c1, d1) then let Q2 be a question of
type |Q2| = [1, 1,

⌊
c1
2

⌋
−
⌊
b1
2

⌋
, y]? with y =

⌊
β
2

⌋
where β = (b1− 1)

(
q
2

)
−
(
q
3

)
+ (q+

1)(c1 + 2− b1 + 2
⌊
b1
2

⌋
− 2

⌊
c1
2

⌋
) + d1 − c1 + 2

⌊
c1
2

⌋
− 2

⌊
b1
2

⌋
.

Thus, the type of the resulting states Y ES2 and NO2 are given by |Y ES2| =
(1, 1, b1−1+

⌊
c1
2

⌋
−
⌊
b1
2

⌋
, c1−

⌊
c1
2

⌋
+
⌊
b1
2

⌋
+y) and |NO2| = (0, b1, 1+c1−

⌊
c1
2

⌋
+⌊

b1
2

⌋
,
⌊
c1
2

⌋
−
⌊
b1
2

⌋
+ d1 − y).

Let us denote the type of Y ES2 by (1, b1, c1, d1) then question Q3 is chosen to be

of type |Q3| = [1, 0, 2, z]? with z =

⌊
d2+4−c2−(q−1

3 )+2(q−1
2 )+q(c2−5)

2

⌋
.

We have that the resulting states have type |Y ES3| = (1, 0, 3, c2 − 2 + z) and
|NO3| = (0, 2, c2 − 2, 2 + d2 − z).

It remains to show that each one of the above questions can be implemented using
only 4 intervals and guaranteeing that the resulting state is also well-shaped. This is
true of Q1 by Theorem 3.1; in addition question Q2 applied to the state Y ES1 satisfies
the constraints of Lemma 3.4. Finally, question Q3 asked in state Y ES2 satisfies the
constraints of Lemma 3.5.

Finally, we observe that the states NO1, NO2 and NO3 are 4-interval nice by
Proposition 3.5 and the states Y ES3 is 4-interval nice by Lemma 3.10. ut

Table 3.3: Case m = 1, after the first question and case m = 4, after the first four questions

State Question Implementation Yes-State No-State

m = 1 (1, 1, 0, 0) [1, 0, 0, 0]? Straightforward (1, 0, 1, 0) (0, 2, 0, 0)
(1, 0, 1, 0) [1, 0, 0, 0]? Straightforward (1, 0, 0, 1)a (0, 1, 1, 0)
(0, 2, 0, 0) [0, 1, 0, 0]? Straightforward (0, 1, 1, 0) (0, 1, 1, 0)
(0, 1, 1, 0) [0, 1, 0, 0]? Straightforward (0, 1, 0, 1)a (0, 0, 2, 0)b

m = 4 (1, 4, 6, 4) [1, 1, 3, 2]? Lemma 3.4 (1, 1, 6, 5) (0, 4, 4, 5)
(1, 1, 6, 5) [1, 0, 2, 3]? Lemma 3.5 (1, 0, 3, 7)c (0, 2, 4, 4)
(0, 4, 4, 5) [0, 2, 2, 3]? Lemma 3.3 (0, 2, 4, 5) (0, 2, 4, 4)
(0, 2, 4, 4) [0, 1, 2, 2]? Lemma 3.3 (0, 1, 3, 4) (0, 1, 3, 4)
(0, 2, 4, 5) [0, 1, 2, 3]? Lemma 3.3 (0, 1, 3, 5) (0, 1, 3, 4)
(0, 1, 3, 4) [0, 1, 0, 4]? Lemma 3.3 (0, 1, 0, 7)a (0, 0, 4, 0)b

(0, 1, 3, 5) [0, 1, 0, 5]? Lemma 3.3 (0, 1, 0, 8)a (0, 0, 4, 0)b

a 4-interval nice by Lemma 3.8. b Nice by [109] and having less then four elements all the
questions can be implemented using at most 4 intervals

Corollary 3.1. Fix m ∈ N = N \ {2, 3, 5} and let σ be a well shaped state of type
(1,m,

(
m
2

)
,
(
m
3

)
). Then σ is 4-interval nice.

Proof. The searching strategy for m = 1 is summarized in Table 3.3. Since the number
of elements is ≤ 2 trivially every question is a 4-interval question. The strategy for
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m = 4 are summarized in Table 3.3. The reason for the implementability of each
question involved by only using 4 intervals is indicated in the column “Implementation”
referring to the appropriate lemma.

Before proceeding to the analysis of the remaining cases, we note that given two
states σ = (t0, t1, t2, t3) and σ′ = (t′0, t

′
1, t
′
2, t
′
3) such that ch(σ) = ch(σ′) and for all

i = 0, 1, 2, 3 it holds that t′i ≤ ti, thus a perfect strategy for σ immediately gives a
perfect strategy for σ′. Therefore, in order to prove the claim for 6 ≤ m ≤ 32, it suffice
to consider the cases m ∈ {8, 12, 17, 23, 32}. In fact for each 6 ≤ m ≤ 32 such that
m 6∈ {8, 12, 17, 23, 32} there exists m′ ∈ {8, 12, 17, 23, 32} such that m′ ≥ m and
ch(2m, 0, 0, 0) = ch(2m

′
, 0, 0, 0). Hence, a perfect 4-interval strategy for the former

implies a perfect 4-interval strategy for the latter.
For each m ∈ {8, 12, 17, 23, 32} a 4-interval perfect strategy is described in Table

3.4. The analysis of the first three questions together with Lemma 3.10 and Proposition
3.5 is sufficient to prove the 4-interval niceness. Finally, for every m ≥ 33, the state
(1,m,

(
m
2

)
,
(
m
3

)
) is 4-interval nice by Lemma 3.11. ut

Table 3.4: Proof of Corollary 3.1 for 6 ≤ m ≤ 32 and proof of [101, Lemma 6]

Case State Question Implementation Yes-State No-State

m = 8 (1, 8, 28, 56) [1, 4, 10, 22]? Theorem 3.1 (1, 4, 14, 40) (0, 5, 22, 44)a

(1, 4, 14, 40) [1, 1, 5, 36]? Lemma 3.4 (1, 1, 8, 45) (0, 4, 10, 9)a

(1, 1, 8, 45) [1, 0, 2, 29]? Lemma 3.5 (1, 0, 3, 35)b (0, 2, 6, 18)a

m = 12 (1, 12, 66, 220) [1, 6, 27, 110]? Theorem 3.1 (1, 6, 33, 149) (0, 7, 45, 137)a

(1, 6, 33, 149) [1, 1, 13, 136]? Lemma 3.4 (1, 1, 18, 156) (0, 6, 21, 26)a

(1, 1, 18, 156) [1, 0, 2, 120]? Lemma 3.5 (1, 0, 3, 136)b (0, 2, 16, 38)a

m = 17 (1, 17, 136, 680) [1, 8, 60, 373]? Theorem 3.1 (1, 8, 69, 449) (0, 10, 84, 367)a

(1, 8, 69, 449) [1, 1, 30, 344]? Lemma 3.4 (1, 1, 37, 383) (0, 2, 35, 69)a

(1, 1, 37, 383) [1, 0, 2, 316]? Lemma 3.5 (1, 0, 3, 351)b (0, 2, 35, 69)a

m = 23 (1, 23, 253, 1771) [1, 11, 115, 946]? Theorem 3.1 (1, 11, 127, 1084) (0, 13, 149, 940)a

(1, 11, 127, 1084) [1, 1, 58, 767]? Lemma 3.4 (1, 1, 68, 836) (0, 11, 70, 375)a

(1, 1, 68, 836) [1, 0, 2, 700]? Lemma 3.5 (1, 0, 3, 766)b (0, 2, 66, 138)a

m = 32 (1, 32, 496, 4960) [1, 16, 232, 2545]? Theorem 3.1 (1, 16, 248, 2809) (0, 17, 280, 2647)a

(1, 16, 248, 2809) [1, 1, 116, 1852]? Lemma 3.4 (1, 1, 131, 1984) (0, 16, 133, 1073)a

(1, 1, 131, 1984) [1, 0, 2, 1635]? Lemma 3.5 (1, 0, 3, 1764)b (0, 2, 129, 351)a

a 4-interval nice by Proposition 3.5. b 4-interval nice by Lemma 3.10
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Prefix normal words

This chapter treats prefix normal words.
Prefix normal words are binary words with the property that no factor has more

1s than the prefix of the same length. For example, the word 1101011010 is prefix
normal, while 1101011011 is not since the factor 11011 has more ones than the prefix
11010. Prefix normal words were introduced by Fici and Lipták in [57] motivated by the
problem of Jumbled Pattern Matching [5, 6, 7, 23, 29, 34, 66, 85], a type of approximate
pattern matching. In the binary version of Jumbled Pattern Matching [49, 65, 98], given
a text and two non negative integers x and y, we ask if, within the text, there exists a
substring that has exactly x 0s and y 1s. Prefix normal words can be used to build an
index for the problem, via so-called prefix normal forms.

Prefix normal words have been recently extensively studied [11, 24, 25, 35, 36, 37,
62]. The language of prefix normal words has been connected to the Binary Reflected
Gray Code [121], and prefix normal words have been applied to a certain class of
graphs [20]. Furthermore, it has been shown that prefix normal words form a bubble
language [24, 25, 119] a family of binary languages with efficient1 generation algo-
rithms [120] which can be listed as a Gray code. A Gray code is a listing of a class of
words such that consecutive words differ by a constant number of operations. Bubble
languages include well-known classes of words such as Lyndon words, k-ary Dyck
words, and necklaces.

Generation algorithms can be used to count the number of prefix normal words
of a given length. The sequence of numbers of prefix normal words of length n is
present in the On-Line Encyclopedia of Integer Sequences (OEIS [124]) as sequence
A194850. Furthermore, there are two other sequences related to prefix normal words
in the OEIS: A238109 (a list of prefix normal words over the alphabet {1, 2}), and
A238110 (maximum size of the equivalence class of words with same prefix normal
form).

In Section 4.2 we present a new recursive generation algorithm for prefix normal
words of length n. In combinatorial generation, the aim is to find a way of efficiently
listing (but not necessarily outputting) each one of a given class of combinatorial objects.
Often it is necessary to examine each one of such objects, even though their number
may be very large, typically exponential. The latest volume 4A of Donald Knuth’s The

1 In combinatorial generation, the term efficient is used in the sense that the cost to generate one
word, without outputting it, should be small — in the best case, this cost is constant amortized
time (CAT).
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Art of Computer Programming devotes over 200 pages to combinatorial generation of
basic combinatorial patterns [82], such as permutations and bitstrings.

At the time of the development of this algorithm, and of its publication [35, 36], the
only known result on the running time of the previous generation algorithm from [24]
was amortized O(n) per word. It was conjectured that its actual running time is amor-
tized O(log n) per word. Recent results [112] show that the critical prefix length — the
critical prefix of a binary word is the first run of 1s followed by the first run of 0s. — of
a prefix normal word is O(log2 n) in expectation over all prefix normal words of length
n. This result improves the running time of the previous generation algorithm from [24]
to amortized O(log2n) per word.

Therefore our new algorithm was superior in that its running time is worst-case
O(n) time per word, and it allows new insights into properties of prefix normal words.
Our new algorithm recursively generates all prefix normal words from a seed word,
applying two operations, which are referred to as bubble and flip. It can be applied
(a) to produce all prefix normal words of fixed length, or (b) to produce all prefix
normal words of fixed length sharing the same critical prefix. This could prove useful
in counting prefix normal words of fixed length: this number grows exponentially and
asymptotically is 2n−θ(log2 n) [11], for prefix normal words of length n. It has been
also shown that this number is related to the number of prefix normal words of length
n that are palindromes [62]. However, neither a closed form nor a generating function
are known [25]. As a step towards counting prefix normal words, we characterize the
number of prefix normal words of length n having critical prefix of length greater than
dn/2e. Furthermore, a slight change in the algorithm produces a Gray code on prefix
normal words of length n.

In Section 4.3 we show some results about the extension of prefix normal words.
Pursuing the investigation of underlying structures of prefix normal words, we introduce
two operations on finite prefix normal words, which produce, in the limit, infinite prefix
normal words, when repeatedly applied. There exists periodic, ultimately periodic, and
aperiodic infinite prefix normal words (formal definition follow).

Among aperiodic infinite words, Sturmian words are a well known and widely
studied class of binary words. In Section 4.4 we use one of the previous extension
operations to establish connections between infinite prefix normal words and Sturmian
words, thus providing a complete characterization of Sturmian words which are prefix
normal. In Section 4.5 we establish connections between infinite prefix normal words
and lexicographic order. As in the finite case, we show that infinite prefix normal words
are infinite prenecklaces (formal definition follows) and that there exist infinite binary
words of each of the following categories: both prefix normal and Lyndon, prefix normal
but not Lyndon, Lyndon but not prefix normal, and neither of the two. Furthermore, we
compare prefix normal words with the max- and min-words of [110]. In Section 4.6 we
recall the notion of prefix normal forms from [57], as well as the fact that prefix normal
forms of a word are prefix normal words. We exploit the connections between prefix
normal forms and Abelian complexity [115]. We show that it is always possible to obtain
the Abelian complexity of a word given its prefix normal forms, while the converse
is not always possible. We provide sufficient conditions to obtain the prefix normal
forms of a word, given its Abelian complexity. Finally, in Section 4.7 we characterize
the periodicity and aperiodicity of prefix normal words with respect to their minimum
density, a new parameter we introduce in this context.

Partial contents of this chapter have been published in [35, 36, 37].
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4.1 Basics

A finite (resp. infinite) binary word w is a finite (resp. infinite) sequence of elements
from {0, 1}. Thus, an infinite word is a mapping w : N→ {0, 1}, where N denotes the
set of positive integers. We denote the i’th character of w by wi, and, if w is finite, its
length by |w|. Note that we index words from 1. The empty word, denoted ε, is the
unique word with length 0. The set of binary words of length n is denoted {0, 1}n, the
set of all finite words by {0, 1}∗ = ∪n≥0{0, 1}n, and the set of all infinite binary words
by {0, 1}ω. For a finite word u = u1 · · ·un we denote by urev = un · · ·u1 the reverse
of u, and by u = u1 · · ·un the complement of u, where a = 1 − a for a ∈ {0, 1}.
For two words u, v, where u is finite and v is finite or infinite, we write uv for their
concatenation. If w = uxv then u is called a prefix, x a factor (or substring), and v a
suffix of w. We denote by wi · · ·wj , for i ≤ j, the factor of w spanning the positions
i through j. We denote the set of factors of w by Fct(w) and its prefix of length i by
prefw(i), where prefw(0) = ε. For a finite word u, we write |u|1 for the number of
1s, and |u|0 for the number of 0s in u, and refer to |u|1 as the weight of u. The Parikh
vector of u is pv(u) = (|u|0, |u|1). A word w is called balanced if for all u, v ∈ Fct(w),
|u| = |v| implies ||u|1−|v|1| ≤ 1, and c-balanced if |u| = |v| implies ||u|1−|v|1| ≤ c.

For an integer k ≥ 1 and u ∈ {0, 1}n, uk denotes the kn-length word uuu · · ·u
(k-fold concatenation of u) and uω the infinite word uuu · · · . An infinite word w is
called periodic if w = uω for some non-empty word u, and ultimately periodic if
w = vuω for some v and non-empty u. If w = vuω, with v possibly empty, then
we refer to u as a period of w [47]. A word that is neither periodic nor ultimately
periodic is called aperiodic. We set 0 < 1 and denote by ≤lex the lexicographic order
between words, i.e. u ≤lex v if u is a prefix of v or there is an index i ≥ 1 s.t.
ui < vi and prefu(i− 1) = prefv(i− 1). For an operation op : {0, 1}∗ → {0, 1}∗, we
denote by op(i) the ith iteration of op. Further, let op∗(w) = {op(i)(w) | i ≥ 1} and
opω(w) = limi→∞ op(i)(w), if it exists.

Definition 4.1 (Prefix weight, prefix density, maximum and minimum 1s and 0s
functions). Let w be a (finite or infinite) binary word. We define the following functions:

• Pw(i) = |prefw(i)|1, the weight of the prefix of length i,
• Dw(i) = Pw(i)/i, the density of the prefix of length i,
• F 1

w(i) = max{|u|1 : u ∈ Fct(w), |u| = i} and f1
w(i) = min{|u|1 : u ∈

Fct(w), |u| = i}, the maximum resp. minimum number of 1s in a factor of length i,
• F 0

w(i) = max{|u|0 : u ∈ Fct(w), |u| = i} and f0
w(i) = min{|u|0 : u ∈

Fct(w), |u| = i}, the maximum resp. minimum number of 0s in a factor of length i.

Note that in the context of succinct indexing, the function Pw(i) is often called
rank1(w, i). If clear from the contex we write P (i) for Pw(i). We are now ready to
define prefix normal words.

Definition 4.2 (Prefix normal words, prefix normal condition). A (finite or infinite)
binary word w is called 1-prefix normal, or simply prefix normal, if Pw(i) = F 1

w(i)
for all i ≥ 1 (for all 1 ≤ i ≤ |w| if w is finite). It is called 0-prefix normal if
i− Pw(i) = F 0

w(i) for all i ≥ 1 (for all 1 ≤ i ≤ |w| if w is finite). We denote the set
of all finite 1-prefix normal words by Lfin, the set of all infinite 1-prefix normal words
by Linf , and L = Lfin ∪ Linf . The set of prefix normal words of length n is denoted Ln.
Given a binary word w, we say that a factor u of w satisfies the prefix normal condition
if |u|1 ≤ Pw(|u|).
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In other words, a word w is prefix normal (i.e. 1-prefix normal) if no factor u of
w has more 1s than the prefix of the same length, i.e., |u|1 ≤ Pw(|u|), thus satisfy the
prefix normal condition. Note that unless further specified, by prefix normal we mean
1-prefix normal.

For a prefix normal word u, every factor of the infinite word u0ω respects the prefix
normal condition, thus u0ω is an infinite prefix normal word. Clearly, as for finite words,
it holds that an infinite word is prefix normal if and only if all its prefixes are prefix
normal. Therefore, the existence of infinite prefix normal words can also be derived from
König’s Lemma (see [92]), which states that the existence of an infinite prefix-closed
set of finite words implies the existence of an infinite word which has all its prefixes in
the set.

Example 5. The word 110100110110 is not prefix normal since the factor 11011 has
four 1s, which is more than in the prefix 11010 of length 5. The word 110100110010,
on the other hand, is prefix normal. The infinite word (11001)ω is not prefix normal,
because it has 111 as a factor, which has more 1s than the prefix of length 3, but the word
(11010)ω is. The periodic words 0ω , 1ω and (10)ω are prefix normal; the ultimately
periodic word 1(10)ω is prefix normal; the aperiodic word 10100100010000 · · · =
limn→∞ 10102 · · · 10n is prefix normal.

It is easy to see that the number of prefix normal words grows exponentially, by
noting that 1nw is prefix normal for any w of length n. In Table 4.1, we list all prefix
normal words for lengths n ≤ 5. It has been shown that the number of prefix normal
words is 2n−θ(log2 n), however finding a closed form remains and open problem, see [25]
for partial results and [11] for asymptotics. The cardinalities of Ln for n ≤ 50 can be
found in the On-Line Encyclopedia of Integer Sequences (OEIS [124]) as sequence
A194850.

Table 4.1: The set Ln of prefix normal words of length n for n = 1, 2, 3, 4, 5.

L1 L2 L3 L4 L5

0 00 000 110 0000 1010 1110 00000 10010 11000 11011 11110
1 10 100 111 1000 1100 1111 10000 10100 11001 11100 11111

11 101 1001 1101 10001 10101 11010 11101

Next, we give some basic facts about prefix normal words which will be needed in
the following.

Fact 4.1 (Basic facts about prefix normal words [25]) Let w ∈ {0, 1}n.

(i) If w ∈ Lfin, then either w = 0n or w1 = 1.
(ii) w ∈ L if and only if prefi(w) ∈ L for i = 1, . . . , n.

(iii) If w ∈ L then w0i ∈ L for all i = 1, 2, . . . .
(iv) Let w ∈ Lfin. Then w1 ∈ Lfin if and only if for all 1 ≤ i < n, we have Pw(i+ 1) >
|wn−i+1 · · ·wn|1.

Furthermore, we introduce the critical prefix of word. The length of the critical
prefix plays an important role in the analysis of the previous generation algorithm for
prefix normal words [24].
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Definition 4.3 (Critical prefix). A non-empty binary word w can be uniquely written
in the form w = 1s0tγ, where s, t ≥ 0, s = 0 implies t > 0, and γ ∈ 1{0, 1}∗ ∪ {ε}.
We refer to 1s0t as the critical prefix of w.

Example 4.1. For example, the critical prefix of 1100001001 is 110000, that of 0011101001
is 00, while the critical prefix of 1111000000 is 1111000000.

In [112], the authors show that the critical prefix length of a prefix normal word is
O(log2 n) in expectation over all prefix normal words of length n. In Section 4.2.3, we
will see how to adapt our algorithm to generate all prefix normal words with critical
prefix 1s0t in a single execution.

We, now, briefly discuss combinatorial Gray codes. Recall that a Gray code is a
listing of all bitstrings (or binary words) of length n such that two successive words differ
by exactly one bit. In other words, a Gray code is a sequence w(1), w(2), . . . , w(2n) ∈
{0, 1}n such that dH(w(i), w(i+1)) = 1 for i = 1, . . . , 2n−1, where dH(x, y) = |{1 ≤
j ≤ n : xj 6= yj}| is the Hamming distance between two equal-length words x and y.

This definition has been generalized in several ways, we give a definition follow-
ing [117, ch. 5].

Definition 4.4 (Combinatorial Gray Code). Given a set of combinatorial objects S
and a relation C on S (the closeness relation), a combinatorial Gray code for S
is a listing s1, s2, ..., s|S| of the elements of S, such that (si, si+1) ∈ C for i =
1, 2, ..., |S| − 1. If we also require that (s|S|, s1) ∈ C, then the code is called cyclic.

In particular, a listing of the elements of a binary language S ⊆ {0, 1}n, such
that each two subsequent words have Hamming distance bounded by a constant, is
a combinatorial Gray code for S. Note that the specification ’combinatorial’ is often
dropped, so the term Gray code is frequently used in this more general sense.

To close this section, we introduce the concepts of minimum density and slope,
related to the density of the word.

Definition 4.5 (Minimum density, minimum density prefix, slope). Letw ∈ {0, 1}∗∪
{0, 1}ω. Define the minimum density of w as δ(w) = inf{Dw(i) | 1 ≤ i}. If this infi-
mum is attained somewhere, then we also define

ι(w) = min{j | ∀i : Dw(j) ≤ Dw(i)}, and κ(w) = Pw(ι(w)).

We refer to prefw(ι(w)) as the minimum-density prefix, the shortest prefix with density
δ(w).
For an infinite word w, we define the slope of w as limi→∞Dw(i), if this limit exists.

Example 4.2. For w = 110100101001 and u = 110100101010 we have δ(w) =
5/11, ι(w) = 11, κ(w) = 5, and δ(u) = 1/2, ι(u) = 6, κ(u) = 3. For the in-
finite words v = (10)ω and v′ = 1(10)ω, we have δ(v) = δ(v′) = 1/2, and
ι(v) = 2, κ(v) = 1, while ι(v′) is undefined, since no prefix attains density 1/2.

Remark 1. Note that ι(w) is always defined for finite words, while for infinite words, a
prefix which attains the infimum may or may not exist. We note further that density and
slope are different properties of (infinite) binary words. In particular, while δ(w) exists
for every w, the limit limi→∞Dw(i) may not exist, i.e., w may or may not have a slope.
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As an example, consider the word w = v0v1v2 · · · , where for each i, vi = 12i02i . Then,
δ(w) = 1/2 and limi→∞Dw(i) does not exist, sinceDw(i) has an infinite subsequence
constant 1/2, and another which tends to 2/3.

Moreover, even for words w for which the slope is defined, this can be different
from the minimum density. If w has slope α, then α = δ(w) if and only if for all i,
Dw(i) ≥ α. For instance, the infinite word 01ω has slope 1 but its minimum density
is 0. On the other hand, the infinite word 1(10)ω has both slope and minimum density
1/2.

4.2 The Bubble-Flip algorithm

In this section we present our new generation algorithm for all prefix normal words of
a given length. We show that the words are generated in lexicographic order. We also
show how our procedure can be easily adapted to generate all prefix normal words of a
given length with the same critical prefix.

Comparing our new algorithm to the algorithm of [24], both algorithms generate
prefix normal words recursively, but they differ in fundamental ways. The algorithm
of [24] is an application of a general schema for generating bubble languages, using a
language-specific oracle. It generates separately the sets of prefix normal words with
fixed weight d, i.e. all prefix normal words of length n containing d 1s. The computation
tree is not binary, since each word w can have up to t children, where t is the number of
0s in the first run of 0s of w. The algorithm uses an additional linear size data structure
which it inherits from the parent node and modifies for the current node. A basic feature
of the computation tree is that all words have the same fixed suffix, in other words, for
the subtree rooted in the word w = 1s0tγ, all nodes are of the form vγ, for some v.

In contrast, our new algorithm generates all prefix normal words of length n (except
for 0n and 10n−1) in one single recursive call, starting from 110n−2. The computation
tree is binary, since each word can have at most two children, namely the one produced
by the operation bubble, and the one by flip. Finally, for certain words w, the words in
the subtree rooted in w have the same critical prefix as w. This last property allows us
to explore the sets of prefix normal words with fixed critical prefix.

4.2.1 The algorithm

Let w ∈ {0, 1}n. We let RightmostOne(w) be the largest index r such that wr = 1,
if it exists, and∞ otherwise. We will use the following operations on prefix normal
words:

Definition 4.6 (Operation flip). Given w ∈ {0, 1}n, and 1 ≤ j ≤ n, we define
flip(w, j) to be the binary word obtained by changing the j-th character in w, i.e.,
flip(w, j) = w1w2 · · ·wj−1wjwj+1 · · ·wn, where x is 1− x.

Definition 4.7 (Operation bubble). Givenw ∈ {0, 1}n\{0n} and r = RightmostOne(w) <
n, we define bubble(w) = w1w2 · · ·wr−1010n−r−1, i.e., the word obtained from w by
shifting the rightmost 1 one position to the right.

We start by giving a simple characterization of those flip-operations which preserve
prefix normality.
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Lemma 4.1. Let w ∈ Ln such that r = RightmostOne(w) < n and let j be an index
with r < j ≤ n. Then w′ = flip(w, j) is not prefix normal if and only if there exists a
1 ≤ k < r such that |wr−k+1 · · ·wr|1 = Pw(k) and |wk+1 · · ·wk+j−r|1 = 0.

Proof. If there exists a 1 ≤ k < r such that |wr−k+1 · · ·wr|1 = Pw(k) and
|wk+1 · · ·wk+j−r|1 = 0, then for the factor u = w′r−k+1 · · ·w′j of w′, we have
|u| = k + (j − r) and |u|1 = Pw′(k) + 1 > Pw′(k + (j − r)) = Pw′(|u|), thus
w′ is not prefix normal.

Conversely, note that w′ ∈ L if and only if v = prefj(w
′) ∈ L, by Fact 4.1

(ii) and (iii). If v 6∈ L, then, by Fact 4.1 (iv), there exists a suffix u of w1 · · ·wj−1

such that |u|1 ≥ Pw(|u| + 1) . Clearly, u cannot be shorter than j − r − 1, since
then |u|1 = 0 < Pw(|u| + 1), since w is prefix normal and contains at least one
1. So u spans the position r of the last one of w. Let us write u = u′0j−r−1, with
k := |u′|. So we have Pw(k) ≥ |u′|1 = |u|1 ≥ Pw(|u| + 1), implying |u′|1 =
|wr−k+1 · · ·wr|1 = Pw(k) by monotonicity of P . Moreover, again by the mononicity
of P , we get Pw(k) = Pw(|u| + 1), which implies that the factor wk+1 · · ·wk+j−r
consists of only 0s. ut

Algorithm 1: COMPUTE ϕ

input :A prefix normal word w.
output :The leftmost index j, after the rightmost 1 of w, such that flip(w, j) is prefix

normal.

1 r ← RightmostOne(w), f ← 0, g ← 0, i← 1, max← 0
2 while i < r do
3 f ← f + wi, g ← g + wr−i+1

4 if f = g then
5 l← 0, i← i+ 1
6 while i < r and wi = 0 do
7 l← l + 1, i← i+ 1

8 if l > max then
9 max← l

10 else
11 i← i+ 1

12 return min{r +max+ 1, n+ 1}

Definition 4.8 (Phi). Let w ∈ Ln \ {0n}. Let r = RightmostOne(w). Define ϕ(w) as
the minimum j such that r < j ≤ n and flip(w, j) is prefix normal, and ϕ(w) = n+ 1
if no such j exists.

Example 4.3. For the word w = 1101001001011000, we have ϕ(w) = 16, since the
words flip(w, 14) and flip(w, 15) both violate the prefix normal condition, for the
prefixes of length 3 and 6, respectively.

Lemma 4.2. Let w ∈ Ln \ {0n} and let r = RightmostOne(w). Let m be the max-
imum length of a run of zeros following a prefix of w1 · · ·wr−1 which has the same
number of 1s as the suffix of w1 · · ·wr of the same length. Formally,
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m = max
1≤`<r

{` | ∃k s.t. |wr−k+1 · · ·wr|1 = Pw(k) and |wk+1 · · ·wk+`|1 = 0},

where we set the maximum of the empty set to 0. Then, ϕ(w) = min(r+m+ 1, n+ 1).

Proof. We first show that ϕ(w) ≤ r + m + 1. We can assume that m < n − r, for
otherwise the desired inequality holds by definition. Let m′ = m+ 1. Then, there are
no j, k ∈ {1, . . . , r − 1} such that j − k = m′, |w1 · · ·wk|1 = |wr−k+1 · · ·wr|1 and
|wk+1 · · ·wj |1 = 0. Thus, by Lemma 4.1, we have that flip(w, r + m′) ∈ L, hence
ϕ(w) ≤ r +m′ = r +m+ 1.

Let now j, k be indices attaining the maximum in the definition of m, i.e., 1 <
k < j < r, j − k = m, |w1 · · ·wk|1 = |wr−k+1 · · ·wr|1 and |wk+1 · · ·wj |1 = 0.
Let 0 < m′ ≤ m then for j′ = k +m′ we have |w1 · · ·wk|1 = |wr−k+1 · · ·wr|1 and
|wk+1 · · ·wj′ |1 = 0. Then, by Lemma 4.1, flip(w, r+m′) 6∈ L.Hence ϕ(w) > r+m′,
for m′ ≤ m, and in particular ϕ(w) ≥ r +m+ 1, which completes the proof. ut

Algorithm 1 implements the idea of Lemma 4.2 to compute ϕ. For a given prefix
normal word w, it finds the position r of the rightmost 1 in w. Then, for each length i
such that the number of 1s in prefi(w) (counted by f ) is the same as the number of 1s
in wr−i+1 · · ·wr (counted by g), the algorithm counts the number of 0s in w following
prefi(w) and sets m to the maximum of the length of such runs of 0’s. By Lemma 4.2
and the definition of ϕ it follows that min{r+m+ 1, n+ 1} is equal to ϕ, as correctly
returned by Algorithm 1. It is not hard to see that the algorithm has linear running
time since the two while-loops are only executed as long as i < r, and the variable i
increases at each iteration of either loop. Therefore, the total number of iterations of
the two loops together is upper bounded by r ≤ n. Thus, we have proved the following
lemma:

Lemma 4.3. Forw ∈ Ln\{0n}, Algorithm 1 computesϕ(w) inO(RightmostOne(w)),
hence O(n) time.

The next lemma gives the basis of our algorithm: applying either of the two opera-
tions flip(w,ϕ(w)) or bubble(w) to a prefix normal word w results in another prefix
normal word.

Lemma 4.4. Let w ∈ Ln \ {0n}. Then the following holds:

a) for every `, such that ϕ(w) ≤ ` ≤ n, flip(w, `) is prefix normal, and
b) if |w|1 ≥ 2 then bubble(w) is prefix normal.

Proof. Let r = RightmostOne(w). In order to show a) we can proceed as in the
proof of the upper bound in Lemma 4.2. Fix ϕ(w) ≤ ` ≤ n, and let m′ = ` − r.
Then, by Lemma 4.2, there exist no 1 < j < k < r such the k − j = m′ and
|w1 · · ·wk|1 = |wr−k+1 · · ·wr|1 and |wk+1 · · ·wj |1 = 0. This, by Lemma 4.1, implies
that flip(w, `) ∈ L.

For b), let r′ = max{i < r | wi = 1}, i.e., r′ is the position of the penultimate
1 of w. Let w′ = w1 · · ·wr′0n−r

′
. By Fact 4.1 we have that w′ ∈ L. Moreover,

r ≥ ϕ(w′), since flip(w′, r) = w ∈ L. Therefore, by a) we have that bubble(w) =
flip(w′, r + 1) ∈ L. ut
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Definition 4.9 (PN ). Given w ∈ Ln \ {0n} with r = RightmostOne(w), we define
PN (w) as the set of all prefix normal words v of length n such that v = w1 · · ·wr−1γ
for some γ with |γ|1 > 0. Formally,

PN (w) = {v ∈ Ln | v = w1 · · ·wr−1γ, |γ|1 > 0}.

We will use the convention that PN (flip(w,ϕ(w))) = ∅ if ϕ(w) > n, furthermore
PN (bubble(w)) = ∅ if RightmostOne(w) = n, since then flip(w,ϕ(w)) resp.
bubble(w) are undefined.

Lemma 4.5. Given w ∈ Ln \ {0n, 10n−1}, we have

PN (w) = {w} ∪ PN (flip(w,ϕ(w))) ∪ PN (bubble(w)).

Moreover, these three sets are pairwise disjoint.

Proof. It is easy to see that the sets {w}, PN (bubble(w)), PN (flip(w, ϕ(w))) are
pairwise disjoint.

The inclusion PN (w) ⊇ {w} ∪ PN (flip(w,ϕ(w))) ∪ PN (bubble(w)) follows
from the definition of PN (Def. 4.9).

Now let x ∈ PN (w) \ {w} and r = RightmostOne(w). We argue by cases
according to the character xr.

Case 1. xr = 0. Then, x = w1 · · ·wr−10γ for some γ ∈ {0, 1}n−r such that |γ|1 >
0. Since bubble(w) = w1 · · ·wr−1010n−r−1, it follows that x ∈ PN (bubble(w)).

Case 2. xr = 1. Then, since x 6= w,we also have that |xr+1 · · ·xn|1 > 0. Therefore,
x = w1 · · ·wr−11γ for some γ ∈ {0, 1}n−r such that |γ|1 > 0.

Let r′ = min{i > r | xr′ = 1}. Since x ∈ L, we have that prefr(x)0n−r,
prefr′(x)0n−r

′ ∈ L.Moreover, prefr′(x)0n−r
′

= flip(prefr(x)0n−r, r′), hence, r′ ≥
ϕ(prefr(x)0n−r) = ϕ(w). Therefore, x = w1 · · ·wr0ϕ(w)−r−1γ for some |γ|1 > 1.
This, by definition, means that x ∈ PN (flip(w,ϕ(w))). ut

We are now ready to give an algorithm computing all words in the set PN (w) for a
prefix normal wordw. The pseudocode is given in Algorithm 2. The procedure generates
recursively the set PN (w) as the union of PN (flip(w,ϕ(w))) and PN (bubble(w)).
The call to subroutine V isit() is a placeholder indicating that the algorithm has gen-
erated a new word in PN (w), which could be printed, or examined, or processed, as
required. By Lemma 4.5 we know that V isit() is executed for each word in PN (w)
exactly once.

In order to ease the running time analysis, we next introduce a tree T (w) onPN (w).
This tree coincides with the computation tree of GENERATE PN (w), but it will be
useful to argue about it independently of the algorithm.

Definition 4.10 (Tree on PN (w)). Let w ∈ Ln \ {0n, 10n−1}. Then we denote by
T (w) the rooted binary tree T with V (T ) = PN (w), root w, and for a node v, (1) the
left child of v is empty if vn = 1 and it is bubble(v) otherwise, and (2) the right child
of v is empty if ϕ(v) = n+ 1, and it is flip(v, ϕ(v)) otherwise.

The tree PN (w) has the following easy-to-see properties.

Observation 4.1 (Properties of T (w)) There are three types of nodes: the root w,
bubble-nodes (left children), and flip-nodes (right children).
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Algorithm 2: GENERATE PN (w)

input :A prefix normal word w such that |w|1 > 1.
output :The set PN (w).

1 if RightmostOne(w) 6= n then
2 w′ = bubble(w)
3 GENERATE PN (w′)

4 V isit()
5 j = ϕ(w)
6 if j ≤ n then
7 w′′ = flip(w, j)
8 GENERATE PN (w′′)

1. The leftmost descendant of w has maximal depth, namely n − r, where r =
RightmostOne(w).

2. If a node v has a right child, then it also has a left child.
3. If a node v has no right child, then no descendant of v has a right child. Thus

in this case, the subtree rooted in v is a path of length n − r′, consisting only of
bubble-nodes, where r′ = RightmostOne(v).

The next lemma gives correctness, the generation order, and running time of algo-
rithm GENERATE PN (w).

Lemma 4.6. For w ∈ Ln \{0n, 10n−1}, Algorithm 2 generates all prefix normal words
in PN (w) in lexicographic order in O(n) time per word.

Proof. Algorithm 2 recursively generates first all words in PN (bubble(w))), then the
word w, and finally the words in PN (flip(w,ϕ(w))). As we saw above (Lemma 4.5),
these sets form a partition of PN (w), hence every word v ∈ PN (w) is generated
exactly once. Moreover, by definition of PN , for every u ∈ PN (bubble(w)) it holds
that u = w1 · · ·wr−10γ with |γ| = n− r and |γ|1 > 0, thus it follows that u <lex w.
In addition, for every v ∈ PN (flip(w,ϕ(w))) it holds that v = w1 · · ·wr−11βγ where
|β| = k = ϕ(w) − r − 1, |β|1 = 0, |γ| = n − r − k and |γ|1 > 0, thus w <lex v.
Since these relations hold at every level of the recursion, it follows that the words are
generated by Algorithm 2 in lexicographic order.

For the running time, note that in each node v, the algorithm spends O(n) time on
the computation of ϕ(v) (Lemma 4.3), and if vn 6= 1, another O(1) time on computing
bubble(v), and finally, if ϕ(v) ≤ n, further O(1) time on computing flip(v, ϕ(v)).
This gives a total running time of O(n · PN (w)), so O(n) amortized time per word.
We now show that it actually runs in O(n) time per word.

Notice that the algorithm performs an in-order traversal of the tree T (w). Given a
node v, the next node visited by the algorithm is given by:

next(v) =


leftmost descendant of right child, if ϕ(v) ≤ n,
parent(v), if ϕ(v) > n and v is a left child,
parent of first left child on path from v to root, otherwise.

In all three cases, the algorithm first computesϕ(v), takingO(n) time by Lemma 4.3.
In the first case, it then descends down to the leftmost descendant of the right child,
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which takes n− ϕ(v) bubble operations, in O(n) time. In the second case, the parent is
reached by one operation (moving the last 1 one position to the left if v is a left child,
and flipping the last 1 if v is a right child), taking O(1) time. Finally, in the third case,
we have up to depth of v many steps of the latter kind, each taking constant time, so
again in total O(n) time. In all three cases, we get a total of O(n) time before the next
word is visited. ut

Fig. 4.1: The words in PN (11010000) represented as a tree. If a node of the tree is word w,
then its left child is bubble(w) and its right child is flip(w,ϕ(w)). In the tree, the position of
ϕ(w) is indicated, whenever ϕ(w) ≤ n; bubble operations (in the left child) resp. flip operations
(in the right child) are highlighted in bold. Algorithm 2 generates these words by performing an
in-order traversal of the tree. The corresponding list of words is given on the right.

Now we are ready to present the full algorithm generating all prefix normal words
of length n, see Algorithm 3 (BUBBLE-FLIP). It first visits the two prefix normal words
0n and 10n−1, and then generates recursively all words in Ln containing at least two
1s, from the starting word 110n−2.

Algorithm 3: BUBBLE-FLIP

input :An integer n.
output :All prefix normal words of length n.

1 w = 0n

2 V isit()
3 w = 10n−1

4 V isit()
5 w = 110n−2

6 GENERATE PN (w)

Theorem 4.1. The BUBBLE-FLIP algorithm generates all prefix normal words of length
n, in lexicographic order, and in O(n) time per word.

Proof. Recall that by Fact 4.1(i) every prefix normal word of length n, other than 0n,
has 1 as its first character. It is easy to see that there is only one prefix normal word of
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length n with a single 1, namely 10n−1. Moreover, by Fact 4.1(i) and the definition of
PN , the set of all prefix normal words of length n with at least two 1s coincides with
PN (110n−2). By Lemma 4.6, this set is generated by GENERATE PN (110n−2) in
lexicographic order and in O(n) time per word. Noting that prepending 0n and 10n−1

preserves the lexicographic order concludes the proof. ut

4.2.2 Listing Ln as a combinatorial Gray code

The algorithm GENERATE PN (w) (Algorithm 2) performs an in-order traversal of the
nodes of the tree T (w). If instead we do a post-order traversal, we get a combinatorial
Gray code of Ln, as we will show next. First note that the change in the traversal order
can be achieved by moving line 4 in Algorithm 2 to the end of the code, resulting in
Algorithm 4.

Algorithm 4: GENERATE2 PN (w)

input :A prefix normal word w such that |w|1 > 1.
output :A combinatorial Gray code on PN (w).

1 if RightmostOne(w) 6= n then
2 w′ = bubble(w)
3 GENERATE2 PN (w′)

4 j = ϕ(w)
5 if j ≤ n then
6 w′′ = flip(w, j)
7 GENERATE2 PN (w′′)

8 V isit()

Lemma 4.7. In a post-order traversal of T (w), two consecutive words have Hamming
distance at most 3.

Proof. Let v be some node visited during the traversal of T (w). If v is a flip-node, then
the next node in the listing will be its parent node v′. Since v = flip(v′, ϕ(v′)), v′ is
at Hamming distance 1 from v. Otherwise v is a bubble-node, i.e. v = u010k and its
parent is u10k+1 for some word u and integer k. If v has no right sibling, then the next
node visited is its parent, at Hamming distance 2 from v. Else the next node v′ is the
leftmost descendant of v’s right sibling, i.e. v′ = u10k1, and the Hamming distance to
v is at most 3. ut

Example 4.4. The words in PN (11010000) (Fig. 4.1) are listed by Algorithm 4 as
follows: 11000001, 11000011, 11000010, 11000101, 11000110, 11000100, 11001001,
11001010, 11001100, 11001000, 11010001, 11010011, 11010010, 11010101, 11010110,
11010100, 11011001, 11011011, 11011010, 11011000, 11010000.

Theorem 4.2. The BUBBLE-FLIP algorithm using a post-order traversal produces a
cyclic combinatorial Gray code on Ln, generating each word in time O(n).
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Proof. By Lemma 4.7, GENERATE2 PN (110n−2) produces a combinatorial Gray code.
By visiting the two words 0n and 10n−1 first, followed by GENERATE2 PN (110n−2),
we get a combinatorial Gray code on all of Ln. The last word in this code is the root
110n−2 and dH(110n−2, 0n) = 2 ≤ 3, thus this code is also cyclic.

Since only the order of the tree traversal changed w.r.t. the previous algorithm, it
follows immediately that the algorithm visits Ln in amortized O(n) time per word,
since the overall running time is, as before, O(n|L|).

To see that the time to visit the next word is O(n), we distinguish two cases
according to the type of node. If v is a flip-node, then the next node is its parent, taking
O(1) time to reach. If v is a bubble-node, then we have to check whether it has a right
sibling by computing ϕ(v′), where v′ is the parent of v, in O(n) time. If ϕ(v′) > n,
then the next node is v′. If ϕ(v′) ≤ n, then we have to reach the leftmost descendant of
flip(v′, ϕ(v′)), passing along the way only bubble-nodes. This takes n− ϕ(v′) time, so
altogether O(n) time for the node v. ut

4.2.3 Prefix normal words with given critical prefix

Recall Definition 4.3. It was conjectured in [24] that the average length of the critical
prefix taken over all prefix normal words is O(log n). Using the BUBBLE-FLIP algo-
rithm, we can generate all prefix normal words with a given critical prefix u, which
could prove useful in proving or disproving this conjecture. Moreover, if we succeed in
counting prefix normal words with critical prefix u = 1s0t, then this could lead to an
enumeration of |Ln|, another open problem on prefix normal words [25].

In the following lemma, we present a characterization of prefix normal words of
length n with the same critical prefix 1s0t in terms of our generation algorithm. For
s ≥ 1, t ≥ 0, let us denote by CritSet(s, t, n) the set of all prefix normal words of
length n and critical prefix 1s0t. Note that there is only one prefix normal word whose
critical prefix has s = 0, namely 0n.

Lemma 4.8. Fix s ≥ 1 and t ≥ 0, and let u = 1s0t. Then,

CritSet(s, t, n) =

{
{u} if s+ t = n,

{v} ∪ PN (flip(v, ϕ(v)), if s+ t < n,

where v = u10n−(s+t+1).

Proof. If s+ t = n, then clearly CritSet(s, t, n) = {u}. Otherwise,

CritSet(s, t, n) = {u10n−(s+t+1)} ∪ {u1γ ∈ Ln | |γ|1 > 0}
= {v} ∪ {u1γ ∈ Ln | γ1, . . . , γϕ(v)−(s+t+2) = 0, |γ|1 > 0}
= {v} ∪ PN (flip(v, ϕ(v))),

where the first equality holds by definition of critical prefix, the second by definition of
ϕ(v), and the third by definition of PN . ut

In Fig. 4.2, we give a sketch of the placement of some of the sets with same critical
prefix within T (110n−2), which, as the reader will recall, contains all prefix normal
words of length n except 0n and 10n−1. The nodes in the tree are labeled with the
corresponding generated word, and we have highlighted the subtrees corresponding
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to CritSet(1, 1, n), CritSet(1, t, n), CritSet(s, 1, n) and CritSet(s, t, n). Let us take
a closer look at CritSet(s, t, n) for s, t ≥ 2. The word 1s0t10n−(s+t+1) is reached
starting from the root 110n−2, traversing s − 1 right branches (i.e. flip-branches),
passing through the word 1s010n−(s+1), and then traversing t left branches (i.e. bubble-
branches). The set CritSet(s, t, n) is then equal to the word 1s0t10n−(s+t+1) together
with its right subtree.

⋯

⋯

+ ⋯

⋯

⋯

⋯

⋯

Fig. 4.2: A sketch of the computation tree of Algorithm 2 for the set w = 110n−2, highlighting
the subtrees corresponding to sets of prefix normal words with the same critical prefix.

Apart from revealing the recursive structure of sets of prefix normal words with
the same critical prefix, the BUBBLE-FLIP algorithm allows us to collect experimental
data on the size of CritSet(s, t, n) for different values of s, t, and n. We give some
of these numbers, for n = 16, 32 and small values of s, see Table 4.2. It was already
known [24] that, for n ≤ 50, the average critical prefix length, taken over all w ∈ Ln, is
approximately log n; with the new algorithm we are able to generate more precise data.
In Fig. 4.3, we plot the relative number of prefix normal words with a given critical
prefix length, for lengths n = 16 and n = 32.

To better understand the average length of the critical prefix of prefix normal words,
we provide a closed formula for CritSet(s, t, n) having s+ t < dn/2e. Recalling the
definition of critical prefix, a wordw ∈ CritSet(s, t, n) has the formw = 1s0t1{0, 1}η ,
where η = n− s− t− 1.

Definition 4.11. Given two integers i ≤ n, let Bin be the set of all binary words of
length n with i 1s. Formally

Bin = {w | w ∈ {0, 1}n and |w|1 = i} and |Bin| =
(
n

i

)

Lemma 4.9. Given three integers n, s and t such that s+t < n, and η = n−s−t−1 <
s+ t. Then, it holds that
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Fig. 4.3: The frequency of prefix normal words with given critical prefix length, in percentage of
the total number of prefix normal words of length n, for n = 16 (solid) and n = 32 (dashed).

t
1 2 3 4 5 6

s

1 284 663 14 295 2226 597 220 100
2 9 453 217 979 458 162 336 38 404 11 679 4317
3 25 025 726 4 907 605 1 103 214 293 913 91 632 32 459
4 27 244 624 7 961 078 2 338 632 732 602 248 717 91 441
5 20 423 789 7 521 441 2 677 376 964 483 360 542 144 460
6 12 789 981 5 378 726 2 178 190 874 907 358 717 151 429
7 7 270 699 3 301 575 1 454 694 633 310 276 593 121 726

t
7 8 9 10 11 12 13 14 15

s

1 53 30 16 11 9 7 5 3 1
2 1788 813 451 276 161 90 47 16 15
3 12 606 5815 2962 1475 723 346 121 106 92
4 37 967 16 994 7693 3507 1594 576 470 378 299
5 61 139 26 459 11 658 5169 1941 1471 1093 794 562
6 65 165 28 543 12 605 4944 3473 2380 1586 1024 638
7 54 118 24 188 9949 6476 4096 2510 1486 848 466

t
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

s

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
2 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 0 0
3 79 67 56 46 37 29 22 16 11 7 4 2 1 1 0 0 0
4 232 176 130 93 64 42 26 15 8 4 2 1 1 0 0 0 0
5 386 256 163 99 57 31 16 8 4 2 1 1 0 0 0 0 0
6 382 219 120 63 32 16 8 4 2 1 1 0 0 0 0 0 0
7 247 127 64 32 16 8 4 2 1 1 0 0 0 0 0 0 0

Table 4.2: The size of CritSet(s, t, n) for n = 32, s = 1, . . . , 7 and t = 1, . . . , 32
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CritSet(s, t, n) =
{
w | w = 1s0t1γ where γ ∈ ∪min{η,s−1}

j=0 Bjη
}

thus |CritSet(s, t, n)| =
∑min{η,s−1}
j=0

(
η
j

)
.

Proof. Let w = 1s0t1γ, where γ ∈ ∪min{η,s−1}
j=0 Bjη. The following case based analysis

shows that w is prefix normal.
Let u = wj+1 . . . wj+k be a substring of w, where k is the length of w. If j ≥ s

then
|u|1 ≤ min{|u|, |γ|1 + 1} ≤ min{|u|, s} ≤ Pw(|u|).

If j < s and k = |u| > j then

Pw(|u|) = |wj+1 . . . wj+k−j |1+j ≥ |wj+1 . . . wj+k−j |1+|wj+k−j+1 . . . wj+k|1 = |u|1.

If j < s and k = |u| ≤ j then, since the first j ≤ s characters of w are 1’s we have

Pw(|u|) = |u| ≥ |u|1.

We are now going to show that no other words of the form w = 1s0t1γ is prefix
normal. Let γ ∈ ∪ηj=sBjη . We have that |1γ| = η + 1 ≤ s+ t thus |1γ|1 > Pw(η + 1).
Hence w is not prefix normal, concluding the proof.

Definition 4.12. Let Cn(k) be the set of all prefix normal words of length n with critical
prefix length k = s+ t. Namely we have that

Cn(k) =

k−1⋃
s=1

CritSet(s, k − s, n)

Theorem 4.3. Given n ≥ 4 for every k ≥ dn2 e it holds that

|Cn(k)| = 2n−k−2(3k − n− 1)

Proof. By definition we have that |Cn(k)| =
∑k−1
s=1 |CritSet(s, k − s, n)|. Let η =

n− k − 1, then we can split the sum into two parts, one from 1 up to η and the second
one from η + 1 up to k − 1 as follow

|Cn(k)| =
η∑
s=1

|CritSet(s, k − s, n)|+
k−1∑
s=η+1

|CritSet(s, k − s, n)|

By Lemma 4.9 we can rewrite it as follow

|Cn(k)| =
η∑
s=1

s−1∑
j=0

(
η

j

)
+

k−1∑
s=η+1

2η

The former sum can be rewritten as follow
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η∑
s=1

s−1∑
j=0

(
η

j

)
=

(
η

0

)
︸︷︷︸
s=1

+

(
η

0

)
+

(
η

1

)
︸ ︷︷ ︸

s=2

+ · · ·+
(
η

0

)
+

(
η

1

)
+ · · ·+

(
η

η − 1

)
︸ ︷︷ ︸

s=η

= η

(
η

0

)
+ (η − 1)

(
η

1

)
+ · · ·+ (η − i)

(
η

i

)
+ · · ·+

(
η

η − 1

)
=

η−1∑
i=0

(η − i)
(
η

i

)
=

η−1∑
i=0

(η − i)η!

(η − i)!i!
=

η−1∑
i=0

(η − i)η(η − 1)!

(η − i)(η − i− 1)!i!

=

η−1∑
i=0

η(η − 1)!

(η − i− 1)!i!
=

η−1∑
i=0

η

(
η − 1

i

)
= 2η−1η

The latter sum can be rewritten as follow

k−1∑
s=η+1

2η = 2η(k − 1− η + 1− 1) = 2η(2k − n)

Keeping all together we have that

|Cn(k)| = 2η−1η + 2η(2k − n) = 2n−k−2(3k − n− 1)

ut

4.2.4 Practical improvements of the algorithm

The running time of the algorithm is dominated by the time spent at each node for
computing the value of ϕ, which, in general, takes time linear in n, the length of
the words. Therefore the overall generation of Ln takes O(n|Ln|) time. One way
of improving the running time of the overall generation would be to achieve faster
amortized computation of ϕ by exploiting the relationship between ϕ(w) and ϕ(w′)
for words w and w′ generated at close nodes of the recursion tree. Next we present
two attempts in this direction. We show two cases where the ϕ(w) can be computed in
sublinear time. This implies a faster generation algorithm, absolutely, however, since the
number of nodes falling in such cases is only o(|Ln|) we do not achieve any significant
asymptotic improvement on the overall generation.

The first practical improvement can be obtained from the following lemma. It shows
that given a node w of the generation tree, for all nodes w′ in the subtree rooted in w,
which are reachable from w by traversing only flip-branches, the value ϕ(w′) can be
computed in time O(RightmostOne(w)). Note that on such a rightward-path words
have a strictly increasing number of 1s. Therefore, the result of the lemma provides a
strict improvement on the original estimate that for each word w′ in such rightward-path
the computation of ϕ(w′) requiresΘ(RightmostOne(w′)). This gives an improvement
for nodes along the right branches of the tree only; the improvement gets better as we
move further down a right path.



64 4 Prefix normal words

Lemma 4.10. Let w ∈ Ln and let

v(j) =

{
w j = 0

flip(v(j−1), ϕ(v(j−1))) j > 0

i.e., v(j) is the word produced by applying j times the flip operation starting from w.
For each j ≥ 0 and k ≥ 1, we have that v = flip(v(j),RightmostOne((v(j)) +
k) is in Ln if and only if for all t = 1, . . . ,RightmostOne(w) it holds that
|vRightmostOne(v(j))+k−t+1 . . . vRightmostOne(v(j))+k|1 ≤ |w1 . . . wt|1, i.e., the suffix
of v1 . . . vRightmostOne(v(i))+k of length t satisfies the prefix normal condition.

Proof. Assume otherwise and let j and k be the smallest integers such that v =
flip(v(j),RightmostOne(v(j)) + k) is a counterexample—we first choose the smallest
j such that there is a k and then among all such k’s we choose the smallest, given the
choice of j.

Let n0 = RightmostOne(v(j)) + k. We write P (i) for Pv(i), and denote by S(i)
the number of 1s in the i-length suffix of v1 . . . vn0 . Let r = RightmostOne(w). By
assumption, S(t) ≤ P (t) for all t ≤ r, but there is an m > r such that S(m) > P (m).
Choose this m minimal. By definition, using the properties of the ϕ function, we have
that v(j) ∈ Ln. Moreover, by the minimality of the choice of j and k, it holds that
vn0−m+1 · · · vn0−1 satisfies the prefix normal condition, i.e. |vn0−m+1 · · · vn0−1|1 ≤
P (m−1). Therefore, it must hold that P (m−1) = P (m), hence vm = 0. Sincem > r
and vm = 0, there must be 0 ≤ j′ ≤ j such that ϕ(v(j′)) < n0 −m < ϕ(v(j′+1)),
i.e., the flip operation that produces v(j′+1) has to be done on a position following
n0 −m. This means that for some t′ < m, |vm−t′+1 · · · vm|1 = P (t′), otherwise we
would have vm = 1. Let m′ = m− t′. Thus we have P (m) = P (m′) + P (t′). On the
other hand, S(m) = S(m′) + |vn0−m+1 · · · vn0−m+t′ |1 ≤ P (m′) + P (t′) = P (m),
where the inequality holds by the minimality of m and of n0, respectively. But this is a
contradiction to our assumption that S(m) > P (m). ut

Second, we show how to derive ϕ(v′) for a bubble-node v′ from ϕ(v), where v is
the parent of v′. This gives an improvement (from linear to constant) for all nodes of
the form bubble∗(v) of some node v, spreading out the cost of computing ϕ(v) for v
over all bubble-descendants of v. Note that this covers the case of Observation 4.1, part
3, which tells us that we can skip the computation of ϕ(v) if the parent of v does not
have a flip-child.

Lemma 4.11. Let w be a prefix normal word w of length n with |w|1 ≥ 2 and r =
RightmostOne(w) 6= n. Then

ϕ(bubble(w)) =


min{n+ 1, ϕ(w) + 2} if |w|1 = 2,

ϕ(w) if |w1 . . . wϕ(w)−r|1 > 1,

min{n+ 1, ϕ(w) + 1} otherwise.
(4.1)

In particular, ϕ(bubble(w)) can be computed in constant time, given ϕ(w).

Proof. An immediate observation is that ϕ(w) ≤ ϕ(bubble(w)). Therefore, if ϕ(w) =
n+ 1 the claim holds trivially.

Case 1. |w|1 = 2. Then we can write w as w = 10r−210n−r and bubble(w) =
10r−110n−r−1. It is then easy to see that we have ϕ(w) = ϕ(10r−210n−r) = min{n+
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1, r + t + 1} and ϕ(bubble(w)) = ϕ(10r−110n−r−1) = min{n + 1, (r + 1) + (t +
1) + 1} = min{n+ 1, ϕ(w) + 2}, as desired. Since w ∈ Ln, we have w1 = 1.

Case 2. |w1 . . . wϕ(w)−r|1 > 1. First of all, let us observe that we have |w|1 > 2.
For otherwise, if |w|1 = 2, the analysis of the previous case implies that ϕ(w) −
r = r − 1 hence |w1 . . . wϕ(w)−r|1 = 1, contradicting the standing hypothesis. From
|w1 . . . wϕ(w)−r|1 > 1, it follows that ϕ(w) > r + 1. Moreover, we have ϕ(w) < 2r,
since w1 . . . wr−110r−21 ∈ Ln (by Fact 4.1 (iv)).

Now let w′ = flip(w,ϕ(w)) and w′′ = flip(bubble(w), ϕ(w)), i.e.,

w′ = w1 . . . wr−110ϕ(w)−r−110n−ϕ(w),

w′′ = w1 . . . wr−1010ϕ(w)−r−210n−ϕ(w).

By the definition of ϕ we have w′ ∈ Ln. Moreover, it holds that bubble(w) =
w1 . . . wr−1010n−r−1 ∈ Ln. For proving the claim, it is enough to show that w′′ ∈ Ln.

Let Sw′′(i) = |w′′ϕ(w)−i+1 . . . w
′′
ϕ(w)|1 and Sw′(i) = |w′ϕ(w)−i+1 . . . w

′
ϕ(w)|1. It is

not hard to see that for each i 6∈ {r, ϕ(w) − r}, it holds that Sw′′(i) = Sw′(i) ≤
Pw′(i) = Pw′′(i), where the inequality follows from the prefix normality of w′. More-
over, for i = ϕ(w) − r, we have Sw′′(ϕ(w) − r) = 2 and since ϕ(w) − r < r,
we also have Pw′′(ϕ(w) − r) = Pw′(ϕ(w) − r) = Pw(ϕ(w) − r) > 1 (by the
standing hypothesis). Finally, for i = r, using again ϕ(w) − r < r, it follows that
Sw′′(r) = Sw′(r) ≤ Pw′(r) = Pw′′(r). In conclusion, we have Sw′(i) ≤ Pw′(i) for
each i = 1, . . . , ϕ(w), hence, by Fact 4.1 (iv), the word w1 . . . wr−1010ϕ(w)−r−21 ∈ L
and by Fact 4.1 (iii), w′′ ∈ Ln, which concludes the proof of this case.

Case 3. |w1 . . . wϕ(w)−r|1 = 1 and |w|1 > 2. Proceeding as in the previous case, we
have that Sw′(ϕ(w)− r) = 2 > Pw(ϕ(w)− r) = Pw′(ϕ(w)− r), which implies that
w′ 6∈ Ln, hence ϕ(bubble(w)) ≥ ϕ(w) + 1. Let

w′′′ = w1 . . . wr−1010ϕ(w)−r−110n−ϕ(w)−1 = flip(bubble(w), ϕ(w) + 1).

It is enough to show thatw′′′ ∈ Ln. Let us redefine Sw′′′(i) = |w′′′ϕ(w)−i+2 . . . w
′′′
ϕ(w)+1|1

and Sw′(i) = |w′ϕ(w)−i+1 . . . w
′
ϕ(w)|1. It is not hard to see that for each i ∈

{1, . . . ϕ(w)}, it holds that Sw′′′(i) ≤ Sw′(i). Moreover, for each i ∈ {1, . . . ϕ(w) −
1} \ {r}, we have Pw′(i) = Pw′′′(i). Thus, for each i ∈ {1, . . . ϕ(w) − 1} \ {r}, it
holds that Sw′′′(i) ≤ Sw′(i) ≤ Pw′(i) = Pw′′′(i), where the second inequality follows
from the prefix normality of w′.

For i = ϕ(w), using w′′′1 = 1 = w′′′ϕ(w)+1 we have Sw′′′(ϕ(w)) = |w|1 =

Pw′′′(ϕ(w)).
For i = r, we have ϕ(w)+2−r ≤ r+1. If ϕ(w)+2−r = r+1, i.e., ϕ(w) = 2r−1

then Sw′′′(r) = 2 = |w′r . . . w′ϕ(w)|1 ≤ Pw′(r). Since Pw′(r) = |w|1 ≥ 3, we have
Pw′′′(r) = Pw′(r)− 1 ≥ 2 = Sw′′′(r).

If ϕ(w) + 2− r ≤ r, then

Pw′′′(r)− Sw′′′(r) = |w′′′1 . . . w′′′r |1 − |w′′′ϕ(w)+2−r . . . w
′′′
ϕ(w)+1|1

= |w′′′1 . . . w′′′ϕ(w)+1−r|1 − |w
′′′
r+1 . . . w

′′′
ϕ(w)+1|1

= Pw′′′(ϕ(w) + 1− r)− Sw′′′(ϕ(w) + 1− r) ≥ 0,

where the middle equality follows by removing from the two words the common
intersection, and the last inequality comes from the previous subcase, as ϕ(w)+1−r ∈
{1, . . . , ϕ(w)− 1} \ {r}.
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In conclusion, we have Sw′′′(i) ≤ Pw′′′(i) for each i = 1, . . . , ϕ(w) + 1, hence, by
Fact 4.1 (iv) the word w1 . . . wr−1010ϕ(w)−r−11 ∈ L and by Fact 4.1 (iii) w′′′ ∈ Ln,
which concludes the proof of this case. The proof of (4.1) is complete.

We now argue that ϕ(bubble(w)) can be computed in constant time. Our result
says that knowing RightmostOne(w) and the position of the second leftmost 1 in w,
then ϕ(bubble(w)) can be computed applying (4.1), i.e., in O(1) time. In fact, the
condition |w1 . . . wϕ(w)−r|1 > 1 is equivalent to checking that the second leftmost 1 of
w is in a position not larger than ϕ(w)− RightmostOne(w). It is not hard to see that
RightmostOne(w) and the position of the second leftmost 1 of w can be computed
and maintained for each node on the generation tree without increasing the computation
by more than a constant amount of time per node. ut

We provide the following examples to illustrate the two improvements.

Example 6. For the first improvement, consider the word w = 11001010n−7 with n
being some large number. Let w(1), w(2), . . . , w(i) be the words generated on the right
path rooted at w, i.e., w(1) is the flip-child of w, w(2) is the flip-child of w(1) and so on.

It is not hard to see that w(1) = 1100101010n−9, w(2) = 110010101010n−11, and
in general w(i) = 1100101(01)i0n−7−2i for any i = 1, 2, . . . , n−7

2 .

What Lemma 9 guarantees is that, for i = 1, . . . , n−7
2 ,w(i) = flip(w(i−1), ϕ(w(i−1)))

can be computed in timeΘ(RightmostOne(w)) rather thanΘ(RightmostOne(w(i−1))).
Therefore, in total, to generate them all, we need Θ(RightmostOne(w) · n). Without
applying Lemma 9, i.e., computing w(i) = flip(w(i−1), ϕ(w(i−1))) using Algorithm 1,
in time RightmostOne(w(i−1)) = 7 + 2(i− 1), we would need in total Θ(n2) time.

Example 7. For the second improvement, consider the word w = 100100000000,
for which it holds that |w|1 = 2. We have that ϕ(w) = 7, and indeed, the
word bubble(w) = 100010000000 has ϕ(bubble(w)) = 9. Consider now the
word w = 110001010000. We have RightmostOne(w) = 8, ϕ(w) = 11, and
|w1 · · ·w11−8|1 = 2 > 1. It is not hard to verify that for bubble(w) = 110001001000,
we have ϕ(bubble(w)) = 11. Finally, consider the word w = 101001001000. We
have ϕ(w) = 11, and since |10|1 ≤ 1, it holds that bubble(w) = 101001000100 and
ϕ(bubble(w)) = 12.

4.3 On infinite extensions of prefix normal words

In this section, we study how to construct infinite prefix normal words. We focus
on infinite extensions of finite prefix normal words which satisfy the prefix normal
condition at every finite point. We provide two operations that extend a starting finite
prefix normal word, the flipext operation builds prefix normal words which are in a
certain sense densest among all possible infinite extensions of the starting word. We
show that words in this class are ultimately periodic, and we are able to determine
both the size and the density of the period and to upper bound the starting point of the
periodic behavior. The second operation is the lazy-α-flipext operation that, conversely,
builds prefix normal words which are the lowest dense among all possible infinite
extensions of the starting word, having minimum density α.

We now define an operation on finite prefix normal words which is similar to the
flip operation from Sec. 4.2: it takes a prefix normal word w ending in a 1 and extends
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it by a run of 0s followed by a new 1, in such a way that this 1 is placed in the first
possible position without violating prefix normality.

Definition 4.13 (Operation flipext). Let w ∈ L ∩ {0, 1}∗1. Define flipext(w) as the
finite word w0k1, where k = min{j | w0j1 ∈ L}. We further define the infinite word
v = flipextω(w) = limi→∞ flipext(i)(w).

For a prefix normal word w, the word w0|w|1 is always prefix normal, so the
operation flipext is well-defined. Let w ∈ L and r = RightmostOne(w) < |w|. Then
flipext(prefr(w)) is a prefix of flip(w,ϕ(w)) if and only if ϕ(w) ≤ |w|, in particular,
flip(w,ϕ(w)) = flipext(prefr(w)) · 0|w|−ϕ(w).

Definition 4.14 (Iota-factorization). Letw be a finite binary word, or an infinite binary
word such that ι = ι(w) exists. The iota-factorization of w is the factorization of w into
ι-length factors, i.e. the representation of w in the form

w = u1u2 · · ·urv,
where r = b|w|/ιc, |ui| = ι for i = 1, . . . , r, and |v| < ι, for w finite, and

w = u1u2 · · · ,
where |ui| = ι for all i, for w infinite.

4.3.1 Flip extensions and ultimate periodicity

Lemma 4.12. Let w be a finite or infinite prefix normal word, such that ι = ι(w) exists.
Let w = u1u2 · · · be the iota-factorization of w. Then for all i, |ui|1 = κ(w).

Proof. Since w is prefix normal, |ui| ≤ κ = κ(w). On the other hand, assume there is
an i0 for which |ui0 |1 < κ. Then the prefix u1u2 . . . ui0 has fewer than i0κ many 1s,
and thus density less than i0κ/i0ι = κ/ι = D(ι), in contradiction to the definition of ι.
ut

The next lemma states that the iota-factorization of a word w constitutes a non-
increasing sequence w.r.t. lexicographic order, as long as w satisfies a weaker condition
than prefix normality, namely that factors of length ι(w) obey the prefix normal condi-
tion. That this does not imply prefix normality can be seen on the example (1110010)ω ,
which is not prefix normal.

Lemma 4.13. Let w be a finite or infinite binary word, such that ι = ι(w) exists. Let
w = u1u2 · · · be the iota-factorization of w. If for every factor u of length ι satisfies
the prefix normal condition, then for all i, ui ≥lex ui+1.

Proof. Let us write ui = ui,1 · · ·ui,ι. Let a(i, j) = |ui,1 · · ·ui,j |1 denote the number
of 1s in the j-length prefix of ui, and b(i, j) = |ui,j+1 · · ·ui,ι|1 the number of 1s in
the suffix of length ι− j. By Lemma 4.12, we have that a(i, j) + b(i, j) = κ. On the
other hand, b(i, j) + a(i+ 1, j) ≤ κ, since all ι-length factors satisfy the prefix normal
condition. Thus, for all i: a(i, j) ≥ a(i+ 1, j).

If ui 6= ui+1, let h = min{j | j = 1, . . . , ι : a(i, j) > a(i+ 1, j)}. Thus, for every
j < h, we have ui,j = ui+1,j and ui,h = 1, ui+1,h = 0, implying ui ≥lex ui+1. ut
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Corollary 4.1. Let w be a finite or infinite prefix normal word, such that ι = ι(w) exists.
Then for all i, ui ≥lex ui+1, where ui is the i’th factor in the iota-factorization of w.

We now prove that the flipext operation does not change the minimum density. This
means that among all infinite prefix normal extensions of a word w ∈ L, the word
v = flipextω(w) has the highest minimum density.

Lemma 4.14. Let w ∈ L such that wn = 1, and let v ∈ flipext∗(w) ∪ {flipextω(w)}.
Then δ(v) = δ(w), and as a consequence, ι(v) = ι(w) and κ(v) = κ(w).

Proof. Assume otherwise. Then there exists a minimal index i such that Dv(i) <
δ(w) =: δ. Clearly, i > |w|, by definition of δ. Since i is minimal, it follows that
Dv(i − 1) ≥ δ, which implies vi = 0. Since i > |w|, there was an iteration of
flipext, say the j’th iteration, which produced the extension containing position i,
i.e. |flipext(j−1)(w)| < i < |flipext(j)(w)|. Since vi = 0, this implies that there
is an m such that the factor vi−m+1 · · · vi−11 would have violated the prefix normal
condition, i.e. |vi−m+1 · · · vi−11|1 > Pv(m). This implies |vi−m+1 . . . vi−10|1 =
Pv(m) (because v is prefix normal). Now consider the prefix prefi(v) = v1 · · · vi, and
let us write i = i′ +m. Since i was chosen minimal, we have that Dv(i

′), Dv(m) ≥ δ.
Since Dv(i

′) = Pv(i′)
i′ , Dv(m) = Pv(m)

m , this implies

Dv(i) =
Pv(i)

i
=
Pv(i

′) + Pv(m)

i′ +m
≥ δ,

in contradiction to the assumption. ut

Theorem 4.4. Let w ∈ L and v = flipextω(w). Then v is ultimately periodic. In
particular, v can be written as v = uxω , where |x| = ι(w) and |x|1 = κ(w).

Proof. By Lemma 4.14, ι(v) = ι(w), and by Lemma 4.12, in the iota-factorization of
w, all factors ui have κ(w) 1s. Moreover, by Corollary 4.1, the factors ui constitute a
lexicographically non-increasing sequence. Since all ui have the same length ι(w), and
there are finitely many binary words of length ι(w), the claim follows. ut

We can further show that the period x from the previous theorem is prefix normal,
as long as it starts in a position which is congruent 1 modulo ι, in other words, if it is
one of the factors in the iota-factorization of v.

Lemma 4.15. Let w ∈ L and v = flipextω(w) = uxω such that x is the k′th factor in
the iota-factorization of v, for some k ≥ 1. Then x is prefix normal.

Proof. First note that if v = xω, then x is prefix normal by the prefix normality of v.
Else, assume for a contradiction that x is not prefix normal. Let α be a factor of x of
minimal length s.t. |α|1 > |β|1, where β is the prefix of x of length |α|. Then β and
α are disjoint due to the minimality assumption. In other words, there is a (possibly
empty) word γ s.t. βγα is a prefix of x.

Since x is a ι-factor of v, therefore the prefix of v before x has length tι for some
t ≥ 1. Let x = βγαν, and write x′ for the rotation νβγα of x. Now consider the
word s = γα(x′)t, which has length |γ| + |α| + tι. By Theorem 4.4, |x|1 = κ, and
since x′ is a rotation of x, also |x′|1 = κ. Therefore, for the factor s of v it holds that
|s|1 = |γ|1 + |α|1 + tκ > |γ|1 + |β|1 + tκ = Pv(|s|), in contradiction to v ∈ L. ut
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Next we show that for a word v ∈ flipext∗(w), in order to check the prefix normality
of an extension of v, it is enough to verify that the suffixes up to length |w| satisfy the
prefix normal condition.

Lemma 4.16. Let w be prefix normal and v′ ∈ flipext∗(w). Then for all k ≥ 0 and
v = v′0k1, v ∈ L if and only if for all 1 ≤ j ≤ |w|, the suffixes of v of length j satisfy
the prefix normal condition.

Proof. Directly from Lemma 4.10. ut

By Theorem 4.4, we know that v = flipextω(w) has the form v = uxω for some x,
whose length and density we can infer from w. The next theorem gives an upper bound
on the waiting time for x, both in terms of the length of the non-periodic prefix u, and
in the number of times a factor can occur before we can be sure that we have essentially
found the periodic factor x (up to rotation).

Theorem 4.5. Let w ∈ L and v = flipextω(w). Let us write v = uxω , with |x| = ι(w)

and x not a suffix of u. Let ι = ι(w), κ = κ(w), and m =
⌈
|w|
ι

⌉
. Then

1. |u| ≤ (
(
ι
κ

)
− 1)mι, and

2. if for some y ∈ {0, 1}ι, it holds that ym+1 occurs with starting position j > |w|,
then y is a rotation of x.

Proof. 1.: Assuming 2., then every ι-length factor y which is not the final period can
occur at most m times consecutively. By Cor. 4.1, consecutive non-equal factors in the
iota-factorization of v are lexicographically descreasing, so no factor y can reoccur
again once it has been replaced by another factor. By Theorem 4.4, the density of each
factor is κ. There are at most

(
ι
κ

)
such y which are lexicographically smaller than

prefι(w), and each of these has length ι.
2.: By Lemma 4.16, in order to produce the next character of v, the operation flipext

needs to access only the last |w| many characters of the current word. After m + 1
repetitions of u, it holds that the |w|-length factor ending at position i is equal to the
|w|-length factor at position i− ι, which proves the claim. ut

The following lemma motivates our interest in infinite words of the form flipextω(w).
It says that flipextω(w) is the prefix normal word with the maximum number of 1’s in
each prefix among all prefix normal words having w as prefix.

Lemma 4.17. Let w ∈ L, v = flipextω(w), and let z ∈ L such that pref|w|(z) = w.
Then for every i = 1, 2, . . . , we have Pv(i) ≥ Pz(i).

Proof. By contradiction, let i > |w| be the smallest integer such that Pv(i) < Pz(i).
Then, by the minimality of i, we have Pv(i− 1) ≥ Pz(i− 1), hence vi = 0 and zi = 1.
The definition of the operation flipext together with vi = 0 implies the existence of
some j > 0 such that Pv(j + 1) = |vi−j . . . vi−1|1 by Fact 4.1 (iv), for otherwise we
would have vi = 1. By the minimality of i it must also hold that Pz(j+ 1) ≤ Pv(j+ 1).
Let us write v′ = vi−j . . . vi−1 and z′ = zi−j . . . zi−1. Now assume that |z′|1 ≥ |v′|1.
Since |v′|1 = Pv(j+ 1) ≥ Pz(j+ 1) ≥ |z′|1, this implies Pv(j+ 1) = Pz(j+ 1). But
then Pz(j + 1) = Pv(j + 1) = |v′|1 < |z′|1 + 1 = |z′zi|1, in contradiction to z being
prefix normal. So we have |z′|1 < |v′|1. Once more by the minimality of i, it also holds
that Pv(i− j − 1) ≥ Pz(i− j − 1), leading to
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Pv(i− 1) = Pv(i− j − 1) + |v′|1 > Pz(i− j − 1) + |z′|1 = Pz(i− 1),

which implies Pv(i) ≥ Pz(i), contradicting the initial assumption, and completing
the proof. ut

4.3.2 Lazy flip extensions

We now define a different operation that given a prefix normal word w, extends it by
adding 0s as long as the minimum density of the resulting word is not smaller than δ(w),
and only then adding a 1. We show that this operation preserves the prefix normality of
the resulting word.

Definition 4.15 (Operation lazy-α-flipext). Let α ∈ (0, 1] and let w ∈ Lfin with
δ(w) ≥ α. We define lazy-α-flipext(w) as the finite word w0k1 where k = max{j |
δ(w0j) ≥ α}. We further define the infinite word v = lazy-α-flipextω(w) =

limi→∞ lazy-α-flipext(i)(w).

Example 8. Let w = 111 and let α =
√

2 − 1, then lazy-α-flipext(w) = 11100001,
since δ(1110000) = 3/7 ≥ α and δ(11100000) = 3/8 < α.

Further, lazy-α-flipext(2)(w) = 1110000101, since δ(111000010) = 4/9 ≥ α
and δ(1110000100) = 2/5 < α.

Lemma 4.18. Let α ∈ (0, 1]. For every w ∈ Lfin with δ(w) ≥ α, the word v =
lazy-α-flipext(w) is also prefix normal, with δ(v) ≥ α.

Proof. First note that δ(v) ≥ α by definition. Now write v = w0k1, and let u =
flipext(w) = w0`1. Recall that ` = min{j | w0j1 ∈ L}. If k < `, this implies
δ(u) < α, in contradiction to Proposition 4.14, since δ(u) = δ(w) ≥ α. Thus k ≥ `,
from which follows that v ∈ L.

Corollary 4.2. Letα ∈ (0, 1] andw ∈ Lfin with δ(w) ≥ α. Then v = lazy-α-flipextω(w)
is an infinite prefix normal word and δ(v) = α.

Proof. That v is prefix normal follows from Lemma 4.1 and from Lemma 4.18, which
also implies that δ(v) ≥ α. If δ(v) > α was true, then for a suitably long prefix i, we
would get a contradition to the definition of the lazy-α-flipext operation. ut

Fix w ∈ Lfin, by definition of lazy-α-flipext we have that, given α = δ(w),
the lazy-flipext operation applied to w generates a prefix normal word that has the
minimum number of 1s in the prefix among all prefix normal words having minimum
density equals to δ(w) and w as prefix. This is summarized in the following proposition.

Proposition 4.1. Let w ∈ Lfin, α = δ(w), and v = lazy-α-flipextω(w). Then, for
every z ∈ Linf such that pref|w|(z) = w and δ(w) ≥ δ(v), for each i = 1, 2, . . . we
have Pv(i) ≤ Pz(i).

From Lemma 4.17 and Proposition 4.1, we have that, given w ∈ Lfin, every prefix
normal word with w as prefix and minimum density equals to δ(w) is lexicographically
between flipextω(w) and lazy-α-flipextω(w), where α = δ(w). Formally, let u =
flipextω(w), α = δ(w), and v = lazy-α-flipextω(w) for every z ∈ Linf such that
pref|w|(z) = w and δ(w) ≥ δ(v), we have that Pv(i) ≤ Pz(i) ≤ Pu(i) and v ≤lex

z ≤lex u.
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Example 9. Let w = 1101101100100010000001 and let α = δ(w) = 8/13, then
u = flipext8(w) = w101101100100010000001 and v = lazy-α-flipext8(w) =
w01001010010010100100.

Let p = w100111100100010000001 and q = w101101010100001000001, we
have that for all 1 ≤ i ≤ 42, Pv(i) ≤ Pq(i) ≤ Pp(i) ≤ Pu(i) and v ≤lex q ≤lex

p ≤lex u. Note that p is not prefix normal, while q is prefix normal.

Fig. 4.4: Given w = 1101101100100010000001 the plot represents the last characters of
flipext8(w) (solid) and the lazy-α-flipext8(w) (dashed). See Example 9. A 1 corresponds to a
diagonal segment in direction NE, while a 0 to one in direction SE. On the x-axis we have the
length of the prefix, and on the y-axis, the number of 1s minus the number of 0s in the prefix.
The shaded area denotes the area in which there are all prefix normal words with w as prefix and
minimum density equal to δ(w). Note that not all the binary words in that area are prefix normal.

4.4 Prefix normal words and Sturmian words

In the previous section, we presented operations that generate binary words by extension.
In particular, the lazy-α-flipext operation extends a finite binary word with as few
1s as possible, in order to preserve its minimum density. This is reminiscent of the
characterization of Sturmian words in terms of mechanical words and the slope. Led
by this analogy, in this section we provide a complete characterization of Sturmian
words which are prefix normal. We refer the interested reader to [92, Chapter 2], for a
comprehensive treatment of Sturmian words. Here we briefly recall some facts we will
need later.

Definition 4.16 (Sturmian words). Let w ∈ {0, 1}ω . Then w is called Sturmian if it is
balanced and aperiodic.

An equivalent definition of Sturmian words is that they are irrational mechanical, a
definition we recall next.

Definition 4.17 (Mechanical words). Given two real numbers 0 ≤ α ≤ 1 and 0 ≤ τ <
1, the lower mechanical word sα,τ = sα,τ (1) sα,τ (2) · · · and the upper mechanical
word s′α,τ = s′α,τ (1) s′α,τ (2) · · · are given by

sα,τ (n) = bαn+ τc − bα(n− 1) + τc
s′α,τ (n) = dαn+ τe − dα(n− 1) + τe

(n ≥ 1).

Then α is called the slope and τ the intercept of sα,τ , s′α,τ . A word w is called
mechanical if w = sα,τ or w = s′α,τ for some α, τ . It is called rational mechanical
(resp. irrational mechanical) if α is rational (resp. irrational).
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Fact 4.2 (Some facts about Sturmian words[92]) 1. An infinite binary word is Stur-
mian if and only if it is irrational mechanical.

2. For τ = 0, and α irrational, there exists a word cα, called the characteristic word
with slope α, s.t. sα,0 = 0cα and s′α,0 = 1cα. This word cα is a Sturmian word
itself, with both slope and intercept α.

3. For two Sturmian words w and v with the same slope, we have Fct(w) = Fct(v).

We now show that the word lazy-α-flipextω(1) coincides with the upper mechanical
word s′α,0 which also implies that s′α,0 is prefix normal as noted in the following
corollary.

Lemma 4.19. Fix α ∈ (0, 1] and let v = lazy-α-flipextω(1). Let s = s′α,0 be the upper
mechanical word of slope α and intercept 0. Then v = s.

Proof. Let si and vi denote the ith character of s and v respectively. We argue by
induction on i that vi = si. The claim is true for i = 1 since, directly from the
definitions we have v1 = 1 = s1. Let n > 1 and assume that for each i < n we have
vi = si. For the induction step we argue according to the character sn.

(i) If sn = 1, by definition dnαe − d(n − 1)αe = 1. Thus, d(n − 1)αe < nα.
Using this inequality and the induction hypothesis together with the definition of
s′α,0 we have that |v1 · · · vn−1|1 = |s1 · · · sn−1|1 = d(n − 1)αe < αn. Therefore
|v1 · · · vn−10|1 = |v1 · · · vn−1|1 < αn which means that δ(v1 · · · vn−10) < α, hence
by definition lazy-α-flipext(v1 · · · vn−1) = v1 · · · vn−11, i.e., vn = 1 = sn.

(ii) If sn = 0, by definition dnαe − d(n − 1)αe = 0. Thus, d(n − 1)αe ≥ nα.
Using this inequality and the induction hypothesis together with the definition of
s′α,0 we have that |v1 · · · vn−1| = |s1 · · · sn−1| = d(n − 1)αe ≥ αn. Therefore
|v1 · · · vn−10|1 = |v1 · · · vn−1|1 ≥ αn which means that δ(v1 · · · vn−10) ≥ α, hence
by definition lazy-α-flipext(v1 · · · vn−1) = v1 · · · vn−10 · · · 01, i.e., vn = 0 = sn. ut

Corollary 4.3. Given α ∈ (0, 1] then s′α,0 is an infinite prefix normal word and
δ(s′α,0) = α.

The following theorem fully characterizes those Sturmian words which are prefix normal.

Theorem 4.6. A Sturmian word s of slope α is prefix normal if and only if s = 1cα,
where cα is the characteristic Sturmian word with slope α.

Proof. By definition, α is irrational. Let s = s′α,0. Then s is Sturmian and prefix normal
by Corollary 4.3. Let t be a Sturmian word with the same slope α which is also prefix
normal. By Fact 4.2, s and t have the same factors.

Assume, by contradiction, that s 6= t, hence there exists i ≥ 1 such that
|s1 · · · si|1 6= |t1 · · · ti|1. Assume, without loss of generality (since we can, if nec-
essary, swap s and t in the following argument), that |s1 · · · si|1 > |t1 · · · ti|1. Then,
since s1 · · · si is also a factor of t, there is a j ≥ 1 such that tj+1 · · · tj+i = s1 · · · si,
hence |tj+1 · · · tj+i|1 > |t1 · · · ti|1 contradicting the assumption that t is prefix normal.
ut
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4.5 Prefix normal words and lexicographic order

In this section, we study the relationship between lexicographic order and prefix normal-
ity. A class of well-known binary words connected with prefix normality are Lyndon
words. Notice that the prefix normal condition is different from the Lyndon condition2:
For finite words, there are words which are both Lyndon and prefix normal (e.g. 110010),
words which are Lyndon but not prefix normal (11100110110), words which are prefix
normal but not Lyndon (110101), and words which are neither (101100). In the final
part of the chapter, we will put infinite prefix normal words and their prefix normal
forms in the context of lexicographic orderings, and compare them to infinite Lyndon
words [123], necklaces, prenecklaces [92, 118], and the max- and min-words of [110].

A finite Lyndon word is one which is lexicographically strictly greater than all of
its conjugates: w is Lyndon if and only if for all non-empty u, v s.t. w = uv, we have
w >lex vu. A necklace is a word which is greater than or equal to all its conjugates,
and a prenecklace is one which can be extended to become a necklace, i.e. which is
the prefix of some necklace[92, 118]. As we saw in the introduction, in the finite case,
prefix normality and Lyndon property are orthogonal concepts. However, the set of
finite prefix normal words is included in the set of prenecklaces [25].

An infinite word is Lyndon if an infinite number of its prefixes is Lyndon [123].
In the infinite case, we have a similar situation as in the finite case. There are words
which are both Lyndon and prefix normal: 10ω, 110(10)ω; Lyndon but not prefix normal:
11100(110)ω; prefix normal but not Lyndon: (10)ω; and neither of the two: (01)ω .

Next we show that a prefix normal word cannot be lexicographically smaller than
any of its suffixes. Let shift i(w) = wiwi+1wi+2 · · · denote the infinite word v s.t.
w = w1 · · ·wi−1v, i.e. v is the suffix of w starting at position i.

Lemma 4.20. Let w ∈ Linf . Then w ≥lex shift i(w) for all i ≥ 1.

Proof. Assume that there exists a suffix v = shift i(w) of w s.t. v >lex w. Then there is
an index j with v1 · · · vj−1 = w1 · · ·wj−1 and vj > wj , implying vj = 1 and wj = 0.
But then |wi · · ·wi+j−1|1 = |v1 · · · vj |1 > |w1 · · ·wj |1, in contradiction to w ∈ Linf .
ut

In the finite case, it is easy to see that a word w is a prenecklace if and only if
w ≥lex v for every suffix v of w. This motivates our definition of infinite prenecklaces.
The situation is the same as in the finite case: prefix normal words form a proper subset
of prenecklaces.

Definition 4.18. Let w ∈ {0, 1}ω. Then w is an infinite prenecklace if for all i ≥ 1,
w ≥lex shift i(w). We denote by Pinf the set of infinite prenecklaces.

Proposition 4.2. We have Linf ( Pinf .

Proof. The inclusion follows from Lemma 4.20. An example of a word which is an
infinite prenecklace but not prefix normal is 11100(110)ω . ut
2 For ease of presentation, we are using Lyndon to mean lexicographically greatest among its

conjugates; this is equivalent to the usual definition up to renaming of characters.
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There is another interesting relationship between lexicographic order and the prefix
normal forms of an infinite word. In [110], two words were associated to an infinite
binary word w, called max(w) (resp. min(w)), defined as the word whose prefix of
length n is the lexicographically greatest (resp. smallest) n-length factor of w. It is easy
to see that these words always exist. The following was shown in [110]:3

Theorem 4.7 ([110]). Let w be an infinite binary word. Then

1. w is (rational or irrational) mechanical with its intercept equal to its slope if and
only if 0w ≤lex min(w) ≤lex max(w) ≤lex 1w, and

2. w is characteristic Sturmian if and only if min(w) = 0w and max(w) = 1w.

Lemma 4.21. Let w ∈ {0, 1}ω. Then PNF1(w) ≥lex max(w) and PNF0(w) ≤lex

min(w).

Proof. Assume otherwise, and let w′ := PNF1(w), v := max(w). If w′ < v, then
there is an index j s.t. w′1 · · ·w′j−1 = v1 · · · vj−1 and w′j = 0 and vj = 1. This
implies that v1 · · · vj has one more 1s than w′1 · · ·w′j . But |w′1 · · ·w′j |1 = F 1

w(j), a
contradiction, since v1 · · · vj is a factor of w. The second claim follows analogously.
ut

Finally, from Theorems 4.10 and 4.7 we get the following corollary:

Corollary 4.4. Let w be an infinite binary word. Then w is characteristic Sturmian if
and only if 0w = PNF0(w) = min(w) and 1w = PNF1(w) = max(w).

4.6 Prefix normal words, prefix normal forms, abelian complexity

In Section 4.4, we have shown that a Sturmian word w is prefix normal if and only if
w = 1cα for some α, where cα is the characteristic word of slope α (Theorem 4.6).
Indeed, the Fibonacci word

f = 0100101001001010010100100101001001 · · ·

is not prefix normal (it begins with a 0 but is not constant 0). But we can turn it into a
prefix normal word by prepending a 1, i.e. the word 1f is prefix normal. We show in
fact that every Sturmian word w can be turned into a prefix normal word by prepending
a fixed number of 1s, which only depends on the slope of w. This follows from a more
general result regarding c-balanced words (Lemma 4.23).

As another example, the Thue-Morse word

3 The terminology in [110] differs from ours (we are following [92]). In order to help the reader
we here highlight the differences: (i) a periodic Sturmian in [110] is a rational mechanical
word, (ii) a proper Sturmian word in [110] is an irrational mechanical word (i.e., a Sturmian
word), and (iii) a standard Sturmian word in [110] is a mechanical word for with intercept
τ = α, thus a proper standard Sturmian word is a characteristic Sturmian word cα. Note that
all mechanical words in [110] are defined for n ≥ 1 since the definition of mechanical word is:
the lower mechanical word is defined as sα,τ (n) = bα(n+ 1) + τc − bαn+ τc for n ≥ 1,
and analogously for the upper mechanical word. Therefore, an intercept τ = 0 in [110] is
equivalent to an intercept of τ = α (the slope) in [92].
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tm = 01101001100101101001011001101001 · · ·

is not prefix normal, but 11tm is. However, the binary Champernowne word, which is
constructed by concatenating the binary expansions of the integers in ascending order,
namely

c = 0110111001011101111000100110101011 · · ·

is not prefix normal and cannot be turned into a prefix normal word by prepending a
finite number of 1s, because c has arbitrarily long runs of 1s.

One might conclude that every word with bounded abelian complexity can be
turned into a prefix normal word by prepending a fixed number of 1s, as is the case
for the words above: f has abelian complexity constant 2, tm has abelian complexity
bounded by 3, and c has unbounded abelian complexity. However, this is not the case
(see Section 4.6).

The notion of prefix normal forms from [57] can be extended to infinite words. They
can be used, similarly to the finite case, to encode the abelian complexity of the original
word. The study of abelian complexity of infinite words was initiated in [115], and
continued e.g. in [18, 26, 76, 94, 130]. We establish a close relationship between the
abelian complexity and the prefix normal forms of w. We demonstrate how this close
connection can be used to derive results about the prefix normal forms of a word w. In
some cases, such as for Sturmian words and words which are morphic images under
the Thue-Morse morphism, we are able to explicitly give the prefix normal forms of
the word. Conversely, knowing its prefix normal forms allows us to derive results about
the abelian complexity of a word. We also provide and algorithm to compute the prefix
normal forms of words that are binary uniform morphisms, based on an algorithm that
computes their abelian complexity [19].

Given an infinite wordw, the abelian complexity function ofw, denoted ψw, is given
by ψw(n) = |{pv(u) | u ∈ Fct(w), |u| = n}|, the number of Parikh vectors of n-length
factors of w. A word w is said to have bounded abelian complexity if there exists a c s.t.
for all n, ψw(n) ≤ c. Note that a binary word is c-balanced if and only if its abelian
complexity is bounded by c+ 1. We denote the set of Parikh vectors of factors of a word
w by Π(w) = {pv(u) | u ∈ Fct(w)}. Thus, ψw(n) = |Π(w) ∩ {(x, y) | x+ y = n}|.
In this section, we study the connection between prefix normal words and abelian
complexity.

4.6.1 Balanced and c-balanced words.

Based on the examples above, one could conclude that any word with bounded abelian
complexity can be turned into a prefix normal word by prepending a fixed number of 1s.
However, consider the word w = 01ω, which is balanced, i.e. its abelian complexity
function is bounded by 2. It is easy to see that 1kw 6∈ L for every k ∈ N.

Sturmian words are precisely the words which are aperiodic and whose abelian
complexity is constant 2 [115]. For Sturmian words, it is always possible to prepend a
finite number of 1s to get a prefix normal word, as we will see next. Recall that for a
Sturmian word w, at least one of 0w and 1w is Sturmian, with both being Sturmian if
and only if w is characteristic [92].
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Lemma 4.22. Let w be a Sturmian word. Then
1. 1w ∈ L if and only if 0w is Sturmian,
2. if 0w is not Sturmian, then 1nw ∈ L for n = d1/(1− α)e.

Proof. 1. Let 0w be Sturmian and let u be some factor of 1w. If u is a prefix of 1w,
there is nothing to show, therefore let u ∈ Fct(w), with |u| = n and |u|1 = k. Since
0w is Sturmian, we have that the prefix of 0w of length n has at least k − 1 1s, thus
P1w(n) ≥ k = |u|1, as desired. Conversely, if 0w is not Sturmian, this means that it
is not balanced, therefore there exists a factor u of w s.t. ||u|1 − |0w1 · · ·wn−1|1| ≥ 2,
where |u| = n. Since w is Sturmian, we have that ||w1 · · ·wn−1|1−|u1 · · ·un−1|1| ≤ 1
and ||w1 · · ·wn−1|1 − |u2 · · ·un|1| ≤ 1. Let |w1 · · ·wn−1|1 = k, then this implies,
by a case-by-case consideration, that |u1 · · ·un−1|1 = |u2 · · ·un|1 = k + 1, and thus
|1w1 · · ·wn−1|1 = k + 1 < k + 2 = |u|1, showing that 1w is not prefix normal.

2. First note that a Sturmian word of slope α cannot have a run of 1s of length
1/(1− α). To see this, it is enough to argue about the upper mechanical word of slope
α and intercept 0 (since all the other words with the same slope have the same set of
factors). Let us write s = sα,0 = s1s2 · · ·

Now s has a run of n 1s iff there exists an i ≥ 0 such that si+1 = si+2 = · · · =
si+n = 1. By the definition of mechanical words, we have that the last condition is
equivalent to

dα(i+ n)e − dαie = n.

On the other hand, if n ≥ 1
1−α , i.e., α ≤ n−1

n we have that the sum of the character∑n
j=1 si+j satisfies

n∑
j=1

si+j = dα(i+ n)e − dαie

≤ dαie+ dαne − dαie
= dαne
< αn+ 1

≤ n− 1

n
× n+ 1 = n.

i.e., strictly smaller than n, i.e., we have a contradiction si+1 · · · si+n 6= 1n.
Now fix n = d1/(1 − α)e and let w′ = 1nw. Let u ∈ Fct(w). Since, as shown

above, 1n is not a factor, if |u| ≤ n, there is nothing to show. So let |u| = n + m.
Then |u1 · · ·un|1 ≤ n − 1, and since w is balanced, we have that |w1 · · ·wm|1 ≥
|un+1 · · ·un+m|1 − 1, yielding that Pw′(n+m) ≥ n+ |un+1 · · ·un+m|1 − 1 ≥ |u|1.
ut

Lemma 4.23. Let w be a c-balanced word. If there exists a positive integer n s.t.
1n 6∈ Fct(w), then the word z = 1ncw is prefix normal.

Proof. We are going to show that every factor u of z satisfies the prefix normal condition
|u|1 ≤ Pz(|u|). It is not hard to see that we can limit ourselves to only considering
factors u such that u does not overlap with the prefix of z of the same length.

If |u| ≤ nc then |u|1 ≤ |u| = Pz(|u|). Assume now that u = u′u′′ with |u′| = nc
and |u′′| > 0. Since u′ is a factor of w of size nc the condition that w does not contain
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a factor 1n implies that u′ contains at least c 0s, i.e., |u′|1 ≤ |u′| − c. Moreover,
since w is c-balanced, we have that |u′′|1 ≤ Pw(|u′′|) + c. Therefore, observing that
prefz(|u|) = prefz(|u′| + |u′′|) = 1nc prefw(|u′′|) we have that Pz(|u|) = nc +
Pw(|u′′|) ≥ |u′|1 + |u′′|1 = |u|1. ut

In particular, Lemma 4.23 implies that any c-balanced word with infinitely many 0s
can be turned into a prefix normal word by prepending a finite number of 1s, since such
a word cannot have arbitrarily long runs of 1s. Note, however, that the number of 1s to
prepend from Lemma 4.23 is not tight, as can be seen e.g. from the Thue-Morse word
tm: the longest run of 1s in tm is 2 and tm is 2-balanced, but 11tm is prefix normal, as
will be shown in the next section (Lemma 4.26).

4.6.2 Prefix normal forms and abelian complexity.

Recall that for a word w, F aw(i) is the maximum number of a’s in a factor of w of length
i, for a ∈ {0, 1}.

Definition 4.19 (Prefix normal forms). Let w ∈ {0, 1}ω . Define the words w′ and w′′

by setting, for n ≥ 1, w′n = F 1
w(n)− F 1

w(n− 1) and w′′n = F 0
w(n)− F 0

w(n− 1). We
refer to w′ as the prefix normal form of w w.r.t. 1 and to w′′ as the prefix normal form
of w w.r.t. 0, denoted PNF1(w) resp. PNF0(w).

In other words, PNF1(w) is the sequence of first differences of the maximum-
1s function F 1

w of w. Similarly, PNF0(w) can be obtained by complementing the
sequence of first differences of the maximum-0s function F 0

w of w. Note that for all n
and a ∈ {0, 1}, either F aw(n+ 1) = F aw(n) or F aw(n+ 1) = F aw(n) + 1, and therefore
w′ and w′′ are words over the alphabet {0, 1}. In particular, by construction, the two
prefix normal words allow us to recover the maximum-1s and minimum-1s functions of
w:

Observation 4.2 Let w be an infinite binary word and w′ = PNF1(w), w′′ =
PNF0(w). Then Pw′(n) = F 1

w(n) and Pw′′(n) = n− F 0
w(n) = f1

w(n).

Lemma 4.24. Let w ∈ {0, 1}ω. Then PNF1(w) is the unique 1-prefix normal word
w′ s.t. F 1

w′ = F 1
w. Similarly, PNF0(w) is the unique 0-prefix normal word w′′ s.t.

F 0
w′′ = F 0

w.

Proof. Let w′ = PNF1(w) and w′′ = PNF0(w). First note that, by construction,
F 1
w′ = F 1

w and F 0
w′′ = F 0

w. It is easy to see that w′ is 1-prefix normal and w′′ is 0-prefix
normal. For uniqueness, note that for a ∈ {0, 1} and an a-prefix normal word v, we
have PNFa(v) = v. ut

Example 10. The two prefix normal forms and the maximum-1s and maximum-0s
functions of the Fibonacci word f = 01001010010010100101 · · · are given in Table 4.3.

Now we can connect the prefix normal forms of w to the abelian complexity of w in
the following way. Given w′ = PNF1(w) and w′′ = PNF0(w), the number of Parikh
vectors of k-length factors is precisely the difference in 1s in the prefix of length k of w′

and of w′′ plus 1. For example, Fig. 4.5 shows the prefix normal forms of the Fibonacci
word. The vertical line at 5 cuts through points (5,−1) and (5,−3), meaning that there
are two Parikh vectors of factors of length 5, namely (2, 3) and (1, 4). The Fibonacci
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F 0

f (n) 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 10 11 12 12 13

F 1

f (n) 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 7 7 7 8 8

PNF0(f) 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0
PNF1(f) 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0

Table 4.3: The maximum number of 0s and 1s (F 0

f (n) and F 1

f (n) resp.) for all n = 1, . . . , 20

of the Fibonacci word f, and the prefix normal forms of f.

Fig. 4.5: The Fibonacci word (dashed) and its prefix normal forms (solid).

Fig. 4.6: The Champernowne word (dashed) and its prefix normal forms (solid).

word, being a Sturmian word, has constant abelian complexity 2. An example of a word
with unbounded abelian complexity is the Champernowne word, whose prefix normal
forms are 1ω resp. 0ω . (Fig. 4.6, Appx.).

Theorem 4.8. Let w, v ∈ {0, 1}ω .

1. We have ψw(n) = Pw′(n) − Pw′′(n) + 1, where w′ = PNF1(w) and w′′ =
PNF0(w).

2. We have Π(w) = Π(v) if and only if PNF0(w) = PNF0(v) and PNF1(w) =
PNF1(v).

Proof. 1. Fix an integer n ≥ 1. By definition, we have that for every factor u of w of
length n we have n − F 0

w(n) ≤ |u|1 ≤ F 1
w(n). Therefore ψw(n) ≤ F 1

w(n) − (n −
F 0
w(n)) + 1.



4.6 Prefix normal words, prefix normal forms, abelian complexity 79

Conversely, since w contains a factor u′ of length n with F 1
w(n) many 1s and a

factor u′′ of length n with n − F 0
w(n) many 1s, if we scan w between an occurrence

of u′ and an occurrence of u′′, for each x ∈ {|u′′|1, . . . , |u′|1} there must be a factor
u′′′ of size n such that |u′′′|1 = x. Therefore ψw(n) ≥ F 1

w(n) − (n − F 0
w(n)) + 1.

We can conclude that ψw(n) = F 1
w(n) − (n − F 0

w(n)) + 1. The desired result then
follows by observing that n− F 0

w(n) = n− |prefPNF0(w)(n)|0 = PPNF0(w)(n) and
F 1
w(n) = PPNF1(w)(n).

2. Follows directly from Observation 4.2. ut

Theorem 4.8 means that if we know the prefix normal forms of a word, then we can
compute its abelian complexity. Conversely, the abelian complexity is the width of the
area enclosed by the two words PNF1(w) and PNF0(w). In general, this fact alone
does not give us the PNFs; but if we know more about the word itself, then we may be
able to compute the prefix normal forms, as we will see in the case of the paperfolding
word.

We will now give two examples of the close connection between abelian complexity
and prefix normal forms, using some recent results about the abelian complexity of
infinite words.

1. The paperfolding word. The first few characters of the ordinary paperfolding word
are given by

p = 0010011000110110001001110011011 · · ·

The paperfolding word was originally introduced in [52]. One definition is given
by: pn = 0 if n′ ≡ 1 mod 4 and pn = 1 if n′ ≡ 3 mod 4, where n′ is the unique
odd integer such that n = n′2k for some k [94]. The abelian complexity function of
the paperfolding word was fully determined in [94], giving the following initial values
for ψp(n), for n ≥ 1: 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 4, 3, 4, 5, 6, 5, and a recursive
formula for the computation of all values. The authors note that for the paperfolding
word, it holds that if u ∈ Fct(p), then also urev ∈ Fct(p). This implies

F 1
p(n) = F 0

p(n) for all n, and thus PNF0(p) = PNF1(p).

Moreover, from Thm. 4.8 we get that F 1
p(n) = PPNF1(p)(n) = (ψp(n) +n− 1)/2,

and thus we can determine the prefix normal forms of p, see Fig. 4.7.

Fig. 4.7: The paperfolding word (dashed) and its prefix normal forms (solid).

This same argument holds in general as long as the word has the symmetric property
similar to the paperfolding word:
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Lemma 4.25. Let w ∈ {0, 1}ω. If for all u ∈ Fct(w), it holds that u ∈ Fct(w) or
urev ∈ Fct(w), then F 1

w(n) = F 0
w(n) for all n,PNF0(w) = PNF1(w), and F 1

w(n) =
(ψw(n) + n− 1)/2.

Proof. Same as for the special case of the paperfolding word. ut

2. Morphic images under the Thue-Morse morphism. The Thue-Morse word beginning
with 0, which we denote by tm, is one of the two fixpoints of the Thue-Morse morphism
µTM, where µTM(0) = 01 and µTM(1) = 10:

tm = µ
(ω)
TM (0) = 01101001100101101001011001101001 · · ·

The word tm has abelian complexity function ψtm(n) = 2 for n odd and ψtm(n) =
3 for n > 1 even [115]. Since tm fulfils the condition that u ∈ Fct(tm) implies
u ∈ Fct(tm), we can apply Lemma 4.25, and compute the prefix normal forms of tm as
PNF1(tm) = 1(10)ω and PNF0(tm) = 0(01)ω , see Fig. 4.8.

Fig. 4.8: The Thue-Morse word (dashed) and its prefix normal forms (solid).

For the proof of the abelian complexity of tm in [115], the Parikh vectors were
computed for each length, so we do not really need Lemma 4.25 but could have got the
prefix normal forms directly. Moreover, a much more general result was given in [115]:

Theorem 4.9 ([115]). Let w be an aperiodic infinite binary word. Then ψw = ψtm if
and only if w = µTM(w′) or w = 0µTM(w′) or w = 1µTM(w′) for some word w′.

The abelian complexity function does not in general determine the prefix normal
forms, as can be seen on the example of Sturmian words, which all have the same
abelian complexity function but different prefix normal forms. However, ψtm does, due
to its values ψtm(n) = 2 for n odd and = 3 for n even, and to the fact that both F 1

tm
and F 0

tm have difference function with values from {0, 1}: notice that the only pair of
such functions with width 2 resp. 3 are the PNFs of tm. Therefore, we can deduce the
following from Theorem 4.9:

Corollary 4.5. For an aperiodic infinite binary word w, PNF1(w) = 1(10)ω and
PNF0 = 0(01)ω if and only if w = µTM(w′) or w = 0µTM(w′) or w = 1µTM(w′) for
some word w′.

To conclude this section, we return to the question of how many 1s need to be
prepended to make the Thue-Morse word prefix normal.

Lemma 4.26. We have 11tm ∈ L. Moreover, this is minimal since 1tm is not prefix
normal.
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Proof. We will show that for every prefix, the number of 1s in the prefix of 11tm is
greater than or equal to the the number of 1s in the prefix of PNF1(tm) of the same
length. Let v = PNF1(tm) and u = 11tm. It is easy to see that Pv(n) = bn2 c+ 1 and

Pu(n) =


n
2 + 1 if n is even
bn2 c+ 2 if n is odd and un = 1

bn2 c+ 1 if n is odd and un = 0

Thus for all n ≥ 1 it holds that Pu(n) ≥ Pv(n), implying that 11tm ∈ L.
For minimality, note that 1tm is not prefix normal, since 11 is a factor of tm. ut

4.6.3 Prefix normal forms of Sturmian words.

Let w be a Sturmian word. As we saw in Sec. 4.4, the only 1-prefix normal word
in the class of Sturmian words with the same slope α is the upper mechanical word
s′α,0 = 1cα.

Theorem 4.10. Let w be an irrational mechanical word with slope α, i.e. a Sturmian
word. Then PNF1(w) = 1cα and PNF0(w) = 0cα, where cα is the characteristic
word of slope α.

Proof. Since the characteristic word cα has the same slope as w, we have Fct(w) =
Fct(cα) by Fact 4.2. The abelian complexity of w is constant 2 [115], thus a factor of
length k can have either F 1

w(k) or F 1
w(k) − 1 1s. Let us call a factor u of w heavy if

|u|1 = F 1
w(k), and light otherwise. We have to show that every prefix of 1cα is heavy.

It is known [92] that the prefixes of the characteristic word are precisely the reverses
of its right special factors, where a factor u is called right special if both u0 and u1
are factors. Thus, every prefix v of 1cα has the form v = 1urev, where both u1 and u0
are factors of w, therefore v = 1urev is heavy. The fact that PNF0(w) = 0cα follows
analogously. ut

4.6.4 Prefix normal forms of binary uniform morphisms

In [19] the authors provide an algorithm that computes the abelian complexity of a
morphic word that is the fix point of a binary uniform morphism. — A binary uniform
morphism µ is a function µ : {0, 1} → {0, 1}∗ such that |µ(0)| = |µ(1)|. — We now
briefly summarize the main idea of the algorithm. Refer to [19] for all the details.

Given a binary uniform morphism µ of length ` = |µ(0)| = |µ(1)|, the algorithm
stores two tables, with the following information: In the first table, for all a, b ∈ {0, 1},
we store the border table ab. This table contains, for all c, d ∈ {0, 1}, the minimum
number of 0s in a factor s of length k = 2, . . . , 2` such that s = uv, where u is a
non-empty prefix of µ(c) starting with character a and v is a non-empty suffix of µ(d)
starting with character b, if such s exists or the entry is left blank. In the second table,
for all a, b ∈ {0, 1}, we store the minimum number of 0s in a factor s ∈ Fct(µω(0)) of
length k ≥ 2 such that s has a as first character and b as last character.

In order to compute the second table, we can compute the first ` entries via a
brute-force algorithm over the images of µ(ab), for all a, b ∈ {0, 1}, since if a factor
intersects the images of three letters, then this factor has length greater than `. In order
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to fill the rest of the second table we can consider the following. Let v be the factor
of length n > ` that has the minimum number of 0s and has a as first character and b
as last character, for some a, b ∈ {0, 1}. We can write v as a factor of an image of a
shorter factor s in µω(0), in particular s = cud where c, d ∈ {0, 1} and u is a possible
empty factor. Thus, we can write v = xµ(u)y where x is a non-empty suffix of µ(c)
starting with a character a while y is a non-empty prefix of µ(d) with b as last character.
We can assume without loss of generality that |µ(0)|0 ≥ |µ(1)|0, then in order to get
the minimum number of 0s in v we have to find all the possible lengths k ≡ n mod `
such that |x|+ |y| = k. Then we can look up into the border table ab, for every possible
c, d ∈ {0, 1}, in correspondence of row k we can get the minimum number of 0s for x
and y. In order to get the minimum number of 0s in µ(u) we look up into the second
table to the minimum number of 0s of a factor of length m = (n− k)/`+ 2 that starts
and ends with c and d respectively. Keeping all together we get the minimum number
of 0s for the factor v of length n that starts with an a and ends with a b.

This algorithm can be easily modified in order to compute the minimum number of
1s in a factor of a given length. Thus the algorithm explicitly computes the F 0

w(i) and
F 1
w(i) for all i = 1, 2, . . . , n, from which we can compute the prefix normal forms of

the morphic word in O(n) time, leading to the following lemma.

Lemma 4.27. Given a binary uniform morphism ϕ, let w be the fixed point of ϕ. The
prefix of length n of PNFw(n) can be computed in O(n) time using [19, Algorithm 1]

Example 11. Let us consider the following morphism µ(0) = 0101 and µ(1) = 1100
where first characters of µω(0) are µω(0) = 0100110001000100 · · · . In Table ?? we
show the border tables computed for ab ∈ {00, 01, 10, 11}.

border table 00 border table 01 border table 10 border table 11
k 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11
2 2 1 1 0
3 2 3 1 2 1 1 0
4 3 2 2 1 3 2 2 1 3 1 2
5 3 2 4 3 2 3 2 3 2 1 3 2
6 3 4 3 2 4 3 2 4 3 3 2
7 4 3 3 4 3 3 4
8 4 4 4 4

Table 4.4: The border tables of the morphism µ(0) = 0101 and µ(1) = 1100.

As an example, in border table 11, row 2 the only non empty element corresponds
to column 01, since the factor 11 is the factor composed by the last character of the
image µ(0) and the first character of the image µ(1). In Table ?? we report few entries
of the second table.

In order to compute the value of the last row of column 10, we proceed as follows:
we have that n = 11 and since ` = 4, then the possible values of k such that k ≡ n
mod ` are k ∈ {3, 7}. For k = 3 we have that the border table 10 has 3rd row blank,
thus there are no factors of length 11 that start with a 1 and end with a 0. Then the
only case we have to consider is k = 7. In the border table 10, for, k = 7, we have
that the only possible values of cd are {01, 10, 11}. For cd = 11 we look up row 7
of the border table 10 at column 11 and we get that the minimum number of 0s is 3.
From the second table, we know that the minimum number of 0s in a factor of length
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n list 00 list 01 list 10 list 11

2 2 1 1 0
3 2 1 1 0
4 2 1 1 1
5 2 2 2 1
6 3 2 2 2
7 3 3 3 2
8 4 3 3 3
9 4 4 4 3

10 5 4 4 4
11 5 5 5 4

Table 4.5: Each column list ab reports the minimum number of 0’s in a factor of length n starting
with a and ending with b, of the morphism µ(0) = 0101 and µ(1) = 1100.

m = (11− 7)/4 + 2 = 3 starting and ending with a 1 is 1. Since |µ(0)|0 = 2 we have
that the minimum number of 0s in a factor of length 11 starting with a 1 and ending
with a 0 is 5.

Fix n = 11, the minimum value in row n is the minimum number of 0’s in a factor
of length 11 of the fix point of µ, i.e. for n = 11 the minimum vale is 4. Thus, we have
that the maximum number of 1’s in a factor of length 11 is 11− 4 = 7 = F 1

w(11). The
first values of the F 1

w function are 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, . . ., from which we can
compute the first values of PNF1(w) = 11101010101 · · · .

4.7 A characterization of periodic and aperiodic prefix normal
words with respect to minimum density

In this section, we provide a characterization of periodicity and aperiodicity of prefix
normal words with respect to their minimum density. The following result shows that
every ultimately periodic infinite prefix normal word has rational minimum density.

Lemma 4.28. Let v be an infinite ultimately periodic binary word with minimum density
δ(v) = α. Then α ∈ Q.

Proof. Let us write v = uxω with x not a suffix of u.
For i = 0, 1, . . . , |x| − 1, let yi be the prefix of length |u| + i of v, i.e., yi =

ux1x2 · · ·xi. Trivially, if for some i we have that δ(yi) ≤ δ(v) the claim directly
follows from yi being a finite prefix of v.

Let us now assume that for each i = 0, 1, . . . |x| − 1 it holds that δ(v) < δ(yi) and
let i∗ = min{i | δ(yi) ≤ δ(yj) for each j 6= i}, hence δ(v) < δ(yi∗).

For every n ≥ |u|+ |x| let in = |u|+((n−|u|) mod |x|) and kn = b(n−|u|)/|x|c,
i.e., |u| ≤ in ≤ |u|+ |x| − 1 and n = in + kn|x|.

Then, we have that

Dv(n) =
|yin |1 + kn|x|1
|yin |+ kn|x|

≥ min{δ(yin), δ(x)} ≥ min{δ(yi∗), δ(x)}. (4.2)

Moreover, we also have that

lim
k→∞

Dv(|u|+ i∗ + k|x|) = lim
k→∞

|yi∗ |1 + k|x|1
|yi∗ |+ k|x|

= δ(x). (4.3)
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We cannot have δ(x) ≥ δ(yi∗), since by (4.2) δ(yi∗) is a rational lower bound on
Dv(n) (for each n ≥ 1) which is achieved by Dv(|u|+ i∗), contradicting the standing
hypothesis δ(v) < δ(yi∗).

Therefore, we must have δ(x) < δ(yi∗), and from (4.2) we have Dv(n) ≥ δ(x) and
from (4.3) we also have that for each ε > 0 there exists k > 0 such that Dv(|u|+ i∗ +
k|x|) < δ(x) + ε. Therefore, δ(v) = inf{Dv(n) | n ≥ 1} = δ(x), which is a rational
number, since x is a finite string. ut

We now show that, while periodicity is characterized by rational density the converse
is not true. It turns out that for every α ∈ (0, 1), both rational and irrational, there exists
an aperiodic prefix normal word with minimum density α.

Lemma 4.29. Fix α ∈ (0, 1), and let (an)n∈N be a strictly decreasing infinite sequence
of rational numbers from (0, 1) converging to α. For each i = 1, 2, . . . , let the binary
word v(i) be defined by

v(i) =

{
1d10a1e010−d10a1e i = 1

prefflipextω(v(i−1))(ki|v(i−1)|)0`i i > 1

where `i is defined by

`i =

{
10− d10a1e i = 1⌊
ki

(
|v(i−1)|1−ai|v(i−1)|

ai

)⌋
i > 1,

and ki is the smallest integer greater than one such that `i > `i−1.
Then v = limi→∞ v(i) is an aperiodic infinite prefix normal word such that δ(v) =

α.

Proof. The statement is a direct consequence of the following claim.
Claim The following properties hold

1. δ(v(i)) ≥ ai for each i ≥ 1;
2. ι(v(i)) = |v(i)| for each i ≥ 1;
3. δ(v(i)) < δ(v(i−1)) for each i ≥ 2;
4. |v(i)|1 > |v(i−1)|1 for each i ≥ 2;

5. δ(v(i)) ≤ ai
(

ki|v(i−1)|1
ki|v(i−1)|1−ai

)
for each i ≥ 2.

Proof of the claim. By direct inspection we have that properties 1 and 2 hold for
v(1). We now argue by induction. Fix i > 1 and let us assume that properties 1 and 2
hold for v(i−1). Then, since ai < ai−1 we have

|v(i−1)|1
ai

>
|v(i−1)|1
ai−1

≥ |v(i−1)|,

where the last inequality follows from property 1 and 2. Therefore,
(
|v(i−1)|1−ai|v(i−1)|

ai

)
>

0, hence there exists ki > 1 such that
⌊
ki

(
|v(i−1)|1−ai|v(i−1)|

ai

)⌋
> `i−1. In particular,

`i is well defined.
By property 2, we have ι(v(i−1)) = |v(i−1)| hence by Proposition 4.14, we have

Dflipextω(v(i−1))(k|v(i−1)|) = δ(v(i−1)) and also δ(prefflipextω(v(i−1))(ki|v(i−1)|)) =

δ(v(i−1)).
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Moreover, since `i > 0 it is not hard to see from the definition of v(i) that

δ(v(i)) = Dv(i)(|v(i)|) =
ki|v(i−1)|1

ki|v(i−1)|+ `i
< δ(v(i−1)), (4.4)

which shows that property 3 and property 2 hold for v(i). In addition, because of ki > 1
and (by Proposition 4.14)

|v(i)|1 = |prefflipextω(v(i−1))(ki|v(i−1)|)|1 = k1|v(i−1)|1

it follows that property 4 also holds for v(i).
The definition of `i together with the well known property x− 1 < bxc ≤ x imply

that

ki
ai

(
|v(i−1)|1 − ai|v(i−1)|

)
− 1 < `i ≤ ki

(
|v(i−1)|1

ai
− |v(i−1)|

)
. (4.5)

Using the right inequality of (4.5) in (4.4) we have δ(v(i)) ≥ ai showing that property 1
holds for v(i).

In addition, using the left inequality of (4.5) in (4.4) we have

δ(v(i)) ≤ ai
(

ki|v(i−1)|1
ki|v(i−1)|1 − ai

)
showing that property 5 holds for v(i). The proof of the claim is complete.

In order to see that v is aperiodic, it is enough to observe that v 6= 0ω and for each
i ≥ 1 it contains a distinct run of `i 0s, with `i being a strictly increasing sequence.

In order to show that δ(v) = α, we will prove that limi→∞ δ(v(i)) = α.
Since, limi→∞ ai = α and for each i ≥ 1, ki > 1 and |v(i)|1 > |v(i−1)|1, we have

that

lim
i→∞

ai
ki|v(i−1)|1

ki|v(i−1)|1 − ai
= lim
i→∞

ai = α.

Hence, from properties 4 and 5 of the Claim above, we have the desired result
limi→∞ δ(v(i)) = limi→∞ ai = α.

Summarizing, we have shown the following result.

Theorem 4.11. For every α ∈ (0, 1) (rational or irrational) there is an infinite aperi-
odic prefix normal word of minimum density α. On the other hand, for every ultimately
periodic infinite prefix normal word w the minimum density δ(w) is a rational number.
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Pattern discovery in colored strings

This chapter is devoted to colored strings.
In recent years, embedded systems have become increasingly pervasive and are

becoming fundamental components of everyday life. In line with this, embedded systems
are required to perform more and more demanding tasks, and in many circumstances,
peoples’ lives are now dependent on the correct functioning of these devices. This, in
turn, has led to an increasingly complex design process for embedded systems, where
a major design task is to evaluate and check the correctness of the functionality from
the early stages of the development process. This functionality checking is usually
done using assertions — logic formulae expressed in temporal logic such as Linear
Temporal Logic (LTL) or Computation Tree Logic (CTL) — that provide a way to
express desirable properties of the device. Assertions are typically written by hand by
the designers and it might take months to obtain a set of assertions that is small and
effective (i.e. it covers all functionalities of the device) [63]. In order to help designers
with the verification process, methodologies and tools have been developed which
automatically generate assertions from simulation traces of an implementation of the
device [50, 51, 91, 133]. The objective is to provide a small set of assertions that
cover all behaviors of the device, in order to extend the basic manually-defined set of
assertions.

A simulation trace can be viewed as a table, which records, for every simulation
instant T , the value assumed by the input and output ports of the device. Figure 5.1a
shows an example of a simulation trace of a device with three input ports I = {i1, i2, i3}
and two output ports O = {o1, o2}. An assertion is a logic formula expressed in
temporal logic that must remain true in the whole trace. The simplest assertions involve
only conditions occurring at the same simulation instant. In the simulation trace in
Figure 5.1a, from the solid and dashed shaded boxes, we can assert that each time we
have i1 = 1, i2 = 0, and i3 = 1, then o1 = 1 and o2 = 1. On the other hand, we cannot
assert that each time we have i1 = 1, i2 = 1, and i3 = 0, then o1 = 1 and o2 = 1,
because there is a counterexample in the simulation trace, namely at instant T = 9,
where o1 = 0 and o2 = 0. Note that the assertions do not need to contain all input and
output variables, e.g. we can assert that i1 = 0 and i3 = 0 implies o2 = 0.

Among all possible types of assertions that can be expressed in temporal logic, an
interesting one is given by chains of next: sequences of consecutive input values that,
when provided to the device, uniquely determine their output, after a certain number
of simulation instants. For example, in the simulation trace in Figure 5.1a, we can



88 5 Pattern discovery in colored strings
(a) Simulation trace.

T i1 i2 i3 o1 o2

1 0 1 0 0 0
2 1 1 0 1 0
3 0 1 0 0 0
4 1 1 0 1 1
5 0 1 0 0 0
6 1 1 0 1 0
7 1 0 1 1 1
8 0 1 0 1 0
9 1 1 0 0 0

10 0 1 0 0 0
11 1 0 1 1 1

(b) Mapping of the input and output alphabet.

Input alphabet.

i1 i2 i3 Σ

0 1 0 a

1 0 1 b

1 1 0 c

Output alphabet.

o1 o2 Γ

0 0 x
1 0 y
1 1 z

(c) The colored string associated with the simulation
trace.

x y x z x y z y x x z
a c a c a c b a c a b

1 2 3 4 5 6 7 8 9 10 11

Fig. 5.1: Example of a simulation trace of a device having three input ports I = {i1, i2, i3}, and
two output ports O = {o1, o2}. The mapping of the input and output values of the trace into the
input and output alphabet respectively. The colored string associated to the simulation trace, after
the mapping. The solid and dashed shaded and non-shaded boxed values in the simulation trace
highlight that every time we see the sequence of input values, then we have the corresponding
output value. The solid non-shaded boxed characters in the colored string are the mapping of the
corresponding solid non-shaded boxed values in the simulation trace.

assert that each time we have, for (i1, i2, i3), the values (0, 1, 0), (1, 1, 0), (0, 1, 0) in
consecutive simulation instants, then, three instants later, we will see o1 = 1 and o2 = 0.

We model simulation traces with colored strings. A colored string is a string over
an alphabet Σ, where each position is additionally assigned a color from an alphabet Γ .
We will set Σ as the set of tuples of possible values for the input ports i1, . . . , ik and Γ
as that of the output traces o1, . . . , or. The objective then is to identify patterns in the
string whose occurrence is always followed by the same color at some given distance.

Related Work

Pattern mining was originally motivated by the need to discover frequent itemsets and
association rules in basket data, i.e. items that were frequently bought together in a
retail store. The seminal Apriori algorithm [1] can discover that type of pattern and has
become very popular (with many extensions and variations) due to its wide applicability
in other data-intensive domains. However, the original pattern mining systems did not
consider time relations, e.g., between entries of the database in which the basket data
are stored. This has motivated the study of so-called sequential pattern mining [2].

In sequential pattern mining, episodes are partially ordered sequences of events
that appears close to each other in the sequence [96]. Events in episodes may be in a
dependency relation, hence episodes are represented as directed acyclic graphs. Given
episodes of the sequence, it is possible to build episode rules that establish antecedent-
consequent relations among episodes. These relations can predict the future events
of the sequence, thus useful to understand the behavior of the sequence itself. This
founds application in several tasks, e.g., traffic jam prediction [30], fault prediction in
manufacturing plants [90], and bank-customer trends prediction [55]. For a complete
overview on sequential pattern mining we refer the reader to some of the many surveys
in that area [64, 93, 107].
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Unfortunately, the above setting is not applicable to our problem, since here time is
given only in a relative sense, i.e., whether an event happens before (of after) another
event, while we need to count exactly the instants that occurs between the two events.

In the string mining problem [54, 59, 60, 61, 132], one aims to discover strings that
appear as a substring in more than ω strings in a collection, where ω is a user-defined
parameter called support of the string. This can be also used to find strings that dis-
criminate between two collections, i.e., strings that are frequent in one collection and
not frequent in the other. These strings are called emerging strings and find important
applications in data mining [113], knowledge discovery in databases [28] and in bioin-
formatics [17]. In the knowledge discovery on databases field, the problem has been
extended to mining frequent subsequences [74] and distinguishing subsequence patterns
with gap constraints [75, 104, 135, 138].

In [72] Hui proposed a solution for the color set size problem. Here, given a tree
and a coloring of its leaves, the objective is to find for all internal nodes of the tree the
number of distinct colors in the leaves of its subtree. In the paper, the color set size
problem is applied to several string matching and string mining problems, e.g., given a
collection of m strings, find the longest pattern which appears in at least 1 ≤ k ≤ m
strings. Note that if the tree of the color set size problem is the suffix tree of a string s,
then s with the coloring of its suffixes can be seen as a colored string. In spite of this
similarity, both, the problems that we solve, and the approaches we use, are different.

In assertion mining, the two existing tools, GoldMine [133] and A-Team [50], are
based on data mining algorithms. In particular, GoldMine [133] extracts assertions that
predicate only on one instant of the simulation trace—i.e. they do not involve any notion
of time—, using decision tree based mining or association mining [1]. Furthermore,
using static analysis techniques together with sequential pattern mining, it extracts
temporal assertions. The tool A-Team [50], requires the user to provide the template of
the temporal assertions that they want to extract. For example, in order to extract the
properties of our example in Fig. 5.1a, one needs to provide a template stating that we
want a property of the form: “a property p1, at the next simulation instant a property
p2, at the next simulation instant a property p3, then after three simulation instants a
property p4”. Given a set of templates, the software, using an Apriori algorithm, extracts
propositions (logic formulae containing the logical connectives ¬, ∨, and ∧) from the
trace. Once the propositions have been extracted, the tool generates the assertion by
instantiating the extracted propositions in the templates, using a decision-tree-based
algorithm to find formulas that fit in the template and are verified in the simulation trace,
i.e. if the trace contains no counterexample.

Our contribution

In this work we introduce colored strings, and propose and analyze two pattern discovery
problems on colored strings which correspond to simplified pattern mining tasks w.r.t.
the assertion mining problem. In both problems, we are given a colored string as input.
In the first problem, given a particular color, we want to find all minimal substrings
which occur followed always at a the same distance by the given color. In the second
problem, the color is not fixed, i.e. we want to find all minimal substrings which occur
followed always at a the same distance by the same color. We give formal definitions of
these problems in Section 5.1.1.
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Although these problems are simpler than the original assertion mining problem,
the solution to our problem contains all the information, possibly filtered, to recover the
desired set of minimal assertions in a second stage. For example, let us assume that the
device that produced the simulation trace in Figure 5.1a has a behavior such that every
time that i1 = 0, and at the next instant i1 = 1, and at the next instant i1 = 0, then after
three instants o1 = 1 and o2 = 0. A solution to our problem will include all patterns of
length 3 for which i1 = 0, 1, 0, while i2 and i3 have arbitrary values, since all of these
will result in o1 = 1 and o2 = 0 three instances later.

We first upper bound the number of minimal patterns by O(n2). We then propose
two algorithms which find all minimal patterns, when only one color is of interest
(base), and when one is interested in all colors (base-all). Both of these algorithms
use the suffix tree of the reverse string as underlying data structure. We note that
since this is a pattern mining problem, every efficient algorithm for the problem will
necessarily use a dedicated string data structure (or index), such as a suffix tree, since
all occurrences of substrings have to be considered concurrently.

Then we show that in the case of one color, the first algorithm can be improved. The
new algorithm, referred to as skipping, also uses the suffix tree as its underlying data
structure, together with an appropriately defined priority queue, which allows to reduce
the number of computations in practice, even though the theoretical running time of the
new algorithm is worse, namely O(n2 log n). We provide an experimental evaluation
of the proposed approaches. Finally, we consider the case where there are restrictions
on the patterns that have to be reported. If these restrictions are considered as part of
the problem, we can provide some optimizations that further speed up the computation
of the skipping algorithm.

The rest of the chapter is structured as follows. In Section 5.1 we fix definitions
and notations, and give the problem statements. In Section 5.2 we present baseline
algorithms, base and base-all, that solve these problems. In Section 5.3 we present
the modified algorithm skipping, which solves the pattern discovery problem for only
one color. In Section 5.4 we introduce real-world data oriented restrictions on the output.
In Section 5.5 we present an experimental evaluation of the proposed approaches.

5.1 Basics

LetΣ be a finite ordered set. We refer toΣ as alphabet and to its elements as characters.
A string over Σ is a finite sequence of characters S = S[1, n], where |S| = n is the
length of string S. We denote by ε the empty string, the unique string of length 0. Note
that we number strings starting from 1, and we use the array-notation for strings: we
denote the i’th character of S by S[i] and use S[i, j] to refer to the string S[i] · · ·S[j],
if i ≤ j, while S[i, j] = ε if i > j. Given string S = S[1, n], the reverse string is the
string Srev = S[n]S[n − 1] · · ·S[1]. For string S and 1 ≤ i ≤ n, Prefi(S) = S[1, i]
is called the i’th prefix of S, and Sufi(S) = S[i, n] is called the i’th suffix of S. A
substring of a string S is a string T for which there exist i, j s.t. T = S[i, j]; in this
case the position i is referred to as an occurrence of T in S. A substring T of S is called
proper if T 6= S. When S is clear from the context, then we may refer to T simply as a
substring.
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5.1.1 Colored strings

Given two finite sets Σ (the alphabet) and Γ (the colors), a colored string over (Σ,Γ )
is a string S = S[1, n] over Σ together with a coloring function fS : {1, . . . , n} → Γ .
We denote by σ = |Σ| and γ = |Γ | the number of characters resp. of colors. Given a
colored string S of length n, its reverse is denoted Srev, and its coloring function fSrev

is defined by fSrev(i) = fS(n − i + 1), for i = 1, . . . , n. When S is clear from the
context, we write f for fS and f rev for fSrev .

We are interested in those substrings which are always followed by a given color y,
at a given distance d. Look at the following example.

Example 12. Let S = acacacbacab, with colors xyxzxyzyxxz:

x y x z x y z y x x z
a c a c a c b a c a b

1 2 3 4 5 6 7 8 9 10 11

The substring aca occurs 3 times in S, at positions 1, 3, and 8. In positions 1 and
3 it is followed by a y at distance 3, while at position 8, the corresponding position is
beyond the end of the string.

This leads to the following definitions:

Definition 5.1 (y-good, y-unique, minimal). Let S be a colored string over (Σ,Γ ),
y ∈ Γ a color, d ≤ n a non-negative integer, and T = T [1,m] a substring of S.

1. An occurrence i of T is called y-good with delay d (or (y, d)-good) if f(i+m−
1 + d) = y.

2. T is called y-unique with delay d (or (y, d)-unique) if for every occurrence i of T ,
i is (y, d)-good or i+m− 1 + d > n.

3. T is called minimally (y, d)-unique if there exists no proper substring U of T which
is y-unique with delay d′, for some d′ s.t. U = T [i, j] and d′ = d+ |T | − j.

Returning to Example 12, the occurrence of aca in position 1 is (y, 3)- and (y, 5)-
good, that in position 3 is (y, 1)- and (y, 3)-good, while that in position 8 is not (y, d)-
good for any d. Therefore, the substring T = aca is a (y, 3)-unique substring of S,
since every occurrence i of aca is either (y, 3)-good (pos. 1 and 3) or i+m−1+d > n
(pos. 8). However, aca is not minimal, since its substring ca is also (y, 3)-unique (and
d′ = d, since ca is a suffix of aca).

The introduction of minimally (y, d)-unique substrings serves to restrict the output
size. Let T = aXb be (y, d)-unique, with a, b ∈ Σ andX ∈ Σ∗. We call T left-minimal
if Xb is not (y, d)-unique, and right-minimal if aX is not (y, d+ 1)-unique. We make
the following simple observations about (y, d)-unique substrings. (Note that 2 is a
special case of 3.)

Observation 5.1 Let S ∈ Σ∗ and let T be a (y, d)-unique substring of S.

1. T is minimal if and only if it is left- and right-minimal.
2. If T is a suffix of T ′, then T ′ is also (y, d)-unique.
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3. If T ′ = UTV is a superstring of T such that |V | ≤ d, then T ′ is (y, d−|V |)-unique.

We are now ready to formally state the problems treated in this chapter.

Problem 1 (Pattern Discovery Problem). Given a colored string S and a color y,
report all pairs (T, d) such that T is a minimally (y, d)-unique substring of S.

Problem 2 (Unrestricted-Output Pattern Discovery Problem). Given a colored
string S, report all triples (T, y, d) such that T is a minimally (y, d)-unique substring
of S.

We next give an upper bound on the number of minimally (y, d)-unique substrings.

Lemma 5.1. Given string S of length n, the number of minimally (y, d)-unique sub-
strings of S, over all y ∈ Γ and d = 0, . . . , n, is O(n2).

Proof. Note that, given a position j and a delay d, every substring occurrence ending
in j is (fS(j + d), d)-good. Therefore, for a substring u with an occurrence ending
in position j, and for fixed d, it holds that, if u is (y, d)-unique for some y, then
y = fS(j + d). Moreover, it follows from Observation 5.1 that, given y, d, and j, at
most one minimally (y, d)-unique substring can end at position j. Altogether we have
that the number of minimally (y, d)-unique substrings is O(n2), over all y and d.

5.1.2 Suffix trees and suffix arrays

Let S be a string over Σ and $ a new character not belonging to Σ. We denote by T (S)
the suffix tree of S$, i.e. the compact trie of the suffixes of S$. For a general introduction
to suffix trees, see, e.g., [69, 95, 125]. Here we recall some basic facts.

The suffix tree T (S) is a rooted tree in which all internal nodes are branching. Each
edge is labeled with a non-empty substring of S so that the labels of any two outgoing
edges from the same node start with a different character. Edge labels are stored in form
of two pointers [i, j] into the string with the property that S[i, j] equals the label of
the edge. If |S| = n, then T (S) has exactly n + 1 leaves, each labeled by a position
from {1, . . . , n+ 1}, denoted ln(v) (for leaf number). For a node v in T (S), we denote
by L(v) the concatenation of the edge labels on the path from the root to node v. The
string L(v) is sometimes referred to as the substring represented by node v. If v is a
leaf with ln(v) = i, then L(v) is equal to the i’th suffix of S$, Sufi(S$). For a node v,
we denote by td(v) its treedepth, the number of edges on the path from the root to v,
and by sd(v) = |L(v)| its stringdepth, the length of the string represented by v. Given
node v not equal to the root, parent(v) is the unique node which is next on the path
from v to the root. Given a node v which is not a leaf and a character c ∈ Σ, child(v, c)
returns the unique node u with parent v such that the label of the edge (v, u) starts with
character c, or the empty pointer if no such node exists.

Given a node u with parent v, a locus is a pair (u, t) s.t. sd(v) < t ≤ sd(u).
Let [i, j] be the label of edge (v, u) and k = t − sd(v). We define L(u, t) as the
string L(v) · S[i, i + k − 1], the substring represented by locus (u, t). Note that if
t = sd(u), then L(u, t) = L(u). It is an important property of suffix trees that there is
a one-to-one correspondence between loci of T (S) and substrings of S$. This allows
us to define, for a substring T of S (which is also a substring of S$), the locus of
T , loc(T ) = loc(T, T (S)) as the unique locus (u, t) in T (S) with the property that
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L(u, t) = T . Given a substring T of S with locus loc(T ) = (u, t), the set of occurrences
of T is given by the set {ln(v) | v is leaf in the subtree rooted in u}.

Let u be a node and L(u) = aT , where a ∈ Σ and T ∈ Σ∗. The suffix link of u is
defined as slink(u) = loc(T ). It can be shown that for any node u, slink(u) is a node of
T (S) (rather than just a locus). Suffix links can also be defined for loci: for locus (u, t)
with L(u, t) = aT , define slink(u, t) = loc(T ); these are also called implicit suffix
links. Suffix links are often represented by directed edges, see Figure 5.2.

Given a suffix tree T (S) with k nodes, and a node u of T (S), let r be the rank of
the node u in the breadth-first search traversal of the tree. We define the reverse index
BFS of u as iBFS(u) = k− r. Refer to Figure 5.3 for an example of the reverse index
BFS values.

Given the string S of length n, we denote by SAS [1, n+ 1] the suffix array of S$.
We refer the reader to, e.g., [95], for a general introduction to suffix arrays.

The suffix array SAS [1, n + 1] of a string S$ is a permutation of {1, . . . , n + 1}
such that SAS [i] = j if and only if S[j, n]$ is i-th suffix in the lexicographically
ordered list of suffixes of S$. The suffix array SAS and the suffix tree T (S) are
deeply related. We can obtain the SAS by listing the leaves of the suffix tree T (S)
from left to right — assuming that the children are ordered according to the first
characters of their edge labels —. In particular, for an inner node u, the leaves in the
subtree rooted in u yield an interval of the suffix array SAS [i, j] such that {ln(v) |
v is leaf in the subtree rooted in u} = {SAS [k] | i ≤ k ≤ j}.

5.1.3 Maximum-oriented indexed priority queue

A maximum-oriented indexed priority queue [122, Sec. 2.4] denoted by IPQ, is a data
structure that collects a set of m items with keys k1, . . . , km respectively, and provides
the following operations:

• insert(i,k): insert the element at index i with key ki = k.
• promote(i,k): increase the value of the key ki, associated with i, to k ≥ ki.
• demote(i,k): decrease the value of the key ki, associated with i, to k ≤ ki.
• (i, k)←max(): return the index i and the value k of the item with maximum key
ki; if two items have the same key value, we report the item with larger index.

• k ←keyOf(i): return the value of the key ki associated with index i.
• b←isEmpty(): return true if the IPQ is empty and false otherwise.
• delete(i): remove the element at index i from the IPQ.

The operations insert, promote, demote and delete run in O(log(m))
time, while the operations max, keyOf and isEmpty are performed in O(1) time.

For our purposes, we also require a function b ←allNegative() that returns
true if all key values are negative, and false otherwise.

We use the IPQ to store keys associated to nodes u of a suffix tree T (S) using
iBFS(u) as index. For ease of presentation, in slight abuse of notation, we will use u
and iBFS(u) interchangeably.

5.1.4 Rank, select, and range maximum query

A bitvector B[1, n] of length n is an array of n bits. For all 1 ≤ i ≤ n and b ∈ {0, 1},
we define rankb(B, i) as the number of occurrences of b in B[1, i], and selectb(B, i)
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as the index of the i-th occurrence of the symbol b in B. If i > rankb(B,n) then
selectb(B, i) = n+ 1. Furthermore, we set selectb(B, 0) = 0. For both rank and
select operations, if b is omitted we assume b = 1. Given a bitvector B, rank and
select operations can be supported in O(1) time using o(n) bits of extra space [44].

For an array A[1, n] of n integers and 1 ≤ i ≤ j ≤ n, a range maximum query
rMqA(i, j) returns the position of the maximum element of A[i, j]. This answer can be
provided in O(1) time using 2n+ o(n) bits of space [58].

Given A[1, n] and the range maximum query data structure for A, we can compute
the position of the second greatest element of A[i, j] in O(1) time. In particular, let
a = rMqA[i, j], we have three cases:(i) if a = i, then the position of the second greatest
element of A[i, j] is c = rMqA[a+ 1, j]; (ii) if a = j, then the position of the second
greatest element of A[i, j] is b = rMqA[i, a− 1]; (iii) otherwise, let b = rMqA[i, a− 1],
and c = rMqA[a + 1, j]. The position of the second greatest element of A[i, j] is b if
A[b] ≥ A[c], otherwise it is c, since A[c] > A[b].

5.2 A pattern discovery algorithm for colored strings using the
suffix tree

Our main tool will be the suffix tree of the reverse string, T = T (Srev). Note that loci
in T correspond to ending positions of substrings of S in the following sense. Given a
locus (u, t) of T , let U = L(u, t)rev. Then U is a substring of S, and its occurrences
are exactly the positions i− |S|+ 1, where i = n− ln(v) + 1 for some leaf v in the
subtree rooted in u. In the next lemma we show how to identify (y, d)-unique substrings
of S with T , the suffix tree of Srev.

Lemma 5.2. Let U be a substring of S, T = T (Srev), and (u, t) = loc(U rev, T ). Then
U is y-unique with delay d in S if and only if for all leaves v in the subtree rooted in u,
Srev[ln(v)− d] is colored y under f rev. In particular, U is y-unique with delay 0 in S
if and only if all leaves in the subtree rooted in u are colored y under f rev.

Proof. It is easy to see that position i− |U |+ 1 is a y-good occurrence of U in S with
delay 0 if and only if U rev is a prefix of Sufn−i+1(Srev) and f rev(n− i+ 1) = y. By
the properties of the suffix tree, all occurrences of U rev correspond to the leaves of the
subtree rooted in u, where (u, t) = loc(U rev, T ). Thus, U is (y, 0)-unique if and only
if all of its occurrences are (y, 0)-good, which is the case if and only if all leaves of the
subtree rooted in u are colored y under f rev. More generally, position i− |U |+ 1 is a
y-good occurrence of U in S with delay d if and only if Sufn−i+1(Srev) is prefixed by
U rev and f rev(n− i+ 1− d) = y. Thus U is (y, d)-unique if and only if for all leaves
v in the subtree rooted in u, Srev[ln(v)− d] is colored y under f rev.

In the following, we will refer to a node u of T as (y, d)-unique if L(u)rev is a
(y, d)-unique substring of S. We can now state the following corollary:

Corollary 5.1. Let U be a substring of S, T = T (Srev), and (u, t) = loc(U rev, T )
such that u is an inner node of T (S). Then U is (y, d)-unique in S if and only if all
children of u are (y, d)-unique.
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5.2.1 Finding all (y, d)-unique substrings

Our first algorithm ALGO1 uses the suffix tree T of the reverse string to identify all
(y, d)-unique substrings of S, not only the minimal ones, for fixed y and d. It marks
the (y, d)-unique nodes of T in a postorder traversal of the tree. Note that if i > n− d,
then position i cannot be (y, d)-good, simply because the position in which we would
expect a y lies beyond the end of string S. In correspondence with the definition of
(y, d)-unique substrings (Definition 5.1), we will treat such positions as if they were
(y, d)-good.

The function g(u) : V (T )→ {0, 1} is defined as follows:

• for a leaf u with leaf number ln(u) = i:

g(u) =


1 if i ≤ d,
1 if i > d and f(i− d) = y,
0 otherwise,

• for an inner node u:

g(u) =

{
y if g(v) = 1 for all children v of u,
0 otherwise.

The algorithm computes g(u) for every node u in a bottom-up fashion, assigning
g(u) = 1 if and only if u is (y, d)-unique or if it is too close to the beginning of the
string Srev. If g(u) = 1, in addition it outputs all strings represented along the incoming
edge of u, except for substrings which contain the $-sign, i.e. suffixes of Srev$. For
details, see Algorithm 5.

Analysis: For fixed d, computing g takes amortized O(n) time over the whole tree,
since computing g(u) is linear in the number of children of u, and therefore, charging
the check whether for a child v, g(v) = 1, to the child node, we get constant time per
node. So, for fixed d, we have O(n + K) = O(n2) time, where K is the number of
(y, d)-unique substrings. Altogether, for d = 0, . . . , n, the algorithm takes O(n3) time.

Example 13. In the running example (Fig. 5.2), for color y and delay d = 3, the
leaf nodes 9, 2, 7, 1, and 3 are marked with 1, and therefore the only inner node
u which gets g(u) = 1 is the parent of leaves number 9, 2, 7. The algorithm out-
puts the (y, 3)-unique substrings baca, cbaca, acbaca, cacbaca, acacbaca,
cacacbaca, acacacbaca, caca, acaca, ca, aca, ab, cab, acab, bacab,
cbacab, acbacab, cacbacab, acacbacab, cacacbacab, bac, cbac, acbac,
cacbac, acacbac, cacacbac, acacacbac.

Remark: Note that some of these substrings do not occur even once in a position
such that the last character is followed by a y with delay d = 3. For instance, the only
occurrence of the substring bac in S is at position 7, so we would expect to see color
y at position 9 + 3 = 12, but the string S ends at position 11. We will treat this and
similar questions in Section 5.4.
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Algorithm 5: ALGO1
input :A colored string S, the suffix tree T of Srev, and y ∈ Γ .
output :All pairs (T, d) such that T is a (y, d)-unique substring of S.

1 for d← 0 to n do
2 UNIQUE(root, y, d)

3 procedure UNIQUE(u, y, d):
4 if u is a leaf then // u is a leaf
5 i← ln(u)
6 if i ≤ d or f rev(i− d) = y then
7 g(u)← 1

8 else
9 g(u)← 0

10 else // u is an inner node
11 g(u)← ∧v child of uUNIQUE(v, y, d)

12 if g(u) = 1 then
13 if u is a leaf then // do not output $-substrings
14 output L(u, t)rev for every t = sd(parent(u)) + 1, . . . , sd(u)− 1

15 else
16 output (L(u, t)rev, d) for every t = sd(parent(u)) + 1, . . . , sd(u)

17 return g(u)

5.2.2 Outputting only minimally (y, d)-unique substrings

We next modify Algorithm ALGO1 to output only minimally (y, d)-unique substrings.
As already noted, the work done by ALGO1 in each node is constant except for the
output step, which is proportional to the length of the edge label leading to u.

In terms of the suffix tree T of Srev, minimality can be translated into conditions
on the parent node and on the suffix link parent node (equivalently: the suffix link) in T .
We first need another definition:

Definition 5.2 (Left-minimal nodes, left-minimal labels). Let u be a node of T =
T (Srev), different from the root, and let v = parent(u). We call u left-minimal for
(y, d) if u is (y, d)-unique but v is not and the label of the edge (v, u) is not equal to $. If
u is (y, d)-unique and left-minimal, then we can define Left-min(u) = x1 · L(v)rev, the
left-minimal (y, d)-unique substring of S associated to u, where x = x1 · · ·xk ∈ Σ+

is the label of edge (v, u).

Example 14. In our running example, let node u be the parent of leaf nodes 9, 2, 7, i.e.
u = loc(T , aca). Then u is left-minimal, since it is (y, 3)-unique but its parent is not.
Its left-minimal label is Left-min(u) = ca. See Fig. 5.2.

It is easy to modify Algorithm 5 to output only left-minimal substrings: Whenever
for an inner node u we get g(u) = 0, then for every child v of u with g(v) = 1,
we output Left-min(v) (if defined). This can be done by replacing lines 12 to 16 in
Algorithm 5 by:
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12 if g(u) = 0 then
13 for each child v of u with g(v) = 1 do
14 if Left-min(v) is defined then
15 output (Left-min(v), d)

Example 15. The resulting algorithm now outputs, for color y and d = 3, the left-
minimal substrings ca,ab,bac.

However, we are interested in substrings which are both left- and right-minimal.
While left-minimality can be identified by checking the parent of a node u, for right-
minimality, Observation 5.1 part (3) tells us that we need to check whether the string
without the last character is (y, d+1)-unique. In T , this translates to checking the suffix
link of the locus of the left-minimal substring Left-min(u).

Proposition 5.1. Let u be an inner node of T = T (Srev), different from the root, such
that L(u)rev is (y, d)-unique in S. Let v = parent(u), and x1 be the first character on
the edge (v, u). Further let t = sd(v) + 1, and (u′, t′) = slink(u, t). Then the substring
U = x1 · L(v)rev is minimally (y, d)-unique in S if and only if v is not (y, d)-unique
and u′ is not (y, d+ 1)-unique.

Proof. For sufficiency, let U be minimally (y, d)-unique in S. Since L(v)rev = x1U ,
and U is left-minimal, therefore v is not (y, d)-unique. Similarly, if U ′ = L(u′, t′)rev,
then we have that U = U ′a, and u′ is not (y, d+ 1)-unique by right-minimality of U .

Conversely, since u is (y, d)-unique and v is not, by definiton of left-minimality,
U = Left-min(u) is left-minimal (y, d)-unique in S. Let U ′ = L(u′, t′)rev, thus U =
U ′a, for some character a ∈ Σ+. Since U ′ is not (y, d + 1)-unique, therefore U is
right-minimal.

We can use Proposition 5.1 as follows. Once a left-minimal (y, d)-unique node u
has been found, check whether u′ is (y, d + 1)-unique, where u′ is the node below
the locus slink(u, sd(parent(u)) + 1). It is easy to find node u′ by noting that u′ =
child(slink(parent(u)), x1), where x1 is the first character of the edge label leading to
u. But how do we know whether u′ is (y, d+ 1)-unique?

The answer is that we will process the distances d in descending order, from d = n
down to d = 0. At the end of the iteration for d, we retain the information, keeping a
flag on every node u which was identified as (y, d)-unique (i.e. which had g(u) = 1).
During the iteration for d − 1, we can then query node u′ to find out whether it is
(y, d)-unique. For details, see Algorithm 6.

Example 16. In the running example, we know from the previous round for d = 4 that
the only nodes that are (y, 4)-unique are the leaves number 4, 2, 1, 10, 3, and 8. We
can now deduce that the substring ca is right-minimal, because u = loc(ca) is not
(y, 4)-unique, and slink(loc(T , carev)) = (u, 1). Looking at the string S we see that ca
is indeed right-minimal, since c is not (y, 3)-unique: it has an occurrence, in position 6,
which is not followed by a y but by an x at position 10 = 6 + 4 (delay 4). Similarly,
the other two left-minimal substrings ab and bac are also right-minimal, because their
respective suffix links are not (y, 4)-unique.
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Algorithm 6: ALGO2
input :a colored string S, the suffix tree T of Srev with suffix links, and y ∈ Γ .
output :all pairs (T, d) such that T is a minimally (y, d)-unique substring of S.

1 for d← n downto 0 do
2 MINUNIQUE(root, y, d)

3 procedure MINUNIQUE(u, y, d):
4 if u is a leaf then // u is a leaf
5 i← ln(u)
6 if i ≤ d or f rev(i− d) = y then
7 g(u)← 1

8 else
9 g(u)← 0

10 else // u is an inner node
11 g(u)← ∧v child of uMINUNIQUE(v, y, d)

12 if g(u) = 0 then // outputting minimal substrings for
children

13 for each child v with g(v) = 1 do
14 if Left-min(v) is defined then
15 (v′, t)← slink(v, sd(u) + 1)
16 if v′ is not (y, d+ 1)-unique then // flag from previous

round
17 output (Left-min(v), d)

18 return g(u)

Analysis: For fixed d, the time spent on each leaf is constant (lines 5 to 10 in
ALGO2); we charge the check of g(v) in line 12 to the child v, as well the work in lines
14 to 18 (computing Left-min(v) and checking the flag on v′ from the previous round);
these are all constant time operations, so we have amortized constant time per node, and
thus O(n) time for fixed d. Therefore, the total time taken by Algorithm 6 is O(n2).

5.2.3 An algorithm for all colors

In some situations, one is interested in all minimally (y, d)-unique substrings, for any
color y. Our third algorithm deals with this case (Problem 2). It is similar to ALGO2,
except it uses a different coloring function g′. The new function g′ : V → Γ ∪ {∗, 0},
is defined as follows:

• for a leaf u with leaf number ln(u) = i:

g′(u) =

{
f rev(i− d) if i− d > 0,

∗ if i− d ≤ 0

• for an inner node u:
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g′(u) =


∗ if for all children v of u: g′(v) = ∗,
y ∈ Γ if u has at least one child v with g′(v) = y and

for all other children v′ of u: g′(v′) ∈ {y, ∗} ,
0 otherwise.

Thus a node u is colored y if and only if all leaves of the subtree rooted in u are
either colored y or ∗, and at least one leaf is colored y. We refer to such a node as
monochromatic. A node is colored ∗ if all leaves in the subtree are within d of the
beginning of Srev; such a node can have monochromatic ancestors in the tree. Finally,
a node is colored 0 if in its subtree there are at least two leaves which are colored by
different colors from Γ . For a node colored 0, all of its ancestors are also colored 0.

Example 17. In our example, for d = 3, the leaves 11, 4, and 8 are colored z, the leaves
9 and 7 are colored y, the leaves 5, 10, and 6 are colored x, and the leaves 1,2, and 3 are
colored ∗. The only monochromatic inner nodes are loc(b) (colored x), and loc(aca)
(colored y), while all others are colored 0. See Figure 5.2b.

Thus, Algorithm 7 finds all minimally (y, d)-unique substrings for all colors simul-
taneously, using the same ideas as ALGO2. The main difference is that now the coloring
function g′ is not binary, and accordingly, the information we have to store from the
previous round (which will be needed to decide whether the substring is right-minimal)
is no longer binary. See ALGO3 for details.

Analysis: The algorithm has n iterations, every iteration takes O(n) time, so alto-
gether we have again O(n2) time.

Therefore, if the color of interest is not part of the input, we can solve the problem
in O(n2) time, which is also a worst-case lower bound on the output size, see Sec. 5.1.
However, if the color y is part of the input, then this algorithm can be further improved.
We will present this improvement in the next section.

5.3 Skipping Algorithm

In this section, we discuss the discovering of (y, d)-unique substrings that are minimal.
As in the baseline algorithm, we build the suffix tree T (Srev) and, intuitively, we
navigate it discovering all left-minimal (y, d)-unique substrings one by one, reporting
only those that are minimal. Thus, according to Proposition 5.1, we have to discover all
left-minimal (y, d+ 1)-unique substrings before discovering left-minimal (y, d)-unique
substrings.

In order to discover them, fix `, for each node u of T (Srev), we consider which
is the highest possible delay d smaller than ` such that L(u)rev can be (y, d)-unique,
denoted by h(u, `). We consider four different cases:

• If u is a leaf, then L(u)rev is the j-prefix of S, where j = n− ln(u) + 1 = |L(u)|
– If ln(u) < `, then j + ` − 1 > n thus L(u)rev is (y, ` − 1)-unique since the

position of the color is beyond the end of the string, thus h(u, `) = `− 1.
– If ln(u) ≥ ` and there exists an i < ` such that f(j + i) = y, then the

highest possible value d < ` such that L(u)rev is (y, d)-unique is given by the
position of the furthest occurrence of y within a distance of `− 1 from j, thus
h(u, `) = max{i < ` | f(j + i) = y}.



100 5 Pattern discovery in colored strings

a b

$

$ $

$

b
c
a
c
a
c
a
$

b
c
a
c
a
c
a
$

b
c
a
c
a
c
a
$

c

a

c

a

c

a

$

c
a
c
a
c
a
$

a
c
a
b
c
a
c
a
c
a
$

$ c

a

c

a

$

12

11 4

9 2 7

1 5 10 3

8 6

d = 4

d = 4

d = 3

d = 3

Legend

(a) The nodes are colored according to function g for the character y, for d = 3 (dashed) and for
d = 4 (solid), see Example 13.
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(b) The nodes are marked according to function g′ for d = 3, see Example 17.

Fig. 5.2: The suffix tree T of the reverse string Srev = bacabcacaca, where S = acacacbacab,
see Example 12. For clarity, the edges carry the label itself rather than a pair of pointers into the
string. Suffix links are drawn as dotted directed edges.
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Algorithm 7: ALGO3
input :a colored string S, and the suffix tree T of Srev with suffix links.
output :all triples (T, y, d) such that T is a minimally (y, d)-unique substring of S

1 for d← n downto 0 do
2 ALLCOLORSMINUNIQUE(root, d)

3 procedure ALLCOLORSMINUNIQUE(u, d):
4 if u is a leaf then // u is a leaf
5 i← ln(u)
6 if i ≤ d then
7 g′(u)← ∗
8 else
9 g′(u)← f rev(i− d)

10 else // u is an inner node
11 X ← { ALLCOLORSMINUNIQUE(v, y, d) | v child of u}
12 if X = {∗} then
13 g′(u)← ∗
14 else
15 if X = {y} or X = {y, ∗} with y ∈ Γ then
16 g′(u)← y

17 else
18 g′(u)← 0

19 if g′(u) = 0 then // outputting minimal substrings for
children

20 for each child v with g′(v) = y ∈ Γ do
21 if Left-min(v) is defined then
22 (v′, t)← slink(v, sd(u) + 1)
23 if v′ is not (y, d+ 1)-unique then // flag from previous

round
24 output (Left-min(v), y, d)

25 return g′(u)

– Otherwise, if such i does not exists, we set h(u, `) = −1.
• If u is an internal node of T (Srev), then let k = min{h(v, `) | v child of u},

since it is not possible that L(u)rev is (y, d′)-unique, for any k < d′ < `, thus
h(u, `) = k.

Note that, in the latter case, we do not know if L(u)rev is (y, d)-unique for d = h(u, `),
unless for all nodes v in the subtree rooted in u, there exists an `v such that h(u, `) <
`v ≤ ` and h(v, `v) = h(u, `). In particular this is true if for all nodes v, it holds that
h(v, d+ 1) = h(u, `).

The definition of h(u, `) is as follows:
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h(u, `) =


`− 1 if u is a leaf and ln(u) < `,

max{i < ` | f(n− ln(u) + 1 + i) = y} if u is a leaf and such i exists,
min{h(v, `) | v child of u} if u is an inner node,
−1 otherwise.

In order to evaluate h(u, `) = max{i < ` | f(j + i) = y} in the case where u is a
leaf and such i exists, we define a bitvector by[1, 2n] such that

by[i] =

{
1 if f(i) = y or i > n,

0 otherwise.

We equip by with a data structure to support rank and select queries. Given
a node u such that ln(u) ≥ `, let j = n − ln(u) + 1. We have that h(u, `) =
max{select(by, rank(by, j + `))− j,−1}.

Example 18. In our running example, whose suffix tree is depicted in Figure 5.2, let
us consider the node u corresponding to the substring aca in the string Srev. In order
to compute h(u, 9), we have to recursively compute the h function for all children of
u. Let v, s, and t be the leaves corresponding to the 9-th, 2-nd, and 7-th suffix of Srev,
respectively. If we remove the dollar character from the end of the string Srev, then
the 9-th, 2-nd, and 7-th suffix of Srev corresponds to the 3-rd, 10-th, and 8-th prefix
of S, respectively. We have that h(s, 9) = h(t, 9) = 8, since the furthest possible y at
distance smaller than 9 from the 10-th and 8-th prefix of S are beyond the end of the
string. While, the furthest possible y at distance smaller than 9 from the 3-rd prefix of S
is at distance 5. Thus h(v, 9) = h(u, 9) = 5. The intuition is that the highest possible d,
smaller than 9 such that the substring aca can be (y, d)-unique cannot be larger than 5,
since there is an occurrence of aca that has no y’s at distance between 6 and 8.

Let us now compute h(u, 3). We have that h(s, 3) = 2, since the furthest possible y
at distance smaller than 9 corresponding to the 10-th prefix of S is beyond the end of
the string. For the 8-th prefix of S we have that the furthest y at distance smaller than 3
is at distance 1, thus h(t, 3) = 1. While, for the leaf v there is no y at distance smaller
than 3, thus h(v, 3) = −1. Hence, we have that h(u, 3) = −1.

We use the h(u, `) function in the following way, during the discovery process of all
(y, d)-unique substrings of S, provided that we have already discovered all (y, d+ 1)-
unique substrings of S. Let ` = d+ 1 , for all nodes u of T (Srev) we store the values
h(u, `). We discover the minimally (y, d)-unique substrings of S, finding all nodes u
such that h(u, `) = d. Among those, the nodes that are also left-minimal are those
nodes u such that, h(parent(u), `) < d. We then check if u is also right-minimal by
checking if its suffix-link parent is (y, d+ 1)-unique, as in Algorithm 6.

The key idea of the skipping algorithm is to keep the values h(u, `) updated during
the process. Let H(u) be the array that, at the beginning of the discovery of all (y, d)-
unique substrings of S, stores the values h(u, `). We want to keep the array H updated
in a way such that, after we discovered all (y, d)-unique substrings of S, for all nodes u,
H(u) = h(u, `−1). Thus, once we discover that a node u is left-minimal (y, d)-unique,
we update the value of H(u) = h(u, `− 1). We then update the following values:

• for all nodes v in the subtree rooted in u, we update the values H(u) = h(u, `− 1).
• for all nodes p ancestors of u, we update the valuesH(p) = min(H(p), h(u, `−1))
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In order to efficiently find all nodes u such that h(u, `) = d and h(parent(u), `) < d,
we use a maximum-oriented indexed priority queue, storing the values of H(u) as keys
and iBFS(u) as index. Under this condition, if two nodes have the same key value,
then parents have higher priority than their children in IPQ. We keep the priority
queue updated using a demote operation while we discover left-minimal nodes and
we update the values of the array H stored as keys of IPQ. Algorithm 8 shows how to
compute h(u, `) for a given node u, and how we update the values of the keys in the
IPQ for all children v of u.

Algorithm 8: HIGHEST POSSIBLE VALUE OF d.
input :A node u in the suffix tree T (Srev) and a threshold `.
output :The highest possible delay d smaller than ` such that L(u)rev can be

(y, d)-unique.

1 procedure h(u, `):
2 mind ← `− 1
3 if u is a leaf then
4 j ← n− ln(u) + 1
5 mind ← max{select(by, rank(by, j + `))− j,−1}
6 else
7 forall children v of u do
8 d = h(v, `)
9 if mind < d then

10 mind ← d

11 IPQ.demote(u,mind)
12 return mind

The skipping algorithm summarized in Algorithm 9, initially prepares the priority
queue IPQ inserting all nodes of T (Srev) with key n+1. Then we repeat the following
until there exists a node with non negative key: we extract the max element (u, `) of
IPQ, we decide whether or not it has to be reported, i.e. if it is right-minimal; we apply
Algorithm 8 to update the key values of all nodes in the subtree of u and then we update
the values of the keys of all ancestors of u.

Analysis: For all nodes u in T (Srev), we observe that the key value associated to u
in IPQ at the beginning is set to n+ 1. Each time Algorithm 9 and Algorithm 8 visit
a node in T (Srev) , the key value of u in IPQ is decreased performing a demote()
operation until its value becomes negative. Thus, for each node we perform at most
n+ 1 demote() operations. Since the number of nodes in T (Srev) is linear in n, we
have that Algorithm 9 runs in O(n2 log(n)) time.

Example 19. In our running example, we want to report all minimally (y, d)-unique
substrings of the colored string, for the character y. Using Figure 5.3, we now show how
we discover that the substring ca is (y, 3)-unique. Let the tree in Figure 5.3b be the
indexed priority queue after 48 iterations of Algorithm 8. We have that the maximum
element in the indexed priority queue IPQ is the node of T (Srev) corresponding to
the 10-th node in the reverse index BFS of the tree, as reported in Figure 5.3a. The
associated key value of the maximum element is 3, which means that the corresponding
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(a) The suffix tree of T of Srev, reporting the values of IPQ, left_minimal[0], and
left_minimal[1] for each node, after 48 iterations of Algorithm 8.
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Fig. 5.3: Top (5.3a): The suffix tree of T of the reverse string Srev = bacabcacaca, reporting
the values of IPQ, left_minimal[0], and left_minimal[1] for each node, after 48 iterations
of Algorithm 8. In red, in the upper left of each node, we report the reverse index BFS of the node,
below each leaf we report the associated suffix number, on the right of the node we report the
values of IPQ, left_minimal[0], and left_minimal[1]. Bottom: The indexed priority queue
IPQ after 48 (5.3b) and 49 (5.3c) iterations of Algorithm 8. In the nodes of the priority queue
we have the index of the nodes of the suffix tree T (Srev) numbered in the reverse index BFS.
Below each node, in red and in brackets, the value of the key associated to each index.
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Algorithm 9: SKIPPING

input :A colored string S, and a color y ∈ Γ
output :All minimally (y, d)-unique substrings of S.

1 forall nodes v of T (Srev) do
2 IPQ.insert(v, n+ 1)

3 while IPQ.allNegative()= false do
4 (u, d)← IPQ.max()
5 (u′, t) = slink(u, sd(parent(u)) + 1)
6 if u′ is not (y, d+ 1)-unique then // flag from previous round
7 output (d, Left-min(u))

8 mind = h(u, d)
9 forall ancestors v of u do

10 if IPQ.keyOf(v) > mind then
11 IPQ.demote(v,mind)

substring is left-minimal (y, 3)-unique. In order to decide if the corresponding substring
is also right-minimal, we check if the suffix link parent of the node number 10, which is
the node number 13, is left-minimal for d = 4. The value of the last even value such that
the node number 13 has been left-minimal is set to 12. Thus the node 10 is minimally
(y, 3)− unique and has to be reported. We now compute the h(u, `) function for the
node number 10, u, and ` = 3 . As shown in Example 18, we have that the h function
for the nodes number 2, 3, and 4 are 1, 2, −1. Thus, the value of the h function for the
node number 10 is −1. We then update the values of all parents of the node number 10.
This results in an update of the values of the indexed priority queue IPQ as reported in
Figure 5.3c.

5.3.1 Right-minimality check

According to Proposition 5.1, in order to decide if a node is left-minimal (y, d)-unique,
we have to check that the suffix link parent u′ = slink(u) is not a left-minimal (y, d+1)-
unique node. Since we discover (y, d)-unique substring in a decreasing order of d, it is
enough to store, for each node, the previous value of d such that the node is left-minimal.

Given a node u, we store this information in two arrays, indexed by the iBFS(u).
In one array we store the last even values of d such that the node was left-minimal. In
the other array we store the last odd values of d such that the node was left-minimal.
This prevents possible overwriting of information, e.g., let v = slink(u) such that v is
left-minimal (y, d+ 1)-unique and left-minimal (y, d)-unique node. Let us assume that
v is processed before the node u that is left-minimal (y, d)-unique. If we had only one
array holding the information of the last value of d such that a node was left-minimal,
then this value for v would now be d, instead of d + 1. Thus, we would erroneously
conclude that v is also right-minimal, hence that it is minimally (y, d)-unique. Using
one array to store even values of d and one array to store odd values of d, we solve this
problem, since v updates the array associated to the parity of d, while u queries the one
associated to the parity of d+ 1.
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We can replaces lines 6 to 7 of Algorithm 9 with the following lines of code, where
we assume that at the beginning left_minimal[b][u] = ∞ for all b = {0, 1} and for
all node u.

6 report← (left_minimal[(d+ 1) mod 2][u′] 6= d+ 1)
7 if report then
8 output (d, Left-min(u))

9 left_minimal[d mod 2][u]← d

See Figure 5.3a for an example of the values of the arrays left_minimal[0] and
left_minimal[1].

5.4 Output restrictions and algorithm improvement

In this section we discuss some practically-minded output restrictions. They can be
implemented as a filter to the output, thus discarding some solutions, but if they are con-
sidered as part of the problem, they lead to an improvement for the skipping algorithm.

The output restrictions are the following. Note that our definition of (y, d)-unique
allows that a substring occurs only once, or that none of its occurrences is followed by a
y with delay d, because they are all close to the end of string. In this section, we restrict
our attention to (y, d)-unique substrings which have at least two occurrences followed
by y with delay d.

Given a colored string S, let T be minimally (y, d)-unique. We report (T, d) if and
only if the following holds:

1. There are at least two occurrences of T in S.
2. Let i be the second smallest occurrence of T in S, then i+ |T | − 1 + d ≤ n.

A substring T that satisfies the above conditions is called real type minimally (y, d)-
unique substring. In order to satisfy those conditions, it is enough to perform the output
operations at line 7 of Algorithm 9 and at line 17 of Algorithm 6 if the node u is not
a leaf and the value of the second greatest suffix of Srev in the subtree rooted in u is
greater than or equal to d. Since each node u in the suffix tree T (Srev), corresponds to
an interval [i, j] of the suffix array of Srev, we can find the second greatest suffix using
a range maximum query rMq data structure built on the suffix array of Srev. Then, the
second greatest suffix can be found in O(1) time, using 2n+ o(n) bits of extra space.

The h(u, `) function is used in Algorithm 9 in order to find left-minimal nodes
in the suffix tree. If we consider the output restrictions as part of the problem, then
we do not have to report minimally (y, d)-unique substrings that occur only once, i.e.,
leaves in T (Srev). Then, for all nodes u such that all children of u are leaves, we can
directly compute the highest value of d < ` such that L(u)rev is (y, d)-unique. This
leads to the definition of the fast_h(u, `) function for a node u of T (Srev). The function
fast_h(u, `) is defined similarly to the function h(u, `) with the additional following
case:

• If all children of u are leaves, we can directly compute the highest value of d < `
such that L(u)rev is (y, `)-unique as the largest value d < ` such that, for each
child v of u, it holds that h(v, d+ 1) = d. In other words, we are looking for the
largest d < ` such that all children of v are (y, d)-unique.
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The definition of fast_h(u, `) is as follows:

fast_h(u, `) =



`− 1 if u is a leaf and ln(u) < `,

max{i < ` | f rev(ln(u)− i) = y} if u is a leaf and such i exists,
max{i < ` | fast_h(v, i+ 1) = i if all children of u are leaves

for all v child of u} and such i exists,
min{fast_h(v, `) | v child of u} if u is an inner node,
−1 otherwise.

The additional case of fast_h(u, `) can be computed as follows. Let u be a node
such that all children of u are leaves. We set i = `, and compute the values h(v, i) where
v is a child of u. We update the value of i = min(i, h(v, i) + 1), compute the value of
h(v′, i) where v′ is the next child of u, and update the value of i = min(i, h(v′, i) + 1).
We continue iterating until all children v of u have the same value h(v, i), possibly
−1. Algorithm 10 summarizes these improvements to Algorithm 8. In order to use the
fast_h(u, `) function in Algorithm 9, it is enough to replace the h() function at line 8
by the fast_h() function.

Algorithm 10: HIGHEST POSSIBLE VALUE OF d.
input :A node u in the suffix tree T (Srev), and a threshold `.
output :The highest possible delay d smaller than ` such that L(u)rev can be

(y, d)-unique.

1 procedure fast_h(u, `):
2 mind ← `− 1
3 if u is a leaf then
4 j ← n− ln(u) + 1
5 mind ← max{select(by, rank(by, j + `))− j,−1}
6 else if all children of u are leaves then
7 repeat
8 is_changed← false
9 forall children v of u do

10 d = fast_h(v,mind + 1)
11 if mind < d then
12 is_changed← true
13 mind ← d

14 until is_changed AND mind ≥ 0

15 else
16 forall children v of u do
17 d = fast_h(v, `)
18 if mind < d then
19 mind ← d

20 IPQ.demote(u,mind)
21 return mind
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5.5 Experimental results

We implemented the algorithms presented in the previous sections and measured
their performance on randomly generated datasets and real-world datasets. The
implementation is available online at https://github.com/maxrossi91/
colored-strings-miner.

5.5.1 Setup

We performed experiments on a 3.4 GHz Intel Core i7-6700 CPU equipped with 8 MiB
L3 cache and 16 GiB of DDR4 main memory. The machine had no other significant
CPU tasks running, and only a single thread of execution was used.

The OS was Linux (Ubuntu 16.04, 64bit) running kernel 4.4.0. All programs
were compiled using g++ version 5.4.0 with -O3 -DNDEBUG -funroll-loops
-msse4.2 options.

All given runtimes were recorded with the C++11 high_resolution_clock
time measurement facility.

5.5.2 Data

We used two different datasets; the first one consists of randomly generated data, while
the second one consists of real-world data.

The randomly generated data are colored strings generated using the C library
function rand(). We varied the length n = 100, 1000, 10 000, 100 000, the alphabet
size σ = 2, 4, 8, 16, 32, and the number of colors γ = 2, 4, 8, 16, 32. In all cases except
for n = 100 000, we used seeds 0, 9843, 27 837, 19 341, 29 044; for n = 100 000, we
used only seed 0. The string is generated one character (and its color) at a time, i.e.
fixing σ and γ, the string of length n = 1000 is a prefix of the string n = 10 000. The
strings are generated using a uniform distribution of characters and colors. We report
only the results of experiments for the values of length n = 1000, 10 000, 100 000,
alphabet size σ = 2, 8, 32, number of colors γ = 2, 8, 32, and seed 0, since these are
representative of the trend we observed in all our experiments.

The real-world data is the result of a simulation on a set of established benchmarks
in embedded systems verification [22, 45, 102], reported in Table 5.1. The benchmarks
are descriptions of hardware design at the register-transfer level (RTL) of abstraction.
Each design is composed of a set of primary input bits (PIs) and a set of primary output
bits (POs). Primary inputs and primary outputs are grouped into ports. The simulation
of designs is a sequence of temporal events which act to capture the effects of the values
given as inputs for the design into the design itself, and consequently the effects of
the input values on the values assumed by the outputs. We simulated the benchmarks
providing as inputs randomly generated sequences using an automatic test pattern
generator (ATPG). The result of the simulation is collected in a simulation trace, which
stores, for each temporal event, the values of the primary inputs and of the primary
outputs. For each simulation event, we consider the values of all primary inputs as
characters of the alphabet Σ, and the values of a port of the primary outputs as colors.
In other words, for simulation event i, S[i] is the value of the primary inputs, and fS(i)
is the value of the primary outputs.

https://github.com/maxrossi91/colored-strings-miner
https://github.com/maxrossi91/colored-strings-miner
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Design Description PIs POs n σ γ ny
b03 Resource arbiter [45] 6 4 100 000 17 5 3210
b06 Interrupt handler [45] 4 6 100 000 5 4 44 259
s386 Synthetized controller [22] 9 7 100 000 129 2 8290
camellia Symmetric key block cypher [102] 262 131 103 615 70 224 2292
serial Serial data transmitter 11 2 100 000 118 2 16 353
master Wishbone bus master [102] 134 135 100 000 417 80 759

Table 5.1: Real-world datasets used in the experiments. In the column Design we report the name
of the hardware design that we used to generate the simulation trace. In column PIs we give the
number of primary inputs of the design, while in POs that of its primary outputs. In column n we
report the length of the simulation trace, and in columns σ and γ the size of the alphabet and the
number of colors, respectively. For each design we fixed a color y, and the value ny refers to the
number of y characters in the simulation trace.

5.5.3 Algorithms

We compared the following implementations:

• base: the baseline algorithm (Algorithm 6)
• skip: the skipping algorithm (Algorithm 9) using the h function (Algorithm 8)
• real: the skipping algorithm (Algorithm 9) using the fast_h function (Algo-

rithm 10)
• base-all: the baseline algorithm for all colors (Algorithm 7)

All algorithms report minimally (y, d)-unique substrings only if they are real type.
We used the sdsl-lite library [67] for compressed suffix trees, range maximum
query, and rank and select supports for bit vector implementations.

5.5.4 Results

We performed all experiments five times and report the average execution time over the
five runs. Experimental results are reported in Table 5.2 and Table 5.3.

Table 5.2 shows the results of the executions of base, skip and real algorithms
over the randomly generated strings data.

We can observe how the algorithms scale

1. with respect to an increase in the numbers of colors, which has the effect of reducing
the number of y-colored characters;

2. with respect to an increase in the alphabet size; and
3. with respect to an increase in the length of the text.

We see that all three algorithms behave the same in all cases. Increasing the number
of colors (case 1), the running time decreases. Conversely, when the size of the text
alphabet increases (case 2), the running time increases also. Finally, we observe a
quadratic dependence of the running time on text length (case 3); this is in accordance
with our theoretic results (see Sec. 5.2 and 5.3).

Table 5.2 shows that the skip algorithm is almost always faster than the base
algorithm, and that the average speedup is 1.49, with a maximum of 2.15. Moreover,
we have that the the real algorithm is almost always faster than the skip algorithm,
and the average speedup is 1.17, with a maximum of 2.15. Finally, the average speedup
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Alphabets Execution Time (sec) Speedup (ratio)
σ γ base skip real base/skip

skip/real
base/real

N = 1000
2 2 0.91 0.88 0.86 1.04 1.03 1.07

8 0.84 0.48 0.42 1.76 1.13 1.99
32 0.83 0.38 0.33 2.15 1.18 2.53

8 2 1.29 1.26 1.29 1.02 0.98 1.00
8 1.13 0.73 0.67 1.56 1.08 1.69

32 1.10 0.60 0.53 1.83 1.13 2.07

32 2 1.88 1.82 1.91 1.03 0.95 0.99
8 1.69 1.22 1.04 1.39 1.18 1.63

32 1.67 0.95 0.85 1.75 1.11 1.95
N = 10000

2 2 101.45 100.82 96.68 1.01 1.04 1.05
8 93.98 53.65 47.04 1.75 1.14 2.00

32 91.56 43.16 36.39 2.12 1.19 2.52

8 2 159.95 154.15 146.07 1.04 1.06 1.10
8 140.40 92.95 76.19 1.51 1.22 1.84

32 136.95 78.38 61.55 1.75 1.27 2.23

32 2 227.84 202.74 198.09 1.12 1.02 1.15
8 213.22 128.94 111.89 1.65 1.15 1.91

32 211.44 111.49 94.49 1.90 1.18 2.24
N = 100000

2 2 10 732.92 11 584.92 10 689.51 0.93 1.08 1.00
8 9919.61 6414.88 5319.75 1.55 1.21 1.86

32 9744.38 5226.59 4187.82 1.86 1.25 2.33

8 2 18 732.49 18 339.14 17 026.05 1.02 1.08 1.10
8 16 538.51 11 099.78 8681.53 1.49 1.28 1.91

32 16 191.54 9544.45 7031.47 1.70 1.36 2.30

32 2 28 879.24 27 642.08 23 857.90 1.04 1.16 1.21
8 25 670.11 17 259.61 11 676.85 1.49 1.48 2.20

32 24 991.60 15 001.72 9238.99 1.67 1.62 2.71

Table 5.2: Results of the executions of base, skip and real algorithms over the randomly
generated strings data. The first two columns report the size of the text alphabet σ and the
number of colors γ. The next three columns report the execution time in seconds of algorithms
base, skip and real, respectively. The last three columns report the speedup ratio between
the execution times of algorithms base and skip, skip and real, and base and real,
respectively.

Execution Time (sec) Speedup (ratio)
Design base skip real base/skip

skip/real
base/real

b03 4088.90 4344.18 3570.79 0.94 1.22 1.15
b06 4935.17 6188.51 5189.33 0.80 1.19 0.95
s386 5183.01 6142.26 4434.23 0.84 1.39 1.17
camellia 5155.23 1273.20 1256.35 4.05 1.01 4.10
serial 5221.75 1124.62 1129.30 4.64 1.00 4.62
master 5466.83 326.31 324.66 16.75 1.01 16.84

Table 5.3: Results of the executions of base, skip and real algorithms over the real dataset.
The first column reports the name of the design where the simulation trace is retrieved, then the
other six columns report, as in Table 5.2, the execution times and the speedups of the algorithms
base, skip and real.
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between real and base is 1.76, with a maximum of 2.71 in the case of N = 100 000,
σ = 32 and γ = 32.

Table 5.3 shows the results of the executions of base, skip and real algorithms
over the real dataset. On real-world data, we have the same trend as with randomly
generated strings, but here the speedup of the real algorithm with respect to the base
algorithm is much higher, namely 4.60 on average, with a maximum of 16.84 on the
master device. However, on three of the six datasets, base is faster than skip, while
it is even faster than real on one.

Next, we report the experimental results comparing the base and base-all
algorithms. The setup is the same as in the previous case, i.e. we performed five runs
of each experiment and give the average execution time. The results on the randomly
generated and real-world datasets are reported in Tables 5.4 and 5.5, respectively.

From both Table 5.4 and Table 5.5, we can observe that the running time of the
base algorithm is not heavily affected by the fact that we are looking for a specific
color: there is a small increase in running time from base (reporting all real-type
minimally (y, d)-unique substrings for any d and just one color y), to base-all,
reporting all real-type minimally (y, d)-unique substrings for any d and for all colors y.

On the real-world data, base-all outperforms base on three of the six datasets,
while base is faster on the other three. Note that the number of patterns is considerably
larger for base-all. The reason why base-all is faster than base lies in the
number of times that the right-minimality check is performed, i.e. the number of times
that the condition in line 11 and in line 19 is true. In base, the number of times that
the condition is true is at least the number of times that the same condition is true
in base-all, for the following reason. Consider a node u of the suffix tree. If u
corresponds to a (y, d)-unique substring, then, fixed d, g(u) 6= 0 as well as g′(u) 6= 0,
while if u corresponds to a (z, d)-unique substring, then g′(u) 6= 0 while g(u) = 0 for
some z 6= y. In particular, the number of times that the condition is true in base is at
least the difference of the number of patterns between base and base-all, which
can be considerable. On the other hand, if this difference is too large,then the handling of
the array storing the properties affects the running time more than the right-minimality
check does.



Alphabets Execution Time (sec) Speedup (ratio) Number of Properties
σ γ base base-all base−all/base base base-all

N =1000
2 2 0.91 1.00 1.09 26 894 50 922

8 0.84 0.99 1.17 1745 15 563
32 0.83 0.98 1.18 76 3996

8 2 1.29 1.45 1.13 30 219 56 241
8 1.13 1.34 1.18 1516 12 919

32 1.10 1.35 1.23 75 3306

32 2 1.88 2.06 1.09 25 120 46 758
8 1.69 1.95 1.16 1245 10 578

32 1.67 1.92 1.15 40 2585
N =10 000

2 2 101.45 110.11 1.09 2 374 231 4 699 647
8 93.98 108.06 1.15 187 202 1 447 913

32 91.56 106.67 1.17 11 767 370 303

8 2 159.95 179.30 1.12 2 844 680 5 607 007
8 140.40 166.85 1.19 167 431 1 294 765

32 136.95 163.98 1.20 9989 317 444

32 2 227.84 244.59 1.07 1 466 242 2 892 791
8 213.22 234.80 1.10 83 320 642 806

32 211.44 232.75 1.10 4948 156 947
N =100 000

2 2 10 732.92 11 612.09 1.08 239 039 415 473 572 454
8 9919.61 11 488.66 1.16 17 680 770 145 246 888

32 9744.38 11 386.70 1.17 1 129 991 37 254 203

8 2 18 732.49 20 811.91 1.11 279 720 849 552 304 418
8 16 538.51 19 359.00 1.17 15 517 256 127 614 675

32 16 191.54 19 038.86 1.18 947 858 31 264 100

32 2 28 879.24 32 666.95 1.13 243 283 926 479 770 368
8 25 670.11 29 795.52 1.16 11 982 556 98 601 898

32 24 991.60 29 257.62 1.17 713 137 23 592 691

Table 5.4: Results of the execution of algorithms base and base-all over the randomly
generated strings data. The first two columns report the size of the text alphabet σ and the number
of colors γ. The next two columns report the execution time in seconds of algorithms base and
base-all, respectively. The fourth column reports the speedup ratio between the execution
times of algorithms base-all and base. Finally, the last two columns report the number of
properties extracted by the base and the base-all algorithms, respectively.



Execution Time (sec) Speedup (ratio) Number of Properties
Design base base-all base−all/base base base-all
b03 4088.90 6767.77 1.66 999 191 361 224 140
b06 4935.17 5723.07 1.16 223 070 824 409 476 680
s386 5183.01 9639.66 1.86 5 012 263 558 001 254
camellia 5142.75 4176.15 0.81 77 261 2 470 894
serial 5221.75 3976.23 0.76 2 085 855 11 653 080
master 5466.83 4080.29 0.75 252 231 34 812 555

Table 5.5: Results of the execution of algorithms base and base-all over the real-world
dataset. The first column reports the name of the design where the simulation trace is retrieved.
The next two columns report the execution time in seconds of algorithms base and base-all,
respectively. The fourth column reports the speedup ratio between the execution times of al-
gorithms base-all and base. Finally, the last two columns report the number of properties
extracted from the base and the base-all algorithms, respectively.
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Greedy minimum-entropy coupling

This chapter is devoted to greedy additive approximation algorithms for minimum-
entropy coupling problems.

Given two random variables X and Y with probability distributions Px =
(p(x1), p(x2), . . . , p(xn)) andPy = (p(y1), p(y2), . . . , p(ym)) respectively, the minimum-
entropy coupling problem is to find the minimum-entropy joint distribution among all
possible joint distributions of X and Y with marginal distributions equal to Px and Py ,
respectively. The minimum entropy coupling problem is known to be NP-hard [87].

By causality discovery, we refer to the problem of identifying the causality direction
between correlated random variables. More clearly, given correlation data samples about
two phenomena A and B (e.g., pairs of values of measured altitude (A) and temperature
(B)) the aim is to determine whether it is A that causes B or vice versa.

In Pearl’s model of causality [105], given two random variables X and Y , if X
causes Y then there exists an exogenous random variable E independent of X and a
function f() such that Y = f(X,E). However, this is not enough for the identification
of the causal direction since in general, it is possible to find pairs (f,E) and (g,E′)
such that both Y = f(X,E) and X = g(Y,E′) hold. In order to identify the correct
causal direction between X and Y , Kocaoglu et al.[83] postulated that in the true causal
direction, the entropy of the exogenous random variable E is small.

The problem of trying to infer causation from correlation is a fundamental problem
in many important contexts like network security, portfolio analysis, weather forecast
and climate change studies, just to mention a few.

Finding the minimum-entropy joint distribution H(X,Y ) of two random variables
X and Y , given their marginal distributions, is equivalent to the problem of finding
the joint distribution that maximizes the mutual information, I(X;Y ), due to the well
known relationship between these to quantities H(XY ) = H(X) +H(Y )− I(X;Y ).

Finding the minimum-entropy joint distribution also plays a central role in the
problem of order-reduction of stochastic processes [134].

Related work

Kocaoglu et al.[83] (independently [103]) proposed a greedy heuristic for the minimum
entropy coupling problem and showed that the solution provided by their algorithm
is guaranteed to be a local minimum. They conjectured, giving only experimental
evidence, that their algorithm provides an additive approximation not larger than 1.
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In [84], Kocaoglu et al. proposed a variant of the greedy heuristic presented in [83] for
which they provide an additive approximation factor that depends on the difference of
the sorted marginals, and it can scale with log(n), where n is the number of states of
the marginals.

Cicalese et al.[33] gave a different greedy algorithm and proved that it guarantees
additive approximation 1 (and, in general, log(m), for a minimum entropy coupling of
m distributions).

Our contribution

For the case of two random variables X,Y , we show that the algorithm proposed by
Kocaoglu et al. [83] also guarantees an additive approximation of 1. We also give another
greedy algorithm to obtain a coupling of small entropy when the probability distributions
of X and Y given as marginals are ordered from the highest to the smallest value. This
algorithm provides an additive 1-approximation of a minimum entropy coupling. The
interesting aspect of this approach is about the property on which the approximation
guarantee is based, and we believe that this property might be of independent interest
also in other settings where couplings are used.

The results presented in this chapter appeared in [116].

6.1 Basic facts

6.1.1 Notation

We represent the set {1, . . . , n} by [n]. Given an array of n elements a = (a1, a2, . . . , an),
we refer to the i-th element of a as ai and to the first i elements of a as a[i]. Let M
be an n × n matrix, for all i, j = 1, . . . , n we denote by Mij the element in the i-th
row and j-th column of M . We denote by M [i], the i× i matrix of the first i rows and
columns of M .

6.1.2 Joint Entropy Minimization Algorithm

Without loss of generality, we can consider the problem of finding the minimum-
entropy coupling when the given marginal distributions, p = (p1, p2, . . . , pn) and
q = (q1, q2, . . . , qn), have each n elements. For our purpose, we recall in Algorithm
11, the algorithm provided by Kocaoglu et al. [83] in the case of two marginals. The
algorithm, at each iteration, finds the largest residual mass probability of the two
marginals p and q; places the minimum of them in the position corresponding to their
coordinates in the joint probability matrix M ; updates the residual mass probability of
the two marginals, removing from both the maximal elements, the value of the minimum
of them already placed in M . In this case, the algorithm terminates in at most 2n− 1
steps.

In order to analyze Algorithm 11, we define p(i) = (p
(i)
1 , . . . , p

(i)
n ) as the residual

pieces of p after i calls of the UpdateRoutine, e.g., p(0) = p. From now on, we will
refer to the i-th call of the UpdateRoutine as the i-th temporal instant, or briefly instant.
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Algorithm 11: Joint Entropy Minimization Algorithm [83]
Require: Marginal distributions {p, q} with n states
Ensure: An n× n matrix M that is coupling of p and q.
1: Initialize the matrix Mij = 0, i, j = 1, . . . , n.
2: Initialize r = 1.
3: while r > 0 do
4: ({p, q}, r) = UpdateRoutine({p, q}, r)
5: end while
6: return P .
7: UpdateRoutine({p, q}, r)
8: i = argmaxk{pk}.
9: j = argmaxk{qk}.

10: Mij = min{pi, qj}.
11: pi = pi −Mij .
12: qi = qi −Mij .
13: r = r −Mij .
14: return {p, q}, r

6.1.3 Majorization

In order to prove that Algorithm 11 guarantees an additive approximation factor of
1, we use the same tool used in [33], i.e. majorization theory[97], of which we are
going to recall few notions. Let Pn = {(p1, p2, . . . , pn) | p1 ≥ p2 ≥ . . . ≥ pn ≥
0 and

∑n
i=1 pi = 1}.

Definition 6.1. Given probability distributions p ∈ Pn and q ∈ Pn , we say that p is
majorized by q, denoted by p � q if and only if for all k = 1, 2, . . . , n it holds that∑k
i=1 pi ≤

∑k
i=1 qi.

Given the set Pn, the majorization relation� is a partial ordering on Pn and the partially
ordered set (Pn,�) is a lattice [43] (independently [48]). It follows that for all pairs
p, q ∈ Pn there exists a unique greatest lower bound, denoted by p ∧ q, i.e. p ∧ q � p
and p ∧ q � q and for all r ∈ Pn such that r � p and r � q then r � p ∧ q. Given
p, q ∈ Pn, it is possible to compute the value of p ∧ q as shown in [43], that we recall
in the following fact.

Fact 6.1 [43] Given probability distributions p = (p1, p2, . . . , pn) ∈ Pn and q =
(q1, q2, . . . , qn) ∈ Pn, let z = (z1, z2, . . . , zn) ∈ Pn such that z = p ∧ q. Then
z1 = min{p1, q1} and for each k = 2, . . . , n it holds that

zk = min(

k∑
i=1

pi,

k∑
i=1

qi)− zk−1.

We are going to summarize in the following lemma an important result provided in [33],
i.e., the entropy of any coupling between p and q is not smaller than the entropy of the
greatest lower bound p ∧ q.

Lemma 6.1. [33] For any p and q, let M be one of the possible couplings between p
and q. It holds that

H(M) ≥ H(p ∧ q).
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This implies that the minimum-entropy coupling matrix M∗ between p and q has
entropy not smaller than H(p ∧ q). To provide a 1-bit approximation for Algorithm 11,
it is enough to show that the produced coupling matrix M has entropy H(M) ≤
H(p ∧ q) + 1.

In order to do that, we introduce two sequences of 2n elements. Let s be the
array of length 2n storing the non-zero elements of M in non-increasing order. Since
the non-zero elements of M are at most 2n − 1, we fill the remaining elements of
s with 0s. In particular s = (s1, s2, . . . , s2n) such that s1 ≥ s2 ≥ · · · ≥ s2n and
they represent the elements given by Algorithm 11. Let p(i)

∗ and q(i)
∗ be the maximum

residual piece in p(i) and q(i) at instant i, respectively. Considering those residual
pieces that are maximal, for i = 1, . . . , 2n we have that si = min(p

(i)
∗ , q

(i)
∗ ) if it exists,

otherwise si = 0. Furthermore, let hz be the array of the two halves of each element
of z. In particular hz = (hz1, hz2, . . . , hz2n) such that hz1 ≥ hz2 ≥ · · · ≥ hz2n

where, for each i = 1, . . . , n we have that hz2i−1 = zi/2 and hz2i = zi/2. Note
that H(hz) = H(z) + 1 = H(p ∧ q) + 1. Let S and HZ be the prefix sums of s
and hz respectively. In particular, their k-th elements are given by Sk =

∑k
i=1 si and

HZk =
∑k
i=1 hzi.

Recalling the Shur-concavity of the entropy function [97], we have that given
p, q ∈ Pn such that p � q then H(p) ≥ H(q). Thus, showing that for all k ∈ [2n],
Sk ≥ HZk we have that hz � s thus H(s) ≤ H(hz) then H(M) ≤ H(p ∧ q) + 1.

6.2 Main Theorem

In this section, we will show that the algorithm summarized in Algorithm 11 guarantees
an additive approximation factor of 1. We can assume without loss of generality that
the marginal distributions p, q ∈ Pn, thus, they are given in non-increasing order, i.e.,
p1 ≥ p2 ≥ . . . ≥ pn and q1 ≥ q2 ≥ . . . ≥ qn.

Theorem 6.1. Let p, q ∈ Pn and z = p ∧ q. Let s be the distribution obtained by the
application of Algorithm 11. Then H(s) ≤ H(z) + 1.

Proof. We are going to show that for all k ∈ [2n] it holds that either Sk ≥
∑d k2 e
i=1 pi or

Sk ≥
∑d k2 e
i=1 qi. Note that after instant k, Algorithm 11 modified the residual pieces of

at most the first k elements of p and q, i.e. for all n ≥ i > k, p(k)
i = pi and q(k)

i = qi.
Let P (k) be the set of indices of residual pieces of p whose value is 0. Analogously, we
can define Q(k) as the set of indices of residual pieces of q whose value is 0 at instant
k. Formally, P (k) = {j ∈ [k] | p(k)

j = 0} and Q(k) = {j ∈ [k] | q(k)
j = 0}. We can

assume, without loss of generality, that |P (k)| ≥ |Q(k)|. In particular, we have that

|P (k)| ≥ dk2 e and we will show that under this condition, it holds that Sk ≥
∑d k2 e
i=1 pi

We start partitioning the residual pieces in P (k) according to their indices in p, i.e.
if their index is greater than dk2 e. Let U = {j ∈ [dk2 e] | p

(k)
j = 0}, let R = {j ∈ [k] |

n ≥ j > dk2 e, p
(k)
j = 0}. Furthermore, we define W = {j ∈ [dk2 e] | p

(k)
j > 0} that is

the set of elements which are among the first dk2 e elements of p but their residual piece
at instant k is not 0. Finally, let V = {j ∈ [k] | n ≥ j > dk2 e, p

(k)
j > 0} that is the set

of elements in the last dk2 e among the first k elements of p which their residual piece at
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instant k is not 0. Note that since |P (k)| ≥ |Q(k)| and |P (k)|+ |Q(k)| ≥ k then at least
dk2 e elements of p are 0, thus it holds that |W | ≤ |R|.

Then we can write the prefix sums of s as follows

Sk =
∑
i∈U

pi +
∑
i∈R

pi +
∑
i∈W

(pi − p(k)
i ) +

∑
i∈V

(pi − p(k)
i )

We are now going to show that for all i ∈ R it holds that for all j ∈W , pi ≥ p(k)
j .

Assume otherwise, and let t < k be the instant when the residual piece of pi was
maximal and smaller than the maximal element of q, i.e. p(t−1)

i > 0 and p(t)
i = 0. From

this follows that p(t−1)
i ≥ p(t−1)

j ≥ p(k)
j in contradiction with the assumptions. Hence,

we have that ∑
i∈R

pi +
∑
i∈W

(pi − p(k)
i ) ≥

∑
i∈W

pi

Keeping all this together,

Sk ≥
∑
i∈U

pi +
∑
i∈W

pi =
∑

j∈[d k2 e]

pj ≥ HZk

Then we can conclude that H(s) ≤ H(hz) = H(z) + 1.

Hence, we have shown that Algorithm 11 guarantees an additive approximation of 1
in the case of two marginals.

Figure 6.1 shows a pictorial representation of an example of the residual pieces
among the first 8 elements of two marginals p and q after 7 execution instants, i.e. 7

calls of the UpdateRoutine. At instant 1, p1 > q1 hence p1 is split into s1 and p(1)
1 ,

while q1 is entirely covered by s1. At instant 2 we have that the largest elements among
the residual pieces of p and q are p2 and q2 respectively. Since p2 > q2 we have that
p2 is split into s2 and p(2)

2 , while q2 is entirely covered by s2. Similarly, we can argue
about p3 and q3 at instant 3. At instant 4 we have that the largest elements among the
residual pieces of p and q are p4 and q4, in this case we have that p4 < q4 hence q4 is
split into s4 and q(4)

4 , while p4 is entirely covered by s4. We have the same situation at
instants 5 and 6 for the variables p5 and q5, and for the variables p6 and q6. At the last
instant, we have that the residual piece of p1, p(6)

1 < q7, then q7 is split into s7 and q(7)
7 ,

while p(6)
1 is entirely covered by s7. Note that the elements p8 and q8 are not involved in

the computation before instant 8, since there are at least 7 elements greater than them.
In the example we have that P (7) = {1, 4, 5, 6} and Q(7) = {1, 2, 3}, thus, at

instant 7, Theorem 6.1 holds for p. In particular, we have that the sets U,R,W, V
are U = {1, 4}, R = {5, 6}, W = {2, 3} and V = {7}. We want to show that∑7
i=1 si ≥

∑4
i=1 pi. We have that s4 = p4 and s1 + s7 = p1, hence we have to show

that s2 + s3 + s5 + s6 ≥ p2 + p3. Since p2 = s2 − p(7)
2 and p3 = s3 − p(7)

3 we have
to show that s5 + s6 ≥ p

(7)
2 + p

(7)
3 . Note that p5 and p6 are the largest elements of

p at instants 5 and 6 respectively, hence p5 > p
(4)
2 and p6 > p

(5)
3 . Since for all i and

for all k we have that p(k)
i ≥ p(k+1)

i , we have shown that s5 + s6 ≥ p(7)
2 + p

(7)
3 , as in

Theorem 6.1.
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(a) Residual pieces of p1, . . . , p8 after 7 instants
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(b) Residual pieces of q1, . . . , q8 after 7 instants
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Fig. 6.1: Values of output and residual pieces after 7 instants of execution of Algorithm 11. Dark
gray bars s1, s2, . . . , s7 represent the probability mass placed by Algorithm 11 after 7 instants.
Light gray bars p(7)2 , p

(7)
3 , p

(7)
7 , p

(7)
8 , q

(7)
4 , q

(7)
5 , q

(7)
6 , q

(7)
7 , q

(7)
8 represents the residual piece of

p2, p3, p7, p8, q4, q5, q6, q7, q8 respectively, while the residual pieces p(7)2 = p
(7)
3 = p

(7)
7 =

p
(7)
8 = q

(7)
1 = q

(7)
2 = q

(7)
3 = 0. The sum of the stacked bars p1, p2, . . . , p8 and q1, q2, . . . , q8

represent the probability mass of the first 8 elements of p and q respectively.

6.3 A General approach for additive approximation on couplings

In this section, we present another algorithm that provides an additive 1-approximation
of a minimum entropy coupling. The algorithm, summarized in Algorithm 12, at each
step i, places as much as possible in position Mii, i.e. min{pi, qi}; redistributes the
residual pieces of the first i non-satisfied rows/columns as in Algorithm 11, i.e. from
the heaviest to the lightest. The main idea behind Algorithm 11 is summarized in the
following lemma. We believe that this is an independent property that can be used to
derive additive approximations for coupling construction algorithms in other settings.

Algorithm 12: Diagonal algorithm
Require: Marginal distributions {p, q} with n states
Ensure: An n× n matrix M that is coupling of p and q.
1: for i = 1, . . . , n do
2: Mii = min{pi, qi}
3: r = zi −Mii

4: while r > 0 do
5: ({p[i], q[i]}, r) = UpdateRoutine({p[i], q[i]}, r)
6: end while
7: end for

First, we prove the following properties of Algorithm 12.

Lemma 6.2. Given two marginal distributions p, q ∈ Pn, let M be the n× n coupling
matrix produced by Algorithm 12. The following properties holds.

1. For all i = 1, . . . , n, there are at most 2i − 1 non-zero elements in M [i] and the
total mass quantity in M [i] equals to

∑i
j=1 zj .

2. Furthermore, if an element zi is split into t+1 elements (i.e produces t new elements
in M [i]) then among z1, . . . , zi−1 at least t had not been split.

Proof. In order to show 1), we can observe that each split (i.e. a new element with
respect to the original diagonal) means that a new constraint has been satisfied and
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there are at most i− 1 new constraints in M [i]. If
∑i
j=1 pj 6=

∑i
j=1 qj , then it can be

satisfied with z1 + · · · + zi total mass. (Note that if
∑i
j=1 pj =

∑i
j=1 qj than, two

constraints are automatically satisfied, there are still at most i− 1 more to be fulfilled)
In order to prove 2), we can assume that zi is split to produce t more elements and

also (by contradiction) less than t among z1, . . . , zi−1 were not split, i.e. ` > i− t were
split into at least two parts. Therefore there would be i+`+t > i+i−t+t = 2i > 2i−1
elements against 1).

We are now ready to show that Algorithm 12 produce a minimum-entropy coupling
of two marginal distribution that is a 1-bit approximation.

Theorem 6.2. Given p, q ∈ Pn.Algorithm 12 produce a matrix M coupling of p and
q, such that it is an additive approximation with factor 1 with respect to the minimum-
entropy coupling matrix M∗, in particular H(M) ≤ H(M∗) + 1.

Proof. Given Lemma 6.2, let m̃(i) = (m
(i−1)
1 , . . . ,m

(i−1)
k , z

(1)
i , . . . , z

(t)
i , 0) be the

2i− 1 non-zero elements of M [i] with an extra zero. In particular, m(i−1)
1 , . . . ,m

(i−1)
k

are the non-zero elements of M [i−1], and z(1)
i , . . . , z

(t)
i are the t elements of zi (pro-

duced at step 5).
Again from Lemma 6.2, it holds that for all i = 1, . . . , n

2i−1∑
j=1

m̃
(i)
j =

k∑
j=1

m̃
(i)
j +

t∑
j=1

z
(j)
i =

i−1∑
j=1

zj + zi =

i∑
j=1

zj

Thus we have that
∑2i−1
j=1 m̃

(i)
j ≥

∑2i−1
j=1 HZj hence

∑2i
j=1 m̃

(i)
j ≥

∑2i
j=1HZj .

We have shown that hz � m̃(n) and it follows that H(M) ≤ H(M∗) + 1.

Algorithm 2 by Kocaoglu et al.[84], in the case of two marginal distributions whose
elements are in non-decreasing order, is similar to Algorithm 12. While Algorithm 12
fills the matrix M [i] before considering the matrix M [i+1], Algorithm 2 by Kocaoglu
et al.[84] first places the maximal masses in the diagonal of the matrix, then it fills
the matrix computing the UpdateRoutine on the residual masses in the marginal
distributions. Thus, Algorithm 12 and Algorithm 2 by Kocaoglu et al.[84] produce
different outputs. Furthermore, it is not possible to directly apply the same technique
in order to show that Algorithm 2 by Kocaoglu et al.[84] also guarantees an additive
approximation of 1 of a minimum entropy coupling problem.
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Conclusion

In this thesis we focused on sequential data, studying algorithmics and data structures
for problems of coding, indexing, and mining.

In the area of coding, the first topic we addressed is related to Lempel-Ziv 77 parsing.
In Chapter 2 we studied the problem of decompressing a Lempel-Ziv 77 parsing in space
proportional to the parsing itself. We implemented Bille et al.’s algorithm [16] using
Karczmarz’s mergeable dictionary [77], extended to support the shift operation. The
performances of the algorithm were extremely disappointing in terms of time and space
consumption, compared to the naive algorithm. We replaced Karczmarz’s mergeable
dictionary with an ad-hoc data structure tailored for Bille et al.’s algorithm. We further
presented a hybrid approach that mixes the naive decompression algorithm and Bille et
al.’s approach. The hybrid setting uses a cache to speed up the decompression, storing
already decompressed parts of the text that will be highly referred. Thus, when a block
has to be decompressed is in the cache, we naively decompress it from the cache,
instead of using the slower Bille et al.’s approach. Experimental results, performed
on real-world texts, showed that the ad-hoc data structure outperforms the previous
implementation, making the time and space consumption of Bille et al.’s algorithm
comparable with the one of the naive approach. The results confirm that Bille et al.’s
algorithm uses much less space than the naive algorithm, while it uses more time to
decompress the text. Furthermore, the hybrid approach results effective in all datasets
we tested.

Error-correcting adaptive codes are the second topic in the area of coding that
we addressed. We focused on the multi-interval Ulam-Rényi game. In Chapter 3 we
investigated the case where up to 3 answers are lies. We first presented our novel analytic
tool (Lemma 3.2). We used it to show that for any sufficiently large m, there exists an
optimal strategy to identify an initially unknown m-bit number that only uses 4-interval
queries. We turned this asymptotic result into a complete characterization of instances
of the Ulam-Rényi game that admit strategies using the theoretical minimum number
of questions, using 4-interval questions when up to 3 answers are lies. For this, we
refined our main tool (Theorem 3.1) and we built upon the result of [101], mapping all
optimal solutions for the classical Ulam-Rényi game with 3 lies, into solutions for the
multi-interval variant, that uses 4-interval questions.

In Chapter 4 we focused on prefix normal words in the context of indexing. We
proposed a new generation algorithm that lists all prefix normal words of a given length
n. The algorithm runs in O(n) time per word and lists the prefix normal words in
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lexicographic order. With a slight change in the code, the obtained algorithm lists prefix
normal words as a combinatorial Gray code. We also used the generation algorithm
to list all prefix normal words sharing the same critical prefix. We presented a closed
formula for counting some of the sets sharing specific critical prefixes. We introduced
infinite prefix normal words and we showed that the operation flipext, one of the
operations used in the generation algorithm, if repeatedly applied, generates infinite
prefix normal words, starting from a seed word. We showed that the word generated
in this way is an ultimately periodic infinite word, for which we can predict the length
and the density of the period. We defined another operation called lazy-α-flipext that
can be used to generate infinite prefix normal words that are Sturmian words. We then
showed that the only Sturmian words that are prefix normal are the ones produced using
the lazy-α-flipext. This leads to a complete characterization of which infinite prefix
normal words are Sturmian words. We established connections between infinite prefix
normal words and lexicographic order, showing that, as in the finite case, infinite prefix
normal words are infinite prenacklaces and that there are infinite binary words that are:
both prefix normal and Lyndon, prefix normal but not Lyndon, Lyndon but not prefix
normal, and neither of the two. Furthermore, we compared prefix normal words with the
max- and min-words of [110]. We also established connections between infinite prefix
normal words and abelian complexity, showing that it is always possible to compute
the abelian complexity function of a word, given their prefix normal forms. We also
presented sufficient conditions to obtain the prefix normal forms of a word given its
abelian complexity. Furthermore, we extended a recent result on computing the abelian
complexity function of binary uniform morphisms to compute the prefix normal forms
of binary uniform morphisms. Finally, we characterized periodicity and aperiodicity of
infinite prefix normal words according to their minimum density.

In the area of mining of sequential data, in Chapter 5 we treated problems of
pattern discovery in colored strings a new type of strings we proposed. Motivated by
applications in embedded system verification. These are strings such that each position
of the string is assigned a color from a finite set of colors. We studied two different
pattern discovery problems on colored strings. The first problem is to find all minimally
(y, d)-unique substrings of the colored string, for a given color y and any delay d. We
proposed two different approaches, which we refer to as baseline approach and skipping
approach. Both algorithms use a suffix tree on the reverse of the colored string as
underlying data structure. They discover the patterns starting from the ones with highest
delay to the ones with the lowest delay. The two algorithms differ in the way in which
minimality information is propagated along the suffix tree. The baseline algorithm
traverses the whole tree separately for each delay value, propagating a coloring function
from the leaves to the root of the suffix tree. During each traversal, the algorithm goes
through all distinct substrings of the text, and uses the coloring function to identify
which substrings are minimally (y, d)-unique. On the other hand, the skipping algorithm
stores, for each distinct substring, the next delay value such that the substring is (y, d)-
unique, during the discovery process. It uses a maximum-oriented indexed priority
queue to find these values and to identify minimally (y, d)-unique substrings. Even
though the theoretical analysis we provided for the skipping algorithm results in a worst
upper bound on the running time than the one for the baseline algorithm, we show in
our experiments that it is faster in practice, especially on real-life instances. We also
proposed a variant of the minimality condition oriented toward real-world application
instances. Those conditions allow us to develop a faster core function of the skipping
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algorithm, resulting in a more effective performance in practice. The second problem
we proposed is to find all minimally (y, d)-unique substrings of the colored string, for
all colors y concurrently. We modified our baseline algorithm, defining a new coloring
function, noting that for fixed d, a substring can be (y, d)-unique at most for one color
y. The introduction of the new coloring function and the fact that now all colors y
are of interest, increases the running time with respect to the baseline algorithm only
negligibly, an effect we observed in the experiments on randomly generated data, while
only in half of the cases for real-world data.

In the last chapter of this thesis we considered the problem of minimum entropy
coupling. We focused on algorithms for this problem with additive approximation
guarantees. We showed that for the case of two random variables X,Y , the algorithm
proposed by Kocaoglu et al. [83] also guarantees an additive approximation of 1. We
presented another greedy algorithm to obtain a coupling of small entropy when the
probability distributions in the marginals are ordered from the highest to the smallest
value. This algorithm provides an additive 1-approximation of a minimum entropy
coupling. The main interesting aspect is about the property that we used, that we believe
it might be of independent interest also in other settings where couplings are used.

7.1 Future work

We conclude this chapter with suggestions of directions for further research that this
thesis opened up.

On the Lempel-Ziv 77 decompression algorithm side, one further direction of re-
search is to improve the performance of the bottleneck phase, caused by the mergeable
dictionary data structure. In Chapter 2 we presented an ad-hoc data structure that speeds
up the decompression process. This data structure cannot be used as a mergeable dic-
tionary, and it does not satisfy the theoretical bounds required by the decompression
algorithm to guarantee its linearity. An interesting question is to find a mergeable dictio-
nary with the correct theoretical bounds to ensure the linearity of the decompression
algorithm, which is also a practical solution for the mergeable dictionary problem.

The results on the multi-interval Ulam-Rényi game, presented in Chapter 3, open
different research directions. We showed that if up to 3 errors are allowed then there
exists an optimal strategy that uses 4-interval questions, thus k3 ≤ 4. One open question
is whether the bound for k3 is tight, i.e. k3 = 4. More interesting, by our novel analytic
tool (Lemma 3.2) naturally lends itself to a generalization to any fixed e. The main open
question is how to generalize Theorem 3.1 in order to prove the linearity conjecture
ke = O(e).

Open problems on prefix normal words have been already stated in Chapter 4.
Among those, the most important questions concern counting the number of prefix
normal words of a given length. There are other questions left open in Chapter 4.
Leveraging on the practical improvements of the generation algorithm in Section 4.2.4,
the first question that arises from Chapter 4 is whether there exists a CAT1 generation
algorithm for prefix normal words. From the observations in Section 4.3 we have that
all possible extensions of a prefix normal word w, preserving the minimum density of
w, are lexicographically between flipext(w) and lazy-α-flipext(w), where α = δ(w).

1 Remark that in combinatorial generation, the cost to generate one word, without outputting it
in the best case is constant amortized time (CAT).
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One interesting investigation could be the characterization of all prefix normal words
that lie in between.

Colored strings are strings that we used to model the problem of assertion mining, in
Chapter 5. It would be interesting to study the number of pattern of interest on average.
To further connect the pattern discovery problem with the assertion mining problem, one
should investigate other output restrictions, such as to bound the minimal and maximal
length of a substring, as well as to bound the minimal and maximal value of the delay.
Furthermore, it would be interesting to extend the discovery problem to search for
subsequences.

In Chapter 6 we investigated the problem of providing approximation guarantees
for greedy algorithms that solve minimum entropy coupling problems. In particular,
we focused on the case where the number of the considered random variables is 2, but
the greedy algorithm proposed in [84] can be extended in the case where m random
variables are considered. The question is whether the approximation guarantee can be
extended in the case of m random variables. Furthermore, in Section 6.3 we propose a
criterion that exploits the structural properties of the coupling matrix. This criterion is
sufficient to provide that the coupling matrix is a 1-bit approximation of the optimal
coupling. This criterion does not cover the case of the algorithm proposed in [84], but
we wonder whether there is another structural property that is also necessary to provide
that the coupling matrix is a 1-bit approximation of the optimal coupling. Finally, the
criterion is stated only for the case of 2 random variables. The question is if it can also
be extended for the case with more than two variables.
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